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ABSTRACT 

 

Jiangsu Province is located in the transition zone from subtropical to warm temperate zone, with the 

characteristics of monsoon climate.  The province's natural ecological conditions are suitable for the 

production of winter wheat and rice. In this region, the warm and humid climate is very suitable 

for the plant epidemics such as Fusarium head blight (FHB). Fusarium mycotoxins are 

secondary metabolites produced by Fusarium species; and can cause acute and chronic toxic effects 

on the body and are a threat to humans and animal health. Therefore, knowledge about the prevalence 

of FHB-producing Fusarium species, incidence of deoxynivalenol, zearalenone and fumonisins as 

well as possible influencing factors is imperative for preventing influx of contaminated grains into 

food supply chain. The present study focuses on the occurrence of Fusarium species coupled with 

contamination levels of Fusarium mycotoxins from different Jiangsu Province, China for three years, 

and the influences of rainfall and temperature on accumulation of DON. In addition, Fusarium strains 

were isolated from rice and assessed for the potential to produce fumonisins and beauvericin. The 

findings of this study increase the knowledge on important rice fungal pathogens and provide relevant 

information on the high variability of these pathogens, as well as their implications for the 

development of further diseases. The ICS test developed in our study has advantages, such as rapid 

and efficient screening of samples. The data obtained from the ICS test shows good agreement with 

LC-MS/MS data. These results showed that the ICS test is suitable for on-site monitoring of ZEN. 

 

 
 
 
 
 



 

 

 

 v 

DEDICATION 

 

This thesis is dedicated to: 

 

My husband, Ahua Gu  and my son, Chenpeng Gu 

 

for their love, encouragement and support during the course of my academic career 

 

 

 

 

 

 

 

 

 

  



 

 

 

 vi 

ACKNOWLEDGEMENTS 
 

The author records appreciation to the following: 

 Prof. J. Shi for his supervision, advice and support. 

 Dr. M.P. Mokoena and Prof. A.O. Olaniran, for their supervision, constructive 

suggestions and assistance throughout the course of this study. 

 Staff and students of the Fusarium mycotoxins Lab, for your kindly help in my 

research. 

 Jiangsu Academy of Agricultural Sciences and University of KwaZulu-Natal, 

for their support that I have this opportunity to continue my PhD study. 

 The National Natural Science Foundation (31271988) and Jiangsu province 

science and technology support program-Social development (BE2014738) for 

their support. 

 My family for their love, encouragement and supply. 

 

 

 

 

 

 

 



 

 

 

 vii 

TABLE OF CONTENTS 
PREFACE ........................................................................................................................................... i 

DECLARATION 1 – PLAGIARISM .............................................................................................. ii 

DECLARATION 2 – PUBLICATIONS .........................................................................................iii 

ABSTRACT ....................................................................................................................................... iv 

DEDICATION ................................................................................................................................... v 

ACKNOWLEDGEMENTS .............................................................................................................. vi 

LIST OF TABLES .............................................................................................................................x 

LIST OF FIGURES ......................................................................................................................... xii 

CHAPTER ONE ................................................................................................................................ 1 

1. Introduction ............................................................................................................................... 1 

1.1 Background ............................................................................................................................... 1 

1.2 Scope of this study .................................................................................................................... 3 

1.3 Hypotheses ................................................................................................................................ 4 

1.4 Aim ............................................................................................................................................ 4 

1.5 Specific objectives..................................................................................................................... 4 

1.6 Key research questions .............................................................................................................. 5 

1.7 References ................................................................................................................................. 5 

OCCURRENCE, TOXICITY, PRODUCTION, AND DETECTION OF FUSARIUM 
MYCOTOXINS: A REVIEW .......................................................................................................... 8 

Occurrence, toxicity, production, and detection of Fusarium mycotoxins: A Review ....................... 9 

Abstract ............................................................................................................................................ 10 

1. Introduction ................................................................................................................................. 11 

1.1 Types and toxicities of Fusarium mycotoxins .................................................................... 15 

1.1.1 Trichothecenes ................................................................................................................. 15 

1.1.1.1 Deoxynivalenol .............................................................................................................. 17 

1.1.1.2 Nivalenol ....................................................................................................................... 18 

1.1.1.3 T-2 and HT-2 ................................................................................................................. 19 

1.1.2 Zearalenone ...................................................................................................................... 21 

1.1.3 Fumonisins ....................................................................................................................... 22 

1.2 Fusarium mycotoxins in China ............................................................................................... 25 

1.3 Production of Fusarium mycotoxins ................................................................................... 29 



 

 

 

 viii 

1.4 Detection of Fusarium mycotoxins ......................................................................................... 31 

1.4.1 Chromatographic methods ............................................................................................... 31 

1.4.2 Immunochemical methods ............................................................................................... 32 

1.5 Conclusion ............................................................................................................................... 33 

1.6 References ............................................................................................................................... 34 

CHAPTER THREE ........................................................................................................................ 46 

INFLUENCE OF CLIMATIC FACTORS AND WHEAT VARIETIES ON 
DEOXYNIVALENOL CONTAMINATION OF WHEAT IN JIANGSU PROVINCE, CHINA
 ........................................................................................................................................................... 46 

Influence of climatic factors and wheat varieties on Deoxynivalenol contamination of wheat in 
Jiangsu Province, China .................................................................................................................... 47 

Abstract ............................................................................................................................................ 48 

1. Introduction ............................................................................................................................. 49 

2. Material and methods ............................................................................................................. 51 

2.1 Chemicals and reagents ........................................................................................................... 51 

2.2 Molecular identification of F. species and detection of trichothecene genotypes................... 51 

2.3 Acquisition and presentation of meteorological data .............................................................. 53 

2.5 Sample preparation and mycotoxin (DON) analyses ......................................................... 54 

2.6 Statistical analysis .............................................................................................................. 55 

3. Results .......................................................................................................................................... 55 

3.1 Production of DON from wheat by F. asiaticum strains ......................................................... 55 

3.2 Occurrence of DON in wheat samples from 2014 to 2016 ..................................................... 56 

3.3 Occurrence of DON in different counties of wheat grains from 2014 to 2016 ....................... 57 

3.4 Effect of climatic factors on accumulation of DON in wheat ................................................. 58 

3.5 Effect of rainfall on DON contamination of different wheat varieties .................................... 59 

4. Discussion ..................................................................................................................................... 60 

5. Conclusion .................................................................................................................................... 63 

6. References ................................................................................................................................ 63 

CHAPTER FOUR ........................................................................................................................... 79 

GENETIC DIVERSITY, TOXIN PRODUCTION AND PATHOGENICITY OF 
GIBBERELLA FUJIKUROI SPECIES COMPLEX ISOLATED FROM RICE ...................... 79 

Abstract ............................................................................................................................................ 81 

1. Introduction ............................................................................................................................. 82 



 

 

 

 ix 

2. Materials and methods................................................................................................................ 84 

2.1 Isolation of Fusarium species ................................................................................................. 84 

2.2 Sequence analysis and phylogeny reconstruction ................................................................... 84 

2.3 PCR assays with species-specific primers............................................................................... 85 

2.4 Design of species-specific PCR primers ................................................................................. 85 

2.5 Toxins production ................................................................................................................... 86 

2.6 Pathogenicity tests ................................................................................................................... 88 

2.7 Statistical analysis ................................................................................................................... 88 

3. Results .......................................................................................................................................... 89 

3.1 Phylogenetic analysis .............................................................................................................. 89 

3.2 Pathogenicity ........................................................................................................................... 90 

3.3 Fumonisin production ............................................................................................................. 91 

4. Discussion ..................................................................................................................................... 92 

5. Conclusion .................................................................................................................................... 95 

6. References .................................................................................................................................... 96 

CHAPTER FIVE ........................................................................................................................... 101 

DEVELOPMENT OF AN IMMUNOCHROMATOGRAPHIC STRIP TEST FOR THE 
RAPID DETECTION OF ZEARALENONE IN WHEAT FROM JIANGSU PROVINCE, 
CHINA ........................................................................................................................................... 101 

CHAPTER SIX .............................................................................................................................. 117 

GENERAL DISCUSSION AND CONCLUSION ...................................................................... 117 

6.1 The research in perspective ................................................................................................... 118 

6.2 Potential for future development of the study ....................................................................... 120 

6.3 References ............................................................................................................................. 121 

 

 

 

  



 

 

 

 x 

LIST OF TABLES 

CHAPTER TWO 

Table 1: Allowable limits of Fusarium mycotoxins in food and feed in some countries and 

regions……………………………………………………………………………………...13 

Table 2: Explanation of the groups contained in trichothecenes Structures………………...17 

Table 3: Explanation of the groups contained in fumonisins Structures…………………..25 

Table 4: China contamination of foods and feeds by Fusarium mycotoxins……………...27 

CHAPTER THREE 

Table 1: Number of samples collected in different years and areas ………………………………54 

Table 2: Frequency of different chemotypes among the Fusarium species isolated from 

wheat grains of different years of Jiangsu province, China………………………………..57 

Table 3: Incidence of Deoxynivalenol (DON) contamination of wheat grains collected in 

Jiangsu province, China from 2014 to 2016……………………………………………….58 

Table 4: Deoxynivalenol (DON) content of naturally contaminated wheat grains collected in 

different regions of Jiangsu Province from 2014-2016, China……………………………………..59 

CHAPTER FOUR 

Table 1: Pathogenicity and toxin production of F. verticillioides, F. fujikuroi, and F. 

proliferatum populations tested in this study………………………………………………93 

CHAPTER FIVE 

Table 1: Results of ZEN analysis by LC-MS/MS and ICST in the spiked wheat 

samples……………………………………………………………………………………107 

Table 2: Results of stability of the ICS test………………………………………………109 



 

 

 

 xi 

Table 3: Occurrence of zearalenone in different seasons and regions of Jiangsu province 

analysis by LC-MS/MS and ICST………………………………………………………..110  



 

 

 

 xii 

LIST OF FIGURES 

CHAPTER TWO 

Fig 1: Trichothecenes structure.…………………………………………………………....17 

Fig 2: Chemical structures of ZEA and its derivatives: (a) zearalenone (ZEA), (b) α-

zearalenol (α-ZEA), (c) β-zearalenol (β-ZEA), (d) zearalanone(ZAN), (e) α-zearalanol (α-

ZAL) and (f) β-zearalanol (β-ZAL).......................................................................................23 

Fig 3: Structures of main fumonisins in foods (FB: fumonisins of group B; AP: 

aminopentol)……………………………………………………………………………….25 

CHAPTER THREE 

Fig 1: Map of Jiangsu province showing the locations of different studied regions for sample 

collection……………………………………………………………………………….…..55 

Fig 2: Effect of rainfall on DON contamination of wheat in different years (2014: r=0.689, 

p< 0.05; 2016: r=0.74, p<0.05; 2015: no correlation).……………………………………...60 

Fig 3: Effect of rainfall on DON contamination of different wheat varieties. Jimai 22 and Yannong 

19 are susceptible cultivars, Yangmai 13 and Yangmai 16 are resistant cultivars.……………….61 

CHAPTER FOUR 

Fig 1: Schematic representation of the multi-polymerase chain reaction targeted on 28S 

ribosomal RNA gene to determine the species in GFSC. B, Amplifications using primers 

PRO1/PRO2.C, Amplifications using primers VERT1/VERT2. D, Amplifications using 

primers for complex. The first three lanes were F. fujikuroi strains, the middle three lanes 

were F. verticillioides strains, and the last three strains were F. proliferatum 

strains………………………………………………………………………………………88 

Fig 2: Consensus phylogenetic tree for the Fusarium species isolated in this study, created 

on the basis of the Fum1 sequences. The dendrogram was constructed by the neighbor-

joining approach and tested by bootstrapping (10,000 replicates) with a cut-off value of 



 

 

 

 xiii 

50%. Fum1 of F. proliferatum (KC188786.1), F. verticillioides (KC188788.1), and F. 

fujikuroi (KC188789.1) were used as the reference…………………………………………..92 

CHAPTER FIVE 

Fig 1: Cut-off limits for colloidal gold labeled test strip against ZEN (15 ng/mL)………106 

Fig 2: Sensitivity of spiked samples for ZEN…………………………………………….107 

Fig 3: Cross-reaction with other mycotoxins. Concentration of these mycotoxins is 1µg/mL, 

respective………………………………………………………………………………….108 

Fig 4: Cross-reaction with the metabolites of ZEN. (A: α-ZOL, B: β-ZOL, C: α-ZAL, D: β-

ZAL)………………………………………………………………………………………108 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 1 

CHAPTER ONE 

Introduction 

 

1.1 Background 

The Fusarium genus comprises the most common pathogenic fungi of cereals and other crops in the 

world. They do not only bring obvious economic losses, but also produce mycotoxins that endanger 

the health of humans and animals (Backhhouse, 2014). Fusarium fujikuroi species complex (FFSC) 

and Fusarium graminearum species complex (FGSC) are the main genera of toxin production. 

Fusarium verticillioides and Fusarium proliferatum belongs to the genus of FFSC and are capable of 

producing fumonisins. Fusarium verticillioides is a frequent contaminant of maize while Fusarium 

proliferatum occurs in many different crops. FGSC consists of at least 16 species, which can produce 

a group of mycotoxins known as trichothecenes (Xu and Nicholson, 2009). Trichothecenes, 

zearalenone (ZEN) and fumonisins (FBs) are the most frequent Fusarium mycotoxins.  However, 

other mycotoxins, such as moniliformin, enniatins, fusaproliferin and beauvericin can be identified 

in combination with the toxins described above. Trichothecene mycotoxins that include type A and 

type B are the most important group in terms of prevalence and contamination levels. Type A 

trichothecenes include T-2 and HT-2, and Type B trichothecenes  include deoxynivalenol (DON) and 

nivalenol (NIV) which  are found to be potent in cereals. The type of Fusarium mycotoxins produced 

by microorganisms can be predicted based on genetic markers coming from gene cluster (Lee et al., 

2012). 

