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ABSTRACT

Radiological examinations in the form of Computed Tomography (CT) and Positron Emis-

sion Tomography (PET) integrated with CT (PET/CT) contributions to accurate diagnosis,

treatment planning, staging of fever of unknown origin, inflammatory diseases are increas-

ingly reported. Although these devices offer cross-sectional views and 3D reconstructions

with a high clinical assessment of many infectious diseases deep within the body compared

with other imaging modalities, there are concerns regarding the associated radiation dose

to the patient undergoing these imaging techniques. Studies have shown that patient doses

from CT procedures are considerably larger than those from other diagnostic X-ray exami-

nations, while a PET/CT examination causes both internal (γ − ray) and external (X-ray)

radiation from radiopharmaceutical administration and CT acquisition.

Additionally, the number of CT or PET/CT systems available on the market has increased

substantially and new models are being developed and released on a continuous basis. Con-

sequently, scanning techniques have become more sophisticated and complicated, with radi-

ologists facing difficulties in the appropriate adjustment of scanning parameters to patient

size and anatomy. Considering the wide variability in body size in the population, lack of

optimized protocols could be an additional source of increased dose with a corresponding
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increase in cancer risks. In view of the significant benefits from properly conducted medical

exposures, and the unavoidable harmful potential effects, it was the interest of this work

to quantify the level of radiation exposure to patients, the scanning parameters that sig-

nificantly affect exposures, the implication of appropriate selection of exposure parameters

depending on the diagnostic requirements, and the potential harm, if any, does the typical

use of generic protocols have on the health of patients exposed to each one of the modalities.

We also explored the radiation protection practices in both types of procedures.

Radiation doses from CT procedures were estimated using Monte Carlo (MC) simulation

software, while the Dose coefficients recommended in the International Commission on Ra-

diological Protection (ICRP) publication 106 were used to calculate the doses from a PET

scan. The Lifetime Attributable Risk (LAR) of cancer incidence associated with these doses

was determined using the formalism implemented in the Biological Effects of Ionizing Radi-

ation (BEIR) VII report of National Research Council, which incorporated the magnitude

of radiation exposure, sex, and patient age at the time of exposure.

The investigation of the effect of generic protocols on the magnitude of patient doses and the

lifetime risk of cancer during CT examinations from different manufacturer models reveals

a significantly different (P < 0.05) in organ doses between the CT scanners. A high and

statistically significant correlation was observed between estimated lifetime cancer risk for

both male (r2 = 0.943, P < 0.05) and female patients (r2 = 0.989, P < 0.05). The risk vari-

ation between the scanners was slightly higher than 2% for all ages but was much smaller for

specific ages for male and female patients (0.2% and 0.7% respectively). The related increase

in cancer risk though less than 1% emphasized the need for optimized scanner protocols, that
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is, exposure protocols that lead to an acceptable image quality for patient-specific indication,

based on the individual scanner characteristics as opposed to generic practices.

The influence of specific CT model and protocols on the total absorbed radiation dose from

a 18F-FDG PET/CT procedure was also investigated in a bid to assess if the changes in CT

model and protocols have any significant effect on the overall PET/CT dose, and to analyse

possible parameters affecting the CT component radiation dose. Results showed a differ-

ence of 4.3%-15% for the Low-dose and 4.1%-11% for the Standard dose scans in the total

PET/CT dose between the two systems considered. However, the CT component contribu-

tions were not significantly different. The slight variations in the effective dose contribution

from the CT component for both PET/CT systems were due to clinical technique differences

and type of scanners.
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Chapter 1

INTRODUCTION

Tuberculosis (TB) is a chronic granulomatous infection caused by the bacterium Mycobac-

terium tuberculosis [1, 2]. Globally, TB continues to be one of the leading infectious causes of

morbidity and mortality, accounting for an estimated 9 million cases and 1.5 million deaths

per year [3, 4]. Sub-Saharan Africa countries such as South Africa with a high number of peo-

ple with immune system problems, such as Acquired Immune Deficiency Syndrome(AIDS)

are the most affected. Explicitly, a human immunodeficiency virus (HIV) positive patient

has a 20-fold increased risk of contracting TB when compared with HIV negative individual

[3, 5]. Despite a global slowing down in new TB cases since 2003 [6], South Africa remains

one of the countries with the highest burden of TB, with the World Health Organisation

(WHO) statistics giving an estimated incidence of 450,000 cases of active TB in 2013. This

is the fourth highest incidence of any country in the world after India, China, and Indonesia.

Recent figures from the South African Department of Health are that 73% of the 450,000

incident cases TB patients are HIV positive. The significant improvement in the cure rate

(number of cases per 100,000 population where a patient has finished the course of treatment
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with bacteriological evidence of success), from 58% in 2005 to 78% in 2014, still fell far short

of the global targets of > 85% [7], mainly attributed to late or ineffective diagnostic testing

[8]. The delay in diagnosis causes a delay in isolation of the patient with more chance for

the infection to spread and thus increasing the severity of the disease [9]. Although TB can

affect any organ system in the body, the common and often the initial site of manifestation

are the lungs [10, 11].

Despite the enormous burden of TB, current diagnostic methods are woefully inadequate to

meet clinical and research needs [12]. The initial diagnostic strategy in adults suspected of

having TB is primarily based on history, clinical signs and symptoms, the demonstration of

acid-fast bacilli (AFB) on sputum microscopy, and a simple chest radiograph (CXR) mostly

for sputum-negative patients not responding to a course of antibiotics [3, 11]. However, the

sputum smear microscopy and CXR does not work well to detect TB in HIV positive patients

because cavitation and transfer of bacilli into respiratory secretions are markedly reduced

due to alteration of the normal host immune response to Mycobacterium TB. Additionally,

the classical radiographic findings of pulmonary TB, consisting of upper lobe involvement

and cavitation without lymphadenopathy are usually only found in HIV positive individuals

without severe immunosuppression (CD4 count > 200), with a predominant uncharacteristic

radiographic pattern in those with severe immunosuppression (CD4 count < 200) [8].

The insufficiency and low sensitivity of the chest radiographs (CXR) in early detection of

TB were reported also by many authors. Lee et al [13] in their study on the role of chest CT

scanning in TB outbreak investigation, found the presence of radiographic lesions suggestive

of active pulmonary TB in nine patients with normal chest x-ray findings. Uzum et al [14]

compared the CXR and thoracic CT findings in children who had contact with adult family

members with active pulmonary TB and they found that CXR detected TB in only 7(15%) of

48 children, whereas the thoracic CT scans revealed lymph node enlargement or parenchymal
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lesions in 39 (81.2%). Another study by Kim et al [15] found that mediastinal or hilar lym-

phadenopathy containing low-attenuation nodes with rim enhancement, calcifications, and

nodules of bronchogenic spread or miliary nodules a hallmark of tuberculosis in children were

missed on chest radiographs. The limitations of these conventional diagnostic approaches

have led to heavy reliance on alternative methods of imaging, specifically Computed Tomog-

raphy (CT) and integrated Positron Emission Tomography (PET)/CT imaging techniques

for disease diagnosis, clinical assessment, and treatment follow-up. CT scans provide more

accurate information about the extent and distribution of Pulmonary TB through the pres-

ence of cavities and subtle lesions than chest radiographs [16, 17]. PET/CT is a non-invasive

and sensitive imaging modality that has proven to provide very detailed anatomic-metabolic

information on different aspects of tuberculosis consequential of the ability for CT to give

anatomic information supporting the metabolic information obtained from PET, thus im-

proving lesion localization and interpretation accuracy [18].

In spite of the tremendous clinical benefits derived from the CT and PET/CT imaging

tools, there is growing concern among the patients, public and the scientific community with

regards to the associated radiation exposures. Investigation has shown that the amount of

radiation exposure applied in a traditional chest CT examination is about 3 to 20 times more

than the radiation dosage used for a conventional chest X-ray examination [16], while expo-

sures from PET/CT examinations are relatively higher compared to other imaging modalities

based on ionizing radiation, due to the additional external exposure (X-ray) from CT acqui-

sition, in addition to internal exposure (γ − ray) from administered radiopharmaceuticals.

As a consequence, CT and PET/CT represent the major contributor of the annual collec-

tive dose from medical exposures Figure(1.1)— the largest contribution to population dose

from man [19, 20]. With the rapidly expanding quantity of these examinations, a resultant

increase in cancer cases can be expected [21-23], thus the deliberate choice to investigate
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these high-dose imaging tests.

Figure 1.1: Pie chart showing exposure sources of the United States population (NCRP

Report 160, 2009) [23]

1.1 Research Motivation

The number of CT or PET/CT devices available on the market has increased substantially

and new models are being developed and released on a continuous basis [25,26]. Although

these devices offer cross-sectional views and 3-dimensional reconstructions with high diagnos-

tic capability of many infectious and inflammatory disease deep within the body compared

with other imaging modalities, scanning techniques have become more sophisticated and

complicated, and radiologists are faced with an expanding array of options, including the
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selection of exposure parameters such as the tube current, kilovoltage, collimation, and table

speed (hence, pitch). Considering the wide variability in body size in the population, careful

selections of these parameters are necessary and important to optimize pertinent diagnostic

information. It is germane to mention that to the best of our knowledge, despite the in-

creasing demand for these imaging modalities owing to the prevalence of HIV infection and

related opportunistic diseases such as tuberculosis infection, there has been no published

information regarding any adherence to technical recommendations or guidelines as to when

or how they should be utilized and such lack of information reinforces fears about radiation

exposure.

In view of the significant benefits from properly conducted medical exposures, and the

unavoidable harmful potential effects, periodic radiation dose, and risks assessment are

paramount for the optimization of radio-diagnostic procedures and assurance of the ap-

plication of radiological protection principles. The level of radiation exposure to patients,

the scanning parameters that significantly affect exposures, the implication of appropriate

selection of exposure parameters depending on the diagnostic requirements, and what po-

tential harm, if any, does the typical use of generic protocols have on the health of patients

exposed with each one of the modalities need to be explored and this study has been designed

to address this issue. The non-implementation of established imaging protocols suggests a

variation of above 2% in lifetime cancer risks.

Furthermore, investigation of the influence of CT scanner and study protocol on the overall

PET-CT dose is also analysed. It was proposed that a difference in CT component and

study protocol causes no significant effect on the overall dose. The major contribution based

on the considered imaging procedure is created by the CT acquisition parameters used. The

data presented in this study will constitute a part of the global effort in radiation protection

of patients in diagnostic radiology.
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1.2 Aims and Objectives of the thesis

The specific objectives of this study are to:

• assess the radiation absorbed dose and effective dose from the CT and integrated PET/CT

imaging modalities as a means for the optimization of the radiation protection of patients,

• quantify the potential risk from exposures taking into account organ risk factors and

evaluate the influence of age, sex and scan protocol on cancer risk,

• investigate what potential harm, if any, the typical use of generic protocols has on the

radiation dose and the corresponding risk for exposed patients,

• analyze the critical adjustable scanning parameters that are determinants of the radiation

dose a patient receives for each examination and

• provide recommendations as to the application of each imaging technique for various clinical

conditions, to ensure essential diagnostic information is obtained with As Low As Reasonably

Achievable (ALARA principle) radiation exposure.

1.3 Organization of the thesis

The structural organization of this thesis is presented in five (5) chapters. Chapter 1 gives

the general introduction to this work, the motivation for the study and the specific aims and

objectives of the study. A theoretical background (literature review) on the history and basic

principles of CT and PET/CT imaging are discussed in chapter 2. The likely biological effects

following exposures and overview of factors affecting patient dose from these procedures were

also discussed. The contribution of various researchers to patient dose estimation vis-à-vis the

commonly used methods such as Thermo-luminescent dosimeters, mathematical modeling
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globally and within South Africa is presented. The chapter concludes with a brief review of

radiation protection principles. Chapter 3 is a published journal article that focuses on the

estimation of the absorbed radiation dose and long-term effects (cancer risks) for exposed

patients from helical CT for pulmonary tuberculosis infections. We hypothesize the same

scan protocol while focusing on the adjustable scan parameters that are determinants of

radiation dose for three 16-slice units. Furthermore, we determine what, if any, correlation

exists between dose and cancer risks for each scanner. Chapter 4 quantifies the effects of CT

model and exposure protocols on the overall radiation effective dose to patients for commonly

performed CT techniques in a 18F-FDG PET/CT examination. The study focused on two

PET/CT systems and five CT exposure protocols routinely applied for clinical patients

in PET/CT imaging. Additionally, a comprehensive analysis of the influence of selected

exposure parameters on radiation dose is also given. The findings of this chapter have been

presented at an international conference and are accepted for publication in a learned journal.

