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Abstract

South Africa is considered one of the most developed countries in Africa, however with

more than 80% of its electricity being generated from coal, this country is considered one of

the highest contributors to greenhouse gas emission throughout the continent. The impacts

of this fossil fuel dependency are prominent in the environmental degradation experienced

� climate change conditions as well as the current state of emergency faced by the national

power utility, ESKOM. While provisions such as load shedding are being made to avoid the

country from facing black out, the consequences of these resolves signi�cantly in�uence the

economy of the country.

Although the cost of applicable renewable energy technologies has decreased considerably

over the past few years, South Africa continues to lag in the adoption of renewable en-

ergy systems in a global comparison. Most applications of potential solar renewable energy

systems are currently in the investigation stages, leaving this readily accessible resource's

capacity idle. This makes research in solar renewable energy highly signi�cant with regards

to progressing the country's uptake of green energy technologies.

Our study proposes linear and non-linear analysis of multivariate models for the estima-

tion of global solar radiation (GSR) received across �ve major cities in South Africa. The

signi�cance of this study is to allow for e�ective GSR estimation in the application of solar

technologies, while increasing implementation of these alternatives. Measured quantities such

as sunshine duration and solar radiation for certain regions are limited due to the expensive

equipment required and maintenance thereof. Local meteorological sources are unable to

provide historic data which is complete, as these quantities are scarcely quanti�ed.

The dependency of GSR on meteorological variables such as air temperature, relative hu-

midity and relative sunshine duration was evaluated for the period January 2007 � June
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2018 to realize estimation models for each of the study sites. The Hargreaves-Samani and

Angstrom-Prescott empirical models served as the foundation for our single variable analysis

of GSR reliance on each meteorological parameter and their relative variations. Our results

have indicated that our proposed multivariate, non-linear equations perform better than the

empirical models as well as single variable, linear regression equations. Our suggested mod-

els are site speci�c and demonstrate a strong correlation to historic GSR values with low,

acceptable error indicators.

Further to this, we have recognized that second and third order relationships between H/Ho

and multiple meteorological variables provide a more accurate description of GSR for most

of the cities under study. This analysis could potentially contribute signi�cantly to the inves-

tigation of solar radiation alternatives and photovoltaic (PV) technologies in South Africa.

We believe that integration of estimation models within the design and installation stages

of PV technologies will be largely bene�cial in ensuring their optimum intake. The models

discussed in this study verify the reliability and accuracy of GSR estimation through readily

accessible meteorological factors in a cost e�ective manner.
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Chapter 1: Introduction

Ensuring that growing energy demands are met while providing secure energy supply and

reducing greenhouse gas emission is a global undertaking, which South Africa is actively pur-

suing. In this chapter, we introduce South Africa, its current energy state of emergency and

the developments being made to investigate the potential contributions of renewable energy

resources. We will focus on the contribution of solar photovoltaic (PV) technologies and their

implementation throughout the country.

South Africa is the southernmost country in the southern hemisphere and is considered

a developing country with a population greater than 55,9 million (as at 2016, Worldbank

statistics [1]). While trying to maintain the economic and social development of the coun-

try, many issues such as energy security, pose dire challenges for sustainability of the state.

With the recent reintroduction of the load shedding program, citizens are once again left in

darkness while �tting higher electricity bills. Little or no information is provided regarding

any development plans which government and municipalities are investigating in order to

alleviate the energy crisis, which often leads to a lack of support from citizens. It is vital

to keep the communities and country aware of the current situations and mitigation plans

which are intended.

South Africa, being one of the most coal dependent countries, needed to assess the sta-

tus of available resources and whether or not this would be a sustainable option for future

energy sourcing a long time ago. While the world is moving towards greener energy sources

in an attempt to reduce our carbon footprint and hopefully alleviate the e�ects of global

warming on climatic and environmental conditions, South Africa still trails behind when it

comes to discovering an exploring the potential of alternative energy resources.
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Certain areas in Africa receive more than double the amount of radiation as compared to

countries in the northern hemisphere of the continent [2]. South Africa is no exception. It

is well suited for the harnessing of solar radiation with sunshine being available throughout

the year. Disregarding this potential, there are various �nancial and technical limitations

associated with solar energy technologies, which restrict its use to private, o�-grid networks.

These boundaries need to be resolved in order to increase the impact and contribution of

solar power to the country's energy supply. Thus, our work aims to provide an indication

of the amount of underutilized solar potential is available in this country, while trying to

increase the knowledge and implementation of such solar technologies.

1.1. Current state of energy in South Africa

South Africa is considered one of the most developed countries in the continent of Africa,

however with more than 80% of the electricity in South Africa being generated from coal,

this classi�es the country as the highest contributor to greenhouse gas emission in Africa

[3,4]. Together with this, the intensive dependency on coal also results in a high level of

environmental degradation as the depletion of this fossil fuel and environmental impacts are

prominent. While being the 7th largest coal producer and 5th largest coal exporter globally,

South Africa is still facing a dire energy crisis, with the current grid infrastructure taking

strain while meeting day-to-day demands, and a signi�cant proportion of the population not

having access to electricity [3]. Energy security and sustainability remains one of the biggest

challenges to be addressed by government.

The initial crisis began in late 2007, where a state of emergency called upon the imple-

mentation of the load shedding program (2008) to avoid the country facing a total black-out

[5]. At the time, this was the only manner in which ESKOM (National electricity utility)

could meet the current electricity demand. The extremity of the situation was one which had

been brewing for some time and some of the contributing factors which led to this include;

shortfalls in the management of the energy system, the increased demand of the continuously

18



growing South African population, increased energy consumption from industries such as

mining, agriculture and transportation and little to no investment in the power infrastruc-

ture by government over the past decades [3,5].

Existing coal-�red power stations, Medupi and Kusile are experiencing intense strain as

they are aging infrastructure and are unable to undergo routine maintenance. The available

electricity reserve margins do not make allowance for these units to be serviced as the coun-

try's daily demands need to be met and any excess in supply is to be reserved for unplanned

situations [5,6]. Meeting the country's internal demands is a residing challenge for ESKOM

which has resulted in load shedding being carried out in periods of peak demand, for example:

the winter months. Furthermore, ESKOM faces severe �nancial constraints in addition to

its production capacity.

The energy sector has been neglected for the past few decades, with underinvestment from the

state towards this sector [5,7,8]. Existing infrastructure now proves inadequate and unable to

manage the current load. These are issues which could have been better anticipated, had the

necessary resources and investments been directed towards managing resources, regulations

and processes for the long-term [7]. The above is a brief description of the conditions which

have given rise to escalated energy costs in South Africa. In addition, there remain countless

households which have no access to grid electricity. Approximately 11% of the South African

population (as at 2012) had no access to electricity [7]. This with the increased electricity

costs only increases the gap in energy poverty

Municipalities have been making attempts to introduce electricity to rural households as

the government believes that access to electricity is one of the main limiting factors a�ecting

the country's economic growth [7]. Access to secure electricity supply is a key driver for de-

velopment and innovation within the country, while creating employment and increasing the

country's value. In order to improve the economy of the country, the progress of its people
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is of utmost importance. Limited access to electricity and said resources in remote locations

leaves part of the society with a lot less than just a deprivation of electricity supply. Lack

of development in these areas, results in higher unemployment rates as access to educational

resources and infrastructure is also low in these areas.

The government is introducing numerous e�orts to alleviate the limitations faced by residents

[7]. These are but a few of the socio-economic consequences arising from the disruption of

energy supply and under performance of the national grid. While resolves to electrify the

country may be on the forefront, the state utility continues to face increased demand result-

ing in higher electricity costs for the country as a whole. The improvement of these energy

challenges is essential for the economic growth of a developing country such as South Africa.

1.2. South Africa's investigation into alternate energy resources

Following the dissection of the current energy crisis, government together with the rele-

vant departments began seeking alternatives to complement the heavy fossil fuel dependency

and to diversify the sourcing of energy. Some of the viable renewable resources which are

under study include; wind, solar, hydro, biomass and wave energy. Renewable resources are

the ideal alternative to fossil fuels, as these will help reduce South Africa's greenhouse gas

emission levels and potentially the cost of electricity production, while leading the energy

sector to a sustainable path.

Although South Africa lags in acceptance of energy generation through renewables when

compared to other countries, government has introduced policies and projects under the In-

tegrated Resource Plan (IRP 2010) to address the current state of the energy sector and

promote the use of diverse energy sources [6]. The South African Department of Energy

(DoE) is delegated to facilitate the secure and sustainable delivery of energy for social and

economic development of the country [10]. The IRP is a proposition to regulate and develop
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an integrated energy plan for the energy industry as a whole. This ensures sustainability and

development of the sector in both the short and long-term.

Renewable energy resources are under investigation and implementation in some instances,

however in the case of solar technologies, these applications are limited to private, o�-grid

connections. Embracing green energy resources will reduce the costs of energy production,

increase employment levels which will directly impact the rural parts of South Africa and

attract investments into the country [3]. Universities across the state have invested multiple

resources to the study of renewable energy potential in South Africa. Institutions such as

the South African Renewable Energy Council (SAREC) and the Sustainable Energy Society

of South Africa (SESSA) in�uence the research and policies surrounding renewable energy

sources, through engagement with national and international stakeholders [3]. As the price

of renewable energy technologies continues to decline, alternative sources prove to be more

feasible for electricity generation.

Though the above factors drive and promote the use of diverse energy sources, there are

numerous de�ciencies which constrain the adaptation process. Economic and social chal-

lenges have a considerable in�uence on the introduction and research process. Alongside

infrastructure and regulatory restraints, funding for the procurement of large-scale renew-

able energy systems remains one of the biggest challenges faced by the South African energy

institutions [6].

The adaptation of renewable energy systems is largely dependent on the available �nancial

support. The costs associated with developing and maintaining renewable energy systems

which are able to contribute to grid demand are particularly high and hence require �nancial

support from international stakeholders. Investments towards these systems are considered

high risk with a lot of uncertainty, which make them unappealing. The shortage of �nancial

security obstructs the positioning of such systems.
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The IRP outlines strategies to address these challenges in the medium to long-term, while

municipalities aim to reduce the socio-economic limitations [9]. Renewable energy systems

have been introduced to some rural areas in the form of solar geysers, but this cannot be

classi�ed as grid application. Deliberate research and testing into the available renewable

energy sources (speci�cally wind and solar energy) in South Africa is also largely a�ected by

the lack of �nancial support [11]. Renewable resources are the ideal energy alternatives to

signi�cantly decrease South Africa's carbon footprint while salvaging the remaining available

fossil fuels. The development of such systems in the energy industry will promote job cre-

ation and scarce skill development within the country and consequently encourage economic

growth. Proper policies and support thereof need to be implemented at government level to

ensure the advancement of diverse energy sourcing.

1.3. The potential of solar energy

Of the renewable resources available, wind and solar power are the most abundant in South

Africa. Studies by the Council for Scienti�c and Industrial Research (CSIR) identify these

two renewables as the cheapest sources with generation capacity [12]. Receiving an average of

2500 hours of sunshine per year, including ample sunshine during the winter months, makes

this country's solar potential one of the highest in the world [3,6]. The amount of solar

radiation received varies in each province and has an average radiation level between 4.5 and

6.6KWh/m2 [3].
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Figure 1: PV potential across South Africa [13]

There has been a noticeable rise in the use of o�-grid, solar PV systems within the pri-

vate sector. This may be due to the increased cost of conventional electricity as well as

the disrupted energy supply experienced over the past few years (load shedding). Currently,

registered solar PV systems only contribute 43.81MW and majority of usage lies within the

commercial sector while there is no utility-scale contribution from Concentrated Solar Power

(CSP) plants [3,6]. Some of the small-scale applications are for telecoms and electronic me-

dia [5]. Small-scale solar PV technologies have been introduced to rural and disadvantaged

households, for basic electri�cation uses such as water heating and lighting. An existing 24
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KW solar dish stirling plant was built as a demonstration in Johannesburg, Gauteng.

Recent studies being pursued in the realization of solar technologies include; the develop-

ment of solar maps using measured radiation to improve on satellite solar data, Solar En-

ergy Technology Road Map (SETRM) which aims to provide guidelines for the developing

the solar technology industry and the South African Solar Thermal Technology Road Map

(SA�STTRM) which intends to promote solar heating and cooling utilization [3]. A CSP fea-

sibility study is underway in the Northern Cape province [6]. Implementation of large-scale

solar technologies is subject to the following: energy strategies which are supported by the

government, improvement of existing grid infrastructure and e�cient use of grid electricity

supply, a lack of suitable renewable energy skills at governmental level [3].

The growth of solar and other renewable energy systems will a�ect the initiatives and funding

currently made towards existing coal stations and potential nuclear power plants [11]. The

bene�ts of green energy sources will introduce variation to the energy supply and signi�cantly

reduce the strain experienced by current infrastructure. In order for renewables to produce

a supply capacity which can supplement the current grid supply, su�cient �nancial support

needs to be made available. As adoption of green energy systems depends heavily on the

rate of economic growth and the state's energy demands, e�cient use of grid supply will

allow for additional supply to be stored while more attention and resources can be directed

towards said renewable energy systems. Development of CSPs and other renewable energy

systems will also extend as an energy saving opportunity while supplementing the grid supply.

The DoE began a CSP bid window which resulted in reduced prices of renewable energy

technologies and contracting (these are considered internationally competitive) [14]. Devel-

opments within the solar energy sector on a global level have led to the decrease in costs of

these technologies. Currently, China's bulk supply of solar PV technologies at low production

costs has been one of the main contributors to the rapid progress of the solar PV industry
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over the past few years.

Internationally, companies within the solar PV industry are exploring vertical integration

opportunities in addition to manufacturing [14]. These advances have accompanied the de-

crease in costs of utility-scale solar PV projects which is considerable when investigating the

potential use of these technologies. Solar PV technologies have become more commercialized

while CSP technologies remain relatively expensive with limited suppliers [14].

Fresnel mirrors as well as storage capacity of the plant, have high production costs which

make this a rare option. The procurement of CSP plants could be used to support utility grid

supply, while signi�cantly reducing the electricity tari�s in the long-term [14]. Energy secu-

rity is crucial for economic growth and the above considerations show that the utility-scale

potential of solar energy resources in South Africa is possible but requires a large amount of

investment.

1.4 Research and skills which may assist in the adoption of solar renewable sys-

tems

Several tertiary institutions and organizations within South Africa have been researching the

potential and various applications of solar renewable energy in South Africa. These �nd-

ings are often used in strategy development and decision making by the relevant national

stakeholders. Other institutions who make solar PV technologies available to consumers

(commercial and residential) often study and provide courses which illustrate the feasibility

of such systems based on the cost of PV energy yields. These courses outline the process of

PV system installation, explain current and potential legislation surrounding these technolo-

gies in the private and commercial sectors and also expand on the optimization of systems

depending on the requirements of a given site [15].

While these studies are crucial for the development of the renewable energy industry, suf-

25



�cient technical skills which are required to implement and enhance such systems is still

lacking [3]. The lack of �nancial support towards this aspect of the adoption of renewable

energies restricts the strategies which have been outlined by government and the relevant

national departments. Research and the development of skills focused on the acquisition of

renewable energy systems in South Africa should be one of the key focuses.

Solar radiation measurements and data are crucial for the development and performance

estimation of CSP plants and PV technologies [16]. Analysis of available solar resources and

estimations of yield have to be conducted before implementation of such technologies, espe-

cially due to the high associated costs. Application of solar PV technologies largely depends

on the amount of solar radiation available at a given site, hence research in this regard is im-

perative. Although solar tracking PV technologies are existent, these often lose energy in the

process. Evaluating the optimum tilt angle before installing PV modules can be performed

by analyzing the available solar radiation of a location [17].

With solar radiation data not being readily available for most regions in South Africa, most

research involves the use of meteorological variables and mathematical relations to investigate

the solar potential for sites of interest [16,17]. The cost of equipment associated with the

measurement of ground solar radiation levels are relatively high and it is often remote loca-

tions which receive high levels of solar radiation � where there is no access to solar radiation

data. Various international studies over the past two decades have led to the development

of solar radiation estimation models and time-series weather prediction models using avail-

able, measured meteorological factors [16,17,18]. Obtaining accurate models for locations is

important and hence has become a �eld of large interest.

In this study, we analyze and enhance the existing linear models for �ve major cities in

South Africa. Based on the available meteorological conditions provided by local weather

stations, we introduce non-linear regression models for these cities, whilst evaluating their
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e�ciency and accuracy over a period longer than ten years. Further, we propose a multivari-

ate model for each of these cities and test its performance in accordance to single variable

models, as well as non-linear variations thereof. Based on our proposed models, we aim to

encourage the use of solar radiation estimation models in the procurement of large-scale solar

energy technologies. These cost-e�ective methods and skills are easily accessible and can be

included in the assessment of the feasibility of solar PV technologies within the country.
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Chapter 2: Solar radiation

The sun, located approximately 1.5 × 1011m away from the earth, emits electromagnetic

radiation generated from nuclear fusion which is the primary source of the earth's energy

[19]. The amount of solar insolation received at the surface of the earth is quanti�able vari-

able, while variations of this quantity widely in�uence the earth's climate based on solar

activity [20,21]. The solar constant is the radiation incident at the exterior of the earth's

atmosphere, which is measured at surface normal to the incident radiation [20,22]. This

constant is determined from space, via satellite data and has a value of 1367Wm−2. This

quantity varies by approximately 0.01% over a period of around 30 calendar years [22-26].

The amount of solar irradiance at the earth's surface is exhausted by about 50% as compared

to its original value as depicted in Figure 2 below. This is a result of attenuation which oc-

curs in the atmosphere and accounts for almost 30% of the incident radiation being re�ected

before reaching the earth's surface [23,24].
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Figure 2: Earth's energy budget [27]

Global solar radiation (GSR) is the total solar radiation incident on a horizontal surface

and it consists of two components; di�use solar radiation and direct solar radiation [19-25].

When the incoming radiation passes through the atmosphere, it undergoes the e�ects of re-

�ection, absorption and scattering. The irradiance which is scattered from all directions is

referred to as di�use solar radiation. While some of the incident radiation is also scattered

back into space by the earth's surface, the radiation that enters the earth's surface in a

straight line is known as direct solar radiation [20-23,25-28].

2.1. Solar radiation components

The solar radiation entering the earth's atmosphere is subject to attenuation. Only a portion

of the incident radiation is absorbed by the earth's surface [19, 20-23,29-31]. Scattering of the

radiation mainly occurs at short wavelengths due to the gaseous particles (greenhouse gases)

which constitute the atmosphere [22,23]. Water vapor (clouds), aerosols and other particles

which form the earth's atmosphere, cause the incident radiation to be scattered into random

directions [20,23,31] and this is referred to as di�use radiation (HD) [23,29-31]. Radiation

experienced outside the atmosphere is known as extraterrestrial radiation (ETR) (Ho). ETR

incident on a surface outside the earth's atmosphere and normal to the incident radiation

from the sun is known as the solar constant (Isc) [20,23,29,30].

Together with re�ecting the incident radiation, these particles also absorb the radiation

as illustrated in Figure 2. Re�ection occurs at the surface of the earth at an atmospheric

level, where a portion of the incident radiation is re�ected back into space. Surface albedo

is de�ned as the ratio of the re�ected solar radiation to the actual incoming solar radiation

[31]. The remaining radiation which is incident on a horizontal surface on the earth is called

direct beam radiation (HB) [20,23,29-31].
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The total radiation incident on a horizontal surface (the sum of the di�use and direct beam

radiation components) [23,30,32];

H = HD +HB (1)

is known as the global solar radiation (GSR) and denoted by H (MJ/m2).

Since this represents radiation received from all angles, it is termed global [30]. The to-

tal radiation incident on a non-horizontal surface on earth (HT ) has to include the ground

re�ected radiation (HR) [20,23,30];

HT = HD +HB +HR (2)

Lambert's Cosine Law describes the GSR incident on a horizontal surface in terms of to its

angle of incidence with the surface. The angle at which the nearly parallel radiation beams

irradiate the horizontal surface is called the solar zenith angle (θz) [23,29,30]. For a horizontal

surface, GSR can be described by;

H = HD +Ho cosθz (3)

and for a non-horizontal surface, the total incident radiation is;

HT = HD +Ho cosθi +HR (4)

where θi is the angle of incidence between the radiation beam and is measured normal to

the tilted surface [30]. The ratio of the GSR (H) to the ETR (Ho) gives a description of

the atmosphere's transparency and is called the clearness index (KT ) [11]. We discuss this

quantity further in section 3.4.2.1.

KT =
H

Ho

(5)

The study of GSR is signi�cant in providing insights on the earth's climatic conditions and
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e�ects thereof. This quantity is also important in the study of renewable alternate energy

sources which enables successful implementation and design of solar radiation systems. GSR

has units of energy per square meter per day (W/m2.day) or (MJ/m2.day).

2.1.1. Long wave radiation

This is the radiation which is absorbed by gaseous particles in the atmosphere and then

re-emitted [27]. The long wave radiation is dependent on the temperature and absorption

e�ciency of the greenhouse gases (H2O, CO2, O3, O2 and water vapor) at certain wave-

lengths [19,27]. The transfer of long wave radiation in the presence of clouds depends on the

cloud (top and base) temperatures as well as the cloud emissivity which relates the e�ciency

with which the clouds are able to absorb and re�ect the long wave radiation [27]. The cloud

emissivity is dependent on the cloud type and constituents.

2.1.2. Short wave radiation

Short wave radiation is absorbed and scattered by the earth's atmosphere. The incident

short wave radiation is either absorbed by the atmosphere and provides a heating e�ect or

back scattered into space [27]. Similarly scattering occurs between clouds and the surface of

the earth. Scattering of the incident radiation by clouds has greater signi�cance in compar-

ison to the scattering caused by gaseous particles and is known as Rayleigh scattering [20,

22,27]. Absorption and scattering of short wave radiation due to aerosols which exist in the

atmosphere, depends largely on their optical and chemical characteristics.

2.1.3. The solar constant (Isc)

The solar constant (Isc) is the radiant energy experienced at normal incidence outside the

earth's atmosphere and is measured at the mean sun-earth distance [19]. This quantity de-

pends on the temperature of the sun, its size and the distance between the earth and sun

[33]. According to the Stefan-Boltzmann law, if the sun is considered as a black-body, and

we assume that the radiant energy expelled from the sun is the same energy which is incident
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at the earth's surface, the solar constant can be calculated by the following:

Isc =
ρsun
4πr2

(6)

where ρsun is the sun's solar radiation power and the area of the sphere is calculated using

the radius of the sun-earth [33].

Since the distance between the earth and sun experiences annual regular variations, Isc is

agreed as an average value over a period of time. In 1982, the World Meteorological Organiza-

tion (WMO) accepted the average value of 1367W/m2 for the solar constant [19,20,22,27,33].

Variations in the earth-sun distance stem from the earth's elliptical orbit around the sun,

resulting in the sun and earth being closer and further during periods of the year [33]. This

is termed the eccentricity e�ect and the solar constant makes provision for this factor [20,22].

Typical variations from the mean sun-earth distance during the year approximate to ±1.7%

[33].

2.2. Geometric solar angles

The position of the sun has to be considered when determining the actual amount of solar

radiation received on earth. As the position of the sun varies throughout the day, locating the

sun's position relative to the earth is dependent on the following; the sun's zenith angle (θz),

altitude (α) and the azimuth angle (γ) which are further illustrated in Figure 3 [22,32-34].
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Figure 3: Intersections of the celestial sphere [38]

As brie�y mentioned in the prior, the earth's orbit around the sun is elliptical with an

axial tilt of 23.45o [33-37]. This is described as the inclination of the earth axis to the orbit.

As the earth orbits the sun, its axis of rotation remains in a �xed position which leads to

seasonal variation [36,37]. The celestial equator is the projection of the earth's equatorial

plane, which is used to translate it's position.

When the celestial equator intersects with the ecliptic plane, the earth experiences `Equinoxes'

which are indicators of season change [33,36,37]. When the sun passes the earth's equa-

tor (while south-bound) this is known as the Vernal Equinox in the southern hemisphere

[22,36,37]. This occurs on the 23rd of September each year, while the Autumnal Equinox on

the 21st of March [22,36,37].
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Solstices are experienced when the earth is closest or furthest away from the sun and oc-

cur twice a year. June 21st is known as the Winter Solstice in the southern hemisphere and

this is when the shortest day and longest night is experienced, due to the lowest sun angle

of the year [36,37]. On December 21st the Summer Solstice consequences the longest day

corresponding to the largest sun angle for the year [22,36,37].

Solar radiation incident at a given surface on the earth is also dependent on the latitude

of that location. A speci�c site will receive the highest amount of solar radiation when the

sun reaches its zenith which is its highest point in the sky for that particular day [33-37].

The speci�c time when the sun is at its peak, is known as the solar noon and the zenith angle

is dependent on the latitude of the location (φ) , the time of day (t), solar noon (to) as well

as the the solar declination angle (δ) [32,33].

cosθz = sinφsinδ + cosφcosδcos [15(t− to)] (7)

The time of solar noon and time of day need to be converted from hours to degrees, which

shows that the earth rotates at a rate of 15o per hour ( 360o

24hours
= 15) [23,32,33].

The latitude of a site (φ) is negative if it is in the southern hemisphere, positive for the

northern hemisphere and its value ranges from 0o− 90o [22,23,32]. This quantity is available

for all geographical locations in any standard atlas.

The declination angle (δ), is de�ned as the angle at which the sun is located directly above

the site, or at its zenith [23,32,33] and is described in [23,32,39,40] as;

δ = 23.450sin

[
3600 (284 +Dn)

365

]
(8)
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δ is a function of the day of the year Dn (Jan 1st = 1, Dec 31st = 365) [32,33,39,40], as well

as the obliquity of the earth's orbit which is shown in Figure 4. The hour angle (ωs) is the

time deviation (in degrees) from solar noon [23,37,40];

ωs = cos−1(−tanφ tanδ) (9)

Figure 4: Depiction of the declination and hour angle [33]

The solar azimuth angle (γ) is the angle measured from the north or south of the earth

in the horizontal plane [32]. This angle is measured with respect to the south and increases,

counter-clockwise [23,32];

cosγ = −(sinδ − cosθzsinφ)

cosφsinθz
(10)

The day length (So) is used to translate time (in hours) between sunrise and sunset [23,32,33,40,41].
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The duration of the sun appearing in the sky, at a given site;

So =
2ωs

15
(11)

ETR (Ho) is signi�cantly dependent on many of these factors including; Isc, the earth's

obliquity and the above mentioned solar angles [22,23,29,40,41];

Ho =
24× 3.6× 10−3Isc

π

[
1 + 0.033cos

(
2πDn

365

)]
[cosφcosδsinωs + ωssinφsinδ] (12)

The eccentricity coe�cient, Eo (MJ/m2.day) is de�ned in terms of the earth-sun distance

[22,23,29];

Eo =
[
1 + 0.033cos

(
2πDn

365

)]
(13)

Understanding of the geometrical location of the sun relative to the earth is signi�cant in the

research of solar radiation and its components.

2.3. Quanti�cation of solar radiation

Knowledge of the available solar resources at a speci�c location helps to create an under-

standing of the nature and distribution of the incident radiation, as well as the climatic

conditions experienced in that region [30]. Quanti�cation of GSR is of economic importance

in the review of renewable energy resources as it enables e�ective design and application of

solar radiation systems. However, solar radiation data is not always available for every loca-

tion and often in areas with the most solar potential. Meteorological stations which measure

solar radiation data and sunshine duration, often require costly equipment and consequence

high maintenance costs to record this data timeously [23,30].

Currently it is not possible to establish an accurate global coverage of solar radiation statis-

tics as there aren't many active meteorological stations for most locations [31]. This results

from the high associated costs and shortage of available infrastructure. The World Radiation

Center (WRC) and Baseline Surface Radiation Network (BSRN), are two international net-
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works which monitor the solar radiation received on earth by collecting recorded data from

meteorological stations across the world. The �ndings from these centers serve as a reference

database for solar radiation measurements throughout the world [30]. Due to the scarce

number of meteorological stations which actively record solar radiation data, solar radiation

estimation models which are accurate and e�cient are constantly being pursued, developed

and improved [30,40,41].

Some of the desired prediction methods focus on estimation through the use of more ac-

cessible meteorological factors such as air temperature, relative humidity, dew point, etc.

[40,42,43]. Physical measurements of solar radiation can be conducted by the application of

broadband radiometers which are designed to detect this electromagnetic radiation including

its speci�c components, or by recording the sunshine duration using solar tracking devices

[23,44].

Radiometry is the study of the measurement of electromagnetic radiation using radiometric

devices that absorb solar radiation [23]. The detectors used in radiometers can be listed un-

der the following types; thermopile detectors, black-body cavity detectors and semiconductor

detectors [23]. It is vital that the radiometers used to measure solar radiation at a site be

calibrated against an absolute radiometer [44]. Most of these instruments consist of a thermal

detector, a glass dome (provides protection from environmental elements), a silica cartridge

(absorbs any water particles), electric circuits and a narrow aperture [23,30,44]. Thermopile

detectors are used to detect radiation in the short wavelength spectrum [23].

For accurate measurements, these radiometers need to record data at least every hour, while

older methods of solar radiation measurements include the �Burning Card Method�, which

works on the principle of the Campbell-Stokes sunshine recorder [23,44]. The direct beam ra-

diation incident on this instrument is focused on a glass sphere containing a card inside. The

course of the sun during the day burns a trace on the card, which is then examined to conclude
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the sunshine duration as well as the time and position of the sun at sunrise and sunset [23,44].

2.3.1. Pyrheliometers

These radiometers measure the direct beam radiation incident at a speci�c location and its

marginal periphery (outer limits) [23,30,44]. The detector of a pyrheliometer tracks the sun

during the day and is arranged normal to the direction of the incident solar radiation [23].

All radiometers consist of a thermal sensor or tracker which detects the energy of the incident

radiation and converts it into electric signals [23,44].

The detection of the incident electromagnetic radiation is �rst conducted and then it is

classi�ed into direct or di�use beam radiation by examining the energy and wavelength of

the beams [30,44]. Pyrheliometers disregard the di�use sky radiation and record only the

direct beam radiation. For this reason, pyrheliometers have been accepted as a reliable device

for the measurement of direct solar radiation.

2.3.2. Pyranometers

Pyranometers are able to measure both direct and di�use components of radiation through

its horizontal radiation-sensing surface which absorbs GSR [23,30,44]. Certain pyranometers

measure only the di�use component by eliminating the direct beam radiation [44]. These

require a shading disk which conceals the direct beam component and measures only the

di�use sky radiation. The shading disk is placed over the radiometer, along the path of the

direct beam radiation [23].

Satellites have proven to be accurate in their ability to observe the solar radiation distribution

along the earth's atmosphere through satellite images [30]. The images from geostationary

satellites are processed to describe the solar radiation conditions at certain locations and are

useful in monitoring and predicting the amount of cloud cover at a site [30]. Uncertainties

in the measurements from radiometers depend on the structure of the instrument such as
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sensitivity levels and thermal o�sets which are the main sources of errors [23]. Spectral e�ects

together with meteorological factors can also play a part in any discrepancies in recordings

[23,30,44]. Atmospheric parameters such as temperature �uctuations, wind and rain impact

the e�ciency of the radiometer, and these errors have to be accounted for by correction

methods [23,30].