The worldwide rise in demand of different varieties of foods/food products due to rapid urbanization 

and industrial growth leads to increased risks in food chain by contamination of foods and feeds with 

Fusarium mycotoxins (Leblanc et al., 2005). This leads to a serious threat to the health of humans 
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and animals, because they are responsible for different toxicological effects as well as huge economic 

losses(Smyth et al., 2014). As Escriva reported, many factors will affect the toxicological effects. 

Toxicities of different types of mycotoxins are different. Exposure level and duration, exposure to 

animal species and animal age all affect the toxicological effects (Escriva et al., 2015). Pigs exposed 

to high concentrations of DON can experience fatigue, vomiting, diarrhea, abdominal pain, and even 

shock or death. Exposure to fumonisin can cause pulmonary edema. The toxic effects of fumonisin 

on horses can be attributed to equine leukoencephalomalacia (ELM). Fusarium mycotoxins can 

affect the immune system by passing through the intestinal epithelium and reach the systemic 

compartment (Escriva et al., 2015). Although mycotoxins pose a risk to human health, due to the 

natural occurrence of these metabolites, it is impossible to completely ban these pollutants. Therefore, 

the protection of consumers is to maintain  low levels of mycotoxins through good agricultural 

practices, good storage and processing measures (Gilbert, 2000). Many countries have adopted 

regulations that limit the exposure of mycotoxins, particularly to DON and ZEN, and the maximum 

allowable levels are significantly different in different countries (EFSA, 2011; GB/T, 2011). 

Therefore, the establishment of appropriate analytical methods to assess compliance with regulations 

and to monitor the emergence of mycotoxins in food and feed has become a worldwide priority. 

In recent years, several methods have been established to detect Fusarium mycotoxins in foods and 

feeds (Anfossi et al., 2016). Conventional techniques such as thin layer chromatography (TLC); gas 

chromatography (GC) combined with electron capture, flame ionization or mass spectrometry 

detectors; high performance liquid chromatography (HPLC) combined with ultraviolet, diodearray, 

fluorescence or mass spectrometry detectors and enzyme-linked immunoassay (ELISA) are employed 

for detection of mycotoxins (Visconti et al., 2005; Lippolis et al., 2008; Li et al., 2013). These 

methods are accurate and precise for detection of mycotoxins in food or feed samples. However, these 

methods require skilled operators, large sample pretreatment, inaccurate equipment at low 



 

 

 

 3 

concentration of analyte (Chauhan et al., 2016). Therefore, the major goals of this study influence of 

environmental factors on the prevalence of Fusarium mycotoxins in the Jiangsu Province of China, 

and to develop a rapid, sensitive and specific assay for routine analysis of mycotoxins in foods and 

feeds (Chen et al., 2016). 

  

1.2 Scope of this study 

 

The prevalence of wheat scab coupled with global climate change and farming system in China results 

in contamination of the wheat by Fusarium toxins, which have become an important issue that 

restricts the development of wheat industry (Xu and Berrie, 2005). Qiu and Shi, (2014) reported that 

Fusarium asiaticum is the primary pathogen causing scab in Asian countries and Brazil, and 

Fusarium graminearums is distributed throughout the world. In order to better predict Fusarium 

mycotoxins, Zeller et al. studied the genetic map of the pathogen population and the relationship 

between Fusarium species complexes and mycotoxin profiles (Zeller et al., 2003). Several studies 

have been reported on the influence of environmental conditions such as pH, humidity and drought 

on the occurrence of diseases produced by Fusarium species. Since these environmental factors affect 

the performance of both plant growth and infection, the study of climatic conditions and their changes 

have important implications for the control of Fusarium species and their mycotoxins  (Fallah et al., 

2016). Due to the widespread distribution of Fusarium mycotoxins and the analytical complexity of 

food matrices, there is an urgent need fo ra rapid, on-site, high-throughput mycotoxins detection 

technique. 

 

This research provides a rapid immuno-chromatographic strip approach for screening wheat field for 

DON and ZEN contamination in Jiangsu Province, China. It further elucidates influences of 
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temperature, humidity, wheat variety on DON accumulation. All these will be helpful for the 

prediction and control of Fusarium mycotoxins.  

 

1.3 Hypotheses 

 

It is hypothesized that Fusarium species, wheat varieties and climate change will affect the 

accumulation of Fusarium mycotoxins. It is further hypothesized that immuno-chromatographic strip 

approach for detecting mycotoxins will be helpful in monitoring Fusarium mycotoxins contamination. 

 

1.4 Aim 

 

To elucidate the kinds of Fusarium species and mycotoxins that are found in Jiangsu Province, and 

to further assess the  influence of environmental conditions (temperature, humidity, wheat varieties) 

on mycotoxin accumulation. 

 

1.5 Specific objectives  

 

The objectives of this study were: 

1.5.1 To evaluate the occurrence of DON in wheat in different counties over a period of time (2014-

2016) and correlate with the prevailing dominant Fusarium species;  

1.5.2 To determine potential climatic factors that influence DON contamination in wheat; 
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1.5.3 To identify Fusarium strains and carry out phylogenetic differentiation of Fusarium proliferatum 

and Fusarium fujikuroi; 

1.5.4 To evaluate the ability of Fusarium proliferatum and Fusarium fujikuroi strains to produce 

fumonisins and cause elongation of rice seeds; 

1.5.5 To develop immuno-chromatographic strip technique that can rapidly detect ZEN in wheat 

samples. 

 

1.6 Key research questions 

1.6.1  What kinds of Fusarium mycotoxins are found in Jiangsu Province, China? What is the 

occurrence of Fusarium mycotoxins in different years and counties? 

1.6.2 What kinds of Fusarium strains are isolated from rice? 

1.6.3 What is the difference in fumonisins production from Fusarium proliferatum and Fusarium 

fujikuroi strains isolated from rice? 

1.6.4 What is the detection limit of immuno-chromatographic strip test (ICST) in detection of 

ZEN in wheat? 

1.6.5 Are the results obtained from ICST for ZEN consistent with those from HPLC-MS/MS? 
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Abstract 
 

Fusarium mycotoxin contamination of  both foods and feeds is an inevitable phenomenon worldwide. 

Deoxynivalenol, nivalenol, zearalenone, T-2 toxin and fumonisin B1 are the most studied Fusarium 

mycotoxins. Co-contamination of mycotoxins has also been studied frequently. Fusarium mycotoxins 

occur frequently in foods at very low concentrations, so there is a need to provide sensitive and 

reliable methods for their early detection. The present review provides insight on the types, toxicology 

and occurrence of Fusarium mycotoxins. It further elucidates the various detection methods for 

mycotoxin production from Fusarium strains, with a special focus on chromatographic and 

immunochemical techniques. 

 

Keywords: Fusarium mycotoxins, toxicology, occurrence, detection 
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1. Introduction 
 

Annually, 25-50% of crops harvested worldwide are contaminated with mycotoxins (Ricciardi et al., 

2013). Fusarium head blight (FHB), also known as ear disease or scab, is a worldwide disease of 

wheat, corn, barley, rice and other small grains. Over the past decades, FHB has become one of the 

most serious fungal diseases, attributable to climate change and modern agricultural practices, 

causing tremendous economic losses worldwide (Osborne and Stein, 2007). Fusarium mycotoxins 

are secondary metabolite produced by Fusarium species during growth and storage. They also have 

chemical and thermal stability. Furthermore, mycotoxins are passed from the contaminated feed to 

animals and eventually to humans. Mycotoxins exhibit both acute and chronic toxic effects in humans 

and animals. The outbreak of the Fusarium toxicity has been reported in many countries, such as 

Europe, Asia, Africa, New Zealand and South America (Marin et al., 2013). Therefore, to protect 

human health, some countries have continuously monitored the maximum levels of mycotoxins in 

foods and other commodities to (Table 1) (Selvaraj et al., 2015; Ferrigo et al., 2016; Moretti et al., 

2017). 
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Table 1:  Allowable limits of Fusarium mycotoxins in food and feeds in certain countries and 

regions 

Range Toxin Country Applicable Products Limit 
(µg/kg) 

 

Food 
DON 

China Cereals and their products 1,000  

EU 

Raw durum and oats, wet-milled corn 1,750  

Unprocessed cereals other than hard wheat, oats, and 
corn 1,250  

Cereal that can be consumed directly and cornflakes less 
than or equal to 500 microns in size 750  

Bread, snacks, desserts, and breakfast cereals 500  

Cereal-based foods for infants and young children 200  

America 
Wheat for food milling 2,000  

Final products made using edible wheat 1,000  

Canada 

Unpurified soft wheat in China 2,000  

Soft wheat flour (adult food) 1,200  

Soft wheat flour (baby food) 600  

Armenia 
Wheat 700  

Barley 1,000  

Belarus 
Wheat 700  

Baby food Prohibited  

Bulgaria 

Grain and products made from grain for direct 
consumption or as processed food ingredients 1,000  

Cereals which will be stored or subjected to further 
physical processing prior to consumption 2,000  

Corn and corn products 1,000  

Cuba Imported cereals 300  

Cyprus Grain 1,200  

Serbia Raw corn 1,750  

ZEN China Wheat and flour 60  



 

 

 

 13 

Corn and corn flour (slag and slice) 60  

EU 

Processed cereals for infants and young children 20  

Bread and breakfast cereals 50  

Grain products that can be eaten directly 75  

Corn, corn snacks, and corn breakfast cereals that can be 
eaten directly 100  

Corn flakes larger than 500 microns in size 200  

Corn flakes less than or equal to 500 microns in size 300  

Corn treated via wet grinding 350  

Refined corn oil 400  

Armenia All foods 1,000  

Austria Wheat, rye, and hard wheat 60  

Belarus 
Barley, wheat, and corn 1,000  

Baby foods Prohibited  

Bulgaria 
Grain and processed grain products for direct 
consumption or for use as processed food ingredients 200  

Corn and corn products 200  

Chile All foods 200  

Columbia Sorghum 1,000  

France Grain and grain products 50  

FUMS 
EU 

Corn-based baby foods 200  

Corn snacks and corn breakfast cereals 800  

Corn, corn snacks, and corn breakfast cereals that can be 
eaten directly 1,000  

Corn flakes larger than 500 microns in size 1,400  

Corn flakes less than or equal to 500 microns in size 2,000  

Corn treated via wet grinding 4,000  

America Edible corn 2,000  

FB1 & 
FB2 Bulgaria Corn and corn products 1,000  
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FB1 Cuba Corn and rice 1,000  

FB1 France Grain and grain products 1,000  

T-2 

China 
Distiller's dried grain with corn solubles for feed 100  

Formulated feeds for pigs and poultry 1,000  

Armenia All foods 100  

Belarus 
Cereal, flour, and shelled oats 100  

Infant food Prohibited  

Bulgaria Grain and grain products for direct consumption and for 
use as processed food ingredients 100  

Feed 

DON 

China 
Formulated feeds for pigs, calves, and lactating animals 1,000  

Formulated feeds for cattle and poultry 3,000  

Austria 

Pannage 500  

Feed for fattening poultry 1,500  

Feeds for breeding poultry and laying fowl 1,000  

Feeds for beef cattle 1,000  

Canada 
Feeds for livestock and poultry 5,000  

Feeds for pigs, calves, and cows 1,000  

Cuba All feedstuffs 300  

Cyprus 

All feedstuffs except coarse grain 7,000  

Complete feeds for pigs 1,000  

Complete feeds for poultry and fattening calves 5,000  

Complete feeds for other animals 3,000  

Serbia Feeds 8,000  

ZEN 

China Feeds and distiller's dried grain with corn solubles 500  

Austria Feeds for breeding swine 50  

Canada Feeds for gilts and sows 3,000 

Cyprus Feedstuffs 2,000 
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Complete feeds for piglets 1,000 

Complete feeds for all pigs except piglets 1,500 

T-2 Canada Feeds for pigs and poultry 1,000 

HT-2 Canada Feeds for livestock and poultry 100 

 

1.1 Types and toxicities of Fusarium mycotoxins 

Fusarium species produce three most important classes of mycotoxins namely: trichothecenes, 

zearalenone (ZEN), and fumonisins (FBs). 

 

1.1.1 Trichothecenes 

Trichothecenes are the most important class of Fusarium mycotoxins, and they are also of most 

diverse chemical composition. They are a large family that contains many chemically related 

mycotoxins. Fusarium, Myrothecium, and Stachybotrys can produce trichothecenes, although they 

come from taxonomically different genera. Trichothecenes are one of the potential threats to the 

health of humans and animals worldwide (Li et al., 2011).  

 

Trichothecenes are extremely prevalent with molecular weights ranging from 200 to 500 Da. They 

include more than 200 toxins, which have a substantial sesquiterpenoid structure, with or without 

macrocyclic esters or ester ether bridges between C-4 and C-15. In addition, trichothecenes consist 

of 12,13-epoxyalkylene groups that are responsible for cytotoxicity, as well as 9,10 double bonds 

with different side-chain substitutions (McCormick et al., 2011).  

 

Trichothecenes have been subdivided into four groups (A-D) based on the substitution mode of the 

core structure of 9- ene (EPT) by tricyclic 12,13- epoxidation. Type A toxins include T-2, HT-2, 
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neosolaniol (ENNS), and diacetoxyscirpenol (DAS). Type B toxins include deoxynivalenol (DON) 

and its 3-acetyl and 15-acetyl derivatives, nivalenol (NIV), together with acetylated precursor of NIV 

[4-acetylnivalenol, also termed Fusarenon-X (FUX)]. Type C trichothecenes contain a C-7/C-8 

epoxide, such as crotocin. Type D trichothecenes include roridin A, verrucarin A, and satratoxin H 

which have an extra loop that can link C-4 and C-15 (McCormick et al., 2011; Pinton and Oswald, 

2014). The structures of the trichothecenes are shown in Figure 1and Table 2. 