Lastly, Chapter 5 summarizes the major findings of the study based on each chapter and

provides some suggestions for future work.
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Chapter 2

LITERATURE REVIEW

In this chapter, we discuss the history and basic principles of the CT and PET/CT imaging

techniques and review their roles in the treatment and accurate diagnosis of tuberculosis in-

fections. The different mechanisms of radiation interactions with matter and their respective

effects on biological tissues are also presented.

2.1 Radiations and its classification

Radiation is a term used to collectively describe the emission and propagation of energy in

the form of waves or particles through space or a material medium [1]. The energies produced

either from unstable atoms undergoing radioactive decay or by machines are classified broadly

into ionizing or non-ionizing, depending on whether it is sufficient enough to knock electrons

off their orbits around atoms, as well as being able to do lower-energy damage such as

breaking chemical bonds in molecules [2, 3].
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Figure 2.1: The electromagnetic spectrum as a function of wavelength, frequency, and energy.

X-rays and γ − rays comprise the high-energy portion of the spectrum[4]

2.1.1 Ionising Radiations

Ionizing radiation such as gamma(γ) and X-ray are capable of ionizing matter either di-

rectly through many small Coulomb (electrostatic) interactions with orbital electrons along

its tracks or indirectly from interaction via reactive species released in one or a few interac-

tions in the matter through which they pass [4, 5]. The minimum energy required to ionize

an atom, i.e. to remove an electron, is known as the ionization potential. The magnitude

ranges from a few electron volts for alkali metals to 12.6 eV for water and 24.5 eV for helium

[4].
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2.1.2 Non-Ionizing Radiations

Non-Ionizing radiation (NIR) refers to radiative energy capable of producing excitation,

but not sufficient energy in comparison to ionizing radiation for charged ions, when passing

through matter. They encompass long wavelength (> 100 nm), low photon energy (< 12.4eV)

portion of the electromagnetic spectrum, from 1Hz to 3x1015Hz. The NIR spectrum is

divided into two main regions, optical radiation (ultraviolet, visible, and infra-red) and

electromagnetic fields separated into radiofrequency (microwave, very high frequency and

low-frequency radio wave) [6]. However, NIR are termed as extremely low-frequency (ELF)

waves and are not considered to pose a health risk [2].

2.2 Mechanisms of ionizing radiation interactions with

matter

Ionizing radiations can actively interact with matter, with the result that energy is trans-

ferred to the material [7]. The interactions between the gamma-ray and x-ray photons and

matter decreases the intensity (number of photons) of the primary beam traversing through

the material- a process called attenuation. The attenuation of a photon beam by an absorb-

ing material is by four basic types of interactions namely: Rayleigh scattering, Compton

scattering, Photoelectric effect and Pair production.

13



2.2.1 Rayleigh scattering

The Rayleigh scattering also known as classical or coherent scattering occurs mainly when

very low energy x-ray photons interacts with and excites the total atom causing electrons to

vibrate in phase [8]. The oscillating electron re-radiates the energy at the same frequency as

the incident photon but with a slightly different direction. In this interaction, no absorption

of energy occurs (ionization does not occur). Consequently the only effect is the scattering

of the photons at small angles [1, 8]. The probability of this type of scattering occurring is

low, about 5% due to the low effective atomic number of soft tissues and is represented by

Eqn 2.1.

Probability of scatter ∝ Z2

E2
, (2.1)

where Z is the atomic number of the material and E the energy of the incident photon.

2.2.2 Compton scattering

In the Compton process, the photon interacts with an atomic electron as though it were

a free electron consequential of the fact that the energy of the bombarding photon (E0) is

much greater than the binding energy of the electron (E) [1]. The partial energy transfer to

the electron causes a recoil and emission of a valence electron from the outer orbital shell at

an angle θ. Simultaneously, a photon with reduced energy (Es) is scattered with a trajectory

of angle φ relative to the trajectory of the incident photon.

By applying the laws of conservation of energy and momentum, the energy of the scattered

photon relative to the incident photon for a photon scattering angle φ is expressed by equation

2.2 [1]:
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Es
E0

=
1

1 + α(1− cosφ)
(2.2)

where, α is the dimensionless ratio E0/m0c
2 and m0c

2 the rest energy of the electron (0.511

MeV). The equation shows that the scattered x-ray energy becomes smaller as the scattering

angle increases and at higher incident energies, the effect is amplified.

The scattered photon angle is related to the scattered electron angle by [1, 4]

cot θ = (1 + α) tan
φ

2
(2.3)

2.2.3 Photoelectric effect

In this interaction, the entire energy hν of the incident photon is transferred to the absorbing

atom resulting in the ejection of an orbital electron in the K, L, M, or N shells. The kinetic

energy E of the ejected electron (termed the photoelectron) equals the difference of the

incident photon energy hν, and the electron shell binding energy EB, [1] i.e.

E = hν − EB (2.4)

The vacated electron shell though subsequently filled by an electron from a higher energy

level with the emission of a characteristic x-ray equal in energy to the difference in electron

binding energies of the source electron shell and the final electron shell, creates another va-

cancy in the process which is also filled from another higher binding energy shell, leading to
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an electron cascade where electrons transition between different energy shells [8, 9]. There

is also the possibility of emission of Auger electrons (monoenergetic electrons produced by

the absorption of the characteristics x-rays) internally by the atom [8]. The probability of

photoelectric absorption depends on the photon energy. If the incident photon energy is less

than the binding energy of the electron, the photoelectric interaction cannot occur, but if the

x-ray energy just equals the electronic binding energy, resonance occurs and the probability

of photoelectric effect becomes energetically feasible.

Beyond this point, if the photon energy is increased, the likelihood of photoelectric attenua-

tion decreases approximately as 1/E3 [1, 8]. Image contrast is improved with photoelectric

interaction since the process amplifies differences in attenuation between tissues with differ-

ent atomic numbers [9].

2.2.4 Pair production

Pair production can occur when the incident X-ray or γ-ray photon has energy greater than

1.02 MeV, which represents the threshold energy required to create the pair of electrons since

the rest mass energy of the electron is equivalent to 0.51 MeV. In this process, the photon

interacts strongly with the electromagnetic field of an atomic nucleus and gives up all its

energy in the process of creating a pair consisting of both a negative (e−) and a positive

electron (e+) [1]. The photon energy in excess of 1.02 MeV is shared equally between

the e+/e− pair as kinetic energy, obeying the law of conservation of energy represented by

equation 2.4:

hν = 2(moc
2) +Ke+ +Ke− , (2.5)

where hν is the initial energy of the incident photon, 2(moc
2) the total rest mass energy of

the electron and positron, and Ke+ and Ke− their kinetic energies.
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Figure 2.2: Schematic diagram of the pair production process

Once the created positron expends its kinetic energy as its traverses matter, it will combine

with any available electron and produce two photons called annihilation radiation, resulting

from the conversion of the rest mass energies of the e+/e− pair [1, 8]. Pair production occurs

at energies well above those used for diagnostic x-ray imaging.

2.3 Biological Effects of Ionizing Radiations

Ionizing radiations with sufficient energy to remove electrons from their atomic or molecular

orbital shells in tissues [5], could result in tissue damage and disruption of cellular function

at molecular level if received in sufficient quantities over a period. Their effect on the

deoxyribonucleic acids (DNA) which control the structure and function of the cell and in

turns passes on copies of itself is of major concern [10]. The biological effectiveness depends

on the spatial distribution of the energy imparted and the density of ionization per unit path
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length of the ionizing particles [11]. The potential biological effects caused by radiation are

classified based on their nature and occurring time after exposure [12] as follows:

Acute (short-term) effects: This occurs when the body is exposed to a large dose of

radiation (about 10 rad or greater). The exposures could be all at once or from multiple

exposures intermittently during a very short time [2]. Instances of acute effects manifest

themselves within hours or days, as the body cannot repair or replace cells fast enough from

excessive cell damage and grows progressively shorter with an increase in maximum dose

received. Examples include reduced blood count, hair loss, nausea, and fatigue [13].

Chronic (long-term) effects: These effects result from the relatively small amount of

radiation energy absorbed over a long period of months, years, or lifetime. The exposure

could be continuous, e.g. exposure received daily from natural background radiation or off

and on routinely over a long time such as occupational radiation exposure [2]. Chronic doses

do not result in detectable health effects seen with acute doses consequential of the fact that

the body possesses enough time to replace dead or non-functioning cells with healthy ones.

Among the long-term effects, thus far observed have been somatic damage, which may result

in an increased incidence of cancer, embryological defects, cataracts, and harmful genetic

changes for generations after the original radiation damage [2,13].

2.3.1 Deterministic and stochastic effects of ionizing radiations

Radiation effects are also categorized as either deterministic or stochastic:
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Deterministic Effects

Also described as tissue reactions are one in which the severity of the effects increases with

absorbed dose in affected individuals. These types of effects are characterized by a threshold

dose level below which the effect does not occur. The level of the threshold dose is typical

of the particular health effect and to a limited extent, the exposed individual. Deterministic

risks are rarely seen with diagnostic x-ray or γ − ray based examinations because radiation

doses typically do not reach the threshold level [14]. Examples of threshold doses for de-

terministic effects in some radiosensitivities tissues include 3.5 - 6.0 Gy (sterility) in testis,

2.5-6.0 Gy (infertility) in the ovaries and 5 Gy (cataract formation) in the lens of the eyes

[15].

Figure 2.3: A general dose-response relationship for deterministic effects [16]
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Stochastic Effects

This type of detrimental effect has a probability that is proportionate to the absorbed dose,

but the timing of the effects or their severity in affected individuals does not depend on

the magnitude of the dose [1]. They include the detriment-adjusted nominal risk of cancer

and hereditable effects owing to mutation of reproductive cells. The occurrence of stochastic

effects is a consideration with low- dose exposures typically encountered in diagnostic radi-

ology since there is no associated threshold point below which it is relatively certain that an

adverse effect cannot occur [14].

Additionally, as stochastic effects can occur in individuals not exposed to radiation above

background levels, it can never be determined for certain that an appearance of cancer or

genetic effect is due to a specific exposure. The increase in occurrence is provable only by

the epidemiological method. The International Commission on Radiological Protection [17],

indicates a value of 5.5 % per sievert for cancer and 0.2 % per sievert for heritable effects

after exposure to radiation at low dose rate.
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2.3.2 Mechanisms of ionizing radiation damage to the cells

The radiation damage to the cells is ascribed to two basic mechanisms direct and indirect

actions [7, 18].

Direct Actions

The direct effect proposes that radiation has the potential to interact directly with the

target structures (DNA molecule) to cause ionization, thus initiating the chain of events

leading to biological damage or even cell death. Surviving damaged cells may later induce

carcinogenesis or other abnormalities. Direct actions are dominant for radiations with high

linear energy transfer LET (energy loss per unit path length for a charged particle) such as

neutrons, protons, or alpha particles owing to the fact that they travel in a straight path as

they penetrate tissue due to their relatively large masses in comparison to electrons [12, 18].

Indirect Actions

In indirect action, radiation interacts with atoms or organic molecules in a cell (usually water

molecules) being the major constituent in living organisms leading to a rapid production of

oxidizing and reducing reactive free radicals such as hydroxyl (HO∗) and also hydroperoxyl

(HO∗
2) in oxygenated solutions [18]. These free radicals interact with atoms and molecules

within the cells, particularly DNA, to produce chemical modifications and consequently

harmful effects [12].

It is estimated that about two-thirds of the radiation-induced damage caused by low linear

energy transfer (LET) radiations (sparsely ionizing) such X-ray or γ − ray occurs through

indirect action mechanism because water constitutes nearly 70% of the composition of the
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cell [18, 19]. The number of free radicals produced depends on the total dose of radiation

received. The result of the indirect action of radiation on DNA molecules is the impairment of

function or death of the cell. Koturbash et al [20] concluded that when the DNA is attacked,

either via direct or indirect action, the ultimate result is the development of biological and

physiological alterations which might involve genetic and epigenetic changes in its evolution

manifesting themselves seconds or decades later.