Figure 5: Instruments used to measure solar radiation [33]

2.4. Considerations when evaluating global solar radiation

ETR which enters the atmosphere is depleted by attenuation processes such as absorption,

re�ection and scattering [20,23,32,44,45]. Various gaseous particles, aerosols and clouds con-

stitute the atmosphere, and each of them can absorb, re�ect or scatter the incident radiation

[20,23,33]. Scattering occurs according to the Rayleigh Theory of scattering and is due to

the concentration of gases in the atmosphere [23,33]. Elements such as pollutants, aerosol

concentrations, atmospheric gas concentrations and clouds reduce the ETR into di�use solar

radiation by absorbing the incident solar radiation or re�ecting it back into space [20,23].
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2.4.1. Cloud and surface albedo

The ratio of solar radiation which is re�ected and back-scattered (HR) to the incident radi-

ation ETR (Ho) at a surface, is known as the Surface-Albedo [20,23,45];

Albedo =
HR

Ho

(14)

The HR component is specular (uniform re�ection) and di�use (random variation in re�ected

rays) in nature [45]. When the incident radiation is scattered and absorbed, the variation

accompanying these processes is called the 'Direct Radiative Forcing' [23].

Cloud-Albedo describes the atmospheric transparency by quantifying the degree of cloudiness

[20,23]. This proportion is dependent on the type of clouds and can be determined by con-

sidering the observed amount of cloud cover, sunshine duration or by computing the Aerosol

Optical Thickness (AOT) of the cloud [23,27,33]. The eccentricity e�ect causes a change in

the amount of solar radiation incident at a speci�c location during the year [45]. The amount

of GSR available on a surface at the earth depends on the atmospheric conditions mentioned

above. Hence, the transparency of the atmosphere (Albedo) is described in terms of aerosol

and atmospheric gas concentrations [23].

2.4.2. Atmospheric factors

2.4.2.1. Clouds

Clouds are perceived as regulators of solar radiation with nearly 65% of the atmosphere being

covered by them [20]. Cloud types and e�ects are detected by using meteorological satellite

images [32,42]. The Cloud-Albedo e�ect is de�ned as the instance when clouds re�ect the

incident solar radiation back into space whilst reducing the temperature of the atmosphere

[20]. If clouds completely obscure the sun, there will be no direct beam radiation and the

total GSR will be equal to the di�use radiation [32].
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The type of cloud depends on its constituents and causes �uctuations in the available GSR

and subsequently a�ects the climate experienced in a given area [20,32,44,45]. Satellite ob-

servations of clouds together with models which account for the transparency, re�ectivity and

absorbency of the atmosphere are used to address the e�ects of all aspects which in�uence

the amount of GSR received at the earth's surface.

2.4.2.2. Aerosols

The e�ect of aerosols on solar radiation depends signi�cantly on the physical composition

of the aerosol. This includes the size and shape, chemical characteristics and interaction

properties speci�c to the type of aerosol [27]. Aerosols are gaseous particles which are found

in the atmosphere and are usually liquid or solid in nature [20]. Some examples of aerosols

include; dust, sulphates and carbon molecules. Aerosols can both absorb and scatter incident

solar radiation while increasing the di�use radiation component [20,23].

The atmosphere is made up of air molecules and gases such as; CO2, O2, N2, O, N , Ozone

and water vapor [20,23,46]. At certain wavelengths these atmospheric molecules absorb solar

radiation. Ozone in the stratosphere absorbs ultraviolet (UV) radiation, whileH2O, CO2 and

O2 absorb radiation in the visible and near-infrared regions [23,33,47]. These gases scatter

solar radiation when their particle size is considerably small in comparison to the wavelength

of the incident solar radiation which is referred to as Rayleigh scattering [20,23,33,47].

Water vapor in the atmosphere decreases the total amount of GSR by absorbing both the

direct and di�use radiation components [23]. Aerosols can also interact with radiation which

has already been scattered, this is dependent on their spectral properties [47]. Mie scatter-

ing occurs when the wavelength of the incident radiation and aerosol particle size are equal

[33,47]. Aerosols have the ability to scatter and absorb any thermal infrared (IR) radiation

emitted from the earth's surface and emit infrared radiation [47].
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Much of the reservations surrounding research in global radiative forcing and climate sensi-

tivity stems from the uncertainties in aerosol forcing [47]. Due to limitations which inhibit

accurate estimation of aerosol properties and their spatio-temporal pro�les, the understand-

ing of aerosol-radiation interactions is considered complex [47].

2.5. Photovoltaic (PV) applications of solar radiation

In order to maximize the consumption of the sun's radiation, solar power can be harnessed

and converted into thermal and electrical energy [48,23,49]. 'Active' applications of solar

radiation which make use of solar energy conversion systems include thermoelectric and PV

technologies [23,48]. Evolution of PV technology has been signi�cant over the past few

decades since its introduction in 1954, with solar PV cells being more widely used today due

to the increase in their e�ciency [48,50,51].

Standard PV cells are made from semiconductor materials such as silicon and work on the

basis of the photo-electric e�ect [23,48]. The radiation incident on a PV cell is responsible

for electron excitation and results in a steady current which may be stored. Currently there

are two types of PV cells on the market namely; crystalline silicon-based PV cells and thin

�lm cells [48]. Semiconductor materials such as; amorphous silicon, cadmium-tellurium are

the dominant materials used in the composition most PV cells [48].

Crystalline silicon-based PV cells are more expensive as compared to thin �lm cells and their

price is justi�ed considering their vastly outperforming e�ciency [48]. The energy seized by

these cells can be converted into electricity and used to run appliances, for lighting purposes,

and to power motors and generators [48,49]. This electricity can be stored and used during

power outages. PV systems are extremely economical in broader contexts given that their

applications will assist in decreasing the consumption costs of grid electricity. Thermal elec-

tric applications of PV technologies involves the collection, storage and conversion of solar

energy [23,48].
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A solar panel consists of a large number of small, connected PV cells to increase the surface

area for sunlight exposure. Large scale deployment of these solar panels in CSP plants is

only viable for certain areas, depending on the amount of direct normal radiation received

at that location [48,52]. Technologies which lend themselves to thermal electric applications

in CSP plants include; parabolic troughs, solar dish collectors and Fresnel mirrors [48,53].

Fresnel mirrors consist of re�ecting mirrors which are complexly designed to capture and

store radiation. The mirrors are manufactured from glass which has an absorber insulation

and o�ers a longer lifespan (more than 25 years) [53]. These mirrors are arranged in parallel

rows forming a horizontal layout which proves to be more e�cient in capturing the maximum

amount of incident radiation [53]. Parabolic troughs and solar dish collectors are also made

from some of these re�ecting mirrors. However, their design is far more complicated as the

mirrors and glass are curved to form troughs [53].

These technologies can be placed at higher altitudes to experience a reduced impact from

atmospheric aerosols [53]. CSP plants currently make use of these structured devices which

are e�cient and economical as they have the potential to reduce the strain and costs of grid

electricity [48,52,53].

Since these technologies are highly suitable for remote locations which have di�culties in

accessing the grid supply, PV cells can be implemented in both the industrial and residential

(urban and rural) sectors [50]. Solar radiation has the potential to meet the world's energy

requirements through active solar technologies such as those mentioned above. New advances

to solar cells allow for the optimal amount of radiation to be captured.

Features like tracking and tilting are �tted into the solar collectors to allow automated ad-

justment relative to the sun's position [49]. Placement of solar panels has direct implications

43



on the energy output and e�ciency of the cell [49]. Limitations in the application of PV cells

arise from their uncertainty and variability [51]. Hence, methods to predict the amount of

solar insolation incident at a given site are bene�cial for the design and manufacturing of PV

technologies [50,51].

Accurate and e�ective forecasting methods may guide the optimal placement of PV panels,

customized design of these technologies and allow for better management of grid electricity

[54]. These technologies are at our disposal and can be used to supplement the national grid

supply, for example in times of load shedding and blackouts [50,54].

For successful assessment of the PV potential for a prospective region, knowledge of the

atmospheric conditions and solar radiation for the region must be available [55]. PV cell

performance models are used to evaluate the potential of PV application for a site. These

models generally require ground measurements of solar radiation, or satellite radiation data

and numerical weather prediction models to evaluate the proposed performance [55]. For

this purpose, establishing accurate and e�cient GSR prediction models may serve as input

when identifying the performance of a PV cell. These prediction models can be extended to

be included in the performance analysis algorithms of PV cells.

2.5.1. Conversion of solar to PV energy

A solar cell is considered a large p-n junction diode which allows light to be coupled into

distinct regions [56,57,58]. PV cells enable production of electrical energy through the ab-

sorption of light energy [58]. These cells are made from semiconductor materials which are

capable of absorbing photons of light with energies equal or greater than its band with [57,58].

The PV cell is a p-n junction between two thin layers of di�erent semiconductor materials

[56,57].

The �rst is the positive semiconductor (p-type) which is usually made from crystalline silicon
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that is chemically doped with an impurity (e.g. boron) to create a de�cit of free electrons in

the material. The second semiconductor layer is the negative (n-type) which also constitutes

crystalline silicon but instead is chemically doped with an impurity which enables a surplus

of electrons (e.g. phosphorus) [57,58].

The realization of practical current in a solar cell takes place at the atomic level as light

photons incident on the cell are absorbed. The absorption of this energy causes electrons in

the valence band to be excited to the conduction band which results in an electron-hole pair

being created [56-58]. The �ow of electrons from the n-type semiconductor to the p-type

semiconductor is known as the PV e�ect and is illustrated in Figure 6 below [57].

Electrons in the conduction band are movable and in order for this charge to be collected,

recombination with the hole in the valence band has to be avoided [57,58]. Separation of

these positive and negative charges is obtained by the built-in potential gradient within the

cell [57]. An electric �eld is created when an organic semiconductor is placed between the

two semiconductors explained above as a result of the discrepancy in their energy levels.

Since the electron-hole pair is bound together by Coulomb attraction, the electric �eld is

necessary to ensure charge separation [57,58]. The free charge can then be captured for cur-

rent generation. The structure and composition of PV cells is thus of signi�cant importance.
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Figure 6: The electron-hole pair after photon is absorbed [58]

Individual PV cells range in size between 1-15cm and produce typical power of around 1

to 2W [57]. PV cells are connected in series to produce PV modules and increase the power

output. Typical PV modules consist of 36 individual PV cells and have a power output

rating of approximately 60W [57]. PV cells and modules are laminated in order to prevent

impact from environmental factors such as penetration of water and gases. Solar PV arrays

are formed by integrating PV modules to form a DC power producing unit. The above is a

summarized description of the energy conversion process which occurs in PV cells.
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Chapter 3: Background and theory

3.1. Models to estimate GSR

Competent solar radiation estimation models are consistently being pursued, especially in

areas where GSR data is not measured. This chapter explores the various models which have

previously been studied and which prove to be su�cient in estimating GSR. Knowledge of

the available solar radiation is fundamental for the management of energy resources as well

as the development of solar PV technologies [59]. We also discuss models which forecast

and predict solar availability in the below. Techniques used to quantify the available solar

resources, depend on the time scale validation of the prediction - forecasting horizon [60].

Inaccurate models can lead to signi�cant discrepancies in the estimation of the annual energy

yield of a PV system [61].

3.2. Prediction models

3.2.1. Forecasting horizons

Before discussing the types of prediction models in consumption, it is important to take note

of the various forecasting horizons which directly in�uence the prediction model required for

a speci�c PV system. The real-time acquisition of predicted data is crucial for solar power

plants (e.g. CSP) which may supply the demand of the national grid [30,60].

The time interval for which values of solar radiation are predicted is referred to as the

forecast horizon. CSPs require quantifying stations to assess and forecast the incident so-

lar radiation to allow for proper management of resources [30]. While the uptake in solar

technology continues to rise, the need for accurate short-term predictions of solar radiation

becomes more pertinent [62].

Now casting refers to predictions made in a short time interval usually between 0-3 hours
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[30,60]. These predictions can be made by analyzing measurements made at a particular

instant and a few hours before. Short-term forecasts are made every 3-6 hours and can be

acquired from models which incorporate meteorological variables such as precipitation, wind,

temperature and sunshine duration [30,60,61].

Predictions made between 6-72 hours or longer are referred to as `forecasting'. These es-

timates are conducted by various techniques which include both numerical and physical

approaches [30]. For accurate predictions to be made, models which are suitable for the

speci�c forecasting horizon need to be considered. (e.g. some Numerical Weather Prediction

(NWP) models do not perform well in now casting, as these models may not account for

variations in the weather conditions within the interval of 3 hours) [30,60].

3.3. Statistical models

Statistical analysis of the weather parameters previously observed in a de�nite site is im-

portant for implementing modeling techniques [23]. For the prediction of solar radiation,

factors such as GSR, ETR and meteorological parameters need to be observed for a period

longer than one calendar year [23]. Satellite observations (sunshine duration, cloud cover,

etc.) can be used as variables in the analysis and models used for solar radiation forecast-

ing [23,43]. Statistical methods include; time-series forecasts, Numerical Weather Prediction

(NWP) models and Arti�cial Neural Networks (ANN).

Stochastic weather models can be developed from observed meteorological data [43]. To

make provision for seasonal variations while considering short-term �uctuations due to cloud

cover, Auto-Regressive Integrated Moving Average (ARIMA) models may be implemented

[62]. Majority of the statistical models developed require complex and tedious numerical

analysis based on historical observed data, but are highly accurate in their forecasts [63].

Statistical research techniques and models are fast becoming the preferred method of fore-

casting solar radiation as they require less computational e�ort and do not require much
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internal system variables [23,43,59-64].

3.3.1. Arti�cial Neural Networks (ANNs)

Arti�cial Neural Networks (ANNs) are used to solve for the intense computing power required

by most statistical models which forecast GSR [59,61]. An ANN is a massive processor which

performs functions on the basis of Arti�cial Intelligence (AI) [52]. They consist of a group

of processing units which store and process exponential data sets [65]. There are two main

categories of ANNs; Multi-Layer Perceptron (MLP) and Radial Basic Function (RBF) [43,65].

Like other statistical methods, these networks require the input of observed historical meteo-

rological data. These models stand out from others as a result of their high level of accuracy

and e�ciency [43]. ANNs are able to accurately forecast cloud cover and formation, which

make them advantageous in describing the atmosphere [59]. The future of statistical fore-

casting of GSR lies within the realm of ANNs due to its time saving and exponential storage

capabilities [43,59,65].

3.3.2. Numerical Weather Prediction (NWP)

NWP models are mathematical models which use current weather parameters as input vari-

ables, for initial and boundary conditions [30,63]. These models are able to predict GSR on a

global scale and are used to forecast GSR in the 'forecasting' horizon (up to 48 hours) which

is referred to as General Circulation Models (GCM) [63]. For regional and local predictions,

the choice of NWP depends on its e�ciency, cost and accessibility to meteorological data [30].

While NWP models are popular methods for estimating GSR and describing the dynam-

ics of the earth's atmosphere, they require extensive computations [64]. In some short-term

forecast horizons, NWP models perform poorer in comparison to simple forecast approaches

which assume that consecutive days are identical [62]. These models are advantageous for

PV systems which necessitate longer forecast horizons as the analysis of historically observed
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data allows for improved long term predictions.

3.4. Physical models

Physical models consider the in�uence of atmospheric conditions, site topography and weather

conditions in the estimation of GSR [23,42]. The physical approach is based largely on

processes that occur in the earth-atmosphere system, while these models require observed

meteorological data as input variables [23,64]. Examples of the dependent meteorological

considerations include; astronomical factors such as the solar constant, solar angles, physi-

cal factors like surface and cloud albedo, attenuation processes, geographical considerations

which are the latitude and altitude of the site, and meteorological variables - temperature,

relative humidity, vapor pressure, precipitation, sunshine duration [23,42,64].

Required meteorological variables are easily available as they are recorded at most local

weather stations (with the exception of some parameters e.g. sunshine duration) or can be

measured with the use of basic instruments and/or calculations. Satellite image data can

be used in models which depend on atmospheric transmittance [44]. Physical models which

are dependent on meteorological parameters are viable for the estimation of solar radiation

in regions where solar radiation data is not measured as they have lower computation costs

and fewer input data requirements [66]. Although solar radiation data is not extensively

quanti�ed, majority of physical models require this data for validation and calibration of

estimation models.

3.4.1. Temperature based models

The air temperature on the earth's surface is directly in�uenced by the solar insolation

absorbed by the atmosphere [67]. Models which use air temperature as a parameter to pre-

dict GSR at a location, require measurements of maximum and minimum air temperatures

depending on the forecast horizon [23,42,43]. Since measurements of solar radiation and sun-

shine duration are limited at many meteorological stations, temperature based models are
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considered [43,66,68].

It is important to note that areas which use recorded data from stations which are not

in proximity, compromise the reliability and accuracy of their data [42,43]. This has led to

the development of models which use easily available and measurable parameters such as air

temperature [43,63,69-71].

Temperature based models estimate GSR through the assumption of atmospheric trans-

missivity - clear sky days correspond to higher incident solar insolation (greater short wave

radiation) and result in increased maximum air temperature and decreased minimum air

temperature (due to reduced long wave radiation emission from the atmosphere) [66,69-74].

Similarly, maximum air temperature decreases with reduced atmospheric transmissivity (i.e.

higher cloud cover) while minimum air temperature increases due to cloud emissivity [72-

74]. In the following, we give a brief description of a few well-established temperature based

models, with a main focus on the Hargreaves-Samani model.

3.4.1.1. Hargreaves-Samani (H-S) model

Limitations in the availability and accessibility of solar radiation data resulted in the air

temperature approach which was developed by Hargreaves and Samani [71]. The main as-

sumption of this model is that the GSR at a site is responsible for the temperature range [42].

The di�erence in the daily measured maximum and minimum air temperatures are related

to the amount of GSR received by the following equation [68-74];

H = HoKr(∆T )0.5, (15)

where Kr is an empirical coe�cient that is dependent on the site and various meteorological

parameters [25], and ∆T refers to the di�erence between maximum and minimum tempera-

tures (∆T = Tmax − Tmin).
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This model allows for solar radiation estimation through use of minimal meteorological data

and is advantageous for locations where availability of measured data is limited. However,

the risks associated with implementing this model lie in the assumption that the extraterres-

trial (Ho) and global solar radiation values (H) are directly related to the air temperature

di�erence [69-71].

For a speci�c location, signi�cant errors may arise due to the in�uences of various mete-

orological factors such as elevation, storm patterns, cloudiness, humidity and advection on

the air temperature [69,70].

(i) Empirical coe�cient (Kr)

Studies conducted in [70,71] indicate that the value of the empirical coe�cient Kr in the H-S

equation depends on the location's humidity as well as its geographical situation with respect

to large masses of water (lakes, dams, oceans). For inland/interior regions, the recommended

value of Kr is 0.162, while for coastal regions Kr = 0.19 [42,43,69-71,76,77].

A location is classi�ed as coastal if the location is situated on or close to the coast (interaction

between land and sea) [70]. The e�ects of relative humidity, pressure and cloudiness were

investigated to recalibrate the value of Kr, but diverted the equation from its simplicity and

main purpose [70,77,78].

Further studies resulted in a temperature dependent equation for the estimation of this

empirical coe�cient [54,69,76];

Kr = 0.00185(∆T )2 − 0.0433(∆T ) + 0.4023 (16)

The H-S relation implicitly accounts for the relative humidity at a site in the temperature

range ∆T [43,46,69-71,76,78].
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The evaluation of this empirical coe�cient is solely based on the temperature di�erence.

If the air temperature if a�ected by other climatic factors such as; location topography, el-

evation, proximity to a large body of water, then the Kr coe�cient has to be corrected to

avoid errors [69,70].

3.4.1.2. Bristow and Campbell Model

This model relates GSR as an exponential asymptotic function of ∆T ;

H

Ho

= a [1− exp(−b(∆T )c)] , (17)

where a represents the maximum radiation that can be received on a clear sky day, which is

dependent on the site's pollution and elevation [68,72,75].

3.4.1.3. Allen Model

As an extension of the H-S model, Allen proposed that the empirical coe�cient Kr is in�u-

enced by the mean atmospheric pressure (P ) of the site. This factor was introduced to reason

for the elevation e�ects on the heat capacity of the atmosphere, which resulted in proposed

empirical coe�cients: Kr = 0.17 for interior regions and Kr = 0.2 for coastal regions [70,72].

H

Ho

= A
(

P

1013

)0.5

(∆T )0.5 (18)

3.4.1.4. Samani Model

Samani further proposed that the empirical coe�cient Kr is a function of daily (∆T ) to

minimize the estimation error [69,72].

H

Ho

=
[
A(∆T )2 +B(∆T ) + C(∆T )0.5

]
(19)
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3.4.2. Sunshine duration models

3.4.2.1. Angstrom model

Sunshine duration is a widely used variable in GSR estimation models. Measurement of

this parameter has a direct correlation to the amount of GSR incident at the earth's surface

[40,41,79,80]. This parameter is a reliable indicator, however measured data is not always

available [23,68]. The earliest known correlation of solar radiation and sunshine duration was

established by Angstrom in 1924 [80]. His work was the fundamental basis of many mod-

els which are still currently used to estimate solar radiation [23,39-41,63,79,80]. Angstrom

recorded the incoming solar radiation data using a pyranometer and developed the following

linear relationship [80];

QH = Qo(0.25 + 0.75)S, (20)

Qo represents the total incoming clear sky radiation, QH denotes the total incoming solar

radiation, and S is the relative sunshine duration (sunshine duration/maximum possible sun-

shine duration (So)).

Clear sky conditions were di�cult to classify and de�ne without a dependence on other

atmospheric and geographical factors which resulted in Prescott modifying the Angstrom cor-

relation by replacing the clear sky radiation with the Extraterrestrial radiation Ho [23,39,63-

65,80,81]. This relation became generally known as theAngstrom-Prescott (A-P) relation

[23,38-41,63,79,80,38];

H

Ho

= a+ b
(
S

So

)
, (21)

where a, b are known as the Angstrom coe�cients and S
So

is the relative sunshine duration.

(i) Clearness Index (KT)

Equation (5) represents the ratio of total incoming GSR to the incoming ETR. This is a
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measure of the atmosphere's transmissivity and also indicates fraction of available solar ra-

diation at a location [63,82].

The atmosphere can be described in terms of the clearness index as explained in Table 1

[23];

Table 1: Classi�cation of day type using clearness index [23]

Sky type KT

Clear 0.7 ≤ KT ≤ 0.9

Partially cloudy 0.3 ≤ KT ≤ 0.7

Cloudy 0.0 ≤ KT ≤ 0.3

(ii) Angstrom Coe�cients

The a, b coe�cients in equation (21) are empirical values that are dependent on the site

geography (latitude, elevation, etc.) [11,50,52,53]. These empirical values range between

0.089 ≤ a ≤ 0.460 and 0.208 ≤ b ≤ 0.851 for various di�erent locations in the world [23].

The physical signi�cance of these empirical quantities gives a partial measure of the atmo-

sphere's transmissivity [63].

Coe�cient a is a function of cloud cover, while b is the fraction by which the sky's clearness

index is a�ected due to sunshine duration [41,63]. The relative sunshine duration S
So

is also

known as the 'cloud cover index' [23,63]. For days when S
So

= 1 (clear day - no cloud cover

obscuring the sun), H
Ho

= a+ b = KT .

The sum of the Angstrom coe�cients yields the atmospheric transmittance for that day

[23,63]. On overcast days S
So

= 0, then H
Ho

= a = KT . For areas where the Angstrom co-

e�cients have not been de�ned, the recommended coe�cients are; a = 0.25 and b = 0.50

[67]. The A-P model is renowned for its high degree of precision in estimating GSR for many
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global locations, with the model's main advantage being that it only requires one input vari-

able [23,79-82].

3.4.2.2. Adaptations of the Angstrom Model

Measurements of short wave radiation can be used to accurately predict the amount of so-

lar radiation received at any location on the earth's surface [67]. Over the years, recent

models which account for the e�ects of various meteorological factors, have been developed

[67,83-85]. These parameters include; precipitation, relative humidity, air temperatures and

sunshine duration to improve the accuracy of predictions [43,44,67,68,72,83].

These models have been derived from the fundamental A-P relation, and are referred to

Angstrom based relations [23]. A generalized model which was developed for world-wide use

is described by [84] as;

H

Ho

= 0.23 + 0.48
S

So

, (22)

which makes use of a global average of the Angstrom coe�cients. Work done in [42], describes

an exponential relationship between the relative sunshine duration and the clearness index

for Spain and is described in eq. (23). The climate in this country is considered to be similar

to that of South Africa (semi-arid and mediterranean) [42].

H

Ho

= a+ b exp
(
S

So

)
. (23)

The Angstrom coe�cients are crucial for the proper application of Angstrom based models.

Since these coe�cients are site dependent, historically observed solar radiation data need

to be analyzed to derive a reliable set of Angstrom coe�cients [23,63,65]. An example of a

model which omits the Angstrom coe�cients is found in [84];

H

Ho

= K
(
S

So

)0.63

sin (θz)
−0.19 . (24)

The site parameters are explicitly included in the relation in the form of a zone factor K and

56



the model requires the solar noon (zenith) angle (θz) [84].

While the A-P model requires minimal computational input in estimating GSR, sunshine

data and cloud observations are not easily available. Previously observed sunshine and GSR

data is essential for the derivation of the empirical coe�cients which allow for proper appli-

cation of the model. Further, the model proves less e�cient in the presence of clouds and

other extensive atmospheric factors.

3.5. Multivariate models

Physical models which are used to estimate GSR at a speci�c location, largely depend on

the meteorological data available [43,83,84]. Models which integrate factors such as sunshine

duration, air temperature and relative humidity are known as combination (multivariate)

models [40,42,50,83,92]. Relative humidity is de�ned as the amount of water vapor present

in the air, and is greatly in�uenced by the air temperature [44,83]. Relative humidity (RH)

is described as a percentage and reaches a daily minimum around midday (solar noon) and a

maximum at sunrise [83]. The development of models which correlate more than one variable

are extremely dependent on the site of interest [40,83,86]. Nigeria, which is situated in the

northern hemisphere and has a tropical climate with high rainfall in the summer season, has

similar climatic conditions to that which is experienced in South Africa [40]. Studies in [40]

proposed the following linear model for estimating the average monthly GSR in Nigeria;

H

Ho

= 1.387 + 1.592
S

So

− 0.045Tmax + 0.004
RH

100
, (25)

Here Tmax is the average daily maximum temperature and RH is the average daily relative

humidity [40]. These multivariate regression equations were found to have a higher correla-

tion when compared to models using just one meteorological variable [40,83,86].

3.5.1. Proposed models for South Africa

Further research on the estimation of GSR in South Africa through multiple meteorological
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variables was completed in [87], which proposed linear models for the 9 provinces in South

Africa. It was shown that the wind speed had a negligible impact on the prediction models

for certain provinces [87].

Following a similar approach, our work focuses on the regression analysis of these meteo-

rological factors as well as the non-linear impact of multivariate models and variations of

these parameters. Extensive studies in [75,88-92] detail the non-linear analysis of GSR es-

timation models across various countries in the world. As an extension of our linear, single

variable analysis conducted in Appendix B, and based on the above studies we chose to

observe the performance of multivariate models of the form;

H

Ho

= a (T ) + b
(
RH

100

)
+ c

(
S

So

)
+ d , (26)

where a, b, c and d are site dependent regression coe�cients and T represents temperature
variables such as; ∆T,

√
∆T , Tmax and

√
Tmax. We extended this relation to investigate higher

order variations and observed that quadratic models relating Tmax are best suited for cities
in South Africa. Our results are detailed in Chapter 5 and we present our proposed models
for South Africa below. These models are unique to each of the �ve study sites.

GC models for the estimation of GSR for cities in South Africa

Bloemfontein
H

Ho

= 0.040 (Tmax) − 0.307

(
RH

100

)
+ 1.151

(
S

So

)
− 0.979 (27)

Cape Town

H

Ho
= 4×10

−4
(Tmax)

3−0.03 (Tmax)
2

+0.71 (Tmax)+13.33

(
RH

100

)3

−19.66

(
RH

100

)2

+7.52

(
RH

100

)
+2.25

(
S

So

)3

−0.46

(
S

So

)2

−0.37

(
S

So

)
−5.41

(28)

Durban

H

Ho

= −1.4 × 10
−3

(Tmax)
2
+ 0.108 (Tmax) + 13.097

(
RH

100

)2

− 16.833

(
RH

100

)
− 1.180

(
S

So

)2

+ 1.603

(
S

So

)
+ 3.399 (29)

Johannesburg

H

Ho
= 7.5×10

−4
(Tmax)

3−0.06 (Tmax)
2

1.27 (Tmax)−6.14

(
RH

100

)3

+11.25

(
RH

100

)2

−6.43

(
RH

100

)
−18.59

(
S

So

)3

+36.74

(
S

So

)2

−23.70

(
S

So

)
+15.80

(30)

Pietermaritzburg

H

Ho

= 0.002 (Tmax)
2 − 0.085 (Tmax) + 7.513

(
RH

100

)2

− 8.183

(
RH

100

)
− 0.91

(
S

So

)2

− 1.11

(
S

So

)
+ 3.533 (31)
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Chapter 4: Method and materials

4.1.Weather and climate in South Africa

Before discussing the experimental method followed for this study, it is bene�cial to intro-

duce the climatic conditions related to South Africa and each of the selected study regions.

Climate describes the average e�ect of meteorological conditions in a speci�c region over the

long term [93]. Due to South Africa's wide-ranging landscape and oceanic in�uence, the

country's climate may be considered diverse and is best described by the climate experienced

across various regions of the country (climate zones) [94-96]. The eastern coastline experi-

ences a semi-arid and mild, sub-tropical climate while the southwestern region is considered

mediterranean. The northeastern part of South Africa experiences sub-tropical conditions

while a small region in the North West is a desert climate zone [95].

Air temperature and rainfall patterns across the various climate zones are in�uenced by

the region's topography, terrain and sea proximity [94,95]. While the majority of the coun-

try's rainfall occurs during the summer months (October to March), sunshine is obtainable

all through the year. This is inclusive of the the winter season (April to September). Average

air temperatures range between 15°C and 30°C during summer and often exceed 38°C. Figure

7 depicts the typical air temperatures experienced across the country [97,98].

Figures 7: Maximum and minimum air temperatures across South Africa [98]

59



South Africa experiences large �uctuations of annual rainfall which is a consequence of the

change in solar radiation and north to south shift of the Hadley cell [94,96]. These weather

trends di�er in accordance to the movement of the high-pressure belt (circles the globe be-

tween 25 and 30 degrees south, latitude) during the winter and a low-pressure system that

occurs during summer which is illustrated in Figure 8 below [94-96].

Figure 8: High pressure belt over Africa [96]

Proximity to the coast largely in�uences the climate of a region. The Agulhas current �ows

southward along the Indian Ocean which forms the coastline of the eastern parts of South

Africa (KwaZulu-Natal), while the cold Benguela current �ows northward along the Atlantic

Ocean coastline along the Western Cape [96,97]. Along with this factor, variations in rainfall

and air temperature are used to describe the climate of a region in accordance to the Köppen

climate classi�cation scheme shown below [93].
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Figure 9: Köppen climate classi�cation [99]

This is a brief introduction to the average climate and weather conditions which are ex-

perienced over South Africa. Further in depth discussions can be found in [93-97]. Weather

and climate conditions are signi�cant contributors to the amount of solar radiation received

across regions of the country. In addition, climate change which has been noticed over the

past few decades is also an important factor to consider, as it directly impacts the amount

of GSR available in South Africa together with having a large in�uence over other meteo-

rological factors which cause GSR to vary [95,100-102]. Climate change trends are used to
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explain the weather conditions experienced, environmental degradation (pollution) as well as

the country's global warming impacts [94,95].