O

R5

R4

H

CH2

O

H
R1

R2

R3  

Fig. 1. Structures of trichothecenes (Marin et al., 2013). 

 

Table 2:  Representation of different groups contained in trichothecenes structures 

 

Type Trichothecene R1 R2 R3 R4 R5 Chemical 
Formula 

Molecular 
mass (amu) 

A Diacetoxyscirpenol OH OCOCH3 OCOCH3 H H C19H26O7 366 

A Neosolaniol OH OCOCH3 OCOCH3 H OH C19H26O8 382 

A T-2 Toxin OH OCOCH3 OCOCH3 H OCOCH2CH(CH3)2 C24H34O9 466 

A HT-2 Toxin OH OH OCOCH3 H OCOCH2CH(CH3)2 C22H32O8 424 

B Deoxynivalenol OH H OH OH =O C15H20O6 296 

B 3-Acetyldeoxynivalenol OCOCH3 H OH OH =O C17H22O7 338 

B 15-Acetyldeoxynivalenol OH H OCOCH3 OH =O C17H22O7 338 

B Fusarenon X OH OCOCH3 OH OH =O C17H22O8 354 
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B Nivalenol OH OH OH OH =O C15H20O7 312 

 

1.1.1.1 Deoxynivalenol 

In recent years, FHB has once again become a major disease threatening food security, and this has 

led to renewed interest in trichothecenes, such as deoxynivalenol (DON) (Goswami and Kistler, 2004; 

van Egmond et al., 2007).  

DON is mainly produced by Fusarium graminearum and Fusarium culmorum. DON composed of 

12,13-epoxy-3α,7α,15-trihydroxytrichothec-9-en-8-one (C15H20O6), crystallizes as colorless needles, 

stable at extreme temperatures (120-180 °C) and soluble in polar organic solvents such as aqueous 

acetonitrile, chloroform, methanol, ethanol and ethyl acetate (EFSA, 2004c). DON causes vomiting 

(that is why it is also known as vomitoxin), digestive disorders, oxidative damage, and reproductive 

toxicities in animals and humans, however, this mycotoxin is not a human carcinogen (Berthiller et 

al., 2011). The International Agency for Research on Cancer (IARC) classified DON in group 3 (non-

carcinogenic substances) (Ostry et al., 2017). DON causes biological barriers and affects cell and 

organ functions and viability (Maresca, 2013). At cellular level, DON binds ribosomal peptide 

transferase active sites and activates cell kinases to inhibit protein and nucleic acid synthesis(Ueno et 

al., 1973; Shifrin and Anderson, 1999). Many kinases have been affected, including extracellular 

signal-regulated kinases, mitogen-activated protein kinases (MAPKs) p38 and c-jun N-terminal 

kinases (Shifrin and Anderson, 1999). DON triggers MAPK-mediated up-regulation of pro-

inflammatory cytokine and chemokine expression, and apoptosis (Shifrin and Anderson, 1999; Zhou 

et al., 2003; Islam et al., 2006). The effects of DON on the immune system are manifold. Due to the 

different mycotoxin concentrations, timing and duration of exposure, effects can be achieved from 

immunosuppression to immunostimulation. According to Peraica report, DON is a potent protein 
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synthesis inhibitor that depresses the immune system, and causes dysphagia (Peraica et al., 1999). 

DON is regarded as a teratogen, neurotoxin, and immunosuppressant agent by The World Health 

Organization (WHO). In general, DON has been associated with chronic and fatal human and animal 

intoxication by eating contaminated food and feed (Rotter et al., 1996). 

 

1.1.1.2 Nivalenol 

 

Nivalenol (NIV) was detected from a virulent Fusarium nivale (Fn-2B), isolated from a farmland by 

Kokoda in 1963 in the Kumamoto region of Japan. Subsequently, Tani and Shigata (1979) found that 

the organism was lethal to rice, as it produced both NIV and FUX (Tatsuno et al., 1979). NIV 

(3,4,7,15-tetrahydroxy-12,13-epoxytrichothec-9-en-8-one) is produced mainly by Fusarium 

graminearum, Fusarium crookwellense, and Fusarium nivale. It co-occurs with FUX and DON in 

crops such as wheat, barley, and maize. NIV has been recently found in cereal-based products of 

European countries, and those of Brazil, Japan, Southeast Asia, and China (Turner, 2010). 

 

NIV and DON are similar in terms of chemical structure, and also share many toxicological properties 

such as causing nausea, vomiting, diarrhea, and eventually death. Both toxins inhibit protein 

synthesis, and increase the levels of stress-activated MAPKs and serum alkaline phosphatase. Gerez 

et al. (2015) found that the overall liver and kidney weights of female mice were reduced when NIV 

was added to feeds at up to 0.7 mg/kg body weight (bw)/day for 2 years. After NIV administration to 

mice at 12 ppm for up to 8 weeks, the serum IgA concentration increased and IgA became deposited 

on the glomerular mesangium, mirroring human IgA nephropathy (Gerez et al., 2015). 
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Of the various Fusarium mycotoxins tested, NIV exerted one of the highest in vitro 

immunosuppressive effects on human peripheral blood mononuclear cells. NIV can inhibit the 

proliferation of human male and female mitogen-stimulated lymphocytes (Nagashima, 2014). At the 

mRNA level, NIV and DON modulate Th1-type cytokine expression differently at various doses, 

interacting with lymphocytes to inhibit cell proliferation by stimulating apoptosis (Severino et al., 

2006). NIV is more toxic to human promyelocytic leukemia cell line HL60, human lymphoblastic 

leukemia cell line MLT-4 and rat aortic myoblast cell line A10 than DON (Nagashima et al., 2014).  

The chronic effects of low oral NIV doses in animal models have been seldom explored, but several 

countries tolerate only low levels of trichothecenes in cereals (Gouze et al., 2007). China imposes no 

NIV limit on foods or feeds. 

 

1.1.1.3 T-2 and HT-2 

 

The T-2 toxin [3-hydroxy-4-15-diacetoxy-8ct-(3-methyl butyryloxy) 12,13 epoxytrichothec-9-ene] 

contains an epoxy trichothecene loop. HT-2, a deacetylated form of T-2, is the principal metabolite 

of T-2. The toxicities of T-2 and HT-2 are similar, since both contain the epoxy sesquiterpenoid 

moiety. Consequently, the toxicity of T-2 may be partly attributable to HT-2 for T-2 is rapidly 

metabolized to HT-2 (Ndossi et al., 2012). Of all Fusarium species, Fusarium langsethiae seems to 

be the major producer of T-2 and HT-2 followed by Fusarium poae and Fusarium sporotrichioides 

(Thrane et al., 2004; Glenn and Quillin, 2007). T-2 and HT-2 contaminate many grains, such as maize, 

oat, barley, wheat, rice, and soybeans. 

T-2 is considered one of the most acutely toxic trichothecenes, causing a wide range of toxic effects 

in animals. Acute T-2 toxicity has been studied in rats, mice, guinea pigs, and pigeons; with the toxin 

administered intravenously, orally, subcutaneously, intraperitoneally, or intratracheally (Bouaziz et 
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al., 2013). Symptoms of acute poisoning include nausea, vomiting, abdominal pain, diarrhea, bloody 

stools, cartilage tissue damage, weight loss, decreased immunity, decreased plasma glucose levels, 

and pathological changes in the liver and stomach. (Li et al., 2011). T-2 at 2 mg·kg−1 reduced 

lymphocyte numbers and caused hepatopancreatic necrosis in the black tiger shrimp. In addition, T-

2 at 2.5 mg·kg−1 reduced body weight, feed ingestion, feed conversion, and hemoglobin concentration 

in rainbow trout. T-2 at 1 mg·kg−1 dose in catfish reduced intestinal immunity and increased mortality 

by up to 84% (Sehata et al., 2004). The main action of T-2 is to inhibit protein synthesis and secondary 

destruction of DNA and RNA synthesis (Doi et al., 2008).  

 

T-2 can affect cell cycle, and induce chondrocytes, human astrocytes, mouse embryonic stem cells, 

pig primary hepatocytes, hematopoietic cells in bone marrow and spleen red pulp and epidermal basal 

cell apoptosis, indicating that T-2 can induce cell death with high proliferation activity (Shinozuka et 

al., 1998; Fang et al., 2012; Weidner et al., 2013).  

 

In addition, T-2 targets the immune system, alters leukocyte counts, triggers delayed-type 

hypersensitivity, leads to depletion of certain hematopoietic progenitor cells, reduces antibody 

formation, and enhances allograft rejection and lectin promotion (Creppy, 2002). Pigs and horses are 

among the animals that are most sensitive to T-2, the major effects of which are immunological and 

hematological in nature. In quail, T-2 reduced the activity of blood alkaline phosphatase, an enzyme 

that plays an important role in the innate immune response, increased the levels of glutamic-pyruvic 

transaminase and glutamic-oxaloacetic transaminase (Nemcsok and Boross, 1982; Madheswaran et 

al., 2004).  
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1.1.2 Zearalenone 

 

Zearalenone (ZEN), also known as F-2 toxin, is a resorcyclic acid lactone [6-(10-hydroxy-6-oxo-

trans-1-undecenyl)-β-resorcyclic acid lactone (C18H22O5, MW: 318.36, CAS 17924-92-4)]. In 

mammals, the ketones in C-8 are reduced to two stereoisomeric metabolites (the a- and b-isomers). 

The structures of ZEN and its derivatives are shown in Figure 2. Various ZEN metabolites are 

produced by fungi, but at lower concentrations. The relative concentrations of the individual toxins 

vary among host plants and geographical regions. These include several Fusarium species (Fusarium 

graminearum, Fusarium culmorum, Fusarium crookwellense, and Fusarium equiseti) that are known 

to also produce other toxins including DON, NIV, and FUX (Frizzell et al., 2011). ZEN is a whitish, 

crystalline toxin with a melting point of 164°C -165 °C.  ZEN is fat-soluble, insoluble in water, but 

soluble in alkalis and various organic solvents. ZEN is thermostable during storage, milling, 

processing, and cooking (EFSA., 2004d). ZEN contaminates corn, barley, oats, wheat, sorghum, 

millet, rice, flour, malt, soybeans, and beer. ZEN derivatives [α-zearalenol (α-ZEA), β-zearalenol (β-

ZEA), 𝛼𝛼-zearalanol (α-ZAL), β-zearalanol (β-ZAL), and zearalanone] have been detected in corn 

stems, rice cultures, corn silage, corn products, and soya meal (Marin et al., 2011). The ZEN limits 

in corn and other cereals are currently in the range of 50 to 1,000 μg/kg (Table 1). 

 

Several in vivo studies found that ZEN principally targeted the reproductive system. In laboratory 

animals, the toxic effects included changes in reproductive tract, uterine enlargement, reduced 

fertility, increased embryo-lethal resorption, and changes in serum levels of progesterone and 

estradiol (Koraichi et al., 2012). ZEN and its metabolites α-ZOL and β-ZOL exert estrogenic effects, 

since they are structurally similar to estrogen; the toxins bind competitively to estrogen receptors, as 
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found in pigs and sheep. In addition, ZEN exhibits relatively low acute toxicity (oral LD50 values 

>2,000-20,000 mg/kg bw) after oral administration in mice, rats, and guinea pigs (Schoevers et al., 

2012). Furthermore, ZEN is immunotoxic, hepatotoxic, hematotoxic, nephrotoxic and enhances lipid 

peroxidation (Choi et al., 2012). ZEN induces liver lesions and subsequent hepatocarcinoma, and 

alters hepatic function in rabbits, rats, and gilts (Pistol et al., 2014). Recent studies indicate that ZEN 

may stimulate the growth of human breast cancer cells that express the estrogen receptors (Ahamed 

et al., 2001). 

 

 

Fig. 2. Chemical structures of ZEN and its derivatives: (a) zearalenone, (b) α-zearalenol, (c) β-

zearalenol, (d) zearalanone, (e) α-zearalanol, and (f) β-zearalanol (Marin et al., 2013). 

 

1.1.3 Fumonisins 

 

Fumonisins (FBs) were initially isolated from corn cultures of Fusarium moniliforme in South Africa 

(Gelderblom et al., 1988). The structures of these mycotoxins as shown in Fig. 3 and Table 3 were 

first reported by Marasas et al. in 1988 (Scott, 2012). Subsequently, fumonisins have been isolated 
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from other Fusarium species, such as Fusarium verticillioides, Fusarium proliferatum and Alternaria 

alternata f. sp. lycopersici (Bezuidenhout SC, 1988). It is divided into three: FB1, FB2, and FB, and 

are present as natural contaminant in foods. The molecular structures of fumonisins are shown in Fig. 

1 (Soriano JM, 2004). FB1 often contaminates corn and its products, and is the most abundant and 

most toxic FB. FB1 is a diester of propane-1,2,3-tricarboxylic acid and 2S-amino-12S,16R-dimethyl-

3S,5R,10R,14S,15R-pentahydroxyeicosane, where the C-14 and C-15 hydroxy groups are esterified 

with the terminal carboxy group of propane-1,2,3-tricarboxylic acid (TCA). FB2 is a 10-deoxy FB1 

while FB3 is a 5-deoxy FB1 (Soriano et al., 2005). The structures of the principal fumonisins are 

shown in Fig. 3. The symptoms induced by FBs are very broad, including neural tube defects in 

newborns, brain lesions in horses, pulmonary edema in pigs and cancer in experimental animals. 

Although FBs have no mutagenicity, they promote cancer development(Summerell, 2011). FBs are 

associated with human apoptosis, esophageal cancer and neural tube defects (Scott, 2012; 

Ahangarkani, 2014). FBs can affect the progress of liver cancer in rats, cause bleeding in rabbit brains 

and have nephrotoxicity to other animals. In addition, FBs are also toxic to pigs, chickens and other 

farm animals (Ahangarkani, 2014). FB1 interferes with myelin synthesis, causes 

leukoencephalomalacia and liver necrosis in horses, leading to death. Pig intake of FB1 contaminated 

feed will cause pulmonary edema (Scott, 2012). In rodent studies, liver and kidney are the main FB1 

targets.  

