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Abstract

The emergence and expansion of the multidrug-resistant tuberculosis epidemic is a threat to the 

global control of tuberculosis. Multidrug-resistant tuberculosis is the result of the selection of 

resistance-conferring mutations during inadequate antituberculosis treatment. However, HIV has a 

profound effect on the natural history of tuberculosis, manifesting in an increased rate of disease 

progression, leading to increased transmission and amplification of multidrug-resistant 

tuberculosis. Interventions specific to HIV-endemic areas are urgently needed to block 

tuberculosis transmission. These interventions should include a combination of rapid molecular 

diagnostics and improved chemotherapy to shorten the duration of infectiousness, implementation 

of infection control measures, and active screening of multidrug-resistant tuberculosis contacts, 

with prophylactic regimens for individuals without evidence of disease. Development and 

improvement of the efficacy of interventions will require a greater understanding of the factors 

affecting the transmission of multidrug-resistant tuberculosis in HIV-endemic settings, including 

population-based molecular epidemiology studies. In this Series article, we review what we know 

about the transmission of multidrug-resistant tuberculosis in settings with high burdens of HIV 

and define the research priorities required to develop more effective interventions, to diminish 

ongoing transmission and the amplification of drug resistance.

Introduction

Multidrug-resistant tuberculosis originates from the selection of mutations in 

Mycobacterium tuberculosis during first-line antituberculosis treatment, leading to 

resistance to rifampicin and isoniazid. If inadequately treated, further selection of mutations 

conferring resistance to fluoroquinolones and second-line injectable agents (amikacin, 

capreomycin, or kanamycin) results in extensively drug-resistant tuberculosis and eventually 

resistance to all effective drugs. In addition to de-novo acquisition of resistance (acquired 

resistance), individuals can become infected with drug-resistant strains as a result of 

transmission (primary resistance).1 Acquired resistance can be prevented by ensuring 

adherence to optimised therapy, whereas the control of primary resistance requires 

interventions to block transmission.2

Understanding the relative importance of acquired and primary resistance is essential for 

directing tuberculosis control policy, and is particularly important in HIV-endemic settings, 

where large amounts of primary resistance have been described.3 HIV infection can affect 

transmission of drug-resistant tuberculosis in many ways, including the duration and 

intensity of infectiousness, the characteristics of exposure, and the susceptibility of the 

population exposed.4 HIV infection has been proposed to also affect the development of 

acquired resistance. Conceivably immuno-suppression could alter the in-vivo bacterial 

mutation rate or factors that promote the selection of resistance-conferring mutations, such 

as reduction of drug concentrations through malabsorption4,5 and reduced adherence to 

complex multidrug therapy.
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Analysis of programmatic data that defines primary resistance as a history of no previous 

tuberculosis treatment has shown the importance of transmission in HIV-endemic settings. 

Two systematic reviews6,7 found an epidemiological association between HIV status and 

multidrug-resistant tuberculosis that was stronger for transmitted multidrug-resistant 

tuberculosis than acquired multidrug-resistant tuberculosis. However, in another study using 

data reported to WHO,8,9 a positive association between HIV infection and multidrug-

resistant tuberculosis disease was shown in less than half of the countries examined, 

indicating that the association between HIV and multidrug-resistant tuberculosis depends on 

the epidemiological setting. In some HIV-endemic settings (South Africa and Zimbabwe), 

75% of all notified multidrug-resistant tuberculosis cases have no previous history of 

antituberculosis treatment, whereas in others (Zambia) it is less than 30%.3 Some of this 

heterogeneity might be due to differences in reporting of tuberculosis cases by control 

programmes, but modelling of incident multidrug-resistant tuberculosis cases has estimated 

that, in previously treated individuals, 60% are actually due to transmission, which would 

normally be classified as acquired resistance.2 This misclassification is probably due to the 

high rates of reinfection with multidrug-resistant tuberculosis in countries with very high 

HIV prevalence, such as Lesotho, eSwatini (formerly Swaziland), and South Africa.10

Tackling the multidrug-resistant and extensively drug-resistant tuberculosis epidemic in an 

HIV-endemic setting will require a more detailed understanding of how HIV affects the 

transmission dynamics of drug-resistant tuberculosis (figure 1). In this Series article, we 

provide an overview of drug-resistant tuberculosis transmission in HIV-endemic settings and 

define research priorities that will inform the design of interventions to block transmission 

(table). The impetus for this article was derived from a workshop, funded by the National 

Institutes of Health and South African Medical Research Council, on tuberculosis 

transmission11 and has been complemented by a specific literature search. There have been 

several reviews on drug-resistant tuberculosis;1,12 however, these excellent reviews do not 

focus on how HIV affects transmission of drug-resistant tuberculosis.

