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ABSTRACT 

Mycobacterium tuberculosis (Mtb) derived protein biomarkers are urgently needed for the 

development of point-of-care diagnostics, new drugs and vaccines for improved management 

of TB. Mtb extracellular and secreted proteins facilitate host invasion, interfere with host 

defence mechanisms during host-pathogen interaction and are essential for growth and survival 

of Mtb during infection. Therefore, the present study aimed to identify unique Mtb secretory 

proteins that can be used to diagnose and differentiate ATB from LTBI, design new drugs for 

treatment of drug-resistant TB and develop effective TB vaccines. Using the phage display 

system specifically designed to study the bacterial secretome, a whole genome library was 

constructed from genomic DNA of the XDR Mtb F15/LAM4/KZN strain. The analysis of Mtb 

secretome sub-library (~8×103 clones) by DNA sequencing confirmed that the library consisted 

mainly (>90%) of extracellular proteins including secreted and cell wall associated proteins. 

The Mtb phage secretome sub-library was screened by biopanning against immobilized 

polyclonal sera from TB negative (n=20) individuals, ATB (n=20) and LTBI (n=15) patients, 

in order to identify proteins recognized by TB patients’ antibodies. DNA sequence analysis of 

randomly selected ATB and LTBI phage clones revealed 118 and 96 open reading frames, 

respectively. Of these, 23 proteins overlapped between ATB and LTBI, including the 

resuscitation-promoting factor (RpfB) which promotes the resuscitation and growth of dormant 

cells, and the immunogenic proteins, e.g., Ag85B, Mpt63 and Mpt64. Using different Mtb 

databases, proteins essential for growth, virulence and metabolic processes were identified as 

good targets for development of diagnostic tools, new drugs and vaccines. The ATB-specific 

biomarkers included TrpG, Alr, TreY, BfrA and EspR, with no human homologs. The LTBI-

specific biomarkers included NarG, PonA1, PonA2 and HspR, which are known to be involved 

in stationary-phase survival under non-replicating conditions. Reverse vaccinology was used to 
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analyse all ATB-specific and LTBI-specific proteins, 40 proteins were selected and ranked 

according to predicted subcellular localization, transmembrane domains, adhesive properties 

and antigenicity. B-cell and T-cell (CD8+/CD4+) epitopes were identified for the design of a 

new polypeptide TB vaccine. Two novel CD8+ T-cell epitopes, RMPTGMPPK (Rv0361) and 

QLPPTDPRY (Rv3682) with binding affinity for HLA-E*01:01 and HLA-E*01:03 alleles 

respectively were identified. Since HLA-E alleles are not down-regulated by HIV co-infection 

and since HLA-E epitopes demonstrated the highest population coverage (99.88%) among the 

world’s population, these epitopes are attractive TB vaccine candidates. In conclusion, 

antigenic Mtb derived biomarkers essential for in vivo growth, intracellular survival and 

virulence were successfully identified in this study. The B- and T-cells epitopes identified 

represent potential candidates that may invoke both humoral and cellular immune responses. 

These findings will potentially accelerate and advance the design of effective and cost-effective 

vaccines and diagnostic tests against Mtb infection. Future studies will evaluate the potential 

application of these biomarkers in TB diagnosis, monitoring and prognosis of TB disease, and 

for the design of effective vaccines against this dreaded disease. 
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CHAPTER 1: Introduction and literature review 

1.1 INTRODUCTION 

Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), one of the leading 

causes of death from infectious disease worldwide. In 2016, the World Health Organization 

(WHO) recorded 10.4 million new TB incidents and 1.7 million deaths (including 0.4 million 

HIV/TB coinfections), globally. TB is the leading killer of people living with human 

immunodeficiency virus (HIV), responsible for 35% of deaths. The largest number of new TB 

cases were reported in the South-East Asia (45%) and African Regions (25%) accounting for 

70% of global new cases in 2016 (Fig. 1.1). India, Indonesia, China, Philippines, and Pakistan 

are the leading countries contributing 56% of new TB cases globally. South Africa and Nigeria 

together account for 4% of the total new TB cases and are ranked 6th and 7th highest burdened 

countries respectively, in the world (WHO, 2017). 

 

 

Fig. 1. 1: Global view of the estimated number of TB incidence rates in 2016 (WHO, 2017).  
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In 2016, South Africa recorded a total of 244053 new and relapse TB cases with 59% of these 

patients co-infected with HIV. TB is the leading underlying cause of mortality in South Africa, 

with 33137 deaths in 2015. Most TB deaths were recorded in KwaZulu-Natal, Eastern Cape 

and Gauteng provinces, respectively (Fig. 1.2). South Africa achieved a treatment success rate 

of 78% for new and relapse TB cases registered in 2014 and recorded an estimate of at least 

3.5% of TB cases with MDR/TB (WHO, 2017). 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 2: Estimated number of TB deaths recorded in 2015 for 9 provinces of South Africa which are 

EC- Eastern Cape, FS- Free State, GP- Gauteng, KZN- KwaZulu-Natal, LP- Limpopo, MP- 

Mpumalanga, NC- Northern Cape, NW- North West, and WC- Western Cape. The data was retrieved 

from Statistics South Africa cause of deaths report for 2015. 

 

The reasons for the high global TB burdens are multifactorial: High prevalence of HIV co-

infections especially in under resourced countries, the evolution of drug resistant strains, lack 
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of rapid point-of-care diagnostics tests, and timeous initiation of anti-TB therapy and 

ineffective drugs and vaccines.  

The rapid and accurate diagnosis of TB is critical for treatment and management of patients 

and for reducing disease transmission. In 2011, WHO suspended the use of serological tests 

based on antibody detection for TB diagnosis due to the diverse antibody response of patients, 

and the lack of a single robust antigen resulting in significant inconsistencies in their 

performance (Bekmurzayeva et al., 2013). The diagnostic tests for TB disease are sputum 

smear microscopy, culture-based methods and molecular methods. However, the smear 

microscopy requires a large number of bacilli (~1x104 bacterial cells) to be present in order for 

the result to be detected as positive. The culture-based method remains the reference standard, 

but its high sensitivity and specificity is offset by delays in the laboratory turnaround time of 

up to 12 weeks. The only molecular method for detection of Mtb and diagnosis of TB is 

GeneXpert MTB/RIF assay that provide results within 2 hours (WHO, 2012).  

Drugs for TB treatment have been available since the 1940s. The first-line anti-TB drugs; 

isoniazid, rifampicin, ethambutol and pyrazinamide are used for treatment of drug-susceptible 

TB with 85% success rates (WHO, 2017). The poor patient compliance to treatment guidelines 

has led to the emergence of Mtb strains that are increasingly resistant to the available anti-TB 

drugs leading to the development of mono-drug resistant to multidrug resistant (MDR), 

extensively drug resistant (XDR), and eventually totally drug resistant (TDR) strains (Pillay et 

al., 2007, Nguyen, 2016). In 2016, 82% of 600000 new global cases with resistance to 

rifampicin were MDR-TB. About 30000 MDR-TB cases were XDR-TB. South Africa 

recorded 19073 MDR-TB including 967 XDR-TB (WHO, 2017). Three provinces; KwaZulu-

Natal, Western Cape, and Eastern Cape reported the most cases of MDR-TB and XDR-TB in 

South Africa (NHLS, 2009). 
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MDR strains are resistant to the two most powerful anti-TB drugs, isoniazid and rifampicin.  

MDR-TB is treatable with the second-line anti-TB drugs, however, these drugs are limited, 

expensive and toxic with a treatment period of up to 2 years. XDR strains are resistant to 

isoniazid and rifampicin, any fluoroquinolone, and at least one of capreomycin, kanamycin, 

and amikacin, the second-line anti-TB drugs (Caminero et al., 2010). TDR strains are MDR 

strains resistant to all second-line anti-TB drug classes (Velayati et al., 2009). Infections with 

XDR- and TDR-TB are incurable and are generally associated with high mortality rates 

(Caminero et al., 2010), posing a serious threat to human kind, globally.  

In 1890, Robert Koch discovered tuberculin which was first introduced as a tuberculin skin 

(TST) for TB screening by Von Pirquet in 1909 (Von Pirquet, 1909). Tuberculin was developed 

into purified protein derivative (PPD) in the 1930s by Florence Seibert (Daniel, 2006) and is 

now widely used as a diagnostic tool for detection of latent-TB and/or previous TB disease 

(WHO, 2017). In 1908, Albert Calmette and Camille Guerin developed the only available TB 

vaccine, Bacillus-Calmette Guerin (BCG) vaccine (Sakula, 1983). BCG vaccine comprises an 

attenuated strain of Mycobacterium bovis, the causative agent of TB in cattle (Sakula, 1983). 

It is administered to over 90% of new-borns and provide immunity against M. tuberculosis 

infection in new-borns and infants, globally. 

There is an urgent need for new Mtb derived biomarkers for the design of new diagnostic tools, 

vaccines and drugs to tackle the current epidemic of drug-resistant TB. This study focused on 

the identification of unique Mtb extracellular proteins involved in host-pathogen interaction 

with potential as TB biomarkers.  



5 | P a g e  

 

1.2 LITERATURE REVIEW 

1.2.1 Mycobacterium tuberculosis 

M. tuberculosis (Mtb), an obligate pathogenic bacterium was confirmed as the causative agent 

of TB in 1882 by Robert Koch (Koch, 1882). Mtb is a member of closely related bacterial 

strains, referred to as the Mtb complex (MTBC). MTBC are acid-fast bacteria transmitted by 

inhalation of infectious aerosols generated by patients with pulmonary TB. In the lungs, it is 

phagocytosed by macrophages, where it spends the majority of it life cycle (Galagan, 2014). 

MTBC consist of Mtb, M. africanum, M. bovis, M. canettii, M. microti, M. caprae, M. 

pinnipedii and M. orygis which differ significantly in their genetic repertoire (Brosch et al., 

2000). MTBC is classified into seven phylogenetic lineages associated with distinct 

geographical regions, globally (Fig. 1.3) (Galagan, 2014).  

Due to genetic variation, different Mtb strains present different clinical phenotypes and 

epidemiological outcomes (Bifani et al., 2002, Gagneux et al., 2007). Since H37Rv strain was 

derived in a laboratory from H37 (Kubica et al., 1972), it may not represent the actual virulence 

behavior of wild-type clinical strains. 

In 2002, a comparison of the genomes of the clinical strain CDC1551 and laboratory strain 

H37Rv  demonstrated the presence of  17 genes in the former strain that  were absent in the 

latter. The identified differences between H37Rv and CDC1551 may play a part in the 

respective virulence of these strains (Fleischmann et al., 2002). Okumura and colleagues 

reported genomic variation among H37Rv and XDR- F15/LAM4/KZN (KZN605), MDR-

KZN1435 and KZN4207 (drug-susceptible) clinical strains, respectively (Okumura et al., 

2015). Large inversion regions ranging from 0.93 to 3.46Mbp were observed in the genomes 

of KZN605, KZN1435 and KZN4207. Of interest in the present study is the KZN605 that has 

inversion points between 932051 and 932052, and between 3479594 and 3459595. In 2005, 
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the KZN605 strain was responsible for the deadly MDR- and XDR-TB outbreak in Tugela 

Ferry, KwaZulu-Natal (Gandhi et al., 2006, Pillay et al., 2007).  

 

 

Fig. 1. 3: Evolutionary relationship between selected mycobacteria and members of the MTBC. TbD1 

indicates the deletion event specific for Mtb lineages 2, 3 and 4. Colored branches indicate the seven 

human-adapted lineages, animal-adapted strains including M. bovis and the distantly related M. canettii 

(Galagan, 2014). 

 

Pathosystems Resource Integration Centre (PATRIC) databases were used to sketch the 

proteome similarity profile between the laboratory H37Rv (ID: 83332.12) and KZN605 (ID: 

1417005.3) genomes (Fig. 1.4). The genome lengths of H37Rv and KZN605 were shown to be 

4411532 base pairs encoding 4367 genes and 4399718 base pairs that encode 4344 genes, 

respectively. The comparison of corresponding genes between the two genomes revealed 

similarity of 23% to 100%. Notably, 215 H37Rv genes were missing in KZN605 genome. Most 
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of the unaccounted genes encoded PE_PGRS and hypothetical proteins, respectively. It is 

known that the similarity between the many PE-PPE genes makes it difficult to place small 

internal sequences into the correct PE-PPE genes. Therefore, previous studies have shown that 

the PE-PPE genes, the most polymorphic in the chromosome, were often excluded from WGS 

analyses (Cole, 1998, Cole et al., 1998, McEvoy et al., 2012), which partly explains some of 

the missing 215 genes in KZN605. Nonetheless, differences in pathogenicity between 

laboratory and clinical strains and among clinical strains themselves could be due to variation 

in gene expression profile (Devasundaram et al., 2016, Peters et al., 2016). 

 

  

 

 

 

 

 

 

 

 

 

Fig. 1. 4: Circular map for comparison of Mtb H37Rv (83332.12) and Mtb KZN605 (1417005.3) 

proteome similarity. The H37Rv is depicted on the outside whilst KZN605 is shown on the outside. 

The figure was generated using the PATRIC. 

 



8 | P a g e  

 

1.2.2 M. tuberculosis H37Rv Genome Sequence 

Mtb H37Rv was first isolated in 1905 and is widely used as the reference strain for phylogenetic 

and epidemiological studies in comparison to clinical isolates (Kubica et al., 1972). In 1998, 

Cole and colleagues published the whole genome sequence of Mtb H37Rv strain (Cole et al., 

1998). The genome was re-annotated in 2002 (Camus et al., 2002) and comprised a 4411529 

base pair circular chromosome with high guanine and cytosine (GC) content of 65.6% (Fig. 

1.5). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 5: Circular map of the chromosome of Mtb H37Rv first published in 1998. The outer circles 

(grey and blue) shows the scale in Mbp, with 0.0 representing the origin of replication. The third ring 

from the exterior denotes the coding sequence by forward strand (clockwise, dark green) and the forth 

ring inwards shows the coding sequence by reverse strand (anticlockwise, purple); the fifty ring depicts 

non-coding sequence features (light green). The histogram (centre, pink with black line) represents GC 

content. The figure was generated using the PATRIC.  
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H37Rv contains a repertoire of 3924 protein-encoding genes.  Since the Mtb H37Rv genome 

sequence became available, many studies have been conducted in silico to identify and 

characterize the encoded open reading frames (proteins). As a result, this genome is well 

annotated and curated and used as a reference by TB researchers.  

1.2.3 M. tuberculosis H37Rv Annotation  

There are several TB databases based on Mtb H37Rv genome sequence that are publicly 

available for use by TB researchers. The Mtb genome was annotated using different 

bioinformatics tools to generate information reported by TB databases. Of interest to the 

present study are two widely used and well curated databases, the TubercuList and PATRIC 

databases.  

  

Fig. 1. 6: Distribution of Mtb H37Rv genes across eleven functional categories. The X and Y axes 

represent the number of genes and gene categories, respectively. 
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The TubercuList database website was created, currently annotated and maintained by Cole’s 

group since 1998 (Lew et al., 2011). TubercuList (www.tuberculist.epfl.ch) is based on Mtb 

H37Rv genome: its integrated genome details, protein information, operon annotation and 

bibliography feature among information available. To date, 4111 Mtb H37Rv genes are 

classified into eleven functional categories (Fig. 1.6), following continuous annotation and 

update of TubercuList database (Lew et al., 2011, Lew et al., 2013). 

The majority of annotated H37Rv proteins belong to the conserved hypotheticals (1042) 

functional category which are unknown until they are fully characterized and functions are 

allocated to them. Recently, more proteins from this category were assigned to the lipid 

metabolism (272) functional category. The intermediary metabolism and respiration, and, cell 

wall and cell process functional categories were allocated 936 and 772 proteins respectively. 

The number of proteins associated with virulence, detoxification, and adaptation functional 

category were 239, regulatory proteins, 198, and 168 belonged to PE/PPE category. The 

unknown functional category was least represented with 15 proteins. 

PATRIC (www.patricbrc.org) combines genome-scale data, metadata, and analysis tools for 

bacterial pathogens including Mtb. To date, over 9300 Mtb genome sequences (as of January 

2018) including clinical isolates and reference strain (H37Rv) have been reported. Analysis of 

Mtb H37Rv PATRIC metabolic pathways revealed 14 encoded metabolic pathway classes (Fig. 

1.7). Each pathway class comprised different metabolism and/or biosynthesis pathways 

(Appendix A, Table S1.1). For instance, the amino acid metabolism class have 13 different 

amino acid pathways such as lysine degradation, arginine and proline metabolism, histidine 

metabolism, tryptophan metabolism, and valine, leucine and isoleucine biosynthesis, etc. 

Worth noting, is the immune system class with one pathway, the T-cell receptor-signaling 

pathway involving only the phosphoserine/threonine phosphatase, PstP (Rv0018c). PstP is the 

only Mtb protein phosphatase reported to dephosphorylate at least five protein kinases (PknA, 

http://www.tuberculist.epfl.ch/
http://www.patricbrc.org/
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PknB, PknD, PknE and PknF) and the penicillin-binding protein PBPA (Chopra et al., 2003, 

Durán et al., 2005, Dasgupta et al., 2006). In total, there are 138 metabolic pathways encoded 

by the Mtb genome, with most of these required for growth and survival during in vivo growth. 

 

Fig. 1. 7: Mtb genome encoded 138 metabolic pathways classified into 14 classes according to PATRIC 

database analysis. 

1.2.4 M. tuberculosis Protein Secretion Pathways 

Mtb protein secretion pathways play an essential role in translocation of extracellular proteins 

and insertion of proteins across and into the cell membrane, respectively. The extracellular 

proteins include virulence factors that facilitate the adhesion and invasion of host cells, and 

some are essential for acquisition and absorption of nutritional elements into mycobacteria 

(McCann et al., 2011). Therefore, protein secretion pathways are essential for growth and 

determine mycobacterial pathogenicity. 

1.2.5 The Classical Protein Secretion Systems 

Generally, Mtb uses two main pathways for protein secretion/export via the cytoplasmic 

membranes, namely, the Secretion (Sec) and the Twin-arginine translocation (Tat) pathways 
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(Braunstein et al., 2001, Feltcher et al., 2010).  Successful protein secretion using both 

pathways is dependent on amino-terminal (N-terminal) extensions called signal peptides that 

direct proteins to the export machineries (Feltcher et al., 2010). The Sec-pathway facilitates 

the transmembrane translocation of unfolded proteins that only fold into native conformation 

upon secretion.  It also facilitates the insertion of membrane proteins into the cytoplasmic 

membrane (Driessen et al., 2001, Natale et al., 2008). In contrast, the Tat-pathway is 

responsible for translocation of folded proteins, sometimes with co-factors, across the 

membrane (Berks et al., 2005).  

1.2.5.1 M. tuberculosis Sec pathway system 

The Sec pathway system is responsible for the secretion of most extracellular proteins that are 

involved in metabolism, transporting essential molecules, cell envelope structure, and those 

that participate in sensing and cell communication (Lee et al., 2001). The Sec pathway is made 

up of cytosolic and membrane proteins that together enable protein translocation. The Sec 

system (Sec translocase) consists of three membrane proteins, SecY, SecE and SecG that 

assemble to form a complex known as the SecYEG (Natale et al., 2008). The SecYEG complex 

forms a passage through which the synthesized proteins in the cytoplasm are transported to the 

extracellular environment (Feltcher et al., 2010). In addition to SecYEG, an ATP-dependent 

motor protein, SecA, is responsible for driving translocation of secretory protein across the 

membrane (Tsirigotaki et al., 2017). Two SecA homologs (Fig. 1.8), SecA1 and SecA2, are 

present in mycobacteria (Braunstein et al., 2001). SecA1 protein is essential for general protein 

secretion, and SecA2 is required for secretion of specific proteins that are associated with Mtb 

virulence (Braunstein et al., 2001, Braunstein et al., 2003, Hou et al., 2008, Feltcher et al., 

2013, Majlessi et al., 2015). Interestingly, the SecA2 translocation substrates include proteins 

with and without N-terminal signal sequences (Braunstein et al., 2003). 
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Fig. 1. 8: Schematic representation of general SecA1, alternative SecA2, and Tat protein 

export/secretion systems in Mtb (Majlessi et al., 2015). 

 

In general, bacteria use two different mechanisms to direct secretory proteins to the Sec 

translocase, viz. co-translational and post-translational targeting. Post-translational targeting 

involves specific labelling of secretory protein with an N-terminal signal peptide sequence that 

directs the unfolded protein to the Sec translocase after it is released from the ribosome once 

synthesis is complete (Natale et al., 2008).  In co-translational targeting, during translation, the 

pre-protein N-terminal signal sequence is recognized while emerging from the ribosome during 

protein synthesis. This results in targeting of the pre-protein complex including the ribosome, 

to the Sec translocase for processing. The co-translational targeting of pre-proteins facilitates 

the integration of integral membrane proteins into the cytoplasmic membrane (Natale et al., 

2008). The insertion of proteins into the plasma membrane is accomplished solely by SecYEG 

or by SecYEG in combination with the membrane protein insertase YidC (Dalbey et al., 2014). 
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1.2.5.2 M. tuberculosis Tat pathway system 

The second major protein secretion system, the Twin arginine translocation (Tat) pathway is 

responsible for translocation of pre-folded proteins across membranes and is less understood 

than the Sec pathway (Natale et al., 2008, Ligon et al., 2012). The Tat translocase consists of 

three membrane integrated proteins (Fig. 1.8); TatA (Rv2094c), TatB (Rv1224) and TatC 

(Rv2093c), that together form a channel called TatABC translocase complex (McDonough  et 

al., 2008, Natale et al., 2008). Another protein, TatD (Rv1008) is suspected of playing some 

role in the Tat secretion system (Majlessi et al., 2015). Most Tat substrates are translocated as 

substrate-cofactor complexes, thus, catering for aerobic respiration and a multitude of redox 

pathways for anaerobic respiration, most of which rely on the Tat system (Natale et al., 2008). 

 

1.2.5.3 Signal peptides, recognition and cleavage  

Protein secretion via the Sec and Tat pathways relies on the N-terminal extension of the 

secretory protein substrate called signal peptide sequence (SPS). SPS is required to sort and 

target the protein to the correct pathway and on average, it is 16 to 30 amino acids residues in 

length. However, some are more than 50 amino acid residues long. Therefore, SPSs differ in 

sequence and length, with extensions on the n-region or hydrophobic region (Kapp et al., 

2000). The Sec and Tat SPS is characterized by a tripartite structure of a positively charged 

amino-terminal (n-region), a hydrophobic core (h-region) and a polar carboxyl terminal. In the 

Sec system, the charged n- and h-regions facilitate the translocation by interacting with SecA 

and signal recognition particle (SRP). SRP recognizes the hydrophobic signal sequence during 

emergence from the ribosome and thereafter, is targeted to the Sec-translocase (Natale et al., 

2008). 
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The Tat SPS possesses a highly conserved twin-arginine motif located at the junction of the n- 

and the h- regions (Posey et al., 2006). The twin-arginines are found 2-30 residues behind the 

N-terminus and the SPSs are longer, with a larger and less hydrophobic h-region of 13–20 

uncharged residues, thus, slightly longer than that of Sec-substrates (Goosens et al., 2014). In 

order to avoid recognition by the Sec pathway, the Tat c-region regularly contains a positively 

charged amino acid residue (Bogsch et al., 1997).  

Successful translocation and release of Sec and Tat substrates depends on the recognition and 

cleavage of SPS by signal peptidase (Natale et al., 2008). Signal peptidases are membrane-

anchored enzymes responsible for processing proteins that are translocated across the 

membranes, cleaved and secreted/released into the surrounding environment or remain 

displayed or anchored on the bacterial surface. The site of cleavage is recognized by the amino 

acids with short side chains at the ‑1 and no charged amino acid residues at the ‑3 position 

(Ting et al., 2016).  

 

1.2.6 The Non-Classical Type VII Secretion Pathway 

Mtb also possesses a non-classical, specialized type VII secretion (T7S) pathway called ESAT-

6-like (ESX) pathway, which is required for Mtb virulence. This pathway was named after the 

first known secreted substrate of the ESX pathway, the 6kDa early secreted antigenic target 

(ESAT-6). The ESX pathway substrates lack Sec or Tat signal peptides and rely on ESX 

systems for secretion. The five existing ESX systems, ESX-1, ESX-2, ESX-3, ESX-4 and ESX-

5 are encoded at different positions within Mtb genome (Fig. 1.9). Each esx locus contain a 

pair of esx genes that is flanked by genes coding for the secretion apparatus (Majlessi et al., 

2015). In addition, each esx locus encodes all molecules required for the assembly of a 

completely functioning secretory apparatus, including the regulatory proteins, membrane 
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transporters, substrates for secretion by the same system and the powering adenosine 

triphosphatase (ATPase) (Gray et al., 2016).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 9: Schematic representation of genetic organization and gene names of the 5 ESX systems of the 

Mtb-specific type VII secretion systems (Majlessi et al., 2015). 

 

The conserved genes called the ESX-conserved component (ecc), the eccB, eccC and eccD are 

present in each locus. The ESX-conserved components consist of the membrane protein EccB, 

a protein with an ATPase domain providing energy for protein transport; EccC; and EccD, 

which contain multiple transmembrane domains which act as an inner membrane export 

channel (van Pittius et al., 2001). Assembled together, the EccB, EccC and EccD probably 

form the core membrane channel for translocation of ESX substrates during which MycP 

perform some uncertain cleavage in the process (Houben et al., 2014). The mycP gene is 

conserved in all esx locus and encodes mycosin (MycP), a membrane-anchored protein with 

protease activity for processing some of the ESX substrates (van Pittius et al., 2001). 
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The other ESX pathway substrates, the pe and ppe genes, are found organized as an operon in 

all esx locus except ESX-4 system. The majority of pe/ppe genes are secreted by the ESX-5 

system, the most active secretion system. The pe and ppe genes are also present in other 

positions in the Mtb genome (Houben et al., 2014). The other common ESX system 

components are Esps, for ESX-specific proteins which are secreted substrates and may also be 

located in a separate operon such as espACD while others are located within the esx locus 

(Majlessi et al., 2015).  

The well-studied ESX-1 system encodes two major substrates, ESAT-6 (EsxA) and culture 

filtrate protein 10 (CFP- 10) (EsxB) that are associated with virulence and are targets of the 

immune response in infected individuals (McLaughlin et al., 2007). The ESX-1 system core 

components genes, eccA, eccB, eccCa, eccCb, eccD, eccE and mycP, are required for EsxA 

and EsxB secretion (Feltcher et al., 2010, Stoop et al., 2012). EccA and EccCb are cytoplasmic 

ATPases, supplying energy for the secretion process and are involved in targeting proteins for 

ESX-1 secretion (Feltcher et al., 2010). EccCa1 is an integral membrane protein that interacts 

with the ATPase. EccB1, EccD1 and EccE1 are transmembrane proteins that ensure smooth 

translocation of ESX-1 substrates across the cytoplasmic membrane. EccD acts as a channel 

for protein translocation while EccE1 interacts with EspD that is required for ESAT-6/CFP-10 

secretion but its function remains unclear (MacGurn et al., 2005). In the ESX-1 system, MycP1 

is central to the functioning of the system as evident by its deletion, which completely shut-

downs the ESX-1 secretion (Stoop et al., 2012). The core ESX-1 components are associated 

with virulence, with some required for intracellular growth (EccA, EccCa, EccCb, EsxB, EsxA, 

EccD and mycP) and others involved in active evasion of host immune response by 

immunomodulation (EccCa, EccCb, EsxA and EccD) and arresting phagosomal maturation 

(EccCa, EccCb and EccD) as reviewed in Stoop et al. (2012).  
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1.2.7 M. tuberculosis Secretome 

Mtb secreted proteins (secretome) consists of the membrane exported proteins that can be 

cleaved and released into the surrounding environment to perform diverse extracellular 

functions. Some of the secreted proteins possess a directive signal for their insertion into the 

outer membrane or are membrane-anchored proteins found on the cell surface. Mtb secretes a 

large number of proteins that are involved in nutrient acquisition and counter-action of 

targeting molecules. The secreted proteins include extracellular released proteins, 

transmembrane and surface membrane proteins (Ivankov et al., 2013). They also include 

enzymes that are involved in catalysis of chemical reactions associated with bacterial 

metabolism, catabolism and biosynthesis. Enzymes are either released extracellularly to act on 

substrate for efficient uptake or could be membrane associated to facilitate transportation of 

molecules (Maffei et al., 2017). Some of the secreted proteins are associated with virulence as 

they may be involved in host cell invasion, acquisition of nutritional molecules by breakdown 

of host cells and modulation of host immune response in order to avoid detection. Therefore, 

the ability of M. tuberculosis to cause disease entirely depends on the virulence properties of 

the mycobacterial secretome (Majlessi et al., 2015).  

Using bioinformatics tools, Rashid et al., (2007) allocated 3918 Mtb open reading frames into 

their 4 subcellular localization compartments: the cytoplasmic, secreted/excreted, integral 

membrane and lipid-anchored surface membrane proteins (Rashid et al., 2007) (Fig. 1.10). The 

secreted, membrane anchored and some integral membrane proteins are involved in host-

pathogen interactions and facilitate the uptake of nutrient molecules, and therefore, represent 

virulence factor proteins (Niederweis et al., 2010). M. tuberculosis uses sophisticated export 

and secretion pathways to process most secretome proteins that enable survival and persistence 

in different environments and hosts (Majlessi et al., 2015).  

 



19 | P a g e  

 

 

 

 

 

 

 

 

 

 

Fig. 1. 10: Subcellular localization of 3918 Mtb H37Rv proteins into cytoplasmic, integral membrane, 

membrane attached and secreted proteins.  

 

The Mtb secretome plays an important role in the host-pathogen interaction and can serve as a 

reservoir for candidates or targets for the development of new drugs and vaccines, and 

diagnostics (Harth et al., 1999b). The present study used the phage display technique to select 

and identify novel Mtb secreted biomarkers that can potentially be used in TB diagnosis and in 

the development of a new protective TB vaccine.  

 

1.2.8 Phage Display Technology 

The filamentous bacteriophages were first used as phage vectors for peptide-display by George 

Smith in 1985 (Smith, 1985). Filamentous phages, including M13, f1 and fd, are a group of 

viruses that infect gram-negative bacteria via F-pili. The filamentous phages do not lyse 

infected cells during their lifecycles. Their genomes  comprise single-stranded DNA (ssDNA) 
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wrapped inside 2700 copies of the 50 amino acid long major coat protein pVIII (Cesareni, 

1992, Rodi et al., 1999).  

The phage genome encodes 10 proteins (Fig. 1.11): five phage structural proteins, pIII, pVI, 

pVII, pVIII and pIX; two assembly and export proteins, pI and pIV; and three proteins for 

replication, pII, pV and pX (Wang et al., 2004). There are 5 copies each of pIII and pVI at one 

end of the phage particle. The pIII is a 406 amino acid residue protein required for host infection 

and normal morphogenesis of the phage particle. Protein VI is a 113 amino acid protein 

required for attachment of pIII protein to the phage particle. On the other end, there are 5 copies 

each of pVII and pIX that are 32 and 33 amino acids in length, respectively. These proteins are 

responsible for initiation of assembly and for maintaining the stability of phage particles, 

respectively (Cesareni, 1992, Rodi et al., 1999).  

 

 

 

 

 

 

Fig. 1. 11:  The main structural proteins of bacteriophages: pIII, pVI, pVII, pVIII and pIX encoded by 

ssDNA (Mullen et al., 2006).  

 
The phage life cycle (Fig. 1.12) begins with the binding of phage via pIII protein to the F-pilus 

of susceptible bacteria to initiate infection. The ssDNA genome is injected into the cell and the 

host polymerase is used to synthesize a complementary strand to make a double stranded phage 

DNA genome that is the replication form. This is followed by the transcription and translation 

of all 10 genes for production of proteins using host machinery. The synthesized proteins 
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include structural proteins (coat proteins pIII, pVI, pVII, pVIII and pIX), proteins for assembly 

and export (pI and pIV), and proteins for replication (pII, pV and pX) (Wang et al., 2004, 

Mullen et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. 12: The life cycle begins when phage bind to the bacterial pilus and single-stranded viral genome 

is injected. Once inside, it is converted into double-stranded phage genome. Phage-encoded proteins 

are produced by host-mediated protein synthesis and virions are assembled and exported across the 

bacterial membranes (Rakonjac, 2012). 

 
All capsid proteins are inserted in the bacterial outer membrane prior to phage assembly for 

final assembly of phage particles in the periplasmic environment. Therefore, the mature phage 

structure may not include any fusions that disturb the export process of the coat protein (Danner 

et al., 2001). Unlike pVIII, pIII membrane insertion is Sec-pathway dependent, thus, it is more 
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likely that large fusions to pIII are exported into the periplasm more easily than large pVIII 

fusions (Thie et al., 2008). 

 

 

 

 

 

 

 

 

 

Fig. 1. 13: Affinity selection of filamentous phage display libraries to identify phage that display fusion 

proteins (pIII fusions) that bind to the immobilized target: (i) target molecule is immobilized and 

incubated with phage library, (ii) non-binding phages are washed away, (iii) bound phages are eluted 

and amplified in E. coli, and (iv) resulting in enrichment of high affinity binders (Mullen et al., 2006). 

 

The use of bacteriophages to display foreign proteins on their surface is termed phage display. 

Phage display technology is based on the fusion of a foreign gene into a bacteriophage coat 

protein gene, for co-expression and display on the surface of a phage particle to make peptide 

or protein libraries (Smith, 1985, McCafferty et al., 1990). The foreign peptide sequences can 

be fused into one of several capsid proteins, namely the pIII (predominantly), pVI, pVII, pVIII 

or pIX (Hoogenboom et al., 1998, Rodi et al., 1999, Gao et al., 2002). This technology allows 

the expression and surface display of polypeptides (phenotype) while physically linked to their 

coding DNA (genotype) (Mullen et al., 2006). The phage display peptide library can be 



23 | P a g e  

 

screened for phage-displayed molecules that perform specific functions like desired binding 

specificities to a chosen immobilized target by a process called “biopanning” (Fig. 1.13). 

Biopanning involves surface immobilization of target molecules and incubation with the phage 

display library to allow binding of phages displaying cognate molecules. After the unbound 

phage particles are washed away, target bound particles are released/eluted at high or low pH 

and are amplified in E. coli cells. The resultant individual colonies are picked and DNA of the 

foreign inserted fragment in the phage genome is sequenced since the isolated phage particles 

bear the gene sequence of the displayed foreign molecules. Therefore, this method allows both 

selection and amplification of a phage particle containing the desired gene sequences (Azzazy 

et al., 2002). 

Phage display is a powerful in vitro selection technology that can be exploited to specifically 

extract proteins with novel, desired properties from large protein libraries. Liu et al., 2011, 

constructed a Mtb phage secretome library from H37Rv genomic DNA. Serum samples from 

14 active-TB patients and healthy controls were used for immunoscreening of the library. The 

screening identified 47 proteins including immunogenic protein MPT64, secreted fibronectin-

binding protein antigen 85B, PPE family proteins and three novel antigens (polyketide synthase 

associated protein papA2, lipoprotein LpqA and putative conserved protein CpsA) with 

potential as vaccine or diagnostic candidates (Liu et al., 2011, Liu et al., 2013).  

Other pathogens studied using phage display to identify novel antigens recognized by serum 

antibodies from infected human or animals include Streptococcus pneumoniae (Beghetto et al., 

2006), Taenia solium (González et al., 2010), Mycoplasma mycoides subsp. mycoides (Naseem 

et al., 2010), Mycobacterium avium subsp. paratuberculosis (Nagata et al., 2013), and 

Neisseria gonorrhoea (Connor et al., 2016). The selection and identification of pathogen 

specific biomarkers have potential use in disease diagnosis, vaccine and drugs design. 
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1.2.8.1 Phage display vectors 

Phage display libraries can be constructed using vectors based on the wild type filamentous 

bacteriophage or by using ‘phagemids’, the hybrids of phage intergenic regions and plasmid 

DNA vectors (O'Connell et al., 2002). Phagemid vectors are preferred over phages due to 

higher transformation efficiencies and because of their monovalent display of the foreign 

peptides (Hoogenboom et al., 1998). The phagemid vectors are designed to have an Ff phage 

and E. coli plasmid origins of replication (ori), gIII and/or gVIII for fusion of a foreign peptide 

into a coat protein of choice, and an antibiotic resistance gene. But, phagemids lack all other 

phage genes that are required to produce a complete phage. Therefore, a helper phage is used 

to supply all the structural proteins required for phage assembly during rescue and packaging 

of phagemid into phage particles. Notably, the wild-type pIII from the helper competes with 

the foreign peptide-pIII fusion for display on the phage surface. The rate of phagemid rescue 

differs for each member in the phage library due to the different effects exerted on the host E. 

coli by each exogenous gene and/or its gene product (Gupta et al., 2013).  
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1.3 MOTIVATION 

The emergence and spread of MDR/XDR strains of Mtb is a major health problem, a threat to 

humankind and complicate the fight against TB (WHO, 2017). Therefore, there is an urgent 

need for new Mtb derived biomarker targets for development of new drugs, vaccines and 

diagnostic tools. Hence, there is a need to study clinically relevant strains of Mtb that will 

provide more insight into wild-type virulent behavior (Palanisamy et al., 2009, Devasundaram 

et al., 2016). In the present study, XDR Mtb F15/LAM4/KZN strain was investigated for 

secretory proteins involved in host-pathogen interactions, immunodominant antigens, new 

biomarkers and new drug targets. 

Mtb secretes a large number of proteins into its extracellular space and these play an important 

role in host-pathogen interactions and therefore, may be ideal candidates or targets for the 

development of new drugs and vaccines, and for use in diagnosis (Harth et al., 1999a). Using 

a phage display approach, we investigated the suitability of phage display technology to select 

novel Mtb secreted proteins and identify biomarkers recognized by the humoral response in 

latent-TB and active-TB patients.  

Targeting the expressed and secreted Mtb proteins, the phagemid vector system used lacks a 

leader sequence that is necessary for secretion and successful display of foreign peptide on the 

phage particle surface (Rosander et al., 2002, Wall et al., 2003, Jankovic et al., 2007). 

Generally, phage protein pIII contains a signal peptide sequence and is widely used to 

successful display foreign peptide proteins. A signal sequence is essential for correct targeting 

of pIII to the inner membrane and incorporation into the virion (Gupta et al., 2013). Therefore, 

only the Mtb protein fragments with signal peptide sequence for secretion or some membrane 

insertion directive will be successful displayed as fusion proteins on the phage particle surface. 
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1.3.1 Hypothesis 

We hypothesised that novel and secretory Mtb protein biomarkers may be identified 

through the use of phage display technique and immunoscreening against serum samples 

from healthy individuals and TB patients. 

 

1.3.2 Aim 

To identify a set of Mtb secreted protein biomarkers with potential application in the 

development of a cost effective point-of-care TB diagnostic immunoassay and design of a new 

TB vaccine.  

 

1.3.3 Objectives 

• To culture Mtb, extract and purify genomic DNA and generate DNA fragments 

• To clone DNA  fragments into a phage display vector and use recombinant phage DNA to 

transfect a compatible E. coli strain 

• To screen the phage library against the sera of healthy individuals, active- and latent- TB 

patients   

• To sequence phage DNA and analyze the genetic composition of selected phages and 

identify novel disease state specific biomarkers 

• To identify novel and useful parallel B-cell and T-cell epitopes 
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1.3.4 Study Design 

The mycobacterial genomic DNA was extracted from Mtb culture and DNA fragments of 

between 150-to-1500 base pairs were generated, cloned into phage display vector and 

expressed in E. coli. If the Mtb DNA insert encodes the signal peptide sequence or 

transmembrane insertion motif, the expressed protein is displayed on the phage particle surface. 

The Mtb phage displayed secretome library was screened against the immobilized polyclonal 

sera from TB patients to select and purify phages bearing sequences with desired binding 

specificities from the nonbinding variants (Liu et al., 2011). The selected phage particle 

genotype composition was analyzed, leading to the discovery of a useful and novel clinical set 

of biomarkers that can be used to diagnose TB and/or design a new TB vaccine.  

 

1.3.5 Scope of Thesis 

This thesis comprises of five chapters and is presented in a thesis by ‘manuscript” format. 

Chapter one includes the introduction and literature review. Chapter two, Identification of 

unique putative biomarkers from a M. tuberculosis F15/LAM4/KZN phage secretome library 

published in 2017 in the journal, Pathogens and Disease, describes the construction of the Mtb 

F15/LAM4/KZN phage secretome library and the identification of unique Mtb secreted 

proteins. In Chapter three, Immunoscreening of the M. tuberculosis F15/LAM4/KZN 

secretome library against TB patients’ sera identifies unique active- and latent-TB specific 

biomarkers (submitted in January, 2018 to the journal, Tuberculosis), Mtb F15/LAM4/KZN 

phage secretome library was screened against immobilized polyclonal sera from active- and 

latent-TB patients to identify unique active- and latent-TB specific biomarkers. Chapter four, 

B-cell epitope derived T-cell epitopes as vaccine candidates to confer antibody and cellular 

mediated immunity against M. tuberculosis infection (manuscript in preparation) is an in silico 
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analysis of selected proteins recognized by patients’ antibodies to confirm their B-cell epitopes 

and also identify promiscuous B-cell epitope derived T-cell epitopes of Mtb proteins binding 

to MHC Class I and Class II molecules for the potential design of a recombinant polypeptide 

TB vaccine. Chapter five provides a synthesis of the 3 research chapters, the overall 

conclusions and recommendations for future research. 
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2.1 ABSTRACT 

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis disease (TB), the 

leading cause of death from bacterial infection worldwide. Although treatable, the resurgence 

of multi- and extensively-drug resistant TB is a major setback for the fight against TB globally. 

Consequently, there is an urgent need for new Mtb derived biomarkers for use in the design of 

new drugs and rapid point-of-care diagnostic or prognostic tools for management of TB 

transmission. Therefore, the present study aimed to identify unique Mtb secreted proteins from 

the extensively-drug resistant Mtb F15/LAM4/KZN phage secretome library. A whole genome 

library was constructed using genomic DNA fragments of Mtb F15/LAM4/KZN strain. A 

phage secretome sub-library of 8x103 clones was prepared and phage DNA was sequenced 

from 120 randomly selected clones. DNA sequence BLAST analysis identified 86 open reading 

frames. Using bioinformatics tools and databases, ten proteins essential for in vivo growth and 

survival of Mtb (Nrp, PssA, MmpL5, SirA, GatB, EspA, TopA, EccCa1, Rv1634 and Rv3103c) 

were identified. Proteins essential for growth and survival of Mtb during infection have 

potential application in the development of diagnostic tools, new drugs and vaccines. Further 

studies will be conducted to evaluate their potential application in the fight against TB.  
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2.2 INTRODUCTION 

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), is harboured 

asymptomatically by one-third of the world’s population. In 2014, approximately 10.4 million 

new infections and 1.8 million deaths were recorded globally (WHO, 2016). The emergence 

and spread of multi- and extensively drug resistant (MDR/XDR) strains of M. tuberculosis as 

well as high human immunodeficiency virus (HIV) co-infection rates (WHO, 2016), have 

complicated the fight against TB. Improved management of TB transmission can be achieved 

by early and rapid detection, and timely administration of effective TB treatment. The slow 

progress in the development of rapid point-of-care diagnostic assays, new drugs, vaccines and 

immunotherapeutic agents has largely been due to the availability of only a few, novel M. 

tuberculosis derived biomarkers (Wallis et al., 2013). M. tuberculosis proteins secreted into its 

surrounding environment play an important role in host-pathogen interaction and can be ideal 

candidate biomarkers for the development of new drugs; vaccines; and for use in diagnosis 

(Andersen et al., 1991, Harth & Horwitz, 1999). Preferably, a biomarker should be easily 

accessible as targets for effective, less invasive sampling for diagnosis and/or therapeutic 

interventions. 

M. tuberculosis secretes a variety of extracellular virulence factors that play a role in adhesion 

and invasion of host target cells using various secretion pathways (Harth & Horwitz, 1999, 

Bendtsen et al., 2005, Abdallah et al., 2006). The unique cell wall and the associated 

extracellular virulence factors have been credited for the success of this pathogen (Champion 

& Cox, 2007) and may represent ideal candidates for the development of new drugs, vaccines, 

and TB diagnostics. The main M. tuberculosis protein secretory pathways are the Sec-

dependent and Twin-arginine translocation (Tat) pathways (Ligon et al., 2012). Two 

specialized protein secretion systems, the SecA2-dependent and the type VII secretion system 

or ESX, are also present in M. tuberculosis (Bendtsen et al., 2005, Thakur et al., 2016). The 
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ESX system is responsible for secretion of small virulence proteins, such as early secreted 

antigenic target of 6 kDa (ESAT-6) and culture filtrate protein of 10 kDa (CFP-10). M. 

tuberculosis contains the genetic information for five type VII secretion machineries [ESX-1, 

ESX-2, ESX-3, ESX-4 and ESX-5] (Gey van Pittius et al., 2006), suggesting the importance 

of Sec-independent protein secretion for this pathogen. 

Generally, mass spectrometry based methods are used to study M. tuberculosis secreted 

proteins in culture filtrate (Ge et al., 2003, de Souza et al., 2011, Zheng et al., 2013). While 

these methods have been highly effective, their main limitation is inconsistent protein 

expression owing to varying environmental growth conditions and the inability to detect 

proteins expressed at low concentrations (Forrellad et al., 2013). Therefore, the phage display 

method offers a good alternative for bacterial secretome repertoire analysis (Jacobsson et al., 

2003, Rosander et al., 2003, Wall et al., 2003, Karlström et al., 2004, Jankovic et al., 2007, 

Rosander et al., 2011, Gagic et al., 2013). In 2011, M. tuberculosis H37Rv phage secretome 

library was used to identify six immunogenic proteins [MPT64 (Rv1980c), Ag85B (Rv1886c), 

cpsA (Rv3484), LpqA (Rv3016), PapA2 (Rv3820c) and EsxO (Rv2346c)] with potential as 

vaccine or diagnostic candidates (Liu et al., 2011, Liu et al., 2013). 

Since the availability of the M. tuberculosis H37Rv complete genome sequence (Cole et al., 

1998), many in vitro and in silico studies have been conducted to analyse expression, identify 

open reading frames (ORFs) and predict their potential functions. However, the laboratory 

strain H37Rv has been reported to accumulate adaptation changes during repeated passage in 

culture, resulting in phenotypic alterations and partial attenuation (Ioerger et al., 2010, Mehaffy 

et al., 2010). Thus, the varying degree of pathogenicity among clinical M. tuberculosis strains 

(Palanisamy et al., 2009), the phenotypic changes observed in H37Rv strain (Devasundaram 

& Raja, 2016), and the threat posed by emergence of highly transmissible MDR/XDR strains 

(Pillay & Sturm, 2007, Peters et al., 2016) indicate a need to study clinically relevant strains 
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that may provide more insight into wild-type virulent behavior (Palanisamy et al., 2009, 

Devasundaram & Raja, 2016).  