 

The mechanism by which fumonisin exerts toxic effects is complex. Structurally, fumonisins are 

similar to  sphingoid base (a sphingolipid). They can inhibit the synthesis of ceramide synthase and 

block the biosynthesis of complex sphingolipids, thereby promoting the accumulation of sphingosine 

and sphinganine 1-phosphate (Wan et al., 2013). As sphingolipids play key roles in cellular 

regulation, dysfunctional sphingolipid metabolism may account for the observed toxicity. These 

lipids play an important role at the cellular level.  They can maintain cell morphology, promote cell 
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differentiation, regulate growth factor levels, and affect cell carcinogenicity and apoptosis. In 

addition, they also play a role in maintaining cell membrane structure, enhancing cell interaction and 

extracellular interaction. 

It also plays a role in maintaining cell membrane structure, enhancing cell interaction and 

extracellular interaction. Moreover, sphingolipids also act as secondary messengers in various signal 

transduction pathways (Ahangarkani, 2014). 

 

Fig. 3. Structures of the principal fumonisins in foods (FB: fumonisins of group B; AP: 

aminopentol) (Marin et al., 2013). 

 

Table 3: Representation of different groups contained in fumonisins structures 

 R1 R2 R3 R4 R5 R6 

FB1 TCA TCA OH OH H CH3 

FB2 TCA TCA H OH H CH3 

FB3 TCA TCA OH H H CH3 

FB4 TCA TCA H H H CH3 

AP1 OH OH OH OH H CH3 
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1.2 Fusarium mycotoxins in China  

 

China has been recognized as a major country suffering from Fusarium mycotoxin contamination. 

This is typical of  FHB, causing serious problems in cereal grains, especially in 2003, 2010, and 2015 

(Zheng Zhang, 2010). Cereals are the staple foods of Asians, and play important roles in healthy diets.  

Temperature and rainfall are the key climatic factors that affect plants and their associated pathogens 

as well as mycotoxin concentrations in infected plants. In the middle-to-low valleys of the Huaihe 

and Yangtze Rivers, the most developed agro-production regions of China, the (typical) humid warm 

climate encourages FHB epidemics. In 2010, rainfall promotes wheat flowering, leading to the 

development of FHB, found as the common disease of wheat in Southern China. The total amount of 

wheat produced in 2010 in Jiangsu and An-hui was 100.81 and 120.65 million kg, respectively.  

Li et al. (2014) sampled 76 cereals and oil products of the Yangtze Delta of China, and found that 

ZEN is the most prevalent toxin, with an incidence of 27.6% (9.2% higher than the legal limit). DON 

was detected in 7.9% of  the samples (Rui Li, 2014). Han et al. reported the levels of DON, 3-ADON, 

and 15-ADON in wheat and maize samples from Shanghai, China. From 2009 to 2012, 58% of all 

maize samples and 80% of all wheat samples were contaminated by DON. In 2011 to 2012, all 50 

wheat and maize samples evaluated were contaminated with low levels of 3-ADON and 15-ADON 

(Han et al., 2014). The authors collected 180 samples in Jiangsu Province from 2010 to 2012. The 

percentage of DON-positive samples was 74.4%, and that of ZEA-positive samples was 12.8%. The 

highest DON concentration was 41,157 µg/kg, far above the allowable limits (Ji et al., 2014). Li et 

al. (2015) reported that 39.7% of maize samples were contaminated by FB1 and FB2 in Southwest 

China (Renjie Li., 2015). Recent studies have found that 30-80% corn grains have FB1 and FB2 in 

the corn grains planted in some provinces in China, and the mean mycotoxin concentration range is 

range from 11 to 13,110 μg/kg(Feng, 2011; Wei, 2013). Several authors have investigated mycotoxin 
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levels in various cereals and feeds. Table 4 summarizes data obtained over the past 28 years on 

Fusarium mycotoxin contamination of foods and feeds in China.  

Table 4: Contamination of Fusarium mycotoxins in foods and feeds in China 

Product Number toxin 
% of 
positive 
samples 

Province Reference 

Corn 

120 

DON 74.2 

Shanxi Wei et al., 2017 

3-A-
DON 16.7 

15-A-
DON 74.2 

NIV 27.5 

ZEN 49.2 

FB1 74.2 

FB2 82.5 

FB3 70.0 

T-2 5.0 

HT-2 17.5 

215 

DON 84.65 

Twelve provinces Ma et al., 2011 
ZEN 69.30 

T-2 46.05 

HT-2 16.28 

42 
DON 47.6 

Anhui and Henan Xiong et al., 2009 
ZEN 78.6 

111 DON 16.2 Anhui  Lu et al., 1994 

105 DON 61.9 Hebei Liu et al., 1993 

284 DON 66.6 
Six provinces：
Henan, Hubei, 
Sichuan, Jilin, 

Wang et al., 2007 
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Guangxi, and 
Guangdong 

204 

DON 50.5 Seven provinces：
Henan, Hebei, 
Guangxi, Anhui, 
Sichuan, Ghongqing, 
and Jiangsu 

Li et al., 2011 
ZEA 41.7 

50 FBs 26 Shangdong Yan et al., 1999 

70 FBs 44.3 Jilin Sun et al., 2003 

50 FBs 38.00 Hubei Lv et al., 2005 

Wheat 

100 NIV 35 
Shanghai Li et al., 1997 

100 DON 53.0 

41 
DON 97.6 

Anhui and Henan Xiong et al., 2009 
ZEN 68.3 

439 ZEN 31.9 
National Luo et al., 1989 

815 DON 49.2 

329 DON 69.3 Anhui  Lu et al., 1994 

200 

ZEN 61.0 

Twenty-six provinces Cheng et al., 2014 DON 89.0 

T-2 42.0 

190 DON 66.3 

Six provinces: 
Henan, Hubei, 
Sichuan, Jilin, 
Guangxi, and 
Guangdong 

Wang et al., 2007 

162 

DON 88.8 Seven provinces：
Henan, Hebei, 
Guangxi, Anhui, 
Sichuan，
Ghongqing, and 
Jiangsu 

Li et al., 2011 
ZEN 22.9 

183 
DON 37.99 

National Wu et al., 2009 
FBs 87.34 
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T-2 97.38 

ZEN 16.02 

56 DON 89.3 Anhui and Jiangsu Cui et al., 2013 

50 DON 30 

Ten regions of 
China, including 
Shandong, Hebei, 
Jilin, et al. 

Wang. et al., 2014 

50 FBs 94 Shangdong Yan et al., 1999 

40 FBs 72.5 Jilin Sun et al., 2003 

52 FBs 55.77 Hubei Lv et al., 2005 

330 T-2 80 

Nine provinces：
Shandong, 
Henan,Hebei, Hubei, 
Liaoning, Shanxi, 
Anhui,Jiangsu, and 
Shanghai 

Yang et al., 1992 

37 T-2 76.9 Guizhou Chen et al., 1995 

174 T-2 58.05 Beijing He et al., 1998 

Flour 

158 

DON 84 

Anhui, Beijing, 
Henan, Jilin, 
Shandong 

Han et al., 2017 

DON-3-
G 24 

3-A-
DON 84 

15-A-
DON 61 

NIV 22 

ZEN 77 

125 

DON 96.80 

Twelve provinces Ma et al., 2011 
ZEN 72.80 

T-2 74.40 

HT-2 24.80 

50 DON 54 Hebei Liu et al., 1993 
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132 DON 92.4 Anhui Lu et al., 1994 

Rice 

18 

DON 44.44 

Twelve provinces Ma et al., 2011 
ZEN 38.89 

T2 61.11 

HT2 11.11 

51 ZEN 3.9 Guangxi Li et al., 2011 

40 FBs 95 Shangdong Yan et al., 1999 

60 FBs 38.3 Jilin Sun et al., 2003 

49 FBs 32.65 Hubei Lv et al., 2005 

Feeds  

205 
ZEN 62.5 

National Zhou et al., 2014 
DON 85.83 

341 

DON 45.4 
Twenty-eight 
provinces Chen et al., 1997 ZEN 35.8 

T2 24.2 

Combined 
feeds 47 

DON 100 

Guangxi Jiang et al., 2011 
ZEN 100 

T2 100 

FBs 100 

 

 

1.3 Production of Fusarium mycotoxins 

 

The Fusarium fujikuroi species complexes (FFSC) and Fusarium graminearum species complexes 

(FGSC) are the major mycotoxin producers, respectively (O'Donnell et al., 2000). The FFSC 

produces fumonisins. Fusarium verticillioides is the main contaminant of corn, while Fusarium 

proliferatum is a polyphagous species that found in many different crops.  
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Qiu et al. (2014) isolated Fusarium species from maize kernels from Jiangsu and Anhui Provinces, 

China. They also found that Fusarium verticillioides was the most prevalent species, followed by 

Fusarium proliferatum, and finally Fusarium graminearum. FUM1 is a gene that plays a key role in 

fumonisin biosynthesis. Qiu et al. (2014) reported that  most  Fusarium verticillioides strains have 

been detected the presence of FUM1 (Qiu and Shi, 2014). 

 

The FGSC contains 16 phylogenetically distinct species at least, which can cause FHB of a variety 

of crops and produce trichothecenes (O'Donnell et al., 2004). In North America and Europe, 

Fusarium graminearum is predominated in a survey of Fusarium species composition and population 

structure (Starkey et al., 2007). The distribution of Fusarium asiaticum and Fusarium graminearum 

is different in location, they are the main etiological agents of FHB in Japan and Korea (Gale et al., 

2002; Suga et al., 2008; Lee et al., 2012). In China, both Fusarium graminearum and Fusarium 

asiaticum are widespread. In the colder northern regions of China, Fusarium graminearum isolates 

are the predominated. In the warm wheat growing areas, Fusarium asiaticum is found principally 

(Wang et al., 2008). Fusarium species differ in their responses to temperature and moisture, which 

perhaps influence their distributions in causing infections (Parikka et al., 2012). FGSC strains are  

usually classified into three trichothecene profiles according to the difference in the production of 

mycotoxins: (i) DON and 3-acetyldeoxynivalenol (3-ADON chemotype); (ii) DON and 15-

acetyldeoxynivalenol (15-ADON chemotype), or (iii) NIV, its acetylated derivatives (NIV 

chemotype) (Ward et al., 2002). The analysis of the distribution of FGSC and trichothecene 

chemotypes in cereal crops will help to correctly understand the relationship between disease and 

mycotoxin pollution, so as to develop effective management strategies for controlling disease and 

mycotoxin pollution. 
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1.4 Detection of Fusarium mycotoxins 

 

Mycotoxins can be detected by various techniques, which are broadly divided into instrumental and 

bioanalytical methods. However, each approach has merits and drawbacks; the method of choice is 

dictated by the detection requirements. 

 

1.4.1 Chromatographic methods 

 

There are many kinds of instrument detection methods  for mycotoxins. Thin layer chromatography 

(TLC) is a qualitative or semi quantitative method with the longest history in the detection of 

mycotoxins. High-performance liquid chromatography (HPLC) can couple with different detectors. 

These detectors include ultraviolet (UV) detection, diode array detection, fluorescence detection or 

mass spectrometric detection. Gas chromatography can couple with electron capture detection, flame 

ionization detection (FID), or mass spectrometry (MS) detection (Visconti and De Girolamo, 2005; 

Lippolis et al., 2008). These methods afford high accuracy and precision, and are used for both 

quantitative and qualitative analyses. However, they are expensive, require skilled personnel and 

longer periods for sophisticated sample preparation (Elliott, 2011). Thus, instrumental methods are 

not suitable for normal laboratories or field environments. Chromatographic techniques involving UV 

and FID are principally employed in confirmatory contexts, thus facilitating compliance with 

regulations. Occasionally, such techniques serve as reference methods for validation of 

immunochemical tests.  

 

MS has indisputable advantages of high sensitivity, high selectivity, high throughput and accuracy, 

making  multi-residue analysis possible. Quick, easy, cheap, effective, rugged, and safe (QuEChERS) 
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approaches for sample preparation allow analysis of a wide range of matrices and analytes, and further 

allowing the simultaneous extraction of the amount of mycotoxins. However, QuEChERS approaches 

reduce analytical sensitivity, and require pre-concentration steps. Alternatively, isotope dilution 

quantification can improve sensitivity in the absence of pre-concentration (Anfossi et al., 2016). 

 

High resolution MS (HRMS) and tandem MS/MS allow (possibly) identification of unknown 

compounds by analyzing structural information of the compounds. The use of non-selective 

extraction protocols followed by mass screening employing HRMS or MS/MS has allowed 

identification of new masked mycotoxins and new members of known groups. The rapid multi-

residue LC-MS/MS methods have been used to evaluate mycotoxins level in food and feed. 

 

1.4.2 Immunochemical methods 

  

Immunoassays based on antibody-antigen reactions are very useful for routine analyses, as these 

techniques are simple and have been used for rapid mycotoxin detection (V.Zherdev, 2014). Recently, 

several immunological techniques have been developed, including enzyme-linked immunosorbent 

assays, time-resolved immunochromatographic assays, enzyme-linked aptamer assays, 

chemiluminescence immunoassays, fluorescence immunoassays, fluorescence resonance energy 

transfer immunoassays, and metal-enhanced fluorescence assays (Chauhan et al., 2016). Aptamers 

are an important parameter in these detection techniques. They can bind a variety of peptides, 

proteins, amino acids, and organic or inorganic molecules, all of which have high affinity and 

specificity (Torres-Chavolla and Alocilja, 2009). Jodra et al. (2015) developed an electrochemical 

magneto-immunosensor to detect FB1 and FB2. The sensor was made of magnetic beads and 

disposable carbon screen-printed electrodes. Liu et al. (2014) constructed an ultrasensitive 
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immunosensor based on mesoporous carbon and trimetallic nanorattles with special Au cores. The 

lower detection limit of ZEN was 1.7 pg mL–1, and the assay was found to exhibit good stability and 

reproducibility. 