Infectiousness of patients with drug-resistant tuberculosis

Sputum bacillary burden measured in colony forming units, time to positivity in the 

mycobacteria growth indicator tube liquid culture system, or Xpert MTB/RIF cycle 

threshold values13,14 show that patients with HIV have lower sputum bacillary loads and, 

therefore, might be less infectious than those without HIV.13–15 This evidence concurs with 

the association between HIV seropositivity and negative sputum smears and reduced 

cavitation. Immunosuppression is thought to result in more rapid progression to 

symptomatic disease, leading to reduced bacterial load and cavitation at presentation.16,17 

Less is known about drug-resistant tuberculosis and bacterial load, but patients coinfected 

with HIV whose treatment for extensively drug-resistant tuberculosis has failed do cause 

ongoing transmission.18

Although bacterial load in sputum is a strong indicator, the quantity of bacteria aerosolised 

might be a more direct measure of potential infectiousness. The cough aerosol sampling 

system (CASS) quantifies culturable M tuberculosis bacilli contained within aerosolised, 

inhalable particles using a chamber containing a cascade impactor (a device used for 
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aerodynamic size analysis of aerosols).1 Studies in smear-positive patients showed that 

CASS counts of greater than ten colony forming units correlated with tuberculin skin test 

conversion in household contacts,19 and the subsequent development of active tuberculosis 

disease.20 Data are scarce for CASS in HIV-positive patients and in those with drug-resistant 

tuberculosis. A study in Cape Town, South Africa, found that only 10% of cases were 

extremely infectious (using the threshold of more than ten colony forming units), that HIV 

seronegativity was associated with CASS positivity, and that twice as many HIV-negative 

patients were extremely infectious compared with HIV-positive patients (Dheda K, 

unpublished).

Another approach to studying the infectiousness of patients with tuberculosis is the human-

to-guinea pig transmission model.21–23 Transmission from patients with tuberculosis was 

shown to be highly variable, with a minority of patients accounting for most transmission. 

These studies included patients with drug-resistant tuberculosis and HIV, but were not 

powered to evaluate the effects of either drug resistance or HIV on infectiousness. A 

limitation of this approach is that infectiousness can only be measured during the initiation 

of therapy. However, these studies did highlight the importance of rapid drug susceptibility 

testing and prompt initiation of effective therapy to prevent ongoing transmission.10 In a 

study from Peru,22 in which all patients had HIV and were treated for drug-susceptible 

tuberculosis, 98% of transmission events (122 of 125) resulted from nine patients with 

unsuspected multidrug- resistant tuberculosis who were, therefore, not on effective 

treatment. Another study,24 in South Africa, found that inadequately treated extensively 

drug-resistant tuberculosis cases, ofwhich more than 60% (11 of 17) were HIV-positive, 

were also transmitters. Further studies could define how rapid diagnostics and individualised 

treatment regimens are best combined to accelerate the reduction in infectiousness of 

patients starting therapy, and are crucial for improvement of infection control in health-care 

settings. Determining whether the most infectious individuals identified in these 

experimental systems account for transmission at the population level will also be important 

for control.

Contact investigation studies are another approach to measuring the relative infectiousness 

of drug-resistant tuberculosis cases. A recent meta-analysis,25 assessing whether M 
tuberculosis transmission and progression to tuberculosis disease differ between drug-

resistant and drug-susceptible tuberculosis, found a greater likelihood of M tuberculosis 
infection in contacts of drug-resistant tuberculosis index patients compared with drug- 

susceptible tuberculosis index cases, but no difference in risk of tuberculosis disease. This 

increase in the number of infected contacts of drug-resistant index cases could be due to 

prolonged duration of infectiousness in drug-resistant tuberculosis as a result of diagnostic 

delays.26 Immunosuppressed HIV-positive index cases with drug-susceptible tuberculosis 

are less likely to transmit to household contacts than HIV-negative cases,27–31 probably due 

to aforementioned differences in cavitation and bacillary load.27,29–31 Contact investigation 

in rural South Africa32 has also shown the force of infection in an HIV-endemic setting. It 

was found that, of 793 contacts of multidrug-resistant tuberculosis index cases, 14 (1.8%) 

were diagnosed with multidrug-resistant tuberculosis (incidence 1765 of 100 000) and 19 

(2.0%) of 973 extensively drug-resistant tuberculosis contacts had extensively drug-resistant 
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tuberculosis (incidence 1952 of 100 000) within a median of 70 days (IQR 57–89) of index 

case diagnosis.32

Further population-based contact studies from HIV-endemic areas are needed to dissect the 

relative importance of case infectiousness versus susceptibility of contacts for sustaining 

drug-resistant tuberculosis transmission. These studies are particularly important in the 

context of expanding antiretroviral therapy programmes. The effect of antiretroviral therapy 

on the infectiousness of patients with HIV and tuberculosis coinfections is unknown. 

Theoretically antiretroviral therapy could increase infectiousness by shifting the clinical 

manifestation (eg, cavitation) to be more similar to that observed in HIV-negative patients 

with tuberculosis,33,34 although this hypothesis has not been confirmed.31,35 Similarly, 

antiretroviral therapy reduces the risk of reinfection from tuberculosis at the individual 

patient level,36 but its effect on population susceptibility and transmission needs further 

study.