4.2. Study site details

For this study we have selected �ve major cities across various climate zones in South Africa;

Bloemfontein, Cape Town, Durban, Johannesburg and Pietermaritzburg. In the following,

we provide details on each city's climatic conditions and land use. Table 2 shows the geo-

graphical speci�cs for each study site.

Table 2: Geographical details of study sites

Site Province Latitude (0 south) Longitude (0 east) Elevation (m)

Bloemfontein Free State 29.1030 26.3263 1400

Cape Town Western Cape 33.9630 18.4194 670

Durban KwaZulu-Natal 29.9650 30.4849 670

Johannesburg Gauteng 26.1430 28.3971 1800

Pietermaritzburg KwaZulu-Natal 29.6270 30.4062 750

4.2.1. Bloemfontein, Free State

The spatial distribution of the capital city of the Free State province � Bloemfontein lends

itself to three main land use types; formal stands (urban areas), smallholdings and farms

[103,104]. An access barrier exists between the northern and southern parts of Bloemfontein,

which segregates the developed areas from the rural [103]. Approximately 52% of Free State's

population occupy residence in Bloemfontein due to its relatively high level of development,

while occupants of the rural and surrounding areas lack access to resources such as water,

sanitation, electricity, transport and employment opportunities [103].

The Free State province is considered a semi-arid region, with high precipitation received

during the summer [97,104]. The Köppen climate classi�cation lists Bloemfontein as a BSk

climate zone which corresponds to a cold, semi-arid region [104]. The annual mean air tem-
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perature of this city is 24.6°C, while the average annual rainfall experienced is around 550mm

[97,104]. Semi-arid regions experience high �uctuations in air temperatures [97]. The me-

teorological conditions native to this region are typical to that of an interior plateau region

with rain during summer, cold winters and sunshine in abundance [97,104].

4.2.2. Cape Town, Western Cape

The land use and resource management across the Western Cape varies across the 30 munici-

palities. Cape Town, being the capital city of the province falls within the City of Cape Town

Metropolitan Municipality [105]. Only 13%of the spatial distribution of this city is used for

settlement and infrastructure while the remaining land is used for agricultural purposes [105].

This city is well known for its vast production of wines, citrus fruits and certain crops. Munici-

palities are currently working towards mitigating the inadequate water resource management.

Cape Town typically experiences a mediterranean climate which is described by its dry

summers with low precipitation and moist winters [97,105]. This city is classi�ed as Csb

(warm, summer mediterranean) according to Köppen. Along the west coast dry conditions

are usually felt, while it becomes wetter approaching the escarpment along the east coast

and drier (semi-arid) towards the interior Karoo [105]. The province experiences a strong,

humid south-easterly wind which often clears pollution [97]. Average annual maximum tem-

peratures are around 27°C while inland temperatures fall between 3-5°C [97].

4.2.3. Durban, KwaZulu-Natal

The city of Durban experienced rapid urbanization to metropolitan status over the past

few years [106]. This growth primarily stems from Durban being a coastal city. It is now

considered one of the three largest cities in South Africa with a population exceeding 3.5

million [106]. Durban is the economic hub of KwaZulu-Natal due to its densely populated

industrial core with few of the surrounding areas being considered rural. Economic diversity

is a consequence of the spatial distribution across the city. Most of the disadvantaged areas
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still lack access to resources such as water, electricity and transportation [106].

Durban is well known for its sub-tropical climate with high humidity levels [97]. On average,

this town receives around 320 days of sunshine throughout the year, with air temperatures

exceeding 33°C in the summer [97]. The in�uence of the Indian Ocean plays a role in the

summer precipitation obtained, in addition to the mild temperatures in winters [97]. Durban

corresponds to a Cfa (humid, sub-tropical) climate from Figure 9.

4.2.4. Johannesburg, Gauteng

Johannesburg is located on the north-eastern plateau of South Africa, in the Province of

Gauteng and is known as the 'Highveld' (an elevation above sea level of 1 700m) [107]. It is

the largest and wealthiest city in South Africa, being the commercial, industrial and �nan-

cial hub of South Africa. Johannesburg is considered a landlocked city with a population

of approximately 4.4 million as at 2016 [107,108]. Land use in Johannesburg is dependent

on location and income groups, with the highest densities found in the city's informal set-

tlements. Urban areas are highly dense while rural and semi-urban regions have a low density.

Johannesburg experiences a relatively dry and sunny climate. Due to the city's high altitude,

temperatures in Johannesburg are usually fairly mild with an average maximum tempera-

ture of 25 °C in summer [97,104]. An annual average rainfall of around 700mm is common in

Johannesburg, with majority of this rainfall taking place in the summer [107]. From Figure

9, Johannesburg has a Cwb � sub-tropical, highland climate classi�cation.

4.2.5. Pietermaritzburg, KwaZulu-Natal

Pietermaritzburg which is also known as the Midlands is the capital city in the province of

KwaZulu-Natal. It is situated in a hollow that is surrounded by the Drakensburg mountain

range escarpment, which implicates lower temperatures and humidity levels in comparison

to Durban due to the higher altitude [97]. The sub-tropical climate is still experienced with
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warm summers and mild winters [97]. The Köppen classi�cation for Pietermaritzburg is Cwa

� humid, sub-tropical. The midlands is considered as one of the warmest cities in KwaZulu-

Natal. The spatial distribution of this town lies between mixed residential and commercial.

Figure 10: Map of South Africa illustrating study sites [109]

4.3. Experimental technique

For each of the selected study sites, historic meteorological data was obtained from the South

African Weather Service (SAWS) and Agricultural Research Council (ARC). Records of sun-

shine duration, air temperature, relative humidity and solar radiation for the period January

2007 � June 2018 was provided by these independent sources. We analyzed the average

monthly GSR incident at each site for the speci�ed period based on;

i. dependence on a single meteorological variable

ii. dependence on multiple meteorological variables

using the H-S and A-P equations (eqs. 15 and 21) as the foundation models.
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As previously discussed, sunshine duration and solar radiation measurements are not under-

taken for many locations across South Africa. This is due to the cost of relevant equipment

and its maintenance. Historic data from the SAWS and ARC was limited for certain re-

gions (e.g. Pietermaritzburg and Durban), as sunshine duration was not measured for the

full period. Measurements were recorded for a few months and then stopped; this led us

to making use of only the available monthly averages. For Durban, sunshine duration was

measured for the period May 2010 - June 2018; Johannesburg: January 2007 - October 2017

and Pietermaritzburg: January 2007 - December 2014.

ETR (Ho) was calculated based on the latitude (φ) of each site, using a fortran program which

is provided in Appendix A. Similarly, sun angles were used to �nd values for So, see Appendix

A. This study is an extension of our previous research �ndings which is presented in the re-

search paper which is provided in Appendix B (Govindasamy, Tamara Rosemary and Chetty,

Naven. Quantifying the global solar radiation received in Pietermaritzburg, KwaZulu-Natal

to motivate the consumption of solar technologies. Open Physics, De Gruyter. Vol 16

(1).2018. pp. 786 - 794. ID: 10.1515/phys-2018-0098).

4.4. Statistical error analysis

Understanding of the accuracy of our analysis and proposed models is quanti�ed in terms

of the statistical error analysis. The mean bias error (MBE) speci�es the mean deviation

between the calculated and observed values and is an indicator of a model's long-term per-

formance [72,110]. Positive MBE indicators describe over-estimation, while negative MBEs

corrspond to an under-estimation. The root mean square error (RMSE) gives insight into the

short-term performance of a correlation. R2, the coe�cient of determination, is a measure of

the correlation between the dependent variables which are predicted from the independent

variables. Low statistical error measures are aspired [111]. Previous studies pescribe that

error indicators in the range -10% and 10% are accepted [111,112]. The statistical error

analysis described in our results was obtained using the following;
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Mean bias error (MBE) and mean absolute bias error (MABE)

MBE =
1

n

∑n
i=1(Hc,i −Hm,i) (32)

MABE =
1

n

∑n
i=1(| Hc,i −Hm,i |) (33)

Mean percentage error (MPE) and mean absolute percentage error (MAPE)

MPE =
1

n

∑n
i=1

(
Hc,i−Hm,i

Hm,i

)
× 100% (34)

MAPE =
1

n

∑n
i=1 |

(
Hc,i−Hm,i

Hm,i

)
| ×100% (35)

Root mean square errors (RMSE)

RMSE =

√∑n
i=1(Hc,i −Hm,i)2

n
(36)

Mean absolute relative error (MARE)

MARE =
1

n

n∑

i=1

| Hm,i −Hc,i

Hm,i

|, (37)

Coe�cient of determination (R2)

R2 = 1−

n∑

i=1

(Hm,i −Hc,i)
2

∑n
i=1 (Hm,i −Hmave)

2 (38)

where Hc,i and Hm,i are the i
th calculated and measured values of GSR, respectively. Hmave
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is the average of the measured H values.

Averaging and rounding of hourly, daily measurements to obtain monthly averages, may

in�uence the statistical indicators. Further to this, measured data obtained from the ex-

ternal sources may be subject to inconsistencies (no measured quantities when equipment

malfunctions, heating e�ects, etc.). We present an analysis of the applicable statistical indi-

cators within our discussion (Chapter 5) for each study site.
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Chapter 5: Results and discussion

In this chapter, we present the �ndings of our study in two main sections; 5.1. Single

variable analysis and 5.2. Multivariate analysis.

5.1. Single variable analysis

We discuss the dependence of GSR on meteorological variables which include; air tempera-

ture, relative humidity and sunshine duration for each of the study sites. Regression equations

for each of the above-mentioned meteorological variables are presented in Tables 3 - 5 below.

Graphs showing empirical relationships for the H-S and A-P models for each site are also

provided. A full data set for monthly averages is provided in Appendix C.

5.1.1. Bloemfontein (BFN)

Average monthly values of air temperature (∆T, Tmax, Tave), relative humidity (RH), rela-

tive sunshine duration
(

S
So

)
and H

Ho
are detailed in Appendix C due to the large number of

observations. These quantities were investigated to obtain the regression models listed in

Tables 3 - 5 below.
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Table 3: Regression equations using air temperature

Variable (x) Equation RMSE MBE MABE MPE MAPE MARE R2

Linear

∆T H
Ho

= 0.0069x + 0.671 0.43767 -0.05717 0.32538 17.29265 44.46985 0.44470 0.02216

Tmax
H
Ho

= 0.051747x − 0.59003 0.39306 -0.05722 0.26360 6.92935 31.82398 0.31824 0.17562

Tave
H
Ho

= 0.0433x + 0.026 0.39701 -0.05704 0.26436 7.94668 31.77643 0.31776 0.15893

Quadratic

∆T H
Ho

= −0.0145x2 + 0.5131x − 3.6589 0.43222 -0.05750 0.32051 16.26518 44.27964 0.44280 0.00316

Tmax
H
Ho

= 0.003113x2 − 0.11034x + 1.444947 0.38234 -0.06881 0.24842 4.62127 28.69110 0.28691 0.21995

Tave
H
Ho

= 0.0018x2 − 0.0195x + 0.5092 0.39248 -0.07159 0.25716 5.79130 30.27540 0.30275 0.17805

Cubic

∆T H
Ho

= −0.0006x3 + 0.014x2 + 0.0437x − 1.1372 0.50642 -0.26906 0.35897 -15.99310 38.74866 0.38749 0.36851

Tmax
H
Ho

= 0.000258x3 − 0.017218x2 + 0.41128x − 2.903922 0.38204 -0.06218 0.25554 5.75200 29.94900 0.29949 0.22117

Tave
H
Ho

= 0.0003x3 − 0.0156x2 + 0.2633x − 0.9128 0.53309 -0.33011 0.37733 -24.45094 36.75987 0.36760 0.26509

Power

∆T H
Ho

= 0.152x0.5 0.48023 -0.19967 0.34792 -3.34831 40.29660 0.40297 0.23061

Tmax
H
Ho

= 0.152x0.5 0.40952 -0.05802 0.29027 14.00557 38.37048 0.38370 0.27840

Tave
H
Ho

= 0.152x0.5 0.45314 -0.21025 0.30286 -9.43931 31.35986 0.31360 0.22908

H-S

∆T H
Ho

= 0.16x0.5 0.47077 -0.17512 0.34131 0.28710 40.70602 0.40706 0.18260

Table 3 describes the regression equations for temperature variables ∆T, Tmax, and Tave.

Low RMSE values are indicated for the above relations, however the R2 values are also low.

This suggests that the temperature dependent relations have a low correlation to the mea-

sured clearness index, KT = H
Ho

values. Since Bloemfontein is considered an interior region,
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the proposed H-S empirical coe�cient is Kr = 0.16. Figure 11 below shows the H-S empirical

model's prediction of H
Ho

for this city. This model underestimated KT values for majority

of the months which is indicated by the high RMSE value of 0.47077. Over a study period

longer than one calendar year, the H-S model was unable to account for outliers which is a

result of it's dependency on ∆T alone. We applied the H-S model to Tmax using 0.152 as the

empirical coe�cient (Kr) and found that this variable produced a lower overall error across

indicators and higher R2 measure when compared to ∆T .

Figure 11: Graph of calculated H
Ho

using the H-S model for Bloemfontein

Table 4: Regression equations using relative humidity

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= −1.3594

(
RH
100

)
+ 1.4864 0.43118 -0.05714 0.32663 16.35068 44.99671 0.44997 0.06320

H
Ho

= −8.926

(
RH
100

)2
+ 7.5561

(
RH
100

)
− 0.6701 0.42960 -0.05725 0.32736 16.33660 46.18015 0.46180 0.08840

H
Ho

= 43.753

(
RH
100

)3
− 73.788

(
RH
100

)2
+ 38.857

(
RH
100

)
− 5.5765 0.42912 -0.05734 0.32694 16.38457 46.21127 0.46211 0.09450

H
Ho

= 0.4084

(
RH
100

)−0.7
0.46556 -0.18382 0.34458 -2.09859 40.43938 0.40439 0.15658
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Table 4 above shows the regression models found from GSR dependence on RH alone. The

statistical error indicators above suggest that there is low correlation between RH only and

H
Ho
, other variables need to be considered.

Table 5: Regression equations using sunshine duration

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.7

(
S
So

)
+ 0.26 0.41954 0.07025 0.30092 -13.72015 40.33662 0.40337 0.10622

H
Ho

= 5.3465

(
S
So

)2
− 5.399404

(
S
So

)
+ 1.8062 0.40140 0.05720 0.28839 -11.18023 38.55370 0.38554 0.82371

H
Ho

= −13.657

(
S
So

)3
+ 35.366

(
S
So

)2
− 27.109

(
S
So

)
+ 6.6972 0.51450 0.32734 0.37738 28.64690 40.43981 0.40440 0.71037

H
Ho

= 1.616044

(
S
So

)2.514954
0.40589 0.05868 0.29281 -11.19233 39.41057 0.39411 0.80672

A-P: H
Ho

= 0.5

(
S
So

)
+ 0.25 0.47708 0.22943 0.33822 9.30640 36.88015 0.36880 0.75097

Sunshine based equations in Table 5 indicate higher R2 correlation coe�cients and low MBEs

which emphasize the relationship between sunshine duration and clearness index. Consider-

ing the period for which data was analyzed, high MAPE values can be explained by over and

underestimation of the regression equations when compared to the actual measured values of

H
Ho
. Figure 12 below describes the A-P empirical model's estimation of GSR for the period.

Again, we notice the multiple outliers of KT which are not included in the prediction trend.

From the above analysis we can notice that sunshine models have a stronger correlation to

H
Ho

in Bloemfontein as opposed to temperature and RH.
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Figure 12: Graph of calculated H
Ho

using the A-P model for Bloemfontein

5.1.2. Cape Town (CT)

Monthly average values can be found in Appendix C. Table 6 below shows the temperature

dependent regression equations. Since ∆T showed a low correlation and high RMSE in the

linear equation, we decided to exclude this variable up until the H-S model. For Cape Town,

Tave showed a stronger relationship to H
Ho

, with the highest correlation being a power equa-

tion. Cubic relations produced lower RMSE and higher R2 values. High MAPE values are

noticed and are due to the over and underestimation of KT values using these equations.
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Table 6: Regression equations using air temperature

Variable (x) Equation RMSE MBE MABE MPE MAPE MARE R2

Linear

∆T H
Ho

= 0.1707x − 0.7339 0.42198 -0.06373 0.32300 28.18197 58.54130 0.58541 0.16708

Tmax
H
Ho

= 0.1032x − 1.5745 0.35822 -0.06460 0.28738 11.12107 46.81940 0.46819 0.39977

Tave
H
Ho

= 0.1222x − 1.4803 0.35489 -0.06306 0.28812 11.77766 48.39380 0.48394 0.41085

Quadratic

Tmax
H
Ho

= 0.0001x2 + 0.0968x − 1.506 0.36239 -0.08726 0.28850 7.00088 45.57831 0.45578 0.38570

Tave
H
Ho

= 0.0019x + 0.0558x − 0.9503 0.35351 -0.05235 0.28698 13.98320 48.37756 0.48378 0.41543

Cubic

Tmax
H
Ho

= −0.00107x3 + 0.070182x2 − 1.4174x + 9.26389 0.35810 -0.06245 0.28705 11.79253 46.15665 0.46157 0.40015

Tave
H
Ho

= −0.00117x3 + 0.06437x2 − 1.0398x + 5.40071 0.35420 -0.06079 0.28734 12.29520 47.44155 0.47441 0.41313

Power

∆T H
Ho

= 0.19x0.42197 0.53544 -0.28850 0.40325 -3.19296 57.26803 0.57268 0.34107

Tmax
H
Ho

= 0.19x0.3 0.52533 -0.27367 0.39903 0.43857 59.01393 0.59014 0.29092

Tave
H
Ho

= 0.17x0.3 0.57003 -0.35045 0.42671 -15.72890 55.08234 0.55082 0.51993

H-S

∆T H
Ho

= 0.19x0.5 0.49183 -0.20509 0.37574 13.62268 61.73122 0.61731 0.1315

The empirical H-S model using Kr = 0.19 (Cape Town is a coastal region) is illustrated

in Figure 13 below. This model produced the highest MAPE value which can also be seen

below. The model was unable to include most of the data points which may suggest that

additional meteorological variables should be considered for better correlation.

74



Figure 13: Graph of calculated H
Ho

using the H-S model for Cape Town

Table 7: Regression equations using relative humidity

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= −0.69601

(
RH
100

)
+ 1.03217 0.49947 -0.20208 0.38589 16.07106 64.87663 0.64877 0.16695

H
Ho

= −7.0613

(
RH
100

)2
+ 5.5049

(
RH
100

)
+ 0.0085 0.56112 -0.35252 0.40740 -25.72610 47.63227 0.47632 0.42778

H
Ho

= −49.5741

(
RH
100

)3
+ 61.45687

(
RH
100

)2
− 17.9676

(
RH
100

)
+ 0.01144 0.50315 -0.25837 0.37333 -7.31371 51.40359 0.51404 0.18420

H
Ho

= 0.11164

(
RH
100

)−3.53848
0.56404 -0.34597 0.41643 -17.96540 51.76938 0.51770 0.11360

The quadratic regression equation using RH shows a moderate correlation between RH and

KT , R
2 = 0.42778. The remaining regression relations found suggest that RH alone is not a

good predictor for H
Ho
. These regression equations were investigated based on the relationship

between the measured RH and GSR values.
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Table 8: Regression equations using sunshine duration

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.6

(
S
So

)
+ 0.26 0.38900 0.05820 0.31613 -36.69623 65.92395 0.65924 0.29218

H
Ho

= 4.01239

(
S
So

)2
− 3.24101

(
S
So

)
+ 0.8203 0.26996 0.05629 0.20114 0.16194 30.44986 0.30450 0.90653

H
Ho

= −0.9535

(
S
So

)3
+ 6.04913

(
S
So

)2
− 4.64358

(
S
So

)
+ 1.30602 0.28975 -0.11910 0.23813 -37.52875 50.41317 0.50413 0.89232

H
Ho

= 1.591774

(
S
So

)3.083798
0.27253 0.05833 0.20403 1.52485 31.56772 0.31568 0.90474

A-P: H
Ho

= 0.5

(
S
So

)
+ 0.25 0.42090 0.14054 0.32934 -21.07497 59.46378 0.59464 0.77278

Table 8 above shows strong correlation equations for H
Ho

using relative sunshine. The high

R2 and low RMSE indicators are desirable. The high MAPE values can be explained by the

over and underestimation of the models, which is a result of the large number of data points.

Figure 14 below shows the performance of the A-P empirical model for Cape Town for Jan

2007 - Jun 2018. The model is consistent with estimating H
Ho

values which are less than 1,

however, there is a large number of outliers which are disregarded by the model.

Figure 14: Graph of calculated H
Ho

using the A-P model for Cape Town
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5.1.3. Durban (DBN)

Regression relations in Table 10 show a weak correlation between ∆T and H
Ho
, hence further

analysis of Tmax and Tave are listed. The cubic relation describing Tave shows the strongest

relation, which is still moderate, R2 = 0.50574. Though RMSE values are low, the correlation

between temperature variables and clearness index is also low. This proposes that further

meteorological variables should be included for better estimation.

Table 9: Regression equations using air temperature

Variable (x) Equation RMSE MBE MABE MPE MAPE MARE R2

Linear

∆T H
Ho

= −0.0205x + 0.7637 0.19526 -0.00673 0.16199 28.18197 58.5430 0.58541 0.16133

Tmax
H
Ho

= 0.0244x − 0.1558 0.19867 -0.01306 0.16471 13.99678 37.55833 0.37558 0.13181

Tave
H
Ho

= 0.4434x − 0.37429 0.16041 -0.01155 0.12165 7.47170 5.83383 0.48394 0.43399

Quadratic

Tmax
H
Ho

= −0.0021x2 + 0.1619x − 2.2706 0.18498 0.00413 0.15043 14.06562 34.44608 0.34446 0.24732

Tave
H
Ho

= −0.0026x2 + 0.1486x − 1.3807 0.15433 -0.00005 0.12266 8.86645 27.26062 0.27261 0.46712

Cubic

Tmax
H
Ho

= 7 × 10−5x3 − 0.0091x2 + 0.3875x − 4.5885 0.19482 0.04172 0.16206 22.47673 39.36829 0.39368 0.16515

Tave
H
Ho

= −0.00038x3 + 0.02263x2 − 0.3888x + 2.30057 0.14990 -0.01095 0.11367 6.18120 23.85143 0.23851 0.50574

Power

∆T H
Ho

= 0.18x0.25 0.27044 -0.15046 0.20627 -14.6782 37.37487 0.37375 0.10210

Tmax
H
Ho

= 0.18x0.25 0.22597 -0.08712 0.17787 -0.86772 35.86964 0.35870 0.10860

Tave
H
Ho

= 0.18x0.25 0.23439 -0.11691 0.17786 -8.78169 33.06749 0.33068 0.20845

H-S

∆T H
Ho

= 0.19x0.5 0.3347 0.19894 0.28607 74.46372 85.12727 0.85127 0.0722
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Figure 15: Graph of calculated H
Ho

using the H-S model for Durban

Kr = 0.19 was used in the H-S empirical model to estimate the GSR for Durban and is

illustrated above. It can be noticed that the model was inadequate in estimating the lower

values of H
Ho
, which could be result of the high humidity and temperature values experienced

in Durban. Table 10 indicates low variance in KT consequencing from RH.

Table 10: Regression equations using relative humidity

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.5766

(
RH
100

)
+ 0.0162 0.21951 -0.07849 0.17109 0.31672 35.06654 0.35067 0.0162

H
Ho

= 2.613905

(
RH
100

)2
− 2.96288

(
RH
100

)
+ 1.44087 0.23476 -0.12778 0.17686 -12.94040 32.25880 0.32259 0.15200

H
Ho

= −11.702

(
RH
100

)3
+ 23.80885

(
RH
100

)2
− 14.9551

(
RH
100

)
+ 3.22227 0.21012 -0.09342 0.16287 -5.08930 31.94627 0.31946 0.22090

H
Ho

= 0.676346

(
RH
100

)1.504722
0.23404 -0.10604 0.17637 -6.98257 33.97975 0.33980 0.01620
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Table 11: Regression equations using sunshine duration

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.4

(
S
So

)
+ 0.25 0.23396 0.04411 0.19611 -11.01770 43.18372 0.43184 0.25314

H
Ho

= 0.831998

(
S
So

)2
− 1.25011

(
S
So

)
+ 0.921591 0.19568 0.02188 0.16085 -12.59010 36.55315 0.36553 0.87666

H
Ho

= 6.435316

(
S
So

)3
− 9.65304

(
S
So

)2
+ 4.270518

(
S
So

)
− 0.0113 0.19523 0.02188 0.16082 -12.49590 36.48033 0.36480 0.87723

H
Ho

= 0.4987

(
S
So

)0.3223
0.24508 0.10626 0.19619 3.96200 31.04578 0.38046 0.80652

A-P: H
Ho

= 0.5

(
S
So

)
+ 0.25 0.23677 -0.01163 0.20600 -24.33390 49.75277 0.49753 0.81943

The sunshine regression equations indicate high R2 and low RMSE values, with the cubic

model showing the strongest relation. The A-P model's estimation is illustrated in Figure

16, which contributed the highest MAPE. Overestimation from this model is noticed.

Figure 16: Graph of calculated H
Ho

using the A-P model for Durban

5.1.4. Johannesburg (JHB)

Temperature dependent relations listed in Table 12 describe a stronger relationship for Jo-

hannesburg as compared to the previous three sites. This could be a result of the dry, sunny

climate experienced in this city, which reduces the impact of RH on measured air temper-
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ature. Moderate to acceptable R2 values are noticed while the overall error indicators are

considerably low.

Table 12: Regression equations using air temperature

Variable (x) Equation RMSE MBE MABE MPE MAPE MARE R2

Linear

∆T H
Ho

= −0.0416x + 1.0903 0.22854 -0.08250 0.17698 -3.37257 30.57129 0.30571 0.14500

Tmax
H
Ho

= 0.0498x − 0.65056 0.15908 -0.04745 0.11614 -4.05413 19.67910 0.19680 0.51498

Tave
H
Ho

= 0.04898x − 0.23334 0.13006 -0.00149 0.10245 3.43022 19.11542 0.19115 0.67579

Quadratic

Tmax
H
Ho

= −0.0019x2 + 0.1363x − 1.61 0.15673 -0.04330 0.11908 -3.13917 21.15946 0.21159 0.56377

Tave
H
Ho

= 0.004523x2 − 0.09123x − 0.781591 0.11906 0.00208 0.08739 3.03414 15.72060 0.15721 0.73436

Cubic

Tmax
H
Ho

= 0.0008x3 + 0.0581x2 − 1.3354x + 10.164 0.14117 -0.05549 0.10399 -6.39981 16.40648 0.16407 0.61805

Tave
H
Ho

= −4.05 × 10−5x3 + 0.006404x2 − 0.1193x + 0.915382 0.11906 -0.00178 0.08762 3.05150 14.85376 0.14854 0.72834

Power

∆T H
Ho

= 0.16x0.336425 0.30207 -0.18455 0.22808 -19.88230 33.47207 0.33472 0.17120

Tmax
H
Ho

= 0.16x0.301273 0.26835 -0.16119 0.19783 -17.13290 28.56498 0.28565 0.21374

Tave
H
Ho

= 0.16x0.4 0.210768 -0.08800 0.15922 -4.37856 25.28866 0.25289 0.14862

H-S

∆T H
Ho

= 0.16x0.5 0.25758 0.02860 0.22721 24.40118 47.30027 0.47300 0.27159
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Figure 17: Graph of calculated H
Ho

using the H-S model for Johannesburg

The H-S model for Johannesburg showed a much lower correlation between ∆T and H
Ho
.

Over and underestimation by the model is also noticed in the high MAPE. From this we

proceeded to consider Tmax and Tave for our multivariate analysis.

Table 13: Regression equations using relative humidity

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.58116

(
RH
100

)
+ 0.09248 0.25698 -0.14159 0.19326 -13.57680 29.40031 0.29400 0.12890

H
Ho

= −1.10772

(
RH
100

)2
+ 2.10221

(
RH
100

)
− 0.39111 0.24640 -0.12489 0.18962 -10.74490 30.09811 0.30098 0.13160

H
Ho

= −40.593

(
RH
100

)3
+ 71.07095

(
RH
100

)2
− 39.984

(
RH
100

)
+ 7.651299 0.24074 -0.12098 0.17972 -10.36430 27.92801 0.27928 0.17310

H
Ho

= 0.751864

(
RH
100

)0.8666676
0.24017 -0.10600 0.18742 -6.65555 30.76775 0.30768 0.12840

The analysis of the dependence of RH on GSR suggests that this variable cannot be solely

considered in estimation models.
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Table 14: Regression equations using sunshine duration

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.27

(
S
So

)
+ 0.22 0.26673 0.14618 0.19688 4.13060 29.87833 0.29878 0.19200

H
Ho

= 1.960243

(
S
So

)2
− 2.9172

(
S
So

)
+ 1.479157 0.26913 0.15229 0.19614 15.61894 29.26792 0.29268 0.79588

H
Ho

= 18.82406

(
S
So

)3
− 36.3036

(
S
So

)2
+ 22.10114

(
S
So

)
− 3.70059 0.25657 0.12317 0.18655 10.08309 29.12540 0.29125 0.81448

H
Ho

= 0.353657

(
S
So

)−0.48832
0.26571 0.14598 0.19461 14.26980 29.46137 0.29461 0.80103

A-P: H
Ho

= 0.5

(
S
So

)
+ 0.25 0.22718 -0.03927 0.19365 -23.80130 41.55346 0.41554 0.85455

The A-P model produced the highest correlation coe�cient and MAPE for Johannesburg.

The above relative sunshine regression relations indicate a high dependence of this variable

in the estimation of H
Ho
. Quadratic and cubic relations proved to be more e�cient.

Figure 18: Graph of calculated H
Ho

using the A-P model for Johannesburg

5.1.5. Pietermaritzburg (PMB)

Temperature dependent regression equations shown in Table 15 describe a moderate correla-

tion for Pietermaritzburg. Low statistical error indicators suggest that the equations �t the

measured data with the exception of the over and underestimations. Higher order equations

82



show a stronger relationship between temperature variables and H
Ho
.