 

Because of the strong selectivity of molecular recognition mechanisms, it is difficult to 

simultaneously assay different compounds or discover new toxins. Osward et al. (2013) designed an 

analytical array that can detect several targets separately in spatially distinct regions. Song et al. 

(2014) developed an immuno-chromatographic strip test device that simultaneously detect at least 10 

different toxins (AFs, DON and analogs thereof, and ZON and analogs thereof). Wang et al. (2013) 

reported that they developed a unique spectral addresses which can simultaneous detection of many 

mycotoxins in peanuts. Those mycotoxins include AFB1, DON, ZON, and T-2.  

 

In comparison to chromatographic methods, immunochemical methods afford greater selectivity in 

terms of monitoring mycotoxin levels which is very important to ensure food safety in developing 

countries. In addition, due to global changes in climate and the environment, the level of 

contamination by fungi and their mycotoxins will increase in the future. Risk management requires 

routine application of efficient control programs such as optimally employing immunoassays. 

 

1.5 Conclusion 

 
In conclusion, the study of Fusarium mycotoxins has attracted increasing attention. Many studies 

have addressed the toxicokinetic profile, mycotoxin persistence and accumulation. The progress of 

mycotoxin analysis highlights the limitations currently being understood due to their effective impact 

on animal and human health in food. Co-contamination by several toxic compounds and identification 

of new compounds in the mycotoxin family both require new toxicological studies to assess. In 
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addition, food from crops is susceptible to fungal contamination, and it has been clearly demonstrated 

that animals fed the contaminated feed can transmit mycotoxins. Some regulations, especially those 

established by the European Union, have gradually recognized the risk of contamination by 

mycotoxins in the food chain. Mycotoxin levels should be monitored routinely and continuously, as 

the annual levels may vary depending on environmental moisture, climate, temperature changes, plant 

disease status, and insect pest numbers. Effective management of food safety risks is required, 

especially including the use of rapid and sensitive immunological techniques.  
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Abstract 

 

Deoxynivalenol (DON) is produced by some Fusarium graminearum species complex (FGSC), such 

as F. graminearum and F. culmorum, and are found as common mycotoxins worldwide in wheat. The 

DON contamination of wheat has caused serious economic losses, not only causing food shortage, 

but also a threat to human health. The present study focuses on the occurrence of Fusarium species 

coupled with contamination levels of DON in wheat from different areas of Jiangsu Province in China 

for three years, and the influences of rainfall and temperature on accumulation of DON. A total of 

428 Fusarium spp isolated from 2014 to 2016 were identified morphologically. A total of 178 samples 

of wheat were collected in 2014, 2015, 2016 after harvest period from eight counties and analyzed 

for DON using HPLC-MS/MS. The results obtained showed that most of the isolates (88%-94%) 

belong to F. asiatium. The highest prevalence and mean levels of DON were found in 2016 in Sihong 

county. The correlation between the climatic factors (rainfall and temperature) and actual presence of 

DON in wheat was different due to the different wheat variety and areas. 

Keywords: Fusarium species, Deoxynivalenol, Wheat, Climatic, Correlation 
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1. Introduction  
 

Wheat is one of the most important cereal grains in the world, providing over 20% of the calorific 

energy consumed by humans (Tester and Langridge, 2010). Fusarium head blight (FHB) also known 

as scab, is an important fungal disease of wheat, barley and many other small cereal grains. This 

disease is mostly caused by Fusarium graminearum species complex (FGSC) (Marcia McMullen, 

2012). Among the infected grains, Type B trichothecenes are the most common toxic metabolites. 

They can be divided into three chemotypes, such as (i) deoxynivalenol (DON) and 3-

acetyldeoxynivalenol (3ADON chemotype); (ii) deoxynivalenol and 15-acetyldeoxynivalenol 

(15ADON chemotype); or (iii) nivalenol (NIV), its acetylated derivatives and low levels of DON 

(NIV chemotype) (Ward et al., 2002). The chemical types of these mycotoxins are mainly related to 

the toxigenic species and are distributed in different geographical regions (Starkey et al., 2007). DON 

chemical type is very common in the world, while NIV is relatively rare (Desjardins et al., 2004). 

Gale et al. (2011)  have reported that NIV chemotype has been found in several countries in Africa, 

Asia, Europe, and America (Gale et al., 2011). 

 

Deoxynivalenol, one of the most important type B trichothecene, can cause vomiting in pigs, so it is 

also called vomit toxin. It is mainly produced by F. graminearum and F. culmorum (Rotter et al., 

1996). This mycotoxin affects humans and animals by binding to the 60S ribosomal subunit and 

inhibiting protein synthesis (Ma and Guo, 2008). In addition, DON activates mitogen-activated 

protein kinases (MAPKs) and cause apoptosis through a process known as ribotoxic stress response. 

Exposure to DON usually causes animals to resist feed intake, and it also damages the immune 

function of many animals (Pestka, 2010). 
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For the widespread contamination of DON in crops, together with its potential toxicological 

implications in animal models as well as in humans, it has aroused great concern in public health in 

the past few years. Some national and international food safety organizations and expert groups have 

emphasized the need for DON risk assessment in food. In China, the highest permitted content of 

DON in grain and their products is 1000 µg/kg (China, 2017). 

 

Resistance to FHB in wheat is controlled by polygenes, however, these genes usually have lesser 

effects and are vulnerable to environmental influences (Brunner et al., 2009). This further leads to 

complications including, type I resist the initial penetration of FHB, type II prevent the spread of 

fungal in spikes, type III promote the decomposition of mycotoxins, and reduce kernel infection 

(Mesterhazy, 1995). Therefore, it is necessary to develop FHB resistant cultivars to reduce the risk of 

mycotoxin contamination in wheat. 

 

Jiangsu province is the main wheat growing area in the North South transition area of China, spanning 

two main ecological zones suitable for wheat planting. In this region, the typical humid and warm 

climate facilitates epidemics of FHB. Therefore, knowledge about the prevalence of FHB-producing 

F. species, incidence of DON, as well as possible influencing factors is imperative for preventing 

influx of contaminated grains into food supply chain. Therefore, the present study aimed at evaluating 

the occurrence of DON in wheat samples in different counties and years in Jiangsu Province, China 

and correlate with the prevailing dominant F. species. Influence of climatic factors on DON 

contamination of wheat samples is further assessed. 
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2. Material and methods 

 

2.1 Chemicals and reagents 

 

Deoxynivalenol (100µg/mL in acetonitrile) was purchased from Sigma-Aldrich (China). Acetonitrile 

and methanol are all HPLC-grade. (Merck, Germany). Deionised water requiring the resistivity less 

than 8 MX cm-1, and was generated by the Milli-Q water purification system (Millipore, Bedford, 

MA). Filtration of all other reagents was carried out using a 0.22-µm cellulose filter (Jinteng, Tianjin, 

China). 

 

2.2 Molecular identification of F. species and detection of trichothecene genotypes 

 

To identify the F. species and the trichothecene genotype, we performed DNA extraction according 

to the method of Pan et al. (2013). Fg16 F/R primers were used to amplify DNA from all the isolates 

by PCR. The primers previously produced polymorphic products (400-500bp) from DNA extracted 

from FGSC members (Shi, 2014). Single and multiplex PCR were used to detect trichothecene 

genotypes. The chemical types of  FGSC isolates were determined by specific primers described by 

Li et al. (2005). Another primer group targeting Tri3 gene  Tri303F/Tri303R and Tri315F/Tri315R 

were used to further characterize chemotype of the F. graminearum sensu stricto complex as 3ADON 

chemotype or 15ADON chemotype (Jennings et al., 2004).  

The multiple PCR assay developed by Wang et al. (2012) uses primer pairs based on the sequence of 

Tri11 gene. The Tri11 gene encodes the key enzymes involved in the biosynthesis of DON, 3ADON, 

15ADON , NIV, and  T-2 in Fusarium species (Alexander et al., 1998; Wang et al., 2012). These 
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primers produced a 279 bp fragment for the identification of 15ADON chemotype, a 334 bp fragment 

for the identification of 3ADON chemotype, and a 497 bp for the identification of NIV chemotype. 

 

Primers used in this study (5ʹ → 3ʹ): 

1. Fg16F: CTCCGGATATGTTGCGTCAA 

Fg16R: GGTAGGTATCCGACATGGCAA 

(reaction procedure: pre-degeneration at 95 ℃ for 5min, 94 ℃ for 40s, 57 ℃ for 40s, 72 ℃ for 

50s, 30 cycles at 72 ℃ for 10min and 10℃ for 5min) 

2. Tri11CON: GACTGCTCATGGAGACGCTG   

Tri11-3AcDON：TCCTCATGCTCG GTGGACTCG 

Tri11-15AcDON：TGGTCCAGT TGTCCGTATT 

Tri11-NIV：GTAGGTTCCATTGC TTGTTC 

(reaction procedure: pre-degeneration at 95 ℃ for 5min, 94 ℃ for 40s, 58 ℃ for 30s, 72 ℃ for 

50s, 25 cycles at 72 ℃ for 5 min and 10℃ for 5min) 

3. Tri13F:TACGTGAAACATTGTTGGC 

Tri13R:TGGTGTCCCAGGATCTGCG 

(reaction procedure: pre-degeneration at 94 ℃ for 5min, 94 ℃ for 30s, 57 ℃ for 45s, 72 ℃ for 

1min, 35 cycles at 72 ℃ for 10 min and 4 ℃ for 5min) 

4. Tri303F: GATGGCCGCAAGTGGA 

Tri303R：GCCGGACTGCCCTATTG 

(reaction procedure: pre-degeneration at 94 ℃ for 5min, 94 ℃ for 30s, 52 ℃ for 45s, 72 ℃ for 

1min, 35 cycles at 72 ℃ for 10 min and 10℃ for 5min) 

5. Tri315F: CTCGCTGAAGTTGGACGTAA 

Tri315R: GTCTATGCTCTCAACGGACAAC 

(reaction procedure: pre-degeneration at 94 ℃ for 5min, 94 ℃ for 30s, 58 ℃ for 45s, 72 ℃ for 

1min, 35 cycles at 72 ℃ for 10 min and 10℃ for 5min) 
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2.3 Acquisition and presentation of meteorological data 

The rainfall and temperature profiles during the month of April that grain flowering takes place in 

Jiangsu province of China were provided by the Jiangsu Center of Meteorological Information. 

 

2.4 Sample collection and storage 

In 2014-2016 years, 178 wheat grain samples were collected from different regions of 8 counties in 

Jiangsu Province of China (Table 1). All the samples were collected from farms after wheat grain  

harvested. These samples include 4 wheat varieties, and the presence of DON was analyzed (Fig. 1). 

Sampling was carried out according to the European Union guidelines (EC No. 401/2006), in which 

ten samples each of 100 g were collected. After homogenization, the samples were packed in paper 

bags and taken to the laboratory. About 1 kg of the sample was milled and passed through a 20 meshes 

sieve. Thereafter, 200 g from each sample was packed in a sealed polyethylene bag and kept in the 

refrigerator at -20 ℃ for a maximum of 60 d until further analysis. 
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Fig. 1 The map of Jiangsu province shows the sample collection points in different research areas.  

 

Table 1: Number of samples collected in different years and areas  

Areas 
Number of samples 

2014 2015 2016 
Donghai 13 10 10 
Guannan 5 7 7 
Jingjiang 5 8 5 
Jurong 5 8 5 
Pizhou 10 5 5 
Rugao 8 7 7 
Sihong 10 6 9 
Taicang 5 10 8 

 

 

2.5 Sample preparation and mycotoxin (DON) analyses 

A 10 g sample of wheat grain was dissolved in 40 mL of extract, and the extract was composed of 

acetonitrile, water and acetic acid, respectively, at 79:20:1 (v / v / v). It was then shaken for 30 minutes 

in a 180 rpm shaker (Sulyok et al., 2006). After 10 minutes of 3000rpm centrifugation, the final 

extracts of each 0.5mL were diluted with a combined solvent acetonitrile, water and acetic acid 

(20:79:1v/v/v,  respectively) and filtered through a nylon filter with 13mm diameter, 0.22 µm pore 

size (Sulyok et al., 2006; Spanjer et al., 2008). The content of DON was quantified by high pressure 

liquid chromatography/electrospray ionization tandem mass spectrometry (LC-MS / MS) system. The 

LC-MS/MS system is composed of Agilent 1200 HPLC, Agilent 6410B triple-quadrupole mass 

spectrometer and Agilent Mass Hunter workstation running qualitative analysis B.01.03 software, 

which is used for data acquisition and analysis. The analytical column used in this study was XDB-

C18, with a size of 2.1*150 mm, 3.5µm bead diameter (Agilent), and the column temperature was 

kept at 30 ℃. Nitrogen was used as the drying gas at a flow rate of 10 L/min. The mass spectrometric 
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parameters of mycotoxin and the composition and proportion of mobile phase are shown in references 

(Soleimany et al., 2012). The detection ability of DON was revealed by the detection limit (LOD) 

and the quantitative limit (LOQ). Based on the signal-to-noise ratios of 3/1 and 10/1, LOD (10 µg/kg) 

and LOQ (20 µg/kg) were estimated respectively. 

 

2.6 Statistical analysis 

The DON concentrations were analyzed using MS Excel and expressed as percentages and means ± 

SD. Use the "correlate" procedure in SPSS 23 for correlation. The results were presented as means of 

three independent samples. Differences in mycotoxins content between wheat samples were 

confirmed using one-way analysis of variance and Duncan’s test of ANOVA.  