Figure 2.4: Direct and indirect actions of ionizing radiations[20]
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2.4 History and basic principles of CT and PET/CT

imaging

2.4.1 CT Imaging

CT is an imaging technology consisting of a patient table surrounded by a gantry, which

holds the x-ray tube generator, detector array, slip rings, collimators and digital acquisition

system (DAS). A 3-dimensional representation of the interior of a patient is generated with

multiple x-ray projections as the gantry rotates around the patient [22]. The first CT scanner

was invented by Godfrey Hounsfield in the 1970s. Since then, CT technology has developed

significantly over the last 20 years, with the advent of spiral CT in the 1990s and the

subsequent introduction first of dual-slice CT scanners and then of multi-slice scanners with

the capability of generating 16, 64 and 128 slices per rotation [23]. As the x-ray tube

rotates around the patient, the x-ray photons generated within the tube are attenuated in

the patient’s tissue and are captured by the detectors converting it into digital information

via the DAS [23]. The attenuation of the x-ray radiation in the patient’s tissue followed

Lambert’s law of absorption [24]:

I = Ioe
−µx. (2.6)

Hence,

I = Ioe
−
∫
µ(x, y)dx, (2.7)

where I is the intensity of the transmitted x-ray beam, Io is the intensity of the incident

beam, and µ(x, y) is the linear attenuation coefficient at position(x,y) along the ray path.
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The acquired X-ray data is then reconstructed through sophisticated mathematical algo-

rithms to produce a cross-sectional image of the internal structures of the body region

scanned for diagnostic use.

The CT image is the measurement and ‘demonstration’ of the linear attenuation coefficients

µ(x, y) of the structures that the x-ray beam interacts with during the examination. The

filters are responsible for removing low-energy x-ray photons, thereby reducing patient dose,

while the collimators are used to define the slice thickness and localize the x-ray field to the

area of interest.

Figure 2.5: Schematic representation of a modern CT scanner; the X-ray tube and detector

system rotate together around the patient.[24]
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2.4.2 PET/CT Imaging

The demand for more accurate anatomic localization of regions identified on the tracer up-

take patterns in PET overextended imaging ranges at reasonable patient exposure levels

underlies the main concept of combined PET/CT imaging [26]. PET/CT systems are com-

binations of three main components: a PET scanner, a CT scanner, and a shared patient bed

in a single gantry with the PET components on the reverse side of the rotating support of

the CT scanner [27, 28]. The first PET/CT scanner was constructed in 1998 through a col-

laboration of the National Cancer Institute, CTI PET Systems (Knoxville, Tennessee), and

the University of Pittsburgh from independent, previously developed CT and PET scanners

[27]. Results from this prototype helped to stimulate further development and construction

of combined PET/CT scanners [28]. A typical PET/CT examination starts with the CT

scout scan or topogram to define the scan area, followed by a helical CT scan over the range

defined on the scout scan, and finally the PET scan [26, 29].

PET image acquisition is based on the annihilation coincidence detection (ACD) of two

collinear 511keV photons produced from a radionuclide tagged tracer molecule. Upon ad-

ministration of very small amounts (pico- or nanomoles) of a radiotracer to the patient it

distributes among and within the organs. The radioactive atom of the radiotracer emits

positrons which annihilate with a nearby electron after traveling a short distance (≈ 1mm)

in the tissue. The product of this annihilation is a pair of photons, which following the laws

of conservation of energy and momentum are emitted in nearly opposite directions. The

energy balance of the two photons can be written as:

2(moc
2) +Ke+ +Ke− = 2hν, (2.8)

where 2(moc
2) is the total rest mass energy of the particles, Ke+ and Ke− their kinetic

energies before collision and 2hν is the energy after collision.
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During the scan millions of coincidence detections are collected by the many photon detectors

of the PET scanner surrounding the patient, providing information about the distribution

of the radiotracer in tissue.

The CT component provides morphological information and could also be used to correct

for the effect of photon attenuation in patient which causes loss of coincidences since the

number of measured coincidences depends on the patient’s ‘radiological’ thickness [23].

Figure 2.6: Radionuclide decay, positron (β+) emission, multiple scatter in tissue, annihila-

tion with electron, and production of two back-to-back 511 keV annihilation photons.[29]

2.5 Radiation dose from 18F-FDG-PET/CT procedures

It has long been widely reported that PET/CT examinations especially those involving di-

agnostic CT, are accompanied by a substantial radiation dose that may enhance the risk

of cancer. The evidence for this conclusion is not based on direct proof, but the inference

from studies that have estimated the radiation exposure from the procedure. The absorbed

dose in FDG PET/CT arises internally (γ − ray) from injected radiopharmaceutical and
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externally (X-ray) from CT sources and is predominantly dependent on the strategies for

CT usage. For example, Mattson and Soderberg [31] stated that a low-dose CT performed

for attenuation correction and anatomical orientation may only account for 50% (2–3 mSv)

of the whole PET/CT dose, for an investigation with PET effective dose of 7 mSv (total

dose 9–10 mSv). However, in a study to estimate the radiation dose and cancer risk dur-

ing a whole-body PET/CT scan, Huang et al [32] compared three different CT acquisition

protocols using a humanoid (Alderson-Rando) phantom equipped with thermoluminescent

dosimeters (TLD-100). They found the total PET/CT effective dose with a diagnostic CT

protocol and an administered 18F-FDG activity of 370 MBq to be approximately 32 mSv

(81% of the combined dose was attributable to the CT doses).

Brix et al [33] performed a similar study in four German university hospitals. The authors

reported effective doses of the order of 23.7 – 26.4 mSv. Their examinations mostly include

a diagnostic CT scan, and only in some of the hospitals, a low-dose CT. The diagnostic CT

was estimated to deliver 14.1 – 18.6 mSv, while the low-dose CT was reported to contribute

1.3 – 4.5 mSv. They concluded that considering the increased patient exposure compared

with individual CT or PET examinations, a judicious medical justification of every PET/CT

referral is required. Quinn et al [34] used patient-specific data to characterize the radiation

dosimetry of two types of routine whole body PET/CT protocols at their institution. They

specifically evaluated the combined PET and CT scan dose for 183 consecutive adult pa-

tients who undergo either the standard registration or full dose diagnostic CT techniques.

The researchers found that for all standard PET/CT patients, the mean total effective dose

was 14 ± 1.3 mSv and mean CT effective dose was 5.0 ± 1.0 mSv, while for all diagnostic

PET/CT patients, the mean total effective dose was 24.4 ± 4.3 mSv with mean CT effective

dose 15.4 ± 5.0 mSv.

The authors suggested that differences in scanner hardware and software factors at a given
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imaging clinic can cause the radiation dose from a standard PET/CT with separate diag-

nostic CT to be more or less than the radiation dose from a diagnostic PET/CT. They,

therefore recommend that incorporating clinic and patient-specific data in dose estimation

is important especially for oncology patients who potentially can have many scans and must

track cumulative exposure. Many other investigators have evaluated the exposure from 18F-

FDG PET/CT procedures. Avramova-Cholakova et al [35] retrospectively collected data on

108 patients from two different PET-CT systems. They reported average effective doses of

8.0 and 8.9 mSv from the CT component for the system I, and 7.8 and 8.7mSv for system

II. The corresponding effective doses from the PET component were 4.9 and 5.9 mSv for the

system I and II respectively. One evaluation of 105 PET/CT scanners used in 73 institutions

in Korea (Kwon et al [36]) estimated the average effective dose from FDG to be 5.89 ± 1.46

mSv and 6.26 ± 3.06 mSv from CT. The researchers observed that the total radiation dose

was reduced with scanners equipped with image – enhancing algorithms [36].

Another study of 35 oncology patients in Thailand found that the average whole-body effec-

tive doses from the PET and CT were 4.40 ± 0.61 and 14.45 ± 2.82 mSv respectively, for the

same type of examinations resulting in the total patient dose of 18.85 mSv [37]. Kaushik et

al [38] reported that the total effective dose from a typical protocol of whole-body18F-FDG

PET/CT examination was 14.4 mSv for females and 11.8 mSv for male patients. They in-

dicate that the estimated doses were approximately 5-8 times higher than the background

radiation dose.
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2.6 Role of 18F-FDG-PET/CT imaging in TB

diagnosis

The contribution of Positron emission tomography (PET) integrated with computed to-

mography (CT) to the diagnosis of fever, cough, hemoptysis, appetite and/or weight loss,

differentiation of malignant from benign lesions, and assessing therapy response in many

infectious and inflammatory conditions of unknown origin is widely reported [39,40]. The

main strength of this non-invasive method of imaging lies in its ability to detect primary

and metastatic disease deep within the body and conduct longitudinal assessment overtime

by means of a whole-body survey with a single injection of a given amount of a radiotracer,

such as 2-18F-FDG fluoro-deoxy-glucose [26,39].

18F-FDG accumulates in inflammatory cells such as neutrophils, activated macrophages, and

lymphocytes at the site of inflammation or infection [41], as a result of the respiratory burst

that occurs with infection. Consequently, the uptake is observed in both Pulmonary and

Extra- pulmonary TB and other TB-related lesions [40]. For instance, in a study by Goo

et al [42] involving 10 consecutive patients suffering from histopathologically proved active

pulmonary TB at a South Korean hospital, 9 (90%) tuberculomas showed FDG uptake at

PET, with a maximum standardized uptake value (SUVmax), the regional radioactivity con-

centration divided by the total injected dose and adjusted to the patient weight [43] above

the threshold of 2.5 at 4.2 ± 2.2 SD.

Moreover, as a decrease in the SUVmax correlates with response to treatment, 18F-FDG-

PET has been shown to be very useful in monitoring and guiding the duration of antimicro-

bial therapy, especially in patients with multi-drug resistant (MDR)-TB where second-line

drugs are less efficacious and definitive treatment duration is not known [44-47]. This was
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demonstrated in a study by Martinez et al [48], where a 31% median percentage decrease in

SUVmax was observed in 19 out of 21 consecutive HIV negative TB patients at one month

of therapy. In a separate study of a 52-year-old woman with stage 3B cervical squamous

cell carcinoma involving para-aortic lymph nodes, the calculated standardized uptake value

(SUV) of the mediastinal nodes was 5.5. Follow-up PET/ CT performed at 24 weeks after

commencement of treatment revealed smaller mediastinal lymph nodes and decreased SUV

(1.8) [47]. Other studies by Park et al [49] and Chen et al [50] also revealed patients remain-

ing free of TB months after treatment.

It is also reported that 18FDG-PET/CT is able to differentiate old or inactive sequellar TB

from that in the latent or active stage of infection, particularly in patients with radiological

findings alone, as the high 18F-FDG uptake in a patient with TB represent an active disease

or a host immune system activity that will eventually prevail [44,49]. Kim et al [51] evaluated

the role of 18F-FDG PET/CT imaging in the differentiation of areas of active TB from the

old or inactive disease in 25 consecutive pulmonary tuberculoma patients. The study found

significantly higher maximal SUVmax values in patients with active rather than inactive

tuberculoma, with early and delayed (60 and 120-minutes post injection) SUVmax values of

(active = 2.3 ± 0.75, inactive = 0.79 ± 0.15 and active 2.48 ± 0.79, inactive= 0.75 ± 0.13)

respectively. Soussan et al [45] were able to described two distinct patterns of pulmonary

TB: (1) the lung pattern, related to a restricted and slight hyper-metabolic infection, with

18F-FDG uptake in areas of lung consolidation and (2) the lymphatic pattern, related to a

systemic and intense infection, with more enlarged and 18F-FDG-avid hilar and mediastinal

lymph nodes using the PET/CT imaging.

The most promising role of FDG-PET/CT is probably in the monitoring of treatment re-

sponse, especially in extra-pulmonary TB where obtaining tissue/fluid for analysis is not

always possible or may be invasive [39]. PET/CT is important in detecting subsets (<1%)
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of the Mycobacterium tuberculosis (Mtb) that may emerge within the bacterial population

during sub-optimal treatment with inadvertent monotherapy. These subsets reflect naturally

occurring drug-resistant mutants, which other new and traditional diagnostics methods such

as interferon gamma release assay (IGRA), urine lipoarabinomannan (LAM) testing includ-

ing the liquid culture has failed to detect [39]. The early detection of these subsets in the

course of treatment enables timely change to appropriate therapy.

2.7 The significance of CT in FDG-PET/CT imaging

Over the past years, 18fluorodeoxyglucose (18F-FDG)-positron emission tomography (PET)

has proved to be a valuable imaging technique for diagnosing many cancer diseases, accurate

determination of the tumor size, delineation of the adjacent structures, the involvement of

hilar and mediastinal lymph nodes and the detection of distant metastases [52,53]. Its main

limitation, however, includes the relative lack of spatial resolution, the low contrast between

different tissues, and blurring due to motion and partial volume effects in small foci [52].

