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Abstract 

The growth curve models are the natural models for the increment processes 

taking place gradually over time. When individuals are observed over time it 

is often apparent that they grow at different rates, even though they are 

clones and no differences in treatment or environment are present. 

Neverthless the classical growth curve model only deals with the average 

growth and does not account for individual differences, nor does it have 

room to accommodate covariates. Accordingly we strive to construct and 

investigate tractable models which incorporate both individual effects and 

covariates.       

The study was motivated by plantations of fast growing tree species, and the 

climatic and genetic factors that influence stem radial growth of juvenile 

Eucalyptus hybrids grown on the east coast of South Africa.  Measurement 

of stem radius was conducted using dendrometres on eighteen sampled 

trees of two Eucalyptus hybrid clones (E. grandis x E.urophylla, GU and 

E.grandis x E. Camaldulensis, GC).  Information on climatic data 

(temperature, rainfall, solar radiation, relative humidity and wind speed) 

was simultaneously collected from the study site.  

We explored various functional statistical models which are able to handle 

the growth, individual traits, and covariates. These models include   partial 

least squares approaches, principal component regression, path models, 

fractional polynomial models, nonlinear mixed models and additive mixed 

models. Each one of these models has strengths and weaknesses. 

Application of these models is carried out by analysing the stem radial 

growth data.  

The partial least squares and principal component regression methods were 

used to identify the most important predictor for stem radial growth. Path 

models approach was then applied mainly to find some indirect effects of 

climatic factors. We further explored the tree specific effects that are unique 
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to a particular tree under study by fitting a fractional polynomial model in 

the context of linear mixed effects model.  The fitted fractional polynomial 

model showed that the relationship between stem radius and tree age is 

nonlinear. The performance of fractional polynomial models was compared 

with that of nonlinear mixed effects models.  

Using nonlinear mixed effects models some growth parameters like inflection 

points were estimated. Moreover, the fractional polynomial model fit was 

almost as good as the nonlinear growth curves.  Consequently, the fractional 

polynomial model fit was extended to include the effects of all climatic 

variables. Furthermore, the parametric methods do not allow the data to 

decide the most suitable form of the functions. In order to capture the main 

features of the longitudinal profiles in a more flexible way, a semi-

parametric approach was adopted. Specifically, the additive mixed models 

were used to model the effect of tree age as well as the effect of each climatic 

factor.  
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Chapter 1 

Introduction 

Usually growth is modelled as a function of time. The main goal of such 

modelling is to describe naturally occurring changes in the response over 

time.  The other objective with respect growth could be a comparison of 

growth profiles for different groups.   

In the absence of new computing facilities and readily available statistical 

software for analyzing correlated data, summary measure analysis of 

longitudinal data has obvious application. In the summary measures 

analysis the average for each individual is modelled using the standard 

statistical techniques. That is, the averages on different individuals are 

independent of one another.  

Summary measure analysis can also be appealing when the sample sizes 

are not sufficiently large for estimation of the correlation among the repeated 

measures. However, despite the simplicity of the method, it does have a 

number of distinct drawbacks.  One drawback is that it focuses on only one 

aspect of the repeated measures over time. When repeated measures are 

replaced by a single number summary, there must be some loss of 

information. Another problem of the summary measure approach is that the 

covariates must be time invariant covariates. Thus, if one of the key 

covariates is time varying, the method cannot be applied (Fitzmaurice, et al., 

2004). Furthermore the individual variability is not taken into account. The 

summary method ignores the key characteristic of longitudinal data.  That 

means the correlation between the observations on the same individual is 

ignored.   On the other hand longitudinal studies can be used to directly 

study changes over time. Moreover, longitudinal methods can be used to 

evaluate factors that influence this change, as well as to evaluate the within-

subject changes. Statistical estimates of individual changes can be used to 

comprehend heterogeneity in the population.  Longitudinal methods can 
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also help to understand the factors that affect growth and change at the 

individual level. Furthermore, in growth curve modelling, although one time-

varying response may be of primary interest, the association between 

response and any other covariates can reveal an insightful understanding 

about the mechanism of change.   

Notwithstanding the advantages of a longitudinal study, there are challenges 

in the analysis that must be addressed accordingly. In the presence of other    

categorical covariates (other than time), it is possible to make a separate 

modelling process for each level of the categorical variable.  However, the 

challenge is to combine individual effect and covariates in the growth 

modelling. Measurements obtained from the same individual tend to be 

correlated. Measurements on the same individual close in time have a 

tendency to be more correlated than measurements far apart in time, and 

the variances of longitudinal data often change with time (Diggle et al., 

2002; Fitzmaurice et al., 2004).   These complicated patterns of correlation 

and variation may be even more complicated in the presence of more than 

one covariate. This complicated covariance structure must be taken into 

account in order to draw reliable conclusions from the data.   Therefore, 

more complex statistical models have to be used to account for the 

complicated covariance structure.  This calls for parameter estimation 

methods that can be computationally rigorous. The practical motivation of 

this problem emanated from the Sappi’s climatic and genotype factors’ study 

on Eucalyptus tree growth.  

1.1 Motivational Background  

Increasingly, eucalypts have become the most widely planted hardwood 

species in the world (Turnbull, 1999). At present, eucalypts provide sawn 

timber, mine props, pulp and paper, fiberboard, poles, firewood, charcoal, 

essential oils, nectar for honey, tannin, shade, and shelter.  Most eucalypt 

plantations are established and managed for profit. The rate of growth is an 

important economic factor, and plantations with faster growth will be 
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available for processing earlier compared with slower growth plantations. 

Tree growth and wood production is a product of the interaction between 

genetic (Kozlowski and Pallardy, (1997); Apiolaza et al., 2005; Zweifel et al., 

2006) and silvicultural (Pallett and Sale, 2004).  Some studies have found 

significant effects of environmental factors on wood property variation in 

Eucalyptus (Gallaham, 1962; February et al., 1995; Searson et al., 2004; 

Drew and Pammenter, 2006). Climatic factors such as temperature, 

humidity sunlight, rainfall (Eagleman, 1985; Miller, 2001) and wind speed 

(Wadsworth, 1959) contribute to the growth of plants. The knowledge of the 

relationships beween climatic variables and the pattern of stem growth may 

facilitate the prediction of wood properties for a given site. However, such 

studies are limited. Available studies commonly focus on growth rate pattern 

of growth as a function of age (Miehle et al., 2009; Crecente-Campo et al., 

2010; Mateus and Tomé, 2011).  Extensive literature on genetic factors 

affecting the growth of trees can be found in Kozlowski and Pallardy (1997). 

The most recent work by Downes et al. (2009) provides an excellent overview 

on measuring stem growth and wood formation. Other examples are those 

by  Drew et al. (2009), which focused on differences in daily stem diametre 

variation and growth in two hybrid eucalypts, and Zweifel et al. (2006) who 

studied the intra-annual radial growth and water relations of trees and the 

implications on growth mechanisms.  

 In a study that considered the  data extracted from the same database  as 

used in this study, Drew et al. (2009) found the GU (Eucalyptus grandis x 

urophylla ) clone had fewer days on which net growth occurred than did the 

GC (E. grandis x camaldulensis ) clone.  However, when growth did occur, 

the GU grew for longer each day and at a higher rate than did the GC. Thus, 

it still had an overall larger net stem increment during the study period.  

Drew et al. (2009) studied the relationship between stem radius and climatic 

factors using the correlation matrix. A number of post graduate researches 

were under taken on the data from the same data base.  These are studies 

by Ayele (2010), Chauke (2008) and Eksteen (2012).   
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A study by Chauke (2008) did not consider the longitudinal nature of the 

data. The study by   Ayele (2010), applied linear mixed model and 

nonlinearity is not assessed. Therefore, there are still rooms for the 

improvement of statistical methodlogy.   

Weather variables such as temperature, solar radiation, rainfall, humidity, 

and wind speed all contribute to the growth of the tree. For instance, 

Downes et al. (1999) studied daily radial stem growth in irrigated 

Eucalyptus globulus and E. nitens in relation to climate over a 12-month 

period using multiple linear regression models.  That study, which was 

conducted in southern Australia, showed that daily weather variations 

accounted for 40 to 50 percent of the variance in the daily increment of stem 

radius. Downes et al. (1999) also argued that understanding the relationship 

between weather and the rate and pattern of stem growth will facilitate the 

prediction of wood properties at a given site.   

 Our approach provides an alternative to the methods used by Downes et al. 

(1999) and post graduate researches conducted on the data so far.  A study 

by Phipps (1982) presented a general discussion regarding problems 

inherent to developing climatically sensitive tree-ring chronologies from 

eastern North America.  The same study by Phipps (1982) indicated that tree 

ring collections from eastern forests are typically not climatically sensitive as 

western collections. A general treatment of dendroclimatology can be found 

in Fritts (1976).  Other studies such as those by D’Arrigo et al. (1992), 

Hofgaard et al. (1999) and Schweingruber et al. (1993) reported that late 

spring or summer temperatures had a positive effect on annual growth. 

Zweifel and Häsler (2001) showed that radius change could be determined 

by stem water content and wood bark growth, including the degradation of 

dead phloem cells.  The water related fraction is a short-term effect lasting 

from a few hours to several weeks, and can either have positive or negative 

effects on stem radius, depending on the changing turgor of stem tissues 

(Zweifel and Häsler, 2001).  
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Most of the above studies used growth as a linear function of time/age. 

Nevertheless it is understandable that growth is not a simple linear function 

of age (Seber and Wild, 2003). The authors used a linear model because the 

linear model is the common model which can accommodate covariates.  As 

the baseline growth is not linear (or the nonlinear curve is not linearized 

with some transformation techniques) the conclusion derived from such a 

linear model may not be trustworthy.  

1.2. The Statistical Challenges   

Usually growth curves are approximated by linear function of time. However, 

in reality the relationship between the response and time may not always be 

linear.  In some cases where nonlinear relationship between time and 

reponse can be fitted, it is challenging to extend the model to capture the 

effects of other covariates. The contribution of each explanatory variable is 

often influenced by correlation existing among explanatory variables. 

However, studies that consider the effects of co-linearity are limited. Most 

studies commonly use the relationship between response and time as an 

indicator of growth rate and pattern. Moreover, in many circumstances, 

growth accounts only for the average response. It does not provide any 

information about how the responses of individuals change over time.  

Models, which account for within subject changes in response over time 

need to be considered in growth modelling. The focus of this study is to 

explore different models that account for the above statistical challenges and 

come up with a reasonably better model for the problem at hand.  

1.3. The Objectives of The Study  

The main objective of this thesis is to look for a reasonable model that can 

explain the dependence of stem radial growth on weather variables and tree 

age. Specifically, the thesis attempts to describe the effects of climatic 

variables on radial growth of Eucalyptus grandis ×  E.urophylla (GU) and 

E.grandis × E.camaldulensis (GC) hybrid clones established in Zululand on 

eastern coast of South Africa. Moreover, the focus of this study is to 
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determine the weather variables that may influence radial growth during 

juvenile (the first two years of age) stages of tree growth using some 

advanced modelling techniques. The study of juvenile tree growth is very 

important to have a productive matured tree. Identification of the 

relationship between natural climatic conditions and radial growth has an 

immense significance for eucalyptus plantation mangers. Inorder to mange 

resources effectively, it is important for tree growers to understand the 

properties of the material being produced. The findings of this study can 

also be useful in developing tools to identify genotypes with a better growth 

potential.  

The rest of the thesis is organized as follows.  In Chapter 2, a full description 

of the stem radius data is given together with the covariates, and exploratory 

work undertaken. In Chapter 3 we review classical growth curve models and 

we strive to fit baseline growth models to the Sappi data. Chapter 3 assesses 

the impact of climatic factors on the average stem radius growth using 

principal component regression and partial least square approaches.  In 

Chapter 4, we present the structural equation models where the emphasis is 

on a path models approach. Chapter 5 presents a review of fractional 

polynomial models which account for individual tree and covariates effects. 

In Chapter 6, a review of nonlinear models with random effects and 

comparisons with fractional polynomial models was made. Chapter 7 

presents the semi-parametric approaches and their applications on the 

problem at hand.  Lastly, in Chapter 8 the discussions and conclusions are 

presented.  
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Chapter 2 

Data and Exploratory Data Analysis  

 

2.1. Study Design and Data  

 

The data used in this study are secondary data from Sappi Forest Research 

Center in Tweedie. Sappi started the dendrometre trial project in July 2001.  

The research site is located near the town of KwaMbonambi in KwaZulu-

Natal, South Africa, (28.530 S, 32.140 E, 55 M AMSL), approximately 200 

km north-east of the city of Durban. On average, the site receives 1,000 mm 

of rainfall per annum and has a mean annual temperature of 21 degrees 

Celsius (Drew et al., 2009).  The eucalyptus fibre research experiment was 

initiated in July 2001 and a huge database acquired.  The experiment was 

designed to run over a nine-year period and was divided into separate 

phases. Each phase ended with the destructive sampling of study trees to 

measure anatomical characteristics of the wood. The results presented in 

this work are based on the data collected during the first of these phases, 

from April 2002 until August 2003.  The data used by Drew et al., (2009) 

and this particular study are extracted from the same database put in place 

by Sappi (one of the leading suppliers of coated fine paper and chemical 

cellulose). However, the two data sets are not exactly the same. Two 

commercially deployed Eucalyptus hybrid clones, E. grandis x urophylla 

(GU) and E. grandis x camaldulensis (GC), were planted at the study site 

(Drew, 2004). According to the South African soil classification system, the 

soil was identified as Rhodic Ferralsol Hutton by a limited soil survey 

undertaken at the site (Schulze, 1997). The soil is medium grade sand with 

clay percent in the lower B horizon not exceeding 40%, and in A horizon not 

exceeding 10% with an average depth of A horizon 20 cm and total potential 

rooting depth in excess of 1.8m (Drew et al., 2009). Planting took place on 

16 July 2001, prior to which in April 2001, stumps of trees from the 
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previous rotation were treated with herbicide (to prevent coppicing), and 

harvest slash was burned.  Each rooted cutting was planted between 

existing stumps, with approximately two litres of water and 125g granular 

fertilizer, the equivalent of 8 g N, 12 g P and 8 g K per plant.  The two clones 

were planted in alternating rows seven trees wide each (Fig. 1), with spacing 

between trees of 3 metres (east to west) x 2.5 metres (north to south).  These 

rows have been numbered from 1 to 6, starting at row (GC) closest to the 

entrance gate.  Each row of clones consists of three plots of 12 trees each 

with two surrounding rows of trees (Fig. 2.1). This effectively separates each 

plot by four rows of trees, an important part of the design since periodic 

destructive sampling is required in the experiment. The plots were 

established as pairs, such that for any phase of the research, a GU and a 

GC plot could be measured simultaneously (Drew, 2004). From the 18 plots 

(Fig. 1), plots 9 and 10 were chosen for monitoring during project phase 1.   

Within a 12-tree plot, nine trees were selected from each clone for intensive 

monitoring of radial growth and other physiological characteristics (Drew, 

2004). Measurements of stem radius were obtained from hourly 

dendrometre readings in the 18 sample trees. Automatic point dendrometres 

were mounted at nine months of age at 1.3 m above the ground on the north 

side of each tree to measure the radius of the main stem with a rod held 

against the outside surface by constant force.   The tree growth data were 

initially recorded on an hourly basis. This makes the quantity of data for 

each phase large and difficult to manage.  

Hourly measurements were made of total rainfall (mm), temperature (ºC), 

relative humidity (%), wind speed (m/s) and total solar radiation (mJ/hr). 

Daily total rainfall and daily averages of the other weather variables were 

used in the analysis.  Daily averages of stem radius were obtained by 

cumulating and averaging the hourly measurements. Accordingly daily 

meteorological data was obtained using an automatic weather station 

(MCSystems, Cape Town, South Africa) located approximately 300 m from 

the research trial site (Drew et al., 2009). The daily data for stem radius 
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used in this study has 8640 observations from the two clones. 

 

Figure 2.1  The layout of the experimental plots at the research site in 

eastern South Africa. 

Half the data set is from the GU clone and the remaining half is from the GC 

clone. Daily measurements were used in some parts of our analysis.   The 

observed minimum and maximum of stem radius as well as the mean and 

standard deviation is summarized in Table 2.1.  The measurements for GU 

clone appear to be larger than the measurements for GC clone.  The 

summary measures for the climatic variables are also presented in Table 

2.2. 
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Table 2.1  Some descriptive measures for stem radius (in micro metres)  

Clone N Mean Standard 

deviation 

Minimum Maximum 

GC 4320 14679.59 6424.01 12.47 31275.31 

GU 4320 17371.82 8144.16 26.74 32649.92 

Total  8640 16025.7 7456.78 12.47 32649.92 

 

Table 2. 2 Some descriptive measures for climatic variables  

Covariates  N Minimum Maximum  Mean Standard 

deviation 

Radius (micro-metre) 8640 26.74 32649.92 16025.71 7456.78 

Temperature(ºC) 8640 11.53 28.74 19.74 3.81 

Rainfall (mm) 8640 0 72 1.85 6.53 

Relative humidity (%) 8640 57.60 109.80 84.54 8.89 

Solar radiation 

(mJ/hr) 

8640 0.03 1.21 0.60 0.24 

Wind speed (m/s) 8640 0.33 3.44 1.54 0.58 

 

Usually longitudinal data consists of a large number of short time points 

(Diggle et al., 2002).  In our case the data consists of large time points. 

Dealing with this daily data in the longitudinal context will have 

computational problems. Moreover, the weekly growth measurements are 

more meaningful than the daily measurements.  Sizeable growth on each 

tree can be easily observed on weekly measurements as compared to daily 

measurements.  Consequently, weekly measurements were obtained by 

cumulating and averaging the daily measurements. These weekly data are 

used to fit longitudinal growth models.  A total of 1242 measurements are 

obtained for 18 trees each measured 69 times.  
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2.2 Exploratory Data Analysis  

Exploratory data analysis encompasses techniques to visualize patterns of 

the data.  Data analysis must begin by making displays that expose patterns 

pertinent to the scientific question. The best methods are capable of 

uncovering patterns which are unanticipated. In this regard graphical 

displays are so important. Most longitudinal studies address the 

relationship of a response with explanatory variables, often comprising time. 

In this chapter we looked at the following aspects of the data: individual 

profiles, the average evolution, the variance function and the correlation 

structure.  Data exploration is very helpful in the selection of appropriate 

models.  

The profile plot gives us an idea as to how the profile of the population 

evolves over time. The results of this exploration will be useful in order to 

choose a fixed effects structure for the mixed model.  Figure 2.2 shows the 

plots of stem radial measurements of 18 juvenile trees against time.  Some 

evidence of variability between and within individual trees is observed.  The 

between tree variability is small at the early age of the tree and increases as 

the age of the tree increases. Trees did not maintain their relative size of 

stem radius over time. Trees that started with a large stem radius did not 

always retain the largest radial measure throughout the growth follow up 

period. 
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Figure 2. 2  Profile plot of stem radial measure (in micro metres) against tree 

age for the sampled trees of each clone, GU and GC. 

The Loess smoothing technique by Cleveland (1979) is used to study the 

functional relationship between radial growth and tree age.  Figure 2.3 

shows that radial measurements were initiated at about the age of 40 weeks 

( when the dendrometres are attached to the trees without causing damage). 

It shows a sharp increase in the estimated mean response profile of the stem 

radial growth from the beginning (39 weeks) up to the age of 70 weeks, and 

thereafter the rate of increase slows down for both clones. These curves 

suggest that the relationship between radial growth and age may be 

curvilinear (not linear).  It also appears that the average profile of the GU 

clone is higher than that of the GC clone with the difference becoming very 

apparent after the age of 50 weeks. 

The inferential focus of this study is on the mean response of the stem 

radial measure. In order to have a valid inference about the mean structure, 

the covariance structure must be incorporated into the statistical model. If 

the analysis does not take into account the correlation among repeated 
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measures, incorrect standard errors will be produced. That means standard 

errors that are too large will be produced. Consequently, test statistics and 

p-values will also be incorrect, which leads to incorrect inferences about the 

parameters.   

 

Figure 2.3 Loess smoothed curves of stem radial measure (in micro metres) 

against time for both clones. 

In this type of longitudinal data there are at least three possible components 

of variability: random effects, serial correlation and measurement error 

(Diggle et al., 1994). Random effects are effects that arise from the 

characteristics of individual trees. Therefore, these effects explain the 

stochastic variation between trees. On the other hand, measurements of 

stem radius, on successive occasions of the same tree, are most likely to be 

serially dependent. Hence, we cannot extract as much information from 

these dependent observations as we could from the same number of 

independent measurements. That is, serial correlations mask part of the 

within tree variation in the data. The possibility of measurement error 

cannot be ignored. That is, during data collection, measurement error is 

expected. Therefore, these three sources of variability will be assessed in 
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further analysis. Since the covariance structure usually accounts for all the 

variability in the data that cannot be explained the fixed effects, we start to 

explore the covariance structure by first removing all systematic trends 

(Verbeke and Molenberghs, 1997). Hence, residuals are obtained after 

regressing radial measure on time and square root of time.  The estimated 

average evolution of the variance of the residuals at each time point for both 

clones is displayed in Figure 2.4.  The plot indicated that the variance is not 

constant.  It shows an increasing tendency with age for both GU and GC 

clones.  To get more information on the nature of relationships among 

repeated measurements of stem radius within trees, the scatter plot matrix 

of the residuals for some time points was considered, as indicated in Figure 

2.5. The scatter plot was made by discretizing time and selecting some time 

points. The upper panel of this figure shows a correlation matrix of 

Sresiduals for some time points. For instance, the first correlation coefficient 

0.4(shown on the second panel) indicates the correlation between the 

residuals at time point 40 and time point 41.  The correlation coefficient 0.1 

(at top right corner of the graph) is the correlation between the residuals at 

time point is equal to 40 and time point is equal to 101.  It seems that there 

is a decreasing tendency of correlation as the observations are moved 

further apart in time. This shows the presence of stronger serial correlation 

among residuals that are at closer time points.  
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Figure 2. 4  Plot of the variance (square of micro metre) of residuals against 

tree age in weeks. 

 

Mostly, in regression analysis, the coefficients are considered fixed. Actually 

it is somewhat useful, primarily because the inference is comparatively easy. 

Nevertheless, there are cases in which it makes sense to adopt some random 

coefficients.  These cases characteristically happen in two circumstances.  

• When the central concern is to make inference on the whole 

population which some levels are randomly sampled from.  

• When the observations are correlated.  

In many longitudinal studies, it is sensible to assume that correlations exist 

among the observations from the same individual or entity.  Fixed effects are 

parameters associated with an entire population or with certain repeatable 

levels of experimental factors, while random effects are associated with 

individual experimental units drawn at random from the population. 
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Figure 2.5 Scatter plot and correlation matrices of residuals for selected time 

points 

In the following examples an attempt to clarify the importance of 

incorporating random effects in the model was made. 

The ordinary least square (OLS) regression model of stem radius on tree age 

and square root of age was fitted and the residuals were examined. The box 

plots of these residuals by tree are indicated in Figure 2.6.  The residuals 

corresponding to the same tree tend to have the same sign. This indicates 

the demand for a “tree effect” in the model, which is indeed the motivation 

for mixed effects models.  
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      Figure 2. 6  Box plot of OLS residuals by tree for both clones 

 

Figure 2.7 Box plot of stem radius expressed in micro metres for 18 trees. 
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Box plots of the stem radius with respect to each tree (the tree numbers are 

given during the experiment) are presented in Figure 2.7.  It is evident that 

there is some variability in mean stem radius for different trees. The 

between tree variability is clearly seen from this plot. Moreover, the within 

tree variability is not the same for all trees.   The modelling process needs to 

take into account all of the information obtained during the visualization 

process.  

For balanced longitudinal data, the correlation structure can be studied 

through the correlation matrix, or a scatter plot matrix.  In our case, we 

considered the weekly radial measure for some weeks to see how the 

correlations among repeated measurements of the data behave.   The stem 

radial measures for weeks 39, 40, 41, 60, 70, 100, 101 and 102 were 

considered.  The estimated correlation matrix for these selected time points 

is presented as follows.  





























199.099.093.092.054.049.031.0

99.0199.093.091.054.050.031.0

99.099.0193.091.054.050.031.0

93.093.093.0198.050.045.024.0

92.091.091.098.0161.054.033.0

54.054.054.050.061.0197.083.0

49.050.050.045.054.097.0190.0

30.031.003124.033.083.090.01

 

The correlation between measurements at week 39 and week 40 is 0.9 

indicating a strong relationship between the measurements of week 39 and 

week 40.  On the other hand the correlation between the measurements of 

week 39 and week 102 is only 0.3. This shows that there is a strong 

correlation between measurements that are at closer time points to each 

other. The correlation is dying as the length of time between two 

measurements increases.  
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2.3 Summary 

The exploratory analyses suggest that the stem radial growth is increasing 

over time.  However, the rate at which it is increasing is different for the two 

clones.  Moreover, the exploration of the covariance structure shows that 

there is a clear indication for the between tree and within tree variability. It 

was also established that the stem radius data is balanced and free from the 

problem of dropout.   This paves the way for justifiability of likelihood based 

analysis. Since commonly used longitudinal methods for continuous 

response are either the extension of linear regression or nonlinear models, it 

would have been logical to start with the discussion of linear models.  

However, from the data at hand all our covariates are correlated. The 

assumption for multiple regression approach failed. Therefore, a review of 

methods that overcome the problem of multicollinearity is provided in the 

next chapter. The next chapter mainly focuses on the use of latent variables 

in the modelling process. This may help to facilitate comparison of results 

obtained by different approaches.  
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Chapter 3 

Principal Components and Partial Least Squares 

Approaches   

 

3.1   Introduction  

The simplest approach to being able to detect climatic effects (should they 

exist) is by the use of traditional regression or correlation methods. However, 

the effect measured from such approaches assumes the climatic variables 

are uncorrelated. This chapter therefore addresses several issues and 

questions. The primary question concerns the extent to which classical 

regression approaches are successful in detecting and estimating the effect 

of climatic conditions on stem radial growth.  A second aim is to present 

latent variable modelling approaches, namely partial least squares and 

principal component regression, for better estimation and detection of the 

effects of climatic variables.   

Principal component regression (PCR) and partial least square regressions 

are multivariate statistical techniques that have been applied to different 

sciences to obtain calibration models as an alternative to linear regression. 

These statistical methods have provided good predictive models for the 

simultaneous analysis of correlated ecological, pharmaceutical and other 

formulations (see for example, Rodriguez-Nogales, 2006; Dine et al., 2002; 

Fekedulegn et al., 2002; and Maitra and Yan, 2008). 

3.2 Principal Component Regressions  

 

Principal component analysis (PCA) is a multivariate method commonly 

used to reduce the number of predictive variables. By producing 

uncorrelated linear combinations of the predictive variables, it solves the 
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multicollinearity problem. Principal component analysis considers a few 

uncorrelated linear combinations of the variables that can be used to 

summarize the data without losing much information in the data.  

 

Let  
nxpX   denote the data matrix of explanatory variables, where each row 

denotes an observation on p different explanatory variables, 
pXX ...1
.  The 

problem at hand is to select a subset of the above columns that holds most 

of the information. Principal component analysis attempts to arrive at 

suitable standardized linear combinations (SLC) of the data matrix X  based 

on Jordan decomposition of the variance covariance matrix, ∑ of X  or 

equivalently based on the correlation matrix,Φof X . The mean of the 

observations is denoted by xp1µ . Let ( )pxp xxX ...,11 =  denote a random 

vector of observations in the data-matrix (i.e. any row of the n x p data 

matrix), with mean xp1µ
and covariance matrix ∑.  A principal component is 

a transformation of x to w of the form 

( ) ,11 pxpxpxp X Γ−= µw
 

where Γ  is obtained from the Jordan decomposition of ∑, i.e., 

)...( 2,1 pdiag λλλ=Λ=ΓΓ′ ∑  with siλ  being the eigen values of the 

decomposition. Each element of 
xp1w  is a linear combination of the elements 

of 
xpX 1

. Also each element of w is independent of the other.  Thus, we obtain 

p independent principal components corresponding to the p eigen values of 

the Jordan decomposition of   ∑.  

Generally, only the first few principal components for a regression will be 

used. The principal component w has the following important properties. 

The mean for wi is zero and the variance for wi is .iλ The covariance 

between any two principal components is zero, which shows the principal 

components are uncorrelated. The first principal component has the largest 

eigen value or variance, which is equal to 1λ  and no subsequent principal 
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component has variance greater than 1λ . Principal components capture the 

maximum of the variance of X and there is no standardized linear 

combination that can capture maximum variance without being one of the 

principal components.  In the presence of a high degree of correlation among 

the original predictor variables, only the first few principal components are 

likely to capture the majority of the variance of the original predictor 

variables.  The size of iλ s provides the measure of variance captured by the 

principal components and employed to select the first few components for 

regression.  After eliminating the least important components, the response 

variable is regressed on the reduced set of principal components using 

ordinary least squares regression (OLS). As the principal components are 

orthogonal, they are pair–wise independent and hence the OLS method is 

suitable. Once the regression coefficients for the condensed set of orthogonal 

variables have been obtained, they are transformed into a new set of 

coefficients that correspond to the actual or initial correlated set of 

variables. This transformation is briefly discussed as follows.   In the context 

of multiple regression model of the form ε+= XBY , the estimate of B is 

given by  ( ) YXXXB ′′= −1ˆ . B is the regression coefficient for the original 

set of predictors.  In PCR, the X matrix is decomposed into matices of 

orthogonal scores( T) and loadings (P) such that  TPX = .  After this 

decomposition, PCR regress Y on the first ‘a’ columns of the scores T.  Let us 

consider the model of  Y on the scores (T) is given by  ε+=TbY   , where b is 

the vector of regression coefficients when the principal components are used 

as predictor variables.  From the equation TPX = , we can get PXT ′= . 

Therefore, using the relationships in the models ε+=TbY  and ε+= XBY , 

we get εε +=+′= XBbPXY . This last equation clearly shows that

( ) YTTTPbPB ′′′=′= −1
.   

Principal components technique arrives at uncorrelated standardized linear 

combinations (SLCs), that capture only the characteristics of the X-vector or 

predictive variables. No significance is given as to how each predictive 
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variable is related to the response variable. That means PCR creates 

components to explain the observed variability in the predictor variables (X-

variance), without considering how they are related to the response variable 

at all.  In a way it is an unsupervised dimension reduction technique (Maitra 

and Yan, 2008).  When our key area of application is multivariate 

regression, there may be considerable improvements if we build SLCs of 

predictive variables to capture as much information in the raw predictive 

variables as well as in the relation between the predictive and target 

variables.   

3.3   Partial Least Squares Approach  

 

Partial least squares (PLS) allow us to achieve this balance and provide an 

alternate approach to the PCA technique (Maitra and Yan, 2008). Partial 

least squares is a variance based (component based) statistical method, 

which is often referred to as structural equation modeling (SEM).  It was 

designed to replace multiple regression approach when the sample size is 

small and there is problem of multicollinearity or missing values. A 

comprehensive overview of this technique is given by Haenlein and Kaplan 

(2004). 

 Assume X  is a n×p matrix and Y is a n×q matrix. The PLS technique works 

by sequentially extracting factors from both X  and Ysuch that covariance 

between the extracted factors is maximized. That means PLS attempts to 

find a linear decomposition of both X  and Y  as described in the next 

paragraph. The PLS method can work with multivariate response variables 

(i.e. when Y is an qn×  vector with (q >1). However, in the present study 

the response variable, Y , is an n×1 vector.  

Partial least squares tries to find a linear decomposition of X , and a linear 

decomposition of Y , FQUY +′=  such that the covariance between T  and U is 

maximum. T  and Q are called the scores or factors. There are multiple 

algorithms available to extract the scores. Each extracted score of X is of 
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the form 1eXt =   where e1 is the eigen vector corresponding to the first 

eigen value of XYYX '′′ .  Similarly, the first extracted score of Y is 

1dYu = , where d1 is the eigen vector corresponding to the first eigen value 

of YXXY ′' . Once the first factors have been extracted we deflate the 

original values of X and Y as,   

YuuYYandXttXX ′−=′−= 11  

The above process is then repeated with 1X  and 1Y   replacing X and  Y  

respectively to extract the second partial least squares component. The 

process continues until all possible latent factors t and u have been 

extracted, i.e., when X  is reduced to a null matrix. The number of latent 

factors extracted depends on the rank of X . It is known that linear 

regression achieves maximum correlation between the response Y and the 

explanatory variable X. Principal component regression captures maximum 

variance in X  ( X -variance) . Partial least squares regression tries to 

achieve both (maximum X-variance and maximum correlation) by 

maximizing the covariance between X  and Y .  

In the context PLSR, we have two sets of scores the X-scores matrix which is 

denoted by ( T ) and the Y scores matrix which is denoted by U. The Y score is 

not necessary to fit the regression model.  Let ε+= XBY , be the model with 

orginal set of predictor variables. The estimate of B is given by

( ) YXXXB ′′= −1ˆ . In PLSR, we use the model εβ += TY , where β is the 

regression coefficient when the columns of  ( T ) are used as predictors.  The 

relationship between matrix X  and the scores matrix T  is given by RXT = , 

where R is the matrix representing the weights in such a way that all 

coulmns of T relates to the original X  matrix that is used before 

decomposition (Mevik and Wehrens, 2007).  
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Equating the models ε+= XBY  and εβ +=TY  and using the relationship

RXT = , we have εβεβε +=+=+= XRTXBY . This equation shows that

( ) YTTTRRB ′′== −1ˆˆ β .  

The predictive power of the models can be compared using root mean square 

error of prediction (RMSEP) and root mean square error of cross validation 

(RMSECV).  To define RMSEP first we define mean square error of prediction 

(MSEP).  MESP measures the squared difference between what the 

predictors predict for a particular value and the true value.  Let 
i
y be the 

true value in the data and let 
i
ŷ be the value predicted value by the model 

under consideration, the the MSEP is given by 

( )
N

yy

MSEP

N

i
ii∑

=
−

= 1

2ˆ

. The corresponding root mean square error of 

prediction is given by  

( )
N

yy

RMSEP

N

i
ii∑

=
−

= 1

2ˆ

 

Regarding the cross validation of the models the leave one out cross 

validation approach is used in this thesis.  For a data set with N samples, 

leave one out procedures fits model to )1( −N  samples by leaving one sample 

for validation. The root mean square error cross validation (RMSECV) is 

described as follows.  

Let 
i
y  be the validation sample and let 

i
ŷ  be prediction of i

y  based on the 

)1( −N remaining sample. The prediction error sum of squares (PRESS) is 

given by  

( )∑
=

−=
N

i
ii

yyPRESS

1

2ˆ
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The mean square error of cross validation (MSECV) is given by  

N

PRESS
MSECV = . The corresponding root mean square error of cross 

validation is given by   

( )
N

yy

RMSECV

N

i
ii∑

=
−

= 1

2ˆ

 

A model with smaller RMSECV is preferable.  

3.4 Data Analysis  

 

Statistical analysis was undertaken using R-statistical software.  R is free 

software that can be downloaded from the R-project website R Core Team 

(2012).  The simplest approach in detecting climatic effects is by the use of 

traditional regression methods. However, this traditional method assumes 

that the climatic variables are uncorrelated since one of the failures of 

regression methods is due to multi-collinearity. The problem of multi-

collinearity arises when the predictors (in our case the climatic variables) are 

correlated. To overcome this, we applied principal component regression and 

partial least squares regression on daily measurement data. These methods 

were applied to the combined data set as well as to the data set for separate 

clones. Extensive discussions of these methods can also be found in 

Rodriguez-Nogales (2006); Dine et al. (2002); Fekedulegn et al. (2002); 

Maitra and Yan (2008); (Mevik and Cederkvist (2004); and Haenlein and 

Kaplan (2004).  

3.5 Results of Fitting PCR and PLS Regressions   

The variables included in the study are major climatic variables and one 

non-climatic variable (tree age) as described in Chapter II.  The overall 

ordinary least squares (OLS) model was significant with an adjusted  

79.02 =R  (Table 3.1). This indicates about 79% of the variation in stem 

radius is explained by the predictors (the five weather variables together 
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with age of a tree) included in the model. An attempt to explore lags was 

made by considering lags up to 15 days.  The use of five weather variables 

lagged by 15 days increased the variance explained by 0.3% only.  Therefore, 

we did not consider the lags as an important issue at this age of the tree. 

Table 3. 1 Summary of ordinary least square model 

Predictors (climatic 

variables) 

Estimate Standard error t-value p-value 

Intercept  -16558.67 550.61 -30.07 0.000 

Temperature  23.73 12.65 1.88 0.061 

Solar radiation 2865.35 222.01 12.91 0.000 

Rainfall  2.57 6.21 0.41 0.679 

Wind speed  1426.83 77.02 18.53 0.000 

Tree age  313.22 2.21 142.05 0.000 

791.02 =R  79.02 =RAdj  

 

Table 3. 2  Correlation matrix of predictors 

Variables  Temperature Relative 

Humidity 

Solar 

Radiation 

Rainfall 

Temperature 1    

Relative Humidity -0.320(**) 1   

Solar  Radiation 0.617(**) -0.498(**) 1  

Rainfall  -0.107(**) 0.272(**) -0.258(**) 1 

Wind Speed  0.406(**) -0.385(**) 0.374(**) 0.099(**) 

*    Correlation is significant at the 0.05 level (2-tailed). 

**  Correlation is significant at the 0.01 level (2-tailed). 
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Table 3. 3 The eigen value decompostion of the correlation matrix 

Eigen values Proportion of 

total 

Cumulative proportion of total 

2.375 0.396 0.396 

1.252 0.209 0.605 

1.083 0.181 0.786 

0.625 0.104 0.890 

0.412 0.069 0.959 

0.253 0.042 1 

The predictors included in the model are therefore important for determining 

radial tree growth. However, the individual t-ratios (estimated 

coefficient/standard error) for the coefficients of the most important climatic 

variables, that of rainfall and temperature, are non-significant (Table 3.1). 

This is an indication of the presence of multicollinearity among the 

predictors. From the correlation matrix of predictors (Table 3.2), 

temperature and solar radiation were highly correlated. The correlation 

coefficient was 0.62 and highly significant (p < 0.001). The correlation 

between wind speed and temperature was 0.41, which was also highly 

significant (p < 0.001). This shows the existence of significant 

multicollinearity among the explanatory climatic variables.   

Multicollinearity inflates the standard error of the regression coefficients, 

which results in low t-statistic values and a failure to reject the null 

hypothesis. The application of classical linear regression models therefore 

does not have a powerful inference on the regression coefficients.  To 

address this problem, principal component regression and partial least 

square regression techniques were used. All predictors were treated as 

continuous variables with different units of measurements (for instance, 

rainfall in mm and temperature in ºC). It might make more sense to 

standardize the predictors before trying principal components. This is 
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equivalent to performing principal components analysis on the correlation 

matrix of predictor variables.  

Table 3.3 shows the eigen value decomposition of the correlation matrix of 

the original or the covariance matrix of the standardized predictors. The first 

five principal components captured 95.9 % of the information in the 

correlation matrix. Table 3.4 shows the eigen vectors corresponding to each 

of the eigen values of Table 3.3. We constructed the principal components 

corresponding to each eigen value by linearly combining the standardized 

predictive variables using the corresponding eigen vector.  Hence, the six 

principal components are computed as shown below.  

 

654321

654321

654321

38.028.013.054.059.047.06

77.028.026.014.042.024.02

07.041.021.055.049.049.01

ZZZZZZPC

ZZZZZZPC

ZZZZZZPC

+−+−−=

−−−−−−=

−+−+−=

M
 

 Where:  

• Z1 is the standardized value of temperature 

• Z2  is the standardized value of relative humidity 

• Z3   is the standardized value of solar radiation 

• Z4   is the standardized value of rainfall  

• Z5   is the standardized value of wind speed 

• Z6   is the standardized value of age  
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Table 3. 4 The eigen vectors associated with eigen values of Table 3.3 

Eigen 

Vector 

1 

Eigen 

Vector 

2 

Eigen 

Vector 

3 

Eigen 

Vector 

4 

Eigen 

Vector 

5 

Eigen 

Vector 

6 

0.495 -0.239 -0.031 0.601 -0.463 0.347 

-0.488 -0.415 0.085 0.301 -0.362 -0.593 

0.546 -0.144 0.168 0.238 0.553 -0.539 

-0.207 -0.255 -0.808 0.259 0.396 0.127 

0.413 -0.280 -0.431 -0.594 -0.366 -0.279 

-0.068 -0.774 0.354 -0.266 0.241 0.378 

The principal components constructed above were used in a linear 

regression model. Stem radius was used as the dependent variable and the 

principal components as independent variables (Table 3.5). The rank of the 

predictive power did not line up with the order of the principal components. 

For instance, the first principal component was fewer explanatories (larger 

p-value) for the target than the second or the third, even though the first 

principal component contains more information on the six original 

explanatory variables. The principal components technique arrives at 

uncorrelated standardized linear combinations (SLCs) that capture only the 

characteristics of the X-vector or predictive variables.  No significance is 

given as to how each predictive variable is related to the response variable.  

In a way, it is an unsupervised dimension reduction technique (Maitra and 

Yan, 2008) and therefore requires use of other analytical methods such as 

partial least squares.   

 

 



57 

 

Table 3.5 Summary of OLS model that uses principal components as 

predictors 

Coefficients Estimates Std error t-value p-value 

Intercept 16025.71 36.70 439.659 <2e-16 *** 

PC1 60.83 23.82 -2.554 0.0107* 

PC 2 -5402.82 32.80 -164.713 <2e-16 *** 

PC 3 1987.07 35.27 56.34 <2e-16 *** 

PC 4 -1742.90 46.42 -35.547 <2e-16 *** 

PC 5 1330.27 57.18 -23.263 <2e-16 *** 

PC 6 1425.38 72.99 19.530 <2e-16 *** 

* shows significance at the 0.05 level;  ***  shows significance at the 0.001 level. 

In comparing the importance of the constructed principal components, five 

components explained most of the variation in the predictors (95.9 %). The 

scree plot (not shown here) showed that almost all the variation in 

predictors (about 96%) was explained by the first five principal components.  

Therefore, a linear model that used the first five principal components as 

latent explanatory variables was fitted (Table3.6). The 2R value 0.78 for the 

reduced model was close to the 2R (0.79) value for the model with all six 

components. Once again, the rank of the predictive power did not 

correspond with the order of the principal components. In other words, 

principal component one appears to have less explanatory power (larger p-

value) for the dependent variable as compared to other components. By 

transforming the principal components back to the original explanatory 

variables, the estimated coefficients of the original variables are given (Table 

3. 7). That means first the principal components are obtained. These 

principal components are uncorrelated and an ordinary regression model 

was fitted using the principal components as explanatory variables. The five 

principal components appear to have significant effect on the radial measure 

(Table 3.6). The estimated coefficients for the original measured variables 

were obtained by transformation from the estimated coefficients for principal 

components.  The estimated regression coefficients in Table 3.7 show that 
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all predictors have a positive relationship with stem radial measure. 

Moreover, the five latent variables that produced the estimated coefficients 

are significant (see Table 3.6). This indicates the significant effect of climatic 

variables on stem radial measure.  Separate estimates for GU and GC clones 

also show the positive effect of weather variables together with tree age 

(Table 3. 7). 

Partial least square regression (PLS) can overcome the deficiencies of OLS 

regression in the case of highly collinear data. Moreover, partial least 

squares allow an analysis of the data in terms of independent latent 

variables or components. Applying PLS method to the data, the minimum 

root mean square error of prediction (RMSEP) is observed for five 

components model.  The value of the X-variance for the model with five 

latent variables is 93.5 %. This means a model with five latent variables has 

explained 93.5 % of the variation in the original predictors.  The variation 

explained in the response variable is 79.1 %. This is the same amount of 

variation explained by the ordinary least square regression.  Therefore, the 

model formulated by five latent variables fits the data well with a high 

predictive power. The coefficients for the original set of variables when 

partial least square regression was applied to GC, GU and pooled data sets 

are indicated in Table 3. 8.  It appears that the estimated coefficients for the 

original set of variables for the GC clone are smaller than that of the GU 

clone for all climatic variables. This indicates that the GU clone has on 

average a larger stem radius than the GC clone. The signs of the estimated 

coefficients for the GU clone and the signs for the estimated coefficients of 

the pooled data set are the same. However, the estimated coefficient of 

temperature is negative for the GC clone while it is positive for the GU clone 

and pooled data set. This indicates that the effect of temperature on stem 

radius goes in opposite directions for the two clones for this site and age 

class. The possible reason for this could be the difference in genetic makeup 

of the two clones.  Moreover, the effect of weather variables may depend on 

the season of the year.  The site difference cannot be a possible reason for 

this difference as site difference is controlled by the design. In the design the 



59 

 

plots were established as pairs such that a GU and a GC plots are measured 

simultaneously (Fig. 2.1).  For the rest of the climatic variables the effect 

follows the same direction for the two clones with some differences in 

magnitude.  