The current study aimed to identify appropriate M. tuberculosis derived diagnostic and drug 

target candidate protein biomarkers. The phage display method was used to construct a whole 

genome phage library of XDR M. tuberculosis F15/LAM4/KZN genomic DNA fragments. A 

phage secretome sub-library of 8x103 clones was generated and sequence analysis was 

performed on randomly selected clones. The encoded ORFs were identified from the M. 

tuberculosis comparative database. Different bioinformatic tools, gene enrichment analysis and 

other databases were used to deduce essential and virulence associated M. tuberculosis protein 

biomarkers. The identified secretory protein biomarkers may have potential as diagnostic 

biomarkers, vaccine candidates and target for immunotherapeutic agents and drug discovery. 

 

2.3 MATERIALS AND METHODS 

2.3.1 Bacterial Strains, Phage Display Vector and Helper Phage 

The XDR M. tuberculosis F15/LAM4/KZN (KZN605) strain was obtained from the archived 

collection at Medical Microbiology and Infection Control, University of KwaZulu-Natal. The 

XDR-KZN605 strain (GenBank accession: NC_018078) is resistant to isoniazid, rifampicin, 

ethambutol, ofloxacin, kanamycin, capreomycin and niacinamide. IS6110-restriction fragment 

length polymorphism analysis identified KZN605 to belong to the F15/LAM4/KZN strain 

family, while spoligotyping categorised it as the shared type (ST) 60 based on the absence of 

spacers 21-24, 33-36, 40 (Naidoo & Pillay, 2014). The strain was cultured aerobically in 

Middlebrook 7H9 broth (Difco), supplemented with 10 % oleic acid, albumin, dextrose, 

catalase (OADC), 0.05 % Tween 80 and 0.5 % glycerol at 37oC with shaking to an OD600 1. 

The pDJ01 phagemid vector, helper phage VCSM13d3 and pJARA plasmid DNA were a gift 
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from Dr Jasna Rakonjac of Massey University. The E. coli TG1 cells were from Lucigen 

Corporation. 

 

2.3.2 M. tuberculosis Whole Genome Library Construction 

Genomic DNA fragments of XDR M. tuberculosis F15/LAM4/KZN strain were used to 

construct a phage secretory protein repertoire library in the pDJ01 phage display system 

(Jankovic et al., 2007). The minimum size of the library required to represent the whole M. 

tuberculosis genome was calculated using the following formula (Jacobsson et al., 2003): 

N = ln (1-P)/ln (1-f) 

Where:  P is the desired probability 

  f is the fractional proportion of the genome in a single recombinant 

  N is the necessary number of recombinants 

Since the M. tuberculosis genome size is 4.41 x106 base pairs and the average fragment size 

is estimated at 500 base pairs, 

N = ln (1 - 0.99)/ln [1-(500bp/4.41x106bp)] 

N= 4x104 clones 

 

Genomic DNA was extracted using a modified sodium chloride-cetyl trimethyl-ammonium 

bromide (CTAB-NaCl) method (van Soolingen et al., 1994). Genomic DNA (200ng/uL) was 

fragmented by sonication on ice for 8 min using the Sonic Ruptor 400 (OMNI International). 

Fragments of 150 to 1500 base pair sizes were purified using a PCR clean-up kit (Macherey-

Nagel GmbH & Co. KG), followed by repair of blunt ends by End Repair Enzyme Mix 

(Thermo Fisher Scientific Inc.). The phagemid pDJ01 vector DNA was digested with SmaI 

(Thermo Fisher Scientific) and dephosphorylated with FastAP (Thermo Fisher Scientific Inc.) 
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in the same reaction at 37oC to generate blunt ends. DNA fragments (~8µg) were ligated into 

the pDJ01 vector (~8µg) in 1:1 ratio using a Rapid Ligation Kit (Thermo Fisher Scientific Inc.). 

After desalting, the ligation reaction mixtures were electroporated into electro-competent E. 

coli TG1 cells (Lucigen Corporation), and incubated in 2xTY broth at 37ºC with aeration for 

1hr. Serial dilutions were prepared for library size determination and the remaining cells were 

plated on TYE agar supplemented with 20 µg/mL chloramphenicol (Cm) and incubated 

overnight at 30ºC. These cultures were used to prepare 1 mL aliquots of 15% glycerol stock 

culture of the whole genome library and stored at -70ºC. 

 

2.3.3 M. tuberculosis Phage Secretome Sub-library Preparation 

The phage display secretome library was prepared as follows: 1 mL of whole genome library 

stock culture was inoculated into 25 mL of 2xTY-Cm. The exponentially growing culture 

(OD600 0.2) was infected with helper phage VCSM13d3 [phage to bacterium MOI = 50:1] for 

1hr at 37ºC. Cells were centrifuged and the pellet re-suspended in 250 ml of 2xYT-Cm with 

50 µg/mL kanamycin and incubated for 4hrs at 37ºC.  After centrifugation at 10,000xg for 20 

min, phagemid particles in the supernatant were precipitated with 5% (w/v) PEG/0.5 M NaCl 

overnight at 4ºC. The phagemid particles were centrifuged and pellet re-suspended in TN buffer 

(10 mmol/L Tris-HCl pH 7.6; 50 mmol/L NaCl). Defective phagemid particles were eliminated 

by treatment of the phagemid suspension (1x1012 CFU/mL) with sarcosyl at a final 

concentration of 0.1% (w/v), followed by DNase I (100 U) in the presence of 5 mM MgCl2, 

and then inactivated by EDTA (20 mM). The remaining sarcosyl-resistant phage particles were 

precipitated with PEG/NaCl solution as above. For preparation of secretome sub-library, the 

ssDNA was extracted from sarcosyl resistant phagemid particles by first incubating at 70oC for 

10 min in the presence of 1.2% (w/v) SDS. The phenol-chloroform DNA isolation method was 
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used for further purification of ssDNA (Su et al., 1998). The surface protein library was 

amplified by transforming the ssDNA into E. coli TG1 that was grown on 2xYT-Cm plates 

overnight at 37ºC. 

2.3.4 DNA Sequencing 

The recombinant phage DNA of randomly selected clones was sequenced at Inqaba 

Biotechnical Industries (Pty) Ltd (South Africa) using the primer set flanking the vector cloning 

site, pDJ01R02 (5’-CCGGAAACGTCACCAATGAA-3’) and pDJF03 (5’-

ATGTTGCTGTTGATTCTTCA-3’). The DNA sequences were analysed using the CLCBio 

Workbench (v. 2.0).  

2.3.5 Prediction of Functional Proteins, Signal Peptides and Transmembrane Proteins 

BLAST analysis of the nucleotide sequences against the M. tuberculosis comparative database 

was performed to retrieve encoded open reading frames (ORFs). Tuberculist database 

(http://tuberculist.epfl.ch/) was used to determine functional categories of identified proteins 

(Lew et al., 2011). Unknown proteins not documented on Tuberculist database were placed in 

the unknown functional category. 

For prediction of Sec-dependent and Tat-dependent amino terminal signal peptide for 

secretion, SignalP 4.1 and TatP 1.0 were used (Bendtsen et al., 2005a, Petersen et al., 2011). 

SecretomeP 2.0 was used for prediction of non-classical secreted proteins (Bendtsen et al., 

2005b), and transmembrane proteins were predicted using TMHMM 2.0 (Krogh et al., 2001). 

LipoP 1.0 was used for prediction of lipoprotein signal peptide (Rahman et al., 2008). All 

software are freely available from the Centre for Biological Sequence Analysis at the Technical 

University of Denmark (http://www.cbs.dtu.dk/services). Alternative software, PRED-

SIGNAL and PRED-TAT were used for supplementary analysis to predict Sec-dependent and 

http://tuberculist.epfl.ch/
http://www.cbs.dtu.dk/services/
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Tat-dependent amino terminal signal peptide, respectively (Bagos et al., 2009, Bagos et al., 

2010). PRED-LIPO was used for prediction of lipoprotein signal peptide (Bagos et al., 2008). 

The alternative software were accessed via the Computational Genetics Research Group at 

the Department of Computer Science and Biomedical Informatics (http://www.compgen.org/ 

tools) at the University of Thessaly. The subcellular localization of uncharacterized proteins 

was predicted with TBPred designed for analysis of mycobacterial proteins 

(http://www.imtech.res.in/raghava/tbpred/) (Rashid et al., 2007). 

2.3.6 Gene Enrichment Analysis and Functional Annotation 

The Universal Protein Resource (UniProt) database (http://www.uniprot.org/blast/) accession 

numbers were retrieved by BLAST analysis of protein sequences against UniProt database 

(Suzek et al., 2015). Gene enrichment analysis was performed using the database for 

annotation, visualization and integrated discovery (DAVID) (https://david.ncifcrf.gov/) for 

gene ontology (GO) terms and functional annotation clusters (Huang et al., 2009). The 

significantly enriched (p < 0.05) GO biological process (BP), cellular component (CC) and 

molecular function (MF) were identified. Pathosystems Research Intergrated Centre (PATRIC) 

database (https://www.patricbrc.org/) was used to identify essential and virulence genes as well 

as genes required for M. tuberculosis growth and survival within host (Wattam et al., 2014).  

 

2.4 RESULTS AND DISCUSSION 

2.4.1 M. tuberculosis Whole Genome Library 

A whole genome XDR M. tuberculosis phage library was successfully constructed by cloning 

DNA fragment inserts into pDJ01 phage display vector. The library size was ~1.76x106 clones, 

exceeding the desired calculated size. Library diversity was confirmed on randomly selected 

http://www.compgen.org/%20tools
http://www.compgen.org/%20tools
http://www.imtech.res.in/raghava/tbpred/
http://www.uniprot.org/blast/
https://david.ncifcrf.gov/
https://www.patricbrc.org/
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clones by colony PCR (Fig. 2.1). More than 90% of the library contained the M. tuberculosis 

DNA fragments. The library size was approximately ten fold larger than that obtained by Liu 

et al. (2011). This is probably due to the total genomic DNA and fragments sizes (150bp to 

1500bp) used as compared to 300bp to 1500bp fragments in Liu et al. (2011).  

 

 

Fig. 2. 1: Colony PCR of randomly selected clones of the whole genome M. tuberculosis phage library. 

Lane M is 100bp ladder and 1-33 are PCR amplicons of library clones.  

 

2.4.2 M. tuberculosis Phage Secretome   

M. tuberculosis secretes proteins via classical (Sec- and Tat-dependent) and non-classical (Sec-

independent) pathways. The classical pathway secreted proteins must have the signal peptide 

sequence for successful secretion (Ligon et al., 2012). In the present study, the signal peptide 

sequence and transmembrane helices are responsible for guiding secretome to secretion and 

anchoring into membrane for display on phage surface, respectively (Gagic et al., 2016). 

Therefore, successful display of M. tuberculosis peptide protein will require the DNA insert to 
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encode signal sequence or directive transmembrane helices peptide and be cloned in-frame to 

the vector resulting in a stable phage particle.   

Some M. tuberculosis virulence factors are secreted through the non-classical type VII 

secretion pathway. Usually, the type VII secretion pathway substrates are secreted as a complex 

of two or more proteins as they need each other for successful translocation through membrane 

channels (Chen et al., 2013). Even though some of the type VII secreted proteins will be in-

frame, these might not be displayed on the phage surface as their secretion partners required to 

form a complex will be missing. The surrogate E. coli used for phage display is not expected 

to mimic the M. tuberculosis type VII secretion pathway. This should limit the discovery of 

most type VII/ESX secretion substrates. However, the type VII secreted membrane proteins 

may find their way into the phage secretome via transmembrane helices directing membrane 

localization.  

Generally, it is expected that approximately 1-2% of DNA inserts will be in-frame and result 

in sarcosyl-resistant phagemid particles (Jacobsson & Frykberg, 2001). Furthermore, some M. 

tuberculosis signal sequences may not function efficiently when expressed in E. coli (Smith, 

1985), perhaps due to different codon usage and GC content (Poquet et al., 1998). Therefore, 

the majority of the M. tuberculosis DNA inserts will be packaged into sarcosyl-sensitive 

phagemid as they lack an in-frame signal sequence or encode some type VII secretion pathways 

proteins. In this study, a M. tuberculosis phage secretome sub-library of ~8x103 clones was 

obtained from the DNA of sarcosyl resistant phages [Fig. 2.2a]. Colony PCR confirmed the 

presence of insert DNA in randomly selected clones [Fig. 2.2b].  

Phage DNA from 120 randomly selected sub-library clones were sequenced using primers 

flanking the pDJ01 vector cloning site. Analysis of DNA sequences using CLC Workbench 

software demonstrated that 18% of sequences comprised repeat clones and 98 distinct DNA 

sequences were identified (Appendix A, Table S2.1). BLAST analysis of distinct DNA 
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sequences against the M. tuberculosis comparative database identified 86 corresponding ORFs 

and their protein sequences were retrieved for further analysis. 

 

 

 

 

 

 

 

 

Fig. 2. 2: (a) Selective disassembly of phage particles display no or non-secretory protein. PP: phage 

particles prepared from M. tuberculosis phage library; SS: DNA released from sarcosyl sensitive phage 

particles; DT: DNase I treatment results showing almost complete removal or digestion of phage DNA 

released during SS step. (b) PCR amplicons of randomly selected clones of the phage secretome sub-

library. 

 

2.4.3 Functional Categories of Identified Proteins 

All 86 proteins were assigned a functional category as per Tuberculist database (Appendix A, 

Table S2.2). The distribution of proteins to their functional category is presented in Fig. 2.3. 

The majority of proteins (34/86) belong to cell wall and cell processes category. The cell wall 

and cell processes proteins include two immunogenic proteins Mpt63 (Rv1926c) and Mpt64 

(Rv1980c), two lipoproteins, LpqX (Rv1228) and LprO (Rv0179c), metal cation transporter 

CtpH (Rv0425c), MmpL12 (Rv1522c) involved in fatty acid transport, EmbC (Rv3793), 

alanine-leucine rich (Rv2693c) and alanine-valine-leucine rich (Rv2729c) suspected to be 

involved in the active evasion of the host immune response. Two ESX-1 secretion system 
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proteins EspA (Rv3616c) and the conserved component protein EccCa1 (Rv3870) were also 

associated with cell wall and cell processes.  

 

 

Fig. 2. 3: Distribution of the functional categories of 86 identified ORFs from F15/LAM4/KZN phage 

displayed secretome. The number of proteins in the different functional categories included: cell wall 

and cell processes (34), conserved hypothetical proteins (16), intermediary metabolism and respiration 

(17), lipid metabolism (8), information pathways (4), PE/PPE family proteins (3), virulence, 

detoxification, and adaptation (2), regulatory proteins (1) and unknown (1) function according to 

UniProt. Functional group codes were obtained from the Tuberculist database web server except for the 

unknown protein that was confirmed by the UniProt server. 

 

There were seventeen intermediary metabolism and respiration category proteins that included 

serine protease PepA (Rv0125), acyltransferase (Rv1254), putative ligase (Rv3712), and 4-

hydroxy-2-oxovalerate aldolase (Rv3469c). Sixteen were conserved hypothetical proteins, 

including ala-, pro-rich protein (Rv1157c) and secreted protein Rv1268c. Eight lipid 

metabolism category proteins identified included the secreted Ag85B (Rv1886c, Ag85C 
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(Rv0129c), peptide synthetase Nrp (Rv0101) and triacylglycerol synthase Tgs2 (Rv3734c). 

Other functional categorized proteins included four information pathways (Rv1700, Rv1981c, 

Rv3009c, and Rv3646c); three PPE family proteins (PPE32, PPE43 and PPE54); two virulence, 

detoxification and adaptation proteins, Rv1478 and Rv1566c associated with host invasion; 

and one regulatory protein (Rv1267c). One un-annotated protein, MT3042 was classified as a 

protein of unknown functional category.   

2.4.4 Secretion Signal Peptide and Cellular Localization 

Using different bioinformatics tools, the analysis of ORF protein sequences revealed Sec- and 

Tat- secreted proteins, membrane proteins and the secreted leaderless proteins. Twenty-seven 

proteins including 12 membrane proteins were predicted to harbor Sec-dependent N-terminal 

signal peptides by SignalP 4.1 and PRED-SIGNAL. Twenty-one proteins including 3 

membrane proteins Rv1230c, Rv3162c and Rv3395A were predicted to contain a Tat signal 

peptide by TatP 1.0 and PRED-TAT. Twenty-one proteins were predicted trans-membrane 

proteins with 2 to 14 transmembrane helical structures by TMHMM 2.0 (Table 2.1).  

In this study, 32 identified leaderless proteins were analyzed using SecretomeP 2.0 and TBPred 

databases to predict their subcellular localization (Table 2.2). Nine secreted proteins including 

two PPE proteins were identified by SecretomeP 2.0, whilst 21 of the 23 remaining proteins 

were confirmed as either secreted, membrane or membrane attached proteins by TBPred. 

Interestingly, 2 proteins Rv3616c and Rv3703c were predicted to be cytoplasmic proteins by 

TBPred database (Table 2.2). Rv3616c encodes the indirect ESX-1 pathway substrate, EspA, 

which is associated with M. tuberculosis virulence (Garces et al., 2010), whilst the Rv3703c 

gene is a member of gene cluster or operon (Rv3704c–Rv3700c) responsible for ergothioneine 

(EGT) biosynthesis in M. tuberculosis (Glökler et al., 2010). EGT is a low-molecular weight 
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protein essential for survival of M. tuberculosis in macrophages and is associated with 

antimycobacterial drug resistance (Glökler et al., 2010; Xu et al., 2015).  

 
Table 2. 1: List of Sec- and Tat-dependent N-terminal signal harbouring and transmembrane proteins 

Sec-dependent  Tat-dependent TMHMM Predicted 
Rv no. Gene name Rv no. Gene name Rv no. Gene name 

Rv0116c ldtA - MT3042 aRv0236c aftD 
Rv0320  - Rv0125  pepA aRv0425c   ctpH 
Rv0559c  - Rv0129c fbpC aRv0436c pssA 
Rv0603 - Rv0179c  lprO Rv0676c  mmpL5 
Rv0675 echA5 Rv0203  - aRv0842  - 
Rv1157c  - Rv0455c  - aRv1029  kdpA 
Rv1228  lpqX Rv1268c  - Rv1200 - 
Rv1478  - Rv1291c  - bRv1230c - 
Rv1804 - Rv1435c  - aRv1254  - 
Rv1808  ppe32 Rv1566c  - aRv1522c  mmpL12 
Rv1926c  mpt63 Rv1813c  - aRv1621c  cydD 
Rv1980c mpt64 Rv1886c  fbpB Rv1634 - 
Rv2376c  cfp2 Rv2301  cut2 Rv1733c  - 
Rv2878c  mpt53 Rv2391 sirA aRv2693c  - 
Rv3310  sapM Rv3222c  - aRv2729c  - 
    Rv3646c topA bRv3162c  - 
    Rv3712  - aRv3193c - 
    Rv3835  - aRv3365c - 
      

bRv3395A  - 
      Rv3793 embC 
        Rv3870  eccCa1 

aSec-dependent N-terminal signal  
bTat-dependent N-terminal signal 
 

The EGT synthesis gene cluster consists of EgtA, EgtB, EgtC, EgtD and EgtE respectively. The 

involuntary prediction of the well-known ESX-1 substrate (Rv3616c) as a cytoplasmic protein 

suggests that Rv3703c may also be a secreted protein. Similarly, Jankovic et al., (2007) 

identified two peptides without membrane or signal peptide sequence but were shown to 

possess undetermined secretion directive. Therefore, further studies should be undertaken in 

order to establish subcellular localization of all EGT synthesis gene cluster members and 

determine their possible leakage or secretory pathway. 
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Table 2. 2: Subcellular localization prediction of 32 proteins using SecretomeP 2.0a and TBPred. 

Rv no. Gene name Subcellular location Rv no. Gene name 
Subcellular 

location 
Rv0101  nrp secreted  Rv1981c nrdF1 secreted  
cRv0192  -  - Rv1988 erm(37) transmembrane 
Rv0255c  cobQ1 membrane attached Rv2239c - secreted  
cRv0822c  -  - cRv2768c  ppe43  - 
Rv0824c desA1 secreted  cRv2922A acyP  - 

cRv0983 pepD  - Rv3009c gatB 
membrane 
attached 

cRv1118c  -  - cRv3103c -  - 
Rv1156  - membrane attached Rv3150  nuoF secreted 
Rv1161 narG Secreted Rv3280 accD5 secreted 
Rv1267c embR membrane attached cRv3343c  ppe54  - 

Rv1366  - Secreted Rv3410c guaB3 
membrane 
attached 

Rv1447c  zwf2 Transmembrane Rv3469c mhpE secreted  
Rv1613  trpA membrane attached Rv3616c espA Cytoplasmic 
cRv1638  uvrA  - Rv3703c egtB Cytoplasmic 
Rv1700 - membrane attached Rv3734c  tgs2 transmembrane 

Rv1916  aceAb Secreted Rv3859c gltB 
membrane 
attached 

cSecretomeP 2.0a predicted proteins 

2.4.5 ESX Proteins 

The ESX-1 secretion system, that includes the secreted substrates ESAT-6 and CFP-10 

virulence effectors, plays a critical role in M. tuberculosis pathogenicity (Simeone et al., 2009). 

Two ESX-1 associated proteins, EccCa1 and EspA, were identified in our study, but were not 

detected by Liu et al. (2011). EccCa1 is a conserved membrane component of the ESX-1 

secretion system that is required for substrate exportation (Abdallah et al., 2007). EspA lacks 

a signal peptide sequence and was determined to be a cytoplasmic protein (Rashid et al., 2007). 

The gene (espA) encoding this protein is located within the esx-1 gene cluster (Abdallah et al., 

2007). This protein is a member of ESX-1 substrates: EsxA (ESAT-6), EsxB (CFP-10), and 

EspA and EspB that require each other for successful secretion (Abdallah et al., 2007; Garces 

et al., 2010). Upon secretion, EspA forms a disulfide bonded homodimer that is important for 

functional integrity of the M. tuberculosis cell wall. EspA is the most important determinant of 
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ESX-1 mediated virulence as its disruption resulted in significant attenuation of M. tuberculosis 

virulence in vivo. Not only does EspA “guide” known virulence factors (ESAT-6 and CFP10) 

through ESX-1 apparatus system proteins such as EccCa, but it also appears to regulate activity 

of proteins interacting with the M. tuberculosis cell wall (Chen et al., 2013; Garces et al., 2010). 

ESX-1 substrates including ESAT-6 are responsible for the translocation of mycobacteria from 

the phagolysosome to the cytosol (Peng and Sun, 2016). Therefore, ESX-1 system proteins like 

EccCa1 and EspA are potential biomarkers that can be targeted for development of therapeutic 

interventions (Bottai et al., 2014) and diagnostic tools.  

 

2.4.6 PE/PPE Proteins 

About 10% of the M. tuberculosis genome encodes two gene families, the pe and ppe genes 

(Cole, 1998), totaling 99 and 69 respectively, in this pathogen (Fishbein et al., 2015; Gey van 

Pittius et al., 2006). PE and PPE proteins are named after the Proline (Pro) and Glutamic acid 

(Glu), and Pro–Pro–Glu motifs near the N terminus, respectively (Cole, 1998). These proteins 

are involved in host-pathogen interactions and may be required for survival in vivo (Abdallah 

et al., 2006; Fishbein et al., 2015). Species within the M. tuberculosis complex (MTBC), as 

well as the non-tuberculosis mycobacteria such as M. leprae, M. marinum, M. ulcerans and M. 

avium harbor the most number of pe/ppe genes. Fewer pe/ppe genes are found in nonpathogenic 

mycobacteria (Fishbein et al., 2015). Nearly all PPE proteins are secreted through the 

specialized type VII (ESAT-6 like) secretion system (Abdallah et al., 2006). ESAT-6 like 

specialized secretion systems [ESX-1, ESX-2, ESX-3 and ESX-5] have been associated with 

secretion of PE and PPE proteins (Gey van Pittius et al., 2006). However, some PE and PPE 

proteins possess N-terminal signal peptide sequences for secretion (Forrellad et al., 2013).  
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In this study, three PPE proteins PPE32, PPE43 and PPE54 were identified. PE/PPE proteins 

are categorized into five sublineages (I to V) according to their evolutional relationship (Gey 

van Pittius et al., 2006). PPE32 and PPE43 belong to sublineage IV (Gey van Pittius et al., 

2006) known to be secreted through ESX-5 secretion system (Fishbein et al., 2015). 

Interestingly, PPE32 have an N-terminal signal peptide for the Sec-dependent pathway. PPE43 

and PPE54 lack a signal peptide sequence and were predicted to be extracellular proteins by 

SecretomeP. PPE54 belongs to the sublineage V and to the PPE_MPTR (major polymorphic 

tandem repeats) subfamily of PPE proteins. Sublineage V is reportedly highly expressed during 

in vivo infection (Fishbein et al., 2015), whilst PPE54 is expressed in guinea pig lungs (Kruh 

et al., 2010) and reported to be essential for in vitro growth (Tuberculist). Most PPE protein 

functions remain unknown, however, establishing localization of these proteins could provide 

some important clues to their function. Therefore, based on our findings PPE32, PPE43 and 

PPE54 are extracellular proteins that are either surface membrane attached or released proteins, 

and thus, may be directly involved in host-pathogen interaction.  

 

2.4.7 Gene Enrichment Analysis 

Gene ontology terms and functional annotation clusters with p-value < 0.05 were enriched 

using DAVID database. The BP term significantly enriched (p = 0.04) for five proteins 

(Erm(37), EmbC, Ag85B, Ag85C and Rv1634) was response to antibiotic. The CC 

significantly enriched term (p = 0.00) for 28 genes was extracellular region. The CC enriched 

genes encoded hypothetical proteins, immunogenic proteins such as MPT63 and MPT64, 

antigenic proteins MPT53 and CFP2, and proteins with some enzyme activity. The MF 

significantly enriched (p = 0.01) term of four genes (Ag85B, Ag85C, Rv0192 and LdtA) was 

transferase activity (Appendix A, Table S2.2).  
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DAVID functional annotation clustering of the gene list resulted in two significantly enriched 

annotation clusters. Annotation clusters provide an overview of functions associated related 

proteins within gene list. Cluster one contained 26 transmembrane/membrane enriched proteins 

(p -value of 0.02 to 0.04) and cluster two contained 8 proteins (NuoF, DesA1, GltB, EtgB, 

NarG, NrdF1, SirA and Rv0203) involved in iron binding with p-value of 0.01. Therefore, 

enrichment of GO terms and functional annotation clustering suggest that our M. tuberculosis 

phage secretome library is rich in transmembrane, surface membrane and extracellular proteins. 

These membrane and extracellular proteins include essential proteins required for in vivo 

growth and virulence behaviour by assisting the pathogen to acquire nutrients and navigate 

therapeutic interventions.  

It is worth noting that only 85 of 86 proteins were analyzed by DAVID database. MT3042 was 

excluded from analysis and labelled as unknown protein. This could be due to fact that DAVID 

analysis was based on background M. tuberculosis H37Rv.  

 

2.4.8 Essential Mycobacterial Proteins  

M. tuberculosis secreted proteins play an important role in host-pathogen interaction and 

facilitate nutrient acquisition, navigate the host immune response and interfere with therapeutic 

intervention. Therefore, M. tuberculosis secretome consist of proteins essential for successful 

invasion and in vivo growth during host infection. PATRIC is the bacterial bioinformatics 

resource centre with curated and consistently annotated literature-based data with 7941 M. 

tuberculosis genome sequences (Wattam et al., 2014). In the search for unique M. tuberculosis 

secreted protein biomarkers, the PATRIC database was used to identify virulence factors and 

essential proteins. 



58 | P a g e  

 

Of 86 proteins in our list, 19 proteins were identified virulence factors (Table 2.3). The 

virulence factors included two cell wall (Ag85B and Ag85C), three intracellular survival 

(Rv1478, UvrA and AceAb), three proteins involve in modulation of host immune response 

(Rv1813c, MPT64 and NrdF1), seven virulence associated proteins (Nrp, SirA, Rv2693c, 

Rv3103c, SapM, EspA and EccCa1). The others virulence factor proteins were the PepD, a 

chaperone, NarG for anaerobic respiration, and PPE54 which affects the phagosome. 

 

Table 2. 3: List of virulence factor M. tuberculosis secretory proteins identified using PATRIC database. 

Rv no. Gene Classification References  
Rv0101 nrp Virulence (Sassetti & Rubin, 2003) 
Rv0129c fbpC Cell wall (Puech et al., 2002) 
Rv0983 pepD Chaperone,protease (MohamedMohaideen et al., 2008) 

Rv1161 narG Cellular metabolism,Anaerobic 
respiration PATRIC 

Rv1478  Invasion,intracellular survival and 
replication (Gao et al., 2006) 

Rv1638 uvrA Intracellular survival and replication (Houghton et al., 2012) 
Rv1813c  modulate host immune response (Bretl et al., 2012) 

Rv1886c fbpB No evidence of virulence,cell wall (Armitige et al., 2000, Puech et al., 
2002) 

Rv1916 aceAb Intracellular survival and replication (Muñoz-Elías & McKinney, 2005) 
Rv1980c mpt64 Modulate host immune response (Kozak et al., 2011) 
Rv1981c nrdF1 Modulate host immune response (Kozak et al., 2011) 
Rv2301 cut2 Invasion (Ocampo et al., 2012) 
Rv2391 sirA Virulence factor (Sassetti & Rubin, 2003) 
Rv2693c  Virulence factor (MacGurn & Cox, 2007) 
Rv3103c  Virulence factor (Sassetti & Rubin, 2003) 
Rv3310 sapM Virulence (Chauhan et al., 2013) 
Rv3343c PPE54 Affect phagosome (Brodin et al., 2010) 

Rv3616c espA Virulence associated secretion systems, 
Type VII secretion (Garces et al., 2010, Chen et al., 2013) 

Rv3870 eccCa1 Virulence, Type VII secretion (Guinn et al., 2004, Champion et al., 
2006) 

 
 

M. tuberculosis essential proteins are ideal targets for the development of diagnostic tools and 

new drugs because of their key role in in vivo bacterial survival and growth. Therefore, 

identifying essential M. tuberculosis proteins required for growth and survival in infected host 
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could lead to discovery of potential useful biomarkers. Using the PATRIC database, ten 

essential proteins were identified, five membrane proteins (PssA, MmpL5, GatB, EccCa1 and 

Rv1634) and five secreted proteins (Nrp, SirA, EspA, TopA and Rv3103c). Two proteins are 

responsible for antibiotic resistance (MmpL5 and Rv1634) and one (PssA) is a drug target 

(Table 2.4).  

 

Table 2. 4: List of essential M. tuberculosis secretory proteins identified using PATRIC database. 

Rv no. Gene Product References 
*Rv0101 nrp Peptide synthetase Nrp (Sassetti & Rubin, 2003) 
Rv0436c pssA Phosphatidylserine synthase PATRIC 
Rv0676c mmpL5 Siderophore exporter MmpL5 PATRIC 
Rv1634  Probable multidrug-efflux transporter  PATRIC 
*Rv2391 sirA inorganic ion transport and metobolism (Sassetti & Rubin, 2003) 
Rv3009c gatB Asn/Gln amidotransferase subunit B  PATRIC 
*Rv3103c  Hypothetical proline-rich protein  (Sassetti & Rubin, 2003) 

**Rv3616c espA ESX-1 secretion-associated protein EspA 
(Sassetti & Rubin, 2003, 
Fortune et al., 2005) 

Rv3646c topA DNA topoisomerase 1  PATRIC 

**Rv3870 eccCa1 ESX-1 secretion system protein EccCa1 
(Sassetti & Rubin, 2003, 
Guinn et al., 2004) 

*= Sassetti & Rubin, 2003 
** = identified by PATRIC and Sassetti & Rubin, 2003 

 

Generally, bacteria release their membrane proteins into the external environment as a means 

of membrane surface maintenance (Antelmann et al., 2001). Therefore, membrane proteins 

PssA, MmpL5, GatB, EccCa1 and Rv1634 will be valuable potential diagnostic biomarkers, 

since they could be found present in the body fluid of TB infected patients. Hence, these 

biomarkers have the potential to determine disease stages as it is expected that membrane 

proteins could be released from the bacterial cell surface at an advanced stage of growth.  

There is limited literature on MT3042, the 82 amino acid protein. According to PATRIC 

database, MT3042 is a hypothetical protein annotated in M. tuberculosis CDC1551 genome 



60 | P a g e  

 

sequence. Further studies are required to investigate the prevalence and expression of MT3042 

among the M. tuberculosis clinical strains. 

2.5 CONCLUSIONS  

In this study, we report an elegant and efficient in vitro approach, for the selective extraction 

of secretome genetic information from an extensively drug-resistant M. tuberculosis strain. 

This genetic information can be used to identify secreted protein ORFs and allow further 

secretome specific in silico characterization. Using this approach, more than 95% of identified 

ORFs were confirmed as M. tuberculosis secretory or surface membrane proteins using 

different bioinformatics tools. Furthermore, M. tuberculosis virulence factors and essential 

proteins that are a prerequisite for growth and survival during infection were identified. We 

identified ten essential proteins, Nrp (Rv0101), PssA (Rv0436c), MmpL5 (Rv0676c), SirA 

(Rv2391), GatB (Rv3009c), EspA (Rv3616c), TopA (Rv3646c), EccCa1 (Rv3870), Rv1634 

and Rv3103c. The essential proteins have potential application in the development of 

diagnostic tools, new drugs and vaccines. Future studies should investigate the suitability of all 

ten essential proteins as potential M. tuberculosis infection specific biomarkers for the 

development of rapid point-of-care antigen detection test.  

Our findings complement the study by Liu et al. (2011) and support the use of phage display 

in the study of M. tuberculosis clinical strains secretome for biomarker discovery. Future 

studies using M. tuberculosis phage secretome libraries should aim to identify useful protein 

epitopes unique to MDR and XDR strains for use in design of vaccines, drugs and diagnostic 

tools. 
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3.1 ABSTRACT  

Tuberculosis (TB) protein biomarkers are urgently needed for the development of point-of-

care diagnostics, new drugs and vaccines. Mycobacterium tuberculosis (Mtb) extracellular and 

secreted proteins play an important role in host-pathogen interactions. Antibodies produced 

against Mtb proteins before the onset of clinical symptoms can be used in proteomic studies to 

identify their target proteins. In this study, Mtb F15/LAM4/KZN strain phage secretome library 

was screened against immobilized polyclonal sera from active-TB patients (n=20), individuals 

with latent-TB (n=15) infection (LTBI) and TB negative (n=20) individuals to select and 

identify proteins recognized by patients’ antibodies. DNA sequence analysis from randomly 

selected latent-TB and active-TB specific phage clones revealed 118 and 96 ORFs, 

respectively. Proteins essential for growth, virulence and metabolic pathways were identified 

using different TB databases. The identified active-TB specific biomarkers included five 

proteins, namely, TrpG, Alr, TreY, BfrA and EspR, with no human homologs, whilst latent-

TB specific biomarkers included NarG, PonA1, PonA2 and HspR. Future studies will assess 

potential applications of identified protein biomarkers in the development of new drugs, 

vaccines and diagnostic tools with the ability to discriminate LTBI from active-TB.  

 

KEYWORDS: tuberculosis, phage display, biomarkers, active-TB, latent-TB, diagnostics 
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3.2 INTRODUCTION 

Nearly 2 million deaths and more than 10.4 million cases of tuberculosis (TB) were reported 

globally in 2016 (WHO, 2017). Approximately half of the people exposed to TB develop 

clinical symptoms within a year (Rustad et al., 2009). Individuals with latent-TB infection 

(LTBI) have a 10% chance of developing active-TB (ATB) during their lifetime (Corbett et 

al., 2003). Approximately, one-third of the world’s population is latently infected with TB 

(WHO, 2017). Co-infection with HIV increases the risk of progression to ATB by up to 10% 

per year, making TB the leading cause of death from an opportunistic infection in HIV/AIDS 

patients (Corbett et al., 2003, McShane, 2005). Therefore, LTBI plays a critical role in the 

current TB pandemic and is a constant source of new cases of TB disease especially among 

HIV/AIDS patients (Rustad et al., 2009).  

During infection, Mycobacterium tuberculosis secretes proteins into the surrounding host 

environment, playing an important role in host-pathogen interactions. Antibodies against 

mycobacterial proteins (antigens) are produced before the onset of clinical symptoms (Laal et 

al., 1997, Lyashchenko et al., 1998, Samanich et al., 2001, Kunnath-Velayudhan et al., 2010). 

These antibodies target all immunologically relevant pathogen specific antigens (Kunnath-

Velayudhan et al., 2012) and may shed some light on the M. tuberculosis protein expression 

profiles during infection. However, the antibody response differs widely among TB patients 

(Khan et al., 2011) and this may be due to the disease progression stage during sampling, the 

relative specific antigen dominancy and the M. tuberculosis strain antigen composition 

(Kunnath-Velayudhan et al., 2011, Senoputra et al., 2015). Nevertheless, these antibodies can 

be used in proteomic studies to identify their cognate M. tuberculosis antigens or epitopes 

(Wallis et al., 2009). This could lead to the discovery of disease specific protein biomarkers 

that can be used in the design of new drugs, vaccines and diagnostic or prognostic tools. In 

turn, antibodies produced against these epitopes can be used in order to detect them in clinical 
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specimens. Consequently, identification of LTBI specific biomarkers may result in the 

development of improved and accurate point-of-care diagnostic tools that can be used to 

monitor disease progression especially in HIV/AIDS patients.  

Phage display is a powerful in vitro selection technology that can be used to specifically extract 

proteins with novel and desired properties from large protein libraries (Konthur et al., 2003). 

In the present study, a M. tuberculosis F15/LAM4/KZN phage secretome library (Chiliza et 

al., 2017) was interrogated by immunoscreening against patients’ sera to identify immunogenic 

LTBI and ATB specific proteins recognized by their antibodies. Sera from LTBI and ATB 

patients were used for isolation by affinity binding of phage particles displaying TB disease 

state-specific peptides. Therefore, the current study was aimed at the identification of novel, 

easily accessible disease state-specific M. tuberculosis secreted biomarkers that can be used to 

distinguish ATB from LTBI.   

 

3.3 MATERIALS AND METHODS 

3.3.1 Patient Recruitment and Specimen Collection 

The study was approved by the University of KwaZulu-Natal Biomedical Research Ethics 

Committee (Ref. BE236/13). Participants were considered for inclusion if they were ≥18 years 

of age and willing to undergo an HIV test. Fifty-five study participants were recruited with 

informed consent from the Centre for the AIDS Programme of Research in South Africa 

(CAPRISA) eThekwini Clinic, KwaZulu-Natal. All participants included in the study were 

HIV negative and all individuals testing HIV positive were excluded. The GeneXpert/MTB/RIF 

assay was used as a TB confirmatory test and GeneXpert positive participants were included 

in our active-TB (ATB) group (n=20). GeneXpert negative participants were subjected to 

tuberculin skin test (TST) in order to detect LTBI. Subjects with an induration of ≥10mm 



74 | P a g e  

 

(TST+) were classified as latent-TB infected (n=15), and TST negative (n=20) as healthy non-

TB subjects. Peripheral blood (5 mL) was collected using the closed blood collection method 

into BD Vacutainer serum tubes (red top, 5mL tube). The specimen was immediately mixed 

by inverting 6 to 10 times and stored at 4°C before processing. After centrifugation at 1500xg 

for 10 min, serum was stored at -80°C until use.   

 

3.3.2 Panning of M. tuberculosis F15/LAM4/KZN Phage Secretome Library 

A phage library displaying M. tuberculosis F15/LAM4/KZN secretome was constructed 

previously (Chiliza et al., 2017) using the pDJ01 phagemid vector (Jankovic et al., 2007). 

Pooled serum samples containing patients’ polyclonal antibodies were diluted 1:100 in PBS 

(pH 7.2) and used to coat the ELISA plate wells at 4ºC overnight. The secretome phage library 

was exposed to the immobilized serum samples. The concentration of phage particles at the 

beginning of each of 3 rounds for both latent-TB and active-TB panning was 1×1011 pfu. In 

order to eliminate non-specific immunogenic peptides, the library was pre-incubated with 

immobilized sera from TB-free participants. Selective targeting of disease state specific phage 

displayed protein peptides was achieved by exposing the TB-free pre-absorbed library to latent-

TB sera before the selection on active-TB sera to identify active-TB specific proteins. Latent-

TB proteins were selected by exposing the TB-free pre-absorbed library first to active-TB sera 

and then to latent-TB sera. The binding phages were eluted with 0.1M TEA (triethanolamine) 

for 10 minutes at room temperature. The eluate was neutralized with 1M Tris buffer (pH 7), 

and amplified by infecting exponentially growing E. coli TG1 cells. Amplified phages were 

subjected to two further rounds of selective screening to enrich for clones that are specifically 

recognized by the patients’ sera. After three successive rounds of interrogation against TB 

patients’ sera (Fig. 3.1), affinity binding and immunogenic latent-TB and active-TB specific 
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M. tuberculosis phage displayed protein peptides were enriched. For latent-TB selection, the 

amount of recovered phage particles for the three successive rounds was 1.8×103, 3.2×104 and 

2.4×105 pfu respectively. The active-TB recovered phage particles for three successive rounds 

was 2.2×103, 5.2×104 and 3.9×105 pfu respectively. Enrichment was calculated as the ratio of 

number of eluted phages in the third round of panning relative to the first round of panning.  

 

 

Fig. 3. 1: Overview of steps involved in Mtb phage secretome library immunoscreening against clinical 

serum samples. For selection of latent-TB specific biomarkers, the library was initially exposed to: a) 

control TB –ve sera from healthy participants to pre-absorb and remove phage particles displaying 

“ubiquitous” protein peptides. b) The unbound phages were transferred to a well coated with ATB +ve 

sera from active-TB participants to remove protein peptides recognised by patients’ antibodies. c) Final 

selection was performed against LTB +ve sera from latent-TB infected participants. Selection of active-

TB specific biomarkers began with a) TB –ve sera, followed by screening against e) LTB +ve sera from 

latent-TB infected patients and final screening f) against ATB +ve sera from active-TB patients.  
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3.3.3 DNA Sequence Analysis 

The inserts of  randomly selected clones were sequenced using the primer pDJ01R02 (5’-

CCGGAAACGTCACCAATGAA-3’) and pDJF03 (5’-ATGTTGCTGTTGATTCTTCA-3’). 

The DNA sequences were analysed using the CLCBio Workbench 2.0. BLAST analysis of the 

nucleotide sequences against the M. tuberculosis database was performed in order to retrieve 

encoded open reading frames (ORFs) and complete protein sequences. 

 

3.3.4 Functional Categories and Gene Ontologies 

The ORFs functional category information for annotated genes was retrieved from the 

TubercuList database (http://tuberculist.epfl.ch/) (Lew et al., 2011). Protein sequences of 

unknown genes that are not documented on TubercuList database were categorized as unknown 

functional category. For further assignment of possible function, gene ontology (GO) features 

of identified latent-TB and active-TB proteins were obtained using Universal Protein Resource 

Knowledgebase (UniProtKB) database (http://www.uniprot.org/) (The_UniProt_Consortium, 

2017). The Web Gene Ontology Annotation Plotting (WEGO) (http://wego.genomics.org.cn/ 

cgi-bin/wego/index.pl) was used to analyze the GO categories (Ye et al., 2006).  

 

3.3.5 Metabolic Pathways and Specialty Proteins Identification 

The Pathosystems Resource Integration Center (PATRIC) [https://www.patricbrc.org] and 

KEGG (Kyoto Encyclopedia of Genes and Genomes) [http://www.genome.ad.jp/kegg] 

databases were used to identify metabolic pathway proteins (Kanehisa et al., 2017). PATRIC 

specialty protein list was used to identify proteins essential for M. tuberculosis growth, 

virulence and survival during host infection (Wattam et al., 2017).  

http://tuberculist.epfl.ch/
http://www.uniprot.org/
http://wego.genomics.org.cn/%20cgi-bin/wego/index.pl
http://wego.genomics.org.cn/%20cgi-bin/wego/index.pl
https://www.patricbrc.org/
http://www.genome.ad.jp/kegg
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3.4 RESULTS AND DISCUSSION 

3.4.1 Identification of Disease State Specific Proteins 

After three successive rounds of immunoscreening against sera from LTBI (n=15) and ATB 

patients (n=20), affinity binding and immunogenic latent-TB and active-TB specific M. 

tuberculosis phage displayed protein peptides were enriched by 133-fold and 177-fold, 

respectively. At the last round of panning, clones were selected randomly, and 157 and 127 

phage DNA were sequenced for LTBI and ATB, respectively. DNA sequence analysis revealed 

125 LTBI and 100 ATB distinct sequences. The BLAST search against M. tuberculosis 

databases identified 118 LTBI and 96 ATB encoded ORFs (Appendix A, Table S3.1 and S3.2). 

The ORFs were allocated functional categories according to the TubercuList database 

annotation (Lew et al., 2011). The LTBI and ATB selected proteins were distributed to ten 

different TubercuList functional categories (Fig. 3.2).  

Fig. 3. 2: TubercuList functional categories of proteins identified during selection for active-TB and 

latent-TB biomarkers. 
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Table 3. 1: List and description of 23 proteins common to ATB and LTBI.  

Rv Name Description 

MT1330.1 MT1330.1 hypothetical protein 

Rv0203 - secreted protein with unknown function 

Rv0327 Cyp135A1 Cytochromes P450, a heme-thiolate monooxygenase  

Rv0630c RecB exonuclease V (beta chain) RecB 

Rv1009 RpfB resuscitation-promoting factor RpfB.  

Rv1029 KdpA potassium-transporting ATPase a chain KdpA 

Rv1133c MetE Cobalamin-independent methionine synthase 

Rv1157c - Conserved secreted ala-, pro-rich protein 

Rv1268 - hypothetical outer membrane protein 

Rv1269c - Conserved probable secreted protein 

Rv1271c - Conserved hypothetical secreted protein 

Rv1357c - Conserved hypothetical protein 

Rv1703 - Probable catechol-O-methyltransferase. 

Rv1806 PE20 PE family protein PE20 

Rv1886c FbpB Secreted antigen 85-B FbpB (85B)  

Rv1926c Mpt63 Immunogenic 16 kDa protein Mpt63 

Rv1980c Mpt64 Immunogenic protein Mpt64  

Rv2152c - UDP-N-acetylmuramate-alanine ligase MurC 

Rv2414c - Conserved hypothetical protein 

Rv3157 NuoM NADH dehydrogenase I (chain M) NUOK  

Rv3218 - Conserved protein. Function unknown 

Rv3318 SdhA succinate dehydrogenase flavoprotein subunit sdhA  

Rv3508 PE_PGRS54  PE-PGRS family protein PE_PGRS54 

 
 

The majority of LTBI (43) and ATB (28) proteins were associated with the cell wall and cell 

processes. These were mainly surface membrane and transmembrane proteins involved in 

transportation of molecules across the cell wall and facilitate attachment to host target cells. 