Transmission dynamics and evolution of drug-resistant M tuberculosis

Genotyping tools to study the epidemiology of tuberculosis have transformed our 

understanding of the transmission dynamics of tuberculosis.37–39 Community-wide 

genotyping of M tuberculosis has confirmed that drug-resistant tuberculosis strains can 

spread efficiently through person-to-person transmission.40,41 Molecular epidemiological 

studies using cluster analysis have found that more than 70% of cases of drug-resistant 

tuberculosis are generated through transmission in many settings,40,42 and established that 

transmission of drug-resistant tuberculosis occurs between close contacts within households,
32,43,44 hospitals,45,46 and other settings.1,47 However, some studies have only been able to 

attribute transmission to close contacts in less than 30% of cases.38,48–50 In low incidence 

settings, transmission through casual contact has been shown to occur at diverse sites (eg, 

restaurants, bars, and shops).47 Population-based molecular epidemiology studies in 

populations with a high prevalence of HIV are needed as the susceptibility of individuals 

with HIV to tuberculosis infection, and their concentration in health-care settings will 

influence the specific locations of transmission of drug-resistant tuberculosis (figure 1).51 

Furthermore, these studies can determine the roles of highly infectious individuals and 

transmission from HIV-negative individuals with multidrug-resistant tuberculosis to HIV-

positive patients in sustaining multidrug-resistant tuberculosis transmission in an HIV-

endemic setting.

Genotyping has shown that extensively drug-resistant tuberculosis is spreading in 

communities and has infiltrated entire geographical regions,40,42,51 and migration is now 

likely assisting the spread of drug-resistant tuberculosis across provinces and borders.52,53 

For example between 2011 and 2014, 280 (69%) of 404 patients with extensively drug-

resistant tuberculosis (77% were HIV positive) in the KwaZulu-Natal province of South 

Africa had primary extensively drug-resistant tuberculosis.40 In addition to de-novo 

acquisition of drug resistance, genotyping of serial isolates has confirmed that previously 

treated patients might be reinfected with a new drug-resistant strain.54–56 Furthermore, the 

transition from drug-susceptible to drug-resistant tuberculosis might also be explained by 

superinfection, a scenario associated with HIV.55 There is a growing body of evidence to 
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suggest that infection with more than one strain occurs frequently in settings with a high 

HIV prevalence,57,58 and, in the case of mixed drug-susceptible and drug-resistant strains, it 

can interfere with the accurate phenotypic diagnosis of drug resistance.59

Studies using whole-genome sequencing (WGS), which has superior resolution relative to 

traditional genotyping tools, are providing new insights into M tuberculosis evolution and 

transmission. These studies have shown that multidrug-resistant tuberculosis has evolved 

repeatedly and independently across the globe in response to drug-induced selection 

pressures,53 and how clonal expansion of drug-resistant tuberculosis strains caused by 

ongoing transmission can spread and increase the amount of resistance, particularly in HIV-

endemic settings.46,60 One WGS study61 showed that HIV coinfection did not affect the 

infectiousness of people with multidrug-resistant tuberculosis in South America, but further 

studies using this high resolution approach are needed in HIV-endemic settings.

The use of new analytical methods will enhance WGS studies. The reconstruction of 

detailed transmission chains was shown in an early study combining WGS and 

epidemiological data,47 but it is impeded by the low rate of mutation accumulation in M 
tuberculosis and the highly variable latent stage of infection.62 Latency is undoubtedly 

affected by HIV, which increases lifetime risk of progression to active disease after 

infection.63 However, the effect of HIV on the M tuberculosis mutation rate during human 

infection is unknown and it could affect the genetic divergence of strains during transmission 

events. It will, therefore, be important to determine the maximum genetic divergence 

between isolates collected from patients linked by direct transmission in HIV-endemic 

settings.64 One approach is to embrace the uncertainties involved and view transmission 

events in a probabilistic framework (figure 2).61,65–67 These models estimate the probability 

of an individual transmission event on the basis of WGS data and sampling times. They can 

also adjust for differences in the coverage of WGS at the individual strain level and the total 

proportion of strains sequenced from a population. The incorporation of methods from viral 

phylodynamics68 has also been beneficial. Two independent studies using Bayesian 

evolutionary methods found that strains responsible for multidrug-resistant and extensively 

drug-resistant tuberculosis outbreaks in South America69 and South Africa60 acquired 

resistance-conferring mutations over decades. In South Africa the evolution of extensively 

drug-resistant tuberculosis occurred before the onset of the HIV epidemic,60 suggesting HIV 

did not contribute to the initial acquisition of extensively drug-resistant tuberculosis. Instead, 

it had a key role in subsequently amplifying extensively drug-resistant tuberculosis in this 

population, by creating a population of immunocompromised individuals that facilitated 

transmission.

Fitness of drug-resistant M tuberculosis strains

Debate as to whether the acquisition of resistance-conferring mutations leads to a clinically 

relevant fitness cost in M tuberculosis is ongoing.70,71 From a modelling perspective, the 

fitness cost is an important parameter for predicting the trajectory of the drug-resistant 

epidemic.72 Diminished host immunity has been proposed to increase the frequency of the 

selection and transmission of resistance-conferring mutations that might reduce the fitness of 

drug-resistant M tuberculosis strains in HIV-endemic settings.73
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Ongoing transmission of drug-resistant strains of M tuberculosis suggests fitness costs are 

not important in a clinical setting,74 although delayed diagnosis and poor treatment 

outcomes might facilitate the transmission of low fitness strains. However, in-vitro 

competition assays have shown fitness differences between strains with and without 

resistance, albeit in highly artificial in-vitro experiments.75 Studies into rates of infection or 

progression to disease in contacts of multidrug-resistant tuberculosis relative to drug-

susceptible tuberculosis have yielded variable results, as described previously,25 and 

molecular epidemiology studies defining transmission in terms of clustering of strains 

suggest lower fitness for resistant strains.76

The heterogeneity of mutations that confer drug resistance might partly explain the variable 

results of clinical studies evaluating fitness costs. For example, mutations in katG at codon 