In order to test whether the components that produced these coefficients are 

significant or not, latent variables or partial least square components were 

constructed while fitting the partial least square regression. After 

determining these latent variables, T1…T6 sequentially, the relationship 

between these latent constructs and the response was estimated by ordinary 

linear regression.  The sample correlations between any pair of the latent 

constructs were zero.   A linear model was then applied using the same 

radial measure as the dependent variable and the six partial least square 

components, T1…T6, as the independent variables.   

A summary result for the model that uses the partial least square 

components as predictors is shown in Table 3. 9.  The partial least square 

components were extracted in order of significance. The first five 

components were significant while the last component was not.  The values 

of   2R   and adjusted 2R  for this model were 0.7908 and 0.7907 respectively.   

Table 3. 6 Summary of OLS results for the model that uses the first five 

principal components 

Coefficients Estimates Std error t-value p-value 

Intercept 16025.71 37.50 427.35 <2e-16 *** 

PC1 60.83 24.34 -2.50 0.0124 

PC 2 -5402.82 33.52 -161.20 <2e-16 *** 

PC 3 1987.07 36.04 55.14 <2e-16 *** 

PC 4 -1742.90 47.43 -36.75 <2e-16 *** 

PC 5 1330.27 58.43 -22.77 <2e-16 *** 

*      shows significance at the 0.05 level; *** shows significance at the 0.001 level. 
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Table 3. 7 The estimated coefficients of the original variables estimated 

using principal component regression 

Predictors  

(Climatic variables) 

Estimates for 

combined 

data  

Estimates 

for GU clone 

Estimates for 

GC clone 

Intercept  -16558.67 -19048.26 -14069.07 

Temperature  90.48 165.33 15.64 

Relative humidity  581.14 680.05 482.29 

Solar radiation  694.56 802.99 586.20 

Rainfall  16.81 27.82 5.79 

Wind speed 834.13 902.12 766.24 

Tree age 6201.39 6764.65 5638.85 

 

Table 3. 8 Estimated coefficients of the orginal set of climatic variables using 

the partial least squares method 

Climatic variables Estimates for 

both clones 

Estimates for GU 

clone 

Estimates for GC 

clone 

Temperature 55.42 128.02 54.42 

Relative humidity  596.58 696.94 596.58 

Solar radiation 761.13 874.50 761.13 

Rainfall  35.13 47.59 35.13 

Wind speed  814.29 880.65 814.29 

Tree age 6191.69 6754 6191.69 

Table 3.10 shows the summary results for the model that involves only five 

partial least square components.  From the results, it can be seen that all 

the coefficients listed in Tables 3.9 and 3.10 were the same for the first five 

components. This shows that the coefficients of the partial least square 

latent variables do not change by adding or dropping latent variables from 

the model.  The results of the partial least squares model show that jointly 

all climatic variables had a significant effect on growth.   
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Table 3. 9 Summary of OLS results for the model that uses the PLS 

components as predictors 

Coefficients Estimates Std error t-value p-value 

Intercept 16025.71 36.70 436.64 <2e-16 *** 

T1 5932.81 32.29 178.23 <2e-16 *** 

T2 1193.6 45.41 26.28 <2e-16 *** 

T3 318.38 30.45 10.46 <2e-16 *** 

T4 299.85 40.22 7.46 9.83e-14 *** 

T5 212.74 48.99 4.34 1.42e-05*** 

T6 78.66 58.87 1.336 0.182 

*** shows significance at the 0.001 level. 

Table 3. 10 Summary of OLS results for the model that uses the first five 

PLS components as predictors. 

Coefficients Estimates Std error t-value p-value 

Intercept 16025.71 36.70 436.64 <2e-16 *** 

T1 5932.81 32.29 178.23 <2e-16 *** 

T2 1193.6 45.41 26.28 <2e-16 *** 

T3 318.38 30.45 10.46 <2e-16 *** 

T4 299.85 40.22 7.46 9.83e-14 *** 

T5 212.74 48.99 4.34 1.42e-05*** 

*** shows significance at the 0.001 level. 

Table 3. 11 RMSE and RMSECV values for all prediction methods 

 OLS PCR PLS 

RMSE 3410.01 3484.53 3410.4 

RMSECV 3414.39 3413 3413 

 

With regard to the predictive powers of these models, a comparison was 

made based on root mean square error (RMSE) and the root mean square 
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error of cross-validation (RMSECV, Table 3.11), a measure of the model’s 

ability to predict new samples.    The ordinary least square model had the 

smallest RMSE value (Table 3.11). The second smallest RMSE value 

belonged to the partial least square model. The RMSE for partial least 

square was actually very close to the RMSE for the ordinary least square 

model. However, this comparison was from the point of view of model fit. 

Under the condition of no multicollinearity, this might indicate that the 

ordinary least square model fitted the data better than the other two 

methods. For comparisons of models intended for prediction, it is 

inadequate to look just at model fit. The RMSECV obtained for PCR model 

with six components is the same as the RMSECV obtained for partial least 

square regression model with five components. As prediction is the objective, 

the partial least square and the PCR models that gave the lowest RMSECV 

value with smaller number of components is preferred. For the data set to 

which these models were applied, the partial least square model had the 

highest predictive ability with the lowest number of factors.  In order to 

identify differences between clones, a separate partial least square model 

was fitted to data for each clone.  For both clones, the optimum number of 

partial least square components was five.  These five components were 

significant while the sixth component was not significant (Table 3.9).  The 

percentage of total variation in radial measure captured by the optimal 

number of components for the GU clone is less (Table 3.12: 80% with p-

value < 0.0001 ) than the amount of variation captured for the GC clone 

(Table 3.13: 87.21% with p-value < 0.0001).  The percentage of total 

variation in climatic variables and tree age captured by the five components 

partial least squares model for the GU and GC clones is almost the same 

(93.5 %).  

In order to determine the most important drivers of variation in short term 

stem radial measure ( for the first two years of  tree age ) for the two clones, 

we applied standardized regression weights for both partial least squares 

and principal component regressions. This can be obtained by fitting the 

models on standardized variables. The factor with the highest coefficient in 
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absolute value is the most important factor in explaining the variation in 

radial measure. The standardized regression weights (coefficients) for our 

predictors, when partial least square regression and principal components 

regression were applied to GC and GU data sets, are indicated in Table 3.14.  

Table 3. 12 Percent of variance captured by partial least square components 

for GU clone 

Components Climatic variables and age Radius 

This 

component 

Cumulative 

Total 

This 

component 

Cumulative 

Total 

  T1 20.53 20.53 77.53 77.53 

  T2 17.66 38.19 1.86 79.04 

  T3 30.25 68.44 0.35 79.39 

  T4 15.27 83.71 0.14 79.53 

  T5 9.8 93.51 0.04 79.57 

 

Table 3. 13 Percent of variance captured by partial least square components 

for GC clone. 

 

Components 

Climatic variables and 

age 

Radius 

This 

component 

Cumulative 

Total 

This 

component 

Cumulative 

Total 

  T1 20.47 20.47 84.74 84.74 

  T2 12.25 32.72 2.06 86.80 

  T3 25.85 58.57 0.25 87.05 

  T4 24.28 82.85 0.11 87.16 

  T5 10.68 93.53 0.05 87.21 

 

It appears that tree age is the most important predictor of stem radius using 

both models and for both clones. Among climatic variables, it appears that 
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wind speed, followed by solar radiation, is the most important driver of the 

variation in stem radius over the growth period of two years. However, the 

biological plausibility of these results is questionable. Moreover, we found 

the negative effect of temperature for GC clone.  This might be due to the 

dependence of weather variables on season. The weather variables are likely 

to change over the year. 

Table 3. 14 Table of standardized regression weights for both principal 

component regression and partial least square regression models 

Predictors 

(climatic variables ) 

PLS model PCR model 

GU GC GU GC 

Temperature  0.016 -0.003 0.020 0.002 

Relative humidity  0.086 0.078 0.083 0.075 

Solar radiation 0.107 0.101 0.098 0.091 

Rainfall 0.006 0.004 0.003 0.001 

Wind speed 0.108 0.116 0.110 0.119 

Tree age  0.829 0.876 0.830 0.878 

This relative effect of weather variable might change from one season to the 

other.  We analysed the same data by season in order to see the season 

effect. Summary results by season are shown in Table 3.15 and Table 3.16. 

In spring and summer, none of the weather variables has significant effect. 

The only variable that has significant effect on stem radius is tree age.  In 

winter, all predictors have a significant effect on stem radius for GU clone 

while for GC clone all have a significant effect with the exception of rainfall.  

In autumn, solar radiation, wind speed and tree age have significant effects 

on the stem radius for both clones.  In autumn, rainfall appears to have a 

significant effect on stem radius for GU clone while it has no significant 

effect on GC clone. The insignificant effect of rainfall in winter and autumn 

for GC clone might be due to a genetic factor, which needs further study.  

Temperature has a significant effect and is positively related to stem radius 

in winter for both clones (Table 3.16). In summer, autumn and spring, 
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temperature has no significant effect on stem radius (Table 3.15 and 3.16).  

Therefore, the effect of weather variables on stem radius is dependent on the 

season.   

Table 3. 15 Summary results of ordinary regression model for summer and 

autumn 

 

Predictors  

Summer 

GC clone GU clone 

 Estimate p-value Estimate p-value 

Intercept 2763.099 0.265 2695.785 0.588 

Temperature -2.143 0.963 -17.097 0.854 

Relative humidity  5.088 0.781 9.983 0.786 

Solar radiation  167.126 0.712 371.769 0.683 

Rainfall 0.291 0.990 0.422 0.993 

Wind speed -47.827 0.813 -80.071 0.844 

Tree age  185.506 0.000 231.252 0.000 

 107.02 =R  045.02 =R  

Predictors  Autumn 

GC clone GU clone 

Estimate P-value Estimate P-value 

Intercept -

11156.222 

0.000 15921.22 0.000 

Temperature  -12.152 0.578 28.38 0.377 

Relative humidity 8.632 0.441 19.62 0.233 

Solar radiation 1055.849 0.028 1907.87 0.007 

Rainfall 13.029 0.550 23.89 0.029 

Wind speed 378.068 0.011 476.58 0.029 

Tree age  316.093 0.000 382.49 0.000 

 929.02 =R  9.02 =R  
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Table 3. 16 Summary results of ordinary regression model for winter and 

spring 

 

Predictors 

Winter 

GC clone GU clone 

 Estimate p-value Estimate p-value 

Intercept -12364.279 0.000 -14159 0.000 

Temperature 137.832 0.000 159.339 0.000 

Relative humidity  39.106 0.000 46.699 0.000 

Solar radiation  1980.674 0.000 1775.888 0.021 

Rainfall -5.541 0.442 -7.936 0.046 

Wind speed 659.705 0.000 698.642 0.002 

Tree age  266.982 0.000 312.839 0.000 

 896.02 =R  841.02 =R  

Predictors  Spring 

GC clone GU clone 

Estimate P-value Estimate P-value 

Intercept -2217.472 0.077 -8561.296 0.002 

Temperature  -20.944 0.366 -40.28 0.434 

Relative humidity -0.688 0.941 -2.816 0.893 

Solar radiation 56.458 0.855 110.533 0.872 

Rainfall -1.488 0.870 -1.53 0.939 

Wind speed 31.297 0.788 65.365 0.801 

Tree age  262.869 0.000 403.825 0.000 

 282.02 =R  158.02 =R  

Daily stem size variation is important as the net increment of a forest stand 

is ultimately determined by the accumulation of daily increment events 

(Drew et al., 2009).  Several factors might affect the daily stem size of trees. 

For instance, the study by Zweifel et al. (2006) indicates that there is a 

strong dependence of radial growth on the current tree-water relations and 

only secondary dependence on the carbon-balance. The availability of soil 
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water and the degree to which storage tissues were saturated were also 

factors affecting the diurnal course of stem radius changes (Zweifel and 

Häsler, 2001). Whitehead and Jarvis (1981) and Landsberg (1986) have 

suggested in theoretical approaches, that the diurnal stem radius 

fluctuations are coupled to tree-water relations by changing water potential 

gradients within the tree.  Studies by Downs et al. (1999) and Deslauriers et 

al. (2003) consider the effect of weather on daily stem growth.  Deslauriers et 

al. (2003) studied daily stem radial growth of balsam fir to show that total 

rainfall and maximum temperature were positively correlated with the stem 

radius. Climatic variables are highly inter-correlated, and the use of 

ordinary least squares to estimate the parameters of the response function 

results in instability and high variability of the regression coefficients. As a 

result, the regression coefficients become much larger than would seem 

reasonable physically or practically, and may fluctuate widely in sign and 

magnitude. Accordingly, it was observed that the ordinary regression 

estimates inflated the percentage of variation in the stem radial growth 

accounted for by climatic conditions.  Ordinary regression inferences from 

such correlated climatic variables can result in misleading and confusing 

conclusions relating to variables of major interest to dendroecologists in 

terms of magnitude, sign, and standard error of the coefficients as well as  

2R (Fekedulegn et al., 2002). 

Both principal component regression and partial least square regression 

methods have an advantage over ordinary least square regression because 

they do not require that the explanatory variables be orthogonal. The 

principal components are orthogonal, eliminating the multicollinearity 

problem. However, the problem of choosing an optimum subset of predictors 

remains.  A possible strategy is to keep only a few of the first components. 

Nevertheless, the components are chosen to explain the independent (X) 

rather than the dependent (Y) and there are no guarantees that the principal 

components which explain the independent variable can be relevant to 

explain the dependent (Y).  On the other hand, PLS regression finds 
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components from X that are also relevant for Y. Partial least squares 

regression searches for a set of components that perform a simultaneous 

decomposition of X and Y with the constraint that these components explain 

much of the covariance between X and Y. The partial least squares approach 

is considered as a variance-based structural equation model. The alternative 

structural equation model (SEM) is a covariance-based structural equation 

model.  Although both methods use a latent variable term, the latent 

variables used by the two methods are different. As indicated by Fornell and 

Bookstein (1982), the latent variables in partial least squares are estimated 

as exact linear combinations of their indicators. This shows that “latent” 

variables in partial least square are not true latent variables as defined in 

SEM, as they are not derived to explain the co-variation of their indicators, 

but only to approximate them (Mathes, 1993; McDonald, 1996). On the 

other hand, the latent variables in covariance-based SEMs are true latent 

variables. That is they are hypothetically existing entities or constructs. In 

other words, the covariance-based SEM latent variables cannot be found as 

weighted sums of manifest variables; they can only be estimated by such 

weighted sums (Schneeweiss, 1993).  Arguably, partial least square has the 

advantage over the covariance based SEM, in that Jöreskog and Wold (1982) 

and Wold (1982; 1985) referred to partial least square technique as “soft 

modelling” because it did not require the “hard” distributional assumptions 

of maximum likelihood (ML) which is the core technique in SEM, and 

because it uses a suboptimal estimation technique that is faster to run than 

ML-SEM, which therefore allows for more user interaction.  

Finally, the latent variable model approaches used in our study show that 

all climatic variables measured and tree age are positively correlated with 

stem radial measure for the pooled data of both clones.  Moreover, all latent 

variables had significant effects on the radial measure. This was not the 

case when ordinary least square was applied. The effects of the two most 

important variables, rainfall and temperature, were not significant when the 

ordinary least square method was used (Table 3.1). This may be because the 

ordinary linear regression assumes that the predictors are uncorrelated 
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while in our case the climatic variables are correlated (Table 3. 2).  It may 

also be because the effect of weather variables changes with season.  To 

overcome the problem of correlation among weather variables, two 

alternative methods (Principal component regression and partial least 

squares) were used.  Principal component regression models were fitted for 

the GC and GU clones separately, resulting in a positive effect of climatic 

variables on stem radius for both clones. The weather data together with the 

age of a tree accounted for 79% of the variance in the stem radial growth for 

the combined data set. This is equivalent to R2 in ordinary least square 

regression. The separate analysis of GC and GU clones showed that the 

weather variables and tree age explained 87% and 79.6% of the total 

variation in radial measure for the GC and GU clones respectively.  

When comparing the partial least square model fitted for the GC clone and 

GU clone, the effect of climatic variables is similar for the two clones except 

for the effect of temperature.  Temperature appears to have an opposite 

effect on the radial growth of the two clones. Moreover, 87% of the total 

variation in the stem radial measure is explained by the weather variables 

and tree age by using the PLS method for the GC clone and 79% of the 

variation is explained for the GU clone.  This indicates that the amount of 

explained variation is larger for the GC clone than for the GU clone. The 

evaluation of the relationship between weather variables and stem radius is 

considered after separating the data by season. The effect of weather 

variables on stem radius was found different for different seasons. Tree age 

is the most important factor that influences change in stem radius. The 

importance of tree age in determining stem radius should be expected as 

growth is positively related to age most of the time. There is no significant 

effect of weather variables on stem radius during summer and spring for 

both GU and GC clones. In autumn, there is significant effect of some 

variables (tree age, solar radiation, wind speed) for both GU and GC clones. 

In winter, the variables temperature, relative humidity, solar radiation, wind 

speed and tree age have a significant positive relationship with stem radius 

for both clones (Table 3.16). 
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3.6 Summary  

The PCR and PLS regression methods provided tools for assessing factors 

that affect stem radial growth. These statistical methods appear to be good 

in solving the problem of multicollinearity because they do not require that 

covariates are orthogonal. Although we intially suspected multicollinearity 

problems, with regard to the data at hand, it was not very severe. The 

results revealed that the relationships between the daily stem radius and 

weather variables is positive for both the GU and GC clones with the 

exception of temperature.  The study indicates that tree age is the most 

important factor that influences stem radius during the juvenile stage of the 

tree (up to two years) in all seasons. In winter, temperature, relative 

humidity and wind speed appear to be more important than the other 

weather variables. Melesse and Zewotir (2013a) provide a detailed 

discussion of these results (attached in Appendix A).   

The PLS approach is considered as a variance-based structural equation 

model. The alternative structural equation model (SEM) is a covariance-

based structural equation model.  PLS concentrates on maximizing the 

variance explained for the dependent variable in the model, whereas 

covariance-based SEM determines the model parameters required to come 

up with an empirically observed covariance matrix.  PLS is based on least 

square approach while covariance-based approach is mainly based on 

maximum likelihood approach.  The two latent variable modelling 

approaches (PCR and PLS) used in this chapter can produce the direct effect 

of each explanatory variable on the response. However, the indirect effect 

can only be studied if we consider covariance-based structural equation 

modelling.  The next step is to review the alternative to partial least square 

approach namely the covariance-based structural equation modelling 

approach.  Specifically, we begin by reviewing path models approach and 

use them to study the impact of climatic variables and tree age in chapter 4. 
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Chapter 4 

Structural Equation Modelling (SEM)  

4.1   Introduction  

Structural Equation Modelling (SEM), also known as covariance structure 

analysis, covariance structure modelling, or causal modelling is a collection 

of related statistical techniques designed to model complex relationships 

between characteristics under investigation (Kline, 2005).  SEM is one of the 

cutting-edge statistical techniques that assess a series of multiple 

dependent relationships simultaneously.   SEM provides a chance to employ 

comprehensive methods for quantification and testing of theories of complex 

relationships, to explicitly take into account the measurement error, and to 

use latent variables as a cause and as an outcome.  The fundamental 

hypothesis in SEM is that the covariance matrix of the observed variables is 

a function of a set of model parameters (Bollen, 1989), that is  

( )∑ ∑= θ  

where 

( ) =∑ sigma the population covariance matrix of observed variables. 

θ is   a vector that holds model parameters.  

( )∑ θ  = is   the covariance matrix written as a function of  θ . 

Many well-known conventional statistical techniques such as regression 

analysis, correlation analysis, path modelling and factor analysis can be 

considered as special cases of SEM. During the development of SEM some 

basic terminologies have been developed. It is essential to give a review of a 

few key concepts associated with SEM methodology.  
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4.2 Basic Concepts Associated with SEM  

 

Latent versus observed variable: In SEM, variables are mainly categorized 

into observed and unobserved.  Observed variables are those variables that 

are measured directly whereas unobserved or latent variables are those that 

cannot be measured directly.  

Latent variables also known as latent constructs are measured indirectly 

from multiple observed variables.  Observed variables serve as indicators of 

the underlying construct or latent variables.  

Exogenous versus Endogenous variables     

 Exogenous variables are synonymous with independent variables; they 

“cause” fluctuations in the values of other latent variables in the model. 

Changes in the values of exogenous variables are not explained by the 

model. Rather, they are considered to be influenced by other factors external 

to the model. Endogenous latent variables are synonymous with dependent 

variables and, as such, are influenced by the exogenous variables in the 

model, either directly or indirectly (Byrne, 2001). The values of the 

exogenous variables are determined outside the model while the values of 

endogenous variables are determined within the model.         

 Direct, Indirect and Total effects    

Direct effect measures the impact of one variable on another that is not 

intervened by any other variable. The indirect effect measures the impact of 

an independent variable through all possible mediating variables.  The sum 

of direct and indirect effect gives us total effect.   For instance, consider the 

hypothetical relationship presented in Figure 4.1.  In this figure, the captal 

letters (X , Y,  Z and W) represent the varaibles and the small letters (x, y, z, 

w  and u) stand for path coefficients.  

• X and Y are correlated in a non-causal manner (also called 

unanalysed association to show that the explanations for the 
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observed association are not examined or are not essential to 

consider within the context of the model). 

• X and Y have a direct effect on Z.  Similarly, Y and Z have a direct 

effect on W. 

• Z has a mediating role in the relationship of X and W, along that of Y 

and W.  

• There is no direct effect of X on W. 

•  X and Y have an indirect effect on W individually through Z. (These 

effects cannot be measured in ordinary regression).  

With the two variables X and W from Figure 4.1, there is no direct effect of X 

on W. Nevertheless, there are three indirect effects and the sum of these two 

indirect effects will give us the total effects of X on W.   

The magnitude of one indirect effect through Z is equal to uy × . 

The magnitude of another indirect effect through Y is equal to wx × . 

 

Figure 4. 1 Hypothesized causal model relationships between two exogenous 

variables (X, Y), one mediating variable (Z) and one outcome variable (W). 

The magnitude of another indirect effect through Y and then through Z is 

equal to   uzx ×× . 
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Recursive and non-recursive models  

Based on the manner in which variables are hypothesized to influence each 

other, one can identify the recursive models from non-recursive models.  

When one variable cannot influence a variable and at the same time be 

influenced by that variable in a given causal line, then the model is termed 

as recursive.  

In a non-recursive model, variables possibly influence other variables (be an 

independent variable) and at the same time be influenced by the same 

variable (to be a dependent variable) in the same system of relational 

equations (reversed causality).    Figure 4.2 is an example of a non-recursive 

model while Figure 4.1 can be considered as an example of a recursive 

model.  Differentiating between recursive and non-recursive models has 

implications on the way the model is fitted to the data (Bollen, 1989).   

 

Figure 4. 2 An example of Non-recursive Structural Equation Model 
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Correlation and covariance: 

These are measures of non-directional relationship between two measured 

variables and they play a pivotal role in SEM. For two continuous variables, 

the Pearson correlation coefficient (r) is obtained after standardizing the 

covariance of the two variables under investigation (Bollen, 1989).  If we 

have two continuous variables namely X and Y each observed n times, then 

the Pearson correlation coefficient (r) is calculated as  

( )( ) ( )
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Hypothesising a cause and effect relationship is not mandatory to model the 

association of two variables using correlation analysis because the 

correction coefficient between the variables X and Y is the same as the 

correlation coefficient between Y and X.   

4.3 Types of SEM Models   

 

 Structural equation modelling (SEM) has been developed over a long period 

of time in different disciplines. The direction of development has varied by 

the type of problem faced in each discipline.  For instance, path analysis is 

first introduced in 1918 by Sewall Wright in his genetic work and it was fully 

described in the early 1920s (Wright, 1918; Wright, 1920; Wright, 1921; 

Wright, 1923).  Wright (1934) developed the method of path analysis for 

estimating causal relations among variables based on correlation matrix of 

observed variables, stressing path coefficients (standardized regression 

coefficients) but also employing unstandardized coefficients. He also 

developed a graphical method of presenting causal relations using path 

diagrams, comprising variable labels connected by arrows for direct effects, 
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double headed arrows for unanalysed correlations, and estimated path 

coefficients indicated over a single headed arrows.   

In psychology, the interest in SEM is initiated in factor analysis. Factor 

analysis is a statistical technique for analysing a correlation matrix of the 

observed variables to identify a small number of factors, components, or 

latent variables that comprise much of the information in the original 

variables.  This technique has two main parts namely, the exploratory factor 

analysis (EFA) which has been around for more than a century ( Lovie and 

Lovie, 1993) and confirmatory factor analysis (CFA) which has been 

popularized since the mid-1960s (Brown, 2006).  Simultaneous equation 

models are developed in economics to examine supply and demand.  

Publications of different discipline-specific advances came together in the 

early 1970s and created the multi-disciplinary method currently known as 

SEM.  The general approach to confirmatory maximum likelihood factor 

analysis  by  Jöreskog (1969), the work on treatment of  unobservable 

variables in path analysis (Hauser and Goldberger, 1971), and generalized 

least square (GLS) results on unobservable  independent variables (Zellner,  

1970) are some of the examples that pave the way for the creation of  a 

multidisciplinary SEM approach. The main emphasis of this chapter is on 

the applications of path models approach and therefore a discussion of path 

models is presented.  

Path modelling approach  

A brief description of path analysis and its relation to the classical 

regression model is given.  Path analysis is the statistical technique used to 

examine causal relationships between two or more variables.  It involves a 

set of simultaneous regression equations that theoretically establish the 

relationship among observed variables in the path model. Path analysis 

extends the idea of regression modelling and gives the flexibility of 

quantifying indirect and total causal effects in addition to the direct effect 

which is also possible in regression analysis (Bollen, 1989).  In other words, 
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regression analysis allows an independent variable to influence an outcome 

variable only directly. Path analysis however gives more flexibility and 

predictor variables are allowed to influence the outcome variable directly as 

well as indirectly through other mediating variables.  Path analysis shares 

the following principles of regression analysis: 

(i) The direction of influence in the relationship of variables should be 

specified from the theory behind the investigation.  

(ii)  Independent variables are assumed to be measured without error. 

(iii) The relationship between target variables is linear. 

(iv)  Any outcome variable in the system of equations under investigation 

has an error term attached to it.  

Path analysis is an extension of the regression model, which researchers use 

to test the fit of a correlation matrix with a causal model that has been, 

tested (Garson, 2004).  The aim of path analysis is to provide estimates of 

the magnitude and significance of the hypothesized causal connections 

among sets of variables displayed through the use of path diagrams. There 

are three interrelated components in path analysis (Bollen, 1989): 

 (i) The translation of a conceptual problem into pictorial presentation, 

which shows the network of relationships; 

 (ii) Obtaining systems of equations that relate observed correlation and 

covariance to parameters; and 

(iii) Decomposition of effects of one variable on another (i.e. direct, 

indirect and total effects) from the correlation of measured variables.  

The pictorial presentation or path diagram assists in clarifying what is 

meant by a conceptually framed problem and leads to formulation of 

systems of mathematical equations that can be solved to give estimates of 

effects knowing the correlation or covariance of measured variables. A path 

diagram has been promoted as the easiest tool to conceptualize a “causal 

relationship “as well as to decompose the correlation between different 

variables into different sources (Wright, 1920; Wright, 1921; Wright, 1923). 
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4.4 Estimation in SEM    

 

The estimation procedures originate from the relationship of the covariance 

matrix of the observed variables to the structural parameters.  If the 

structural model is correct and the population parameters are known, then 

∑  will equal  ( )∑ θ   (Bollen, 1989).  The unknown structural parameters are 

estimated so that the implied covariance matrix Σ̂  is close to the sample 

covariance matrix S .  To measure the closeness of the estimate a function 

must be minimized.  The fitting functions  ( ))(, θSSF  are based on S , the 

sample covariance matrix, and ( )∑ θ , the implied covariance matrix of 

structural parameters.  If the estimates of θ   are substituted in  ( )∑ θ  , this 

leads to the implied covariance matrix, Σ̂ .  The value of the fitting function 

for  θ̂    is   ( )Σ̂,SF .   The fitting function has the following properties 

(Bollen, 1989). 

( 1)    ( )( )θΣ,SF is  a scalar 

(2)   ( )( ) 0, ≥Σ θSF  

(3)   ( )( ) ( ) SiffSF ==Σ ∑ θθ 0,  

(4)   ( )( ) ( )∑Σ θθ andSincontinuousisSF , . 

Some functions are maximum likelihood (ML), un-weighted least squares 

(ULS) and generalized least squares (GLS). In this thesis, the maximum 

likelihood method is used and a brief description of this method is presented 

as follows.  
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Maximum Likelihood estimation (MLE):  

The fitting maximum likelihood function is  

( ) ( )( ) ( ) )1.4(log1 qpSStrLogFML +−−Σ+= −∑ θθ where )( qp +   is the total 

number of observed variables . 

( )θΣ   and S are assumed to be positive definite. Both the dependent (Y) 

and the independents (X) are assumed to have multivariate normal 

distributions and S has Wishart distribution.  The derivation for 4.1 can 

be found in Bollen (1989).   The function (4.1) is a complicated nonlinear 

function of the structural parameters, and easy solutions are not always 

available. As a result, iterative numerical procedures are applied to find the 

solution. For an overview of such numerical procedures one can refer to 

Bollen (1989). Some important asymptotic properties of likelihood estimators 

are: 

(1)  they are asymptotically unbiased;  

(2)  they  are consistent; 

(3)  they are asymptotically efficient;  

(4)  the distribution of the estimator approximates a  normal distribution 

as the sample size gets large; 

(5)  They are scale invariant. 

From property (4), if we know the standard error of the estimator, the ratio 

of the estimator to its standard error can have a standard normal 

distribution for large sample. This ratio gives us the test statistic commonly 

known as critical ratio in SEM modelling. It is used to test if the parameter 

under consideration is significantly different from zero.  Property (5) shows 

that the values of the fit function (4.1) are the same for correlation and 

covariance matrices, or more generally they are the same for any change of 

scale.  
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4.5 Evaluating Model Fit in SEM    

 

The main interest in SEM is to find a meaningful explanation for the 

association of variables simultaneously. The association can be analysed 

using raw data or variance covariance matrix that has adequate information 

about the association.   Several statistics have been proposed as a measure 

of the merit of the model.  A focus has been made on a few, mainly based on 

the recommendation of Browne and Mels (1992), with the availability of the 

software also being taken into consideration. AMOS software (Amos 

Development Corporation) is employed to fit models.  In AMOS, fit measures 

are reported for each model specified by the user and two additional models 

called the saturated model and the independence model.  

In a saturated model, no constraints are placed on the population moments. 

The saturated model is the most general model possible. It is a vacuous 

model in the sense that it is guaranteed to fit any set of data perfectly. Any 

Amos model is a constrained version of the saturated model. On the other 

hand the independence model goes to the opposite extreme. In the 

independence model, the observed variables are assumed to be uncorrelated 

with each other.  When means are being estimated or constrained, the 

means of all observed variables are fixed at zero.  The independence model is 

so severely and implausibly constrained that they would expect it to provide 

a poor fit to any interesting set of data (Arbuckle, 2006).  

One of the measures for assessing the goodness of fit of structural equation 

models is the chi-square statistic. Under the null hypothesis that

( )θΣ=Σ:oH , MLFN )1( −  has an asymptotic chi-square distribution with 

degrees of freedom is equal to  ( )( ) tqpqp −+++ 1
2

1
 , where MLF the value of 

the fitting function defined in equation 4.1 evaluated at the final estimate, t 

is the number of free parameters and N is the total number of observations.  

The total number of observed variables is )( qp + .   This test statistic is used 
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to test the covariance structure hypothesis ( )θΣ=Σ:oH .  Rejection of the 

null hypothesis suggests that at least one restriction is in error so that

( )θΣ≠Σ .   It should be noted that the usage of chi-square statistic depends 

on a sufficiently large sample and on multivariate normality of the observed 

variables.  

Normed fit index (NFI):  The Bentler-Bonett (1980) normed fit index is a 

measure whose possible value lies between zero and one inclusive.   It can 

be written as  

  
bC

C
NFI

ˆ

ˆ
1 −=    where   Ĉ  is the minimum discrepancy of the model 

being evaluated  and bĈ   is the discrepancy of the baseline model 

(Independence model).  The NFI tests the hypothesized model against a 

reasonable baseline model and ideally should be 1�0.  An NFI value of 0.9 

and higher have been recommended to be used as an indicator of best fitting 

models. 

Root Mean Square Error of Approximation (RMSEA):  The RMSEA formula 

according to Bollen and Curran (2006) is  

 

  
k

kk

dfN

df
RMSEA

×−

−
=

)1(

2χ
 

where  

 

• 
2

kχ    is the likelihood chi-square from the target model and kdf   

is its associated degrees of freedom. 
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•  kk df−2χ   is an asymptotically unbiased estimator of the non-

centrality  parameter for non-central chi-square distribution 

underlying   
2

kχ . 

• (N-1)  in the denominator  is used for adjusting the effect of 

sample size on the non-centrality parameter. 

• kdf   in the denominator is meant to provide a penalty for using 

model degrees of freedom. 

 A RMSEA of < 0�10 is considered a good fit and < 0�05 is very good, lower 

than 0.01 is considered as a beautiful fit (Steiger, 1990).  

The single sample expected cross validation index (ECVI):  

Browne and Cudeck (1989, 1993) developed a single sample expected cross 

validation index (ECVI) and also explained the use of ECVI in structural 

equation modeling.  Except for a constant scale factor, ECVI is the same as 

the Akaike information criterion (Akaike, 1973, 1987).  Arbuckle (2006, p. 

542) reported the MECVI, which except for a scale factor is identical to the 

Brown-Cudeck Criterion (BCC). The BCC enforces a marginally greater 

penalty for model complexity than the AIC and it is a fit measure developed 

for the analysis of moment structures.  These fit measures are planned for 

model comparisons and accordingly indicate “goodness of fit” with simple 

models that fit well receiving low values and poorly fitting models receiving 

high values.  The ECVI is a function of chi-square and degrees of freedom. It 

is computed in AMOS as  

n

AIC
ECVI =  where rNn −= , with  N  the sample size and r the number of 

groups.  Browne and Cudeck (1989, 1993) provided a confidence interval for 

ECVI.  In AMOS the 90% lower and upper confidence limits LC  and uC   

respectively, are given by  
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 




 ++++

n

qd

n

qd uL )2(
,

)2( δδ
,   where Lδ   and Uδ  are the parameter 

estimates for the lower and upper limits respectively, d is the degree of 

freedom and q is the number parameters.  

 Path significance was based on the critical ratio (CR), with a CR > 2 in 

absolute value considered as significant (Arbuckle, 2006; Schumacker and 

Lomax, 2004). 

4.6 Data Analysis  

The statistical analyses were performed using AMOS software (Amos 

Development Corporation).  Path analysis was conducted by considering the 

radial measure as dependent, climatic variables and age as independent 

factors explaining the radial growth.   The chi-square statistic, the normed 

fit index (NFI), and Root Mean Square Error of Approximation (RMSEA) were 

used to check the goodness of model fit.  The larger the probability 

associated with the chi-square, the better the fit of the model to the data 

(Bollen, 1989; Byrne, 2001).  The NFI tests the hypothesized model against a 

reasonable baseline model and ideally should be 1�0. Model validity was 

assessed using the expected cross validation index (ECVI).  

4.7 Results of Fitting Path Models  

The independent variables included in the study were the five major climatic 

variables that were measured and the age of the trees.  The association 

between the independent variables and the radial growth measurement of 

the clones is presented in Figure 4.3.   The numbers displayed at the top of 

the diagram refer to the goodness of fit of the model.  This fit statistic is the 

likelihood ratio chi-square test.  The p-value associated with this measure is 

0.894, which is far larger than 0.05 and indicates a non-statistical 

significance of the chi-square test.  This implies the model is consistent with 

the data.  The numbers displayed next to the double headed arrows are 

estimated correlation coefficients. 
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Figure 4. 3  Path diagram showing the effect of age and climatic variables on 

radius of Eucalyptus hybrid clones during the first measured phase of 

growth. Time = age; solrad = solar radiation; relhum = relative humidity; 

windsp = wind speed; Temp=temperature. 

Various measures of fit (Table 4. 1) are presented for the fitted model, given 

in Figure 4.3, and include the saturated model, which is the ideal fit by 

including all possible paths.  A model that can be defined as good is one 

that does not differ significantly from the saturated model despite omitting 

paths from the saturated model.  On the other hand, the ordinary regression 

model or independent model fits by ignoring any potential relatedness 

between the independent variables thus considering all correlations among 

the independent variables as zero.   The fit indexes for saturated model are 

very close to the fit indexes obtained for our model (Table 4.1) indicating 

that the model at hand can be considered good. 
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Table 4. 1 Different fit measures for the fitted model, saturated and ordinary 

regression models 

Fit measure 

 

Model 

Fitted 

Model1 

Saturated 

Model2 

Ordinary 

Regression3 

Chi square 0.02  1287.06 

Chi square p-value 0.89  0 

Normed fit index (NFI) 1 1 0 

Root mean square error of 

approximation (RMSEA) 
0  0.386 

Expected cross-validation 

index (ECVI) 
0.006 0.006 3.13 

 ECVI lower bound 0.006 0.006 3.068 

 ECVI upper bound 0.007 0.006 3.193 

 Modified  expected cross 

validation index (MECVI ) 
0.006 0.006 3.131 

1 The model presented in Figure 4.3. 

2 Model that includes all possible paths. 

3 The independent model that assumes no correlation between the 

independent variables. 

The statistical significance of individual parameter estimates for the paths in 

the fitted model (Figure 4.3) is one of the important criteria to be studied.  

The significance can be seen by computing the critical ratios, which are 

obtained by dividing the parameter estimates by their respective standard 

errors.  The computed critical ratios together with the corresponding p-

values are presented in Table 4.2.  The regression weights for all variables 

were significant with the exception of rainfall, which was dropped from the 

model.  
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 Table 4. 2 Regression weights indicating the relationship between radial 

growth and each independent variable for the combined data set. 

Relationship 

Maximum 

Likelihood 

Estimates 

Standard 

Error 

 

Critical 

Ratio 

 

P-value 

 

radius<---time 313.51 2.18 143.91 *** 

radius<--Temperature 23.74 12.64 1.88  0.06 

radius<---solar radiation 2817.03 220.03 12.80 *** 

radius<---relative humidity 63.76 5.75 11.09 *** 

radius<---wind speed 1447.03 73.63 19.65 *** 

“ *** ”  indicates  the p-value is less than 0.001. 
 

The other issue to consider at this stage is the magnitude and direction of 

the parameter estimates.  In this particular model all the regression weights 

were positive indicating the existence of a positive relationship between 

radial growth and the climatic variables.  The standardized regression 

coefficients are 0.832 (age of a tree), 0.012 (temperature), 0.092 (solar 

radiation), 0.076 (relative humidity) and 0.113 (wind speed).  This suggests 

that the most important variable to explain radial growth is age of the tree.  

It is also estimated that the predictors of radius explain 79 % of its variance.  

In other words, the error variance of radius is approximately 20.9% of the 

variance of radius itself. 

 Although the goodness of fit measures indicate that the fitted model (Figure 

4.3) is a good fit (refer Table 4.1), the parameter estimates show that rainfall 

has no direct influence on the radial growth.  An attempt was made to 

modify the fitted model (Figure 4.3) by making rainfall a required variable in 

the model.  Such a modification procedure is called specification search 

(Leamer, 1978).  The objective of a specification search is to alter the original 

model in search of a model that is better fitting in some sense, and yields 

parameters having practical, and in this case biological significance and 

substantive meaning.  The path diagram for the first attempt at modification 
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is presented in Figure 4.4.  For this path analysis model, a good ‘goodness of 

fit’ was obtained.  The calculated value of the chi-square statistics was 

3.194 with one degree of freedom and a p-value of 0.074.  However, the 

goodness of fit for the second fitted model (Figure 4.4) was not as good as 

the model fit shown in Figure 4.3.  The parameter estimates for the second 

fitted model (Figure 4.4) suggest that rainfall had no direct significant effect. 

Therefore, no additional information was gained by modifying the path 

diagrams from that of Figure 4.3 to that of Figure 4.4.  

 

Figure 4. 4  Path diagram showing the effect of age and climatic variables on 

radius of Eucalyptus clones when rainfall is considered a required variable. 

Time = age; solrad = solar radiation; relhum = relative humidity; windsp = 

wind speed; Temp=temperature. 

The third attempt at specification search was to consider a model fit for the 

second fitted model (Figure 4.4) that excluded wind speed as an explanatory 

variable (Figure 4.5).  The model fit was good and parameter estimates were 

significant.  The regression weight for rainfall in the prediction of radial 
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growth was significantly different from zero at the 0.001 level (two-tailed, 

Figure 4.5).  This indicates that rainfall has a significant effect on the radial 

growth of trees in the absence of wind speed.  For this model, it is estimated 

that the predictors of radial growth explain 78.2% of its variance.  This is 

very close to the value obtained for the first model (Figure 4.3), which 

includes all the predictors in the model.  The standardized regression 

coefficients were 0.859 (age of a tree), 0.042 (temperature), 0.096 (solar 

radiation), 0.026 (relative humidity) and 0.03 (rainfall).  These standard 

regression coefficients indicate that age of the tree is the most important 

variable in determining the stem radial growth.  

 

Figure 4. 5 Path diagram showing the effect of age and climatic variables on 

radius of Eucalyptus clones when wind speed is omitted as an explanatory 

variable. Time = age; solrad = solar radiation; relhum = relative humidity; 

Temp= temperature. 
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Models fitted without temperature or tree age as explanatory variables did 

not fit well.  A model that excluded relative humidity fitted well and resulted 

in rainfall having a significant effect on radial growth.  The significance of 

rainfall in the absence of relative humidity and solar radiation was possibly 

caused by multicollinearity or suppressor variables (where two or more 

predictor variables in a multiple regression model are highly correlated).  

The correlation among the climatic variables themselves is also significant. 

When only rainfall and wind speed were considered independent variables, 

the regression weight for rainfall became negative.  The same occurred when 

only rainfall and relative humidity were treated as independent variables. 

This wrong sign of coefficients is an indication of possible multicollinearity.  

As a result, the effect of rainfall on radial growth cannot be completely ruled 

out, as its non-significance is possibly caused by multicollinearity. Some 

researchers noted that structural equation models are robust against 

multicollinearity (Malhotra et al., 1999), with some going as far as to 

explicitly state that Structural Equation Models (SEM) can remedy 

multicollinearity problems.  For example, Maruyama (1998) argues that 

"structural equation approaches can help deal with some cases where the 

correlations among the predictors are large”.  On the other hand, some 

researchers have warned that multicollinearity can lead to SEM estimates 

being far from the true parameters, as well as the occurrence of large 

standard errors of the estimates (Jagpal, 1982; Grapentine, 2000).  A 

simulation study by Grewal et al. (2004) showed some conditions under 

which multicollinearity caused problems.  The study showed that when 

multicollinearity is extreme, type II error rate (accepting the null hypothesis 

when it is false) is generally, unacceptably high. They also indicated that for 

multicollinearity levels of between 0.6 and 0.8, type II error rates can be 

substantial (greater than 50% and frequently  above 80%), if composite 

reliability is weak, explained variance (R2) is low and sample size is relatively 

small. When multicollinearity levels are between 0.4 and 0.5, type II error 

rates tend to be quite small except when reliability is weak, R2 is low and the 

sample size is small.  In the present study R2 values were large and the 
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multicollinearity level was not high. Estimates of regression weights for 

rainfall, which is important for growth, were inconsistent. Consideration of 

more complex models may improve results.  In the path diagrams 

considered thus far only one dependent variable (radial growth) was used.  

Path analysis allows the simultaneous modelling of several related 

regression relationships. This means that path analysis can handle more 

than one dependent variable in the model. Moreover, a variable can be a 

dependent variable in one relationship and an independent variable in 

another relationship of the path model.  An attempt was made to fit a model 

where two dependent variables, namely rainfall and temperature, mediated 

the effects of relative humidity, solar radiation and wind speed.  In this 

model, it was hypothesized that tree age had a direct effect on radial growth.  