3. Results 

 

3.1 Production of DON from wheat by F. asiaticum strains  

A total of 428 Fusarium spp isolated from 2014 to 2016 were morphologically identified as members 

of FGSC. As illustrated in Table 2, most of the isolates belong to F. asiatium, accounting for between 

88% and 94% of the isolates during the three years of sampling. In F. asiatium, two trichothecene 

types were identified, with about 90% being of the 3ADON type and 10% being of the NIV over the 

three years. In F. graminearum isolates, all identified DON were found to belong to the 15ADON 

type. The frequency patterns of species and chemotype compositions were stable over the 3 years. 

 

Table 2: Frequency of different chemotypes among the Fusarium species isolated from wheat 

grains of different years of Jiangsu Province, China 
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Year 

Species and Trichothecene chemotype 

Total 
F.asiaticum F.graminearum 

3ADON NIV 15ADON 

2014 102 82 8 12 

2015 84 68 6 10 

2016 242 204 24 14 

 

3.2 Occurrence of DON in wheat samples from 2014 to 2016 

The prevalence of DON contamination of wheat grains collected from 2014 to 2016 is depicted in 

Table 3. The occurrence of DON was found in the wheat samples throughout the sampling years, with 

73.7 to 100% of the samples testing positive for DON. In 2014, only 73.7% of the samples tested 

positive for DON, while the highest prevalence was observed in 2015 with all the wheat samples 

tested positive. Of the samples tested, highest median and average values of DON were obtained in 

2016 whereas, lowest incidence and contamination occurred in 2014. In 2015, the highest maximum 

level of DON was found to be far more than that obtained for the other years. Except for 2014, the 

average values of DON in other years were higher than the maximum permissible level of DON in 

China. 

 

Table 3：Incidence of Deoxynivalenol (DON) contamination of wheat grains collected in Jiangsu 

Province, China from 2014 to 2016 

Growing seasons 

Positive samples/ DON Conc (µg/kg)   

% Mean Median Max 
Rainfall 

(mm) 

Temp 

(℃) 

2014 73.7 434.8 218.9 2859.3 86.4 15.5 
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2015 100 1411.2 656.7 12204.2 78.6 14.6 

2016 97.1 1992.9 1252.36 9425.3 96.6 16.6 

 

3.3 Occurrence of DON in different counties of wheat grains from 2014 to 2016 

In the present study, the incidence and contamination of DON in different counties of wheat grains 

from 2014 to 2016 is presented in Table 4. Eight counties were sampled to measure the occurrence 

of DON over three consecutive years. The eight counties were divided into three regions, Southern 

(2), Northern (4) and Central (2) regions of Jiangsu Province. As shown in Table 3, 100% positive 

samples were found in five counties. It was also found that the highest average, median and maximum 

of DON occurred in Sihong while lowest average, median and Maximum of DON were found in 

Pizhou. Except the Donghai and Pizhou, the average values of DON in other counties were higher 

than the limited level of DON in China, while compare the median values of DON, only Taicang and 

Sihong that are higher than the limited level of DON in China. In general, the incidence and 

contamination level of DON in Southern region is serious, followed by Central and Northern regions. 

 

Table 4： Deoxynivalenol (DON) content of naturally contaminated wheat grains collected in 

different regions of Jiangsu Province from 2014-2016, China 

 

County Number 

Positive samples (µg/kg) 
  

% Mean Median Max 
Rainfall 

(mm) 

Temp 

(℃) 

Southern Jurong 17 100 1793.2 875.5 9425.3 138.1 16.0 

Taicang 23 100 1530.0 1275.1 3224.5 139.7 15.9 
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Northern Donghai 33 75.8 410.2 161.28 6424.9 33.1 14.9 

Guannan 19 100 1373.9 988.9 5737.1 47.9 15.1 

Pizhou 20 70 299.9 116.5 1041.3 42.6 15.3 

Sihong 25 100 2643.37 1930.3 12204.2 72.7 15.9 

Central Jingjiang 18 89.9 1061.36 766.6 2859.3 111.9 16.6 

Rugao 22 100 1239.7 530.3 5510.6 111.5 14.9 

3.4 Effect of climatic factors on accumulation of DON in wheat  

Overall, the whole set of data from climatic factors and natural occurrence of DON in wheat was 

analyzed in order to investigate if there was any correlation between the climatic factors (rainfall and 

temperature) and actual presence of DON in wheat. The rainfall and temperature profiles for April 

(wheat flowering month) each year and county were also shown in Table 2 and Table 3. As indicated 

by a significant interaction between DON contamination and rainfall, the dynamics of DON 

accumulation differed in each year. As show in Fig 2, the contamination levels of DON in the eight 

counties was significant and positively correlated with rainfall in 2014 (r = 0.689, p<0.05) and in 

2016 (r=0.74, p<0.05).  

In 2015, rainfall in Northern region was the least while high rainfall was observed in Southern. 

However, this was found to be inconsistent with contamination of DON. The highest rainfall occurred 

in Jurong, while the contamination level of DON is relatively low. The highest contamination of DON 

was observed in Sihong with less rainfall. Remarkably, a stronger correlation between DON 

concentration and rainfall level was observed in central Jiangsu, with a correlation coefficient of 

0.991(p<0.05).  

Temperature, another climatic factor, was measured in order to investigate the relationship between 

the environmental factor and DON contamination in wheat. Results obtained showed no correlation 

between DON contamination of wheat and temperature within the years and regions studied.  
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Fig. 2 Effect of rainfall on DON contamination of wheat in different years (2014: r=0.689, p< 0.05; 

2016: r=0.74, p<0.05; 2015: no correlation). 

3.5 Effect of rainfall on DON contamination of different wheat varieties  

Four wheat varieties were selected for assessment of DON contamination, followed by investigating 

the influence of rainfall on contamination of these wheat varieties for three consecutive years. Two 

planting sites selected for each variety include Jimai 22 and Yannong 19 (susceptible cultivars) and 

Yangmai 13 and Yangmai 16 (resistant cultivars). The average value of DON recorded in Yangmai 

16 wheat samples for three consecutive years was 1641.9µg/kg, found to be higher than those of other 

varieties. However, in Jimai 22 wheat samples, lowest DON contamination was recorded. 
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Fig 3. Effect of rainfall on DON contamination of different wheat varieties. Jimai 22 and Yannong 

19 are susceptible cultivars, Yangmai 13 and Yangmai 16 are resistant cultivars. 

 

The contamination of cereals by DON was found to be different, even though the wheat cultivars 

were the same. As illustrated in Fig. 3, the contamination of Jimai 22 wheat by DON was significant 

and positively correlate with rainfall (r=0.85, P<0.05), Yangmai 13 and Yangmai 16 were also both 

significant and positively correlate with rainfall (r=0.83, P<0.05 and r=0.74, P<0.05, respectively). 

However, in Yannong 19 wheat samples, the occurrence of DON was observed to be insignificant 

relative to rainfall. 

 

4. Discussion 

The current study investigated the infection of wheat by Fusarium species, deoxynevalenol (DON) 

occurrence in wheat from Jiangsu Province, China and the correlation between DON contamination 

of wheat and climatic factors over three consecutive years. Results obtained from this study indicated 

that F. asiaticum was by far the dominant species isolated, while the 3ADON chemotype is the mainly 
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type of F. asiaticum from wheat in Jiangsu Province from 2011-2016. These results were consistent 

with previous studies.  

Zhang et al. (2012) found that among the wheat samples tested in Jiangsu, 92.1% of the 82 isolates 

were F. asiaticum and 5.6% were F. graminearums.  They also reported that all strains of F. 

graminearum collected from Jiangsu province belonged to the 15ADON chemotype. In a similar 

study, 83 of 891 Fusarium species isolated from Jiangsu and Anhui were F. graminearum, and 808 

were F. asiaticum (Qiu et al., 2014). In China, F. graminearum was frequently isolated from the 

colder northern region and F. asiaticum was found mainly in warm wheat planting areas, of which 

the FHB epidemic is prevalent (Qu et al., 2008). This is consistent with our results, indicating that F. 

asiaticum was the main pathogenic strain in Jiangsu Province, and Jiangsu is also found to be an 

endemic area of FHB.  

The relationship between the outbreak of FHB and the moisture condition during the flowering season 

has been reported  (Pan et al., 2007). Precipitation during grain flowering will increase Fusarium 

infection in mature grains. Anthers with rain and/or high humidity are associated with the incidence 

of FHB (Moschini et al., 2001; De Wolf et al., 2003). The mycelia can infect small flowers under 

moist conditions and grow along the surface of the spikelets, especially when the anthers are extruded 

from the wheat ears during flowering. Notably, the risks of major FHB epidemics significantly 

increase when the relative humidity increases above the threshold of 70%. Del Ponte et al. (2012) 

reported that the level of DON in the growing season of 2007 and 2008 was higher than that in 2006, 

and indicated that the higher prevalence of DON may be partly associated with the increase in the 

risk of the FHB epidemic in some years. 

Fusarium mycotoxins seem to be generally stimulated by a narrower window of climatic factors than 

the Fusarium infestation (Hope et al., 2005; Medina and Magan, 2011). It is reported that the impact 

of DON depends largely on climate conditions, crop systems, cultural practices, and the management 
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of grain, feed and food after harvest, and climate conditions are the most influential (Reyneri, 2006).  

Stankovic et al. (2012) found that DON level in 2005 was higher than that in 2007 and concluded 

that rainfall played an important role in the DON pollution of wheat. Changing water activity and 

temperature has been reported to affect the ratio of type B trichothecenes, such as DON, 3-acetyl and 

15-acetyl DON both in vitro and in wheat grain (Leite, 2014). Paterson and Lima (2011) maintain 

that the relationship between humidity and rainfall and contamination is ambiguous, but high rainfall 

is usually more conducive to pollution, while temperatures ≤10 °C are relatively safe (Paterson and 

Lima, 2011). Medina and Magan (2011) suggest that high moisture can promote the toxin production 

of F. langsethiae, which is far beyond the effect of temperature on toxin production. This is consistent 

with the findings in the current study, since increased DON concentration was found in those years 

with high rainfall level. 

Though, there was no significant correlation between flowering temperature and DON contamination 

in this study. Xu et al. (2007) suggested that trichothecene production was enhanced by warm 

temperatures during initial infection of wheat heads. Li et al. (2009) also found that storage 

temperature had a significant influence on mycotoxin production in both resistant and susceptible 

cultivars of potato tubers. High temperature accelerates the accumulation of trichothecenes to the 

adjacent asymptomatic tissue, compared to low temperature (Xue et al., 2014). Similarly, Hui and 

Kushalappa (2002) reported that warmer temperatures tend to cause dry rot during initial infection, 

and there was a strong positive correlation between disease incidence and storage temperature in 

potato tubers. However, low temperatures are often associated with wet weather, and high water 

activity has a greater impact on toxicity than temperature (Hope et al., 2005). 
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5. Conclusion 

Deoxynivalenol (DON) contamination is prevalent in wheat and wheat products worldwide, causing 

serious economic and health problems. Human exposure to DON can cause serious health risks. 

Current research shows that DON is common in various parts of China. Further research is needed to 

prevent and control the potential risks of DON exposure to humans. These studies will provide more 

information on the contamination of DON in wheat and other cereal products in different parts of 

China. It is also necessary to study the accumulative mechanism of DON pollution and better identify 

the climatic conditions and other factors that affect the DON production. In addition, good agricultural 

practices, such as the use of disease resistant wheat seeds, early sowing, crop rotation and the removal 

of the remaining residue of the previous crop, should be used to minimize the risk to consumers. 
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Abstract 
 

Gibberella fujikuroi species complex (GFSC) are the most frequent fungal pathogens affecting 

cereals all over the world, producing various mycotoxins. In this study, a total of 61 strains were 

isolated from rice (Oryza sativa L.) seed. The FUM1 gene sequences were used to identify the species 

characteristics of the isolates. The fungal pathogens in rice samples were mainly F. fujikuroi, F. 

proliferatum and F. verticillioides. Phylogenetic trees based on the FUM1 gene from all isolates 

revealed higher intraspecific variability in F. proliferatum. The production of fumonisin and 

beauverin from all strains in rice medium were detected. The results indicated that F. proliferatum 

and F. verticillioides  belong to the fumonisin producing species, while F. fujikuroi strains produced 

extremely low amounts of fumonisin. Beauverin was detected in F. fujikuroi and F. proliferatum 

strains with low levels. Pathogenicity results suggest that the three species affected seed germination 

with similar degrees and that F. fujikuroi could cause elongated seedlings. 

 

Keywords: Beauverin, Fumonisin, Gibberella fujikuroi, Rice.  
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1. Introduction 

 

Gibberella fujikuroi species complex (GFSC) consists of at least 50 distinct species or phylogenetic 

lineages (O’Donnell et al., 2015), and is the causative agent of various diseases in plants and animals. 

Among GFSC, Fusarium verticillioides (G. fujikuroi mating population A), F. fujikuroi (G. fujikuroi 

mating population C) and F. proliferatum (G. fujikuroi mating population D) are well known for their 

ability to cause devastating diseases of many cereal crops and considerable reduction in crop yields 

and quality. 

 

Members in the GFSC can produce a variety of mycotoxins including fumonisins, beauvericin, 

gibberellic acid, and fusaric acid, which contaminate food. And they are harmful to the health of 

humans and animals. However, there are significant differences in the toxic metabolites production 

by individual species. Fumonisins (FBs) are the most frequently detected mycotoxins in grains and 

grains-based products. Researche has shown that fumonisins inhibit sphingosine -N- acyltransferase 

that participates in sphingolipid biosynthesis (Ho and Durst, 2000). To date, although there is no 

direct evidence that fumonisins are associated with serious human and animal health problems, it has 

been found that the high incidence of human esophageal cancer is strongly related to the consumption 

of fumonisins contaminated corn products (Gong et al., 2009). Beauvericin (BEA) has been shown 

to be toxic to some human cell lines and can induce apoptosis (Lu et al., 2016). It has also been found 

in grain-producing areas all over the world (Luz et al., 2016). 