Table 15: Regression equations using air temperature

Variable (x) Equation RMSE MBE MABE MPE MAPE MARE R2

Linear

∆T H
Ho

= −0.0829x + 1.3609 0.22252 -0.11564 0.16728 -12.87250 30.48468 0.30485 0.24890

Tmax
H
Ho

= 0.0573x − 0.97001 0.18421 -0.07093 0.14049 -5.51051 25.78168 0.25782 0.29038

Tave
H
Ho

= 0.062105x − 0.65967 0.14920 9.48×10−6 0.12425 7.91552 25.99313 0.25993 0.53450

Quadratic

Tmax
H
Ho

= −0.00005x2 + 0.0598x − 0.9907 0.18051 -0.06066 0.13906 -3.15648 25.95779 0.25958 0.31864

Tave
H
Ho

= 0.000701x2 − 0.035547x − 0.41278 0.14911 5.4×10−6 0.12393 7.96082 25.77662 0.25777 0.53504

Cubic

Tmax
H
Ho

= −7.91 × 10−4x3 + 0.057892x2 − 1.34235x + 10.2818 0.16878 4.16×10−6 0.14088 10.59041 29.52683 0.29527 0.40428

Tave
H
Ho

= −0.00122x3 + 0.068879x2 − 1.2122x + 7.087538 0.14657 7.45×10−5 0.11987 7.65499 24.70998 0.24710 0.55077

Power

∆T H
Ho

= 0.16x0.319753 0.28349 -0.17067 0.21257 -19.09680 34.69122 0.34691 0.26720

Tmax
H
Ho

= 0.16x0.26 0.26138 -0.15156 0.19522 -15.97860 32.14088 0.32141 0.42866

Tave
H
Ho

= 0.16x0.31 0.24002 -0.12204 0.18143 -9.83200 31.24894 0.31249 0.43020

H-S

∆T H
Ho

= 0.16x0.5 0.23947 0.02262 0.21062 26.28364 49.62950 0.49629 0.19916
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Figure 19: Graph of calculated H
Ho

using the H-S model for Pietermaritzburg

For Pietermaritzburg (interior region - Kr = 0.16), the H-S model indicated a weak relation-

ship between ∆T and H
Ho
. This could be explained by the high levels of humidity experienced

in Pietermaritzburg which contribute largely to the air temperatures experienced. The RH

equations in Table 16 show a higher correlation to KT as compared to the previous four sites,

with the cubic relation having R2 = 0.46440.

Table 16: Regression equations using relative humidity

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 1.523051

(
RH
100

)
− 0.49671 0.17195 -0.00225 0.13144 10.46588 28.48477 0.28485 0.37378

H
Ho

= 7.39351

(
RH
100

)2
− 8.10468

(
RH
100

)
+ 2.511903 0.17717 -0.06729 0.12671 -0.12796 22.77110 0.22771 0.33525

H
Ho

= −53.311

(
RH
100

)
+ 110.26

(
RH
100

)2
− 73.339

(
RH
100

)
+ 16.157 0.15903 -0.00018 0.12172 9.23548 25.99783 0.25998 0.46440

H
Ho

= 1.260179

(
RH
100

)2.258722
0.17290 -0.00775 0.12957 8.35968 27.72947 0.27729 0.36686
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Table 17: Regression equations using sunshine duration

Equation RMSE MBE MABE MPE MAPE MARE R2

H
Ho

= 0.365666

(
S
So

)
+ 0.258202 0.18357 0.02783 0.13202 -6.78010 27.41389 0.27414 0.0346

H
Ho

= 3.792668

(
S
So

)2
− 4.90156

(
S
So

)
+ 2.063567 0.16990 -3.3×10−7 0.12297 -11.64720 27.3272 0.27327 0.87343

H
Ho

= −6.28953

(
S
So

)3
+ 17.17263

(
S
So

)
− 14.0939

(
S
So

)
+ 4.108383 0.16911 1.64×10−7 0.12142 -11.52180 27.06397 0.27064 0.87461

H
Ho

= 0.5527

(
S
So

)0.2794
0.18545 0.03076 0.13243 -6.30279 27.24884 0.27249 0.84921

A-P: H
Ho

= 0.5

(
S
So

)
+ 0.25 0.18348 -0.02533 0.13490 -18.65210 32.25505 0.32255 0.85239

Equations in Table 17 indicate low overall error values and high correlation coe�cients with

the exception of the linear model. A graphical description of the A-P model is shown in

Figure 20. Despite the strong correlation (R2 = 0.85239), the model does not account for

most of the lower values of H
Ho
.

Figure 20: Graph of calculated H
Ho

using the A-P model for Pietermaritzburg

Above we have analyzed the single variable dependence of GSR on air temperature, humidity

and relative sunshine. From the regression relations obtained for all �ve sites, ∆T showed

a weaker correlation to H
Ho

when compared to Tmax and Tave. While R2 values indicated
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a low to moderate relationship between temperature and GSR, we realized that estimation

models which include additional meteorological variables may perform better. Furthermore,

higher order relations (quadratic, cubic and power) showed a better �t to the measured values.

Relative humidity indicated the weakest relationship to H
Ho
. No established GSR estima-

tion models for this quantity exist, as it is unable to predict GSR solely and is often used in

combination models which do not implicitly account for RH.

Sunshine regression equations demonstrated higher correlation values from all three vari-

ables. The A-P model performed considerably well and the large number of outliers which

were not included by the model can be explained by the use of the universal A-P coe�cients.

Since established A-P coe�cients for the above cities do not exist, we made use of the uni-

versal coe�cients; a = 0.25, b = 0.5 . These coe�cients are general and can be used for any

site for which the A-P coe�cients are unknown. There is merit in obtaining speci�c A-P

coe�cients for each site as this enhances the performance of each model based on the site's

observed historic sunshine data.

5.2. Multivariate analysis

Following the single variable analysis in the previous section, we analyzed the dependency of

H
Ho

on all four variables; ∆T, Tmax, RH and S
So
. We have included the variables for which

the multivariate analysis showed a stronger correlation. Tables 18 - 27 below, describe the

proposed multivariate equations for each site, as well as their associated error indicators.
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5.2.1. Bloemfontein (BFN)

Table 18: Proposed multivariate equations

No. Equation

1 H
Ho

= −0.053 (∆T ) − 0.766

(
RH
100

)
+ 2.597

(
S
So

)
+ 1.930

2 H
Ho

= −0.393

(√
∆T

)
− 0.631

(
RH
100

)
+ 2.623

(
S
So

)
+ 0.821

3 H
Ho

= 0.040 (Tmax) − 0.307

(
RH
100

)
+ 1.151

(
S
So

)
− 0.979

4 H
Ho

= 0.394

(√
Tmax

)
− 0.275

(
RH
100

)
+ 1.214

(
S
So

)
− 1.999

5 H
Ho

= −0.018 (∆T )2 + 0.552 (∆T ) − 1.500

(
RH
100

)2
− 0.339

(
RH
100

)
+ 3.752

(
S
So

)2
− 3.546

(
S
So

)
− 2.175

6 H
Ho

= 0.002 (Tmax)2 − 0.037 (Tmax) − 8.813

(
RH
100

)2
− 8.107

(
RH
100

)
+ 3.262

(
S
So

)2
− 4.315

(
S
So

)
+ 0.225

7 H
Ho

= 0.004 (∆T )3 − 0.24 (∆T )2 + 4.16 (∆T ) + 57.59

(
RH
100

)3
− 89.82

(
RH
100

)2
+ 43.11

(
RH
100

)
− 2.65

(
S
So

)3
+ 9.31

(
S
So

)2
− 37.29

(
S
So

)
− 27.40

8 H
Ho

= −9.4 × 10−6 (Tmax)3 + 0.003 (Tmax)2 − 0.06 (Tmax) + 27.58

(
RH
100

)3
− 49.35

(
RH
100

)2
+ 27.50

(
RH
100

)
+ 0.14

(
S
So

)3
+ 2.13

(
S
So

)2
− 2.99

(
S
So

)
− 2.99

Table 19: Error indicators for proposed equations

Equation RMSE MBE MABE MPE MAPE MARE R2

1 0.39594 0.05721 0.27450 -9.72644 35.91319 0.35913 0.16348

2 0.39734 0.05721 0.27587 -9.95571 36.22391 0.36224 0.82761

3 0.38825 0.05721 0.26900 -6.70049 33.71226 0.33712 0.83507

4 0.39012 0.05721 0.27177 -6.907291 34.27409 0.34274 0.83348

5 0.3249 0.05721 0.26734 -8.12844 34.65066 0.34651 0.21935

6 0.37720 0.05801 0.25875 -5.83789 32.12539 0.32125 0.24080

7 0.38037 0.05721 0.26825 -7.07460 34.50267 0.34503 0.27990

8 0.37725 0.05721 0.26037 -6.06718 32.31451 0.32315 0.24115

For Bloemfontein, the �rst order multivariate equations produced a higher correlation as

opposed to the second and third order relations. Low RMSE and MPE indicators which fall

within the accepted range [-10% ; 10%] are also obtained by the �rst order relations. Figure

21 below shows the performance of the proposed model (Equation 3) amongst the measured

values of H
Ho
. The model performs well in �tting the clearness index values previously mea-

sured in Bloemfontein, with the exception of outliers which occur in the last 2 - 3 years

(months = 110 - 130). These discrepancies may be a result of the climate change experienced
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over the last few years, or possible data recording defects.

Figure 21: Proposed model for the estimation of H
Ho

for Bloemfontein

5.2.2. Cape Town (CT)

Table 20: Proposed multivariate equations

No. Equation

1 H
Ho

= −0.069 (∆T ) − 0.179

(
RH
100

)
+ 2.539

(
S
So

)
− 0.433

2 H
Ho

= −0.395

(√
∆T

)
− 0.176

(
RH
100

)
+ 2.540

(
S
So

)
+ 0.124

3 H
Ho

= −0.004 (Tmax) + 0.165

(
RH
100

)
+ 2.358

(
S
So

)
− 1.042

4 H
Ho

= −0.034

(√
Tmax

)
+ 0.165

(
RH
100

)
+ 2.360

(
S
So

)
− 0.962

5 H
Ho

= −0.014 (∆T )2 + 0.128 (∆T ) − 3.041

(
RH
100

)2
+ 2.340

(
RH
100

)
+ 2.812

(
S
So

)2
− 1.305

(
S
So

)
− 0.159

6 H
Ho

= −0.003 (Tmax)2 + 0.094 (Tmax) − 0.965

(
RH
100

)2
+ 0.942

(
RH
100

)
+ 3.549

(
S
So

)2
− 2.060

(
S
So

)
− 0.597

7 H
Ho

= −0.002 (∆T )3 − 0.001 (∆T )2 + 0.15 (∆T ) + 32.35

(
RH
100

)3
− 47.97

(
RH
100

)2
+ 17.94

(
RH
100

)
+ 1.23

(
S
So

)3
+ 0.80

(
S
So

)2
− 0.40

(
S
So

)
− 0.69

8 H
Ho

= 4 × 10−4 (Tmax)3 − 0.03 (Tmax)2 + 0.71 (Tmax) + 13.33

(
RH
100

)3
− 19.66

(
RH
100

)2
+ 7.52

(
RH
100

)
+ 2.25

(
S
So

)3
− 0.46

(
S
So

)2
− 0.37

(
S
So

)
− 5.41
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Table 21: Error indicators for proposed equations

Equation RMSE MBE MABE MPE MAPE MARE R2

1 0.29168 0.06358 0.22174 2.34321 39.68114 0.39681 0.57990

2 0.30012 0.06358 0.22187 2.20763 39.70152 0.39702 0.88447

3 0.29956 0.06358 0.22425 3.95230 39.85326 0.39853 0.88490

4 0.29958 0.06358 0.22424 3.93864 39.86163 0.39862 088489

5 0.27006 0.06358 0.19926 3.07052 31.81996 0.31820 0.65884

6 0.26905 0.06358 0.19935 3.57050 31.91099 0.31911 0.90716

7 0.26640 0.06358 0.19182 2.86728 29.20680 0.29207 0.66803

8 0.26336 0.06358 0.19213 3.22039 28.85694 0.28857 0.91104

Tables 20 and 21 show the proposed equations for Cape Town. H
Ho

values show a stronger de-

pendency on Tmax, with the quadratic (Equation 6) and cubic (Equation 8) relations having

the highest R2 and lowest RMSE values for this city. MPE indicators are within the accepted

range and the MAPEs can be explained by the large number of outliers in the data set. The

proposed equation - Equation 8 �ts the measured values of GSR well as indicated in Figure

22. A few underestimations are noticeable but overall the model includes most data points.

Figure 22: Proposed model for the estimation of H
Ho

for Cape Town
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5.2.3. Durban (DBN)

Table 22: Proposed multivariate equations

No. Equation

1 H
Ho

= 0.002 (∆T ) + 2.033

(
RH
100

)
+ 0.365

(
S
So

)
− 1.201

2 H
Ho

= 0.020

(√
∆T

)
+ 2.040

(
RH
100

)
+ 0.361

(
S
So

)
− 1.242

3 H
Ho

= 0.008 (Tmax) + 1.919

(
RH
100

)
+ 0.413

(
S
So

)
− 1.325

4 H
Ho

= 0.102

(√
Tmax

)
+ 1.905

(
RH
100

)
+ 0.416

(
S
So

)
− 1.732

5 H
Ho

= 4.5 × 10−4 (∆T )2 − 0.019 (∆T ) + 7.039

(
RH
100

)2
− 8.255

(
RH
100

)
+ 0.521

(
S
So

)2
− 0.159

(
S
So

)
+ 2.844

6 H
Ho

= −1.4 × 10−3 (Tmax)2 + 0.108 (Tmax) + 13.097

(
RH
100

)2
− 16.833

(
RH
100

)
− 1.180

(
S
So

)2
+ 1.6025

(
S
So

)
+ 3.399

7 H
Ho

= −9 × 10−5 (∆T )3 + 0.005 (∆T )2 − 0.06 (∆T ) − 230.5

(
RH
100

)3
+ 499.5

(
RH
100

)2
− 355.4

(
RH
100

)
− 9.27

(
S
So

)3
+ 13.1

(
S
So

)2
− 5.46

(
S
So

)
+ 84.15

8 H
Ho

= 3.6 × 10−5 (Tmax)3 − 0.005 (Tmax)2 + 0.23 (Tmax) − 142.8

(
RH
100

)3
+ 320.3

(
RH
100

)2
− 235.9

(
RH
100

)
− 9.18

(
S
So

)3
+ 11.78

(
S
So

)2
− 4.19

(
S
So

)
− 54.78

Table 23: Error indicators for proposed equations

Equation RMSE MBE MABE MPE MAPE MARE R2

1 0.15789 0.02188 0.13075 -7.18984 29.15333 0.29153 0.42176

2 0.15792 0.02188 0.13082 -7.21693 29.20971 0.29210 0.42153

3 0.15648 0.02188 0.12888 -6.34183 27.92393 0.27924 0.92113

4 0.39039 0.02188 0.12188 3.86583 -31.31340 0.42384 0.30871

5 0.14688 0.02188 0.11608 -6.07546 25.32882 0.25329 0.49962

6 0.12589 0.02188 0.10413 -2.0700 21.34543 0.21345 0.94895

7 0.14598 0.02188 0.11043 -4.05942 22.36994 0.22370 0.50567

8 0.13117 0.02188 0.10559 -1.59414 20.55594 0.20560 0.94458

First, second and third order equations using Tmax indicate high correlation coe�cients and

low RMSEs. This makes these equations well suited. The percentage errors are all within the

accepted range. We propose Equation 6 for the city of Durban and this model's performance

is depicted in Figure 23. Since sunshine data was not measured from May 2010 - Jun 2018,

we excluded these months from our analysis. The shape of the data shown below suggests

that the model adequately estimates KT for the period available. Since fewer data points

were analyzed, this also has an impact on the error indicators reported in the table above.
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Figure 23: Proposed model for the estimation of H
Ho

for Durban

5.2.4. Johannesburg (JHB)

Table 24: Proposed multivariate equations

No. Equation

1 H
Ho

= −0.029 (∆T ) + 0.618

(
RH
100

)
+ 0.3135

(
S
So

)
+ 0.178

2 H
Ho

= −0.232

(√
∆T

)
+ 0.460

(
RH
100

)
+ 0.624

(
S
So

)
− 0.581

3 H
Ho

= 0.045 (Tmax) + 0.474

(
RH
100

)
+ 0.159

(
S
So

)
− 0.887

4 H
Ho

= 0.433

(√
Tmax

)
+ 0.453

(
RH
100

)
+ 0.169

(
S
So

)
− 1.936

5 H
Ho

= 1.9 × 10−3 (∆T )2 − 0.110 (∆T ) − 1.304

(
RH
100

)2
+ 1.677

(
RH
100

)
+ 1.044

(
S
So

)2
− 0.982

(
S
So

)
+ 1.026

6 H
Ho

= −1.8 × 10−3 (Tmax)2 + 0.131 (Tmax) − 1.154

(
RH
100

)2
+ 1.757

(
RH
100

)
− 0.4735

(
S
So

)2
+ 0.811

(
S
So

)
− 2.436

7 H
Ho

= 6.7 × 10−4 (∆T )3 − 0.04 (∆T )2 + 0.62 (∆T ) − 25.60

(
RH
100

)3
+ 47.02

(
RH
100

)2
− 28.50

(
RH
100

)
− 2.57

(
S
So

)3
− 1.85

(
S
So

)2
− 0.49

(
S
So

)
+ 3.83

8 H
Ho

= 7.5 × 10−4 (Tmax)3 − 0.06 (Tmax)2 − 1.27 (Tmax) − 6.14

(
RH
100

)3
+ 11.25

(
RH
100

)2
− 6.43

(
RH
100

)
− 18.59

(
S
So

)3
+ 36.74

(
S
So

)2
− 23.70

(
S
So

)
+ 15.80
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Table 25: Error indicators for proposed equations

Equation RMSE MBE MABE MPE MAPE MARE R2

1 0.25244 0.15038 0.19397 17.47650 30.41315 0.30413 0.19989

2 0.24853 0.14751 0.19093 16.9053 29.76287 029763 0.8602

3 0.14144 -4×10−9 0.10475 -5.08111 19.6809 0.19368 0.94689

4 0.14166 0.01584 0.10686 -1.73778 19.44057 0.19441 0.94672

5 0.39480 0.34215 0.34764 14.63490 31.40490 0.31405 0.20488

6 0.13838 6.41×10−16 0.10853 -4.58710 20.46811 0.20468 0.94916

7 0.18301 -2.1×10−15 0.15512 -10.94380 30.67616 0.30676 0.33782

8 0.11753 -1×10−14 0.09414 -3.16928 16.61409 0.16614 0.96333

Error analysis for the proposed equations for Johannesburg shows low RMSE and MBE

values, which make the above equations suitable. It is evident that Tmax equations have a

stronger correlation to clearness index values. Equation 8 which is a cubic function of Tmax

is proposed for Johannesburg and illustrated in Figure 24 below. The proposed model �ts

the historic data well and there are a few underestimations which result from e�ects of any

of the three variables included in the equation.

Figure 24: Proposed model for the estimation of H
Ho

for Johannesburg
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5.2.5. Pietermaritzburg (PMB)

Table 26: Proposed multivariate equations

No. Equation

1 H
Ho

= 0.048 (∆T ) + 2.633

(
RH
100

)
+ 0.174

(
S
So

)
− 1.876

2 H
Ho

= 0.310

(√
∆T

)
+ 2.599

(
RH
100

)
+ 0.885

(
S
So

)
− 2.361

3 H
Ho

= 0.032 (Tmax) + 1.462

(
RH
100

)
+ 0.235

(
S
So

)
− 1.390

4 H
Ho

= 0.319

(√
Tmax

)
+ 1.463

(
RH
100

)
+ 0.231

(
S
So

)
− 2.168

5 H
Ho

= −0.016 (∆T )2 + 0.475 (∆T ) + 13.621

(
RH
100

)2
− 13.963

(
RH
100

)
+ 1.237

(
S
So

)2
− 1.612

(
S
So

)
+ 0.808

6 H
Ho

= 0.002 (Tmax)2 − 0.085 (Tmax) + 7.513

(
RH
100

)2
− 8.183

(
RH
100

)
− 0.910

(
S
So

)2
− 1.110

(
S
So

)
+ 3.533

7 H
Ho

= 0.003 (∆T )3 − 0.12 (∆T )2 + 1.67 (∆T ) − 9.02

(
RH
100

)3
+ 31.06

(
RH
100

)2
− 25.38

(
RH
100

)
− 8.77

(
S
So

)3
+ 19.99

(
S
So

)2
− 14.53

(
S
So

)
+ 2.0

8 H
Ho

= 8.9 × 10−5 (Tmax)3 − 0.004 (Tmax)2 + 0.047 (Tmax) − 22.51

(
RH
100

)3
+ 50.56

(
RH
100

)2
− 35.24

(
RH
100

)
− 9.17

(
S
So

)3
+ 20.59

(
S
So

)2
− 14.7

(
S
So

)
+ 11.3

Table 27: Error indicators for proposed equations

Equation RMSE MBE MABE MPE MAPE MARE R2

1 0.13726 -6.6×10−16 0.11001 -6.71925 25.21744 0.25217 0.59623

2 0.13758 -9.6×10−16 0.11045 -6.79374 25.39489 0.25395 0.93908

3 0.12468 -1.3×10−16 0.10076 -5.39414 22.82711 0.22827 0.94996

4 0.12490 9.4×10−17 0.10090 -5.39830 22.89302 0.22893 0.94979

5 0.18160 0.14 0.14929 -20.75960 28.27592 0.28276 0.29317

6 0.11116 1.44×10−15 0.08474 -4.43616 17.83656 0.17837 0.96023

7 0.11077 9.7×10−15 0.08462 -4.43619 17.68162 0.17682 0.73701

8 0.10744 2.4×10−15 0.08199 -4.22186 17.64309 0.17643 0.96285

First order equations using
√

∆T , Tmax and
√
Tmax indicate high R2 values with low error

indicators shown in Table 27. Equations containing Tmax again show a stronger relation-

ship to KT values. For Pietermaritzburg, Equation 6 is proposed. The models e�ciency is

depicted in Figure 25 and indicates a well suited model. Sunshine duration data was unavail-

able for certain months and hence the analysis was completed only for the period 2007 - 2014.
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Figure 25: Proposed model for the estimation of H
Ho

for Pietermaritzburg

The above analysis is evidence that multivariate models are more e�cient in estimating

GSR as opposed to single variable models. Strong R2 coe�cients are detailed for the pro-

posed multivariate equations. Low error indicators (RMSE, MBE and MPE) describe the

suitability of these models for GSR prediction over the long-term. MAPE error values can be

explained by the rounding and averaging of hourly and daily recordings to obtain monthly

average values. We have found that the dependence of H
Ho

on Tmax is stronger than that of

∆T (derived from the H-S model), while relative sunshine duration S
So

is a strong indicator of

the GSR experienced across the study sites. Higher order equations (both single and multi-

variate relationships) prove to be more accurate. The equations which we have suggested for

the �ve study sites demonstrate their suitability for the estimation of GSR over the long-term

i.e. forecasting horizon and are summarized in the following;
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Table 28: Summary of multivariate equations for each study site

Site Equation

BFN H
Ho

= 0.040 (Tmax) − 0.307

(
RH
100

)
+ 1.151

(
S
So

)
− 0.979

CT H
Ho

= 4 × 10−4 (Tmax)3 − 0.03 (Tmax)2 + 0.71 (Tmax) + 13.33

(
RH
100

)3
− 19.66

(
RH
100

)2
+ 7.52

(
RH
100

)
+ 2.25

(
S
So

)3
− 0.46

(
S
So

)2
− 0.37

(
S
So

)
− 5.41

DBN H
Ho

= −1.4 × 10−3 (Tmax)2 + 0.108 (Tmax) + 13.097

(
RH
100

)2
− 16.833

(
RH
100

)
− 1.180

(
S
So

)2
+ 1.6025

(
S
So

)
+ 3.399

JHB H
Ho

= 7.5 × 10−4 (Tmax)3 − 0.06 (Tmax)2 − 1.27 (Tmax) − 6.14

(
RH
100

)3
+ 11.25

(
RH
100

)2
− 6.43

(
RH
100

)
− 18.59

(
S
So

)3
+ 36.74

(
S
So

)2
− 23.70

(
S
So

)
+ 15.80

PMB H
Ho

= 0.002 (Tmax)2 − 0.085 (Tmax) + 7.513

(
RH
100

)2
− 8.183

(
RH
100

)
− 0.910

(
S
So

)2
− 1.110

(
S
So

)
+ 3.533
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Chapter 6: Conclusions

Solar insolation received throughout South Africa has the potential to supplement the state

utility supply. This potential has not been fully considered and as such remains idle. Solar

technologies such as PV applications remain relevant to private and o�-grid utilization as

su�cient investment into these technologies is not available on a governmental level. While

ESKOM continues to face dire �nancial restraints, aging infrastructure and growing elec-

tricity demands result in regular implementation of scheduled power outages. The economic

and social consequences thereof make this country unappealing for foreign investment. South

Africa receives ample solar resource for the implementation of CSPs at several sites across

the country; the primary limitation for this is the lack of available funding and research.

This study aims to provide further insight into the amount of GSR received in major cities

of the country while trying to promote the undertaking of research related to solar energy as

an alternate resource. While consequences of climate change due to global warming continue

to be experienced throughout the country, insu�cient attempts are being made to decrease

our carbon footprint.

Meteorological parameters used for this research were substantially easy to obtain, with

the exception of sunshine data measurements which are not always available as a conse-

quence of the costly equipment required to perform this function. For most regions in South

Africa, solar radiation and sunshine duration variables are not measured, thus reiterating

the need for reliable solar radiation estimation models. In this study we have analyzed the

impact of single variable, linear estimation models on the available GSR within South Africa

in comparison to multivariate, non-linear regression models which incorporate variations of

meteorological parameters. These are the �rst non-linear GSR estimation models to be in-

troduced for South Africa. The insights provided in this work show that the estimation of

GSR can be accurate and subsequently cost e�ective. Our suggested models are unique to

each city in South Africa and may be incorporated into the design and installation processes
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of solar PV technologies which will enhance their e�ciency while endorsing their application.

South Africa being one of the most developed countries on the African continent requires

sustainable investment and su�cient research to undertake renewable energy technologies.

Thus the estimation of solar radiation potential across the country through readily available

meteorological variables such as air temperature, relative humidity and sunshine duration is

of great signi�cance. In this study we have provided multivariate, non-linear models which

are able to e�ectively estimate the amount of solar radiation incident over �ve major cities.

Our results suggest that models listed in Table 28 perform considerably well in the estimation

of GSR for South Africa.

The empirical Hargreaves-Samani (H-S) and Angstrom-Prescott (A-P) models proved to

be reliable methods for estimating the amount of GSR in smaller study periods (i.e. one

calendar year), but lacked accuracy for long-term estimations as indicated in this study. Our

work further indicates that models which make use of a single meteorological variable and

most linear models are not able to adequately predict GSR for our selected regions over

periods longer than ten calendar years. As a recommendation, we suggest that research be

conducted to establish su�cient A-P coe�cients for the available historical sunshine data

for South Africa to enable GSR estimation for period when measured data is not available.

These empirical coe�cients may be integrated into the above suggested models for each study

site and provide models with higher correlations. Further studies into the impact of aerosols

on the amount of GSR incident in a speci�c area will allow for a correction factor to be in-

troduced to GSR estimation models. This will prove to be a profound contribution towards

the existing research in the �eld. Due to the complexity of aerosols and their composition

this is not possible until further innovations have been made.
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APPENDIX A

FORTRAN CODE TO CALCULATE Ho

program HoCalc

!This program allows the user to calculate the Ho for a given site of latitude (phi) and day (Dn)

implicit none

real:: delta, d, omega

real:: phi, Isc, Ho

real:: pi

real:: E, X, s

real:: y, z, theta

Open (unit=10, �le='HoInput', status='old', action='read')

Open (unit=9, �le='HoOutput', status='new', action='write')

read (10,*)d

Isc= 1367.0

phi=29.6679

pi= 4.0*atan(1.0)

y= (360.0*(284+d))/365.0

delta= ((23.45*pi/180.0)*sin((y*pi)/180.0))

E= ((24.0*3.6e-3*Isc)/pi)

s=(phi*pi)/180.0

omega = acos(-1*(tan(s))*(tan(delta)))

z= 360.0*(d/365.0)

X= (1+(0.033*(cos((z*pi)/180.0))))

Ho= (E * X *(cos(s)*cos(delta)*sin(omega) + omega*sin(s)*sin(delta)))

write(9,*)Ho

close (unit=9)
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close (unit=10)

end program HoCalc
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FORTRAN CODE TO CALCULATE So

program SoCalc

!This program allows the user to calculate So for a given site of latitude (phi)

real:: delta, d, omega

real:: phi, So, s

real:: pi, y

integer:: i

open (unit=10, �le='HoInput.txt', status='old', action='read')

open (unit=9, �le='SoOutput.txt', status='new', action='write')

do i=1,365

read (10,*)d

phi=29.6270

pi= 4.0*atan(1.0)

y= (360.0*(284+d))/365.0

delta= ((23.45*pi/180.0)*((sin(y*pi)/180.0)))

s=(phi*pi)/180.0

omega = acos(-1*(tan(s))*(tan(delta)))

So = ((2.0/15.0)*(omega*180.0/pi))

write(9,*)So

end do

close(unit=9)

close(unit=10)

end program SoCalc
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Abstract: In South Africa, power outages and scheduled
load shedding are common practices in a bid to safeguard
power resources. With the increase in cost of conventional
energy sources, and the depletion of fossil fuels, attempts
to use renewable resources to their full potential are un-
derway. South Africa and in particular Pietermaritzburg
receives sunshine throughout the year, making it suit-
able for harnessing solar power. In this work we estimate
the amount of Global Solar Radiation (GSR) received in
Pietermaritzburgwhich is the capital of the KwaZulu-Natal
province. An air temperature model (Hargreaves-Samani)
is used to approximate the GSR received in Bisley in com-
parison to measured data obtained from the ARC, for a
period of one calendar year (July 2014 – June 2015). We
proceed to apply the Angstrom-Prescott model to evaluate
the competence of the initial prediction method. The pri-
mary aim of this study is to validate the efficiency and ac-
curacy of the above-mentioned forecasting models, for ar-
eas within close proximity. Our results compare fairly well
with the observed data provided by the ARC. Both mod-
els prove to sufficiently estimate the amount of GSR inci-
dent in Bisley. The deviations from the actual measured
values suggest that a model which incorporates both vari-
ables may improve the accuracy of GSR estimations. The
use of comprehensive prediction and forecasting models
will allow for optimal placement of solar technologies for
the harnessing of GSR within Pietermaritzburg. Though
Pietermaritzburg may not be suitable for large scale solar
power plants, the employment of solar panels in both in-

*Corresponding Author: Naven Chetty: University of KwaZulu-
Natal, School of Chemistry and Physics, Private Bag X01, Scottsville
3209, Pietermaritzburg, South Africa
Email: chettyn3@ukzn.ac.za
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dustrial and residential areas will contribute greatly to a
decrease in demand of grid electricity.

Keywords: Load shedding, global solar radiation, photo-
voltaic technologies, air temperature model, Angstrom-
Prescott model

PACS: 88.40.fc, 88.40.ff, 92.60.Vb, 92.60.Aa

1 Introduction
Solar energy is a pure, inexhaustible, and readily available
resource. The escalation in price of conventional energy
sources, together with the depletion of non-renewable re-
sources and fossil fuels, necessitates a great demand for
alternative power sources. Green energy sourceswhich are
beneficial to the environment are being studied as alter-
nate resources which could potentially assist in the energy
crisis. The cost of these technologies has reduced signifi-
cantly in the past decade, however it still remains higher
than the cost of conventional energy and hence uptake is
still relatively slow [1].