Solar radiation, relative humidity and wind speed were assumed to have an 

indirect effect.  The fitted model is presented in Figure 4.6.  

The value of the chi-square statistic is 862.7 with a p-value of zero.  This 

indicates that the model does not fit the data well.  However, the parameter 

estimates of the regression weights are all significant (Table 4.3).  The 

magnitude of each effect is quantified by standardized regression 

coefficients. The standardized regression coefficients are 0.87 (age of the 

tree), 0.091 (temperature), and 0.018 (rainfall).  From this it can be seen 

that the most important variable to explain radial growth is tree age.  For 

the model in Figure 4.6, there are three structural equations, one for each of 

the three dependent variables: rainfall; temperature and radius.   In terms of 

variable names, the structural equations are:  

3inf

2

1inf

errortimeetemperaturallraradius

errorspeedwindradiationsolarhumudityrelativeetemperatur

errorspeedwindradiationsolarhumudityrelativeallra

+++=

+++=

+++=
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Figure 4.6   Path diagram showing the effect of multiple dependent variables 

(rainfall and temperature) on radial growth of Eucalyptus clones. Time = age; 

solrad = solar radiation; relhum = relative humidity. 

This model includes direct effects (e.g. age of the tree on radial growth), 

indirect effects (e.g. effect of relative humidity through rainfall) and 

correlated explanatory variables (e.g. relative humidity, solar radiation and 

wind speed).  The estimated model using AMOS statistical software is given 

by:  

timeetemperaturallraradius

speedwindradiationsolarhumudityrelativeetemperatur

speedwindradiationsolarhumudityrelativeallra

67.32937.178inf73.20

39.177.8017.0

22.327.6196.0inf

++=

++=

+−=

 

From the above fitted model (Figure 4.6) the positive effect of the predictors, 

rainfall, temperature and tree age can be seen.  The standardized regression 

weights for this model indicate that tree age, temperature and rainfall are 

respectively important determinants of radial growth.    
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The data set to which the above models were applied was a combined data 

set (for both E. grandis hybrid clones).  In order to see if there was any 

difference between the two clones, a multiple group analysis was used.   In 

this regard, two models (the model in Figure 4.3 and the model with 

multiple dependent variables (Figure 4.6)) were considered.  The good fitting 

model of Figure 4.3 was fitted to the data set for GU clone alone.  The model 

fitted the data very well.  The value of the chi-square statistics was 0.06 with 

one degree of freedom and the corresponding p-value was 0.804.  The next 

question to address was whether the same model fitted the data for the GC 

clone.  Furthermore, the equality of the parameters needed to be tested.  

Instead of a separate group analysis, a single analysis that simultaneously 

estimated parameters and tested hypotheses about both groups was 

considered.  This method provided a test for the significance of any 

differences found between the GU and GC clones.   In addition, if there were 

no differences between the two clones, or if group differences concerned only 

a few model parameters, the simultaneous analysis of both groups would 

have provided more accurate parameter estimates than would have been 

obtained from separate single-group analyses.  A test for pair wise path 

coefficient differences for the two clones was conducted.  Some fit measures 

for various models were generated, together with fit measures for saturated 

and independence models (see Table 4.3).  

The structural weight model specifies that the regression weights for 

predicting radial growth from the measured climatic variables and tree age 

were the same for the GU and GC clones.  The unconstrained model is the 

model that assumes that all the parameters for the two groups are different.  

For the unconstrained model, the value of chi-square was 0.08 with the 

corresponding p-value equal to 0.96.  This indicated that the unconstrained 

model fitted the data very well.  
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Table 4.3 Summary of fits for various models including the structural weight 

model 

Model 
Number of 

parameters 

Chi-

square 
df P-value 

Chi-square   

/ df 

Unconstrained 54 0.08 2 0.96 0.04 

Structural weights  49 364.59 7 0.00 52.09 

Structural 

covariances 

28 364.59 28 0.00 13.02 

Structural 

residuals  

27 1293.58 29 0.00 44.61 

Saturated model  56 0.00 0   

Independent model  14 29255.12 42 0.00 696.55 

df = Degrees of freedom 

  The structural weight model with a chi-square value of 364.59 and with 

seven degrees of freedom was rejected at any conventional significance level, 

suggesting that the regression weights of the two clones were significantly 

different. The assumption that the regression weights for the exogenous 

variables were the same for both clones was not supported.  The estimated 

regression weights for the unconstrained model are summarized in Table 4.4 

and Table 4.5 respectively for GU and GC clones.  When comparing the 

regression weights for the two clones, they were all positive, indicating a 

positive effect of the climatic variables as well as tree age on radial growth.  

In addition, regression weights obtained for the GU clone were larger than 

those obtained for the GC clone,   indicating that the GU clone grows faster 

than the GC clone.  Regression weights of the GU and the GC clones, for the 

multiple dependent model in Figure 4.6 were also compared.  The regression 

weights for the two clones were significantly different.  The results of this 

model also show that the GU clone has a faster growth than the GC clone.  
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Table 4. 4 Regression weights for GU clone when the path model in Figure 

4.3 was fitted to compare the two clones (unconstrained). 

Relationship 

Maximum 

Likelihood 

Estimates 

Standard 

error 

Critical 

ratio 

P-

value 
Label 

radius<---time 341.88 3.33 102.81 *** b1_1 

radius<---temperature 43.34 19.30 2.25 0.025 b2_1 

radius<---solar 

radiation 
3253.04 335.85 9.69 *** b3_1 

radius<---relative 

humidity 
75.14 8.77 8.57 *** b4_1 

radius<--- wind speed 1570.35 112.39 13.97 *** b5_1 

 

“ *** ”  indicates  the p-value is less than 0.001. 

The maximum likelihood estimates given in Tables 4.4 and 4.5 require the 

data to be of a continuous scale and have a multivariate normal 

distribution.  The approximate standard errors used in the inference were 

therefore produced based on formulae that depend on normality 

assumptions.  Non-normality can lead to spuriously low standard errors, 

with degrees of underestimation ranging from moderate to severe.  The 

consequences are that because the standard errors are underestimated, the 

regression paths and factors / error covariances will be statistically 

significant, although they may not be so in the population (Byrne, 2001).    
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Table 4. 5 Regression weights for the GC clone when the path model in 

Figure 1 was fitted to compare the two clones (unconstrained). 

Relationship 

Maximum 

Likelihood 

Estimates 

Standard 

error 

Critical 

ratio 

P-

value 
Label 

radius<---time 285.14 2.075 137.436 *** b1_2 

radius<---temperature 4.13 12.040 .343 0.732 b2_2 

radius<---solar 

radiation 
2381.02 209.543 11.363 *** b3_2 

radius<---relative 

humidity 
52.39 5.472 9.575 *** b4_2 

radius <---wind speed 1323.72 70.119 18.878 *** b5_2 

“ *** ”  indicates  the p-value is less than 0.001. 

It is known that many data do not qualify for multivariate normality and the 

current data is no exception.  Using AMOS statistical software the data was 

checked to see whether it had a multivariate normal distribution.  The 

Mardia's (1970) coefficient of multivariate kurtosis was 57.31 with a critical 

ratio of 237.3, which highly favours multivariate non-normality of the data. 

A possible approach to overcome the problem of the existence of multivariate 

non-normal data is to use a method known as "bootstrap" (West et al., 1995; 

Yung and Bentler, 1996).  This technique enables us to create multiple 

subsamples from an original database.  The importance of drawing these 

multiple samples is that we can examine parameter distributions relative to 

each of these newly produced samples. These distributions serve as a 

bootstrap sampling distribution and technically operate in the same way as 

the sampling distribution generally associated with parametric inferential 

statistics.  In contrast to traditional statistical methods,  however, the 

bootstrap sampling distribution is concrete and allows for comparison of 

parametric values over repeated samples that have been drawn (with 

replacement) from the original sample.  The bootstrap method is free from 
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the distributional assumptions and can be used to generate an approximate 

standard error for many statistics without having to satisfy the assumption 

of multivariate normality.  With this beneficial feature in mind, the bootstrap 

method was applied to the good fitting model in Figure 4.3.  In this process, 

10,000 bootstrap samples were generated. The reported value of the chi-

square was 0.018 with one degree of freedom.  The bootstrap standard 

errors for regression weights are presented in Table 4. 6.  The table lists the 

bootstrap estimate of the standard error for each independent variable in 

the model.  Each value represents the standard deviation of the parameter 

estimates computed across the 10,000 bootstrap samples.  These values 

were compared with the values of the approximate maximum likelihood 

estimates presented in Table 4.2.  Some discrepancies between the two sets 

of standard error estimates were observed.  The third column of Table 4.6, 

labelled SE-SE provides the approximate standard error of the bootstrap 

standard error itself.  These values were very small indicating that the 

standard errors were estimated with a reasonable level of accuracy. Column 

four, labelled Mean, lists the mean parameter estimates computed across 

the 10,000 bootstrap samples.  Arbuckle (2006) on page 301 emphasized 

that this bootstrap mean is not necessarily identical to the original estimate.  

Column five (Bias) represents the differences between the bootstrap mean 

estimates and the original estimates.  These values are very small for most 

of the cases and positive values indicate that the estimates of the bootstrap 

samples are higher than the original maximum likelihood estimates.  The 

low bias indicates that the maximum likelihood estimates and the bootstrap 

estimates are very close to each other. 
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Table 4. 6 Bootstrap standard errors for path model in Figure 4.3 

Parameter  

(un-standardized ) 

SE SE-SE Mean Bias SE-Bias 

radius<---time 2.35 0.017 313.52 0.010 .024 

radius<---temperature 12.55 0.089 23.85 0.11 .125 

radius<---solar radiation 220.36 1.56 2816.58 -0.451 2.204 

radius<---relative 

humidity  

5.89 0.042 63.75 -0.018 .059 

radius<---wind speed 69.65 0.493 1446.07 -0.967 .697 

Standardized Parameter      

radius<---time .004 .000 .832 .000 .000 

radius<---temperature .006 .000 .012 .000 .000 

radius<---solar radiation .007 .000 .092 .000 .000 

radius<---relative 

humidity 

.007 .000 .076 .000 .000 

radius<---wind speed .006 .000 .113 .000 .000 

The last column, labelled SE-Bias, reports the approximate standard error of 

the bias estimate.  For the majority of the cases the estimated bias is 

smaller in magnitude than its standard error.  This indicates that there is 

little evidence that the regression weights are biased.   

The bootstrap confidence intervals are presented in Table 4.7.  The bias-

corrected confidence intervals are used because these intervals are 

considered to yield more accurate values than percentile confidence 

intervals (Efron and Tibshirani, 1993).    

The confidence intervals for tree age, solar radiation, relative humidity and 

wind speed do not include zero. It can therefore be concluded that the 

regression weights of these independent variables are significantly different 

from zero.  The value of p in the 'p' column of Table 4.7 indicates that a 

100(1-p) percent confidence interval would have one of its end points at 
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zero.  In this sense, the p-value can be used to test the hypothesis that an 

estimate has a population value of zero.  In this case the relationship 

between radius and temperature has a p-value 0.06, which means that a 

94% confidence interval would have a lower boundary at zero.  In other 

words, a confidence interval at any level less than 94% such as 90% or 92% 

would not include zero, and therefore reject the hypothesis that the 

regression weight is zero for a 90% confidence interval.  For the relationship 

of radius with other independent variables the hypothesis at any 

conventional significance level such as 95% or 99% is rejected. 

Table 4. 7 Ninety-five percent bootstrapped confidence intervals (bias 

corrected percentile method). 

Regression Weights Estimate Lower Upper P 

radius<---time 313.51 308.86 318.03 .000 

radius<---temperature 23.74 -1.21 48.76 .060 

radius<---solar radiation 2817.03 2392.34 3252.47 .000 

radius<---relative humidity 63.76 52.27 75.19 .000 

radius<---wind speed 1447.03 1314.33 1588.51 .000 

Standardized regression weights 

radius<---time 0.832 0.824 0.841 .000 

radius<---temperature  0.012 -0.001 0.025 .059 

radius<---solar radiation 0.092 0.078 0.106 .000 

radius<---relative humidity  0.076 0.063 0.090 .000 

radius<---wind speed 0.113 0.103 0.124 .000 

 

 Therefore, by applying the bootstrap method, it can be seen that the 

independent variables had a significant effect on the radial growth of 

Eucalyptus trees.  This result also agreed with the result obtained using the 

maximum likelihood method.  It is also of interest to evaluate the 

appropriateness of the hypothesized model itself.  Bollen and Stine (1993) 

provided a means of testing the null hypothesis that the specified model was 
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correct.  The Bollen-Stine bootstrap corrected p-value was 0.878.  This 

corrected p-value indicates that the hypothesized model should not be 

rejected.  This result is also in agreement with the maximum likelihood 

results.  The other issue with the specified model was cross validation.  To 

assess the validity of the model in Figure 4.3, expected cross validation 

index (ECVI) was applied.  ECVI is proposed as a means to assess, in a 

single sample, the likelihood that the model cross-validates across similar 

size samples from the same population (Browne and Cudeck, 1989).  It 

measures the discrepancy between the fitted covariance matrix in the 

analysed sample, and the expected covariance matrix that would be 

obtained in another sample of equivalent size.  Application of ECVI assumes 

a comparison of models, whereby ECVI index is computed for each model 

and then all ECVI values are placed in rank order.  The model having the 

smallest ECVI value exhibits the greatest potential for replication.  There is 

no determined appropriate range of values for ECVI as it can assume any 

value (Byrne, 2001).  In the present case the values of ECVI are presented in 

Table 4.1.  In assessing the hypothesized model, its ECVI value of 0.006 was 

compared with that of the independence model (ECVI=3.13).  The ECVI for 

the saturated model was also 0.006.  The ECVI for the hypothesized model 

was less than that of the independence model.  It can therefore be concluded 

that the hypothesized model represents the best fit to the data. 

Furthermore, a 95% confidence interval for ECVI is given by [0.006, 0.007].  

This indicates that of the overall possible randomly sampled ECVI values, 

95% of them will fall [0.006, 0.007], suggesting that the model cross 

validates over the independent model.  

4.8. Summary  

Classical methods, like ordinary regression models once the regression 

model is specified, do not permit any other relationships among the 

explanatory variables to be specified.  This limits the potential of the 

variables to have direct, indirect and total effects on each other.  In path 

analysis one can see the direct effect, indirect effect and total effects of 
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variables.  In path analysis a unique additional contribution of each variable 

can be studied using the standardized regression weights.  Even though we 

can study the additional contribution of each variable in multiple 

regressions, this can work ideally only if all independent variables are highly 

correlated with the dependent variable and uncorrelated among themselves.  

In contrast, path models provide theoretically meaningful relationships in a 

manner not restricted to a multiple regression model (Schumacker, 1991).  

In path analysis, we can estimate parameters for more than one regression 

equation because this analysis can be considered as a series of regressions 

applied sequentially to the data.  Structural Equation Models (SEM) are 

considered as path analysis involving latent variables.  In the present case, 

latent variables were not included and hence path models were generated.  

Path analysis was employed mainly because the climatic variables were 

correlated and the unique, additional contribution of each climatic variable 

on radial growth of eucalypts was of interest.    

The best fitting path model generated in this study showed that all climatic 

variables and age of the tree had a positive effect on stem radial growth for 

the pooled data of both clones.  Furthermore, all except one variable 

(rainfall) had a significant, direct effect on radial growth.  It was also 

observed that the age of the tree was the most important variable explaining 

stem radial growth.  Although rainfall was not significant in the best fitting 

model, it was found to be significant for the model that excluded wind speed 

and for the model that omitted solar radiation. This revealed that the effect 

of rainfall on radial growth cannot be ruled out.  To compare the effect of the 

explanatory variables on the radial growth of the GU and GC clones, a single 

analysis that estimated parameters and tested hypotheses about both 

groups simultaneously was considered. The regression weights for the two 

clones were significantly different.  The regression weights were all positive 

indicating the positive effect of the climatic variables as well as tree age.  In 

addition, the regression weights obtained for the GU clone were larger than 

the regression weights for the GC clone. This shows that the GU clone was 
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growing faster than the GC clone which can easily be confirmed by looking 

at the growth of the two clones. 

The main estimation method for path models, or any structural equation 

model (SEM) is maximum likelihood estimation.  This method requires a 

distributional assumption, which the present data failed to satisfy.  The 

bootstrap method was then applied to overcome the methodological failure 

due to non-normality.  The estimated bias using the bootstrap method was 

very small showing that there was little evidence of bias in the estimates.  

The conclusion reached using the maximum likelihood method agreed with 

that of the bootstrap method.  The expected cross-validation index obtained 

for the hypothesized model also showed that this model cross-validated over 

the independent model.   

To sum up, the climatic variables measured in this study, together with tree 

age, had a positive effect on stem radial growth during the juvenile stage of 

development.  Age of the tree was the most important variable in explaining 

stem radial growth.  The growth of the GU clone was faster than the growth 

of the GC clone, possibly indicating that this clone has better genetic 

potential. However, this could also indicate that, compared to the GC clone, 

the GU clone is better adapted to the environmental conditions, or it is able 

to use the available resources more effectively. Melesse and Zewotir (2013b) 

provides a detailed discussion of these results (attached in Appendix).  The 

models we have considered so far did not take into account the within-tree 

variability. The next step is to review some methods where the longitudinal 

aspect of the data is specifically taken into account. We begin by reviewing 

fractional polynomial models and use them to study the longitudinal growth 

of stem radius in chapter 5. 
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Chapter 5  

Fractional Polynomial Models (FP) 

 

5 .1 Introduction 

Cross sectional study may allow comparison among subpopulations that 

happen to differ in age, but it does not provide any information about how 

individuals change over time.  The assessment of within subject changes in 

response over time can only be achieved within a longitudinal study. A 

distinctive feature of longitudinal data is that observations on the same 

individual are correlated over time. Failure to account for the effect of 

correlation can result in an erroneous estimation of the variability of 

parameter estimates and hence in misleading inference.  For example,  if we 

want to estimate the change in mean response between two time points for 

N subjects,  then the estimate of the change in the mean response between 

the two time points is given by  

12 yyd −=   where  ∑
=

=
N

i

ij

j
N

y
y

1

 .  To get the standard errors, we 

need to estimate the variance of the difference (d).  The variance of the 

difference is given by   

}{ [ ]12
2
1

2
2

2
1

var)(var
12

σσσ −+=−=
N

yyd  

The last term represents the covariance between the measurements of the 

two time points. Assuming that the two repeated measures are independent 

when there is strong positive correlation between them, would result in an 

incorrect estimate of variance. This will bring an overestimation of the 

variability of the difference in mean responses. Consequently, failure to 

account for correlation among repeated measures leads to incorrect 

standard errors.  The incorrect standard will lead to incorrect test statistics 
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and p-values. This will finally lead to incorrect inferences about the 

regression parameters (Fitzmaurice et al., 2004; Weiss, 2005).  Therefore, 

the correlation among repeated measures necessitates a statistical analysis 

that appropriately accounts for the dependence among measurements 

within the same subject, which results in more precise and powerful 

statistical analysis.   

This interdependence can be modelled using mixed models. The current 

data set consisted of repeated measurements of the same subjects over time; 

therefore, a mixed effects models approach was adopted in the analysis of 

the longitudinal data (Verbeke and Molenberghs, 1997; 2000; Fitzmaurice et 

al., 2004; Meng and Huang, 2010).  Models for the analysis of such data 

recognize the relationship between serial observations on the same unit.  

Since change in stem radial growth, which is a continuous response 

variable, is the main object of the study, it is of interest first to study the 

mean effect of time (tree age). We also adopted the fractional polynomial 

(Royston and Altman, 1994; James, Wang and Zhu 2009) approach to the 

mixed model by using a polynomial regression model with parameters that 

are allowed to vary over individuals, and which are therefore called random 

effects or subject-specific regression coefficients. Their mean then reflects 

the average evolution in the population.   

In any applied longitudinal data analysis the main objective is to fit a 

smooth curve over the time interval of data collection. When the relationship 

between the response and the independent variable (time) is believed to be 

linear, the shape of the smooth curve is not contested.  The focus is mainly 

whether the straight line is horizontal or not. In contrast, when one believes 

the trend is not linear, then the smooth curve is commonly selected from 

some alternatives, such as orthogonal polynomials of a number of orders.  

Orthogonal polynomials are most closely associated with traditional 

methods that do not allow missing data. In models that allow missing data, 

such as the linear mixed model, correlated polynomials terms are often 

used. These so-called conventional polynomials (CPs) consists of power 
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transformations of time metric with the integer exponents, p,...,1   are 

widely used as they have the advantage of simplicity, familiarity, invariance 

to change of origin, and the ability to approximate any nonlinear function 

(Long and Ryoo, 2010).  Although the presence of curvature can be handled 

by using conventional polynomials, in most applications the choice is made 

between linear and quadratic terms, with cubic or higher order polynomials 

being rarely used or useful. It has long been recognized that conventional 

polynomials (which offer only few curve shapes) do not fit the data well. High 

order polynomials (sometimes even cubic polynomials) follow the data more 

closely but often fit badly at the extremes of the observed range of the 

independent. An extended family of curves called fractional polynomials, 

whose power terms are restricted to small predefined set of integer and non-

integer values were proposed by Royston and Altman (1994).  Fractional 

polynomials are analogous to conventional polynomials in that their time 

transformations are power functions, however, the exponents of fractional 

polynomial are not only integers but also negative numbers and fractions.  

The paper by Long and Ryoo (2010) provides a unified framework for 

evaluating and selecting fractional polynomials in longitudinal data analysis. 

They discussed fractional polynomials within the context of linear mixed 

models.  Parsimony, a wide variety of curve shapes for low order models and 

the ability to approximate asymptote are the attractive features of fractional 

polynomial models (Long and Ryoo, 2010). A brief introduction to fractional 

polynomial is given below. 

5.2 Fractional Polynomial Models in the Context of Linear Mixed 

Models 

Suppose that  ijy  is the variable of interest for the thi  entity ( )...2,1 Ni = at 

the thj  time point  ( )inj ...,2,1=  and that iy is  an in dimensional 

response   vector for one entity.  The linear mixed model (Laird & Ware, 

1982) is given by  
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where  
iX   is a design matrix of dimension )1( +× pni , 1)1( ×+paisβ  vector 

containing fixed effects   and  
iZ  is  )1( +× qni  known matrix linking ib  to  

iy ,   ib  is the )1( +q dimensional vector containing the random effects, 
iε  

is an in  dimensional vector of residual components.  Finally, D is a general 

×+ )1(q )1( +q covariance matrix with ( )thji , element jiij dd =   and  

ini IR
2σ= , where 

in
I  is a  (

ii nxn ) identity matrix which depends on i   only 

through its dimension 
in .  The random effects and the residual components 

are assumed independent.  The diagonal elements of the matrix D are 

assumed non-negative.  This latest assumption permits a hierarchical 

interpretation of the linear mixed models meaning both individual level and 

group level models are subsumed (Verbeke and Molenberghs, 2000).  

Long and Ryoo (2010) consider models in which the covariates iX  and iZ  

consist of only time transformations other than the first column of ones. 

They also assume iX = iZ  so that each fixed effect has the corresponding 

random effect (p=q). Under these conditions, the design matrix has the 

following form.  
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where  ( )
ijb tf   is fractional polynomial consisting of p-transformation 

in the design matrix. This fractional polynomial is defined as follows 

(Royston & Altman, 1994). 

( )
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where   pmmm ≤≤≤ ...21   and )log( ijt  indicates the natural log of ijt . The 

round bracket notation,
)( bm

ijt , represents the Box and Tidwell (1962) 

transformation,  

( )
( )4.5

0,log
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  with the constraint 0>ijt  so that all transformations are defined (Long and 

Ryoo, 2010).  Although many different combinations of powers ( bm ) can be 

made in fractional polynomial models, it has been suggested that it is often 

adequate to choose powers from the restricted set 

{ }3,2,1,5.0,0,5.0,1,2 −−−=bm  for practical purposes.   The inclusion of 

positive integers in the set indicates the conventional polynomials are 

special cases of fractional polynomials.   In equation (5.3)  p  stands for the 

order of the polynomial.  For instance, if 1=p , we have  a fractional 

polynomial of order one.  Threfore, the value of 1m  can be chosen from a set 

{ }3,2,1,5.0,0,5.0,1,21 −−−=m  . This offers a wide variety of curve shapes 

such as square root ( )5.01 =m , linear ( )11 =m  and inverse ( )11 −=m .   For 

fractional polynomial of order two ( )2=p , the values of both 1m  and 2m  can 

be chosen from the set bm . By choosing different values for the combination 

of 1m  and 2m  we can get different curve shapes.  This set includes linear, 
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reciprocal, square root, square and cubic transformations and their 

combinations. The best fit among the possible 36 combinations of such 

powers is defined as that which maximizes the likelihood function. Such 

second degree fractional polynomials offer  considerably more flexibility and 

accommodate many functions with single turning points as well as j shaped 

relationships (see for example, Royston,  Ambler and Sauerbrei (1999); Long  

and Ryoo  (2010). 

By making use of the design matrix in equation ( 2.5 ), the linear mixed model 

in the individual level for fractional polynomial of order p  is 

 ( ) ( ) ( )5.5.
1

0

1

0 ijijg

p

g

igiijb

p

b

bij tfbtfy εβββ ++++= ∑∑
==

  

The first two terms of (5.5) represents the fixed effect part of the model.  The 

third and fourth terms stands for the random effect part of the model and ijε  

is the residual component.   The marginal model can be obtained by taking 

the expectation of (5.5) which is  

( ) ( ) ( )6.5.
1

0 ijb

p

b

bij tfyE ∑
=

+= ββ  

The random effects and residual components are assumed to have zero 

mean (equation 5.1).    

The marginal model in (5.6) can be used to study changes in nonlinear 

growth curves.  The parameters of this model together with the fractional 

polynomials; ( )
ijb tf , represent the equation for the mean growth curve. The 

β  parameters have the literal interpretations as the weights applied to the 

time transformation in determining the curve. Perhaps more attractive, the   

β  parameters determine the instantaneous rate of change, which is a 

convenient means of studying changes with nonlinear growth curves. The 

instantaneous rate of change is the slope of the tangent line at the point    
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( )( )iaia yEt , where  iat   is particular value of time and ( )iayE   is the 

mean growth evaluated at that particular value 
iat . The slope of the tangent 

line (
tiaγ ) indicates a change in ( )ijyE  for a unit increase in ijt  evaluated 

at   
iat   (Long and Ryoo, 2010).   

For the marginal model (5.6) the general form the slope of the tangent is 

given by    

( ) ( )7.5
1

iab

p

b

bt tf
ia

′=∑
=

βγ  

where  f ′   indicates the first derivative of  the function f . 

In the context of linear mixed models, the first order fractional polynomial 

model ( 1=p ) can be obtained from equation (5.3).  Using the expected value 

notation, it is possible to write equation (5.3) as  
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 The slope of the tangent line for the first order FP model can be obtained by 

differentiating (5.8) with respect to ijt and evaluating it at iaij tt = .  
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For 1
1

=m , the slope of the tangent line is 1β . This indicates that we have 

straight line curve and the slope of the tangent line is the same as the slope 
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of the function. For ,1
1

≠m  time appears in the derivative indicating the 

nonlinearity of the first order FP.    

The second order FP can be obtained from (5.3) by letting p=2.  Applying the 

expected value notation to the response, we have  
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The round bracket notation is the transformation in equation (5.4).  The 

slope of the tangent line (
iat

γ ) is dependent on different values of 1m  and 2m .  

For instance, the slope of the tangent line (
iat

γ  ) when 00 21 =< mandm  is  

  ( )11.5.21
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Once 21 mm = , the slope of the tangent line is given by  

( ) ( ) ( ) ( ) ( )12.5.log1
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The slope of the tangent line is a function of time as seen in equations (5.9), 

(5.11) and (5.12).  We may plot the slope of the tangent (
iit

γ ) against time to 

demonstrate how the tangent slope varies with time.  

5.3 Selection of Fractional Polynomial Models  

In section (5.2), we have seen that FPs can have different order.  A number 

of possibilities are available for the selection of the exponents ( bm ). The best 

fitting fractional polynomial model needs to be selected using some 

appropriate model selection criteria.  There are numerous ways of choosing 
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fractional polynomial models.  The choice of a particular model may be due 

to the fact that  

•  the FP transformation has been used in previous research 

• the model provides appropriate curve shape for the data under study 

• the model is best fit model based on some fit indices 

Selection of FPs in the context of the LMM is complicated by the fact that 

the fractional polynomials influence both the fixed effects structure and 

the random effects structure through iX   and  iZ  respectively (Long and 

Ryoo, 2010).  Consequently, one has to keep the random effects constant, 

while selecting the fixed effects part of the fractional polynomial.   In this 

thesis, the selection of mean structure was made using mpf package in 

R.   This package is a collection of R functions targeted at the use of 

fractional polynomial models for modelling the influence of continuous 

covariates on the outcome of regression models. It combines backward 

elimination with systematic search for a ‘suitable’ transformation to 

represent the influence of each continuous covariate on the response 

variable (Benner, 2010).  The test procedure used by mpf package in R is 

called closed testing procedure.  

5.4 Selection of Mean Structure and Model Formulation 

The plot of an individual tree’s stem radius (Figure 2.2) and the Loess 

smoothed curve (Figure 2.3) suggest that the relationship between the radial 

measure and tree age is curved.   The mfp package, discussed in section 

(5.3), was used to select the mean structure.  The best fitting fractional 

polynomial curve for the current data is found to be the second order 

fractional polynomial with powers 5.01 =m  and 12 =m .  That is the linear term 

plus a square root of time. The preliminary graphical analyses also indicated 

that the intercept and growth patterns were different for different trees 

(Figure 2.2).  Therefore, having a different slope for each tree leads to 

subject-specific regression coefficients, which represent the random effect in 
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the mixed model.  The provisional model for stem radial growth as a 

function of time (tree age in weeks) is: 

( )
18...,2,1

13.52

2/1

10

=

+′+′+= ′′

i

ttY tiiiiti εβββ

            
 

The dendrometre measurements began when the tree was about 39 weeks of 

age. The actual age, t,  of  the tree differs from the dendrometre age, denoted 

by t ′ , by 39 weeks. In other words,  ,39−=′ tt where:   t ′ and t are the 

dendrometre  and actual ages, respectively,  of tree i.  tiY ′ is the radial 

measure of the ith tree at age it ′ , i1β  is the coefficient of square root of time 

effect for the ith tree,   i2β is the coefficient of time effect for the ith tree, ti ′ε is 

the mean zero deviation which represents the within-tree variability, 
 i0β   

represents the mean radial size of tree i at the beginning of dendrometre 

measurements, that is when  .0=′t  

The values 0β , 
1β  and

2β  are the average intercept, coefficients of square 

root of time and linear time effects, respectively, of the population. After 

correcting for the effect of individual characteristics the individual 

coefficients can then be expressed as: 

ii b 000 += ββ
,                      ii b 111 += ββ

  ,           ii b 222 += ββ  

For the ith  tree, the terms ib0 , ib1  and ib2  represent the random deviations of 

the intercept, coefficients of square root of time and time, respectively, from 

the corresponding population parameters 0β , 1β  and 2β . Therefore, model 

(5.13) can be rewritten as:  

( )14.5)()()( 22

2/1

1100 tiiiiti tbtbbY ′′ +′++′+++= εβββ   
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 The matrix form of model (5.14) is   
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Model (5.15) is the same as the linear mixed model given in (5.1) and 

satisfies the assumptions indicated in (5.1). The random effects bi are 

assumed to be normally distributed with mean vector 0  and (3×3) 

 covariance matrix D , where  


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D . Likewise the vector of 

residuals iε is assumed to be normally distributed with mean vector 0  and   

covariance matrix
i

ni IR
2σ= . Assuming the random effects and error terms 

are independent, the marginal distribution for the vector of responses of the 
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ith tree iY is normally distributed with mean vector βZ i  and covariance 

matrix iR+′= iii ZDZV .  

 5.5 Estimation for LME Models   

  

Although, various methods of parameter estimation have been used for 

linear mixed models, the most commonly used methods are maximum 

likelihood and restricted maximum likelihood.  Equation (5.1) can be 

expressed as  

( ) ( ) ( )16.5,0~,,~| DMVNbRbZXMVNby iiiiiiii +β
 

 It is therefore, called a hierarchical model, in which a conventional density 

of  iy  follows a multivariate normal.  This model implies the marginal model 

given below (Verbeke and Molenberghs, 2000). 

( ) ( ).17.5,~ iiiiii RZDZXMVNy +′β  

Let  α  denote the vector of all variance and covariance parameters (variance 

components) in iiii RZDZV +′= , that is α  contains all different elements in  

D  matrix and all parameters in  iR .  Suppose ( )′′′= αβθ ,  be the vector of 

all the parameters in the marginal model (5.16) for iy .  

The marginal likelihood function is given by  
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The classical inference approach is based on estimators obtained by 

maximizing (5.18) with repect to θ .  There are two conditions about ,α  

known and unknown.  
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Condition 1: Assume  α  to be known:  Differentiating   )(ln( θMLL ) with 

respect to  β   gives  
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Equating (5.19) to zero, and solving the resultant equation for β  gives the 

maximum likelihood estimator of  β  as   
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where 1−= ii VW .  

Condition 2:   Assume α   is unknown:   when an estimate of  α̂  is 

available, we can set 
1ˆ)ˆ(ˆ −== iii WVV α ,   and estimate β  by using (5.19) 

replacing  iW  by iŴ .   

Maximum likelihood (ML) and restricted maximum likelihood (REML) are 

the two commonly used methods for obtaining  .α̂    

The maximum likelihood estimator of  α  can be obtained by maximizing 

the  ( ))(ˆ, αβαMLL  given in (5.18) with respect to α , after  β  is replaced 

by (5.20).  

The REML estimator for variance components  α  is obtained from 

maximizing the likelihood function of a set of error contrasts (Verbeke 

and Molenberghs, 2000), YKU ′= , where  K  is   )( pnn −×  full rank 

matrix with columns orthogonal to the columns of  X matrix.  Then we 

combine all models ( )iii VXNy ,~ β  into one model  ( )VXNy ,~ β  

where  
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Then the MLE of ,α which is based on U   is called REML estimate, and 

denoted by REMLα̂ .  Similarly, resulting estimate ( )REMLαβ ˆ   is  for REMLβ̂ .  

Both REMLα̂  and REMLβ̂  can be obtained from maximizing (5.21) with 

respect to all parameters simultaneously (α and β ).   

( ) ( ) ( ) ( )21.5
2

1

1

θαθ ML

N

i

iiiREML LXWXL

−

=
∑ ′=   

Here, note that  ( )θREMLL  is not the likelihood of the original data (Wang, 

2012). 

Both ML and REML are based on the likelihood principle which leads to 

important properties such as consistency, asymptotic normality, and 

efficiency. However, REML yields less biased estimators for many special 

cases (Verbeke and Molenberghs, 1997).  
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    5.6 Dealing with Heterogeneity in Linear Mixed Models 

When the assumption (
ini IR 2σ= ) in equation (5.1) is violated, the 

resulting model fit may not have correct standard errors. The F-statistics 

may no longer be distributed as F and the t-statistic also may not follow 

a t-distribution.  This invalidates our statistical significance tests. The 

assumption of uncorrelated, homoscedastic within group errors can be 

relaxed by introducing heteroscedastic models.  In this section, we will 

see how to fit the extended LMM by allowing heteroscedastic and 

correlated within group errors.  The assumptions for model (5.1) will be 

modified to  ( )ii N Σ,0~ε  and ( )DNbi ,0~ .    

Variance functions are used to model the variance structure of the within 

group errors using covariates.  A detailed list of standard variance 

functions are presented in Pinheiro and Bates (2000). The description of 

some of these functions is given as follows.  

The fixed variance structure (varFixed):  This class represents a variance 

function with no parameter and a single variance covariate being used, 

with the within group variance known up to a proportionality constant. 

Suppose it is known that the within group variance increases linearly 

with time ( ijt ) then the variance of the residuals is given by :  

( )
ijij t2var σε =  

This corresponds to the variance function, 
ijij ttg =)( . This variance 

structure allows larger variance for larger values of ijt . 

The VarIdent variance structure (varIdent): This class represents a variance 

model with different variances for each level of the stratification variable s, 

taking values in the set }{ S...,2,1  ,  is  ( ) ijij

22
var δσε =  .   
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This corresponds to the variance function, ijSijSg δδ =)( .  That 

means we assume a different spread per stratum ( )( )2
,0~ jij N σε . This 

variance model uses S+1 parameters to represent S variances, and therefore 

is not identifiable. To achieve identifiably, we need to impose some 

restriction on the variance parameter, δ . We use 1=δ , so that lδ ,  

Sl ...,2=  represent the ratio between the standard deviations of the  thl  

stratum and the first stratum.  By definition, 0>lδ , Sl ...,2=  (Pinheiro and 

Bates, 2000). 

 The varPower variance function (varPower):  The variance model represented 

by this class is  

( ) δ
σε

22var ijij v= , corresponding to the variance function   

( ) δ
δ ijij vvg =, , which is the power of the absolute value of the 

variance covariate ( ijv ).  This class of variance function should not be used 

with variance covariates that may assume the value zero. 

The varExp Variance structure (varExp):   This structure models the variance 

of the residuals as 2σ multiplied by an exponential function of the variance 

covariate and unknown parameter .δ  

 The variance model represented by this class is  

( ) ( )ijv

ij

δσε 22 expvar = , corresponding to the variance function  

( ) ( )ijv

ijvg
δδ exp, =  which is an exponential function of the 

variance covariates.  The parameter δ  is not restricted so that the variance 

function can model cases where the variance increases or decreases with the 

variance covariate. There are no restrictions on the variance covariate, 

which, in particular, may take the value zero (Pinheiro, and Bates, 2000). 
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The VarConstPower (VarConstPower):  This variance structure is the 

constant plus power of the variance covariate function. 

 The variance model is defined as ( ) ( )2

1

2 2

var
δ

δσε ijij v+=  , 

corresponding to the variance function  

( ) 2

1,
δ

δδ ijij vvg += . The constant ( 1δ ) is restricted to be 

positive and 2δ  is unrestricted.  

The varComb variance structure (varComb):  This variance structure can be 

considered as a combination of varIdent and varExp.   It can be given by  

( ) ( ) ( ) ( )
2

2

21

2

1

2

2

2

1

2 ,,2exp,var δδσδδσε ijijijijij vgsgvs == ,   corresponding to 

variance functions ( )
ijij ssg 111 , δδ =   and   ( ) ( )ijv

ijvg 2exp, 12

δδ =  

where ijs   and ijv  are variance covariates.  

5.7 Correlation Structures for Modelling Dependence 

In model (5.1), it was assumed that the within group error terms are 

independent and have constant variance. The assumption of constant 

variance can be relaxed by using different variance functions which were 

discussed in section (5.6).  In this section different approaches of handling 

the dependence of the within error terms, were presented.  

The dependence of within error terms is modelled using correlation 

structures.  In time series data, serial correlations are used to model 

dependence.   In the context of a linear mixed model, serial correlation 

captures the phenomenon that correlation structure within a subject 

depends on the time lag between two measurements. Jones (1993) 

discussed the serial correlation structures in detail for linear mixed effects 

models.  The general serial correlation model is defined as   
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( ) ),(, ρεε hcor jiij =′ where ( ).h  indexes autocorrelation  function  and  ρ  is 

a vector correlation.  The description of some of the most common serial 

correlations used in practice is given below. 

Compound Symmetry: This structure assumes equal correlation among all 

within group error of same subject (entity).  It is the simplest serial 

correlation structure.  The corresponding correlation model is  

( ) ,, ρεε =ikijcor for all kj ≠  . 

General Correlations Structure: This unstructured correlation structure. 

This structure represents the direct opposite in complexity to the compound 

symmetry structure. Each correlation is shown by a different parameter, the 

correlation function is   

             ( ) kh ρρ =  , ...2,1=k .  

  The general correlation structure may be useful when we have few 

observations per subject.  

Auto Regressive (AR):    Box et al. (1994) defined the family of correlation 

structures which comprises diverse classes of linear stationary models. 

These are autoregressive models, moving average models, and a mixture of 

autoregressive-moving average models.  

An auto regressive model of order p which is denoted by )( pAR  states that 

tε  is the linear function of the previous   “p” values of the series plus an 

error term ( tµ ). 

1....11 <+++= −− φµεφεφε tptptt   where  tε  stands for observation at 

time t , tµ  stands for a noise term with ( ) 0=tE µ   and assumed independent 

of the previous observations. 
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There are p-correlation parameters in AR(p) model,  given by 

( )
pφφφ ..., 21=Φ .    The AR(1)  model is the simplest and one of the most 

important autoregressive model.  The correlation function of   AR (1) model 

is given by  

...1,0,),( == kkh kφφ  .  

According to Pinheiro and Bates (2000) for autoregressive models of order 

greater than 1, the correlation function was defined as 

( ) ( ) ( ) ..,2,1,,...,1, 1 =−++−= kpkhkhkh p φφφφφ . 

Moving Average Correlation 

Moving average correlation models assume that the current observation is a 

linear function of independent and identically distributed noise terms.   

tqtqtt ααθαθε +++= −− ...11  

The moving average of order q  is denoted by )(qMA .  There are q  correlation 

parameters in a )(qMA model.  The correlation function for a )(qMA   model is 

given by  

( )








++=

=
+++

+++

=
−−

...2,10

...,1
...1

...

,
22

1

11

qqk

qk
kh q

qqkkk

θθ

θθθθθ
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Mixed Autoregressive Moving Average Models (ARMA)  

The combination of autoregressive model and moving average model gives us 

the ARMA models.  

tjt

q

j

jit

p

i

it ααθεφε ++= −
=

−
=

∑∑
11

 

There are qp +  correlation parameters in ARMA (p, q) model. These are the 

p autoregressive parameters and the q moving average parameters.  By 

convention ARMA (p, 0) is the same as AR (p) and ARMA (0, q) is MA (q). This 

shows that both autoregressive and moving average models are special cases 

of ARMA (p, q) models.  

The likelihood ratio test cannot be used to differentiate between models with 

different covariance structure, if these are not nested to each other.  On the 

other hand, information criteria can be used to select between such models. 

Two regularly used criteria are Akaike Information Criterion (AIC) [Sakamoto 

et al, 1986] and Bayesian Information Criteria (BIC) [Schwartz, 1978].  

These are model comparison criteria evaluated as  

),log(log2

,2log2

NnlikelihoodBIC

nlikelihoodAIC

par

par

+−=

+−=

 

Where parn  stands for the total number of parameters in the model and N 

stands for total number of observations used to fit the model.   We prefer the 

model with the smallest AIC, when comparing two or more models fitted to 

the same data. Similarly, when using BIC, we prefer the model with the 

lowest BIC.  

5.8 Inference for Marginal Model Parameters  

Usually, inference on the parameters of a fitted model is often a primary 

interest, due to the generalization of results from specific sample to general 



122 

 

population from which the sample was taken (Verbeke and Molenberghs, 

2000).  As already seen in section (5.5), the vector β  of fixed effects is 

estimated by  

( ) ( )22.5ˆ

1

1

1

ii
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i

iii

N

i

i yWXXWX ∑∑
=

−
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where ( )α1−= ii VW ,  the unknown α of variance component is replaced by 

REML or ML estimate.  Under the marginal model (5.17), and conditionally 

on α , ( )αβ̂  follows a multivariate normal  distribution with mean vector β  

and variance covariance matrix  
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To construct confidence intervals or to test hypotheses about β , we can use 

the ML estimate β̂  and its estimated covariance matrix.  The estimate of the 

covariance matrix in (5.23) can be obtained by replacing α  by its ML or 

REML estimator.  For individual parameter jβ  in vector β , j= 1, 2 … p, the 

different confidence limits can be obtained from approximating the 

distribution of  

( )
( )j

jj

eS β

ββ
ˆ.ˆ

ˆ −
    by a standard normal  distribution.    
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The test statistic  
( )j
i

V
Z

β

β
ˆˆ

ˆ
=   can be used to test the null hypothesis   

0: =joH β   for  j=1, 2… p  where ( )jV β̂ˆ  denotes the diagonal element for the 

estimator of  (5.23) corresponding to jβ . 

In general, it may be of interest to obtain confidence intervals and to test 

hypotheses about linear combinations of the components of .β  For any 

vector or matrix of known weights L, a test for the hypothesis   

( ).24.50:,0: ≠= ββ LHversusLH ao

 

The estimate of βL  is given by β̂L .  The sampling distribution of β̂L  is 

multivariate normal with mean βL  and covariance LL ′)ˆvar(β .  This implies  

( ) ( )[ ] ( )βββββ −′′
′

−
−

ˆˆˆˆ
1

LLVLL  asymptotically follows a chi-square 

distribution with rank (L) degrees of freedom.  Therefore, the test statistic,  

( ) ( )[ ] βββ ˆˆˆˆ
1

2 LLVLLW
−

′
′

= , which has a chi-square distribution with 

degrees of freedom rank (L) is used to test the hypothesis in (5.24).  

