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Abstract

Feature extraction is an essential component in the design of human activity

recognition model. However, relying on extracted features alone for learn-

ing often makes the model a suboptimal model. Therefore, this research

work seeks to address such potential problem by investigating feature reg-

ularization. Feature regularization is used for encapsulating discriminative

patterns that are needed for better and efficient model learning. Firstly, a

within-class subspace regularization approach is proposed for eigenfeatures

extraction and regularization in human activity recognition. In this ap-

proach, the within-class subspace is modelled using more eigenvalues from

the reliable subspace to obtain a four-parameter modelling scheme. This

model enables a better and true estimation of the eigenvalues that are dis-

torted by the small sample size effect. This regularization is done in one

piece, thereby avoiding undue complexity of modelling eigenspectrum dif-

ferently. The whole eigenspace is used for performance evaluation because

feature extraction and dimensionality reduction are done at a later stage

of the evaluation process. Results show that the proposed approach has

better discriminative capacity than several other subspace approaches for

human activity recognition. Secondly, with the use of likelihood prior prob-

ability, a new regularization scheme that improves the loss function of deep

convolutional neural network is proposed. The results obtained from this

work demonstrate that a well regularized feature yields better class dis-

crimination in human activity recognition. The major contribution of the

thesis is the development of feature extraction strategies for determining

discriminative patterns needed for efficient model learning.
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1

Introduction

1.1 Background

The recognition of human activity has become a popular area in computer vision sys-

tems because of its numerous applications in the security sector, patients monitoring,

human computer interaction and the gaming industry, to mention but a few. Recent

advances in artificial intelligence have pushed the technological boundaries in all the

computer vision sectors. In particular, there is an ever growing necessity and endeavours

to improve automatic human activity recognition. A comprehensive feature engineering

process is vital to the goal of improving computer vison systems, feature extraction and

its engineering process are basic skills for crafting human activity recognition model.

Computer vision is a branch of artificial intelligence that enables machines to mimic

human vision. In other words, it aims to capacitate machines to make visual sense of

their surroundings and thus take appropriate action(s) in the same way as humans do.

Notably this field of study has received tremendous growth in recent times due to its

potential application in almost every aspect of modern living [3, 99]. The proficiency

of any vision system depends on the maneuverability of its pixel values, such that a

coherent meaning and understanding of any scene can be recognized or classified [2].

Computer vision technology has found wider applications in industrial robotics, au-

tonomous vehicles, object tracking, human activity recognition and face recognition.

For the computer vision system to be good at making decisions like humans, a lot of

feature engineering is needed for such system to be able to make adequate sense of its

environment before informed decision is made. The art of crafting discriminative fea-

1



1.1 Background

tures to promote adequate feature learning cannot be over emphasized. This is because

discriminative features are vital for effective class labeling. This creates not only better

classification, but also improves object recognition and allows complex body pose prob-

lem experienced in human activity recognition to be overcome. Learned features from

any vision systems can proportionately be affected by various factors such as: dimen-

sionality, environmental factors, high pixel correlation, scaling and model complexity.

These problems in their very least form can prevent successful crafting of discriminative

features. The ability to leverage on domain knowledge in order to proffer adequate so-

lutions to these mitigating factors is also very key for building effective computer vision

systems [1–4]. Intelligent cameras like the one shown in Figure 1.2 are equipped with

softwares that are capable of infusing automation to video recognition systems. These

softwares provide the intelligence that gives the cameras the ability to detect and clas-

sify numerous actions performed by humans or another object in an environment. Such

camera systems have also found useful applications in robotics, video surveillance, in-

telligent automobile and military equipment. Recent global security challenges in most

places of the world have allowed greater investement to be channeled towards the study

of criminal tendency. The benefits of human activity recognition can range from the

surveillance of public places such as bus stations, patient monitoring to more complex

scenes such as crowd monitoring and border security. The dynamics of criminality,

terrorism and other negative vices that are inimical to the society are tremendously

evolving. Hence, this thesis has endeavored to proffer the state-of-the art feature regu-

larization solution to help improve the intelligence of the computer vision machine. The

areas where these technologies are deployed are often deemed to be critical and nothing

is left to chance. Therefore, to obtain maximum functionality of the computer vision

model, there is need to provide reliable and sustainable state-of-the-art technology. In

recent times, the computer vision and imaging communities have been awash with dif-

ferent models for building intelligence for recognition. While a considerable amount

of energy has been spent on this research, there still exist a huge gap in the feature

learning process. For instance, considerable energy has been directed towards research

in human activity recognition (HAR), human-computer interaction, entertainment, re-

mote sensing, monitoring of elderly patients in care homes and hospitals[5–9]. The

common challenges associated with human activity recognition (HAR) are the shape

and posture representations, background clutter, image, viewpoint variation, excessive

2



1.1 Background

illumination and statistical image representation [10–13]. These challenges unduly in-

troduce excessive complexity. Therefore, the task of building a complex model to solve

complex issues in the field of computer vision has its own disadvantages. Firstly, such

a complex model is susceptible to overfitting the model, a situation where the model

fails to generalize well with the test data even though they have good recognition score

with training data. Secondly, their convergence time to optimal solution is generally

too poor. The two challenges described are major issues that open the wider discussion

of feature regularization to have great discriminative features.

Earlier research in Computer Vision [14, 15] has shown that panoptic surveillance

largely depends on human activities recognition and in some cases facial recognition.

The recent ubiquitous security challenges are enormous and the quest for robust se-

curity measures has become a key element in strategic policy implementation in most

organizations, be it private, cooperate body or governmental institutions. Again, vul-

nerable patients in most hospitals largely depend on monitoring gadget that are built

from human recognition technology. Gadgets such as intelligent cameras are deployed

for the monitoring of real time of the elderly, weak and in most cases children with spe-

cial needs. So, lots of advantages are gained when practices that improve the science

of obtaining accurate and high recognition score are projected to new technological

frontiers. The regularization of the features is an efficient method that can be used to

improve model recognition, while better generalization in the model is also an advantage

drawn from the regularization of features.

Feature extraction and its engineering process are important skills for building hu-

man activity recognition model. However, depending only on extracted the features

for learning often leads to poor model generalization which is highly error prone when

used for HAR [5]. In view of these limitations, this research work seeks to address such

potential problem by introducing a feature regularization scheme. This feature regu-

larization is used for encapsulating discriminative patterns that are needed for better

and efficient model learning. Feature regularization creates means for model expressive

characterization and recognition needed in most computer vision applications. Model

complexity is one of the main reasons why representational and hand-crafted learning is

difficult. The presence of excessive noise in the training data can introduce superficial

complexities; the variances introduced by these complexities in the training set do not

present useful information during the test phase. These dissimilarities in both training
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and test set are the main culprit that generates overfitting in machine learning model.

These additional superficial complexities which are adequately modeled in the training

sets are not necessarily accounted for in the test sets. This imbalance remains a major

challenge in computer vision [87].

The main research goal is to answer the question on ”How to effectively improve

the science of feature crafting and manipulation, through various regularization means

for HAR”. As shown in Figure 1.2, video surveillance is deployed for observing most

neighbourhood. The reason for having video cameras range from crime detection and

prevention, data collection and other scientific researches [2]. In the past, video cameras

were passive in their function, humans or law enforcement agencies would only proceed

to analyze recorded scenes if a heinous crime had taken place. Figure 1.1 shows a

surveillance camera technology at its earliest stage, with a recording device attached

to the camera. Humans spend thousands of hours watching and observing behavioural

activities recorded in the storage device. The footage analysis of these stored video

frames are constantly being searched by humans for any information. This kind of

footage perusal often became tedious and unreliable because fatigue and complacency

are very common in the analysis of passive video cameras. The development of intelli-

gent algorithm that can leverage on best feature crafting in shallow or deep network of

computer vision system is important for accurate representation and interpretation of

human actions

Similarly, with the popular demand in the use of computer vision technology, areas

such as automobile company, hospitals, prisons and public space surveillance depart-

ments have found great usefulness in computer vision algorithm. It has become critical

to improve the techniques that are core in building such algorithms in machine models,

and such improvements add to the general success in driving the frontiers of reliable

detection and the recognition of human activities considered in this research.

Investment and large-scale research in deep learning architectural model has become

very popular in the last decade. The concept of building shallow networks and creating

handcrafted features for human activity recognition is receiving less popularity and this

is because of a paradigm shift in the building of deep convolutional architecture that can

extract and learn features in an end-to-end manner. Unlike the shallow architectures

with simple layers capable of performing non-linear feature transformation, the deep

layer architecture is more complex with the ability for learning convoluted non-linear
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features. Therefore, as computer vision application processes evolve over the years, it

has become expedient to develop cutting-edge state-of-the art model that can increase

the discriminative power of features from the deep learning model. Deep learning

models are built to mimic the functionality of layers of neurons found in the neocortex,

which is a part of the brain where higher-order functions such as sensory perception and

all other cognitive processes are coordinated. The Deep learning model has become a

variant subset of artificial neural network of choice for learning and recognizing digital,

image and other data representation.

This study comprehensively explored the Convolutional Neural Networks (CNNs)

and various means of features regularization, learning and building models that can

efficiently recognize human activities or behavioural patterns. This kind of network

has become the choice architecture because it is well suited for image and other object

classification. Firstly, adopting this architecture enables quick and effective training

of convolutional networks, thus providing the opportunity to learn directly from the

images without the use of hand-crafted feature manipulation. Secondly, it also provides

the ability for deeply training the many layers that may be present as this kind of deep

training promotes better classification of images and learning hidden patterns present

in the datasets.

In this study, an attempt was made to elucidate on hand-crafted and the deeply

learned feature extraction methods has these two major ways of feature extraction

are very common in computer vision. With the eigenspectrum regularization method,

feature regularization is achieved through a meticulous effort of hand-designing features.

Such features have shown to be very discriminative in the application of vision, [16–

20] Notably, the tasks of engineering such features are too tedious, time-consuming

and require domain knowledge. A proper feature engineering process in any machine

learning task is much more reliable in its predictions and its ability to generalize.

With the deeply learned features, its feature engineering process is almost always done

through an automatic process. The features are extracted with the help of numerous

cascades of filter layers, activation functions, pooling layers and the dense layer attached

to the output. A combination of these processes is what is called the deep learning

model which is used for classification and recognition purposes. Both methods of feature

extraction were examined and the commonality between these two methods is that

both can suffer from the curse of dimensionality, therefore they become susceptible
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to the problems of overfitting and poor generalization in the machine learning model.

By the regularization scheme proposed in this work, a high level representation of

extracted features can be obtained, thereby putting the designed model at their best

performances.

The Principal component analysis (PCA), linear discriminant analysis (LDA), fisher

linear discriminant analysis (FLDA) and other non-linear kernel subspace methods like

the kernel principal component analysis (KPCA), kernel linear fisher linear discriminant

analysis (KLDA) have been presented in most literatures that attempted to proffer

concrete solutions for the effective recognition of human action [10, 21]. However, the

commonalities among these methods are their shortcomings, examples of which are the

inability of these models to handle high dimensional data effectively and singularity

issues arising from the sample size and ineffective feature extraction methods.

1.2 Research Motivation

The global use of video information in virtually every technological sector has neces-

sitated the incorporation of intelligent algorithm in most computer vision systems. In

[22], it was projected that the analysis of activity (parsing temporal sequences of object

observations to produce high-level description of agent actions and multi agent inter-

actions) amongst similar detections, tracking and the analysis of human motion will

be the most researched in the nearest future. The explosion of research in the area

of human activity recognition in the last decades has not only confirmed this predic-

tion but significant progress has also been achieved in the videos and scene analyses.

The ubiquitous deployment of the video recording machine for strategic surveillance

reasons (military intelligence, law enforcement and commercial purposes), is a pointer

to the proposal of Lee et al. [22]. These are sectors where adequate response and in-

telligence gathering are key for preventive and proactive purposes. The art of crafting

and learning different methods of extracting high representational features is vital in

reaching the goals of building the state-of-the-art recognition systems. Therefore, the

main objective of this study was to develop efficient feature regularization methods

that can improve the growth, accuracy and effective generalization of computer vision

models. In this thesis, the computer vision subfield of human activity recognition is

concentrated on.
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Figure 1.1: Passive Cameras - Diagrammatic Representation of a Surveillance System

Using Traditional passive Cameras
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1.2 Research Motivation

Figure 1.2: Intelligent Camera - Diagrammatic Representation of a Surveillance Sys-

tem Using Intelligennt Cameras
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1.3 Thesis Overview

1.2.1 The Main goal of the study

This study aimed to improve the recognition and classification of human action using

our proposed improved regularization method. A new eigenspectrum regularization

modelling scheme was developed to handle hand-crafted features. To realize these noble

objectives of building an effective learning model that can discriminate human actions

and interpret these actions from a scene, this thesis showcases the use of eigenspace reg-

ularization to achieve better state-of-the-art results. The likelihood prior-probability

regularization is introduced to regularize jointly supervised loss function of deeply

learned features. Deeply learned features are better and effective in feature discrimi-

nation. This study therefore limited its feature learning and regularization process to

enhace human activity recognition recognition.

1.2.2 Specific Objectives

A summary of the objectives for this study were as follows:

1. To create intelligent algorithm for human activity recognition purpose.

2. To develop a four-parameter model for effective eigenfeature regularization to

enhance classification and recognition in HAR.

3. To proffer better ways of feature extraction.

4. To show the effect of applying the likelihood prior-probability regularization in

deep learning for extracting quality feature for classification purposes.

5. To investigate the effect of within-class matrix on the recognition model.

1.3 Thesis Overview

Six chapters were used to relate and discuss this thesis. The chapters highlight the

contents, depth and empirical findings while undertaking this study. The chapters are

structured to reflect progression and advances in computer vision and image processing

fields.

Chapter One focuses on the generality of the subject matter describing the recog-

nition of human activity and the importance of feature learning and regularization.
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Chapter one also highlights the introduction, research motivation, aim of the study

and contribution to knowledge.

Chapter two describes a chronological narrative on previous studies that have been

done in human activity recognition and diverse methods and approaches engaged. The

traditional hand-crafted and the deep learning methods of feature extraction were re-

viewed extensively to identify current challenges and possible solutions.

Chapter three provides a window that enables a concrete understanding of the

concept of image information detection and preprocessing of such images. This chapter

also underscores the need for image preprocessing to allow for accurate representation

of information that will allow the formulation or adoption of a better recognition model.

Chapter four discusses and investigates the effect of singularity problem associated

with the within-class matrix in traditional linear discriminant analysis. The regulariza-

tion of the within-class-matrix using a 4-parameter constant was extensively analyzed

and results evaluated against state-of-the-art method.

Chapter five relates the concept of using deep learning model Convolutional Neural

Networks (CNNs), for representational learning of human activity recognition. The

CNNs hierarchical network model was robustly analyzed with each layer telling a

unique story about every feature map extracted. Additionally, chapter five discusses

the likelihood regularization parameters. Chapter five also delves on how different

hyper-parameters can be used for the regularization and optimization of the recogni-

tion model.

Chapter six concludes the study. An indepth review of the contributions made

towards the research are highlighted and possible future research area annotated for

further exploration.

1.4 Contributions

In this thesis, the study and its findings have contributed to knowledge as follows:

• The within-class matrix has significant influence on the accuracy of a model designed

for human activity recognition using the subspace method. This work has demon-

strated that such accuracy can be achieved by reconstruction of the true variances

in the data by a unique method of modelling the eigenspectrum by a 4-parameter

constant.
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• To underscore the relevance of feature scaling, this work highlighted the concept and

principles of using scaling to improve feature extraction. This concept of scaling

has shown better recognition when implemented for behavioural recognition and

human action classification.

• The hierarchical nature of learning pattern representation from videos and still

images of human activity are explicitly covered using the deep learning method.

First, the use of Convolutional Neural Network has seemingly demonstrated its

powerful and better feature extraction techniques. Secondly, a good concept of

feature regularization showcased in deep learning loss function has demonstrated

its uniqueness in improving recognition in HAR.
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2

Literature Review

The complexities that surround recognition and classification in the field of machine

learning are enormous. Challenging as it may be, this area of research has received

diverse and dedicated attention from various computer vision and machine learning

groups in recent years. Automated video surveillance (group or individual), computer-

human interaction, remote sensing, image retrieval, entertainment and monitoring of

the weak and vulnerable in homes and hospitals are some of the applications of com-

puter vision and machine learning [5–9]. Recent global security challenges have also

necessitated the incorporation of intelligent surveillance in major public places in the

communities that we live in. However, the onerous task of having human resources

to analyze this video sequence can be very expensive and prone to human error oc-

casioned by human fatigue and lack of concentration. Secondly, these video recording

machines are passive in action (lack proactive ability to prevent abnormal behaviour

and activity classification). Consider the non-action sequences in the video frames, this

could be boring for human interpretation. These disadvantages had fuelled the desire

for effective and real time video interpretation for efficient classification and recogni-

tion purposes. Holistic subspace approach has evolved over the years so much that

significant results have been achieved in human recognition and classification purposes.

Past developments in activity recognition have created lots of theoretical and em-

pirical platforms that have given researchers many opportunities to explore. In the

recognition task, many believe these tasks are decomposed into three major sub-tasks,

motion analysis of human body parts, high-level tracking of human motion with mul-

tiple camera or single camera and the use of tracking features extracted from motion
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sequences for human activity recognition. In [2], a review on interpreting human motion

was analyzed using these three major parts for recognizing human activity. However,

while a lot of energy was focused on shape and geometrical characteristics for obtaining

meaningful recognition results, little was said on how discriminative features would be

extracted and processed for quick recognition and classification purposes. The use of

both 2-D and 3-D shape characteristics is analogous to the contour and volumetric

approach in capturing basic human shape orientation. The 2-D method was conceived

to deal with modeling of human action with or without explicit shape. The charac-

teristics and addition of the volumetric approach in the human body shape have given

better description and details of the human body in a 3-D. This has better tracking of

human motion [2, 23]. Object tracking is essential in behaviour recognition, but a quick

analysis and correct classification of such objects and their actions add importance and

colour to the tracking activity. Shape and motion-based classification have been used

as methods for object classification. Lun Zhang [24], with different camera views for-

mulated a method that performs real time object classification and this was achieved

by applying appearance-based techniques. The multi block local binary pattern (MB-

LBP) technique which is excellent for its ability to encode rectangular regions and label

different image structure is used to encode the appearance of objects. With the enor-

mous overhead associated with this method, it has become almost impracticable for

real time classification to be true in automated feature learning and HAR. Therefore,

Hota, [25], proposed a better method to overcome the limitation of MB-LBP and the

method uses an online feature selection method. A subset of these online features is

aggregated to be learned by a machine model for classification and object recognition.

While most of the aforementioned techniques concentrated on the use of feature

set for the classification of two or more classes[24], Gurwicz, [26] proposed a multi-

class object classification in both low and high-resolution images for real-time video

surveillance architecture. In this method, several morphological, textural, temporal,

and periodical features were used to boost the discriminative power of this multi-

class classification model. Another contributory factor to the success of this scheme

was the abundance of dataset that were available for learning, making unconnected

features which were less significant to become meaningful and contributive for image

classification. In general, the task of action recognition can be grouped into three main

areas and they are dimension reduction, feature extraction and classification of human
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actions. These three steps are key for effective recognition after the detection stage

has been finalized. Pixel values of images present high correlation and as such present

multi-collinearity that affect the performance of the machine learning model. The

collection and processing of millions of these kinds of highly correlated pixel can be very

large and therefore difficult in terms of computational resources and this is a primary

cause of poor classification in HAR. Therefore, most machine learning models have

invested in data reduction techniques to actualize better recognition and classification

of images in the computer vision field. The Principal component analysis (PCA),

canonical correlation analysis (CCA), linear discriminant analysis, (LDA), have been

used by most researchers for dimensionality reduction of data [7, 27–30] and the results

show that a significant progress for data reduction was achieved. Feature extraction

deals with the process of obtaining categories of features that are capable of describing

expressively the meaningful information necessary for analysis and classification. In

[31], feature extraction was grouped into two main categories and they are the local

descriptor features and the holistic features. The methodology of the local descriptor

leverage on the neighbourhood information to describe salient points associated with

local motion rather than the shapes, while holistic features are used to capture shape

features and other motion energy of images. The combination of hybrid features type

for human activity recognition was performed by Sun et. al [31], the 2D and 3D

SIFT local descriptors were combined with holistic feature obtained from the Zernike

moments (single frame and motion energy image). The final combination of these two

hybrid features shows that feature fusion has the capability to increase the performance

of action recognition model. Wei et. al [32] investigated a much higher hybrid feature

weight fusion for HAR purpose. In their work, a higher recognition rate was achieved

when three descriptors were fused together to gain better recognition of HAR. Three

feature combinations were clustered together, they are three-dimensional histogram of

oriented gradient (HOG3D), a global descriptor based on frequency filtering (FDF) and

the local descriptors based on spatial temporal interest points (STIP). PCA was then

used for dimensionality reduction before support vector machine (SVM) and a multi

class classifier was, therefore, used to establish the effective exploration of multi- class

action. Again in [33], it was stated that curvelet transform technique offers unique

directional and edge representation features. Therefore, in their work, a fusion of

edge, texture and silhouette shape eigenfeatures were combined for the purpose of
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the recognition purpose. A unified framework presented by Dinesh and Kuldeep [34],

developed a technique based on the spatial distribution of the gradient (SDG) at several

decomposition stages. This framework seeks to relate computational outcome of SDG

on average energy silhouette images (AESIs) and the AESIs is used for estimating

shapes and action in HAR. For effective description of AESIs, spatial distribution of

gradients at different stages and the sum of the directional pixels (SDPs) deviations

were calculated. The calculation of the temporal makeup of the shape information of

the silhouettes was done by applying R-transform. Firstly, R-transform was extensively

used in [27] for solving the problem of continuous distance change of an object as it

relates directly with the size and posture of image character. Two viewpoints presented

by two cameras of unequal distance can potentially result into having same image

represented differently, this can become a major disadvantage in the representation and

extraction of features. Therefore, the R-transform which can extract periodic, scale and

translation invariant features is a better option for resolving different viewpoints and

difficulties. Secondly, a nonlinear subspace method Kernel discriminant analysis (KDA)

is introduced for extracting unique features that can discriminate similar activities.

The training and recognition was done by applying the hidden markov model (HMM)

classifier, and a 95.8 percent was recorded. The recognition of human activities in video

was conducted in [35], and emphasis was centered on accurate and distinctive extraction

of information feature vectors. These vectors were collected by the introduction of

Directive Local Binary Pattern (DLBP) features. These kinds of features were more

superlative in their orientational information than information captured by directional

magnitude when handling binary silhouette recognition. The projected Directive Local

Binary Pattern (DLBP) integrates coordination information with intensity variances

of binary shape images. It is further pooled with Edge Orientation Histogram (EOH),

producing better and unique feature set which can help in image and object recognition.

The training and recognition were done by a support vector machine (SVM) and it was

reported that this method can improve the limitations inherent in the Local Binary

Pattern (LBP). Sabanadesan et al [36] developed limited feature-based activity images.

The solid HOG (Histogram of oriented Gradients) and histogram of resemblance forms

are mined from videos. Numerous forms of support vector machines were applied to

construct distinct codebook for all activity class as compared to alternate single class.

Every input feature is then illustrated by Locality constrained Linear Coding (LCC) in
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conjunction with codebook essentials and the combination of spatio-temporal features.

This method enables a robust construction of the dictionary before SVM is applied

for classification. Zhang et al [37] consolidated the conventional clustering method

by developing the subspace clustering method for improving the difficulty experienced

by the conventional clustering method inability to handle multidimensional dataset.

These techniques make use of the density-based clustering method that is capable of

obtaining clusters by utilizing axis-parallel subspace. Data collection is achieved by

the sensor’s devices and features necessary for human activity recognition are gotten

and clustered. The non-parametric similarity in the trajectory data motion feature in

relation to the Bayesian network proposed by Neil et al [38] was used for the recognition

of human activities. A tracker that functions well with colours is then used for data

collection and the Hidden Markov Model is used for inferring different activities on the

dataset [5, 7, 39]. Examples of these subspace methods are the principal component

analysis (PCA), discriminant analysis (LDA) and the fisher linear discriminant analysis

are the most common models that have gained popularity in the subspace method of

recognition and classification of human actions. Other non-linear subspace methods

that have also gained valuable recognition in computer vision sector are the kernel

variants such as the kernel principal components analysis (KPCA) the kernel fisher

linear discriminant analysis (KLDA) and these have also been applauded for their

individual advances in human activity recognition [10, 21]. A summary point of some

work done by previous researchers using similar subspace methods and other techniques

have also been tabulated in Table (2.1) to give a clear direction on the human activity

research work.

These subspace models became the focus of attention due to their successful results

shown in face recognition [29, 67]. Hence, their extension to a more complex nature as

human activity recognition. The PCA is a handy method that captures the variances

associated with a data set and this variance is most significant along the principal

axis. The uncorrelated principal components are drawn from the correlated data by

projecting the entire data as orthogonal transformation to a much lower subspace and

by this action, the variances in the data are then made explicit. These explicit principal

components can point out the basic direction and differences in a data. The principal

components in the newer lower subspace are able to preserve much of the variances

in the data by a set of eigenvectors with the highest eigenvalues [68, 69]. While the
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Table 2.1: Summary Point of Related Articles in Human Activity Recognition

Main Work/ Contribution First Author,Year

Group recognition [40] T. Lan

Human action recognition in videos using long short term memmory [41] M. Baccoude, 2010

Automated human action learning via conbination power of CNN

and RNN

[42] M. Baccoude, 2011

Generative model for learning object recognition [43] J. Susskind, 2011

Image recognition and denoising using deep Boltzmann network [44] Y.Tang, 2012

Heirarchical modeling of human activity recognition [45] T.Lan, 2012

Automatic recognition of human action in surveillance video [46] S.Ji, 2012

Image classicication with deep convolutional network [47] A.Krizzhevsky, 2012

Action recognition in video using deep convolutional network [48] K.Simonyan,2014

Historical overview of deep learning [49] J. Schimidhuber, 2014

Local spatio-temporal information analysis using deep learning net-

work

[50] A. Karpathy, 2014

Depth of convolutional network and recognition accuracy investi-

gation in image analysis

[51] K.Simonyan, 2014

Human activity recognition using deep learning [52] H.Iang,2014

Deep sparce autoencoder for human activity recognition [53], H. Liu, 2014

Shape modeling with deep network [54] S.A. Eslami

Group and individual recognition in surveillance scene with deep

learning

[55] Z. Deng, 2015

A two satge hierarchical model for group activity recognition [56] M.Ibrahim, 2015

Efficient utilization of deep neural network model for image classi-

fication

[57] C. Szegedy, 2015

Human action modeling in video sequence using deep network learn-

ing

[58] J.Donahue,2015

Deep hybrid features learning for activity recognition [59] M.Hasan, 2015

Human pose labeling with deep neural network [60] K.Fragkiadaki,2015

Pixel-level labeling with deep learning in activity recognition [61] S.Zheng, 2015

Human motiom modeling via spatio-temporal and deep learning [62] A. Jain, 2015

Group action recognition using recurrent neural network [63] Z.Deng, 2016

Depth map application with convolutional neural network for hu-

man activity recognition

[64] P.Wang, 2016

Human motion analysis with deep metrics learning [65] X.Yin,2016

Deep recursive and hierarchical modeling of human activity recog-

nition

[66] T.Liu, 2016
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principal components are vital and significant for retaining a major part of the original

data, the non-principal components are assumed infinitesimal and are often discarded

[29]. Therefore, discarding the eigenvectors that retain the non-principal components

eigenvalues amount to losses in the PCA model and this is the primary cause of its poor

recognition ability. Again, another disadvantage of the PCA method is the weakness

in encoding class label information thereby making it a poor model for classification.