Within South Africa, we rely solely on the energy har-
nessed from coal power stations operated by ESKOM, the
state power utility. The increased demand for electricity
has resulted in a rise in production costs due to the strain
placed on existing power stations, aging infrastructure as
well as the depletion of non-renewable resources [2]. Since
our country has been alarmed about the security of energy
resources for the country’s energy demands, load shed-
ding (power outages) have been implemented almost daily
over the past few years in an attempt to save energy [2]. The
consequences of load shedding have affected the entire
country with even more devastating effects on the econ-
omy [2, 3]. Though resources have recently been secured to
increase energy production, the cause of the crisis cannot
be cured. The depletion of non-renewable energy sources
remains an issue, and will surely result in greater conse-
quences in the long-term.
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Growth in solar energy technologies has been noted,
together with its theoretical potential to supply the global
demand for energy being the major contributing factor [1].
South Africa is well suited for the harnessing of solar
radiation because sunshine is available throughout the
year including the winter months. Depending on the ge-
ographical location certain areas in Africa receive more
than double the amount of radiation as compared to coun-
tries in the northern hemisphere [3]. Despite this abun-
dance, there are many financial and technical restraints
with regards to solar energy technologies, which limit its
use to private off-grid connections. These limitations need
to be overcome in order to increase the contribution of so-
lar power to the energy supply of the country.

The amount of solar radiation incident at the earth’s
surface is a measurable quantity. Solar radiation outside
of the earth’s atmosphere, received at a surface which is
normal to the incident radiation is known as the solar con-
stant [4, 5]. This quantity is measured from space through
the use of satellite data and has a value of 1367 Wm−2,
which changes by approximately 0.01%over a period of 30
years [5–8]. The amount of solar radiation received at the
earth’s surface is largely depleted due to the attenuation
processes which occur in the atmosphere [6].

Solar radiation is responsible for many processes
which transpire on the earth’s surface and its research
finds applications in many science and engineering
fields [9]. Knowledge and prediction of solar radiation
available at a specific location is of great importance for
the designing and performance evaluation of solar energy
conversion systems [9, 10]. Solar energy can be harnessed
and utilized for applicationswhich fall into twomain cate-
gories; Solar Thermal andSolar Photovoltaic (PV) [1, 9, 10].

In many geographical locations, Global Solar Radia-
tion (GSR) is not measured because it is too expensive to
purchase and maintain the apparatus required. If mea-
sured data is available, it is not always complete as equip-
ment can fail due to numerous faults [9, 11]. As a result, ac-
curate and efficient forecasting methods are increasingly
required.Hence, researchers have employed theuse of em-
pirical methods which are able to calculate and predict
GSR for a particular location [5, 9, 11–13].

Many of these empirical models require the input of
other meteorological variables (which are often more ac-
cessible than solar radiation data) or historical weather
data. Some of these meteorological parameters include;
air temperature, precipitation, relative humidity, sunshine
duration, etc. [11–13]. The empirical model is classified ac-
cording to the climatic variable which it requires [9], e.g.
sunshine duration models [10, 13–16], temperature based

methods [9, 17–19], and cloud-based methods which re-
quire the use of satellite sky images [6].

Although industries within South Africa are aware of
the solar technologies which exist, they are not being im-
plemented to translate their true potential. With accurate
prediction and forecastingmodels for our country, wemay
be able to enhance theuse of these technologieswhile alle-
viating the strain placed on existing energy infrastructure.

2 Sample site details
The city of Pietermaritzburg (Midlands) is the capital city
of the KwaZulu-Natal province in South Africa. This city is
found in a hollow which is surrounded by the escarpment
(DrakensbergMountainRange) and is seenas an inland re-
gion. Having a geographical location that ideally receives
sunshine throughout the year, Pietermaritzburg is one of
the warmest cities in the province. Weather stations in the
neighboring cities were unable to provide records of daily
solar radiation or sunshine duration for Pietermaritzburg.
Such data is not readily available for this location, hence
making this work significant as a predictor of GSR. A study
center in Ukulinga (Bisley, Pietermaritzburg), was able to
provide the necessary data required for this work. Tem-
perature, Humidity and Dew point measurements were
recorded hourly with the use of a sensor. Table 1 provides
the geographical data of the site considered in this study.
The land use in Bisley has more of an industrial and com-
mercial setting. Figure 1 is a satellite illustration of Bisley,
Pietermaritzburg.

Table 1: Geographical details of study sites

Bisley Ukulinga
LatitudeΦ (South) −29.668∘ −29.663∘

Longitude (East) 30.416∘ 30.405∘

Elevation 752m 750m

The main focus of our research was to estimate the
amount of GSR received in Pietermaritzburg using mete-
orological data which is readily and easily available. Since
the cost of equipment tomeasure certain climatic parame-
ters was too high, we decided to use an approach that esti-
mated solar radiation using air temperature and sunshine
duration. Records of solar radiation incident in Pietermar-
itzburg are conducted by the Agricultural Research Coun-
cil (ARC). The ARC conducts work with the Ukulinga Re-
search Center (based in Bisley), and was able to provide
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Figure 1: Satellite image of Scottsville, Bisley [Google maps]

the necessary GSR data for this study. This data was used
to verify our calculations and interpret our differences. The
Hargreaves-Samani equation [19] was applied to calculate
the solar radiation incident on a horizontal surface, for
Bisley following the approach studied byMaluta et al. [20].
Thereafter we proceeded to validate this method using the
Angstrom-Prescottmodel. Due to timeandequipment con-
straints we were only able to yield measurements over a
period of one calendar year, however this technique can
be further developed to analyze historic data for any loca-
tion.

3 Background theory
In areas where solar radiation information is inaccessi-
ble, methods of forecasting are employed. The simplest
method involves the use of the air temperature of a given
location. Air temperature measurements are easy to con-

duct and can be obtained in regions where there are no
weather stations nearby. The Hargreaves-Samani equa-
tion [18–20] relates the amount of extraterrestrial radia-
tion (Ho) to the difference between themaximumandmin-
imum air temperatures (∆T = Tmax - Tmin), in order to cal-
culate the amount of GSR incident on a horizontal surface
(H), using the equation below [6, 11, 17, 18, 20];

H = HoKr(∆T)0.5 (1)

where the empirical coefficient Kr = 0.16 for ’interior re-
gions’ and Kr = 0.19 for ’coastal regions’ [9, 17, 20]. The
extraterrestrial radiation Ho; is given by [6, 16, 21, 22];

Ho =
24 × 3.6 × 10−3Isc

π

[︂
1 + 0.033 cos

(︂
2πDn
365

)︂]︂
(2)

· [cosϕ cos δ sinωs + ωs sinϕ sin δ]

where Isc = 1367 W/m2 is known as the solar constant [6,
16, 20], Dn is the Julian calendar day of the year (Jan 1st
corresponds to Dn = 1, Dec 31st corresponds to Dn = 365).
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The latitude of the site is denoted by ϕ; and all angles are
calculated in radians. δ, is the declination angle which is
given by [6, 10, 16, 21, 22];

δ = 23.45 π
180 sin

[︂
2π(Dn + 284)

365

]︂
(3)

The sunset hour angle, ωs, is given by [6, 20, 22, 23];

ωs = cos−1(− tanϕ tan δ) (4)

By calculating the solar angles it is possible to predict the
amount of solar irradiance receivedonahorizontal surface
at a given location. The clearness index (KT) describes the
atmosphere’s transparency and is found by comparing the
amount of GSR to the amount of extraterrestrial solar radi-
ation as shown by [6, 20, 21];

KT =
H
Ho

(5)

The Angstrom-Prescott equation can be used to calculate
the clearness index from the relative sunshine duration,
provided the Angstrom-Prescott coefficients for the area
are known [6, 14, 15, 21];

KT =
H
Ho

= a + b
(︂
S
So

)︂
(6)

where a, b are the Angstrom-Prescott coefficients, S is the
actual hours of sunshine received, and So; is themaximum
possible duration of sunshine for a given day calculated
from [15, 16, 21, 23];

So =
2ωs
15 (7)

For areas where the Angstrom coefficients are unknown, it
is prescribed to use a = 0.25 and b = 0.50 [23].

The temperature data for Bisley (Commercial/ Indus-
trial area) was studied for the period July 2014 – June 2015.
A MT668 Temperature and humidity data logger was used
to record hourly maximum and minimum temperatures,
relative humidity and dew point for this location. The
Hargreaves-Samani equation was applied to calculate the
GSR for Bisleywhichwas then related to themeasured val-
ues for Ukulinga, provided byARC. TheAngstrom-Prescott
model was used to validate the Hagreaves-Samani model,
using measured sunshine duration data for Bisley. There-
after, the clearness index was determined using each of
the above models. We again verified the efficiency of both
models in comparison to the measured quantities.

4 Results and discussion
Daily average measurements of temperature, relative hu-
midity anddewpointwere recordedusingdata loggers cal-

Figure 2: Graph of measured maximum temperatures for Bisley

Figure 3: Graph of measured minimum temperatures for Bisley

ibrated in Bisley. Attention to their placement was essen-
tial as the sensors had to be installed at a height of 1,5m
above the groundand couldnot be sheltered, as thiswould
alter the recordings drastically. Graphs showing the mea-
sured maximum and minimum air temperatures for this
suburb are provided in Figures 2 and 3. These measure-
mentswere conducted for eachday of the timeperiod stud-
ied (July 2014 - June 2015). The latitude of Bisley was used
to calculate the relevant solar angles using eqs. (3) and (4)
which then allowed us to evaluate the extraterrestrial so-
lar radiation (Ho) in Eq. (2). The Hargreaves-Samani (H-S)
equation (Eq.(1)), together with the measured air temper-
ature values gave results which are averaged in Table 2.
The GSR values listed below are the calculated monthly
averages based on daily maximum and minimum air tem-
peratures. We then estimated the GSR for Bisley using
measured sunshine duration hours and the Ho within the
Angstrom-Prescott (A-P) model. The maximum possible
sunshine duration Eq. (7) was calculated using the hour
angle Eq. (4). These results are represented in Table 3.

The measured values (Hmeasured) listed in Tables 2
and 3, are the actual observed values of GSR for Bisley. The
data was supplied by the ARC and enabled us to compare
the values calculated by Eqs. (1) and (6) with themeasured
data. Temperature variations show a similar distribution
to theH (both observed and calculated) valueswhich illus-
trates the relationship between air temperature and GSR.
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Table 2: Bisley, Ukulinga results using the Hargreaves-Samani Model (July 2014-June 2015)

Month Tmax (∘C) Tmin (∘C) ∆T (∘C) Ho
(MJ/m2/day)

Hcalculated
(MJ/m2/day)

Hmeasured
(MJ/m2/day)

July 21.84 8.10 13.74 19.98 11.69 12.34
Aug 23.73 11.34 12.38 24.70 13.70 13.71
Sep 27.37 12.54 14.82 31.34 18.98 17.88
Oct 22.51 12.56 9.95 37.63 18.48 15.34
Nov 22.60 14.14 8.47 41.95 19.03 14.94
Dec 26.01 15.96 10.05 43.74 21.61 17.63
Jan 27.46 17.10 10.36 42.94 21.64 19.69
Feb 26.23 16.55 9.68 39.69 19.50 19.45
Mar 27.08 16.76 10.32 34.13 17.32 17.83
Apr 23.86 13.51 10.35 27.31 13.75 14.58
May 25.84 12.99 12.84 21.58 12.25 13.76
Jun 22.11 9.80 12.32 18.87 10.47 12.44

Average 24.72 13.45 11.27 31.99 16.54 15.80

Table 3: Bisley, Ukulinga results using the Angstrom-Prescott Model (July 2014-June 2015)

Month S (hours) So (hours) S/So Ho
(MJ/m2/day)

Hcalculated
(MJ/m2/day)

Hmeasured
(MJ/m2/day)

July 6.80 10.30 0.66 19.98 11.59 12.34
Aug 6.50 10.97 0.59 24.70 13.46 13.71
Sep 6.20 11.85 0.52 31.34 15.98 17.88
Oct 6.00 12.76 0.47 37.63 18.25 15.34
Nov 6.50 13.51 0.48 41.95 20.56 14.94
Dec 6.90 13.88 0.50 43.74 21.87 17.63
Jan 6.30 13.67 0.46 42.94 20.61 19.69
Feb 6.60 13.04 0.51 39.69 20.04 19.45
Mar 6.90 12.18 0.57 34.13 18.26 17.83
Apr 7.40 11.27 0.66 27.31 15.84 14.58
May 7.90 10.51 0.75 21.58 13.49 13.76
Jun 7.60 10.13 0.75 18.87 11.80 12.44

Average 6.8 12.01 0.58 31.99 16.81 15.80

The accuracy of both models was determined based
on the error analysis between the predicted andmeasured
values of GSR. Table 4 provides the average annual errors
for the Hargreaves-Samani (H-S) and Angstrom-Prescott
(A-P) models. The mean bias error (MBE) indicates the av-
erage deviance of the calculated values from that of the
measured and is used to decide the long-termperformance
of a model [24]. Positive values of MBE correspond to an
over estimation, while a negative MBE indicates an under
estimation. TheRMSEgives insight into the short-termper-
formance of a correlation. Low values for all statistic error
measures are desired [25]. Earlier studies suggest that per-
centage errors between −10%and 10%are acceptable [26].

Statistical analysis reported in Table 4 was calculated us-
ing the below;

Table 4: Error analysis

H-S A-P
RMSE (MJ/m2/day) 2.14 2.34
MPE (%) 3.85 6.15
MAPE (%) 10.62 10.43
MBE (MJ/m2/day) 0.74 1.01
MABE (MJ/m2/day) 1.65 1.65
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Mean bias error (MBE) and mean absolute bias error
(MABE)

MBE = 1
n

n∑︁

i=1
(Hc − Hm)

MABE = 1
n

n∑︁

i=1
(|Hc − Hm| )

Mean percentage error (MPE) and mean absolute
percentage error (MAPE)

MPE = 1
n

n∑︁

i=1

(︂
Hc − Hm
Hm

)︂
× 100%

MAPE = 1
n

n∑︁

i=1

⃒⃒
⃒⃒
(︂
Hc − Hm
Hm

)︂⃒⃒
⃒⃒ × 100%

Root mean square errors (RMSE)

RMSE =

√︃∑︀n
i=1 (Hc − Hm)

2

n

where Hc and Hm are the calculated and measured values
of GSR, respectively.

Positive errors indicate that the models under study
have overestimated values of GSR for the given period.
The MPE falls within the prescribed interval (−10%; 10%),
however the MAPE is slightly over the 10% interval (Ta-
ble 4). This is a minor deviation in comparison to the
daily sample size. Averaging and rounding of hourly, daily
measurements when calculating monthly average values,
would have contributed to the error being over the accept-
able range. In this regard, the results are still acceptable.
TheRMSE,MBEandMABEvalues aremoderate and canbe
lower to showa stronger correlation. The calculated values
of H for Bisley conformed well to the shape of the data ob-
served by the ARC, with the exception of a few outliers.
This is represented in Figures 4 and 5. Maximum calcu-
lated values forHwere observed duringOctober - February
(Figures 4 and 5)which are the spring and summermonths
in South Africa. Both the (H-S) and (A-P) models demon-
strated the most deviation from the measured GSR values
in these spring/summer months, which may indicate over
estimation by the selected methods.

The over prediction may be a consequence of; the ac-
curacy and competence of the equipment used, the effects
of wind, or other temperature invasion factors such as pol-

Figure 4: Graph comparing the measured and calculated values of H
using the H-S Model

Figure 5: Illustration comparing the measured and calculated values
of H using the A-P Model

lution. Observed values could be better validated by ad-
justing the temperature based model (H-S) to account for
short wave radiation. The sunshine duration model may
be modified by introducing a non-linear relationship be-
tween the GSR and sunshine duration ratio. For optimal
prediction, thiswork suggests that a newmodel be devised
to include both sunshine and temperature variables. This
is a consequence of both models being able to sufficiently
estimate the GSR in Bisley (based on the annual average
errors), while each model performed differently when we
consider each individualmonth. Othermeteorological fac-
tors such as relative humidity, wind speed and air pres-
sure can also be included for improved prediction. During
the autumn, winter and parts of springmonths, bothmod-
els performed considerably well in estimating the amount
of GSR. Overall, the distribution and monthly variation of
the calculated values of GSR show great similarities when
compared to the observed values.

The annual average GSR values obtained for Pieter-
maritzburg, show close similarities to the results pre-
sented by Maluta et al. [20], for the Limpopo Province
in South Africa. In the study conducted by [20], stations
which have an altitude close to that of Pietermaritzburg,
had an annual average H value in the range: [14.71-17.82]
MJ/m2, whilst Hcalculated for Bisley is in the range: [16.54-
16.81] MJ/m2. Themain contributing difference in these lo-
cations is the site’s latitude.
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The clearness index, being the ratio of GSR to extrater-
restrial radiation provides information on the degree of
transparency of the atmosphere. Using eq. (5), KT val-
ues were calculated and interpreted by the following work
conducted in [6];

Table 5: Clearness index (KT ) results using each of the models

Month KT (Hmeas) KT (H-S) KT (A-P)
Jul 0.58 0.62 0.58
Aug 0.55 0.55 0.54
Sep 0.61 0.57 0.51
Oct 0.49 0.41 0.49
Nov 0.45 0.36 0.49
Dec 0.49 0.40 0.50
Jan 0.50 0.46 0.48
Feb 0.49 0.49 0.51
Mar 0.51 0.52 0.54
Apr 0.50 0.53 0.58
May 0.57 0.64 0.63
Jun 0.56 0.66 0.62

Average 0.53 0.520 0.54

Table 6: Classification of day by clearness index, KT

Day Type KT
Clear 0.7 ≤ KT < 0.9

Partially Cloudy 0.3 ≤ KT < 0.7
Cloudy 0.0 ≤ KT < 0.3

The calculated values of clearness index for each
model as shown in our results suggest that Pietermar-
itzburg experiences a high number of partially cloudy
days, with not many days being classified as cloudy ac-
cording to Table 5. The discrepancies experienced in the
calculated H values may be a result of the influence of
cloudiness on the air temperature and sunshine duration
data. On average, themonthly data gives a clearness index
which falls into the partially cloudy category for both pre-
diction models as well as the measured data in question
(Table 5).

In this study we have used the prescribed A-P coeffi-
cients of a = 0.25 and b = 0.5. The Angstrom coefficients
vary with each geographical location depending on the
amount of relative sunshine received. Other factors such
as the geographical locations of the site and atmospheric
effects may also introduce deviations in the clearness in-

dex. For a more consistent set of Angstrom coefficients,
this study shouldbe extended to analyzedata over a longer
period of time for the chosen location.

The results obtained in this study indicate that the
city of Pietermaritzburg receives sufficient GSR for the use
of solar powered technologies such as solar panels, so-
lar heating and cooling technologies for industrial, com-
mercial and residential areas. Prediction models may be
used to identify which areas are optimal for the harness-
ing of GSR. Accurate GSR predictions for this city will also
enable a better understanding of the climate experienced
and its effects. Clear to partially cloudy days are experi-
enced throughout the year, including during the winter
months, making GSR easy to acquire. The H-S and A-P
models are suitable for the calculation of GSR, however
the accuracy of results during the summer season can be
improved. Comprehensive models including both meteo-
rological variables can be introduced to account for this.

Evaluation of the A-P coefficients (a and b) as well as
the H-S (Kr) coefficient can be conducted via the study of
historicmeteorological data for enhanced predictionmod-
els. These coefficients give insight into the transmissivity
and transparency of the atmosphere. Prediction of the type
of day and clearness index can also be made, provided
theAngstromcoefficients arewell-established. Though so-
lar radiation data in the city of Pietermaritzburg is not
readily available, the amount of GSR incident in this city
can be sufficiently estimated using theHargreaves-Samani
and Angstrom-Prescott models. This study has shown the
suitability of this interior region to contribute to the de-
crease in demand of grid energy by making use of the in-
cident GSR in Pietermaritzburg. Furthermore, the forecast-
ingmethoddescribed above canbe easily implemented for
GSR prediction within any location of the world where air
temperature and sunshine duration are measurable quan-
tities.

Figure 6: Graph comparing calculated and measured values of KT
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5 Conclusions
The use of the H-S and A-P equations prove to be ade-
quate methods of estimating the amount of GSR in loca-
tions where solar radiation data is not readily available.
Our results show that these models have compared con-
siderably well to the measured values of GSR for one sub-
urb in the city of Pietermaritzburg. However, the accuracy
of this model can be improved by modifying the equation
to account for; more than one meteorological parameter
(air temperature, sunshine duration, and relative humid-
ity), shorter forecastinghorizons and the inclusionof short
wave radiation [23]. A second and third order prediction
model may also be identified which could verify an in-
crease in efficacy.

The results herein, show the degree of simplicity such
models have, based on the use of one weather parame-
ter alone. The H-S equation is viable for use in any geo-
graphical location since its dependency is mainly on the
location and air temperature of a given site. While the A-P
model performs considerably well without having an es-
tablished, reliable set of Angstrom-Prescott coefficients.
For better understanding and realization of a reliable set
of A-P coefficients in Pietermaritzburg, it is suggested that
we analyze the data for this city over a longer period (±10
calendar years prior to current data). However, the results
which we have obtained in just one calendar year show
close proximity to the actual measured GSR values using
the prescribed A-P coefficients for locations where this in-
formation is unknown.

KwaZulu-Natal is said to be unsuitable for the con-
struction of large scale solar power plantations, primarily
due to the low amount of Direct Normal Irradiation (DNI)
incident in this province as opposed to the other eight
provinces in South Africa [27]. Despite this, our province
still receives ample sunshine duration and GSR for the uti-
lization of solar technologies such as photovoltaic cells
(both in Industry and for household consumption). With
the implementation of accurate and efficient GSR predic-
tion models, we will be able to identify which regions of
Pietermaritzburg are suitable for optimal capture of solar
radiation.
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APPENDIX C

Monthly average measurements for the period January 2007 - June

2018

Measured data was sourced from the SAWS and ARC
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Table 1: Monthly averages for Bloemfontein, Free State (January 2007 - June 2018) 
 

Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Jan 1.24306 16.74000 32.07000 23.70000 0.52920 0.86666  

Feb 1.01967 18.11000 32.83000 23.77500 0.46050 0.92500  

Mar 0.69877 17.56000 29.29000 20.51000 0.51940 0.80834  

Apr 0.48348 15.19000 25.08000 17.48500 0.60820 0.72499  

May 0.38765 20.12000 21.67000 11.61000 0.49630 0.75001  

Jun 0.73042 16.62000 17.06000 8.75000 0.60845 0.67499  

Jul 0.37269 19.47000 18.25000 8.51500 0.49760 0.80835  

Aug 0.51177 21.60000 22.39000 11.59000 0.42310 0.83333  

Sep 0.65999 21.23000 28.86000 18.24500 0.37965 0.78334  

Oct 0.83609 14.99000 25.63000 18.13500 0.61850 0.69166  

Nov 1.20514 18.13000 28.99000 19.92500 0.53510 0.80001  

Dec 1.26042 16.19000 30.19000 22.09500 0.59605 0.80832  

Jan 1.09395 15.49000 31.01000 23.26500 0.61080 0.74999  

Feb 0.81498 15.60000 30.90000 23.10000 0.60870 0.70000  

Mar 0.60418 14.98000 27.54000 20.05000 0.65490 0.65000  

Apr 0.48619 19.86000 25.17000 15.24000 0.58015 0.75833  

May 0.31157 15.35000 16.10000 8.42500 0.62100 0.56667  

Jun 0.73070 17.08000 19.04000 10.50000 0.59040 0.61666  

Jul 0.34493 19.92000 19.70000 9.74000 0.50490 0.77502  

Aug 0.43610 19.61000 23.26000 13.45500 0.40715 0.78333  

Sep 0.65731 21.70000 25.54000 14.69000 0.35635 0.85834  

Oct 0.87554 20.00000 31.01000 21.01000 0.40440 0.88333  

Nov 1.12813 17.22000 30.83000 22.22000 0.52345 0.80834  

Dec 1.17325 18.22000 34.08000 24.97000 0.46925 0.86665  

Jan 0.96900 16.27000 32.44000 24.30500 0.55575 0.73333  

Feb 0.64795 12.80000 28.89000 22.49000 0.65425 0.58333  

Mar 0.55501 17.05000 29.36000 20.83500 0.57850 0.75834  

Apr 0.40827 18.12000 27.46000 18.40000 0.53185 0.72499  

May 0.72931 16.74000 22.28000 13.91000 0.60255 0.71668  

Jun 0.71933 15.76000 18.31000 10.43000 0.62200 0.59166  

Jul 0.72877 19.91000 18.06000 8.10500 0.51290 0.72501  

Aug 0.41949 19.76000 22.25000 12.37000 0.42900 0.77500  

Sep 0.57891 21.06000 27.24000 16.71000 0.35895 0.77500  

Oct 0.74965 16.41000 27.74000 19.53500 0.55880 0.72499  

Nov 1.07343 17.00000 28.73000 20.23000 0.54000 0.80001  

Dec 1.32617 19.71000 34.28000 24.42500 0.49575 0.89998  

Jan 0.91155 13.36000 29.85000 23.17000 0.64860 0.57500  

Feb 0.87966 15.68000 31.33000 23.49000 0.59800 0.75833  

Mar 0.63895 16.73000 30.22000 21.85500 0.60015 0.77500  

Apr 0.41341 15.64000 25.31000 17.49000 0.64120 0.66666  

May 0.32258 18.11000 23.18000 14.12500 0.59320 0.72501  

Jun 0.72966 20.19000 19.33000 9.23500 0.54995 0.69166  

Jul 0.73003 19.11000 20.73000 11.17500 0.50095 0.66668  

Aug 0.41659 21.62000 23.06000 12.25000 0.44375 0.81667  

Sep 0.52435 21.66000 28.58000 17.75000 0.38290 0.71667  

Oct 0.76041 19.52000 29.13000 19.37000 0.43640 0.73333  



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Nov 1.02485 17.74000 30.62000 21.75000 0.53530 0.80001  

Dec 1.12260 17.04000 30.75000 22.23000 0.56210 0.80832  

Jan 0.89285 12.64000 29.07000 22.75000 0.65250 0.60000  

Feb 0.81003 14.30000 29.89000 22.74000 0.63315 0.72500  

Mar 0.55751 15.67000 29.43000 21.59500 0.63380 0.65000  

Apr 0.37039 14.82000 23.09000 15.68000 0.67120 0.59166  

May 0.72873 16.09000 20.56000 12.51500 0.63645 0.60834  

Jun 0.72753 18.03000 17.64000 8.62500 0.59790 0.65832  

Jul 0.72954 20.50000 18.48000 8.23000 0.54485 0.71668  

Aug 0.43504 20.44000 22.12000 11.90000 0.49300 0.75833  

Sep 0.70768 21.61000 26.90000 16.09500 0.40135 0.81667  

Oct 0.91966 20.06000 28.40000 18.37000 0.39200 0.79999  

Nov 1.31104 20.88000 30.90000 20.46000 0.40400 0.90001  

Dec 1.31254 16.69000 30.63000 22.28500 0.54545 0.78332  

Jan 1.33015 18.43000 34.41000 25.19500 0.50615 0.84166  

Feb 0.91238 15.58000 31.11000 23.32000 0.57790 0.65833  

Mar 0.70190 17.81000 30.70000 21.79500 0.51860 0.73334  

Apr 0.48484 18.74000 25.37000 16.00000 0.52025 0.74166  

May 0.37639 20.68000 24.84000 14.50000 0.45095 0.74168  

Jun 0.72968 16.53000 18.27000 10.00500 0.55370 0.50833  

Jul 0.36600 20.24000 19.23000 9.11000 0.50325 0.67501  

Aug 0.43003 19.60000 23.37000 13.57000 0.40675 0.70833  

Sep 0.64031 20.07000 24.59000 14.55500 0.42750 0.80000  

Oct 0.90639 18.39000 28.50000 19.30500 0.44400 0.85833  

Nov 1.16182 18.80000 31.81000 22.41000 0.44160 0.84168  

Dec 1.22682 14.78000 28.98000 21.59000 0.60895 0.67499  

Jan 1.35843 17.43000 33.49000 24.77500 0.51740 0.89166  

Feb 1.05315 19.17000 33.73000 24.14500 0.50260 0.90000  

Mar 0.69971 16.98000 30.80000 22.31000 0.54240 0.71667  

Apr 0.50242 17.36000 25.29000 16.61000 0.58220 0.71666  

May 0.40992 20.28000 23.69000 13.55000 0.49645 0.75001  

Jun 0.36429 21.47000 20.42000 9.68500 0.46000 0.75832  

Jul 0.36203 19.79000 21.29000 11.39500 0.47825 0.74168  

Aug 0.47828 20.19000 21.24000 11.14500 0.42795 0.80833  

Sep 0.67251 21.42000 26.00000 15.29000 0.29435 0.77500  

Oct 0.96486 19.89000 28.97000 19.02500 0.38820 0.84166  

Nov 1.28829 18.30000 30.82000 21.67000 0.44300 0.86668  

Dec 1.35832 15.33000 29.89000 22.22500 0.55310 0.79165  

Jan 1.18423 17.19000 34.34000 25.74500 0.47565 0.79999  

Feb 0.80204 13.33000 30.02000 23.35500 0.61715 0.64167  

Mar 0.61483 14.88000 28.01000 20.57000 0.62250 0.65834  

Apr 0.48051 18.30000 25.62000 16.47000 0.54675 0.69999  

May 0.35962 19.47000 23.66000 13.92500 0.53085 0.72501  

Jun 0.32030 20.73000 19.70000 9.33500 0.49095 0.69999  

Jul 0.34345 20.82000 18.96000 8.55000 0.46680 0.77502  

Aug 0.39655 17.96000 21.92000 12.94000 0.44545 0.68333  

Sep 0.57652 21.72000 28.90000 18.04000 0.31985 0.73334  



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Oct 0.86048 20.00000 30.56000 20.56000 0.40225 0.85833  