However, both the Wald test and chi-square tests are based on large sample 

properties of the sampling distribution of the ML estimate of β . 

The Wald test statistics are based on estimated standard errors which 

underestimate the true variability in β̂  because they do not take into 

account the variability introduced by estimating .α (Dempster et al., 1981; 

Verbeke and Molenberghs, 2000). This problem of downward bias can be 

solved by using approximate t-and F statistics for testing hypotheses about  

.β   This can be done: 
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i) by  approximating the distribution of, 
( )

( )jeS β

ββ
ˆ.ˆ

ˆ −
 by an appropriate 

t-distribution 

ii) by testing the general linear hypothesis in (5.24)  using an F-

approximation to the distribution of  

( ) ( ) ( )
)(

ˆˆˆ
1

1

1

Lrank

LLXVXLL

F

N

i

iii ββαββ −











′







 ′′
′

−

=

−

=

−∑
 

The numerator degrees of freedom equals rank (L). The denominator degrees 

of freedom need to be estimated from the data. The degrees of freedom for t-

distribution also need to be estimated from the data. Several estimation 

methods are available which might lead to different results.  However, in 

longitudinal data analysis different individuals contribute independent 

information, which results in numbers of degrees of freedom which are 

typically large enough, whatever estimation method is used, to lead to very 

similar p-values (Verbeke and Molenberghs, 2000). 

  5.9. Results of Fitting the Fractional Polynomial Model  

 

The ordinary least square (OLS) regression model of (5.13) was fitted and the 

residuals were examined. The box plots of these residuals by tree are 

indicated in Figure 2.6.  The residuals corresponding to the same tree tend 

to have the same sign. This indicates the demand for a “tree effect” in the 

model, which is indeed the motivation for mixed effects models.  The next 

step in the model building process is to choose which of the curve 

components (the intercept, time or square root of time)   should have a 

random component to account for the between tree variation. The “lmList” 

function in R statistical software was used to fit the model to individual 

trees.  
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The 95% confidence interval for the parameters of the model was plotted at 

the individual tree level (Figure 5.1). The tree specific intervals do not 

overlap for the intercept or coefficient of time and nor for the coefficient of 

the square root of time.  Therefore, these individual confidence intervals give 

a clear indication that a random effect is needed for tree to tree variability in 

the intercept, coefficients of time and square root of time.    Moreover, to 

facilitate comparison among the distributions of intercepts, linear time and 

square root of time across the two clones, parallel boxplots for the 

coefficients were produced (Figure 5.2).  

At the beginning of the trial, when measurements were first initiated, the GC 

clone showed a higher average radial growth compared to the GU clone 

(Figure 5.2). On the other hand, the average coefficients relating the stem 

radial measures to the linear effect of age and square root of age effect were 

larger for the GU clone than for the GC clone.  Therefore, these graphical 

methods (Figures 5.1 and 5.2) suggest that a model with different intercept 

and time coefficients for each clone needs to be considered.   
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Figure 5 . 1 Ninety-five percent confidence intervals for intercepts, coefficient 

of time and the coefficient for the square root of time for each tree in the 

dataset. 

 

 

Figure 5. 2  Box plots of intercepts, coefficients of time and coefficients of 

the square root of time for the regressions of radial growth on age of a tree 

for GU and GC clones. 
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With the objective of selecting the best random effects model, a linear mixed 

model was fitted, assuming the diagonal elements in 
iR  are all equal and 

the off-diagonal elements are zero. Therefore, the variance of the response 

vector tiY ′  depends on time only through the component 
ii ZDZ ′ .  A 

hierarchical test procedure was followed to see if any of the random effects 

could be removed from the model. Hence the test begins with the inquiry as 

to whether or not the square root of time effect differs between trees. The 

formulation of the test of hypothesis at a specified α-level of significance is: 

Ho:  d13 = d23 =d33 =0 against the alternative    aH : at least one of 

the  3id is different from 0, i=1, 2, 3.  

In the above d13, d23, d33   are the covariance of random intercept and 

square root of time random effect, the covariance of time coefficients and 

square root of time coefficients and the variance of square root of time 

random coefficients respectively. The classical likelihood based inference 

cannot be applied for testing the above null hypothesis since the null 

hypothesis (d33 =0) is on the boundary of the parameter space. To avoid this 

boundary value problem the asymptotic mixture of chi-squared distributions 

for the likelihood ratio test statistics was applied. This statistic is the 

difference of minus twice the logarithm of the likelihoods under the null and 

the alternative hypothesis. A large value of this difference rejects the null 

hypothesis and favours the alternative hypothesis, that there is a significant 

improvement in the fit when the extra random effect parameters are 

included.  

 The following random effect models were considered for testing: 

    Model   1:  Intercept, time, square root of time 

    Model   2:  Intercept, time  

    Model   3:  Intercept, square root of time 
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   Model    4:  Time, square root of time  

   Model    5:   Intercept only 

The likelihood ratio test statistics based on restricted maximum likelihood 

(REML) together with the corresponding p-values are displayed in Table 5.1.  

The observed values of the test statistics are very large and yield p-values 

less than 0.0001. We conclude that the covariance structure should not be 

simplified by deleting any of the random effects from the model.   The 

general positive definite matrix was used and the estimated covariance 

matrix is  

















−

−−

−

=

57544832053266

48320779260889950

532668899501127600

D̂ . 

Table 5. 1 Likelihood ratio test for random effects using restricted maximum 

likelihood estimation 

Random 

effects 
-2loglikelihood 

LR test 

Statistics 
Comparison 

Chi-square 

2

: 21 kkχ  
P-value 

Model 1 20450.30 - - - - 

Model 2 20637.56 187.26 1 vs 2 
2

3:2χ  < 0.0001 

Model 3 20580.20 129.90 1 vs 3 
2

3:2χ  < 0.0001 

Model 4 20497.16 46.86 1 vs 4
 

2

3:2χ
 

< 0.0001 

Model  5 21720.86 1270.56 1 vs 5
 

2

3:1χ
 

< 0.0001 

The p-value is calculated by giving equal weight to a mixture of two chi-

squared distributions with  
1k   and  

2k   degrees of freedom. That is 

)(5.0)(5.0)( 2

2

22

121
LRPLRPLRPvaluep kkkk ≥+≥=≥=− χχχ  
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The assumptions that the within-tree errors are normally distributed, are 

centred at zero and have constant variance were assessed.  Initially, the box 

plot of residuals by group (tree) was considered (Figure 5.3). The residuals 

have zero mean as all centres are close to the vertical line.  The variability of 

residuals is not exactly constant.  The box plots in the upper part of Figure 

5.3 appeared to have higher variability than the box plots in the lower part 

of the figure.  To obtain a better impression of this pattern the plot of 

standardized residuals versus fitted values, by clone, were examined.  

The plot of standardized residuals for the homoscedastic model is 

presented in Figure 5.4.  The residual variability for the GU clone is larger 

than for the GC clone.  Some outlying values are observed for some trees.  A 

more general model to represent the radial growth data that allows different  

variances by clone for the within-tree error was applied. Based on this 

heteroscedastic model by clone, several variance functions discussed in 

section (5.6) and dependence model of section (5.7) were considered for the 

variance of the within-tree error.   

Figure 5. 3   Box plot of residuals by tree. 
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Figure 5. 4  Plot of standardized residuals for a homoscedastic model. 

Among the models for which convergence is achieved, a variance which is an 

exponential function of time was found to be the best fit. That means the 

two clones had different variances and their variance function was a 

function of tree age.  The estimated standard error for the GC clone is about 

76% of that for the GU clone. The estimate for fixed effects is similar to the 

estimates of the homoscedastic model. The estimates of fixed effects are 

presented in Table 5.2.  
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Table 5. 2 Fixed effect estimates for heteroscedastic model 

Effect Value 

Standard 

error DF t-value P-value 

Intercept -5547.85 812.91 1220 -6.82 0.001 

Time -137.39 38.62 1220 -3.36 0.001 

Clone(GC) 2738.96 1122.49 16 2.44 0.026 

time  5072.58 462.64 1220 10.96 0.001 

time   ×  Clone (GC) -1514.95 648.76 1220 -2.33 0.019 

Clone (GC)  ×  time  84.26 54.17 1220 1.56 0.12 

 

As seen from Table 5.2, the interaction of time effect with a clone was not 

significant and hence was removed from the model. The interaction between 

clone and the square root of time effect is significant. This indicates that the 

two clones have different coefficients for the square root of time. Therefore, 

the longitudinal growth of the GU clone is significantly higher than that of 

the GC clone.   

The plots of the standardized residuals versus fitted values, by clone, were 

re-examined to assess the adequacy of the heteroscedastic model (Figure 

5.5).  The difference in variability of the residuals for the two clones has 

improved (less variability is observed). Some outlying observations are still 

observed for some trees.   
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Figure 5.5 Plot of residuals versus fitted values by clone for a   

heteroscedastic model. 

Overall the standardized residuals are small suggesting that the mixed 

effects model with heteroscedastic variance is successful in explaining the 

radial growth curves.  The homoscedastic model and the heteroscedastic 

model are also compared using a formal test. The results of the formal tests 

are given in Table 5.3. The very small p-value of the likelihood ratio statistic 

confirms that the heteroscedastic model explains the data significantly 

better than the homoscedastic model.   

Table 5.3 Test that compares homoscedastic model and heteroscedastic 

model 

Model df AIC LogLik test Test L.Ratio P-values 

Homoscedastic 11 20537.62 -10257.81    

Heteroscedastic  13 20069.17 -10021.58 1 vs 2 472.45 < 0.001 

 

The assumption of normality for the within group errors was assessed using 

the normal probability plot of residuals. The normal probability plot of 

residuals is shown in Figure 5.6. Close examination of the behaviour of the 
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two plots (see Zewotir and Galpin, 2004) shows that the normality 

assumption is plausible. 

  

Figure 5. 6  Normal probability plot of residuals by clone. 

The investigation of the marginal normality of the corresponding random 

effects was also made.  The normal probability plot of the random effects is 

indicated in Figure 5.7. The assumption of normality seems reasonable for 

all three random effects.  

 

Figure 5 . 7  Normal probability plot of random effects. 
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The maximum likelihood estimates for the fixed effects as well as the 

variance components of the final heteroscedastic model are presented in 

Table 5.4. 

Table 5. 4 Maximum likelihood estimates for the parameters of the fitted 

model 

Effect Parameter Estimated Value 

intercept 
0β  -4762.79 

Time 
1β  -94.44 

time  2β  4614.43 

clone (GC) 
3β  1220.95 

clone (GC) × time    4β  -618.06 

var( 0b ) 
11d  

5212300 

var( 1b ) 22d  1915800 

var( 2b ) 33d  13544 

cov(
0b , 1b  ) 12d = 21d  

-3084300 

cov(
0b , 2b  ) 13d = 

31d  233920 

cov( 1b ,
3b  ) 23d = 

32d  -143460 

2σ̂  

GC clone 

)378.0(
exp2991626 ijt

ijt
′−′

 

GU clone 

)438.0(
exp7188634 ijt

ijt
′−′
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The fitted marginal model or the average profile of the radial measure at the 

age of t′  for the two clones can be summarized as follows:    

cloneUGforttY

cloneGCforttY

t

t

′+′−−=

′+′−−=

′

′

43.461444.9479.4762ˆ

37.399644.9484.3541ˆ

 

After fitting the selected model with proper covariance structure, evaluation 

of the final model is necessary. Therefore, in what follows we assess the 

goodness of fit of the final model. All trees included in the study were 

measured the same number of times. There was no dropout. The likelihood 

based analysis made in this study is justifiable. Some graphical techniques 

were applied to informally check whether the model fitted the data set well.  

Since the main objective of the study is to fit the mean structure of the data, 

it is necessary to compare the fitted and observed mean response profiles for 

radial growth.  The Loess smoothing technique was applied to summarize 

the trend of average radial measure as a function of time. This technique 

estimates the underlying regression function without any restrictive 

parametric form. In addition to its use in assisting to choose the parametric 

models, it can also be used as a diagnostic tool by comparing the parametric 

and non-parametric fits. The superimposed fitted average profile on the 

smoothed Loess curves are indicated in Figure 5.8. The left panel of this 

figure compares Loess fit (smoothing parameter= 0.9) with the fitted average 

radial growth for the GC clone. In the plot we can see that the two fitted 

curves are very close to each other.  The middle panel compares Loess fit 

(smoothing parameter=0.9) with the fitted average radial measure for the GU 

clone. The fitted average profile is very close to the smoothed Loess curve 

and the observed discrepancy is very minimal. The right hand panel of 

Figure 5.8 shows the fitted curve for both the GU and the GC clones.  The 

plots indicate that the GU clone has a higher growth profile than the GC 

clone. 
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Figure 5. 8 The fitted average profiles of radial growth measures and the 

Loess smoothed curve (band width=0.9).  

 

In addition, the adequacy of the fractional polynomial model, at individual 

tree level was checked. The plot of the augmented predictions, by tree, was 

used as an assessment for adequacy of the fractional polynomial model 

(Figure 5.9).  The predicted values closely matched the observed radial 

growth measurements demonstrating the adequacy of the model.  
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Figure 5. 8 Plot of predicted radial measure versus time by tree for the final 

model. 

 

To assess overall measure for the goodness of fit of the first stage regression 

model, 
2

metaR  was used. 
2

metaR    is given  by the  following formula.  

   

( )

∑

∑

=

=
−

=
N

i
i

N

i
ii

meta

SSTO

SSESSTO

R

1

12

 

Where iSSTO   and  iSSE  are the tree specific total and error sum of squares 

respectively. This quantity expresses what proportion of the total within 

subject variability can be explained by the first stage regression models 

(Verbeke and Molenberghs, 2000).   
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The overall coefficient  
2

metaR  of multiple determinations is equal to 0.99.  

This indicates that the model explains about 99% of the total within-tree 

variability. All tree specific coefficients, 2

iR , are greater than or equal to 0.98, 

suggesting that the first stage model fits the observed profiles reasonably 

well.  From the fitted fractional polynomial model, given that time and the 

square root of time explain about 99% of the weekly stem radial growth, it 

will be interesting to study the impact of weekly climatic conditions on the 

weekly growth of the two clones. In the next section, the intriguing effect of 

climatic covariates on the current model will be presented. 

5.10 The Effect of Climatic Variables  

The fitted fractional polynomial models are extended to include the effect of 

climatic variables and their interaction with a clone. The effect of each 

climatic variable together with the interaction between clone and each 

climatic variable is considered in the modelling process.  The results of the 

fixed effect estimates are presented in Table 5.5.  
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Table 5. 5 Fixed effect estimates for the model that includes the effect of 

weather variables. 

Covariates  Value Standard 

Error 

t-value p-value 

Intercept -5764.61 669.58 -8.6 0.0000 

Time 45.45 24.26 1.87 0.0600 

Clone (GC) 2085.67 538.27 3.87 0.0010 

time 
3095.81 322.69 9.59 0.0000 

Temperature     39.58 11.09 3.57 0.0004 

Rainfall 3.72 0.96 3.86 0.0001 

Relative humidity   15.40 4.98 3.09 0.0020 

Solar radiation   2381.09 246.63 9.65 0.0000 

Wind speed 818.52 67.27 12.17 0.0000 

Clone × time 
-612.89 281.70 -2.18 0.0298 

Clone × Temperature -48.91 14.18 -3.45 0.0006 

Clone × Solar radiation  -669.98 302.85 -2.21 0.0271 

The interaction effect of clone with each climatic variable is studied one by 

one.  The hierarchical procedure is used to test for an additional parameter 

in the model.  The clone is found to have significant interaction with 

temperature and solar radiation. The interaction of a clone with other 

climatic variables is not significant. Temperature appears to have an 

opposite effect on the radial growth of the two clones. The rest of the 

weather variables appear to have a positive effect on the stem radial growth. 

However, the above result has not considered the effect of season on the 

weather variables. The effect of weather variables might depend on season. 

The effect of weather variables on stem radius is considered after including 

season as one of the factors that determines stem radial growth. The results 

of the model that includes the effect of the season are presented in Table 

5.6.  
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Table 5. 6  Fixed effect estimates for the model that includes the effect of 

the season. 

Covariates  Value Standar

d Error 

t-value p-value 

Intercept 2623.54 1576.26 1.66 0.0963 

Time 59.22 27.31 2.17 0.0303 

Clone (GC) 2177.79 578.60 3.76 0.0017 

time 
3014.48 357.36 8.44 0.0000 

Temperature    33.46 24.57 1.36 0.1735 

Rainfall 22.95 2.83 8.12 0.0000 

Relative humidity -50.15 10.83 -4.63 0.0000 

Solar radiation   1274.96 285.45 4.47 0.0000 

Wind speed -371.84 163.67 -2.27 0.0233 

Clone × time 
-612.31 285.85 -2.14 0.0324 

Clone × Temperature -54.63 9.06 -6.03 0.0000 

Clone × Solar radiation  -609.67 195.40 -3.12 0.0019 

Season(Autumn) -6983.10 1553.89 -4.49 0.0000 

Season(Winter) -13145.67 1537.28 -8.55 0.0000 

Season(Spring) -2281.52 2044.41 -1.12 0.2647 

Temperature ×   Season(Autumn) 87.22 26.06 3.35 0.0008 

Temperature ×   Season(Winter) 58.71 26.56 2.21 0.0270 

Temperature ×   Season(Spring) -8.41 28.26 -0.29 0.7658 

Rainfall ×   Season(Autumn) -16.84 3.60 -4.68 0.0000 

Rainfall ×   Season(Winter) -24.63 2.91 -8.47 0.0000 

Rainfall ×   Season(Spring) -21.31 3.26 -6.54 0.0000 

Wind speed×   Season(Autumn) 284.17 199.27 1.43 0.1541 

Wind speed ×   Season(Winter) 730.49 180.05 4.06 0.0001 

Wind speed ×   Season(Spring) 255.05 255.19 0.99 0.3178 

Solar radiation×   Season(Autumn) -489.65 363.35 -1.35 0.1780 

Solar radiation ×   Season(Winter) 6053.74 462.14 13.09 0.0000 
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Covariates  Value Standar

d Error 

t-value p-value 

Solar radiation×   Season(Spring) -459.05 386.76 -1.19 0.2355 

Relative humidity ×   Season(Autumn)   50.57 12.33 4.10 0.0000 

Relative humidity ×   Season(Winter) 92.67 11.79 7.85 0.0000 

Relative humidity ×   Season(Spring) 36.24 18.23 1.99 0.0471 

The results of Table 5.6, suggest that rainfall and solar radiation have a 

positive effect on stem radial growth during summer. The effect of 

temperature is negative for the GC clone while no significant effect of 

temperature is observed for the GU clone in summer. Wind speed and 

relative humidity appears to have a negative effect on the stem radial growth 

of both clones during summer. 

In autumn, the effect of rainfall, temperature, relative humidity and solar 

radiation on stem radial growth appear positive for both clones. The effect of 

wind speed is negative on the stem radial growth for both clones in autumn.  

In winter temperature, relative humidity, solar radiation and wind speed 

have a positive effect on the stem radial growth of both clones. The effect of 

rainfall on stem radius appears negative for both clones during winter. In 

spring, rainfall and solar radiation have a positive effect on the stem radial 

growth for both clones.  Relative humidity and wind speed have a negative 

effect on the stem radial growth for both clones in spring.  The effect of 

temperature on stem radial growth is negative for the GC clone while no 

significant effect was observed for the GU clone in spring. From our results 

it is evident that some weather variables have a negative effect in one season 

and a positive effect in another season. For instance, temperature has a 

positive effect on stem radial growth of both clones in autumn and winter. 

On the other hand, a negative effect of temperature is observed in summer 

and spring for the GC clone, while no significant effect is observed for the 

GU clone. 
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The plots of the standardized residuals versus fitted values, by clone, were 

re-examined to assess the adequacy of the heteroscedastic model (Figure 

5.10).  The difference in variability of the residuals for the two clones has 

improved (less variability is observed).   Overall the standardized residuals 

are small, suggesting that the mixed effects model with the effect of climatic 

covariates included is successful in explaining the radial growth curves. 

 

Figure 5 .9  Plot of residuals versus fitted values by clone for the final model 

The assumption of normality for the within group errors was assessed using 

the normal probability plot of residuals. The normal probability plot of 

residuals is shown in Figure 5.11. Close examination of the behaviour of the 

two plots (see Zewotir and Galpin 2004) shows that the normality 

assumption is plausible. 
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Figure 5. 10 Normal probability plots of residuals by clone for the final 

model. 

The investigation of the marginal normality of the corresponding random 

effects was also made.  The normal probability plot of the random effects is 

indicated in Figure 5.12. The assumption of normality seems reasonable for 

all three random effects.  

  

Figure 5. 11  Normal probability plots of random effects for the final model. 
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5.11 Summary  

 Based on descriptive and graphical exploratory analysis and using the mfp 

package in R, an appropriate preliminary mean growth model is identified as 

fractional polynomial model of order two. The selected preliminary mean 

structure shows that radial measure is a function of linear time and the 

square root of time. Following the selection of mean structure, the selection 

of random effects resulted in the significance of all three random effects 

(namely, intercept, coefficients of time, and coefficients of square root of 

time). While selecting the unstructured covariance as covariance structure 

of random terms, a search for best structure for the covariance of the error 

component was made. The search resulted in the heterogeneous variance, 

which varies by clone and exponential function of square root of time, as the 

best fit. Loess smoothing technique (Cleveland, 1979) attests that the 

selected model fits the data set well.  Moreover, the non-parametric Loess 

fitted curves for both the GC and GU clones showed the plausibility of the 

fitted fractional polynomial models. The analyses showed that the GU clone 

has faster stem radial growth than the GC clone. The larger intercept for the 

GC clone showed at the initial stage, that the mean profile of the GC clone is 

higher than that of the GU(see Figure 2.3).   The growth pattern of the two 

hybrid clones is similar during the juvenile stage. The rate of change of stem 

radial growth at the instantaneous change of time for both clones is a 

function of time, t ′ . However the rate of growth is different for the two 

clones. For the GC clone the growth rate at time t ′ is 44.94
185.1998ˆ

−
′

=
′
′

ttd

Yd t

but for the GU clone it is  44.94
215.2307ˆ

−
′

=
′
′

ttd

Yd t
.   
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Figure 5. 12 Plot for the estimated rate of growth of the two clones. 

The rate of growth for the two clones is presented in Figure 5.13. These 

increment rates are large at the initial stages and as t ′ increases the stem 

radial growth slows down and then tends to increase at a stable rate. The 

GU clone growth rate is larger than the GC clone during the entire juvenile 

stage. The faster growth characteristics of the GU clone points to improved 

genetics of this hybrid cross and to its potential ability to better exploit 

available resources, making it an economically viable hybrid cross as 

reported elsewhere (Galloway, 2003).   

 This fast growth shows that the GU clone has a genetic economic potential 

for rapid stem growth as compared to the GC clone.   At time Tt =′ , the 

average radial growth advantage of the GU clone is  ∑
=′









′

T

t t1

03.309
. For 

instance, after 52 weeks (one year) from the dendrometre installation age 

(i.e, 39 weeks), T=52, the average radial growth advantage of GU clone is 

4027 mµ .  

The fractional models which were functions of tree age are extended to 

account for the effect of the climatic variables.  Although tree age is the most 
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important variable in determining the stem radial growth during the juvenile 

stage (up to two years), there is a significant effect of climatic variables on 

the stem radial change.   Most of the climatic variables have a positive effect 

on the stem radius during the juvenile stage of tree development.  It was 

found that temperature has an opposite effect on the radial growth of the 

two clones.  The effect of temperature on the radial growth of GU clone is 

positive while it is negative for the GC clone. This could be primarily due to 

genetic variation between the two clones. Of course, this may entail further 

research in the area.  The effect of weather variables depends on season.  In 

winter, temperature, relative humidity, solar radiation and wind speed have 

a positive effect on the stem radial growth.  In autumn, rainfall, 

temperature, relative humidity and solar radiation have a positive effect on 

the stem radial measure.     

In this chapter we applied fractional polynomial models to model growth. We 

also extended the model so that it incorporates the effect of covariates.  This 

model comprises a variety of curve shapes and can be easily modelled under 

the linear mixed model framework. The model can easily be extended to 

include the effect of other covariates.  On the other hand, standard 

nonlinear growth models can be used to model growth curves. However, 

extending these models to handle the effect of other covariates can be very 

complicated. With the objective of comparing the fractional polynomial with 

that of nonlinear mixed models, a review of the nonlinear mixed model is 

presented in Chapter 6.  Moreover, the comparison of the results obtained 

from fractional polynomial with that of standard nonlinear mixed models is 

made. 
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Chapter 6 

Nonlinear Mixed Models and Comparison to 

Fractional Polynomial in the Context of Linear Mixed 

Models 

6.1 Introduction 

Mixed effects models are usually used to model repeated measures data. 

These methods are useful to flexibly model the within-group correlation 

commonly present in this type of data. Most of the work on methods of 

repeated measures data has focused on data that can be modelled by an 

expectation function that is linear in its parameters (e.g. Laird and Ware, 

1982).  Nonlinear mixed-effects models involve both fixed and random 

effects, in which some, or all, of the fixed and random effects occur 

nonlinearly in the model function.  

Numerous nonlinear mixed-effects models have been proposed. These 

include Sheiner and Beal (1980); Mallet et al. (1988); Lindstrom and Bates 

(1990); Vonesh and Carter (1992); Davidian and Gallant (1992); and 

Wakefield et al. (1994).   

Davidian and Giltinan (1995) and Vonesh and Chinchilli (1996) offered 

overviews along with general theoretical developments and some examples of 

nonlinear mixed models.  Lindstrom and Bates (1990) proposed a general 

nonlinear mixed-effects model for repeated measures data and defined 

estimators for its parameters. These estimators are a combination of the 

least square estimators for Nonlinear fixed effects models and maximum 

likelihood (or restricted maximum likelihood) estimators for linear mixed-

effects models.  Pinheiro and Bates (2000) presented a slight generalization 

of the nonlinear mixed models proposed by Lindstrom and Bates (1990). 

This generalization allows the incorporation of “time varying” covariates in 
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the fixed effects or the random effects for the model. This general 

formulation is implemented in R Statistical software (R Core Team, 2013). 

The implementation in R allows the use of nested random effects and also 

permits the within group error to be correlated (and/or) to have unequal 

variances. This general formulation was considered in this study.  Nonlinear 

mixed models can be viewed as an extension of the linear mixed-model of 

Laird and Ware (1982) in which the conditional expectation of the response, 

given the random effects, is allowed to be a nonlinear function of the 

coefficients.  It can also be regarded as an extension of nonlinear models for 

independent data (Bates and Watts, 1988) in which random effects are 

integrated in the coefficients to allow them to vary by group. Nonlinear 

mixed-models are becoming increasingly popular (Wolfinger, 1999). They are 

applied in many fields of study such as agriculture, forestry, biology, ecology 

and biomedicine.  According to Pinheiro and Bates (2000), the main reasons 

for using a nonlinear mixed-model are interpretability, parsimony and 

validity beyond the observed range of data. By increasing the order of the 

polynomial model, it is possible to get increasingly accurate approximations 

to the true, usually nonlinear, regression function, within the range of the 

data. However, these higher order polynomial models may result in 

multicollinearity problems and they also provide no theoretical 

considerations about the underlying mechanism producing the data.  

Nonlinear models on the other hand are often mechanistic, that is based on 

a model for the mechanism producing the response. Consequently, the 

model parameters in nonlinear models generally have a natural physical 

interpretation.  Even when derived empirically, nonlinear models usually 

incorporate known, theoretical characteristics of the data, such as 

asymptotes and monotonicity, and in these circumstances, can be 

considered as semi-mechanistic models. A nonlinear model generally uses 

fewer parameters than a competitor linear model, such as a polynomial, 

giving a more parsimonious description of the data. Nonlinear models also 

provide more reliable predictions for the response variable outside the 

observed range of the data than, say, polynomial models would (Pinheiro 
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and Bates, 2000). The objectives of this chapter is to develop a stem radial 

increment model based on a nonlinear mixed model for two Eucalyptus 

grandis x E. urophylla hybrid clones comparing their growth potential with 

respect to the estimated parameters of the model. 

6.2 Description of the General Nonlinear Mixed Model 

The nonlinear mixed model can be viewed as a two stage model. In the first 

stage the
thj  observation on the thi individual is modelled as:   

( ) )1.6(...,1...2,1, iijijijij njandMiXfy ==+= εφ
 

where,  ijy   is  the thj  observation on the  thi  individual,  f is a nonlinear 

function of an individual specific parameter vector ijφ and the predictor 

vector ijX  and ijε   is the normally distributed within-group error term. M is 

the total number of individuals and in  is the number of observations on the 

thi individual. In the second stage the individual specific parameter vector 

 ( ijφ ) is modelled as:    

)2.6(),0(~ ψβφ NbbBA iiijijij +=   

where, β  is a p-dimensional vector of fixed population parameters,  and 

ib is  a q-dimensional random effects vector associated with the thi  

individual (not varying with j), with variance covariance matrix ψ . The 

matrices ijA  and ijB  are design matrices for the fixed and random effects 

respectively. It is further assumed that observations made on different 

individuals are independent and that the within group errors ijε  are 

independently distributed as ( )2,0 σN  and independent of the ib .  We can 
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express (6.1) and (6.2) in matrix form (for the response vector of the  thi  

individual) as  

( )
( )

Mifor

bBA

Xfy

iiii

iiii

...,2,1

3.6

=

+=

+=

βφ

εφ

 

where   [ ] T

iiniii yyyy ...21=  

              [ ] T

iiniii φφφφ ...21=  

             [ ] T

iiniii εεεε ...21=  

              [ ] T

iiniii XXXX ...21=     

           [ ] T

iiniii AAAA ...21=      

           [ ] T

iiniii BBBB ...21=                   

( ) ( ) ( )[ ] T

ii ininiiiiiiiiii XfXfXfXf ,...,,),( 2211 φφφφ =  

Several methods for estimating the parameters of the nonlinear mixed 

models have been suggested. Our emphasis will be on two of them namely 

maximum likelihood and restricted maximum likelihood.  

The evaluation of the log-likelihood function of the data is a complex 

numerical issue because it usually involves integral that does not have a 

closed-form expression.   
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The maximum likelihood estimation in (6.1) is based on the marginal density 

of given by:  

( ) ( ) ( ) )4.6(,,,/,,/ 22 dbbpbypyp ∫= σψβψσβ

Where,   

( )ψσβ ,,/ 2yp  = is the marginal density of y     

( )2,,/ σβbyp   is the conditional  density of y  given the random effect 

( )bp   is the marginal distribution of  b  

In general, the integral in model (6.4) does not have a closed-form 

expression when the model function f is non-linear in random effects. 

Different approximations have been proposed for estimating it. Some of 

these methods are the LME approximation method suggested by Lindstrom 

and Bates (1990); the method by Sheiner and Beal (1980) and Vonesh and 

Carter (1992) that takes first order Taylor expansion of the model function, 

f, around the expected value of the random effects; a modified Laplacian 

approximation (Tierney and Kadane 1986) and Gaussian quadrature 

(Davidian and Gallant 1992).  Pinheiro and Bates (1995) analysed several 

approximations to log-likelihood of non-linear mixed effects model and 

concluded that Lindstrom and Bates’ (1990) approximation usually gives 

accurate results.  In the section that follows the method suggested by 

Lindstrom and Bates (1990) to approximate the log-likelihood (6.4) is 

presented.  

6.3 Approximations to The Likelihood in The Nonlinear 

Mixed Effects Model 

Lindstrom and Bates (1990) suggest an alternating algorithm for estimating 

the parameters of model nonlinear mixed model.   This estimation algorithm 

alternates between two steps, a penalized nonlinear least squares (PNLS) 
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step and a linear mixed model (LME) step.  The alternating algorithm for 

model (6.1) is a follows.    

 For the nonlinear mixed effects model (6.1), the random effects variance-

covariance matrix can be expressed, in terms of the precision factor ( )∆ , so 

that       ∆∆= −− T21 σψ .  

In the PNLS step, the current estimate of ∆ (the precision factor) is held 

fixed, and the conditional modes of the random effects ib  and the 

conditional estimates of the fixed effects β  are obtained by minimizing a 

penalized nonlinear least squares objective function (Pinheiro and Bates, 

2000)  

( ) ( ).5.6,
1

22

∑
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iiii bbfy β

 

The LME step updates the estimate of ∆  based on first order Taylor 

expansion of the model function  f  around the current estimates of β  and 

the conditional modes the random effects ib . The current estimate of β  and 

the modes of the random effects are denoted by ( )wβ̂  and 
( )w
ib̂ , respectively.  

Using   
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the approximate log-likelihood function used to estimate ∆  is  
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where ( ) ( ) ( )
.ˆˆ 1 Tw

i

Tw

ii
ZZI

−− ∆∆+=∆∑  

This log-likelihood is identical to that of a linear mixed model in which the 

response vector is given by ( )wŵ and the fixed and random effects design ,  

matrices are given by ( )wX̂  and ( )wẐ respectively. This greatly simplifies the 

optimization problem (Pinheiro and Bates, 2000).  

Lindstrom and Bates (1990) also suggested a restricted maximum likelihood 

estimation method for∆ , which involves changing the log-likelihood in the 

LME step of the alternating algorithm by the following log-restricted-

likelihood. 

( )
( )( ) ( ) ( ) ( ) ( )8.6ˆˆlog
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If either the fixed effects or the random effects change, the penalty factor for 

the log-restricted likelihood (6.8) will also change. This is because of the fact 

that ( )w

iX̂   depends on both  ( )wβ̂  and  ( )w
ib̂  .   This implies that log-

restricted-likelihoods from nonlinear mixed effects (NLME) models with 

different fixed or random effects are incomparable.  The algorithm alternates 

between penalized nonlinear least squares (PNLS) and LME steps until a 

convergence is achieved.  These alternating algorithms appear to be more 

efficient when the estimates of the variance-covariance components ( ∆   and

2σ ) are not strongly correlated with the estimates of the fixed effects ( β ).  

Only the LME step was used by Lindstrom and Bates (1990) to update the 

estimate of ∆ .  However, the LME step also produces updated estimates of 
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β  and the conditional modes of ib .  Thus one can iterate LME steps by re- 

evaluating equations (6.6) and (6.7) or (6.8) for the log-restricted-likelihood 

at the updated estimates of β  and  ib ( Wolfinger, 1993, Pinheiro and Bates, 

2000).   

6.4 Inferences and Predictions for Nonlinear Mixed Models  

 

The parameters of nonlinear mixed effects model are estimated via the 

alternating algorithm.  Inference on these parameters is based on the LME 

approximation to the log-likelihood function defined in section 6.3.   Under 

the LME approximation, for fixed effects, the distribution of the maximum 

likelihood or restricted maximum likelihood estimators ( β̂ ) is  

( )9.6ˆˆ,~ˆ
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where 
i

T

ii
ZZI ˆˆ 1 −− ∆∆+=∑ , with  iX̂   and  iẐ   are defined as  in (6.6). 

The standard errors included in the summary method for nlme objects are 

obtained from the approximate variance-covariance matrix in (6.9).  The  t   

and  F   tests are reported in the summary method and the anova method 

for single argument are also based on (6.9).    

Assume  θ  denote an unconstrained set of parameters that determine the 

precision factor∆ .  The LME approximation is also used to offer an 

estimated distribution for REML or ML estimators ( )Tσθ ˆlog,ˆ .  Using  

σlog  instead of  2σ  to provide an unrestricted parameterization for which 

the normal approximation tends to be more accurate.  
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where  ( )σ,∆=
pP LMELME ll  denotes the LME approximation to the log-likelihood, 

profiled on the fixed effects, and  I  denotes the empirical information 

matrix.  The identical approximate distribution is usable for the REML 

estimators with 
pLMEl  replaced by the log-restricted-likelihood  R

LMEl  defined 

in (6.8).   In real-world, ∆   and  2σ   are replaced by their respective REML 

or ML estimates in the expressions for the approximate variance-covariance 

matrices in (6.9) and (6.10).  The approximate distributions for the REML or 

ML estimators are used to produce the confidence intervals reported in the 

intervals method for nlme objects (Pinheiro and Bates, 2000). 

The fitted values and predictions for nonlinear mixed models can be 

obtained at different levels of nesting or at the population level. The 

prediction that estimate the expected value of the response by considering 

the random effects to have their mean value zero is called population level 

predictions.  For instance, if the covariate hX  stands for a vector of fixed 

effects and hV  a vector of other model covariates, the corresponding 

population prediction for the response hy  estimates  ( )., hh VXf β     

The predictions at level  k  is obtained by adding together the contributions 

from the estimated fixed effects and the estimated random effects at levels 

k≤  and evaluating the model function at the resulting estimated 

parameters.  For instance, if ( )iZ h
 stands for a vector of covariates 

corresponding to random effects associated with the thi  group at the first 

level of nesting, the level-1 predictions estimate ( )( )hi

T

h

T

h vbiZXf ,+β .   
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The REML or ML estimates of the fixed effects and the conditional modes of 

the random effects, which are estimated Best Linear Unbiased Predictors 

(BLUPs) of the random effects in the LME approximate log-likelihood, are 

used to obtain predicted values for the response.  For instance, the 

population and level-1 predictions for hy  are ( )hT

hh vXfy ,ˆˆ β=  and 

( ) ( )( )hi

T

h

T

hh vbiZXfiy ,ˆˆ +=  respectively (Pinheiro and Bates, 2000). 

6.5 Extending the Nonlinear Mixed Model  

 The nonlinear mixed model formulation used in equation (6.3) conforms to 

the assumption that the within-group errors be independent and have 

constant variance. This model is called the basic NLME model.  It provides 

an appropriate model for a wide range of applications. However, there are 

several practical cases in which this assumption of independence and 

constant variance may not work.  In this section a brief discussion how to 

extend the basic nonlinear mixed model will be given. 

The model in equation (6.3) assumes that the within-group errors  iε  are 

independent  ( )IN 2,0 σ  random vectors.  The extended nonlinear mixed 

model relaxes this assumption by allowing heteroscedastic and correlated 

within-group errors and can be expressed as  

( )
( )

( ) ( )iii

iiiiiiiiii

NNb

bBAvfy
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+=+=

2,0~,,0~

11.6

,,

σεψ

βφεφ

 

The  iΛ  are positive definite matrices.  The within-group errors iε  are 

independent of the random effects ib . As in the LME models, the variance 

covariance structure of the within-group errors can be decomposed into two 

independent components: a variance structure and correlation structure. 

The variance function models described in section (5.6) and the correlation 
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models described in section (5.7) can also be applied for extending the 

nonlinear mixed model.  

The estimation procedures and all inference procedures can be applicable 

for the extended model (6.11) because of the following transformation.   

The matrix iΛ  in (6.11) is positive definite.  It admits an invertible square 

root 
2/1

iΛ  (Thisted, 1988; Pinherio and Bates, 2000), with inverse  
2/1−Λ i  

such that  

2/12/

i

T

ii ΛΛ=Λ −
 and  

2/2/11 T

iii

−−− ΛΛ=Λ .   Using the transformation 

,

2/*

i

T

ii yy −Λ=   ( ) ( )iii

T

iiii vfvf ,, 2/* φφ −Λ= ,    i

T

ii εε 2/* −Λ=  

( ) ( ) ( ) 02/2/* =Λ=Λ= −−
i

T

ii

T

ii EEE εεε   and    
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i

TT

ii

T

ii

T

ii

22/12/22/2/2/* varvarvar σσεεε =ΛΛΛ=ΛΛ=Λ= −−−−− .  

This implies that, ),0(~ 2* INi σε .  As a result, it is possible to rewrite (6.11) 

as  

( )
( )

( ) ( )INNb

bBAvfy

ii

iiiiiiiiii

2*

***

,0~,,0~

12.6

,,

σεψ
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The equation in (6.12) is the same basic nonlinear mixed effects model given 

in equation (6.3). The log-likelihood function ( )*2 /,,, yl λσβ ∆ corresponds 

to the basic NLME model with model function *

if  and, therefore, the 

approximations presented in previous sections can be applied to it. The 

results presented for inference and predictions also remain applicable. 
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6.6 Selection of the Nonlinear Function and NLME Model 

Reformulation  

Due to the large number of possible nonlinear functions that can be used in 

a nonlinear model, the determination of the appropriate function is not 

always easy.  Scientific knowledge about the phenomena under study is 

important in determining the appropriate model. Historical knowledge from 

previous studies of functions that fit similar data well in the past might be 

helpful in selecting the proper function for data. Sometimes the plot of the 

data suggests a well-known function. Probably, the best way to select an 

initial model is to plot the data. Based on the exploratory data analysis of 

Chapter 2 and the shapes of different functions, three nonlinear growth 

functions were selected as candidates for stem radial growth modelling. 

These three growth curves were used to replace the function f in model (6.1).  

 

I. Three parameter logistic regression: The first growth curve introduced 

is the three parameter logistic regression.   This model can be expressed as  
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The parameters of this model have a physical interpretation. 1φ  refers to the 

asymptotic stem radius. 2φ  refers to the time at which the tree reaches half 

of the asymptotic stem radius. 
3φ  is the time elapsed for the tree to  reach 

between half and three fourths of its asymptotic stem radius.  

The nonlinear mixed model corresponding to the logistic function 6.13, with 

the random effects for all parameters, is   
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Where  ijy   is the stem radius for tree i at ijt weeks after planting. The fixed 

effects,  β  represent the mean value of the individual parameters, iφ , 
 in the 

population of eucalyptus trees  and the random effects , ib , 
 represent the 

deviations of the  iφ   from their mean values.   

II. The asymptotic regression model:  this is given by the formula   

( )[ ]( ) ( )15.6)exp(exp)(),( 3121 xxf φφφφφ −−+=

. 

1φ
 is the asymptote as x approaches infinity. 2φ  is the value y when x  is 

zero.  3φ  is the logarithm of the rate constant. The corresponding nonlinear 

mixed effects model for the radial measure ijy   and tree i at ijt weeks after 

planting is  
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III. The Gompertz growth function: The three parameter Gompertz 

function can be expressed as 

 ( ) ( )17.60,0,0exp(exp >>>−×−= γβαγβα ty  

The limiting value as t approaches infinity is α .  The starting value of y at 

t=0 is )exp( βα − , and with the restrictions on the parameters

αβα <−< )exp(0 .  

The representation of the Gompertz function in R Statistical Software is 

( ) )18.6(exp 321

ty φφφ ×−=
The relationship between the parameters of model (6.17) and (6.18) is that 

1φα =
,  

2φβ =
   

3)exp( φγ =−
. 

The representation in R is used, because the R Statistical Software is 

employed for fitting the model.  R is free software that can be downloaded 

from the R project website R core team (2013).   

The parameters of this model have physical interpretation. 1φ  refers to the 

asymptotic stem radius. The starting value of the stem radius at (t=0) is  

( )2exp1

φφ −×
 with the restrictions on the parameters 121 )exp(0 φφφ <−< .   

3φ  is the exponent of the negative of the shape parameter.  This indicates 

the parameter ( ))ln( 3φ−  models the shape of the function.  Differentiating 

model (6.18), with respect to t, we have:  

( ) )19.6())ln((exp))ln(( 323323231

ttt y
dt

dy
φφφφφφφφφ −=×−−=   
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From model (6.21) there is a point of inflection when  
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The relative growth rate as a function time (t) is  
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The nonlinear mixed model corresponding to the Gompertz function (6.18), 

with the random effects for all three parameters, is:   
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where  

),0(~),,0(~ 2σεψ NNb iji  

ijy :  The stem radius at time j for 
thi   tree ( )mµ  

 ijt  :  The age at time j for the 
thi   tree (weeks).  

The fixed effects, β  represent the mean value of the individual parameters, 

iφ ,  in the population of eucalyptus tree  and the random effects , ib , 

represent the deviations of the iφ
 from their mean values.   
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6.7 Results of Fitting Three Parameter Logistic Model  

It is necessary to consider the questions of determining which parameters in 

the model should have a random component and whether the variance 

covariance matrix of the random effects can be structured in simpler form 

with fewer parameters.  The first question that should be addressed in the 

analysis is choosing which parameters should be random effects and which 

are purely fixed effects.  A separate fit for each tree was made and inter-tree 

variability was assessed using the individual confidence intervals. Since 

several repeated measurements were considered for each tree, the data 

include sufficient observations to have meaningful parameter estimates in 

the individual fits.  