The second most prevalent group of proteins were the conserved hypothetical proteins of  

unknown functions of which  22  were unique to the LTBI and 16 were unique to the ATB. 
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Twenty-three proteins were observed to be common between the LTBI and ATB lists (Table 

3.1). These included hypothetical proteins and immunogenic proteins such as FbpB (Rv1886c), 

Mpt63 (Rv1926c), Mpt64 (Rv1980c) and two PE/PPE family proteins, PE20 (Rv1806) and 

PE_PGRS54 (Rv3508).   

 

3.4.2 Gene Ontology Analysis 

Gene Ontology functional categories of 60 ATB and 80 LTBI proteins GO annotation were 

retrieved from UniProtKB database (Appendix A, Table S3.3 and S3.4). WEGO analysis 

assigned the proteins to three functional categories; Cellular Component (CC), Molecular 

Function (MF), and Biological Process (BP), with a total of 31 GO terms (Fig. 3.3). Proteins 

involved in multiple activities or processes are assigned by WEGO to one or more associated 

GO terms and categories. Notably, 15 of 95 LTBI and 12 of 72 ATB proteins with either 

unknown function/s or unrecognized by Gene Ontology enrichment were not assigned to any 

functional categories.  

Amongst the ATB proteins, the main CC terms comprised cell (42 proteins), cell part (41 

proteins) and membrane (29 proteins). In the BP ontology, top terms included cellular process 

(27 proteins), metabolic process (26 proteins) and response to stimulus (11 proteins). The 

majority of MF category terms involved catalytic activity (31 proteins) and binding (24 

proteins). The enzymes involved in catalytic activity were classified as oxidoreductase, 

transferase, hydrolase, lyase, ligase and isomerase.  

For the LTBI specific proteins, the main CC terms included cell (60 proteins), cell part (59 

proteins) and membrane (49 proteins). The main BP ontology terms comprised metabolic 

process (37 proteins), cellular process (31 proteins) and growth (13 proteins). The main MF 
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terms included catalytic activity (43 proteins) and binding (26 proteins). The enzymes involved 

in catalytic activity were classified as oxidoreductase, transferase, hydrolase, lyase and ligase.  

 

 

Fig. 3. 3: Histogram of gene ontology classifications of ATB and LTBI specific M. tuberculosis proteins 

recognised by sera of TB patients. The WEGO plot shows the three main GO categories: cellular 

component, molecular function and biological process. The right y-axis indicates the number of genes 

in a category. The left y-axis indicates the percentage of a specific category of genes in that main 

category. The WEGO plotting parameters were transformed into a log10 scale to represent both highly 

and lowly-enriched GO functions. 
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3.4.3 Functional Categories Unique to ATB and LTBI 

3.4.3.1 ATB functional categories 

The 3 GO terms unique to ATB included 2 MF terms (antioxidant and transcriptional regulator) 

and 1 BP term (immune system process). The antioxidant associated proteins were Rv2878c 

(MPT53) and Rv2429 (AhpD). MPT53 is a soluble secreted antigen reportedly recognized by 

TB patients’ humoral response (Malen et al., 2008) and AhpD is a reductase that is involved 

in oxidative stress response (Koshkin et al., 2003). The transcription associated protein, 

Rv3058c is involved in transcriptional regulatory processes (TubercuList). The immune system 

process proteins comprised Rv2941 (fadD28), Rv3343c (PPE54), Rv1860 (Apa) and Rv1818c 

(PE_PGRS33) which are involved in negative regulation or modulation of host immune 

response. FadD28 is involved in fatty acid biosynthesis and together with PPE54, is involved 

in host phagosome maturation arrest (Brodin et al., 2010). Alanine and proline rich secreted 

protein, Apa facilitates the bacterial attachment to host cells (Pitarque et al., 2005). The 

immunogenic PE-PGRS family protein, PE_PGRS33 facilitates cell surface interactions 

among mycobacteria and interactions of bacteria with macrophages (Cohen et al., 2014, 

Palucci et al., 2016).  

 

3.4.3.2 LTBI functional categories 

The 7 GO terms unique to LTBI included 1 CC term (organelle part), 4 MF terms (electron 

carrier, molecular transducer, structural molecule and translation regulator), and 2 BP terms 

(anatomical structure formation and developmental process). The organelle part protein was 

identified as Rv3459c (RpsK) that is essential for selection of protein biosynthesis 

(UniProtKB). The electron carrier activity proteins were Rv1161 (NarG) and Rv0688 encoding 

the putative ferredoxin reductase. NarG catalyses the consumption of nitrate in M. tuberculosis 
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(Iona et al., 2016) while the putative ferredoxin reductase is involved in the transfer of electrons 

in various metabolic reactions (TubercuList). The molecular transducer protein (Rv3365c) is a 

conserved hypothetical protein proposed to be involved in cell-associated regulatory functions 

(Mazandu et al., 2012). The translation regulator activity protein Rv2839c encoding InfB is an 

essential component for the initiation of protein synthesis (TubercuList). The developmental 

process protein (Rv0050) also known as PonA1 is involved in cell wall formation by synthesis 

of cross-linked peptidoglycan from the lipid intermediates (Kieser et al., 2015). 

 

3.4.4 Differentially Expressed Functional Proteins 

3.4.4.1 ATB differentially expressed proteins 

The ATB differentially expressed proteins included 3 isomerases (Alr, TreY and TopA), the 

extracellular protein EspR (Rv3849) and the organelle proteins Rv1526c and PE_PGRS47 

(Rv2741). Isomerase Alr is involved in peptidoglycan cross-linking through conversion of L-

alanine to D-alanine which is a necessary precursor for peptidoglycan biosynthesis (Strych et 

al., 2001). TreY is involved in starch and sucrose metabolism, specifically, trehalose 

biosynthesis. TopA is involved in DNA transcription and reportedly required for adaptation 

and survival of M. tuberculosis under stressful conditions. EspR is associated with cell wall 

functions and pathogenesis through regulation of multiple genes, including the espACD 

operon, which is a key ESX-1 component (Bitter et al., 2009). Rv1526c is a glycosyltransferase 

and is thought to be involved in cellular metabolism (TubercuList). The PE-PGRS family 

protein, PE_PGRS47 is required for growth and survival of M. tuberculosis during chronic TB 

and is also involved in evasion of innate and adaptive immunity (Saini et al., 2016). 
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3.4.4.2 LTBI differentially expressed proteins 

The LTBI differentially expressed proteins comprised SahH (Rv3779) associated with growth, 

the host intracellular part protein, SapM (Rv3310) and three cellular component’s organization 

or biogenesis proteins DnaB (Rv0058), EmbC (Rv3793), and FadD17 (Rv3506). The S-

adenosyl-L-homocysteine hydrolase (SahH) is involved in regulation of the intracellular 

concentration of adenosylhomocysteine and is essential for bacterial growth (Cole et al., 1998, 

Sassetti et al., 2003a). The acid phosphatase (SapM) plays an important role in blocking 

phagosome-lysosome fusion, thus participating in the intracellular survival of the pathogen 

(Puri et al., 2013). The Arabinosyltransferase C (EmbC) is an integral membrane protein 

involved in the biosynthesis of the mycobacterial cell wall arabinan required for resistance to 

anti-TB drug ethambutol, hence, essential for M. tuberculosis growth (Sassetti et al., 2003a, 

Kieser et al., 2014) and survival. EmbC is a potential drug target and can be considered for use 

in TB diagnosis. FadD17 is required for salvaging cholesterol. The M. tuberculosis genome 

encodes 35 fadD genes which are suspected to be associated with fatty acid biosynthesis 

(TubercuList). When cholesterol is used by M. tuberculosis as a carbon source, up-regulated 

genes include fadD17, fadD18, fadD19 and fadD3 (Wipperman et al., 2014). 

 

3.4.5 Metabolic Pathway Proteins 

During LTBI and ATB, the expression of certain metabolic pathway genes is upregulated or 

downregulated (Gopinath et al., 2015). The metabolic pathway gene encoded proteins (MPPs) 

are involved in catabolism and biosynthesis of molecules essential for growth of M. 

tuberculosis. Therefore, these are attractive drug targets since inhibition of their functions may 

kill the pathogen. The M. tuberculosis PATRIC and KEGG metabolic pathway databases have 

840 and 605 MPPs, respectively. The individual databases have some overlapping MPPs 
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between databases and also database specific MPPs (Fig. 3.4). The databases were used to 

identify 14 ATB and 21 LTBI specific MPPs involved in M. tuberculosis metabolic processes 

(Table 3.2).  

Analysis of the generated protein lists revealed that different M. tuberculosis metabolic 

pathways were enriched. The pathways unique to ATB were amino acid biosynthesis, 

carbohydrate metabolism and iron metabolism, while cofactor and coenzyme biosynthesis, 

nitrogen metabolism and carbonic metabolism were unique LTBI enriched pathways. Among 

the complete list of metabolic pathways (Table 3.2), cell wall biosynthesis and lipid metabolism 

pathways were common to both ATB and LTBI.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 4: Venn diagram showing metabolic pathway proteins from KEGG and PATRIC databases that 

overlap with the selected ATB and LTBI proteins. There were 14 ATB and 21 LTBI specific metabolic 

pathway proteins that were identified. 
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Table 3. 2: List of metabolic pathway proteins that were uniquely enriched during selection in identified active- and latent -TB immunoscreening. 

Pathway Rv Name Product Function 

Active-TB specific MPPs 

Amino acid 
biosynthesis 

Rv0013 trpG Anthranilate synthase, amidotransferase 
component  

Essential for the establishment, maintenance of infection and 
survival of M. tuberculosis (Zhang et al., 2013a), no human 
homolog. 

Rv2537c aroD 3-dehydroquinate dehydratase II  Required for protein synthesis 

Carbohydrates 
Metabolism 

Rv1563c treY maltooligosyl trehalose synthase  

Key component of a variety of glycolipids required for 
growth and virulence of M. tuberculosis (De Smet et al., 
2000, Murphy et al., 2005, Kalscheuer et al., 2014), no 
human homolog. 

Rv3264c manB D-alpha-D-mannose-1-phosphate 
guanylyltransferase    

Lipid 
Metabolism 

Rv1130 metE/ 
prpD 

5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase  

Expressed during infection (Savvi et al., 2008) and required 
for intracellular survival (Mattow et al., 2006). 

Rv2252   diacylglycerol kinase    

Cell wall 
biosynthesis 

Rv3330 dacB1 D-alanyl-D-alanine carboxypeptidase 
penicillin-binding protein 5/6 

Control of cell elongation and septum development via the 
regulation of the peptidoglycan cross-linking (Sauvage et al., 
2008, Prigozhin et al., 2014). 

Rv3423c alr Alanine racemase  No human homolog, necessary precursor for peptidoglycan 
biosynthesis (Strych et al., 2001).   

Rv3793 embC Integral membrane indolylacetylinositol 
arabinosyltransferase EmbC  

Required for anti-TB drug ethambutol resistance, essential 
for growth and intracellular survival (Sassetti et al., 2003b, 
Kieser et al., 2014). 

other 
metabolic 
associated  

Rv1876 bfrA Bacterioferritin  
Required for efficient utilization of stored iron under low iron 
conditions (Reddy et al., 2012, Khare et al., 2017), no human 
homolog. 
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Pathway Rv Name Product Function 
Rv2070c CobK   Involved in cobalamin (vitamin B12) biosynthesis  

Rv3834c serS Seryl-tRNA synthetase  Essential gene involved in translation mechanism (Sassetti et 
al., 2003a, Griffin et al., 2011). 

Rv0509  HemA     
Rv1393c  - monoxygenase   

Latent-TB specific MPPs 

Alternative 
energy 

metabolism 

Rv1161 narG Respiratory nitrate reductase alpha chain  

Associated with virulence and supports anaerobic growth on 
glycerol (Weber et al., 2000, Huang et al., 2015) and up-
regulated in the present of nitrate during dormant stage (Iona 
et al., 2016).  

Rv3273 MtCA3 Na(+)-dependent bicarbonate transporter 
BicA / Carbonic anhydrase, beta class  

Involved in utilization of alternative carbon sources such as 
carbon dioxide or carbonic acid in the absence of primary 
carbon sources (Nishimoria et al., 2010). 

cofactor and 
coenzyme 

biosynthesis  

Rv3119 MoaE1     

Rv3324c MoaC3    
Essential for the catalytic activity of key enzymes involved in 
metabolism of carbon, nitrogen and sulphur (Srivastava et al., 
2016).  

Rv3601c PanD     Essential for virulence (Sambandamurthy et al., 2002).  

Lipid 
Metabolism 

Rv0222 echA1 Enoyl-CoA hydratase    
Rv0769   3-oxoacyl-[acyl-carrier protein] reductase    
Rv1141c echA11 Enoyl-CoA hydratase    
Rv1142c echA10 Enoyl-CoA hydratase    
Rv2249c glpD1 Glycerol-3-phosphate dehydrogenase    
Rv2277c   Glycerophosphoryl diester phosphodiesterase  Required for in vivo growth (Sassetti et al., 2003b). 

Rv3229c desA3 linoleoyl-CoA desaturase; stearoyl-CoA 9-
desaturase  Required for in vivo growth (Sassetti et al., 2003b).  
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Pathway Rv Name Product Function 

Rv3280 accD5 Propionyl-CoA carboxylase beta chain  Key enzyme in the catabolic pathway of odd-chain fatty acids 
and essential for growth (Griffin et al., 2011).  

Rv3506 fadD17 Long-chain fatty-acid-CoA ligase, 
Mycobacterial subgroup FadD17   

Cell wall 
biosynthesis 

Rv0050 ponA1 Pyrroline-5-carboxylate reductase  Expressed during intracellular growth (Talaat et al., 2004) 
and are involved in stationary-phase survival under non-
replicating conditions (Rengarajan et al., 2005).  Rv3682 ponA2 Multimodular transpeptidase-

transglycosylase  

Rv1884c rpfC Resuscitation-promoting factor RpfC Promote the resuscitation and growth of dormant, non-
growing cell (Iona et al., 2016). 

Other 
metabolism 
associated 

Rv1547 dnaE DNA polymerase III alpha subunit    

Rv3248c sahH Adenosylhomocysteinase  
Involved in regulation of the intracellular concentration of 
adenosylhomocysteine and it is essential for bacterial growth 
(Cole et al., 1998, Sassetti et al., 2003a).  

Rv3309c upp Uracil phosphoribosyltransferase    

Rv3310 sapM Acid phosphatase  Block phagosome-lysosome fusion, required intracellular 
survival (Puri et al., 2013).  
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3.4.6 Pathways Enriched in ATB 

3.4.6.1 Amino acid biosynthesis  

Two pathways, the amino acid biosynthesis and carbohydrate metabolism, were unique to 

ATB. Two amino acid biosynthesis enzymes identified included TrpG (Rv0013) and AroD 

(Rv2537c). Anthranilate synthase (TrpG) catalyses the biosynthesis of tryptophan which is 

essential for the establishment, maintenance of infection and survival of M. 

tuberculosis (Zhang et al., 2013a). The tryptophan biosynthesis pathway is conserved in 

mycobacterial species, while absent in humans (Zhang et al., 2013a). Thus, TrpG is an ideal 

anti-TB drug target (Bashiri et al., 2015) and being a secreted protein, makes it an ideal TB 

diagnostic biomarker. The 3-dehydroquinase (AroD) catalyses the biosynthesis of aromatic 

amino acids such as tyrosine, tryptophan and phenylalanine (Parish et al., 2002). Consequently, 

the co-selection of TrpG and AroD in the present study is indicative of actively growing M. 

tuberculosis that synthesizes precursors such as tryptophan and other aromatic amino acids that 

are required for protein synthesis. Interestingly, in the selected LTBI gene list no amino acid 

biosynthesis pathway associated proteins were identified. This is consistent with the report that 

the synthesis of certain M. tuberculosis proteins is reduced by more than 90% in order to 

shutdown most of the metabolic activities during dormancy (Hu et al., 1998). This was 

supported by the down-regulation of tryptophan and methionine biosynthesis pathways during 

dormancy (Gopinath et al., 2015).  

 

3.4.6.2 Carbohydrate metabolism 

Two carbohydrate metabolism enzymes, ManB (Rv3264c) and TreY (Rv1563c) essential for 

growth (Sassetti et al., 2003a) were identified from the ATB list. Of these, TreY (malto-

oligosyltrehalose synthase) is involved in starch and sucrose metabolism, specifically, 
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trehalose biosynthesis. Trehalose, a disaccharide, is a key component of a variety of glycolipids 

required for growth and virulence of M. tuberculosis (De Smet et al., 2000, Murphy et al., 

2005, Kalscheuer et al., 2014). Interestingly, trehalose is absent in mammals but produced by 

bacteria, plants, fungi and insects (De Smet et al., 2000). The trehalose biosynthesis pathway 

enzymes, products and by-products are abundantly available during the chronic TB disease 

stage (Korte et al., 2016), therefore, can serve as ATB diagnostic biomarkers.  

 

3.4.6.3 Iron metabolism  

Bacterioferritin A (BfrA; Rv1876), another ATB associated metabolic enzyme, is one of two 

iron storage proteins (BfrA and BfrB) encoded by the M. tuberculosis genome and is unique to 

bacteria (Reddy et al., 2012, Khare et al., 2017). BfrA is required for efficient utilization of 

stored iron under low iron conditions while BfrB (Rv3841) is required for storage of iron under 

iron excessive conditions and has been associated with the dormant phase (LTB) (Khare et al., 

2017). Since BfrA has no human homolog it may be a good ATB biomarker candidate.  

 

3.4.7 Pathways Enriched in LTBI 

3.4.7.1 Alternative energy metabolism 

The NarG (Rv1161) and MtCA3 (Rv3273) enzymes involved in alternative energy metabolism 

were identified in the LTBI list. Nitrate reductase (NarG), is a nitrogen metabolism enzyme, 

that catalyses the consumption of nitrate in M. tuberculosis. This enzyme belongs to the 

narGHJI operon that is associated with virulence and supports anaerobic growth on glycerol 

(Weber et al., 2000, Huang et al., 2015). NarG is dependent on molybdopterin cofactor to 

perform its function, is conserved in mycobacteria (Williams et al., 2011) and up-regulated in 

the presence of nitrate during the dormant stage (Iona et al., 2016). Therefore, since NarG is 
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associated with LTBI, further investigations are required to determine potential application as 

drug target or diagnostic biomarker. 

The M. tuberculosis genome contains at least three beta-class carbonic anhydrases, MtCA1 

(Rv1284), MtCA2 (Rv3588c) and MtCA3 (Rv3273) (Ceruso et al., 2014). The carbonic 

anhydrases are involved in utilization of alternative carbon sources such as carbon dioxide or 

carbonic acid in the absence of primary carbon sources (Nishimoria et al., 2010). In this study, 

we identified the transmembrane MtCA3 reportedly associated with pathogenesis and is a TB 

drug target (Cau et al., 2016). 

 

3.4.7.2 Cofactor and coenzyme biosynthesis 

The LTBI cofactor biosynthesis enzymes involved in the molybdopterin biosynthesis pathway 

include the molybdenum cofactor biosynthesis protein C (MoaC3) and molybdenum cofactor 

biosynthesis protein E (MoaE1), as well as aspartate alpha-decarboxylase (PanD) involved in 

the biosynthesis of the coenzyme, pantothenate. Molybdopterin cofactor is essential for the 

catalytic activity of key enzymes involved in metabolism of carbon, nitrogen and sulphur 

(Srivastava et al., 2016).  

 

3.4.8 Comparable Cell Wall Biosynthesis Pathway 

Peptidoglycan, the key component of M. tuberculosis cell wall, is made up of glycan chains 

and determines the bacterium cell shape. Glycan chains consist of two different sugars that are 

cross-linked via short peptide side chains. Peptidoglycan polymerization is mediated by 

enzymes such as bifunctional penicillin-binding proteins that can both polymerize glycan 

strands and cross-link peptides (Kieser et al., 2014).  
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Amongst the ATB list, two enzymes associated with peptidoglycan synthesis, the penicillin-

binding protein DacB1 (Rv3330) and the alanine racemase, Alr (Rv3423c), were identified. 

The eleven penicillin-binding proteins (PBPs) encoded by the M. tuberculosis genome can be 

divided into class A, B and C (Sauvage et al., 2008). The membrane associated DacB1 (D-

alanyl-D-alanine carboxypeptidase) is a member of class C penicillin-binding proteins that is 

required for the control of cell elongation and septum development via the regulation of the 

peptidoglycan cross-linking (Sauvage et al., 2008, Prigozhin et al., 2014). Alr is involved in 

peptidoglycan cross-linking through conversion of L-alanine to D-alanine which is a necessary 

precursor for peptidoglycan biosynthesis (Strych et al., 2001). Interestingly, DacB1 is known 

to be expressed by actively growing bacteria (Simpson et al., 1994), while there is no known 

Alr homolog in humans making both proteins the potential ATB biomarkers for design of new 

drugs, vaccines or diagnostic assays.  

The LTBI cell wall biosynthesis protein list included EmbC (Rv3793) and 2 bifunctional 

penicillin-binding protein enzymes, PonA1 (Rv0050) and PonA2 (Rv3682). Both PonA1 and 

PonA2 belong to class A penicillin-binding proteins (Sauvage et al., 2008) and are involved in 

cell wall formation by synthesis of cross-linked peptidoglycan from the lipid intermediates 

(Kieser et al., 2015). The ponA1 and ponA2 genes are reportedly expressed in vivo (Talaat et 

al., 2004) and are involved in stationary-phase survival under non-replicating conditions 

(Rengarajan et al., 2005). Both PonA1 and PonA2 may well be involved in inhibition of 

resuscitation protein factors (Hett et al., 2010). This inhibition is achieved by the reported 

increased expression of PonA1 during the dormant stage (Saxena et al., 2008).  

In the present study, two resuscitation protein factors (Rpf), RpfB (found in both LTBI and 

ATB) and RpfC (in LTBI only) were identified. The M. tuberculosis genome encodes five Rpfs 

(A, B, C, D and E) and their function is to promote the resuscitation and growth of dormant 

cells (Iona et al., 2016). The selection of RpfB and RpfC suggests a possible attempt to 
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stimulate growth of dormant M. tuberculosis cells, possibly triggered by host environmental 

factors. The selection of RpfB by both LTBI and ATB sera could be due to sero-conversion 

from LTBI to ATB state. Therefore, RpfB and RpfC are potential biomarkers for monitoring 

progress from LTBI to ATB in high risk groups such as HIV/AIDS patients. This will possibly 

permit initiation of TB treatment before the onset of clinical symptoms. 

 

3.4.9 Virulence, Essential and Drug Target Proteins 

Using PATRIC’s specialty protein dataset that includes virulence factors, drug targets, 

antibiotic resistance and essential proteins, 17 and 18 specific M. tuberculosis proteins unique 

to ATB and LTBI lists respectively, were identified. Five proteins (Rv1009, Rv1980c, 

Rv2152c, Rv1357c and Rv1886c) were common to "Active-TB", "Latent-TB" and "Specialty" 

lists. Two of five are immunogenic proteins Mpt64 (Rv1980c) and FbpB (Rv1886c) (Malen et 

al., 2008). The essential protein MurC (Rv2152c) is involved in the peptidoglycan biosynthesis 

pathway (Sassetti et al., 2003a, Griffin et al., 2011). The other 2 proteins are the resuscitation-

promoting factor RpfB (Rv1009) and the conserved hypothetical protein (Rv1357c).  

 

3.4.9.1 Virulence proteins 

Amongst the ATB speciality proteins were 11 virulence factors including BfrA and the cell 

surface protein PirG (Rv3810), both required for intracellular survival and replication (Klepp 

et al., 2009, Reddy et al., 2012); the amino acid permease (Rv1979c) that modulates the host 

immune response (Kozak et al., 2011); and the transcriptional regulator EspR (Rv3849), a key 

component of M. tuberculosis type VII secretion system (TSS7), ESX-1 system. EspR 

regulates the transcription of espACD-rv3613c-rv3612c operon required for ESX-1 system 

responsible for the secretion of 6-kDa early secreted antigen target (ESAT6) and 10-kDA 
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culture filtrate protein (CFP10) (Raghavan et al., 2008, Hunt et al., 2012). There were two 

PE/PPE family proteins, PE_PGRS33 (Rv1818c) that plays a role in adhesion to host cells 

(Delogu et al., 2004) and PPE54 (Rv3343c), the member of MPTR (major polymorphic tandem 

repeats) subfamily which affects the phagosome (Brodin et al., 2010). Lastly, the signal 

recognition particle receptor FtsY (Rv2921c) is required for bacterial cell division (Ligon et 

al., 2012).  

The LTBI specialty proteins included 12 virulence factors including NarG, RpfC, DesA3, 

SapM, PanD and PonA2 discussed in the previous section. Other virulence proteins comprised 

PPE5 (Rv0304c), HspR (Rv0353), Pks6 (Rv0405), MmpL10 (Rv1183), Rv1184c and 

Rv2277c. Polyketide synthase (Pks6), PPE5 and Rv2277c are reportedly expressed during 

initial lung infection (Kruh et al., 2010), and therefore, involved in establishment or invasion 

of the host by M. tuberculosis during infection. The transcriptional repressor (HspR) is required 

to minimize the host immune-surveillance that may result in efficient killing of the pathogen 

by suppressing the expression of heat-shock genes that encode the immunodominant heat-

shock proteins such as Hsp70 (Stewart et al., 2001). 

DesA3 (Rv3229c) is a membrane-bound stearoyl coenzyme A (CoA) desaturase that is 

involved in biosynthesis of oleic acid, an essential component of mycobacterial membrane 

phospholipids and triglycerides (Chang et al., 2006), therefore, it is required for in vivo growth 

(Sassetti et al., 2003a). 

 

3.4.9.2 Essential proteins 

Essential proteins of M. tuberculosis include those required for growth and survival during 

infection. Three ATB associated essential proteins, the TrpG, TopA (Rv3646c) and SerS were 

identified. TrpG and TopA are essential for the establishment, maintenance and survival of M. 

tuberculosis during infection (Zhang et al., 2013b, Tan et al., 2016). SerS is involved in the 
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translation mechanism and is, therefore, essential for growth (Sassetti et al., 2003a). The 2 LTB 

identified specific essential proteins included the ribosomal protein S11p RpsK (Rv3459c) and 

ribonuclease P protein component RnpA (Rv3923c). Interestingly, MmpL7 (Rv2942), an 

efflux pump conferring antibiotic resistance, was the only antibiotic resistance transmembrane 

transport protein (Forrellad et al., 2013) identified in this study. 

 

3.4.9.3 Drug targets 

Two potential drug targets identified within the ATB list included the AroD (Rv2537c) and Alr 

(Rv3423c). Drugs targeting these proteins will inhibit protein synthesis (Strych et al., 2001, 

Parish et al., 2002) resulting in bacterial death. The 3 LTBI specific prospective drug targets 

SahH (Rv3248c) and EmbC (Rv3793); and the peptide deformylase Def (Rv0429c) were 

reported to be essential for M. tuberculosis growth (Sassetti et al., 2003a, Griffin et al., 2011). 

 

3.5 CONCLUSION 

Phage display is one of the most powerful techniques used to identify proteins that bind to 

targets of interest.  In this study, we identified protein biomarkers recognized by active- and 

latent-TB patients’ antibodies.  These included 4 ATB specific biomarkers (TrpG, TreY, Alr 

and BfrA) that have no human homologs and are essential for pathogenesis, and 5 LTBI 

specific biomarkers (PonA1, PonA2, NarG, MoaE1 and HspR) associated with dormancy. The 

identification of disease state-specific biomarkers will contribute towards the development of 

diagnostic tools that can differentiate active- from latent-TB infection. Some of the biomarkers 

are potentially suitable for monitoring of disease progression from latent- to active-TB in high 

risk groups such as HIV/AIDS patients. Future studies should investigate the potential 
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application of the identified biomarkers in the development of new vaccines, drugs and 

diagnostic tools.  
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4.1 ABSTRACT 

Mycobacterium bovis bacille Calmette–Guérin (BCG) vaccine is widely used to provide 

immunity against Mycobacterium tuberculosis (Mtb) infection in new-borns and infants. 

However, BCG efficacy decreases in adolescents and also does not provide consistent 

immunity to the development of active TB upon exposure to Mtb in adults who are mostly 

affected by nearly all new Mtb infections. The present study aimed to identify and confirm 

Mtb-specific B-cell and T-cell epitopes with potential use in the design of a new multi-epitope 

peptide TB vaccine. Previously, we selected and identified 191 Mtb proteins recognized by TB 

patients’ humoral response. Using reverse vaccinology, 40 proteins were selected and ranked 

according to predicted subcellular localization, transmembrane domains, adhesive properties 

and antigenicity. B-cell epitopes were identified and major histocompatibility complex (MHC) 

class I and II epitopes were predicted. Five proteins (Rv1424c, Rv1884c, Rv1926c, Rv2376 

and Rv3036c) and two proteins (Rv1271c and Rv3803c) possessed epitopes with high binding 

affinity to MHC class I (CD8+ specific) and II (CD4+ specific) molecules, respectively.  Two 

epitopes RMPTGMPPK (Rv0361) and QLPPTDPRY (Rv3682) with binding affinity for non-

classical MHC class I HLA-E*01:01 and HLA-E*01:03 alleles were identified, respectively. 

The HLA-E epitopes demonstrated the highest population coverage (99.88%) among the 

world’s population, and therefore, are potential TB vaccine candidates since HLA-E alleles are 

not down-regulated by HIV co-infection. In conclusion, the B- and T-cells epitopes identified 

in this study represent potential candidates that may invoke both humoral and cellular immune 

responses. These findings will potentially accelerate and expedite the formulation of effective 

and cost-efficient multi-epitope peptide vaccines and diagnostic tests against Mtb infection. 

 

KEYWORDS: BCG vaccine, reverse vaccinology, T-cell epitope, multi-epitope vaccine 
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4.2 INTRODUCTION 

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), the leading 

cause of death from infectious diseases. In 2016, the World Health Organization (WHO) 

recorded approximately 1.7 million deaths and 6.3 million new cases of TB (WHO, 2017). The 

available treatment regimens have been rendered impotent by the emergence of deadly 

multidrug-resistant (MDR), extensively drug resistant (XDR), and totally drug resistant (TDR) 

strains of Mtb (Pillay et al., 2007, Klopper et al., 2013). The treatment of drug resistant TB 

pathogens requires a prolonged course of multiple antimicrobial agents, some of which have 

serious toxic side effects, leading to non-adherence in patients (WHO, 2017). Exposure of such 

cases to household contacts and health care personnel during this period results in increasing 

the pool of drug resistant strains. Thus, new and efficacious vaccines are urgently needed to 

prevent such infection. 

The globally used Mycobacterium bovis bacille Calmette–Guérin (BCG) vaccine, first 

introduced in 1921, is the only TB vaccine currently available (WHO, 2017). The BCG vaccine 

comprises an attenuated strain of Mycobacterium bovis, the causative agent of TB in cattle 

(Sakula, 1983). It is administered to over 90% of new-borns annually, to provide protection 

from Mtb infection in infants and young children, globally. However, BCG vaccine efficacy is 

reportedly between 50% and 80%, providing infants and children with protection for up to 10 

years, and is unsuitable for HIV-exposed infants (Colditz et al., 1995, Andersen et al., 2005, 

Kaufmann et al., 2017). Thus, there is a need for an improved vaccine for new-borns. The BCG 

efficacy decreases in adolescents and also does not provide consistent immunity to the 

development of active TB upon exposure to Mtb in adults (Orr et al., 2014). The development 

of an effective vaccine to prevent TB transmission in these groups will have enormous impact 

on curbing the epidemic. Since an ideal vaccine should be able to prevent the establishment or 

reactivation of Mtb infection (Boggiano et al., 2017), the development of novel TB vaccine 
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candidate biomarkers to fulfil this requirement is an imperative in the national and global 

context. In previous studies, the immunodominant antigens such as early secretory antigen 

target 6 (ESAT-6), culture filtrate protein 10 (CFP-10), and antigen 85 complex were 

investigated as vaccine candidate (Li et al., 2014). However, the immunodominant antigens 

are most likely used to elicit the host immune response that is beneficial to Mtb pathogen (Orr 

et al., 2014). Similar observation regarding use of these antigens as diagnostic biomarkers have 

yielded no results to date, thus the ongoing search for new biomarkers for vaccine and 

diagnostic application. Therefore, TB vaccine development investigators should not only focus 

on immunodominant proteins but must include the subdominant subsets which could illicit a 

protective immune response against Mtb (Orr et al., 2014). 

The identification of T-cell epitopes capable of producing both a humoral immune response 

and T-cell mediated immunity could lead to the design of an effective subunit polypeptide TB 

vaccine. The subunit vaccine can be composed of one or more immunogenic T-cell epitopes to 

improve vaccine efficacy and provide wider coverage of binding affinity to MHC class I and 

II molecules of individuals of different ethnicity globally. Therefore, the identification of 

potential epitopes with higher binding affinity for MHC’s is necessary to design peptide 

vaccines (Rashid et al., 2017). 

Currently, there are twelve candidate vaccines undergoing clinical trials (WHO, 2017). These 

can be classified into three categories based on their composition: (i) whole-cell or lysates of 

mycobacteria, (ii) viral vector vaccines, and (iii) adjuvanted recombinant protein vaccines. The 

whole-cell or lysates may consist of several thousand Mtb-specific antigens. The viral vector 

based vaccines and recombinant protein vaccines comprise up to four Mtb-specific antigens 

(Kaufmann et al., 2017).  

Since Mtb secretory proteins are targets of host humoral and cellular mediated immune 

responses, they represent potential vaccine candidates and immunodiagnostic targets 
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(Lyashchenko et al., 1998, Kunnath-Velayudhan et al., 2012). In our previous study, 191 

antigenic proteins recognized by latent-TB and active-TB patients’ humoral response were 

identified by immunoscreening of the Mtb phage secretome library against the serum samples 

(Chiliza et al., under review in Tuberculosis journal). In the present study, the 191 antigenic 

proteins (Mtb fragments) were evaluated for the design of a recombinant subunit polypeptide 

TB vaccine. This  was done using an in silico strategy combined with the verification of B-cell 

epitopes of 191 phage displayed Mtb proteins and by identifying B-cell epitope-derived T-cell 

epitopes binding with the MHC class I and II molecules.  

 

4.3 MATERIALS AND METHODS 

4.3.1 Antigenic Mtb Proteins 

In a previous study, blood samples were collected with informed consent from active-TB 

(n=20), latent-TB (n=15) patients and healthy tuberculin negative participants (n=20). The 

serum from active- and latent-TB patients was used to identify phage-displayed Mtb proteins 

recognized by patients’ antibodies (Chapter 3, Chiliza et al., submitted in Jan 2018). NCBI 

Gene IDs for 191 Mtb proteins were retrieved in UniProtKB for analysis using the Mtb H37Rv 

genome from the Vaxign program list as the reference. This study was approved by the 

University of KwaZulu-Natal Biomedical Research Ethics Committee (Ref. BE236/13). 

 

4.3.2 Extracellular Protein Preselection 

Vaxign (http://www.violinet.org/vaxign/index.php), the web-based pipeline, dedicated to 

vaccine design, was used to shortlist potential vaccine candidates based on their cellular 

localization, probability of possessing adhesin-like characteristics, and the number of 

http://www.violinet.org/vaxign/index.php
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transmembrane helices. The Vaxign integrated bioinformatics tools included PSORTb2.0, 

SPAAN and the HMMTOP used for subcellular localization;  and the hidden Markov model 

for the prediction of adhesin characteristics and  transmembrane helix topology, respectively 

(Gardy et al., 2004, Sachdeva et al., 2004, Käll et al., 2007). Extracellular proteins, outer 

membrane proteins, and proteins of unknown localization with an adhesin probability score 

>0.50 and either 1 or no transmembrane helices were pre-selected for further analysis.  

 

4.3.3 Protein Antigenicity 

VaxiJen v2.0, a server for the prediction of protective antigens, was used to predict the 

antigenicity of each protein (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html).  

The antigenic score was determined based on the physicochemical properties of proteins and 

those with a value ≥ 0.4 were selected (Doytchinova et al., 2007). 

 

4.3.4 Subcellular Localization Prediction 

Subcellular localization of selected proteins was predicted using SignalP 4.1 for Sec-dependent 

signal peptides whilst Tat-dependent signal peptides were predicted with TatP 1.0 (Bendtsen 

et al., 2005, Petersen et al., 2011). SecretomeP 2.0 was used for the prediction of non-classical 

secreted proteins (Bendtsen et al., 2005). All three programs were freely available from the 

Centre for Biological Sequence Analysis at the Technical University of Denmark 

(http://www.cbs.dtu.dk/services). The subcellular localization of all remaining proteins was 

predicted with TBPred (http://www.imtech.res.in/raghava/tbpred/) (Rashid et al., 2007). 

 

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.cbs.dtu.dk/services
http://www.imtech.res.in/raghava/tbpred/
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4.3.5 Verification of B-cell Epitopes  

The previously identified Mtb protein fragments of pre-selected vaccine candidates were 

analysed for B-cell epitopes. BCPreds software was used to analyse amino acid sequences 

(http://ailab.ist.psu.edu/bcpred/), using 2 different algorithms: the amino acid pair (AAP) 

antigenicity method (Chen et al., 2007) and string kernels method (EL‐Manzalawy et al., 

2008). Antigenic linear non-overlapping 20-mer epitopes were predicted from the whole 

protein sequence, and B-cell epitopes of each preselected protein with a score >0.8 were further 

characterized.  

4.3.6 T-Cell Epitope Prediction 

T-cell epitopes were predicted from the selected B-cell epitopes. T-cell Epitope Prediction 

Tools (TepiTool) from Immune Epitope Database and Analysis Resource (IEDB) 

(http://tools.iedb.org/tepitool/) were used for the prediction of affinity for MHC class I and 

MHC class II alleles (Paul et al., 2016).  

T-cell epitopes binding to MHC class I alleles were predicted using the SMM (Peters et al., 

2005) and NetMHCpan  (Nielsen et al., 2007, Hoof et al., 2009) methods. The binding affinity 

of 9-mer and 10-mer epitope peptides to the 27 most common human MHC class I HLA-A and 

HLA-B alleles was determined. Peptides binding to most alleles with percentile ranks below 

1% and/or half-maximal inhibitory concentration (IC50) of ≤250 were selected.  

The MHC II binding was predicted using the Consensus method which employs SMM_align, 

NN_align, Combinatorial library, Sturniolo methods (Wang et al., 2008, Wang et al., 2010) 

and NetMHCIIpan (Nielsen et al., 2008, Karosiene et al., 2013). IEDB recommended settings 

were applied and 15mer peptides with 10 amino acid residue overlaps were selected if their 

percentile score was below 20% and binding of two-third (8/15) of HLA-DR allele species was 

demonstrated. 

http://ailab.ist.psu.edu/bcpred/
http://tools.iedb.org/tepitool/
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4.3.7 Population Coverage Prediction  

The percentage of individuals within the global population responding to predicted T-cell 

epitopes was estimated using the IEDB population coverage calculation tool 

(http://tools.iedb.org/tools/population/iedb_input) (Bui et al., 2006). HLA-DRB3*02:02, 

HLA-DRB3*01:01, HLA-DRB4*01:01, HLA-DRB5*01:01 alleles were excluded by the 

IEDB population coverage server during calculation. The combined score for MHC classes I 

and II was assessed for the analysis of the population coverage. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Protein Preselection 

M. tuberculosis surface membrane, and membrane anchored and secreted proteins (secretome), 

are known to be involved in virulence and participate in host-pathogen interaction (Barh et al., 

2010). TB patients produce antigen-specific antibodies in response to the antigenic Mtb 

secretome.  These antibodies specifically recognise the B-cell epitopes on the antigens. In our 

previous study, an in vitro based approach was used to select immunogenic phage displayed 

Mtb F15/LAM4/KZN secretome fragments recognized by latent- and active-TB patients’ sera 

antibodies. The identified fragments encoded 191 open reading frames which were investigated 

in the present study for their potential application in TB vaccine design.  

Forty-four of the 191 proteins were shortlisted as potential vaccine antigens according to the 

following criteria: localization (includes proteins with unknown localization), adhesion 

features, and number of transmembrane helices (Table 4.1). The 22 proteins with an adhesion 

score of ≥0.5, included 12 extracellular proteins and 10 proteins with unknown localization. 

The other 22 proteins were of unknown localization.  

All 44 proteins were further analysed to determine their cellular localization. SignalP 4.1 server 

identified 27 secreted proteins with signal peptides for secretion. An additional 6 proteins that 

http://tools.iedb.org/tools/population/iedb_input
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are possibly secreted via the alternative non-classical pathway were confirmed as extracellular 

proteins by SecretomeP. TBPred was used to confirm the localization of 11 proteins; 6 are 

membrane anchored, 3 are integral membrane proteins, and 2 are secreted proteins (Table 4.1).   

 

4.4.2 Protein Selection According To Antigenicity 

The antigenicity scores predicted by VaxiJen v2.0 server (Doytchinova et al., 2007) for the 44 

proteins ranged from 0.3289 to 2.4465 with 40 candidates displaying a score ≥ 0.4. Only 4 

proteins (Rv0680c, Rv2429, Rv3054c and Rv3265c) with an antigenicity score below 0.4, were 

excluded (Table 4.1). The data on 40 identified candidate vaccines listed in Table 4.1 makes a 

compelling case for their consideration in the design of new protective TB vaccines. 

Highly ranked antigenic proteins included the polymorphic GC-rich-repetitive sequence 

(PGRS) subfamily proteins of the PE (Proline and Glutamic acid rich) family, PE_PGRS17 

(Rv0978c), PE_PGRS25 (Rv1396c), PE_PGRS27 (Rv1450c) and PE_PGRS50 (Rv3345c) 

with antigenicity scores of 2.4465, 2.3904, 2.2197 and 0.8921, respectively. None of these 

antigenic proteins had been previously identified among the 16 PE_PGRS proteins reported as 

potential candidate vaccines with antigenicity scores ranging from 0.6034 to 3.4881 

(Monterrubio-Lopez et al., 2015). PE_PGRS17 is known to elicit a strong B-cell humoral 

response during different clinical stages of both adult and paediatric TB patients (Narayana et 

al., 2007). This protein also triggers the innate immune response via activation of dendritic 

cells, resulting in CD4+ T-cells stimulation and hence, regulation of the progression of TB 

disease (Bansal et al., 2010). The other highly antigenic proteins included Apa (Rv1860), 

MPT53 (Rv2878c), MPT63 (Rv1926c), MPT64 (Rv1980c), FbpB (Rv1886c) and FbpD 

(Rv3803c). MPT32, an alanine and proline-rich protein (Apa) binds to host macrophages 

during infection (Romain et al., 1999) and elicits a B-cell humoral response and stimulates 



114 | P a g e  

 

both CD4+ and CD8+ T-cell protective immunity against TB (Kumar et al., 2003). MPT63 and 

MPT64 are extracellular proteins that reportedly provide protective immunity (Horwitz et al., 

1995, Zvi et al., 2008). The FbpB and FbpD that also function as adhesins are responsible for 

the attachment of Mtb to host cells including macrophages (Puech et al., 2002, Wilson et al., 

2004).  The resuscitation-promoting factors [RpfB (Rv1009) and RpfC (Rv1884c)] are highly 

immunogenic, triggering a B-cell response and elicits T-cell protective immunity against TB 

(Yeremeev et al., 2003, Romano et al., 2012). The protein with the lowest antigenicity of 

0.4045 was identified as the conserved immunogenic secretory protein TB22.2 (Rv3036c).  
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Table 4. 1: List of proteins meeting selection criteria of potential candidate vaccines. Proteins were ranked and selected based on antigenicity score of ≥0.4. 

Locus 
Tag 

Gene 
Symbol Protein Note Localization Probability 

Adhesin 
Probability 

Trans-membrane 
helices Antigenicity 

Rv1450c PE_PGRS27 PE-PGRS family protein  Extracellular 0.797 0.731 0 2.4465 

Rv3345c PE_PGRS50 PE-PGRS family protein  Extracellular 0.797 0.718 0 2.3904 

Rv1396c PE_PGRS25 PE-PGRS family protein  Unknown 0.646 0.711 0 2.2197 

Rv0978c PE_PGRS17 PE-PGRS family protein  Unknown 0.646 0.612 0 0.8921 

Rv0361 Rv0361 Probable conserved membrane protein Unknown 0.25 0.224 1 0.7237 

Rv3333c Rv3333c Hypothetical Proline rich protein  Unknown 0.333 0.536 0 0.6905 

Rv1813c Rv1813c Hypothetical protein Rv1813c  Unknown 0.333 0.287 1 0.6637 

Rv1435c Rv1435c 
Probable conserved Proline, Glycine, 
Valine-rich secreted protein  Unknown 0.333 0.241 0 0.6481 

Rv1910c Rv1910c Probable exported protein Unknown 0.25 0.624 1 0.6481 

Rv1926c mpt63 Immunogenic protein MPT63  Extracellular 1 0.506 1 0.6419 

Rv1271c Rv1271c Hypothetical conserved secreted protein  Unknown 0.333 0.714 1 0.6324 

Rv3212 Rv3212 
Hypothetical conserved Alanine, Valine 
rich protein Unknown 0.333 0.319 1 0.6303 

Rv1886c fbpB Secreted antigen 85-B FbpB (Ag85B) Extracellular 1 0.618 1 0.5926 

Rv1980c mpt64 Immunogenic protein MPT64  Extracellular 1 0.635 1 0.5856 

Rv2878c mpt53 
Soluble secreted antigen MPT53 
precursor  Extracellular 1 0.604 1 0.5816 
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Locus 
Tag 

Gene 
Symbol Protein Note Localization Probability 

Adhesin 
Probability 

Trans-membrane 
helices Antigenicity 

Rv1804c Rv1804c Hypothetical protein Rv1804c  Unknown 0.25 0.338 0 0.5750 

Rv3682 ponA2 
Bifunctional membrane-associated 
penicillin-binding protein PonA2  Extracellular 0.972 0.495 1 0.5648 

Rv2499c Rv2499c 
Posible oxidase regulatory-related 
protein Unknown 0.25 0.321 0 0.5586 

Rv1269c Rv1269c Conserved probable secreted protein Extracellular 0.913 0.614 0 0.5539 

Rv3256c Rv3256c Hypothetical protein Rv3256c  Unknown 0.25 0.147 0 0.5514 

Rv1424c Rv1424c Possible membrane protein Unknown 0.25 0.234 0 0.5438 

Rv3218 Rv3218 Hypothetical protein Rv3218  Unknown 0.25 0.264 0 0.5404 

Rv1860 apa 
Alanine and Proline rich secreted protein 
Apa Extracellular 1 0.564 1 0.5244 

Rv1291c Rv1291c Hypothetical conserved secreted protein Unknown 0.333 0.719 1 0.518 

Rv1009 rpfB Resuscitation-promoting factor RpfB  Unknown 0.25 0.253 1 0.5117 

Rv2376c cfp2 Low molecular weight antigen Cfp2  Extracellular 1 0.619 1 0.5109 

Rv1268c Rv1268c Hypothetical protein Rv1268c  Unknown 0.333 0.396 1 0.5014 

Rv0179c lprO Possible lipoprotein LprO  Unknown 0.25 0.547 1 0.4921 

Rv3896c Rv3896c Hypothetical protein Rv3896c  Unknown 0.25 0.298 0 0.4798 

Rv2944 Rv2944 IS1533 transposase  Unknown 0.25 0.245 0 0.4687 

Rv1884c rpfC Resuscitation-promoting factor RpfC  Unknown 0.25 0.388 0 0.4657 

Rv3572 Rv3572 Hypothetical protein Rv3572  Unknown 0.333 0.646 0 0.4650 
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Locus 
Tag 

Gene 
Symbol Protein Note Localization Probability 

Adhesin 
Probability 

Trans-membrane 
helices Antigenicity 

Rv1810 Rv1810 Hypothetical protein Rv1810  Unknown 0.333 0.442 1 0.4634 

Rv3922c Rv3922c Hypothetical protein Rv3922c  Unknown 0.25 0.199 0 0.4505 

Rv3803c fbpD 
Secreted MPT51/MPB51 antigen 
protein FbpD (Ag85C) Extracellular 1 0.560 1 0.4504 

Rv0559c Rv0559c Possible conserved secreted protein Unknown 0.333 0.599 0 0.4490 

Rv1984c cfp21 Probable cutinanse precursor Cfp21  Unknown 0.333 0.626 0 0.4470 

Rv3395A Rv3395A Probable membrane protein Unknown 0.25 0.379 2 0.4469 

Rv1329c dinG Probable ATP-dependent helicase DinG  Unknown 0.25 0.170 0 0.4427 

Rv3036c TB22.2 
Probable conserved secreted protein 
TB22.2  Extracellular 0.973 0.665 0 0.4045 

Rv3265c wbbL1 
Probable dTDP-RHA:A-D-GlcNAc-
diphosphoryl polyprenol  Unknown 0.25 0.166 0 0.3626 

Rv3054c Rv3054c Hypothetical protein Rv3054c  Unknown 0.25 0.222 0 0.3501 

Rv2429 ahpD 
Alkyl hydroperoxide reductase D 
protein AHPD Unknown 0.25 0.441 0 0.3289 

Rv0680c Rv0680c 
Probable conserved transmembrane 
protein Unknown 0.333 0.386 2 0.3421 
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4.4.3 Validation of B-cell Epitopes  

The first step in vaccine design has been reported to be the identification of B-cell epitopes 

(Barh et al., 2010).  Therefore, the complete sequences of 40 proteins were assessed in terms 

of B-cell epitopes using BCPreds and AAP algorithms. An alternative, ABCPred program 

(http://www.imtech.res.in/raghava/abcpred/) was used for B-cell epitope prediction of 8 

proteins (Rv1271c, Rv1291c, Rv1329c, Rv1396c, Rv1435c, Rv1813c, Rv2499c and 

Rv3345c). Of the original phage displayed Mtb secretome peptides recognized by the B-cell 

humoral response of TB patients, a total of 97 B-cell epitopes (Appendix A, Table S4.1) was 

confirmed. This validated the in vitro approach that we previously used to identify Mtb antigens 

recognized by TB patients’ antibodies. The length of the epitopes was 15 and 20 amino acids 

for ABCPred and BCPreds program, respectively. 