 

The enzymes-encoding FUM gene cluster has been proved to be source of fumonisins biosynthesis. 

The pathway starts with the key iterative polyketide synthase (encoded by FUM1 gene) and 

synthesizes the toxin skeleton, modified subsequently by other enzymes (Proctor et al., 1999). F. 
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verticillioides, the model species of FUM gene cluster, has been widely studied and found to be 

composed of 21 co-regulated genes that show a common expression pattern during the biosynthesis 

of fumonisins (Brown et al. 2005). Recent studies suggested that the fumonisin gene clusters of F. 

fujikuroi, F. proliferatum and F. Verticillioides are highly conserved (Wiemann et al., 2013; Rösler 

et al., 2016). 

 

The translation elongation factor (TEF-1α) sequence is one of many molecular markers for 

phylogenetic reconstruction. It is most useful in taxonomic studies of fungi, especially in the G. 

fujikuroi species complex classification, and other Fusarium species (Geiser et al., 2004; Kristensen 

et al., 2005).  Recent studies have shown that genes and other sequences involved in the mycotoxin 

biosynthetic pathway have the advantage of a combinatorial approach that can be used to diagnose 

mycotoxin production capacity and are a good target in phylogenetic studies (Stępień, 2013; Susca et 

al., 2017). Thus, genes from the FUM cluster have been used as good markers for phylogenetic studies 

of Fusarium species producing fumonisins (Baird et al., 2008; González-Jaén et al., 2004; Stępień et 

al., 2011). 

 

In the previous study, we have isolated and characterized F. verticillioides and F. proliferatum strains 

from maize, but little information is available about GFSC members from the rice. Therefore, the 

main purpose of this study was to identify Fusarium strains and phylogenetically differentiate three 

populations by analyzing the sequence divergences of Fum1. In addition, the ability of all strains to 

produce fumonisins and cause elongation of rice seeds was evaluated. 
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2. Materials and methods 

 

2.1 Isolation of Fusarium species 

98rice seeds were collected in several counties of Jiangsu provinces in 2013. They were randomly 

chosen, and then sterilized with 1% sodium hypochlorite for 1 minutes, and then washed with sterile 

distilled water for twice, and finally placed in a Petri dish containing PDA (potato glucose agar) for 

5 days at 25°C. Recovered Fusarium isolates were purified on fresh PDA plates and incubated for 5 

days at 25°C. Conidia produced by mung bean broth (MBB) were spread on PDA and isolated the 

single conidia according to Jurado et al. (2007). All strains were grown on potato dextrose agar (PDA) 

as the regular culture medium and stored in 20% glycerol solution at -80 °C.  

 

2.2 Sequence analysis and phylogeny reconstruction 

Colonies of Fusarium species were grown on PDA at 25°C for 5 days and the mycelium produced 

was scraped from the surface. Extraction of DNA using cetyltrimethylammonium bromide (2% 

CTAB) method (Leslie and Summerell, 2006). Primers Fum1F1 (CACATCTGTGGGCGATCC) and 

Fum1R2 (ATATGGCCCCAGCTGCATA) were used for the amplification of Fum1 gene fragments 

(Stępień et al., 2011). PCR-amplified DNA fragments were sequenced by Shanghai Shenggong 

Biotechnological Ltd. Sequences of FUM1 of several F. verticillioides, F. fujikuroi and F. 

proliferatum isolates were also included in the analysis. Phylogenetic relationships were 

reconstructed with MEGA 4 software package using Maximum Parsimony approach (Tamura et al., 

2007). No gap-containing positions were considered in phylogeny analysis. The Bootstrap method 

used 1000 repeated heuristic searches. 
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2.3 PCR assays with species-specific primers 

F. verticillioides and F. proliferatum were confirmed by PCR, which was previously described using 

species-specific primers VERT-1 (5′-GTCAGAATCCATGCCAGAACG-3′) and VERT-2 (5′-

CACCCGCAGCAATCCATCAG -3′) for F. verticillioides (Patiño et al., 2004) and PRO1 (5′-

CTTTCCGCCAAGTTTCTTC-3′) and PRO2 (5′-TGTCAGTAACTCGACGTTGTTG-3′) for F. 

Proliferatum (Mulé et al., 2004). 

 

2.4 Design of species-specific PCR primers 

28S ribosomal RNA gene and intergenic spacer region of nine strains, including three F. fujikuroi 

strains (AJ879945.1, HQ165889.1, AY249382.1), three F. verticillioides strains (AJ880004.1, 

HQ165881.1, AY249379.1) and three F. proliferatum strains (GU737458.1,AY249383.1, 

DQ831905.1), were compared by multiple sequence alignments. SNPs between strains of different 

species were translated into PCR amplicons of different lengths (Fig. 1). This allowed for the design 

of a set of primers-GF1 (5′-ACGAGCGGGGTCAAATCCT-3′), GF2 (5′- 

GCACGGAAGCCAACATCAG-3′), GF3 (5′- ACAGCCGCACACACTCGC-3′), and GF4 (5′- 

CCAGATAATTCTCTTCCCCG-3′)-that generated 952 bp fragment from F. proliferatum strains, a 

397bp fragment from F. verticillioides strains, and a 260 bp fragment from F. fujikuroi strains, 

respectively. Validation of the species-specific PCR assay was conducted using 9 strains from rice 

seeds after phylogenetic analysis with Fum1 gene. 
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Figure 1. A schematic map of the polymerase chain reaction of 28S ribosomal RNA gene was 

established to identify species in GFSC. B, Amplifications using primers PRO1/PRO2.C, 

Amplifications using primers VERT1/VERT2. D, Amplifications using primers for complex. The 

first three lanes were F. fujikuroi strains, the middle three lanes were F. Verticillioides strains, and 

the last three strains were F. proliferatum strains. 

 

2.5 Toxins production 

The ability of all strains to produce fumonisin B1 and beauverin was evaluated on autoclaved rice 

grains. After 20 day’s culture at 25°C, rice grains were dried and ground to a fine powder. Five grams 

of each sample were shaken with 25 mL methanol/water (1:1, v/v) (ROE Scientific Inc. Newmark, 

DE, USA; Ultrapure water was produced by a Millipore Milli-Q system Millipore, Bedford, MA, 

USA) at 180 rpm for 30min.). After centrifugation at 6000 rpm for 5 min, 5 ml supernatant was 

purified on a solid phase extraction column (CNWBOND SAX SPE Cartridge, 500 mg, 6 mL). The 

column was then washed with methanol (5 mL) and water (5 mL), and toxins were eluted with 1% 

(v/v) acetic acid in methanol (10 mL). The extracts concentrated by nitrogen were diluted with 1 mL 

methanol/water (1:1, v/v) and filtered through a nylon filter with a diameter of 13mm and 0.22μm 

pore size. Toxins were analyzed with LC-20ADXR liquid chromatograph (Shimadzu, Kyoto, Japan) 
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which was coupled to an AB SCIEX Triple Quad mass spectrometer (Applied Biosystems, Foster 

City, CA, USA). The analytical column used was a Kinetex 100A C18 column (100 × 2.3 mm, 2.6 

μm), from Phenomenex (USA), and the column temperature was held at 40°C. The flow rate was 

0.5 mL/min, and the injection volume was 2 μL. The mass spectrometric analyses were performed 

with the following operation parameters: gas temperature, 500 °C; gas flow rate, 10 L/min; nebulizer 

gas pressure, 50 psi; and capillary voltage, 5500 V. Nitrogen was used in the ion source and the 

collision cell. Mycotoxins were analyzed via multiple reactions monitoring (MRM). 

 

The mobile phase for FB1 consisted of water/acetic acid (99.9:0.1, v/v) (A) and methanol (B). 

Separate conditions of high performance liquid Chromatography were as follows: 0-1.6 min, solvent 

A was linearly decreased from 90% to 60%; 1.6-10 min, solvent A was linearly decreased from 60% 

to 40%; 10-11 min, solvent A was linearly increased from 40% to 90%; 11-12 min, solvent A was 

linearly decreased from 90% to 40%; 12-15 min, solvent A was kept constant at 90%. 

 

About 5 nM ammonium acetate (A) and methanol (B) form the mobile phase of BEA. Separate 

conditions of high performance liquid Chromatography were as follows: 0-1 min, solvent A was 

linearly increased to 75%; solvent A was down to 0% at 1min and kept constant for 3 min; solvent A 

was increased to 90% for 7min and kept constant for 5 min; solvent A was decreased to 90% at 12 

min and kept constant for 3 min. 
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2.6 Pathogenicity tests 

 

All the strains were grown at 25°C for 5 days on PDA and then cultured in 5% sterile MBB under 

shaking condition (175 rpm) for 5 days at 25°C. The conidia were collected and the spore 

concentration was adjusted to approximately 106/ml in sterile water. The seeds of susceptible rice 

varieties Xinliangyou6308 were used to test the pathogenicity of the fungal isolates. The seeds were 

sterilized by 1% sodium hypochlorite for 10 minutes and rinsed for three times with sterile distilled 

water for 48 hours. The seeds were transferred to sterile filter papers in Petri plates moistened with 

sterile distilled water and finally incubated at 25°C. After 2 days, 20 sprouting seeds were soaked in 

10 ml of inoculum suspension at 175 rpm at 25°C for 24 h. Control seeds were soaked in sterile water. 

Thereafter, inoculated and control seeds were placed in Petri plate and incubated at room temperature 

(two plates per isolate/ten seeds per plate). The excessive growth of seedlings is relative to the 

invasive measure of the control (Ahmed et al., 1988). Measurements of elongation and growth 

retardation in millimeter units were performed and compared with controls to detect differences in 

the 5% significant levels. The experiment was repeated twice. 

 

2.7 Statistical analysis 

 

Statistical comparisons of pathogenicity parameters and toxin production were made with t test. All 

statistical analyses were performed with the Sigma Stat statistical software package (SPSS, version 

11). 
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3. Results 

 

3.1 Phylogenetic analysis 

 

Partial sequences of 1004 bp long of FUM1 of all isolates were amplified and analyzed. Of the 1004 

nt analyzed for the FUM1 sequence, 85 nt were polymorphic sites and 0 parsimonic-informative sites. 

Phylogenetic analysis was performed by comparing the sequences with several sequences obtained 

from the GenBank database. Dendrogram constructed with the FUM1 sequences differentiated the 

isolates into two main clusters (Fig. 2). All the F. fujikuroi isolates fell firmly into one cluster, unlike 

those closely related to F. proliferatum. The cluster containing strains of F. proliferatum showed 

higher intraspecific variability than F. fujikuroi. After verification, there were 16, 16, and 29 strains 

of F. proliferatum, F. fujikuroi, and F. verticillioides used for the future research, respectively. 
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Figure 2. Consensus phylogenetic tree of sickle isolates was generated based on Fum1 sequences. 

The dendrogram was constructed by the neighbor-joining approach and tested by bootstrapping 

(10,000 replicates) with a cut-off value of 50%. Fum1 of F. proliferatum (KC188786.1), F. 

verticillioides (KC188788.1), and F. fujikuroi (KC188789.1) were used as the reference. 

 

3.2 Pathogenicity 

Most of the strains in this study are pathogenic to rice. All the pathogenic strains inhibited seed 

germination compared with the 100% set of germination control treatments. The number of 

germinated seeds treated by different strains is between 25% to 85%. There are no significant 

difference in the ability to inhibit seed germination between different populations. The average 

number of germinated seed is between 50% and 60%. The severity of the disease was expressed as 
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the elongation of seedlings relative to the control. The ability to cause elongation of seedlings varied 

widely among the strains tested, with only one strain observed to have no effect on rice seedlings. 

The consistence of the effect of all isolates in two tests was observed in some isolates (Table. 1). The 

production of fumonisins was not related to pathogenicity. 

 

Table 1: Pathogenicity and toxin production of F. verticillioides, F. fujikuroi, and F. proliferatum 

populations tested in this study 

Species 
Seedling length 

(cm) 

Seed germination 

(%) 

Fumonisin B1( 

mg/kg) 

Beauverin 

(mg/kg) 

F. verticillioides 3.45±0.71b* 52.22±18.96a 257.17±249.98b 0b 

F. proliferatum 3.66±0.75b 58.82±17.09a 453.81±400.67a 0.21±0.16a 

F. fujikuroi 4.06±0.65a 56.51±14.88a 2.43±5.97c 0.24±0.34a 

Control 3.55±0.59 100%   

*The same letter in each column is not significantly different (P< 0.05). 