Furthermore, tumor tissues like microscopic tumor deposits (tumor nodules in the lymphatic

drainage bed of the (primary) tumor) and biologically weak tumors, such as bronchoalveolar

cell carcinoma, carcinoid tumors, often show little or no FDG uptake [54].

This limitation and the need to be familiar with the normal physiologic distribution of the

tracer and frequently encountered physiologic variants, to accurately interpret the 18F-FDG

findings [54], has necessitated the concept of the integrated positron emission tomography

(PET) and computed tomography (CT) system. The CT component of the system provides

very detailed imaging information of regions identified on the PET tracer uptake images [52].

This shift to dual-modality imaging has been shown to increase the diagnostic accuracy of

FDG-PET scans from 91% to 98% [29]. In a study by Hany et al [55], 21% of all lesions were

31



classified as undecided with the PET alone. However, using a low-dose CT (10–40 mA) for

image co-registration, an additional 7% of all lesions were correctly classified. The number

of undecided lesions was reduced to 12% with an 80-mA CT. Beyer et al [28] tested the

diagnostic effectiveness of the combined PET/CT imaging in 3 representative case studies

of oncology patients. A 78-y-old man with squamous cell carcinoma of the lung, a 69-y-old

man with diagnosed primary oesophageal adenocarcinoma, and a 38-y-old woman with a

history of unresectable pancreatic cancer. The study found that the fused PET/CT image

enabled precise localization of the tumors compared with seperate CT and PET images.

The major benefit of CT in integrated PET/CT imaging lies perhaps in the determination

of the stage of an unexpected lesion [56]. Whole-body FDG–PET scans often provides im-

precise information on the exact location of focal abnormalities because the 18F-FDG tracer

is also taken up by muscles and inflammatory processes [57]. However, PET/CT increases

specificity and sensitivity in the detection of cancer involvement, which is essential for ac-

curate staging when compared with one of the two imaging modalities used alone, owing to

the fusion of the functional information provided by PET with the anatomic information

from CT [53]. Cerfolio et al [58] in their study to evaluate the accuracy of staging using

integrated PET/CT compared with dedicated PET alone, observed the PET/CT is better

predictor than the PET alone for all stages of cancer: Stage I (52% versus 33%) and stage

II (70% versus 36%). Other research studies by De Wever et al [52], De Wever et al [56]

and Lardinois et al [57] have also shown that the integrated PET/CT technique significantly

increases the accuracy of tumour staging when compared with CT and PET alone.

Another more technical, advantage of the CT data of combined PET/CT is that it serves

as attenuation map for the PET image attenuation (and scatter) correction [26, 59]. Con-

ventional PET scans require a lengthy transmission scan (set of corresponding images) for

attenuation correction of the emission data when a quantitative assessment of the FDG
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metabolism is needed. The acquisition of the transmission scan with an external high-energy

photon source (germanium-68 or caesium-137) prior or after tracer injection, increases the

total scanning time by 50% and also results in data with relatively high noise level [27, 59].

However, the CT-based attenuation correction significantly reduces the overall whole-body

scan time by at least 30% – 40%, lower the noise emission scan and improves the precision of

the attenuation correction factors [27-29], ultimately leading to a higher patient throughput

with less discomfort.

Figure 2.7: Tumor localization and image alignment with a PET/CT scanner: A and B

is the sagittal PET and reformatted CT images of the head. C is the combined PET/CT

image showing tumor localization in the right retropharyngeal space (arrow) [26]
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2.8 Factors affecting patient dose in computed

tomography

Recent rapid technological advances in CT scans are intended to minimize the dose received

by the patient while accelerating the process of data acquisition and image quality. Accord-

ing to the ALARA principle, the radiation dose must always be reduced to a level where the

image quality is still reasonably adequate for diagnostic purposes [31, 60].

The patient dose from a specific CT acquisition is dependent on two factors: Intrinsic and

extrinsic factors. Intrinsic factors are related to the geometry and design of the scanner

(tube, focus, collimator, filtration, detector design, etc.). Extrinsic factors are parameters

such as the maximum tube voltage (kVp), tube current (mA), rotation or exposure time,

scan pitch, modulated by the technologist to obtain the desired image quality [14,23]. This

section focuses on how these factors affect the radiation dose as well as the image quality.

2.8.1 Scanner geometry

The distance between the x-ray source (focal spot in the tube) and the center of rotation

(isocenter) of a scanner is determined primarily by the scanner geometry. All CT scanners

possess either a long or short geometric configurations which following the inverse square

law, radiation intensity varies with the inverse of the squared distance between source and

patient affects the dose received. Explicitly, a short-geometry scanner, if all other scanning

parameters are identical, including the radiation beam profile will yield more interaction of

radiation with the patient than a long-geometry scanner. This disparity in geometry be-

tween different scanner models even from the same manufacturer underscores the fact that
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protocols are scanner specific and should not be transferred from one scanner to another

without specific investigation [14, 61].

2.8.2 Beam collimation

The collimation of the x-ray beam defines the RPW (nominal x-ray beam width seen at the

isocenter) which determine the magnitude and distribution of the absorbed radiation dose.

It is equivalent to the nominal section thickness for a single-detector CT but depends on

the CT mode and table speed in multidetector CT scanners. Because the x-ray beam is

always slightly wider than the beam collimation (number of data channels being used in the

Z dimension of the detector) in multi-slice scanners, some amount of the beam is incident

beyond the active detector area owing to penumbra effect (also referred to as “overbeaming”)

[61, 62].

Generally, wider beam collimation settings result in a more dose–efficient examination, than

a narrow collimation, as overbeaming constitutes a smaller proportion of the detected x-

ray beam. However, depending on the scanner model, wide collimation means that small

abnormalities might be missed or limits the width of the thinnest sections that can be recon-

structed. Therefore, the need for a narrow beam collimation to obtain thinner slice widths

to improve spatial resolution in the z-axis must be balanced against the associated increased

radiation dose [14, 63].
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2.8.3 Pitch factor

Pitch is defined as the ratio of table feed per gantry rotation to the nominal collimated width

of the x-ray beam. It is a notable adjustable parameter that can affect both the radiation

dose and image quality. This is primarily because of the direct relationship between the

pitch, beam collimation and table speed for multi-detector scanners [14, 64]. An increase in

pitch increases the relative speed of moving the body in the x-ray beam and, consequently,

reduces the radiation dose. Paterson et al [65] reported that increasing the pitch of a single-

detector scanner with a 1.0 sec gantry rotation cycle from 1.0 to 1.5 leads to a 33% decrease

in radiation dose. The radiation dose saving was as high as 50% by changing simply the

pitch value from 1.0 to 2.0.

Although scans obtained at a higher pitch, if all other factors are unchanged, will result in

lower radiation doses compared with those obtained at a lower pitch, this does not apply

to multislice helical CT system using the effective mAs or mAs per slice setting. In such

systems, the effect of pitch on dose is negated by a proportional increase in tube current to

maintain similar image noise [63, 66]. Additionally, the high-pitch technique has some po-

tential drawbacks that include interpolation artifacts, degradation of the section-sensitivity

profile and decrease in spatial resolution that can compromise the image quality [14,63,64].

Hence, CT users should monitor other parameters when changing pitch for safe imaging.

2.8.4 X-ray beam-shaping filters

X-ray beam filters are physical objects positioned between the x-ray source and the patient to

attenuate and ‘harden’ the beam spectra so that the x-ray beam is hard enough to efficiently
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penetrate the patient while providing sufficient contrast information [67]. This is achieved

by cutting off low-energy components of the spectra that constitute absorbed radiation that

never reaches the detectors and thus does not contribute to the image [14,64]. Some filters

(e.g., bowtie) are specially designed to reduce the incident x-ray intensity in the peripheral

region of the patient where attenuation is lowest. A bow-tie filter can minimize the skin dose

by 50% compared with a flat filter [62]. Similarly, Itoh et al [68] noted a 17% reduction in

radiation exposure and a 9% decrease in image noise with an aluminum filter (5.8mm thick

at the center) in contrast to a conventional filter.

2.8.5 Tube current (mA) and tube current-time product (mAs)

The tube current-rotation time product (mAs) determines the photon fluence, which is the

number of photons passing through an imaginary sphere, of cross-sectional area 1m2 on the

surface of the patient during a radiographic procedure [14]. Hence, the patient dose is di-

rectly proportional to the tube load (the product of tube current and the exposure time per

rotation, mAs) when all other factors are held constant [63, 69]. A 50 % reduction in tube

load reduces the radiation dose by half, but also increases the noise level by a factor of
√

2,

thus degrades image quality [14, 31].

Determination of an adequate mA level can be performed using the recently available tube-

current modulation technique known as automatic exposure control (AEC). This computer

software automatically modulates the tube current to accommodate differences in attenu-

ation due to patient anatomy, shape, and size. The tube current is modulated either as a

function of projection angle (angular modulation), longitudinal location along the patients

(z-axis modulation) or both [63, 67]. The goal of AEC is to use the optimal radiation level for
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any patient to achieve adequate image quality for a given diagnostic task. It is, however, a

fundamental responsibility of the CT operator to define a minimum acceptable image quality

depending on the specific vendor and system.

2.8.6 Tube Potential (kVp)

This is probably the most important determinant of the patient dose from a CT procedure,

because the incident x-ray beam energy primarily depends on the selected tube voltage

[14, 70]. Unlike the tube current time product (mAs), which have a linear and relatively

predictable effect on image noise and contrast-to-noise ratios, variation in kVp, causes a

nonlinear, exponential change in radiation dose and image noise, often necessitating a con-

comitant adjustment in mAs to preserve image quality [31, 63]. The radiation dose changes

approximately with the square of the tube voltage while the image noise is inversely pro-

portional to the change in tube voltage [14, 64]. Therefore, for a given diagnostic task and

clinical application, the decisions to decrease the tube potential to reduce radiation dose

must be made taking into account the image quality, as a result of the complex relationship

between tissue contrast, image noise, and radiation dose that is highly dependent on the

patient size.

2.8.7 Scan length

The length of a scan is directly related to the total radiation dose delivered to the patient

[67, 70]. Radiation dose increases linearly with increase in the anatomic region scanned

due to the exposure of additional tissues and organs [23]. It is important to limit the scan
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range to include only the clinical region of interest, particularly when imaging structures

such as the heart, for which an increased scan range is unnecessary. Patel et al [71] found

that using a small scan range (from the top of the aortic arch to the bottom of the heart)

in CT pulmonary angiographic studies can allow diagnosis of pulmonary embolism without

any loss of sensitivity but with a reduction in radiation dose of 48%.

2.9 Radiation Protection Principles

The increased awareness of the risk of exposure to ionizing radiation has resulted in efforts

to minimize radiation dose incurred during x-ray and nuclear medical imaging tests [34]. In

order to ensure judicious use of ionizing radiation with a view to maximize the benefits and

minimize the risk, three main principles have been set out in radiation protection system: the

ethical justification of an examination, the choice of equipment and procedural optimization

and finally, the consideration of diagnostic reference levels (DRLs) [72].

a. Justification :All medical practices that imply patient exposures to ionizing radiation

must be justified. The concept of justification means that the benefits from the diagnostic

procedure to the exposed individual or to society balance the detriment it causes. It suggests

that a specified procedure must be deemed fit to improve diagnosis or treatment or provide

necessary information about the exposed individuals. Additionally, all other techniques that

can provide the same diagnostic value with probably less dose must be considered before

exposure [73].

b. Optimization :Optimization requires that an acceptable balance is achieved between

image quality and patient dose, taking social and economic factors into account. This re-

quirement consists that the likelihood of incurring exposures, the number of people exposed
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and the magnitude of individual exposure follows the ALARA principle [73, 74]. The basic

aim of optimization in radioprotection is to adjust the protection measures for a source of

radiation to be commensurate with the diagnostic task at hand.

c. Diagnostic reference levels :The diagnostic reference level (DRL) applies to medi-

cal practices in planned exposure conditions to help ensure no individual is exposed to an

unacceptable radiation risk level. DRLs” means dose levels in radiological practices or, in

nuclear medicine, levels of administered activity, for typical examinations when good and

normal practice regarding diagnostic and technical performance is applied [75]. Though is

not expected to be exceeded, DRLs values are not fixed in stone and should be applied with

flexibility to allow higher doses when indicated by sound clinical judgement [73]. The CT

and PET/CT technology imaging has a significant contribution in the ionizing radiation

population exposure, with a resultant increased risk of cancer [76]. In this light, these radi-

ation protection principles are highly recommended to avoid unnecessary collective effective

dose.
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[25] Marcus Söderberg (2008) Automatic exposure control in CT: an investigation between

different manufacturers considering radiation dose and image quality, Msc Thesis, Med-

ical Radiation Physics Clinical Sciences, Lund University.