Nov 1.00910 14.29000 27.07000 19.92500 0.53835 0.73334  

Dec 1.14841 14.61000 31.31000 24.00500 0.50515 0.83332  

Jan 1.19974 18.21000 34.16000 25.05500 0.48395 0.88333  

Feb 0.60876 10.37000 30.06000 24.87500 0.31735 0.86667  

Mar 0.65336 15.07000 28.97000 21.43500 0.57980 0.70834  

Apr 0.52975 18.44000 25.84000 16.62000 0.53860 0.67499  

May 0.41868 21.69000 25.89000 15.04500 0.46415 0.76668  

Jun 0.34403 17.97000 19.04000 10.05500 0.56380 0.64999  

Jul 0.33626 17.36000 19.54000 10.86000 0.51400 0.60835  

Aug 0.44506 21.46000 25.57000 14.84000 0.36290 0.63333  

Sep 0.60126 19.10000 27.35000 17.80000 0.44445 0.67500  

Oct 0.89993 20.27000 33.01000 22.87500 0.37410 0.81666  

Nov 1.32111 20.09000 31.32000 21.27500 0.35805 0.95834  

Dec 1.39387 19.56000 36.26000 26.48000 0.36710 0.80832  

Jan 1.17283 15.34000 33.38000 25.71000 0.49945 0.74166  

Feb 0.97668 17.14000 34.08000 25.51000 0.46020 0.82500  

Mar 1.51876 16.60000 31.16000 22.86000 0.47910 0.75834  

Apr 0.53218 15.39000 25.83000 18.13500 0.59740 0.65833  

May 0.68596 15.49000 21.63000 13.88500 0.61090 0.64168  

Jun 1.17839 17.04000 19.64000 11.12000 0.57380 0.54166  

Jul 1.61192 17.48000 18.31000 9.57000 0.52095 0.72501  

Aug 1.79897 19.39000 22.59000 12.89500 0.46420 0.77500  

Sep 2.14690 19.52000 26.43000 16.67000 0.39610 0.70000  

Oct 2.47778 20.17000 29.98000 19.89500 0.36410 0.88333  

Nov 2.07334 17.08000 32.04000 23.50000 0.47870 0.86668  

Dec 2.74585 17.92000 34.52000 25.56000 0.44945 0.84165  

Jan 1.02099 14.82000 30.28000 22.87000 0.58510 0.68333  

Feb 0.72074 11.82000 28.23000 22.32000 0.67960 0.55000  

Mar 0.99632 19.03000 30.74000 21.22500 0.53370 0.79167  

Apr 1.00214 17.54000 26.66000 17.89000 0.54615 0.68333  

May 1.38893 20.10000 23.92000 13.87000 0.51680 0.70001  

Jun 1.71371 21.02000 21.25000 10.74000 0.47955 0.73332  

Jul 1.75391 21.61000 22.02000 11.21500 0.41680 0.72501  

Aug 1.31568 20.42000 22.74000 12.53000 0.37520 0.78333  

Sep 0.85644 20.88000 29.07000 18.63000 0.34250 0.78334  

Oct 0.90352 18.02000 27.22000 18.21000 0.44710 0.81666  

Nov 1.16751 19.82000 31.60000 21.69000 0.38710 0.85834  

Dec 1.02470 18.25000 32.65000 23.52500 0.44975 0.82499  

Jan 0.91884 17.87000 33.63000 24.69500 0.44060 0.84999  

Feb 0.72876 15.23000 30.95000 23.33500 0.58490 0.72500  

Mar 0.72249 15.19000 28.52000 20.92500 0.61315 0.58334  

Apr 0.71199 14.28000 25.09000 17.95000 0.64985 0.60000  

May 0.45647 18.58000 22.23000 12.94000 0.58420 0.69168  

Jun 0.73047 21.31000 21.04000 10.38500 0.51950 0.71666  

 

 



Table 2: Monthly averages for Cape Town, Western Cape (January 2007 - June 2018) 
 

Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

 Jan 1.46576 9.36000 26.63000 21.95000 0.68835 0.97150 

 Feb 0.99994 8.40000 25.08000 20.88000 0.71390 0.89369 

 Mar 0.65483 9.90000 25.25000 20.30000 0.69005 0.84649 

 Apr 0.38226 9.42000 22.90000 18.19000 0.72821 0.66639 

 May 0.72389 8.95000 20.92000 16.44500 0.74614 0.60027 

 Jun 0.15965 7.03000 18.10000 14.58500 0.72002 0.45808 

 Jul 0.72014 9.09000 17.74000 13.19500 0.70728 0.55786 

 Aug 0.27895 7.27000 17.56000 13.92500 0.71996 0.51530 

 Sep 0.48747 7.69000 18.86000 15.01500 0.72115 0.65756 

 Oct 0.81316 8.39000 21.61000 17.41500 0.69891 0.80913 

 Nov 1.14148 6.93000 20.41000 16.94500 0.74416 0.78058 

 Dec 1.58273 8.43000 24.70000 20.48500 0.71672 0.91311 

 Jan 1.45041 8.20000 24.85000 20.75000 0.72658 0.95753 

 Feb 0.92286 8.09000 25.28000 21.23500 0.74009 0.82854 

 Mar 0.70851 9.78000 25.39000 20.50000 0.70069 0.89275 

 Apr 0.39225 9.16000 23.19000 18.61000 0.70271 0.73916 

 May 0.19434 6.26000 20.62000 17.49000 0.76066 0.42664 

 Jun 0.15627 5.53000 17.32000 14.55500 0.74939 0.42306 

 Jul 0.18068 6.97000 17.02000 13.53500 0.74216 0.47233 

 Aug 0.29500 7.45000 17.90000 14.17500 0.71635 0.63871 

 Sep 0.44807 7.21000 17.11000 13.50500 0.68299 0.57277 

 Oct 0.85482 7.84000 20.49000 16.57000 0.71330 0.83065 

 Nov 1.23690 8.31000 22.36000 18.20500 0.70988 0.85222 

 Dec 0.31505 8.09000 24.44000 20.39500 0.71378 0.90800 

 Jan 1.20118 8.01000 25.01000 21.00500 0.71969 0.97259 

 Feb 1.08126 9.59000 26.70000 21.90500 0.67762 0.92704 

 Mar 0.70585 9.98000 26.20000 21.21000 0.63090 0.79894 

 Apr 0.38642 8.89000 23.55000 19.10500 0.72330 0.56552 

 May 0.23361 8.14000 20.18000 16.11000 0.73613 0.50216 

 Jun 0.18304 6.34000 18.42000 15.25000 0.72107 0.44720 

 Jul 0.72233 8.25000 19.28000 15.15500 0.69009 0.56592 

 Aug 0.31773 7.59000 18.06000 14.26500 0.71837 0.55296 

 Sep 0.48278 6.45000 17.94000 14.71500 0.75366 0.56859 

 Oct 0.88823 7.85000 21.54000 17.61500 0.70626 0.79488 

 Nov 1.24995 8.02000 22.46000 18.45000 0.68851 0.82447 

 Dec 1.75145 8.48000 23.88000 19.64000 0.69210 0.95378 

 Jan 1.54143 8.48000 25.44000 21.20000 0.69977 0.94006 

 Feb 1.09524 8.98000 26.42000 21.93000 0.70433 0.83922 

 Mar 0.65750 8.81000 25.48000 21.07500 0.72619 0.78388 

 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Apr 0.41666 8.72000 22.40000 18.04000 0.72491 0.72580 

 May 0.23861 7.50000 19.81000 16.06000 0.73848 0.50945 

 Jun 0.19510 7.34000 18.72000 15.05000 0.70539 0.49857 

 Jul 0.25232 8.53000 18.35000 14.08500 0.68371 0.60920 

 Aug 0.35063 8.34000 19.04000 14.87000 0.70951 0.59384 

 Sep 0.55095 7.99000 19.46000 15.46500 0.70226 0.66810 

 Oct 0.88115 7.55000 20.32000 16.54500 0.71809 0.74580 

 Nov 1.37751 7.80000 21.83000 17.93000 0.70886 0.81081 

 Dec 1.71816 8.04000 24.25000 20.23000 0.71285 0.92001 

 Jan 1.64673 9.23000 26.10000 21.48500 0.70569 0.95240 

 Feb 1.14691 9.36000 27.22000 22.54000 0.73423 0.94405 

 Mar 0.68517 9.47000 26.05000 21.31500 0.70562 0.74437 

 Apr 0.44246 8.76000 21.47000 17.09000 0.69681 0.73751 

 May 0.23936 8.08000 20.50000 16.46000 0.72473 0.44194 

 Jun 0.18931 6.23000 17.53000 14.41500 0.75745 0.46526 

 Jul 0.26807 7.73000 18.60000 14.73500 0.68344 0.63011 

 Aug 0.35545 8.20000 18.06000 13.96000 0.66862 0.60349 

 Sep 0.55970 7.55000 18.53000 14.75500 0.73254 0.61386 

 Oct 0.88626 7.35000 20.25000 16.57500 0.68955 0.70808 

 Nov 1.44279 7.66000 21.19000 17.36000 0.68938 0.89949 

 Dec 1.86220 7.78000 23.34000 19.45000 0.70689 0.97014 

 Jan 1.62768 8.62000 26.64000 22.33000 0.71691 0.95858 

 Feb 1.17486 8.83000 25.44000 21.02500 0.68295 0.92057 

 Mar 0.73752 8.53000 25.35000 21.08500 0.71172 0.79894 

 Apr 0.42304 8.39000 22.38000 18.18500 0.70192 0.66083 

 May 0.28738 8.05000 19.31000 15.28500 0.75005 0.58630 

 Jun 0.19992 6.65000 17.43000 14.10500 0.76442 0.47222 

 Jul 0.22548 6.75000 16.70000 13.32500 0.72884 0.50600 

 Aug 0.32576 6.47000 15.92000 12.68500 0.69915 0.55106 

 Sep 0.57440 7.78000 18.43000 14.54000 0.71439 0.64425 

 Oct 0.87998 6.73000 19.21000 15.84500 0.70812 0.80378 

 Nov 1.53871 8.82000 22.82000 18.41000 0.69464 0.87167 

 Dec 1.88745 8.73000 26.09000 21.72500 0.70797 0.91399 

 Jan 1.73192 8.32000 25.25000 21.09000 0.69025 0.99649 

 Feb 1.16724 10.41000 26.02000 20.81500 0.62739 0.92644 

 Mar 0.55414 7.87000 24.13000 20.19500 0.65711 0.75298 

 Apr 0.31291 9.27000 22.21000 17.57500 0.69503 0.69917 

 May 0.71928 8.29000 20.78000 16.63500 0.72901 0.57586 

 Jun 0.13625 6.67000 17.37000 14.03500 0.72455 0.50696 

 Jul 0.16074 6.50000 17.56000 14.31000 0.74850 0.55241 

 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Aug 0.21129 6.88000 16.88000 13.44000 0.72169 0.51640 

 Sep 0.35677 6.49000 16.62000 13.37500 0.73350 0.63281 

 Oct 0.60407 7.29000 20.17000 16.52500 0.73348 0.77044 

 Nov 0.93056 7.63000 22.20000 18.38500 0.73567 0.86166 

 Dec 1.21201 8.58000 25.42000 21.13000 0.68733 0.98116 

 Jan 1.06466 8.36000 25.57000 21.39000 0.73645 0.91449 

 Feb 0.76065 9.36000 26.86000 22.18000 0.72146 0.94314 

 Mar 0.44945 7.54000 22.67000 18.90000 0.75686 0.75055 

 Apr 0.73029 9.69000 25.40000 20.55500 0.67271 0.74414 

 May 0.16833 7.24000 19.85000 16.23000 0.74257 0.47528 

 Jun 0.71208 7.51000 17.59000 13.83500 0.69951 0.47502 

 Jul 0.71356 6.94000 17.00000 13.53000 0.73790 0.47985 

 Aug 0.20487 6.74000 18.52000 15.15000 0.73508 0.51210 

 Sep 0.33176 7.83000 19.72000 15.80500 0.69437 0.66359 

 Oct 0.60172 9.26000 22.99000 18.36000 0.70749 0.85862 

 Nov 0.88737 8.08000 22.95000 18.91000 0.70577 0.90807 

 Dec 1.05821 8.06000 24.00000 19.97000 0.71593 0.97636 

 Jan 0.98211 9.19000 26.23000 21.63500 0.70547 0.93895 

 Feb 0.70136 8.50000 24.69000 20.44000 0.68606 0.92799 

 Mar 0.44945 9.26000 25.81000 21.18000 0.69911 0.80727 

 Apr 0.72716 9.45000 23.13000 18.40500 0.69319 0.71094 

 May 0.71368 7.42000 20.79000 17.08000 0.72967 0.45513 

 Jun 0.13047 6.44000 17.32000 14.10000 0.75264 0.47724 

 Jul 0.14474 5.83000 15.97000 13.05500 0.74594 0.53171 

 Aug 0.18481 6.64000 17.93000 14.61000 0.76216 0.49220 

 Sep 0.71123 8.50000 19.95000 15.70000 0.00000 0.58029 

 Oct 0.82967 10.00000 23.61000 18.61000 0.66005 0.75781 

 Nov 1.28410 9.55000 23.21000 18.43500 0.62350 0.88304 

 Dec 1.63897 9.90000 26.73000 21.78000 0.64920 0.98763 

 Jan 1.45994 9.81000 28.11000 23.20500 0.66855 0.97661 

 Feb 1.00503 10.11000 27.25000 22.19500 0.65040 0.90448 

 Mar 0.63950 9.52000 24.95000 20.19000 0.66910 0.75537 

 Apr 0.38420 9.44000 23.27000 18.55000 0.68245 0.63478 

 May 0.72591 9.54000 21.69000 16.92000 0.70725 0.57659 

 Jun 0.71751 7.61000 18.20000 14.39500 0.67965 0.42972 

 Jul 0.72100 8.23000 18.45000 14.33500 0.66240 0.47663 

 Aug 0.35090 9.15000 20.33000 15.75500 0.65585 0.64840 

 Sep 0.48904 8.32000 19.57000 15.41000 0.65430 0.63612 

 Oct 0.85404 9.57000 22.26000 17.47500 0.62105 0.79762 

 Nov 1.35240 9.42000 23.88000 19.17000 0.62080 0.90223 

 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Dec 1.65389 10.09000 25.99000 20.94500 0.64650 0.95270 

 Jan 1.41549 9.38000 25.68000 20.99000 0.63350 0.94570 

 Feb 1.04272 10.28000 26.69000 21.55000 0.62930 0.96466 

 Mar 0.68551 10.90000 26.42000 20.97000 0.62175 0.83010 

 Apr 0.40251 11.14000 26.06000 20.49000 0.61035 0.72828 

 May 0.72649 10.39000 22.95000 17.75500 0.63460 0.63227 

 Jun 0.71770 8.05000 18.13000 14.10500 0.64930 0.48138 

 Jul 0.72326 8.42000 18.26000 14.05000 0.66615 0.60674 

 Aug 0.31453 7.17000 18.00000 14.41500 0.66235 0.53981 

 Sep 0.48528 8.65000 20.41000 16.08500 0.64090 0.66190 

 Oct 0.84067 9.05000 20.92000 16.39500 0.61505 0.75294 

 Nov 1.27808 9.35000 22.91000 18.23500 0.63240 0.83555 

 Dec 1.64700 9.60000 24.97000 20.17000 0.61795 0.94379 

 Jan 1.35252 9.32000 26.65000 21.99000 0.64545 0.95943 

 Feb 1.03848 10.79000 27.16000 21.76500 0.61510 0.90412 

 Mar 0.58481 9.14000 24.31000 19.74000 0.65355 0.71369 

 Apr 0.38920 9.58000 23.31000 18.52000 0.65455 0.67839 

 May 0.72178 8.13000 21.39000 17.32500 0.66810 0.49301 

 Jun 0.16350 7.13000 18.68000 15.11500 0.65950 0.71666 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3: Monthly averges for Durban, KwaZulu-Natal (January 2007 - June 2018) 
 

Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

 Jan 0.94319 10.83000 28.08000 22.66500 0.76815 0.67310 

 Feb 0.75562 11.59000 29.27000 23.47500 0.75805 0.72054 

 Mar 0.52721 10.30000 26.36000 21.21000 0.76895 0.57771 

 Apr 0.34105 11.52000 25.33000 19.57000 0.74310 0.54140 

 May 0.34141 17.31000 25.67000 17.01500 0.58945 0.74330 

 Jun 0.26752 15.51000 21.61000 13.85500 0.63435 0.62055 

 Jul 0.32535 17.04000 22.64000 14.12000 0.58705 0.71534 

 Aug 0.38039 21.18000 28.77000 18.18000 0.61385 0.63682 

 Sep 0.43212 11.57000 24.26000 18.47500 0.72940 0.48525 

 Oct 0.50719 9.48000 22.65000 17.91000 0.78055 0.38792 

 Nov 0.73548 9.18000 23.84000 19.25000 0.80585 0.46025 

 Dec 0.99921 9.66000 25.21000 20.38000 0.82765 0.60508 

 Jan 0.81531 9.31000 26.68000 22.02500 0.79535 0.48922 

 Feb 0.67205 9.61000 27.59000 22.78500 0.76685 0.62652 

 Mar 0.51424 10.44000 26.43000 21.21000 0.75315 0.58173 

 Apr 0.36305 11.31000 23.53000 17.87500 0.72535 0.59360 

 May 0.26688 14.95000 25.54000 18.06500 0.68005 0.66774 

 Jun 0.22687 15.29000 22.16000 14.51500 0.68585 0.58499 

 Jul 0.27611 18.48000 23.73000 14.49000 0.60900 0.70459 

 Aug 0.32544 16.34000 24.93000 16.76000 0.64965 0.59169 

 Sep 0.48376 32.54000 41.05000 24.78000 0.63160 0.60028 

 Oct 0.50137 38.53000 51.62000 32.35500 0.75490 0.39060 

 Nov 0.35768 11.92000 28.66000 22.70000 0.77590 0.36475 

 Dec 0.60103 10.37000 27.60000 22.41500 0.77575 0.37472 

 Jan 0.74764 10.55000 27.60000 22.32500 0.79955 0.32527 

 Feb 0.66354 10.01000 27.23000 22.22500 0.79490 0.47736 

 Mar 0.57117 11.67000 27.38000 21.54500 0.75640 0.63360 

 Apr 0.41872 13.50000 26.14000 19.39000 0.72390 0.61389 

 May 0.27613 14.75000 24.52000 17.14500 0.68530 0.62932 

 Jun 0.16821 14.85000 22.04000 14.61500 0.65700 0.56279 

 Jul 0.42481 18.08000 22.47000 13.43000 0.59455 0.69624 

 Aug 0.52753 16.37000 23.94000 15.75500 0.64745 0.64221 

 Sep 0.66394 18.03000 27.26000 18.24500 0.61740 0.51670 

 Oct 0.71990 8.73000 22.70000 18.33500 0.83800 0.38332 

 Nov 0.78089 10.10000 25.76000 20.71000 0.79615 0.38004 

 Dec 0.77331 11.18000 28.40000 22.81000 0.77660 0.33954 

 Jan 0.77961 12.79000 30.56000 24.16500 0.72710 0.40243 

 Feb 0.52151 12.31000 28.65000 22.49500 0.73860 0.71278 

 Mar 0.38504 13.77000 27.46000 20.57500 0.68970 0.61292 

 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Apr 0.30064 16.40000 26.68000 18.48000 0.65200 0.62863 

 May 0.23807 16.36000 22.53000 14.35000 0.62590 #N/A 

 Jun 0.26696 17.29000 23.49000 14.84500 0.60905 #N/A 

 Jul 0.37141 18.21000 25.38000 16.27500 0.58405 #N/A 

 Aug 0.46214 15.47000 27.46000 19.72500 0.64400 #N/A 

 Sep 0.50101 11.91000 25.86000 19.90500 0.73235 #N/A 

 Oct 0.69390 10.55000 25.10000 19.82500 0.77145 #N/A 

 Nov 0.72943 9.58000 25.39000 20.60000 0.80375 #N/A 

 Dec 0.81438 9.46000 26.98000 22.25000 0.79250 #N/A 

 Jan 0.77071 11.20000 28.47000 22.87000 0.74245 #N/A 

 Feb 0.54112 13.37000 30.76000 24.07500 0.70880 #N/A 

 Mar 0.33807 11.27000 23.98000 18.34500 0.74795 #N/A 

 Apr 0.26037 12.88000 22.83000 16.39000 0.70280 #N/A 

 May 0.23515 15.06000 20.71000 13.18000 0.66045 #N/A 

 Jun 0.35714 14.73000 24.82000 17.45500 0.56405 #N/A 

 Jul 0.44503 14.96000 25.45000 17.97000 0.63505 #N/A 

 Aug 0.59197 19.68000 29.48000 19.64000 0.63160 #N/A 

 Sep 0.82385 14.33000 29.85000 22.68500 0.22890 #N/A 

 Oct 0.91659 18.40000 28.00000 18.80000 0.56495 #N/A 

 Nov 0.64110 11.40000 29.33000 23.63000 0.36870 #N/A 

 Dec 0.47281 12.51000 28.29000 22.03500 0.63920 #N/A 

 Jan 0.36712 14.74000 25.91000 18.54000 0.72545 #N/A 

 Feb 0.26162 15.65000 25.86000 18.03500 0.70035 #N/A 

 Mar 0.23904 17.62000 23.42000 14.61000 0.69790 #N/A 

 Apr 0.27908 17.36000 22.99000 14.31000 0.66855 #N/A 

 May 0.30933 14.86000 23.83000 16.40000 0.67635 #N/A 

 Jun 0.39458 11.27000 21.90000 16.26500 0.73210 #N/A 

 Jul 0.42351 9.61000 22.86000 18.05500 0.80080 #N/A 

 Aug 0.61968 10.63000 24.36000 19.04500 0.85090 #N/A 

 Sep 0.86982 10.93000 27.78000 22.31500 0.84565 #N/A 

 Oct 0.75184 10.64000 27.78000 22.46000 0.85210 #N/A 

 Nov 0.65270 11.79000 28.72000 22.82500 0.69925 #N/A 

 Dec 0.45826 10.39000 26.73000 21.53500 0.71675 #N/A 

 Jan 0.36468 13.80000 26.07000 19.17000 0.74520 #N/A 

 Feb 0.27663 15.34000 24.49000 16.82000 0.68410 #N/A 

 Mar 0.23831 17.77000 23.35000 14.46500 0.65895 #N/A 

 Apr 0.23306 14.44000 22.27000 15.05000 0.61215 #N/A 

 May 0.34420 17.84000 24.76000 15.84000 0.68970 #N/A 

 Jun 0.43962 16.33000 25.87000 17.70500 0.61170 #N/A 

 Jul 0.56068 13.82000 25.75000 18.84000 0.64855 #N/A 

 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Aug 0.75828 12.38000 26.98000 20.79000 0.70245 #N/A 

 Sep 0.74641 10.22000 26.15000 21.04000 0.72795 #N/A 

 Oct 0.89652 11.46000 29.56000 23.83000 0.76745 #N/A 

 Nov 0.63607 10.65000 27.74000 22.41500 0.73045 #N/A 

 Dec 0.48261 12.11000 28.80000 22.74500 0.70305 #N/A 

 Jan 0.37282 14.75000 27.38000 20.00500 0.72675 #N/A 

 Feb 0.27038 16.64000 26.71000 18.39000 0.65725 #N/A 

 Mar 0.22979 18.60000 24.51000 15.21000 0.62810 #N/A 

 Apr 0.26349 18.25000 23.77000 14.64500 0.57980 #N/A 

 May 0.31937 15.59000 25.02000 17.22500 0.55825 #N/A 

 Jun 0.46845 16.61000 27.64000 19.33500 0.60775 #N/A 

 Jul 0.49300 11.19000 23.92000 18.32500 0.64615 #N/A 

 Aug 0.57170 4.41000 23.36000 21.15500 0.72860 #N/A 

 Sep 0.60937 10.79000 27.78000 22.38500 0.89900 #N/A 

 Oct 0.45668 12.42000 28.82000 22.61000 0.77000 #N/A 

 Nov 0.31852 12.08000 25.08000 19.04000 0.72310 #N/A 

 Dec 0.24061 16.48000 27.14000 18.90000 0.73155 #N/A 

 Jan 0.21665 16.79000 23.61000 15.21500 0.64175 #N/A 

 Feb 0.21401 14.91000 22.63000 15.17500 0.60490 #N/A 

 Mar 0.31356 15.41000 25.67000 17.96500 0.67280 #N/A 

 Apr 0.35945 12.47000 25.15000 18.91500 0.62525 #N/A 

 May 0.59233 13.95000 28.46000 21.48500 0.71840 #N/A 

 Jun 0.69077 12.01000 26.11000 20.10500 0.69830 #N/A 

 Jul 0.87781 10.86000 29.01000 23.58000 0.72985 #N/A 

 Aug 0.75044 10.85000 28.69000 23.26500 0.75985 #N/A 

 Sep 0.67089 12.57000 30.01000 23.72500 0.76975 #N/A 

 Oct 0.46712 11.54000 28.82000 23.05000 0.68565 #N/A 

 Nov 0.30684 13.01000 27.50000 20.99500 1.00000 #N/A 

 Dec 0.26412 15.17000 25.11000 17.52500 0.69860 #N/A 

 Jan 0.22273 15.98000 23.56000 15.57000 0.63680 #N/A 

 Feb 0.23405 14.77000 21.28000 13.89500 0.63475 #N/A 

 Mar 0.35741 16.95000 25.01000 16.53500 0.62275 #N/A 

 Apr 0.37296 11.14000 23.42000 17.85000 0.56350 #N/A 

 May 0.49919 10.45000 23.16000 17.93500 0.68955 #N/A 

 Jun 0.56960 9.29000 24.37000 19.72500 0.71685 #N/A 

 Jul 0.93277 11.92000 28.80000 22.84000 0.74555 #N/A 

 Aug 0.78078 11.36000 28.31000 22.63000 0.67815 #N/A 

 Sep 0.57571 10.70000 28.64000 23.29000 0.69765 #N/A 

 Oct 0.51677 12.99000 29.43000 22.93500 0.71555 #N/A 

 Nov 0.36468 13.05000 26.64000 20.11500 0.66160 #N/A 

 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So  

Dec 0.26512 14.60000 25.37000 18.07000 0.66135 #N/A 

 Jan 0.24805 16.72000 24.10000 15.74000 0.63960 #N/A 

 Feb 0.24741 16.39000 23.67000 15.47500 0.58875 #N/A 

 Mar 0.33205 15.15000 23.78000 16.20500 0.59925 #N/A 

 Apr 0.42221 14.49000 26.22000 18.97500 0.58770 #N/A 

 May 0.59488 12.33000 24.28000 18.11500 0.63840 #N/A 

 Jun 0.78868 11.89000 25.46000 19.51500 0.68185 #N/A 

 Jul 0.83984 10.26000 25.58000 20.45000 0.68265 #N/A 

 Aug 0.90072 12.38000 29.33000 23.14000 0.71060 #N/A 

 Sep 0.67630 11.19000 28.72000 23.12500 0.67210 #N/A 

 Oct 0.45984 11.02000 27.33000 21.82000 0.69885 #N/A 

 Nov 0.31363 11.12000 26.24000 20.68000 0.71830 #N/A 

 Dec 0.25862 13.57000 24.07000 17.28500 0.69910 #N/A 

 Jan 0.25511 16.33000 23.48000 15.31500 0.64550 #N/A 

 Feb 1.03848 10.79000 27.16000 21.76500 0.60030 #N/A 

 Mar 0.58481 9.14000 24.31000 19.74000 0.65355 #N/A 

 Apr 0.38920 9.58000 23.31000 18.52000 0.65455 #N/A 

 May 0.21785 8.13000 21.39000 17.32500 0.66810 #N/A 

 Jun 0.71635 7.13000 18.68000 15.11500 0.65950 #N/A 

  
*#N/A - Data was not measured during this month 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Monthly averages for Johannesburg, Gauteng (January 2007 - June 2018) 
 

Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Jan 0.66154 13.74000 27.38000 20.51000 0.65565 0.81747 

Feb 0.53609 15.18000 28.56000 20.97000 0.60785 0.87501 

Mar 0.60664 15.20000 27.27000 19.67000 0.61100 0.69974 

Apr 0.42142 15.05000 23.93000 16.40500 0.62910 0.72873 

May 0.36781 17.19000 21.12000 12.52500 0.45985 0.84545 

Jun 0.29999 15.16000 17.54000 9.96000 0.59690 0.77758 

Jul 0.33048 16.74000 17.86000 9.49000 0.50325 0.78765 

Aug 0.40463 17.14000 21.10000 12.53000 0.46000 0.79785 

Sep 0.52816 16.13000 26.60000 18.53500 0.48655 0.76527 

Oct 0.56457 11.38000 22.10000 16.41000 0.74425 0.66518 

Nov 0.85667 12.52000 25.58000 19.32000 0.66720 0.68845 

Dec 0.97805 11.81000 24.91000 19.00500 0.71390 0.63654 

Jan 0.73872 9.75000 23.90000 19.02500 0.78660 0.64735 

Feb 0.79204 12.91000 26.20000 19.74500 0.69575 0.77439 

Mar 0.44191 11.83000 23.63000 17.71500 0.74010 0.63796 

Apr 0.42088 14.75000 22.23000 14.85500 0.62970 0.76692 

May 0.29952 14.10000 20.34000 13.29000 0.65695 0.69251 

Jun 0.28915 15.71000 18.36000 10.50500 0.62085 0.75220 

Jul 0.30130 15.69000 17.94000 10.09500 0.57340 0.73345 

Aug 0.37734 35.27000 35.32000 17.68500 0.49625 0.78467 

Sep 0.55002 18.33000 25.27000 16.10500 0.49305 0.82056 

Oct 0.68119 15.27000 27.33000 19.69500 0.58860 0.76343 

Nov 0.80675 14.20000 28.29000 21.19000 0.64495 0.67243 

Dec 0.94208 13.17000 28.04000 21.45500 0.68770 0.64113 

Jan 0.77646 10.90000 26.87000 21.42000 0.75865 0.56526 

Feb 0.55775 11.71000 26.14000 20.28500 0.76065 0.61125 

Mar 0.50635 12.76000 24.45000 18.07000 0.72125 0.60995 

Apr 0.43561 14.95000 23.42000 15.94500 0.64960 0.75970 

May 0.31810 14.50000 19.87000 12.62000 0.65775 0.68413 

Jun 0.28373 13.78000 17.76000 10.87000 0.62045 0.64108 

Jul 0.33971 16.18000 16.14000 8.05000 0.56060 0.78201 

Aug 0.41644 16.42000 19.92000 11.71000 0.58695 0.80754 

Sep 0.53137 16.08000 25.24000 17.20000 0.51430 0.75369 

Oct 0.66507 13.33000 25.61000 18.94500 0.66470 0.62848 

Nov 0.81371 12.30000 24.54000 18.39000 0.72940 0.71107 

Dec 1.09227 12.88000 26.78000 20.34000 0.73765 0.79695 

Jan 0.72473 9.95000 25.20000 20.22500 0.80100 0.44970 

Feb 0.75919 12.34000 26.44000 20.27000 0.73365 0.72526 

Mar 0.52458 12.52000 25.66000 19.40000 0.74255 0.64334 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Apr 0.32905 10.58000 21.68000 16.39000 0.78355 0.61034 