 

3.3 Fumonisin production 

Fumonisin B1 was produced by toxigenic Fusarium isolates in the concentration range 2.34-977.58 

mg/kg for all F. verticillioides strains, 0.65-1375.99 mg/kg for all F. proliferatumstrains, and 0.023-

34.48 mg/kg for all F. fujikuroi strains. FB1 productions of F. proliferatum were significantly higher 

than that of F. verticillioides, while F. fujikuroi produced much smaller amount of fumonisin than the 

other two populations. Beauverin (BEA) was produced by toxigenic Fusarium isolates in the 

concentration range 0.044-0.54 mg/kg for 14/16 F. proliferatum strains, and 0.04-1.58 mg/kg for 

18/29 F. proliferatum strains. There were no significant difference of Beauverin production between 

F. proliferatum. However, BEA was not detected in all F. verticillioides strains tested. 
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4. Discussion 

F. fujikuroi, F. verticillioides, and F. proliferatum are common pathogens infecting several hosts and 

are the main producers of fumonisins. The translation elongation factor (TEF-1α) gene has been 

successfully applied to various studies of Fusarium species molecular taxonomy. Recently, studies 

on the genetic relationship between Fusarium species using secondary metabolite biosynthesis genes 

are increasing (Stępień, 2014). Stępień et al. (2011) suggested that the intra-species divergence of the 

partial Fum1 sequences was enough to distinguish more clear clades of individual F. proliferatum 

isolate in connection with different original hosts than the use of TEF-1α sequences. Similar findings 

were reported for F. proliferatum strains isolated from date palm and banana by Jurado et al. (2010), 

although a longer fragment of TEF-1α gene was used. Stępień et al. (2011) also reported that FUM1 

or FUM8 showed major capability to distinguish between Fusarium species, though the phylogenetic 

tree based on FUM cluster genes also reflected the scenarios presented by TEF-1α sequences. TEF-

1α and FUM1 gene sequences divergence was simultaneously analyzed in pea-associated Fusarium 

isolates and similar result was obtained, with all strains forming two separate clades of F. proliferatum 

and F. verticillioides (Waśkiewicz et al., 2013). TEF-1α is a classical target gene widely and 

successfully applied in phylogenetic differentiation of fungi since it displays a high level of 

polymorphism. In some special cases about populations of some less polymorphic species, different 

genomic regions with high genetic diversity could be used to resolve the problem. In this study, the 

sequence of the FUM1 gene was used for phylogenetic analysis besides the TEF-1α gene. The 

intraspecific variability of all F. fujikuroi isolates appeared to be rather low, while a certain level of 

sub-specific polymorphism was observed in the clade of F. proliferatum strains. Phylogenetic trees 

clearly grouped F. fujikuroi, F. verticillioides, and F. proliferatum with high bootstrap values based 

on TEF-1α sequences. Similar finding from analysis of the gene divergence were reported by 

Amatulli et al. (2010), Wulff et al. (2010) and Cruz et al. (2013). Our result confirmed that the FUM1 
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gene is a good marker for species identification and phylogenetic reconstruction of Fusarium species 

producing fumonisins.  

In this study, the correlation between the diversity of the fumonisin biosynthesis and the structure of 

the FUM1 gene was not found in the FUM1 sequence of many strains from different hosts. However, 

in some cases isolates of high and low fumonisin production are grouped together in one clade (Fig. 

2). This is consistent with our previous studies, in which some non-producing mutants of Fusarium 

strains were identified, although at least a part of FUM clusters existed (Stępień et al. 2011). 

Pathogenicity of F. fujikuroi, F. verticillioides, and F. proliferatum isolates on rice was observed in 

form of reduction of seed germination and bakanae symptoms in the seedlings. However, different 

strains caused symptoms with different severity. Typical elongation of bakanae symptoms was caused 

by all F. fujikuroi isolates, except one. In contrast with the finding of Zainudin et al. (2008), no 

infected seedlings were stunned. Amoah et al. (1995) found that although growth retardation and 

elongation were observed in rice seedlings, they were separated according to their ability to elongate. 

Both stunning and elongation were also observed by the F. fujikuroi isolates in the Philippines and 

all the isolates varied in the degree of disease indices (Cruz et al., 2013). Amatulli et al. (2010) found 

that only F. fujikuroi isolates could cause classical bakanae symptoms and these isolates showed 

different disease severity. In this study, there was no significant difference in the pathogenicity based 

on inhibition of seed germination between F. fujikuroi, F. verticillioides, and F. proliferatum isolates. 

Wulff et al. (2010) observed that the majority of G. fujikuroi species complex showed pathogenicity 

on rice with reduction of seed germination. F. fujikuroi strains showed stronger aggressiveness in 

causing symptoms of elongation seedlings. Even in the case of high seed colonization, the Fusarium 

verticillioides strains did not affect seed germination (Venturiniet al., 2013). As the variation in 

pathogenicity of these isolates could be attributed to their physiological features or environment 
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conditions, further research should be conducted, especially on the effect of temperature and relative 

humidity. 

Amoah et al (1995) studies show that the ability of G. fujikuroi species complex to cause crop 

symptoms may depend on the balance of secondary metabolites and growth regulators affected by 

fungal strains, environmental factors and nutritional conditions. The abnormal elongation of the rice 

seedlings could be as a result of gibberellic acid produced by F. fujikuroi isolates (Johnson and 

Coolbaugh, 1990). Wulff et al. (2010) reported the similar idea that more symptoms of chlorotic or 

slender leaves were examined in gibberellin-producing F. fujikuroi isolates. Variations in gibberellic 

acid production led to the diversity of the height of the rice seedlings. On the other hand, fumonisins 

production was determined to study the relationship with the symptoms. Our results suggested that 

there is no direct correlation between fumonisins production by the Fusarium strains and disease 

occurrence in the rice seedlings. Similar findings were previously reported about F. proliferatum 

(Busman et al., 2012) and F. fujikuroi (Cruz et al., 2013). Wulff et al. (2010) found that F. fujikuroi 

strains with the smallest amount of fumonisins production were still able to cause disease and the 

authors suggested that unknown factors could play a stronger role in the aggressiveness of those low-

producing strains. All these researches indicated that fumonisins production was not closely related 

to pathogenicity, at least for F. proliferatum and F. fujikuroi. The generation of fumonisins and 

gibberellic acid can help pathogens colonize plant tissue and compete with other fungi during 

infection, but their involvement in disease symptoms may be minimal (Jurado et al., 2008; Marín et 

al., 2010). The production of mycotoxins, including fumonisins and Beauverin, may play an 

important role in the competition with other fungal species during plant tissue colonization and 

infection (Marin et al, 2013), but their effects on the symptoms of the bakanae disease may be 

reduced. However, in the case of F. verticillioides, the conflicting results suggested that our 
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understanding about the role of fumonisins is very little and might depend on the host considered 

(Cumagun et al., 2008; Glenn et al., 2008). 

The ability of F. verticillioides, F. fujikuroi and F. proliferatum strains to produce fumonisin in vitro 

is consistent with observations results of Lee et al. (2012), Wulff et al. (2010), Desjardins et al. (2000) 

and Stępieńet al. (2011). Among these strains, it has been reported that F. fujikuroi produces little or 

no fumonisin compared to F. verticillioides and F. proliferatum. However, there were several recent 

reports mentioned that some strains of F. fujikuroi from rice and wine grape have the ability to 

produce  the equivalent fumonisin level with F. Verticillioides and F. proliferatum (Matić et al., 

2013). The differential regulation of fumonisin biosynthetic gene cluster in this population can be 

the basis for enhancing mycotoxin production. Host or related pest management practices can create 

an environment conducive to the activation of biosynthetic genes, which may be related to the 

availability of nitrogen, which shows the influence of the expression of the gene cluster (Shim et al., 

1999). 

 

5. Conclusion 

In this study, F. fujikuroi, F. proliferatum, and F. verticillioides are shown to be main species of 

GFSC contaminating rice samples. The phylogenetic analysis, the mycotoxigenic profile (fumonisin 

and beauvericin) and the pathogenicity showed high variability on GFSC species, but no correlations 

could be observed between the latter two parameters. Overall, these findings increase the knowledge 

on character of the most important rice fungal pathogens worldwide. Moreover, information about 

the high variability of pathogens is important for further development of disease management 

strategies. Our future studies will be aimed to identify GFSC species associated with different crops, 

such as barley, rice and maize, and soybeans and comparing genetic and phenotypic variation of 

various host populations. 
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DEVELOPMENT OF AN IMMUNOCHROMATOGRAPHIC 
STRIP TEST FOR THE RAPID DETECTION OF 

ZEARALENONE IN WHEAT FROM JIANGSU PROVINCE, 
CHINA 

 

 

This chapter has been published in PLOS ONE with the following citations: 

(Fang Ji, Mduduzi P. Mokoena, Hongyan Zhao, Ademola O. Olaniran and Jianrong Shi (2017). 

Development of an immunochromatographic strip test for the rapid detection of zearalenone in 

wheat from Jiangsu province, China. PLoS ONE, 12(5): e0175282, 

doi.org/10.1371/journal.pone.0175282)  
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6.1 The Research in Perspective 

Fusarium mycotoxins are secondary metabolites produced by members of Fusarium graminearum 

species complex (FGSC), consisting of at least 16 different species of phylogenetically during growth 

and crop storage, and are chemically and thermally stable (van der Lee et al., 2015). The strains of 

FGSC usually produce one of three types of trichothecene profiles, that is, the 3ADON chemotype 

which produce DON and 3ADON, the 15ADON chemotype that produce DON and 15ADON, and 

the NIV chemotype that produce NIV and little DON (Castanares et al., 2014). Most species seem to 

grow only in specific geographical areas. In China, most of the Fusarium graminearum isolates were 

found in the colder northern regions, and Fusarium asiaticum is mainly from warmer regions where 

the most prevalent regions of the FHB epidemic (Wang et al., 2008). 

 

The occurrence of Fusarium mycotoxin contamination in both foods and feeds is inevitable 

worldwide. National and international organizations, such as the World Health Organization (WHO), 

the Food and Agriculture Organization (FAO), the US Food and Drug Administration (FDA) and the 

European Commission (EC), have recognized the potential risks of Fusarium mycotoxins on human 

and animal health. Humans can be poisoned by mycotoxins transmitted through food and feed. 

Furthermore, Fusarium mycotoxin contaminations could have a significant economic impact, too. 

Among the known mycotoxins, DON, ZEA, NIV, T-2 toxin and FB1 are of greatest concern due to 

their frequent occurrence in foods and feeds. Hence, the need for monitoring of mycotoxin levels 

routinely and continuously using rapid, sensitive, and reliable techniques for their detection. The aim 

of the present study was to elucidate the kinds of Fusarium species and mycotoxins that are found in 

Jiangsu Province of China and to further assess the influence of environmental conditions 

(temperature, humidity, wheat varieties) on mycotoxin accumulation.  
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It was established that:  

Approximately 90% of the 428 Fusarium strains isolated from 2014-2016 belong to F. asiatium; 

while  approximately 9.8%  belong to F. graminearum. In F. asiatium. Two trichothecene types were 

identified, with about 90% being of the 3ADON type and 10% being of the NIV. In F. graminearum 

isolates, all identified DON were found to belong to the 15ADON type. 

 

A total of 178 wheat samples were collected in 2014, 2015  and 2016 after harvest period from eight 

counties and analyzed for DON using HPLC-MS/MS as described in Chapter 3. The highest 

prevalence and mean levels of DON were found in 2016, and the incidence and contamination level 

of DON was more prevalent in Southern region, followed by Central and Northern regions. The 

correlation between the climatic factors (rainfall and temperature) and actual presence of DON in 

wheat differ due to variation in wheat samples and counties (Chapter 3). The contamination levels of 

DON in the eight counties was significant and positively correlated with rainfall in 2014 (r = 0.689, 

p<0.05) and in 2016 (r=0.74, p<0.05), while in 2015, there was no correlation between them. No 

correlation was found between temperature  and DON contamination of wheat.  Yannong 19, Jimai 

22, Yangmai 13 and Yangmai 16  significantly and positively correlated with rainfall (r=0.85, P<0.05, 

r=0.83, P<0.05 and r=0.74, P<0.05, respectively). 

 

In this study, F. fujikuroi, F. proliferatum, and F. verticillioides are shown to be main species of 

GFSC contaminating rice samples as detailed in chapter 4. F. proliferatum and F. verticillioides were 

among the fumonisin producing species, while F. fujikuroi strains produced extremely low amounts 

of fumonisin. Beauverin was detected in F. fujikuroi and F. proliferatum strains with low levels. 
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Pathogenicity results suggested three species affected seed germination with similar degrees and F. 

fujikuroi could cause elongated seedlings.  

 

Chapter 5 published in PLOS ONE. The colloidal gold (ICS) test has been demonstrated, providing  

an important high-throughput method for ZEN monitoring. 30nm colloidal gold nanoparticles were 

optimized to obtain the best performance. Millipore 135 was selected as NC membrane for its good 

sensitivity. The optimal amounts of coated antigen ZEN-OVA and anti-ZEN mAb were  0.5 mg/mL 

and 8 µg/mL, respectively. In this study, the ICS test can detect ZEN in 5 minutes with a detection 

limit of 15 ng/mL. The mAb has high affinity for ZEN and its metabolites, and no cross-reactivity 

with other mycotoxins such as aflatoxins B1, T-2, DON and HT-2. Analysis of ZEN in 202 wheat 

samples over three consecutive years revealed that data obtained from the ICS test were in a good 

agreement with LC-MS/MS data. This result demonstrated that the ICS test could be used as a 

qualitative tool to screen ZEN in the field. 

 

6.2 Potential for future development of the study 

 

The current study demonstrated that Fusarium mycotoxins are prevalent in various areas in China. In 

order to obtain more data on the incidence and pollution levels of Fusarium toxins in wheat and other 

grain products in different regions of China, further scientific research needs to be conducted, which 

will help to prevent and control the potential risk of the exposure of Fusarium mycotoxin to humans. 

Studies on the mechanisms of other Fusarium mycotoxins contamination and better understanding of 

climatic conditions and other factors influencing their production are also essential (Cruz et al., 2014). 

In addition, in order to reduce mycotoxins pollution and reduce the harm of pollution to consumers, 

some good agricultural practices will be adopted. For example, the use of resistant wheat seeds, early 
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sowing time, crop rotation and removal of residues from the previous crop should minimize the risk 

to consumers (Wegulo, 2012). 

 

The phylogenetic analysis, the mycotoxigenic profile (fumonisin and beauvericin) and the 

pathogenicity showed high variability on GFSC species, but no correlations could be observed 

between the latter two parameters. Overall, these findings increase the knowledge on characteristics 

of the most important rice fungal pathogens worldwide. Moreover, information about the high 

variability of pathogens may be important for further development of disease management strategies. 

Future studies may also focus on identification of GFSC species that are associated with different 

crops, such as barley, rice and maize, and soybeans coupled with genetic and phenotypic variation of 

various host populations.  
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