315 cause resistance by diminishing the activation of the prodrug isoniazid but do not affect 

catalase-peroxidase activity.77 By contrast, mutations elsewhere in katG not only block drug 

activation but also lead to loss of enzyme activity, vulnerability to oxidative stress, and a 

large fitness cost.78 As a result, more transmission of strains with mutations at codon 315 

occurs than strains with other katG mutations.79 Fitness costs can be reduced by the 

acquisition of compensatory mutations, which also adds to the genetic heterogeneity of 

drug- resistant strains.80 To date there is no evidence that HIV infection modifies the fitness 

of drug-resistant strains.61,81

Of note, the genotypic determinants of transmissibility of M tuberculosis, be they drug-

resistant or drug-susceptible strains, remain poorly understood,78 and population-based 

transmission studies that track individual strains with specific mutations are needed from all 

settings, including areas with a high prevalence of HIV and multidrug-resistant tuberculosis.

Interventions to interrupt transmission of drug-resistant tuberculosis

Prevention of the transmission of drug-resistant tuberculosis in HIV endemic settings 

requires the effective implementation of a combination of complementary interventions, 

including rapid diagnosis and effective treatment of individuals with drug-resistant 

tuberculosis, preventative treatment in those at risk of progression to disease, and good 

infection control practices in congregate settings.

Rapid diagnosis and individualised treatment

Inadequate tuberculosis case detection,82 and diagnostic delays due to the unavailability of 

drug-susceptibility testing among those detected,26,83 perpetuate the transmission cycle of 

multidrug-resistant tuberculosis. The widespread use of Xpert MTB/RIF, especially in HIV-

endemic settings, has transformed case finding for rifampicin-resistant tuberculosis,83 with a 

significant reduction in time to initiation of multidrug-resistant tuberculosis treatment.84 The 

importance of this advance in diagnostics is that WHO now reports on rifampicin-resistant 

tuberculosis as a measure of the burden of drug-resistant tuberculosis, but a large proportion 

of patients who are diagnosed do not end up on treatment.3,83,84 The duration of 

infectiousness after initiation of therapy for multidrug-resistant tuberculosis is dependent on 

the number of active drugs used in the regimen for both HIV-positive and HIV-negative 

patients,85 so earlier identification of the full drug-susceptibility profile and individualised 
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therapy could reduce transmission. This is particularly important in preventing nosocomial 

transmission in the context of a highly susceptible HIV-positive population and inadequate 

respiratory isolation.46

Given a highly conserved genome and absence of horizontal gene transfer, resistance 

conferring genes are highly amenable for molecular diagnostics in M tuberculosis. The 

current rapid molecular diagnostic tests for M tuberculosis target specific resistance-

determining regions86 or mutations. Currently the sensitivity of these targeted diagnostics is 

lower for drugs used to treat multidrug-resistant tuberculosis compared with first-line drugs, 

because of the number of different drug-resistance mutations and our incomplete knowledge 

of all resistance mechanisms.87 WGS is an alternative to current molecular diagnostics for 

determining drug resistance and can potentially identify all genetic correlates of resistance in 

a single analysis,88,89 facilitating selection of the most effective regimen.

The optimal use of WGS is reliant on sequencing directly from sputum but acquiring 

sufficient M tuberculosis DNA is a challenge. Attempts to sequence from sputum, bypassing 

culture-based DNA extraction, are promising.90 Concordance between Oxford Nanopore 

Technologies MinION sequencing and WGS from culture has also been reported,91 

indicating the feasibility of rapid individualised treatment based on point-of-care sequencing 

platforms, but they need further development to cope with the lower bacillary load in 

patients with HIV. A proportion of phenotypic drug resistance cannot currently be explained 

genetically.92,93 The analysis of large phenotypic and genotypic drug resistance datasets, 

such as ReSeqTB94 and CRyPTIC,95 in conjunction with functional genomics studies will 

define a comprehensive list of all mutations that confer drug resistance. Determination of 

whether HIV infection modifies the range of mutations that confer drug resistance will also 

be important, because this could affect the sensitivity of bioinformatic algorithms for 

predicting resistance from a genome sequence.96 Evaluation studies will ultimately be 

needed to determine the effects of rapid WGS genotyping on clinical outcomes and 

transmission of tuberculosis in HIV-endemic settings.

New drug regimens to effectively treat drug-resistant tuberculosis

Improvement of drug regimens for drug-resistant tuberculosis is important for controlling 

both the acquisition and transmission of drug-resistant tuberculosis in HIV-endemic settings. 

Long ineffective or partly effective regimens promote the acquisition of resistance and 

prolong the duration of infectiousness, leading to ongoing transmission. For example, the 

median survival of programmatically incurable patients with extensively drug-resistant 

tuberculosis in South Africa was 19.84 months (IQR 4.16–26.04), despite high mortality,97 

and these patients were highly infectious.18 Without effective treatment, any control strategy 

will struggle to reduce onward transmission,98 especially in settings in which a large 

reservoir of susceptible, HIV-positive individuals exists.