May 0.32162 14.60000 20.86000 13.56000 0.67315 0.72775 

Jun 0.31428 16.94000 17.89000 9.42000 0.51290 0.76860 

Jul 0.31402 15.37000 17.67000 9.98500 0.55680 0.68793 

Aug 0.43796 17.37000 21.35000 12.66500 0.46375 0.84328 

Sep 0.58063 17.82000 26.15000 17.24000 0.45180 0.82750 

Oct 0.74190 16.35000 27.83000 19.65500 0.50530 0.79220 

Nov 0.80880 13.11000 26.31000 19.75500 0.62955 0.63705 

Dec 0.97131 12.16000 26.34000 20.26000 0.64875 0.69862 

Jan 0.82905 10.01000 24.93000 19.92500 0.71030 0.49769 

Feb 0.73392 12.28000 25.71000 19.57000 0.65990 0.66579 

Mar 0.56227 13.20000 26.30000 19.70000 0.64025 0.60331 

Apr 0.34993 11.09000 21.06000 15.51500 0.69955 0.52069 

May 0.33292 13.75000 19.86000 12.98500 0.59835 0.70807 

Jun 0.31822 15.41000 17.19000 9.48500 0.51440 0.75612 

Jul 0.33322 16.11000 16.36000 8.30500 0.50205 0.78139 

Aug 0.42379 16.10000 20.06000 12.01000 0.48695 0.79945 

Sep 0.58733 17.04000 24.98000 16.46000 0.42870 0.82224 

Oct 0.77243 14.71000 25.77000 18.41500 0.51645 0.82340 

Nov 0.98267 13.80000 26.49000 19.59000 0.57235 0.80472 

Dec 0.96141 11.39000 25.72000 20.02500 0.66065 0.66094 

Jan 1.00419 12.32000 26.62000 20.46000 0.65535 0.69973 

Feb 0.76893 12.82000 27.56000 21.15000 0.63045 0.63662 

Mar 0.58658 13.70000 25.88000 19.03000 0.60340 0.70108 

Apr 0.41579 14.75000 22.39000 15.01500 0.57980 0.76053 

May 0.35476 16.74000 22.25000 13.88000 0.48945 0.79786 

Jun 0.24753 15.80000 17.76000 9.86000 0.51955 0.72354 

Jul 0.29805 16.64000 19.07000 10.75000 0.46045 0.78846 

Aug 0.38076 16.38000 21.45000 13.26000 0.41280 0.78253 

Sep 0.52262 14.83000 22.21000 14.79500 0.55290 0.76786 

Oct 0.67947 13.14000 24.61000 18.04000 0.59105 0.69408 

Nov 0.97490 13.50000 25.93000 19.18000 0.59530 0.78582 

Dec 0.94388 11.45000 25.70000 19.97500 0.65030 0.62251 

Jan 0.95330 12.13000 26.89000 20.82500 0.65345 0.71032 

Feb 0.84005 14.36000 27.94000 20.76000 0.61980 0.82335 

Mar 0.51091 13.84000 26.04000 19.12000 0.62230 0.60807 

Apr 0.41713 13.29000 21.93000 15.28500 0.61270 0.71378 

May 0.35501 15.34000 21.01000 13.34000 0.50725 0.75403 

Jun 0.33792 17.28000 19.61000 10.97000 0.49180 0.81806 

Jul 0.33721 15.48000 18.80000 11.06000 0.49690 0.75322 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Aug 0.44163 16.08000 19.87000 11.83000 0.47765 0.82338 

Sep 0.53807 16.51000 25.47000 17.21500 0.41220 0.76811 

Oct 0.72509 15.23000 25.55000 17.93500 0.55875 0.81946 

Nov 0.90617 14.52000 26.88000 19.62000 0.56505 0.81089 

Dec 0.73837 10.47000 24.66000 19.42500 0.69245 0.63946 

Jan 0.85237 12.31000 27.45000 21.29500 0.61995 0.72279 

Feb 0.69565 11.86000 26.51000 20.58000 0.65755 0.73055 

Mar 0.43219 9.58000 23.41000 18.62000 0.74935 0.51216 

Apr 0.41204 14.24000 22.13000 15.01000 0.60075 0.73275 

May 0.34246 16.31000 21.94000 13.78500 0.51680 0.77233 

Jun 0.31132 17.19000 18.87000 10.27500 0.45395 0.77195 

Jul 0.31177 16.49000 17.94000 9.69500 0.45280 0.80728 

Aug 0.34822 15.21000 20.34000 12.73500 0.43895 0.77607 

Sep 0.50747 17.01000 26.07000 17.56500 0.39625 0.84307 

Oct 0.67947 16.49000 26.32000 18.07500 0.50815 0.82662 

Nov 0.66030 12.00000 24.12000 18.12000 0.63000 0.65096 

Dec 0.76311 11.46000 25.84000 20.11000 0.66985 0.64937 

Jan 0.80445 12.26000 27.04000 20.91000 0.63700 0.64112 

Feb 0.78121 14.71000 28.32000 20.96500 0.59610 0.78569 

Mar 0.51638 13.17000 25.85000 19.26500 0.62855 0.62138 

Apr 0.38393 13.46000 23.24000 16.51000 0.60345 0.61614 

May 0.36731 17.24000 23.58000 14.96000 0.46090 0.77688 

Jun 0.31575 15.39000 17.47000 9.77500 0.53745 0.72387 

Jul 0.32474 15.74000 18.57000 10.70000 0.51075 0.73979 

Aug 0.42694 17.70000 23.86000 15.01000 0.39690 0.81210 

Sep 0.49144 14.99000 24.71000 17.21500 0.50765 0.64211 

Oct 0.72509 16.36000 28.91000 20.73000 0.45390 0.83815 

Nov 0.99822 15.80000 28.00000 20.10000 0.43035 0.86964 

Dec 1.06034 14.06000 29.77000 22.74000 0.54405 0.79197 

Jan 0.97365 12.58000 27.76000 21.47000 0.61005 0.76011 

Feb 0.80720 12.85000 28.14000 21.71500 0.61670 0.87554 

Mar 0.59206 12.30000 26.02000 19.87000 0.62535 0.80630 

Apr 0.45542 14.48000 24.79000 17.55000 0.59455 0.84388 

May 0.34221 14.14000 19.78000 12.71000 0.61865 0.68559 

Jun 0.31477 14.81000 18.32000 10.91500 0.56955 0.58833 

Jul 0.35617 16.06000 17.98000 9.95000 0.50435 0.70537 

Aug 0.48572 17.88000 22.18000 13.24000 0.38530 0.62213 

Sep 0.57072 15.83000 25.28000 17.36500 0.46570 0.67844 

Oct 0.76797 16.36000 26.30000 18.12000 0.49665 0.74750 

Nov 0.85257 11.32000 26.19000 20.53000 0.60000 0.75618 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Dec 0.42873 8.00000 23.17000 19.17000 0.70605 0.82392 

Jan 0.68049 10.39000 25.12000 19.92500 0.60810 0.77499 

Feb 0.64160 14.15000 26.11000 19.03500 0.62370 0.76610 

Mar 0.41472 13.57000 23.07000 16.28500 0.54965 0.80386 

Apr 0.34221 14.64000 20.31000 12.99000 0.53195 0.66613 

May 0.34482 16.42000 19.41000 11.20000 0.49670 0.80242 

Jun 0.35442 16.24000 19.75000 11.63000 0.45820 0.48431 

Jul 0.45554 16.30000 20.78000 12.63000 0.44630 0.60890 

Aug 0.57422 17.06000 26.22000 17.69000 0.56155 0.58085 

Sep 0.72235 14.51000 24.59000 17.33500 0.52255 0.70829 

Oct 1.01908 15.09000 26.63000 19.08500 0.62925 0.78404 

Nov 1.00368 12.34000 26.13000 19.96000 0.57185 #N/A 

Dec 1.08646 14.06000 27.70000 20.67000 0.67045 #N/A 

Jan 0.71370 11.70000 25.72000 19.87000 0.67535 #N/A 

Feb 0.53796 12.47000 24.91000 18.67500 0.65265 #N/A 

Mar 0.38848 12.78000 23.04000 16.65000 0.55630 #N/A 

Apr 0.35175 14.90000 20.47000 13.02000 0.49530 #N/A 

May 0.34580 16.37000 19.00000 10.81500 #N/A #N/A 

Jun 0.71635 7.13000 18.68000 15.11500 #N/A #N/A 

 

*#N/A - Data was not measured during this month 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5: Monthly averages for Pietermaritzburg, KwaZulu-Natal (January 2007 - June 2018) 
 

Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Jan 0.94200 11.58000 28.30000 22.51000 0.68570 0.49166 

Feb 0.73764 11.93000 29.30000 23.33500 0.67240 0.66288 

Mar 0.52554 10.57000 25.97000 20.68500 0.69565 0.61250 

Apr 0.35743 10.77000 24.59000 19.20500 0.67390 0.49339 

May 0.32392 14.00000 24.89000 17.89000 0.47780 0.66840 

Jun 0.25641 12.66000 20.98000 14.65000 0.53805 0.61378 

Jul 0.34570 13.52000 22.00000 15.24000 0.47510 0.57501 

Aug 0.40009 14.39000 23.64000 16.44500 0.52790 0.73046 

Sep 0.43797 11.85000 24.87000 18.94500 0.64525 0.76667 

Oct 0.50255 9.66000 22.23000 17.40000 0.72045 0.65833 

Nov 0.75690 9.86000 23.54000 18.61000 0.74285 0.60584 

Dec 0.99460 10.01000 24.70000 19.69500 0.73440 0.79165 

Jan 0.83501 9.82000 26.35000 21.44000 0.72610 0.45000 

Feb 0.64886 10.10000 27.06000 22.01000 0.71430 0.62500 

Mar 0.46427 10.47000 25.84000 20.60500 0.69275 0.56380 

Apr 0.29203 10.85000 23.04000 17.61500 0.65465 0.53750 

May 0.22987 12.13000 23.92000 17.85500 0.60780 0.75501 

Jun 0.19480 11.19000 20.27000 14.67500 0.61530 0.60366 

Jul 0.24078 13.49000 22.04000 15.29500 0.48790 0.61668 

Aug 0.30740 13.63000 23.85000 17.03500 0.56675 0.70833 

Sep 0.44157 14.68000 24.23000 16.89000 0.55040 0.74167 

Oct 0.49420 10.41000 22.85000 17.64500 0.72265 0.57499 

Nov 0.68157 9.74000 24.17000 19.30000 0.74300 0.57501 

Dec 0.85508 9.91000 26.16000 21.20500 0.73315 0.74165 

Jan 0.70894 8.50000 24.72000 20.47000 0.79595 0.55833 

Feb 0.59946 9.67000 25.95000 21.11500 0.75540 0.67500 

Mar 0.49270 10.22000 25.54000 20.43000 0.72265 0.56667 

Apr 0.35499 12.01000 25.10000 19.09500 0.65360 0.55000 

May 0.25038 11.35000 22.81000 17.13500 0.63510 0.62501 

Jun 0.31266 11.68000 20.88000 15.04000 0.56215 0.62499 

Jul 0.30265 13.27000 20.97000 14.33500 0.49380 0.60835 

Aug 0.35731 13.59000 22.72000 15.92500 0.57500 0.65833 

Sep 0.41697 12.43000 23.02000 16.80500 0.62750 0.79167 

Oct 0.52470 10.00000 22.77000 17.77000 0.72515 0.62499 

Nov 0.62406 10.01000 23.68000 18.67500 0.70055 0.52501 

Dec 0.72652 9.26000 24.25000 19.62000 0.76375 0.81665 

Jan 0.69406 9.38000 25.95000 21.26000 0.75110 0.53333 

Feb 0.67202 10.48000 28.04000 22.80000 0.70785 0.72500 

Mar 0.42543 10.88000 27.12000 21.68000 0.70350 0.51667 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Apr 0.30913 10.89000 25.36000 19.91500 0.65105 0.44166 

May 0.27165 13.31000 25.69000 19.03500 0.56805 0.63334 

Jun 0.22183 12.63000 21.29000 14.97500 0.53900 0.69166 

Jul 0.25489 12.97000 22.29000 15.80500 0.52125 0.59168 

Aug 0.34305 14.29000 24.15000 17.00500 0.48905 0.71667 

Sep 0.43737 14.16000 26.63000 19.55000 0.57850 0.87500 

Oct 0.52216 11.49000 24.47000 18.72500 0.67910 0.50833 

Nov 0.71054 10.77000 25.04000 19.65500 0.71390 0.65001 

Dec 0.73649 8.76000 23.94000 19.56000 0.77215 1.02498 

Jan 0.71964 8.70000 25.51000 21.16000 0.76200 0.54166 

Feb 0.67434 10.63000 27.74000 22.42500 0.70030 0.61667 

Mar 0.52681 12.58000 30.03000 23.74000 0.65830 0.52500 

Apr 0.32161 9.55000 22.64000 17.86500 0.71155 0.62499 

May 0.25414 10.37000 21.74000 16.55500 0.64390 0.64168 

Jun 0.27832 11.71000 19.87000 14.01500 0.58160 0.67499 

Jul 0.28953 11.14000 17.80000 12.23000 0.63200 0.56668 

Aug 0.41647 12.52000 21.37000 15.11000 0.58835 0.54167 

Sep 0.56126 12.20000 23.83000 17.73000 0.63685 0.51667 

Oct 0.73313 11.34000 23.99000 18.32000 0.68540 0.50000 

Nov 0.76492 10.37000 24.21000 19.02500 0.74565 0.54167 

Dec 0.86953 9.97000 26.15000 21.16500 0.76595 0.82499 

Jan 0.92618 10.11000 27.96000 22.90500 0.73470 0.56666 

Feb 0.67743 10.47000 28.69000 23.45500 0.73340 0.55833 

Mar 0.52175 10.93000 27.29000 21.82500 0.70030 0.57500 

Apr 0.42311 12.13000 24.49000 18.42500 0.66170 0.61666 

May 0.29716 11.91000 24.40000 18.44500 0.62110 0.65834 

Jun 0.28271 12.24000 21.48000 15.36000 0.55385 0.64999 

Jul 0.32442 12.57000 21.49000 15.20500 0.55625 0.49168 

Aug 0.33592 12.35000 23.44000 17.26500 0.58595 0.57500 

Sep 0.41547 10.74000 21.61000 16.24000 0.70365 0.55000 

Oct 0.46697 8.69000 22.18000 17.83500 0.76885 0.69999 

Nov 0.70965 8.50000 22.63000 18.38000 0.77880 0.65834 

Dec 1.03198 9.43000 26.43000 21.71500 0.76295 0.85832 

Jan 0.85036 9.73000 26.81000 21.94500 0.77065 0.42500 

Feb 0.73340 10.67000 27.55000 22.21500 0.74135 0.57500 

Mar 0.48196 9.59000 25.78000 20.98500 0.74285 0.54167 

Apr 0.38322 11.56000 25.16000 19.38000 0.62955 0.52500 

May 0.29216 11.94000 23.32000 17.35000 0.58580 0.60001 

Jun 0.27224 13.01000 22.53000 16.02500 0.50935 0.61666 

Jul 0.27270 11.37000 21.26000 15.57500 0.63535 0.52501 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Aug 0.37897 13.78000 23.48000 16.59000 0.54655 0.59167 

Sep 0.45837 13.98000 25.13000 18.14000 0.60965 0.70000 

Oct 0.59624 12.14000 24.47000 18.40000 0.68225 0.65833 

Nov 0.84650 11.06000 25.64000 20.11000 0.72260 0.59167 

Dec 0.83615 8.29000 23.92000 19.77500 0.79350 0.95832 

Jan 0.95177 10.78000 28.59000 23.20000 0.72920 0.48333 

Feb 0.78242 11.10000 28.98000 23.43000 0.70950 0.65000 

Mar 0.51481 9.93000 26.67000 21.70500 0.74720 0.59167 

Apr 0.42013 11.73000 24.97000 19.10500 0.66750 0.60000 

May 0.31467 12.98000 24.93000 18.44000 0.68920 0.67501 

Jun 0.27686 14.00000 23.06000 16.06000 0.51875 0.63332 

Jul 0.30710 13.41000 21.83000 15.12500 0.48565 0.55834 

Aug 0.36154 12.77000 24.01000 17.62500 0.54440 0.62500 

Sep 0.53637 14.82000 27.18000 19.77000 0.59795 0.85834 

Oct 0.55702 10.31000 22.67000 17.51500 0.71630 0.67499 

Nov 0.66596 9.51000 23.43000 18.67500 0.75185 0.56667 

Dec 0.87850 10.08000 26.04000 21.00000 0.76685 0.96665 

Jan 0.91595 10.66000 27.76000 22.43000 0.75290 #N/A 

Feb 0.75038 9.67000 26.22000 21.38500 0.77645 #N/A 

Mar 0.56313 10.32000 27.08000 21.92000 0.72415 #N/A 

Apr 0.39570 10.35000 23.86000 18.68500 0.72045 #N/A 

May 0.34418 13.00000 25.81000 19.31000 0.58920 #N/A 

Jun 0.30292 12.11000 21.87000 15.81500 0.53405 #N/A 

Jul 0.28433 11.81000 21.36000 15.45500 0.62320 #N/A 

Aug 0.39798 12.63000 24.96000 18.64500 0.55570 #N/A 

Sep 0.43677 11.38000 24.47000 18.78000 0.68440 #N/A 

Oct 0.68883 13.45000 27.90000 21.17500 0.67680 #N/A 

Nov 0.80682 12.94000 26.55000 20.08000 0.47335 #N/A 

Dec 0.97517 11.87000 29.29000 23.35500 0.51060 #N/A 

Jan 0.81268 10.97000 28.38000 22.89500 0.81850 #N/A 

Feb 0.72722 12.24000 29.40000 23.28000 0.81005 #N/A 

Mar 0.51449 11.95000 28.95000 22.97500 0.80045 #N/A 

Apr 0.35879 12.75000 27.47000 21.09500 0.75020 #N/A 

May 0.29891 13.09000 24.39000 17.84500 0.73545 #N/A 

Jun 0.25495 12.48000 22.96000 16.72000 0.71430 #N/A 

Jul 0.26850 12.10000 20.72000 14.67000 0.66110 #N/A 

Aug 0.37817 13.94000 24.56000 17.59000 0.53640 #N/A 

Sep 0.39357 11.59000 23.50000 17.70500 0.72815 #N/A 

Oct 0.53305 10.82000 23.09000 17.68000 0.75765 #N/A 

Nov 0.63610 9.78000 24.18000 19.29000 0.79040 #N/A 



Month H/Ho ΔT (°C) Tmax (°C) Tave (°C) RH/100 S/So 

Dec 0.94477 13.04000 29.26000 22.74000 0.71400 #N/A 

Jan 0.82989 11.67000 28.05000 22.21500 0.74650 #N/A 

Feb 0.61104 10.88000 28.29000 22.85000 0.75780 #N/A 

Mar 0.54323 13.00000 29.30000 22.80000 0.69385 #N/A 

Apr 0.38756 12.72000 26.59000 20.23000 0.67325 #N/A 

May 0.29016 12.34000 24.50000 18.33000 0.64130 #N/A 

Jun 0.27272 13.38000 23.23000 16.54000 0.57645 #N/A 

Jul 0.27840 13.75000 23.18000 16.30500 0.57495 #N/A 

Aug 0.34965 13.94000 23.64000 16.67000 0.60340 #N/A 

Sep 0.42327 13.49000 25.73000 18.98500 0.65655 #N/A 

Oct 0.59551 12.33000 24.19000 18.02500 0.72075 #N/A 

Nov 0.81084 11.67000 24.98000 19.14500 0.72800 #N/A 

Dec 0.86405 10.24000 24.94000 19.82000 0.76715 #N/A 

Jan 0.92944 12.15000 28.54000 22.46500 0.73415 #N/A 

Feb 0.71255 11.69000 28.55000 22.70500 0.74765 #N/A 

Mar 0.50659 11.21000 27.14000 21.53500 0.76120 #N/A 

Apr 0.37942 10.36000 25.58000 20.40000 0.75215 #N/A 

May 0.31642 11.53000 23.03000 17.26500 0.66720 #N/A 

Jun 0.31802 12.47000 22.16000 15.92500 0.60525 #N/A 

 

*#N/A - Data was not measured during this month 
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Abstract 
South Africa continues to lag globally in the adoption of renewable energy systems despite a notable decrease 
in the cost of applicable renewable energy technologies over the past five years. Most applications of potential 
solar renewable energy systems are currently in various stages of investigation, leaving this readily accessible 
resource capacity idle. The present study proposes linear and non-linear analysis of multivariate models for 
estimating global solar radiation (GSR) received across five cities in South Africa. The significance of this 
study is to provide effective GSR estimation in the application of solar technologies, while increasing their 
implementation. The dependency of GSR on meteorological variables such as air temperature, relative hu-
midity and relative sunshine duration was evaluated for January 2007 to June 2018 to realise estimation 
models for each of the study sites. The Hargreaves-Samani and Angstrom-Prescott empirical models served 
as the basis for single variable analysis of GSR reliance on each meteorological parameter and their relative 
variations. The results indicated that the proposed non-linear, multivariate equations perform better than the 
empirical models as well as linear, single variable regression equations. The suggested models are site-specific 
and demonstrate a strong correlation to historic GSR values with low, acceptable error indicators. It was also 
recognised that second- and third-order relationships between the clearness index and multiple meteorolog-
ical variables provide a more accurate description of GSR for most of the cities under study. These methods 
are cost-effective, easily accessible and appropriate for the evaluation of the feasibility of solar photovoltaic 
technologies in South Africa. 
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1. Introduction 
South Africa, as one of the world’s most coal-de-
pendent countries, has long needed to assess the 
status of available resources and whether renewa-
bles would be a sustainable option for future energy 
sourcing. The country still trails behind when it 
comes to discovering and exploring the potential of 
alternative energy resources, while the world is mov-
ing towards greener energy sources to reduce car-
bon footprint and alleviate the effects of global 
warming on climatic and environmental conditions.  

African countries such as Namibia, Angola and 
South Africa (especially the Northern Cape) often 
receive more than double the amount of radiation 
than countries in the northern hemisphere, e.g. 
United Kingdom [1]. South Africa is well suited for 
the harnessing of solar radiation with sunshine being 
available throughout the year. Disregarding this po-
tential, there are various financial and technical lim-
itations associated with solar energy technologies, 
which restrict its use to private, off-grid networks. 
These boundaries need to be resolved to increase 
the impact and contribution of solar power to the 
country’s energy supply. The present study aims to 
indicate the amount of underutilised solar potential 
available in South Africa and to contribute to the 
knowledge and implementation of solar technolo-
gies. With solar radiation data often not being avail-
able for most regions locally, most research involves 
the use of meteorological variables and mathemati-
cal relations to investigate the solar potential for sites 
of interest [2,3]. The cost of equipment associated 
with the measurement of ground solar radiation lev-
els is relatively high, and although it is often the re-
mote locations that receive high levels of solar radi-
ation, there is no solar radiation data for them. Var-
ious international studies over the past two decades 
have led to the development of solar radiation esti-
mation models and time-series weather prediction 
models using available, measured meteorological 
factors [2-4]. It is important to obtain accurate mod-
els for locations, making it a field of large interest.  

This study analysed and enhanced the existing 
linear models for five major cities in South Africa. 
Based on the available meteorological conditions 
provided by local weather stations, it introduced 
non-linear regression models for these cities and 
evaluated their efficiency and accuracy over at least 
ten years. The study also proposed a multivariate 
model for each of these cities and tested its perfor-
mance in accordance to single variable models, as 
well as non-linear variations of them. These pro-
posed models aim to encourage the use of solar ra-
diation estimation models in the procurement of 
large-scale solar energy technologies. These cost-ef-
fective methods and skills are easily accessible and 
can be included in the assessment of the feasibility 

of solar photovoltaic (PV) technologies in South Af-
rica. 

2. Background theory 
Physical models that depend on meteorological pa-
rameters are viable for estimating solar radiation in 
regions where solar radiation data is not measured 
as they have lower computational costs and input 
data requirements [5]. Although solar radiation data 
is not extensively measured, the majority of physical 
models require it for validating and calibrating esti-
mation models. Air temperature, relative humidity 
and, in most cases, sunshine-duration measure-
ments are easy to conduct and can be obtained from 
weather stations. The Hargreaves-Samani (H-S) 
equation (Equation 1) [4, 6, 7] relates the amount 
of extra-terrestrial radiation (ETR = 𝐻𝐻0) to the dif-
ference between the maximum (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) and mini-
mum (𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) air temperatures (∆𝑇𝑇 = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚), 
in order to calculate the amount of global solar radi-
ation (GSR = 𝐻𝐻) incident on a horizontal surface 
(𝐻𝐻) [8-14]. The main assumption of this model is 
that the GSR at a site is responsible for the temper-
ature range [15]. 
 

 𝐻𝐻 = 𝐻𝐻𝑜𝑜𝐾𝐾𝑟𝑟(∆𝑇𝑇)0.5 (1) 

where the empirical coefficient (𝐾𝐾𝑟𝑟) = 0.16 for ‘inte-
rior regions’ and 𝐾𝐾𝑟𝑟 = 0.19 for ‘coastal regions’ [3, 
7, 16], and Ho is given by Equation 2 [2, 17, 18, 19]; 

 

 𝐻𝐻𝑜𝑜 =
24 × 3.6 × 10−3𝐼𝐼𝑠𝑠𝑠𝑠

𝜋𝜋
[1 + 0.033 cos �

2𝜋𝜋𝐷𝐷𝑛𝑛
365

�][𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜔𝜔𝑠𝑠 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]  

(2) 
 
where 𝐼𝐼𝑠𝑠𝑠𝑠 = 1367 𝑊𝑊/𝑚𝑚2 is known as the solar con-
stant [2, 7, 17], Dn is the calendar day (1 January 
(Jan): Dn = 1; 31 December (Dec): Dn = 365). The 
latitude of the site is denoted by 𝜙𝜙 (all angles ex-
pressed in radians), and 𝛿𝛿 is the declination angle 
given by Equation 3 [20, 21, 22, 23]. 
 

 𝛿𝛿 = 23.45
𝜋𝜋

180
𝑠𝑠𝑠𝑠𝑠𝑠 �

2𝜋𝜋(𝐷𝐷𝑛𝑛 + 284)
365

� (3) 

The hour angle 𝜔𝜔𝑠𝑠 is given by Equation 4 [20, 
23, 24]. 

 
 𝜔𝜔𝑠𝑠 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(−𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) (4) 

The ratio of the GSR to ETR ( 𝐻𝐻
𝐻𝐻0

) gives a descrip-
tion of the atmosphere’s transparency and is called 
the clearness index, which is described by Equation 
5 [25]. 

 

 𝐾𝐾𝑇𝑇 =
𝐻𝐻
𝐻𝐻𝑜𝑜

 (5) 
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The Angstrom-Prescott (A-P) equation (Equa-
tion 6) can be used to calculate the clearness index 
from the relative sunshine duration, provided the A-
P coefficients for the area are known [20, 22, 26-
29]. 

     𝐾𝐾𝑇𝑇 = 𝐻𝐻
𝐻𝐻𝑜𝑜

= 𝑎𝑎 + 𝑏𝑏 � 𝑆𝑆
𝑆𝑆𝑜𝑜
� (6) 

where a and b are the A-P coefficients, 𝑆𝑆 is the actual 
hours of sunshine received; and the day length (𝑆𝑆𝑜𝑜) 
is used to translate time (in hours) between sunrise 
and sunset [20, 21, 23, 30, 31], calculated from 
Equation 7. 

     𝑆𝑆𝑜𝑜 = 2𝜔𝜔𝑠𝑠
15

 (7) 

For areas where the A-P coefficients are un-
known, using a = 0.25 and b = 0.50 [32] is pre-
scribed.  

Statistical error analysis 
Understanding of the accuracy of analysis and pro-
posed models is quantified in terms of the statistical 
error analysis. The mean bias error (MBE), Equation 
8, specifies the average deviance of the calculated 
values from observed values and is an indicator of a 
model’s long-term performance [12, 33]. Positive 
MBE calculations correspond to an over-estimation, 
while negative MBEs indicate under-estimation. The 
root mean square error (RMSE), Equation 13, gives 
insight into the short-term performance of a correla-
tion. The coefficient of determination (R2), Equation 
14, is a measure of the correlation between the de-
pendent variables that are predicted from the inde-
pendent variables. Low values for all statistical error 
measures are desired [34]. Previous studies propose 
that percentage errors between -10% and 10% are 
acceptable [34, 35]. Statistical analysis reported in 
the present study was calculated using the error-
types given by Equations 8–14. 

Mean bias error (MBE) and mean absolute bias er-
ror (MABE)  

       𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ �𝐻𝐻𝑐𝑐,𝑖𝑖 − 𝐻𝐻𝑚𝑚,𝑖𝑖�𝑛𝑛
𝑖𝑖=1  (8) 

      𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ ��𝐻𝐻𝑐𝑐,𝑖𝑖 − 𝐻𝐻𝑚𝑚,𝑖𝑖��𝑛𝑛
𝑖𝑖=1   (9) 

Mean percentage error (MPE) and mean absolute 
percentage error (MAPE) 

     𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ �𝐻𝐻𝑐𝑐,𝑖𝑖−𝐻𝐻𝑚𝑚,𝑖𝑖

𝐻𝐻𝑚𝑚,𝑖𝑖
� × 100%𝑛𝑛

𝑖𝑖=1  (10) 

     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ ��𝐻𝐻𝑐𝑐,𝑖𝑖−𝐻𝐻𝑚𝑚,𝑖𝑖

𝐻𝐻𝑚𝑚,𝑖𝑖
��𝑛𝑛

𝑖𝑖=1 × 100% (11) 

Mean absolute relative error (MARE) 

     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1
𝑛𝑛
∑ ��𝐻𝐻𝑚𝑚,𝑖𝑖−𝐻𝐻𝑐𝑐,𝑖𝑖

𝐻𝐻𝑚𝑚,𝑖𝑖
��𝑛𝑛

𝑖𝑖=1  (12) 

Root mean square errors (RMSE) 

     𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ �𝐻𝐻𝑐𝑐,𝑖𝑖−𝐻𝐻𝑚𝑚,𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

 (13) 

Coefficient of determination (R2) 

     𝑅𝑅2 = 1 − ∑ �𝐻𝐻𝑚𝑚,𝑖𝑖−𝐻𝐻𝑐𝑐,𝑖𝑖�
2𝑛𝑛

𝑖𝑖=1

∑ �𝐻𝐻𝑚𝑚,𝑖𝑖−𝐻𝐻𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎�
2𝑛𝑛

𝑖𝑖=1
 (14) 

where 𝐻𝐻𝑐𝑐,𝑖𝑖 and 𝐻𝐻𝑚𝑚,𝑖𝑖 are the 𝑖𝑖𝑡𝑡ℎ calculated and meas-
ured values of GSR, respectively, and 𝐻𝐻𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 is the 
average of the measured 𝐻𝐻 values. 

Further research on the estimation of GSR in 
South Africa through multiple meteorological varia-
bles was completed by Adeala et al., which pro-
posed linear models for the nine provinces in South 
Africa in terms of relative sunshine, air temperature, 
wind speed and relative humidity. Following a simi-
lar approach, the present study focuses on the re-
gression analysis of these meteorological factors and 
extends to the non-linear impact of multivariate 
models which include variations of these parame-
ters. Extensive studies were published to detail the 
non-linear analysis of GSR estimation models across 
various countries in the world [37-42]. 

3. Experimental technique 
Historic meteorological data was obtained from the 
South African Weather Service (SAWS) and Agricul-
tural Research Council (ARC) for the study sites. 
Records of sunshine duration (𝑆𝑆), air temperature 
(∆𝑇𝑇,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) , relative humidity (𝑅𝑅𝑅𝑅) and solar radia-
tion for January 2007–June 2018 was provided by 
these independent sources. Analysis of the average 
monthly GSR incident at each site for the specified 
period was based on dependence on a single mete-
orological variable and dependence on multiple me-
teorological variables, using the H-S and A-P Equa-
tions 1 and 6 as the foundation models. Sunshine 
duration and solar radiation measurements are not 
undertaken for many locations across South Africa 
because of the cost of equipment and its mainte-
nance. Historic data from the SAWS and ARC was 
limited for certain regions, e.g., Pietermaritzburg and 
Durban, as sunshine duration was not measured for 
the full period. Measurements were recorded for a 
few months and then stopped, leading to the study 
being restricted to the available monthly averages. 
Values for ETR (𝐻𝐻𝑜𝑜) and 𝑆𝑆𝑜𝑜 were calculated based 
on the 𝜙𝜙 of each site, using Fortran programs [Op-
erating system: Linux 3.4.6-2.10-desktop x86_64, 
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System: OpenSUSE 12.2(x86_64), GNU Fortran 
Compiler, Version: 4.7-2.1.1-86_64]. 