The LDA model is another subspace method that has also gained relevance in human

activity recognition. This method attempts to locate the best axis in the subspace

which maximizes the distance between the label of dissimilar activities while minimizing

the distance of similar activity. Encoding labels is a unique characteristic of LDA as

this feature makes it a better technique for handling labeled datasets unlike its PCA

subspace counterpart. The between class matrix accounts for the maximization of the

variances between dissimilar activities, while the within-class matrix minimizes the

variation of similar class. In the works of [29, 70, 71], LDA was reported to be more

efficient than the PCA and that this was due to its feature extracting power. However,

because of the problem of singularity common to high dimensional datasets like human

activity dataset, this method suffers from the inability to have inverted within-class

matrix. Taking the inverse of the within-class matrix is often too problematic because

the covariance estimates cannot attain a full ranked status and, therefore, cannot be

inverted. Fishers proposed the Fisher’s linear discriminant analysis (FLDA) to solve

the singularity problem caused by small sample size on LDA and his idea was to use

the PCA to reduce data dimension before performing LDA. At this stage, the bulk of

the principal components are retained, and the non-principal components are discarded

before the LDA method is implemented [5]. The application of PCA at the onset for

data reduction seems to have solved the singularity problem. However, the trade-off

was the loss of information with the PCA application at the initial stage. This trade-off

has undermined the success recorded with the FLDA method. Another variant of the

subspace method is the DLDA. This method has its within-class scatter matrix null

space discarded while retaining eigenvectors with the least eigenvalues [72, 73]. The

disadvantage of this method is the undue scaling characteristics obtained when smaller

eigenvalues are used to scale their corresponding eigenvectors and this can affect the

recognition results. Bappaditya et.al [5] offered a holistic technique of eigenspectrum

regularization to enhance the recognition method using three parameter constants. A
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2.1 A Brief Historical Review on Deep Learning

breakdown of the within-class eigenspace into three different sections is done and these

sections are regularized from each other. The succinct and sure start and end limit

of these three subspaces area can be very hard and challenging to determine. The

three subspaces region formed by subdividing the complete eigenspace can also be too

burdensome and susceptible to error. For that reason, one of our research questions

was centered on how to advance the latest state of the art performance chronicled in

[5]. A modeling of the within-class matrix using additional parameter was a conceivable

idea and this work has produced a better feature extraction and representation. The

variances related to the within-class matrix of our model was effective in capturing key

information on the dataset and this has led to terrific discriminative power without

having to discard useful eigenvectors as practiced in most subspace methods [49, 57,

74, 75].

2.1 A Brief Historical Review on Deep Learning

Until recently, many computer vision and machine learning techniques have been using

simple non-hierarchical shallowed architecture for pattern recognition and classification

purposes and tremendous success has been recorded with the use of these techniques. A

notable characteristic of these shallow architectures contains a simple layer of non-linear

feature transformation model which is a sharp contrast to its deep counterpart with

much complex form of convoluted non-linear features. An example of commonly used

shallow architectures are the hidden Markov models (HMM), conditional random fields

(CRFs), support vector machine (SVM), Gaussian mixture models (GMMs), linear

and non-linear dynamical systems, multi-layer perceptron (MLP) with a single hidden

layer, maximum entropy (MaxEnt) models and Kernel regression. The uniqueness of

these shallow architectures is their relative computational stage simplicity and typical

arrangement with a single layer of transformation. This simple layer can map raw

input from their immediate environment to a more separable feature sub-space than

their original space. The SVM and other known conventional kernel methods illustrate

this simple shallow architecture as its linear separation pattern is strengthened with a

one or zero feature transformation layer often done with the help of the kernel tricks.

While shallow architecture has demonstrated its strong capability of solving simple

related problem in most areas of machine learning (simple object recognition), such
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problem-solving skills become inadequate when more complex environments (natural

language processing, computer vision system, human speech recognition, signal pro-

cessing and so on) are to be modeled. Figure 2.1 illustrate different human actions

ranging from simple action performed by individuals to more complex action under-

taken by more persons. Designing the representation abstraction power is a function of

each scene complexity and these complex scenes cannot be handled by shallow archi-

tectures. Hence, this millennium has embraced the use of deep representational power

of neural networks often referred to as deep learning in most literature[76]. This kind

of learning has recently become prominent in extracting complex features and enables

multiple level representation and having feature vector reuse ability. For example, a

lot of computer vision systems are increasingly being designed with layered hierarchical

structure that provides quick and real time pixels information processing in complex

scenes thereby providing adequate in-depth interpretation of various actions in such

environments[64, 77, 78]. Deep learning architecture are designed to have numerous

layers of non-linear processing agents where the input to a layer above is an immedi-

ate output from a layer beneath. For the purpose of classification, such higher layer

of representations is used to develop key and important aspects of the input to aid

discrimination, while suppressing less discriminative and redundant parts of the input.

The great success achieved in the field of deep learning are partly because of their

unique generative nature, also with the discriminative ability the additional layers of-

fer. Secondly, the unsupervised pretraining procedure inherent in most deep learning

architecture allows a huge number of unlabeled training data for the effective repre-

sentation of structures and hidden patterns in the input features[75, 79]. Historically,

the ubiquitous relevance of deep learning originated from artificial neural networks and

it has witnessed a lot of transformational development over the years. Such models

with concatenated non-linear layers of neurons have been in existence since the 1960s

[80–83]. Models that exhibit this deep architecture are the feed forward neural network,

MLPs with numerous latent layer and other deep model variants recently developed

(see Section 2.2 and 2.3). Back-propagation, a well known weight adjustment method

for NNs improvement and refining tricks have been in existence for long [84–86]. How-

ever, it gained greater popularity in the 1980s. Fortunately, back-propagation method

was no longer a panacea for accurate results in NNs as researchers quickly learnt about

its numerous demerits in learning networks with more and complex hidden layers (
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Review works of [87] and [88] attest to this. Back-propagation minimizes errors the

through local gradient descent that initializes its start point randomly from any given

point. With a greater depth of neural network connection, the error propagated get

barreled in the local optima often called the local optima problem. This leads to a

common error that causes gradient exponential shrinkage or growth often referred to

as vanishing or exploding gradient respectively. The challenges posed by this gradient

inefficiency has compelled researchers to walk away from using backpropagation for

neural networks weight adjustments. More recently, researchers have turned to more

efficient shallow models (SVNs CRFs and MaxEnt model) for obtaining robust global

optima together with convex loss function. Nowadays, most researchers proceed first

by training their models on shallow problems and then try to extrapolate their solu-

tions to fit a deeper model. The introduction of unsupervised learning algorithms has

helped steer the optimization of deep models to a positive direction and this was fully

discussed and highlighted in [89, 90]. This kind of model is often generative and build-

ing such deep models for optimization purpose has received great attention in recent

times[16–20].

2.2 Building Deep Representational Learning

Geoff Hinton in 2006, expanded representational learning popularly referred to as deep

learning in recent times. This representational learning is the primitive feature of learn-

ing variants method that are useful in the holistic description of data structure. The

importance of depth in representational learning underscores the need to highlight dif-

ferent forms of building deep representational learning (see Section 2.3). The composite

and heavy computational nature of network depth makes it more difficult for training

purposes and a lot of research has been directed towards solving this particular problem

in the computer vision sector [65, 76, 91–93].

Deep learning presents two major advantages to computer vision. Firstly, feature

reuse in deep learning has been a formidable point that explains the strength inherent

in distributed representations and theoretical gains recorded in multiple levels of rep-

resentation or hierarchical feature learning. Secondly, deep architectures are capable

of learning abstract features at higher layers of representation in a progressive form.
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Figure 2.1: Different Human Action - (i) Single person action (ii) Two person

interaction (iii) Group activity action.
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Figure 2.2: Feature Extraction and Training - Block Representation of Deep

Learning Model

Theoretical results in [94–99], show clear directions of progress with deep learning rep-

resentation efficiency than the shallow or insufficiently deep network model. The block

illustration of deep learning stages as shown in Figure 2.2 is also like the traditional

hand-crafted method of feature extraction except that the algorithm and techniques

inherent in the black box are different CNN steps with multiple processing units for

better feature extraction. In this chapter, the highlight of evolving practices in deep

learning is discussed and particularly recent gains in human activity recognition. A

significant milestone has been recorded in predicting various human activities, even in

hierarchical complex environments such as group recognition have also benefited a great

deal. While every effort has been made by different authors to present a better repre-

sentational model capable of learning and exploring human actions and their primitives

dynamics, there still exist a huge gap that needs to be bridged in the recognition and

classification tasks. Such obvious gaps in the computer vision sector underscores the

need to build robust and deep representational models.

Several research studies[89, 100, 101] were put forward by researchers in same year

and many others have taken tremendous interest in deep learning including authors of

[88, 102]. Learning of stacked features at one level at a time which was referred to as

the greedy layer wise unsupervised pretraining is a phenomenon that uses unsupervised
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feature learning for specific learning purpose at each level. The features learned at this

level are used as input to subsequent immediate upper levels. A resultant effect of this

action places additional layers of weights to deep neural networks. Furthermore, the

combination of this unsupervised layer can then be used to initialize deep supervised

neural networks. A generative model that reflects such initialization of deep supervised

network is the deep Boltzmann machine (DBM) (Subsection 2.3.1). In [103, 104], it

was observed that stacking of extracted features in a layer wise form is a veritable

tool in harnessing deep and better representation of hard to model salient structure

that improves recognition with less classification error and leverage on the quality of

sample built from probabilistic model [105], or improving the invariance characteristics

of the extracted feature [106]. The deep features obtained from the greedy layerwise

unsupervised pretraining can be used to initialize a deep supervised neural network

or as input to a purely supervised machine learning model like the support vector

machine (SVM) [107]. An attempt has been made in combining layers of pretrained

unsupervised learning so that an excellent and efficient unsupervised model can be

created. However, while different methods have been proposed, there has not been

a clear distinction as to which method performs the most. The earliest work done

was stacking pretrained RBMs to form deep belief network [89] or DBN, in which

the concept of Bernoulli-Bernoulli RBM learning of binary features creates an input

from the probabilistic activation of the hidden layer. Thus, the output from one RBM

machine acts as an input to another RBM layer. A first-hand implementation of the

layer-by-layer greedy learning in [52] shows that this strategy is indeed efficient and

helpful in human recognition and other classification tasks. Secondly, the autoencoder

is another veritable model capable of building deep learning networks (Subsection 2.3).

This method of deep learning attempts to model the system input to become the output

by adjusting the weights of the hidden layers to perfect the encoding scheme. This is

well suited for video streams because of its robustness in hierarchical distributed feature

leaning method used. Also, it is well suited for modeling high dimensional time series

events like human motions [53, 65]. Different methods of back-propagation types (for

example conjugate gradient method, steepest descent, and so on) techniques are used

for training the autoencoder. However, it has been observed that the back propagating

error in a large deep network can become very tractable and this is a major disadvantage

of this method. Another approach that has been proposed is the combination of RBM
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parameters into the deep Boltzmann machine (DBM). The DBM is another known

member of the Boltzmann machine family having its unit like the RBM arranged in

layers. Unlike the RBM, its layers are of multiple hidden units. The goal is to half the

RBM weights such that the DBM weight can be obtained. The likelihood maximization

unlike the RBM is not done directly. Instead the lower bound likelihood is maximized

by some chosen parameters [108].

2.2.1 Related Works in Group Activity Recognition Using Deep Neu-

ral Network

The explosion of research in activity recognition of human behaviour has led to a fur-

ther incursion into an in-depth study of human interactions with scene, object, and

their spatial or temporal relationships with others (see Figure 2.1). The latter of these

type of human interaction is commonly known as group activities. The concept of rea-

soning about structures plays an important role in group activity recognition, effective

representation and interpretation of group activity is aggregated from the dynamics of

the individual persons in the group activity. The spatio-temporal description between

individual and the scene is very vital to group activity recognition. Mostafa et al. [56]

proposed a deep hierarchical architecture to model group activities using a structured

temporal framework. A two-stage approach is used to implement this model. The

temporal representation of information in the scene from both stages is based on the

LSTM model. The first stage of their proposed method is modelling individual person

temporal dynamics and secondly combining the person level information from the first

model for inferring group activities. This model was reported to be successful in video

surveillance, video retrieval and in sport analysis[56]. Considering the fact that com-

petitive results can be achieved in human activity recognition by variants of deep neural

networks, better classification results can be obtained when deep neural networks are

combined with a probabilistic graphical model as conducted by Z. Deng et al[55]. The

work of Deng et al.[55], focused on the combination of CNNs with the graphical model.

The introduction of the graphical models as reported in [40, 45] allows hierarchical

structures to be integrated into group activities modelling and other human interaction

for the purpose of recognition and classification. The key components of the proba-

bilistic graphical model are derived from the multi-step message passing neural network

and the label adjustment is done via belief propagation layers of the neural network.
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Again, Deng et al.[63] in a similar combination of graphical and deep neural network

was able to bridge the difficulty that exists in the use of low level concept output in

interpreting high level compositional scenes. The use of a generative architecture (Re-

current Neural Network) is used instead of using other traditional inference methods.

Antic and Ommer [79] proposed the use of semi-local parts (latent constituent) in inter-

preting group activities. This method is based on learning the classifier with parts that

are functionally related which in general are the group activity constituents. Lan et

al.[109] proposed three different approaches (adaptive structure learning, feature level

learning and the combination of both learning methods) for finding the interactions

between low level person-person relationship to a higher group-level interaction. The

adaptive latent structure learning was modeled to reduce the redundant person actions

that are not relevant in group activity modeling and recognition. Thus, this model

dynamically decides inter-relationship between group members. Donahue et al. [58]

proposed a ”doubly deep” model (spatially and temporally deep) capable of handling

computer vision sequential interaction dynamics. In this model, a deep hierarchical like

structure (CNN) in combination with LSTM for training a recognition model is devel-

oped. The model can encode temporal state dependencies. The doubly deep model

function by transforming visual input (video frame) to a fixed length feature vectors

with the help of convolutional neural network, the output from the CNN becomes the

input to the second non-linear model(LSTM) that is connected to an output for recog-

nition and classification. The Network-in-Network proposed by Lin et al.[110] is used

to leverage the representational power of neural networks by increasing the convolu-

tional depth with a 1 × 1 convolution. While 1 × 1 convolution increases the depth,

a better classification is reported. Szegedy et al. [57] introduced deep neural network

architecture that is like that proposed by Lin et al. [110]. This model was able to

capture representational power in their architecture, both in depth and width using

the 1 × 1 convolution building blocks. The most remarkable aspect of this method is

that it enhances the utilization of the computing assets of the network. Mohamed et

al. [111] developed a deep graphical model that is able to represent long-range and

higher-order spatiotemporal dependencies of video features using a robust inference

model called Hierarchical Random Field (HiRF). The (HiRF) concept combines input

features to form mid-level video representations which are reflective on its performances

as a model that can be used for effective recognition and localization in group activity
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modeling. Unique characteristics of this model are its abilities to perform collective

foreground grouping while discarding features estimated as background noise. The Fu-

sion of convolutional network proposed in [50] came in handy for its unique form of

fusing different input layer frames with different deep networks. The combination of

two streamed CNNs as proposed by [48] highlighted the effectiveness of combining a

CNN with a priori RGB frames and another CNN trained with a pile of 10 flow frames.

The state-of-the-art results recorded in the shallow model of HDMB [112] and UCF101

[113] is comparatively like the combinational averaging effect using both RGB and flow

frames. Furthermore, the use of the Support Vector Machine (SVM) for fusing RGB

and flow methods has improved the recognition results as opposed to the simple score

aggregate as earlier mentioned. Like [56], however, with a 3D convolutional neural

network, deep spatio-temporal features are also learned [46] and [42]. In [42] and [41],

a comprehensive study is done on visual and motion features extraction and the use of

recurrent network for shaping temporal dependencies.

2.3 Different Classes of Deep Learning architecture

Deep learning as earlier discussed, refers to the hierarchical composition of non-linear

information processing paradigm. The techniques and architectural model intended

for use are influenced by the complexity of recognition/classification task. This section

captures an overview on different deep learning architecture and they can be categorized

into two major classes (Generative and Discriminative).

2.3.1 Generative architecture

Generative deep architecture is a robust approach that is used for achieving high-order

correlation features of observed data in most machine learning tasks. In this type of

architecture, the process of feature learning is unsupervised since the labels for the

data are never used for learning purposes. By so doing, the entire data hidden struc-

ture is learnt dynamically. The advantage of generative architecture is its ability to

aid supervised learning by its ”pre-training” module. This enables the lower levels of

deep neural networks to be trained layer by layer (bottom-up) before committing to

the overall learning of the entire layer of the deep network. With this method, the

architecture (generative) is best whenever there are small samples of training data.
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The most prominent subclasses of generative deep architecture are the energy- based

deep models and an example of such is the autoencoder and others extensively dis-

cussed in this chapter ([3, 53, 59, 65, 114, 115]). This generative model has not only

demonstrated its usefulness in dimensionality reduction [90]in image processing and

computer vision field, but also has aided efficient recognition and classification of hu-

man activity action [53]]. The deep autoencoder is a variant of the deep neural network

whose output mirror image the input data, thus encoding the hidden features of its in-

put and attempts to generalize its output data. Again, its rich data dimensionality

reduction property has contributed to its fame in computer vision. Simply defined,

it is a non-linear feature extraction method that has no class labeling. It comprises

of an input layer, a smaller hidden layer(s) and an output layer which is a replica of

the input layer. The autoencoder is considered deep when it has one or more hidden

layer units. The autoencoder’s ability to fine tune and incrementally update its pa-

rameters, continuous learning of models of scene and activity is possible with dynamic

environment[116, 117], when new unlabeled data are available for activity represen-

tation or recognition. In [65], temporal alignment is a vital preprocessing stage for

the recognition of human action. Metric learning is the main challenge common to

the temporal alignment of labeled time series. The authors in [65], used a non-linear

metric learning (deep autoencoder) to obtain the spatio-temporal features for effective

metric-based comparison and recognition of human activity (HAR). In [53], Liu and

Taniguchi used a sparse autoencoder for the extraction of low level features. These

features are employed to realize high generalization performance. With this method,

quick and concise representation of human motion is achieved. Another outstanding

generative model that has also found usefulness in the area of deep learning is the deep

Boltzmann machine (DBM)[118–120]. DBM are Markov Random Fields composed of

multiple layers of latent variables whose layers are interconnected while the latent vari-

ables that are in each layer are interconnected and are separate from the layers above.

Each layer in DBM is capable of capturing complex and higher-order correlation in the

data and internal representation of input data is well learned and this is beneficial for

the recognition purpose. A concise and accurate representation can be built from a huge

available unlabeled input while fine-tuning the model with a labeled data is possible

for the task at hand. The restricted Boltzmann Machine (RBM) which is a building

block for DBM is formed when the hidden layer is constrained to be one. Stacked
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layers of RBM improve better features learning as the output of one RBM represents

the input to another RBM above and such layers result in the Deep Belief Network

(DBN). In recent times, RBM has found useful application in speech [121] and facial

expression [43] and this has also extended to include using the RBM method in dealing

with occlusions and noise removal in complex scenes using multiplicative gating [44].

The peculiar characteristics of the successful modeling of spatial[54] or temporal [122]

patterns in most dataset has given RMB its unique colouration of feature extraction.

Hence, in [123]], the generative RBM model (Local interaction RBM) is used to extract

spatio-temporal patterns in high dimensional data and these extracted patterns have

proven to be outstanding in multi-class human activity recognition. Another form of

deep generative network is the Recurrent Neural Network (RNN) which has been used

to model and generate sequential data [62, 124]. The number of layers in RNN can

be representatives of the input sequence length. This method is widely recognized due

to its powerful ability to handle sequences of data (speech, text and videos sequence)

and in recent times has found usefulness in the area of human activity recognition

[125–127]. RNN has demonstrated its learning prowess in notable end-to-end learn-

ing tasks [58, 60, 61, 128]. However, the major setback of this techniques has been

the difficulties associated with training its model which, a consequence of its vanishing

gradient characteristics. Spatio-temporal graphs are veritable and powerful tools used

for representing high-level spatio-temporal structures [4, 129–134]. In [62], the authors

emphasized the importance of combining such spatio-temporal graphs with the RNNs

sequence learning capability to produce more valuable recognition models for human

actions and their activities. The proposed approach experimented on (human pose

modelling, human-object interaction and driver decision making) shows great success

over other state of the art approaches in computer vision.

2.3.2 Discriminative architecture

Discriminative architecture uses techniques of conditional probability distribution on

input data as it relates to the corresponding output label. This concept has also found

recognition in shallow architecture like the Hidden Markov Model (HMM)[135, 136] or

the Conditional Random Field )(CRF) [137, 138]. The CFR is graphically an undirected

model that conceptualizes the conditional probability relations that exist between an
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output label given a sequence of input data. The success of this model is in its abil-

ity to capture dependencies that are obviously hidden between various activities. The

non-deterministic nature of human activities (diverse pose orientation) has made the

CRF algorithm more suitable for determining the dependents relationships in such data

sequences[1]. In recent times, deep-structured CRFs have seen immense development

for deep learning purposes. The deep-structured CRFs is realized by combining outputs

from the lower layer of the CRF model with input data and making these two combina-

tions a representation of its higher layer[139]. Various variants of the deep-structured

CRFs have found useful applications in the area of human activity recognition[66], elec-

tronic recognition[140], natural language processing[139] and identification of spoken

language [141]. In [66], the limitation of CRF was the model inability to completely

capture the intermediate structure within the target state. While only few time step

interactions are represented, higher order dependencies necessary for modeling most

complex applications are unavailable. In view of these reasons, the authors proposed

a more effective technique using the deep recursive and hierarchical conditional ran-

dom fields (DR-HCRFs) to model the intermediate representations contained in the

targets (human-object relationship) [142, 143]. The capturing and representation of

a deep-order temporal dependencies in the data shows that a combination of CRFs

and other deep conditional probability variants are richer with contextual information.

Another prominent deep and discriminative architecture is the convolutional neural

network, which has different module with each containing a convolutional layer and

pooling layer. The convolution helps create filtered feature maps that are stacked up

on top of another. Weight sharing is a common feature seen in convolutional layer

while sub-sampling of convolutional layers is made possible by using the pooling layer.

The pooling phenomenon helps reduce the dimension of intermediate representations

aiding the reduction of computation from subsequent intermediate lower layers. How-

ever, the downside of this may include the loss of information on the data structure.

Again, translation invariance is achieved when a max-pooling layer is cascaded with a

convolutional layer. In [144], it was argued that representing such invariance for con-

voluted recognition tasks is difficult to achieve and, therefore, advocating for a better

way of advancing and handling invariance in dataset. Nevertheless, this method has

been very successful and it has found useful applications in the area of computer vision

and image recognition[19, 47, 115, 145, 146]. In [46], 3D convolutions in convolutional
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layers of CNNs was used in extracting spatial and temporal dimension features in hu-

man activity recognition. This technique allows rich and important motion information

to be present in all adjacent frames. This provides different channels of information

from a single input, thus giving this method its performance advantage because all the

final features obtained are representations from different channels. The computational

layer (a computational block for CNNs called DaConv, which can be regarded as a

convolutional layer endowed with the ability to adapt the scale of the filter kernels),

with computational power of CNNs has been used seamless in representing depth in-

formation in most RGB channels for the deep representation of human and robotics

recognition reasons [147].

2.4 Deep model Training and its challenges

The combination of the single-layer model resulting in deep layered network has ex-

tensively been discussed in previous sections. However, not much has been presented

about the challenges of training deep model for recognitions and classification purposes.

In this section, more attention is dedicated to how joint training of these layers could

be achieved and also highlight some of the challenges that can possibly be encountered.

The concept of nonlinearity in deep learning is often associated with the higher level of

abstraction needed in utilizing efficient modeling of human activity recognition. Such

a higher level of abstraction often becomes too sensitive in dealing with the complex

nature of human posture representation considering that a slight change in human

posture may be interpreted differently. Therefore, presenting manifold human poses

to such a model may become a complex phase as mapping input to representational

space is very challenging. Thus learning a robust representation technique that un-

folds the input manifold of human posture has been known to improve the training

problems common in HAR [148, 149]. The concept of training deep architecture has

been around since 2006 (Section 2.2) even though convolutional networks training has

been ubiquitous for a much longer period[145]. Supervised or unsupervised layer wise

training has influenced recent pattern recognition learning. The use of unsupervised

pretraining to facilitates supervised learning was aimed at directing the effective train-

ing of transitional representations, and this intermediate illustration enables effective
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piecewise learning of features which may be difficult to learn at a go. A corrobora-

tion of this pattern is also reported in the curriculum learning [150] which was highly

suggestive of the simpler training concept first before the higher levels of layers can

be composed. Priori learnt from intermediate representations in deep learning have

shown to be successful in semi-supervised embedding [151]. The reasoning around the

importance and how unsupervised pre-training was used to catalyze the deep learning

process is extensively researched [104] and researcher’s intent was to find a pathway

that would effectively create regularization and optimization effects. Regularization is

key in the training of deep network model to achieve robust generalization, and avoid

over-fitting and thus improve performance. The dropout approach has been widely

reported to be effective [152], even though a regularization method called swap-node

was subsequently introduced. In [104], the prominent effect of regularization was even

more obvious in the use of stacked RBM and deep auto-encoders for the initialization

of supervised classification neural networks. The use of unsupervised learning for fine

tuning the learning dynamics and for proper initialization has helped in reducing gen-

eralization errors. The hypothesis of this method underscores the importance of the

features derived from such regularization because these features inherently capture the

principal variation both in the input distribution and output targets of interest. A

well-known problem of deep neural network is the optimization of the lower level in

reference to a supervised training. This can be very difficult because the top two layers

of the deep network cause over-fitting to the training set irrespective of what kind of

features (good or bad) that were computed. A slight variance on the numerical pre-sets

of the optimization measure can have a huge effect on the joint training of deep archi-

tecture and the non-linearity concept used and initialization boundaries deployed are

also key factors [87]. One important premise upon which the difficulty of optimization

of deep architecture is derived is from the singular value of the Jacobian matrix used for

feature transformation from one level to another level. The propagated gradient tends

to diminish as it travels down the layer if the singular values are very small, allowing

contractive mapping in all directions. Resulting from the difficulty experienced during

optimization, the necessity of seeking second-order methods for the purpose of optimiz-

ing deep architecture and recurrent networks was investigated by researchers[153]. In

2011, the Hessian-free second order optimization was used to alleviate the basic deep
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learning challenges in RNNs. This was indeed most superior to the standard gradient-

based LSTM RNNs on so many tasks [17, 18]. It has also been reported that the use of

other RNN algorithms seldom give better performance than steepest descent for LSTM

RNNs[154–157]. In [158], recurrent neural network and RBMs training are done by

unsupervised pre-training enabling the utilization of good features captured in variable

states. The use of the natural gradient[159] methods has proved to generalized well

in networks with very many parameters as was proposed by Pascanu and Bengio [160]

Roux et al.[161]. An adaptive learning rate devised in training RBM was proposed by

Cho et al. [162]. The whole idea of this method was to have a gradient estimator who

keeps track of invariance resulting from flipped hidden bits and detect inverting signs

which are analogous to its weight vector. The practice of initialization as reported in

[156] has shown that keeping the Jacobian of each layer to approach unity in all its

singular values is a panacea for circumventing the difficulty of deep training. Sutskever

[16], in his empirical work in training deep architecture of recurrent network, acknowl-

edged the importance of the guided initialization procedure and the success achieved.