Until recently, treatment of multidrug-resistant and extensively drug-resistant tuberculosis 

was long (>18 months), expensive, toxic, difficult to manage, and had suboptimal outcomes 

in most cohorts,99 especially in HIV-positive individuals.100 Additionally, HIV-endemic 

settings have the added complexity of antiretroviral therapy and multiple drug–drug 

interactions with tuberculosis chemotherapy.101 The optimal treatment regimen for 
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multidrug-resistant or extensively drug-resistant tuberculosis, irrespective of HIV status, is 

not known,102 and is rapidly evolving with the introduction of new and repurposed drugs, 

although access to new drugs remains a problem.103,104

The addition of a single new drug to conventional regimens shortens the time to culture 

conversion, reducing the period of infectiousness,105,106 with favourable outcomes also 

observed under programmatic con- ditions.107,108 HIV-positive patients with drug-

susceptible tuberculosis experience a high early mortality, but those completing standard 

short course regimens have favourable outcomes. However, guidelines do not recommend 

specific tuberculosis chemotherapy regimens for patients with HIV and tuberculosis 

coinfections. Preliminary results from a study combining two new drugs (bedaquiline and 

pretomanid) with linezolid in a 6-month regimen reported good treatment success in HIV-

positive patients with extensively drug-resistant tuberculosis,109 suggesting universal short 

regimens for both HIV-positive and HIV-negative patients with drug- resistant tuberculosis 

are also obtainable.

Paradoxically, some HIV-positive patients with drug-resistant tuberculosis might be 

particularly responsive to therapy. Individuals that acquire drug-resistant tuberculosis de 

novo through transmission, and progress rapidly to disease, will not have developed the 

extensive lung pathology that occurs in chronic HIV-negative cases of tuberculosis, which 

has been associated with poor drug penetration.110

Preventive treatment in contacts of patients with drug-resistant tuberculosis

Reduction of the beneficial effects of rapid diagnostics and treatments on transmission will 

occur if substantial drug-resistant tuberculosis transmission occurs before identification of 

disease. Although intensified case finding among HIV-positive individuals identifies a high 

yield of people with tuberculosis disease in settings with a large burden of tuberculosis,111 

studies provide insufficient evidence that active screening for tuberculosis disease results in 

individual-level and community-level benefits.112 Therefore, strategies to prevent 

progression to disease after exposure to drug-resistant tuberculosis are important, especially 

in HIV-positive individuals, in whom high rates of progression to disease occur after 

infection.

The high yield of coprevalent tuberculosis within households (2–3%)113,114 supports the call 

for all contacts to be actively screened for tuberculosis,115 regardless of the drug 

susceptibility of the index case strain. However, in high-burden and especially HIV-endemic 

settings, second cases within a household might have arisen from transmission in the 

community and around a quarter of second cases in households exposed to multidrug- 

resistant tuberculosis are not multidrug-resistant, so drug susceptibility testing is always 

needed to guide treatment.116

The marked toxicity and relatively low effectiveness of conventional treatments for 

multidrug-resistant tuberculosis suggest measures are needed to prevent progression to 

active tuberculosis disease among individuals with significant multidrug-resistant 

tuberculosis exposure, although this might change with the development of newer short 

course regimens. Preventive therapy with first-line drugs is efficacious in reducing drug-
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susceptible tuberculosis but is assumed to have no effect on multidrug-resistant tuberculosis. 

Three randomised controlled clinical trials (ISRCTN92634082, NCT03568383, and 

ACTRN12616000215426) are currently investigating the effectiveness of 6 months of daily 

treatment with levofloxacin or delamanid compared with placebo or isoniazid. Pending the 

results of these studies, some authorities have advocated the use of preventive therapy with 

two or three agents for at least 6 months, citing observational data.117 An alternative 

approach, supported by WHO,118 is close monitoring and surveillance of registered contacts 

of households exposed to multidrug-resistant tuberculosis for 2 years, promoting a focus on 

early diagnosis and initiation of treatment guided by drug susceptibility testing for the 

secondary cases that will arise in up to 5% of contacts. This follows the premise of first do 

no harm, but, given the increased risk of rapid progression to disease after tuberculosis 

infection in patients with HIV, a more interventional approach is merited. Studies to define 

the amount of immunosuppression with and without antiretroviral therapy that warrants 

preventive therapy are needed.

Infection control

Tuberculosis infection control remains a neglected area of research with well developed 

theory119–122 but, with notable exceptions (NCT020732402014), little empiric data. 

Interventions have thus been recommended largely on the basis of expert opinion. With no 

robust estimates of potential effects or cost–benefit and competing demands on resources 

and health-care workers’ time, interventions for tuberculosis infection control are 

inconsistently done in HIV-endemic settings.123 The tragic consequences are nosocomial M 
tuberculosis transmission46 and an epidemic of tuberculosis in health-care workers.124,125 

These problems are particularly acute in HIV-endemic settings, in which 

immunosuppression is prevalent and a large proportion of the population are regularly 

exposed to health-care facilities.