Generally, the antibody response during TB has been directed against extracellular and 

membrane-associated antigens (Kunnath-Velayudhan et al., 2010). Antibodies targeting 

membrane associated antigens have been suggested to enhance the protective immunity against 

TB (Achkar et al., 2014). Since antibodies can bind Mtb antigens at the site of infection, they 

may inhibit cell adhesion if directed against B-cell epitopes of surface-exposed antigens. This 

will prevent entry of mycobacteria into host cells and limit the dissemination of Mtb during 

reinfection of host cells (Jacobs et al., 2016). Surface-binding antibodies are able to trigger 

killing by opsono-phagocytosis, therefore, the identified B-cell epitopes may induce antibodies 

that are able to opsonize mycobacteria and initiate complement-mediated lysis and uptake into 

neutrophils for destruction (Plotkin et al., 2008). 

http://www.imtech.res.in/raghava/abcpred/
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4.4.4 B-cell Epitope Derived T-cell Epitopes 

4.4.4.1 Classical MHC class I and II epitopes 

Previous studies have shown that vaccines that induce both antibody and cellular responses are 

able to elicit protection that is superior to live BCG (Prados-Rosales et al., 2014). Therefore, a 

good vaccine candidate should produce both the B-cell and T-cell mediated immunity for 

immune protection against Mtb infection (Kaufmann et al., 2017). In order to identify T-cell 

epitopes, each B-cell epitope was analysed for the identification of T-cell epitopes within the 

B-cell epitope sequence. The MHC molecules that recognize T-cell epitopes are termed human 

leukocyte antigen (HLA) alleles and are the most polymorphic molecules in humans (Bui et 

al., 2006). They are classified into MHC class I (specific to CD8+ T-cells) and MHC class II 

(specific to CD4+ T-cells) (Guermonprez et al., 2002). MHC class I molecules are divided into 

classical and non-classical alleles. The classical MHC class I molecules consists of HLA-A, 

HLA-B, and HLA-C which are highly polymorphic and their function is to present allele-

specific host or pathogen peptides to Cytotoxic T-cells (CD8+) (Kraemer et al., 2015). The 

non-classical MHC class I molecules consists of HLA-E, HLA-H, HLA-G and HLA-F (Carlini 

et al., 2016). The specificity and diversity of HLA alleles is essential to stimulate effective 

cellular immune responses (Germain, 1994). Therefore, identification of peptides (T-cell 

epitopes) that bind to more than one HLA allele on both classes could lead to the discovery of 

promiscuous T-cell epitopes that can provide protective immunity to a large proportion of 

human population.   

In the current study, IEDB analysis predicted both classical MHC class I and MHC class II 

restricted alleles on the basis of the percentile score and IC50 value, respectively. For the first 

level screening, common alleles across global populations (default setting of 27 MHC class I 

and 26 MHC class II) were used to identify T-cell epitopes recognized by most alleles.  Of 

these, 8 classical MHC class I and 18 MHC class II T-cell epitopes that interacted with at least 
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8 and 10 alleles, respectively (Table 4.2) were selected. Two B-cell epitope peptides 

QQEMAAAVAHAFETGE (Rv1329c) and IVTSNKAFGRWGEVFGGDDV (Rv2944) were 

predicted to possess the highest binding affinity for 13 and 12 class I alleles, respectively. 

Figure 4.1 summarizes the approach used to identify and select T-cell epitopes from 191 

antigenic Mtb proteins.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 1: Vaccinomics workflow approach applied to the 191 pre-selected M. tuberculosis antigenic 

protein fragments to select novel vaccine candidates. The process starts with Vaxign/VaxiJen selecting 

40 vaccine candidate proteins. These candidates were analyzed for B-cell (BCPreds) and T-cell 

(NetMHC) epitopes. At the end, MHC I and II epitopes recognized by most HLA alleles were chosen 

as potential vaccine antigens. (All bioinformatics tools used are detailed in methods section). 



121 | P a g e  

 

Table 4. 2: List of MHC Class I and II epitopes with high scoring restricted alleles. 

Rv  Description Epitope  Allele 

MHC Class I 

Rv1329c Probable ATP-dependent helicase DinG QQEMAAAVAHAFETGE 
HLA-A*02:03, HLA-A*23:01, HLA-A*32:01, HLA-A*68:01, HLA-
A*68:02, HLA-B*07:02, HLA-B*15:01, HLA-B*35:01, HLA-B*40:01, 
HLA-B*44:03, HLA-B*53:01, HLA-B*57:01, HLA-B*58:01 

Rv1424c Possible membrane protein  RPPAEKLVFPVLLGILTLLL 
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*32:01, HLA-
A*68:02, HLA-B*07:02, HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, 
HLA-B*58:01 

Rv1884c Resuscitation-promoting factor (RpfC)  GNASATSGDMSSMTRIAKPL HLA-A*03:01, HLA-A*11:01, HLA-A*26:01, HLA-A*30:01, HLA-
A*31:01, HLA-A*68:01, HLA-B*08:01, HLA-B*15:01, HLA-B*35:01 

Rv1926c Immunogenic protein MPT63 
ATFAAPVALAAYPITGKLGS 

HLA-A*02:03, HLA-A*02:06, HLA-A*03:01, HLA-A*11:01, HLA-
A*30:02, HLA-A*32:01, HLA-A*68:01, HLA-A*68:02, HLA-B*15:01, 
HLA-B*35:01 

TMTDTVGQVVLGWKVSDLKS HLA-A*01:01, HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-
A*68:02, HLA-B*53:01, HLA-B*57:01, HLA-B*58:01 

Rv2376c Low molecular weight antigen CFP2 AGGPVVYQMQPVVFGAPLPL 
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*23:01, HLA-
A*24:02, HLA-A*30:02, HLA-A*32:01, HLA-B*07:02, HLA-B*15:01, 
HLA-B*35:01 

Rv2944 IS1533 transposase  IVTSNKAFGRWGEVFGGDDV 
HLA-A*02:03, HLA-A*02:06, HLA-A*11:01, HLA-A*23:01, HLA-
A*24:02, HLA-A*30:01, HLA-A*31:01, HLA-A*33:01, HLA-A*68:01, 
HLA-B*40:01, HLA-B*57:01, HLA-B*58:01 

Rv3036c Conserved secreted protein TB22.2  HVHASGPKYMLDMTFPVDYP 
HLA-A*02:01, HLA-A*02:03, HLA-A*02:06, HLA-A*23:01, HLA-
A*26:01, HLA-A*30:02, HLA-A*31:01, HLA-A*32:01, HLA-A*68:02, 
HLA-B*15:01, HLA-B*35:01 

MHC Class II 

Rv   Epitope  Allele 
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Rv  Description Epitope  Allele 

Rv0978c PE-PGRS family protein PE_PGRS17 RIGSAINTANTAAAA 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*13:02, HLA-DRB3*01:01 

Rv1271c Conserved hypothetical secreted protein KDEAFIAQMESIGVT 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-
DRB1*15:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01 

Rv1291c Conserved hypothetical secreted protein FTRRFAASMVGTTLT 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-DRB5*01:01 

Rv1329c Probable ATP-dependent helicase DinG ESVSMSVPELLAIAV 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*13:02, 
HLA-DRB1*15:01, HLA-DRB3*02:02, HLA-DRB4*01:01, HLA-
DRB5*01:01 

Rv1396c PE-PGRS family protein PE_PGRS25 

IPTGFRGTVMSFLFA 
HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-
DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, 
HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB5*01:01 

SFLFAQPEMLGAAAT 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-
DRB3*02:02, HLA-DRB4*01:01, HLA-DRB5*01:01 

Rv1424c Possible membrane protein  KLVFPVLLGILTLLL 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*08:02, HLA-DRB1*11:01, HLA-DRB1*12:01, 
HLA-DRB1*15:01, HLA-DRB4*01:01, HLA-DRB5*01:01 

Rv1804c Conserved protein  LMIGLAVPAHAGPSG 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, 
HLA-DRB1*12:01, HLA-DRB1*15:01, HLA-DRB5*01:01 

Rv1813c Conserved hypothetical protein  GLGILLVPTVDAHLA 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-
DRB1*15:01, HLA-DRB4*01:01, HLA-DRB5*01:01 
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Rv  Description Epitope  Allele 

Rv1926c Immunogenic protein MPT63  ATFAAPVALAAYPIT 

HLA-DRB1*01:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-
DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, 
HLA-DRB1*12:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-
DRB5*01:01 

Rv1984c Probable cutinase precursor CFP21  IVGVVVATTLALVSA 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-
DRB1*15:01, HLA-DRB4*01:01, HLA-DRB5*01:01 

Rv2376c Low molecular weight antigen CFP2  AGGPVVYQMQPVVFG 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-
DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, 
HLA-DRB5*01:01 

Rv2878c Secreted antigen MPT53 precursor  FCNAEAPSLSQVAAA 

HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, 
HLA-DRB1*11:01, HLA-DRB1*13:02, HLA-DRB4*01:01, HLA-
DRB5*01:01 

Rv3036c Conserved secreted protein TB22.2  GPKYMLDMTFPVDYP 

HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-
DRB1*07:01, HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*12:01, 
HLA-DRB1*13:02, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-
DRB3*02:02, HLA-DRB5*01:01 

Rv3212 Conserved alanine valine rich protein  WTSDARATISRPAAV 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, 
HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-DRB3*01:01 

Rv3218 Conserved protein  

VLIVNPTATATTPAG 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*12:01, 
HLA-DRB1*13:02, HLA-DRB3*02:02, HLA-DRB5*01:01 

GTTPVRPVPAVAVVP 
HLA-DRB1*01:01, HLA-DRB1*04:01, HLA-DRB1*07:01, HLA-
DRB1*08:02, HLA-DRB1*09:01, HLA-DRB1*11:01, HLA-DRB1*13:02, 
HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB5*01:01 

Rv3803c Secreted MPT51/MPB51 antigen  APYENLMVPSPSMGR 
HLA-DRB1*01:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*04:05, HLA-DRB1*08:02, HLA-DRB1*11:01, HLA-DRB1*12:01, 
HLA-DRB1*15:01, HLA-DRB3*02:02, HLA-DRB5*01:01 
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Five 15-mer peptides predicted to display high binding affinity for MHC class II alleles were 

identified as follows: AGGPVVYQMQPVVFG (15 alleles), KDEAFIAQMESIGVT (14 

alleles), SFLFAQPEMLGAAAT (13 alleles), GLGILLVPTVDAHLA (13 alleles) and 

IVGVVVATTLALVSA (13 alleles). Five T-cell epitope regions from 5 proteins, Rv1329c, 

Rv1424c, Rv1926c, Rv2376c and Rv3036c, were observed to overlap between MHC classes I 

and II alleles (Fig. 4.1 and Table 4.2). 

 

4.4.4.2 Non-classical MHC class 1 HLA-E epitopes 

The non-classical HLA-E play a key role in the modulation of both the innate and adaptive 

immune system. HLA-E is known to present only a small pool of peptides to Cytotoxic T-cells 

as antigen presentation is not its primary role (Felício et al., 2014). Of the 13 HLA-E alleles, 

only two, HLA-E*01:01 and HLA-E*01:03 contribute to the immune function, and are 

frequently found in worldwide populations (Felício et al., 2014).  

The present study investigated whether any of the 97 B-cell epitopes were recognized by HLA-

E*01:01 and/or HLA-E*01:03 for presentation to Cytotoxic T-cell. The rationale for this 

approach was that down-regulation of HLA-A and HLA-B molecules expression during HIV 

infection decreased the antigen presentation capabilities of classical MHC class I (Cohen et al., 

1999).  In addition, the decreased CD4+ cell counts result in impaired functioning of Mtb-

specific CD4+ T-cells (MHC class II) which are capable of containing bacterial replication 

(Riou et al., 2016). Interestingly, in contrast, HLA-E is resistant to HIV-mediated down-

regulation. Therefore, HLA-E dependent antigen presentation is not affected or down-regulated 

by HIV-infection (Cohen et al., 1999). Thus, targeting Mtb-specific HLA-E restricted immunity 

by vaccination may be a novel and advantageous approach, especially, in high HIV endemic 

countries like South Africa.  
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Table 4. 3: List of identified HLA-E*01:01 and *01:03 binding 9-mer peptide epitopes. 

Allele Rv Description Peptide 
Percentile 

rank Antigenicity 
HLA-E*01:01 Rv0361 Conserved membrane protein TTPPRMPTG 0.15 -0.1113 

HLA-E*01:01 Rv1291c Conserved hypothetical 
secreted protein TLTAATLGL 0.15 0.6772 

HLA-E*01:01 Rv0361 Conserved membrane protein RMPTGMPPK 0.2 0.6896 

HLA-E*01:01 Rv1435c Conserved proline, glycine, 
valine-rich secreted protein NMSPAAPGR 0.2 0.4507 

HLA-E*01:01 Rv1984c Probable cutinase precursor 
CFP21 VVVATTLAL 0.2 0.4859  

HLA-E*01:01 Rv3682 penicillin-binding protein 
1A/1B PonA2 QLPPTDPRY 0.2 0.4994 

HLA-E*01:01 Rv1291c Conserved hypothetical 
secreted protein ITPPSAARA 0.3 0.1337  

HLA-E*01:01 Rv1424c Possible membrane protein RPPAEKLVF 0.4 -0.6094 

HLA-E*01:03 Rv3682 penicillin-binding protein 
1A/1B PonA2 QLPPTDPRY 0.6 0.4994 

HLA-E*01:01 Rv0361 Conserved membrane protein NQAPTTPPR 0.9 0.0878  

HLA-E*01:01 Rv0978c PE-PGRS family, 
PE_PGRS17 AAAATTQVL 1.0 0.3291  

 

In this study, 10 epitopes binding HLA-E*01:01 alleles with percentile score ranging from 0.15 

to 1.0 were identified (Table 4.3).  One epitope [QLPPTDPRY (Rv3682)] was found to bind to 

HLA-E*01:03 and HLA-E*01:01 allele. This may be due to the lack of allelic variation in the 

peptide binding capability of HLA-E, as a similar peptide is presented by both HLA-E variants 

(Strong et al., 2003). The peptide QLPPTDPRY that binds both HLA-E alleles, is encoded by 

Rv3682, a bifunctional membrane-associated penicillin-binding protein (PonA2) (Sauvage et 

al., 2008). PonA2 is involved in the final stages of the synthesis of cross-linked peptidoglycan, 

the major component of the bacterial cell wall (Kieser et al., 2015). The cell wall biosynthesis 

is essential for growth, cell division and cellular structure maintenance (Dover et al., 2007). 

Therefore, inhibition of penicillin-binding protein such as PonA2 could lead to irregularities in 

cell wall structure and eventual cell death and lysis. The ponA2 gene is expressed during in vivo 

growth and is involved in stationary-phase survival under non-replicating conditions (Talaat et 

al., 2004, Rengarajan et al., 2005). The highly ranked epitopes were obtained from the 
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conserved membrane Rv0361 [TTPPRMPTG] and conserved secreted Rv1291c 

[TLTAATLGL] proteins. The epitope encoded by PE_PGRS17 [AAAATTQVL] displayed the 

lowest score of 1.0. 

 

4.4.5 Population Coverage Prediction 

Determining the world population coverage for HLA alleles is a prerequisite for the design of 

an effective epitope-based vaccine to target all major ethnic groups. In the current study, the 

IEDB world population coverage analysis for individual epitopes identified the following 5 

classical MHC class I epitopes: RPPAEKLVFPVLLGILTLLL (Rv1424c), 

AGGPVVYQMQPVVFGAPLPL (Rv2376c) and HVHASGPKYMLDMTFPVDYP 

(Rv3036c) each with a coverage of 39.08%, and TMTDTVGQVVLGWKVSDLKS (Rv1926c) 

and GNASATSGDMSSMTRIAKPL (Rv1884c) with a coverage of 17.34% and 16.81%, 

respectively. When all five epitopes were pooled together, a world population coverage of 

63.79% was achieved. The other three MHC class I epitopes each displayed an insignificant 

population coverage of 0.97%. Amongst the 18 MHC class II epitopes, 16 had a population 

coverage of 11.53% when assessed individually and two epitopes, IPTGFRGTVMSFLFA 

(Rv1396c) and GPKYMLDMTFPVDYP (Rv3036c) each had a population coverage of 

17.84%. 

Further investigation of the population coverage of the identified non-classical HLA-E epitopes 

revealed that each of the HLA-E*01:01 epitopes had a population coverage of 74.79%. This 

was similar to that of the HLA-E*01:03 epitope QLPPTDPRY (Rv3682) at 71.7%. The 

combination of HLA-E*01:03 epitope with any one of the HLA-E*01:01 epitopes resulted in a 

combined population coverage of 99.88%.  
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Fig. 4. 2: Population coverage analysis for the top predicted epitopes based on the HLA interaction. 

The world populations were assessed for the proposed coverage by (A) MHC class I, (B) MHC class II 

and (C) the combined prediction for both of the MHC, the number 1 bar for all the analyses represents 

out-predicted epitope. Notes: in the graphs, the line (-o-) represents the cumulative percentage of 

population coverage of the epitopes, whilst the bars represent the population coverage for each epitope. 

 

We identified 9 epitopes with significant global population coverage. These included the 5 

classical MHC class I epitopes encoded by Rv1424c, Rv1884c, Rv1926c, Rv2376 and 

Rv3036c, and 2 non-classical HLA-E epitopes encoded by Rv0361 and Rv3682. The 2 MHC 

class II epitopes selected were encoded by Rv1271c and Rv3803c. The potential world 

population coverage of the combined epitopes if used in a poly-peptide vaccine format was 

calculated to be 99.97% (Fig. 4.2).  
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4.5 CONCLUSION 

The main limitation of the present study is that T-cell epitopes were identified in silico using 

bioinformatics tools. However, in mitigation of this limitation, B-cell epitopes were 

experimentally selected and confirmed with in silico B-cell epitope prediction tools. Therefore, 

we expect T-cell epitopes to be immunogenic and induce cell-mediated immunity in vitro and 

in vivo.  

Future studies will include the design of a recombinant multi-epitope TB vaccine candidates by 

joining different DNA fragments encoding selected epitopes into one gene fragment, cloning 

and expression as recombinant polypeptide proteins in E. coli. The different recombinant 

polypeptide proteins will be used to immunize mice and the humoral and cellular immune 

responses will be analysed in order to identify the most promising candidate vaccine with 

potential to provide immunity to Mtb infection. The promising TB vaccine will be tested by 

infecting the immunized mice (vaccinated) with virulent Mtb strain to determine it efficacy. 

The proposed approach is expected to lead to the development of new TB vaccine with added 

advantage of not only provoke the T-cell immune response but also the B-cell mediated 

antibody response that will trigger the killer T-cells to eliminate Mtb and infected cells. 

There is an urgent need for a new vaccine that will provide protection against TB in adolescents 

and adults.  The present study identified B- and T-cell epitopes with potential to elicit antibody 

and cellular mediated immunity against TB in global wide populations. Therefore, future 

studies should investigate the in vivo capacity of the HLA-E binding epitope QLPPTDPRY to 

induce CD8+ T-cell response, especially in HIV/AIDS patients. The efficiency of the identified 

epitopes as a multivalent Mtb poly-peptide vaccine should also be evaluated. 
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CHAPTER 5: General Discussion, Recommendations and Conclusion 

5.1 GENERAL DISCUSSION AND RECOMMENDATIONS 

The serological diagnosis of infectious diseases can be achieved by the detection of either 

antibodies or antigens in patient blood samples (Khurshid et al., 2017). However, in 2011 the 

WHO suspended the use of serological tests based on antibody detection for TB diagnosis due 

to the diverse antibody response by patients, as well as significant inconsistencies in their 

performance due to the lack of a single robust antigen (Bekmurzayeva et al., 2013). 

Furthermore, the emergence of MDR/XDR-TB strains has created a public health crisis and a 

global health security risk (WHO, 2014). Therefore, there is an urgent need for innovative 

strategies and interventions to tackle the growing epidemic of TB. Consequently, the current 

study used the phage display method to interrogate the M. tuberculosis (Mtb) secretome in an 

effort to identify new pathogen-derived antigenic biomarkers for the potential development of 

rapid diagnostics, effective drugs and vaccines. 

The Mtb secretome possesses key characteristics that are essential when selecting candidate 

vaccines, targets for therapeutic development, and biomarkers for diagnosing TB. The bacterial 

secretome comprises surface-membrane proteins, transmembrane proteins and proteins 

secreted into the extracellular environment. The Mtb secretome is responsible for the regulation 

of many physiological processes and its composition changes in response to environmental 

stimuli (Caccia et al., 2013). Thus, the ability of Mtb to secrete and export certain proteins 

outside of the bacterial cell is directly linked to its pathogenicity (Majlessi et al., 2015). Hence, 

there is an increasing interest in the Mtb secretome as it plays an important role in the host-

pathogen interaction and the proteins involved are therefore, potential biomarkers and 

therapeutic targets against TB. Therefore, the current study focused on profiling the 
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mycobacterial secretome in terms of localization, disease state-specific expression, and 

immunogenicity properties of potential TB biomarkers.  

Several approaches have been previously used to identify potential antigens and epitopes for 

the development of new diagnostic tools, vaccines and drugs. The bioinformatics approach used 

with whole genome sequencing identifies bacterial secretome proteins specific to the secretion 

pathway (Song et al., 2008, Vizcaino et al., 2010, Xu et al., 2014). This approach generated a 

list of secreted protein candidates which were later validated using targeted secretion assays 

based on reporter fusion systems (McDonough et al., 2005, McCann et al., 2011). The basic 

principle behind the study of the entire Mtb genome (proteome) is to first eliminate all general 

“housekeeping” genes (proteins) and then to target the conserved, pathogen-specific proteins 

involved in host-pathogen interaction (Perkowski et al., 2017). 

An alternative culture filtrate based proteomics approach or phage display, does not require the 

secretion pathway information (Maffei et al., 2017). Therefore, a phage display system 

designed to investigate the bacterial secretome (Jankovic et al., 2007, Liu et al., 2011) was 

utilized in the present study. Chapter 2 of this thesis described the construction of a Mtb 

secretome library. The analysis and characterization of randomly selected clones from the 

library revealed the presence of complete and partial signal peptide sequences in the majority 

of Mtb protein peptides. Ng et al., found that a cut-off of between 3 and 5 amino acids before 

the cleavage site is sufficient for peptidase binding and substrate protein processing during 

secretion (Ng et al., 2009). This partly explained the identification of peptides with a partial 

signal peptide sequence and translocation through their respective secretion pathways. 

Therefore, the signal peptide sequence was demonstrated to be crucial for proper processing of 

the majority of the analysed Mtb protein fragments. 

Integral membrane proteins have been reported to be particularly difficult to identify by 

commonly used mass spectrometry methods due to interference by detergents (Molloy et al., 
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2000). This difficulty was addressed by the use of the phage display system in the present study 

that facilitated the selective incorporation of integral membrane and transmembrane protein 

fragments into the phage surface during packaging and assembly. It is assumed that the 

identified integral membrane or transmembrane protein fragments were likely to have been 

delivered to the membrane site via insertase which is responsible for insertion of 

transmembrane proteins into the cell membrane (Schneewind et al., 2014). An extensive 

literature search of library clones with signal peptide sequences, as well as integral and 

transmembrane proteins, facilitated the identification of unique extracellular proteins with 

known and unknown function(s), and those that are essential for in vivo growth and survival of 

Mtb during infection. These proteins, viz., Nrp, PssA, MmpL5, SirA, GatB, EspA, TopA, 

EccCa1, Rv1634 and Rv3103c could represent potential candidates for the development of 

diagnostic tools, new drugs and vaccines, since they are directly in contact with the infected 

host and will be easily accessible if they are targeted for such purposes. Thus, the sequence 

analysis of randomly selected library clones validated the role of phage display in the study of 

the Mtb secretome and enabled the successful identification of integral and transmembrane 

proteins. 

Phage display is considered to be one of the most powerful techniques used to identify proteins 

that bind to targets of interest (Mullen et al., 2006). It is an appropriate tool for the investigation 

of the immunological spectrum during Mtb infection and identification of possible TB antigens 

that elicit humoral and cellular immune responses. TB patients produce antibodies against 

surface membrane and extracellular proteins secreted by Mtb during different stages of infection 

(Kunnath-Velayudhan et al., 2013). Chapter 3 described the identification of Mtb peptides 

recognized by these antibodies via screening of the Mtb phage secretome library against sera 

from active- and latent-TB patients. The phage DNA was sequenced for the identification of 

novel disease state-specific biomarkers. These consisted mainly of secreted and cell wall-
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associated proteins, suggesting that the immunodominant antigens of Mtb are proteins that are 

secreted by the pathogen during infection. As expected, the analysis of selected latent-TB 

specific proteins suggested that the humoral immune response targets a different antigenic 

repertoire compared to immune responses in active-TB infected individuals. This difference 

may be due to higher bacterial burdens in active-TB than in latently infected individuals 

(Kunnath-Velayudhan et al., 2013). Therefore, the approach used in the present study allowed 

for the profiling of the Mtb secretome during latent infection and TB disease. The identified 

Mtb proteins may represent virulence factors expressed to advance the disease agenda during 

infection, and therefore, are potential TB candidate biomarkers.  

The significance of the discovery of disease state-specific biomarkers lies in their potential use 

to develop tools that can differentiate active- from latent-TB infection and possibly, monitor 

TB disease progression from latent- to active-TB, especially in high risk groups such as HIV 

infected patients. Interestingly, 23 proteins were commonly induced by both latent-TB and 

active-TB patients, including those involved in resuscitation of dormant Mtb cells to actively 

growing bacteria. Therefore, some of these proteins may be involved in the progression from 

latent-TB to active-TB state. Future studies should investigate the role of the identified proteins 

in TB pathogenesis for consideration in the design of new drugs that can be used to treat 

MDR/XDR-TB. The role of the transition proteins, especially the hypothetical proteins and 

those of unknown function(s), also needs to be established. Interestingly, Rv3310 was identified 

in Chapter 2 by random screening of library members and also in Chapter 3 during 

immunoscreening against latent-TB patients’ sera. Rv3310 is the only acid phosphatase (SapM) 

produced by Mtb. It is involved in maintaining the pH levels high within the phagosome, 

blocking the phagosome-lysosome fusion, therefore participate in the intracellular survival, 

replication and persistence of the pathogen within the macrophage (Puri et al., 2013). SapM is 

an ideal target for the design of new TB drug that will interfere with it normal function and 
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allow antimicrobial activities of the phagosome to eliminate Mtb. The newly identified 

biomarkers should also be tested for use in multiple antigen based serological assays to improve 

the sensitivity and specificity in TB diagnosis. 

Phage display library screening against patients’ sera can lead to the identification of potential 

candidate vaccines against specific diseases (Mullen et al., 2006). In Chapter 4, the suitability 

of the identified active- and latent-TB proteins as candidate vaccines was investigated. Since 

the proteins were selected as phage displayed peptide fragments and not as complete length 

proteins, it was assumed that the fragments were immunogenic, and therefore, contained an 

epitope(s). An epitope is that part of an antigen that specifically binds an antibody (B-cell 

epitope) or a T-cell receptor (T-cell epitope) (Wang et al., 2004). The Mtb phage secretome 

library generated in the current study is a significant source of TB candidate vaccines and 

biomarkers/epitopes, as it consisted of extracellular and surface exposed proteins, which is one 

of the requirements for a good vaccine epitope. The selected active-TB and latent-TB phage 

displayed Mtb protein fragments and the identified B-cell epitopes were therefore analysed 

using bioinformatics tools. The antibody-mediated response (B-cells) plays only a supportive 

role to the cell-mediated (T-cell) immunity which provides protection against Mtb infection 

(Kerns et al., 2014). In order to achieve both antibody-mediated and cell-mediated immunity 

against TB, the presence of T-cell epitopes within the B-cell epitopes of highly antigenic protein 

biomarkers was assessed. T-cell epitopes that can provide more than 99% of global population 

coverage, when incorporated into a new multi-epitope polypeptide TB vaccine, were identified. 

This included a novel epitope QLPPTDPRY (Rv3682) with binding affinity to HLA-E alleles 

which are not down-regulated by HIV co-infection (Cohen et al., 1999, McMurtrey et al., 2017) 

and could potentially provide HIV patients with immunity to Mtb infection or Mtb reactivation.  

Our study had several limitations. A previous study showed that only 10% of the whole Mtb 

proteome was immunogenic (Kunnath-Velayudhan et al., 2013). In the current study, the 
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complete Mtb phage secretome library could not be sequenced due to the scope of the study; 

thus resulting in an incomplete secretome repertoire analysis. Nevertheless, the analysis of 120 

secretome library members predicted that more than 95% of these were extracellular proteins. 

Similarly, not all enriched active-TB and latent-TB phage displayed Mtb protein fragments 

could be sequenced. In addition, since antibody response varies from patient to patient, it would 

have been interesting to screen the library against individual serum samples to identify proteins 

(epitopes) commonly recognized by humoral immune response of most, if not all, study 

participants. Such epitopes can provide consistency, increased specificity, and sensitivity for 

TB diagnosis. Finally, the T-cell epitopes for the development of TB vaccines were identified 

only in silico, based on B-cell epitopes. Since phages are regarded as natural 

immunostimulators (adjuvant) and recognized for eliciting a powerful and effective immune 

response (Haq et al., 2012), there is a need to investigate the use of phage particles displaying 

Mtb epitopes on their surface coat protein for immunization for protective immunity, thus acting 

as a vaccine delivery vehicle.  

 

5.2 CONCLUSION 

To the best of our knowledge, this is the first study to investigate an XDR Mtb clinical strain 

secretome using the phage display technique and immunoscreening of phage library against 

ATB and LTBI patients’ sera to identify antigens that could be relevant for diagnosis of ATB 

and LTBI, respectively. The findings of this study confirm that the Mtb phage secretome library 

generated is an extraordinary source of clinically significant TB biomarker epitopes. The Mtb 

secretome comprise mainly immunogenic proteins expressed during infection that are the 

primary mycobacterial structures that interact with the host to facilitate invasion, virulence and 

survival inside host. It is therefore crucial to identify accurately the sequential expression of 
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these proteins as well as their association with the specific disease stage/state for potential 

exploitation in combating TB. The present study contributes new knowledge of the Mtb 

secretome profile during infection, providing some insights into cellular processes involved in 

TB pathogenesis. This knowledge will potentially accelerate research toward new treatments, 

diagnostic tools and vaccines for the benefit of the most vulnerable against TB. 
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APPENDIX A: SUPPLEMENTARY INFORMATION TABLES 

Table S1. 1: M. tuberculosis H37Rv metabolic classes and pathways according to PATRIC database. 

Classes Pathways 

Amino Acid Metabolism 

Glycine, serine and threonine metabolism 
Cysteine and methionine metabolism 
Valine, leucine and isoleucine degradation 
Lysine degradation 
Arginine and proline metabolism 
Histidine metabolism 
Tryptophan metabolism 
Valine, leucine and isoleucine biosynthesis 
Phenylalanine metabolism 
Tyrosine metabolism 
Alanine, aspartate and glutamate metabolism 
Phenylalanine, tyrosine and tryptophan biosynthesis 
Lysine biosynthesis 

Biosynthesis of Polyketides and 
Nonribosomal Peptides 

Biosynthesis of ansamycins 
Polyketide sugar unit biosynthesis 
Biosynthesis of type II polyketide backbone 
Biosynthesis of type II polyketide products 
Biosynthesis of 12-, 14- and 16-membered macrolides 
Biosynthesis of siderophore group nonribosomal peptides 
Biosynthesis of vancomycin group antibiotics 

Biosynthesis of Secondary 
Metabolites 

Streptomycin biosynthesis 
Limonene and pinene degradation 
Phenylpropanoid biosynthesis 
Tetracycline biosynthesis 
Isoquinoline alkaloid biosynthesis 
Insect hormone biosynthesis 
Terpenoid backbone biosynthesis 
Tropane, piperidine and pyridine alkaloid biosynthesis 
Flavonoid biosynthesis 
Carotenoid biosynthesis 
Zeatin biosynthesis 
Anthocyanin biosynthesis 
Flavone and flavonol biosynthesis 
Stilbenoid, diarylheptanoid and gingerol biosynthesis 
Betalain biosynthesis 
Puromycin biosynthesis 
Novobiocin biosynthesis 
Penicillin and cephalosporin biosynthesis 
Diterpenoid biosynthesis 
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Classes Pathways 
Brassinosteroid biosynthesis 
Isoflavonoid biosynthesis 
Caffeine metabolism 
beta-Lactam resistance 

Carbohydrate Metabolism 

Inositol phosphate metabolism 
Starch and sucrose metabolism 
Citrate cycle (TCA cycle) 
Glyoxylate and dicarboxylate metabolism 
Pentose and glucuronate interconversions 
Galactose metabolism 
Glycolysis / Gluconeogenesis 
Ascorbate and aldarate metabolism 
Pyruvate metabolism 
Propanoate metabolism 
Butanoate metabolism 
Pentose phosphate pathway 
Fructose and mannose metabolism 
Amino sugar and nucleotide sugar metabolism 
C5-Branched dibasic acid metabolism 

Energy Metabolism 

Reductive carboxylate cycle (CO2 fixation) 
Methane metabolism 
Sulfur metabolism 
Nitrogen metabolism 
Carbon fixation in photosynthetic organisms 
Oxidative phosphorylation 
Photosynthesis 

Glycan Biosynthesis and 
Metabolism 

Peptidoglycan biosynthesis 
Glycosaminoglycan degradation 
O-Glycan biosynthesis 
High-mannose type N-glycan biosynthesis 
Lipopolysaccharide biosynthesis 
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 
Glycosphingolipid biosynthesis - lacto and neolacto series 
Glycosphingolipid biosynthesis - globo series 
Glycosphingolipid biosynthesis - ganglio series 

Immune System T-cell receptor signaling pathway 

Lipid Metabolism 

Fatty acid metabolism 
Glycerolipid metabolism 
Fatty acid elongation in mitochondria 
alpha-Linolenic acid metabolism 
Secondary bile acid biosynthesis 
Glycerophospholipid metabolism 
Primary bile acid biosynthesis 
Fatty acid biosynthesis 
C21-Steroid hormone metabolism 
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Classes Pathways 
Sphingolipid metabolism 
Linoleic acid metabolism 
Synthesis and degradation of ketone bodies 
Biosynthesis of unsaturated fatty acids 
Ether lipid metabolism 
Arachidonic acid metabolism 
Steroid biosynthesis 

Metabolism of Cofactors and 
Vitamins 

One carbon pool by folate 
Nicotinate and nicotinamide metabolism 
Pantothenate and CoA biosynthesis 
Retinol metabolism 
Thiamine metabolism 
Porphyrin and chlorophyll metabolism 
Ubiquinone and other terpenoid-quinone biosynthesis 
Biotin metabolism 
Folate biosynthesis 
Vitamin B6 metabolism 
Riboflavin metabolism 
Lipoic acid metabolism 

Metabolism of Other Amino 
Acids 

Glutathione metabolism 
Cyanoamino acid metabolism 
Selenoamino acid metabolism 
beta-Alanine metabolism 
Taurine and hypotaurine metabolism 
D-Glutamine and D-glutamate metabolism 
D-Arginine and D-ornithine metabolism 
Phosphonate and phosphinate metabolism 
D-Alanine metabolism 

Nucleotide Metabolism Pyrimidine metabolism 
Purine metabolism 

Signal Transduction mTOR signaling pathway 
Phosphatidylinositol signaling system 

Translation Aminoacyl-tRNA biosynthesis 

Xenobiotics Biodegradation and 
Metabolism 

Tetrachloroethene degradation 
Geraniol degradation 
Benzoate degradation via hydroxylation 
1,4-Dichlorobenzene degradation 
Caprolactam degradation 
Atrazine degradation 
Trinitrotoluene degradation 
Naphthalene and anthracene degradation 
Metabolism of xenobiotics by cytochrome P450 
Drug metabolism - cytochrome P450 
Drug metabolism - other enzymes 
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Classes Pathways 
2,4-Dichlorobenzoate degradation 
1,1,1-Trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) degradation 
Biphenyl degradation 
Toluene and xylene degradation 
1- and 2-Methylnaphthalene degradation 
Ethylbenzene degradation 
Bisphenol A degradation 
gamma-Hexachlorocyclohexane degradation 
Styrene degradation 
Fluorobenzoate degradation 
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Table S2. 1: Insert DNA sequences, encoded peptide sequences of 98 distinct sequences and their corresponding protein name (Rv no.). 

ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S1 MT3042 CGCGGCCCCGAATTAGGACAATTTTCGCACCTAGCGCATCCAATATC

GCTTTCGAAGAACGTTCACGCCAGTCCCACTGGGCCGGTGCGAATG
GTGCAACGCGCCTTTCGTCGAAGGAAACGCCGTCCGCCACCGAGCC
CGCGCTAGGCAAGTCGGTCCCAAGAACGTCGCAAGGATACGCCAA
GCGGCCGCGGTCAATCTTGACTTGTCGGCCACCGCCGGCAAACCAA
CATTCAGCCACAACGCGACAGAGAGGTACCCAATGTTCACTGCCCG
TATCCGCGCCCTCGCCGGCATGTCTCTGCTAGCCTCGGCGATCGGAC
TGGCGGCCTTCGGAGCCGCTACCGGCACCGCCAATGCCGCCCCGAC
CCAC 

AAPNDNFRTRIQYRFRRTFTPVPLGRCEWCNAPFVEGNAVRHRARARQVGPK
NVARIRQAAAVNLDLSATAGKPTFSHNATERYPMFTARIRALAGMSLLASAIG
LAAFGAATGTANAAPTH 

Y   

S2 Rv0101 CGCTGCTCCGGAACGGACGGTGTCGTCGATCGATGCGCTGGATGG
GACCGAGCGTGCCCGGTTGGATGAGTGGGGTAACCGCGCTGTGCT
GACTGCGCCCGCGCCCACGCCGGTGTCGATCCCGCAGATGTTGGCC
GCCCAGGTGGCACGTATCCCCGAAGCGGAGGCGGTGTGTTGCGGG
GACGCGTCGATGACGTATCGGGAACTCGACGAGGCGTCCAACCGG
TTAGCGCATCGGCTGGCAGGTTGTGGGGCCG 

AAPERTVSSIDALDGTERARLDEWGNRAVLTAPAPTPVSIPQMLAAQVARIP
EAEAVCCGDASMTYRELDEASNRLAHRLAGCGA 

N   

S3 Rv0116c ARAWTGTGGTGKGTYKATCSMTCCATCTCKKGATGGCGGACGCCCT
GCGTCGAGTGGTTCGTTATCTATCCGTTGTGGTCGCGATCACGCTGA
TGCTCACCGCGGAATCAGTCAGCATAGCGACCGCCGCGGTCCCGCC
ACTCCAACCGATCCCAGGCGTTGCGTCGGTGTCGCCGGCTAATGGT
GCCGTGGTGGGGGTGGCGCACCCGGTGGTG 

VVSHLMADALRRVVRYLSVVVAITLMLTAESVSIATAAVPPLQPIPGVASVSP
ANGAVVGVAHPVV 

Y   

S4 Rv0125 TAGAAAAATCCTGCCGCCCGGACCCTTAAGGCTGGGACAATTTCTG
ATAGCTACCCCGACACAGGAGGTTACGGGATGAGCAATTCGCGCCG
CCGCTCACTCAGGTGGTCATGGTTGCTGAGCGTGCTGGCTGCCGTC
GGGCTGGGCCTGGCCACGGCGCCGGCCCAGGCGGCCCCGCCGGCC
TTGTCGCAGGACCGGTTCGCCGACTTCCCCGCGCTGCCCCTCGACCC
GTCCGCGATGGTCGCCCAAGTGGGGCCACAGGTGGTCAACATCAAC
ACCAAACTGGGCTACAACAACGCCGTGGGCGCCGAGGTCGGCGAG
GCTTTGGTCTCGATGCTCAAGGATCACGGTGTCGGCTTCCATCCTCG
CAAGGCCCTAGCTCGCGTCGATGAGGCCGCAAGGACGATGCACTTC
GGTGACGGCACGTCCGAACCGTTCGATCTGCTTGCCGTGGTCCCCC
CGCACGTGCCCTCCGCCGCGGCGCGGTCAGCGGGTCTCAGCGAATC

KNPAARTLKAGTISDSYPDTGGYGMSNSRRRSLRWSWLLSVLAAVGLGLATA
PAQAAPPALSQDRFADFPALPLDPSAMVAQVGPQVVNINTKLGYNNAVGA
EVGEALVSMLKDHGVGFHPRKALARVDEAARTMHFGDGTSEPFDLLAVVPPH
VPSAAARSAGLSESGWIPVDPRTLSTSAD VWAIGDATVLTLPNGKPLPKGSRD 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
CGGGTGGATACCCGTGGACCCGCGCACCCTGTCCACTAgCGCCGAC
WACGTGTGGGCCATCGGCGATGCGACCGTGCTGACGCTGCCGAAT
GGCAAACCGCTGCCCAAGGGGTCTAGAGA 

S5 Rv0125 CAATTTCTGATAGCTACCCCGACACAGGAGGTTACGGGATGAGCAA
TTCGCGCCGCCGCTCACTCAGGTGGTCATGGTTGCTGAGCGTGCTG
GCTGCCGTCGGGCTGGGCCTGGCCACGGCGCCGGCCCAGGCGGCC
CCGCCGGCCTTGTCGCAGGACCGGTTCGCCGACTTCCCCGCGCTGC
CCCTCGACCCGTCCGCGATGGTCGCCCAAGTGGGGCCACAG 

ISDSYPDTGGYGMSNSRRRSLRWSWLLSVLAAVGLGLATAPAQAAPPALSQD
RFADFPALPLDPSAMVAQVGPQ 

Y   

S6 Rv0129c CATGCCCAGACACTGCGGAAATGCCACCTTCAGGCCGTCGCGTCGG
TCCCGAATTGGCCGTGAACGACCGCCGGATAAGGGTTTCGGCGGTG
CGCTTGATGCGGGTGGACGCCCGAAGTTGTGGTTGACTACACGAGC
ACTGCCGGGCCCAGCGCCTGCAGTCTGACCTAATTCAGGATGCGCC
CAAACATGCATGGATGCGTTGAGATGAGGATGAGGGAAGCAAGAA
TGCAGCTTGTTGACAGGGTTCGTGGCGCCGTCACGGGTATGTCGCG
TCGACTCGTGGTCGGGGCCGTCGGCGCGGCCCTAGTGTCGGGTCTG
GTCGGCGCCGTCGGTGGCACGGCGACCGCGGGGGCATTTTCC 

HAQTLRKCHLQAVASVPNWP&TTAG#GFRRCA&CGWTPEVVVDYTSTAGPS
ACSLT#FRMRPNMHGCVEMRMREARMQLVDRVRGAVTGMSRRLVVGAV
GAALVSGLVGAVGGTATAGAFS 

Y   

S7 Rv0179c CTGTTGCTGGGTGGATTCATCACACACCTGTACGACCGCAGCAGCTT
CCACCGAATTCCGGGAGCGGTCGAGATGGCGATCGCCGTGGAACA
CCAAGCTCAATACCAAGCTCGCCAAAGCGCACGCGAAAGCTCAAGC
GAACAACCGTAATTCGAACGCGGCCGAACCGTCACGCAGCTGTTAC
TGAAGTTGACAGTGTGATCAGTGTGCCTAATGCTGGGATGGTTGCA
TGTGGATTCGGGCCGAGAGGGTTGCTGTGCTGACACCGACTGCCAG
CCTGCGCCGATTGACGGCTTGCTACGCCGCGTTGGCGGTGTGCGCC
GCCCTCGCCTGCACCACCGGGCAGCCGGCCGCCCGCGCCGCCGACG
GGCGCGAGATGCTCGCCCAAGCGATAGCCACCACCAGGGGCTCAT
ACCTGGTGTACAACTTCGGCGGCGGTCATCCTATGCCGCTGCTCAAC
GCAGGTGGTCACTGGTACGAGATGAACAACGGCGGCCATCTGATG
ATCATCAAGAATGCCTCCCAACGGCTTTCACCACATCTACTGGTAGA
CACCCACACTGGAGACCAGGCGCGCTGCGAA 