43



[26] Thomas Beyer, Gerald Antoch, Stefan Muller, Thomas Egelhof, Freudenberg Lutz S.,

Jorg Debatin, et al. (2004) Acquisition Protocol Considerations for Combined PET/CT

Imaging. J Nucl Med 45:25S-35S

[27] Alessio A M., Paul Kinahan E, Cheng PM, Hubert V, Karp JS(2004) PET/CT scanner

instrumentation, challenges, and solutions. Radiol Clin N Am 42 1017 – 1032

[28] Thomas Beyer, Townsend DW, Brun T, Paul Kinahan E, Martin Charron, Raymond

Roddy, et al.(2000) A combined PET/CT scanner for clinical oncology. J Nucl Med

41:1369 – 1379

[29] Sureshbabu W, Mawlawi O (2005) PET/CT Imaging Artifacts. J Nucl Med Technol.

33:156 – 161

[30] https://www.radiologycafe.com/radiology-trainees/frcr-physics-notes/pet-imaging. ac-

cessed 12 March 2018
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Chapter 3

RADIATION DOSE AND CANCER RISK ESTIMATES IN

HELICAL CT FOR PULMONARY TUBERCULOSIS

INFECTIONS

School of Chemistry & Physics, University of KwaZulu-Natal, Pietermaritzburg Campus,

Private Bag X01, Scottsville 3209, South Africa

This chapter is a published journal article that studied how different CTs types affects the

absorbed radiation dose and long-term effects (cancer risks) for exposed patients in helical

CT for pulmonary tuberculosis infections with same acquisition protocol. 1

1B. Adeleye and N. Chetty, 2017. Radiation dose and cancer risk estimates in helical CT for pulmonary

tuberculosis infections. Open Phys. 15:769–776

51



3.1 Abstract

The preference for computed tomography (CT) for the clinical assessment of pulmonary

tuberculosis (PTB) infections has increased the concern about the potential risk of cancer

in exposed patients. In this study, we investigated the correlation between cancer risk and

radiation doses from different CT scanners, assuming an equivalent scan protocol. Radiation

doses from three 16-slice units were estimated using the CT-Expo dosimetry software version

2.4 and standard CT scan protocol for patients with suspected PTB infections. The lifetime

risk of cancer for each scanner was determined using the methodology outlined in the BEIR

VII report. Organ doses were significantly different (P < 0.05) between the scanners. The

calculated effective dose for scanner H2 is 34% and 37% higher than scanners H3 and H1

respectively. A high and statistically significant correlation was observed between estimated

lifetime cancer risk for both male (r2 = 0.943, P < 0.05) and female patients (r2 = 0.989,

P < 0.05). The risk variation between the scanners was slightly higher than 2% for all

ages but was much smaller for specific ages for male and female patients (0.2% and 0.7%,

respectively). These variations provide an indication that the use of a scanner optimizing

protocol is imperative.

Keywords: Pulmonary tuberculosis; Computed tomography; Radiation dose; Lifetime at-

tributable risk of cancer
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3.2 Introduction

Tuberculosis (TB) is an infection caused by Mycobacterium tuberculosis and is one of the

leading causes of mortality and morbidity in the world. The World Health Organization

(WHO) global tuberculosis report (2014) estimated that 9.0 million people developed TB in

2013, of which 1.5 million died [1]. Pulmonary tuberculosis (PTB), classified as primary and

post-primary (reactivation), is considered to be the most infective form of the disease, and it

occurs in more than 80% of TB cases [2, 3]. To date, tuberculosis remains endemic in most of

the developing countries and countries with high rates of infection with human immunodefi-

ciency virus (HIV), including South Africa. The estimated incidence of undiagnosed active

TB infection in South Africa is 450,000 patients [1, 4]. The KwaZulu-Natal province, where

HIV infection rates are high, has been the most affected region, accounting for 22% (99,067)

of the patients. The WHO report indicates that this rate represents an increase of approxi-

mately 400% over the past 15 years [1] and represents the third highest infection rate of any

country worldwide after India and China. This high rate is largely attributed to both late

and poor diagnosis and leads to delays in the appropriate treatment of infected patients. To

date, the mainstay for the diagnosis of adult chest TB is the identification of acid-fast bacilli

(AFB) by sputum smear microscopy. However, previous studies have shown that acid-fast

bacilli are found in the sputum of a limited number of patients (20% − 55%) with active

pulmonary TB [5]. Moreover, smear microscopy results are available within days, while the

culture results of M. tuberculosis from sputum requires (3 − 8) weeks for results, primarily

because of the slow growth of the organism [6]. These limitations have increased the impor-

tance of medical imaging as a diagnostic procedure for the evaluation of suspected TB and

PTB. Despite the increased doses of radiation compared with radiography and the need for

the administration of intravenous contrast agent, CT remains the method of choice for the
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diagnosis of primary and post-primary PTB [3, 7]. CT is more sensitive than chest radiog-

raphy for making the diagnosis and characterizing the cases of both subtle and disseminated

parenchymal disease and mediastinal lymphadenopathy that are predominantly situated in

peripheral subregions. CT is also more sensitive for the evaluation of cases of tuberculous

effusion, emphysema, and bronchopleural fistula that are not evident on plain radiographs[8-

12]. The increased use of CT, and in particular helical CT, for higher resolution and higher

definition of internal structures for the diagnosis of suspected PTB before treatment, has

raised concerns about the radiation dose and associated cancer risk for exposed individuals.

Although the risk for the general population is small and non-uniform, a previous study has

shown that an increase in the exposure to ionizing radiation potentially increases the risk of

cancer [13]. Therefore, considering the increase in TB prevalence in the general population,

consequent increase in exposure to ionizing radiation from diagnostic testing, and the use of

generic protocols by imaging professional, our study aimed to estimate CT radiation doses

with the risk of cancer from different 16-slice models, and investigate their correlation, as-

suming equivalent scan protocol. It is also anticipated that the study will help to understand

the benefits of optimizing protocols for imaging technique.

3.3 Materials and Methods

3.3.1 CT models and protocols

The following 16-detector row scanners based on our survey were included in this study:

(i) the Toshiba Aquilion 16 (Toshiba Medical Systems) (ii) the GE LightSpeed 16 (General

Electric Medical Systems, Milwaukee, WI) and (iii) the Somatom Sensation 16 (Siemens
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Healthcare, Germany). Routine scan protocol for patients with suspected PTB infections in

an institution in the KwaZulu-Natal province was followed. Patients were scanned at 120

kVp, using an electrical current (mA) setting adapted to the patient’s weight up to a maxi-

mum of 200 mA for patients with larger body habitus to ensure proper pathologic findings of

structures in the lungs and acceptable diagnostic image quality. Images were reconstructed

at a slice thickness of either 3 mm or 5 mm. Although exposure parameters were modified

to lower the radiation exposure of patients, the parameters mentioned above represented

the standard scanning protocols largely employed. For purposes of privacy protection, the

scanners were coded randomly as H1 - H3.

3.3.2 Dose assessment

Organ-specific doses were estimated using the CT-Expo (version 2.4) dosimetry software with

adult male phantoms (ADAM; 170-cm height and 70-kg weight) and adult female phantoms

(EVA; 160-cm height and 60-kg weight)[14]. CT-Expo is a Microsoft Excel application that

allows the computation of age- and sex-specific radiation (organ and effective) doses on the

basis of the inputted scanner model, manufacturer, scanning parameters, and scanned area

using one of four anthropomorphic mathematical phantoms (ADAM, EVA, CHILD, and

BABY) and organ dose data generated by Monte Carlo simulation methods [15, 16]. The

mathematical phantoms allowed us to indicate precisely the prescribed anatomical range and

obtain more accurate radiation dose estimation for CT examinations as there is no underes-

timation issue from insufficient voxel images sampling. Simulations were performed in each

scanner using the maximum mA and standard scanning parameters settings (Table 3.1),

and anatomic regions (Table 3.2). We selected the widest X-ray beam width or maximum

available detector channels in each scanner, the rotation time of 1 second, slice thickness of
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Table 3.1: Summary of the technical parameters used in three 16- slice computed tomography

scanners evaluated in this study.

Scanner H1 H2 H3

Tube Potential (kV) 120 120 120

Tube Current (mA) 200 200 200

Detectors (mm) 16 x 1.5 16 x 2.0 16 x 1.25

Mode Helical Helical Helical

Beam Collimation 24 32 20

Pitch 1.25 1.437 1.375

Table Feed (TF) (mm/rot) 30.0 46.0 27.5

Slice thickness (mm) 5 5 5

Rotation time (s) 1 1 1

5 mm, and related spiral pitch factor for ease of comparison.

The volume CT dose index (CTDIvol) is a standardized value of the respective radiation

output of each scanner measured in a 32-cm diameter acrylic phantom with helical scanning

mode. The product of the volume CT dose index (CTDIvol) and the irradiated scan length

(L) is the dose-length product (DLP), which represents a measure of the total energy deliv-

ered to a patient from a specific CT acquisition. DLPs value for each scanner was averaged

over the male and female patient phantoms. The effective dose E was calculated on the basis

of tissue weighting factors, as detailed in publication 103 from the International Commission

on Radiological Protection (ICRP). CTDIvol, the corresponding value of DLP (in mGycm)

and effective dose E were determined using the CT Expo dosimetry software version 2.4[14].
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Table 3.2: Anatomical extent of computed tomographic examinations using CT-Expo math-

ematical phantoms

Anatomical Region Sex Start and End Z Scan Length Organ Position

coordinate (cm) (cm)

Male 42 and 69 27 From top liver to below shoulders;

Thorax Lungs centered at 54 cm

Female 40 and 65 25 From top liver to below shoulders;

Lungs centered at 51 cm, breast at 45 cm

3.3.3 Calculation of the attributable risk of cancer

The lifetime attributable risk (LAR) of cancer incidence, which indicates the risk of develop-

ing whole-body or organ-specific cancer for each sex after radiation exposure at a certain age,

was estimated using Table 12D-1 of the phase 2 report of the National Academies Committee

on the Biological Effects of Ionizing Radiation (BEIR) VII [17]. The LAR was estimated on

the basis of protocols employed during the scans and the scanner type. Organ-specific LARs

were determined from organ-equivalent doses using a linear no-threshold assumption for the

organs specified in the BEIR report. Whole-body LAR was calculated by summation of

organ-specific LARs for the various organs and adding a composite equivalent dose for other

malignancies not included in the BEIR report. The linear interpolation of the two nearest

ages was performed for cases in which organ-specific risk factors for a specific age were not

available. The risk estimation method described above has been used in several studies to

estimate the cancer risk from CT radiation [18-20].
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Statistical analysis

A one-way analysis of variance (ANOVA) was used to determine significant differences in

organ doses between the sexes and scanners. The relationship between the estimated cancer

risk for male and female patients in all scanners was analyzed by linear regression. All

statistical analyses were performed using Origin software version 6.1 [20] and Microsoft

Excel 2013 at a significance level of 0.05.

3.4 Results

3.4.1 Organ-specific and effective doses

Table 3.3 shows the estimated equivalent doses in radiosensitive organs with a strong pro-

clivity for carcinogenesis according to the BEIR VII report [17], including directly exposed

and adjacent organs for the three 16-slice CT models. Significant differences in radiation

doses were observed between the different scanners for male (P = 0.048, F = 2.746) as well

as female patients (P = 0.035, F = 2.989). Overall, scanner H2 produced the highest doses

compared with the other models, especially in organs such as the heart, lungs, and breast for

female patients within the field of view. Variability in organ doses was observed, particularly

because of differences in detector collimation and pitch ratio, despite the use of equivalent

scanning parameters [21]. Effective dose (De) values (calculated on the basis of tissue weight-

ing factors and averaging between patients for each acquisition and scanner type, as detailed

in ICRP 103 [22]), were highest for scanner H2 (11.1 mSv), followed by H3 (7.35 mSv), and

scanner H1 (7.00 mSv). The CTDIvol, which indicates the radiation output, particularly

for scanners operating in helical mode, obtained using the selected acquisition parameters
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was highest for scanner H2 (16.3 mGy) and lowest for the scanner H1 (12.2 mGy). These

observed disparities are likely due to the relationship between CTDIvol and the pitch ratio of

different CT models, which affects the X-ray beam width and table feed per gantry rotation

in helical scanning [23].