In the deep learning architecture, hidden or latent nonlinear units are strong objects

that are very core to both training and generalization performance. The experimental

results of [16, 163, 164] shows how much such influence these nonlinear hidden units can

have on its overall developmental training process. Again, the use of sparse rectifying

units has also shown to be a robust form of improving quick data convergence and gen-

eralization [47, 163–165]. Other efforts made at biasing neural network training were to

invalidate the average cost and ensuring that the slope of each hidden unit outputs is

conditioned to have a null value [166] and making a normalized magnitude with the lo-

cal boundaries [165]. Finally, the concept of layerwise training has been set aside. This

is because recent research findings show that optimizing the initialization process and

a careful selection of the nonlinear unit of very deep supervised network are trainable

without relying on the layerwise concept of pre-training [16, 47, 167, 168]. Researchers

have argued that given such conditions (optimized initialization and concise selection

of nonlinear unit of large dataset), layerwise unsupervised pre-training offers no better

advantages over purely supervised learning when given the necessary time of training.
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2.5 Summary and Discussion

This chapter outlined the recent advances in human activity recognition using both

hand-crafted and deep learning method which is a brief historical chronology on sub-

space and deep learning was also analyzed in this review highlighting continuous evolve-

ment and underscoring the importance of artificial neural network in machine and

computational learning. The generative and discriminative classes were used as a cate-

gorization scheme to further buttress some of the prominent deep learning architecture

in literatures. There exists numerous literature on deep learning, particularly from the

machine learning community. However, the study has been restricted to focus mainly

on the human activity recognition perspective, recognizing the fact that more work has

been done in this area in the past seven years as can be seen from Table 2.1 This chap-

ter has not only discussed both hand-crafted techniques and two major categorization

schemes in deep learning, it also serves as a veritable window for the proper understand-

ing of in-depth analysis of complex feature vector representation, learning, optimization

and classification in HAR with high level representational learning. This chapter thus

provided better understanding for researchers who want to expand their scopes on fea-

ture learning and optimization in HAR methods and how they are better utilized under

different circumstances and scenes. Again, the fact that different methods are unique in

their feature extraction process, the combination of one or more deep learning methods

showcased in this chapter is a pointer to the malleability of deep learning methods.

They can be adjustable and shaped into any desired form with various algorithms. The

key information tailored has been on building, learning and understanding variants of

robust deep learning architectures and other hand-crafted methods with emphasis on

structured hierarchical development of human activity features. The discussion was on

the gains and the ease of learning parameters in a piecewise mode and challenges that

could occur when such learnings are initiated at a goal. There exists other channels

by which the discussed methods in this chapter can be improved by having a full un-

derstanding that better feature regularization and learning deep has a lot of potential

in solving complex learning problems in human activity recognition. Understanding

has influenced this research decision to develop better feature regularization method

using parameter selection and learning deep features that are salient with hand-crafted
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method. The remaining chapter of this thesis explores better methods of feature reg-

ularization and learning deep to attain the better recognition model. Furthermore, in

this review section, it has been established that the success derived from deep learning

cannot be misconstrued to have one solution to all classification problems. On the

contrary, each and every technique used is unique and depends on different problem

formulations. What generalizes well in one problem formulation may likely and inher-

ently fail in another. Therefore, this research is advocating that researchers seek more

ways of inter-operating deep learning methods and other machine learning so that a

broader solution is achieved. An open question yet to be answered is how hierarchical

graphical models can be intertwined with other known kernel methods for classification

purposes. Finally, the importance of optimizing deep learning techniques was discussed.

The local optima problem resulting in vanishing or exploding gradients and how they

can be leveraged are key elements of successful implementation of deep learning. In

view of the foregoing, the theoretical know how of feature regularization in the sub-

space method and deep learning should be encouraged to help solve myriad of complex

issues in the computer vision community. Effective feature building and representation

among others have shown to be invaluable in building robust classification and recog-

nition models. This can be achieved with a well-planned feature learning architectural

algorithm to attain state of the art results for human activity recognition purposes.
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3

Image Detection, Extraction and

Pre-processing

3.1 Introduction

Consider that numbers of frames in videos are directly proportional to the time of

recording, the quick and effective analysis of such video frames has become even more

difficult because of many inactivity that can intermittently be observed when the ob-

ject of interest is not visible. For any meaningful recognition model to be built, it

is expedient that the object of interest be first detected. A proper representation of

video information is an important phase that enables a robust video analysis and the

extraction of features. The information of interest in the case of HAR will be the hu-

man actions that are partly or fully visible, and this constitutes the video information

that is required for evaluation as it relates to understanding the relationship between

environmental scenes and human interaction. The detection of human activities in

videos is significantly different from still object detection. Therefore, moving regions

are thought to be very crucial in video analysis. Detecting such moving information

is one of such important phases. Some methods used for detecting human activities

are the gaussian mixture model, background subtraction and optical flow method. Our

detection model that was used in this work is the background subtraction [169, 170].

Furthermore, most of these images detected are prone to a lot of problems that could

be affected by background clutter, extreme illumination, object variation induced by

viewpoints, shape, posture, environmental and hardware noises [10–13]. Hence there
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3.2 Image detection method

is a need to ensure that the detected images are preprocessed in other to mitigate the

effect that could be caused by the factors earlier listed above. Some of the crucial steps

for preprocessing are image filtering, grouping connected components with a similar

size threshold, and performing other morphological operations like hole filling.

3.2 Image detection method

In background modeling, the mixture of Gaussians’ approach has been a common

method used for object localization and detection in video frame recorded by a sta-

tionary camera. Stauffer and Grimson [170]established the novel concept of modeling

background for the purpose of learning and obtaining foreground detection. Friedman

and Russel [171], extended background modeling to areas of traffic surveillance. In their

work, a mixture of three Gaussians was used for modeling individual background pixels;

each of the three Gaussians modeled are the road, vehicle and the shadows respectively.

The estimation algorithm is used to reset the model for the initialization purpose af-

terwhich an empirical process is used to label the opaquest component as the shadow,

while the two other components are labeled as the vehicle and road respectively with

the most outstanding variance being considered as the vehicle. The foreground detec-

tion process involves a comparison of the individual pixels with each Gaussians and the

values obtained in respect of the Gaussians help to classify which of the pixels is the

foreground. To preserve this process in the real time mode, an incremental estimation

maximization algorithm is used to update the learning parameters. Having a better

knowledge of the colour history of each pixels {X1,...,Xt} by a mixture of K Gaussians

was modeled and facilitated by the work of Stauffer and Grimson [170].

Primarily, the intensity of each pixel can be described in an RGB colour space.

Considering the current pixel value, the probability of observing each pixel is formulated

and given in 3.1.

P (Xt) =
K∑
i=1

ωi,t · η(Xt, ui,t
∑

i, t) (3.1)

For every pixel in the background, they are all considered to be a mixture of K Gaus-

sians. The Initialization of different parameters that make up the mixture of Gaussians

is first considered as soon as the background model definition has been completed.

Where K represent a given number of distributions, ωi,t is an approximation of weight
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3.2 Image detection method

of the ith Guassian mixture at time t, ui,t explains the mean value of the ith Gaussian

in the mixture t, and the covariance matrix of the ith Gaussian mixture at a given time

t is represented as
∑
i, t; and η represents the Gaussian probability density function.

η(Xt, u,
∑

) =
1

(2π)
n
2 |

∑
|

1
2

e−
1
2
(Xt−u)

∑−1(Xt−u) (3.2)

K is heuristically chosen in sympathy to the availability of memory and its values

range from 3 to 5. Also, for reasons inclusive of computation, Stauffer and Grimson

[170] assumed that the red, green and blue pixel values are independent of each other,

but characterized by similar variances. Although, this assumption may not be the true

reflection of their hypothesis, it has however, helped them evade costly matrix inversion

in lieu of the model’s accuracy. The representation of the covariance matrix is given in

3.3:

∑
k, t = σ2k (3.3)

With the onset initialization of the parameters and the detection of the first fore-

ground, parameter update is crucial for further detection as the foreground will most

likely be moving. A criterion ratio rj =
ωj

σj
supported by the Stauffer and Grimson

[170] can be used for the methodical ordering of the K Gaussians. An assumption of

this ordering is that the background pixels with an extraordinary weight, but having

a fragile variance is more likely to be the background because of its stationary char-

acter. Unlike other moving objects whose value vary constantly. The first B Gaussian

distributions which surpass the definite verge T are then collected and kept as the

background distributions, while the other distributions are foreground distributions in

Equation 3.4

B = argminb(

b∑
i=1

ωi, t>T ) (3.4)

A match assessment for each pixel is done for every new frames that come in at

time t+1. If a pixel value equals the Gaussian distribution, it therefore means that the

Mahalanobis distance as shown in equation 3.5 has its K value equivalent to 2.5 . This

condition results into two distinct circumstances, one of such circumstance being that

the pixel value matches one of the K Gaussians.
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3.2 Image detection method

sqrt((Xt+1 − µi, t)T ·
−1∑
i,t

·(Xt+1 − µi, t))<Kσi,t (3.5)

In such circumstance, if the Gaussian distribution is recognized as part of the back-

ground, then the pixel is categorized as the background or otherwise as the foreground.

On the alternative, failure to get a match between the pixel and the K Gaussians re-

sults in the pixel values being classified as the foreground. This allows for a binary

mask to be acquired and an update of the parameters is done for further acquisition of

subsequent foreground. A comprehensive revision of the importance and their settings

were critically evaluated and discussed in [172, 173]. Considering the match test in

equation 3.5, the foreground detection mechanism and the update distribution param-

eters are dependent on a match or a no match of the K Gaussians. When a match is

made, the update process is shown in 3.6, 3.7, 3.8 as follows:

ωi,t+1 = (1− α)ωi,t + α (3.6)

where α is a constant learning rate

µi,t+1 = (1− ρ)µi,t + ρXt+1 (3.7)

σ2i,t+1 = (1− ρ)σ2i,t + ρ(Xt+1 − µi,t+1) · (Xt+1 − µi,t+1)
T (3.8)

where ρ = α ·η(Xt+1, µi
∑

i) The weight of the unmatched component is substituted

by ωj,t+1 = (1− α)ωj,t , while η and
∑

are unchanged.

However, in the event that a no match between the pixel and K Gaussians is the

case, the least probable distribution is substituted with a distribution having the present

value as its aggregate which is a value of a primary high variance and small prior weight.

3.2.1 Background Subtraction

Background subtraction is one of the many steps used for detecting video information

(images). This method of image detection is best deployed when a still background

is involved. The video segmentation of each frame is done to enable the subtraction

between each frame and the background frames possible. The subtraction phase entails

subtracting each frame from the background image so as to get the motion information
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3.2 Image detection method

which is seen in the form of the silhouette [174]. To determine the probability that a

particular pixel is part of a background, the Gaussian probability density function as

described in (22) is used for the modelling of this process.

P (I(x, y)) =
1

b

b∑
i=1

1√
2πσ2

exp(
−(I(x, y)− Ji(x, y))2

2σ2
), (3.9)

Where P(I(x,y)) represents the probability of a pixel background in the present frame,

σ denotes the variation characterizing the intensity values and I(x,y) represents the

current frame intensity and Ji(x, y) is the intensity value of the pixel appropriated at

point (x,y) of the ith background image. A transformation of the current frame to a

binarized image is made possible with the help of a referenced threshold value that

creates the contrast and equation 3.10 shows the binarized image.

B(x, y) =

{
1, P (I(x, y)) ≤ th
0, P (I(x, y)) > th

(3.10)

The background and foreground understanding are necessary and helpful in motion

information extraction. A reference threshold value often helps in a clear distinction

between these two types of pixels. A pixels intensity that is greater than the threshold

th value in its current frames is the background pixel, while those that are less than such

threshold th are regarded as the foreground. The silhouette image that is produced

from the background subtraction is shown in Figure 3.1. A detailed binarized extraction

pseudo-code is presented in algorithm 1.

Figure 3.1: Background Subtraction for Video Information Recovery -

(i)Background Image (ii)Information (iii)Recovered Information
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3.2 Image detection method

Figure 3.2: Video Information Extraction - Model for Image Extraction From Video

Sequence
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Algorithm 1 Silhouette Extraction Pseudo-Code

1: procedure MyProcedure

2: V ={v1, v2, . . . n}V ideoFrames
3: B ={vb} Bacckground Images

4: T= Preset Threshold

5: For V = 1→ n

6: I ={vn} Read in nth image

7: Frame Diference = abs((I)− (B))

8: if FrameDifference > T then

9: return Pixel value is Forground.

10: else

11: Pixel Value =Background

12: Binary Image stored

13: End

3.3 The Image Enhancement Process

Noise, light variances and camera quality contribute immensely to the quality of video

images. For example, excessive or less adequate lighting system can adversely affect

the quality of binary state of the foreground or motion information. Again, environ-

mental noises are also veritable factors which can create undue imbalance on the video

quality. Therefore, the image enhancement process is a necessary option that cannot

be overlooked. Such enhancements can alleviate and reduce to the barest minimum the

undesirable effect of these external factors. While there are many ways of enhancing

video images, this study only applied three major methods of enhancement that are im-

mediately necessary to have quality images. The three processes of image enhancement

applied were image filtering, retaining of connected components (areas that are larger

than a set values are only retained) and the filling up of holes present in information

object. In Figure 3.2, different stages that are needed to have clear and informative

dataset are presented and each stage is dependent on the first previous layer above

them. Image filtration and the smoothening process are the first stages of image en-

hancement to be explored and this allows for the video images to be disconnected from

external environmental factors such as noise and undue lighting process. The filtration

allows for stable and more robust video frames to be used in most activity recognition
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3.3 The Image Enhancement Process

sectors. While some undesirable elements are filtered and smoothened out from the

video images, others are still visibly clear. In the case of a background subtraction,

care should be taken not to erode off motion information which is useful. This is a good

reason why the filter kernel used for filtering video information may vary from one to

another and they are also carefully chosen.

The concept of concentrating on the motion information which is vital in the entire

process is schemed through the connected components method. This method allows

areas larger than a set value to be retained while discarding areas that are less than

a defined heuristically threshold value size. Furthermore, holes and other superficial

patches resulting from other preprocessing stages are refilled to have complete and

near perfect silhouettes images. Figure 3.3 shows the preprocessing stages after the

background subtraction has been done. A noisy but binarized image from a walking

video sequences is represented in Figure 3.4(a). The binarized image is filtered using the

median filter. Thus, Figure 3.4(b) represents the filtered frame. Figure 3.4(c) depicts

the connected components application and this causes the connected components that

are less than a pre-set value to be removed. Figure 3.4(d) is a clear silhouette image

after filling of the holes is done. The preprocessing done has the advantages of not

only producing clear and quality background images, but is also very instrumental

in the automatic cropping and extraction of 3 dimensional images from the parent

video stream. This process is made possible by tracking and recording the silhouettes

coordinate which is then transferred to the original video frame for the 3-dimensional

image extraction.

Figure 3.3: Image Preprocessing - The Preprocessing Stages of A Noisy Background

Image.
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Figure 3.4: Graphical Illustration of Silhouette Preprocessing - Preprocessing

Steps for A Background Subtracted Images (a) Shows A Noisy (b) Filtered (c) Connected

Component Application (d) Hole Filling
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3.3.1 Extracting Silhouettes Images

The silhouette extraction system from a binarized image is shown in Figure 3.5 and 3.6.

The silhouette extraction process requires that a motion information be identified and

this identification can be done by setting the connected component values such that the

area size specified in the background images are only retained. With such retention, the

centroid of the connected components that represent our motion image are calculated

and a bounding box is drawn over as it is shown in Figure 3.5. Again, using the coor-

dinates of the bounding box, the area within such bounding box perimeter is extracted

from the frame. This subset of the video frames contains the motion information (sil-

houettes). Firstly, a major advantage of this method is its uniqueness in reducing

the dimensionality of video images, thereby reducing the computational burden on the

model intended to use the dataset. Secondly, each of the silhouette coordinates can be

transferred to the original video images for quick video image extraction.

Figure 3.5: Bounding Box Localization of extracted Information - Human Detec-

tion And Localization With A Bounding Box

3.3.2 Extracting Grayscale Images

The extraction of grayscale images for human activity recognition (HAR) is discussed

in this subsection. For grayscale images, filtration and smoothening is also applied

to produce better and clearer video images. Firstly, while the silhouette extraction

is done directly from the binarized images, the grayscale images that were used were

automatically cropped from their original images using the same bounding box coor-

dinates on the silhouettes. As such, a one to one coordinate correspondence between
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3.3 The Image Enhancement Process

Figure 3.6: Silhouette Images - Extracted Silhouette From Video Sequences of (a)

Bending (b) Side walking
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formed silhouettes and its equivalent original grayscale image is established. Secondly,

the images could be cropped manually and labeled accordingly.

Figure 3.7: Grayscale Images - Extracted Grayscale Features From Video Sequences

of (a) Running (b) Jacking

With the KTH datasets, each grayscale image is manually cropped and a histogram

equalization is then applied to the cropped images. Figure 3.7 shows cropped grayscale

of human activity Images performing running and jacking activities.

3.4 Silhouettes Versus Grayscale Images

Extraction of features from silhouette and grayscale images has been around for a long

time in the computer vision sector. Deciding which of the two to use depends on envi-

ronmental circumstances which is a concept that bothers on computational efficiency

or type of model to be adopted for recognition purposes. In [174–176], low level sil-
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3.5 Feature Extraction and Dimensionality Reduction

houette features were used as input feature vectors to generate the joint self- similarity

for action recognition. In [27], the author’s argument for using binary silhouette was

based on the privacy of elderly people. While some model perform well with silhouettes

images, others thrive with grayscale or coloured images. In Human Activity Recogni-

tion (HAR), the orientation of the human body is an important discriminative power

and this can be captured by the body shapes. Shapes are best represented by silhou-

ettes which can provide all the useful information regarding human body orientation

[176, 177]. The shape information is clearly distinct from the background because of

the binary state of motion information obtained after background processing.

The grayscale is a range of monochromic shades of gray with no colour and the

darkest possible shade is black and this represents the absence of transmitted light while

the lightest possible shades is white. Grayscale features have found wider applications

in face recognition process [178]. However the extension of such application in HAR

has greatly been acknowledged and evidenced by the amount of research publications

in this area. In [5], grayscale images are used, and their features are extracted for

HAR recognition purposes and experimental results show that the grayscales features

obtained were also discriminative. Again, texture-based recognition and classification

are generally biased towards grayscale and RGB images. Unlike the silhouette images,

the grayscale and the RGB image pixel informations have a higher probability of sharing

some similarity with the environment and this can become a real challenge. Deciding

which of the two-image type to use can be a function of many factors, and these

factors may range from environmental circumstance a which is concept that bothers on

computational efficiency or the type of model to be adopted for recognition purpose.

3.5 Feature Extraction and Dimensionality Reduction

In this section, a quick overview on dimensionality reduction and feature extraction

on both image types (Grayscale and Silhouette) are discussed. A major concern and

challenges common with HAR is the fact that thousands or millions of pixels could

be involved when building a classification model. The correlation between millions of

pixel values from different images is the main challenge responsible for poor recogni-

tion in the HAR model. Furthermore, the computational burden of such model can

be very exhaustive, thereby resulting in difficulty in building real time HAR project.
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Considering the foregoing, it is necessary to implement some sort of dimensionality

reduction to enhance the extraction of relevant features that are important for classifi-

cation purposes. For brevity, the Principal Component Analysis (PCA) and the Linear

Discriminant Analysis (LDA) are highlighted to showcase their feature extraction and

dimensionality reduction ability.

3.5.1 Principal Component Analysis

This method is known for its second order statistical-based analysis capable of encoding

global information on mean faces or eigenfaces in face recognition. In HAR, they are

important tools for representing flexible unit of the body. PCA is a popular method

for transforming original data to a lower dimensional space [179]. The original data is

mapped into a smaller subspace through a linear combination of the top eigenvectors

and the uniqueness of this method is the ability for the original features to be preserved

in the newly formed smaller subspace. In calculating the covariances in the datasets,

the mean image is first obtained as shown in Figure 3.8 and this is used for individual

image centering for the purpose of obtaining the covariance matrix. The mean image

is then subtracted from each of the activity image as shown in Equation 3.12. The

fundamental approach is to compute the covariance data matrix and the eigenvectors

associated with the highest eigenvalues. These top eigenvectors account for a significant

representation of the entire data in the new subspace that has been formed by this

transformation. With the training set of column vector Xij and considering M of such

vector Xij (i=1,2,. . . M) of length N form our training image X to ensure that a high

variance is obtained with the first principal component and it is necessary that the

matrix of X be properly centered. The average mean of the dataset is given in 3.11 and

the centered images in 3.12 respectively.

X̄i =
1

qi

qi∑
j=1

Xij (3.11)

Φi = (Xij − X̄i) (3.12)

The vectors Φi from (3.12) are then arranged such that a new vector matrix is

formed where A = (Φi,Φi, . . .ΦM ). The covariance matrix of the training activity
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Figure 3.8: Image Mean - Average Image Mean of All Activities

image vectors and the significant principal components of the covariance matrix can be

calculated using (5) and (6) respectively.

C =
1

P

P∑
i=1

(ΦiΦT
i ) (3.13)

ATCA = λ (3.14)

where A is the matrix of the orthonormal eigenvectors of the covariance matrix C

and λ represents the diagonal matrix which is the eigenvalues. Sorting the eigenvectors

associated with the highest eigenvalues form a matrix A such that the newly formed

matrix (feature vectors) are used in the transformation of the original datasets from

one image space to a much lower dimensional new image space. Assuming that the

eigenvalues are sorted in the descending order λ1,≥, . . . ,≥ λM , the first few highest

eigenvalues are then chosen. Their corresponding eigenvectors are called the principal

component. The new coordinate system can be described as A where the eigenvector

associated with the highest eigenvalue is chosen to be the axis of the largest variance

and decreases subsequently as the eigenvalues decays. Eigenvalues that are near zero

are often discarded because they are perceived to be insignificant to the recognition
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process. Dimension reduction is performed by keeping the eigenvector with the largest

eigenvalues.

Φi = [Φ1,Φ2 . . .Φd] (3.15)

Where d is the number of features to be determine by an application.

Figure 3.9: Eigenspectrum Representation - Top 910 Eigenvalues Corresponding to

the Eigenvector

It can be observed from Figure 3.9 that the first few eigenvectors are the significant

principal components that account for the overall variance and thus contain significant

information about the data in the lower subspace. Due to the small sample set and high

dimensionality in dataset, the eigenvalues as observed from the principal space of Figure

3.9 is characterized with a steeped and sharp decay. This makes the variance associated

with eigenvalues in this region to be distorted, therefore become less contributive in the

classification task of HAR. Similar occurrence is also expected in the complimentary

and null of the eigenspectrum.

3.5.2 Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (FLDA) is a supervised dimensionality reduction

technique that has been used in data analysis and pattern recognition. FLDA is very

useful in solving the challenges of high computational complexity and singularity prob-

lem often caused by limited training data sample. This method is known to apply the
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PCA method on the entire dataset first before applying the linear discriminant analysis

method. This first action performed by the PCA is the reduction of the dimensionality

problem common with image data. The primary purpose of LDA is to maximize the

separation between different classes and minimize the separation within the same class

simultaneously. The within- class and between-class scatter matrices are computed as

seen in Equations 3.16 and3.17 respectively. The between class scatter matrix Sw is

defined by,

SW =
e∑
i=1

ci
di

d∑
j=1

(Xij − X̄i)(Xij − X̄i)
T (3.16)

whereX̄i = 1
di

∑di
j=1Xij

SB =

e∑
i=1

ci(Xi − X̄i)(Xi − X̄i)
T (3.17)

where X̄ =
∑e

i=1 X̄i

Forming a training set of column image vector Xij , the pixel element of activity

image j of person i, let the training set contains p persons and qi be sample image

for person i .For human activity recognition, each person activity is a class with prior

probability ci . The optimal discrimination projection matrix OLDA that maximizes

the ratio of the determinant of SB to the determinant of SW can be computed by

solving the optimization problem.

OLDAargmax =
OTSBO

OTSWO
(3.18)

Such that if SW is a non-singular matrix,OLDA can be maximized when the pro-

jection matrix is composed of the eigenvectors of equation (8).

SW
−1
SB (3.19)

The eigenvalue problem is solved in Equation (8) to have eigenvector matrixOLDA =

A = [Φ1,Φ2, . . .Φ], and their corresponding eigenvalue λ = λ1, λ2, λ3, . . . , λM . similar to

that obtained in PCA. Assuming that the eigenvalues are sorted in a descending order

λ = λ1, λ2, λ3, . . . , λM ,the first few highest eigenvalues corresponding to (p − 1) with

non-zero real eigenvalue is used for projecting the dataset for discriminant purposes.
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3.5.3 Silhouettes and grayscale feature evaluation on the weizmann

dataset

While we note that different models and datasets respond uniquely to feature extraction

processes, we are not particularly restrained on determining on which image type is the

best in general. However, this experimental setup emphasis is on the fact that both

image types from the same Weizmann dataset are useful in activity recognition. Unless

an exhaustive and empirical research has been conducted to prove the discriminative

feature powers of each image type, this experiment cannot be misconstrued to have done

such. Environmental conditions could be determining factors on the choice of image

types (Grayscale, RGB or Silhouettes) and more robust hierarchical model as discussed

in chapter 2, 4 and 5, are capable of learning better while encoding good feature even in

harsh weather conditions. Therefore, lots of these new models are still able to function

well either with any image type after necessary preprocessing. Each image set used was

from the Weizmann datasets and each was partitioned into both training and testing

datasets. The recognition rate outlined in this chapter is the percentage of the correct

match on the testing set. PCA and FLDA models were used, while the K-Nearest

Neighbour (KNN) was used as classification engine.