CCWVDSSHTCTTAAASTEFRERSRWRSPWNTKLNTKLAKAHAKAQANNRNS
NAAEPSRSCY&S&QCDQCA#CWDGCMWIRAERVAVLTPTASLRRLTACYAA
LAVCAALACTTGQPAARAADGREMLAQAIATTRGSYLVYNFGGGHPMPLLN
AGGHWYEMNNGGHLMIIKNASQRLSPHLLVDTHTGDQARCE 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S8 Rv0192 GTCTATTCGCCGCTCTGAACATAGCCGCAGTGGTTGCGGTGCTGAT

GCTGGGTGCTGGCGTTGCCGTGGCGGACCCGGTTTTC 
SIRRSEHSRSGCGADAGCWRCRGGPGF N   

S9 Rv0203 CGCAAACCCGTCGCAAACCCGTCGCAAACCGTAAGGAGTCATCCAT
GAAGACAGGCACCGCGACGACGCGGCGCAGGCTGTTGGCAGTACT
GATCGCCCTCGCGTTGCCGGGGGCCGCCGTTGCGCTGCTGGCCGAA
CCATCAGCGACCGGCGCGTCGGACCCGTGCGCGGCCAGCGAAGTG
GCGAGGACGGTCGGTTCGGTCGCCAAGTCGATGGGCGACTACCTG
GATTCACACCCAGAGACCAACCAGGTGATGACCGCGGTCTTGCAGC
AGCAGGTAGGGCCGGGGTCGGTCGCATCGCTGAAGGCCCATTTCG
AGGCG 

QTRRKPVANRKESSMKTGTATTRRRLLAVLIALALPGAAVALLAEPSATGASD
PCAASEVARTVGSVAKSMGDYLDSHPETNQVMTAVLQQQVGPGSVASLKA
HFEA 

Y   

S10 Rv0236c CTGCCGTCGCCCGGTCCGCCAGAACGCCAGCAGAGCTAGCAGGGG
CAGCAGGGCCAGCCCTATCGCCAGGCTCGCCCGATACAGCGAGTTC
GGTGCGAATGTCAGCGTGATGGTGCCGGATTCGCCTGCGTCG 

DAGESGTITLTFAPNSLYRASLAIGLALLPLLALLAFWRTGRRQ P TM 

S11 Rv0255c CGCTGGTCGCGGGGTTTGTGGTCAATAAGTTTCGGGGCGACTCCGA
CCTGCTGGCGCCAGGTCTGCGCGACCTGGAACG 

LVAGFVVNKFRGDSDLLAPGLRDLER N   

S12 Rv0320 CCAGTTGATGAACAATGTGCCCCAAGCGCTGCAACAACTGGCCCAG
CCCACGAAAAGCATCTGGCCGTTCGACCAACTGAGTGAACTCTGGA
AAGCCATCTCGCCGCACGCTGGCTCAGCGGATGTAGAGTTCCTCGC
CGGTGGGATACCCGCCGCCCACGGTCGTGATGTGGATGTGGTCGT
AGTGGCCGGCCCCGGTTGTCCGCGCGCCGTTGGGCGTGTAGTAGG
CGCCACGCCAAATCACATCTTGCATCCCAAATCGGGTCGCGTTCTTC
AGTACGAAAGCGACGATCTCGTTGCCCAGCGCTATGCCCTCGGCG
GTGCCGGGGTTGGGAACCATCACGTCGAGCGCCAAACCATTGGGA
TGCCATCTCAGCGCATCCGGCCGAACGCCGCCGATTTCGCGAATTT
CGGGGAAAGCCGCACTGATACTGCGGGCTGTCAAGACGGTCTTGA
CCTGTAGACCCTGCTCGGGTGCCACCCCTACCGGCAAATACCGAGA
TACGATGCGCCATCTCGATGCCGAAGCGAACTGGCTGGCAGCAAG
GCCCGTCCCGATTTCACCGCCGGATATCTGTGAGGAGAAAGCCAG
CGGTGCAACCGGCACGATCTGCACACAACAGGGCGCGTCGTCGCC
GAGAACCGGGTTGGCATCGGCGCGGGCGGCAAGCGTACTGACAT
CTCCGCCCGTGGCGAAGAACACGGCGGCCGGGGCGAGGACCGCA

PRCSEHVGPDGGRRGHGWHRGSHSAVRRYPRTDPVAIADLGRS&RRSSRD#IF
ILPLSCRNLLSVGRHELARDRRKSSAVLAAVLAPAAVFFATGGDVSTLAARAD
ANPVLGDDAPCCVQIVPVAPLAFSSQISGGEIGTGLAASQFASASRWRIVSRY
LPVGVAPEQGLQVKTVLTARSISAAFPEIREIGGVRPDALRWHPNGLALDVM
VPNPGTAEGIALGNEIVAFVLKNATRFGMQDVIWRGAYYTPNGARTTGAGH
YDHIHITTVGGGYPTGEELYIR&ASVRRDGFPEFTQLVERPDAFRGLGQLLQRL
GHIVHQL 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
GCCAGGACCGCTGACGACTTTCGCCGGTCCCTAGCTAATTCATGTC
GGCCCACGCTGAGCAGATTACGACAAGATAACGGAAGAATAAATA
TCTAATCTCTAGAAGACCGCCGTCAGCTGCGCCCTAGATCTGCAATC
GCGACGGGATCGGTTCGCGGATATCTGCGGACTGCCGAATGGCTG
CCTCGATGCCAGCCGTGACCCCGGCGACCGCCGTCTGGACCGACAT
GCTCGGAACACCGAGG 

S13 Rv0425c CACCCCGGGGTCGGGTCGGCCAGCCTGAACTACCCGTTGTCCCGTG
TCGTCGTCGCTATCGACGATCCCGACACATCACTGCGCGAACTTTGC
CGCATTGTCGATGACGCCGAAAAAGCCGAAAGGCACCGGCCACCC
AGGGGGAACAGACCCCGACCGAAC 

HPGVGSASLNYPLSRVVVAIDDPDTSLRELCRIVDDAEKAERHRPPRGNRPRP
N 

P TM 

S14 Rv0436c ccatgacctggcagagctggacaaggtgggggcctacgacgtgatcaccgtgttcgacg
cgattcacgaccagGCGCAGCCAGCGCTGGCTTGCCCAACACCCTGAGG
TGTGGGACGACAAGCCCAAGCAACGGCGCGCGGTGCGGCGCGCGA
GCCGCCGGGCGCATCCCTACCGGCCGTCGATGGCGCGGCTGGGCC
TGCGCAAGCCGGGTCGACGGCTGTGAcccacc 

MTWQSWTRWGPTT&SPCSTRFTTRRSQRWLAQHPEVWDDKPKQRRAVRR
ASRRAHPYRPSMARLGLRKPGRRL&PT 

P TM 

S15 Rv0455c CGACTACAGCCAAGCCCCACCGGAACTGCGACCCGACCCCACGCAC
GTCATCACTCCTGATGGGAGCATGTAGTGAGACAGACTATGAACCT
TGTCGTCTGCCCGCCTCGAGGCGCCCCAAAAGTGCTACGGTAACCA
CTATGTCTCGGCTGAGTTCCATCCTGCGTGCCGGCGCGGCATTTCTG
GTTCTCGGCATCGCCGCTGCGACATTTCCACAAAGCGCGGCAGCCG
ACTCCACGGAAGACTTTCCAATACCTCGCCGGATGATCGCAACCACC
TGCGACGCCGAACAATATCTGGCGGCGGTGCGGGATACCAGTCCG
GTGTACTACCAGCGGTACATGATCGACTTCAACAACCATGCAAACCT
TCAGCAAGCGACGATCAACAAGGCGCACTGGTTCTTCTCGCTGTCA
CCGGCGGAGCGCCGAGACTACTCCGAACACTTTTACAATGGCGATC
CGCTGACGTTTGCCTGGGTCAATCACATGAAAATCTTC 

TTAKPHRNCDPTPRTSSLLMGACSETDYEPCRLPASRRPKSATVTTMSRLSSILR
AGAAFLVLGIAAATFPQSAAADSTEDFPIPRRMIATTCDAEQYLAAVRDTSPV
YYQRYMIDFNNHANLQQATINKAHWFFSLSPAERRDYSEHFYNGDPLTFAW
VNHMKIF 

Y   

S16 Rv0559c TGAAGGGAACAAAGCTGGCTGTTGTCGTCGGCATGACGGTGGCTG
CCGTTAGTTTGGCAGCGCCGGCGCAGGCCGACGACTACGACGCCCC
CTTCAACAACACGATCCATCGCTTCGGGATCTACGGCCCGCAGGACT
ACAACGCTTGG 

KGTKLAVVVGMTVAAVSLAAPAQADDYDAPFNNTIHRFGIYGPQDYNAW Y   

S17 Rv0603 AGGAGAAAGCGATGAATCGCATCGTGCAGTTCGGAGTTTCCGCCGT
GGCCGCGGCGGCGATCGGCATCGGAGCCGGGTCGGGGATCGCGG

EKAMNRIVQFGVSAVAAAAIGIGAGSGIAAAFDGEDEVTGPDADRARAAAV
Q 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
CGGCGTTCGACGGCGAGGACGAGGTGACCGGCCCCGACGCCGACC
GCGCGCGCGCCGCCGCGGTGCAG 

S18 Rv0675 ATCGGGCCGGGACCCGTCCGGTGCACAGAGTTGGCCTCCGGTGTG
CCAAAGGCCTTCAAATCGGCTCCCGCACAAAAGGTTCCACCCGCAC
CCCAGAGTACGGCCACCGACGCGGCGTCGTCCCGGTCGAATTGCTC
GAACGCCGCGCACAACGCCGCGGCGGTCGGGCCGTTGACCGCGTT
GCGGGAGGCCGGCCGGTTCAGAATCACCGTGGTCACCCGACCTTTG
CGCTCCACACGCACCAGATCACTCATGTCACCTCCAGGAGTTGAGTT
GCATCGCGTCGTTTCGCCATTGCAGTGGCGAAGTCGTGGTACGCCG
CCCGTAACCCGGCGCCCGGCCAGTCGGCGGGCAACAGTTCAGCGG
GCAACATCGGATCGGTGAG 

HRSDVAR&TVARRLAGRRVTGGVPRLRHCNGETTRCNSTPGGDMSDLVRVE
RKGRVTTVILNRPASRNAVNGPTAAALCAAFEQFDRDDAASVAVLWGAGGT
FCAGADLKAFGTPEANSVHRTGPGP 

Y   

S19 Rv0676c CCAGGGCCACCGCACCGACCAGGATGGGGCCGGGCCAGCGGACGA
TGGCGGCCCCGACCTTGCGCCAGCCCCGCACCCGCGCCATCCGCTT
GGGCTCGAGCAGCTTGCCGAACCGGCTCGTCACGGCGATTATCGCC
GGGCCCAGGGTGAGTGCGGCGGCGACG 

VAAALTLGPAIIAVTSRFGKLLEPKRMARVRGWRKVGAAIVRWPGPILVGAV
AL 

N TM 

S20 Rv0676c TCGCCGACGTGATGATCGACCGGTAGACCAGCAGCAACATCACGAT
GATCACGGTGAACGTGACCGCCTCGATCACCTGCAGACTACGGTCG
CCGGCCTGCTGCTGATCGGCGACCAGCGCGGCCGAACCGGTGACG
TACACCTTGACACCGGGTGGCGGCGCAAGGCGCTC 

ERLAPPPGVKVYVTGSAALVADQQQAGDRSLQVIEAVTFTVIIVMLLLVYRSII
TSA 

N TM 

S21 Rv0822c CAATCATCATCGCCGTGCTGCTGGCCACCACAGTGTTTTTTTCGCCC
GGCAACGAACAGGCTGCCGCCACCGTGGCCGCCGTGTTCGGCCAGT
CAAAGATCGAGCGGGTGACCGGGATCGGCCAACTGGTCCAGGTGG
TGCTGGGCCAAGACTTCAGCGCGGTGCGCGCTCCCCTGCCGAGTGG
CTCCACCGTCAGCGTGCAGATAAGCCGCAACTCCTCCAGCCCACCG
ACCAAGCTGCCCGAGGACCTGACGGTCACCAACCCTGCTTGCGGCC
GGCACTACTCGGGCCCCCTTCTCGACCTGGGCGGTGGTTGCTGTCG
TGGTTGTTCCGGCGGTGGTGCTTTGTGTGGTTGG 

IIIAVLLATTVFFSPGNEQAAATVAAVFGQSKIERVTGIGQLVQVVLGQDFSAV
RAPLPSGSTVSVQISRNSSSPPTKLPEDLTVTNPACGRHYSGPLLDLGGGCCRG
CSGGGALCGW 

N   

S22 Rv0824c CTCTCCGCGAAATAGTGGCCCTGGTGGTTTTGGCCTGGGCTGAAGC
CCCGGTTGACTACCTCGAGGCGAAGTTTCTCCAACTCGACAGGGTC
GACCGATCGGGTCACCACCAGGTAGTCGCGCAGCGCGATGCCGTG
CCGATTCTCCTCGGCGGTCCAACGGTTGACCCACTGCCCCCACGCGC
CGTCCATGCC 

GMDGAWGQWVNRWTAEENRHGIALRDYLVVTRSVDPVELEKLRLEVVNR
GFSPGQNHQGHYFAE 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S23 Rv0842 CGGCGGCGGCCACCAGCATGGTGGATACCAGCGTCACCCGCGCCCC

GACACGGTCCACCAACCACCCACACAGCAGCTGCCCCACCGCCCAA
CCCAGGCCGTAGGCCGCCACGACCGCGCCGACCGCTCCCGCACCAT
GTCCTCGTCCAGCCACGTGGTAGGCTAGGAACGGATAGCCGAATCC
GGCCGAGCGCACCAGCAAGTTGCCGCCCAGCAG 

LLGGNLLVRSAGFGYPFLAYHVAGRGHGAGAVGAVVAAYGLGWAVGQLLC
GWLVDRVGARVTLVSTMLVAAA 

P24 TM 

S24 Rv0983 TACCTGGCGTGATTCCGACCATGACGCCCCCTCCTGGGATGGTTCGC
CAACGCCCTCGTGCAGGCATGTTGGCCATCGGCGCGGTGACGATAG
CGGTGGTGTCCGCCGGCATCGGCGGCGCGGCCGCATCCCTGGTCG
GGTTCAACCGGGCACCCGCCGGCCCCAGCGGCGGCCCAGTGGCTG
CCAGCGCGGCGCCAAGCATCCCCGCAGCAAACATGCCGCCGGGGT
CGGTCGAACAGGTGGCGGCCAAGGTGGTGCCCAGTGTCGTCATGTT
GGAAACCGATCTGGGCCGCCAGTCGGAGGAGGGCTCCGGCATCAT
TCTGTCTGCCGAGGGGCTGATCTTGACCAACAACCACGTGATCGCG
GCGGCCGCCAAGCCTCCCCTGGGCAGTCCGCCG 

PGVIPTMTPPPGMVRQRPRAGMLAIGAVTIAVVSAGIGGAAASLVGFNRAP
AGPSGGPVAASAAPSIPAANMPPGSVEQVAAKVVPSVVMLETDLGRQSEEG
SGIILSAEGLILTNNHVIAAAAKPPLGSPP 

N   

S25 Rv1029 CCAGCCAGGTCGCGATCAAGCAGCTCGGCACCAACGGCGGCGGGT
TCTTCAACGTGAACTCCGCGCATCCGTTCGAAAACTACACGCCGATA
GGCAATTTCGTCGAAAACTGGGCGATCCTGATCATCCCGTTCGCGCT
GTGCTTCGCCTTCGGCAAGATGGTGCACGACCGTCGTCAAGGCTGG
GCGGTGCTGGCCATCATGGGCATCATTTGGATCGGAATGTCAGTCG
CGGCAATGTCATTCGAGGCCAAGGGCAACCCGCGGCTGGATGCGC
TGGGGGTGACACAGCAGACGACGGTCGACCAGTCCGGCGGCAACC
TGGAGGGCAAGGAGGTGCGCTTTGGC 

SQVAIKQLGTNGGGFFNVNSAHPFENYTPIGNFVENWAILIIPFALCFAFGKM
VHDRRQGWAVLAIMGIIWIGMSVAAMSFEAKGNPRLDALGVTQQTTVDQS
GGNLEGKEVRFG 

P TM 

S26 Rv1029 TGCATGGTTTCATCGTCGCCAACACGCTGGAGGGCGCCCCCCAGCT
CATTCCAGGCGGGCCGGTGGCCAGCCAGGTCGCGATCAAGCAGCT
CGGCACCAACGGCGGCGGGTTCTTCAACGTGAACTCCGCGCATCCG
TTCGAAAACTACACGCCGATAGGCAATTTCGTCGAAAACTGGGCGA
TCCTGATCATCCCGTTCGCGCTGTGCTTCGCCTTCGGCAAGATGGTG
CACGACCGTCGTCAAGGCTGGGCGGTGCTGGCCATCATGGGCATCA
TTTGGATCGGAATGTCAGTCGCGGCAATGTCATTCGAGGCCAAGGG
CAACCCGCGGCTGGATGCGCTGGGGGTGACACAGCAGACGACGGT
CGACCAGTCCGGCGGCAACCTGGAGGGCAAGGAGGTGCGCTTTGG
CGTCGGTGCGTCTGGGTTATGGGCGGCGTCGACGACCGGCACCTCC

HGFIVANTLEGAPQLIPGGPVASQVAIKQLGTNGGGFFNVNSAHPFENYTPIG
NFVENWAILIIPFALCFAFGKMVHDRRQGWAVLAIMGIIWIGMSVAAMSFE
AKGNPRLDALGVTQQTTVDQSGGNLEGKEVRFGVGASGLWAASTTGTSNG
SVNSMHDSYTPLGGM 

P TM 
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
AACGGCTCGGTCAACTCGATGCACGACAGCTACACACCACTGGGCG
GCATG 

S27 Rv1118c CACGCCAATCGCGACCAGGAGGACAAACTGCTGCGGGTCATCGCG
CGGATGAACGGCACGCCTTTCCCAACCACCGCCCGGTTGACCGGCC
GGTGGCTGCGCGGCCGGCTTCCSACCCTCAMCGATTGGCTGCK 

HANRDQEDKLLRVIARMNGTPFPTTARLTGRWLRGRLPTL DWL  N   

S28 Rv1156 TCCGTCCCGACAGCTCTACACTGAGGACGTGCCAAATCTGCAGCTTG
TCCAAGAGCCGGCAGCCGACGCGCTGCTGAACGCCAACCCATTCGC
GTTGCTGGTGGGCATGTTGCTCGACCAGCAGGTGCCGATGGAGACC
GCCTTCGGCCACTGGCATTGGTGCACTGCACCGTGCGCCATTCGTG
GCGACAACTGCGAGCGGGAGCGGGACCAAGGATGATGGTCCCGGT
CGCGACGGGCGCGATCCCGCTCCG 

PSRQLYTEDVPNLQLVQEPAADALLNANPFALLVGMLLDQQVPMETAFGHW
HWCTAPCAIRGDNCERERDQG&WSRSRRARSRS 

N   

S29 Rv1157c GGCGTCAAGATCCGGGACAAGGTCCAGGACAAAGTAATCGCCATC
ACCGGCGGCGCCCGGGGGATCGGATTGGCCACAGCGGCCGCGCTG
CCCTGACGCATCTGTGAGAAGGCTGACCAACACCGAACACCGGGA
GAACACCACCGTGGCAAGCACTTGGAGTGTGTGCAAAGGTTTGGCC
GCCGTCGTCATCACCTCGGCTGCCGCGTTCGCGCTGTGTCCGAACG
CGGCAGCCGACCCGGCGACGCCGCAGCCCAACCCCACTCAACAGCT
ACCGGGCTTGCCGGCGTTGGCCCAGCTGAGTCCGATAATCCAGCAA 

ASRSGTRSRTK#SPSPAAPGGSDWPQRPRCPDASVRRLTNTEHRENTTVASTW
SVCKGLAAVVITSAAAFALCPNAAADPATPQPNPTQQLPGLPALAQLSPIIQQ 

Y   

S30 Rv1161 GGTGTCGTGCTGCAGCGCGGTCAGCACCACATCGGTGCGAGTGCCC
AGATGACGTTTCGCCAGCGCACTGAAAGCACGCGCGATGGCGGCG
AATGCGTCAAAGTCCGAACGGGTTTCCCACGGCGGATCGATCGCCG
GACTGAA 

FSPAIDPPWETRSDFDAFAAIARAFSALAKRHLGTRTDVVLTALQHDT N   

S31 Rv1200 GAACCAGCCCGACAGTCACGGTTGCCAGGCCCATGATCAACAGTGT
GGCGACCAGGGTCTTCTTGCGGCCGAGGCGGTCTCCAAAGTATCCA
AAGACGGCCGCGCCGAACGGCCGGGATAGGAACGCCACAGCAAAT
GTCCCCATC 

MGTFAVAFLSRPFGAAVFGYFGDRLGRKKTLVATLLIMGLATVTVGLV Y M 
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S32 Rv1228 TAGCGCTCAACAAGATGCGTGCCAACTCACCCTGCCCCGGGGAGGC

GCGATGAGTCGACAGTGGCACTGGCTGGCAGCGACGCTGCTCCTG
ATCACCACCGCCGCGTGCAGTCGTCCGGGCACCGAGGAACCGGATT
GCCCGACGAAAATAACCTTGCCGCCCGGTTGACCGCCGACACCACG
GCGCGCAGCGACGCGGTGGTG 

SAQQDACQLTLPRGGAMSRQWHWLAATLLLITTAACSRPGTEEPDCPTKITL
PPG&PPTPRRAATRWC 

Y   

S33 Rv1230c AGAAGACATAGGTTTCCGACGGCTCACACACTGAGGACGGTCGAGT
GCACATTGGGGGACGCTGGGGTGCACGCCCGGCCGTCGCTGCAGT
GCGGCGGGGAGCTTGTCGCCTAACGCGGGCGCCGGCATTCGGCGT
GGCAGCGATTGCCCCGTTGGTATTCGCCAGTGCGGTCGGCGGCGC
GGCTCCGGTATTCCCCGGGAGAACCGCGCCGGTGCACGCCGTTATC
ACCCCGGTGGCCGCGGTCGCCGCGTCCGGCATAGACCTGTCCGGTC
CGGTCGTCATCGCCATGAAGCGCCCGCCGACCAGCTTCCGCGTGGC
GGTAGCTACCATATCGGCTCCACCACCACCGATGATCGTGAATTCGC
CTGGTGCGCTTGGCATTCCGGCCATGGCACTGTCCGCCTACCGCAAC
GCCGAGCTGAAGATGGCCGCTGCCGCCCCTGGCTGTGGCGTCAGTT
GGAACTTGCTGGCCGGGATTGGGCGCATCGAGTCGATGCACGCAA
ACGGCGGCGCCACCGACGCGCGCGGCACCGCGATCCAGCCGATCT
ACGGCCCAACGCTGGACGGCACCCTGCCAGGCAACGAGATCATCAT
CCAAAGCAGCGTCGGCAATCGCGTCACGTACGCCCGCGCGATGGG
GCCAATGCAGTTCTTGCCCGGCACTTGGGCTCGGTACGCCACCGAC
GGCGATGACGACGGTGTGGCTGACCCGCAGAACCTGTTCGACTCCA
CGTTGGCCGCAGCCCGCTACCTGTGTAGCGGT  

KT#VSDGSHTEDGRVHIGGRWGARPAVAAVRRGACRLTRAPAFGVAAIAPL
VFASAVGGAAPVFPGRTAPVHAVITPVAAVAASGIDLSGPVVIAMKRPPTSF
RVAVATISAPPPPMIVNSPGALGIPAMALSAYRNAELKMAAAAPGCGVSWN
LLAGIGRIESMHANGGATDARGTAIQPIYGPTLDGTLPGNEIIIQSSVGNRVTY
ARAMGPMQFLPGTWARYATDGDDDGVADPQNLFDSTLAAARYLCSG 

Y TM 

S34 Rv1254 GTCAGATCCGTATCGGGCCAGACTTCTCGCTAGTAGAATTGCCGGC
GAAGCTGCCCCGCGCGACGCTCAAAAAGCTTGCACAGACCCGTATC
TCGGGTGTGCTGATCGACCTTCGGCCATACCGGCCGCCCGACGCGG
CGCGCCGGCATAATGGCGGCAAACCACGGCGGAAACACGTCGGAT
GACCCTGCCCAAGGAAAGAGCCGCCCAGGGCGGACTCGAGCGGAT
CGCCCACGTGGACCGGGTGGCGTCGTTGACCGGGATCCGTGCTGTT
GCCGCATTGCTGGTCGTCGGCCAGTGTTGTCTTCACCCGGCGATAG
GCGCCCAGCGCATCGGATTGCCGGTCGGAGAGGTAGTAGGCGGTG
ATCAGCTGTGTCCACAGCGGCTCCCGGTAGGG 

SDPYRARLLASRIAGEAAPRDAQKACTDPYLGCADRPSAIPAARRGAPA#WRQ
TTAETRRMTLPKERAAQGGLERIAHVDRVASLTGIRAVAALLVVGQCCLHPAI
GAQRIGLPVGEVVGGDQLCPQRLPVG 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S35 Rv1267c ATCAGTGCGACATTGGCCGTCGGCACACTTGGTGACGTGACGAGCA

CAACGACGGCGACCACATTCGCATCTGTGACCATGAATTCACGTTCC
AGATCAGCGCGGGGACG 

QCDIGRRHTW&RDEHNDGDHIRICDHEFTFQISAGT N   

S36 Rv1268c CCTTCAAGACCGCCACCTTCGCGCTGGCCGCCGGTGCCGTTGCACTG
GGATTGGCCAGCCCCGCCGACGCAGCGGCGGGCACCATGTATGGC
GACCCGGCAGCCGCCGCCAAGTACTGGCGCCAGCAGACATACGAC
GACTGCGTCCTGATGTCGGCCGCGGACGTGATCGGTCTGAGTCGTG
TCGACGAGTTCGAGCAACGACATGTACACGAGACGGTG 

FKTATFALAAGAVALGLASPADAAAGTMYGDPAAAAKYWRQQTYDDCVL
MSAADVIGLSRVDEFEQRHVHETV 

Y   

S37 Rv1268c CGACGATGACGACCAGCAAAATCGCCACCGCCTTCAAGACCGCCAC
CTTCGCGCTGGCCGCCGGTGCCGTTGCACTGGGATTGGCCAGCCCC
GCCGACGCAGCGGCGGGCACCATGTATGGCGACCCGGCAGCCGCC
GCCAAGTACTGGCGCCAGCAGACATACGACGACTGCGTCCTGATGT
CGGCCGCGGACGTG 

TMTTSKIATAFKTATFALAAGAVALGLASPADAAAGTMYGDPAAAAKYWR
QQTYDDCVLMSAADV 

Y   

S38 Rv1291c CCGAGCTGTTCAAGGCCCGGTGCTGATTCTGAGGGCACGCAAACCA
GCGCAACCTCCGATGACATCAGCACAAGGAGATCATCAATGTTCAC
TCGCCGTTTCGCCGCCTCCATGGTTGGCACCACCTTGACTGCCGCCA
CTTTGGGCCTGGCCGCACTCGGCTTCGCCGGGACCGCCAGCGCAAG
CTCGACCGACGAAGCGTTC 

PSCSRPGADSEGTQTSATSDDISTRRSSMFTRRFAASMVGTTLTAATLGLAALG
FAGTASASSTDEAF 

Y   

S39 Rv1366 TGGCCCTTTCCAGCCTAAACTTGGTCGTTGCGAGCACCGTCGCCTTG
TTCTTGCTCGCCTCGCCAAGCGCCATCGCCCGCTGGCCGGGGTATTC
GATCTCTGCACAGTGTTGCCACTCGGCTTCATGCATCGCCAGATCCG
CTGAA 

SADLAMHEAEWQHCAEIEYPGQRAMALGEASKNKATVLATTKFRLERA N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S40 Rv1435c TACGGCTATGCGGTTCTGCTGAACCAAATTGATTGCGGAAATATCTG

CGCGCGAATAGAGGAGAGTTGACGCTGATGGCGATCGTCAATCGG
TTCAACATCAAAGTAATTGCCGGCGCTGGGTTGTTTGCAGCTGCTAT
AGCGTTAAGCCCGGACGCGGCGGCTGACCCGCTGATGACGGGTGG
CTACGCGTGCATCCAGGGCATGGCGGGCGACGCGCCGGTAGCCGC
CGGCGACCCGGTGGCTGCCGGTGGACCGGCAGCCGCGGGAGCGTG
CAGTGCCGCACTTACTGACATGGCTGGTGTTCCGTTCGTCGCGCCTG
GGCCAGTGCCGGCAGCTGCACCGGTGCCCATCGGCGCACCGGTACC
AATCCCTGGCGCACCG 

RLCGSAEPN&LRKYLRANRGELTLMAIVNRFNIKVIAGAGLFAAAIALSPDAA
ADPLMTGGYACIQGMAGDAPVAAGDPVAAGGPAAAGACSAALTDMAGV
PFVAPGPVPAAAPVPIGAPVPIPGAP 

Y   

S41 Rv1447c GAAGGTTTCGGTGGTGGAGTCCTCGGCGAACCCCTCCTCGTCGAGC
AGCCCAACCACCTTCTCCCCGCCTTGCCAGCCGGCGGCGTACTGGCC
GCGGCTGGTGGTCTGGTCGAGTGGCTCGGCAAGGCGGGTGGCCGA
GAGCACCTTGA 

KVLSATRLAEPLDQTTSRGQYAAGWQGGEKVVGLLDEEGFAEDSTTETF N   

S42 Rv1478 GTTTTCACCCGATCAAACTGGCCTGGATCACCGCGGTGGTTGCCGG
CCTGATGGTCGGTGTGGCAACGCCCGCCGATGCCGAACCCGGACAA
TGGGATCCCACGCTGCCGGCATTGGTCAGTGCGGGGGCGCCCGGA
GATCCGCTGGCGGTAGCCAACGCGTCGTTGCAGGCCACCGCCCAGG
CCACCCAG 

FHPIKLAWITAVVAGLMVGVATPADAEPGQWDPTLPALVSAGAPGDPLAV
ANASLQATAQATQ 

Y   

S43 Rv1522c CATGGCCTGCAGGGTGTTGACTATCCCGCTCGAGCTGGCCACGGCC
CCATTGATTTCGTTGCGTATTTGGGCGAGGGCGTCGGCCAACTGGT
GCGCACCGCCGGTCAGCTGGTCCAGCTCGCCTCCGTGCTCTTCGAG
CAGGGTGGTCGCTTCGTCGAGCTTGCCGCCCACTTCA 

EVGGKLDEATTLLEEHGGELDQLTGGAHQLADALAQIRNEINGAVASSSGIVN
TLQAM 

P M 
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S44 Rv1566c TGGTGGATCTGGCCAGCTATGGACGCGGCCGGCATCTGTTGTCAAA

GTGTCTGTAGTGATTGGTGTGAATAAAGTGACTTCCGGCTGGAATG
GCAGACGTGGTGGATCTGGCCAGCTATGGACGCGGCCGGCATCTG
TTGTCAAAGTGTCTGTAGTGATTGGTGTGAATAAAGTGACTTCCGG
CTGGAATGGCAGACGGTGAAGTCACGTGCTGAGGCACACACCACC
CGAGAGTGCCAAGGAGGTTACAACCCCATGAAACGCAGCATGAAA
AGCGGCTCCTTCGCGATCGGTCTGGCAATGATGCTCGCCCCGATGG
TGGCCGCGCCCGGTCTTGCGGCCGCAGACCCGGCCACGCGGCCGG
TGGATTATCAA 

WWIWPAMDAAGICCQSVCSDWCE#SDFRLEWQTVKSRAEAHTTRECQGGY
NPMKRSMKSGSFAIGLAMMLAPMVAAPGLAAADPATRPVDYQ 

Y   

S45 Rv1566c CATCTGTTGTCAAAGTGTCTGTAGTGATTGGTGTGAATAAAGTGACT
TCCGGCTGGAATGGCAGACGGTGAAGTCACGTGCTGAGGCACACA
CCACCCGAGAGTGCCAAGGAGGTTACAACCCCATGAAACGCAGCAT
GAAAAGCGGCTCCTTCGCGATCGGTCTGGCAATGATGCTCGCCCCG
ATGGTGGCCGCGCCCGGTCTTGCGGCCGCAGACCCGGCCACGCGG
CCGGTGGATTATCAACAGATCACCGACGTC 

ICCQSVCSDWCE#SDFRLEWQTVKSRAEAHTTRECQGGYNPMKRSMKSGSF
AIGLAMMLAPMVAAPGLAAADPATRPVDYQQITDV 

Y   

S46 Rv1566c GATGGTGGCCGCGCCCGGTCTTGCGGCCGCAGACCCGGCCACGCG
GCCGGTGGATTATCAACAGATCACCGACGTCGTGATCGCGCGCGGG
CTGTCGCAGCGCGGCGTGCCGTTCTCCTGGGCCGGCGGCGGCATCA
GCGGCCCCACGCGCGGCACCGGTACCGGCATCAACACCGTCGGGTT
CGACGCCTCCGGTTTGATCCAGTACGCCTATGCCGGTGCCGGGCTA
AAGCTGCCGCGTTCTTCCGGCCAGATGTACAAGGTTGGGCAAAAGG
TCCTGCCGCAGCAAGCGCGCAAGGGCGACCTGATCTTCTACGGCCC
CGAAGGCACGCAAAGCGTCGCGTTATACCTCGGGAAGGGCCAGAT
GCTGGAGGTGGGCGACGTCGTCCAGGTTTCGCCGGTGCGCACCAA
CGGCATGACGCCTTACCTGGTCCGGGTTCTCGGGACCCAGCCGACG
CCCGTCCAACAGGCGCCGGTCCAGCCAGCGCCGGTCCAGCAAGCGC
CCGTCCAGCAAGCGCCCGTCCAACAGGCG 

MVAAPGLAAADPATRPVDYQQITDVVIARGLSQRGVPFSWAGGGISGPTRG
TGTGINTVGFDASGLIQYAYAGAGLKLPRSSGQMYKVGQKVLPQQARKGDLI
FYGPEGTQSVALYLGKGQMLEVGDVVQVSPVRTNGMTPYLVRVLGTQPTPV
QQAPVQPAPVQQAPVQQAPVQQA 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S47 Rv1613 CAAGTAGGCTCGGGCCGGTTTTCGATTCCTGCCGTGCAAACAACCG

CGCGGCATTGATTGGTTACTTGCCGACCGGGTACCCGGACGTGCCA
GCGTCGGTGGCCTTCGAAGCGAGCGGCTTGAACAGGTCGATGGCG
CGGTCACCGGCTTCGATGTCGACCCCGGCCGACGCGTAGGTGATAC
CCCGACTACCCGGGTCTTTTCCG 

SRLGPVFDSCRANNRAALIGYLPTGYPDVPASVAFEASGLNRSMARSPASMST
PADA#VIPRLPGSFP 

N   

S48 Rv1621c AGATGTTTTTCACCCCGGCCACCGGTGCCGTGATCGGGCTCTATGAC
TTGAAGTCAATGGCCATTGTGGTGATCACACTGCCCCTGATACCGAT
CTTCATGGTGCTGATCGGGCTGGCTACCACTAACCCCTCGGCGGCC
GCGCTGGCGGCC 

MFFTPATGAVIGLYDLKSMAIVVITLPLIPIFMVLIGLATTNPSAAALAA     

S49 Rv1621c TGAAGTCAATGGCCATTGTGGTGATCACACTGCCCCTGATACCGATC
TTCATGGTGCTGATCGGGCTGGCTACCACTAACCCCTCGGCGGCCG
CGCTGGCGGCCATGACCGCCGTCCAGGCC 

KSMAIVVITLPLIPIFMVLIGLATTNPSAAALAAMTAVQ     

S50 Rv1634 CGCTGATCAACTCGACCTTGCCCAAGTCGCTGTGGACCCGTGGCTCA
GCACTGGTGTCGGCGATGTGGGGGGTCGCGACGCTGATCGGACCG
GCGACCGGAGGCCTTTTCGCGCAGCTCGGGCTGTGGCGATGGGCG
TTCGGCGTGATGACGTTGCTGACCGCGTTGATGGCCATGTTGGTGC
CGGTCGCGCTCGGTGCCGGGGGGGTCGGCCCGGGCGGCGAGACG
CCGGTG 

LINSTLPKSLWTRGSALVSAMWGVATLIGPATGGLFAQLGLWRWAFGVMTL
LTALMAMLVPVALGAGGVGPGGETPV 

N TM 

S51 Rv1638 CAGTACGCGCAGCGGCAGCGCGCGGCAGCCGAACGGCTAGCTCAG
ATCCGTGAGTCGATGCACACCGATGAGTGAGACCGCACCCAGTTCG
CCGCCGTGAGCACAGACTTGACGCGCGGCGATAGTCCAGCTCAGGC
GCTGACGTTGCGCCGTCTGTTCGACCGCGATGTGGCGGCCGAGGCA
CCGCCGCCGACGACCTCAGCGAGAAACTTCCCGGTGTAGCTCGCCG
GCACCGCGGCAACGTCCTCCGGAGTGCCTTGGGCGACAACGGTTCC
GCCGCCGGCACCGCCCTCCGGGCCCAGGTCGATGATCCAATCCGAT
GTCTTGATCACGTCCAGGTTATGTTCGATGACGATCACCGTATTGCC
CTTGTCGACCAGGCCGTTGATCACGTTGAGCAGCTTGCGTATGTCGT
CG 

DDIRKLLNVINGLVDKGNTVIVIEHNLDVIKTSDWIIDLGPEGGAGGGTVVAQ
GTPEDVAAVPASYTGKFLAEVVGGGASAATSRSNRRRNVSA&AGLSPRVKSV
LTAANWVRSHSSVCIDSRI&ASRSAAARCRCAY 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S52 Rv1700 MTCACGAAKAAKCCGACATGACGATGGGGTGGTATCCCATTGCCKA

AGCGGCTCGCCGGGTGCTGCGTGSCAAAATCGTCAATTCCATTGCC
ATTGCCGGTGTTTTGGCCGTGCACGCGGTGACSACCGGGTTCSCCCA
GCCACGCCCACTCSATACCGAATGGATCGACAGGCCAACGGCGTTC
GCCGCGCGGARAGCCGAG 

HEDMTMGWYPIA AARRVLR KIVNSIAIAGVLAVHAVTTGFQPRPL 
TEWIDRPTAFAARAE 

N   

S53 Rv1733c CAACCCGCGATCGTGAAGGAGCCACCATGATCACGTTTAGGCTGCG
CTTGCCGTGCCGGACGATACTGCGGGTGTTCAGCCGCAATCCGCTG
GTGCGTGGGACGGATCGACTCGAGGCGGTCGTCATGCTGCTGGCC
GTCACGGTCTCGCTGCTGACTATCCCGTTCGCCGCCGCGGCCGGCA
CCGCAGTCCATGATTCCCGCAGCCACGTCTATGCCCACCAGGCCCAG
ACCCGCCATCCCGCAACCGCGACCGTGATCGATCACGAGGGGGTGA
TCGACAGCAACACGACCGCCACGTCAGCGCCGCCGCGCACGAAGAT
C 

TRDREGATMITFRLRLPCRTILRVFSRNPLVRGTDRLEAVVMLLAVTVSLLTIPF
AAAAGTAVHDSRSHVYAHQAQTRHPATATVIDHEGVIDSNTTATSAPPRTKI 

N 1xT
M 

S54 Rv1804c ACAAGAAGGCGTACTCGACCTGAAAGACGTTATCCACCATACGGAT
AGGGGATCTCAGTACACATCGATCCGGTTCAGCGAGCGGCTCGCCG
AGGCAGGCATCCAACCGTCGGTCGGAGCGGTCGGAAGCTCCTATG
ACAATGCACTAGCCGAGACGATCAACGGCCTATACAAGACCGAGCT
GATCAAACCCGGCAAGCCCTGGCGGTCCATCGAGGATGTCGAGTTG
GCCACCGCGCGCTGGGTCGACTGGTTCAACCATCGCCGCCTCTACC
AGTACTGCGGCGACGTCCCGCCGGTCGAACTCGAGGCTGCCTACTA
CGCTCAACGCCAGAGACCAGCCGCCGGCTGAGGTCTCAGATCAGA
GAGTCTCCGGACTCACCGGGGCGGTTCAATTCCGGGAGAATCGTTG
TCTATGAGAGTTGTGTCAACGCTACTCAGCATTCCGTTGATGATCGG
CTTGGCGGTTCCGGCCCACGCGGGGCCCAGCGGTGACGACGCGGT
CTTTCTTGCCTCGCTAGAGCGGGCAGGCATTACCTACAGCCACCCGG
ATCAAGCCATAGCATCGGGCAAG 

QEGVLDLKDVIHHTDRGSQYTSIRFSERLAEAGIQPSVGAVGSSYDNALAETING
LYKTELIKPGKPWRSIEDVELATARWVDWFNHRRLYQYCGDVPPVELEAAYYA
QRQRPAAG&GLRSESLRTHRGGSIPGESLSMRVVSTLLSIPLMIGLAVPAHAG
PSGDDAVFLASLERAGITYSHPDQAIASGK 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S55 Rv1808 ACCGCGCTTTGTTAATGTCGCTGGTCGCCACGAACATCTTCGGGCAG

AACACACCGGCGATCGCGGCCACCGAGGCCCACTACGCGGAGATG
TGGGCGCAAGATGCGGCCGCGATGTATGGCTATGCCGGCTCGTCG
GCCACTGCGTCGCAGTTGGCGCCGTTCAGCGAGCCGCCGCAAACGA
CCAATCCGTCGGCAACGGCCGCTCAATCAGCCGTCGTCGCCCAGGC
C 

RALLMSLVATNIFGQNTPAIAATEAHYAEMWAQDAAAMYGYAGSSATASQ
LAPFSEPPQTTNPSATAAQSAVVAQA 

N   

S56 Rv1813c GGCTCAACCCTTTCAAACCGCTGGATTACCGACCGCAGAAAGGGGG
CAGGACATGATCACAAACCTCCGACGCCGAACCGCGATGGCAGCCG
CCGGCCTAGGGGCTGCTCTCGGGCTGGGCATCCTGCTGGTTCCGAC
GGTGGACGCCCATCTCGCCAACGGTTCGATGTCGGAAGTCATG 

AQPFQTAGLPTAERGQDMITNLRRRTAMAAAGLGAALGLGILLVPTVDAHLA
NGSMSEVM 

Y   

S57 Rv1886c GTAACGACTTTGCGCCCGAATCGACATTTGGCCTCCACACACGGTAT
GTTCTGGCCCGAGCACACGACGACATACAGGACAAAGGGGCACAG
GTATGACAGACGTGAGCCGAAAGATTCGAGCTTGGGGACGCCGAT
TGATGATCGGCACGGCAGCGGCTGTAGTCCTTCCGGGCCTGGTGG
GGCTTGCCGGCGGAGCGGCAACCGCGGGCGCGTTCTCCCGGCCGG
GGCTGCCGGTCGAGTACCTGCAGGTGCCGTCGCCGTCGATGGGCC
GCGACATCAAGGTTCAGTTCCAGAGCGGTGGGAACAACTCACCTGC
GGTTTATCTGCTCGACGGCCTGCGCGCCCAAGACGACTACAACGGC
TGGGATATCAACACCCCGGCGTTCGAGTGGTACTACCAGTCGGGAC
TGTCGATAGTCATGCCGGTCGGCGGGCAGTCCAGCTTCTACAGCGA
CTGGTACAGCCCGGCCTGCGGTAAGGCTGGCTGCCAGACTTACAAG
TGGGAAACCTTC 

#RLCARIDIWPPHTVCSGPSTRRHTGQRGTGMTDVSRKIRAWGRRLMIGTAA
AVVLPGLVGLAGGAATAGAFSRPGLPVEYLQVPSPSMGRDIKVQFQSGGNN
SPAVYLLDGLRAQDDYNGWDINTPAFEWYYQSGLSIVMPVGGQSSFYSDW
YSPACGKAGCQTYKWETF 

Y   

S58 Rv1916 GGAAGCGCCGCATCTCCTCGTCGGTCATGCCGGTGGTGTCCCAGTT
GAACGATGGTGAGAGGTTGTACGCCAGCATCTGGTCGGGGAACTC
GGCATGGATCGCCTCGGCGAACTGTCGAGCGTCGGCGAGATCGGC
GGTCTTGGTCTCCATCCAAAGAATGTCGGCAAACGGTGCCGCGGCC
AGCGATTTGGCGATCGCATACGGTATGCCGCCGCGGATCTGCTGGG
AGGCCTGCTCTTGCTGTTCGTAGTTGTTGGCGTCGCGAACCAGCCC
GTCACGCACCCCG 

GVRDGLVRDANNYEQQEQASQQIRGGIPYAIAKSLAAAPFADILWMETKTAD
LADARQFAEAIHAEFPDQMLAYNLSPSFNWDTTGMTDEEMRRF 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S59 Rv1926c AATCTGGAGTTAGCAGCGGGTCATTTGCGGCTTAAGGTAATGACGT

CGGCGAGGTTCGAACCAGGTAATCGCCCCAACAAGTAGTGGAGGT
AGGGACCAATGAAGCTCACCACAATGATCAAGACGGCAGTAGCGG
TCGTGGCCATGGCGGCCATCGCGACCTTTGCGGCACCGGTGGTGTT
GACGGCGCCGCCGACGGGGCGGGCGCCG 

NLELAAGHLRLKVMTSARFEPGNRPNK#WR#GPMKLTTMIKTAVAVVAMAA
IATFAAPVVLTAPPTGRAP 

Y   

S60 Rv1926c TATCGAATCTGGAGTTAGCAGCGGGTCATTTGCGGCTTAAGGTAAT
GACGTCGGCGAGGTTCGAACCAGGTAATCGCCCCAACAAGTAGTG
GAGGTAGGGACCAATGAAGCTCACCACAATGATCAAGACGGCAGT
AGCGGTCGTGGCCATGGCGGCCATCGCGACCTTTGCGGCACCGGTC
GCGTTGGCTGCCTATCCCATCACCGGAAAACTTGGCAGTGAGCTAA
CGATGACCGACACCGTTGGCCAAGTCGTGCTCGGCTGGAAGGTCAG
TGATCTCAAATCCAGCACGGCAGTCATCCCCGGCTATCCGGTGGCC
GGCCAGGTCTGGGAGGCCACTGCCACGGTCAATGCGATTCGCGGC
AGCGTCACGCCCGCGGTCTCGCAGTTCAATGCCCGCACCGCCGACG
GCATCAACTACCGGGTGCTGTGGCAAGCC 