 

 

 Figure 6. 1 Ninety five percent confidence intervals on the parameters of 

logistic model (6. 14) based on individual tree fit.  The parameters in this 

graph are related to the parameters in the logistic model as follows (

Asym=1φ ,  xmid=2φ   and scal=3φ ) 

The approximate 95% confidence intervals on parameters of model (6.14) are 

given in Figure 6.1 for each tree.  It is clear that for each parameter, all 
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confidence intervals do not overlap. This suggests that random effects for all 

three parameters may be necessary. An alternative approach is to fit 

different prospective models and compare nested models using the 

likelihood ratio tests or information criterion statistics, such as the Akaike 

Information Criterion (AIC) (Sakamoto et al.,1986). This alternative approach 

was considered for the parameters of model (6.14).  The model was fitted 

with each of 1φ , 2φ , and 
3φ as mixed effects, called model I. The resulting AIC 

was 18478.85.  From a reduced form of model I, with only 1φ  and 2φ  as 

mixed, we get an AIC of 18608.32. This was model II.  The model, that 

considers 1φ  and 3φ  as mixed effects, was also fitted. The resulting AIC was 

18692.69. This was model III.  Finally, the model with 2φ and 3φ as mixed 

effects, was considered and the resulting AIC was equal to 19481.16.  This 

was termed model IV. The AIC of the models that considered each of 1φ , 2φ

and 3φ  at a time as fixed effects were 19481.16, 18692.69 and 18608.32 

respectively.  All these values were larger than the AIC of model I. This gives 

a clear indication that the elimination of any of these random effects has a 

huge impact on the quality of the fit. The comparison of model I with any of 

the three reduced models (Models II, III and IV) using likelihood ratio test, 

produced a p-value, which was less than 0.0001 for all comparisons. It was 

concluded that the covariance structure should not be simplified by deleting 

any of the random effects of model (6.14). This is consistent with the 

conclusions of the individual fits analysis discussed, using the approximate 

confidence intervals. Therefore, a model with random effects for all three 

parameters was considered. 
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 Figure 6. 2 Model validation graphs for the model with all three parameters 

as mixed effects. 

The residuals versus fitted values, clone and tree age are shown in Figure 

6.2. The graphs show clear violation of the assumption of homogeneity of 

variances.  The plot of residuals versus fitted values shows a clear pattern of 

variability for the within-group errors.  The residuals also fluctuate with tree 

age and the variance of residuals is not the same for the two clones.  

The within-group heterogeneity was modelled using different variance 

functions and different correlation structures as discussed in section 5.6 

and 5.7. The model with different variance of residuals for each time point 

appears to be the best fit among those models for which convergence was 

achieved.  The AIC of this model was 17115.96 which is the smallest value 

of all the models fitted.  The adequacy of this model was assessed by plotting 

the standardized residuals against the fitted values, tree age and clone as 

shown in Figure 6.3.   There was a huge improvement in the validation 

graphs. There was no clear indication for the departure from nonlinear 

mixed model assumption. The model with different variances for each time 

point adequately fits the within-group heteroscedasticity.  
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Figure 6. 3 Model validation graphs for the extended model with different 

variance for each time point. 

The primary question of interest for the data at hand was whether there was 

a pattern between the growth in stem radius and the type of clone. The plots 

for the estimates of random effects by clone are given in Figure 6.4.  In 

Figure 6.4 two of the parameters seem to vary with clone.  It appears that 

the asymptote (Asym) and the time at which half of the asymptotic radius is 

attained (xmid) are larger for the GU clone than for the GC clone.  

5000 10000 15000 20000 25000 30000

-2
-1

0
1

2

Fitted values

R
es

id
ua

ls

GU GC

-2
-1

0
1

2

Clone

R
es

id
ua

ls

40 50 60 70 80 90 100

-2
-1

0
1

2

Tree age

 age in weeks

R
es

id
ua

ls



166 

 

 

Figure 6.4  Estimates of random effects by clone in the model different 

variance by tree age. 

 

The dependence of all three parameters on the clone was modelled. The 

significance of the clone for fixed effects was also assessed by comparing the 

models with and without the clone effect. The clone had a significant effect 

on the asymptote ( 1φ ) of the model (p-value is equal to 0.03).  The fitted 

three parameter logistic model is given by:  
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Table 6. 1  ANOVA table for the fitted nonlinear mixed effects logistic model 

Source of variation 

 

 

aNDF

 

 

aDDF
 

F-value 

 

P-value 

Asymptote-intercept  ( 1φ ) 1 1096   1291.71 < 0.0001 

Asymptote-clone  (slope) 1 1096 4.95 0.03 

Inflection point (  2φ   ) 1 1096 18676.97 < 0.0001 

Scale parameter (  )3φ  1 1096 856.57 < 0.0001 

a) NDF, Numerator degrees of freedom.  DDF, Denominator degrees of 

freedom. 

The ANOVA table (Table 6.1) for the fitted model suggests that the clone has 

a significant effect on the asymptotes of the logistic curves.  The parameter 

estimate suggests that the average stem radius of each tree reached the 

inflection point about 57 weeks after the first measurement was taken. 

Another 11 weeks after the inflection point was reached (i.e., 68 weeks after 

first measurement), the average stem radius reached about 75% of the 

growth asymptote for each experimental tree. The overall average stem 

radius at the end of the juvenile stage of the tree was 24263.96 and 

20868.45 for the GU clone and GC clones respectively. Clone had a 

significant negative slope (Table 6.2), which indicates the asymptote for the 

GU clone is larger than that of the GC. This is in agreement with results 
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obtained in Figure 2.3 and is an indication that the GU clone has a better 

genetic potential for growth than the GC clone.  

Table 6. 2 Summary of the fixed effects parameter estimation results for the 

fitted logistic mixed effects model. 

Fixed effects  

 

aLCL  

 

Estimated aUCL  

Asymptote-intercept ( 1φ ) 22093.31 24263.96 26434.61 

Asymptote-clone ( slope ) -6272.98 -3395.51 -518.04 

Inflection point (  2φ   ) 55.68 56.67 57.66 

Scale parameter (  )3φ  10.24 10.98 11.71 

a) LCL, approximated 95% lower confidence limit; UCL, approximated 

95% upper confidence limit. 

The assumption of normality for the within group errors was assessed using 

the normal probability plot of residuals (Figure 6.5). Close examination of 

the behaviour of the two plots (see Zewotir and Galpin, 2004) shows that the 

normality assumption is plausible. 
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Figure 6. 5  Normal probability plot of residuals. 

Investigation of the marginal normality of the corresponding random effects 

was also made.  The normal probability plots of the random effects are 

indicated in Figure 6.6. The assumption of normality seems reasonable for 

all three random effects.  
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 Figure 6.6  Normal probability plot of random effects 
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Figure 6. 7   Plots of the fitted model and observed values for each tree using 

the three parameter logistic model. 

The adequacy of the three parameter logistic model, at individual tree level, 

was checked. The plot of the augmented predictions, by tree, was used as an 

assessment for adequacy of the logistic growth model (Figure 6.7). The 

predicted values closely matched the observed radial growth measurements 

demonstrating the acceptability of the model. Moreover, the linear regression 

between the observed and fitted values, which had an 98.02 =R , suggested 

that the overall model fit was satisfactory (Figure 6.8). 
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Figure 6.8   Scatter plot of the fitted versus observed average stem radius. 

The dashed line is the estimated regression line between the observed and 

fitted values. (Fitted =1109+0.915 observed) and the solid line is the 1: 1 

line. 

 

6.8 Results of Fitting the Asymptotic Regression Model 

 

Figure 6.9 gives the approximate 95% confidence intervals on parameters of 

model (6.16) for each tree.  It is clear that for each parameter, all confidence 
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parameters may be necessary for asymptotic regression model. Models with 

different structures are fitted and compared using the likelihood ratio tests. 

The AIC of the models that consider each of   1φ , 2φ , and 3φ  at a time as fixed 

effects are respectively 18342.28, 17850.49 and 17751.62. All these values 

are larger than the AIC (17405.92) of the model which consider all three 
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parameters as mixed effects, with any of the three reduced models using 

likelihood ratio test, produced a p-value which is less than 0.0001 for all 

comparisons. We conclude that the covariance structure should not be 

simplified by deleting any of the random effects of model (6.16). 

Figure 6.10, shows residuals versus fitted values, clone and tree age. The 

graphs show clear violation of the assumption of homogeneity of variances.  

The plot of residuals versus fitted values shows a clear pattern of variability 

for the within-group error.  The residuals also fluctuate with tree age and 

the variance of residuals is not the same for the two clones.  

 

Figure 6. 9 Ninety five percent confidence intervals on the asymptotic 

regression model (6.16) based on individual tree fit. The parameters in this 

graph are related to the parameters of asymptotic regression model as 

follows ( Asym=1φ ,  02 resp=φ   and lrc=3φ ). 
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 Figure 6.10 Model validation graphs for the model with all three parameters 

as mixed effects for the asymptotic regression model (6.16). 

The within group heterogeneity was modelled using different variance 

functions and different correlation structures as discussed in sections 5.6 

and section 5.7.  The model with the different variance of residuals for each 

time point appears to be the best fit.  The AIC of this model is 16983.87 

which is the smallest of all the models fitted so far for asymptotic regression 

model.  We assessed the adequacy of this model by plotting the standardized 

residuals against the fitted values, tree age and clone as shown in Figure 

6.11.  There is no clear indication for the departure from nonlinear mixed 

model assumption. The model with a different variance for each time point 

adequately fits the within-group heteroscedasticity.  
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Figure 6.11   Model validation graphs for the extended model with different 

variance for each time point for asymptotic regression model. 
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 Figure 6. 12  Estimates of random effects by clone in the model different 

variance by tree age for asymptotic regression model. 

In Figure 6.12 the asymptote parameter (Asym) seems to vary with clone.  It 

appears that the asymptote (Asym) is larger for GU clone than for the GC 

clone. The dependence of each parameter on clone is modelled and tested. 

Clone has a significant effect on 1φ  and  2φ  of the model ( p-value is less 

than 0.0001). The fitted model is given by  

( ) ( )[ ] GUfortimeradius )52.3exp(exp28.3102306.6919128.31023 −−−−+=  

( ) ( )[ ] GCfortimeradius )52.3exp(exp55.2552428.5354655.25524 −−−−+=  

The assumption of normality for the within group errors was assessed using 

the normal probability plot of residuals. The normal probability plot of 

residuals is shown in Figure 6.13. Close examination of the behaviour of the 

two plots (see Zewotir and Galpin, 2004) shows that the normality 
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assumption is somewhat plausible. The Shapiro-Wilk normality test (W = 

0.9974, p-value=0.07) also suggests there is no violation in the assumption 

of normality.  

 

 

 Figure 6.13   Normal probability plot of residuals by clone for model 6.16. 
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 Figure 6.14  Normal probability plot of random effects for model 6.16. 

The investigation of the marginal normality of the corresponding random 

effects was also made.  The normal probability plots of the random effects 

are indicated in Figure 6.14. The assumption of normality seems reasonable 

for all three random effects. The p-values reported for the Shapiro Wilk test 

are 0.4, 0.16 and 0.1 respectively for random effect associated with 1φ ,  2φ  

and  3φ  of model (6.16) . 
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 Figure 6. 15 Plots of the fitted model and observed values for each tree 

using the asymptotic regression model (6.16). 

 

The adequacy of asymptotic regression model, at individual tree level, was 

checked. The plot of the augmented predictions, by tree, was used as an 

assessment for adequacy of the logistic growth model (Figure 6.15). The 

predicted values closely matched the observed radial growth measurements 

demonstrating the appropriateness of the model. Moreover, the linear 

regression between the observed and fitted values, which had a 9936.02 =R , 

suggested that the overall model fit was good (Figure 6.16). 
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 Figure 6. 16  scatter plot of the fitted versus observed average stem radius. 

The dashed line is the estimated regression line between the observed and 

fitted values. (Fitted =446.4+0.976 observed) and the solid line is the 1: 1 

line. 
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Table 6. 3 Fixed effects parameter estimates for the asymptotic regression 

model (6.16). 

 

Fixed effects  

 

 

Estimate 

 

Standar

d error  

 

Degree 

of 

freedom 

 

t-

value 

 

P-

value 

Asymptote-intercept  ( 1φ ) 31023.28 1656.56 1095 18.73  0.000 

Asymptote-clone  (slope) -5498.73 2175.38 1095 -2.53 0.010 

resp0-intercept (  2φ   ) -69191.06 5700.30 1095 -12.14 0.000 

resp0-clone  2φ    15644.78 5523.57 1095 2.83 0.005 

Lrc Scale parameter (  )3φ  -3.52 0.065 1095 -54.34 0.000 

 

The summary (Table 6.3) for the fitted model suggests that clone did have a 

significant effect on the asymptotes of the asymptotic regression model. 

There is no significant effect of clone on the growth rate parameter (
3φ ).  The 

overall average stem radius at the end of the juvenile stage of the tree is 

31023.28 with the 95% confidence interval [27780.17, 34266.39] for the GU 

clone. The estimate for GC clone is 25524.55 with the corresponding 95% 

confidence interval [18022.62, 33026.48] (Table 6.4).   The asymptote for the 

GU clone is larger than the asymptote for the GC clone. 
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Table 6. 4 Summary of the fixed effects parameter estimation results for the 

asymptotic regression model (6.16). 

Fixed effects  

 

aLCL  

 

Estimated aUCL  

Asymptote-intercept ( 1φ ) 27780.17 31023.28 34266.39 

Asymptote-clone (slope) -9757.55 -5498.73 -1239.91 

resp0-intercept(  2φ   ) -80350.75 -69191.06 -58031.37 

resp0-clone  2φ    4831.09 15644.78 26458.47 

Lrc Scale parameter (  )3φ  -3.65 -3.52 -3.39 

a) LCL, approximated 95% lower confidence limit; UCL, approximated 

95% upper confidence limit. 

6.9 Results of Fitting the Gompertz Curve  

 

The first question to be addressed in the analysis is which parameters 

should be treated as random effects and which were purely fixed effects.  A 

separate fit for each tree was made and inter-tree variability was assessed 

using the individual confidence intervals. Since several repeated 

measurements were considered for each tree, the data have sufficient 

observations to have meaningful parameter estimates in the individual fits.  
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 Figure 6.17  Ninety five percent confidence intervals on the parameters of 

the Gompertz model based on individual tree fit.  The parameters in the 

graph are related to the parameters in the Gompertz model as follows (

,1 Asym=φ 22 b=φ  and  33 b=φ ). 

The approximate 95% confidence intervals for parameters of model (6.23) for 

each tree are presented in Figure 6.17. It was clear for each parameter that 

all confidence intervals did not overlap. This suggests that the random 

effects for all three parameters may be necessary. Using the alternative 

approach, different prospective nested models were fitted and compared 

using the the Akaike Information Criterion (AIC) (Sakamoto et al., 1986). 

This alternative approach was considered for the parameters of model (6.23).  

The first model was fitted with each of 1φ , 2φ , and 3φ  as mixed effects, called 

model I. The resulting AIC was 17777.77.  From a reduced form of model I, 

with only 1φ  and 2φ  as mixed, an AIC of 18027.40 was obtained. This is 
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model II.  The model with 1φ  and 3φ  as mixed effects was also considered. 

The resulting AIC was 17982.21. This is model III.  Finally, the model with 

2φ  and 3φ  as mixed effects was considered and its AIC was equal to 

19041.99.  This represented model IV.  The AIC of the models that 

considered each of 1φ , 2φ , and 
3φ  at a time as fixed effects were 19041.99, 

17982.21 and 18027.40, respectively.  All these values are greater than the 

AIC of model I. This gave a clear indication that the elimination of any of 

these random effects has an enormous influence on the quality of the fit. 

The comparison of model I with any of the three reduced models (Models II, 

III and IV) using the likelihood ratio test, resulted in a p-value which was 

less than 0.0001 for all comparisons.  It was established that the covariance 

structure should not be streamlined by deleting any of the random effects of 

model (6.23).  This is in agreement with the conclusions of the individual fits 

analysis discussed using the approximate confidence intervals.  A model 

with random effects for all three parameters was selected for random effect 

covariance structure. In the plots of residuals versus fitted values,clone and 

tree age, noticeable violation of the assumption of homogeneity of variances 

is realised (Figure 6.18). The residuals also fluctuate with tree age and the 

variance of residuals is not the same for the two clones.  

The within group heterogeneity was modelled using different variance 

functions and different correlation structures as discussed in section 5.6 

and 5.7. The model with the different variance of residuals for each time 

point appears to be the best fit among those models for which convergence 

is achieved.  The AIC of this model is 16496.5, which is the smallest value of 

all the models fitted. The adequacy of this model was assessed by plotting 

the standardized residuals against the fitted values, tree age and clone as 

shown in Figure 6.19.    
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 Figure 6.18 : Model validation graphs for the model with all tree parameters 

as mixed effects for Gompertz model. 

 

There is a huge improvement of the validation graphs. There is no clear 

indication for the departure from the nonlinear mixed model assumption. 

The model with different variance for each time point adequately fits the 

within-group heteroscedasticity. The primary question of interest for the 

data at hand is the possible pattern between the growth in stem radius and 

the type of clone.   
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 Figure 6.19 Model validation graphs for the extended model with different 

variances at each time point (Gompertz model). 
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Figure 6.20 Estimates of random effects by clone for the model with different 

variances by age (Gompertz model). The parameters in the graph are related 

to the parameters in Gompertz model as follows ( ,1 Asym=φ 22 b=φ  and  33 b=φ ). 

From the plot of the estimates of random effects by clone, it appears that the 

asymptote (Asym) for the GU clone is larger than that of the GC clone 

(Figure 6.20).  Some differences between the GU and the GC clones is 

observed for the remaining parameters 2φ  and 3φ .  The dependence of all 

three parameters on clone is modeled. The significance of clone for fixed 

effects is also assessed by comparing the models with clone effect and 

without clone effect using the likelihood ratio statistics. Clone has 

significant effect on the asymptote ( 1φ ) of the model (p-value is equal to 

0.014). Moreover, the ANOVA table (Table 6.5) for the fitted model suggests 

that clone had a significant effect on the asymptotes of the Gompertz curve 

while, no significant effect of clone is observed for the remaining parameters.  
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Table 6. 5 ANOVA table for the fitted nonlinear Gompertz curve 

Parameter Estimate 

Standard 

error 

Degree of 

freedom 
t-value P-value 

Asymptote-

intercept( 1φ ) 

25938.38 1252.68 1095 20.71 0.000 

Asymptote-

clone(slope) 

-4326.60 1765.02 1095 -2.45 0.015 

b2.(Intercept)  ( 2φ ) 29.40 2.75 1095 10.68   0.000 

b2-clone(slope) -3.33 1.84 1095 -1.81 0.070 

b3.(Intercept) ( 3φ ) 0.94 0.002 1095 421.16 0.000 

 

The fitted Gompertz model is given by:  

( )
cloneGUforradius

t94.04.29exp32.25938 ×−=  

( ) cloneGCforradius
t94.04.29exp78.21611 ×−=

 From model (6.19) the estimated rate of growth in stem radius for the two 

clones (where “y” stands for stem radius) is given by:  

cloneGUfore
td

yd tt )94.0(4.29)94.0(46.47185
ˆ

ˆ
×−×=  

cloneGCfore
td

yd tt )94.0(4.29)94.0(79.39314
ˆ

ˆ
×−×=  

The estimated rates of growth curves indicated that the GU clone grows 

faster than the GC clone during the entire juvenile stage. This suggests that 

the GU clone has a faster growth potential than the GC clone in the specific 
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area and environment where growth took place. The overall asymptotic 

average stem radius towards the end of the juvenile stage of the tree was 

25938.32 and 21611.78 for GU clone and GC clones, respectively.  

Statistical significance of the fixed effect parameters of the final nonlinear 

mixed Gompertz model was also determined by evaluating the 95% 

asymptotic confidence intervals of the estimated parameters (Table 6.6).  

Table 6. 6  Summary of the fixed effects parameter estimation results for the 

fitted Gompertz together with 95% confidence interval. 

Fixed effects aLCL  Estimated bUCL  

Asymptote-intercept( 1φ ) 23485.968 25938.382 28390.796 

Asymptote-clone(slope) -7782.049 -4326.600 -871.152 

b2.(Intercept)  ( 2φ ) 24.010 29.396 34.782 

b2-clone(slope) -6.931 -3.330 0.271 

b3.(Intercept) ( 3φ ) 0.934 0.938 0.943 

a LCL, approximated 95% lower confidence limit; b UCL, approximated 

95%  upper confidence limit. 

 

The null hypothesis that the parameter 0: =joH φ  will be rejected when the 

95% asymptotic confidence interval of jφ  does not include zero. Clone has a 

significant negative slope for the asymptote, which indicates the asymptote 

for the GU clone is larger than that of the GC clone.  This translates to the 

better productive capacities of the GU clone compared to the GC clone.   For 

the other two parameters the 95% confidence interval for the slope of clone 

includes zero which indicates that there is no significant difference between 

the two clones with regard to these parameters. By applying equation (6.22) 

to the parameter estimates, the result revealed that the average stem radius 
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(for both clones) reached the inflection point about 55 weeks after the first 

measurement was taken.  Applying equation (6.23), the relative growth rate 

for both clones is estimated by 

.94.04.29)94.0ln( tgrowthrelative ××−=
 

This meant that for both clones, the relative growth rate decreased with time 

and that the two clones grew in a similar manner.   

The assumption of normality for the within group errors was assessed using 

the normal probability plot of residuals (Figure 6.21).  Close examination of 

the behaviour of the two plots (see Zewotir and Galpin, 2004) showed that 

the normality assumption is plausible.  

 

 Figure 6.21 Normal probability plot of residuals for the Gompertz model. 

 

 

 

Standardized residuals

Q
ua

nt
ile

s 
of

 s
ta

nd
ar

d 
no

rm
al

-2

0

2

-2 -1 0 1 2



191 

 

 

 Figure 6.22  Normal probability plot of random effects for the Gompertz 

model 
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Figure 6.23 Plots of the fitted values of the Gompertz model and observed 

values for each tree.  

The investigation of the marginal normality of the corresponding random 

effects was also made.  The normal probability plots of the random effects 

are indicated in Figure 6.22. The assumption of normality seemed 

reasonable for all three random effects. The adequacy of the three parameter 

Gompertz model, at individual tree level, was checked.  The plot of the 

augmented predictions, by tree, was used as an assessment for adequacy of 

the Gompertz growth model (Figure 6.23).  The predicted values closely 

matched the observed radial growth measurements, demonstrating the 

acceptability of the model.  Moreover, the linear regression between the 

observed and fitted values, which had an 99.02 =R , suggested that the overall 

model fit was good (Figure 6.24). 
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Figure 6.24  Scatter plot of the fitted versus observed average stem radius. 

The dashed line is the estimated regression line between the observed and 

fitted values (Fitted = 708.8+0.943 observed) and the solid line is the 1:1 

line. 

All three nonlinear growth curves fit the data well. The effect of clone on the 

parameters of each growth curve was studied. This analysis suggests that 

the GU clone has a larger stem radial measure than the GC clone during the 

entire juvenile stage. Although only one clone from each hybrid cross was 

tested in this study, the faster growth characteristics of the GU clone points 

to improved genetics of this hybrid cross and to its potential ability to better 

exploit available resources, making it an economically viable hybrid cross as 

reported elsewhere (Galloway, 2003).  In addition to being able to describe 

the data well, the nonlinear growth curves used in this study were also 

biologically meaningful. 

6.10 Comparison of Results of Nonlinear Mixed Models and 

Fractional Polynomial Model.  

Conventional polynomial models can be used to approximate the nonlinear 

growth curves. However, the approximation can only be valid within the 

observed range of data. On the other hand, nonlinear models provide more 
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reliable predictions for the response variable outside the observed range of 

the data. The model parameters in nonlinear growth models generally have a 

natural physical interpretation. Nonlinear growth models generally use fewer 

parameters than the competitor linear model, such as a polynomial, giving a 

more parsimonious description of the data. The flexibility of these nonlinear 

models does not come without cost. Because the random effects are allowed 

to enter the model nonlinearly, the marginal likelihood function, obtained by 

integrating the joint density of the response and the random effects, with 

respect to the random effects, does not have a closed-form expression, as in 

the linear mixed effects model. This computation will be even more 

complicated when the effects of more than one covariate is introduced in the 

modelling process.  Consequently, an approximate likelihood function needs 

to be used for the estimation of the parameters, leading to more 

computationally intensive estimation algorithms and less reliable inference 

results (Pinheiro and Bates, 2000). The extended fractional polynomials are 

similar to conventional polynomials in that their time transformations are 

power functions, but the exponents are not restricted to integers and can be 

negative numbers and fractions. Moreover, they might be useful to model 

nonlinear growth trends with smooth curves.  Compared to nonlinear mixed 

models, fractional polynomials have less computational difficulty. The 

estimation of parameter and inference for fractional polynomials can be 

performed under linear mixed models framework with less computational 

difficulty. Some interesting features of fractional polynomials include 

parsimony, a wide variety of curve shapes for low order models, and the 

ability to approximate asymptotes (Long and Ryoo, 2010). Fractional 

polynomials are applied within the context of the linear mixed models as 

this model has a number of positives, such as the accommodation of 

missing data and parsimony of covariance structure (Fitzmaurice et al., 

2004, chap. 8).  In this thesis fractional polynomial and nonlinear mixed 

models are used.   
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A Loess smoothed curve was used to compare the fit of the fractional 

polynomial model (as a function of tree age and clone) with that of nonlinear 

mixed model.  Figures 6.25 to 6.27 compare the fractional polynomial model 

to the nonlinear model. By superimposing the Loess smoothed curve in each 

case, a comparison between the nonlinear models and fractional polynomial 

model was made. The fractional polynomial model fit is almost as close as 

the nonlinear growth curves to the Loess smoothed curve. This implies that 

the fractional polynomial model performs almost equally and even better for 

some parts of the data. This indicates that the fractional polynomial model 

offers a good fit to the data.  

 

 Figure 6.25 Plot of fitted three parameter logistic versus fractional 

polynomial model. 
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 Figure 6.26  Plot of asymptotic regression versus fractional polynomial 

model. 

 

 

Figure 6.27 Plot of Gompertz curve versus fractional polynomial model. 
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6.11 Summary  

Based on descriptive and graphical exploratory analysis, appropriate 

nonlinear growth functions were identified. The nonlinear growth curves 

were fitted to individual trees under consideration and the presence of 

random effects for each parameter of the (three parameter logistic, 

asymptotic regression and Gompertz) growth curves were assessed 

graphically. Following the graphical assessment, the selection of random 

effects was made by fitting different prospective models and comparing these 

nested models using likelihood ratio tests or information criterion statistics.  

These resulted in the significance of all three random effects for all growth 

curves.  Model validation graphs showed that the within-group errors were 

heteroscedastic in all three cases. The extended nonlinear mixed effects 

models with heteroscedastic, correlated within group error, were fitted for all 

three growth curves. The models with the heterogeneous variance that 

varies with tree age were found to be the best fitting models.  A comparison 

of the nonlinear model’s fit, to the fit of the fractional polynomial model was 

made. The Loess smoothing technique (Cleveland, 1979) was used to 

compare the nonlinear growth fit with the fractional polynomial model. It 

was found that the fractional polynomial model was almost as good as that 

of the nonlinear model in fitting the data. This indicates that the fractional 

polynomial is as competent as the nonlinear model.  This performance of 

fractional polynomials coupled with less computational difficulty suggests 

that they might be more useful when the objective is to model nonlinear 

growth. 

All the models considered from Chapter 3 to Chapter 6 are parametric 

models. All these models deal with only global effects. It may be interesting 

to consider more flexible models that reflect both global and local effects.  

Consequently, the application of the semi-parametric models is reviewed 

and discussed in Chapter 7.  
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Chapter 7 

Semi-Parametric Mixed Models 

7.1 Introduction 

Statistical methods like normal regression models, the logistic regression 

model for binary data and Cox’s proportional hazards model for survival 

data assume a linear, or some parametric form, for the covariate effects.  

However, in several applications, this assumption of linear dependence of 

the response on the predictors is not appropriate. In the last two chapters, 

we reviewed and fitted stem radius data using parametric regression 

methods for longitudinal data. These parametric models provide a powerful 

tool for modelling the relationship between the responses and the covariates. 

However, parametric models suffer from inflexibility in modelling 

complicated relationships between the responses and covariates. In 

parametric methods, the form of the underlying relationship must be known 

in advance except for the values of a finite number of parameters.  That 

means the relationship between the mean of the longitudinal response and 

the covariates is fully parametric.  

The main drawback of parametric modelling is that it may be too restrictive 

or limited for many practical cases. This limitation has motivated a demand 

for developing nonparametric regression methods for analysis of longitudinal 

data.   These methods can help to estimate a more flexible functional form 

between the responses and covariates from the data.   Consequently, 

complicated relationships between longitudinal responses and covariates 

can possibly be captured from the data.  The main idea behind the 

nonparametric approach is to let the data decide the most suitable form of 

the functions. According to Wu and Zhang, (2006), nonparametric and 

parametric regression methods should not be regarded as competitors, 

instead they complement each other.  In some situations, nonparametric 

techniques can be used to validate or suggest a parametric model.  A 
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combination of both nonparametric and parametric methods is more 

powerful than any single method in many practical applications.    

Although parametric models may be restrictive for some applications, 

nonparametric models may be too flexible to make concise conclusions in 

comparison with parsimonious parametric models.  Semi-parametric models 

are good compromises and retain nice features of both the parametric and 

non-parametric models (Fan and Li, 2004).   

 

Significant changes in non-parametric and semi-parametric regression 

methods for longitudinal data have taken place in the past 15 years. The 

presence of the within-subject correlation among repeated measures over 

time presents major challenges in developing kernel and spline smoothing 

methods for longitudinal data (Lin and Carroll, 2008). As a result, the 

extension of classical local likelihood based kernel methods and their 

natural local estimating equation fails to account for the within-subject 

correlation. This leads to the development of a non-local kernel estimator. 

Some advanced kernel and spline based methods for longitudinal data, have 

been developed recently. One such method is the extension of spline 

smoothing to longitudinal data.  This extension entails clearly accounting for 

the within-subject correlation in building the penalized likelihood function.   

In this thesis, the focus is on a class of splines referred to as penalized 

splines.  The motivation for focusing on penalized splines is: 

i) that penalized splines are direct extensions of linear models. 

ii) that they are closely connected with linear mixed models. 

iii) their mixed model representation makes their extension to the 

longitudinal setting relatively straightforward. 

Ruppert, Wand and Carroll (2003) described a very flexible semi-parametric 

regression approach using the linear mixed model representation of 

penalized splines. The generalized additive models (Hastie and Tibshirani, 

1986, 1990) are among those widely used nonparametric methods for 

independent data. The generalized additive models (GAM) can be 
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represented using penalized regression splines.  GAM models with 

continuous response are called additive models. Additive models replace the 

linear relationship between the response and covariates to a relationship 

between the response and sum of smooth functions of covariates.  

References on additive models or more generally on generalized additive 

models (GAM) are Hastie and Tibshirani, 1986; Keele, 2008; Faraway, 2006; 

Wood, 2006a; and Wood, 2011. The underlying assumption on GAM models 

is that the data are independent, which is not the case for longitudinal data.  

The extended form of GAM is called the generalized additive mixed mode 

(GAMM).  A GAMM model with a Gaussian response is called additive mixed 

model (AMM).  The aim of this chapter is to review AMM models and fit them 

to stem radius data. In order to develop a better understanding of AMM, a 

brief overview of generalized additive models (GAMs) for independent data is 

provided.     

7.2 Smoothing Functions  

To begin with the simplest smooth function, we considered a model 

containing one smooth function of  one covariate,   

)1.7()(
iii xfy ε+=      

Where iy   is a response variable,  ix   is a covariate, f   a smooth function 

and the  iε   are independent and identically distributed random variables 

with mean zero and constant variance.    

To estimate f  in the linear modelling context, it is necessary to choose a 

basis, defining the space of functions of which f (or a close approximate of 

it) is an element.   The function f  can be approximated by the linear 

combination of basis functions  )(xb j  as  
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)2.7()()(
1

j

q

j

j xbxf β∑
=

=  

for some unknown parameter jβ .   The issue of controlling the roughness or 

“Wiggliness” of the estimated function can be achieved by adding a 

“Wiggliness” penalty to the least squares fitting objective (Wood, 2006a).  

 

That means instead of fitting the model by minimizing      

( ) ( )ββ XYXY
T −− , the model is fitted by minimizing the 

following criteria. 

( ) ( ) [ ] )3.7()(
2
dxxfXYXY T ′′∫+−− λββ

 

The second part of equation (7.3) is a penalty and that is why the names 

penalized least squares and penalized smoothers are used.  It contains λ   

and an integral over the second derivatives. The smoothness of the curve is 

measured by the second derivative.  A high value of second derivative ( f ′′  ) 

means that the smoother f  is highly nonlinear, whereas a zero value of 

second derivative indicates a straight line or the perfect smooth curve.  The 

smoothing parameter,λ , controls the trade-off between  model fit and model 

smoothness.  For λ  close to  ∞  the minimization of (7.3) gives a linear fit 

and letting λ  close to zero gives un-penalized regression spline estimate. 

These considerations reveal that the choice of λ  plays a great role in the 

estimation.  

Since  f   is linear in the parameters, jβ ,  it can be shown that the penalty 

in (7.3) can be written as a quadratic form of  β  , 

[ ] ββ Sdxxf T=′′∫ 2)(  , 
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Where the matrix    dxxdxdS T∫= )()(  is   a matrix of known 

coefficients and      
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This leads us to the argument that penalized regression spline fitting 

problem is equivalent to minimizing  

)4.7()()( βλβββ SXYXY TT +−−
  

The degree of smoothness of the model is estimated by the parameter  .λ    

By rewriting (7.4) as  

βλβββ )(( SXXYXXYYY TTTTTT ++−−
 

and differentiating with respect to   β    and equating to zero, the penalized 

least square estimator of β  ( for a given   λ     ) can be obtained  as  

YXSXX TT 1)(ˆ −+= λβ
 

In principle,  λ  can be set by hand and the penalized likelihood 

maximization can be used to estimate the parameter, β.   It is also possible 

to choose  λ  in a data driven way.    Two basic approaches are useful: when 
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scale parameter is known attempting to minimize the expected mean square 

error leads to estimation by Mallow’s Cp/UBRE (Unbiased Risk Estimator ); 

when the scale parameter is unknown then attempting to minimize 

prediction error leads to  ordinary cross validation or  generalized cross 

validation (GCV) (Wood, 2006a).   Ruppert et al. (2003, Chap.5) deliberate on 

several procedures for choosing the smoothing parameter λ, and Wand 

(1999) derives a closed form approximation to the optimal value of   λ . 

Rupert and   Carroll (2000) consider spatially varying penalties and Ruppert 

(2002) provides recommendations for selecting the knots.  Long and Wand 

(2004) showed that smoothing methods that use basis function can be 

formulated as fits in mixed model framework.   

The other issue that needs discussion is the amount of smoothing for 

smoothing splines. 

If the model has two smoothers, say  

)5.7()()( 21 iiii ZfXfy ε++=  

then these two smoothers have the form    

( ) ji

p

j

ji xbxf β)(
1

1 ∑
=

=             ( ) ji

p

j

ji zbzf γ)(
1

2 ∑
=

=  

Using two smoothers in place of one smoother has an effect on the 

definitions of the Y  , X and β in equation  (7.4), but  the general form 

remains the same.  The optimization criterion with the penalty for the 

wiggliness becomes  

)6.7(.)()( 2211 ββλββλββ SSXYXY TTT ++−−
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This allows different amounts of wiggliness per smoothing spline. That 

means some smoothers can be smooth (large  jλ  ), whereas others may not 

be smooth (small   jλ ).  This indicates that the values of   sjλ   

determines the amount of smoothing. 

To get the jλ s, the objective in (7.6) can be written as   

)7.7()()( ββββ SXYXY TT +−−
 

by defining 2211 SSS λλ += .    

The amount of smoothing of a smoother is not expressed in terms of the jλ s  

but expressed as effective degrees of freedom for a smoother.  

A high value (8-10 or higher) means that the curve is highly nonlinear, 

whereas a smoother with 1 degree of freedom is a straight line.  Technically, 

the matrix   S , which depends on the sλ , is involved in determining the 

effective degrees of freedom (edf) and it mirrors the algebra underpinning 

linear regression ( Zuur et al, 2009) . 

7.3 Additive Models  

The additive model can be formulated by admitting the smooth function 

(7.1) in the classical linear regression model.   

( ) )8.7(),0(~; 2

1

* INxfXy
p

j

jj σεεα ++= ∑
=

   

Where  *X    is a model matrix for the parametric components of the model, 

α   is the corresponding parameter vector and the  ).(jf   
 is a smooth 

arbitrary function of a covariate jx ,  ε is the vector of random errors.  The 
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assumptions of the additive model are the same as the assumptions in the 

linear model except for the assumption of linearity.  These are  

(1) Homoscedasticity: The error variance is the same whatever is the 

value of the explanatory variable. 

(2) Normality:  The error is normally distributed 

(3) Independence:  The errors are uncorrelated. 

7.4 Additive Mixed Models:   

The inclusion of the random effects into the additive model gives us the 

additive mixed model.   

( ) )9.7(;
1

* εα +++= ∑
=

ZbxfXy
p

j

jj

 

.beffectsrandomformatrixdesigntheisZwhere
 

ε is a vector of random error which is independent of b and  

),0(~ RNε  

),0(~ θGNb .  Both    covariance matrices  θGandR  are 

positive definite. These matrices are also assumed to depend on a 

parsimonious set of covariance parameters.  

The additive mixed model (AMM) that is allowed to have non-normal 

response will be the generalized additive mixed model (GAMM). A GAMM has 

the following structure  

( ) )10.7(;)(
1

* εα +++= ∑
=

ZbxfXyG
p

j

jj  
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where G (.) is a monotonic differentiable function.    A GAMM represents the 

model with higher flexibility and complexity, where mixed effects, smooth 

terms and non-normal responses are included (Lin and Zhang, 1999). These 

models can be viewed as additive extensions of the generalized linear mixed 

models.  

7.5 Inference in Generalized Additive Mixed Models  

Statistical inference in generalized additive mixed models comprises 

estimations of the non-parametric functions (.)jf , the smoothing 

parameters, λ , and all the variance components. In the case of Gaussian 

response and identity link function, the estimation of non-parametric 

functions, smoothing and variance parameters in the context of GAMM is 

achieved using Restricted Maximum Likelihood (REML).  

For non-Gaussian response, PQL (Penalized Quasi Likelihood) (Breslow and 

Clayton, 1993) and DPQL (Double Penalized Quasi Likelihood) are used to 

estimate the parameters and non-parametric function (Lin and Zhang, 

1999).    Both PQL and DPQL take their origin from maximum likelihood 

(ML) technique. The ML has direct application only in fixed models with 

Gaussian response.  The maximum likelihood approach is also used in 

linear mixed models; however the maximum likelihood estimators (MLE) of 

variance are, in general, biased.  First ML and REML estimation methods of 

linear mixed models are briefly introduced.  Following the introduction of ML 

and REML the PQL methodology, which can be used to estimate GAMM 

parameters for non-normal response, is presented.   

Maximum Likelihood Estimation (MLE)  

Consider the following Gaussian model 

   .εα ++= ZbXy  
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The distribution of the response  

).11.7(),(~ ZGZRVwithVXNy T

θα +=
   

The log-likelihood is given by  

( ) ( ) ( ) )12.7(
2

1
)log(

2

1
,; 1 ααθα XyVXyVcyl T −−−−= −

 where c is  a constant and θ  is the vector  of variance components involved 

in  V  .  

The partial derivative of  ),;( θαyl  with respect to the parameters, θ and   α  

can be obtained   
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where  
rθ  is  the r-th  component  of θ  of dimension  q . Assuming that α  

has dimension p  and    pXrank =)( , then the MLE is obtained by solving 

equations (7.13) and (7.14).  The MLE of α  is   

( ) )15.7(ˆˆˆ 1
1

1 yVXXVX TT −−−=α
 

This requires the estimation of  V  and of its components  θ  .   The 

estimate,  V̂  is obtained by solving  

  

)16.7()( 1

rr

T V
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V
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where     .)(
1111 1 −−−− −

−= VXXVXXVVP
TT   Then  α̂  is obtained by plugging   

V̂  into equation (7.15). 

Restricted Maximum Likelihood Estimation (REML)  

The maximum likelihood estimates of the variance components are biased. 

In contrast to the ML estimation method, REML can produce unbiased 

estimates of variance components.  The REML estimation procedure applies 

transformation to the data to eliminate the fixed effects, and then uses the 

transformed data to estimate the variance components.   

Assume  pXrank =)(   and let A be and   )( pnn −×  matrix   such that   

pnArank −=)( .   Then, define  yAz T=   where ),0( VAANz T∈ . It follows that 

the log-likelihood based on z , that is the restricted log-likelihood, is given 

by  

( ) ( ) )17.7()(
2

1
log

2

1
; zVAAzVAAczl TTT

R −−=θ

 

By differentiating the ),( θzl R , one obtains in terms of  y  
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where   ....,1)( 1 qiandAVAAAP TT == −
Although the 

REML estimator  is defined through a transformation matrix A ,  it does not 

depend on .A That means the estimator does not depend on the 

transformation matrix.  The restricted log-likelihood function (7.17) is a 

function of θ  only, which means the REML method is a method of 

estimating θ  and not ,α   since the fixed term α  is removed before the 

estimation. However, once the REML estimator of θ  is obtained, α   is 
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usually estimated in the same way as the ML, that is, by equation (7.15)  

where    )ˆ(θVV =  with  θ̂  being the REML estimator (Valeria, 2011).  

Both ML and REML are based on the assumption that the response is 

normally distributed. The assumption of normality is often easily violated in 

practice making the likelihood inference difficult. In the absence of the 

random effects and errors distributions, the likelihood function cannot be 

available.  Even in the presence of non-normal distributions of the random 

effects and errors with some unknown parameters, the likelihood function 

can involve quite formidable difficulty in calculation and may not have an 

analytic appearance.   Moreover, the distributional assumptions for any 

non-normal distribution may not hold in practice. These problems have led 

to the attention of methods other than maximum likelihood. One such 

method is the quasi-likelihood also known as Gaussian likelihood approach. 

The computational difficulty of the maximum likelihood method can be 

avoided by using quasi-likelihood.  The REML estimates can be derived from 

a quasi-likelihood ( Heyde, 1994).  Therefore, the Gaussian REML estimation 

can be considered as a method of quasi-likelihood.   

Laplace approximation  

When the exact likelihood function is computationally intractable, there are 

no simple solutions to get the parameter estimates. One possible option is to 

use numerical integration techniques.  Some of these are Gaussian 

quadrature, numerical integration like Markov chain, Monte Carlo 

algorithms, stochastic approximations algorithms and penalized quasi-

likelihood (Zuur et al., 2009). Penalized likelihood estimation has been 

proposed as a computationally simple alternative to methods based on 

numerical quadrature, especially when the number of random effects is 

relatively large (Fitzmaurice et al., 2004). The key concept in quasi-likelihood 

is Laplace’s approximation which is described below. 

Suppose it is necessary to approximate an integral of the form, 



210 

 

}{ )19.7(exp )( dxxq∫ −  

 where (.)q achieves its minimum value at   xx ~= with  0)~( =′ xq  and

0)~( >′′ xq .  

The quantities  q ′   and q ′′   denote the gradient (that is the vector of 

derivatives) and Hessian (that is the matrix of second derivatives) of q , 

respectively.  Then we have  

}{ }{ )20.7(exp)~(exp )~(
2

1
)( xqxq xqcdx −

−
− ′′≈∫  

where c is a constant depending only on the dimension of the integral and  

)~( xq ′′   denotes the determinant of the Hessian. 

Penalized Quasi-likelihood Estimation  

By employing Laplace approximation, an approximated maximum likelihood 

can be obtained instead of the exact likelihood.  Such approximated 

likelihood is called Penalized Quasi-Likelihood (PQL). Penalized Likelihood is 

essential in the case non-normal models.   Following the estimation 

procedure by Lin and Zhang (1999), Valeria (2011) gave the following 

discussion.  According to Lin and Zhang (1999), for a given λ  and θ , the 

spline estimator of (.)jf  maximizes the following penalized log-quasi-

likelihood 
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where   ( )n

jj tt 0  defines the range of the  
thj   covariate and  jK  is the non-

negative definite penalty matrix of  jf (see Green and Silverman (1994)).  
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Differentiating equation (7.21) with respect to  ,α  smoothing functions and b 

respectively, yields to a system of equations that can be solved by Fisher 

scoring algorithm with working vectors of response and estimated (centred) 

smooth functions.  Lin and Zhang (1999) proposed an alternative to (7.21), 

since it still requires numerical integration, the DPQL approximation (see 

Lin and Zhang (1999)) for more details.  