3.6 Results obtained using PCA and FLDA on both form

of motion information representation

The result is carefully outlined in Table 3.1- 3.4. The two models were able to perform

dimensionality reduction on both image types and were able to extract meaningful fea-

tures for classification purposes in HAR. Firstly, while feature classification comparison

was not the focus of this section, we note that the silhouettes feature on both models

outperforms the grayscale features. Found in Tables 3.1 and 3.2 are the results from the

PCA model and the confusion rates amongst different activities are moderately high

when the grayscale images were used but such confusion had a considerable leverage

in accuracy when the silhouettes features were considered. In Table 3.1, jumping and

skiping had 100% accuracy. This was followed by bending, running, and waving with

90%, 86.7% and 80% accuracy recpectively. The two activity that least performed in

accuracy were jacking and sidewalking as they both had 66.7% and 76.7% respectively.

From the results analysis, the overall performance of the PCA technique on silhouette
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performed better. Compared to the PCA results shown in Table 3.2, the probable

cause of this is the pixel’s levels that are too similar in gray images. Similarly from

Tables 3.3 and 3.4, the FLDA silhouette feature were moderately more accurate than

the grayscale features set. Secondly, the FLDA model proves to be a better feature

extraction model than the PCA as the accuracy of the FLDA persistently outperforms

that of PCA.

Table 3.1: Confusion matrix of the recognition evaluation in % using Principal Component

Analysis for silhouettes features extracted from the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 86.7 0 0 6.7 3.3 0 3.3

Bending 0 90 0 0 10 0 3.3

Jacking 13.3 0 66.7 0 10 10 0

Skipping 0 0 0 100 0 0 0

Sidewalk 13.3 0 0 0 76.7 10 0

Waving 0 0 20 0 0 80 0

Jumping 0 0 0 0 0 0 100

Table 3.2: Confusion matrix of the recognition evaluation in % using Principal Component

Analysis for grayscale features extracted from the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 63 0 0 20 3.3 0 13.3

Bending 0 96.6 0 0 0 0 3.3

Jacking 0 0 76.6 0 13.3 10 0

Skipping 0 0 0 70 0 0 30

Sidewalk 26.6 0 6.7 6.7 53.3 0 6.7

Waving 10 0 30 0 0 36.6 0

Jumping 0 0 0 53.3 0 0 46.6
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Table 3.3: Confusion matrix of the recognition evaluation in % using Fisher Linear

Discriminant Analysis for silhouettes features extracted from the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 91 2.3 0 3.3 0 3.3 0

Bending 3.3 96.3 0 0 0 0 0

Jacking 0 0 90 0 3.3 6.7 0

Skiping 6.7 0 0 93.3 0 0 0

Sidewalk 0 0 0 0 93.3 0 6.6

Waving 0 0 20 0 0 80 0

Jumping 0 0 0 0 3 0 97

Table 3.4: Confusion matrix of the recognition evaluation in % using Fisher Linear

Discriminant Analysis for grayscale features extracted from the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 90 3.3 0 3.3 0 3.3 0

Bending 0 80 0 0 20 0 0

Jacking 0 0 53.3 0 36.6 10 0

Skiping 0 0 0 100 0 0 0

Sidewalk 0 0 0 0 93.3 0 6.6

Waving 0 0 46.6 0 0 53.3 0

Jumping 13.3 6.6 0 10 0 0 70
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3.7 Summary and Discussion

In this chapter 3, a clear demonstration of the importance of capturing the video infor-

mation was discussed. The ability to detect such video information is key in building

the entire HAR model. A simple but effective method that was used is the background

subtraction method. This method has proven to be one of the reliable means of ex-

tracting video information with static background. The effect of environmental factors

on the extracted video information is also highlighted and these factors are responsible

for the video information degradation. A detailed process of cleaning and leveraging

such disadvantageous phenomena is also proffered to ensure that a better predictive

and classifying model is developed. Image enhancement methods like filtration, retain-

ing connected components and hole filling are some of the processes used in the video

cleaning. Furthermore, the video information detected is represented in this chapter as

either silhouettes or the grayscale images and the silhouettes are the video information

detected from the background subtraction method. The coordinates of these silhouettes

were then used in cropping out their corresponding grayscale image. These two types

of video information were experimented on two known methods (principal component

analysis and fisher linear discriminant analysis) of feature extraction. Chapter 3 also

contains an introduction to dimensionality reduction using the principal components of

non-linear and uncorrelated eigenvectors of the covariance matrix of the entire dataset.

The fisher linear discriminant analysis was another concept that was introduced and

both methods are known for their classification and recognition strengths. Both PCA

and FLDA were also used in evaluating the silhouettes and grayscale images and the

results show that the silhouettes images had better recognition effects with the two

models.
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4

Improved Eigenspectrum

Regularization for Human

Activity Recognition

4.1 Introduction

With the numerous growth in machine learning and computer vision sector, there have

been intense developments of different models that can improve the state-of-the-art

human activity recognition scheme. Notably, chapter two extensively discussed some

of these cutting-edge techniques already deployed in various fields of machine learning.

Therefore, this chapter aims to further improve the work done in the area of subspace

regularization to achieve better performance of human activity recognition model. This

method, as diagrammatically presented in Figure 4.1, requires skillful design, correct

selection of parameters and supervised classification technique to achieve better classi-

fication model. The name ”hand-crafted features” is derived from this kind of model

design because of direct concentration of individual design skills on each model. The

holistic subspace method has gained popularity in Human Activity Recognition (HAR)

in recent years, and different authors have proposed variable parameters in achieving

their results [5, 7, 39].

Most subspace methods such as PCA, LDA, FLDA and other non-linear methods

( KLDA and KPCA) [5–9] have been experimented in the HAR, but the problem of

singularity due to small sample size has been a major issue in achieving effective feature
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4.1 Introduction

Figure 4.1: Within Class Regularization Scheme - Hand-Crafted Feature Extraction

Method

extraction for the purpose of class discrimination. The decomposition of the eigenvec-

tors in these methods are often ranked from the most significant to the least significant.

The ranking of these eigenvectors helps capture and separate the most significant eigen-

vectors (principal components) that show strong variance and direction in the pattern

of the entire data. Other eigenvectors down the list of the ranked eigenvectors are the

ones with the least information regarding the variances in the data. The common prac-

tice adopted in most subspace methods of recognition is to discard those eigenvectors

deemed to be insignificant in the recognition process [180]. The concept of discarding

eigenvectors associated with smaller eigenvalues developed by most subspace methods

have made them a poor recognition model, notably the loss of information no matter

how small will certainly result in poor classification results [29]. Hence, the concept of

feature regularization was developed, thus instead of discarding off small eigenvectors

values considered to be insignificant, the regularization scheme attempts to optimize

the eigenvectors. The regularization scheme constrain the recognition model to function

much closely to what would have been achieved without the effect of the problem of the

small sample size. There have been huge efforts and relentless studies by researchers to

proffer better methods of feature regularization in the field of computer vision. But as

discussed in the literature review chapter, there have been some shortcomings in the
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study of effective feature discrimination [5, 7, 27–30, 181]. In general, the most sought-

after features are those that can present the minimum within-class variations and the

maximum between-class variations. However, because the within-class variances are

extracted based on small sample size of the training images, it becomes very difficult

to actualize the minimum variations presented by the within-class scatter matrix. The

variances obtained from this kind of problematic within-class scatter are unbalanced

and they also have the inclination to overfit a particular training dataset. The unpleas-

ant complications developing from the within-class scatter is a major reason accounting

for why the subspace method used for human activity recognition results in poor recog-

nition performance [5]. The need to work and improve the within-class scatter usability

to improve HAR cannot be overemphasized and this underscores the importance of its

regularization. This study presents within-class subspace regularization methodology

to promote effective and better feature extraction for HAR. This regularization process

is an improvement on the work done by [5]. In [5] approach, the image space traversed

by the eigenvectors of the within-class matrix is disintegrated into three subspaces and

each subspace is regularized differently. The mode of dividing these subspaces and how

to determine the start and end point of each subspace remains an open question for

further studies. Determining the subspace components like principal, noise, null space

and regularizing them separately is very cumbersome and prone to errors. Therefore,

this study proposed the usage of more eigenvalues from the dependable subspace to

achieve a four-parameter modelling system. In addition, the regularization process

is done in one whole piece and by so doing circumvents the difficulties experienced

in subspace decomposition. This model allows an improved and better projection of

the eigenvectors that are biased by small sample size influence. This regularization

is computed in one piece thereby circumventing unnecessary difficulties of modeling

eigenspectrum in an otherwise segmented manner. The entire eigenspace is utilized for

extracting quality features and thus prevents discarding features that can be used for

discrimination. Feature extraction and dimensionality reduction is finalized at a future

phase of the appraisal stage of recognition.
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4.2 Eigenspectrum Modeling

4.2 Eigenspectrum Modeling

In representing the various forms of human activities with a set of images, the training

set formed consists of a column vector {Xij}, where Xij ∈ R(n=hw) and R is defined to

be the image vector. The 2D training dataset from the human activities are vectorized

such that they become an 1D vector concatenated column wise [67]. Consequently,

the entire training image is reassembled into a vector of length R = hw, and it is

worth nothing that the M number of such vector {Xij(i = 1, 2, . . . ,M)} comprises e

events and di be number of images in the i events, and ci being considered as the prior

likelihood. Equation 4.1 denotes the entire number of training samples in the datasets.

Tn =

e∑
i=1

di (4.1)

SW =

e∑
i=1

ci
di

d∑
j=1

(Xij − X̄i)(Xij − X̄i)
T (4.2)

whereX̄i = 1
di

∑di
j=1Xij

SB =

e∑
i=1

ci(Xi − X̄i)(Xi − X̄i)
T (4.3)

while 4.2, 4.3 and 4.4 represent the within-class, between class and total class matrix

respectively:

STotal =
e∑
i=1

ci
di

d∑
j=1

(Xij − X̄)(Xij − X̄)T (4.4)

where X̄ =
∑e

i=1 X̄i Let δ represents one of the above scatter matrix, then we can solve

the eigenvalue problem as shown in equation 4.5

AT δA = λ (4.5)

In solving the eigenvalue problem, a decomposition of the image vector and class

mean vector constitutes a linear transformation of the image vector. This linear trans-

formation produces eigenvectors and their corresponding eigenvalues. The eigenvectors

associated with the scatter matrix δ are denoted as A = [A1, A2, . . . AM ], and its cor-

responding eigenvalues λ which are seen in the matrix diagonal are represented as

λ = λ1, .., λM . Organizing these eigenvalues in a descending order λ1,≥, . . . ,≥ λM and
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4.2 Eigenspectrum Modeling

Figure 4.2: Eigenspectrum obtained from the training data - A Plot of Eigenvalues

Against Egienvalue Index
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plotting the same against its index K results in the graph called the eigenspectrum of

a class matrix as can be seen in Figure 4.2. The extraction and scaling of the features

are vital parts in subspace method as this technique allows for easy representation of

the features in a different space and provides better discriminative capacity amongst

dissimilar class. Thus, λ is a notable tool used to scale and extract features and thus

underscores its importance in subspace model [5].

4.2.1 The Problem of unregularised subspace

The use of subspace technique for the recognition of HAR will be sub-optimal in its

performances even with accurate representation of training set data. The underachieve-

ment is primarily due to the presence of both the within-class and between class ma-

trix of the image data. However, the within-class matrix has been identified as the

crucial entity that poses many complexities and challenges in the subspace method

for recognition [7, 184]. These challenges result from the singularity problem which

is a phenomenon where the dataset have very high dimensionality but small sample

size. The presence of small and near zero eigenvalues in the eigenspectrum plot has

been identified as one of the main drawbacks presented by the singularity problem

[27, 182–184].

With succinct literature reviews, efforts made on regularization were concentrated

on the within-class matrix, and it was discovered that the within-class matrix is respon-

sible for the poor recognition performance[5, 67]. The swift decay of the eigenspectrum

in Figure 4.2 is due to the problem of the small sample size, occurrence of noise in the

datasets, high dimensionality and correlation in image pixels. The within-class ma-

trix in sympathy with these constrains suffers from under representaion and invariably

poor performance. The challenges presented by the within-class matrix to recognition

model is enormous. The introduction of very small and zero eigenvalues in the eigen-

spectrum plot is a result of the small sample size phenomenon. Hence, it is difficult for a

model with unregularized within-class scatter to achieve effective discriminative power

and as such this presents poor discriminative capability in the training set of different

classes, while it fails to exhibit lower variance with similar class activity. Unregularized

subspace presents two peculiar problems in the computer vision task. Firstly, scaling

eigenvectors with very small or zero eigenvalues promotes eigenvector to be appropri-

ated with undue weight and this may lead to overfitting and poor model generalization.

62



4.2 Eigenspectrum Modeling

This presents deviations and unexplained accuracy of results in the recognition process.

Secondly, harnessing principal eigenvalues and neglecting smaller eigenvalues is compa-

rable to the weighting of features with a step function activation function as seen in 4.6.

This hypothesis presents this technique with a forfeiture of important discriminatory

features [29].

tmk =

{
1,& k ≤M
0,& k > M

(4.6)

where t denotes M principal eigenvalues.

In [5], the benefits of controlled eigenvectors scaling was discussed and elaborated.

The λk is valuable and significant in feature scaling and extraction, the parameter

σk =
√
λk, which represents scaled eigenvalues is invaluable to buiding the HAR model.

Eigenvalues weighting is done by scaling the eigenvalues by a factor 1

(
√

)
0.7142 as shown

in 4.7, while the whitening procedure is done by normalizing the eigenvector by the

weighting function as seen in 4.8.

W k =
1

(
√
λk)0.7142

(4.7)

where k = 1, 2, . . . , n.

As = [Akwk, . . . Anwn] (4.8)

As in equation 4.8 is the scaled eigenvectors used in transforming the dataset into

a different feature space.

4.2.2 Effect of Using Small Eigenvalues to Scaled Eigenvectors

The use of small eigenvalues for eigenvectors whitening certainly have unique conse-

quences of projecting undue and badly scaled eigenvector. Since the eigenvalues shrink

in values as it spreads down the eigenspectrum graph as shown in Figure 4.2, attempt-

ing to scale small and zero eigenvalues with exponential inverse function as shown in 4.7

leads to high noise level. Again, badly scaled eigenvectors that can cause overfitting

is another critical imbalancing introduced to the model. The use of such weighting

function presents an unjustifiable scaling of small eigenvalues along the eigenspectrum
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4.2 Eigenspectrum Modeling

bottom; hence unregularized eigenvalues are susceptible to errors and poor recogni-

tion model. To substantiate the narrative of this unwholesome scaling effect of small

and zero eigenvalues, a graphical illustration is shown in Figure 4.3. Figure 4.3 shows

a steady rise along the eigenvalue index and this steady rise at one point suddenly

plunged down to zero. This illustrates a clear example of how small or zero eigenvalues

can distort and disrupt useful eigenfeatures of the within-class matrix (SW ) that are

highly needed for HAR purposes. Hence, poorly scaled models such as this results in

misclassifications that are undesirable.Equation 4.9 further illustrates the step function

characteristics of unregularized eigenvalues.

WM
k =

{
1

(
√
λk)0.7142

, k ≤ rm
0, rm < k ≤M

(4.9)

Where rm is the ranks of the within-class scatter matrix and M ≥ rm.
Unregularized scaling of these eigenvalues summarizes the eigenvalues in the com-

plementary null space to be zero, though it contains important discriminative features

that are useful for classification. Therefore, the studies seeks to reduce or eliminate the

negative effect of unreliable and small eigenvalues that are common in subspace method

by regularization technique. This use of the regularization technique is necessary, this

is because eigenvalues and their corresponding eigenvectors of the within-class matrix

does not correctly reflect the true variance of the within-class matrix. [5].

4.2.3 Extrapolation and Modeling of Within-Class Matrix Using Four-

Parameters

The presence of noise down the eigenspectrum is not desirous because of its nega-

tive effect of distorting features true estimation that is needed to build HAR model.

Adequate extraction and representation of features is vital to successfully build HAR

recognition systems. Hence, it is important to invest on the feature engineering process

that includes featutre modelling. The principal eigenvalues and their corresponding

eigenvectors of the within-class matrix are the most informative and significant in de-

scribing components of human activities [5, 6, 185, 186]. As seen in Figure 4.2 of the

eigenspectrum, these first few eigenvalues which constitute the start of the principal

segments are better reflection of the true variances exhibited in the image matrix. They
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4.2 Eigenspectrum Modeling

Figure 4.3: Unregularized Eigenspecrtum - Weighted Eigenspectrum obtained from

unregularized training data

capture and encode important information about the data presented. These genera-

tive techniques help in prediction and modeling of the eigenvalues that had lost values

down the eigenspectrum because of the problem of singularity. The exact and robust

modeling scheme of these first few eigenvalues ensure accuracy and succinct prediction

of eigenvalues down the eigenspectrum. This estimate enables small and zero eigenval-

ues that constitute the source of unreliability to be substituted by more reliable and

dependable predicted values. For the purpose of predicting reliable eigenvalues down

the eigenspectrum, a four parameter constant modeling scheme is developed such that

the shortcomings of unregularized eigenvalues is addressed. These parameter constants

are ϕ, σ, γ, and ρ bounded by the constraint λk | 1 ≤ k ≤ λg. The emphasis is on the

approximation of the remaining portion of the eigenvalues after a successful modeling

of the reliable portion at the start of the eigenspectrum has been determined. In these

studies, an attempt to capture the true variances from the reliable space using a four-

parameter constant is the main goal. λg is taken to be the upper bound of the top

(1%) of the eigenvalue length (k). Based on this hypothesis, approximating and deduc-

ing the outstanding ninety-nine (99%) of the eigenspectrum can be predicted from the

modeled first few eigenvalues with the help of our four parameter constants. The first

few k from the eigenspectrum is thus modeled by 4.10
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4.2 Eigenspectrum Modeling

λk =
ϕ√

( k + σ) + γ
+ ρ, 1 ≤ k ≤ λg (4.10)

where ϕ, σ, γ, and ρ are constants The formulation of these parameters is derived

to mirror the characteristics related with the variances in the first few eigenvalues.

Mandal and How-Lung [5, 187] investigated the effect of using three parameters. Their

method tailored along the scope of having all the eigenvalues spectrum partition into

three different subspaces and then regularized differently. The complexity of trying to

determine the start and end of each subspace can be very frustrating and difficult to

achieve especially for a large data set. Therefore, the present model proposed a non-

piecewise regularization approach, thereby avoiding the complexity associated with

partitioning of the subspace into different sections. All extrapolated eigenvalues are

used to replace distorted eigenspectrum. The new extrapolated eigenvalues are for

regularization and extraction of valuable eigenfeatures that would have been discarded

or difficult to extract. The parameter ϕ, σ, γ, and ρ in equations 4.11 - 4.14 are derived

by λD = λk=1, λg = λ1%k, g1 =
√
g
2 and g is the index position for the λg value

γ =
(λD − λg)− (

λg
2 )λg − (

λg
2 − λg)− λD

(
λg
2 )λg +

√
(λD

λg
2 ) + (λD

λg
2 )

(4.11)

σ =

√
λDλg
λg
2

(4.12)

ϕ =
(λD − λg)(1− γ)(

√
g + γ)

√
g − 1

(4.13)

ρ = λD −
ϕ

1 + γ
+

1

g
(4.14)

The fast and swift decay experienced by the eigenspectrum as shown in Figure 4.2

illustrates a flawed eigenspectrum, a notable reason for poor recognition performance.

In Mandal and How-Lung [5, 187], an attempt was made to proffer solution to this

problem. Although results recorded some improvements, there was still room for further

exploration. With the introduction of a fourth parameter, it is clear from Figure 4.4

that dependable and more precise eigenvalues have been reproduced. Again, a closer

look at Figure 4.5 shows that a substantial improvement at lowering the eigenspectrum

rapid decay has been achieved relative to both the unregularized and three parameter

modeling curves respectively.
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4.3 Regularization and Extraction of features

Figure 4.4: Regularized Eigenspectrum - Regularized Weighted Eigenspectrum ob-

tained from training data

Figure 4.5, shows the eigenspectrum of unregularized, regularized 3-parameter and

4-parameter eigenvalues. The analysis of Figure 4.5 graph reveals that the unregularized

eigenspectrum has a sharp decay curve, while that of the 3-parameter modeling scheme

has a reduced curve. A further improvement in the decay curve was observed with the

use of 4-parameter constants. The quick and rapid decay has been reduced drastically

with the introduction of the 4-parameter modeling techniques. The results obtained

demonstrate that this regularization scheme provides a better and stable use of the

subspace method with the within-class matrix.

4.3 Regularization and Extraction of features

Equation 4.10 is for the eigenvalues modeling and the modeled eigenvalues are used for

the eigenvector regularization process. Since most of the variances associated with the

datasets are found in the principal component of the within-class matrix, the extrapola-

tion of the real eigenvalues is determined from the modeled eigenspectrum. Therefore,

an efficient regularization of within-class scatter matrix was achieved in this study. A

variable, if unregularized, presents noisy eigenvalues responsible for poor classification
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Figure 4.5: Different Eigenspectrum Modelling - Eigenspectrum of unregularized,

3-parameter and 4-parameter modelled eigenvalues
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and recognition when subspace method is used. The estimated whitened eigenvalues as

seen in Equation 4.8 are used to scale the eigenvectors in order to capture and promote

its discriminative ability. Such eigenvalues can be used for eigenfeature scaling without

adversely affecting the recognition model built for HAR. Equation 4.15 is used for the

feature scaling and extraction while Equation 4.16 is the modeled eigenspectrum. The

complications and distortions that can arise from unregularized eigenfeature under-

scores the need to address the problem that small and near zero eigenvalues present.

Figure 4.3 interprets and demonstrates the steps of the function character and operates

by converting eigenvalues less than a threshold minimum to zero thereby discarding

useful features needed for discrimination. The regularization scheme has helped proffer

a solution to the menace of the small and zero eigenvalues caused by noise and small

sample size. The undesirable problem of the step function in Figure 4.3 has been ad-

dressed with the 4-parameter eigenspectrum modelling. This is seen by a continuous

steady rise in Figure 4.4. In Figure 4.5, the 4-parameter regularization of the within-

class matrix enabled stable and steady decay of the eigenspectrum. This graph and

other emperical findings demonstrate that the 4-parameter regularization technique is

better than unregularized and 3-parameter constant method of regularization.

As = φkWk, . . . φnWn] (4.15)

λk =
ϕ√

( k + σ) + γ
+ ρ, 1 ≤ k ≤ λn (4.16)

where, k = 1, 2, 3 . . . n and As is the scaled eigenvectors for transforming the training

data into another feature space.

Uij = (As)TXij (4.17)

The transformation of the entire data is done by the scaled eigenvectors obtained

from the within-class matrix given in Equation 4.15, while the new space Uij is repre-

sented in Equation 4.17. The main advantage of this method is that the transformed

data Uij dimension is the same as the training data. With this development, the issue

of dimensionality reduction does not arise and hence all the extracted eigenvalues are

useful in the eigenfeature extraction purpose. The new data we have is U ij , and con-

sidering the formation of total scatter matrix from the new data space, this provides
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the model with a maximum discriminant feature. The total scatter matrix developed

from the new data Uij is given in Equation 4.18.

STotal =
e∑
i=1

ci
di

d∑
j=1

(Uij − Ū)(Uij − Ū)T (4.18)

where Ū =
∑e

i=1
ci
di

∑di
j=1 Uij If we solve the eigenvalue problem in 4.18 and retains the

most significant features by keeping eigenvectors φZ with the z largest eigenvalues,

φ = [φk]
z
k=1 (4.19)

The dimension of the feature space is only reduced at this point, and more feature

extraction is possible using equation 4.20.

Y = Asφz (4.20)

From equation 4.20, Y is the new feature vector used to transform the training image

into a more discrminative space as seen in 4.21.

Q = Y TXij (4.21)

To validate our theoretical and empirical analysis, the K- Nearest Neighbour (KNN)

distance measure and Artificial Neural Network (ANN) were used to validate the effec-

tiveness of the proposed 4-parameter eigenfeature regularization and extraction method.

4.4 Experimental Result and Discussion

The database used in this study are the Weizmann and KTH datasets, the Weizmann

dataset contains 10 classes of activities, however seven of these action classes were

considered for this model evaluation. The seven actions involved are running (run),

bending (bend), jumping jack (jack), skipping (skip), galloping sideways (side), waiving-

two hands (wave) and jumping forward-on-two-legs (jump). A total of nine persons

was involved in the performance of these seven activities and five of the nine characters

were used for training purposes while the remaining four were used for testing. The

training set obtained from the Weizmann datasets consist of 1450 images and 380

testing images and the experimental processed images were resized to 80 × 40 pixels.

From the experimental results analysis as shown in Table 4.1 -4.4, an outstanding
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recognition accomplishment demonstrated by the new 4- parameter regularization and

extraction technique are shown. Our proposed technique has demonstrated state-of-

the-art superiority over other subspace methods like PCA, FLDA, and the recently

state-of-the-art 3-parameter eigenfeature regularization method. Benchmarking the

present method with the recent state-of-the-art [5], has strengthened the superiority of

this 4-parameter eigenfeature regularization and extraction method and this is evident

in succinct comparison between Tables 4.3 and 4.4.

The poor classification demonstrated by the PCA, FLDA (Tables 4.1 - 4.2) is partly

because of the earlier explained step function characteristics that are mostly common

with unregularized eigenvalues. Again, the small sample size problem which is common

to most dataset is also a reason for poor generalization. Therefore, this proposed model

has added innovation to the 3-paramater structure earlier proposed by improving the

method of eigenfeature regularization to aid the extraction of quality features that are

important in building the HAR model.