3.4.2 Attributable risk of cancer

The LAR of cancer incidence for each scanner for the ages considered is shown in Figure

3.1 and Figure 3.2. The LAR varied slightly according to a patient’s age, sex, and scanner

type, and a typically high risk was observed with the scanner H2. For a 20-year-old woman,

the LARs of 1 in 106, 1 in 172, and 1 in 170 were associated with scanners H2, H3, and

H1 respectively. For a 20-year-old man, the LARs of 1 in 143, 1 in 237, and 1 in 228

were associated with the scanner H2, the H3, and H1, respectively. Pearson correlation and

linear regression analysis of estimated risk for the different 16-slice units revealed a high

and statistically significant correlation (r2 = 0.943, P < 0.05) and (r2 = 0.989, P < 0.05)

between cancer risk for male and female patients, but a negative correlation between cancer

risk and age, indicating a lower risk of cancer for older patients. The negative correlation

between cancer risk and age is attributed primarily to the BEIR VII risk models [17] and

corresponded to a risk reduction of approximately 63% (73% with the scanner H2) for a

50-year-old male patient and 66% for a 50-year-old female patient, relative to a 15 -year-old

male and female patient, for all scanners.

The relative variations in the estimated risk between the scanners, calculated as the difference

between maximum and minimum values, normalized by the mean, were slightly higher than

2% for all ages but were much smaller for specific ages for both male and female patients
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Table 3.3: Estimated dose (mSv) from a single helical CT scan for diagnosis of pulmonary

tuberculosis with three 16-slice scanners

Organs H1 H2 H3

Male Female Male Female Male Female

Gall bladder 5.2 5.0 11.7 11.9 4.5 4.3

Liver 6.9 6.8 12.1 12.3 6.3 6.0

Colon 0.3 0.3 0.6 0.7 0.2 0.3

Esophagus 18.0 18.3 23.9 24.4 20.6 21.0

Adrenal glands 9.3 8.8 14.1 14.3 7.8 7.1

Breasts 0 19.5 0 25.9 0 22.3

Lungs 18.7 18.6 22.1 22.1 21.2 21.1

Lymph nodes 4.8 4.5 7.0 6.7 5.2 4.8

Stomach 4.6 4.5 9.0 9.0 4.1 3.9

Ovaries 0 0.1 0 0.1 0 0

Skin 4.5 4.8 6.6 7.0 4.9 5.2

Bone surfaces 12.3 12.6 15.5 16.0 13.6 13.9

Spleen 5.8 5.5 11.8 11.7 4.9 4.5

Pancreas 5.2 5.0 11.7 11.9 4.5 4.3

Small intestine 0.2 0.2 0.4 0.5 0.2 0.2

ET tissue 11.2 13.0 15.7 17.1 6.9 8.2

Bone marrow 4.6 4.8 6.6 6.8 5.1 5.3

Heart 16.3 15.8 21.9 21.2 18.5 17.9

Muscle 4.8 4.5 7.0 6.7 5.2 4.8

Thyroid 11.2 13.0 18.7 20.1 6.9 8.2

Thymus 18.0 18.3 23.9 24.4 20.6 21.0

Effective dose 7.0 11.1 7.35

CTDIvol(mGy) 12.2 16.3 13.7

DLP(mGycm) 388.5 589 404.5
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(up to 0.2% and 0.7%, respectively). This finding indicates that, despite differences in the

scanner models and technologies (pitch and collimation), the correlation between age and

cancer risk was similar between the scanners. Overall, the estimated risk in female patients

was significantly higher than that in male patients of the same age. Accordingly, the LARs

for a 35-year old woman were 0.340%, 0.344%, and 0.546% compared with 0.255%, 0.265%,

and 0.421%, respectively, for a 35-year-old man, using scanners H3, H1, and H2, respectively.

Tables 3.4 and 3.5 summarize the contribution of organs exposed to the highest radiation to

whole-body risk. The estimated LARs in these organs were lower than 0.1% for individuals

aged 25 years or older, who represented the majority of patients undergoing CT evaluation

for PTB disease.
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Figure 3.1: Estimated lifetime risk of cancer with respect to age from a single standard

computerized tomography dose for diagnosis of pulmonary tuberculosis infections in male

patients
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Figure 3.2: Estimated lifetime risk of cancer with respect to age from a single standard

computerized tomography dose for diagnosis of pulmonary tuberculosis infections in female

patients
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Table 3.4: The Contributions of organs exposed to the highest radiation (Breasts and Lungs)

for female patients

LUNGS BREASTS

Age (Years) H1 (%) H2 (%) H3 (%) H1 (%) H2 (%) H3 (%)

15 0.0776 0.1047 0.0880 0.1078 0.1432 0.1233

20 0.0644 0.0868 0.0730 0.0836 0.1111 0.0957

25 0.0547 0.0738 0.0620 0.0665 0.0883 0.0760

30 0.0450 0.0607 0.0511 0.0493 0.0655 0.0564

35 0.0448 0.0605 0.0508 0.0384 0.0510 0.0439

40 0.0446 0.0602 0.0506 0.0275 0.0365 0.0314

45 0.0437 0.0590 0.0496 0.0206 0.0273 0.0235

50 0.0428 0.0577 0.0485 0.0136 0.0181 0.0156
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Table 3.5: The Contributions of organs exposed to the highest radiation (Lungs) for male

patients

LUNGS

Age (Years) H1 (%) H2 (%) H3 (%)

15 0.0337 0.0452 0.0382

20 0.0279 0.0374 0.0316

25 0.0237 0.0319 0.0269

30 0.0196 0.0265 0.0224

35 0.0196 0.0264 0.0223

40 0.0195 0.0261 0.0220

45 0.0192 0.0257 0.0217

50 0.0189 0.0254 0.0214
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3.5 Discussion

In this study, we estimated the probability of developing cancer from radiation produced by

three 16-slice CT scanners used in PTB diagnosis and assuming equivalent scan protocol. A

small increase in cancer risk at low doses could result in a significant increase in the number

of cases of cancer in a population in which many individuals are exposed to radiation [24].

As expected, critical organs (breast and lungs) along with the esophagus, thymus, bone sur-

faces, thyroid, and heart, which are in the direct path of X-ray beams, absorbed the greatest

amount of radiation. Overall, the doses absorbed by these organs lied within the 10 − 30

mGy range reported by Mettler et al. [25] for organs in the direct path of X-ray beams from

CT scans. The comparison of average effective dose (De) values for all scanners indicated

that the scanner H2 delivers higher dose respect to the other two scanners, while scanners

H3 and H1 deliver about the same dose. However, these results were expected and might

be partly explained by technique parameters, such as tube current – time product (mAs)

settings, the contrasting scanner geometry of the CT models as well as the correlation be-

tween the table feed per 3600 rotation of the x-ray tube, beam collimation and pitch factor

in helical scanning. For scanner geometry, the relative positions of the x-ray source (focal

spot in the tube) and the center of rotation (isocenter) significantly affect the absorbed dose

in a patient.

This follows from the inverse square law, radiation intensity varies as the inverse of the

squared distance between the radiation source and point of measurement and might explain

the slight difference in radiation dose between the scanners H1 and H3 with a focal spot

to an isocenter distance of 535 and 541 mm respectively. It is, however, noteworthy that

for the scanner H2, despite a longer focal spot to isocenter distance and lowest effective

milliampere-second setting in contrast to other CT models, delivered the highest radiation
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dose.

This finding demonstrates the influence of selected scan parameters. While examinations

perform at a higher pitch like in the scanner H2 is found to generally reduce radiation expo-

sure [26], the use of effective mAs (mAs/pitch) setting by the scanner means that the effect

of high pitch on dose is negated by a proportional increase in tube current to maintain simi-

lar image noise thereby increasing radiation dose given the linear relationship between tube

current and absorbed dose. A combination of the relatively high electrical current (mA)

and tube rotation time (seconds) values used could also explain the high radiation dose

observed in some scanners particularly the H2. Patient dose is found to decrease linearly

with a reduction in either the tube rotation time (faster gantry rotation) or current [27, 28].

Modification of the tube current-time product (mAs) is essential for reducing radiation dose.

If the electrical current is increased the gantry rotation time must be reduced by the same

factor to compensate for the increased milliampere value in order not to increase radiation

dose.

Overranging and Overbeaming or penumbra effect are also possible contributors to the high

radiation doses. Overbeaming is the excess radiation exposure beyond the collimated beam

in the z-direction. Overranging refers to the increase in the dose-length product beyond the

volume imaged in helical CT owing to the additional rotations that are required in spiral

interpolation algorithms. Both effects depend strongly on beam collimation (the number

of data channels multiplied by the effective detector row thickness) and additionally the

pitch and scan length for overranging effect [29]. It is noted that the greater the number

of detectors the wider the beam width that can be obtained. This is consistent with the

results indicated in Table 3.3 where the maximum DLP value was for the scanner H2 at

589 mGycm. Choosing a collimation that is unnecessarily narrow will increase overbeaming

but reduce the overranging effect. Conversely, a wider collimation, high pitch, and short
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scan length such as in some scanners for this study increases overranging but decrease the

overbeaming effect. Therefore to reduce dose a relative adjustment of beam collimation and

helical pitch must be made for the patient size and specific clinical problem.

These results highlight the need for caution in transferring scan parameters from one scanner

to another and the maintenance of image quality at the lowest radiation dose, depending on

scanner characteristics [30]. In general, the effective doses in each scanner were within the

range of 4.0−18.0 mSv reported in the literature for a full diagnostic helical chest CT exam-

ination [25]. However, it is of note that the same effective dose does not correspond to the

same cancer risk [31], and this is evidenced by the significantly higher estimated whole-body

risk using the scanner H1 compared with the scanner H3, which produced a higher effective

dose. The higher estimated risk in female patients than in male patients is attributed to the

additional risk of breast cancer together with the increased risk of lung cancer [18, 24]. The

overall decrease in LAR with increasing age at exposure (Figure 3.1 and Figure 3.2) is in

agreement with the results of other studies [19, 21] where LAR also declined with increasing

age. Our cancer risk estimates indicated an elevated risk of breast cancer for women younger

than 40 years, followed by lung cancer risk. Similarly, in men, the lungs contributed more

to the whole-body cancer risk. The relatively high risk in these organs, particularly breasts

in women and lungs in men, of up to 0.1432% and 0.0452%, respectively, for patients aged

15 years, could lead to an increase in these malignancies in the population and constitute a

potential public health problem, considering the large number of individuals undergoing CT

examinations for PTB diagnosis.

Although the magnitude of LAR estimates reported here appeared to be relatively low for

all age categories, these small doses are not necessarily risk-free. There is reasonable epi-

demiological evidence that organ doses in the range of 5 to 125 mSv results in a small but

statistically significant increase in cancer risk [32, 33]. Therefore, the risk of cancer from
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radiation exposure should be balanced and weighed against the anticipated benefits obtained

from the diagnostic information [34]. Furthermore, exposure should be “as low as reason-

ably achievable [ALARA principle]. The ALARA principle recommends the optimization of

the use of X-rays; therefore, high doses should be avoided because they increase the risk of

cancer [32, 35]. Several factors significantly influence the risk of developing cancer following

radiation exposure, including genetic effects, age at exposure, sex, fractionated exposure,

and protraction of exposure [33]. Therefore, additional studies are required to elucidate the

effect of these factors.

This study has some limitations. First, although the dose depended on the scanner manu-

facturer and model, the CT dose and the risk estimates reported here were based on anthro-

pomorphic mathematical phantoms, which represented reference-sized adults with specific

locations for each organ. Therefore, these results might not be applicable to real patients

(or might influence the accuracy of the estimates), whose size differed from those of the

designated phantoms [21]. Second, some CT acquisition settings, such as exposure scan time

relative to the volume of injected contrast media, which is often used to provide optimally

enhanced images, were not selected in this study, which simply considered the standard scan-

ning parameters used in routine examinations. In addition, it has to be emphasized that

the effects of automatic exposure control (AEC) systems, particularly angular tube current

modulation and image quality reference parameters were not analysed within this study be-

cause the CT Expo dosimetry software does not account for these options. However, the use

of AEC systems depending on the patient size and specified image quality is likely to cause a

reduction in radiation dose at different CT models. The magnitude of any such changes has

been estimated as being about 11% [21]. Finally, uncertainties are reported to be associated

with risk estimation by the BEIR VII report, predicated on the linear no-threshold model.