Interventions in tuberculosis infection control include administrative controls, environmental 

controls, and the use of personal protective equipment. With little evidence for biological 

differences in transmission potential,25 environmental controls and the use of personal 

protective equipment should have similar effects on the transmission of drug-susceptible and 

drug-resistant tuberculosis. However, administrative controls that aim to interrupt 

transmission by facilitating early initiation of effective treatment126 rely on the ability of 

health systems to promptly detect drug resistance. The adoption of Gene Xpert will have 

reduced delays in initiating effective treatment for multidrug-resistant tuberculosis. 

Challenges remain in making a timely diagnosis of pre-extensively drug-resistant and 

extensively drug-resistant tuberculosis, and in the early recognition of multidrug-resistant 

tuberculosis in settings that rely on smear microscopy.

Pending the results of a randomised controlled trial (NCT020732402014) and a proposed 

single arm study of administrative controls (NCT020732402015), there is a case for 

implementing many tuberculosis infection control interventions in HIV-endemic settings. 

For example, modelling suggests low-cost adaptations to the building envelope of primary 

health-care clinics might result in substantial, and presumably sustainable, reductions in 

nosocomial M tuberculosis transmission.127 Ideally, these interventions would be 
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implemented in a phased fashion, allowing robust inference to be made about efficacy. 

Incidence of M tuberculosis infection in health-care workers would, measured 

longitudinally, be the obvious measure of effect.128 Definitive randomised controlled trials 

would also be welcome, particularly for high-cost complex interventions. An example would 

be ultraviolet germicidal irradiation, a complex but clearly effective technology,121 and 

valuable work is ongoing to develop a sustainable approach to implementation.129

Most M tuberculosis transmission in HIV-endemic settings occurs outside the household,
38,48–50 but there are no robust estimates of the proportion of transmission that occurs in 

health-care facilities relative to other congregate settings. Data from Cape Town suggest 

school (for children), workplace (for adults), and public transport might be important sites of 

M tuberculosis transmission.130 Prisons131 and mines132 are also important. It has been 

argued that taking a tuberculosis infection control approach to interrupting transmission in 

congregate settings, beyond the health-care sector, could have a substantial effect on 

transmission.133,134 Understanding which settings to target, and designing tuberculosis 

infection control interventions that would be acceptable in community venues, should be 

research priorities.

Transmission of drug-resistant tuberculosis in children

The increasing burden of multidrug-resistant and extensively drug-resistant tuberculosis in 

adults increases the number of children exposed to infectious multidrug-resistant and 

extensively drug-resistant tuberculosis cases. Because most children develop active disease 

in the first 12 months following M tuberculosis infection,135 childhood tuberculosis acts as 

an epidemiological sentinel event for ongoing transmission.136 However, at present there is 

no formal global surveillance for multidrug-resistant or extensively drug-resistant 

tuberculosis in children and reporting to the WHO is inadequate with no age disaggregation 

of reports.3

Most transmission in young children occurs in the household, with up to 60% of children 

with tuberculosis having a reported household or close contact.137 Older children are more 

mobile and have more community contacts with multiple exposures. The household, 

however, remains important for tuberculosis prevention.138 Strong predictors of infection 

relate to the relationship with the child (eg, mother or primary caregiver), nature and 

quantity of time spent with the index case (eg, sleeping in the same bed or same room, living 

in the same household, or daily contact), and index case factors (HIV status or degree of 

smear-positivity).139 The risk of progression to disease following M tuberculosis infection is 

highest below the age of 5 years, in malnourished children with HIV, and in the first 12 

months after exposure.135

Despite relatively successful outcomes, the duration and toxicity associated with treatment 

of multidrug- resistant or extensively drug-resistant tuberculosis in children are clinically 

significant and exacerbated by HIV infection.140,141 The exclusion of children from the 

majority of tuberculosis clinical trials has resulted in a paucity of treatment efficacy data in 

this population.142 However, practice-based recommendations covering the use of new and 

repurposed drugs for paediatric multidrug-resistant tuberculosis, have filled this gap in the 

interim.143 The high costs, toxicity, and prolonged hospitalisations associated with treatment 
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of multidrug-resistant tuberculosis144 mean research into the management of child contacts 

should be prioritised. Several cluster randomised community-based trials are ongoing, such 

as the Tuberculosis Child Multidrug-Resistant Preventive Therapy trial (ISRCTN92634082) 

in South Africa. This trial is evaluating the use of 6 months of levofloxacin versus placebo in 

children aged 0–5 years who are household contacts of a confirmed multidrug-resistant 

tuberculosis index case, which includes children with HIV.