South Africa’s climate is diverse, because of the 
wide-ranging landscape and oceanic influence [43–
45], and is best described by noting the climate ex-
perienced in various regions (climate zones). The 
eastern coastline experiences a semi-arid and mild, 
sub-tropical climate, while the south-western region 
is Mediterranean in type. The north-eastern part ex-
periences sub-tropical conditions, while a small re-
gion in the north-west is a desert climate zone [44]. 

Air temperature and rainfall patterns across the var-
ious climate zones are influenced by the region’s to-
pography, terrain and sea proximity [43, 44]. Sun-
shine is received throughout the year, including the 
winter months (April to September), despite much 
of the country’s rainfall occurring during summer 
(October to March) [43,44]. Average air tempera-
tures range between 15 and 30 °C during summer 
and often exceed 38 °C [43]. Table 1 shows the ge-
ographical specifics for each study site at five cities 
across various climate zones. 

 

Table 1: Geographical details of study sites. 

Site Province Latitude (° south) Longitude (° east) Elevation (m) 

Bloemfontein Free State 29.1030 26.3263 1400 

Cape Town Western Cape 33.9630 18.4194 670 

Durban KwaZulu-Natal 29.9650 30.4849 670 

Johannesburg Gauteng 26.1430 28.3971 1800 

Pietermaritzburg KwaZulu-Natal 29.6270 30.4062 750 
 

4. Results and discussion  
Following a full analysis of single variable depend-
ency of GSR for each of the four variables, 
∆𝑇𝑇,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑅𝑅𝑅𝑅 and 𝑆𝑆

𝑆𝑆𝑜𝑜
 (relative sunshine duration = 𝑆𝑆 

is the actual hours of sunshine received / the day 
length 𝑆𝑆𝑜𝑜), the dependency of 𝐻𝐻

𝐻𝐻𝑜𝑜
 on multivariate 

models was further investigated.  

4.1. Single variable analysis 
Figures 1–10 illustrate the single variable depend-
ence of GSR on air temperature and relative sun-
shine duration with regard to the H-S and A-P em-
pirical models for each study site.  

Figure 1: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the H-S 

model for Bloemfontein. Hmeasured represents 
the observed values of global solar radiation for 

the period. 

Figure 2: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the A-P 

model for Bloemfontein. Hmeasured represents 
the observed values of global solar radiation for 

the period. 
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Figure 3: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the H-S 

model for Cape Town. Hmeasured represents 
the observed values of global solar radiation for 

the period. 

Figure 4: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the A-P 

model for Cape Town. Hmeasured represents 
the observed values of global solar radiation for 

the period. 

Figure 5: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the H-S 

model for Durban. Hmeasured represents the 
observed values of global solar radiation for the 

period. 

Figure 6: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the A-P 

model for Durban. Hmeasured represents the 
observed values of global solar radiation for the 

period. 

Figure 7: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the H-S 

model for Johannesburg. Hmeasured 
represents the observed values of global solar 

radiation for the period. 

Figure 8: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the A-P 

model for Johannesburg. Hmeasured 
represents the observed values of global solar 

radiation for the period. 
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Figure 9: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the H-S 

model for Pietermaritzburg. Hmeasured 
represents the observed values of global solar 

radiation for the period. 

Figure 10: Calculated extra-terrestrial radiation-
global solar radiation ratio ( 𝑯𝑯

𝑯𝑯𝒐𝒐
) using the A-P 

model for Pietermaritzburg. Hmeasured 
represents the observed values of global solar 

radiation for the period. 

From the regression relations obtained for all five 
sites, ∆𝑇𝑇 indicated a weaker correlation to 𝐻𝐻

𝐻𝐻𝑜𝑜
 com-

pared with 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎. While 𝑅𝑅2 values indicated 
a low to moderate relationship between temperature 
and GSR, it was found that estimation models that 
include additional meteorological variables may 
perform better. Furthermore, higher order relations 
(quadratic, cubic and power) showed a better fit to 
the measured values. The single dependency of 
measured relative humidity (𝑅𝑅𝑅𝑅) to GSR was also 
examined. Relative humidity indicated the weakest 
relationship to 𝐻𝐻

𝐻𝐻𝑜𝑜
. No established GSR estimation 

models for this quantity exist, as relative humidity is 
unable to solely predict GSR. This variable is often 
used in combination models that do not implicitly 
account for RH. Sunshine regression equations 
demonstrated higher correlation values from all 
three variables. The A-P model performed consider-
ably well and the large number of outliers that were 
not included by the model can be explained using 
the universal A-P coefficients. Since established A-P 
coefficients for the above cities do not exist, the uni-
versal coefficients were used: 𝑎𝑎 = 0.25; 𝑏𝑏 = 0.50. 
These coefficients are general and can be used for 
any site for which the A-P coefficients are unknown. 
There is merit in obtaining specific A-P coefficients 
for each site as this enhances the performance of 
each model based on the site’s observed historic 
sunshine data. 

4.2. Multivariate analysis 
Section 4.1 provided the basis to proceed to include 
only the variables for which the multivariate analysis 
showed a stronger correlation. Tables 2–11 describe 
the proposed multivariate equations for each site, as 
well as their associated error indicators. 

 
Table 2: Proposed multivariate equations. 

No. Equation 
1 𝐻𝐻

𝐻𝐻𝑜𝑜
= −0.053(∆𝑇𝑇) − 0.766�

𝑅𝑅𝑅𝑅
100

� + 2.507�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 1.930 

2 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.393�√∆𝑇𝑇� − 0.631 �
𝑅𝑅𝑅𝑅
100

�+ 2.623�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 0.821 

3 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.040(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − 0.307 �
𝑅𝑅𝑅𝑅
100

�+ 1.151�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.979 

4 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.394��𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚� − 0.275�
𝑅𝑅𝑅𝑅
100

�+ 1.214�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.999 

5 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.018(∆𝑇𝑇)2 + 0.552(∆𝑇𝑇) − 1.500 �
𝑅𝑅𝑅𝑅
100

�
2

− 0.339�
𝑅𝑅𝑅𝑅
100

� + 3.752�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 3.546�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 2.175 

6 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.002(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 − 0.037(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)− 8.813�
𝑅𝑅𝑅𝑅
100

�
2

− 8.107�
𝑅𝑅𝑅𝑅
100

� + 3.262 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 4.315 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 0.225 

7 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.004(∆𝑇𝑇)3 − 0.24(∆𝑇𝑇)2 + 4.16(∆𝑇𝑇) + 57.59�
𝑅𝑅𝑅𝑅
100

�
3

− 89.92�
𝑅𝑅𝑅𝑅
100

�
2

+ 43.11 �
𝑅𝑅𝑅𝑅
100

� − 2.65�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 9.31 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 37.29 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 27.40 

8 𝐻𝐻
𝐻𝐻𝑜𝑜

= −9.4 × 10−6(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 + 0.003(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 − 0.06(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 27.58�𝑅𝑅𝑅𝑅
100
�
3
− 49.35�𝑅𝑅𝑅𝑅

100
�
2

+ 27.5�𝑅𝑅𝑅𝑅
100
�+ 0.14� 𝑆𝑆

𝑆𝑆𝑜𝑜
�
3

+ 2.13� 𝑆𝑆
𝑆𝑆𝑜𝑜
�
2
− 2.99� 𝑆𝑆

𝑆𝑆𝑜𝑜
� − 2.99  

No. = number, 𝐻𝐻
𝐻𝐻𝑜𝑜

 = extra-terrestrial radiation-global solar radiation ratio, RH = relative humidity, Tmax = maximum temperature, 𝑆𝑆
𝑆𝑆0

 = relative sun-

shine duration, ∆𝑇𝑇 = temperature difference. 
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Table 3: Error indicators for proposed equations. 

Equation RMSE MBE MABE MPE MAPE MARE R2 

1 0.39594 0.05721 0.27450 -9.72644 35.91319 0.35913 0.16348 
2 0.39734 0.05721 0.27587 -9.95571 36.22391 0.36224 0.82761 
3 0.38825 0.05721 0.26900 -6.70049 33.71226 0.33712 0.83507 
4 0.39012 0.05721 0.27177 -6.907291 34.27409 0.34274 0.83348 
5 0.3249 0.05721 0.26734 -8.12844 34.65066 0.34651 0.21935 
6 0.37720 0.05801 0.25875 -5.83789 32.12539 0.32125 0.24080 
7 0.38037 0.05721 0.26825 -7.07460 34.50267 0.34503 0.27990 
8 0.37725 0.05721 0.26037 -6.06718 32.31451 0.32315 0.24115 

RMSE = root mean square error, MBE = mean bias error, MABE = mean absolute bias error, MPE = mean percentage 
error, MAPE = mean absolute percentage error, MARE = mean absolute relative error, R2 = coefficient of determination 

Table 4: Proposed multivariate equations. 

No. Equation 

1 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.69(∆𝑇𝑇)− 0.179 �
𝑅𝑅𝑅𝑅
100

�+ 2.539�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.433 

2 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.395�√∆𝑇𝑇� − 0.176 �
𝑅𝑅𝑅𝑅
100

�+ 2.540�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 0.124 

3 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.004(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − 0.165 �
𝑅𝑅𝑅𝑅
100

�+ 2.358�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.042 

4 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.394��𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�+ 0.165 �
𝑅𝑅𝑅𝑅
100

�+ 2.360�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.962 

5 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.014(∆𝑇𝑇)2 + 0.128(∆𝑇𝑇) − 3.041 �
𝑅𝑅𝑅𝑅
100

�
2

+ 2.340�
𝑅𝑅𝑅𝑅
100

� + 2.812�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 1.305�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.159 

6 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.003(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.094(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)− 0.965�
𝑅𝑅𝑅𝑅
100

�
2

+ 0.942�
𝑅𝑅𝑅𝑅
100

�+ 3.549 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 2.060 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.597 

7 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.002(∆𝑇𝑇)3 − 0.001(∆𝑇𝑇)2 + 0.15(∆𝑇𝑇) + 32.35�
𝑅𝑅𝑅𝑅
100

�
3

− 47.97 �
𝑅𝑅𝑅𝑅
100

�
2

+ 17.94 �
𝑅𝑅𝑅𝑅
100

�+ 1.23�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 0.80�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 0.40 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.69 

8 𝐻𝐻
𝐻𝐻𝑜𝑜

= 4 × 10−4(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 − 0.03(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.71(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 13.33�
𝑅𝑅𝑅𝑅
100

�
3

− 19.66�
𝑅𝑅𝑅𝑅
100

�
2

+ 7.52�
𝑅𝑅𝑅𝑅
100

�+ 2.25 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

− 0.46 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 0.368�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 5.41 

No. = number, 𝐻𝐻
𝐻𝐻𝑜𝑜

 = extra-terrestrial radiation-global solar radiation ratio, RH = relative humidity, Tmax = maximum temperature, 𝑆𝑆
𝑆𝑆0

 = relative sunshine 

duration, ∆𝑇𝑇 = temperature difference. 

 
For Bloemfontein, the first order multivariate 

equations produced a higher correlation in contrast 
with the second and third order relations. Low 
RMSE and MPE indicators, which fall within the ac-
cepted range (-10%; 10%) were also obtained by 
the first order relations. Figure 11 shows the perfor-
mance of the proposed model (Equation 3) amongst 
the measured values of 𝐻𝐻

𝐻𝐻𝑜𝑜
. The model is adequate 

in fitting the clearness index values previously meas-
ured in Bloemfontein, except for outliers in the last 
two to three years (months = 110 - 130). These dis-
crepancies may be a result of the climate change ex-
perienced in recent years, or possible data-recording 
defects. 

Tables 4 and 5 show the proposed equations for 
Cape Town. The 𝐻𝐻

𝐻𝐻𝑜𝑜
 values show a stronger depend-

ency on 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, with the quadratic (Equation 6) and 
cubic (Equation 8) relations having the highest 𝑅𝑅2 
and lowest RMSE values. The MPE indicators are 
within the accepted range and the MAPEs can be 
explained by the large number of outliers in the data 
set. The proposed Equation 8 provides a strong co-
efficient of determination and low error indicators 

and hence fits the measured values of GSR well, as 
indicated in Figure 12. A few underestimations are 
noticeable but overall the model includes most data 
points. 

Figure 11: Proposed multivariate model using 
Tmax to estimate 𝑯𝑯

𝑯𝑯𝒐𝒐
 for Bloemfontein, where Tmax, 

Hmeasured and 𝑯𝑯
𝑯𝑯𝒐𝒐

 represent the maximum 
temperature, observed values of global solar 
radiation and the extra-terrestrial radiation-

global solar radiation ratio respectively.
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Table 5: Error indicators for proposed equations. 

Equation RMSE MBE MABE MPE MAPE MARE R2 

1 0.29168 0.06358 0.22174 2.34321 39.68114 0.39681 0.57990 

2 0.30012 0.06358 0.22187 2.20763 39.70152 0.39702 0.88447 

3 0.29956 0.06358 0.22425 3.95230 39.85326 0.39853 0.88490 

4 0.29958 0.06358 0.22424 3.93864 39.86163 0.39862 088489 

5 0.27006 0.06358 0.19926 3.07052 31.81996 0.31820 0.65884 

6 0.26905 0.06358 0.19935 3.57050 31.91099 0.31911 0.90716 

7 0.26640 0.06358 0.19182 2.86728 29.20680 0.29207 0.66803 

8 0.26336 0.06358 0.19213 3.22039 28.85694 0.28857 0.91104 

RMSE = root mean square error, MBE = mean bias error, MABE = mean absolute bias error, MPE = mean percent-
age error, MAPE = mean absolute percentage error, MARE = mean absolute relative error, R2 = coefficient of deter-
mination. 

 

 
Figure 12: Proposed multivariate model using Tmax to estimate 𝑯𝑯

𝑯𝑯𝒐𝒐
 for Cape Town, where Tmax, 

Hmeasured and 𝑯𝑯
𝑯𝑯𝒐𝒐

 represent the maximum temperature, observed values of global solar radiation 
and the extra-terrestrial radiation-global solar radiation ratio respectively. 

Table 6: Proposed multivariate equations. 

No. Equation 

1 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.002(∆𝑇𝑇) + 2.033 �
𝑅𝑅𝑅𝑅
100

�+ 0.365�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.201 

2 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.020�√∆𝑇𝑇�+ 2.040�
𝑅𝑅𝑅𝑅
100

�+ 0.361�
𝑆𝑆
𝑆𝑆𝑜𝑜
�+ 1.242 

3 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.008(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 1.919 �
𝑅𝑅𝑅𝑅
100

�+ 0.413�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.325 

4 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.102��𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�+ 1.905�
𝑅𝑅𝑅𝑅
100

�+ 0.416�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.732 

5 𝐻𝐻
𝐻𝐻𝑜𝑜

= 4.5 × 10−4(∆𝑇𝑇)2 − 0.019(∆𝑇𝑇) + 7.039 �
𝑅𝑅𝑅𝑅
100

�
2

− 8.255 �
𝑅𝑅𝑅𝑅
100

�+ 0.521�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 0.159�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 2.844 

6 𝐻𝐻
𝐻𝐻𝑜𝑜

= −1.4 × 10−3(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.108(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 13.097�
𝑅𝑅𝑅𝑅
100

�
2

− 16.833 �
𝑅𝑅𝑅𝑅
100

� − 1.180�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

+ 1.6025�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 3.399 

7 𝐻𝐻
𝐻𝐻𝑜𝑜

= −9 × 10−5(∆𝑇𝑇)3 + 0.005(∆𝑇𝑇)2 − 0.06(∆𝑇𝑇) − 230.5�
𝑅𝑅𝑅𝑅
100

�
3

+ 499.5�
𝑅𝑅𝑅𝑅
100

�
2

− 355.4 �
𝑅𝑅𝑅𝑅
100

� − 9.27�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 13.1 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 5.46 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 84.15 

8 𝐻𝐻
𝐻𝐻𝑜𝑜

= 3.6 × 10−5(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 − 0.005(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.23(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)− 142.8�
𝑅𝑅𝑅𝑅
100

�
3

+ 320.3�
𝑅𝑅𝑅𝑅
100

�
2

− 235.9�
𝑅𝑅𝑅𝑅
100

� − 9.18�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 11.78�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 4.19�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 54.78 

No. = number, 𝐻𝐻
𝐻𝐻𝑜𝑜

 = extra-terrestrial radiation-global solar radiation ratio, RH = relative humidity, Tmax = maximum temperature, 𝑆𝑆
𝑆𝑆0

 = 

relative sunshine duration, ∆𝑇𝑇 = temperature difference. 
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Table 7: Error indicators for proposed equations. 

Equation RMSE MBE MABE MPE MAPE MARE R2 

1 0.15789 0.02188 0.13075 -7.18984 29.15333 0.29153 0.42176 

2 0.15792 0.02188 0.13082 -7.21693 29.20971 0.29210 0.42153 

3 0.15648 0.02188 0.12888 -6.34183 27.92393 0.27924 0.92113 

4 0.39039 0.02188 0.12188 3.86583 -31.31340 0.42384 0.30871 

5 0.14688 0.02188 0.11608 -6.07546 25.32882 0.25329 0.49962 

6 0.12589 0.02188 0.10413 -2.0700 21.34543 0.21345 0.94895 

7 0.14598 0.02188 0.11043 -4.05942 22.36994 0.22370 0.50567 

8 0.13117 0.02188 0.10559 -1.59414 20.55594 0.20560 0.94458 

RMSE = root mean square error, MBE = mean bias error, MABE = mean absolute bias error, MPE = mean percent-
age error, MAPE = mean absolute percentage error, MARE = mean absolute relative error, R2 = coefficient of deter-
mination. 

First, second and third order equations using 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 indicate high correlation coefficients and low 
RMSEs. This makes these equations well suited for 
the estimation of clearness index. The percentage 
errors are all within the accepted range of -10% – 
10%. This study proposes Equation 6 for Durban 
and this model’s performance is depicted in Figure 
13. The sunshine data was not measured from May 

2010 to Jun 2018, due to technical limitations at the 
ARC, so this period was excluded from the analysis. 
The shape of the data shown in Figure 13 suggests 
that the model adequately estimates 𝐾𝐾𝑇𝑇 for the pe-
riod available. Since fewer data points were ana-
lysed, this also had an impact on the error indicators 
reported in Table 7. 

 
 

Table 8: Proposed multivariate equations. 

No. Equation 

1 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.029(∆𝑇𝑇) + 0.618�
𝑅𝑅𝑅𝑅
100

� + 0.3135�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 0.178 

2 𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.232�√∆𝑇𝑇� + 0.460 �
𝑅𝑅𝑅𝑅
100

�+ 0.624�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.581 

3 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.045(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 0.474 �
𝑅𝑅𝑅𝑅
100

�+ 0.159�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 0.887 

4 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.433��𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�+ 0.453�
𝑅𝑅𝑅𝑅
100

�+ 0.169�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.936 

5 𝐻𝐻
𝐻𝐻𝑜𝑜

= 1.9 × 10−3(∆𝑇𝑇)2 − 0.110(∆𝑇𝑇) − 1.304 �
𝑅𝑅𝑅𝑅
100

�
2

+ 1.677 �
𝑅𝑅𝑅𝑅
100

�+ 1.044�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 0.982�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 1.026 

6 𝐻𝐻
𝐻𝐻𝑜𝑜

= −1.8 × 10−3(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.131(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − 1.154�
𝑅𝑅𝑅𝑅
100

�
2

+ 1.757 �
𝑅𝑅𝑅𝑅
100

� − 0.4735�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

+ 0.811�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 2.436 

7 𝐻𝐻
𝐻𝐻𝑜𝑜

= 6.7 × 10−4(∆𝑇𝑇)3 − 0.04(∆𝑇𝑇)2 + 0.615(∆𝑇𝑇) − 25.6�
𝑅𝑅𝑅𝑅
100

�
3

+ 47.02�
𝑅𝑅𝑅𝑅
100

�
2

− 28.5 �
𝑅𝑅𝑅𝑅
100

� − 2.57�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

− 1.85 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 0.49 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 3.83 

8 𝐻𝐻
𝐻𝐻𝑜𝑜

= 7.5 × 10−4(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 − 0.06(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 − 1.27(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − 6.143�
𝑅𝑅𝑅𝑅
100

�
3

+ 11.25 �
𝑅𝑅𝑅𝑅
100

�
2

− 6.43 �
𝑅𝑅𝑅𝑅
100

� − 18.59�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 36.74�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 23.7 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�+ 15.8 

No. = number, 𝐻𝐻
𝐻𝐻𝑜𝑜

 = extra-terrestrial radiation-global solar radiation ratio, RH = relative humidity, Tmax = maximum temperature, 𝑆𝑆
𝑆𝑆0

 = 

relative sunshine duration, ∆𝑇𝑇 = temperature difference. 
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Table 9: Error indicators for proposed equations. 

Equation RMSE MBE MABE MPE MAPE MARE R2 

1 0.25244 0.15038 0.19397 17.47650 30.41315 0.30413 0.19989 

2 0.24853 0.14751 0.19093 16.9053 29.76287 029763 0.8602 

3 0.14144 -4x10-9 0.10475 -5.08111 19.6809 0.19368 0.94689 

4 0.14166 0.01584 0.10686 -1.73778 19.44057 0.19441 0.94672 

5 0.39480 0.34215 0.34764 14.63490 31.40490 0.31405 0.20488 

6 0.13838 6.41x10-16 0.10853 -4.58710 20.46811 0.20468 0.94916 

7 0.18301 -2.1x10-15 0.15512 -10.94380 30.67616 0.30676 0.33782 

8 0.11753 -1x10-14 0.09414 -3.16928 16.61409 0.16614 0.96333 

RMSE = root mean square error, MBE = mean bias error, MABE = mean absolute bias error, MPE = mean percent-
age error, MAPE = mean absolute percentage error, MARE = mean absolute relative error, R2 = coefficient of deter-
mination. 

Figure 13: Proposed multivariate model using 
Tmax to estimate 𝑯𝑯

𝑯𝑯𝒐𝒐
 for Durban, where Tmax, 

Hmeasured and 𝑯𝑯
𝑯𝑯𝒐𝒐

 represent the maximum 
temperature, observed values of global solar 
radiation and the extra-terrestrial radiation-

global solar radiation ratio respectively. 

Error analysis for the proposed equations for Johan-
nesburg shows low RMSE and MBE values, which 
make the above equations suitable. It is evident that 
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 equations have a stronger dependency to 
clearness index values. Equation 8, which is a cubic 
function of 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, is proposed for Johannesburg and 

illustrated in Figure 14. The proposed model accu-
rately fitted the historic data, with a high correlation 
coefficient and low error indicators and there were a 
few underestimations which may have resulted from 
the effects of any of the three variables included in 
the equation. 

Figure 14: Proposed multivariate model using 
Tmax to estimate 𝑯𝑯

𝑯𝑯𝒐𝒐
 for Johannesburg, where 

Tmax, Hmeasured and 𝑯𝑯
𝑯𝑯𝒐𝒐

 represent the maximum 
temperature, observed values of global solar 
radiation and the extra-terrestrial radiation-

global solar radiation ratio respectively. 
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Table 10: Proposed multivariate equations. 

No. Equation 

1 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.048(∆𝑇𝑇) + 2.633 �
𝑅𝑅𝑅𝑅
100

�+ .174�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.876 

2 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.310�√∆𝑇𝑇�+ 2.599�
𝑅𝑅𝑅𝑅
100

�+ 0.885�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 2.361 

3 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.032(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 1.462 �
𝑅𝑅𝑅𝑅
100

�+ 0.235�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 1.390 

4 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.319��𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚�+ 1.463�
𝑅𝑅𝑅𝑅
100

�+ 0.231�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 2.168 

5 
𝐻𝐻
𝐻𝐻𝑜𝑜

= −0.016(∆𝑇𝑇)2 + 0.475(∆𝑇𝑇) + 13.621 �
𝑅𝑅𝑅𝑅
100

�
2

− 13.963�
𝑅𝑅𝑅𝑅
100

� + 1.237 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 1.612�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 0.808 

6 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.002(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 − 0.085(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 7.513�
𝑅𝑅𝑅𝑅
100

�
2

− 8.183�
𝑅𝑅𝑅𝑅
100

� − 0.910 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 1.110 �
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 3.533 

7 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.003(∆𝑇𝑇)3 − 0.12(∆𝑇𝑇)2 + 1.67(∆𝑇𝑇) − 9.02�
𝑅𝑅𝑅𝑅
100

�
3

+ 31.06�
𝑅𝑅𝑅𝑅
100

�
2

− 25.38�
𝑅𝑅𝑅𝑅
100

� − 8.77 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 19.99 �
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 14.53 �
𝑆𝑆
𝑆𝑆𝑜𝑜
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8 
𝐻𝐻
𝐻𝐻𝑜𝑜

= 8.9 × 10−5(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 − 0.004(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.047(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)− 22.51�
𝑅𝑅𝑅𝑅
100

�
3

+ 50.56�
𝑅𝑅𝑅𝑅
100

�
2

− 35.24�
𝑅𝑅𝑅𝑅
100

� − 9.17�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
3

+ 20.59�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

− 14.7�
𝑆𝑆
𝑆𝑆𝑜𝑜
�+ 11.3 

No. = number, 𝐻𝐻
𝐻𝐻𝑜𝑜

 = extra-terrestrial radiation-global solar radiation ratio, RH = relative humidity, Tmax = maximum temperature, 
𝑆𝑆
𝑆𝑆0

 = relative sunshine duration, ∆𝑇𝑇 = temperature difference. 

 
Table 11: Error indicators for proposed equations. 

Equation RMSE MBE MABE MPE MAPE MARE R2 

1 0.13726 -6.6x10-16 0.11001 -6.71925 25.21744 0.25217 0.59623 

2 0.13758 -9.6x10-16 0.11045 -6.79374 25.39489 0.25395 0.93908 

3 0.12468 -1.3x10-16 0.10076 -5.39414 22.82711 0.22827 0.94996 

4 0.12490 9.4x10-17 0.10090 -5.39830 22.89302 0.22893 0.94979 

5 0.18160 0.14 0.14929 -20.75960 28.27592 0.28276 0.29317 

6 0.11116 1.44x10-15 0.08474 -4.43616 17.83656 0.17837 0.96023 

7 0.11077 9.7x10-15 0.08462 -4.43619 17.68162 0.17682 0.73701 

8 0.10744 2.4x10-15 0.08199 -4.22186 17.64309 0.17643 0.96285 

RMSE = root mean square error, MBE = mean bias error, MABE = mean absolute bias error, MPE = mean percentage er-
ror, MAPE = mean absolute percentage error, MARE = mean absolute relative error, R2 = coefficient of determination. 

First order equations using √∆𝑇𝑇,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 and �𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 in-
dicate high 𝑅𝑅2 values with low error indicators 
shown in Table 11. Equations containing 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 again 
show a stronger relationship to 𝐾𝐾𝑇𝑇 values. For Pie-
termaritzburg, Equation 6 is proposed. The model’s 
efficiency is depicted in Figure 15 and indicates a 
well-suited model. Sunshine duration data was una-
vailable for certain months as a result of technical 
limitations from the data source and hence the anal-
ysis was completed only for the period 2007–2014. 

The above analysis is evidence that non-linear, 
multivariate models are more efficient in estimating 
GSR than linear, single variable models. Strong R2 
coefficients are detailed for the proposed multivari-
ate equations. Low error indicators (RMSE, MBE 
and MPE) describe the suitability of these models for 

GSR prediction over the long-term. The MAPE error 
values can be explained by the rounding and aver-
aging of hourly and daily recordings to obtain 
monthly average values. It was found that the de-
pendence of 𝐻𝐻

𝐻𝐻𝑜𝑜
 on 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is stronger than that of ∆𝑇𝑇 

(derived from the H-S model), while relative sun-
shine duration 𝑆𝑆

𝑆𝑆𝑜𝑜
 is a strong indicator of the GSR 

experienced across the study sites. Higher order 
equations (both single and multivariate relation-
ships) prove to be more accurate. The equations 
suggested for the five study sites demonstrate their 
suitability for the estimation of GSR over the long 
term, i.e., forecasting, horizon and are summarised 
in Table 12. 
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Figure 15: Proposed multivariate model using Tmax to estimate 𝑯𝑯
𝑯𝑯𝒐𝒐

 for Pietermaritzburg, where Tmax, 

Hmeasured and 𝑯𝑯
𝑯𝑯𝒐𝒐

 represent the maximum temperature, observed values of global solar radiation 
and the extra-terrestrial radiation-global solar radiation ratio respectively. 

 

Table 12: Summary of multivariate equations for each study site. 

Site Equation 

BFN 𝐻𝐻
𝐻𝐻𝑜𝑜
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100
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CT 𝐻𝐻
𝐻𝐻𝑜𝑜

= 4 × 10−4(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 − 0.03(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.71(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 13.33�
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100

�
3
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100

�
2
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3
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𝑆𝑆𝑜𝑜
�
2

− 0.368�
𝑆𝑆
𝑆𝑆𝑜𝑜
� − 5.41 

DBN 𝐻𝐻
𝐻𝐻𝑜𝑜

= −1.4 × 10−3(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 + 0.108(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 13.097�
𝑅𝑅𝑅𝑅
100

�
2

− 16.833 �
𝑅𝑅𝑅𝑅
100

� − 1.180�
𝑆𝑆
𝑆𝑆𝑜𝑜
�
2

+ 1.6025�
𝑆𝑆
𝑆𝑆𝑜𝑜
� + 3.399 

JHB 𝐻𝐻
𝐻𝐻𝑜𝑜

= 7.5 × 10−4(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)3 − 0.06(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 − 1.27(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) − 6.143 �
𝑅𝑅𝑅𝑅
100

�
3

+ 11.25�
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100

�
2
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3
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2

− 23.7�
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PMB 𝐻𝐻
𝐻𝐻𝑜𝑜

= 0.002(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚)2 − 0.085(𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) + 7.513�
𝑅𝑅𝑅𝑅
100
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BFN = Bloemfontein, CT = Cape Town, DBN = Durban, JHB = Johannesburg, PMB = Pietermaritzburg, 𝐻𝐻
𝐻𝐻𝑜𝑜

 = extra-terrestrial radiation-
global solar radiation ratio, RH = relative humidity, Tmax = maximum temperature, 𝑆𝑆

𝑆𝑆0
 = relative sunshine duration. 

5. Conclusions 
This study analysed the impact of single variable, lin-
ear estimation models on the available GSR within 
South Africa in comparison to multivariate, non-lin-
ear regression models which incorporate variations 
of meteorological parameters. The investigation to 
propose linear and non-linear analysis of multivari-
ate models for the estimation of global solar radia-
tion (GSR) received across five South African cities 
indicated that the empirical Hargreaves-Samani and 
Angstrom-Prescott models proved to be reliable 
methods for estimating the amount of GSR in 
shorter study periods (i.e., one calendar year), but 
lacked accuracy for long-term estimations. This work 
further indicated that models that make use of a sin-
gle meteorological variable and most linear models 
are not able to adequately predict GSR for the se-
lected cities over periods longer than ten calendar 
years. Meteorological parameters used for this re-
search were substantially easy to obtain, except for 

sunshine data measurements that are not always 
available because of the costly equipment they de-
mand. This study provided insights on the estima-
tion of GSR in South Africa, which can be accurate, 
easily employed, and subsequently cost-effective. 
The proposed models are unique to each of the se-
lected cities and may be incorporated into the design 
and installation processes of solar photovoltaic (PV) 
technologies to enhance their efficiency, while en-
dorsing their application. Furthermore, the pro-
posed economical models are appropriate for the 
feasibility study of solar PV technologies in South 
Africa.  
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