As a result, the emphasis in this study is on the relative differences in estimated absolute
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risk between CT systems defining the same scan protocol.

3.6 Conclusions

This study showed significant variations in radiation dose and the lifetime attributable cancer

risk between 16-slice scanners used in helical CT scan for pulmonary tuberculosis, using

equivalent scan protocol for each model. Although the increase in risk was less than 1%

irrespective of the CT scanner producing the highest cancer risk, the related increase in

cancer are high enough to warrant reconsideration of means to reduce patient exposure. The

need for optimized scanner protocols, that is, exposure protocols that lead to an acceptable

image quality for patient-specific indication, based on the individual scanner as opposed to

current generic practices with an adverse effect on patient cancer risk are imperative. The

aim of this study is not to compare the performance of the different 16-Slice scanners, as

this cannot be done based on dosimetric results alone. Each scanner depending on settings

such as FOV size, image quality, etc., possesses a wide range of application. Therefore the

findings of this work only serve to create awareness for CT practitioners of the consequences

of transferring protocols between different scanners.
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Chapter 4

RADIATION DOSE FROM 18F-FDG PET/CT PROCEDURES:

INFLUENCE OF SPECIFIC CT MODEL AND PROTOCOLS

School of Chemistry & Physics, University of KwaZulu-Natal, Pietermaritzburg Campus,

Private Bag X01, Scottsville 3209, South Africa

This chapter is an accepted manuscript that explored the influence of CT models and pro-

tocols on the overall dose from PET/CT procedures. The investigation was carried out for

two PET/CT systems and five representative CT protocols. 1

1B. Adeleye and N. Chetty. Radiation dose from 18F-FDG PET/CT Procedures:Influence of Specific CT

model and Protocols.Radioprotection,in press
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4.1 Abstract

The increasing use of the integrated 18F-fluorodeoxyglucose (FDG) positron emission tomog-

raphy/computed tomography (PET/CT) imaging modality in the management of tubercular

lesions raises concerns about associated radiation exposure. This work aimed to study the

effects of CT model and study protocols on the overall radiation dose from a PET/CT ex-

amination. Two PET/CT systems with five representative CT exposure protocols applied

for clinical patients in PET/CT imaging following retrospective evaluation were studied.

CT doses were calculated using the CT-Expo dosimetry software (version 2.4), while the

PET component dose was estimated applying the International Commission on Radiological

Protection (ICRP) 106 dose coefficients. The total effective dose ranged from 8.0-24.05 mSv

for the system I and 8.35-26.85 mSv for system II, resulting in differences of 4.3%-15% for

the Low-dose scan and 4.1%-11% for standard dose scans. The CT component contribution

to the total dose was between 32-77% for the system I and 35-79% for system II; however,

the contributions were not significantly different (p > 0.05) for all protocols. The observed

variation in CT contribution represents a requisite pedestal on the need for a nationwide

dose assessment for further optimization of the imaging procedure to maximize benefit to

patients.

keywords:positron emission tomography- computed tomography imaging; computed tomog-

raphy scan; radiation exposure; effective dose
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4.2 Introduction

The effectiveness of positron emission tomography with 18F–fluoro-deoxy-glucose (18F-FDG)

in detecting active tuberculoma and other tuberculosis (TB)-related lesions, assessing the

involvement of pulmonary and extra-pulmonary TB and its activity within the body, is well

documented [1-4]. The major concern of this non–invasive method of imaging is the addi-

tional radiation exposure from CT acquisition together with the internal exposure (γ− ray)

from the administered tracer, since FDG-PET scans often require an anatomic imaging study

mostly a CT examination, for attenuation correction and optimal tracer uptake interpreta-

tion [5-7]. It is known that an 18F-FDG PET/CT scan is accompanied by increased radiation

dose capable of enhancing the risk of cancer induction with the CT component contributing

up to 81% of the total effective dose [8, 9]. Consequently, modification of the CT imaging

parameters has been identified as a significant step to reducing dose to individual patients

[10, 11].

South Africa (SA), one of the world’s high-burden countries (HBCs) with TB epidemics and

the fifth highest number with estimated prevalent (undiagnosed active TB) cases [12, 13] is

witnessing a gradual increase in the use of this imaging modality. However, this increasing

use of PET/CT in the diagnosis, staging, and assessment of therapy response in infected

patients raises the important consideration of the associated radiation dose. The knowledge

of dose is essential for clinicians and radiographers in checking standards of good practice as

an aid to optimization of patient protection and also determining associated risks so that the

diagnostic technique is properly justified [14]. The measure of the potential detriment from a

radiographic procedure is best to quantify by the radiation protection quantity, effective dose

(ED). ED is not directly measured, but calculated based on equivalent doses to organs and

the radiosensitivities of the organs[15,16]. Therefore, assessing the ED of the CT component
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of a whole-body PET/CT by experimenting with real subjects are not only dangerous but

impossible, and the estimation from the product of the scanner-derived whole-body DLP

value and a conversion factor often neglects regional differences when determining CTDIvol

and the conversion factor from DLP to ED [17]. Monte Carlo simulation software has

become one of the ways of proffering solutions to these problems. The aims of this study

were thus to quantify the effects of CT model and exposure protocols on the overall radiation

effective dose to patients for commonly performed CT techniques in an 18F-FDG PET/CT

examination, assess if the overall PET/CT dose resulting from the change in CT model

and protocols are within acceptable values in literature, and to analyze possible parameters

affecting the radiation dose from the CT component. Specifically, comparisons were made

between dosimetry results obtained using the CT Expo dosimetry program (version 2.4)

from specific CT study parameters during PET/CT acquisition with two different PET/CT

systems. The data presented in this study will provide guidance on where efforts on dose

reduction will need to be directed to fulfill the requirements of optimization and also serve

as a reference for future work.

4.3 MATERIALS AND METHODS

4.3.1 PET/CT System and Protocols

Two 16- slice PET/CT systems from different manufacturers namely the General Electric

Healthcare Discovery STE, 16 consisting of a PET scanner with Bismuth germanate oxide

(BGO) crystals detector and the Philips Medical Systems Gemini TF 16 with a Lutetium-

yttrium oxyorthosilicate (LYSO) crystals detector based PET, denoted as Systems I and II
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were considered for this study. Standard Patient preparation included at least 5 h fasting

or longer and a serum glucose level of less than 10mmols/l (180 mg/dL) before 18F-FDG

injection. PET images were acquired one hour after intravenous 18F-FDG administration

typically in three-dimensional mode because of scanner enhanced sensitivity, at 3min per

bed position after CT acquisition with the patient positioned so that the PET scan matches

the same anatomic extent imaged during the CT acquisition.

The acquisition parameters of the CT protocols in this study (Table 4.1a&4.1b) were based

on what is routinely used for clinical patients in each facility, following retrospective review.

Helical transmission CT is performed at photon energy between tube voltages 120–140 kVp,

tube current-time was varying by using the automatic exposure control (AEC) technique over

the individual patient’s anatomy on the basis of a scout view and relative to the prescribed

noise index value: 1) a low-dose scan in which the CT component serves as a fast trans-

mission source for attenuation correction and anatomical localization in previously acquired

diagnostic CT examinations or 2) a standard radiation dose scan with IV contrast given for

attenuation correction and diagnostic purposes. Protocols A and B in each unit, are the

low-dose CT scan most frequently performed for PET attenuation correction and anatomic

localization. Protocols C, D and E were for diagnostic scans with D and E predominantly for

contrast-enhanced studies and patients with larger body habitus wherein the tube current

are maximized. The total duration of PET/CT examination was about 25 minutes except

in the case of melanoma patients.
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Table 4.1: Standard clinically applied CT exposure parameters used on different

PET/CT systems.

(a)

System I

CT Protocol Tube Potential Tube Current-time Pitch Acq. Slice thickness Beam Collimation Table Feed Reconstructed

(KV) (mAs) (mm) (mm) (mm) slice thickness(mm)

A 120 30 1.75 0.625 10 17.5 3.75

B 120 50 1.75 0.625 10 17.5 3.75

C 120 100 1.75 0.625 10 17.5 3.75

D 120 150 1.75 0.625 10 17.5 3.75

E 140 150 1.75 0.625 10 17.5 3.75

(b)

System II

CT Protocol Tube Potential Tube Current-time Pitch Acq. Slice thickness Beam Collimation Table Feed Reconstructed

(KV) (mAs) (mm) (mm) (mm) slice thickness(mm)

A 120 30 0.75 16× 1.5 24 18 3

B 120 60 0.75 16× 1.5 24 18 3

C 120 80 0.75 16× 1.5 24 18 3

D 120 125 0.75 16× 1.5 24 18 3

E 140 150 0.75 16× 1.5 24 18 3

4.3.2 CT dosimetry

The estimation of organ and effective dose (ED) from CT by the CT-Expo dosimetry soft-

ware (version 2.4, Hannover, Germany) was carried out base on the selection of characteristic

CT model, LightSpeed 16, and the Brilliance 16 scanners stored in the software database for

each system. The CT Expo Software, an MS Excel application written in visual basic pro-

gramming permits dose calculations for four gender-specific mathematical phantoms namely
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ADAM, EVA, CHILD and BABY [18]. On the account of acquisition protocols presented in

(Tabs. 4.1a and 4.1b) with prescribed imaging range (identical for all patients as determined

by the ADAM/EVA phantom) covering the entire torso from skull base to the pelvis, em-

bodying common sites of infection such as the cervical, mediastinal, abdominal, and pelvic

lymph nodes — (Fig. 4.2) the Effective dose from the CT component was calculated ap-

plying the International Commission on Radiological Protection (ICRP)Publication 103 [19]

tissue weighting factors.

82



Figure 4.1: The ADAM and EVA phantoms of “CT-expo” used for CT dosimetry calcula-

tions: the division corresponds to the anatomical length of scan region
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4.3.3 Internal dosimetry

The average activity (A) of 18F-FDG administered for adults (male and female) was assumed

to be 305 MBq (8.2mCi) [20]. This activity has an uptake time of 60min with intravenous

contrast given. Equivalent dose, DT to a tissue or organ T from the administered activity

A of 18F-FDG was computed by means of dose coefficients provided by the International

Commission on Radiological Protection (ICRP) Publication 106 [21] for a variety of organs

and tissues of the adult hermaphrodite MIRD (Medical Internal Radiation Dose) phantoms,

using

DT = A.ΓFDGT (4.1)

Whole body effective dose contribution from 18F-FDG PET was then estimated as reported

by Huang et al.[8] and Brix et al.[22] from organ and tissue equivalent doses DT modified

by tissue weighting factors in ICRP publication 103[20] as follows

E =
∑
T

WT .DT = A.
∑
T

WT .Γ
FDG
T (4.2)

4.3.4 Data analysis

The total effective dose EDPET/CT values resulting from each systems and acquisition pro-

tocols were compared in terms of percentage differences calculated as describe by Eqn (4.3)

below

%DIFF (EDPET/CT ) =
∣∣∣∣ EDsyI − EDsyII

(EDsyI + EDsyII)/2

∣∣∣∣× 100 (4.3)
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The difference in the CT component contribution to the total dose between the two systems

for all protocols was assessed with an unpaired t-test. A p-value below 0.05 was considered

statistically significant.

4.4 Results

Organs and Tissues equivalent dose DT from administered 18F-FDG activity and their con-

tribution WT ∗DT to the average PET scan effective dose 5.40mSv is reported in (Table

4.2). DT ranged from 2.38 - 39.65mSv. Significant equivalent doses 20.44, 11.59, 6.41 and

6.10 mSv were to the heart, brain, liver, and lungs due to their relatively higher metabolic

activity and hence rapid blood supply resulting in higher 18F-FDG uptake [9]. The highest

absorbed dose 39.65mSv to the bladder is attributed primarily to the final accumulation of

the 18F-FDG tracer in the urine in the urinary bladder, since the tracer is excreted by the

kidney [23].