The procedure by which a median outlier method was used by the 3-parameter

model to determine the beginning of the reliable and unreliable subspace is very cum-

bersome and prone to errors in feature extraction and regularization process. Hence,

the motivation behind our method of extrapolating the remaining eigenvalues at one

piece. This is possible when the reliable modeling of the principal eigenvalues has been

established. This process stops unnecessary disintegration of the eigenspectrum into

different subspaces before regularization. Table 4.4 shows better recognition than other

subspace methods discussed in chapter 2. To further buttress the recognition strength

derived from the 4-parameter eigenvalue regularization and extraction model, the arti-

ficial neural network (ANN) classifier is used for the training and classification of these

features. The results as shown in Tables 4.5 - 4.6 validate the developed 4-parameter

model’s efficacy than the earlier known methods and that of the recent 3-parameter

feature regularization and extraction. With the neural network classifier, the over-

all performance rate of 97.1% was achieved with the proposed technique compared

to 94.3% achieved by using the 3-parameter for feature regularization and extraction

method.
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Table 4.1: Confusion matrix of the recognition evaluation in % using Principal Component

Analysis for different activities of the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 63 0 0 20 3.3 0 13.3

Bending 0 96.6 0 0 0 0 3.3

Jacking 0 0 76.6 0 13.3 10 0

Skipping 0 0 0 70 0 0 30

Sidewalk 26.6 0 6.7 6.7 53.3 0 6.7

Waving 10 0 30 0 0 36.6 0

Jumping 0 0 0 53.3 0 0 46.6

Table 4.2: Confusion matrix of the recognition evaluation in % using Linear Discriminant

Analysis for different activities of the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 90 3.3 0 3.3 0 3.3 0

Bending 0 80 0 0 20 0 0

Jacking 0 0 53.3 0 36.6 10 0

Skiping 0 0 0 100 0 0 0

Sidewalk 0 0 0 0 93.3 0 6.6

Waving 0 0 46.6 0 0 53.3 0

Jumping 13.3 6.6 0 10 0 0 70

Table 4.3: Confusion matrix of the recognition evaluation in % using three parameter

modeling for different activities of the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 60 3.3 3.3 3.3 6.7 6.7 16.7

Bending 0 87 0 0 3.3 10 0

Jacking 0 0 76.6 0 6.7 13.3 3.3

Skiping 3.3 3.3 6.7 83.3 0 3.3 0

Sidewalk 13.3 0 3.3 3.3 66.7 13.3 0

Waving 0 0 20 0 0 80 0

Jumping 6.7 0 0 3.3 0 0 90
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Table 4.4: Confusion matrix of the recognition evaluation in % using four-parameter

eigenfeature regularization and extraction from various activities of the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 80.3 3.3 6.7 0 6.7 0 3

Bending 0 96.6 0 0 3.3 0 0

Jacking 0 0 94 0 0 6 0

Skiping 10 0 0 90 0 0 0

Sidewalk 6 0 0 0 90 4 0

Waving 0 0 0 0 0 100 0

Jumping 13.3 0 0 0 0 0 86.7

Table 4.5: Confusion matrix of the recognition evaluation with our three parameter using

the ANN clasifier on the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping Percentage

Running 20 2 0 2 0 0 0 83.3

Bending 0 20 0 1 0 0 0 95.2

Jacking 0 0 19 0 0 0 0 100

Skipping 0 0 0 16 0 0 0 100

Sidewalk 0 1 0 0 19 0 0 95.2

Waving 0 0 0 0 0 20 0 100

Jumping 0 0 1 0 0 0 16 95.2

percentage 100 90.9 95.2 88.9 100 100 100 94.3

4.4.1 Results on the KTH Database

With the KTH database, Images from the video frames are extracted and preprocessing

is applied to the extracted image sequence. The KTH datasets comprise six different

kinds of human actions and these actions are: walking, jogging, running, boxing, hand

waving, and hand clapping. These grayscale images are then cropped to 90×35 pixels.

A total of 1200 images were used for the training and 210 images for testing. The con-

fusion matrix in Tables4.7 - 4.10 highlight the recognition level of each model discussed

in this thesis. The proposed 4-parameter extraction and regularization method have

shown great recognition result than those of PCA, FLDA and the most recent state

of-the-art 3-parameter extraction and regularization method. The advantage of regu-

larizing and harnessing the lower ranked eigenvectors that were hitherto an obstacle in
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Table 4.6: Confusion matrix of the recognition evaluation with our four parameter using

the ANN clasifier on the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping Percentage

Running 20 2 0 2 0 0 0 83.3

Bending 0 20 0 0 0 0 0 100

Jacking 0 0 20 0 0 0 0 100

Skipping 0 0 0 16 0 0 0 100

Sidewalk 0 0 0 0 21 0 0 100

Waving 0 0 0 0 0 20 0 100

Jumping 0 0 0 0 0 0 16 100

percentage 100 90.9 100 88.9 100 100 100 97.1

other subspace methods clearly demonstrates the indispensability of this 4 parameter

technique. Again, a comparison of the Tables 4.9 and 4.10, even though the principle

of regularization that existed between these two is somewhat similar but different, the

superiority of the 4-parameter methods over weight that of the 3-parameter modeling

methods. The discarding of lower ranked eigenfeatures as practiced by other subspace

methods was completely disregarded in this method. The observation seen in Table

4.10 is that jogging and running have slight misclassification. This is because of the

spatiotemporal correlation that exists between the three class activities of walking, run-

ning, and jogging. Similar observation is also seen in boxing, hand-waving, and hand

clapping.

Table 4.7: Confusion matrix of the recognition evaluation in % using Principal Component

Analysis for different activities of the KTH database

Activities Walking Jogging Running Boxing Hand Waving Hand Clapping

Walking 68 8 3 0 7.5 20

Jogging 33 18 10 0 15 24

Running 2.5 10 60 0 20 7.5

Boxing 7 0 18 30 27.5 17.5

Hand Waving 0 0 0 0 40 60

Hand Clapping 10 0 8 0 27 55
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Table 4.8: Confusion matrix of the recognition evaluation in % using Linear Discriminant

Analysis for different activities of the KTH database

Activities Walking Jogging Running Boxing Hand Waving Hand Clapping

Walking 67 8 15 1 1 8

Jogging 0 72 8 8 0 12

Running 7.5 6 68 0 7.5 11

Boxing 15 5 0 70 7 0

Hand Waving 0 10 10 0 60 20

Hand Clapping 17 3 11 0 16 63

Table 4.9: Confusion matrix of the recognition evaluation in % using three-parameter

modeling for different activities of the KTH database

Activities Walking Jogging Running Boxing Hand Waving Hand Clapping

Walking 100 0 0 0 0 0

Jogging 4 88 8 0 0 0

Running 0 24 76 0 0 0

Boxing 12 4 8 76 0 0

Hand Waving 16 0 0 0 84 0

Hand Clapping 0 0 0 0 0 100

Table 4.10: Confusion matrix of the recognition evaluation in % using four-parameter

eigenfeature regularization and extraction from various activities of the KTH database

Activities Walking Jogging Running Boxing Hand Waving Hand Clapping

Walking 100 0 0 0 0 0

Jogging 0 94 3 3 0 0

Running 0 3 94 3 0 0

Boxing 0 3 0 94 2.8 0

Hand Waving 0 0 3 0 97 0

Hand Clapping 0 0 0 0 0 100
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4.5 Summary and Discussion

The new 4-parameter regularization method has shown promising insight in the new

frontiers of computer vision sector especially in the recognition and classification of

human activities. This proposed technique has the advantage of becoming a competent

extraction means of highly discriminative features by applying a regularization process.

The regularization process is unique which is a one-piece regularization of the entire

eigenspectrum in order to avoid the difficulties posed by isolated fragmentation of the

eigenspectrum subspace before regularization has been overcome. Therefore, this re-

search work has not only proposed a better model with the 4-parametrer, but has also

given important insight on how the use of within-class matrix in subspace recognition

can drastically affect the classification model in computer vision tasks. The 4-parameter

has enabled the creation of a more reliable, dependable and accurate eigenvalues for

prediction purposes. With these regularization techniques, the within-class matrix is

seen as an important term in the recognition of human activities. The discussion of

the results shown on the Weizmann and KTH databases are substantiated by assert-

ing that the 4-parameters regularization method is a key connection in the mining of

discriminant information. Considering all our experiments and results, the proposed

4-parameter approach has shown better discriminative power amongst activities that

are similar than other popular discriminative methods such as the PCA, FLDA which

is inclusive of the new state-of-art 3 parameters regularization and extraction method.

The future direction of this research is the implementation of this cutting-edge method

to the fastest growing 3-D data images. Current active research in 3-D imaging has

stood out to revolutionize the perception of a real-world implementation of autonomous

vehicles, augmented reality and other fast-growing computer vision tasks that need su-

perior accuracy in their inference machine.
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5

Deep Learning and Feature

regularization in Convolutional

Architecture for Human Activity

Recognition

5.1 Introduction

The concept of building shallow networks and creating handcrafted features for the

recognition of human activity is receiving less attraction because of a change in paradigm

of building deep learning models for purposes of recognition. Convolutional neural

networks (CNNs) which comprises one of the deep learning methods is ubiquitous in

the area of machine learning and artificial intelligence. This method has been widely

celebrated for its unique power to extract discriminative features for recognition and

classification purposes. Unlike the shallow architectures with a simple layer capable

of performing non-linear feature transformation, deep layer architecture is more com-

plex. Notably, deep layer architectures are known for learning convoluted non-linear

and salient features that cannot be learned by simple network or handcrafted features.

Again, another common advantage of this architecture is its ability of learning in an

end-to-end manner; thus, providing a means of high-level representation of hidden pat-

terns in the datasets. As the field of computer vision evolves, its numerous applications

in almost every area of our lives have made it important to develop credible algorithm
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to push further the boundaries of machine vision. This development is a conscious

attempt to make machines have better perception of their environment and make nec-

essary inference in the same way as humans do. Deep learning models are built to

mimic the functionality of the layers of the neurons found in the neocortex which is a

part of the brain where higher-order function such as sensory perception and all other

cognitive processes are coordinated. Therefore, deep learning is a landscape of artifi-

cial neural networks capable of learning data representation. While there are different

variants of deep learning models as discussed in the literature section, the choice of

any deep learning variant depends on the functionality of the parameter and areas of

application. Thus, this chapter comprehensively explore the CNNs, improvement of

their discrimination processes of the features, features extraction method and their de-

liverables in building models that can efficiently recognize human activities. While we

acknowledge the success attained in extracting good features with the use of the deep

learning method, feature learning, optimization, parameter and hyperparameter selec-

tion are vital for improving the deep learning model performance. Overfitting models

are common problems that are also associated with deep learning methods like CNNs.

Feature regularization is an important step to ensure that any deep learning model

does not only generalize well to unseen data but also maintains high levels of accuracy

in the recognition and classification task. With CNNs, the softmax loss is used as the

traditional loss function. This loss function allows deep features of distinct classes to

be separated and promotes effective training of deep neural network. An improvement

on CNNs discriminative power for facial recognition was recently reported where soft-

max and center loss are jointly used as supervisory loss signal. It is shown that such

supervisory loss function is not optimum in human activity recognition. Hence, a new

likelihood regularization term is used to improve the feature discriminative power of

the CNNs model. A new regularization term that can improve class discrimination is

introduced. This regularization term is modeled from Bayesian distribution priori for

posterior estimation of class probability density. A quick overview of other forms of

regularization, like dropout and L2 regularization, will be highlighted and integrated

with the developed model. The summary effect of the dropout on neural networks

is a method which light-loosens the composition of co-adapted features. This process

will disable other retained neuron components from contributing their overall weighting
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process. The effect of dropping incoming and outgoing weight connection, which in-

fluences model generalization, will be examined. In the past, various means have been

devised to search the parameter space for a combination of features that were optimal

in describing subtle patterns via high level representation of the data. There is always

a direct relationship between deep learning and hyperparameter selection. Therefore,

automating the hyperparameter search cannot be trivial as more hyperparameters are

often present in the model design. Therefore, prompt location, skillful features learning

and better tuning of key hyperparameters to achieve better recognition result in Human

Activity Recognition (HAR) are key steps that will be discussed in this chapter. Again,

the Bayesian optimization process will be considered for hyperparameter space search

for optimal solution. A better optimal hyperparameter combination and accurate regu-

larization method can become a panacea for obtaining a state-of-art recognition model

for HAR. Although adequate attempts have been made to elucidate all the findings in

this research, it is established that deep learning findings can vary from one model to

another.

5.2 Architectural Design of Convolutional Neural Net-

work

In CNNs, layers of convolution, subsampling and discretional fully connected layers

are the building blocks of this architecture as described in Figure 5.1. CNNs perform

well at describing and encoding important features in images, videos and objects. Such

features are explicitly used for recognition and learning purposes. Therefore, to extract

discriminatory features from our data, a deeply connected CNN model will be con-

structed with multilayered neural network as described in section 5.1. The composition

of these multilayered networks is convolution, activation function, pooling, dense layer,

softmax loss process and the output. Each of these layers will be examined to enable

a better understanding of CNNs and their deep model compositions. The aggregate

features extracted from the different layers make this method most unique and distinct

in their power of recognition.

CNN’s advantage over conventional neural network makes it an architecture of

choice for human activity recognition. Firstly, CNNs can leverage and circumvent the

use of numerous parameters, a common characteristic peculiar to conventional neural
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Figure 5.1: Graphical Representation of Deep Learning Process - Convolutional

Neural Network Achitecture Design for Human Activity Recognition

network. This is made possible with the spatial mapping of neurons from one layer

to another. This provides the robustness of controlled parameters compared to the

fully-connected neurons found in regular neural network. Secondly, CNNs employ the

phenomenon of 3D volume of neurons such that the local patches in the input image are

represented in 3 dimensions: width, height and depth. Depth represents the numbers of

colour channels. Additionally, CNNs have a final output layer 1x1xn, because the end

of CNNs architecture presents a single vector of class scores. n represents the number

of classes present for purposes of prediction.

5.2.1 Convolution Layer

The convolutional layer is the kernel responsible for heavy computational processes in a

convolutional network. The main concept of convolution is to enable feature extraction

from input image. In order to preserve the spatial correlation that is common among

the pixel values in an image, a learning process called convolution is performed on

the input image. This is achieved by sliding learnable filters across the input image.

As the filters slide along the three dimension of the input image, a dot product is

computed between the input pixel values and the filters. A 2-dimensional activation

map is formed in sympathy and response to the filters spatial relationship with the

image pixels positions. These activation volumes formed from different learnable filters
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can encode specific features from the input image, which are stacked along the image

depth dimension to form output volumes.

5.2.2 Locally Connected Network

This section highlights how the local region connectivity is utilized. This phenomenon

is the restriction of neuron connection to a fixed and small part of the input volume

(unit). The spatial dimension of such local connections to the input image forms the

hyperparameter known as the receptive field of the neurons. Each neuron receptive

field dimension is often equally the same with the filter size applied to the input image.

While the local space inherits dimensions of the filter size (height and width) its depth

is always equal to the depth of the input image (volume). Image depths that are of

RGB characteristics will certainly have a depth of three, and one, for grayscale images.

Importantly, it will be crucial to mention that restriction of neurons to local space on

the input volumes are only for height and width; whereas input volume depth is fully

represented from one end to another. Furthermore, suppose the dimension for a typical

RGB input volume size is given as [64x64x3] and if a receptive field of each neurons

is chosen as 3x3, then the convolution layer can attain a weight to the tune of [3x3x3]

mapped to its local input region. The weight will, therefore, be 3*3*3= 27 weights

(and +1 bias parameter). Again, considering a grayscale input image with dimension

[32x32x1] and a receptive field of 5x5, the total weight contribution towards the local

region of grayscale image will be 5*5*1 = 25 weights (and 1 bias parameter). The

connectivity in depth for the RGB and gray scale image will, therefore, become 3 and

1 respectively, as these called input volume depths.

5.2.3 Spatial arrangement of output volume

Output volume is a product of neuron’s manipulation, just as input volume is de-

termined by the mapping of neurons to local input images. Output volume size is

influenced by three major hyperparameters: the depth, stride and zero-padding.

1. Depth - The depth is a hyperparameter that makes up the output volume and this

is equivalent to the number of filters to be used. The numbers of filters chosen

is responsible for the depth of each activation map. The unique characteristics
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of these filters are their ability to recognize and activate neurons along the depth

dimension when certain patterns are found in the input image.

2. Stride - The displacement of filters in relation to the number of image pixels as

they are moved round input volumes is called the stride. A slide of filter that

amounts to the move of one pixel at a time is called a stride of 1. However,

with an uncommon stride of 2 or 3, filters move 2 or 3 pixels at a goal as they

slide along the input volume. The use of 2 or 3 stride results in smaller output

volumes.

3. Zero padding - This is another hyperparameter that is used for controlling output

volume spatial size. In preserving output volume size, it is necessary to pad the

input volumes with some number of zeros about the border. Such zero-padding

helps retain the spatial size of input volume in a way that both input and output

volume dimensions.

The spatial size of the output volume can be computed by a simple formula as

shown in Equation (5.1). This formula comprises of input volume (W), receptive field

size (F), the number of strides applied (S) and the number of zero-padding used (P).

The spatial size of the output volume can, therefore be computed as:

W − F − 2P

S
+ 1 (5.1)

Therefore, for an input volume of 5x5, a receptive field size of 3x3 with a stride of 1 and

with a no zero padding produces an output volume size of 3x3. The choice of having a

stride of 2 in this case results in an output volume size of 2x2.

5.2.4 Rectified Unit

Regardless of the convolutional neural network depth, the rectified unit layer is a prin-

cipal characteristic of most deep learning models. The use of such non-saturated ac-

tivation function (ReLU) over other saturated (sigmoid and tanh) functions has been

predominately prominent in most deep learning systems. This is because of their ef-

fectiveness in solving most of the problems that are peculiar to training deep neural

networks. Non-saturated activation function helps the deep learning network in two

major areas. Firstly, it helps to solve the negative effect of exploding/vanishing gradi-

ent. Secondly, it improves the convergence speed which is very important but difficult
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to realize in deep neural networks. Examples of non-saturated rectified unit are the

standard rectified linear unit (ReLU), parametric rectified linear units (PReLU), leaky

rectified linear unit (Leaky ReLU), and the recent randomized leaky rectified units

(RReLU). For every backpropagation performed, there is a desire to adjust and tune

the gradient to minimize the cost function. These constituents that define gradient

update are made up of several factors, namely, the derivatives of weight, activation

function and biases. During gradient upgrade, as these derivatives travel down each

layer, they are propagated away from the output layer towards the input layer. Thus,

much multiplicative complexity is introduced. If the multiplication aggregates of such

derivatives amount to less than 1, then such aggregates tend towards zero and the

vanishing gradient problem is likely to occur. On the contrary, with multiplicative

derivatives aggregates greater than 1, such aggregates build up towards infinity result-

ing in an exploding gradient as the derivatives move closer to the input layer. The

RELU seems to fix this problem because they have a gradient of 1 when multiplicative

output ≥ 0, and zero on the contrary. Therefore, the RELU function somewhat cre-

ates a means to getting all the derivative of the activation function to be one, thereby

preventing the problems of vanishing or exploding gradient. The rectified linear unit

is by far the most prominent one that is being used [164, 188]. A rectified linear unit

layer performs thresholding that allows input negative or smaller values less than zero

is pruned to zero, while retaining values that are greater than zero. Such evaluation as

seen in Equation 5.2 depicts the mathematical expression of rectified linear unit, while

its derivative is represented in Equation 5.3.

F (x) = max(x, 0) (5.2)

f ′(x) =

{
1, if x> 0

0, otherwise
(5.3)

It is widely believed that the exceptional performance of ReLU is as a result of

the sparse activation occasioned by passing ReLU [163, 188]. Though ReLU has been

widely voted for its performance, regrettably it also has its drawbacks. ReLU units

tend to be very weak when training and can easily lose track of its activation function

and die. The horizontal line as shown in Figure 5.2 is common in ReLU. This tends to

gravitate gradients values toward zero mark, thereby causing large gradients streaming
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Figure 5.2: RELU Diagram - RELU Graphical Representation

through a ReLU region to stop updating. The neurons in this region become dead to

error propagated for training because the gradient is stale and becomes unresponsive

to such tuning during training. This is known as the dying ReLU problems. In recent

times, the leaky ReLU unit and their variants have been considered as better rectified

function that can help solve the difficulties experienced in using the ReLU. In contrast

to the former, the leaky ReLU replaces the horizontal line with a slightly inclined line

as opposed to the horizontal line of the traditional ReLU. The concept of this method is

to stop a zero-gradient function and instead allow the gradient to recover from training

large amount of data

5.2.5 Sigmoid Activation Function

The sigmoid activation function is another non-linear activation function that is com-

monly used in neural network design and training. It can produce analogue activation

unlike the step function character that is associated with the logistic regression model.

Great and smooth gradients can be derived from the region between the two-flat side.

As seen in Figure 5.3, a small change in the X value bring about a significant change in

the Y values. With the ability to influence activation to move either side of the curve,
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it is generally considered a choice activation function in many classification problems.

Equations 5.4 and 5.5 represent the mathematical representation and the derivatives

of the sigmoid activation function while Figure 5.3 shows the diagrammatic represen-

tation. The Sigmoid output activation function is squashed between (0,1) and this

prevents an activation blow up, which is a phenomenon often experienced in the linear

function. Although the sigmoid activation is very useful in most learning algorithms,

it has downsides. The vanishing gradient problem is common in this kind of activation

function because towards the flat end of the sigmoid curve, the Y values gradually

become unresponsive to changes in X. With this concept, learning in the network is

extremely difficult as the gradient cannot evolve new changes because it is very small.

sig(A) =
1

1 + e−x
(5.4)

∂

∂t
sig(A) = sig(A)(1− sig(A)) (5.5)

Figure 5.3: Sigmoid Diagram - Sigmoid Activation Graphical Representation
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5.2.6 Tanh Activation Function

The tanh activation function is another form by which nonlinearity is introduced into

neural networks. It is very similar to the sigmoid activation function. The tanh function

squashes output activation between (-1, 1), thus making negative values coming from

neural network input to the tanh function to be mapped to negative output values.

Also, all the zero-valued tanh inputs output near-zero values. These characteristic

properties peculiar to the tanh activation function makes the neural network less likely

to behave unresponsively to changes applied to the X values as seen in Figure 5.4. The

Tanh function is defined as

F (x) = tanh(x) =
ex − e−x

ex + e−x
=

2

1 + e−2x
(5.6)

Figure 5.4: Tanh Diagram - Tanh Activation Graphical Representation

5.2.7 Pooling Layer

In CNNs, the features and total number of the parameters produced after each con-

volution layer can exponentially grow large and this can become a real difficult task
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because of the computational burden on the classifier. Such a model, at the very least,

experiences overfitting and generalizes poorly. Therefore, a common practice that can

leverage these challenges in the deep learning network is to periodically introduce a

pooling layer within consecutive convolutional layers. These pooling (non-linear down-

sampling) layers are progressively used for down-sampling the output volumes which

discard non-maximal feature values leading to a smaller output volume size. The spatial

size obtained from the smaller output volume are a computational gain for the immedi-

ate upper layer. Furthermore, a significant reduction in the numbers of parameters used

for training is achieved thereby reducing the effect of overfitting in the deep learning

model. The pooling layer using a MAX operation independently influences and resizes

the dimensions of every output volume along its width and height while preserving the

depth slice. Max pooling splits each output volumes into regions of non-overlapping

squares and the maximum value on each square sub-region is chosen to represent each

partitioned square sub-region. Most of the pooling layers for down-sampling have filter

sizes of 2x2 and slides of 2. This produces half of the original volume in width and

height while preserving the depth of the final output volume.

5.2.8 The Fully Connected Layer

The transformation of the input images through layers of convolution and pooling has

enabled discriminant features to be extracted. However, high-level reasoning around

such extracted features by the deep neural network is needed to achieve a proper recog-

nition model built with CNNs architecture. This high-level reasoning is made possible

by the fully connected layers, which are the last stage of the CNNs. This layer is fully

connected to the previous layer and the features obtained are flattened and can be

visually seen as one-dimensional vector. The output uses this one-dimensional vector

to formulate various classes present in the network.

5.3 Deep Learning Class Discrimination in Human Activ-

ity Recognition

A conventional overview of the CNNs architecture is shown in Figure 5.1. It depicts a

transformation of the input image through a phase of a series of convolution, non-linear

activation, pooling and fully connected layers to get an output label or a probability
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function that best describes the label of the desired image. This last layer is fully

connected to the previous layer and the features obtained are flattened and can be

visually seen as one-dimensional vector. The output uses this one-dimensional vector

to formulate inferences about the likelihood of a score of various class labels at the

network output. With CNNs, the softmax loss is used as the traditional loss function.

This loss function allows for deep features of distinct classes to be separated and effect

training of any deep neural network.

5.3.1 Challenges of Deep learning Class Discrimination with CNN

The transformation of the input images through layers of convolution and pooling has

enabled discriminant features to be extracted. However, high-level reasoning around

such extracted features is needed to achieve proper recognition[37, 62, 79, 189]. Soft-

max activation and cross-entropy loss function ensure the high-level reasoning seen in

the fully connected layers. These two functions allow for the probabilistic interpre-

tation of the models ability to learn from the entire datasets. Due to the structural

complexity of human actions, the deeply learned features are highly required to pos-

sess separable and discriminative power ability. Such discriminative power allows for

effective class distinction, generalization of unseen data and thus improves quick con-

vergence of the learning model. It is desirous for the human activity recognition model

to seek compact within-class variation and a separable between-class difference, which

are only realizable with powerful discriminative features. In conventional CNNs, the

softmax loss which is the most prominently known constituent of logit layer is known

for its primary role of aiding the separability of features. In [189], the performance of

the softmax was reported to lack sufficiency in their discriminative power, prompting

the authors to introduce the concept of joint supervisory loss function. The discrim-

inative learning in CNNs can become very difficult because the optimization process

in CNNs is often done with the stochastic gradient descent (SGD). The SGD does its

optimization processes with mini-batch evaluations. This optimization process suffers

from poor global distribution of deep features. The challenges introduce a non-trivial

process of obtaining a true and efficient loss function in CNNs. The contrastive loss

[190] and triplet loss [191] used in the recognition of the image field attempted to cir-

cumvent these shortcomings by using loss functions which use image pairs and triplets.

Attempting to use all input images for training purposes is a major disadvantage of
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these two processes. Other disadvantages with the use of both contrastive and triplet

losses are that they grow in dimensions exponentially, converge slowly towards opti-

mum parameters and have huge computational burden to the learning system. In [189],

a novel loss function called center loss was introduced to efficiently improve the dis-

criminative influence of the features coming from a deeply learned convolutional neural

networks. This method first learns a center for each class present in the training set

and the second stage is to penalize the difference between the deep features and their

corresponding class centers. During model training, the model attempts to minimize

the distance between the deep features and their class centers while equally providing

update for the class center. This center loss in conjunction with the popular softmax

loss helps to supervise learning and training of the CNNs. The hyperparameter intro-

duced is used in fine-tuning the two supervision signals. The responsibility of keeping

deep features of different classes apart is handled by the softmax loss while the cen-

ter loss function maintains intra class compactness within the same class. The center

loss can achieve this through its center pulling property of deep feature from the same

class. With this kind of dual combination of different loss function, the proposed joint

supervisory model was able to achieve a record state-of-the-art in face recognition[189].

Although this method has been widely adopted and modified for face recognition, we

have taken this idea further into the human activity recognition space domain. To the

best of our knowledge, no such discussion is in the research domain of HAR. The ex-

perimental works on center loss conducted on HAR show that this method performed

poorly to create powerful discriminative deep learning features for efficient HAR. This

is partly due to challenges and complexities inherent in the body pose structures that

are familiar in actions performed by humans.

Therefore, to improve the functionality of the center loss in the joint supervisory

learning proposed in [189] and have it made more effective in HAR, we have introduced

a new regularization method called likelihood prior probability.

5.4 Loss Function and Convolutional Neural Networks Op-

timization

The outstanding property of the softmax function to present the layers output in the

form of a probability distribution contributes to CNNs learning ability. It is often used
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as the last layer for most deep neural networks. This process creates visual and metric

score calculation that is needed in evaluating the reliability of the learning model.

Therefore, obtaining the loss at the end of any deep neural network helps to calculate

the gradient. Propagating such gradient backward to the previous layer ensures model

optimization[93, 144, 163, 167]. In this section, we elaborate our discussion on loss

function and its useful learning achieved through backpropagation of errors. The back

propagation method has been around for a long time. It is a fundamental process known

for learning, fine-tuning and optimization of neural networks in artificial intelligence and

machine learning. The underlying principle of a function approximator like the neural

network is to propagate data through different layers of the networks until the last

layer has been reached. The last layer is called the output where network predictions

are evaluated. In computing the neural networks efficiency, a cost function metrics is

defined. The cost function E as depicted in Equation (5.7) is the discrepancy between

the targeted class tT and the output label prediction OlT of the function approximator.