These estimators can be obtained by iteratively fitting a working generalized 

linear mixed model (GLMM) to an updated response.  The basic idea of this 

approach is to re-parameterize a GAMM as GLMM. In fact, the GAMM in 

(7.10) can be reformulated as a GLMM as follows (Valeria, 2011): 

)22.7()( ZbUaXG b ++= βµ  

This is achieved by assuming that the smooth function estimation can be 

split into fixed and random components.  That means we have 

jjjjj aUXf += β , where  jβ  represents the fixed effects while  ja  stands for 

the random effects.  In particular if  kB  is a set of spline bases with k=1, 

2…r, then the model is specified by ( )
2,1==

kKBX  and U , such  a 

transformed matrix of remaining base matrix  ( )
rkkBB ≤≤=

3 . 

But the estimation of smoothing functions, (.)f , needs the previous 

estimation of λ  and θ .  

The smoothing parameters, λ , and the variance components, θ , can be 

jointly estimated by using the marginal quasi-likelihood by extending the 

REML approach of Wahba (1985). They can be obtained by fitting a working 

linear mixed model (LMM) and REML, with 










=

pλλ
τ

1
...

1

1

treated as extra–variance components in addition to θ . Then the GLMM can 

be fitted iteratively. Hence a marginal quasi-likelihood of
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),;(),,( θτθτ yPQl m , can be constructed (eq. 21 in Lin and Zhang 

(1999)). The ml  reduces to REML under AMM (Valeria, 2011).  

Equation (21) in Lin and Zhang (1999) sometimes has serious numerical 

problems and it must be approximated using methods like Laplace’s 

approximation.  This approximation corresponds to the REML log-likelihood 

under LMM   

)23.7(ZbUaXb ++= βµ   

where a and b are random effects. It follows that τ   and  θ  can be easily 

estimated by iteratively fitting model (7.23) using REML.  After estimating  τ  

and θ , it is possible to use the Best linear unbiased prediction (BLUP) 

estimators of  jβ  and ja  to construct approximate spline estimators jf̂    by 

PQL (or DPQL) (Valeria, 2011). 

7.6 The Software for GAMM 

Although several R packages (R core team, 2013) are developed to fit GAMM, 

the most versatile that can handle modelling the correlation structure is the 

package mgcv (Wood, 2006b). This uses the nlme implementation of 

nonlinear mixed models.  It also fits non-Gaussian responses by calling 

MASS’s generalized linear mixed model penalized quasi-likelihood 

(glmmPQL).  The main advantage of this package is that it is possible to 

include serial and/or spatial correlation structures of the random effects. 

The package mgcv (Wood, 2006b) is used to fit the additive mixed models.  
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7.7 Results of Fitting AMM Using One Covariate at a Time to 

Stem Radius Data 

At the beginning the AMM that involves only tree age as an explanatory 

variable is considered.  The estimated smoothed curve together with its 95% 

confidence interval is shown in Figure 7.1.  

 

Figure 7.1   Estimated smoothing curve for the simplest AMM model (the 

solid line is the smoother and the dotted lines are 95% confidence intervals). 

The plot of the tree age effect (Figure 7.1) indicates that the relationship 

between stem radius and tree age is nonlinear. Moreover, the estimated 

effective degree of freedom is 7.3 confirming the non-linearity of the 

relationship.  

The non-linearity was tested using a formal test by comparing a model 

specifying the smooth term with a model specifying a linear trend.  The 

difference between the two models (linear trend versus smooth terms) is 
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statistically significant (p-value less than 0.0001). Similar results are 

obtained for other covariates (refer to Table 7.1).   

 In Table 7.1, each individual covariate is separately considered as an 

explanatory variable. The results of this table indicate that all covariates 

have a nonlinear relationship with the stem radius.  The plots that indicate 

the relationship of the stem radius with each of the covariates are also 

shown from Figure 7.1 to Figure 7.6.  In each of these plots the stem radius 

is expressed in mean deviation form, the smooth terms ( )( jj xs , where   jx   

stands for each covariate) is centred and hence each plot represents how 

stem radius change relative to its mean, with change in covariate under 

consideration.  The interpretation of the scale of the graphs is as follows: 

The value of zero on the vertical axis is the mean of stem radius. As the line 

moves away from zero in a negative direction we subtract the distance from 

the mean to determine the fitted value. If the line moves in a positive 

direction, we add the similar distance. For instance, in order to get the fitted 

value for radius (using  Figure 7.1) when tree’s age is 46 weeks we need to 

add the mean radius (16240.27) and a value of the smooth when age is 46 

weeks ( -10000) which will give us  6240.27 (micro metres). The fitted value 

will be around 21240 micro metres when the tree age is about 90 weeks. 
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Table 7. 1 Comparison of models with linear trend and models with smooth 

terms 

Variable  Model  Degree of 

freedom 

Log-

Likelihood 

Likelihood 

.ratio test 

statistic 

P-value Effective  

Degree of  

Freedom 

(edf) 

Tree age Linear 

trend  

4 -11363.66    

Smooth 

term 

5 -10866.56 994.21 <.0001 7.34 

Temperature  Linear  

trend 

4 -12751.85    

Smooth 

term  

5 -12663.37 176.94 <.0001 8.64 

Rainfall  Linear 

trend 

4 -12761.92    

Smooth 

term 

5 -12680.62 162.59 <.0001 7.78 

Relative 

Humidity  

Linear 

trend  

4 -12587.87    

Smooth  

term 

5 -12577.78 20.17 <.0001 8.22 

Solar 

radiation  

Linear 

trend  

4 -12723.05    

Smooth  

term 

5 -12719.06 7.98 0.0047 4.4 

Wind speed Linear 

trend 

4 -12706.21    

Smooth 

term  

5 -12622.40 167.63 <.0001 7.80 
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Figure 7.2   Estimated smoothing curve for the simplest GAMM model 

that uses only temperature as an explanatory variable (the solid line is 

the smoother and the dotted lines are 95% confidence intervals). 
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Figure 7. 3  Estimated smoothing curve for the simplest GAMM model that 

uses only rainfall as an explanatory variable (the solid line is the smoother 

and the dotted lines are 95% confidence intervals). 
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Figure 7. 4   Estimated smoothing curve for the simplest GAMM model that 

uses only relative humidity as an explanatory variable (the solid line is the 

smoother and the dotted lines are 95% confidence intervals). 
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Figure 7. 5    Estimated smoothing curve for the simple GAMM model that 

uses only solar radiation as an explanatory variable (the solid line is the 

smoother and the dotted lines are 95% confidence intervals). 
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Figure 7. 6    Estimated smoothing curve for the simple GAMM model that 

uses only wind speed as an explanatory variable (the solid line is the 

smoother and the dotted lines are 95% confidence intervals). 

7.8   Modelling The Effect of Tree Age for Each Clone 
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age on stem radius.  The model with clone added is better judged by 

likelihood ratio test statistics (255.7, df=2 and P value < 0.0001).  Therefore, 

a model with one smoother per clone is preferable to the model with one 

smoother for both clones. The results of the fitted additive mixed model with 

two different smoothers (one per clone) are presented on Figure 7. 7 and 

Table 7.2.  
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Figure 7. 7    Estimated smoothing curve for the GAMM model that uses tree 

age by clone as an explanatory variable (the solid line is the smoother and 

the dashed lines are 95% Bayesian credible intervals). 

The effect of tree age is estimated as smooth curves with 6.806 and 6.954 

effective degrees of freedom for GU and GC clones respectively. The p-values 

for both smoothed terms is very small (p-value < 2e-16) and very large value 

of F (see table 7. 2). This indicates that the relationship between tree age 

and stem radius remains nonlinear after adding the clone to the model.  The 

adjusted 2R (more or less the square of the correlation coefficient between 

observed and fitted values) is 0.821.  This indicates that there is a strong 

relationship between observed and fitted values of the model.   
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Table 7.  2 The fitted additive mixed model with one smoother of tree age per 

clone (Maximum likelihood estimates) 

Parametric 

coefficients  

Estimate Standard error t-value p-value 

Intercept  16240.3 671.6 24.18 < 2e-16 *** 

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(Age, clone=GU) 6.806 6.806 2925 <2e-16 *** 

s(Age, clone=GC)   6.954 6.954 1951 <2e-16 *** 

R-sq.(adj) =  0.821     

“*** ” indicates significance at 0.0001 

 

Figure 7.8   Model validation graphs for the additive mixed model that has 

two smooth curves of tree age (one per clone). 
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value shows that there is a strong linear relationship between the observed 

response and the fitted value.  Before fitting more complicated models (e.g. 

additive mixed models with more complex covariance structure), an attempt 

to extend the current model with the effect of more than one covariate was 

made.  

7.9 Modelling The Effect of Tree Age by Season and Clone  

An attempt to fit eight smoothers (one for each clone and season 

combination) was not successful due to numerical problems encountered.  

Instead a model with four smoothers for each clone is fitted after separating 

the data into two, namely the data for GU and the data GC clone.  

 

Figure 7. 9   Estimated smoothing curves and 95% confidence bands for the 

GAMM model that uses tree age by season for GU clone. 
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Table 7.3  The fitted additive mixed model with four different smoothers of 

tree age (one per season) for the GU clone (Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  17563 1073 16.37 < 2e-16 *** 

     

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(Age, season = summer) 2.162 2.162 103.45 <2e-16 *** 

s(Age,  season = Autumn) 3.541 3.541 2469.08 <2e-16 *** 

s(Age,  season =    Winter) 3.286 3.286 1343.93 <2e-16 *** 

s(Age,  season = Spring) 2.183 2.183 53.16 <2e-16 *** 

R-sq.(adj) =  0.818     

The smoothers for all seasons have very small (p-value < 2e-16) and the 

values of the test statistic F are very large. This indicates the relationship 

between tree age and stem radius appears to be nonlinear for all seasons 

with a slight variation in the values of effective degrees of freedom (edf) 

(Table 7.3).   

For GC clone, the smoothers for all seasons are significant (p-value < 2e-16) 

(see Table 7.4). This shows that the two clones grow in a similar manner 

which means, in both cases, the relationship between tree age and stem 

radius is nonlinear.  
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Table 7.  4 The fitted additive mixed model with four different smoothers of 

tree age (one per season) for the GC clone (Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard error t-value p-value 

Intercept  15101.9 641.1 23.55 < 2e-16 *** 

     

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(Age, season = summer) 2.086 2.086 79.98 <2e-16 *** 

s(Age,  season = Autumn) 3.888 3.888 3150.49 <2e-16 *** 

s(Age,  season =    Winter) 3.886 3.886 1715.73 <2e-16 *** 

s(Age,  season = Spring) 2.092 2.092 48.44 <2e-16 *** 

R-sq.(adj) =  0.899  

 

Figure 7. 10  Estimated smoothing curves and 95% confidence bands for the 

AMM model that uses tree age by season for the GC clone. 
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7.10 Modelling The Effect of Tree Age by Including the 

Interaction of Season and Clone in The Parametric Part of 

The Model   

An attempt to fit the model with four smoothers of age (one for each season) 

was made by including the interaction between clone and season on the 

parametric part of the additive mixed model.   The results of the model fit 

show that all parametric coefficients and the smooth terms are significant.  

For summer and spring the smoothers have an effective degree of freedom 

equal to one, essentially fitting a straight line (Table 7.5).   This shows the 

relationship between stem radius and tree age is linear in summer and 

spring by taking into account the parametric effect of clone and season.  

Figure 7.10 also confirms that the type of relationship between stem radius 

and tree age depends on season.   

The upper left and the lower right panels of Figure 7.10 show the 

relationship between tree age and stem radius in summer and spring 

respectively. From the plot it appears the relationship is linear.  The upper 

right and the lower left panels of Figure 7.10 show the relationship between 

tree age and stem radius in autumn and winter respectively. It appears that 

the relationship is clearly nonlinear for autumn and winter.  A similar 

model, but without the interaction effect of clone and season in the 

parametric part is fitted for comparison with the current model under 

consideration.  The likelihood ratio test statistic shows the model with 

interaction is better (the value of test statistic is 43.91 with 3 degrees of 

freedom and p-value =<0.0001).  Therefore, we cannot further simplify the 

model whose output is presented in Table 7.5.  
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Table 7. 5 The fitted additive mixed model with four different smoothers of 

tree age ( one per season) with the interaction between season and clone 

included in parameteric part ( Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  20338.8 868.0 23.43 < 2e-16 *** 

Clone(GC) -3796.9  1194.7 -3.18 0.001519 ** 

Season(Autumn) -3291.7 407.9 -8.07 1.66e-15 *** 

Season(Winter) -2722.6  468.3 -5.81 7.81e-09 *** 

Season(Spring) -652.4 299.9 -2.18 0.029816 * 

Clone(GC) ×  Season(Autumn) 1478.2 233.2 6.34 3.25e-10 *** 

Clone(GC)  ×  Season(Winter) 1327.5 239.4 5.54 3.61e-08 *** 

Clone(GC)  ×  Season(Spring) 1025.0 263.6 3.89 0.000106 *** 

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(Age, season = Summer) 1 1 70 <2e-16 *** 

s(Age,  season = Autumn) 3.321  3.321  4823.6 <2e-16 *** 

s(Age,  season =    Winter) 3.307 3.307 2559.2 <2e-16 *** 

s(Age,  season = Spring) 1 1 175.4 <2e-16 *** 

R-sq.( adj) =  0. 85     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 7.11 Estimated smoothing curves and 95% confidence bands for the 

GAMM model that uses four smoothers of tree age and includes the 

interaction of season by clone in the parametric part. 
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was not significant. Moreover, the likelihood ratio test comparing the model 

with interaction and the model without interaction term in the parametric 

part of the model is 3.09 with p-value =0.38. Therefore, a model without the 

interaction effect of clone and season on the parametric part of the additive 

mixed model is fitted. The results for the effect of temperature show that 

there is a nonlinear relationship between stem radius and temperature in 

autumn and winter. The smoothers for the effect of temperature appear 

linear in summer and spring. Moreover, the effect of temperature is not 

significant in either summer (p-value=0.904) or spring (p-value =0.30633).  

The adjusted R-square ( 358.02 =R ) also shows that the effect of temperature 

on stem radius is not as strong as the effect of tree age (Tables 7.5 & 7.6). 

Figure 7.11 shows the estimated smoothers for temperature by season.  The 

temperature smoothers in summer and spring form a horizontal band 

around zero. This indicates that the effect of temperature on stem radius is 

not significant for the two seasons. On the other hand the temperature 

smoothers for autumn and winter show that there is a nonlinear 

relationship between stem radius and temperature. Both the parametric 

coefficients and non-parametric approximate smooth terms are significant in 

autumn (Table 7.6). 
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Table 7. 6 Parameter estimates of the additive mixed model with four 

different smoothers of temperature ( one per season )  with season and clone 

included in parameteric part (Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  21694 2007 10.807 < 2e-16 *** 

Clone(GC) -2726 1183 -2.305 0.0213 *  

Season(Autumn) -5498  2698 -2.037   0.0418 *  

Season(Winter) -8074 9242 -0.874 0.38250 

Season(Spring) -3963 1878 -2.11 0.0351 * 

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(temperature, season = Summer) 1 1 0.014        0.9040 

s(temperature,  season = Autumn) 8.222 8.222 59.39 < 2e-16 *** 

s(temperature,  season =   Winter) 5.02 5.02 16.68 4.91e-16 *** 

s(temperature,  season = Spring) 1.000 1.000 1.66 0.198 

R-sq.(adj) =  0.358     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 7. 12  Estimated smoothing curves and 95% confidence bands for the 

GAMM model that uses four smoothers of temperature with season and 

clone in the parametric part. 
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7.12 Model for The Effect of Rainfall by Including Clone and 

Season in Parametric Part of The Model  

Additive mixed model (AMM) with four smoothers of rainfall (one for each 

season) is fitted by including the interaction between clone and season in 

the parametric part.  However, the interaction between season and clone 

was not significant.  Moreover, the likelihood ratio test comparing the model 

with interaction and the model without an interaction term in the 

parametric part of the model is 2.74 with p-value =0.43. Therefore, a model 

without the interaction effect of clone and season on the parametric part of 

the additive mixed model is selected as a better model. The estimates of the 

parametric coefficients show there is significant difference between the two 

clones.   The effective degree of freedom of the smooth terms for both 

summer (p-value = 0.575) and spring (p-value =0.895) are not significant.  

The smooth terms for autumn (edf=4.638, p-value = <2e-16) and winter 

(edf=   7.37, p-value =<2e-16) are significant.  The parametric part of the 

model shows that the coefficients for winter and spring are significant.  This 

shows that the relationship between rainfall and stem radius is nonlinear in 

autumn and winter.  
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Table 7. 7  Parameter estimates of the additive mixed model with four 

different smoothers of rainfall (one per season) with the effects of season and 

clone included in parameteric part ( Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  21462.1  902.7 23.8 < 2e-16 *** 

Clone(GC) -2726.3 1182.7 -2.3 0.02130 *  

Season(Autumn) -6436.6 5814.2 -1.1 0.268500    

Season(Winter) -3737.6 508.1 -7.4 3.45e-13 *** 

Season(Spring) -3454.9   535.2 -6.5 1.56e-10 *** 

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(rainfall, season = Summer) 1 1 0.30   0.575000  

s(rainfall,  season = Autumn) 4.64 4.64 39.40 < 2e-16 *** 

s(rainfall,  season =   Winter) 7.37 7.37 24.10 <2e-16 *** 

s(rainfall,  season = Spring) 1.00 1.00      0.02 0.895000 

R-sq.(adj) =  0.291     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

7.13 Model for The Smoothed Effect of Relative Humidity by 

Including The Effect of Clone and Season in Parametric Part 

of The Model  

The AMM with four smoothers (one per season) for relative humidity 

including the interaction between season and clone in the parametric part is 

fitted. The likelihood ratio statistics that compare this model with a model 

without interaction, favours the model without interaction (p-value = 0.132).    

Relative humidity smoothers for autumn (edf=8.458) and winter (edf= 8.586) 

are also significant (Table 7.8).  Relative humidity smoothers for summer 

(edf=1) and spring (edf=1) are not significant.  The adjusted 2R   for this 
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model is 0.593 which is larger than the adjusted 2R   when either 

temperature or rainfall is used in the model (see Tables 7.6, 7.7 and 7. 8).  

Table 7. 8 Parameter estimates of the additive mixed model with four 

different smoothers of relative humidity (one per season) with the effects of 

season and clone included in parameteric part (Maximum likelihood 

estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  21510.0 869.3 24.74 < 2e-16 *** 

Clone(GC) -2726.3 1182.4 -2.31 0.0213 * 

Season(Autumn) -5744.6 506.4 -11.34 < 2e-16 *** 

Season(Winter)   -4197.1 877.2 -4.78 1.9e-06 *** 

Season(Spring) -3494.8 412.5 -8.47 < 2e-16 *** 

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(relative humidity, season = 

Summer) 

1.000 1.000 1.98 0.159000  

s(relative humidity,  season = 

Autumn) 

8.458 8.458 170.25 <2e-16 *** 

s(relative humidity,  season =    

Winter) 

8.586 8.586 55.80 <2e-16 *** 

s(relative humidity,  season = 

Spring) 

1 1 0.000 0.995000 

R-sq.(adj) =  0.593     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.14 Model for The Effect of Smoothed Solar Radiation by 

Including The Effects of Clone and Season in Parametric Part 

of The Model  

The additive mixed model with four smoothers for solar radiation (one per 

season) that includes the effect of clone and season on the parametric part 

is fitted.  

The likelihood ratio statistics that compare the model without interaction 

with the model that includes the interaction of season and clone in 

parametric part, favours the model without interaction (p-value= 0.4929).  

The smoothed solar radiation for summer (edf=1) and spring (edf=1) appear 

to be linear and it is not significant (p-values =0.6 and 0.131 respectively for 

summer and spring).  

The smoothed solar radiation for autumn (edf=7.81) shows that the 

relationship between stem radius and solar radiation is nonlinear.  All the 

parametric coefficients of this model are significant (Table 7.9.)   
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Table 7. 9 Parameter estimates of the additive model with four different 

smoothers of solar radiation (one per season) with season and clone 

included in parameteric part (Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  21992 1339 16.43 < 2e-16 *** 

Clone(GC) -2726 1185 -2.30 0.02156700 * 

Season(Autumn) -114244   33710 -3.39 0.000724 *** 

Season(Winter) -5984   1688 -3.54 0.000409 *** 

Season(Spring) -4497 1183 -3.80 0.000151 *** 

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(solar radiation, season = 

Summer) 

1.00 1.00 0.28 0.600000  

s(solar radiation,  season = 

Autumn) 

7.81  7.81  18.77 < 2e-16 *** 

s(solar radiation,  season =   

Winter) 

2.14 2.14 1.95 0.138000 

s(solar radiation,  season = 

Spring) 

1.00 1.00 2.29 0.131000  

R-sq.(adj) =  0.291     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

  



237 

 

7.15 Model for The Smoothed Effect of Wind Speed by 

Including Clone and Season in Parametric Part of The Model  

The additive mixed model with four smoothers for wind speed (one per 

season) that includes the effects of clone and season on the parametric part 

is fitted.  A likelihood ratio test is used to test for the presence of interaction 

between the clone and season in the parametric part of the model.  The test 

favours the model without interaction (p-value=0 .3434). The smoothed wind 

speed for summer (edf=1) and spring (edf=1) appears to be linear and it is 

not significant (p-values = 0.0826 and 0.3162 respectively for summer and 

spring). The smoothed wind speed for autumn (edf= 2.498) shows that the 

relationship between stem radius and wind speed is nonlinear.  The 

smoothed wind speed for the winter season (edf= 7.637) shows that the 

relationship between stem radius and wind speed is nonlinear (p-value= 

<2e-16). The parametric coefficients for spring is highly significant with a 

small p-value = 5.1e-09   (Table 7. 10). 
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Table 7.10 Parameter estimates of the AMM with four different smoothers of 

wind speed ( one per season ) with season and clone included in parameteric 

part (Maximum likelihood estimates ). 

 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  22121.9 965.6 22.91 < 2e-16 *** 

Clone(GC) -2726.3     1183.6 -2.30 0.02140 * 

Season(Autumn) -1782.9 946.9 -1.88 0.060000 

Season(Winter) -1831.8 2395.2 -0.77   0.444600 

Season(Spring) -4598.9 781.2 -5.89 5.1e-09 *** 

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(solar radiation, season = 

Summer) 

1.00 1.00 3.02 0.082600 

s(solar radiation,  season = 

Autumn) 

2.50 2.50 104.36 < 2e-16 *** 

s(solar radiation,  season =   

Winter) 

7.64 7.64 49.37 <2e-16 *** 

s(solar radiation,  season = 

Spring) 

1.00 1.00 1.01 0.316200 

R-sq.(adj) =  0.291     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.16 AMM Fitted with The Smoothers Tree Age and 

Temperature  

In the previous sections we applied a series of additive mixed models on 

stem radius for various covariates separately. Tests for the presence of 

interaction between clone and season were made for different models 

considered.  It was observed that the smoothers for tree age and each 

climatic variable also depend on season.  The analysis made so far may help 

to see the effect of individual covariates on stem radius. In order to see the 

effect of more than one covariate on stem radius, it is essential to fit models 

that involve the smoothers for two or more covariates. This demands the 

application of model selection procedures. It is known that model selection 

with mixed models is complicated by the presence of fixed effects and 

random effects. The fixed effect structure and the random effect structure 

are dependent on each other and the selection of one affects the other.  

There are two strategies that are commonly used in a model selection 

process. These are the top-down strategy (Diggle et al., 2002) and the step-

up strategy (West et al., 2006).   In the step-up strategy one starts with a 

limited model (e.g., few fixed and random effects) and then additional fixed 

effects and random effects are added based on statistical tests.  In the top-

down procedure, the initial model has one random intercept but with a 

model where the fixed component contains all explanatory variables and as 

many interactions as possible. This is called the beyond optimal model. 

Using the beyond optimal model, one can find the optimal component of the 

random component (Zuur et al., 2009).  The beyond optimal model is 

sometimes unrealistic due to a large number of explanatory variables, 

interactions or numerical problems. In this thesis we followed the step-up 

approach. 

Both tree age and temperature were smoothed to see their effect on stem 

radius.  The smoothed temperature for all four seasons is not significant 

(Table 7.11).  It appears in the presence of the smoothed tree age effect in 

the model, the smoothed effect of temperature is not significant. An attempt 



240 

 

to include temperature with one smoother for all four seasons in the model 

also shows that the smoothed temperature is not significant (edf=1, p-

value=0.76).  Instead of using temperature as a smoothed component of the 

AMM, an attempt to use temperature in the parametric part of the AMM was 

made. A likelihood ratio test was applied by including the interaction of 

temperature with season and the interaction of temperature with clone in 

the parametric part of the additive mixed model. In both cases the 

interaction effect of temperature is not significant (p-value = 0.8 and 0.9 for 

the interaction with clone and season respectively). A  likelihood ratio test 

was applied by including temperature  in  the parametric part of the additive 

mixed model, the result shows  that temperature  is not important in 

explaining stem radial growth in the presence of the smoother for  tree age 

in the model  (p-value =  0.75). 
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Table 7. 11 Parameter estimates of the additive mixed model with four 

different smoothers of age and temperature (one per season in each case) 

with the interaction between season and clone included in parameteric part 

(Maximum liklihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  20365.0 993.3 20.50 0.0001 *** 

Clone(GC) -3796.9 1194.7 -3.18 0.002 ** 

Season(Autumn) -3309.2 635.1 -5.21 0.0001 *** 

Season(Winter) -2506.5   692.6 -3.62 0.0004 *** 

Season(Spring)   -627.9   580.5 -1.08 0.279611   

Clone(GC)  ×  Season(Autumn) 1478.2 233.2 6.34 0.0001 *** 

Clone(GC)  ×  Season(Winter ) 1327.5 239.5 5.54 0.0001 *** 

Clone(GC)  ×  Season(Spring) 1025.0 263.6 3.89 0.0001 *** 

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(Age, season = Summer) 1.000 1.000 70.38 0.0001 *** 

s(Age,  season = Autumn) 3.064 3.064 5081.76 0.0001 *** 

s(Age,  season =   Winter) 2.999 2.999 2778.96 0.0001 *** 

s(Age,  season = Spring) 1.000 1.000 151.69 0.0001 *** 

s(Temperature, season = Summer) 1.000 1.000 0.003  0.957    

s(Temperature,  season = Autumn) 1.000 1.000 0.086 0.770   

s(Temperature,  season =   Winter) 1.000 1.000 1.012 0.315  

s(Temperature,  season = Spring) 1.000 1.000 0.186 0.666 

R-sq.(adj) =  0.848     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.17 AMM Fitted with The Smoothers of Tree Age and 

Rainfall 

The additive mixed model (AMM) fitted using smoothed tree age and rainfall 

shows that the smoothed rainfall is not significant (Table 7.12) for all 

seasons.  The AMM that uses four smoothers of tree age and one smoother 

for rainfall also shows that the smoothed rainfall is not significant (p-value= 

0.508).  The likelihood ratio tests used to compare a model without any 

effect of rainfall with the models that have the interaction of rainfall with 

clone or season show that the interaction of rainfall is not significant (p-

value = 0.8036 and 0.7495 for the interaction with clone and season 

respectively). A likelihood ratio test was also applied by including rainfall 

without any interaction in the parametric part of the additive mixed model. 

The result shows that there is not enough evidence from this data to show 

the importance of rainfall (p-value = 0.9492) in the presence of tree age in 

the model. 
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Table 7.  12 Parameter estimates of the additive mixed model with four 

different smoothers of age and rainfall (one per season in each case) with the 

interaction between season and clone incuded in parameteric part 

(Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept  20319.1 869.8 23.36 < 2e-16 *** 

Clone(GC) -3796.9 1194.7 -3.18 0.001520 ** 

Season(Autumn) -3265.1 413.6 -7.89 6.43e-15 *** 

Season(Winter) -2691.8 459.8 -5.86 6.14e-09 *** 

Season(Spring) -636.5 305.7 2.08 0.037528 *  

Clone(GC)  ×  Season(Autumn) 1478.2 233.1  6.34 3.22e-10 *** 

Clone(GC)  ×  Season(Winter ) 1327.5    239.4 5.55 3.59e-08 *** 

Clone(GC)  ×  Season(Spring) 1025.0  263.5 3.89 0.000106 *** 

Approximate significance of smooth terms 

 Edf Ref. df F-value p-value 

s(Age, season = Summer) 1.000 1.000 65.63 1.24e-15 *** 

s(Age,  season = Autumn) 3.26 3.26 4899.16 < 2e-16 *** 

s(Age,  season =   Winter) 3.23 3.23 2574.142 < 2e-16 *** 

s(Age,  season = Spring) 1.000 1.000 175.30 < 2e-16 *** 

s(rainfall, season = Summer) 1.000 1.000 0.119 0.7300000   

s(rainfall,  season = Autumn) 1.000 1.000    0.049  0.8250000 

s(rainfall,  season =   Winter) 1.000 1.000 0.797   0.3720000   

s(rainfall,  season = Spring) 1.000 1.000 0.061 0.8040000 

R-sq.(adj) =  0.848     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.18 AMM Fitted with The smoothers of Tree Age and 

Relative Humidity 

The additive mixed model fitted using smoothed tree age and relative 

humidity by season  shows that all the smoothed terms are linear (with 

edf=1). The smoothed relative humidity in winter is significant (p-value 

=0.047).  Smoothers of relative humidity for the rest of the season are not 

significant (Table 7.13).  An attempt to include the relative humidity in the 

parametric part of the additive mixed model was made. The model that has 

the effect of relative humidity in the parametric part is compared with the 

model without any effect of relative humidity using the likelihood ratio test. 

The result favours the model without any effect of relative humidity (p-value 

= 0.6527).  An additive mixed model that includes the interaction of relative 

humidity with season and a model without any effect of relative humidity is 

compared using the likelihood ratio test. The likelihood ratio test favours the 

model without the effect of relative humidity (p-value= 0.9). 
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Table 7. 13 Parameter estimates of the additive mixed model with four 

different smoothers of age and relative humidity (one per  season in each 

case) with the interaction between season and clone included in parameteric 

part ( Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-

value 

p-value 

Intercept  20400.4 880.2 23.18 0.0001 *** 

Clone(GC) -3796.9   1196.8 -3.17 0.002 ** 

Season(Autumn) -4499.8  303.1 -14.84 0.0001 *** 

Season(Winter) -3286.3 304.9 -10.78 0.0001 *** 

Season(Spring) -745.2 350.1 -2.13 0.033486 *  

Clone(GC)  ×  Season(Autumn) 1478.2  254.8 5.80 0.0001 *** 

Clone(GC)  ×  Season(Winter ) 1327.5  261.7 5.07 0.0001 *** 

Clone(GC)  ×  Season(Spring) 1025.0 288.1 3.56 0.0004 *** 

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(Age, season = Summer) 1  1  46.23 0.0001 *** 

s(Age,  season = Autumn) 1 1 4572.14 0.0001 *** 

s(Age,  season =   Winter) 1 1 5664.52 0.0001 *** 

s(Age,  season = Spring) 1 1 147.14 0.0001 *** 

s(relative humidity, season = Summer) 1 1 0.339 0.5605 

s(relative humidity,  season = Autumn) 1 1 2.092 0.1483 

s(relative humidity,  season =   Winter) 1 1 3.958 .0469 * 

s(relative humidity,  season = Spring) 1 1 0.248 0.6186 

R-sq.(adj) =  0.841     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.19 Additive Mixed Models (AMM) Fitted with The 

Smoothers of Tree Age and Solar Radiation 

The additive mixed model fitted using smoothed tree age and solar radiation 

also shows that all the smoothed terms are linear (edf=1). The smoothed 

solar radiation for winter is significant (p-value =5.98e-12).  The smoother 

for autumn is also significant (p-value =0.00059). Solar radiation smoothers 

for the rest of the seasons (summer, p value=0.982, and spring p-

value=0.608) are not significant (Table 7.14).   An attempt to include solar 

radiation in the parametric part was made.  A model without any effect of 

solar radiation was compared with the model that includes solar radiation in 

the parametric part. The likelihood ratio statistic favours the model without 

solar radiation (p-value= 0.3417).  A model that includes the interaction of 

solar radiation with season and a model that includes the interaction 

between solar radiation and clone in the parametric part are each compared 

with a model without any effect of solar radiation. In both cases the 

likelihood ratio test favours a model without the effect of solar radiation (p-

value for the interaction with clone = 0.1016 and p-value for interaction with 

season= 0.678).  
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Table 7.14 Parameter estimates of the additive mixed model with four 

different smoothers of age and solar radiation (one per season in each case) 

with the interaction between season and clone included in parameteric part 

(Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept      20331.8 926.7 21.94 0.0001 *** 

Clone(GC) -3796.9 1196.2 -3.17 0.002 ** 

Season(Autumn) -4301.3 420.5 -10.23 0.0001 *** 

Season(Winter)   -2205.5 445.1 -4.95 0.0001 *** 

Season(Spring)   -729.3  477.0 -1.53 0.1267 

Clone(GC)  ×  Season(Autumn) 1478.2 249.4 5.93 0.0001 *** 

Clone(GC)  ×  Season(Winter ) 1327.5 256.1 5.18 0.0001 *** 

Clone(GC)  ×  Season(Spring) 1025.0 281.9 3.64 0.0001 *** 

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(Age, season = Summer)    1       1 57.24 7.30e-14 *** 

s(Age,  season = Autumn)    1       1 13812.833 < 2e-16 *** 

s(Age,  season =   Winter)    1       1 7337.006 < 2e-16 *** 

s(Age,  season = Spring)    1       1 116.502 < 2e-16 *** 

s(solar radiation, season = Summer)    1       1    0.001 0.982033000 

s(solar radiation,  season = Autumn)    1       1 11.870 0.000589 *** 

s(solar radiation,  season =   Winter)    1       1   48.241 5.98e-12 *** 

s(solar radiation,  season = Spring)    1       1 0.263 0.608376000  

R-sq.(adj) =  0.843     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.20 Additive Mixed Models (AMM) Fitted with The 

Smoothers of Tree Age and Wind Speed 

The additive mixed model fitted using smoothed tree age and wind speed 

also shows that all the smoothed terms related to wind speed are linear 

(edf=1)  (Table 7.15).  Wind speed smoothers for all seasons (summer, p 

value=0.185, autumn p-value=0.539, winter p-value=0.766 and spring –p 

value=0.643) are not significant. ).   An attempt to include wind speed in the 

parametric part of the additive mixed model was made.  A model without 

any effect of wind speed was compared with the model that includes wind 

speed in the parametric part. The likelihood ratio statistic favours the model 

without wind speed (p-value= 0.6967).  

 A model that includes the interaction of wind speed with season in the 

parametric part of the additive mixed model was compared with a model 

without any effect of wind speed. The likelihood ratio statistic favours a 

model without wind speed (p-value= 0.6558).  

A model that includes the interaction between wind speed and clone in the 

parametric part of the additive mixed model was compared to a model 

without any effect of wind speed. The likelihood ratio statistic favours the 

model with the interaction of wind speed and clone (p-value= 9e-04).   
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Table 7.15 Parameter estimates of the additive mixed model with four 

different smoothers of age and wind speed (one per season in each case) 

with the interaction between season and clone included in parameteric part 

(Maximum likelihood estimates). 

Parametric coefficients  Estimate Standard 

error 

t-value p-value 

Intercept    20730.2   916.6 22.62 < 2e-16  *** 

Clone(GC)   -3796.9  1194.7 -3.18 0.001519  ** 

Season(Autumn) -3656.3 502.2 -7.28 5.91e-13 *** 

Season(Winter) -3091.6 549.8 -5.62 2.33e-08 *** 

Season(Spring) -1122.0    453.0 -2.48 0.013402    * 

Clone(GC)  ×  Season(Autumn) 1478.2 233.0 6.34  3.16e-10 *** 

Clone(GC)  ×  Season(Winter ) 1327.5 239.2 5.55 3.53e-08 *** 

Clone(GC)  ×  Season(Spring) 1025.0 263.4 3.89 0.0001   *** 

     

Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(Age, season = Summer)    1       1 31.934 1.97e-08 *** 

s(Age,  season = Autumn) 3.290 3.290 3710.531 < 2e-16  *** 

s(Age,  season =   Winter) 3.136 3.136 2745.244 < 2e-16  *** 

s(Age,  season = Spring)    1       1 162.415 < 2e-16 *** 

s(wind speed, season = Summer)    1       1 1.763  0.185 000              

s(wind speed,  season = Autumn)    1       1 0.377 0.539 000 

s(wind speed,  season =   Winter)    1       1 0.089 0.766000   

s(wind speed,  season = Spring)    1       1 0.215 0.643000 

R-sq.(adj) =   0.848    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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7.21 Additive Mixed Models with Additive Effect of More 

Than Two Covariate Smoothers 

The AMM that uses the smoothers age and any one of the climatic variables 

resulted in significant smoothers for age in all cases. The smoothers for 

temperature, rainfall and wind speed did not appear to be significant.  

However, the smoothers for relative humidity for winter (p-value=0.047) and 

the smoothers for solar radiation for winter (p-value < 0.00001) and autumn 

(p-value= 0.0006) are significant. An additive mixed model that includes the 

smoothers of tree age, wind speed and solar radiation was fitted.  In this 

additive model all smoothers appear to have the estimated effective degrees 

of freedom equal to 1 (Table 7.16).  The smoothers of tree age for all seasons 

(summer, autumn, winter and spring are significant with very small 

respective p-values (p-value < 0.00001). The smoothers for solar radiation 

are significant in autumn and winter with respective p-values (0.00171 and 

1.95e-14).  In all of the above models, random intercept for each tree is used 

in combination with the assumption that residuals are normally distributed 

with mean 0 and constant variance.  In an attempt to validate the last model 

(that includes smoothers of tree age, solar radiation and relative humidity) 

the model validation graphs are plotted (Figure 7.12).  The lower right panel 

of the graphs show a strong relationship between fitted and observed values 

of stem radius. The upper right panel shows that the assumption of 

constant variance is violated.  The upper left and lower left panels show that 

there is some deviation from normality.   The plots of normalized residuals 

against covariates (tree age, solar radiation and relative humidity, clone and 

season) are plotted as part of the model validation process.  There is no clear 

pattern as to the dependence of residuals on any of the covariates of tree 

age, solar radiation and relative humidity (Figure 7.13).  However, the 

spread of residuals depend on tree age. The spread of residuals also clearly 

depends on clone and season (Figure 7.14.).  This indicates that the 

variation in the data differ between seasons and clone.  It was also observed 

that there is more variation in autumn and winter than in summer and 

spring which violates the homogeneity assumption. Therefore, the 
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assumption that the residuals are normally distributed with mean zero and 

constant variance is relaxed.  Moreover, an attempt to use random slope 

instead of random intercept was made.    

Table 7.16  Parameter estimates of the additive mixed model with four 

smoothers of age and relative humidity and solar radiation ( one per season 

in each case) with the interaction between season and clone included in 

parametric part( Maximum likelihood estimates). 

Parametric coefficients  

 

Estimate 

 

Standard 

error 

t-value p-value 

Intercept  20331.0 925.6 21.966 < 2e-16  *** 

Clone(GC) -3796.9  1196.0 -3.175 0.001538 ** 

Season(Autumn)   -4301.5 417.8 -10.295 < 2e-16  *** 

Season(Winter) -1700.3 460.7 -3.691 0.00023 *** 

Season(Spring)   -709.4 487.8 -1.454 0.14614800  

Clone(GC)  ×  Season(Autumn) 1478.2 247.8 5.965 3.2e-09 *** 

Clone(GC)  ×  Season(Winter ) 1327.5 254.4 5.217 2.1e-07 *** 

Clone(GC)  ×  Season(Spring) 1025.0 280.1 3.659 0.000264 *** 
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… Table 7.16 Approximate significance of smooth terms 

 edf Ref. df F-value p-value 

s(Age, season = Summer) 1  1  48.49 5.3e-12 *** 

s(Age,  season = Autumn) 1 1 3614.49 < 2e-16   *** 

s(Age,  season =   Winter) 1 1 5019.97 < 2e-16   *** 

s(Age,  season = Spring) 1 1 83.14 < 2e-16   *** 

s(relative humidity, season = Summer) 1 1 0.41 0.52007000  

s(relative humidity,  season = Autumn) 1 1 0.07 0.79623000 

s(relative humidity,  season =   Winter) 1 1 15.28 9.8e-05 *** 

s(relative humidity,  season = Spring) 1 1 0.03  0.86855000   

s(solar radiation, season = Summer) 1 1 0.06 0.81294000 

s(solar radiation,  season = Autumn) 1 1 9.88 0.00171  ** 

s(solar radiation,  season =   Winter) 1 1 59.96 0.00171  ** 

s(solar radiation,  season = Spring) 1 1 0.03 0.85950000 

R-sq.(adj) =  0.843     

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Figure 7.13  Basic model checking plots for the additive model with the 

smoothers of tree age solar radiation and relative humidity. 
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Figure 7.14  Plot of residuals versus tree, tree age, solar radiation and 

relative humidity. 
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Figure 7.15   Normalized residuals plotted versus clone and season for the 

model that considers the smoothers of tree age, solar radiation and relative 

humidity. 

All models are fitted using the REML estimation procedure and model 

comparison is made using the Akaike Information Criteria (AIC).   
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Table 7.17 The AIC for models with different variance and correlation 

structure 

Variance structure  AIC BIC 

Model with random intercept and  constant  

residual variance  

21869.84 22044.07 

Model with random intercept and  residual 

variance that varies with  clone and season 

combination  

20836.39 ] 21045.82 

Model with random slope and constant 

residual variance  

19289.85 19473.75 

Model with random slope and residual 

variance that varies with clone and season 

combination 

18899.35 19119 

The model with random slope and different residual variance for each 

combination clone and season has the smallest AIC and BIC (Table 7.17).  

The validation graph did not show any variation between seasons or between 

clones (Figure 7.16).   However, the plot of normalized residuals versus the 

fitted values showed that there is still a certain degree of heterogeneity in 

the residuals.  The last aspect of the modelling process was to allow for 

spatial or temporal correlation in the residuals. However, the attempt was 

not successful due to the complexity of the model.  
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Figure 7. 16  Normalized residuals plotted versus clone and season for the 

model with random slope and residual variance that varies with clone and 

season combination. 
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Figure 7.17  Basic model checking plots for the additive model with random 

slope and residual variance that varies with clone and season combination. 
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the mgcv package. Both ML and REML estimation procedures are attempted 

and the penalized-spline is used as the basis function for smoothing.   

Different additive mixed models (AMM) that range from one explanatory 

variable to multiple explanatory variables are fitted and several forms of 

relationships are investigated.  For models with only one explanatory 

variable at a time, it was observed that all covariates have a nonlinear 

relationship with stem radius. The effect of each covariate on stem radius is 

found to depend on the clone of the tree.  It was also observed that the two 

clones grow in similar fashion and in both cases the relationship between 

tree age and stem radius is nonlinear. The interaction between clone and 

season was found significant when the smoothers of tree age and 

temperature are used in the model.  The effects of all covariates 

(temperature, relative humidity, rainfall, solar radiation and wind speed) 

depend on season.  The results of the AMM with nonparametric smoothers 

of covariates validate the results obtained in previous chapters and generally 

gave more insight regarding the stem radial growth.   
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Chapter 8 

Conclusion 

This work has focused on statistical methods aimed at modelling the growth 

data.  Explicitly, we have been concerned with statistical methods for 

continuous response data which are common in many research areas, in 

particular in agricultural and biological studies. Growth measurements 

occur when two or more observations of a response variable are achieved at 

different moments for each subject under study.    The bulk of the work on 

methods for growth data has concentrated on data that can be modelled as 

a nonlinear function of time. The methodologies for nonlinear functions with 

covariates are less developed compared to the methods for linear expectation 

functions. Accordingly, even with current software developments, data 

analysts still face a huge challenge in fitting the most appropriate growth 

models with covariates. 

 

In this thesis, we strived to give more insight into the different approaches to 

incorporate covariates and latent variables in the growth models. The 

proposed methodologies have been reviewed and their practicality is 

examined in-depth.   