Figure (4.2) shows effective dose values from the five study protocols. The second column

in each figure represents total effective dose ED from the PET-CT examination, considering

CT contribution with ICRP 103 tissue weighting factors. The total ED of the combined

PET-CT scan were 8.0, 9.85, 14.20, 18.65, 24.05 mSv for System I and 8.35, 11.45, 13.45,

17.90, 26.85 mSv, for System II for protocols A, B, C, D, and E respectively. The percentage

differences in total ED values between the two Systems were 4.3%-15% for the Low-dose scan

(A, B) and 4.1%-11% for standard dose scans (C-D). The CT effective doses contributions

as seen in fig.4.2 were comparable for both systems, with two sample t-test results showing

no significant differences (p=0.885; mean 9.55mSv for System I vs. 10.3mSv for system II).

Statistical significance was defined as p-value < 0.05.
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However, the slight differences observed in CT contribution resulted in higher total PET/CT

dose for a specific system. For example, the ED from CT for low dose protocols A and B

were 2.60 and 4.45mSv for system I, whereas the value was 2.95 and 6.05mSv for system II

leading to variation of 12% and 30% between the two. Consecutively, the total PET/CT ED

for System II was higher — 8.35 and 11.45mSv, in contrast to 8.0 and 9.85mSv for System

I.
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Table 4.2: Organs and Tissues equivalent dose DT from administered 18F-FDG activity and

their contribution WT ∗DT to the average PET effective dose

Organs Dose Coefficient Organ Dose DT WT ∗DT .

mSv/MBq mSv mSv

Adrenals 0.012 3.66 0.031

Bladder 0.13 39.65 1.568

Bone surfaces 0.011 3.36 0.034

Brain 0.038 11.59 0.116

Breast 0.0088 2.68 0.322

Gallbladder 0.013 3.97 0.034

Stomach 0.011 3.36 0.403

Small intestine 0.012 3.66 0.031

Colon 0.013 3.97 0.476

Heart 0.067 20.44 0.175

Kidneys 0.017 5.19 0.044

Liver 0.021 6.41 0.256

Lungs 0.02 6.1 0.732

Muscles 0.01 3.05 0.026

Oesophagus 0.012 3.66 0.146

Ovaries 0.014 4.27 0.171

Pancreas 0.013 3.97 0.034

Red Marrow 0.011 3.36 0.403

Skin 0.0078 2.38 0.024

Spleen 0.011 3.36 0.029

Testes 0.011 3.36 0.134

Thymus 0.012 3.66 0.031

Thyroid 0.01 3.05 0.122

Uterus 0.018 5.49 0.04787



(A)

(B)

Figure 4.2: Mean Effective Dose values for Systems I (A) and II (B), calculated by applying

the ICRP 103 tissue weighting factors.
88



4.5 Discussion

In this study, the effect of CT model and protocols on total dose from a PET-CT proce-

dure was evaluated. Computed tomography (CT) acquisition in PET-CT imaging, is often

performed for a variety of purposes, which includes diagnosis, anatomic localization and at-

tenuation correction of the PET images [24]. However, there are possibilities of unnecessary

exposure to high level of radiation dose, especially for CT imaging prescribed for diagnostic

purposes.

The lower patient-specific effective dose 5.40mSv from the administered average FDG activ-

ity of 305 MBq (8.2mCi) in this study, compared to values of 6.25mSv and 6.28mSv reported

by Dan Liu et al.[25] and Huang et al [8] respectively, is expected due to the greater FDG

activities (328.77 and 370MBq) from these studies. Analysis of the effective dose ED derived

from the CT component for systems and protocols considered in this study reveals that while

the ED was within the 25.0mSv reported in the literature [8,22], ED values varied between

2.60-18.65mSv for the system I and 2.95-21.85mSv for system II with the ICRP 60 and 103

tissue-weighting factors.

As such, the CT component of the exam contributed between (32 -77%) for the system I

and (35-79%) for system II of the whole radiation dose. These are somewhat comparable

with the 17-76% range from a review of CT protocols and CT dose contribution in PET/CT

[26] and with a study by Mahmud et al. [27], in which approximately 80.43% of the total

PET/CT effective dose was attributable to the CT doses. It is worth pointing out that, for

each system, the relatively low dose (typically less than 6% of the total dose [22]) from CT

scout scan to select the scan region and establish bed positions for PET acquisition is not

explicitly taken into account when considering the CT dose contribution. The observed dif-

ferences between the two systems could be attributed to factors related to scanner geometry
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and design (beam filtration, beam-shaping filter) and most importantly the user-adjustable

factors (tube current and voltage, pitch factor, exposure time per rotation and slice collima-

tion). A short-geometry scanner following the inverse square law radiation intensity varies

inversely as the square of the distance between radiation source and patient, will produce

more dose to the patient than a long geometry scanner [28]. The total beam filtration (in-

herent + added) of varying material and thickness absorbs via photoelectric interactions the

output photons at a function of their energy [29-30]. These filters are noted for reducing

radiation dose especially in the peripheral region of a field-of-view (FOV) [29, 32].

The most significant contributing factors to the disparities in estimated CT doses between

the two systems from our study is perhaps the user-selectable parameters specifically the

tube current-time product (mAs), pitch factor and collimation settings. Given the linear

relationship between the tube current-time product (mAs) per rotation and the absorbed

radiation dose [33], the choice of mAs has a major effect on the radiation dose from any

CT examinations. The pitch (ratio of table feed per gantry rotation to the total collimated

width of the X-ray beam) is inversely proportional to radiation dose if other scanning pa-

rameters are kept unchanged [28,32]. Therefore a higher pitch (Faster table speed for a given

collimation) will decrease radiation dose because of a shorter exposure time. The system

I had a higher pitch factor compared to system II, which might explain its lower effective

dose. The lower dose from protocols (C and D) in system II than I, mean that the effect

of an increase in dose with the use of lower pitch factor is slightly compensated by the use

of the lower current-time product (mAs). Additionally, overranging (unnecessary radiation

exposure outside the planned scan length), an effect directly proportional to the pitch, beam

collimation and reconstructed slice thickness is also a possible contributor to the observed

difference in CT dose, given the dissimilarities in these technical parameters Tables 4.1a

and 4.1b for the two systems. The PET/CT effective doses from the two systems in this
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study are similar to previous measures reported in the literature [8, 22, 33], with noticeable

differences caused by the type of PET/CT scanner and protocol used in image acquisition.

The radiation dose from a PET/CT scan depends on the PET/CT protocol, the patient’s

size and physiology, the amount of injected activity and the make and model of the PET/CT

scanner. The PET effective dose is modest and depends on the activity of the injected FDG

(18F-Fluoro deoxy-glucose) which is the same whether a part of the body or the whole body

is imaged. Major reductions in PET/CT dose is achieved from the CT component through

the use of techniques such as automatic tube current modulation, iterative reconstruction,

and adaptive filtering. Different vendors suggest different dose reduction methods; therefore

every institution needs to develop scanner-specific protocols for implementing those meth-

ods. The estimated dose presented in this study comes with some limitations. First, Patient

and organ dose calculations from CT with “CT-EXPO” v 2.4 are based on anthropomorphic

mathematical models for a standard person that do not consider individual patients body

sizes, organ positions and dimensions [34]. Different patient diameter, the divergent location

of relevant organs may cause different radiation absorption and hence some discrepancies in

reported estimates. However, they are a reasonably good indicator to checking the relative

compliance with reference dose values and for scan protocols optimization [35]. Accordingly,

the use is justified for the purpose of our study as we did not intend to estimate doses

for individual patients, rather evaluate the overall radiation dose resulting from CT proto-

col and model change. Second, dose estimation was based on mean tube current values,

because CT-Expo neglects the different approaches of automatic exposure control (AEC)

methods operating with tube current modulation implemented on CT component. Use of

AEC systems is likely to lower patient dose, but the magnitude of such dose savings has

no substantial effect on the effective dose values [36]. Finally, the dose coefficients used for

internal absorbed dose assessment were based on numerous assumptions [37] that may result
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in variation from the “true” value.

4.6 Conclusions

The present study explored the effects of CT model and scan protocols on the overall dose

from an 18F-FDG PET/CT procedure based on CT exam-specific parameters with the CT-

Expo dosimetry software. There is evidence of a slight variation in the effective dose contribu-

tion from the CT component for both PET/CT systems due to clinical technique differences

and type of scanners. The presented dosimetric results also showed that radical changes to

existing CT protocols are not necessary given that the total PET/CT dose from the two

systems was typically within acceptable limits compared to current literature. Though the

present work is just one step in the direction of a complete ED estimate that uses the exposure

settings of all X-ray pulses, CT protocol optimization measures and patient weight specific

ED contributions, the observed variations in CT dose is however of concern as the substan-

tial radiation exposure of PET/CT imaging is from the CT examination. The absence of a

diagnostic reference level (DRL) to promote optimization in PET/CT imaging, makes any

decision regarding the need for optimization seems questionable. Further extended studies

are needed to assess if a reduction in radiation exposure from the CT component, either by

evaluating the current operator prescribed noise index level or by considering other diag-

nostic modalities such as limited CT scan length while keeping the diagnostic quality at a

clinically acceptable level to reduce the probability of stochastic effects is possible.
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Chapter 5

Conclusion and future work

5.1 Summary

This study was conducted to evaluate the radiation dose and the associated cancer risks

from two imaging techniques (CT and PET-CT) predominantly employed in the diagnosis

of Mycobacterium tuberculosis infections. The current rapid increase in usage, the relatively

higher dose in comparisons to other imaging modalities and the varying degrees of difficulty

in the appropriate selection of imaging protocol by radiologists due to variations in equip-

ment design among manufacturers and models formed the basis for this study. The organ

doses from CT scan were simulated using a dosimetry calculator taking into consideration ad-

justable scan parameters that are determinants of the amount of radiation a patient receives.

Some of these factors include the tube current, the tube voltage measured in kilovolt peak,

the pitch, display field of view etc., while doses from the PET scan were estimated applying

the International Commission on Radiological Protection (ICRP) dose coefficients. Cancer

risks, in the form of lifetime attributable risk (LAR) of cancer incidence, were estimated
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by linear extrapolation using the organ radiation doses and the BEIR VII age-and-gender –

dependent dose-risk model.

Our results on what potential harm, if any, does the use of generic protocols has on the

absorbed radiation dose and long-term effects (cancer risks) for exposed patients showed

percentage differences of 34% to 37% among the calculated effective dose (De) values for the

scanners considered. The variability of associated lifetime cancer risks among the scanners

was found to be slightly less than 1%. This related increase in cancer when applied to an

increasingly large population with the proliferation of CT scanners in hospitals and insti-

tutions is a potential public health problem thus mandating careful patient selection and

imaging protocol optimization by the radiologists to prevent unnecessary radiation.

The investigation of the influence of specific CT models and protocols on the overall PET/CT

dose showed non-significant variations in PET/CT dose for the two systems examined. How-

ever, the influence of CT models and protocols were evident in the CT dose contributions

as there were differences of up to 30% in the CT effective dose (De) values which in turn

resulted in higher PET/CT dose for a particular system compared to the other.

This is primarily due to differences in technical parameters such as the tube potential,

current-time product, scanning time, collimation etc. selected by the radiology personnel.

Settings for CT should be selected to optimize pertinent diagnostic information that is the

image quality must be balanced with radiation exposure taking economic and social issues

into consideration. More importantly, the variations also demonstrate the importance of

regular participation of radiographic staff in dose awareness training and dedicated teaching

activities, with the purpose of improving clinical practices, enhancing quality of radiographs

and minimising the amount of radiation exposure to patients.
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5.2 Future work

As conversed in the study, our discussion related to radiation is an approximation of dose

and is based on the CT acquisition parameters that directly affect the amount of radiation

exposure a patient receives and over which the radiologist has direct control. Body size and

patient-specific anatomy are overlooked with the use of physical phantoms and mathemat-

ical phantoms. Further research with more patient-specific methods to estimate organ and

effective doses could lead to a more accurate reflection of the patient dose. However, any

estimation of the effective dose that uses population-based ICRP weighting factors cannot

be entirely patient-specific.

Moreover, the investigation on the influence of CT models and protocols on overall PET/CT

dose was performed only for two PET/CT systems, which may not be applicable to regions

that have different conditions regarding scanner equipment and cultural background of med-

ical imaging. Given the limits of the sample size, machine parameters, these results should

be interpreted within the context of this study. Future studies elsewhere will be of value to

corroborate these findings.
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