E =
1

T

T∑
T=1

(tT −OlT ) (5.7)

The primary aim of the training process is to make this cost function as low as

possible. To achieve this, the gradient of the cost function is computed by a repeti-

tive application of the chain rule principle. The method of recursively expressing the

gradient of the error or cost function such that a global minimal is reached is called

the gradient descent method of optimization. The output error derivative is calculated

with respect to every weight represented in the network and the iterative traversing of

this error back to a convex optimization algorithm using the chain rule is popularly

known as backpropagation. With this optimization method, neural networks can im-

prove their prediction metric due to neurons weight adjustments achieved through back

propagation. The two major update attributes expressed by back propagation in CNNs

are the weight and deltas (error difference). These are core factors in neural networks.

Their mathematical formulation can be expressed as follows

1. We assume that l will represent the lth layer, l = 1 is the first layer and l = L

represent the last layer.

2. Let x, i× j, and H ×W be the input, iterator and its dimension.
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3. The filter w is of size R1 ×R2 and has an iterator m× n.

4. Let wlm,n be the weighted vector connecting the neurons in layer l to the layer

l − 1.

5. Let the bias at layer l be bl

6. The convolved input vector at layer l given as xli,j plus a bias is given as

xli,j =
∑
m

∑
n

wlm,nO
l−1
i+m,j+n + bl (5.8)

7. Oli,j represents the output vector at the layer l, formulated from

Oli,j = f(xli,j) (5.9)

8. The activation function is F (.), and the activation of the convolved input is

represented as F (xli,j).

A computation to deduce the gradient which interprets the degree of change of a

single pixel wm′ ,n′ between the weighted kernel and the error function is given as

δl
m′ ,n′

= ∂E
∂wl

m
′
,n
′
.

If we convolve the input features map of size H ×W with a kernel weight of size

R1×R2, an output feature map of size (H−R1+1)×(W−R2+1) is realized. Exploring

the gradient of each individual weight can be achieved by applying the chain rule given

in Equations 5.10 through 5.13

∂E

∂wl
m′ ,n′

=

H−R1∑
i=0

W−R2∑
j=0

∂E

∂xli,j

∂xli,j

∂wl
m′ ,n′

=

H−R1∑
i=0

W−R2∑
j=0

∂E

∂xli,j

∂xli,j

∂wl
m′ ,n′

(5.10)

Recall that from Equation (5.8) that xli,j is given as
∑

m

∑
nw

l
m,nO

l−1
i+m,j+n + bl.

When this part is further expanded,

∂xli,j

∂wl
m′ ,n′

=
∂

∂wl
m′ ,n′

(
∑
m

∑
n

wlm,nO
l−1
i+m,j+n + bl)

(5.11)
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Expanding and further expressing the partial derivatives in Equation (5.11) will

amount in zero values for all the components except for those where m = m
′
and, n = n

′

in wlm,nO
l−1
i+m,j+n

∂xli,j

∂wl
m′ ,n′

=
∂

∂wl
m′ ,n′

(wl0,0O
l−1
i+0,j+0 + . . . wlm,nO

l−1
i+m,j+n + · · ·+ bl)

(5.12)

= ∂
∂wl

m
′
,n
′
(wlm,nO

l−1
i+m,j+n) = Ol−1i+m,j+n

∂E

∂wl
m′ ,n′

=

H−R1∑
i=0

W−R2∑
j=0

δli,jO
l−1
i+m,j+n = rot180

0{δli,j} ∗Ol−1m,n (5.13)

Substituting Equation (5.12) in equation (5.10), we obtain the following:

The double aggregate as seen in Equation (5.13) stems from the weight sharing

process in the network as the same weight kernel is convolved across all the local

receptive fields in the input feature map. This summation depicts the pooling of each

and every gradients δli,j originating from all the output layer l. The derivation of the

gradient in relation to the filter maps can also be deduced as a transformation phase,

(i.e cross-correlation to convolution), visibly apparent in the flipping of the delta matrix

represented in the right hand side of Equation (5.13) as rot180
0

The gradient δli,j = ∂E
∂xl

i
′
,j
′

computed from the error change or loss function E with

respect to the pixel changes xl
i′ ,j′

in the input feature map can also be derived using

the chain rule from the following equation:

∂E

∂xl
i′ ,j′

=
∑
i,jεV

∂E

∂xl+1
V

∂xl+1
V

xl
i′ ,j′

(5.14)

The input pixel xl
i′ ,j′

influencing the output region can transverse from the top

left corner of the input. The effect of the input pixels xl
i′ ,j′

on the output region can

transverse from the top left corner (i
′ −R1 + 1, j

′ −R2 + 1) to the bottom right corner

(i
′
, j
′
) of the output region.

∂E

∂xl
i′ ,j′

=
∑
i,jεV

δl+1
V

∂xl+1
V

xl
i′ ,j′

(5.15)
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V in Equation (5.15) denotes the output area being influenced by the single pixel

xl
i′ ,j′

from the input feature map. An explicit representation of this is given in Equations

(5.16) and (5.17)

∂E

∂xl
i′ ,j′

=

R1−1∑
m=0

R2−1∑
n=0

∂E

∂xl+1
i′−m,j′−n

∂xl+1
i′−m,j′−n

∂xl
i′ ,j′

(5.16)

The region V is defined by a height range of i
′ − 0 through i

′ − (R1− 1) and having

width of j
′−0 through j

′−(R2−1). The duo as analyzed can further be represented in

the summation as i
′−m and j

′−n with m and n as the iterators of range 0 ≤ m ≤ R1−1

and 0 ≤ n ≤ R2 − 1 repectively.

∂E

∂xl
i′ ,j′

=

R1−1∑
m=0

R2−1∑
n=0

δxl+1
i′−m,j′−n

∂xl+1
i′−m,j′−n

∂xl
i′ ,j′

(5.17)

Recall that from Equation (5.17), xl+1
i′−m,j′−n is equal to wl+1

m,,n′
Ol
i−m+m′ ,i−n+n′+b

l+1)

and an expansion of this formulae results in Equations (5.18) and (5.19) below:

∂xl+1
i′−m,j′−n

∂xl
i′ ,j′

=
∂

∂xl
i′ ,j′

(
∑
m′

∑
n′

wl+1
m,,n′

Ol
i−m+m′ ,i−n+n′ + bl+1) (5.18)

∂xl+1
i′−m,j′−n

∂xl
i′ ,j′

=
∂

∂xl
i′ ,j′

(
∑
m′

∑
n′

wl+1
m′ ,n′

f(xl
i−m+m′ ,i−n+n′ ) + bl+1) (5.19)

∂xl+1
i
′−m,j′−n

∂xl
i′ ,j′

=
∂

∂xl
i′ ,j′

wl+1
m′ ,n′

f(xl
i−m+m′ ,i−n+n′ )

+ . . . (wl+1
m,nf(xl

i′ ,j′
) + · · ·+ bl+1)

(5.20)

If we follow through Equation (5.17) and take the partial derivatives of all its

associated, the components will invariably set each of them to have a zero value, with

the exception of components m′ = m and n′ = n. Therefore, with these components,

we can equate f(xl
i−m+m′ ,i−n+n′ ) to become f(xl

i′ ,j′
) , while wl+1

m′ ,n′
becomes (wl+1

m,n)
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∂xl+1
i′−m,j′−n

∂xl
i′ ,j′

=
∂

∂xl
i′ ,j′

(wl+1
m,nf(xl

i′ ,j′
))

= wl+1
m,n

∂

∂(xl
i′ ,j′

)
(f(xl

i′ ,j′
))

= wl+1
m,nf(xl

i′ ,j′
)

(5.21)

Conversely, replacing Equation (5.17) with (5.21) will give:

∂E

∂xl
i′ ,j′

=

R1−1∑
m=0

R2−1∑
n=0

δl+1
i′−m,j′−nw

l+1
m,nf

′
(xl
i′ ,j′

) (5.22)

The flipped kernel function in the backpropagation mode is the expression of con-

volution as flipped kernel cross-corelation. This is seen in Equation (5.23).

∂E

∂xl
i′ ,j′

=

R1−1∑
m=0

R2−1∑
n=0

δl+1
i′−m,j′−nw

l+1
m,nf

′
(xl
i′ ,j′

)

= rot1800

{R1−1∑
m=0

R2−1∑
n=0

δl+1
i′−m,j′−nw

l+1
m,n

}
f
′
(xl
i′ ,j′

)

= δl+1
i′ ,j′
∗ rot1800

{
wl+1
m,n

}
f
′
(xl
i′ ,j′

)

(5.23)

5.4.1 Joint Supervisory Loss

The supervision of deep neural network under the softmax loss accounts for a separable

feature for HAR classification. However, these features are not discriminative enough

to cause a large inter-class variation. Based on this reason, authors in [189] proposed

center loss function that will improve the deep feature discriminative ability in neu-

ral networks. In [189], the authors demonstrated the key concept behind center loss.

The intra-class distance minimization associated with the center loss is a fundamental,

unique property that can improve the classification process. A state-of-the-art result

was recorded with face dataset. However as seen in Figure 5.6, such fantastic results

were not realizable with human activity recognition. The center loss function is given

in Equation (5.24)

Lc =
1

2

m∑
i=1

‖xi − cyi‖22 (5.24)
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Lc represents the center loss. m is the number of training samples present in the

mini-batch size. The xi ∈ Rd denotes the ith deep feature of the yi class and d is

the feature dimension. The cyi ∈ Rd denotes the yi class of the deep features. The

softmax loss presented in Equation (5.25) is combined with center loss as described in

[189] for training deep neural networks. A combination of both loss function is shown

in Equation (5.26). Where Wj ∈ Rd denotes the jth column of the weights present in

the terminal layer and b ∈ Rn represents the bias term. The symbol n represents the

number of classes in the training data.

Ls =
m∑
i=1

log
eW

T
yixi+byi∑n

j=1 e
WT

j xi+bj
(5.25)

L = −
m∑
i=1

log
eW

T
yixi+byi∑n

j=1 e
WT

j xi+bj
+
λ

2

m∑
i=1

‖xi − cyi‖22 (5.26)

L = Ls + λLc (5.27)

The oveall loss for the deep neural network is denoted by L, while the softmax and

center loss are denoted by Ls and Lc respectively. The λ is a scalar for fine tuning the

two loss functions.

Figure 5.5: Softmax Loss Graphical Representation - Distribution and visualization

of deeply learned features using only softmax loss for Human Activity Recognition
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Figure 5.6: Center Loss Graphical Representation - Distribution and visualization

of deeply learned features using the joint supervision of softmax and the center loss for

Human Activity Recognition.

Figure 5.7: Proposed Joint Supervisory Loss Graphical Representation - Dis-

tribution and visualization of deeply learned features using our propsed loss for Human

Activity Recognition.
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5.4.2 Our Proposed Method

While center loss continues to be popular and widely significant in the recognition of

face and other visual classifications, its poor class discriminative performance as seen

in Figure 5.6 exposes its inadequacy in handling complexities posed by the structure

of the human body. A fundamental weakness associated with center loss method is

its poor discriminative power between features of different class in HAR. Good and

effective discriminative features should have high intra-class compactness and inter-

class separability [29, 69, 79, 146, 192].

In Consideration of the foregoing, our proposed approach is to introduce a likelihood

regularization term that will allow model parameters to effectively learn processes that

improve the achievement of both intra-class compactness and inter-class separability

in HAR. In this method, we intuitively mined the domain knowledge presented by the

joint probability distribution theory. This concept will further elucidate the relationship

between posterior probabilty of extracted deeply learned features belonging to a given

set of class and conventional joint supervisory method.

Equations 5.24, 5.25 and 5.26 represent the euclidean distance between the deeply

learned features and their respective class centriod (center loss), softmax loss and the

joint supervision of softmax and center loss respectively. A simplification of Equation

(5.26) by representing the softmax, center loss with Ls and Lc respectively is shown

in Equation (5.27). From Equation (5.27), we can infer that the center loss acts as

a regularization term to the softmax loss. Therefore, the process of obtaining better

discrminant features from a deep neural network can be likened to the regularization of

softmax loss which is a measure of the score probabilty. Considering the softmax loss

as described in Equation (5.25), the input sample x, which represents the extracted

deep feature vector can be described in terms of posterior probability.

The posterior probability of x that can be present in a particular class y ∈ [1,K]

is described in Equation (5.28). The logit, a measure of the score fk(x), is a linear

transformation of the feature vector x as shown in Equation (5.29). A higher score

from the linear combination of all the weights w and biases b from Equation (5.29)

reflects better posterior probability of the likelihood of x being part of class k.

p(y/x) =
efy(x)∑K
k=1 e

fk(x)
=

m∑
i=1

log
eW

T
y xi+by∑K

k=1 e
WT

k xi+bk
(5.28)
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fk(x) = W T
k xi + bk, k ∈ [1,K] (5.29)

From the observation of Equation (5.27), we can logically assert that the Euclidean

distance, which represents the distance between the extracted features and class cen-

triod is acting as a regularization term for the softmax loss function. This method has

gained popularity in the recognition of face classification[4, 189, 193], but such gain as

seen in Fig.5.6 are too small for a complex model like human recognition. Thus a com-

plex model will need an adequate regulization term that will punish heavily weighted

parameters such that a smooth gradient is realized.

p(x) =

K∑
k=1

N(x;µk,Σk)p(k) (5.30)

In this work, we aim to introduce an additional prior distribution regulaization

term to even out the effect of high model complexity that impede better discrimination

amongst the different class and the mechanism of obtaining a well generalized inference

model. A notable assumption made by the authors in [193], is that extracted deep

feature x obtained from the model will be modelled as a Guassian mixture distribu-

tion(GMM) shown in Equation (5.30). From Equation (5.30), the prior probability

is p(k) in class k, with µk and Σk being the mean and covariance of a given class k

respectively.

The most popular forms of inference that GMM relies on are density estimation

and clustering and these two factors strongly correlate the work done in [189]. The

distribution and visualization of deeply learned features as seen in Fig.5.5 and Fig.5.6

describe a bias toward clustering inference where each colour represents different deep

features clusters.

Considering the general assumption made, the likelihood probability of feature xi

with a known class zi ∈ [1,K] can duely be repsesented as shown in Equation (5.31),

while a posterior probability distribution can be described in Equation (5.32).

p(xi | zi) = N(x;µzi,Σzi) (5.31)

p(zi | xi) =
N(x;µzi,Σzi)p(zi)∑K
k=1N(x;µk,Σk)p(k)

(5.32)
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Similarly, it is also possible to approximate the posterior component assignment

using Maximum-a-Posterior (MAP), Bayes’ theorem and estimated model parameters.

In [194], the MAP predictors which are used for learning structured label problems, a

posterior distribution paradigm that can be fine tuned by stochastic gradient descent

over perturbation range are developed. Observations from this work suggest that:

assuming a training datasets of occurrences and target labels, the learning problem can

be the approximation of the parameters of the learning model. This learning model

help define subsequent labels detected by each unique instance. The loss function is

used for evaluating the fitness of each instance.

Based on the Bayes rules as seen in Equation (5.33), mimicking its unique charac-

teristics that allow useful update and distribution about model parameters based on

observed data is proposed. This method of maximizing a posterior probability esti-

mate (MAP) plays a major role in the modelling scheme of the joint probabilty loss

function with an adequate prior regularization terms λ
logN(2π) . To validate the MAP

estimate, Equation (5.33) can be written in term of the Log function as shown in Equa-

tion (5.34). The regularization term is the prior distribution update parameter that

does the inferences on the maximization of the posterior estimate.

p(zi | xi) =
p(xi | zi)p(zi)

p(xi)
(5.33)

zmapi = arg max
zi

p(zi | xi)

= arg max
zi

p(xi | zi)p(zi)
p(xi)

= arg max
zi

p(zi)p(xi | zi)

= arg max
zi

Log(p(xi | zi)) + Log(p(zi))

= arg max
zi

N∑
n=1

Log(p(xi | zi)) + Log(p(zi))

(5.34)

In light of the foregoing, the Bayes’ theorem in Equation (5.34) and GMM also

shown in Equation (5.30) can be used to describe posterior probability distribution of

our deeply learned features x and this is because MAP esimation of model input and

parameters leads to a regularised solution. The prior probability in each equation can

be modelled to produce the likelihood regularizer in the proposed method.
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Therefore, our proposed loss function, LP , is a combination of softmax, center

loss and a likelihood regularization term as shown in Equation (5.35). This likelihood

regularization term provides useful information on the posterior likelihood estimation

of class label zi which is the distribution of features and the predicted label. With the

stochastic gradient descent training method of deep neural networks seen in section

5.2.2, the network parameters are now constrained to learn optimizing the intra-class

compactness, while maximizing the inter-class distance between the different classes.

LP =−
m∑
i=1

log
eW

T
yixi+byi∑n

j=1 e
WT

j xi+bj
+

1

2

m∑
i=1

‖xi − cyi‖22

+
λ

logN(2π)

(5.35)

Furthermore, going by the theoretical and empirical similirarities presented in Equa-

tions 5.30, 5.34 and 5.35, it is easy to draw a correlation on all three methods and their

unique property of adding extra log-prior- distribution regularization term. This term

incoprerates prior knowledge of its estimated parameters and λ as seen in Equation

(5.35) is used in fine-tuning the regularization process. In this work, λ can vary be-

tween 0.2 and 1. However, 1 was the best possible value that improved the discrmina-

tive power in this model. Therefore, this characteristic has provided the opportunity

of leveraging the shortcomings experienced by the joint supervision of softmax and

center loss in HAR. With our proposed method, CNNs for HAR can have a better

supervised loss function that ensures the maximization of inter-class separability and

higher intra-class compactibility.

5.5 Experimental and CNN Detailed Setup

The hardware setups for the deep neural network learning involve NVidia GeForce

GTX 960M windows machine. It has an Intel(R) core(TM) i7-6700HQ Computer

Processing Unit (CPU). The KERAS open source neural network software is used for

the implementation of CNNs deep learning experiment. The tensorFlow framework was

used as a backend for this experiment, with the knowledge that KERAS can function on

top of neural network libraries as though it was the tensowFlow framework itself. The

experimental setup consists of input images from the Weizmann and KTH datasets.

The Weizmann dataset contains 10 classes of activities. However, seven classes were
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considered for this experiment and they are: running (run), bending (bend), jumping

jack (jack), skipping (skip), galloping sideways (side), waiving-two hands (wave) and

jumping forward-on-two-legs (jump).

A total of nine persons were involved in the performance of these seven activities,

five of whom were used for the training purpose while the remaining four were used for

testing.

CNN Details : When a model is constructed for both training and test purposes,

the input shape of the image is of importance. As seen in Table 5.1, the first layer of the

CNNs is a sequential model that primarily depends on the input shape for the first time.

However, subsequent layers along the CNNs are capable of automatically resolving

and dealing with the inference of the shape. An input shape of 40,80,1 representing

width, height and channel number were used respectively. The learning of the model

is centered around three arguments: optimization, evaluation metrics and the loss

function. However, in this case, the three types of loss function experimented with are

made visible in the evaluation layer, but one of these is used at a time. The filter size

of the convolutional layers is set to 3 × 3, followed by a PRelu non-linear activation

unit.The number of feature maps are 32 for the first two convolutional layer and there is

feature maps increement by a factor of ×2 for each two subsequent upper layers which

are 64 and 128 respectively. The max-pooling grid is set to 2× 2 on all pooling layers,

while a stride of 1 is maintained through out the entire model architecture. The source

code algorithm in Table 5.1 outlays the architectural construct of our CNNs model. It

consists of interdependent layers of convolution, activation, max-pooling, dropout, and

the fully connected layer which comprises of a flattened and dense output vector. It is

important to note that this architectural construct is peculiar to our model. As each

feature maps transverse from the input layer to the next layer, the output shape tends

to become smaller and this eventually becomes equal to an output vector representing

the number of classes in the recognition or classification model as seen in Figure 5.1

5.5.1 Experimental results on Weizmann and KTH dataset

In this result section, our model is evaluated on the Weizmann and KTH datasets, a

popular dataset that is well known in HAR. A pictorial example of some Weizmann

and KTH datasets sample is shown in Figures 5.8 and 5.9 respectively. The Weizmann
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Table 5.1: Model Architecture

model = Sequential()

model.add(Conv2D(32, (3, 3), activation=’PRelu’,

padding=’same’, inputshape=(40, 80, 1)))

convout1 = Activation(’PRelu’)

model.add(convout1)

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout2 = Activation(’PRelu’)

model.add(convout2)

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout3 = Activation(’PRelu’)

model.add(convout3)

model.add(MaxPooling2D(poolsize=(nbpool, nbpool)))

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout4 = Activation(’PRelu’)

model.add(convout4)

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout5 = Activation(’PRelu’)

model.add(convout5)

model.add(MaxPooling2D(poolsize=(nbpool, nbpool)))

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout6 = Activation(’PRelu’)

model.add(convout6)

model.add(Flatten())

model.add(Dense(128))

model.add(Activation(’PRelu’))

model.add(Dense(2))

model.add(PReLu)

model.add(Activation(’softmax’, ’softmax + centerloss’,’proposedloss’)

model.compile(loss=’categoricalcrossentropy’,

optimizer=’adadelta’,metrics=[”accuracy”])

image dataset of 910 images were randomly shuffled into a training set of 728 Images

and a testing set of 182 samples images. The processed images were resized to 80× 40

pixels to reduce excessive computational burden.
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With the KTH dataset, the images from the video frames are extracted and pre-

processing is applied to the extracted image sequence. The KTH dataset comprises of

six different kinds of human actions: walking, jogging, running, boxing, hand waving,

and hand clapping. These grayscale images were then cropped to 90 × 35 pixels. A

total of 1200 images were used for the training and 210 images for testing.

The discriminative power for each loss function is shown in Figures 5.5, 5.6 and

5.7. However, from the visualization and distribution of features in our newly proposed

regularization method, Figure 5.7 has better discriminative power for HAR than for

the two other methods (softmax and jointly supervised softmax and center loss). From

Figure 5.7, the class separations are distinct which is a huge progress that underscores

the importance of features regularization in deep neural network.

The results in Table 5.2 shows the accuracy of all three methods considered in this

study. From this table, our proposed method has shown superior recognition accuracy

over the softmax loss function and the jointly supervised loss function as in [189]. Our

proposed method has achieved an accuracy of 96.40% on the Weizmann dataset, which

is a better performance than the 93.67% and 95.30% achieved by the softmax and

jointly supervised loss repectively.The similitude between the results from the Weiz-

mann dataset, and the KTH dataset accounts for the improvement in the accuracy of

our proposed likelihood regularized loss function. A 95.20% accuracy is observed in

our proposed method which is better compared to 93.0% and 94.90% achieved by the

softmax and the jointly supervised loss respectively. Figures 5.10, 5.11 and 5.12 demon-

strate that our proposed regularized loss function has much capacity to further improve

its learning curve during the training process. This is because, as seen in Figure 5.12,

it is evident that both training and test set graphs still exhibit a sign of continuity

even past the 200th epoch. However, this is different for softmax loss and the jointly

supervised loss seen in Figures 5.10 and 5.11 respectively. There exists a flat region

around the 130 epoch along Figures 5.10 and 5.11, which is an indication that the

network is unable to learn from further iteration as the gradient may have been stuck

in the local optimal region during the back propagation process. From the foregoing,

it is evident that the regularization term contributed to better training accuracy and

better discriminative power of the fearures in HAR recognition and classification.
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Figure 5.8: Weizman Images - Images of Human activity action from Weizmann video

dataset.

Figure 5.9: KTH Images - Images of Human activity action from KTH video dataset.

Figure 5.10: Softmax Accuracy - Model accuracy for softmax loss.
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Figure 5.11: Center Loss Accuracy - Model accuracy for center loss.

Figure 5.12: Proposed Model Accuarcy - Model accuracy for our regularized center

loss.
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Table 5.2: Accuracy score for different loss function method

Loss Function Accuracy on Weimann Accuracy on KTH

Softmax 93.67% 93.0%

Centerloss 95.30% 94.90%

Proposed Method 96.40% 95.20%

5.6 Model Optimization

Model optimization are in different forms and they are necessary for clear feature

learning, most of these optimization methods provide significant means of feature reg-

ularization. Feature regularization creates means of model expressive characterization

and recognitions needed in most computer vision domains and other deep learning ar-

eas. The expressive characteristic exhibited by the deep convolutional neural networks

model is owed to its ability of mapping a complex relationship between both input

and output with the aid of several non-linear hidden units. However, small sample

size training data also act disadvantageously by allowing noise presents in the training

data to be modeled as a complex relationship. These additional superficial complexities

which are adequately modeled in the training sets are not necessarily accounted for in

the test sets and this imbalance leads to overfitting. One notable method for over-

coming overfitting is to stop the training cycle when it is observed that performance

on a validation set starts to loose its strength to generalize on an unseen data. Addi-

tionally, L1 and L2 weight penalties regularization method have also been considered

in Nowlan and Hinton [195]. Another method that was introduced into convolutional

neural networks model was the concept of dropout. Dropout has become increasingly

popular in its use in deep learning for the optimization and avoidance of unpleasant

overfitting. Dropout [196, 197] is a regularization technique that stochastically equates

the activation of hidden units to a zero value for every routine training subset per

training time. New stochastics averaging model method also contrived by dropout

concept were stochastic pooling [198] and Dropconnect [145, 198, 199]. The summary

effect of dropout on neural networks is its method to light loose its composition of co-

adapted feature detector. This process disables other retained neuron components from
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contributing their overall weighting process. Such provisional exclusion of hidden and

visible units from the network causes incoming and outgoing weights connections to be

dropped as shown in Figure 5.13b. The decision on what units are to be dropped is done

randomly and preserving each unit with a fixed probability p which is uninfluenced by

other units. In our experiment and for simplicity, we simply set p as 0.5 as empirical

results from numerous neural network task have ascertained its optimal characteristic

[193]. Interpreted differently, the dropout concept contrives a unique way of averaging

modeling trained networks such that the number of trained models is like its individual

units at test time, thus allowing the parameters to be shared in such a model. Again,

put differently, the application of dropout mechanism is like sampling a thinned neural

network model from the original model. Therefore, this thinned network comprises of

network units retained after the dropout was done as seen in Figure 5.13b. The possible

number of thinned networks from n unit neural networks is given to be 2n. Weight

sharing in this network is common as new thinned networks are trained during each

performance cycle. Therefore, applying dropout on neural networks is similar to the

training of 2n thinned networks with maximum weight sharing, also with less training

cycle for the thinned networks. The advantage of using dropout is to have multiple

simpler co-adapted units which are great at generalizing well with a novel test data

rather than a complex co-adaption from a conventional neural network that is poor on

generalization.