 

The study was motivated by a multitude of Sappi data to assess the climatic 

factors affecting the growth of juvenile eucalyptus trees. Data reduction and 

latent variable modelling was crucial for the growth modelling with 

covariates. Accordingly the latent variable modelling approaches, namely 

principal component regression and partial least squares regressions are 

used on daily stem radius data. The study on daily averages of stem radius 

show that tree age is the most important factor that influences stem radius 

during the juvenile stage (up to 2 years). The results also revealed that the 

climatic variable on stem radius depends on season. That means the effects 

vary from one season to another. The analysis by season shows that there is 
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no relationship between weather variables (temperature, relative humidity, 

solar radiation, wind speed and rainfall) and stem radius for two seasons 

(summer and spring). In winter, there is a positive relationship between each 

of the variables (tree age, temperature, relative humidity, solar radiation and 

wind speed) and stem radius.  In autumn, the relationship between stem 

radius and variables (solar radiation, wind speed and tree age) is positive for 

both clones. In autumn and winter, the effect of rainfall on stem radius is 

significant for the GU clone while it is not significant for the GC clone. This 

could be mainly due to genetic differences between the two clones. This may 

need further research in the area.  The type of relationship between stem 

radius and climatic varaibles needs to be confirmed by further research 

using different set of data.  

 

In an attempt to account for both direct and indirect effects of covariates on 

growth, a path modelling approach was used.  The best fitting path model to 

the data was identified and this showed that all climatic variables and tree 

age had positive effects on stem radial growth for the pooled data of both 

clones.  Furthermore, all except one variable (rainfall) had significant direct 

effects on radial growth. Although rainfall was not significant in the best 

fitting model, it was found to be significant for the model that excluded wind 

speed and for the model that omitted solar radiation. This shows that the 

effect of rainfall on radial growth cannot be ruled out.  To compare the effect 

of the explanatory variables on the radial growth of the GU and GC clones, a 

single analysis that estimated parameters and tested hypotheses about both 

groups simultaneously was considered. The regression weights for the two 

clones were significantly different.  The regression weights were all positive 

indicating the positive effect of the climatic variables and tree age.   

In addition, the regression weights obtained for the GU clone were larger 

than the regression weights for the GC clone. It was confirmed that the GU 

clone grows at a faster rate than the GC clone. The main estimation method 

for path models, or any structural equation model (SEM) is maximum 

likelihood estimation.  This method requires a distributional assumption, 
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which the present data failed to satisfy.  The bootstrap method was then 

applied to overcome the methodological failure due to non-normality.  The 

estimated bias using the bootstrap method was very small showing that 

there was little evidence of bias in the estimates.  The conclusion reached 

using the maximum likelihood method agreed with that of the bootstrap 

method.  The expected cross-validation index obtained for the hypothesized 

model also showed that this model cross-validated over the independent 

model.   

Following the application of path models, a review of some methods where 

the longitudinal aspects of the data can be taken into account was made. 

The weekly averages of stem radius were considered as the response 

variable.   The fractional polynomial model in the context of the linear mixed 

model was formulated and fitted on the weekly data.  The functional 

relationship between stem radius and tree age is identified and the 

parameters are estimated.   

Based on descriptive and graphical exploratory analysis and using the mfp 

package in R, it was found that stem radial measure is a function of linear 

time plus the square root of time. The selection of random effects resulted in 

the significance of all three random effects (namely, intercept, coefficients of 

time, and coefficients of square root of time).  The search for the best 

covariance structure of error component suggested that heterogeneous 

variance, which varies by clone and exponential function of the square root 

of time, as the best fit. 

 It was found that the growth pattern of the two hybrid clones is similar 

during the juvenile stage. However, the rate of growth for the GU clone is 

faster than the rate growth for the GC clone. This result supports the results 

obtained by the previous methods.  The fractional polynomial models were 

extended to account for the effect of the climatic variables.  Although tree 

age is the most important variable in determining the stem radial growth 

during the juvenile stage (up to two years), there is a significant effect of 



263 

 

climatic variables on the stem radial change.   Most of the climatic variables 

have a positive effect on the stem radius during the juvenile stage of tree 

development.  In general, the results obtained using fractional polynomials 

supports the results obtained by the previous methods described in Chapter 

3 and Chapter 4.  

Following the fractional polynomial models, nonlinear mixed effects 

modelling approaches were reviewed, mainly to compare the performance of 

fractional polynomial models with that of the standard nonlinear growth 

curves. Although several different methods for estimating the parameters in 

nonlinear mixed effects models have been proposed, the practical 

consideration mainly focuses on two of them. These are maximum likelihood 

and restricted maximum likelihood. The difficulty in evaluating the 

loglikelihood of the data has a limiting aspect and was evident in the 

computational phases of fitting nonlinear mixed models where intensive 

computing times were experienced with very large data sets.  In some 

instances, there were convergence problems with more complex models.  

This indicates the need to further investigate the performance of possibly 

simplified methods which would require less powerful computational 

resources. Frational polynomial models are relatively computationally simple 

and can be used as an alternative to the the standard nonlinear growth 

curves.  With this idea in mind, nonlinear mixed models are fitted to three 

selected standard growth curves and their performance is compared with 

that of fractional polynomials.  

All three nonlinear growth functions are fitted to the weekly data. All these 

three nonlinear mixed models fit the data almost equally well.   The 

assessments of model fit for both fractional polynomial and nonlinear 

models were made. It was found that the fractional polynomial model was 

almost as good as the nonlinear models in fitting the data.  

For all parametric methods, the form of the underlying relationship between 

the response and the covariates must be known in advance. Only a few 
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numbers of parameters have to be estimated to get the relationship between 

the response and covariates. The semi-parametric methods can provide a 

chance for the underlying relationships to be estimated in a data driven 

way.  That means the type of relationship between the variables is decided 

by the data rather by intuitions.  

Therefore, the application of the semi-parametric models is reviewed and 

discussed.  It was found that the relationship between stem radius and each 

covariate (tree age, temperature, rainfall, solar radiation, wind speed and 

relative humidity) can be better explained by a nonlinear relationship.  The 

effect of each covariate on stem radius varies with season. The adjusted 2R  

used as a measure of the relationship between the observed and fitted 

values shows the relationship between tree age and stem radius is the 

strongest ( 2R =0.82).   

The AMM that uses the smoothers of tree age and any one of the climatic 

variables resulted in significant smoothers for tree age in all cases. The 

smoothers for temperature, rainfall and wind speed did not appear to be 

significant when tree age is included in the model.  This indicates that none 

of these climatic variables has a significant effect on the growth of stem 

radius in the presence of tree age.  

However, the smoothers for relative humidity for winter (p-value=0.047) and 

the smoothers for solar radiation for winter (p-value < 0.00001) and autumn 

(p-value= 0.0006) are significant.  Moreover, a model that includes the 

interaction between wind speed and clone in the parametric part of the 

additive mixed model was compared to a model without any effect of wind 

speed. The likelihood ratio statistics favour the model with the interaction of 

wind speed and clone (p-value= 9e-04).   

An additive mixed effects model that includes the smoothers of tree age, 

wind speed and solar radiation was fitted.  The smoothers for tree age and 
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solar radiation appear to be significant.  The conclusions made in the semi-

parametric methods are in agreement with that of the parametric methods.  

This work demonstrates that with suitable statistical modelling of real life 

data, taking into account the longitudinal nature of the data and scientific 

backgrounds, a worthwhile contribution to the knowledge and literature in 

areas of particular application can be made. For example, the findings of 

this study identified that tree age is the most important variable in 

explaining stem radial growth at the juvenile stage of the tree.  The 

relationship between stem radius and all covariates can be better explained 

by a nonlinear relationship.  

In summary, six different types of modelling techniques were reviewed and 

applied in modelling the growth in stem radius. All the analyses 

demonstrated that these models are useful in the study of factors affecting 

the longitudinal growth of stem radius. Furthermore the thesis highlighted 

that fractional polynomials in the framework of linear mixed models can be 

an alternative to the more complicated ones of nonlinear mixed effects 

models in modelling growth. There are opportunities for further work in this 

research. The most important is validating the models with data of matured 

trees.  The applications of similar techniques to adult trees and comparison 

of the results deserves further research.  

 

In conclusion this work demonstrates that with suitable statistical modelling 

of real life data, taking into account the longitudinal nature of the data and 

scientific backgrounds, a worthwhile contribution to the knowledge 

/literature in areas of particular application can be made. The findings of 

this study identified that tree age is the most important variable in 

explaining stem radial growth at juvenile stage of the two hybrid clones.  The 

relationship between stem radius and all weather variables can better be 

explained by nonlinear relationship. Although only one clone from each 

hybrid cross is tested in the study, the faster growth features of the GU 

clone points to enhanced genetics of this hybrid cross and its potential 
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ability to better exploit existing resources, making it an economically 

feasible hybrid cross as reported elsewhere( Galloway, 2003).  Moreover, the 

study indicated that the effect of weather variables on stem radial growth 

vary from season to season.  

 

One possible limitation associated with this study is that most of the 

parameters are estimated using maximum likelihood and restricted 

maximum likelihood methods.  The difficulty in evaluating the loglikelihood 

of the data has a limiting aspect and was evident in the computational 

phases of fitting nonlinear mixed models where intensive computing times 

were experienced with very large data set. In some instances there were also 

convergence problems with more complex models. The other limitation may 

be from the data itself. In this analysis only one set climatic variables is 

used to each time point ( tree age).  If planting was made over time so that 

we would have had trees of the same age (example one year) , that would 

have experienced different values  of climatic  variables  and then  the 

impact of climatic variable could have been determined better.  
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Understanding the relationship between stem radial growth and climatic conditions in plantation 
productivity is important to identify the climatic factors that most influence tree growth. This study aims 
to determine the climatic factors that most influence the stem radial growth of eucalypt trees plantation 
in the coastal Zululand area of South Africa. Daily stem radius was measured using automated point 
dendrometers located on 18 sample trees of Eucalyptus grandis × Eucalyptus urophylla (GU) and E. 
grandis × Eucalyptus camaldulensis (GC) hybrid clones. Daily averages of climatic data (temperature, 
solar radiation, relative humidity and wind speed) and total rainfall were also obtained from the site over 
the study period. Several statistical models that cope with the issue of multicollinearity were applied. 
Weather variables, together with tree age, explained a substantial amount of the variation (87% for GC 
clone and 79% for GU clone) in the daily stem radius. This study indicates that tree age is the most 
important factors that influence stem radius during the juvenile stage (up to 2 years) in all seasons. In 
winter, temperature, relative humidity and wind speed appear to be more important than the other 
weather variables.  
 
Key words: Tree radial growth, latent variables, multicollinearity, ordinary least squares, partial least squares, 
principal component regression, plantation. 

 

 
INTRODUCTION 
 
Increasingly, eucalypts have become the most widely 
planted hardwood species in the world (Turnbull, 1999). 
At present, eucalypts provide sawn timber, mine props, 
pulp and paper, fiberboard, poles, firewood, charcoal, 
essential oils, nectar for honey, tannin, shade, and 
shelter. Most eucalypt plantations are established and 
managed for profit. The rate of growth is an important 
economic factor, and plantations with faster growth will 
be available for processing earlier compared with slower 
growth plantations. Tree growth and wood production are 
product    of    the    interaction    between    genetic    and  
 

environmental factors (Callaham, 1962). Some studies 
have found significant effects of environmental factors on 
wood property variation in Eucalyptus (February et al., 
1995; Searson et al., 2004; Drew and Pammenter, 2006). 
Extensive literature on genetic factors affecting the 
growth of trees can be found in the work of Kozlowski 
and Pallardy (1997). The most recent work by Downes et 
al. (2009) provides an excellent overview on measuring 
stem growth and wood formation. Other examples are 
those by Drew et al. (2009), which focussed on 
differences in daily stem diameter variation and growth  in 
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two hybrid eucalypts, and Zweifel et al. (2006) who 
studied the intra-annual radial growth and water relations 
of trees and the implications on growth mechanisms.  

In a study that considered the data extracted from the 
same database as used in this study, Drew et al. (2009) 
found that the Eucalyptus grandis × Eucalyptus urophylla 
(GU) clone had fewer days on which net growth occurred 
than did the E. grandis × Eucalyptus camaldulensis (GC) 
clone. However, when growth did occur, the GU grew for 
longer each day and at a higher rate than did the GC. 
Thus, it still had an overall larger net stem increment 
during the study period. Drew et al. (2009) studied the 
relationship between stem radius and climatic factors 
using the correlation matrix.  

Weather variables such as temperature, radiation, 
rainfall, humidity, and wind speed all contribute to the 
growth of the tree. For instance, Downes et al. (1999) 
studied daily radial stem growth in irrigated Eucalyptus 
globulus and Eucalyptus nitens in relation to climate over 
a 12-month period using multiple linear regression 
models. The study, which was conducted in southern 
Australia, showed that daily weather variation accounted 
for 40 to 50% of the variance in the daily increment of 
stem radius. Downes et al. (1999) also argued that 
understanding the relationship between weather and the 
rate and pattern of stem growth will facilitate the 
prediction of wood properties at a given site. Our 
approach provides an alternative one to the methods 
used by Downes et al. (1999). A study by Phipps (1982) 
presented a general discussion regarding problems 
inherent to developing climatically sensitive tree-ring 
chronologies from eastern North America. The same 
study by Phipps (1982) indicated that tree ring collections 
from eastern forests are typically not climatically sensitive 
as western collections. A general treatment of 
dendroclimatology can be found in the work of Fritts 
(1976). Other studies such as those by D’Arrigo et al. 
(1992), Hofgaard et al. (1999) and Schweingruber et al. 
(1993) reported that late spring or summer temperatures 
had a positive effect on annual growth. Zweifel et al. 
(2001) showed that radius change could be determined 
by stem water content and wood bark growth, including 
the degradation of dead phloem cells. The water related 
fraction is a short-term effect lasting from a few hours to 
several weeks, and can either have positive or negative 
effects on stem radius, depending on the changing turgor 
of stem tissues (Zweifel et al., 2001).  

The contribution of each climatic variable is often 
influenced, by correlation, with one or more other climatic 
variables. However, studies that consider the effects of 
colinearity into account are limited. Studies commonly 
use diameter at a given tree age as an indicator of growth 
rate and pattern. Most eucalypt plantations are limited by 
rainwater for growth, therefore identification of the 
relationship between natural climatic conditions and 
radial increment is important for eucalypt plantation 
managers. In order to manage resources effectively,  it  is 

 
 
 
 

important for tree growers to understand the properties of 
the material being produced. This paper describes the 
effects of climatic variation on radial growth of GU and 
GC hybrid clones established in Zululand on the eastern 
coast of South Africa. The focus of this study is to 
determine the climatic factors that influence radial growth 
during the juvenile (the first 2 years of age) stages of tree 
growth. This is mainly because these data are the data 
collected on phase one of the data collection process. 
Moreover, the study of juvenile trees is very important, to 
have a productive matured tree. The primary question 
addressed by this study concerns the extent to which 
classical regression approaches are successful in 
detecting and estimating the effects of climatic conditions 
on stem radial growth. A secondary aim is to present 
latent variable modeling approaches, namely partial least 
squares (PLS) and principal component regression, for 
better estimation and detection of effects of the climatic 
variables.  
 
 
MATERIALS AND METHODS 
 
Study design 
 
The research site is located near the town of KwaMbonambi in 
KwaZulu-Natal, South Africa, (28.53° S, 32.14° E, 55 M a.m.s.l), 
approximately 200 km north-east of the city of Durban. On average, 
the site receives 1,000 mm of rainfall per annum and has a mean 
annual temperature of 21°C (Drew et al., 2009). The Eucalyptus 
fiber research experiment was initiated in July, 2001 and a huge 
database acquired. The experiment was designed to run over a 7-
year period and was divided into separate phases. Each phase 
ended with the destructive sampling of study trees to measure 
anatomical characteristics of the wood. The results presented in this 
paper are based on the data collected during the first of these 
phases, from April, 2002 until August, 2003. The data were used by 
Drew et al. (2009) and this particular study is extracted from the 
same database put in place by Sappi (One of the leading suppliers 
of coated fine paper and chemical cellulose). However, the two data 
sets are not exactly the same. Two commercially deployed 
Eucalyptus hybrid clones, GU and GC, were planted at the study 
site (Drew, 2004). According to the South African soil classification 
system, the soil was identified as Rhodic Ferralsol Hutton by a 
limited soil survey undertaken at the site (Soil classification 
workshop group, 1991). The soil is medium grade sand with clay 
percent in the lower B-horizon not exceeding 40%, and in A-horizon 
not exceeding 10% with an average depth of A-horizon 20 cm and 
total potential rooting depth in excess of 1.8 m (Drew et al., 2009). 
Planting took place on 16 July, 2001, prior to which in April, 2001, 
stumps of trees from the previous rotation were treated with 
herbicide (to prevent coppicing), and harvest slash was burned. 
Each rooted cutting was planted between existing stumps, with 
approximately 2 L of water and 125 g granular fertilizer, the 
equivalent of 8 g nitrogen, 12 g phosphorus and 8 g potassium per 
plant. The two clones were planted in alternating rows seven trees 
wide each (Figure 1), with spacing between trees of 3 m (east to 
west) × 2.5 m (north to south). These rows have been numbered 
from 1 to 6, starting at row (GC) closest to the entrance gate. Each 
row of clones consists of three plots of 12 trees each with two 
surrounding rows of trees (Figure 1). This effectively separates 
each plot by four rows of trees, an important part of the design 
since periodic destructive sampling is required in the experiment. 
The plots were established as pairs, such that for any phase  of  the
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Figure 1. The layout of the experimental plots at the research site in eastern South Africa.  

 
 
 
research, a GU and a GC plot could be measured simultaneously 
(Drew, 2004). From the 18 plots (Figure 1), plots 9 and 10 were 
chosen for monitoring during project Phase 1. Within a 12-tree plot, 
nine trees were selected from each clone for intensive monitoring of 
radial growth and other physiological characteristics (Drew, 2004). 
Measurements of stem radius were obtained from hourly 
dendrometer readings in the 18 sample trees. Automatic point 
dendrometers were mounted at 9 months of age at 1.3 m above the 
ground on the north side of each tree to measure the radius of the 
main stem with a rod held against the outside surface by constant 
force. The data for stem radius used in this paper has 8640 
observations from the two clones. Half the data set is from the GU 
clone and the remaining half is from the GC clone. Daily 
measurements were used in our analysis. Daily averages of stem 
radius were obtained by cumulating and averaging the hourly 
measurements. Meteorological data was obtained using an 
automatic weather station (MCSystems, Cape Town, South Africa) 
located approximately 300 m from the research trial site (Drew et 
al., 2009). Hourly measurements were made of total rainfall (mm), 
temperature (ºC), relative humidity (%), wind speed (m/s) and total 
solar radiation (mJ/h). Daily total rainfall and daily averages of the 
other weather variables were used in the analysis. 
 
 
Data analysis 
 
Statistical analysis was undertaken using R-statistical software. R is 
a free software that can be downloaded from the R-project website 
R Core Team (2012). The simplest approach in detecting climatic 
effects is by the use of traditional regression methods. However, 
this   traditional   method  assumes  that  the  climatic  variables  are 

uncorrelated since one of the failures of regression methods is due 
to multicollinearity. Multicollinearity problem arises when the 
predictors (in our case the climatic variables) are correlated. To 
overcome this, we applied principal component regression and PLS 
regression. These methods were applied to the combined data set 
as well as to the data set for separate clones. Extensive discussion 
of these methods can also be found in Rodriguez-Nogales (2006), 
Dine et al. (2002), Fekedulegn et al. (2002), Maitra and Yan (2008), 
Mevik and Cederkvist (2004), and Haenlein and Kaplan (2004).  
 
 
RESULTS AND DISCUSSION 
 
The variables included in the study are major climatic 
variables and one non-climatic variable (tree age) as 
previously described. The overall ordinary least squares 
(OLS) model was significant with an R2 = 0.791 and 
adjusted R2 = 0.79 (Table 1). This indicates that about 
79% of the variation in stem radius is explained by the 
predictors (the five weather variables together with age of 
a tree) included in the model. An attempt to explore lags 
was made by considering lags up to 15 days. The use of 
five weather variables lagged by 15 days increased the 
variance explained by 0.3% only. Therefore, we did not 
consider the lags as an important issue at this age of the 
tree. 

The predictors included in the model are therefore 
important for  determining  radial  tree  growth.  However,  

Appendix A: Published papers



1236         Afr. J. Agric. Res. 
 
 
 

Table 1. Summary OLS model. 
 

Predictor (climatic variables) Estimate Standard error t-value p-value 
Intercept  -16558.67 550.61 -30.07 0.000 
Temperature  23.73 12.65 1.88 0.061 
Solar radiation 2865.35 222.01 12.91 0.000 
Rainfall  2.57 6.21 0.41 0.679 
Wind speed  1426.83 77.02 18.53 0.000 
Tree age  313.22 2.21 142.05 0.000 
R2 = 0.791 Adj R2 = 0.79 

 
 

 
Table 2. Correlation matrix of predictors. 
 
Variable Temperature Relative humidity Solar radiation Rainfall 
Temperature 1    
Relative humidity -0.320** 1   
Solar radiation 0.617** -0.498** 1  
Rainfall  -0.107** 0.272** -0.258** 1 
Wind speed  0.406** -0.385** 0.374** 0.099** 

 

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-
tailed). 

 
 

 
Table 3. The eigen value decomposition of the correlation matrix. 
 

Eigen values Proportion of total Cumulative proportion of total 
2.375 0.396 0.396 
1.252 0.209 0.605 
1.083 0.181 0.786 
0.625 0.104 0.890 
0.412 0.069 0.959 
0.253 0.042 1 

 
 

 
the individual t-ratios (estimated coefficient/standard 
error) for the coefficients of the most important climatic 
variables, that of rainfall and temperature, are non-
significant (Table 1). This is an indication of the presence 
of multicollinearity among the predictors. From the 
correlation matrix of predictors (Table 2), temperature 
and solar radiation were highly correlated. The correlation 
coefficient was 0.62 and highly significant (p < 0.001). 
The correlation between wind speed and temperature 
was 0.41, which was also highly significant (p < 0.001). 
This shows the existence of significant multicollinearity 
among the independent climatic variables. Multicollinearity 
inflates the standard error of the regression coefficients, 
which results in low t-statistic values and a failure to 
reject the null hypothesis. The application of classical 
linear regression models therefore does not have a 
powerful inference on the regression coefficients. To 
address this problem, principal  component  regression  and 

PLS regression techniques were used. All predictors 
were treated as continuous variables with different unit of 
measurements [for instance, rainfall (mm) and temperature 
(°C)]. It might make more sense to standardize the 
predictors before trying principal components. This is 
equivalent to performing principal components analysis 
on the correlation matrix of predictor variables. Table 3 
shows the eigen value decomposition of the correlation 
matrix of the original or the covariance matrix of the 
standardized predictors. The first five principal 
components captured 95.9% of the information in the 
correlation matrix. Table 4 shows the eigen vectors 
corresponding to each of the eigen values of Table 3. We 
constructed the principal components corresponding to 
each eigen value by linearly combining the standardized 
predictive variables using the corresponding eigen vector. 
Hence, the six principal components are computed as 
follows:  
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Table 4. The eigen vectors associated with the eigen values of Table 3. 
 

Eigen vector 1 Eigen vector 2 Eigen vector 3 Eigen vector 4 Eigen vector 5 Eigen vector 6 
0.495 -0.239 -0.031 0.601 -0.463 0.347 
-0.488 -0.415 0.085 0.301 -0.362 -0.593 
0.546 -0.144 0.168 0.238 0.553 -0.539 
-0.207 -0.255 -0.808 0.259 0.396 0.127 
0.413 -0.280 -0.431 -0.594 -0.366 -0.279 
-0.068 -0.774 0.354 -0.266 0.241 0.378 

 
 

 
Table 5. Summary of OLS model that uses principal components as predictors. 
 

Coefficient Estimates Standard error t-value p-value 
Intercept 16025.71 36.70 439.659 <2e-16*** 
PC1 60.83 23.82 -2.554 0.0107* 
PC2 -5402.82 32.80 -164.713 <2e-16*** 
PC3 1987.07 35.27 56.34 <2e-16*** 
PC4 -1742.90 46.42 -35.547 <2e-16*** 
PC5 1330.27 57.18 -23.263 <2e-16*** 
PC6 1425.38 72.99 19.530 <2e-16*** 

 

*Significance at the 0.05 level. ***significance at the 0.001 level. 
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where Z1 is the standardized value of temperature, Z2 is 
the standardized value of relative humidity, Z3 is the 
standardized value of solar radiation, Z4 is the 
standardized value of rainfall, Z5 is the standardized 
value of wind speed, and Z6 is the standardized value of 
age  

The principal components constructed above were 
used in a linear regression model. Stem radius was used 
as the dependent variable and the principal components 
as independent variables (Table 5). The rank of the 
predictive power did not line up with the order of the 
principal components. For instance, the first principal 
component was less explanatory for the target than the 
second or the third, even though the first principal 
component contains more information on the six original 
explanatory variables. The principal components technique 
arrives at uncorrelated standardized linear combinations 
(SLCs) that capture only the characteristics of the X-
vector or predictive variables. No significance is given as 
to how each predictive variable is related to the response 
variable. In a way, it is an unsupervised dimension 
reduction technique (Maitra and Yan, 2008) and therefore 
requires the use of other analytical methods such as 
PLS.  

In comparing the importance of the constructed 
principal components, five components explained most of  

the variation in the predictors (95.9%). The scree plot (not 
shown here) showed that almost all the variation in 
predictors (about 96%) was explained by the first five 
principal components. Therefore, a linear model that 
used the first five principal components as latent 
explanatory variables was fitted (Table 6). The R2

 value 
0.78 for the reduced model was close to the R2

 value for  
the model with all six components (R2 = 0.79). Once 
again, the rank of the predictive power did not correspond 
with the order of the principal components. In other 
words, principal component one appears to have less 
explanatory power for the dependent variable as 
compared to other components. By transforming the 
principal components back to the original explanatory 
variables, the estimated coefficients of the original 
variables are given in Table 7. That means, firstly, the 
principal components were obtained. These principal 
components are uncorrelated and an ordinary regression 
model was fitted using the principal components as 
explanatory variables. The five principal components 
appear to have significant effect on the radial measure 
(Table 6). The estimated coefficients for the original 
measured variables were obtained by transformation 
from the estimated coefficients for principal components. 
The estimates of the regression coefficients in Table 7 
show that all predictors have a positive relationship with 
stem radial measure. Moreover, the five latent variables 
that produced the above estimated coefficients are 
significant (Table 6). This indicates the significant effect 
of climatic variables on radial measure. Separate 
estimates for GU and GC clones also  show  the  positive
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Table 6. Summary of OLS results for the model that uses the first five principal components. 
 

Coefficient Estimates Standard error t-value p-value 
Intercept 16025.71 37.50 427.35 <2e-16*** 

PC1 60.83 24.34 -2.50 0.0124* 
PC 2 -5402.82 33.52 -161.20 <2e-16*** 
PC 3 1987.07 36.04 55.14 <2e-16*** 
PC 4 -1742.90 47.43 -36.75 <2e-16*** 
PC 5 1330.27 58.43 -22.77 <2e-16*** 

 

*Significance at the 0.05 level. ***Shows significance at the 0.001 level.  
 
 

Table 7. The estimated coefficients of the original climatic variables estimated by using principal component regression. 
 

Predictors (Climatic variables) Estimates for combined data Estimates for GU clone Estimates for GC clone 
Intercept  -16558.67 -19048.26 -14069.07 
Temperature  90.48 165.33 15.64 
Relative humidity  581.14 680.05 482.29 
Solar radiation  694.56 802.99 586.20 
Rainfall  16.81 27.82 5.79 
Wind speed 834.13 902.12 766.24 
Tree age 6201.39 6764.65 5638.85 

 
 

Table 8. Estimated coefficients of the original set of climatic variables using PLS method. 
 

Climatic variable  Estimates for both clones Estimates for GU clone Estimates for GC clone 
Temperature 55.42 128.02 54.42 
Relative humidity  596.58 696.94 596.58 
Solar radiation 761.13 874.50 761.13 
Rainfall  35.13 47.59 35.13 
Wind speed  814.29 880.65 814.29 
Tree age 6191.69 6754 6191.69 

 
 
 
effect of weather variables together with tree age (Table 
7). Partial least square regression (PLS) can overcome 
the deficiencies of OLS regression in the case of highly 
collinear data. Moreover, partial least squares allow an 
analysis of the data in terms of independent latent 
variables or components. Applying PLS method to the 
data, the minimum root mean square error of prediction 
(RMSEP) is observed for five components model. The 
value of the X-variance for the model with five latent 
variables is 93.5 %. This means a model with five latent 
variables has explained 93.5 % of the variation in the 
original predictors. The variation explained in the 
response variable is 79.1 %. This is the same amount of 
variation explained by the ordinary least square 
regression. Therefore, the model formulated by five latent 
variables fits the data well with a high predictive power. 
The coefficients for the original set of variables when 
partial least square regression was applied to GC, GU 
and pooled data sets are indicated in Table 8. It appears 
that the estimated coefficients for the original set of 
variables for the GC clone are smaller than that of the GU 

clone for all climatic variables. This indicates that the GU 
clone has on average a larger stem radius than the GC 
clone. The signs of the estimated coefficients for the GU 
clone and the signs for the estimated coefficients of the 
pooled data set are the same. However, the estimated 
coefficient of temperature is negative for the GC clone 
while it is positive for the GU clone and pooled data set. 
This indicates that the effect of temperature on stem 
radius goes in opposite directions for the two clones for 
this site and age class. The possible reason for this could 
be the difference in genetic makeup the two clones. 
Moreover, the effect of weather variables may depend on 
the season of the year. The site difference cannot be a 
possible reason for this difference as site difference is 
controlled by the design. In the design the plots were 
established as pairs such that a GU and a GC plots are 
measured simultaneously (Figure 1). For the rest of the 
climatic variables the effect follows the same direction for 
the two clones with some differences in magnitude. 

In order to test whether the components that produced 
these coefficients are significant or not, latent variables or 
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Table 9. Summary of OLS results for the model that uses the PLS components as 
predictors. 
 

Coefficient Estimates Standard error t-value p-value 
Intercept 16025.71 36.70 436.64 <2e-16*** 
T1 5932.81 32.29 178.23 <2e-16*** 
T2 1193.6 45.41 26.28 <2e-16*** 
T3 318.38 30.45 10.46 <2e-16*** 
T4 299.85 40.22 7.46 9.83e-14*** 
T5 212.74 48.99 4.34 1.42e-05*** 
T6 78.66 58.87 1.336 0.182 

 

***Significance at the 0.001 level. 
 
 

Table 10. Summary of OLS results for the model that uses the first five PLS components as 
predictors. 
 

Coefficient Estimates Standard error t-value p-value 
Intercept 16025.71 36.70 436.64 <2e-16*** 
T1 5932.81 32.29 178.23 <2e-16*** 
T2 1193.6 45.41 26.28 <2e-16*** 
T3 318.38 30.45 10.46 <2e-16*** 
T4 299.85 40.22 7.46 9.83e-14*** 
T5 212.74 48.99 4.34 1.42e-05*** 

 

***Significance at the 0.001 level. 
  
 

Table 11. RMSE and RMSECV values for all prediction 
methods. 
 

Parameter OLS PCR PLS 
RMSE 3410.01 3484.53 3410.4 
RMSECV 3414.39 3413 3413 

 
 
 
PLS components were constructed while fitting the PLS 
regression. After determining these latent variables, 
T1…T6 sequentially, the relationship between these latent 
constructs and the response was estimated by ordinary 
linear regression. The sample correlations between any 
pair of the latent constructs were zero. A linear model 
was then applied using the same radial measure as the 
dependent variable and the six PLS components, T1…T6, 
as the independent variables. Summary results for the 
model that uses the PLS components as predictors is 
shown in Table 9. The PLS components were extracted 
in order of significance. The first five components were 
significant, while the last component was not. The values 
of R2 and adjusted R2 for this model were 0.7908 and 
0.7907, respectively. Table 10 shows the summary 
results for the model that involves only five PLS 
components. From the results, it can be seen that all the 
coefficients listed in Tables 9 and 10 were the same for 
the first five components. This shows that the coefficients 
of the PLS latent variables do not change by adding or 
dropping latent variables from the model. The results of 
the PLS  model  show  that  all  climatic  variables  had  a  

significant effect on growth.  
With regard to the predictive powers of these models, a 

comparison was made based on RMSE and the RMSE of 
cross-validation (RMSECV, Table 11), a measure of the 
model’s ability to predict new samples. The OLS model 
had the smallest RMSE value (Table 11). The second 
smallest RMSE values belong to the PLS model. 

The RMSE for PLS was actually very close to the 
RMSE for the OLS model. However, this comparison was 
from the point of view of model fit. Under the condition of 
no multicollinearity, this might indicate that the OLS 
model fitted the data better than the other two methods. 
For comparisons of models intended for prediction, it is 
inadequate to look just at model fit. As prediction is the 
objective, the PLS model that gave the lowest RMSECV 
value is preferred. For the data set to which these models 
were applied, the PLS model had the highest predictive 
ability with the lowest number of factors. In order to 
identify differences between clones, separate PLS model 
was fitted to data for each clone. For both clones, the 
optimum number of PLS components was five. These 
five    components    were   significant,    while   the   sixth 
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Table 12. Percent of variance captured by PLS components for GU clone. 
 

Component  
Climatic variables and age  Radius 

This component Cumulative total  This component Cumulative total 
 T1 20.53 20.53  77.53 77.53 
 T2 17.66 38.19  1.86 79.04 
 T3 30.25 68.44  0.35 79.39 
 T4 15.27 83.71  0.14 79.53 
 T5 9.8 93.51  0.04 79.57 

 
 
 

Table 13. Percent of variance captured by PLS components for GC clone. 
 

Component 
Climatic variables and age  Radius 

This component Cumulative total  This component Cumulative total 
 T1 20.47 20.47  84.74 84.74 
 T2 12.25 32.72  2.06 86.80 
 T3 25.85 58.57  0.25 87.05 
 T4 24.28 82.85  0.11 87.16 
 T5 10.68 93.53  0.05 87.21 

 

 
Table 14. Standardized regression weights for both principal component regression 
and PLS regression models. 
 
Predictor  
(climatic variables) 

PLS model  PCR model 
GU GC  GU GC 

Temperature  0.016 -0.003  0.020 0.002 
Relative humidity  0.086 0.078  0.083 0.075 
Solar radiation 0.107 0.101  0.098 0.091 
Rainfall 0.006 0.004  0.003 0.001 
Wind speed 0.108 0.116  0.110 0.119 
Tree age  0.829 0.876  0.830 0.878 

 
 
 
component was not significant (Table 9). The percentage 
of total variation in radial measure captured by the 
number of components for the GU clone is less (Table 
12: 80% with p-value < 0.0001) than the amount of 
variation captured for the GC clone (Table 13: 87.21% 
with p-value < 0.0001). The percentage of total variation 
in climatic variables and tree age captured by the five 
components PLS model for the GU and GC clones is 
almost the same (93.5%).  

In order to determine the most important drivers of 
variation in short-term stem radial measure (for the first 2 
years of tree age) for the two clones, we applied 
standardized regression weights for both PLS and 
principal component regressions. This can be obtained 
by fitting the models on standardized variables. The 
factor with the highest coefficient in absolute value is the 
most important factor in explaining the variation in radial 
measure. The standardized regression weights 
(coefficients) for our predictors, when PLS regression and 
principal components regression were applied to GC  and 

GU data sets, are indicated in Table 14. It appears that 
tree age is the most important predictor of stem radius 
using both models and for both clones. Among climatic 
variables, it appears that wind speed, followed by solar 
radiation, is the most important driver of the variation in 
stem radius over the growth period of 2 years. However, 
the biological plausibility of these results is questionable. 
Moreover, we found the negative effect of temperature for 
GC clone. This might be due to the dependence of 
weather variables on season. The weather variables are 
likely to change over the year. This relative effect of 
weather variable might change from one season to the 
other. We analyzed the same data by season in order to 
see for the season effect. Summary results by season 
are shown in Tables 15 and 16. In spring and summer, 
none of the weather variables has significant effect. The 
only variable that has significant effect on stem radius is 
tree age. In winter, all predictors have significant effect on 
stem radius for GU clone, while for GC clone all have 
significant effect with the exception of rainfall. In  autumn, 
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Table 15. Summary results of ordinary regression model for summer and autumn. 
 

Predictor 
Summer 

GC clone GU clone 
Estimate p-value Estimate p-value 

Intercept 2763.099 0.265 2695.785 0.588 
Temperature -2.143 0.963 -17.097 0.854 
Relative humidity  5.088 0.781 9.983 0.786 
Solar radiation  167.126 0.712 371.769 0.683 
Rainfall 0.291 0.990 0.422 0.993 
Wind speed -47.827 0.813 -80.071 0.844 
Tree age  185.506 0.000 231.252 0.000 
 R2 = 0.107 R2 = 0.045 

Predictor 
Autumn 

GC clone GU clone 
Estimate P-value Estimate P-value 

Intercept -11156.222 0.000 15921.22 0.000 
Temperature  -12.152 0.578 28.38 0.377 
Relative humidity 8.632 0.441 19.62 0.233 
Solar radiation 1055.849 0.028 1907.87 0.007 
Rainfall 13.029 0.550 23.89 0.029 
Wind speed 378.068 0.011 476.58 0.029 
Tree age  316.093 0.000 382.49 0.000 
 R2 = 0.929 R2 = 0.9 

 
Table 16. Summary results of ordinary regression model for winter and spring. 
 

Predictor 
Winter 

GC clone  GU clone 
Estimate p-value  Estimate p-value 

Intercept -12364.279 0.000  -14159 0.000 
Temperature 137.832 0.000  159.339 0.000 
Relative humidity  39.106 0.000  46.699 0.000 
Solar radiation  1980.674 0.000  1775.888 0.021 
Rainfall -5.541 0.442  -7.936 0.046 
Wind speed 659.705 0.000  698.642 0.002 
Tree age  266.982 0.000  312.839 0.000 
 R2 = 0.896  R2 = 0.841 

Predictor 
Spring 

GC clone  GU clone 
Estimate P-value  Estimate P-value 

Intercept -2217.472 0.077  -8561.296 0.002 
Temperature  -20.944 0.366  -40.28 0.434 
Relative humidity -0.688 0.941  -2.816 0.893 
Solar radiation 56.458 0.855  110.533 0.872 
Rainfall -1.488 0.870  -1.53 0.939 
Wind speed 31.297 0.788  65.365 0.801 
Tree age  262.869 0.000  403.825 0.000 
 R2 = 0.282  R2 = 0.158 

 
 
solar radiation, wind speed and tree age have significant 
effects on the  stem  radius  for  both  clones.  In  autumn, 

rainfall appears to have significant effect on stem radius 
for   GU  clone, while it has  no  significant  effect  on  GC  
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clone. The insignificant effect rainfall in winter and 
autumn for GC clone might be due to genetic factor, 
which needs further study. Temperature has significant 
effect and positively related to stem radius in winter for 
both clones (Table 16). In summer, autumn and spring, 
temperature has no significant effect on stem radius 
(Tables 15 and 16). Therefore, the effect of weather 
variables on stem radius is dependent on season.  

Daily stem size variation is important as the net 
increment of a forest stand is ultimately determined by 
the accumulation of daily increment events (Drew et al., 
2009). Several factors might affect the daily stem size of 
trees. For instance, the study by Zweifel et al. (2006) 
indicates that there is a strong dependence of radial 
growth on the current tree-water relations and only 
secondary dependence on the carbon-balance. The 
availability of soil water and the degree to which storage 
tissues were saturated were also factors affecting the 
diurnal course of stem radius changes (Zweifel et al., 
2001). Whitehead and Jarvis (1981) have suggested in 
theoretical approaches, that the diurnal stem radius 
fluctuations are coupled to tree-water relations by 
changing water potential gradients within the tree. 
Studies by Downs et al. (1999) and Deslauriers et al. 
(2003) consider the effect of weather on daily stem 
growth. Deslauriers et al. (2003) studied daily stem radial 
growth of balsam fir to show that total rainfall and 
maximum temperature were positively correlated with the 
stem radius. Climatic variables are highly inter-correlated, 
and the use of OLS to estimate the parameters of the 
response function results in instability and high variability 
of the regression coefficients. As a result, the regression 
coefficients become much larger than would seem 
reasonable physically or practically, and may fluctuate 
widely in sign and magnitude. Accordingly, it was 
observed that the ordinary regression estimates inflated 
the percentage of variation in the stem radial growth 
accounted for by climatic conditions. Ordinary regression 
inferences from such correlated climatic variables can 
result in misleading and confusing conclusions relating to 
variables of major interest to dendroecologists in terms of 
magnitude, sign, and standard error of the coefficients as 
well as R2 (Fekedulegn et al., 2002). 

Both principal component regression and PLS 
regression methods have an advantage over OLS 
regression because they do not require that the 
explanatory variables be orthogonal. The principal 
components are orthogonal, eliminating the multicollinearity 
problem. However, the problem of choosing an optimum 
subset of predictors remains. A possible strategy is to 
keep only a few of the first components. Nevertheless, 
the components are chosen to explain the independent 
(X) rather than the dependent (Y) and there are no 
guarantees that the principal components which explain 
the independent variable can be relevant to explain the 
dependent (Y). On the other hand, PLS regression finds 
components from X that are also relevant for Y. PLS 
regression searches for a set of components that perform 

 
 
 
 
a simultaneous decomposition of X and Y with the 
constraint that these components explain much of the 
covariance between X and Y. The PLS approach is 
considered as a variance-based structural equation 
model (SEM). The alternative SEM is a covariance-based 
SEM. Although both methods use a latent variable term, 
the latent variables used by the two methods are 
different. As indicated by Fornell and Bookstein (1982), 
the latent variables in PLS are estimated as exact linear 
combinations of their indicators. This shows that “latent” 
variables in PLS are not true latent variables as defined 
in SEM, as they are not derived to explain the co-
variation of their indicators, but only to approximate them 
(Mathes, 1993; McDonald, 1996). On the other hand, the 
latent variables in covariance-based SEMs are true latent 
variables. That is they are hypothetically existing entities 
or constructs. In other words, the covariance-based SEM 
latent variables cannot be found as weighted sums of 
manifest variables; they can only be estimated by such 
weighted sums (Schneewiss, 1993). Arguably, PLS has 
the advantage over the covariance based SEM, in that 
Jöreskog and Wold (1982) and Wold (1982, 1985) 
referred to PLS technique as “soft modeling”, because it 
did not require the “hard” distributional assumptions of 
maximum likelihood (ML) which is the core technique in 
SEM, and because it uses a suboptimal estimation 
technique that is faster to run than ML-SEM, which 
therefore allows for more user interaction.  

Finally, the latent variable model approaches used in 
our study show that all climatic variables measured and 
tree age are positively correlated with stem radial 
measure for the pooled data of both clones. Moreover, all 
latent variables had significant effects on the radial 
measure. This was not the case when OLS was applied. 
The effects of the two most important variables, rainfall 
and temperature, were not significant when the OLS 
method was used (Table 1). This may be because the 
ordinary linear regression assumes that the predictors 
are uncorrelated, while in our case the climatic variables 
are correlated (Table 2). It may also be because the 
effect of weather variables changes with season. To 
overcome the problem of correlation among weather 
variables, two alternative methods (Principal component 
regression and PLS) were used. Principal component 
regression models were fitted for the GC and GU clones 
separately, resulting in a positive effect of climatic 
variables on stem radius for both clones. The weather 
data together with the age of a tree accounted for 79% of 
the variance in the stem radial growth for the combined 
data set. This is equivalent to R2 in OLS regression. The 
separate analysis of GC and GU clones showed that the 
weather variables and tree age explained 87 and 79.6% 
of the total variation in radial measure for the GC and GU 
clones, respectively.  

When comparing the PLS model fitted for the GC clone 
and GU clone, the effect of climatic variables is similar for 
the two clones except for the effect of temperature. 
Temperature appears to have an  opposite  effect  on  the 
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radial growth of the two clones. Moreover, 87% of the 
total variation in the stem radial measure is explained by 
the weather variables and tree age by using the PLS 
method for the GC clone and 79% of the variation is 
explained for the GU clone. This indicates that the 
amount of explained variation is larger for the GC clone 
than for the GU clone. The evaluation of the relationship 
between weather variables and stem radius is considered  
after separating the data by season. The effect of 
weather variables on stem radius was found different for 
different seasons. Tree age is the most important factors 
that influences change in stem radius. The importance of 
tree age in determining stem radius should be expected 
as growth is positively related to age most of the time. 
There is no significant effect of weather variables on stem 
radius during summer and spring for both GU and GC 
clones. In autumn, there is significant effect of some 
variables (tree age, solar radiation, wind speed) for both 
GU and GC clones. In winter, the variables temperature, 
relative humidity, solar radiation, wind speed and tree 
age have significant positive relationship with stem radius 
for both clones (Table 16). 
 