Conclusions

HIV has a profound effect on the natural history of tuberculosis, manifesting in an increased 

rate of progression to disease after exposure to tuberculosis, and can lead to increased 

transmission and the amplification of drug-resistant tuberculosis. Population-based studies 

are required to tailor interventions to halt transmission of drug-resistant tuberculosis in HIV-

endemic settings. These interventions include a combination of new, highly effective 

regimens and rapid molecular diagnostics for shortening the duration of infectiousness, 

improved infection control, and active screening of contacts of drug-resistant tuberculosis, 

with prophylactic regimens for those without evidence of disease. Many of these 

interventions will benefit from newer classes of drugs, and careful monitoring to prevent the 

selection of resistance is essential to maintain their lifespan. A reduction in transmission is 

hard to measure, but would be assisted by improved continuous surveillance of multidrug-

resistant and extensively drug-resistant tuberculosis in children and adults, with age and sex 

disaggregated data,145,146 as well as the application of new techniques in molecular 

epidemiology to define more precisely the transmission dynamics of drug-resistant 

tuberculosis. Hallmarks of tuberculosis epidemiology are its variability among populations 

and the complex effects of HIV on the transmission of M tuberculosis, which emphasise the 

need for research in HIV-endemic settings to develop appropriate interventions for drug-

resistant tuberculosis.
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Search strategy and selection criteria

We searched for studies published in English only from database inception until Dec 1, 

2017 in PubMed, Embase, and Scopus. We searched PubMed using the terms 

((tuberculosis[MeSH Terms]) AND ((drug resistance[MeSH Terms]) OR multidrug 

resistance[MeSH Terms])) AND ((disease transmission, infectious[MeSH Terms]) OR 

“transmission”[MeSH Subheading]), Embase using the terms (Mycobacterium 

tuberculosis complex/ or extensively drug resistant tuberculosis/ or exp multidrug 

resistant tuberculosis/ or Mycobacterium tuberculosis/ or exp drug resistant tuberculosis/ 

or tuberculosis/) AND (exp drug resistance/ or drug resistan*.mp) AND (exp disease 

transmission/), and Scopus using the terms KEY(tuberculosis OR phthisis) OR (TITLE-

ABS-KEY(“Multidrug Resistant” OR “drug resist*”)) AND KEY(transmission). We 

included papers from these searches, those suggested by all authors, and reviewed papers 

that were not specific to HIV-endemic settings but were informative about transmission.
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Figure 1: Overview of the transmission dynamics of drug-resistant tuberculosis and the effects of 
HIV (evidence-based or theoretical) at each step of the cycle
(A) Acquired resistance (due to suboptimal adherence, decreased drug concentrations, or 

drug-drug interactions). (B) Transmission of drug-resistant M tuberculosis. (C) 

Establishment of drug-resistant M tuberculosis infection. (D) Progression from recently 

acquired or latent infection to active disease. (E) Superinfection or reinfection with drug-

resistant M tuberculosis. *Contact can be an uninfected healthy contact, contact with latent 

infection (drug-susceptible or drug-resistant tuberculosis), or contact with active disease 

(drug-susceptible or drug-resistant tuberculosis).
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Figure2: New approaches for studying the transmission dynamics of drug-resistant tuberculosis
(A) A hypothetical heat map illustrating the probability of all possible infector-infected 

associations estimated. The method used to generate this heat map (TransPairs) estimates the 

probability and direction of transmission occurring between all possible pairs of patients 

based on a timed phylogenetic tree. In the example presented here there are five patients (a, 

b, c, d, e) who can either be an infector or an infected patient relative to the other patients. 

Patient b is the most likely infector of patients a and c, whereas patient a probably infected 

patient d. Patient e was most likely infected by patient a, but could also have been infected 

by patient b. In this group of patients, b is identified as the index case, with no high-

probability infector identified for this case.61 (B) Transmission modelling output can also be 

represented phylogenetically as high-likelihood transmission chains (TransPhylo). Stars 

show predicted transmission events followed by a change in branch colour, indicating 

transmission from one patient to the next. Importantly, TransPhylo can also infer unsampled 

cases, but performs best if the sampling density is high.65 (C) The time of infection for each 

patient is among the parameters estimated by TransPhylo. The time difference between 

estimated infection time and the time of diagnosis can serve as an estimate of the speed of 

disease progression. The plot illustrates a scenario where a hypothetical factor used to 

stratify patients into two groups (represented by the pink and purple graphs) affects the 

speed of disease progression.
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Table:

Knowledge gaps in our understanding of transmission of drug-resistant tuberculosis in an HIV-endemic 

setting.

Potential effects

Transmission

What degree of genetic difference (threshold) should be used to 
define transmission clusters?

Differentiating ongoing transmission from endemic drug-resistant 
tuberculosis; enhanced accuracy of molecular epidemiological studies of 
drug-resistant tuberculosis

Does real-time spatial-geographical mapping inform the control of 
drug-resistant tuberculosis?

Determine the role of geographic information systems as a tool to target 
interventions to reduce drug-resistant tuberculosis transmission

Where does transmission of drug-resistant tuberculosis occur in an 
HIV-endemic setting?

Targeting interventions to transmission hot spots; guide the 
implementation of infection control strategies

Do patients who generate highly infectious aerosols (super-
spreaders) contribute disproportionately to transmission?

Intensified contact tracing for index cases who are super-spreaders

What proportion of transmission is attributable to HIV-negative 
index cases in an HIV-endemic setting?

Identify target population for interventions; determine the importance of 
active case finding to reduce transmission at a population level

Is the infectiousness of the index case more important than the 
susceptibility of HIV-positive contacts in determining 
transmission?

Determine the relative importance of active case finding and initiation of 
antiretroviral therapy in the control of drug-resistant tuberculosis 
transmission

How do HIV infection and antiretroviral therapy modify the 
infectiousness of drug-resistant tuberculosis?