Figure 5.13: Dropout Visualization - Graphical Representation of Neural Netwoks

Dropout
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5.6.1 Neural Network Dropout Model Description

In this section, an overview of dropout neural network model is reviewed. Assume a

neural network with L numbers of hidden layers, where l ∈ {1, . . . L,} represents the

layer index of the neural networks. Let V l be the input vector going into layer l, while

Ol denotes the output vector from layer l . For a conventional fully connected feed-

forward networks (i.e) Figure 5.13a with weights wl , hidden units i , and biases bl, can

be defined as L ∈ {0, . . . L− 1,}

vl+1
i = wl+1

i Ol + bl+1
i (5.36)

ol+1
i = f(vl+1

i ) (5.37)

Suppose f is the activation function given as f(x) = 1
(1+exp(−x))

rlj ∼ Bernoulli(p)

Ōl = rL ∗Ol, (5.38)

vl+1
i = wl+1

i Ōl + bl+1
i (5.39)

ol+1
i = f(vl+1

i ) (5.40)

The element-wise product is given as ∗, and rl is the Bernoulli random variable

with a probability of 1. For the purpose of creating a thinned output network Ōl,

the element-wise multiplication of the sample vector and the outputs of layer Ol are

carried out. The Iterative use of the successive thinned output from one layer as the

input to another layer amounts to random selection and making a sub-network from

a much larger network. The backpropagation method as discussed in section5.2.2 is

used for the learning purpose to ensure that errors are reducted and thus achieve better

generalization of our recognition model.
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Table 5.3: Key training summary of input parameters to the CNNs

Batch size to train batch size = 32

Number of output classes nbclasses = 7

Number of epochs to train epochs = 35

Number of convolutional filters to use nbfilters = 32

Size of pooling area for max pooling nbpool = 2

Convolution kernel size nbconv = 3

5.6.2 Empirical Results on the Dropout Regularization

The dropout regularization training architecture is slightly modified from that of Table

5.1 to accommodate the dropout layers and other layer parameters that could enhance

better optimization of the model. A summary of the parameters of the input training

is shown in Table 5.3 and explicitly explains all of the input parameters at the initial

stage of our convolutional neural networks. In the experimental setup, a batch-size

of 32 was used. The batch-size is the number of training samples that is designed to

propagate a forward and backward pass through the neural network architecture in

one iteration. An optimal batch-size creates efficient utilization of memory and better

training of the model. One such forward and backward pass of a training sample is

called the epoch. The visual concept of an epoch is demonstrated in Tables 5.5 and

5.8 and each training cycle is characterized by a cost function which is evaluated by

the model to ascertain its accuracy. The backpropagation mechanism of optimization

as discussed in Section (5.2.2) provides the next epoch cycle where necessary weight

adjustment is needed to further improve model accuracy.

A max-pooling of 2 is considered in the pooling layer of this CNNs model, while

the number of convolutional filters and kernel size engaged were 32 and 3 respectively.

A model is constructed for both training and test purposes and the input shape of

the image is of importance. The CNNs first layer is a sequential model that primarily

depends on the input shape for the first time. However, subsequent layers along the

CNNs are capable of automatically resolving and dealing with shape inference. An

input shape of 40,80,1 representing width, height and channel number respectively is

used. The Learning of the model is centered around three arguments, these are opti-
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mization, metrics and the loss function. These functions are essential for a successful

training and a better classification. The source code on Table 5.4 outlays the architec-

tural construct of our CNNs model using the Weizmann and KTH dataset respectively.

It consists of interdependent layers of convolution, activation, max-pooling, dropout

and the fully connected layer which comprises of a flattened and dense output vector.

However, it is important to note that while this architectural construct is peculiar to

our model, experts in machine learning are responsible for determining how their CNNs

architectural buildup model is designed. The choice of how much of dropout scheme

needs regularization is also a design bias for machine learning engineers. Furthermore,

the output shape associated with each respective layer has the tendency of shrinking

down the layers. As each feature maps traverse from its input layer to the next output

layer, output shape becomes smaller and this eventually equals to an output vector

representing the number of classes in the recognition or classification model.

For clarity and also to understand the score metric of each model, a brief introduc-

tion of terms that are used to evaluate the results of performances is given. Below are

some terms that are helpful in the definition of the score metrics:

Common Terms:

1. Positive (P): Correct prediction (for example: Running)

2. Negative (N): Incorrect prediction (for example: Not Running).

3. True Positive (TP): Actual class Observation is positive, but the predicted value

is positive.

4. False Negative (FN): Actual class Observation is positive, but the predicted value

is negative.

5. True Negative (TN): Actual class Observation is negative, but the predicted value

is negative.

6. False Positive (FP): Actual class Observation is negative, but the predicted value

is positive.
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Precision: Precision is the percentage of positive correctly predicted observa-

tions to the total positive predicted observations. This is a measure of how many

positive predictions were real positive observations.

Precision = TP
TP+FP = positively(correctly)predicted

Totalpositiveprediction

Recall: Recall is the percentage of appropriately predicted positive observations

to all the total predicted observations.

Recall = TP
TP+FN = positivelycorrectlypredicted

Totalpredictedobservation

F1-score: F1-score is the mean average of both the Precision and the Recall

and it is particularly useful than a stand alone accuracy metric particularly when the

dataset is unevenly distributed. It is denoted as :

F1− Score = 2 ∗ (Recall∗Precision)
(Recall+Precision)

Table 5.9 presents a tabular detailed evaluation of our proposed loss CNN’s model

experimented on the Weizmann datasets, the using the Precision, Recall, and the F1

Score metrics. These score metrics are means of measuring how good our model was

in relation into the classification and recognition of different class labels in our training

and test data. Our goal is to empirically evaluate the functionality of our regularized

model with the concatenation of dropout layers between model layers so as to further

improve the power of the generalization models.

The effect of dropout on model regularization has extensively been discussed in

this work and empirical analysis has been performed to further highlight how effective

they can be in attaining quick convergence and a better performing model. Logging

training loss and accuracy is a great way of making inferences on how well our model

is converging. However, with an overfit model, the use of accuracy and loss as metrics

of evaluation can also become a superficial way of evaluation. Therefore, performances

on these metrics are difficult to evaluate as best accuracy on poorly regularized models

can become badly scaled and this produce weak performance when tested on unseen

data.

The performance metrics of both regularized and unregularized models using KTH

and Weizmann dataset is discussed extensively in this section. The KTH dataset con-

sists of six classes duly represented in Tables 5.6 and 5.7. The average score for
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Table 5.4: Model Architecture for convolutional neural networks with Weizmann dataset

model = Sequential()

model.add(Conv2D(32, (3, 3), activation=’PRelu’,

padding=’same’, inputshape=(40, 80, 1)))

convout1 = Activation(’PRelu’)

model.add(convout1)

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout2 = Activation(’PRelu’)

model.add(convout2)

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout3 = Activation(’PRelu’)

model.add(convout3)

model.add(MaxPooling2D(poolsize=(nbpool, nbpool)))

model.add(Dropout(0.5))

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout4 = Activation(’PRelu’)

model.add(convout4)

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout5 = Activation(’PRelu’)

model.add(convout5)

model.add(MaxPooling2D(poolsize=(nbpool, nbpool)))

model.add(Dropout(0.5))

model.add(Convolution2D(nbfilters, nbconv, nbconv))

convout6 = Activation(’PRelu’)

model.add(convout6)

model.add(Flatten())

model.add(Dense(128))

model.add(Activation(’PRelu’))

model.add(Dense(2))

model.add(PReLu)

model.add(Activation(’proposedloss’)

model.compile(loss=’categoricalcrossentropy’,

optimizer=’adadelta’,metrics=[”accuracy”])
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Table 5.5: A summary of model evaluation for CNNs using KTH datasets

Train on 576 samples, validate on 144 samples Epoch 1/20

576/576 [=] - 6s - loss: 1.7804 - acc: 0.2101 - valloss: 1.6016 - valacc: 0.4097

Epoch 2/20

576/576 [=] - 4s - loss: 1.4554 - acc: 0.4358 - valloss: 1.1288 - valacc: 0.5903

Epoch 3/20

576/576 [=] - 4s - loss: 1.1090 - acc: 0.6076 - valloss: 1.0872 - valacc: 0.5278

Epoch 4/20

576/576 [=] - 4s - loss: 0.8850 - acc: 0.6840 valloss: 0.7445 - valacc: 0.7431

Epoch 5/20

576/576 [=] - 4s - loss: 0.7104 - acc: 0.7708 - valloss: 0.6306 - valacc: 0.7639

Epoch 6/20

576/576 [=] - 4s - loss: 0.5973 - acc: 0.7743 - valloss: 0.5217 - valacc: 0.7986

Epoch 7/20

576/576 [=] - 4s - loss: 0.5084 - acc: 0.8090 - valloss: 0.4502 - valacc: 0.8472

Epoch 8/20

576/576 [=] - 4s - loss: 0.4549 - acc: 0.8299 - valloss: 0.3965 - valacc: 0.8611

Epoch 9/20

576/576 [=] - 4s - loss: 0.3576 - acc: 0.8663 - valloss: 0.4501 - valacc: 0.8681

Epoch 10/20

576/576 [=] - 4s - loss: 0.3542 - acc: 0.8663 - valloss: 0.3906 - valacc: 0.8958

Epoch 11/20

576/576 [=] - 4s - loss: 0.2326 - acc: 0.9184 - valloss: 0.3991 - valacc: 0.8750

Epoch 12/20

576/576 [=] - 4s - loss: 0.2324 - acc: 0.9201 - valloss: 0.4330 - valacc: 0.8958

Epoch 13/20

576/576 [=] - 4s - loss: 0.1902 - acc: 0.9306 - valloss: 0.3544 - valacc: 0.9097

Epoch 14/20

576/576 [=] - 4s - loss: 0.1670 - acc: 0.9444 - valloss: 0.4365 - valacc: 0.9333

Epoch 15/20

576/576 [=] - 4s - loss: 0.1935 - acc: 0.9358 - valloss: 0.3601 - valacc: 0.9097

Epoch 16/20

576/576 [=] - 4s - loss: 0.1810 - acc: 0.9340 - valloss: 0.3022 - valacc: 0.9506

Epoch 17/20

576/576 [=] - 4s - loss: 0.1339 - acc: 0.9531 - valloss: 0.4177 - valacc: 0.8889

Epoch 18/20

576/576 [=] - 4s - loss: 0.1533 - acc: 0.9410 - valloss: 0.3620 - valacc: 0.9867

Epoch 19/20

576/576 [=] - 4s - loss: 0.1545 - acc: 0.9462 - valloss: 0.3464 - valacc: 0.9597

Epoch 20/20

576/576 [=] - 4s - loss: 0.1278 - acc: 0.9479 - valloss: 0.3501 - valacc: 0.9628

Test score: 0.350081033177

Test accuracy: 0.962777777778
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Table 5.6: Evaluation metrics with CNNs model for KTH dataset

Activities Precison Recall F1-Score Support

class 1(WALKING) 0.92 0.92 0.92 25

class 2(JOGGING) 0.95 1.00 0.98 21

class 3(RUNNING) 0.96 0.92 0.94 27

class 4 (BOXING) 1.00 1.00 1.00 27

class 5(HAND WAVING) 1.00 0.95 0.97 20

class 6(HAND CLAPPING) 0.96 1.00 0.98 24

avg / total 0.97 0.97 0.97 144

Table 5.7: Confusion matrix of the recognition evaluation in % using convolutional neural

networks for different activities of the KTH database

Activities Walking Jogging Running Boxing Hand Clapping Hand Waving

Walking 23 1 1 0 0 0

Jogging 0 21 0 0 0 0

Running 2 0 25 0 0 0

Boxing 0 0 0 27 0 0

Hand Claping 0 0 0 0 19 1

Hand Waving 0 0 0 0 0 24

all three-evaluation metrics are 97%, for the precision, recall and the F1-Score respec-

tively. The class activity of running and boxing had a precision score of 96% and 100%

respectively while their recall score for jogging, boxing and hand clapping were 100%

except for the hand wavinging with a 95% score. Interestingly, from the results analysis

between the two datasets, it was observed that our CNNs model performs better with

the Weizmann dataset than with the KTH dataset. A more cogent explanation for

this differential are more likely to results from the number of KTH training sample

that was used in training as they were fewer than the Weizmann datasets. This result

underscores the empirical finding earlier mentioned in the literature review section that

deep networks are better with more training data as this improves the convergence of

the model and also aids better recognition and classification task.

The graphs in Figure 5.14 demonstrate that dropout is an effective regularization

technique that leverages on the problematic effect of overfitting. It also allows quick

convergence when used correctly. A comparative difference between models in Tables
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5.1 and 5.4 is that dropout is introduced in certain hidden layers to reduce the number

of parameters that are likely to co-adapt as discussed in [196, 200, 201]. Figures 5.14(a)

and 5.14(c) represent accuracy and the optimization scores derived from the introduc-

tion of dropout in the model while Figures 5.14(b) and 5.14(d) describe a model that

has no dropout layers between the hidden layers of the convolutional neural network.

Figure 5.14: Dropout Effect on KTH - Effect of dropout on model accuracy and loss

on the KTH dataset

A detailed analysis of the KTH dataset model shown in Figure 5.14 (a) and Figure

5.14(b) shows that both model accuracies are approximately the same, but a close

look at Figure 5.14(a) at epoch 35 shows that the graph line has started to gain more

accuracy. Moreover, the convergence rate for the regularized model of Figure 5.14 (a)
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is smooth and is at close proximity with the training graph. This tells a better story

that the regularized model is more inclined to generalize with unseen data than the

unregularized model graph seen in Figure 5.14(b). The convergence rate seen in the

unregularized model is quite unstable and is characterized by saw tooth shape. This is a

clear demonstration of overfitting in Figure 5.14(b). This uneven zig-zag pattern in the

unregularized deep learning model creates difficulty for quick convergence in the design

of any machine learning model. All these are known pointers which measure how well

the dropout technique can become a veritable method of resolving the ugly concept of

overfitting issues common in modern problems of machine learning. This model type

generalizes even better as seen in Figures 5.14(a) and 5.14(c) when unseen data set is

used for testing and validation of the model. The optimization scores are presented

in Figures 5.14(c) and 5.14(d). This represents the losses associated with each model.

The training set loss for both models with dropout and without dropout are sharp

and steep in their downward curve decay which indicates a progressive optimization

process. This is obviously so because the humongous parameters of the model have a

complete knowledge of the training dataset. Therefore, this model is characterized by

relative ease of finding the appropriate weight and biases to maintain a steep downward

curve. The high number of parameters present during training are key factors for such

optimization gain. Sadly, this is a major problem in neural network and this leads

to overfitting. The test set decay curves are however different as their optimization

function curves are better with dropout as shown in Figure 5.14(c). Again, in close

proximity, there are similarities to the training set losses. The optimization loss as seen

in Figure 5.14(d) is irregular in shape and thus exhibits same zig-zag downward curve

decay. A close observation of Figure 5.14(d) reveals a zig-zag decay at the initial stage

which is then followed by a slight upward rise at the tail end of the graph. This is

an indication of the poor model that is capable producing fantastic results with the

training set but generalizes poorly on the test or validation data.

The Weizmann dataset result shown in Figure 5.15 expresses similar patterns of

performance as those seen in the KTH dataset. It was observed that the overall perfor-

mance with dropout outperformed the model without dropout. Figure 5.15(a) shows

the accuracy of model with 99% in comparison to the test set which amounts to a 2%

increment from the unregularized model with an accuracy rate of 97% as shown in

Figure 5.15(b). Again, a contrast of the losses in the model as seen in Figures 5.15(c)

116



5.6 Model Optimization

Table 5.8: A summary of model evaluation for CNNs using Weizmann datasets

Train on 728 samples, validate on 182 samples

Epoch 1/20

728/728 [=] - 5s - loss: 1.8272 - acc: 0.2637 - val loss: 1.6397 - val acc: 0.4615

Epoch 2/20 728/728 [=] - 4s - loss: 1.2921 - acc: 0.5426 - val loss: 0.7720 - val acc: 0.8242

Epoch 3/20

728/728 [=] - 4s - loss: 0.8116 - acc: 0.7253 - val loss: 0.5330 - val acc: 0.8242

Epoch 4/20

728/728 [=] - 4s - loss: 0.5282 - acc: 0.8214 - val loss: 0.3954 - val acc: 0.8791

Epoch 5/20

728/728 [=] - 4s - loss: 0.3976 - acc: 0.8750 - val loss: 0.2601 - val acc: 0.9396

Epoch 6/20

728/728 [=] - 4s - loss: 0.3189 - acc: 0.8846 - val loss: 0.1719 - val acc: 0.9505

Epoch 7/20

728/728 [=] - 4s - loss: 0.2381 - acc: 0.9258 - val loss: 0.1528 - val acc: 0.9396

Epoch 8/20

728/728 [=] - 4s - loss: 0.2015 - acc: 0.9451 - val loss: 0.1374 - val acc: 0.9615

Epoch 9/20

728/728 [=] - 4s - loss: 0.1729 - acc: 0.9437 - val loss: 0.1348 - val acc: 0.9560

Epoch 10/20

728/728 [=] - 4s - loss: 0.1459 - acc: 0.9560 - val loss: 0.1488 - val acc: 0.9451

Epoch 11/20

728/728 [=] - 4s - loss: 0.1483 - acc: 0.9602 - val loss: 0.1347 - val acc: 0.9505

Epoch 12/20

728/728 [=] - 4s - loss: 0.1138 - acc: 0.9739 - val loss: 0.0917 - val acc: 0.9725

Epoch 13/20

728/728 [=] - 4s - loss: 0.1136 - acc: 0.9684 - val loss: 0.0764 - val acc: 0.9780

Epoch 14/20

728/728 [=] - 4s - loss: 0.1051 - acc: 0.9739 - val loss: 0.1504 - val acc: 0.9396

Epoch 15/20

728/728 [=] - 4s - loss: 0.1001 - acc: 0.9725 - val loss: 0.0551 - val acc: 0.9780

Epoch 16/20

728/728 [=] - 4s - loss: 0.0841 - acc: 0.9794 - val loss: 0.0509 - val acc: 0.9835

Epoch 17/20

728/728 [=] - 4s - loss: 0.0736 - acc: 0.9808 - val loss: 0.0622 - val acc: 0.9780

Epoch 18/20

728/728 [=] - 4s - loss: 0.0629 - acc: 0.9876 - val loss: 0.1055 - val acc: 0.9670

Epoch 19/20

728/728 [=] - 4s - loss: 0.0617 - acc: 0.9835 - val loss: 0.0549 - val acc: 0.9835

Epoch 20/20

728/728 [=] - 4s - loss: 0.0505 - acc: 0.9876 - val loss: 0.0636 - val acc: 0.9780

Test score: 0.0636460948019

Test accuracy: 0.978021978022
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Figure 5.15: Dropout Effect on Weizman - Effect of dropout on model accuracy and

loss on the Weizmann Dataset
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Table 5.9: Evaluation metrics with CNNs model with Weizmann dataset

Activities Precison Recall F1-Score Support

class 1(RUNNING) 1.00 0.92 0.96 25

class 2(BENDING) 1.00 1.00 1.00 24

class 3(JACKING) 1.00 1.00 1.00 34

class 4(SKIPING) 0.90 1.00 0.95 19

class 5(SIDEWALK) 1.00 1.00 1.00 28

class 6(WAVING 1.00 1.00 1.00 23

class 7(JUMPING) 1.00 1.00 1.00 29

avg / total 0.99 0.99 0.99 182

Table 5.10: Confusion matrix of the recognition evaluation in % using convolutional

neural networks for different activities of the Weizmann database

Activities Running Bending Jacking Skiping Sidewalk Waving Jumping

Running 23 0 0 2 0 0 0

Bending 0 24 0 0 0 0 0

Jacking 0 0 34 0 0 0 0

Skiping 0 0 0 19 0 0 0

Sidewalk 0 0 0 0 28 0 0

Waving 0 0 0 0 0 23 0

Jumping 0 0 0 0 0 0 29

and 5.15(d) points to the fact that dropouts have the potential of reducing the effect of

overfitting in deep learning architecture. To further buttress the effect of overfitting, it

is observed that the decay curve for the regularized model in Figure 5.15(c) is smoother

and near to the training model. The same cannot be inferred from the unregularized

model in Figure 5.15(d), as the difference between the decay curve for the training and

test set is larger than the regularized model. The evaluation metric in Table 5.9 has

demonstrated the powerful discriminant characteristics of dropout techniques in CNNs.

It has shown a near perfect classification score with an overall precision average of 99%.

Furthermore, the 99% score on both Recall and F1-Score is also a clear demonstration

of the quality nature of our model designed using dropout regularization on the CNNs

architecture. The results from Table 5.9 and 5.10 show why the adoption and ap-

plication of regularization in deep learning architecture in computer vision and image
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processing sector has become popular. Its popularity stems from its manoeuvrability

of hyper-parameters by regularization to achieve state-of-the-art results, in the image

recognition model. All five activities of the seven classes (i.e.) bending, jacking, side-

walk, waving and jumping had a perfect 100% score in all three-evaluation metrics,

while the only two activities that performed slightly less than other five were the run-

ning and skipping. From the activities rows, the running column has a precision score

of a 100%, while recall and F1-score were 92% and 96% respectively. The skipping

activities have a similar narrative with the recall evaluation score of a 90%, while the

precision and F1-score have 100% and 95% respectively. Again, a comparison between

Tables 5.9 and 5.10 corroborates the result analysis discussed earlier. Therefore, going

by the result analysis on the Weizmann dataset, the dropout feature regularization in

deep learning algorithm in challenging an area like computer vision has exhibited its

robustness and effectiveness. This experiment has gainfully elucidated the importance

of dropout implementation in building deep neural network models.

5.6.3 L2 feature Regulaization

Another potent and successful way of reducing overfitting is increasing the training

dataset, thus reducing the network size complexity which has also shown to be very

effective. However, care must be taken not to overly prune network size to stop over-

fitting the recognition model. Large sized networks are good for better classification

purposes than smaller networks. The difficulty experienced in getting hold of larger

dataset and not able to scale up our network instantaneously while training is a major

concern to the leverage provided by large dataset and networks. Besides the dropout

techniques of regularization, L2 technique of regularization has commonly been used

in neural network optimization. This technique wraps an extra term around the cost

function, causing the model weight to be penalized as they decay to get their respective

optimum values. This extra term is called the regularization term, due to its affinity for

weight penalization using mathematical differentiation techniques, and is often referred

to as the weight decay method. This term is usually represented as shown in Equation

5.41 with the first term representing Loss in Equation 5.41 is the loss function, while the

second term is the regularization term. This regularization term contains the square

sum of all the weights present in the network and the summed square weight is scaled
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by a factor of λ
2n , the λ is called the regularization parameter and must be greater than

0, n parameter in this case represents the size of the training.

C = Loss+
λ
∑

w2

2n
(5.41)

The regularization term allows for the network to utilize small weights and large

weights only if they exhibit signs of improving the cost function at the onset of each

propagation. This holistic pattern seeks to define a balanced way of appropriating

smaller weights and minimizing the cross-entropy function and the λ plays a significant

role in the relative importance among the two elements.

The implementation of the normal gradient descent learning can be achieved in

the regularized network and the computation of the partial derivatives as discussed in

section 5.2.2 is like Equation 5.42. However, the addition of a regularizing term to all

the partial derivatives of the weight term is what makeS the difference between the

backpropagation done in regularized and unregularized cost function.

∂C

∂w
=
∂Loss

∂w
+
λw

n
(5.42)

w −→ w − η∂Loss
∂w

− ηλw
n

(5.43)

where η is the learning rate and λ is the regularization parameter.

= (1− ηλ

n
)w − η∂Loss

∂w
(5.44)

The expressionS in Equations 5.43 and 5.44 are not different from the known gra-

dient descent learning rule, except for the weight decay that is induced by the scaling

factor (1− ηλ
n ). This factor contributes towards the diffusion of its weight terms towards

zero term, though the other term in the equation helps to balance the weights. The

weights never reach the zero term and may even increase at one point. This whole idea

in L2 regularization is the major concept of reducing unregularized cost function that

will help in reducing overfitting. Improving the model generalization techniques means

finding a way to improve the feature learning process. Good and stable features are

important in learning internal representation in any datasets. Therefore, the L2 reg-

ularization is used to suppress overfitting which is responsible for poor generalization

thus inhibiting proper representation and recognition of vital patterns which are key in

HAR purposes.
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5.6.4 Effect of L2 regularization on KTH dataset

This section examines the effect of L2 regularization on weight and biases of the system

to determine its performance on the model. The model architecture is the same as

described in Table 5.4. The model accuracy and losses are two empirical metrics that

can be used to analyse how well the model is generalizing. This neural network is

designed with a mini-batch size of 32, 100 hidden nodes, regularization parameter of

λ = 0.1, a learning rate 0f 0.01 and the cost function. The cost pattern as shown in

Figure 5.16 depicts the training cost and they lean towards zero mark. Meanwhile,

the test data cost line initially follows similar patterns of the training set. However,

there is an abrupt decline in its downward decay curve. Instead, there is progressive

continuous increase in the graph line and this is an indication of model overfitting on

the KTH dataset.

Similarly, a close look at the accuracy on Figure 5.17 presents a significant challenge.

It can be observed that with 60 epoch, the model stops to update its accuracy. This is

evident in the constant line seen on the accuracy graph in Figure 5.17. The failure of the

test to achieve accuracy to continue and its accuracy update can be attributed to two

main reasons. First, the model is susceptible to overfitting and secondly the neurons

in the model have failed to learn new things as a result of the gradient saturation. The

only inference that can be learnt from the latter is that unregularized model can cause

neurons to be stuck in the local minimum. This can prompts dead neurons, causing

gradient update to be impossible.

Figure 5.16: Loss function Graph - Unregularized Cost
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Figure 5.17: Accuracy Graph - Unregularized Accuracy

In Figure 5.18, the application of regularization helps to conquer the disadvantages

caused by overfitting. The cost of both the training and the test set has similar decay

patterns and this is an indication that the model has suppressed overfitting. Further-

more, there are provisions and rooms for improving the accuracy. The accuracy in

Figure 5.19 shows a continuous tendency of improving its accuracy as opposed to the

constant horizontal line seen in Figure 5.17. This implies that with adequate knowl-

edge of how to choose the correct learning rate and other hyper-parameters, a better

accuracy is guaranteed. However, though the accuracy of both the unregularized and

the regularized are almost the same at 91%, the gain of the regularized results is more

achievable because they can generalize well with unseen data considering the perfor-

mances as seen from the regularized graphs.

In conclusion, with empirical analysis highlighted in this work, it can be said that

regularization is a reasonable cause that has allowed our network to generalize well over

unregularized network.

5.7 Hyperparameter Learning for improving Recognition

in Human Activity Recognition using Bayesian Opti-

mization

Parameter optimization is another reliable way of contributing to the successful ap-

plication of the deep learning process. To achieve the most optimum results, efforts
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Figure 5.18: Regularized Cost - Graph Showing a Regularized Loss

Figure 5.19: Regularized Accuracy - Graph Showing a Regularized Accuracy
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at choosing appropriate parameters are often seen as key for creating better learning

models. Each of these parameters is often called hyperparameter. Examples of these

hyperparameters can be number of layers present in the network, number of neurons

in each layer, activation function type, learning rate and number of call or epoch. All

these hyper parameters have unique functionality that can steer and influence the over-

all performance of any model. An optimum hyperparameter choice in machine learning

function can decide what machine algorithm should be called state-of-the art. Hyperpa-

rameters functional capabilities are unique, and they vary from one dataset to another

dataset. There are several methods by which machine learning model can be tuned via

the use of hyperparameters.