SNLELAAGHLRLKVMTSARFEPGNRPNKWRGPMKLTTMIKTAVAVVAMAAI
ATFAAPVALAAYPITGKLGSELTMTDTVGQVVLGWKVSDLKSSTAVIPGYPV
AGQVWEATATVNAIRGSVTPAVSQFNARTADGINYRVLWQA 

Y   

S61 Rv1926c CGAGCGCGCGGCTCTCACCGGGTTCGGCGCCCGACGGGCCGGGTA
TGGCGGTCACCACACCATCCTGACATGCGGTTTGGCTCCCTTGCGCT
GGTCGCCTACGACTCGGCCATCAAGCATTCATGGCCACGCCCGTCG
TCGGTGCGCCGGCTACGGATGTGAACGGCATCGTCTGCCCCACGGT
TCCTATCGAATCTGGAGTTAGCAGCGGGTCATTTGCGGCTTAAGGT
AATGACGTCGGCGAGGTTCGAACCAGGTAATCGCCCCAACAAGTAG
TGGAGGTAGGGACCAATGAAGCTCACCACAATGATCAAGACGGCA
GTAGCGGTCGTGGCCATGGCGGCCATCGCGACCTTTGCGGCACCG
GTCGCGTTG 

RARGSHRVRRPTGRVWRSPHHPDMRFGSLALVAYDSAIKHSWPRPSSVRRLR
M&TASSAPRFLSNLELAAGHLRLKVMTSARFEPGNRPNK#WR#GPMKLTTMI
KTAVAVVAMAAIATFAAPVAL 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S62 Rv1980c GACTCAGATATCGCGGCAATCCAATCTCCCGCCTGCGGCCGGCGGT

GCTGCAAACTACTCCCGGAGGAATTTCGACGTGCGCATCAAGATCT
TCATGCTGGTCACGGCTGTCGTTTTGCTCTGTTGTTCGGGTGTGGCC
ACGGCCGCGCCCAAGACCTACTGCGAGGAGTTGAAAGGCACCGAT
ACCGGCCAGGCGTGCCAGATTCAAATGTCCGACCCGGCCTACAACA
TCAACATCAGCCTGCCCAGTTACTACCCCGACCAGAAGTCGCTGGA
AAATTACATCGCCCAGACGCGCGACAAGTTCCTCAGCGCGGCCACA
TCGTCCACTCCACGCGAAGCCCCCTACGAATTGAATATCACCTCGGC
CACATACCAGTCCGCGATACCGCCGCGTGGTACG 

TQISRQSNLPPAAGGAANYSRRNFDVRIKIFMLVTAVVLLCCSGVATAAPKTYC
EELKGTDTGQACQIQMSDPAYNINISLPSYYPDQKSLENYIAQTRDKFLSAATS
STPREAPYELNITSATYQSAIPPRGT 

Y   

S63 Rv1980c ATTTCGACGTGCGCATCAAGATCTTCATGCTGGTCACGGCTGTCGTT
TTGCTCTGTTGTTCGGGTGTGGCCACGGCCGCGCCCAAGACCTACT
GCGAGGAGTTGAAAGGCACCGATACCGGCCAGGCGTGCCAGATTC
AAATGTCCGACCCGGCCTACAACATCAACATCAGCCTGCCCAGTTAC
TACCCCGACCAGAAGTCGCTGGAAAATTACATCGCCCAGACGCGCG
ACAAGTTCCTCAGCGCGGCCACATCGTCCACTCCACGCGAAGCCCCC
TACGAATTGAATATCACCTCGGCCACATACCAGTCCGCGATACCGCC
GCGTGGTACGCAGGCCGTGGTGCTCAAGGTCTACCAGAACGCCGG
CGGCACGCACCCAACGACCACGTACAAGGCCTTCGATTGGGACCAG
GCCTATCGCAAGCCAATCACCTATGACACGCTGTGGCAGGCTGACA
CCGATCCGCTGCCAGTCGTCTTCCCCATTGTGCAAGGTGAACTGAGC
AAGCAGACCGGACAACAGGTATCGATAGCGCCG 

FDVRIKIFMLVTAVVLLCCSGVATAAPKTYCEELKGTDTGQACQIQMSDPAYN
INISLPSYYPDQKSLENYIAQTRDKFLSAATSSTPREAPYELNITSATYQSAIPPR
GTQAVVLKVYQNAGGTHPTTTYKAFDWDQAYRKPITYDTLWQADTDPLPV
VFPIVQGELSKQTGQQVSIAP 

Y   

S64 Rv1981c TTCTACTCTGGGTTCTACCTGCCGATGTACTGGTCGAGTCGGGCCAA
GTTGACCAACACCGCCGACATGATCCGGCTGATCATCCGCGACGAG
GCCGTGCACGGTTACTACATCGGCTATAAGTTCCAGCGTGGTCTGG
CGTTGGTTGACGACGTCACGCGCGCCGAGCTCAAGGACTACACCTA
CGAGCTACTGTTCGAGCTCTACGACAACGAGGTGGAATACACCCAG
GACCTCTACGACGAGGT 

FYSGFYLPMYWSSRAKLTNTADMIRLIIRDEAVHGYYIGYKFQRGLALVDDVT
RAELKDYTYELLFELYDNEVEYTQDLYDEF 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S65 Rv1988 CCACGGCGACCACCCGCGCCCCCGCTCGCACTAGATGCGCCGTCAG

TGCCCCTTCGCCGGCGCCGATGTCAAACACGAGCTCACCGGGCCGC
ACTGCGGCCGCGCTGACTACCCGCGCTGCCCATTCGTCATGGAGCC
GGTGCCAGCCCCATGCCCGTCGCGACCGTCCGAGGGCGGACACGA
CGTACCGTCACTGCGTAGATGCCCACGCGCCCGACCGTAGCCCGCC
ACCGGCACTGCGATCAATCCAATTTCTCGGTTCAGGCAACCTTCTGG
TCATCACCAGCCCCAGGGCTCTGGCGCCGTCCGCATCAACTCCGAG
ATGACGTTGGCCGTGACGACCCACTAGACCCACCTGGCAGTAGCCG
CATTGTTGCAGTCGGCGAGCCTCAGTGCGCAGTCGCGTCTAGGTGC
AAGGATATTGCCCGTTGAGCAGACAACTCGACGGCGGCGAGTAAG
AACCGGTCAGCCCGCCTCTTAGGCCGCCCGTGGCTGAACCACCGGG
GGCAATGATGCGATTCCAATTCGCTGGGCTGAGAACGTAGTGCGTG
CCAGATCGTGCAACGG 

VARSGTHYVLSPANWNRIIAPGGSATGGLRGGLTGSYSPPSSCLLNGQYPCT@
TRLRTEARRLQQCGYCQVGLVGRHGQRHLGVDADGARALGLVMTRRLPEPRN
WIDRSAGGGLRSGAWASTQ&RYVVSALGRSRRAWGWHRLHDEWAARVVS
AAAVRPGELVFDIGAGEGALTAHLVRAGARVVAV 

N   

S66 Rv2239c CATGTATTGCCCGCCGAGATTGCCGAGGCGGCGCCCACAGCTGGGC
TGATGCCGACCTCGTCGGTCAATCTGGGCAACTGGAGCGCCAGCAG
ATTGGTACAGCCGAAATAGTTGGACATGTA 

HVLPAEIAEAAPTAGLMPTSSVNLGNWSASRLVQPK@LDMH N   

S67 Rv2301 TCTACGCTTATGCAATGACAGATCACGACCATCCCACTGTGAATGAT
TTACTGACCCGCCGACTGCTCACCATGGGCGCGGCCGCCGCAATGC
TGGCCGCGGTGCTTCTGCTTACTCCCATCACCGTTCCCGCCGGCTAC
CCCGGTGCCGTTGCACCGGCCACTGCAGCCTGCCCCGACGCCGAAG
TGGTGTTCGCCCGCGGCCGCTTC 

YAYAMTDHDHPTVNDLLTRRLLTMGAAAAMLAAVLLLTPITVPAGYPGAVA
PATAACPDAEVVFARGRF 

Y   

S68 Rv2376c TGGCCGAGGACTGACCGCTCGCTCACAGCTACGACACAGACTTGCC
CGGCGCGTGCACCGGTAGTTTGAACCAAACGCACAATCGACGGGC
AAACGAACGGAAGAACACAACCATGAGATGGTGAAATCGATCGCC
GCAGGTCTGACCGCCGCGGCTGCAATCGGCGCCGCTGCGGCCGGT
GTGACTTCGATCATGGCTGGCGGCCCGGTCGTATACCAGATGCAGC
CGGTCGTCTTCGGCGCGCCACTGCCGTTGGAC 

GRGLTARSQLRHRLARRVHR#FEPNAQSTGKRTEEHNHEMVKSIAAGLTAAA
AIGAAAAGVTSIMAGGPVVYQMQPVVFGAPLPLD 

Y   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S69 Rv2391 CGGCAACCCGCTCGACGTGCGGGAGCGCATCGAAAACATCTACGCC

AAACAGGGTTTCGACAGCATCGACAAGACCGACCTGCGAGGGCGC
TTTCGCTGCCGGTCGAGTTCGTCGGTGGTTACCCCGGGCGCGACCG
CCTTGCCCGCCTCGGCCACCTTCGCGGCCTGAGCGCAGCTACGCATC
CTGACGATCATCACCCCGCCCCCGGCTCACGCTTGGCCTCCGTGACC
GCACGCATCGCCCGGTTGCGCGCACCG 

GNPLDVRERIENIYAKQGFDSIDKTDLRGRFRCRSSSSVVTPGATALPASATFAA
&AQLRILTIITPPPAHAWPP&PHASPGCAHR 

P   

S70 Rv2693c GCGATTCTGCGTCTGCTCTCCCACCTAGCGGTAGTCGCTGTAGCCGT
AGTCGTCCAGCGGGACGGCAGCACCGGTGGCCGCACCGAAGTCCG
GGCTGTAGTACTGATCCTCATACGACGGGATGGTGTACGCCGCAGC
GCGGGCCTCCTCGGTGGGCTGCACCGCGACGTTGCTGTGGGCGGT
GGTCTTCACACTGTCGATCCTGATCCGGCGGCCGATAGTCGGCTACT
TGTGGAGCTGGCTCAGCGGGCGCGATCGCGCCTGGCGCGACGTGT
CCCGCGCTGTCTT 

RFCVCSPT@R@SL@P@SSSGTAAPVAAPKSGL@Y&SSYDGMVYAAARASSV
GCTATLLWAVVFTLSILIRRPIVGYLWSWLSGRDRAWRDVSRAVL 

P TM 

S71 Rv2729c CTGAAGAATATGTCGGCCATTTCACGTTGTTCCACCTCTCTTTGCGTC
ACGCTCTGTGGTGGCTGGGCAGCCTGGCCGCAGTCGCCAGTTTCAC
CCTGCAGGCCATTGCGCTGACGATGGGTTCGGTGGTGTTGGTGCAG
TCGCTGCAGGCCACCGCACTGTTGTTCGCGCTGCTGATCGATGCTCG
GTTGACTCATCACCGCTGTACTCCCAGGGAGTGGATGTGGGCGGTA
TTGCTGGCCGGCGCGGTGGCCGTCATCGTCATGTCGGGCAACCCGG
CGGCCGGCACTACTCGGGCCCCCTTCTCGACCTGGGCGGTGGTTGC
TGTCGTG 

EEYVGHFTLFHLSLRHALWWLGSLAAVASFTLQAIALTMGSVVLVQSLQATAL
LFALLIDARLTHHRCTPREWMWAVLLAGAVAVIVMSGNPAAGTTRAPFSTW
AVVAVV 

P TM 

S72 Rv2768c TTCAGAACGCGATCAACGGCGCGGTCAACACCACCGCCTGGTTCGT
CATGGCCACCATCCCCAACGCGGTATTCCTCGGACACGCCTTTGCTG
CCCTAAACCCGGCAACCGTGACCGCAGCCGCCGATGCCGTTCCAGC
TGCCGCGGCAGCAGCTGGTTTGGCGCACACGGTGACGCCAGTGGG
CGTTGGTGGGGCCTCGCTGACGGCGAGTCTGGGCGAGGCGTCCTC
GGTCGGTGGCCTGTCGGTCCCGGCCGGTTGGTCGACCGCTGCTCCG
GCCATGACGTCTGGTACCACGGCACTGGAGGGCTCGGTCTGGGCG
GTCCCCGAGGAAGCCGGGCCA 

QNAINGAVNTTAWFVMATIPNAVFLGHAFAALNPATVTAAADAVPAAAAA
AGLAHTVTPVGVGGASLTASLGEASSVGGLSVPAGWSTAAPAMTSGTTALE
GSVWAVPEEAGP 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S73 Rv2878c AGGGGGCGCCGGGATGTACTGAACCGTCACGGAGCGTATTACGTC

ATTAGGTCAAAACACGAACAAGTGAGGTCTGTCATGAGTCTTCGCC
TGGTGTCCCCGATCAAGGCGTTTGCGGACGGCATTGTGGCCGTTGC
TATCGCGGTTGTCCTGATGTTCGGTCTGGCCAATACACCGCGAGCG
GTGGCAGCCGATGAACGTCTGCAGTTCACCGCA 

RGRRDVLNRHGAYYVIRSKHEQVRSVMSLRLVSPIKAFADGIVAVAIAVVLMF
GLANTPRAVAADERLQFTA 

Y   

S74 Rv2878c TCATTAGGTCAAAACACGAACAAGTGAGGTCTGTCATGAGTCTTCG
CCTGGTGTCCCCGATCAAGGCGTTTGCGGACGGCATTGTGGCCGTT
GCTATCGCGGTTGTCCTGATGTTCGGTCTGGCCAATACACCGCGAG
CGGTGGCAGCCGATGAACGTCTGCAGTTCACCGCAACCACGCTCAG
CGGTGCTCCC 

IRSKHEQVRSVMSLRLVSPIKAFADGIVAVAIAVVLMFGLANTPRAVAADERL
QFTATTLSGAP 

Y   

S75 Rv2878c CGAGCGCAGGGGGCGCCGGGATGTACTGAACCGTCACGGAGCGTA
TTACGTCATTAGGTCAAAACACGAACAAGTGAGGTCTGTCATGAGT
CTTCGCCTGGTGTCCCCGATCAAGGCGTTTGCGGACGGCATTGTGG
CCGTTGCTATCGCGGTTGTCCTGATGTTCGGTCTGGCCAATACACCG
CGAGCGGTGGCAGCC 

ERRGRRDVLNRHGAYYVIRSKHEQVRSVMSLRLVSPIKAFADGIVAVAIAVVL
MFGLANTPRAVAA 

Y   

S76 Rv2922A CGTCCGTCGGCGTGGTTGGCCGCGTAACCGGTCAGGCCGAGCTCCA
ACGCTCGGCAGCGGGTCCACCAGCGG 

RWWTRCRALELGLTGYAANHADG N   

S77 Rv3009c CGACGCGACCCAACTCCTGCGCGGACTTTCCGGCGCCAGTGACGTG
ATCCACGAATTCCTGAGCGAAAACGTGCTGGACGAACTGGCCATCA
CTCCTGCCCAGGTCGCAGCCGTGGTGGCATTGGTCGATGAGGGCAA
GCTGTCCAACAGCTTGGCCCGCCAAGTCGTGGAGGGTGTGCTGGCC
GGTGAAGGTGAGCCCGAACAGGTGATGACTGCGAGAGGGTTGGC
GTTGGTCCGCGACGACTCGTTGACCCAGGCCGCGGTCGACGAGGCC
CTGGCCGCAAATCCTGATGTGGCGGACAAGATTCGCGGCGGCAAG
GTGGCCGCGGCCGGCGCGATTGTCGGTGCGGTGATGAAGGCGACC
CGCGGACAGGCCGACGCGGCCCGAGTGCGCGAACTCGTTCTAGAG
GCCTGCGGGCAGGGTTAGTTGCCGTCCGCGGGTAGCGGTTCATCAC
CGTCAGGGGAGTTGCGACGATACACGTTGAGTGTCCCGATGGTGG
CCG 

DATQLLRGLSGASDVIHEFLSENVLDELAITPAQVAAVVALVDEGKLSNSLARQ
VVEGVLAGEGEPEQVMTARGLALVRDDSLTQAAVDEALAANPDVADKIRGG
KVAAAGAIVGAVMKATRGQADAARVRELVLEACGQGLPSAGSGSSPSGELR
RYTLSVPMVA 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S78 Rv3103c CTGAACGCAGAAATCATGAGGACAATGCATGCCCCGGAGCAGTAG

CGTGAAGCTCAGCAACCAGAAACGGCACTGGCCGGGCTATCTGTTC
GGCCGGATCCGCACGTCGACCCTGGTGTTGATCGCCGCGTTCCTGG
CGGTGTGGTGGATTTACGAGACCTATAGGCCACAGGCACCAGGTCC
TGGTGACTCT 

&TQKS&GQCMPRSSSVKLSNQKRHWPGYLFGRIRTSTLVLIAAFLAVWWIYE
TYRPQAPGPGDS 

N   

S79 Rv3150 ATCTGCTCAAACAGCTTGGCAAGCAACAGATCACACCGGCGGGGAC
GACKATCGTGTTCGCCGCCGCGCCGGTGATCGTCGCCGGGACAACG
CTTTTGATCGCCGCGATCGCACCTCTGGKGGCCACCGGGTCACCCCT
GGACCCCAGTGATCAGSCGCCACTGGGACGACCCGGAGTCGTGGA
CCCTGGCCACTTATCAACGCCACGATCGCTATCGGGGCTATCAKGCG
TTGCAGAAAGCCCTGACGATGCCGCCCGACGACGTGATCAGCATCG
TCAA 

ICSNSLASNRSHRRGR SCSPPRR&SSPGQRF&SPRSHLW PPGHPWTPVI 
RHWDDPESWTLATYQRHDRYRGY ALQKALTMPPDDVISIVK 

N   

S80 Rv3162c GCATTGTCGGGGTTTTGCGCCGCCGTCTACCTGGTGTGCCGATACG
GGGCCGGTGGTGCGGGCGCGTGGTTCGGCAACGGTGGCGCCGGC
GGCGTCGGCGGCGSCRCCRCCAT 

ALSGFCAAVYLVCRYGAGGAGAWFGNGGAGGVGG   P TM 

S81 Rv3193c GGTGTTACTTAAAGCCGTTGCTTATTGGCTGGATCGGTATGAGCTG
CTGTCGCACACGCGTGGCGGCAAGCCGTTCACCGGTGCCGGGTACA
CCGATATCAACGCCGTCCTGCCGGCGAAGCTGATTCTGATGGCGAT
TGCGTTGATTTGCGCGGCCGCAGTGTTCTCGGCGATCGCCCTGCGG
GACTTGCGGATTCCGGCGATCGGCCTGGTGTTGTTGCTGCTGTCGT
CGCTGATTGTCGGCGCCGGCTGGCCGTTGATCGTCGAGCAAATCAG
CGTCAAACCCAACGCTGCGCAAAAAGAGAGCGAATATATCAGCCGA
AGTATCACCGCAACTCGGCAAGCCTATGGCCTGACGTCT 

VLLKAVAYWLDRYELLSHTRGGKPFTGAGYTDINAVLPAKLILMAIALICAAAV
FSAIALRDLRIPAIGLVLLLLSSLIVGAGWPLIVEQISVKPNAAQKESEYISRSITA
TRQAYGLTS 

P TM 
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S82 Rv3222c TGTCCGGTGACATGCTCGGTGTTGGGTGGGGTCGTAAGCGATGCC

GTCTTGCCAGCGGTGTCAGATGACGTAAAGCCAGGCGCGGGCGAG
GATGCGTACCGCGTGCCGGTGGTCGTGGCCGCGGGCTCGGGTGCG
GTTGTGCAGGTCGGCGGCCTAGAGGTTGGCTCGGCGGCTGTCGCC
GGCGAAGTCGCAGACACCGTTGCGGAGTTGTTTGTCTGCCGCCCAA
ACGAACCCGACGTGGGTGACTTTGTCGGACTAGCCGGTGGAGCGG
GCGACGCCGGCCAAGCAGGCCAGCAATTCGGGCTGGGCGTCGGCG
TGCGGGGCGAGTCGTTCGGCGCTCGTCGGCGCTTGGCCCTGTCGAC
GGTCGGCGCGTCCGGGGCAACCGCCGGACTCCGCAAAACTCATGAT
GGACATCACGGCTGTCAAGCGCGCGGGGCGCTAACCCAGCGGCGC
CTCTACATCGGCAATCCATCCGA 

CPVTCSVLGGVVSDAVLPAVSDDVKPGAGEDAYRVPVVVAAGSGAVVQVG
GLEVGSAAVAGEVADTVAELFVCRPNEPDVGDFVGLAGGAGDAGQAGQQF
GLGVGVRGESFGARRRLALSTVGASGATAGLRKTHDGHHGCQARGALTQRR
LYIGNPSD 

Y   

S83 Rv3280  TCTTCAGCCAGGACGCCACGGTGTTTGGCGGCAGCCTTGGCGAGGT
GTACGGCGAGAAAATCGTCAAGGTCCAGGAACTGGCGATCAAGAC
CGGCCGTCCGCTCATCGGCATCAACGACGGTGCTGGCGCGCGCATC
CAGGAAGGTGTCGTCTCGCTGGGCCTG 

FSQDATVFGGSLGEVYGEKIVKVQELAIKTGRPLIGINDGAGARIQEGVVSLGL N   

S84 Rv3310 TCGACGACGGCGAAGTGTGGCTGCGCAACGCGCACATCCCGGAAT
ACCGGCACGGCAGCTGGACCCTGACCAGGGTATACCGTGCCTTGGC
GGTGATCGGTGTCCTGGCAGCATCGTTGCTGGCCTCATGGGTCGGC
GCTGTCCCACAAGTGGGTCTGGCAGCGAGTGCCCTGCCGACCTTCG
CGCACGTG 

DDGEVWLRNAHIPEYRHGSWTLTRVYRALAVIGVLAASLLASWVGAVPQVG
LAASALPTFAHV 

Y   

S85 Rv3343c CTGACAAGGAGCTCGCGGCGCAGACAATCATGGGCCACAACCTGAT
GGCGGTTCCCGTCGTCGATGCCGACAACCGGCTACTGGGCACCATC
GACCGAATCCCAGTGGTTCTCGACGTCAACGCGCTGCTCGGCCCCA
TCAACGCCGGGTTGGTCATCCCGCCCGTCCCGGGATTCGGCAACAC
CACCGCGGTCCCGTCGTCGGGGTTCTTCAACATCGGCGGTGGCGGC
GGGTTGTCGGGCTTCCACAACCT 

DKELAAQTIMGHNLMAVPVVDADNRLLGTIDRIPVVLDVNALLGPINAGLVIP
PVPGFGNTTAVPSSGFFNIGGGGGLSGFHNL 
 

N   

S86 Rv3365c CTAGCTCGAACAGGTTGGCACCGGCCCGCGGCAAACCTCAGCAACG
CCCGCCGTCCTGGTCGCCGCGCAACTGGCCGGTCCGATGGAAAGTG
TTCACGATCGCGCTTCTGCCGCTGGTAGTGGCGATGGTGTTAGCAG
GATTGCGGGTCGAGGCTGCGATGGCCAGCACCAGCGGCCTGCGGC
TGGTC 

SSNRLAPARGKPQQRPPSWSPRNWPVRWKVFTIALLPLVVAMVLAGLRVEA
AMASTSGLRLV 

Y TM 
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S87 Rv3395A GCTGCCTTGTGCAATCGCGTAAAACCACCTCGGTACTGGCGGCTGC

CCTGCTGTTTTGCGGCCTGTTAGGCCCAGGGACGGCCCCACCGGCC
ACCGGTGGCGGGCCTGCCTGCCGGCCGGCAGAGCTCTTCGCCACCG
ACAACACCACCGATGGGTTCGAGCTACCGGCCGTTGCGACTATCGC
ACTAACCGGCACGGTGGTGACCGGATCGACCCTGGTCGACGGCGT
GTTCTGGTCGAATGAGCGCCAGCAGATCGGCTACGAGCGCTCCCGT
GAATTTCATCTGTGCGTTGTCGACGCGCCCACATTGCACAACGCCGC
CGAGGCACTGCACCGCACCACGTCT 

CLVQSRKTTSVLAAALLFCGLLGPGTAPPATGGGPACRPAELFATDNTTDGFE
LPAVATIALTGTVVTGSTLVDGVFWSNERQQIGYERSREFHLCVVDAPTLHNA
AEALHRTTS 

Y TM 

S88 Rv3410c CCAGCGGACTGGGCCACGCCTAAAGACTTAGCTCTCTTTCGCGAGC
GCGACCGCTTCGGTGCACTTCATTTCGCCGACAATCACGGCACCAA
GGCCAGGGATTTCCAACGACGGCGATCCGGTTGCTGCAGGAGCTG
CACGCGGCACCGCTAAATCCCGACCTGTTGGGTGCCGCGGTGGCTC
GCATCCGCGAGGCCGGGGTGACCACCGCGGTGCGGGTGAGCCCGC
AAAACGCCCAGTGGCTGACACCGGTACTGGTTGCGGCCGGTATTGA
CTTGCTGGTCATCCAGGG 

SGLGHA#RLSSLSRARPLRCTSFRRQSRHQGQGFPTTAIRLLQELHAAPLNPDLL
GAAVARIREAGVTTAVRVSPQNAQWLTPVLVAAGIDLLVIQ 

N   

S89 Rv3469c TGATCGGGATCGCTTGGTGCGCGCTGTTCCCTATCATCTGGGCGCT
GTCGGGCTCCCTGAAGGCGGACGGCGAGGCACTCGATCTGGCAAT
TCCCGGCCCCGCGACCGAAACCCATCAGCGTTCCATCCAGGAAATC
GGCCCCGGCGTCGAATGCCTCCAAGGTGTTGGCGACGGCCATGGC
GAGGTTGTTGTGCCCGTGGAAGCCGACGGAGACATCGCTGGCACC
GCG 

RGASDVSVGFHGHNNLAMAVANTLEAFDAGADFLDGTLMGFGRGAGNCQI
ECLAVRLQGARQRPDDREQRAPSDPD 

N   

S90 Rv3616c GGCAAGCAATTTGAGGAGTTGAGTCGCGTTGATCAGCGTTTTCACG
ACCAAGTAGGCAAGCGCGCCGCCCACTACGGCCATCGCGCCCGCGC
AAAACGGCGCCTGGAAGGCGGCCGATAGGGCGTGCCCGACGACCG
GGATGTAGGTCAGGTCCACAGCCACCGGGCGCACGAACTCGAGAC
CTTTCTTGGCGCCCTCCAGGATGTCGCGGGTCGTCTGGACCGCGTT
GGCCTGGTCGTGGATCAGGCTGATGAGCTGACGATCGAGGTCTGCC
AGTTCCTGGAAAAAATTCACGTGGTTGCGGTTTTTGCCGGCGTATTT
GTCCGCGGCCGAACCTAACCAGCCATCACCCGGAAAC 

FPGDGWLGSAADKYAGKNRNHVNFFQELADLDRQLISLIHDQANAVQTTRD
ILEGAKKGLEFVRPVAVDLTYIPVVGHALSAAFQAPFCAGAMAVVGGALAYL
VVKTLINATQLLKLLA 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S91 Rv3646c TTGGACATCGTCGAGTTGACCCCAGACGGCCATGCCACCAACCCGC

CGGCCCGCTACACCGAGGCGTCGCTGGTCAAAGCGCTCGAGGAGC
TGGGCATCGGCCGCCCGTCGACCTACCCGTCGATCCCGGCGACCCG
GCGAGCGCTACTCCTCACCGCTTTGGGTGGCCTGCTGATTGCCGGG
CTGGTCACCGCGATTCCCGCCGTCGGCCGCGCGCCGGAGCGGCTG
GCCGGCTACATCGCCAGCAAT 

LDIVELTPDGHATNPPARYTEASLVKALEELGIGRPSTYPSIPATRRALLLTALGG
LLIAGLVTAIPAVGRAPERLAGYIASN 

P   

S92 Rv3703c CACCGCCAGCGCGCGGGGCTGACCGCTCCGCAATTCTGGAGGTCG
GGCGGGCGGACGCGGACCCGGTTCGGGCACGTCGAGGACATTCCC
GCCGATGAGCCGGT 

HRQRAGLTAPQFWRSGGRTRTRFGHVEDIPADEP N   

S93 Rv3712 AGGAACCCGCCCGTTGACCGCGATGACCACCCCGTCTGCATGCTTG
TCGACCATCGCCAGCGCTTCCTGCCAGCCGGCCGGGTTTTTGGCCA
GCAGGATCCGGGCTTGGTGCGCGCCGATACGAACGGTCCGGTAGC
GTCCGGCGACCTCGTCGACCTGGCAGACGGCGGCGACGGCCACAG
CCGGATCGGCGCCGAGGGCGACTGCGGCGGCCACGGCTTGGGCGG
CGTTGCCGCGATTCACCGAGCCTGGCAGTGCCAGCCGCATCGGCAG
CGCCAGCCCGTCGGGCCCATACAGCGTGGCGTCGTCGAACCACCAG
TG 

HWWFDDATLYGPDGLALPMRLALPGSVNRGNAAQAVAAAVALGADPAVA
VAAVCQVDEVAGRYRTVRIGAHQARILLAKNPAGWQEALAMVDKHADGV
VIAVNGRVP 

P   

S94 Rv3734c TGGCCACCCACCTTGATGATCCAGCCGACCGGCTGAACGCCATCCA
CGCTTCGATGCGCGGTAATAAGAACGTACTATCGCAGCTGCCCCGC
GCCCAGGCGTTGGCGGTGTCACTGCTGCTGTTGAGCCCAGCTGCGC
TGAACACCCTGCCGGGCTTGGCCAAGGCAACGCCACCGCCGTTTAA
TGTGTGCATCTCGAACGTGCCCGGTGCGCGCGAACCGCTGTACTTC
AACGGCGCCAGGATGGTCGGCAACTATCCAATGTCGTTGGTGCTCG
ACGGACAAGCGCTCAACATCACCCTGACCAGCACCGCCGAT 

ATHLDDPADRLNAIHASMRGNKNVLSQLPRAQALAVSLLLLSPAALNTLPGL
AKATPPPFNVCISNVPGAREPLYFNGARMVGNYPMSLVLDGQALNITLTSTA
D 

N   

S95 Rv3793 ACACCCGTGTTGAACCCACCCGCGTTGAACAACCCCGTGTCGCCGTC
CGGCTACCATCTACCTCCGTGCGCGACGCGGGAGCAAACTACCGGA
TCGCCCGGTACGTCGCTGTGGTGGCGGGTCTGCTAGGCGCTGTGCT
GGCCATCGCCACCCCACTGCTGCCGGTCAACCAGACCACCGCG 

TRVEPTRVEQPRVAVRLPSTSVRDAGANYRIARYVAVVAGLLGAVLAIATPLLP
VNQTTA 

N TM 
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S96 Rv3835 AACATTGGTCATGCGGCCCCGCCGACCCTGTCAGAATGGAGCGGAT

GTTGGACGCGCCCGAGCAGGACCCCGTCGATCCCGGCGACCCGGC
GAGCGCTACTCCTCACCGCTTTGGGTGGCCTGCTGATTGCCGGGCT
GGTCACCGCGATTCCCGCCGTCGGCCGCGCGCCGGAGCGGCTGGC
CGGCTACATCGCCAGCAATCCGGTGCCCAGCACTGGCGCCAAGATC
AACGCTTCGTTCAACCGCGTCGCCAGTGGTGACTGCTTGATGTGGC
CGGACGGCACGCCGGAGTCTGCCGCCGGACGGTATCGCTTCGGCA
ACCGCAGCGGTGCAGGCAGCCTGGGCCGTACTGGTCGCCTATTTCA
ACCGATTACG 

HWSCGPADPVRMERMLDAPEQDPVDPGDPASATPHRFGWPADCRAGHRD
SRRRPRAGAAGRLHRQQSGAQHWRQDQRFVQPRRQW&LLDVAGRHAGVC
RRTVSLRQPQRCRQPGPYWSPISTDY 

Y   

S97 Rv3859c TGCTGCAGCTTGAACACAGTCTCCGGGTTGAACAGGTGGTACTCGC
CCTCGCGGCGCCACTGGTATTCCCCACCCACCTCGAGTTCGCGGTGA
GCGCGTTCGTCCGGCCGGTCCAGATAGGCCAGCCGGTGCCGGGCT
GCGACATCGGCCGCGATGTCATCCAGGGTGATCCCGCCGGTGGGG
CAGGTAAGCCCGGTGAAGTATTCGTCGAGCACTTGCTCGGAGATGC
CGACAGCCTGGAACAGTTGCGCACCGGTGTAGGAGGCCAGCGTCG
AGATGCCCATCTTCGACATCACTTTCAGCACACCCTTACCTGCGGCTT
TGATGTAGTTGTTCAGCGCCGCCGTACGGTCGATGCCCTCGATAAC
ACCGCGGTCGAGCATGTCCTCGATCGACTCGAACACCAGGTAGGGG
TTGATCGCGGCCGCGCCGAATCCGACCAGCGCGGCCATGTGGTGCA
CCTCGCGGGCATCACCGGACTCGACCACCAGACCCACTTGGGTGCG
GGTCCGTTCCCGAACCAGGTGGTGGTGCACTCCCGCAACGGCGAGC
AGCGACGGTATCGGAGCCATTTCCTCGTCGGACTCGCGGTCGGACA
AGATGATGATCCGAGCGCCGTCGGCGATTGCCGCCGCCGCCGCGCC
ACGTACCTCTTCCAGCGCGGCAGCCAGCCCAGCACCTCCCTCGGAG
ACCCGGTACAGACAGCGAATCACCTTGGACCGCAATCCGTGTGG 

PHGLRSKVIRCLYRVSEGGAGLAAALEEVRGAAAAAIADGARIIILSDRESDEE
MAPIPSLLAVAGVHHHLVRERTRTQVGLVVESGDAREVHHMAALVGFGAA
AINPYLV 

N   
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ID Rv no. DNA Insert Sequence Peptide Fragment SP TM 
S98 Rv3870 GGTAGGTCGGCACCGCGTTCGCGGTACTTCTCGTATTCGGCCACGC

CGGACAGGGCTCCGGCCGCGCCGACTTTCATCCCGGCCTGTCGGAG
GATCGACTGGCGCCGATCGAGTTCTCCGGTCAACACCTCGCCCATCC
GGCTGACGAGCTCGAGCCCGCACAGCCGACGCTCACGGTGCCGTCC
GCACAGCCG 

RLCGRHRERRLCGLELVSRMGEVLTGELDRRQSILRQAGMKVGAAGALSGVA
EYEKYRERGADL 

N TM 
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Table S2. 2: Tuberculist function category distribution of 86 identified proteins. 

Functional Category Rv Number Gene Name Description 

cell wall and cell processes 

Rv0116c ldtA Probable L,D-transpeptidase LdtA 
Rv0179c  lprO Possible lipoprotein LprO 
Rv0203  - Possible exported protein (Heme-binding protein) 
Rv0236c aftD Possible arabinofuranosyltransferase AftD 
Rv0320  - Possible conserved exported protein 
Rv0425c   ctpH Possible metal cation transporting P-type ATPase CtpH 
Rv0559c  - Possible conserved secreted protein 
Rv0603 - Possible exported protein 
Rv0676c  mmpL5 Probable conserved transmembrane transport protein MmpL5 
Rv0842  - Probable conserved integral membrane protein 
Rv1029  kdpA Probable potassium-transporting ATPase a chain KdpA 
Rv1200 - Probable conserved integral membrane transport protein 
Rv1228  lpqX Probable lipoprotein LpqX 
Rv1230c - Possible membrane protein 
Rv1291c  - Conserved hypothetical secreted protein 
Rv1435c  - Probable conserved proline, glycine, valine-rich secreted protein 
Rv1522c  mmpL12 Probable conserved transmembrane transport protein MmpL12 
Rv1634 - Possible drug efflux membrane protein 
Rv1733c  - Probable conserved transmembrane protein 
Rv1926c  mpt63 Immunogenic protein Mpt63 (antigen Mpt63/MPB63)  
Rv1980c mpt64 Immunogenic protein Mpt64 (antigen Mpt64/MPB64) 
Rv2301  cut2 Probable cutinase Cut2 
Rv2376c  cfp2 Low molecular weight antigen CFP2 
Rv2693c  - Probable conserved integral membrane alanine and leucine rich protein 
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Functional Category Rv Number Gene Name Description 

Rv2729c  - 
Probable conserved integral membrane alanine valine and leucine rich 
protein 

Rv2878c  mpt53 Soluble secreted antigen Mpt53 precursor 
Rv3162c  - Possible integral membrane protein 
Rv3193c - Probable conserved transmembrane protein 
Rv3310  sapM Acid phosphatase (acid phosphomonoesterase)  
Rv3395A  - Probable membrane protein 
Rv3616c espA ESX-1 secretion-associated protein A, EspA 
Rv3793 embC Integral membrane indolylacetylinositol arabinosyltransferase EmbC  
Rv3835  - Conserved membrane protein 
Rv3870  eccCa1 ESX conserved component EccCa1. ESX-1 type VII secretion system protein. 

conserved hypotheticals 

Rv0192  - Conserved hypothetical protein 
Rv0455c  - Conserved protein 
Rv0822c  - Conserved protein 
Rv1118c  - Conserved protein 
Rv1156  - Conserved protein 
Rv1157c  - Conserved ala-, pro-rich protein 
Rv1268c  - Hypothetical unknown protein, probably secreted protein 
Rv1366  - Hypothetical protein 
Rv1638 - Conserved hypothetical protein 
Rv1804 - Conserved protein 
Rv1813c  - Conserved hypothetical protein 
Rv2239c - Conserved hypothetical protein 
Rv3103c - Conserved hypothetical protein 
Rv3222c  - Conserved hypothetical protein 
Rv3365c - Conserved protein 
Rv3703c - Conserved hypothetical protein 
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Functional Category Rv Number Gene Name Description 

information pathways 

Rv1700 - NUDIX hydrolase 
Rv1981c nrdF1 Ribonucleoside-diphosphate reductase (beta chain) NrdF1 

Rv3009c gatB 
Probable glutamyl-tRNA(GLN) amidotransferase (subunit B) GatB (Glu-ADT 
subunit B) 

Rv3646c topA DNA topoisomerase I TopA 

intermediary metabolism and 
respiration 

Rv0125  pepA Probable serine protease PepA 
Rv0255c  cobQ1 Probable cobyric acid synthase CobQ1 
Rv0983 pepD Probable serine protease PepD (serine proteinase)  
Rv1161 narG Respiratory nitrate reductase (alpha chain) NarG 
Rv1254  - Probable acyltransferase 
Rv1447c  zwf2 Probable glucose-6-phosphate 1-dehydrogenase Zwf2 
Rv1613  trpA Probable tryptophan synthase, alpha subunit TrpA 

Rv1621c  cydD 
Probabletransport transmembrane ATP-binding protein ABC transporter 
CydD 

Rv1916  aceAb Probable isocitrate lyase AceAb 
Rv1988 erm(37) Probable 23S rRNA methyltransferase Erm(37) 
Rv2391 sirA Ferredoxin-dependent sulfite reductase SirA 
Rv2922A acyP Probable acylphosphatase AcyP  
Rv3150  nuoF Probable NADH dehydrogenase I (chain F) NuoF  
Rv3410c guaB3 Probable inosine-5'-monophosphate dehydrogenase GuaB3 
Rv3469c mhpE Probable 4-hydroxy-2-oxovalerate aldolase MhpE (HOA) 
Rv3712  - Possible ligase 

Rv3859c gltB 
Probable ferredoxin-dependent glutamate synthase [NADPH] (large subunit) 
GltB 

lipid metabolism 

Rv0101  nrp Probable peptide synthetase Nrp (peptide synthase) 
Rv0129c fbpC Secreted antigen 85-C FbpC (85C)  
Rv0436c pssA Probable CDP-diacylglycerol--serine O-phosphatidyltransferase PssA  
Rv0675 echA5 Probable enoyl-CoA hydratase EchA5 

http://www.uniprot.org/uniprot/
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Functional Category Rv Number Gene Name Description 
Rv0824c desA1 Probable acyl-[acyl-carrier protein] desaturase DesA1  
Rv1886c  fbpB Secreted antigen 85-B FbpB (85B) (antigen 85 complex B) 
Rv3280 accD5 Probable propionyl-CoA carboxylase beta chain 5 AccD5 
Rv3734c  tgs2 Putative triacylglycerol synthase (diacylglycerol acyltransferase) Tgs2 

PE/PPE 
Rv1808  ppe32 PPE family protein PPE32 
Rv2768c  ppe43 PPE family protein PPE43 
Rv3343c  ppe54 PPE family protein PPE54 

regulatory proteins Rv1267c embR Probable transcriptional regulatory protein EmbR 
virulence, detoxification, 

adaptation 
Rv1478  - Possible invasion protein 
Rv1566c  - Possible Inv protein 

unkown MT3042  - Uncharacterized protein 
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Table S2. 3: Summary of significantly enriched Gene Ontology (GO) terms and gene list. 

Type Category Term Count P-
value Gene list 

GO     
 

 Biological Process    
 

 
 response to antibiotic 5 0,04 Rv0129c, Rv1634, Rv1886, Rv1988 and Rv3793 

 
 

   
 

 
Cellular 
Component    

 

 

 extracellular region 28 0 

Rv0116c, Rv0125, Rv0129c,Rv0179, Rv0192, 
Rv0203, Rv0436c, Rv0455c, Rv0559c, Rv0676c, 
Rv0983, Rv1157c, Rv1161, Rv1230c, Rv1435c, 
Rv1566c, Rv1804c, Rv1886c, Rv1926c, Rv1980c, 
Rv2301, Rv2379c, Rv3103c, Rv3193c, Rv3310, 
Rv3616c, Rv3835 

 
 

   
 

 Molecuar Function    
 

 

 transferase activity, transferring acyl 
groups 4 0,01 Rv0116c, Rv0129c, Rv0192, Rv1886c 
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Table S3. 1: Tuberculist functional categories of active-TB selected ORFs and their DNA sequence derived peptide sequences. 

Functional 
category 

Rv no. Description Peptide sequence 

cell wall and 
cell processes 

Rv0092 cation transporter P-type ATPase A 
ctpA  Cation-transporting ATPase 

MRAARRHAESLGETAVFVEVDGEPCGVIAVADAVKDSARDAVAALADR 

Rv0203*  hypothetical exported protein. HEME 
binding according to uniprot 

ETNQVMTAVLQQQVGPGSVASLKAHFEANPKVASDLHALSQPLTDLSTRCSLPI
SGLQAIGL 

Rv0361  Probable conserved membrane 
protein 

AKETQVIVTAHEAATEVFQTNQAPTTPVARTTPVATIDAPTCTATIGSILANRLLR
SEATAVEIC 

Rv0362  Mg2+ transport transmembrane 
protein mgtE   

PNMTVSQAVASVRERASGLRSDARTTVQTAG&RTPRA 

Rv0724  Possible protease IV SppA 
(endopeptidase IV) (signal peptide 
peptidase). Involved in digestion of 
the cleaved signal peptides. This 
activity is necessary to maintain 
proper secretion of mature proteins 
across the membrane. Conserved in 
M. tuberculosis, M. leprae, M. bovis 
and M. avium paratuberculosis; 
predicted to be essential for in vivo 
survival and pathogenicity (See 
Ribeiro-Guimaraes and Pessolani, 
2007).  

ITGSIGVITGKLVVRDLKDRLGVGSDAVRTNANAD 

Rv1009 Probable resuscitation-promoting 
factor RpfB. Predicted possible vaccine 
candidate (See Zvi et al., 2008). 

&SNGWGL@VSEGPFCFLFAV@VVECCRGRGYSALTLLTKLHQTQSPMLRLVV
GALLLVLAFAGGYAVAACKTVTLTVDGTAMRVTTMKSRVIDIVEEN 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv1029 Probable potassium-transporting 
ATPase a chain KdpA 

SGEATMSHFTQMTGLAVQNFVSASAGMCVLAALIRGLARKRASTLGNFWVDL
ARTVLRNIGDDIAEDVEIDLSRIDAITRNVPKKTVIRPGEGLNMVLI 

Rv1269c  Conserved probable secreted protein TPMTTMITLRRRFAVAVAGVATAAATTVTLAPAPANAADVYGAIAYSGNGSW
GRS 

Rv1271c*  Conserved hypothetical secreted 
protein 

NTKDEAFIAQMESIGVTFSSPQVATQQAQLVCKKLASGETGTEIAEEVLSQTNLT
TKQAAYFVVDATKAYCPQYASQLT 

Rv1435c*  Probable conserved proline, glycine, 
valine-rich secreted protein 

LTIAISVNSPLFARRYFRNQFGSAEPHSRIEFLFDHRLNCQHPMGNMSPAAPGRF
QMV 

Rv1733c*  Probable conserved transmembrane 
protein. Predicted possible vaccine 
candidate (See Zvi et al., 2008). 

QFTAMIATTRDREGATMITFRLRLPCRTILRVFSRNPLVRGTDRLEAVVMLLAVT
VSLLTIPFAAAAGTAVHDSRSHVY 

Rv1799* Probable lipoprotein LppT, has 
possible signal peptide and 
appropriately positioned PS00013 
Prokaryotic membrane lipoprotein 
lipid attachment site. 

IPPPYATPPTTTNTPYPPTPPDPPTPAHRPPDPRRRWTIGRSAGSLLPARRRRAR
HWLGVNEASRISTKFPRNISRRPQWS@HLIGVRSGQYIET&EE&SMSVKSKNG
RLAARVLVALAALFAMIALTGSACLAEGPPLGRNPQGAPAPVGGTVIVA 

Rv1860  Alanine and proline rich secreted 
protein Apa (fibronectin attachment 
protein) (immunogenic protein 
MPT32) (antigen MPT-32) (45-kDa 
glycoprotein) (45/47 kDa antigen). 
Corresponds to spots 1860 identified 
in short term culture filtrate. 
Identified in immunodominant 
fractions of M. tuberculosis H37Rv 
culture filtrate. 

SLVTVAVPATANADPEPAPPVPTTAASPPSTAAAPPAPATPVAPPPPAAANTPN
AQPGDPNAA 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv1910c  hypothetical exported protein. 
phosphatidylethanolamine-binding 
protein   

STTFLSRSSCHREPRESKRHRR@HRPPADRPGSSAHSKADAAASLARWSKPWL
LQLRLATMINMESTVAHAFHRFALAILGLALPVALVAYGGNGDSRKAAPLAPKA
AALGRSMPETPTGDVLTISSPAFADGAPIPEQYTCK 

Rv1926c  Immunogenic protein Mpt63 (antigen 
Mpt63/MPB63) (16 kDa 
immunoprotective extracellular 
protein). Predicted possible vaccine 
candidate (See Zvi et al., 2008). 