Projecting the impact of increasing use of antiretroviral therapy on the 
drug-resistant tuberculosis epidemic; contact tracing strategies for HIV-
positive index cases and contacts

How important is migration in propagating the spread of drug-
resistant tuberculosis?

Identify migrant populations for active case finding; design of strategies 
to maintain drug-resistant tuberculosis patients on appropriate treatment 
in highly mobile populations

Evolution

What are the clinically selected mutations causing resistance to 
new or repurposed drugs?

Adaption of genetic based diagnostics for the diagnosis of resistance to 
new drug regimens

What factors (host and pathogen) influence the emergence of 
resistance to new and repurposed drugs?

Protecting the efficacy of new drug regimens; identifying risk factors for 
the emergence of resistance

Does HIV coinfection affect the mutation rate of Mycobacterium 
tuberculosis?

Enhanced accuracy of defining transmission chains using molecular 
epidemiology

Does HIV infection promote acquired resistance, as well as 
increase susceptibility to infection?

Understanding whether HIV-positive individuals require modification to 
drug treatment, including preventive therapy

Fitness

Are drug-resistant M tuberculosis strains less fit in an HIV-endemic 
setting?

Modelling the trajectory of the drug-resistant tuberculosis epidemic

How important are compensatory mutations in maintaining fitness? Modelling the trajectory of the drug-resistant tuberculosis epidemic; 
identification of new targets for drug development; interpreting the 
relevance of drug resistance-associated mutations

How does the emergence of resistance to new and repurposed drugs 
affect bacterial fitness?

Insight into the amplification of resistance through transmission

Is HIV permissive for the selection and transmission of low-fitness 
drug resistance-conferring mutations?

Development of genetics-based diagnostics for drug-resistant 
tuberculosis

Are genetic diagnostics leading to the selection of M tuberculosis 
strains with undetected mutations?

Utility and lifespan of molecular diagnostic assays

Diagnostics

Is the current implementation of rapid diagnostics reducing 
transmission of drug-resistant tuberculosis?

Assessing the impact of diagnostic tests on drug-resistant tuberculosis at 
the population level; identification of diagnostic algorithms that 
maximally reduce transmission

What is the full repertoire of drug resistance-conferring mutations? Design of new high sensitivity genetic diagnostics; maximise the utility 
of whole-genome sequencing to comprehensively diagnose drug-
resistant tuberculosis
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Potential effects

How common and what is the clinical consequence of 
heteroresistance?

Insight into the sensitivity of current and new diagnostics; identification 
of risk factors facilitating the emergence of drug resistance; improve the 
selection of drugs to treat patients with drug-resistant tuberculosis

What is the clinical impact of rapid whole-genome sequencing-
based diagnosis of drug-resistant tuberculosis?

Feasibility and clinical relevance of whole-genome sequencing for 
diagnosing drug-resistant tuberculosis

Treatment

What is the optimal treatment regimen for patients with multidrug-
resistant or extensively drug-resistant tuberculosis and should HIV-
positive patients have different treatment regimens?

Define minimal duration and composition of treatment for drug-resistant 
tuberculosis; determine whether new short course drug-resistant 
tuberculosis regimens are also appropriate for HIV-positive patients

How much do new short treatment regimens for drug-resistant 
tuberculosis reduce transmission?

Determine if active case finding as well as new treatments are required 
to control drug-resistant tuberculosis

What is an efficacious and safe regimen for chemoprophylaxis of 
drug-resistant tuberculosis contacts?

Evidence for treating drug-resistant tuberculosis contacts with second-
line drugs

Contacts

What are the outcomes of drug-resistant tuberculosis contacts who 
are monitored rather than treated?

Optimum strategy for managing contacts of drug-resistant tuberculosis

What is the best algorithm for contact tracing of index cases of 
drug-resistant tuberculosis?

Feasibility of contact tracing in high burden drug-resistant tuberculosis 
and HIV-endemic settings; strategies for identifying and targeted 
screening of contacts of highly infectious drug-resistant tuberculosis 
patients

What is the impact of implementing tuberculosis infection control 
measures on reducing nosocomial transmission?

Identification of specific measures to protect health-care workers and 
patients

Infection control

What tuberculosis infection control measures should be used in 
congregate settings other than health-care settings?

Interruption of transmission in settings potentially driving the drug-
resistant tuberculosis epidemic (mines, prisons etc)

What are the most cost-effective tuberculosis infection control 
measures?

More widespread and targeted implementation of tuberculosis infection 
control

Children

How many children are infected with drug-resistant tuberculosis 
globally?

Accurate age disaggregated surveillance of drug-resistant tuberculosis in 
children

Where are children being infected outside of the household? Targeting of contact tracing and tuberculosis infection control measures

What is an efficacious and safe regimen for chemoprophylaxis of 
drug-resistant tuberculosis contacts?

Evidence for treating drug-resistant tuberculosis childhood contacts with 
second-line drugs

Are new short course treatments for drug-resistant tuberculosis also 
effective in children?

Implementation of new safe highly effective regimens in children

The knowledge gaps and their potential impact on the development of interventions to control transmission were collated from discussions held 
among participants at a workshop on tuberculosis transmission held in Cape Town, South Africa. Additional information was provided by the listed 
authors, who contributed according to their area of expertise.
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