Hand tuning and grid search methods are some of the earliest methods of performing

hyper parameter optimization[185]. Hand tuning is characterized by a set combination

of parameters chosen to influence the optimum path to a better recognition and classifi-

cation result and these performance metrics are recorded. This hand tuning method is

continuously performed with the intention of discovering optimum parameters capable

of improving the overall classification or eventual recognition of the results. The chance

of obtaining better results depends on the robust acquaintance of the knowledge domain

with the subject area and sometimes by mere probability of chance and time. These

kinds of parameters searching are very time-consuming and difficult to realize. The

grid search method is a better refined way of searching good hyperparameters. This

method allows for each participating parameter to be divided into an evenly spaced

range. Every unit and all possible combinations within the parameter range are ex-

plored for identifying the most significant parameters that allow high representational

learning from any data possible. The computational burden of this type of method

is performed by computers. However, such computation becomes time consuming as

any slight increment in the parameters-combination can exponentially grow the com-

putational process. For example, tuning 5 hyperparameters in a model with a possible

combination of 10 values will amount to 105 parameter-combinations. With the ad-

dition of only one more hyperparameter, there will be 106 parameter-combinations.

Another type of optimization scheme in deep learning is called random search method

which is, unlike the grid search. This method randomly parses the hyperparameter

space to locate the best hyper-parameter combination. The probability of targeting
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the optimum hyper-parameters decreases to zero as the number of combinations in-

creases leading to poor generalization of the model. The particle swarm optimization

uses the population-based heuristic algorithm that mimics the collective behaviour of

groups of entities like animals. Examples are the school of fish, colony of ants, and

flocks of bird and bees swarming. All these are directional movements to a defined

position with the objective of achieving a common goal in a multidimensional space.

In [202], this method was found to be simple. It also retains the capability of locating

optimum hyperparameters in multidimensional spaces.

The Gaussian process is a distribution function often used by the Bayesian opti-

mization algorithm. It has been used successfully to improve the learning rate in the

deep architectural learning model. In this section, an attempt to implement and empir-

ically evaluate the Bayesian process in our model is discussed. Bayesian optimization

can be said to belong to a group of optimization algorithm known as the sequential

model-based optimization algorithm. This algorithm is built around the utilization of

previously known observation of the loss function f to decide the next optimal region

that could be better in optimizing loss function f .

There are two vital choices that must be made when Bayesian optimization is con-

sidered for the optimization of the function. Firstly, the posterior expectation of the

function f can be calculated from previously evaluated parameters on given points.

This posterior expectation can be modeled by the Gaussian process prior, known for it

flexibility as it can easily be managed. Secondly, an acquisition function is constructed

for probing into new points for the loss function to maximize certain utilities of the

expectation of f. The utility parameters are good pointers to the next best domains

that are highly probable for the optimum sampling of the loss function f . A contin-

uous repetition of these steps is allowed pending when some convergence measure is

actualized.

5.7.1 Learning Process

In this section, our goal is to experiment and improve the feature learning using the

Gaussian process for effective parameter selection in HAR. Human activity recognition

can become very intractable due to the complexity of body pose variation and high

correlation of pixel values. A slight change in body pose can present a significant shift

in model inference. Deep learning to some extent has handled such complexity due to it
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high representational mapping power. However a lot is still needed to improve the model

accuracy and convergence rate for inference model. Therefore, exploring additional

ways of maximizing the best practice of automatic hyperparameter tuning is invaluable

to this research work. Hyperparameter tuning has been used in many areas, including

computer vision, natural language processing and other areas of artificial intelligence

for obtaining state-of-the-art results. In view of its wide range of applications, we aim

to direct this technique to experimentally seek more ways of tuning the model for better

function approximation.

In this work, a comprehensive evaluation of the hyperparameter space search with

Bayesian process is undertaken to enable this study add knowledge to the domain

of the computer vision. This research limits its hyperparameters space search to the

learning-rate of the optimizer, number of dense layers, activation function choice and the

number of nodes present in each dense layer. The scikit-optimize application program

interface (API) from the python package is used in the automation of the parameter

space and aim to automate the whole process given the resources of computation that

are currently available. The first stage is to define a valid search dimension for all

these hyperparameters enumerated earlier. The learning rate search space is created

using logarithmic transformed values between the lower and upper bound search range

chosen for the optimization process. For this particular experiment and for the purpose

of simplicity, we define the learning rate search range between 1e−2 being the upper

bound value and 1e−6 as the lower bound value. Another important hyperparameter

is the number of fully connected (dense) layers that are present in the design of deep

learning architecture as discussed in section 5.2.8. The effect of varying the number

of dense layer is monitored. As it relates to the dense layer, the search dimension is

between 1 for the least densed model and 5 for the most densed layers. The number

of nodes present in each fully connected (dense) node is another factor that probably

influences the generalization ability of the model. Therefore, a search-dimension for the

number of nodes is allowed to range from between 5 and 512 nodes respectively. The

activation choice for the hyperparametrization is between the Tanh, Relu and Sigmoid

function. Table 5.11 shows a tabular representation of the hyperparameters used in the

optimization of the HAR model.

A default search-space parameter is shown in Table 5.12 used to initialize the op-

timization start point. These choice parameters are determined either by individuals
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Table 5.11: Hyper-parameters summary and dimensional search range

Hyper-Parameters Search-Dimension

Learning Rate Range(low = 1e−2,High = 1e−6)
Number of Dense Layer low =1, High= 5
Number of Nodes in each Layer low =1, High= 5
Activation function type Categorical = ′Relu′ ′Sigmoid′

′Tanh′

Table 5.12: Stochastic hyper-parameter selection for initial training

Hyper-Parameters Search-Dimension

Learning Rate 1e−6)
Number of Dense Layer 1
Number of Nodes in each Layer 16
Activation function type Relu

hand tuning experience or by heuristic method. However, is be better to get the

initialization search space right to enable a quick convergence and to achieve better

generalization of the model. The model is trained and its fitness function evaluated

on the test set of KTH human activity database. This architectural model is like the

earlier one proposed except for the new parameters function introduced. At the end

of the training and the fitness process, the best parameter is saved and only replaced

when there is a better accuracy metric from other subsequent iterations.

With the hyperparameter dimensional search defined, the Bayesian optimization

techniques is used to further implement the optimization process. The Gaussian pro-

cess fed to the expected improvement as its acquisition function is used to model the

probability distribution over the loss function derived from our posterior. For the sake

of simplicity, this work sets the number of calls to 50 at the beginning. Increasing

the number of calls has also shown better results which is a clear indication that the

likelihood of obtaining optimal accuracy can directly be linked to the average number

of time spent in hyperparameter space exploration. The result displayed in Table 5.13

shows the accuracy of the model only when the default parameters in Table 5.12 which

were obtained with heuristic stochastic selection are used. With a fewer epoch, an

accuracy of 35.62% was attained with the use default parameters.

However, this accuracy obtained is just a reference point which later forms the basis

and informs the direction from which the Gaussian process chooses its next hyperparam-

eters values from. A full hyperparameter dimensional search space defined earlier is then

used to fit the convolutional neural network model. With this process, the hyperparam-

eters search space was able to produce better results compared to earlier accuracy gain
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Table 5.13: A summary of CNNs evaluation using stochastic deafault hyper-parameter

with KTH datasets

learning rate: 1.0e-05

num dense layers: 1

num dense nodes: 16

activation: relu

Train on 509 samples, validate on 219 samples Epoch 1/12

509/509 [=] - 2s 3msstep - loss: 13.5005 - acc: 0.1572 - valloss: 13.5869 - valacc: 0.1187

Epoch 2/12

509/509 [=] - 2s 3ms/step - loss: 12.5072 - acc: 0.1100 - valloss: 12.7867 - valacc: 0.0959

Epoch 3/12

509/509 [=] - 2s 3ms/step - loss: 11.8387 - acc: 0.1650 - valloss: 12.3002 - valacc: 0.1598

Epoch 4/12

509/509 [=] - 2s 3ms/step - loss: 11.4356 - acc: 0.2200 - valloss: 11.6849 - valacc: 0.2146

Epoch 5/12

509/509 [=] - 2s 3ms/step - loss: 10.8416 - acc: 0.2692 - valloss: 10.7119 - valacc: 0.2329

Epoch 6/12

509/509 [=] - 2s 3ms/step - loss: 9.2407 - acc: 0.2731 - valloss: 7.9449 - valacc: 0.2466

Epoch 7/12

509/509 [=] - 2s 3ms/step - loss: 7.4150 - acc: 0.2240 - valloss: 6.0555 - valacc: 0.2968

Epoch 8/12

509/509 [=] - 2s 3ms/step - loss: 6.2309 - acc: 0.2908 - valloss: 6.0950 - valacc: 0.3105

Epoch 9/12

509/509 [=] - 2s 3ms/step - loss: 5.4971 - acc: 0.2888 - valloss: 5.3355 - valacc: 0.2922

Epoch 10/12

509/509 [=] - 2s 3ms/step - loss: 5.1408 - acc: 0.3281 - valloss: 4.9531 - valacc: 0.3333

Epoch 11/12

509/509 [=] - 2s 3ms/step - loss: 4.4754 - acc: 0.3399 - valloss: 4.0404 - valacc: 0.3607

Epoch 12/12

509/509 [=] - 2s 3ms/step - loss: 3.9372 - acc: 0.3477 - valloss: 3.4463 - valacc: 0.3562

Accuracy: 35.62%

-0.35616438288122554
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using only one hyperparameter designed by hand tuning. Table 5.14 shows a combina-

tion of different hyper-parameters using the Bayesian optimization process, the highest

accuracy of 95.890% were obtained by two different hyperparameters set. These two hy-

perparameters, indicating learning rate, no.of dense layer, no.of nodes, activation func-

tion respectively, (−0.95890411231071437, [8.9022070204672089e−05, 4, 193,′ relu′]) and

(−0.95890411231071437, [0.0012575645304840357, 4, 111,′ relu′]) gave the best optimum

accuracy. However, the latter of these two was the most efficient as this hyperparam-

eters type uses 111 nodes and a small learning rate compared to the other with 193

nodes and a higher learning rate. Again, the one with fewer nodes almost certainly

guarantees better generalization as fewer nodes discourages model co-adaptation known

for overfitting. Therefore, from this result, one can infer that Relu activation function

proves to be a better activation function than the Sigmoid function using convolutional

neural network. Figure 5.20 represents a pictorial representation of the convergence

plot which is a clear illustration of how fast Bayesian optimization can quickly con-

verge toward the optimum parameters that are able to produce the best accuracy in

the process of recognition in HAR.

Figure 5.20: Convergence Graph - Convergence plot on the number of calls

In this research work, a careful examination and how significant the number of

epochs or calls are considered. The convergence rate from this analysis in Figures 5.21

and 5.22 underscore the fact that each process of searching for optimum hyperparam-

eters is purely stochastic. From Figure 5.21, 96% objective function minimization was

reached in just about 3-4 calls. The 96% minimization rate is maintained till there
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Table 5.14: Results associated with running hyper-parameters optimization on CNNs

model for human activity recognition

[(Accuracy Metrics, [Learning Rate, No.of Dense Layer, No.of Nodes, Activation Function])

(-0.95890411231071437, [8.9022070204672089e-05, 4, 193, ’relu’])

(-0.95890411231071437, [0.0012575645304840357, 4, 111, ’relu’])

(-0.94977169221939017, [0.00024248365800359827, 5, 194, ’relu’])

(-0.93607306017723257, [5.7836284006087636e-05, 5, 181, ’relu’])

(-0.93607305745555935, [1.92238997301301e-05, 5, 457, ’relu’])

(-0.93607305745555935, [2.0106501827203483e-05, 5, 488, ’relu’])

(-0.93607305745555935, [9.2135394355971785e-05, 5, 195, ’relu’])

(-0.93150685013157053, [8.2640806929749455e-05, 5, 255, ’relu’])

(-0.9315068474098972, [6.1273623990882383e-05, 5, 181, ’relu’])

(-0.9315068474098972, [6.8059825514600044e-05, 5, 182, ’relu’])

(-0.92694063736423515, [0.00014891584897492552, 4, 165, ’relu’])

(-0.922374427318573, [5.9477388386674411e-05, 5, 179, ’relu’])

(-0.91780821727291084, [1.9674936809902542e-05, 5, 489, ’relu’])

(-0.91324201267059535, [7.3302740576439404e-05, 5, 181, ’relu’])

(-0.91324200994892213, [2.9348165378917484e-05, 5, 199, ’relu’])

(-0.90410958985759793, [7.7792540942874875e-05, 5, 113, ’relu’])

(-0.89497716976627373, [6.3491856120987991e-05, 4, 181, ’relu’])

(-0.69863013480896274, [0.0004294715885048197, 1, 158, ’sigmoid’])

(-0.66666666721100132, [5.3004032251317876e-06, 3, 244, ’relu’])

(-0.44748858488313686, [1.0530282317634178e-06, 5, 511, ’relu’])

(-0.35159817474073474, [1e-05, 1, 16, ’relu’]),

(-0.35159817474073474, [1.8136240256027347e-05, 1, 496, ’sigmoid’])

(-0.31050228432977578, [1.5778184556290273e-06, 4, 342, ’relu’])

(-0.23287671253289263, [8.1292226070856812e-05, 5, 29, ’relu’])

(-0.2146118714657004, [1.0709919551519687e-06, 1, 193, ’relu’])

(-0.17351598098669965, [0.0002608178467253554, 2, 472, ’relu’])

(-0.1552511417566369, [0.0048516890520873164, 3, 70, ’relu’])

(-0.14155251148356696, [5.529764193402135e-05, 4, 180, ’relu’])

(-0.14155251148356696, [0.0087902516010522885, 1, 502, ’relu’])

(-0.14155251066706495, [9.5841536576673968e-05, 2, 197, ’relu’])

(-0.14155251066706495, [0.0031892600523502367, 4, 140, ’sigmoid’])

(-0.14155251066706495, [0.0098150172443698808, 1, 393, ’sigmoid’])

(-0.13698630150594668, [3.4407931419560163e-05, 3, 374, ’sigmoid’])

(-0.13698630150594668, [7.8957956748252939e-05, 4, 481, ’sigmoid’])

(-0.13698630150594668, [0.00010795946087768507, 5, 226, ’sigmoid’])

(-0.13698630150594668, [0.0014576917030894978, 4, 110, ’relu’])

(-0.13242009146028458, [0.0081495512628050239, 5, 195, ’relu’])

(-0.11872146122123553, [0.0001011775331869387, 2, 124, ’sigmoid’])

(-0.11872146122123553, [0.001413508723813464, 2, 59, ’sigmoid’])

(-0.11872146122123553, [0.0073208191085134371, 5, 26, ’relu’])]
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were about 16 epochs and there was no significant convergence towards optimum hy-

perparameter value. Furthermore, a slight minimization of the objective function is

achieved between the 16 and 30 epochs thus pushing the objective function towards

the 97% mark and 98% respectively. Therefore, this model achieved convergence of

the optimum values just within 31 epochs. This is proof that the Gaussian process is

valuable in the optimization processes of the deep learning architectural model. How-

ever, a call of 200 epochs has shown no superior minimization of its objective function

over that of Figures 5.21 and 5.22 presented 4 visible stages of convergence to optimum

hyper-parameters. Though the same minimization value of the objective function was

reached like that of Figure 5.21, it can be said that choosing the number of epochs to

run can become another hyperparameter that needs careful selection. This is meant

to avoid the unnecessary burden of computation that may be passed to the model.

Therefore, while it can be said that increasing the number of epochs is good for best

hyperparameter location, a considerable number of epochs can also achieve optimum

convergence.

Figure 5.21: Convergence Graph for 100 - Convergence plot with 100 epoch

5.8 Summary and Discussion

In this chapter, we proposed a new regularization term for the center loss function to

improve class discrimination in HAR. This new regularization term is developed by as-

suming the extra log-prior-distribution as a regularizer and is known for updating prior
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Figure 5.22: Convergence Graph for 200 - Convergence plot with 200 epoch

knowledge in parameter estimation in both Gaussian Mixture(GM) and Maximum-a-

Posteriori Estimation(MAP). By combining the extra log-prior-distribution as a reg-

ularization term with the supervisory loss function as witnessed in both Weizmann

and KTH has made a tremedious improvement in the discriminative power of deeply

learned features in HAR.

The work done in this chapter has shown the numerous advantageous opportunities

that are availiable when deep learning algorithms are used in computer vision. The

automation and other numerous hyper-parameter tuning varieties presented by deep

learning made it a unique technique which researchers are actively exploring and as

such will remain dominant in artificial intelligence. The projection of such continuous

dominance has necessitated this research work to look at a holistic view on the best

practices in this subfield. The move towards highlighting algorithms to improve a deep

learning model is considered not only important but also as a strategic pathway that

will further advance the deep learning frontiers. Therefore, this chapter has carefully

elucidated the fundamental composition of deep learning makeup, its building blocks

and how all the components are all inter woven together to build a successful recog-

nition model. This chapter has also presented tactical and skillful methods of mining

representation features that are pivotal in obtaining state-of-the-art recognition model.

The regularization of these learned features, its gains, and improvements as presented

in this chapter is a clear demonstration that underscores the importance of feature

regularization in the deep learning model.
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An improved best hyper-parameter blend and accurate regularization technique

can become a remedy for finding a state-of-art recognition model for HAR. Although

an adequate attempt has been made to explicitly explain all the reported research

discoveries, we cannot emphatically suggest that these results should be chiselled in

stones as different model architecture and datasets can produce results that could vary

from the one reported in this thesis.
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Conclusion and Future works

6.1 Summary of work

In this section, the progress of research, contribution to knowledge and the direction

of future studies have been succinctly highlighted. There is a quest and race by most

notable organization such as Google, Amazon, Facebook and other upcoming artificial

intelligence organizations to remain a dominant force in this area is tough. However,

it has become a critical stage for the next technological frontiers . Such new frontiers

have given birth to some of the recent technological breakthroughs like self driving cars,

various human activity recognition (HAR) machines, autonoumous machines, natural

language processing and other advances in the computer vision sector. To attain speedy

technological development in these areas, more research needs to be framed into this

concept of artificial intelligence, as more growth has been projected to occur in this field

as time roll by. Current global safety challenges in different geographical regions have

allowed enormous investments to be directed towards the study of criminal tendency.

The quest for the recognition of human activity using technology can reasonably be

projected to have valuable utility in public places like bus stations, patient monitoring

to more complex scenes such as crowd monitoring and border security.This research has

dedicated its study to various methods of feature learning and regularization toward

promoting adequate recognition and optimization of the process of human activities in

the field of computer vision. This study has only limited its findings to the recognition

of human actions. Hence the dataset obtained from the KTH and Weizmann dataset

were used as our datasets benchmark.
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The dynamics of criminality, terrorism and other such negative vices that are inimi-

cal to society are tremendously evolving. All the chapters of this thesis have significantly

attempted to proffer the state-of-the art solution with the use of cutting edge advances

in feature regularization. It is paramount to note that while urban surveillance phrase

in the studies was a delineation term that generally refers to a subset of monitoring

human activity, all the models and technology represented in this work are valuable in

the other sectors of computer vision and image processing.

Timely and robust detection and classification of human action and their activities

can become a clear distinction between life and death, both in crime prevention or in

other sectors where monitoring of human activities is inevitably important. Hence,

chapter two of the thesis was dedicated to the purpose of explicitly understudying

various research incursions in the recognition of human activity. An in-dept analysis

done in the literature review has revealed that most studies on regularization were done

on the within-class matrix. It was recorded in literature that the within-class matrix

constitutes the prime problem for poor performance in recognition. The rapid decay

nature of the eigenspectrum due to the small sample size problem, presence of noise in

the datasets, occlusion, high dimensionality and correlation in image pixels were found

to be the major reasons why the within-class matrix in sympathy to these constraints

suffers from poor performance. Considering these catalouged problems in the within-

class matrix, the analysis in chapter four proffers crucial solutions to these problematic

issues and the results obtained show that the excellent recognition model can be built

with the right parameter selection for the regularization term.

Again, the extensive literature review done was instrumental to the exploration

and adventure into researching the deep learning methodology, feature learning and

regularization in the computer vision sector. This knowledge and understanding derived

from literature helped in the redirection of this research strength towards current trends

and state-of-the art methodology of using the deep learning concept to solve complex

and difficult HAR problems as was done in chapter five. This research study has

also breached and improved statistically the vast pool of Computer Vision domain

knowledge, thus beaming more energy towards the course of answering and narrowing

the research question ”how effective were hand crafted features in performing HAR, as

compared to an end-to-end hierarchical deep learning neural networks”. A comparison

between the results obtained in Chapter four and five evidently point to the fact that
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the deep learning feature methods like the CNNs are by far more easier to develop

because they do not automatically extract learnable features, but have a large range of

hyper-parameters that can be varied to suit the desired outcome. Additionally, the deep

learning method takes lesser time in its architectural frame up than the hand crafted

method as described in chapter four. While feature learning and regularization in the

deep learning method encompasses a high degree of parameter freedom, the same cannot

be said for the hand-crafted model. Hand-crafted feature parameters are often fixed and

very difficult to be crafted as they have low parameter freedom, thus making it more

difficult to reach optimum performance of the recognition model. However, this research

has demonstrated that detailed planning and adequate feature engineering knowledge

process, hand-crafted features will perform well in human activity recognition just as its

deep learning counter-part with the two datasets. Human activity class discrimination

is highly dependent on the quality of the picture pixels used for training in our model,

hence image processing is also a huge part of this research work.

Chapter three discusses the detection of image and preprocessing of video frames

to ensure better image quality and classification tasks. The task of building a clas-

sification and a recognition model must begin with obtaining the object of interest.

This task has been made achievable by the simple method of background subtraction.

Though another notable option for obtaining the object of interest discussed in this

thesis was the use of Gaussian mixture model, the latter of the two was concentrated

on as the videos contain less occlusion and background variation. The image clean-

ing improved the results obtained and focusing only on the object of interest has also

helped to circumvent the tedious computational process that would have been neces-

sary had all the pixel values been present in the video frames which were used in the

classification of the human activities. Though the deep learning processing has more

capacity and robustness of computation, the same cannot be said for the shallow and

hand crafted models whose algorithms are limited in terms of computational power.

This research has opened up avenues for demonstrating that intelligence and automa-

tion in the recognition system of cameras can be improved. This concept was actively

and greatly researched in chapter four and five, both of which show that extracting

quality features and using them for the purpose of discriminating different human ac-

tion is a key success factor in computer vision. The eigenspectrum regularization of the

within-class matrix with the proposed four-parameter regularization method was key
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in the gains of this model recognition rate.The use of four parameter modelling scheme

has allowed for a robust, reliable and precise eigenvalue prediction. Other regulariza-

tion methods lack this innovative regularization scheme whereas most regularization

methods carried out subspace fragmentation before regularization was done separately

and in a piecewise manner. This thesis has produced reliable design and a more accu-

rate model that reflects the true variances in the within-class matrix. Such modelling

of the true variance helps avoid piecewise fragmentations that are tedious and open

to errors in the eigenspectrum estimation. Therefore, the difficulty of subspace piece-

wise annotation before regularization has been avoided and eliminated. The technique

has enabled the within-class matrix often seen as the key culprit for poor recognition

purposes in HAR, to be more discriminative and active. The research has developed

and demonstrated the craftsmanship to outwit some of its very problematic naviga-

tions notoriously known for challenging better classification and recognition of HAR.

The empirical evidence recorded from the eigenfeature regularization method shows its

effectiveness over other subspace methods like PCA, FLDA, and the recent state-of-

the-art three-parameter method used for HAR. In chapter five, convolutional neural

network which proved to be a power house in the feature representation and learning

was duly represented in this study. Various regularization methods were implemented

to reduce the common problem of overfitting which is a well known obstacle in model

generalization. Experimental anaysis has demonstrated that deep learning is great in

model accuracy, although such accuarcy may not be useful in the absence of well tuned

and regularized features. This research has highlighted the trade-off which exist be-

tween accuracy and generalization and the conclusion is that care must be taken to

ensure that there is a balance between these two performance metrics in order to have

a robust and stable deep learning network.

The progress made by convolutional deep learning of human action recognition as

seen in chapter five acknowledges the strength of the regularization of deep learning

network. To this effect, It displays a clear exhibition of its dominance and is mostly

preferred as technology of choice when it comes to the creation of smart and intelligence

machines. These technologies are growing fast and becoming part of everyday life as

computer vision technologies have found useful practices in activity recognition in big

cities, robotics navigation in the industries and in automobile autonoumous movements.

These technologies will be around for many years to come and will require better
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research innovations, funding and development to get to their next level of development.

Indeed, humans are making good their promises to make machines see, understand their

environment and provide excellent decision.

6.2 Future works

In the future, this method of feature learning and regularization will be extended to

3-D real-world data images which is fast becoming an area of interest for image process-

ing researchers. Secondly, this method has delineated only single action recognition,

thus providing a baseline for other complex actions to be investigated (two person in-

teraction or group activity recognition). Therefore, future work needs to include the

introduction of our four-parameter eigenvalues regularization method for the purpose

of the classification of complex actions in familiar scenes of human activities. Finally,

feature hybridization seeks to compensate for the shortfalls in different methodologies.

139



References

[1] Megha Agarwal and Peter Flach. Activity recognition using condi-

tional random field. In Proceedings of the 2nd international Workshop on

Sensor-based Activity Recognition and Interaction, page 4. ACM, 2015. 2, 30

[2] Jake K Aggarwal and Quin Cai. Human motion analysis: A review.

In Nonrigid and Articulated Motion Workshop, 1997. Proceedings., IEEE, pages

90–102. IEEE, 1997. 1, 4, 13

[3] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representa-

tion learning: A review and new perspectives. IEEE transactions on

pattern analysis and machine intelligence, 35(8):1798–1828, 2013. 1, 28

[4] William Brendel and Sinisa Todorovic. Learning spatiotemporal

graphs of human activities. In 2011 International Conference on Computer

Vision, pages 778–785. IEEE, 2011. 2, 29, 98

[5] Bappaditya Mandal and How-Lung Eng. Regularized discriminant

analysis for holistic human activity recognition. IEEE Intelligent Systems,

27(1):0021–31, 2012. 2, 3, 12, 16, 18, 19, 48, 57, 59, 62, 63, 64, 66, 71

[6] Christian Micheloni, Paolo Remagnino, How-Lung Eng, and Jason

Geng. Intelligent monitoring of complex environments. IEEE Intelligent

Systems, 25(3):12–14, 2010. 64

[7] Zafar Ali Khan and Won Sohn. Feature extraction and dimensions

reduction using R transform and principal component analysis for ab-

normal human activity recognition. In Advanced Information Management

140



REFERENCES

and Service (IMS), 2010 6th International Conference on, pages 253–258. IEEE,

2010. 14, 16, 57, 59, 62

[8] Dairazalia Sánchez, Monica Tentori, and Jesús Favela. Activity
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