WFSAIPRRSPP#PAASSVRLKVMTSARFEPGNRPNK@WR@GPMKLTTMIKT
AVAVVAMAAIATFAAPVALAAYPITGKLGSELTMTDTVGQ 

Rv1926c   Immunogenic protein Mpt63  WR@GPMKLTTMIKTAVAVVAMAAIATFAAPVALAAYPITGKLGSELTMTDT
VGQVVLADVDNQLTVGTDLDQGSFVTAGLDADDHR 

Rv1979c  Possible conserved permease. 
FUNCTION Unknown; possibly 
involved in transport of amino acid 
across the membrane. With B-cell 
epitopes. 
http://iai.asm.org/content/70/12/699
6.long   

LLGSNKIAASDDTVKLAAAIGNATFRTIIVVGALISMFGINVAASFGAPRLWTALA 

Rv1980c  Immunogenic protein Mpt64. mRNA 
identified by microarray: 
downregulated during starvation (see 
Betts et al., 2002), and possibly down-
regulated by hrcA|Rv2374c (see 
Stewart et al., 2002). 

LWQADTDPLPVVFPIVQGELSKQTGQQVSIAPNAGLDPVNYQNFAVTNDGVIF
FFNPGELLPEAAGPTQVLVPRSAIDSMLA 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv1980c  immunogenic protein MPB64/MPT64  DRSASLSLVRHRRQQRDALCLSSTQISRQSNLPPAAGGAANYSRRNFDVRIKIFM
LVTAVVLLCCSGVATAAPKTYCEELKGTDTGQACQIQMSDPAYNINISLPSYYPD
QKSLENYIAQTRDKFLSA 

Rv2152c Probable UDP-N-acetylmuramate-
alanine ligase MurC. Involved in cell 
wall formation; peptidoglycan 
biosynthesis. 

IATVAGVSGASVAEHVTVPMRYVPDFSAVAQQVAAAASP 

Rv2339 Probable conserved transmembrane 
transport protein MmpL9. Unknown. 
Thought to be involved in fatty acid 
transport. 

ILLCWLGFTVFVSVAVPPLEAIGETRAVAVAPDDAQSMRAMRRAGKVFNEFDS
NSIAMVVLESDQPLGEKAHRYYDHLVDTLVLDQ 

Rv2673  Possible conserved integral membrane 
protein. Possible 
arabinofuranosyltransferase AftC; 
Involved in the biosynthesis of the 
mycobacterial cell wall arabinan 

MRWGRALEYLKITYGWSLLLIVTFTVLYFRYLGSQQWPFPRSLMVIASQFDGDY 

Rv2875 Major secreted immunogenic protein 
Mpt70. Generally found as a 
monomer; homodimer in culture 
fluids. 

RRNHVGGSETAQAAVSGSEGVNGMKVKNTIAATSFAAAGLAALAVAVSPPAA
MAVMGASALPAAPP 

Rv2878c  soluble secreted antigen mpt53 
precursor   

R#KLARKLY#QFSRTILNAEIKRTMHAPERRGRRDVLNRHGAYYVIRSKHEQVRS
VMSLRLVSPIKAFADGIVAVAIAVVLMFGLANTPRAVAADERLQFTATTLSGA
PFDGASLQGKPAVLWFWTPWCPFCNAEAPSLSQVAAANPA 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv2921c  Probable cell division protein FtsY DELDKVKRVVTRRASVDEVLLVLDATIGQNGLAQARVFAEVVDISGAV 

Rv2942  Conserved transmembrane transport 
protein MmpL7. Involved in 
translocation of phthiocerol 
dimycocerosate (dim) in the cell wall. 

RATITSGSADGQRRSPRLTNLLVVAAWVAAAVIANLLLTFTQAEPHDTSPALLPQ
DANRVSPSFTSSH 

Rv3036c  Probable conserved secreted protein 
TB22.2 highly similar to secreted 
immunogenic protein MPT64/MPB64. 
spot 3036c identified in short term 
culture filtrate. With bit of Rv3553 

TRFRGRAAQCRQV@TDVADDLAVDDPRRPDHAPRQGIDLVTGADGGKHPDA
APTPLVCEDD@TMRYLIATAVLVAVVLVGWPAAGAPPSCAGLGGTVQAGQI
CHVHASGPKYMLDMTFPVD 

Rv3264c D-alpha-D-mannose-1-phosphate 
guanylyltransferase ManB 

IWPAGRDGTELATHQVDAVVLVGGKGTRLRPLTLSAPKPMLPTAGLPFLTHLL
SRIAAAGIEI 

Rv3330  Probable penicillin-binding protein 
DacB1 

NALGGCGIITAPGSAPAPGDVSAEAWLVADLDSGAVIAARDPHGRHRPASVI 
LNELAPVG IC YFDAVL  QLLPTG N 

Rv3395A  Probable membrane protein TQQVSVRTNTKSTQNDT#RPACRPAELFATDNTTDGFELPAVATIALTGTVVTT 

Rv3810*  exported repetitive protein precursor 
pirG (cell surface protein).  mRNA 
identified by microarray analysis and 
up-regulated after 96h of starvation 
(see Betts et al., 2002). 

PTDPITVPVA 

conserved 
hypotheticals 

Rv0455c  Conserved protein, Function unknown LPASRRPKSATVTTMSRLSSILRAGAAFLVLGIAAATFPQSAAADSTEDFPIPRRM
IATTCDAEQYLAAVRDTSPVYYQRYMIDFNNHANLQ 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv0740*  Conserved hypothetical protein. This 
region is a possible MT-complex-
specific genomic island (See Becq et 
al., 2007). 

RKNLHVWAIVGNCYIEIMPMGTRVELSKLADVALDIGRSVGCSAYENDFTLPDIP
TQ 

Rv1157c  Conserved ala-, pro-rich protein, 
H37Rv-infected guinea pig lungs at 90 
days but not 30 days (See Kruh et al., 
2010).  

NTTVASTWSVCKGLAAVVITSAAAFALCPNAAAEPATPQ 

Rv1268c  Hypothetical protein KGPTMTTSKIATAFKTATFALAAGAVALGLASPADAAAGTMYGDPAAAAK 

Rv3752c Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 90 days but not 30 days 
(See Kruh et al., 2010).  

HTWCPPLRRRGWPIPVQRHRRPARRWRS&RRLAAGVLGDGWRLEGTTLAVT
VEPCTMC 

Rv1357c*  Conserved hypothetical protein RDHSTDPQPFVSVNVSASTICDPGFLVLVEGVLGETGLPAHALQLELAEDARLS 

Rv1813c  Conserved hypothetical protein IYLSHTWAHDTQAPESRTEPSTVGGQPPYSDDLIDHRPGRRASNRGRLSTQPH&
PFDASTARKSAQPFQTAGLPTAERGQDMITNLRRRTAMAAAGLGAALGLGILL
VPTVDAHLANGSMSE 

Rv2414c  Conserved hypothetical protein. 
Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 30 days but not 90 days 
(See Kruh et al., 2010). 

STSPTVTALTSREFRAAGLTHLTAVSGANVTIVCAAALVSARLIGPR 

Rv2426c Conserved hypothetical protein WNHAKQILRIQAGSGDWEATKTDVFSEEFLLQRPLLTAIRRTEPTVLLIDETDKA
DIEIEGLLLEVLSDFAVTVPELGTLTATRAPFVLLTSNATRELSEALW 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv3038c conserved hypothetical protein   TEEFTAAMLGWPLRTFECTVPPGRLGWGWARFAFTSWKTLGWVDSGVETGS
VIGGQFDSMLAKLIVHGADRAEALARARRALNEFG 

Rv3054c Conserved hypothetical protein QMVPVWYAPAPK 
FAPPARTTPQGRYIPEVWSSTAAWPNPAMVRSGAPMMAASDAHAALVVTPE
YNGSIPAVIKNAIDWLSRPFGDGALKDKPLAVIGGSMGRYGGVWAHDETR 

Rv3188  Conserved hypothetical protein SPPCGRGASEGPSAAPLRAPPLSSWSISGSVYGSRTGSCGGTTMAVTLDRAVEA
SEIVDALKPFGVTQVDVAAVIQVSDRAVRGWRTGDIRPERYDRLAQLRDLVLL
LSDSLTPRGVGQWLHAKNRLLDGQRPVDL 

Rv3218 Conserved protein HPGPLPSSSTGRPGPHRHTA@AHCRPPQRADPARIVTRPKPIAVLLNGPTRPAS
SHGLSSCVMRAVLIVNPTATATTPAGRDLLAHALESRLQLTVEHTNHRGHGTE
LGQAAVADGVDLVVVHGGDGTVSAVVNGMLGRPGTTPVRPVPAVAVVPG
GSANVLARALGI 

Rv3256c  conserved hypothetical protein AETAGTILASTLGAGA 
Rv3863  hypothetical alanine rich protein  DDSRISQTHLRAVSDDGRWRIVGNIPRGMFVGGRRGSSVTVSDKTLIRFGDP

PGGKALTFEVVRPSDSAAQHGRVQPSADLSDDPAHNAAPVAPDPGVVRAG
AAAAARRRELDISQRSLAADGIINAVP@PASRSSRRSGVVRMRSSVPEALSRC
MVI 

Rv3900c*  Conserved hypothetical alanine rich 
protein. Identified in the cell 
membrane fraction of M. tuberculosis 
H37Rv using 2DLC/MS (See 
Mawuenyega et al., 2005). 

RGGSFGSVEGAGDLASPQSVGAGGFSGSGVQAACSQPAPRAIGASSRHASAGP
VRPAPVVTTPAAATPPVIATGPRWRCPAGRCRRRPSDRAYRLRRLGNRLRPGW
&RGNR 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv3909  Conserved protein AQRSRAGAVTALQLGWAALARVTSAIGVVAGLGMALTVPSAAPHALAGEPS 
TPFVQ 

information 
pathways 

Rv0630c  exonuclease V beta chain 
recB Involved in homologous 
recombination. 

APIPAIYTGDTDVFASQAAKDWLCLLEAFDAPQRSGLVRAAACTMFFGETAESL
AAE 

Rv2836c Possible DNA-damage-inducible 
protein F DinF. Function unknown; 
induction by DNA damage. drug 
transmembrane transporter activity. 

VRPLRYVVAGFGSSALLCPL 

Rv3646c  DNA topoisomerase I TopA GHQEVVFSATGRTLTFPGFLKAYVETVDELVGGEADDAERRLPHLTPGQRLDIVE
LTPDGHATNPPARYTEASLVKALEELGIGRPSTYSSIIKTIQDR 

Rv3834c SERYL-tRNA synthetase SerS (serine--
tRNA ligase) (SERRS) (serine translase) 

SRGEDPALVDALLTADAARRAVISTADSLRAEQKA 

intermediary 
metabolism 

and 
respiration 

Rv2277c Possible glycerolphosphodiesterase. 
Start of protein uncertain, encoded by 
neighbouring IS6110 as given, is intact 
in Mycobacterium tuberculosis 
CDC1551. Required for growth in 
C57BL/6J mouse spleen, by 
transposon site hybridization (TraSH) 
in H37Rv (See Sassetti and Rubin, 
2003). Found to be deleted (partially 
or completely) in one or more clinical 
isolates (See Tsolaki et al., 2004). 

SSWLALSGTVRYCAPRIAHVSTVGKA&RGPMVKTAMLGAVALVIALGGTCGVA
DALPLGQTDDPMIVAHRAGTRDFPENTVLAITNAVAAGVDGMWLTVQVSSDG
V 

Rv0013 Possible anthranilate synthase 
component II TrpG (glutamine 
amidotransferase). MEMBRANE 

CAAAHTPLLGVCLGHQAIGVAFGATVD 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv0327c*  Cytochromes P450 are a group of 
heme-thiolate monooxygenases. They 
oxidize a variety of structurally 
unrelated compounds, including 
steroids, fatty acids, and xenobiotics. 

QLHPIVISIRLHQTFDYQKGAAMASTLTTGLPPGPRLPRYLQSVLYLRFREWFLPA
MHRKYGDVFSLRVPPYADNLVVYTRPEHIKEIFAADPRSLHAGEGNHPVVFDPQ
P#TVVRRRPSPNVN&GRRIGRNLALSSRSAPFGLTQS 

Rv0509 Probable glutamyl-tRNA reductase 
HemA (GLUTR) 

VICDLGMPRDVDPAVARLPCVWVVDVDSVQHEPSAHAAAADVEAARHIVAAE
VASYLVV 

Rv0509  glutamyl-tRNA reductase hemA   RRIRESGVPAEALALDRTGV@RIRAEADL&GRPVGWWLWFR&F&L&KDGKR#
#GGYDRKCR&KRATV&R#RQT&FCRY&LRCCYRWFHWY FR 

Rv1130 conserved hypothetical protein. 
Possible methylcitrate dehydratase 
PrpD. Predicted possible vaccine 
candidate (See Zvi et al., 2008). 
Involved in the catabolism of short 
chain fatty acids (SCFA) via the 
tricarboxylic acid (TCA)(acetyl 
degradation route) and via the 2-
methylcitrate cycle I (propionate 
degradation route). 

GKVGIEAVDRAMRGE 

Rv1133c 5-
methyltetrahydropteroyltriglutamate-
homocysteine methyltransferase 
metE.  

RDGHDAVADEIASSRAAIASRKRDPRLHNGQIRARIEAIVASGAHRGNAAQRRA
SQDARLHLPPLPTTTIGSYPQTSALTVTQ 

Rv1393c Probable monoxygenase. Function 
unknown; probably involved in cellular 
metabolism. 

QAFVEATFPIAAHYFAVFPLAKHMESAGRRYLRQQVHDP 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv1526c  Probable glycosyltransferase. 
Unknown; thought to be involved in 
cellular metabolism. Found to be 
deleted (partially or completely) in 
one or more clinical isolates (See 
Tsolaki et al., 2004) 

AVPPNLIEFVESAGLTGVA 

Rv1703c†  Probable catechol-O-
methyltransferase. Mycobacteria with 
Segniliparus rugosus ATCC BAA-974 

SPLALELGTYLGYGALRIARAAPEARVYSVELAE 

Rv1876 Probable bacterioferritin BfrA. 
Involved in iron storage (may perform 
analogous functions in iron 
detoxification and storage as that of 
animal ferritins); ferritin is an 
intracellular molecule that stores iron 
in a soluble, nontoxic, readily available 
form. The functional molecule, which 
is composed of 24 chains, is roughly 
spherical and contains a central cavity 
in which the polymeric ferric iron core 
is deposited. 

MQDNWGFTELAAHTRAESFDEMRHAEEITDRILLLDGLPNYQRIGSLRIGQTLD
GAREA 

Rv2070c  Precorrin-6X reductase CobK. Involved 
in cobalamin biosynthesis. 

AARCPLCPGPIGPVRIGGFGGVEGLRGWLREERIDAVVDATHPF 

Rv2332  Probable [NAD] dependent malate 
oxidoreductase Mez 

LPXVQNLRAISTTVAEAVYRAAXQXGVASRTHD 

Rv2499c Possible oxidase regulatory-related 
protein 

HAGDRESDDAVSACRVAGSTVGRRILQ 
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Functional 
category 

Rv no. Description Peptide sequence 

Rv2537c  3-dehydroquinate dehydratase AroD 
(AROQ) (3-dehydroquinase) (type II 
dhqase) 

VRLVQGKAGSQTELGLKAVVRQSDSEAQLLDWIHQAADAAEPVILNAGGLT 

Rv2861c Methionine aminopeptidase MapB 
(map) (peptidase M). predicted to be 
essential for in vivo survival and 
pathogenicity (See Ribeiro-Guimaraes 
and Pessolani, 2007). Essential gene 
for in vitro growth of H37Rv, by 
sequencing of Himar1-based 
transposon mutagenesis (See Griffin 
et al., 2011) 

WTAQFEHTLLVTDTGVEILTCL 

Rv3157 Probable NADH dehydrogenase I 
(chain M) NUOK. Involved in 
aerobic|anaerobic respiration 
[catalytic activity: NADH + ubiquinone 
= NAD(+) + ubiquinol]. mRNA 
identified by microarray analysis and 
down-regulated after 4h, 24h and 96h 
of starvation 

AGAVLIILLPPGRRRLAKWAGMVVSVLTLAVSIVVAAEFKPSAEPYQFVEKHSWI
PAFGAGYTLGVDGIAVVLVLLTTVLIPLLLVAGWNDATDA 

Rv3318 Probable succinate dehydrogenase 
(flavoprotein subunit) SdhA. Identified 
by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 30 and 90 days (See Kruh 
et al., 2010). 

AYELATGDIHVFHAKAVVIATGGSGRMYKTTSNAHTLTGDGIGIVFRKGLPLED
MEFHQFHPTGLAGLGILISEAVRGEGGRLLNGEGERFMERYAPTIVDLAPRDIVA
RSMVLEVLEG 

Rv3423c Alanine racemase Alr. Provides the D-
alanine required for cell wall 

VRPGIAVYGLSPVPALGDMGLVPAMTVKCAVCAQGW*SRRRG-GVSF 
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biosynthesis. Transforms L-alanine to 
D-alanine 

Rv3762c  Possible hydrolase. Function 
unknown; probably involved in cellular 
metabolism. 

YFPRFRALCMAENATHNLHNLLTLRGALVRDPRAWSGYLTEAIDTFADRTDVVF
ASHHWPTWGREKIVEFLSQQRDMYSYLHDQTLRLLNQGYTGVEIAEMFQLPPA
LQRAWHTH 

lipid 
metabolism 

Rv1886c  esterase, putative, antigen 85-B (fbpB) RPFTFTHAHLRLPDTQSAGLLYPHRTCRPPTGNQAHTRGTHHERGSDTEMRRL
CARIDIWPPHTVCSGPSTRRHTGQRGTGMTDVSRKIRAWGRRLMIGTAAAV
VLPGLVGLAGGAATAGAFSRPGLPVEYLQV 

Rv1886c† Secreted fibronectin-binding protein 
antigen 85-B fbpB . Involved in cell 
wall mycoloylation. Proteins of the 
antigen 85 complex are responsible 
for the high affinity of mycobacteria to 
fibronectin. Mycobacteria only maize 
Colletotrichum graminicola 

PHTVCSGPSTRRHTGQRGTGMTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLA
GGAATAGA 

Rv2048c  Polyketide synthase Pks12. Involved in 
biosynthesis of mannosyl-beta-1-
phosphomycoketide (MPM). Required 
for growth in C57BL/6J mouse spleen, 
by transposon site hybridization 
(TraSH) in H37Rv (See Sassetti and 
Rubin, 2003).  

AHRLHGLPEAEQHAVLLGLVRLHIATVLGNITPEAID 

Rv2252 Diacylglycerol kinase. Involved in 
synthesis of phosphatidylinositol 
mannosides (PIMS). 

ICPNADHSDGLLDITMAQSDSRTKLLRLFPTIFKGAHVELDEVSTTRAKT 
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Rv no. Description Peptide sequence 

Rv2941 Fatty-acid-AMP ligase FadD28 (fatty-
acid-AMP synthetase) (fatty-acid-AMP 
synthase). Involved in phthiocerol 
dimycocerosate (dim) biosynthesis. 
Thought to be involved in the release 
and transfer of mycoserosic acid from 
mas onto the DIOLS. 

ISYMLPRSPIVRIVDSDTCIECPDGTVGEIWVHGDNVANGYWQKPDESERTFGG
KIVTPSPGTPEGPWLRTGDSGFVTDGK 

Rv3720 Possible fatty acid synthase. Function 
unknown, but involved in lipid 
metabolism. 

LANVVRSIGVEHILPIAP 

Rv3803c  Secreted MPT51/MPB51 antigen 
protein FbpD (MPT51/MPB51 antigen 
85 complex C) (AG58C) (mycolyl 
transferase 85C) (fibronectin-binding 
protein C) (85C). May have a role in 
host tissue attachment, whereby 
ligands may include the serum 
protein fibronectin and small sugars. 

MKGRSALLRALWIAALSFGLGGVAVAAEPTAKAAPYENLMVPSPSMGRDIPVA
FLAGGPHA 

PE/PPE 

Rv0978c*  PE-PGRS family protein PE_PGRS17 MSFVNVAPQLVSTAAADAARIGSAINTANTAAAATTQVLAAAQDEVSTAIAALF
GSHGQH 

Rv1087  PE-PGRS family protein PE_PGRS21. 
Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 90 days but not 30 days 
(See Kruh et al., 2010). 

TPGGQVGDGDGGAGGAGGNGGASGAGGWLLGTGGAGGAGGNGGNG 
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Rv no. Description Peptide sequence 

Rv1450c  PE-PGRS family protein PE_PGRS27 MSLVIVAPETVAAAALDVARIGSSIGAANAAAAGSTTSVLAAGADEVSAAIATLF
GSHAREYQAISTQVAAFHDRFAQTLSAAVGSYVSAEATNAAPLATLEHNVLNAL
NAPTQALLGRP 

Rv1468c*  PE-PGRS family protein PE_PGRS29.  
Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 30 and 90 days (See Kruh 
et al., 2010). 

DNGGVGALGANGGAGGTGGWLFGNGGAGGNSGGGGGAGGIGGSAVLFGA
GGA 

Rv1768*  PE-PGRS family protein PE_PGRS31 
Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 30 and 90 days (See Kruh 
et al., 2010). Signal peptide 

HSYAVAEAATAQSVQQDLLNLINAPTQALLGRPLIGNGANGLPGT 

Rv1806*  PE family protein PE20. This region is a 
possible MT-complex-specific genomic 
island (See Becq et al., 2007). 

AFVLVCPDALAIAAGQLRHVGSVIAARNAVAAPATAELAPAAADEVSALTATQF
NFHAAMYQAVGAQAIAMNEAFVAMLG 

Rv1818c  PE-PGRS family protein PE_PGRS33. 
Function unknown. Seems to influence 
both cell surface interactions among 
mycobacteria and the interactions of 
bacteria with macrophages. host cell 
surface receptor binding (UniProt 
info). 

NGAPGTGANGGDGGILIGNGGAGGSGAAGMPGGNGGAAGLFG 

Rv2741  PE-PGRS family protein PE_PGRS47. 
Predicted to be an outer membrane 
protein (See Song et al., 2008). This 
region is a possible MT-complex-
specific genomic island (See Becq et 

GDGGESDNGDGGNGGVGGKAGLVGEGGNGGDG 
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Rv no. Description Peptide sequence 

al., 2007). Identified by mass 
spectrometry in M. tuberculosis 
H37Rv-infected guinea pig lungs at 90 
days but not 30 days (See Kruh et al., 
2010). 

Rv3343c*  PPE family protein PPE54 STGLFNAGGFNTGVVNAGSYNTGSFNAGQANTGGFNPGSVNTGWLNTGDTN 

Rv3347c**  PPE family protein PPE55. function 
unknown. NO BCG Predicted possible 
vaccine candidate (See Zvi et al., 
2008). Identified by mass 
spectrometry in M. tuberculosis 
H37Rv-infected guinea pig lungs at 30 
and 90 days (See Kruh et al., 2010). 

ALTQSPIINLGLADVGNYN 

Rv3508*  PE-PGRS family protein PE_PGRS54. 
Function unknown. 

NGGAGGAGGTPTGSGTEGTGGDGGDAGAGGNGGSATGVGNGGNGGDGGN
GGDGGN 

regulatory 
proteins 

Rv0890c  Probable transcriptional regulatory 
protein (probably LuxR-family).  
Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea 
pig lungs at 90 days but not 30 days 
(See Kruh et al., 2010). 

RATTLQVFLRDQLLLEFSRPGGDAIAARQFANDAVDATNGWHRMVALTIRARV
ATARGEPELARDDAHAALACGGGMH 

Rv3058c*  Possible transcriptional regulatory 
protein (probably TetR-family) 

PFAELSVRAISLRAGVARSGFYFYFDSKY 

Rv3849  ESX-1 transcriptional regulatory 
protein EspR. Involved in 
transcriptional mechanism. Regulates 

AARLNRLFDTVYPPGRGPHTSAEVIAA 
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Rv no. Description Peptide sequence 

transcription of genes required for 
ESX-1 system. 

unknown 

MT0066.2*  Hypothetical protein not yet annoated 
in H37Rv as recently recorded 

LMRVRWICAGNRGRKHKRRCTTQYRSTQASKLQLHFKLRQTLNRLGGLQAMV
SACG 

MT1330.1*  hypothetical protein ASSVELALAVPAKPSAARPKVAAVKVVPTMEAAKRRVNIDDLLVLMSSEVAL
VCVPSESAPGLDRFSINPWQYRYRFDGVPTVQGERSAMVVPQAQSGAVAVD
GVSPGQKNGSHH@E 

Rv2348c**  Hypothetical protein. All info from 
Tuberculist. mRNA identified by 
microarray analysis and up-regulated 
after 4h of starvation (see Betts et al., 
2002). 

DAVVAKRAESGMLGGLSVPLSWGVAVPPDDYDHWAPAPEDGADVDVQAAE
GAD 

virulence, 
detoxification, 

adaptation 

Rv1563c Maltooligosyltrehalose synthase TreY. 
Involved in trehalose biosynthesis 
(protective effect).  

WRHGLCGYRRFFSITSLAGLRQEDRAVFDASHAEVARWFTEGLVDGVRVDHLD
GLSDPSGYLAQLRELLGPNAWIVVEKILAVDEALEPTLPVDGSTGYDVLRE 

Rv2429 Alkyl hydroperoxide reductase D 
protein AhpD (alkyl hydroperoxidase 
D). Involved in oxidative stress 
response.  

HCLVAHEHTLRTVGVDREAIFEALKAAAIVS 

Rv2231A† toxin VapC16. function unknown. 
MTBC with only Frankia sp. CN3 

LTMACTACPTIWTLRCQTTCSNAFTGEALPHRHPRLAADAVNETRAIVQDVRN
SILLSAASAWEIAINYRLGKLPPPEPSASYVPE 

Rv3922c  Possible hemolysin function unknown. 
Putative membrane protein insertion 
efficiency factor 

RVTGRASXRGLIFXIXXYRHMLSPLRPASCRFVPTCSQYAVDALTEYGLLRGSWLT
MIXLAKCGPWHRGGWDPIPEGLTTGRSCXTDVDGANDDWNPASK 
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Table S3. 2: Tuberculist functional categories of latent-TB selected ORFs and their DNA sequence derived peptide sequences. 

Functional 
category Rv no. Description Peptide sequence 

cell wall and 
cell processes 

Rv0012†  Probable conserved membrane protein. Function 
unknown 

PTPCPENGETMIDRRRSAWRFSVPLVCLLAGLLLAATHGV 

Rv0050 

Probable bifunctional penicillin-binding protein 
1A/1B PonA1 (murein polymerase) (PBP1): 
penicillin-insensitive transglycosylase 
(peptidoglycan TGASE) + penicillin-sensitive 
transpeptidase (DD-transpeptidase). Involved in 
peptidoglycan synthesis (at the final stages), cell 
wall formation. Synthesis of cross-linked 
peptidoglycan from the lipid intermediates. 

KATMDGALKGTSNETFPKPTEVGGYAGVPPPPPPSEVPPSETVIQPTVEIAK 

Rv0179c 
Possible lipoprotein LprO, function unknown. 
Prokaryotic membrane lipoprotein lipid 
attachment site. 

SNAAEPSRSCY&S&QCDQCA#CWDGCMWIRAERVAVLTPTASLRRLTAC
YAALAVCAALACTTGQPAARAADG 

Rv0203*  
Possible exported protein, function unknown. 
HEME binding 

GGGNSQAAGPSQTRRKPVANRKESSMKTGTATTRRRLLAVLIALALPGAA
VALLAEP 

Rv0318c*  
Probable conserved integral membrane protein ASLVTFPVLAGILGGVVPSVRTPSAAMVSGVQHFAAGIVMAAVAXEVLP

DLRSRGP 

Rv0412c 
Possible conserved membrane protein VTVELAHPSTEPLGSRSPAEPAHPRRWFISTTPGRIMTIGIVLAALGVASAF

ATSTTIEH 

Rv0412c  Possible conserved membrane protein. Function 
unknown 

ISTTPGRIMTIGIVLAALGVATAVPSTAISART 

Rv0507 
Probable conserved transmembrane transport 
protein MmpL2. Function Unknown. Thought to be 
involved in fatty acid transport. 

TPPPHGVKAYVTGPAALNADQAEAGDKSIAKVTAITSMVIAAMLLVIYRSVI
TAVLV 
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Functional 
category Rv no. Description Peptide sequence 

Rv0559c  

Possible conserved secreted protein, function 
unknown.  A core mycobacterial gene; conserved 
in mycobacterial strains (See Marmiesse et al., 
2004). 

KGTKLAVVVGMTVAAVSLAAPAQADDYDAPFNNTIHRFGIYGPQDYNA
W 

Rv0680c  
Probable conserved transmembrane protein VKWNTVAASLAAGVITIAVALAA 

Rv1009 

Probable resuscitation-promoting factor RpfB. 
Thought to promote the resuscitation and growth 
of dormant, nongrowing cells. Has little to no 
effect on actively-growing cells. 

SNGWGL@VSEGPFCFLFAV@VVECCRGRGYSALTLLTKLHQTQSPMLRL
VVGALLLVLAFAGGYAVAACKTVTLTVDGTAMRVTTMKSRVIDIVEENG
FSVDDRDDLYPAAGVQVHDADTIVLRRSRPL 

Rv1029 
Probable potassium-transporting ATPase a chain 
KdpA. One of the components of the high-affinity 
ATP-driven potassium transport (or KDP) system. 

YSGEATMSHFTQMTGLAVQNFVSASAGMCVLAALIRGLARKRASTLGNF
WVDLARTVLRNIGDDIAEDVEIDLSRIDAITRNVPKKTVIRPGEGLNMVLI 

Rv1183  
Probable conserved transmembrane transport 
protein MmpL10. Function Unknown. Thought to 
be involved in fatty acid transport. 

VVGCWVALALVLPMAVPSLAEMAQRHPVAVLPADAPSSVAVRQMAEA
FHESGSENILVVL 

Rv1184c  

Possible exported protein. Function unknown. A 
core mycobacterial gene; conserved in 
mycobacterial strains (See Marmiesse et al., 2004). 
Predicted to be an outer membrane protein (See 
Song et al., 2008). This region is a possible MT-
complex-specific genomic island (See Becq et al., 
2007). PE-PPE domain-containing protein 

YARKPPNDSCFPMLSRTRFSMQRQMKRVIAGAFAVWLVGWAGGFGTAI
AASEPAYPWAPGPP 

Rv1269c  
Conserved probable secreted protein. Function 
unknown 

TLRRRFAVAVAGVATAAATTVTLAPAPANAADVYGAIAYSGNGSWGRS
WDYPTRAAAEATAVKSCGYSDCKVLTSFTACGAVAAN RAYQ 

Rv1271c*  
Conserved hypothetical secreted protein FTTAVGAAAIGLAVATAGTAGANTKDEAFIAQME 
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category Rv no. Description Peptide sequence 

Rv1273c 

Probable drugs-transport transmembrane ATP-
binding protein ABC transporter. Thought to be 
involved in active transport of drugs across the 
membrane (export): multidrugs resistance by an 
export mechanism. 

QILMAVLMATMTLAVLPRASVCAERITEVLSTPADPVSSDDIRGRTAGALH
A 

Rv1291c  

Conserved hypothetical secreted protein. Function 
unknown 

LRPKNSRSMAKKAASSMRSR@RSSSSNSKQSSSAGSPSTKNLSRPGADSE
GTQTSATSDDISTRRSSMFTRRFAASMVGTTLTAATLGLAALGFAGTASAS
STDEAFLAQLQADGITPPSAARAIKDAHAVCDALDEGHSAKAVIKAVAK 

Rv1424c*  
Possible membrane protein. This region is a 
possible MT-complex-specific genomic island (See 
Becq et al., 2007). 

SDPRPPTETPTRPKTGHSPRCPTSSRRPPAEKLVFPVLLGILTLLLSACQTASA
SGYNEPRGYDRATLKLV 

Rv1635c  

Probable mannosyltransferase. Probable 
conserved transmembrane protein. Possibly 
involved in the biosynthesis of lipoarabinomannan 
(lam). A core mycobacterial gene; conserved in 
mycobacterial strains (See Marmiesse et al., 2004). 

RADPKVTRIMSASTLEQPAAARTGPGASGRWGNQNRRAGP 

Rv1639c  
Conserved hypothetical membrane protein. 
Function unknown 

DLTVMHPTLFSAFVDIAGDFYPNAGNKTQTIVRLFGGNEDAWSAFDPTTVI
TRHGSYTGLSGWFAISSPGPPSP 

Rv1779c  
Possible integral membrane protein. Function 
unknown. 

SLRIRLGSRDVICVISRAVVNNTTRGRFDSVCRAGACQA&PAGGVFSLMCA
HEYAEQRSAVSGIEGLLTWLG 

Rv1863c 

Probable conserved integral membrane protein. 
abortive infection protein. the abortive infection 
(Abi) systems provide protection by the abortion of 
an existing phage infection. Typically, these Abi 
systems target a crucial step of phage 
multiplication such as replication, transcription or 

RWWGFRGVAVAGSVLFGLWHIATSLGLTSSNV 
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translation, and lead to the death of the infected 
cell. 

Rv1884c  

Probable resuscitation-promoting factor RpfC. 
Thought to promote the resuscitation and growth 
of dormant, nongrowing cell. Factor that 
stimulates resuscitation of dormant cells. Has 
peptidoglycan (PG) hydrolytic activity. Stimulates 
growth of stationary phase M.bovis (a slow-
growing Mycobacterium). Has little to no effect on 
actively-growing cells. Predicted possible vaccine 
candidate (See Zvi et al., 2008). 

TRIAKPLIKSAMAAGLVTASMSLSTAVAHAGPSPNWDAGAQ 

Rv1926c  

Immunogenic protein Mpt63 (antigen 
Mpt63/MPB63) (16 kDa immunoprotective 
extracellular protein). Predicted possible vaccine 
candidate (See Zvi et al., 2008). 

LRLKVMTSARFEPGNRPNK@WR@GPMKLTTMIKTAVAVVAMAAIATF
AAPVALAAYPITGKLGSE 

Rv1980c  
Immunogenic protein Mpt64 (antigen 
Mpt64/MPB64) 

LSLVRHRRQQRDALCLSSTQISRQSNLPPAAGGAANYSRRNFDVRIKIFMLV
TAVVLLCCSGVATAAPKTYCEELKGTDTGQACQIQMSDPAYN 

Rv1984c  
Probable cutinase precursor CFP21. Hydrolyzes 
cutin. Shown to have esterase and lipase activity. 

PRSLVRIVGVVVATTLALVSAPAGGRAAHADPCSDIAVVFARGTHQA 

Rv2152c 

Probable UDP-N-acetylmuramate-alanine ligase 
MurC. Involved in cell wall formation; 
peptidoglycan biosynthesis. CYTOPLASM? 

IATVAGVSGASVAEHVTVPMRYVPDFSAVAQQVAAAASP 
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Rv2180c Probable conserved integral membrane protein. 
NB: Rv1129c part of C82 

  

Rv2181*  

Alpha(1->2)mannosyltransferase 
Mannosyltansferase responsible for the addition of 
alpha(1->2) branches to the mannan core in the 
biosynthesis of lipomannan (LM) and 
lipoarabinomannan (lam) 

QNIAGALARLTIGDDERFALWVAGSLLVLAATIWAMRRVLRAGEPTLAVIC
VALFGLVVSPVSWSHH 

Rv2376c  

Low molecular weight antigen CFP2 (low molecular 
weight protein antigen 2) (CFP-2). Function not 
known (putative secreted protein); may play a role 
in the development of protective immune 
responses. A core mycobacterial gene; conserved 
in mycobacterial strains (See Marmiesse et al., 
2004).  

VKSIAAGLTAAAAIGAAAAGVTSIMAGGPVVYQMQPVVFGAPLPLDP 

Rv2434c  
Probable conserved transmembrane protein QIGREHLEQVVMNKPMLLQELGRVIDERQRKAQQAIRRDLHQSPAAAG

EHRGPARR&RAVGHGWPSDRSVSAR 

Rv2721c  
Possible conserved transmembrane alanine and 
glycine rich protein. Function unknown 

STLIGRTLLGLAATAVTAVLLAPTVAASPMGDAEDAMMAAWEKAGGDTS
TLGVRKGD 

Rv3265c 

dTDP-RHA:a-D-GlcNAc-diphosphoryl polyprenol, a-
3-L-rhamnosyl transferase WbbL1 (alpha-L-
rhamnose-(1->3)-alpha-D-GlcNAc(1->P)-P-
decaprenyl). Probably involved in cell wall 
arabinogalactan linker formation: Uses dTDP-L-
rhamnose as substrate to insert the rhamnosyl 
residue into the cell wall. Seems to be essential for 
mycobacterial viability. 

AVNRTIAQLGEMAGDAGEPWVDDWVIVA 
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Rv3310 

Acid phosphatase (acid phosphomonoesterase) 
(phosphomonoesterase) (glycerophosphatase) 
sapM. Involved in cellular metabolism: acting on 
ester bonds. 

PRPYTPGMLRGIQALSRPLTRVYRALAVIGVLAASLLASWVGAVPQVGLA
ASALPTFAHVVIVVEENRSQAAIIGNKS 

Rv3390  
Probable conserved lipoprotein LpqD NIGSVTAPMEFGSIAMQLSSRLENHRKPFPRTVSTGQAIAMAKRTPVRKA

CTVLAV 

Rv3476c 

Probable dicarboxylic acid transport integral 
membrane protein KgtP (dicarboxylate 
transporter). Involved in active transport of 
dicarboxylic acid across the membrane. 
Responsible for the translocation of the substrate 
across the membrane. 

SGSLRELATHYWKPLLLCFLVTLGGTVAFYTYSVNAP 

Rv3476c 

Probable dicarboxylic acid transport integral 
membrane protein KgtP (dicarboxylate 
transporter). Involved in active transport of 
dicarboxylic acid across the membrane. 
Responsible for the translocation of the substrate 
across the membrane. 

WTTACAYDHLIPGRGVGVLLDDGSQVALFRLDDGSVHAVGNVDPFSGAA
VMSRGIVGDRGGRAMVPSRSSIGVAAPILLILCRLVQGFATGGEYGTSATY
MSEAATRERRGYFS 

Rv3629c 
Probable conserved integral membrane protein, 
funfction unknown. 

RLIIAAILQRMSPFWQRMFLTIGILIAVFGMRLVFPLAIIWTTAGLDPVRA
MELALRPPAHGALEFADGS 

Rv3682 

Probable bifunctional membrane-associated 
penicillin-binding protein 1A/1B PonA2. Involved in 
peptidoglycan synthesis (at the final stages), cell 
wall formation. Synthesis of cross-linked 
peptidoglycan from the lipid intermediates. 
Supposedly involved in stationary-phase survival. 

AGWDLPMSGKTGTTEAHRSAGFVGFTNRYAAANYIYDDSSSPTDLCSGPL
RHCGSGDLYGGNEPSRTWFAAMKPIANNFGEVQLPPTDPRYVDGAPGSR
VPSVAGLDVDAARQRLKDAGFQVADQTNSVNSSAK 
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Rv3682 

Probable bifunctional membrane-associated 
penicillin-binding protein 1A/1B PonA2 (murein 
polymerase) [includes: penicillin-insensitive 
transglycosylase (peptidoglycan TGASE) + 
penicillin-sensitive transpeptidase (DD-
transpeptidase)]. Involved in peptidoglycan 
synthesis (at the final stages), cell wall formation. 
Supposedly involved in stationary-phase survival. 

SVAGLDVDAARQRLKDAGFQVADQTNSVNSSAE 

Rv3737  

Probable conserved transmembrane protein, 
function unknown. 

GIATLVAVAAYLIAGQDPTALVATGIVVLLSGMTLVGSMQDAVTGYMLTAL
ARLGDALFLTAGIVVGILISLRGVTNAGIQIELHVDATTTLATPGMPLPILVAV
SGAALSGVCLTIASYA 

Rv3779  

Probable conserved transmembrane protein 
alanine and leucine rich, function unknown. A core 
mycobacterial gene; conserved in mycobacterial 
strains (See Marmiesse et al., 2004). 

VQYALIVLAAIGGLILLVKKIWWPLAVWLLLIVMNVDAGTPLGGPIG 

Rv3793  

Integral membrane indolylacetylinositol 
arabinosyltransferase EmbC. Involved in the 
biosynthesis of the mycobacterial cell wall 
arabinan and resistance to ethambutol. A core 
mycobacterial gene; conserved in mycobacterial 
strains (See Marmiesse et al., 2004). 

RIAVRLPSTSVRDAGANYRIARYVAVVAGLL 

conserved 
hypotheticals 

Rv0004 

Conserved hypothetical protein, Function 
unknown. Belongs to superfamily DUF721; this 
family contains several actinomycete proteins of 
unknown function. 

SEDEHWDRVGSGWPRPGRDGTLDEARAAARARGQDAGRGRVASVASG
RVAGRRRS 

Rv1069c† 
Conserved protein, Function unknown. LFRFLVGQVDRIAPFRVSAAIVVVLLVVLTITLLNGVVLKFAMNSMNSTFAA

VNDNAIAKI 
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Rv1157c  

Conserved ala-, pro-rich protein, Function 
unknown. Has hydrophobic stretch at N-terminus 
suggestive of secretion signal. First start taken. A 
core mycobacterial gene; conserved in 
mycobacterial strains (See Marmiesse et al., 2004). 
structural constituent of cell wall 

NTTVASTWSVCKGLAAVVITSAAAFALCPNAAADPATP  

Rv1157c  

Conserved secreted ala-, pro-rich protein, function 
unknown. A core mycobacterial gene; conserved in 
mycobacterial strains (See Marmiesse et al., 2004). 

TWSVCKGLAAVVITSAAAFALCPNAAADPATPQPNPTQQLPGWPGSPNR
RRWRCTCRSGGLSPSPDQVS#T 

Rv1268c  Hypothetical protein, Predicted to be an outer 
membrane protein. 

RKGPTMTTSKIATAFKTATFALAAGAVALGLASPADAAAGTMY 

Rv1352  

Conserved protein, function unknown. LHDREENMARTLALRASAGLVAGMAMAAITLAPGARAETGEQFPGDGV
FLVGTDIAPGTYRTEGPSNPLILVFGRVSELSTCSWSTRSAPEVSNENIVDT
NTSMGPMSVVIPPTVAAFQHYGHRTVVD 

Rv1357c*  
Conserved hypothetical protein. Function 
unknown.  

RDHSTDPQPFVSVNVSASTICDPGFLVLVEGVLGETGLPAHALQLELAEDAR
LS 

Rv1804c*  

Conserved protein. Function unknown  LYQYCGDVPPVELEAAYYAQRQRPAAG&GLRSESLRTHRGGSIPGESLSMR
VVSTLLSIPLMIGLAVPAHAGPSGDDAVFLASLERAGITYSHPDQAIASGK
AVCALVESGESGLQVVNE 

Rv1810*  

conserved hypothetical protein. Identified in 
immunodominant fractions of M. tuberculosis 
H37Rv culture filtrate (See Covert et al., 2001). 
DNA microarrays show higher level of expression in 
M. tuberculosis H37Rv during Mg2+ starvation (See 
Walters et al., 2006). 

VLTSASGGSPSTAVNVIGR#GLCCTDGRILTRKVCRALAADLPQDAMQLQR
TMGQCRPMRMLVALLLSAATMIGLAAPGKADPTGDDAAFLAALDQAGI
TTLTQATP#V 
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Rv1810*  

Conserved protein. Function unknown. Identified 
in immunodominant fractions of M. tuberculosis 
H37Rv culture filtrate using 2D-LPE, 2D-PAGE, and 
LC-MS or LC-MS/MS (See Covert et al., 2001). 

MRMLVALLLSAATMIGLAAPGKADPT 

Rv2018*  

conserved hypothetical protein. Putative antitoxin 
VapB45. Possibly the antitoxin component of a 
type II toxin-antitoxin (TA) module. Its cognate 
toxin is VapC45. 

LATWADGYERRPANAPAVQGQPIITALPHPTGSHARLPFVGIAEAYV 

Rv2414c  

Conserved hypothetical protein. Identified by mass 
spectrometry in M. tuberculosis H37Rv-infected 
guinea pig lungs at 30 days but not 90 days (See 
Kruh et al., 2010). 

TVTALTSREFRAAGLTHLTAVSGANVTIVCAAALVSARLIGP 

Rv2532c  
Hypothetical protein. Function unknown PFRSRPTRFGRPAGQGAVDRRLAGLCQRGAGPGHAGDPAAACGRSSGA

WGGVMTRLELRVVVAAVLAATVVLGAVVCAAYGLTI 

Rv2955c*  
Conserved protein. This region is a possible MT-
complex-specific genomic island (See Becq et al., 
2007). O-methyltransferase activity 

MAPWYWRGLQVTLEPGSAIAWIVRLTGGFEETEIDIAAALYS 

Rv3212  

Conserved alanine valine rich protein. Function 
unknown. A core mycobacterial gene; conserved in 
mycobacterial strains (See Marmiesse et al., 2004). 
Predicted to be an outer membrane protein (See 
Song et al., 2008). 

ERRTKTDIAAAATIAVVVAVAASLIWWTSDARATISRPAAV 

Rv3218 
Conserved protein. Function unknown ASPAMPWMHA@PPVISGSAAASGLNAIAVAVVPGGSANVLARALGISA

DPIAATNQLIQLLDDYGRHQQWRRIGLIDCGERWAVF 

Rv3333c  
Hypothetical proline rich protein function unknown IMFTGIASHAGALGAALVVLIGAAILHDGPAAADPNQDDRFLALLEKKEIPA

VANVPRVIDAAHK 
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Rv3354*  

Conserved hypothetical protein. Function 
unknown. A core mycobacterial gene; conserved in 
mycobacterial strains (See Marmiesse et al., 2004). 

NPVDDAFIAALNNAGVNYGDPVDAKALGQSVCPILA 

Rv3365c  
conserved hypothetical protein. Function 
unknown. integral membrane sensor signal 
transduction histidine kinase  

VRWKVFTIALLPLVVAMVLAGLRVEAAMASTSGLRLVAARA MIP 

Rv3572  
Hypothetical protein, Predicted to be an outer 
membrane protein. 

VAGANLRTPDGPTGFPPGLWARQTTEIRSTNRLAYLDAHATSQFERVMKA
GGSDVIT 

Rv3896c  

Conserved hypothetical protein. Function 
unknown.  

LRQDFIPSPVGGPINTLVSATLPAEFDALGARSTPSISSGPQTRSNAVTVALP
QVNLRCQLVNTCERVASKSTCCVAVIYSLAESRCWD#LGEEDSMSFVTTQP
EALAAAAAIQKALDIKGVHDPAARARWTRGMDLVARRESNYNANAINH
WDSNAARGTPS 

information 
pathways 

Rv0058†  

Probable replicative DNA helicase DnaB. 
Participates in initiation and elongation during 
chromosome replication; it exhibits DNA-
dependent ATPase activity. The intein is an 
endonuclease (potential). 

DFYRPAHQNVYDAILDLYGRGEPADAVTVAAELDRRGLLRR 

Rv0429c 

Probable polypeptide deformylase Def (PDF) 
(formylmethionine deformylase). Removes the 
formyl group from the N-terminal met of newly 
synthesized proteins 

CLSVPGESFPTGRAKWARVTGLDADGSPVSIEGTGLFARMLQHE 

Rv0630c*  
Probable exonuclease V (beta chain) RecB. 
Involved in homologous recombination. 

IPAIYTGDTDVFASQAAKDWLCLLEAFDAPQRSGLVRAAACTMFFGETAES
LAAEI 

Rv1329c 
Probable ATP-dependent helicase DinG. Probable 
helicase involved in DNA repair and perhaps also 
replication. 

&PRPVSESVSMSVPELLAIAVAALGGTRRRGQQEMAAAVAHAFETGEHL
VVQAGTGTG 
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Rv1547 

Probable DNA polymerase III (alpha chain) DnaE1 
(DNA nucleotidyltransferase)DNA polymerase III is 
a complex, multichain enzyme responsible for most 
of the replicative synthesis in bacteria.  

TTKVMIIVVMFFSHTYSSYGADIVDDAVVLVNAKVAVRD 

Rv2101 Probable helicase HelZ. Has helicase activity. IRLRGQWVALDTEQLRRGLEFLERKPTGRKTTAEILALI 

Rv2839c 

Probable translation initiation factor if-2 InfB. If-2, 
one of the essential components for the initiation 
of protein synthesis in vitro, protects 
formylmethionyl-tRNA from spontaneous 
hydrolysis and promotes its binding to the 30S 
ribosomal subunits. It is also involved in the 
hydrolysis of GTP during the formation of the 70S 
ribosomal complex. 

RQEYDSMQAPVVGGVRLPHGNGET 

Rv3459c 
30S ribosomal protein S11 RpsK TSARKGQKTRRREKKNVPHGAAHIKSTFNNTIVTITDPQGN 

Rv3923c  Ribonuclease P protein component RnpA ALPSSRHVSSARLEQQLRCGLRRAVELAGSDR&VCLGKEL 

insertion seqs 
and phages 

Rv1041c*  

Probable is like-2 transposase. Possibly required 
for the transposition of an insertion element. This 
region is a possible MT-complex-specific genomic 
island (See Becq et al., 2007). 

LRSKKIKHTIPERQDQIDRRKAKGSAGGRPPAFDAALYGLRNTVERGFHRLK
QWRGIATRYDKYALTYLGGVLLACAVIHARVGTPKLGDTP@PRPASVHPG
RDSARQTVALSSRSAPIGDYL 

Rv2944†  Possible transposase for insertion sequence 
element IS1533 

SNKAFGRWGEVFGGDDVVAAAMIDRLVHHAE 

intermediary 
metabolism 
and 
respiration 

Rv0327c*  

Possible cytochrome P450 135A1 Cyp135A1. 
Cytochromes P450 are a group of heme-thiolate 
monooxygenases. They oxidize a variety of 
structurally unrelated compounds, including 
steroids, fatty acids, and xenobiotics. This region is 
a possible MT-complex-specific genomic island 

QLHPIVISIRLHQTFDYQKGAAMASTLTTGLPPGPRLPRYLQSVLYLRFREW
FLPAMHRKYGDVFSLRVPPYADNLVVYTRPEHIKEIFAADPRSLHAGEGN
HPVVFDPQP#TVVRRRPSPNVN&GRRIGRNLALSSRSAPFGLTQS 
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(See Becq et al., 2007). 

Rv0565c 

Probable monooxygenase. Function unknown; 
probably involved in cellular metabolism. 

DVLATLVADPGFQARFTMSVTPNAGCVDVVIVGAGISGLGAAYRIIERNP
QLTYTILERRARIGGTWDLFRYPGVRSDSSIFTLSFPYEPWTREEGIADGAH
IREYLTDMAHKYGIDRHIEFNSYVRAADWDSSTDTWTVTFEQNGVHKHY
RSRFVFFGSGYYKYDEGYTPDFGGIEKFGGAVVHPQHWPEDLDYTGKKIV
VIGSGATAV 

Rv0688 
Putative ferredoxin reductase. Ferredoxins are 
iron-sulfur proteins that transfer electrons in a 
wide variety of metabolic reactions. 

ASWRDPMGHQARVEHWSNVADQARVVVPAMLGTDVPTGVVVPYFWS
DQYDVKIQCLGEPHATDVVHLVEDDGRK 

Rv0769 
Probable dehydrogenase/reductase. Function 
unknown; probably involved in cellular 
metabolism. 

 
VSAGVSGSGWLR@PWGWCAAAVAKQIVADGGTAIHVPVDVSDEDSAK
AMVDRAVGAFGGIDYLVNNAAIYGGM 

Rv1133c 
Probable 5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase MetE  

TEVIALQERLGLDVLVHGEPERNDMVQYFAEQLAGFFATQNGWVQSYGS
RCVRPPIL  

Rv1161 
Respiratory nitrate reductase (alpha chain) NarG. 
Nitrate reduction [catalytic activity: nitrite + 
acceptor = nitrate + reduced acceptor]. 

FSPAIDPPWETRSDFDAFAAIARAFSALAKRHLGTRTDVVLTALQHD 
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Rv1223  

Probable serine protease HtrA (DEGP protein). 
Possibly hydrolyzes peptides and/or proteins 
(seems to cleave preferentially after serine 
residue). Conserved in M. tuberculosis, M. leprae, 
M. bovis and M. avium paratuberculosis; predicted 
to be essential for in vivo survival and 
pathogenicity (See Ribeiro-Guimaraes and 
Pessolani, 2007). 

LSRSCRT#PAGRFTKVAAAVADSVVTIESVSDQEGMQGS 

Rv1703c 

Probable catechol-O-methyltransferase SPLALELGTYLGYGALRIARAAPEARVYSVELAE 

Rv1777†  
cytochrome P450 144 cyp144. Cytochromes P450 
are a group of heme-thiolate monooxygenases.  

VRRSPKGSPGAVLDLQRRVDQAVSADHAELMTIAKDANTFFGAESVQDPY
PLYERMRAAGSVHRIANSDFYAVCGWD 

Rv2095c  
Proteasome accessory factor C PafC MVCAPTGAGKTVVGEFAVH 

Rv2249c 
Probable glycerol-3-phosphate dehydrogenase 
GlpD1. Involved in aerobic respiration and 
oxidation of glycerol. 

ARRSADLTALADGGALDVIVIGGGITGVGIALDAATRGLTVALVEKQ 

Rv2277c 
Possible glycerolphosphodiesterase, function 
unknown. 

SSWLALSGTVRYCAPRIAHVSTVGKA&RGPMVKTAMLGAVALVIALGGT
CGVADALPLGQTDDPMIVAHRAGTRDFPENTVLAITNAVAAGVDGMW
LTVQVSSDGV 

Rv3119*  
Probable molybdenum cofactor biosynthesis 
protein E MoaE1 

MANVVAEGAYPYCRLTDQPLSVDEVLAAVSGPEQGGIVIFVGNVRDHNAG
HDV 

Rv3157 

Probable NADH dehydrogenase I (chain M) NUOK 
(NADH-ubiquinone oxidoreductase chain M). 
Involved in aerobic|anaerobic respiration  

FESPAANANRLRP#LRVIDAGRSGVSGGGAAGGAAVVNNVPWLSVLWLV
PLAGAVLIILLPPGRRRLAKWAGMVVSVLTLAVSIVVAAEFKPSAEPYQFV
EKHSWIPAFGAGYTLGVDGIAVVLVLLTTVLIPLLLVAGWNDATDA 
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Rv3248c 
Probable adenosylhomocysteinase SahH.  TRFETDKDKWTKIAESVKGVTEETTTGVLRLYQFAAAGDLAFPAINVNDSVT

K 

Rv3273 

Probable transmembrane carbonic anhydrase 
(carbonate dehydratase) (carbonic dehydratase). 
Generates CO(2) and H(2)O from H(2)co(3), and 
possibly involved in transport of sulfate across the 
membrane. 

LVVFRNHHPARRSAESAGYPEADQLSIVNVAVQVERLTRHPILATAVAAAD
LQVIGIFFD 

Rv3309c  
Probable uracil phosphoribosyltransferase Upp. 
Involved in pyrimidine salvage pathway 

LVGQRRPMRPATMLPGHRSPPRHGIPWSGAG&EPGFRGACREYMDGV
DRSRGWTHPYQPPFRGPSHDCYIGFNAVQVHVVDHPLAAARLTTLRDE
RTDN 

Rv3318 
succinate dehydrogenase flavoprotein subunit 
sdhA  

AYELATGDIHVFHAKAVVIATGGSGRMYKTTSNAHTLTGDGIGIVFRKGLPL
EDMEFHQFHPTGLAGLGILISEAVRGEGGRLLNGEGERFMERYAPTIVDLA
PRDIVARSMVLEVLEG 

Rv3324c 
Probable molybdenum cofactor biosynthesis 
protein C 3 MoaC3. Thought to be involved in the 
biosynthesis of molybdopterin. 

GIEAVTVTLEPQGADRLSIAATVTTVART 

Rv3368c 
Possible oxidoreductase. Function unknown; 
probably involved in cellular metabolism 

TLNLSVDEVLTTTRSVRKRLDFDKPVPRDVLMECLELALQAPTGSNSQGWQ
WVFVEDAAKKKAIADVYLANARGYLSGPAPEYPDGDTRGERMGRVRDSA
T 

Rv3601c 
Probable aspartate 1-decarboxylase precursor 
PanD 

LRTMLKSKIHRATVTCADLHYVGSVTIDADLMDAADPA&GWGHRRWIRE
PA 

lipid 
metabolism 

Rv0222  

Probable enoyl-CoA hydratase EchA1. Identified by 
mass spectrometry in M. tuberculosis H37Rv-
infected guinea pig lungs at 30 days but not 90 
days (See Kruh et al., 2010). 

AGLSVELTVVESAMAQA&HETPDEYEASMSSESDAANTEPEVLVEQRDRIL 

Rv0405* 
Probable membrane bound polyketide synthase 
Pks6. Polyketide synthase possibly involved in lipid 
synthesis. 

PAPSVSDPTAAGQIGASDGGAELLASSGFAARLAGRSADEQLAAAIEVVCE
HAAAVLGRDGAAGLDAGQAFADSGFNSLSAVELRNRLTA 
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Rv1141c*  
Probable enoyl-CoA hydratase EchA11 (enoyl 
hydrase). Could possibly oxidize fatty acids using 
specific components 

ANTKVALMPDGGASALVAAATGRIRAMRLALLAEQLPAREALAWGLISA
VYPDSDFEAEVDKVISQVAMAVTAATVIPAMAPAALAATVV 

Rv1142c 
Probable enoyl-CoA hydratase EchA10. Could 
possibly oxidize fatty acids using specific 
components. 

MHMALLPDRVPAAEALSWGLVSAVYPAADFDAEVDKLISRLLAGPALAIAK
TKNAINAATLTELAPTLLRELDGQALLLRTD 

Rv1886c†  

Secreted antigen 85-B FbpB (85B) (antigen 85 
complex B). Involved in cell wall mycoloylation. 
Proteins of the antigen 85 complex are responsible 
for the high affinity of mycobacteria to fibronectin. 
Predicted possible vaccine candidate (See Zvi et al., 
2008). 

TVCSGPSTRRHTGQRGTGMTDVSRKIRAWGRRLMIGTAAAVVLPGLVG
LAGGAATAGAFSRPGLPVEYLQV 

Rv3141  

Probable NADPH quinone oxidoreductase FadB4. 
Involved in lipid degradation. Thought to be 
differentially expressed within host cells (see 
Triccas et al., 1999). mRNA identified by microarray 
analysis and up-regulated after 96h of starvation 
(see Betts et al., 2002).  

DALAQQWSQLERLLRSGKLPPPEPVVYPLDQAAAAIASLENRTAKGKVVL
RVRD#RPSRDASPACSGQFAASSLVAVGVGY EFL 

Rv3229c 
Possible linoleoyl-CoA desaturase (delta(6)-
desaturase). Thought to be involved in lipid 
metabolism 

APYLSDHGGAGVAHRVARIGHHLYPDLPSNRLHEISVRVREVCDRYDLPYT
TGSFLVQYGKT 

Rv3280 

Probable propionyl-CoA carboxylase beta chain 5 
AccD5 (pccase). Key enzyme in the catabolic 
pathway of odd-chain fatty acids, isoleucine, 
threonine, methionine, and valine. 

LFSQDATVFGGSLGEVYGEKIVKVQELAIKTGRPLIGINDGAGARIQEGVVSL
GL 
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Rv3506 

Fatty-acid-CoA synthetase FadD17. Function 
unknown, but supposed involvement in lipid 
degradation. 

GLNPVRRGAALAGDIAKADCQLVLTGSGSAEVPADVEHINVDSPEWTDEV
AAHRDTEVRFRSADLADLFMLIFTSGTSGDPKAVKCSHRKVAIAGVTITQRF
SLGRDD 

PE/PPE 

MT2423 
PPE family protein. Rv2353c is halve size of 
MT2423 

SGNTGDTNVGSGNIGNTNLGGG 

Rv0278c* PE-PGRS3 family protein. NOVEL!! PAGSTQPAGTAGTADCSELAAPAGPARTSGPVGTAGTADCSE 

Rv0304c* 

PPE family protein PPE5This region is a possible 
MT-complex-specific genomic island (See Becq et 
al., 2007). 

RNVGIFDGGNSNSGSFNVGFQNTGFGNSGAGNTGFFNAGDSNTGFANA
GNVNTGFFNGGDINTGGFNGGNVNTGFGSALTQAGANSGFGNLGTGNS
GWGNSDPSGTGNSGFYNTSTSDLATPAFNSGLANISTSIAGLLRDSTGTMV
LNLGLANHGTLNVGIANLGDYNIGFANLGSANFGSANIGGNNIGGANTGIF
DIGLANLGSYNIGFGNFGDDNLGFGNLGSYNVGFGNLGNDNLGFANTGS
NNIGFANTGSNNIGIGLTGDGQIGFGSLNSGSGNIGLFNSG 

Rv0915c  
PPE family protein PPE14. Function unknown. 
Possibly a protective antigen involved with the 
early control of infection. 

STLIVEPWMGPAAAAMAAAATPYVGWLAATAALAKETATQARAAAEAFG
TAF 

Rv0915c  
PPE family protein PPE14. Function unknown. 
Possibly a protective antigen involved with the 
early control of infection. 

EPWMGPAAAAMAAAATPYVGWLAATAALAKETATQARAAAEAFGTAFA
M 

Rv1396c  
PE-PGRS family protein PE_PGRS25. Function 
unknown. This region is a possible MT-complex-
specific genomic island (See Becq et al., 2007). 

TTSLLIPTGFRGTVMSFLFAQPEMLGAAATDLASIGSAISTANAAAAAATTR
VLAAGADEVSAAVAALFS 
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Rv1806*  

PE family protein PE20. Function unknown. This 
region is a possible MT-complex-specific genomic 
island (See Becq et al., 2007). 

AFVLVCPDALAIAAGQLRHVGSVIAARNAVAAPATAELAPAAADEVSALT
ATQFNFHAAMYQAVGAQAIAMNEAFVAMLGASADSYAATEAANIIAS
APASRSAPANAKARPSQPRASVCQPSCRNND 

Rv3144c*  

PPE family protein PPE52. Function unknown. 
Identified by mass spectrometry in M. tuberculosis 
H37Rv-infected guinea pig lungs at 90 days but not 
30 days (See Kruh et al., 2010). 

TAAQSFASVTAGLAGQAW 

Rv3345c*  PE-PGRS family protein PE_PGRS50. Function 
unknown 

  

Rv3508*  

PE-PGRS family protein PE_PGRS54. Function 
unknown. Identified by mass spectrometry in M. 
tuberculosis H37Rv-infected guinea pig lungs at 90 
days but not 30 days (See Kruh et al., 2010). mRNA 
identified by DNA microarray analysis and possibly 
down-regulated by hspR|Rv0353 (see Stewart et 
al., 2002). 

NGGAGGAGGTPTGSGTEGTGGDGGDAGAGGNGGSATGVGNGGNGGD
GGNGGDGGN 

Rv3595c PE-PGRS family protein PE_PGRS59. Function 
unknown. 

  

regulatory 
proteins Rv2258c Possible transcriptional regulatory protein. Possibly 

involved in transcriptional regulation 
ESRR&RCRAKR&GGAAQMSGALETTEEFGNRFVAAIDSAGLAILV 

unknown 

C3* null_M.afr  GGNSELHDAIHRFLLICLPR 

MT1330.1*  
Hypothetical protein AALGGVIPSACSCARNASSVELALAVPAKPSAARPKVAAVKVVPTMEAAK

RRVNIDDLLVLMSSEVALVCVPSESAPGLDRFS 

MRGA327* response regulator receiver domain-containing 
protein. Histidine kinase? 

RRSSRVPTSASGVAATAPNCGEA 

virulence, 
detoxification, Rv0353 Probable heat shock protein transcriptional 

repressor HspR (MerR family). Involved in 
SLHDVELLRQVQHLSQDEGVNLAGIKRIIELTSQVEALQSRLQEMAEELAVL
RANQRQ 
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adaptation transcriptional regulation (repression) of heat 
shock proteins  

Rv1566c  
Possible Inv protein. Function unknown TMMLAPMVAAPGLAAADPATRPVDYQQITDVVIARGLSQRGVPFSWA

GGGISGPT 

Rv1566c  
Possible Inv protein, function unknown RAEAHTTRECQGGYNPMKRSMKSGSFAIGLAMMLAPMVAAPGLAAAD

PATRPVDYQQITD 

Rv1839c* 
Possible antitoxin VapB13, M. xenopi MSKRLQVLLDPDEWEELREIARRHRTTVSEWV 
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Table S3. 3: List of active-TB UniProt identifiers retrieved from UniProtKB as WEGO input data. 

UniProt ID Gene Ontology IDs 
P9WNF5 GO:0005576         
P9WLS9 GO:0005886  GO:0016021       
P9WFN5 GO:0005576         
P9WFL9 GO:0005886         
O05436 GO:0005886         
O53740 GO:0005576         
O05899 GO:0005886         
P96214 GO:0005618  GO:0005886       
Q79FP2 GO:0005618         
O06311 GO:0005576 GO:0005618 GO:0005887      
O06823 GO:0005576         
O05445 GO:0005886         

P9WIQ7 GO:0005576 
 
GO:0005886 

 
GO:0009405 

 
GO:0016021  GO:0044119    

P9WJU7 GO:0005887 
 
GO:0006855 

 
GO:0006869 

 
GO:0009405 

 
GO:0044119 

 
GO:0052572  GO:0071555  

Q79FB3 GO:0005576 
 
GO:0009405 

 
GO:0009986  GO:0044164     

Q79FU2 GO:0009405         
Q6MWY2 GO:0040007  GO:0052170       
Q6MWX9 GO:0052556         

P9WQA9 GO:0008784 
 
GO:0009252 

 
GO:0030170 

 
GO:0030632  GO:0040007    

P9WP89 GO:0009236  GO:0016994       

P9WMP7 GO:0006782 
 
GO:0008883 

 
GO:0040007  GO:0050661     
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P9WK19 GO:0005506 
 
GO:0006555 

 
GO:0016151 

 
GO:0030145 

 
GO:0035551 

 
GO:0050897  GO:0070006  

P9WLF0 GO:0006629  GO:0008889       
L7N6A5 GO:0009058  GO:0016779       

O69728 GO:0018741 
 
GO:0018909  GO:0046983      

O69719 GO:0002100 
 
GO:0008270 

 
GO:0040007  GO:0052717     

P0CV93 GO:0004540  GO:0046872       
I6XD69 GO:0016491  GO:0031177       

P9WQN7 GO:0001968 
 
GO:0005576 

 
GO:0016746  GO:0035375     

P9WQM5 GO:0005886 
 
GO:0015171  GO:0016021      

P71922 GO:0005524 
 
GO:0005886  GO:0016887      

P71616 GO:0015238 
 
GO:0015297  GO:0016021      

O06312 GO:0005886 
 
GO:0015095 

 
GO:0016021  GO:0046872     

P71662 GO:0005618  GO:0016491       

P95105 GO:0005829 
 
GO:0010181  GO:0052873      

P95100 GO:0000976 
 
GO:0003700 

 
GO:0005829  GO:0005886     

O53380 GO:0004175 
 
GO:0009002  GO:0016021      

P9WMZ7 GO:0016021 
 
GO:0016758 

 
GO:0040007 

 
GO:0045227  GO:0071555    
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P9WQB5 GO:0004601 
 
GO:0005829 

 
GO:0005886 

 
GO:0006979 

 
GO:0015036 

 
GO:0032843 

 
GO:0045454  GO:0051920 

P9WIR7 GO:0005576 
 
GO:0009267 

 
GO:0009986 

 
GO:0050840  GO:0052559    

P9WPX7 GO:0003855 
 
GO:0005829 

 
GO:0009073 

 
GO:0009423  GO:0040007    

P9WPQ9 GO:0004322 
 
GO:0005576 

 
GO:0005829 

 
GO:0005886 

 
GO:0006826 

 
GO:0008199 

 
GO:0010039  GO:0033214 

P9WPU1 GO:0005524 
 
GO:0005576 

 
GO:0005618 

 
GO:0005886 

 
GO:0006825 

 
GO:0016021 

 
GO:0019829  GO:0046872 

P9WP29 GO:0003951 
 
GO:0004143 

 
GO:0005524 

 
GO:0005576 

 
GO:0005618 

 
GO:0005886 

 
GO:0008654 

 
GO:0009247 

P9WJB7 

GO:0003677 
 
GO:0005576 

 
GO:0005618 

 
GO:0005829 

 
GO:0005886 

 
GO:0006351 

 
GO:0006355 

 
GO:0009295 

 
GO:0009405 

 
GO:0032993 

 
GO:0043565 

 
GO:0050708  GO:0052572     

O69687 GO:0005618 
 
GO:0005886 

 
GO:0008168  GO:0008610     

P9WQ59 GO:0004321 
 
GO:0005524 

 
GO:0005886 

 
GO:0006633 

 
GO:0008610 

 
GO:0016874 

 
GO:0044119 

 
GO:0052170 

 
GO:0052572 

 
 
GO:0070566 

 
GO:0071770       

P9WGD9 GO:0005525 
 
GO:0005618 

 
GO:0005737 

 
GO:0005886  GO:0006614    

P9WK25 GO:0004470 
 
GO:0004471 

 
GO:0005829 

 
GO:0006090 

 
GO:0006108 

 
GO:0008948 

 
GO:0046872  GO:0051287 

P9WG65 GO:0005576 
 
GO:0005623 

 
GO:0016209 

 
GO:0016491 

 
GO:0045454  GO:0055114   

P9WIF5 GO:0005576 
 
GO:0005618 

 
GO:0009279 

 
GO:0009405 

 
GO:0009986 

 
GO:0042594 

 
GO:0046789 

 
GO:0052167 
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UniProt ID Gene Ontology IDs 

O06582 GO:0001101 
 
GO:0003994 

 
GO:0005618 

 
GO:0005829 

 
GO:0006099 

 
GO:0008203 

 
GO:0019629 

 
GO:0019679 

P9WQ21 GO:0005829 
 
GO:0005992 

 
GO:0030980  GO:0047470     

P9WN35 GO:0000162 
 
GO:0004049 

 
GO:0005886 

 
GO:0005950  GO:0006541    

P9WFT7 GO:0004828 
 
GO:0005524 

 
GO:0005737 

 
GO:0005886 

 
GO:0006434 

 
GO:0040007  GO:0097056  

P9WG49 GO:0000287 
 
GO:0003677 

 
GO:0003917 

 
GO:0005618 

 
GO:0005829 

 
GO:0005886 

 
GO:0006265 

 
GO:0040007 

P9WMG1 GO:0003677 
 
GO:0005618 

 
GO:0005829 

 
GO:0006351  GO:0006355    

P9WLV1 GO:0005975 
 
GO:0008194 

 
GO:0016758 

 
GO:0030259  GO:0043231    

P95072 GO:0005618 
 
GO:0005886 

 
GO:0006465 

 
GO:0008233  GO:0016021    

I6YAZ1 GO:0005737 
 
GO:0008757  GO:0032259      
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Table S3. 4: List of latent-TB UniProt identifiers retrieved from UniProtKB as WEGO input data. 

UniProtID Gene Ontology IDs 
P9WIN7 GO:0005576  GO:0005618        
P9WIL9 GO:0005618          
P9WM15 GO:0005576          
P9WLX7 GO:0005618  GO:0005886        
P9WKL3 GO:0005576  GO:0005618        
O50416 GO:0005576  GO:0005886        
P95021 GO:0016021          
P95152 GO:0016020          
I6XF52 GO:0016021          
L0T243 GO:0005887          
P94973 GO:0016021          

O53930 GO:0005576 
 
GO:0005829  GO:0016021        

O05854 GO:0005829 
 
GO:0005886  GO:0016021        

O06624 GO:0005576          
I6Y4F1 GO:0016021          
O53514 GO:0016021          

O53417 GO:0005829 
 
GO:0005886  GO:0005887        

O53953 GO:0005576          
O07423 GO:0005576          
O50383 GO:0005576          
O07222 GO:0005576          

O69704 GO:0005737 
 
GO:0005829  GO:0016021        
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UniProtID Gene Ontology IDs 

P9WJV7 GO:0005618 
 
GO:0005886  GO:0006810 

 
GO:0016021  GO:0044119     

P9WJU1 GO:0005576 
 
GO:0005618  GO:0005829 

 
GO:0005886 

 
GO:0006869  GO:0016021    

P71915 GO:0016021  GO:0055085        

P96258 GO:0005576 
 
GO:0005887  GO:0040007        

P9WJ51 GO:0006355          

P9WIJ3 GO:0006412 
 
GO:0031365  GO:0035601 

 
GO:0040007 

 
GO:0042586 

 
GO:0043686  GO:0046872   

P9WJR5 GO:0006777  GO:0061799        

P9WGZ3 GO:0000049 
 
GO:0004526  GO:0008033  GO:0040007      

P9WLF1 GO:0006629  GO:0008889        
P96404 GO:0004300  GO:0006635        

O86335 GO:0008610 
 
GO:0009405  GO:0016788 

 
GO:0031177  GO:0044119     

O06541 GO:0003824  GO:0008152        
O53464 GO:0003677          
I6YCF3 GO:0004386  GO:0005524        
O50397 GO:0016491          
I6YGX2 GO:0008658          
A0A089QH62 GO:0016301          

P9WPL1 GO:0004497 
 
GO:0005506  GO:0005618 

 
GO:0016705  GO:0020037     

P9WQJ1 GO:0005524 
 
GO:0005618  GO:0005886 

 
GO:0016021  GO:0042626     

P9WGQ9 GO:0005886  GO:0016491        
Q6MX47 GO:0016021  GO:0046873        
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UniProtID Gene Ontology IDs 

P95137 GO:0005618 
 
GO:0005829  GO:0005886  GO:0008171      

O06152 GO:0005576 
 
GO:0016021  GO:0016757        

P95185 GO:0005886  GO:0016491        
I6XHB8 GO:0016021  GO:0022857        

O53762 GO:0004499 
 
GO:0005886  GO:0050660  GO:0050661      

O50440 GO:0005618 
 
GO:0005886  GO:0006629 

 
GO:0016021  GO:0016746     

P9WP43 GO:0005576 
 
GO:0005618  GO:0019626 

 
GO:0034338 

 
GO:0047372 

 
GO:0051793 

 
GO:0052651  GO:0052689  

P9WNZ3 GO:0005886 
 
GO:0016213  GO:0042759  GO:0046872      

P9WMR3 GO:0003677 
 
GO:0003678  GO:0004519 

 
GO:0005524 

 
GO:0005618 

 
GO:0005829 

 
GO:0006268 

 
GO:0006269 

 
GO:0006314 

 
GO:0006974 

 
GO:0016539  GO:0040007  GO:1990077      

P9WNT7 GO:0003677 
 
GO:0003887  GO:0005618 

 
GO:0005737 

 
GO:0005886 

 
GO:0006260 

 
GO:0008408  GO:0040007  

P9WMR5 GO:0003677 
 
GO:0005524  GO:0005886 

 
GO:0006281 

 
GO:0006310  GO:0008026    

P9WNL5 GO:0005829 
 
GO:0005886  GO:0009247 

 
GO:0016021 

 
GO:0040007 

 
GO:0046677 

 
GO:0052636 

 
GO:0071555 

 
GO:0071766 

O53551 GO:0004467 
 
GO:0005524  GO:0005829 

 
GO:0005886 

 
GO:0008610 

 
GO:0042759 

 
GO:0071766  GO:0102391  

P9WN81 GO:0005618 
 
GO:0005886  GO:0006071 

 
GO:0006072 

 
GO:0009331  GO:0052591    

P71707 GO:0005886 
 
GO:0008360  GO:0008658 

 
GO:0008955 

 
GO:0009002 

 
GO:0009252 

 
GO:0016021 

 
GO:0030288 

 
GO:0071456 
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UniProtID Gene Ontology IDs 
 
GO:0071555          

P9WQH7 GO:0003989 
 
GO:0004658  GO:0005524 

 
GO:0005618 

 
GO:0005886 

 
GO:0009317 

 
GO:0015977  GO:0043234  

P9WKK1 GO:0003743 
 
GO:0003924  GO:0005525 

 
GO:0005576 

 
GO:0005618 

 
GO:0005737 

 
GO:0005886  GO:0040007  

P9WJR3 GO:0005829 
 
GO:0006777  GO:0030366  GO:0032324      

P9WJQ3 GO:0001101 
 
GO:0005576  GO:0005618 

 
GO:0005886 

 
GO:0008940 

 
GO:0009055 

 
GO:0009325 

 
GO:0030151 

 
GO:0042128 

 
GO:0043602  GO:0051539        

P9WIL3 GO:0004068 
 
GO:0005618  GO:0005829 

 
GO:0006523 

 
GO:0009405  GO:0015940    

P9WMZ9 GO:0000026 
 
GO:0005886  GO:0008654 

 
GO:0009247 

 
GO:0009405 

 
GO:0016021  GO:0046488   

P9WH65 GO:0000028 
 
GO:0000462  GO:0003735 

 
GO:0005886 

 
GO:0006412 

 
GO:0022627 

 
GO:0040007 

 
GO:0048027 

 
GO:0070181 

O07747 GO:0005576 
 
GO:0009405  GO:0010628 

 
GO:0010629 

 
GO:0016787  GO:0040010    

P9WGV3 GO:0004013 
 
GO:0005576  GO:0005618 

 
GO:0005829 

 
GO:0005886 

 
GO:0006730 

 
GO:0009087 

 
GO:0019510 

 
GO:0033353 

 
GO:0035375 

 
GO:0035635  GO:0040007 

 
GO:0044650 

 
GO:0046085  GO:0070403    

O53361 GO:0003993 
 
GO:0004438  GO:0004805 

 
GO:0005576 

 
GO:0005618 

 
GO:0006742 

 
GO:0009405 

 
GO:0044161 

 
GO:0046854 

 
GO:0050189  GO:0050192        

P9WFF3 GO:0004845 
 
GO:0004849  GO:0005525 

 
GO:0005829 

 
GO:0005886 

 
GO:0006206 

 
GO:0006223 

 
GO:0043097 

 
GO:0044206 
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UniProtID Gene Ontology IDs 

P9WMY3 GO:0005886 
 
GO:0016758  GO:0040007 

 
GO:0045226  GO:0102096     

O06542 GO:0003824 
 
GO:0005829  GO:0005886  GO:0008152      

O06291 GO:0004252 
 
GO:0005618  GO:0005886 

 
GO:0005887  GO:0040007     

O53532 GO:0005618 
 
GO:0005737  GO:0005886 

 
GO:0008757 

 
GO:0032259  GO:0071456    

P95034 GO:0005623 
 
GO:0006124  GO:0008860 

 
GO:0009055 

 
GO:0045454 

 
GO:0050660  GO:0051287   

P96878 GO:0004089 
 
GO:0005886  GO:0005887 

 
GO:0008270 

 
GO:0008271 

 
GO:0015116  GO:0015976   

P96287 GO:0005524 
 
GO:0005737  GO:0006271        

P96360 GO:0003677 
 
GO:0004803  GO:0005618 

 
GO:0005886  GO:0006313     

P72045 GO:0005576 
 
GO:0009247  GO:0016021 

 
GO:0016049  GO:0016758     

Q93IG6 GO:0000160 
 
GO:0004673  GO:0004871 

 
GO:0005524 

 
GO:0005829 

 
GO:0005886  GO:0016021   

O06302 GO:0000984 
 
GO:0005886  GO:0045892        
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Table S4. 1: List of 97 B-cell epitopes predicted using BCPred from immunogenic Mtb peptides recognized by humoral response of TB patients. 

Gene ID Locus Tag Selected Peptide Sequence BCPred B-Cell Epitope Pos 
886796 Rv0179c MWIRAERVAVLTPTASLRRLTACYAALAVCAALACTTGQPAARAADG ACTTGQPAARAADGREMLAQ 35 
886478 Rv0361 AKETQVIVTAHEAATEVFQTNQAPTTPVARTTPVATIDAPTCTATIGSILANRLLRSEATAVEIC APGFDAKETQVIVTAHEAAT 70 

NQAPTTPPRMPTGMPPKTAV 95 
887569 Rv0559c KGTKLAVVVGMTVAAVSLAAPAQADDYDAPFNNTIHRFGIYGPQDYNAW PFNNTIHRFGIYGPQDYNAW 31 

885077 Rv0978c MSFVNVAPQLVSTAAADAARIGSAINTANTAAAATTQVLAAAQDEVSTAIAALFGSHGQH RIGSAINTANTAAAATTQVL 20 
886048 Rv1009 SPMLRLVVGALLLVLAFAGGYAVAACKTVTLTVDGTAMRVTTMKSRVIDIVEENGFSVDDRDDLYPA

AGVQVHDADTIVLRRSRPL 
NGFSVDDRDDLYPAAGVQVH* 52 

887033 Rv1268c KGPTMTTSKIATAFKTATFALAAGAVALGLASPADAAAGTMYGDPAAAAK ASPADAAAGTMYGDPAAAAK 27 
887039 Rv1269c TLRRRFAVAVAGVATAAATTVTLAPAPANAADVYGAIAYSGNGSWGRSWDYPTRAAAEATAVKSC

GYSDCKVLTSFTACGAVAANXRAYQ 
ATTVTLAPAPANAADVYGAI 23 

887019 Rv1271c NTKDEAFIAQMESIGVTFSSPQVATQQAQLVCKKLASGETGTEIAEEVLSQTNLTTKQAAYFVVDATK
AYCPQYASQLT 

KDEAFIAQMESIGVTF 3a 
AQMESIGVTFSSPQVA 9a 
AQLVCKKLASGETGTE 28a 
GTEIAEEVLSQTNLTT 41a 
EVLSQTNLTTKQAAYF 47a 
NLTTKQAAYFVVDATK 53a 
YFVVDATKAYCPQYAS 61a 

FTTAVGAAAIGLAVATAGTAGANTKDEAFIAQME TTAVGAAAIGLAVATA 2a 
GLAVATAGTAGANTKD 11a 
AGTAGANTKDEAFIAQ 17a 

886975 Rv1291c MFTRRFAASMVGTTLTAATLGLAALGFAGTASASSTDEAFLAQLQADGITPPSAARAIKDAHAVCDA
LDEGHSAKAVIKAVAK 

FTRRFAASMVGTTLTA 2a 
ASMVGTTLTAATLGLA 8a 
AGTASASSTDEAFLAQ 28a 
TDEAFLAQLQADGITP 36a 
ADGITPPSAARAIKDA 46a 
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Gene ID Locus Tag Selected Peptide Sequence BCPred B-Cell Epitope Pos 
PSAARAIKDAHAVCDA 52a 
AHAVCDALDEGHSAKA 61a 
ALDEGHSAKAVIKAVA 67a 

886889 Rv1329c VSESVSMSVPELLAIAVAALGGTRRRGQQEMAAAVAHAFETGEHLVVQAGTGTG ESVSMSVPELLAIAVA 3a 
GGTRRRGQQEMAAAVA 21a 
QQEMAAAVAHAFETGE 28a 
AFETGEHLVVQAGTGT 38a 

886745 Rv1396c TTSLLIPTGFRGTVMSFLFAQPEMLGAAATDLASIGSAISTANAAAAAATTRVLAAGADEVSAAVAAL
FS 

IPTGFRGTVMSFLFAQ 6a 
SFLFAQPEMLGAAATD 16a 

LGAAATDLASIGSAIS 25a 
GSAISTANAAAAAATT 36a 
AAAAATTRVLAAGADE 45a 

VLAAGADEVSAAVAAL 53a 
886685 Rv1424c SDPRPPTETPTRPKTGHSPRCPTSSRRPPAEKLVFPVLLGILTLLLSACQTASASGYNEPRGYDRATLK

LV 
RPPAEKLVFPVLLGILTLLL* 42 

CQTASASGYNEPRGYDRATL 64 

886653 Rv1435c LTIAISVNSPLFARRYFRNQFGSAEPHSRIEFLFDHRLNCQHPMGNMSPAAPGRFQMV NSPLFARRYFRNQFGS 8a 
NQFGSAEPHSRIEFLF 19a 
HSRIEFLFDHRLNCQH 27a 
FDHRLNCQHPMGNMSP 34a 
PMGNMSPAAPGRFQMV 43a 

886605 Rv1450c MSLVIVTPETVAAAASDVARIGSSIGVANSAAAGSTTSVLAAGADEVSAAIATLFGSHAREYQAISTQ
VAAFHDRFAQTLSAAVGSYVSAEATNAAPLATLEHNVLNALNAPTQALLGRPLI 

ARIGSSIGAANAAAAGSTTS 19 
SYVSAEATNAAPLATLEHNV 86 

885588 Rv1804c MRVVSTLLSIPLMIGLAVPAHAGPSGDDAVFLASLERAGITYSHPDQAIASGKAVCALVESGESGLQV
VNE 

LMIGLAVPAHAGPSGDDAVF 12 

VESGESGLQVVNELRTRNPG 59 
885591 Rv1810 TRKVCRALAADLPQDAMQLQRTMGQCRPMRMLVALLLSAATMIGLAAPGKADPTGDDAAFLAAL

DQAGITTLTQATP#V 
ATMIGLAAPGKADPTGDDAA 24 
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Gene ID Locus Tag Selected Peptide Sequence BCPred B-Cell Epitope Pos 
MRMLVALLLSAATMIGLAAPGKADPT 

885546 Rv1813c MITNLRRRTAMAAAGLGAALGLGILLVPTVDAHLANGSMSE RRTAMAAAGLGAALGL 7a 

AAGLGAALGLGILLVP 13a 
GLGILLVPTVDAHLAN 21a 

885896 Rv1860 SLVTVAVPATANADPEPAPPVPTTAASPPSTAAAPPAPATPVAPPPPAAANTPNAQPGDPNAA TANADPEPAPPVPTTAASPP 36 
TAAAPPAPATPVAPPPPAAA 57 
PGDPNAAPPPADPNAPPPPV 83 
VAPPPPAAANTPNAQPGDPN* 68 

885759 Rv1884c TRIAKPLIKSAMAAGLVTASMSLSTAVAHAGPSPNWDAGAQ GNASATSGDMSSMTRIAKPL* 25 
885785 Rv1886c MTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLAGGAATAGAFSRPGLPVEYLQV AGGAATAGAFSRPGLPVEYL 32 

MTDVSRKIRAWGRRLMIGTAAAVVLPGLVGLAGGAATAGA 
885897 Rv1910c VAHAFHRFALAILGLALPVALVAYGGNGDSRKAAPLAPKAAALGRSMPETPTGDVLTISSPAFADGA

PIPEQYTCK 
AYGGNGDSRKAAPLAPKAAA 23 
TISSPAFADGAPIPEQYTCK 57 

885334 Rv1926c WFSAIPRRSPP#PAASSVRLKVMTSARFEPGNRPNK@WR@GPMKLTTMIKTAVAVVAMAAIATF
AAPVALAAYPITGKLGSELTMTDTVGQ 

ATFAAPVALAAYPITGKLGS* 20 

WR@GPMKLTTMIKTAVAVVAMAAIATFAAPVALAAYPITGKLGSELTMTDTVGQVVLADVDNQL
TVGTDLDQGSFVTAGLDADDHR 

TMTDTVGQVVLGWKVSDLKS* 42 

LRLKVMTSARFEPGNRPNK@WR@GPMKLTTMIKTAVAVVAMAAIATFAAPVALAAYPITGKLGS
E 

885925 Rv1980c LSLVRHRRQQRDALCLSSTQISRQSNLPPAAGGAANYSRRNFDVRIKIFMLVTAVVLLCCSGVATAAP
KTYCEELKGTDTGQACQIQMSDPAYN 

ATAAPKTYCEELKGTDTGQA 21 

LWQADTDPLPVVFPIVQGELSKQTGQQVSIAPNAGLDPVNYQNFAVTNDGVIFFFNPGELLPEAA
GPTQVLVPRSAIDSMLA 

TDPLPVVFPIVQGELSKQTG 152 

DRSASLSLVRHRRQQRDALCLSSTQISRQSNLPPAAGGAANYSRRNFDVRIKIFMLVTAVVLLCCSGV
ATAAPKTYCEELKGTDTGQACQIQMSDPAYNINISLPSYYPDQKSLENYIAQTRDKFLSA 

IAPNAGLDPVNYQNFAVTND 176 
NPGELLPEAAGPTQVLVPRS 202 

885813 Rv1984c PRSLVRIVGVVVATTLALVSAPAGGRAAHADPCSDIAVVFARGTHQA IVGVVVATTLALVSAPAGGR* 9 
SAPAGGRAAHADPCSDIAVV 22 

885515 Rv2376c VKSIAAGLTAAAAIGAAAAGVTSIMAGGPVVYQMQPVVFGAPLPLDP AGGPVVYQMQPVVFGAPLPL 29 
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Gene ID Locus Tag Selected Peptide Sequence BCPred B-Cell Epitope Pos 
888584 Rv2499c HAGDRESDDAVSACRVAGSTVGRRILQ DRESDDAVSACRVAGS 4a 

SACRVAGSTVGRRILQ 12a 
887184 Rv2878c R#KLARKLY#QFSRTILNAEIKRTMHAPERRGRRDVLNRHGAYYVIRSKHEQVRSVMSLRLVSPIKAFA

DGIVAVAIAVVLMFGLANTPRAVAADERLQFTATTLSGAPFDGASLQGKPAVLWFWTPWCPFCNA
EAPSLSQVAAANPA 

TATTLSGAPFDGASLQGKPA 45 

FCNAEAPSLSQVAAANPAVT* 75 

887636 Rv2944 SNKAFGRWGEVFGGDDVVAAAMIDRLVHHAE IVTSNKAFGRWGEVFGGDDV 178 

887320 Rv3036c TRFRGRAAQCRQV@TDVADDLAVDDPRRPDHAPRQGIDLVTGADGGKHPDAAPTPLVCEDD@T
MRYLIATAVLVAVVLVGWPAAGAPPSCAGLGGTVQAGQICHVHASGPKYMLDMTFPVD 

VVLVGWPAAGAPPSCAGLGG 13 

HVHASGPKYMLDMTFPVDYP 41 
887931 Rv3212 ERRTKTDIAAAATIAVVVAVAASLIWWTSDARATISRPAAV WTSDARATISRPAAVAVPTP 31 
888906 Rv3218 HPGPLPSSSTGRPGPHRHTA@AHCRPPQRADPARIVTRPKPIAVLLNGPTRPASSHGLSSCVMRAVL

IVNPTATATTPAGRDLLAHALESRLQLTVEHTNHRGHGTELGQAAVADGVDLVVVHGGDGTVSAV
VNGMLGRPGTTPVRPVPAVAVVPGGSANVLARALGI 

VLIVNPTATATTPAGRDLLA 4 

ASPAMPWMHA@PPVISGSAAASGLNAIAVAVVPGGSANVLARALGISADPIAATNQLIQLLDDYG
RHQQWRRIGLIDCGERWAVF 

GRPGTTPVRPVPAVAVVPGG 76 
DCGERWAVFNAGMGVDAEVV 137 

888696 Rv3256c AETAGTILASTLGAGA ETAGTILASTLGAGAAEPIV* 68 
887632 Rv3333c IMFTGIASHAGALGAALVVLIGAAILHDGPAAADPNQDDRFLALLEKKEIPAVANVPRVIDAAHK ILHDGPAAADPNQDDRFLAL 24 

EKKEIPAVANVPRVIDAAHK* 45 
888114 Rv3345c GKGGNGGQGGIGGAGERGADGAGPNANGANGENGGSGGNGGDGGAGGNGGAGGKA QGGIGGAGERGADGAG 8a 

GERGADGAGPNANGAN 15a 
PNANGANGENGGSGGN 24a 
GGSGGNGGDGGAGGNG 34a 
GGDGGAGGNGGAGGKA 40a 

3205044 Rv3395A TQQVSVRTNTKSTQNDT#RPACRPAELFATDNTTDGFELPAVATIALTGTVVTT RPAELFATDNTTDGFELPAV 36 
887227 Rv3572 VAGANLRTPDGPTGFPPGLWARQTTEIRSTNRLAYLDAHATSQFERVMKAGGSDVIT LRTPDGPTGFPPGLWARQTT 64 
885751 Rv3682 AGWDLPMSGKTGTTEAHRSAGFVGFTNRYAAANYIYDDSSSPTDLCSGPLRHCGSGDLYGGNEPS

RTWFAAMKPIANNFGEVQLPPTDPRYVDGAPGSRVPSVAGLDVDAARQRLKDAGFQVADQTNS
VNSSAK 

SAGAAGWDLPMSGKTGTTEA* 600 
YIYDDSSSPTDLCSGPLRHC 637 
SGDLYGGNEPSRTWFAAMKP 658 
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Gene ID Locus Tag Selected Peptide Sequence BCPred B-Cell Epitope Pos 
QLPPTDPRYVDGAPGSRVPS 686 

886121 Rv3803c VHTALHDGGGHMKGRSALLRALWIAALSFGLGGVAVAAEPTAKAAPYENLMVPSPSMGRDIPVAF
LAGGPHA 

AAPYENLMVPSPSMGRDIPV 33 

886216 Rv3896c LRQDFIPSPVGGPINTLVSATLPAEFDALGARSTPSISSGPQTRSNAVTVALPQVNLRCQLVNTCERVA
SKSTCCVAVIYSLAESRCWD#LGEEDSMSFVTTQPEALAAAAAIQKALDIKGVHDPAARARWTRGM
DLVARRESNYNANAINHWDSNAARGTPS 

RRESNYNANAINHWDSNAAR 213 

886256 Rv3922c RVTGRASARGLIFVIQVYRHMLSPLRPASCRFVPTCSQYAVDALTEYGLLRGSWLTMIRLAKCGPWH
RGGWDPIPEGLTTGRSCQTDVDGANDDWNPASK 

GPWHRGGWDPIPEGLTTGRS 76 
DVDGANDDWNPASKRGERES 99 

*AAP Epitope 
aABCPred used for prediction and start position on provided protein peptide 
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APPENDIX B: ETHICS APPROVAL 
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