 
Conclusions 
 
The study demonstrated that the relationships between 
the daily stem radius and weather variables is positive for 
both the GU and GC clones with the exception of 
temperature. This conclusion was drawn without 
considering season. The analysis by season shows that 
there is no relationship between weather variables 
(temperature, relative humidity, solar radiation, wind 
speed and rainfall) and stem radius for two seasons 
(summer and spring). In winter, there is a positive 
relationship between each of the variables (tree age, 
temperature, relative humidity, solar radiation and wind 
speed) and stem radius. In autumn, the relationship 
between stem radius and variables (solar radiation, wind 
speed and tree age) is positive for both clones. In autumn 
and winter, the effect rainfall on stem radius is significant 
for GU clone, while it is not significant for GC clone. This 
could be mainly due to genetic difference between the 
two clones. This may need further research in the area. 
The study also helps not only to see the role of climatic 
variables on the radial growth but also can be an 
example of an analysis of the effect of correlated 
predictors on the growth of plants in general. Regarding 
the statistical methods used in this study, PLS method 
appears to be best in solving the problem of 
multicollinearity. However, it is advisable to analyze the 
data using different alternative methods before we 
embark on conclusion. From this study, the lesson learnt 
is that the consideration of seasonal effect is 
indispensable, to study the effect of weather variables on 
tree growth. 

In conclusion, the climatic variables, together with tree 
age, explained a substantial amount of variation (79%)  in 
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the stem radius. Tree age is the most important factor 
that influences change in stem radius. The importance of 
weather variables depends on season. In autumn, solar 
radiation and wind speed appears to be more important 
than the other weather variables. In winter, temperature, 
relative humidity and wind speed are more important than 
other weather variables in determining stem radius. This 
study is based on data collected at the juvenile stage of 
Eucalyptus trees. The application of the same techniques 
to adult trees and comparison of the results shall be the 
subject of future work.  
 
 
ACKNOWLEDGEMENTS 
 
The authors are grateful to Dr Valerie Grzekowiak and Dr 
Nicky Jones for their valuable comments and 
suggestions.  
 
 
REFERENCES 
 
Callaham RZ. (1962). Geographic variability in growth of forest trees. In: 

Kozlowski T (ed.), Tree Growth. New York: The Ronald Press 
Company. pp. 311-325.  

D’Arrigo RD, Jacoby GC, Free RM (1992). Tree-ring width and 
maximum latewood density at the North American tree line: 
parameters of climate change. Canadian J. Forest. Res. 22:1290-
1296. 

Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather 
response of balsam fir [Abies balsamea (L.) Mill.] stem radius 
increment from dendrometer analysis in the boreal forests of Quebec 
(Canada). Trees (Berl) 17:477–484. 

Dine E, Yücesoy C, Onur F (2002). Simultaneous spectrophotometric  
determination of mefenamic acid and paracetamol in a 
pharmaceutical preparation using ratio spectra derivative 
spectrophotometry and chemometric methods. J. Pharm. Biomed. 
Anal. 2:1091–1100. 

Downes G, Beadle C, Worledge D (1999). Daily stem growth patterns in 
irrigated Eucalyptus globules and E.nitens in relation to climate. 
Trees 14:102-111. 

Downes G, Drew D, Battaglia M, Schulze D (2009). Measuring and 
modeling stem growth and wood formation: an overview. 
Dendrochronologia 27:147-157. 

Drew DM (2004). Dendrometer trial phase one technical report. Report 
No. EFR092T. Division of Water, Environment and Forestry 
Technology, CSIR.  

Drew D, Downes G, Grzeskowiak V and Naidoo T (2009). Differences in 
daily stem size variation and growth in two hybrid eucalypt clones. 
Trees – Stru. Function. 23:585-595. 

Drew DM, Pammenter NW (2006). Vessel frequency, size and 
arrangement in two eucalypt clones growing at sites differing in water 
availability. New Zealand J. Forest. 51:23-28.  

February EC, Stock WD, Bond WJ, Le Roux DJ ( 1995). Relationships 
between water availability and selected vessel characteristics in 
Eucalyptus grandis and two hybrids. IAWA J. 16:269-276. 

Fekedulegn BD, Colbert JJ, Hicks RR, Schucker ME (2002). Coping 
with multicolinerarity: an example on application of Principal 
Components Regression in Dendroecology. Research, Paper NE-
721. United States Department of Agriculture. 

Fornell C, Bookstein F (1982). Two structural equation models: LISREL 
and PLS applied to Consumer Exit-Voice Theory. J. Mark. Res. 
19:440-452. 

Fritts HC (1976). Tree rings and climate. New York: Academic Press. 
pp. 28-54. 

Haenlein M, Kaplan AM (2004). A beginner’s guide to partial least 
squares analysis. Understanding Stat. 3:283-297.  

Appendix A: Published papers



1244         Afr. J. Agric. Res. 
 
 
 
Hofgaard A, Tardif J, Bergeron Y (1999). Dendroclimatic response of 

Picea mariana and Pinus banksiana along a latitudinal gradient in the 
eastern Canadian boreal forest. Canadian J. Forest Res. 29: 1333-
1346. 

Jöreskog KG, Wold D (1982). The ML and PLS techniques for modeling 
with latent variable historical and comparative aspects. In: Jöreskog 
KG, Wold H (eds.), Systems under indirect observation: causality, 
structure, prediction. Amsterdam: North Holland. pp. 263-270.  

Kozlowski TT, Pallardy SG (1997). Physiology of woody plants. 2nd 
edn. San Diego: Academic Press. pp. 1-6. 

Maitra S, Yan J (2008). Principal component analysis and partial least 
squares: two dimension deduction techniques for regression. 
Casualty Actuarial Society Discussion Paper Program. pp. 79-90. 

Mathes H (1993). Global optimization criteria of the PLS algorithm in 
recursive path models with latent variables. In: Haagen K, 
Bartholomew DJ, Deistler M. (eds.), Statistical modeling and latent 
variables. Amsterdam: Elsevier. Pp. 229-248. 

McDonald RP (1996). Path analysis with composite variables. 
Multivariate Behav. Res. 31:239-270.  

Mevik BH, Cederkvist HR (2004). Mean Squared Error of Prediction 
(MSEP) estimates for Principal Component Regression (PCR) and 
Partial Least Squares Regression (PLSR). J.Chemom.18:422-429. 

Phipps RL (1982). Comments on interpretation of climatic information 
from tree rings, eastern North America. Tree Ring Bull. 42:11-22.  

R Core Team (2012). R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. 
ISBN 3-900051-07-0, URL http://www.R-project.org/. 

Rodriguez-Nogales JM (2006). Approach to the quantification of milk 
mixtures by partial least-squares, principal component and multiple 
linear regression techniques. Food Chem. 98:782-789. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Schneewiss H (1993). Consistency at large in models with latent 

variables. In: Haagen K, Bartholomew DJ, Deistler M. (eds.), 
Statistical modeling and latent variables. Amsterdam: Elsevier. pp. 
299-320. 

Schweingruber FH, Briffa KR, Nogler P (1993). A tree-ring densitometric 
transect from Alaska to Labrador. Int. J. Biometeorol. 37:151-169. 

Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004). Wood 
density and anatomy of water limited eucalypts. Tree Physiol. 
24:1295-1302. 

Turnbull JW (1999). Eucalyptus plantations. New Forests 17:37-52.  
Whitehead D, Jarvis PG. (1981). Coniferous forests and plantations. In: 

Kozlowski TT (ed.), Water deficits and plant growth. New York: 
Academic Press. pp. 50-153. 

Wold H (1982) . Soft modeling: the basic design and some extensions. 
In: Jöreskog KG, Wold H. (eds.), Systems under indirect observations 
: causality , structure, prediction. Amsterdam: North Holland. pp. 1-
54. 

Wold H (1985). Systems analysis by partial least squares. In: Nijkamp 
P, Leitner H, Wrigley N(eds.), Measuring the unmeasurable. Boston : 
Martinus Nijhoff. pp. 221-251.  

Zweifel R, Ha¨sler R (2001). Dynamics of water storage in mature 
subalpine Picea abies: temporal and spatial patterns of change in 
stem radius. Tree Physiol. 21:561–569. 

Zweifel R, Zimmerman L, Zeugin F, Newbery DM.(2006). Intra-annual 
radial growth and water relations of trees: implication towards a 
growth mechanism. J. Exp. Bot. 57:1445-1459. 

 

Appendix A: Published papers



 

 

 

Vol. 8(22), pp. 2685-2695, 13 June, 2013 
DOI: 10.5897/AJAR2013.6920 

ISSN 1991-637X ©2013 Academic Journals 

http://www.academicjournals.org/AJAR 

African Journal of Agricultural  

Research 

 
 
 
 

Full Length Research Paper 
 

Path models-approach to the study of the effect of 
climatic factors and tree age on radial growth of 

juvenile Eucalyptus hybrid clones 
 

Sileshi F. Melesse* and Temesgen Zewotir 
 

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa. 
 

Accepted 30 May, 2013 
 

 

Due to increasing wood consumption and pulp and paper demands, plantations of fast growing tree 
species, have a growing importance for the sustainability of industrial wood raw material. 
Consequently, the efficient utilization of fast growing plantations can have a large impact on 
productivity. Adequate management requires good understanding of factors affecting tree growth. 
This study aimed to determine the factors that influence stem radial growth of juvenile Eucalyptus 
hybrids grown in the east coast of South Africa. Measurement of stem radius was conducted using 
dendrometers on sampled trees of two Eucalyptus hybrid clones (Eucalyptus grandis × Eucalyptus 
urophylla, GU and E. grandis × Eucalyptus camaldulensis, GC). Daily averages of climatic data 
(temperature, solar radiation, relative humidity and wind speed) were simultaneously collected with 
total rainfall from the site. In this study, path analysis was employed. The joint effect of the climatic 
variables as well as the direct effect of each climatic variable was studied. Bootstrap estimation 
procedures, which relax the distributional assumption of the maximum likelihood estimation method, 
were used. It is found that all variables had a positive effect on stem radial growth. The study showed 
that tree age is the most important determinant of radial measure.  
 
Key words: Bootstrap, cross-validation, dendrometer, maximum likelihood, path analysis, standardized 
regression weights.  

 

 

INTRODUCTION 
 
Eucalyptus has increasingly become the most widely 
planted, hardwood genus in the world (Turnbull, 1999). 
Eucalypts provide sawn timber, mine props, paper, pulp, 
fiberboard, poles, firewood, charcoal, essential oils, 
honey and tannin products. Eucalypt plantation growth 
rate is an important economic factor as fast growing trees 
will be available for processing earlier compared to 
slower growing trees. Tree growth and the ultimate 
production of wood is a product of the interaction of 
genetic (Kozlowski and Pallardy, 1997; Apiolaza et al., 
2005; Zweifel et al., 2006), silvicultural (Pallett  and  Sale,  
 

2004) and environmental factors (Gallaham, 1962; 
February et al., 1995; Searson et al., 2004; Drew and 
Pammenter, 2006).  

Climatic factors such as temperature, humidity, 
sunlight, rainfall (Eagleman, 1985; Miller, 2001) and wind 
speed (Wadsworth, 1959) contribute to the growth of 
plants. Growth generally occurs under a broad range of 
climatic variables, but ideal growth occurs during 
optimum climatic conditions. The net contribution of each 
climatic variable is, however, often masked or influenced 
by one or more  other  climatic  variables.  Understanding  
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the relationships between climatic variables and the  
pattern of stem growth would facilitate the prediction of 
wood  properties for a given site. However, such studies 
are limited. Available studies commonly focus on growth 
rate and pattern of growth as a function of age (Miehle et 
al., 2009; Crecente-Campo et al., 2010; Mateus and 
Tomé, 2011). Downes et al. (1999) studied the effects of 
climatic variation on radial growth of irrigated eucalypts in 
Australia. The work of Downes et al. (1999) focused on 
daily stem growth patterns in irrigated Eucalyptus 
globulus and E. nitens in relation to climate. Applying 
multiple regressions, they have shown that weather 
variables accounted for 40 to 50% of the variance in stem 
radial increment. Downes et al. (2009) gave an excellent 
overview on measuring and modeling stem growth and 
wood formation. Since most eucalypt plantations rely on 
natural conditions for growth (no irrigation), assessments 
of the effects of the natural environment is useful to begin 
to understand what the potential impact of drought or 
even climate change may have, not only on growth, but 
potentially also on wood properties. Drew et al. (2009) 
studied the relationship between stem radius and climatic 
factors using the correlation matrix. The methods used by 
both Downes et al. (1999) and Drew et al. (2009) do not 
permit any other relationships among the independent 
variables to be specified. This limits the potential of the 
variables to have direct, indirect and total effects on each 
other. The path models approach used in this study can 
overcome these limitations. This paper describes the 
effects of tree age and climatic variation on radial growth 
of Eucalyptus grandis × E. urophylla (GU) and E. grandis 
× E. camaldulensis (GC) hybrid clones established in 
Zululand on the eastern coast of South Africa. The 
particular emphasis of this paper is on determining the 
climatic factors that most influence radial growth of 
Eucalyptus hybrid clones during the juvenile stages of 
growth.   

 
 
MATERIALS AND METHODS 
 

Study design 
 

A dendrometer trial, which focused on the growth of two Eucalyptus 
hybrid clones was established on Sappi landholdings at 
KwaMbonambi (28.53°

 
S, 32.140

 
E, 55 m MASL) on the Zululand 

coast in the eastern part of South Africa. On average, the site 
receives 1,000 mm of rainfall per annum and has a mean annual 
temperature of 21°C (Drew et al., 2009). The experiment was 
designed to extend over a seven-year period divided into separate 
phases of growth. Each phase ended with the destructive sampling 
of study trees to facilitate measurement of wood anatomical 
characteristics. The results presented in this study are based on the 
data collected only during the first of these phases of growth. This 
phase ran for 16 months from April 2002 until August 2003. Two 
Eucalyptus hybrid clones, E. grandis × E. urophylla (GU) and E. 
grandis × E. camaldulensis (GC), which were commercially 
deployed at the time, were established in the trial (Drew, 2004).  

Planting took place on 16 July 2001. Prior to planting, in April 
2001, stumps of the trees from the previous rotation on the site 
were treated with herbicide (to  prevent  coppicing)  and  slash  from  

 
 
 
 
harvest was burnt. Each rooted cutting was planted in a planting pit 
between existing stumps, with approximately two liters of water. 
The two clones were planted in alternating blocks (three repeats) of 
7 × 24 trees at a spacing of 3 m (E-W) × 2.5 m (N-S). Within each 
block of a particular clone, three plots of 12 (3×4) trees, each with 
two surrounding rows of trees were identified. The plots were 
established as pairs, such that for any phase of the research, a GU 
and a GC plot could be measured simultaneously. Within a 12 tree 
plot, nine trees were selected from each clone for intensive 
monitoring of radial growth and other physiological characteristics 

during Phase 1 (Drew, 2004). Radial growth ( )mµ was measured 

using 18 electric point dendrometers (AEC) mounted on nine trees 
per clone in adjacent plots. One dendrometer was mounted on the 
north side of each sampled tree, at breast height (1.3 m), from 
when trees were nine-months-old. In addition to radial growth, an 
automatic weather station was installed at a distance of 
approximately 200 m from the trial to record hourly temperature 
(°C), relative humidity (%), solar radiation (mJ/h), rainfall (mm) and 
wind speed (m/s). Later on the daily total rainfall and the daily 
average of other variables were obtained from the hourly data. The 
data set used in this study has a total of 8,640 observations for the 
two clones which is the daily data. Half the data set pertains to the 
GU clone and the remaining half to the GC clone. 
 
 
Data analysis 
 
The statistical method employed to analyze the data is path 
analysis. A brief description of path analysis and its relation to the 
classical regression model is given. Path analysis is the statistical 
technique used to examine causal relationships between two or 
more variables. It involves a set of simultaneous regression 
equations that theoretically establish the relationship among 
observed variables in the path model. Path analysis extends the 
idea of regression modeling and gives the flexibility of quantifying 
indirect and total causal effects in addition to the direct effect which 
is also possible in regression analysis (Bollen, 1989). In other 
words, regression analysis allows an independent variable to 
influence an outcome variable only directly. Path analysis however 
gives more flexibility and predictor variables are allowed to 
influence the outcome variable directly as well as indirectly through 
other mediating variables. Path analysis shares the following 
principles of regression analysis: 
 
1. The direction of influence in the relationship of variables should 
be specified from the theory behind the investigation;  
2. Independent variables are assumed to be measured without 
error. 
3. The relationship between target variables is linear. 
4. Any outcome variable in the system of equations under 
investigation has an error term attached to it.  
 
Path analysis is an extension of the regression model, which 
researchers use to test the fit of a correlation matrix with a causal 
model that has been, tested (Garson, 2004). The aim of path 
analysis is to provide estimates of the magnitude and significance 
of the hypothesized causal connections among sets of variables 
displayed through the use of path diagrams. There are three 
interrelated components in path analysis (Bollen, 1989): 
 
1. The translation of a conceptual problem into pictorial 
presentation, which shows the network of relationships; 
2. Obtaining systems of equations that relate observed correlation 
and covariance to parameters; and 
3. Decomposition of effects of one variable on another (that is, 
direct, indirect and total effects) from the correlation of measured 
variables.  
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Figure 1. Path diagram showing the effect of age and climatic variables on radius of 

Eucalyptus hybrid clones during the first measured phase of growth. Time = age; 
solrad = solar radiation; relhum = relative humidity; windsp = wind speed. 

 
 
 
The statistical analyses were performed using AMOS software 
(Amos Development Corporation). Path analysis was conducted by 
considering the radial measure as dependent climatic variables and 
age as independent factors explaining the radial growth. The chi-
square statistic, the normed fit index (NFI), and root mean square 
error of approximation (RMSEA) were used to estimate model fit. 
The larger the probability associated with the chi-square, the better 
the fit of the model to the data (Bollen, 1989; Byrne, 2001). The NFI 
tests the hypothesized model against a reasonable baseline model 
and ideally should be 1·0. A RMSEA of < 0·10 is considered a good 
fit and < 0·05 is very good and lower than 0.01 is considered as 
beautiful fit (Steiger, 1990). Model validity was assessed using the 
expected cross validation index (ECVI). Path significance was 
based on the critical ratio (CR), with a CR > 2 in absolute value 
considered as significant (Arbuckle, 2006; Schumacker and Lomax, 
2004). 

 
 
RESULTS AND DISCUSSION  

 
The independent variables included in the study were the 
five major climatic variables that were measured and the 
age of the trees. The association between the 
independent variables and the radial growth 
measurement of the clones is presented in Figure 1. The 
numbers displayed at the top of the diagram refer to the 
goodness of fit of the model. This fit statistic is the 
likelihood ratio chi-square test. The p-value associated 
with this measure is  0.894,  which  is  by  far  larger  than 

0.05 and indicates a non-statistical significance of the chi-
square test. This implies the model is consistent with the 
data. The numbers displayed next to the double headed 
arrows are estimated correlation coefficients. 

Various measures of fit (Table 1) are presented for the 
fitted model, given in Figure 1, and include the saturated 
model, which is the ideal fit by including all possible 
paths. A model that can be defined as good is one that 
does not differ significantly from the saturated model 
despite omitting paths from the saturated model. On the 
other hand, the ordinary regression model or independent 
model fits by ignoring any potential relatedness between 
the independent variables thus considering all 
correlations among the independent variables as zero.  

The statistical significance of individual parameter 
estimates for the paths in the fitted model (Figure 1) is 
one of the important criteria to be studied. The 
significance can be seen by computing the critical values, 
which are obtained by dividing the parameter estimates 
by their respective standard errors. The computed critical 
values together with the corresponding p-values are 
presented in Table 2. The regression weights for all 
variables were significant with the exception of rainfall, 
which was dropped from the model.  

The other issue to consider at this stage is the 
magnitude and direction of the parameter estimates. In 
this  particular  model  all  the  regression   weights   were 
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Table 1. Different fit measures for the fitted model, saturated and ordinary regression models. 
 

Fit measure 
Model 

Fitted model
1
 Saturated model

2
 Ordinary regression

3
 

Chi square 0.02  1287.06 

Chi square p-value 0.89  0 

Normed fit index (NFI) 1 1 0 

Root mean square error of approximation (RMSEA) 0  0.386 

Expected cross-validation index (ECVI) 0.006 0.006 3.13 

ECVI lower bound 0.006 0.006 3.068 

ECVI upper bound 0.007 0.006 3.193 

Modified expected cross validation index (MECVI ) 0.006 0.006 3.131 
 
1
The model presented in Figure 1. 

2
Model that includes all possible paths. 

3
The independent model that assumes no correlation 

between the independent variables. 
 
 
 

Table 2. Regression weights indicating the relationship between radial growth and each independent variable for the 
combined data set (Maximum Likelihood Estimates). 
 

Relationship Maximumlikelihood estimates Standard error Critical ratio P-value 

Radius<---time 313.51 2.18 143.91 *** 

Radius<---temperature 23.74 12.64 1.88 0.06 

Radius<---solar radiation 2817.03 220.03 12.80 *** 

Radius<--- relative humidity 63.76 5.75 11.09 *** 

Radius<---wind speed 1447.03 73.63 19.65 *** 
 

*** the p-value is less than 0.001. 
 
 
 
positive indicating the existence of a positive relationship 
between radial growth and the climatic variables. The 
standardized regression coefficients are 0.832 (age of a 
tree), 0.012 (temperature), 0.092 (solar radiation), 0.076 
(relative humidity) and 0.113 (wind speed). This suggests 
that the most important variable to explain radial growth 
is age of the tree. It is also estimated that the predictors 
of radius explain 79% of its variance. In other words, the 
error variance of radius is approximately 20.9% of the 
variance of radius itself. 

Although the goodness of fit measures indicate that the 
fitted model (Figure 1) is a good fit (Table 1), the 
parameter estimates show that rainfall has no direct 
influence on the radial growth. An attempt was made to 
modify the fitted model (Figure 1) by making rainfall a 
required variable in the model. Such a modification 
procedure is called specification search (Leamer, 1978). 
The objective of specification search is to alter the 
original model in search of a model that is better fitting in 
some sense, and yields parameters having practical, and 
in this case biological significance, and substantive 
meaning. The path diagram for the first attempt at 
modification is presented in Figure 2. For this path 
analysis model, a good ‘goodness of fit’ was obtained. 
The calculated value of the chi-square statistics was 
3.194 with one degree of freedom and a p-value of 0.074. 

However, the goodness of fit for the second fitted model 
(Figure 2) was not as good as the model fit shown in 
Figure 1. The parameter estimates for the second fitted 
model (Figure 2) suggest that rainfall had no direct 
significant effect. Therefore, no additional information 
was gained by modifying the path diagrams from that of 
Figure 1 to that of Figure 2.  

The third attempt at specification search was to 
consider a model fit for the second fitted model (Figure 2) 
that excluded wind speed as an explanatory variable 
(Figure 3). The model fit was good and parameter 
estimates were significant. The regression weight for 
rainfall in the prediction of radial growth was significantly 
different from zero at the 0.001 level (two-tailed, Figure 
3). This indicates that rainfall has a significant effect on 
the radial growth of trees in the absence of wind speed. 
For this model, it is estimated that the predictors of radial 
growth explain 78.2% of its variance. This is very close to 
the value obtained for the first model (Figure 1), which 
includes all the predictors in the model. The standardized 
regression coefficients were 0.859 (age of a tree), 0.042 
(temperature), 0.096 (solar radiation), 0.026 (relative 
humidity) and 0.03 (rainfall). These standard regression 
coefficients indicate that age of the tree is the most 
important variable in determining the stem radial growth. 
Models   fitted   without   temperature   or   tree   age    as 
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Figure 2. Path diagram showing the effect of age and climatic variables on radius 
of Eucalyptus clones when rainfall is considered a required variable. Time = age; 
solrad = solar radiation; relhum = relative humidity; windsp = wind speed. 

 
 
 

 
 
Figure 3. Path diagram showing the effect of age and climatic variables on 

radius of Eucalyptus clones when wind speed is omitted as an explanatory 
variable. Time = age; solrad = solar radiation; relhum = relative humidity.
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explanatory variables did not fit well. A model that 
excluded relative humidity fitted well and resulted in 
rainfall having a significant effect on radial growth. The 
significance of rainfall in the absence of relative humidity 
and solar radiation was possibly caused by 
multicollinearity (where two or more predictor variables in 
a multiple regression model are highly correlated). The 
correlation among the climatic variables themselves is 
also significant. When only rainfall and wind speed were 
considered independent variables, the regression weight 
for rainfall became negative. The same occurred when 
only rainfall and relative humidity were treated as 
independent variables. This wrong sign of coefficients is 
an indication of possible multicollinearity. As a result, the 
effect of rainfall on radial growth cannot be completely 
ruled out, as its non-significance is possibly caused by 
multicollinearity. Some researchers noted that structural 
equation models are robust against multicollinearity 
(Malhotra et al., 1999), with some going as far as to 
explicitly state that Structural Equation Models (SEM) can 
remedy multicollinearity problems. For example, 
Maruyama (1998) argues that "structural equation 
approaches can help deal with some cases where the 
correlations among the predictors are large”. On the other 
hand, some researchers have warned that 
multicollinearity can lead to SEM estimates being far from 
the true parameters, as well as the occurrence of large 
standard errors of the estimates (Jagpal, 1982; 
Grapentine, 2000). A simulation study by Grewal et al. 
(2004) showed some conditions under which 
multicollinearity caused problems. The study showed that 
when multicollinerity is extreme, type II error rate 
(accepting the null hypothesis when it is false) is 
generally, unacceptably high. They also indicated that for 
multicollinearity levels of between 0.6 and 0.8, type II 
error rates can be substantial (greater than 50% and 
frequently above 80%), if composite reliability is weak, 
explained variance (R

2
) is low and sample size is 

relatively small. When multicollinearity levels are between 
0.4 and 0.5, type II error rates tend to be quite small 
except when reliability is weak, R

2 
is low and the sample 

size is small. In the present study R
2 

values were large 
and the multicollinearity level was not high.  

Estimates of regression weights for rainfall, which is 
important for growth, were inconsistent. Consideration of 
more complex models may improve results. In the path 
diagrams considered thus far only one dependent 
variable (radial growth) was used. Path analysis allows 
the simultaneous modeling of several related regression 
relationships. This means that path analysis can handle 
more than one independent variable in the model. 
Moreover, a variable can be a dependent variable in  one 
relationship and an independent variable in another 
relationship of the path model. An attempt was made to fit 
a model where two dependent variables, namely rainfall 
and temperature, mediated the effects of relative 
humidity, solar radiation and wind speed. In this model,  it  

 
 
 
 
was hypothesized that the age of a tree had a direct 
effect on radial growth. Solar radiation, relative humidity 
and wind speed were assumed to have an indirect effect. 
The fitted model is presented in Figure 4.  

The value of the chi-square statistic is 862.7 with a p-
value of zero. This indicates that the model does not fit 
the data well. However, the parameter estimates of the 
regression weights are all significant (Table 5). The 
magnitude of each effect is quantified by standardized 
regression coefficients. The standardized regression 
coefficients are 0.87 (age of the tree), 0.091 
(temperature), and 0.018 (rainfall). From this it can be 
seen that the most important variable to explain radial 
growth is tree age. For the model in Figure 4 there are 
three structural equations, one for each of the three 
dependent variables: rainfall; temperature and radius. In 
terms of variable names, the structural equations are:  
 

3inf

2

1inf

errortimeetemperaturallraradius

errorspeedwindradiationsolarhumudityrelativeetemperatur

errorspeedwindradiationsolarhumudityrelativeallra

+++=

+++=

+++=  

 
This model includes direct effects (e.g. age of the tree on 
radial growth), indirect effects (e.g. effect of relative 
humidity through rainfall) and correlated independent 
variables (e.g. relative humidity, solar radiation and wind 
speed). The estimated model using AMOS statistical 
software is given by:  
 

timeetemperaturallraradius

speedwindradiationsolarhumudityrelativeetemperatur

speedwindradiationsolarhumudityrelativeallra

67.32937.178inf73.20

39.177.8017.0

22.327.6196.0inf

++=

++=

+−=

 
From the fitted model (Figure 4) the positive effect of the 
predictors, rainfall, temperature and tree age can be 
seen. The standardized regression weights for this model 
indicate that tree age, temperature and rainfall are 
respectively important determinants of radial growth.  

The data set to which the above models were applied 
was a combined data set (for both E. grandis hybrid 
clones). In order to see if there was any difference 
between the two clones, a multiple group analysis was 
used. In this regard, the good fitting model produced in 
Figure 1 and the model with multiple dependent variables 
(Figure 4) was considered. The good fitting model of 
Figure 1 was fitted to the data set for GU clone, alone. 
The model fitted the data very well. The value of the chi-
square statistics was 0.06 with one degree of freedom 
and the corresponding p-value was 0.804. The next 
question to address was whether the same model fitted 
the data for the GC clone. Furthermore, the equality of 
the parameters needed to be tested. Instead of a 
separate group analysis, a single analysis that 
simultaneously estimated parameters and tested 
hypotheses about both groups was considered. This 
method provided a test for the significance of any 
differences found between the GU and GC clones. In 
addition, if there  were  no  differences  between  the  two
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Figure 4. Path diagram showing the effect of multiple dependent variables 

(rainfall and temperature) on radial growth of Eucalyptus clones. Time = age; 
solrad = solar radiation; relhum = relative humidity. 

 
 
 
clones, or if group differences concerned only a few 
model parameters, the simultaneous analysis of both 
groups would have provided more accurate parameter 
estimates than would have been obtained from separate 
single-group analyses. A test for pair wise path coefficient 
differences for the two clones was conducted. Some fit 
measures for various models were generated, together 
with fit measures for saturated and independence models 
are shown in Table 3.  

The structural weight model specifies that the 
regression weights for predicting radial growth from the 
measured climatic variables and the age of tree were the 
same for the GU and GC clones. The unconstrained 
model is the model that assumes that all the parameters 
for the two groups are different. For the unconstrained 
model, the value of chi-square was 0.08 with the 
corresponding p-value equal to 0.96. This indicated that 
the unconstrained model fitted the data very well. The 
structural weight model with a chi-square value of 364.59 
and with seven degrees of freedom was rejected at any 
conventional significance level, suggesting that the 
regression weights of the two clones were significantly 
different. The assumption that the regression weights for 
the exogenous variables were the same for both clones 
was not supported. The estimated regression weights for 
the unconstrained model are summarized in Table 4  and 

Table 5. When comparing the regression weights for the 
two clones, these were all positive, indicating a positive 
effect of the climatic variables as well as tree age on 
radial growth. In addition, regression weights obtained for 
the GU clone were larger than those obtained for the GC 
clone, indicating that the GU clone grows faster than the 
GC clone. Regression weights of the GU and the GC 
clones, for the multiple dependent model in Figure 4, 
were also compared. The regression weights for the two 
clones were significantly different. The results of this 
model also show that the GU has faster growth than the 
GC clone.  

The maximum likelihood estimates given in Tables 4 
and 5 require the data to be of a continuous scale and 
have a multivariate normal distribution. The approximate 
standard errors used in the inference were therefore 
produced based on formulae that depend on normality 
assumptions. Non-normality can lead to spuriously low 
standard errors, with degrees of underestimation ranging 
from moderate to severe. The consequences are that, 
because the standard errors are underestimated, the 
regression paths and factors / error covariances will be 
statistically significant, although they may not be so in the 
population (Byrne, 2001).  

It is known that many data do not qualify for 
multivariate  normality   and   the   current    data    is    no
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Table 3. Summary of fits for various models including the structural weight model.  
 

Model Number of parameters Chi-square df P-value Chi-square / df 

Unconstrained 54 0.08 2 0.96 0.04 

Structural weights  49 364.59 7 0.00 52.09 

Structural covariance s 28 364.59 28 0.00 13.02 

Structural residuals  27 1293.58 29 0.00 44.61 

Saturated model  56 0.00 0   

Independent model  14 29255.12 42 0.00 696.55 
 

df = Degrees of freedom. 

 
 
 

Table 4. Regression weights for the GU clone when the path model in Figure 1 was fitted to compare the two clones (Unconstrained). 
 

Relationship Maximumlikelihood estimates Standard error Critical ratio P-value Label 

Radius<---time 341.88 3.33 102.81 *** b1_1 

Radius<---temperature 43.34 19.30 2.25 0.025 b2_1 

Radius<---solar radiation 3253.04 335.85 9.69 *** b3_1 

Radius<---relative humidity 75.14 8.77 8.57 *** b4_1 

Radius<--- wind speed 1570.35 112.39 13.97 *** b5_1 
 

***indicates  the p-value is less than 0.001. 

 
 

Table 5. Regression weights for the GC clone when the path model in Figure 1 was fitted to compare the two clones (Unconstrained). 

 

Relationship Maximumlikelihood estimates Standard error Critical ratio P-value Label 

Radius<---time 285.14 2.075 137.436 *** b1_2 

Radius<---temperature 4.13 12.040 .343 0.732 b2_2 

Radius<---solar radiation 2381.02 209.543 11.363 *** b3_2 

Radius<---relative humidity 52.39 5.472 9.575 *** b4_2 

Radius <---wind speed 1323.72 70.119 18.878 *** b5_2 
 

*** indicates  the p-value is less than 0.001. 

 
 
exception. Using AMOS statistical software the data was 
checked to see whether it had a multivariate normal 
distribution. The Mardia's (1970) coefficient of 
multivariate kurtosis was 57.31 with a critical ratio of 
237.3, which highly favours multivariate non-normality of 
the data. 

A possible approach to overcome the problem of the 
existence of multivariate non-normal data is to use a 
method known as "bootstrap" (West et al., 1995; Yung 
and Bentler, 1996). This technique enables us to create 
multiple subsamples from an original data base. The 
importance of drawing these multiple samples is that we 
can examine parameter distributions relative to each of 
these newly produced samples. These distributions serve 
as a bootstrap sampling distribution and technically 
operate in the same way as the sampling distribution 
generally associated with parametric inferential statistics. 
In contrast to traditional statistical methods, however, the 
bootstrap sampling distribution is concrete and allows for 
comparison of parametric values over  repeated  samples 

that have been drawn (with replacement) from the 
original sample. The bootstrap method is free from the 
distributional assumptions and can be used to generate 
an approximate standard error for many statistics without 
having to satisfy the assumption of multivariate normality. 
With this beneficial feature in mind, the bootstrap method 
was applied to the good fitting model in Figure 1. In this 
process, 10,000 bootstrap samples were generated. The 
reported value of the chi-square was 0.018 with one 
degree of freedom. The bootstrap standard errors for 
regression weights are presented in Table 6. The table 
lists the bootstrap estimate of the standard error for each 
independent variable in the model. Each value represents 
the standard deviation of the parameter estimates 
computed across the 10,000 bootstrap samples. These 
values were compared with the values of the approximate 
maximum likelihood estimates presented in Table 2. 
Some discrepancies between the two sets of standard 
error estimates were observed. The third column of Table 
6, labeled SE-SE provides the approximate standard
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Table 6. Bootstrap standard errors for the path model in Figure 1. 
 

Parameter (un-standardized )  SE SE-SE Mean Bias SE-Bias 

Radius<---time 2.35 0.017 313.52 0.010 0.024 

Radius<---temperature 12.55 0.089 23.85 0.11 0.125 

Radius<---solar radiation 220.36 1.56 2816.58 -0.451 2.204 

Radius<---relative humidity  5.89 0.042 63.75 -0.018 0.059 

Radius<---wind speed 69.65 0.493 1446.07 -0.967 0.697 

      

Standardized parameter      

Radius<---time 0.004 0.000 0.832 0.000 0.000 

Radius<---temperature 0.006 0.000 0.012 0.000 0.000 

Radius<---solar radiation 0.007 0.000 0.092 0.000 0.000 

Radius<---relative humidity 0.007 0.000 0.076 0.000 0.000 

Radius<---wind speed 0.006 0.000 0.113 0.000 0.000 

 
 
 

Table 7. Ninety-five percent bootstrapped confidence intervals (bias-corrected percentile method). 

 

Regression weights Estimate Lower Upper P 

Radius<---time 313.51 308.86 318.03 0.000 

Radius<---temperature 23.74 -1.21 48.76 0.060 

Radius<---solar radiation 2817.03 2392.34 3252.47 0.000 

Radius<---relative humidity 63.76 52.27 75.19 0.000 

Radius<---wind speed 1447.03 1314.33 1588.51 0.000 

     

Standardized regression weights     

Radius<---time 0.832 0.824 0.841 0.000 

Radius<---temperature  0.012 -0.001 0.025 0.059 

Radius<---solar radiation 0.092 0.078 0.106 0.000 

Radius<---relative humidity  0.076 0.063 0.090 0.000 

Radius<---wind speed 0.113 0.103 0.124 0.000 
 
 
 

error of the bootstrap standard error itself. These values 
were very small indicating that the standard errors were 
estimated with a reasonable level of accuracy.  

Column four, labeled mean, lists the mean parameter 
estimates computed across the 10,000 bootstrap 
samples. Arbuckle (2006) on page 301 emphasized that 
this bootstrap mean is not necessarily identical to the 
original estimate. Column five (Bias) represents the 
differences between the bootstrap mean estimates and 
the original estimates. These values are very small for 
most of the cases and positive values indicate that the 
estimates of the bootstrap samples are higher than the 
original maximum likelihood estimates. The low bias 
indicates that the maximum likelihood estimates and the 
bootstrap estimates are very close to each other. The last 
column, labeled SE-Bias, reports the approximate 
standard error of the bias estimate. For the majority of the 
cases the estimated bias is smaller in magnitude than its 
standard error. This indicates that there is little evidence 
that the regression weights are biased.  

The bootstrap confidence intervals are presented in 
Table 7. The bias-corrected confidence intervals are used 
because these intervals are considered to yield more 
accurate values than percentile confidence intervals 
(Efron and Tibshirani, 1993). The confidence intervals for 
tree age, solar radiation, relative humidity and wind 
speed do not include zero. It can therefore be concluded 
that the regression weights of these dependent variables 
are significantly different from zero. The value of p in the 
'p' column of Table 7 indicates that a 100(1-p)% 
confidence interval would have one of its end points at 
zero. In this sense, the p-value can be used to test the 
hypothesis that an estimate has a population value of 
zero. In this case the relationship between radius and 
temperature has a p-value 0.06, which means that a 94% 
confidence interval would have a lower boundary at zero. 
In other words, a confidence interval at any level less 
than 94% such as 90% or 92% would not include zero, 
and therefore reject the hypothesis that the regression 
weight  is  zero  for  a  90%  confidence  interval.  For  the 
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relationship of radius with other independent variables 
the hypothesis at any conventional significance level 
such as 95 or 99% is rejected. Therefore, by applying the 
bootstrap method, it can be seen that the dependent 
variables had a significant effect on the radial growth of 
Eucalyptus trees. This result also agreed with the result 
obtained using the maximum likelihood method. It is also 
of interest to evaluate the appropriateness of the 
hypothesized model itself. Bollen and Stine (1993) 
provided a means of testing the null hypothesis that the 
specified model was correct. The Bollen-Stine bootstrap 
corrected p-value was 0.878. This corrected p-value 
indicates that the hypothesized model should not be 
rejected. This result is also in agreement with the 
maximum likelihood results. The other issue with the 
specified model was cross validation. To assess the 
validity of the model in Figure 1, expected cross 
validation index (ECVI) was applied. ECVI is proposed as 
a means to assess, in a single sample, the likelihood that 
the model cross-validates across similar size samples 
from the same population (Browne and Cudeck, 1989). It 
measures the discrepancy between the fitted covariance 
matrix in the analyzed sample, and the expected 
covariance matrix that would be obtained in another 
sample of equivalent size. Application of ECVI assumes a 
comparison of models, whereby ECVI index is computed 
for each model and then all ECVI values are placed in 
rank order. The model having the smallest ECVI value 
exhibits the greatest potential for replication. There is no 
determined appropriate range of values for ECVI as it can 
assume any value (Byrne, 2001). In the present case the 
values of ECVI are presented in Table 1. In assessing the 
hypothesized model, its ECVI value of 0.006 was 
compared with that of the independence model 
(ECVI=3.13). The ECVI for the saturated model was also 
0.006. The ECVI for the hypothesized model was less 
than that of the independence model. It can therefore be 
concluded that the hypothesized model represents the 
best fit to the data. Furthermore, a 95% confidence 
interval for ECVI is given by [0.006, 0.007]. This indicates 
that of the overall possible randomly sampled ECVI 
values, 95% of them will fall [0.006, 0.007], suggesting 
that the model cross validates over the independent 
model.  

 
 
Conclusions  
 
Classical methods, like ordinary regression models once 
the regression model is specified, do not permit any other 
relationships among the independent variables to be 
specified. This limits the potential of the variables to have 
direct, indirect and total effects on each other. In path 
analysis one can see the direct effect, indirect effect and 
total effects of variables. In path analysis a unique 
additional contribution of each variable can be studied 
using the standardized regression weights.  Even  though  

 
 
 
 
we can study the additional contribution of each variable 
in multiple regressions, this can work ideally only if all 
independent variables are highly correlated with the 
dependent variable and uncorrelated among themselves. 
In contrast, path models provide theoretically meaningful 
relationships in a manner not restricted to a multiple 
regression model (Schumacker, 1991). In path analysis, 
we can estimate parameters for more than one 
regression equation because this analysis can be 
considered as a series of regressions applied 
sequentially to the data. Structural Equation Models 
(SEM) are considered as path analysis involving latent 
variables. In the present case, latent variables were not 
included and hence path models were generated. Path 
analysis was employed mainly because the climatic 
variables were correlated and the unique, additional 
contribution of each climatic variable on radial growth of 
eucalypts was of interest.  

The best fitting path model generated in this study 
showed that all climatic variables and age of the tree had 
a positive effect on stem radial growth for the pooled data 
of both clones. Furthermore, all except one variable 
(rainfall) had a significant, direct effect on radial growth. It 
was also observed that the age of the tree was the most 
important variable explaining stem radial growth. 
Although rainfall was not significant in the best fitting 
model, it was found to be significant for the model that 
excluded wind speed and for the model that omitted solar 
radiation. This revealed that the effect of rainfall on radial 
growth cannot be ruled out. To compare the effect of the 
explanatory variables on the radial growth of the GU and 
GC clones, a single analysis that estimated parameters 
and tested hypotheses about both groups simultaneously 
was considered. The regression weights for the two 
clones were significantly different. The regression 
weights were all positive indicating the positive effect of 
the climatic variables as well tree age. In addition, the 
regression weights obtained for the GU clone were larger 
than the regression weights for the GC clone. This shows 
that the GU clone was growing faster than the GC clone 
which can easily be confirmed by looking at the growth of 
the two clones. 

The main estimation method for path models, or any 
structural equation model (SEM) is maximum likelihood 
estimation. This method requires a distributional 
assumption, which the present data failed to satisfy. The 
bootstrap method was then applied to overcome the 
methodological failure due to non-normality. The 
estimated bias using the bootstrap method was very 
small showing that there was little evidence of bias in the 
estimates. The conclusion reached using the maximum 
likelihood method agreed with that of the bootstrap 
method. The expected cross-validation index obtained for 
the hypothesized model also showed that this model 
cross-validated over the independent model.  

To sum up, the climatic variables measured in this 
study, together with  tree  age,  had  a  positive  effect  on  



 
 
 
 
stem radial growth during the juvenile stage of 
development. Age of the tree was the most important 
variable in explaining stem radial growth. The growth of 
the GU clone was faster than the growth of the GC clone, 
possibly indicating that this clone has better genetic 
potential. However, this could also indicate that, 
compared to the GC clone, the GU clone is better 
adapted to the environmental conditions, or it is able to 
use the available resources more effectively.  
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           Appendix B :  Partial R-code used in the thesis  

           ############################################################################ 

            ## R code for fitting the selected fractional polynomial models ############ 

            ############################################################################## 

           library(nlme) 

           library(lattice) ## will attach library lattice ## 

           library(foreign) 

           mygeno<- read.spss(file="C:\\summ98.sav") 

           mygeno<-as.data.frame(mygeno) 

           mygeno<-as.data.frame(mygeno) 

           attach(mygeno) 

           myg1<-groupedData(radius ~ time|treeno, data = mygeno, outer = ~ clone) 

          attach(myg1) 

          dataGu<-myg1[clone=='GU',] 

          dataGc<-myg1[clone=='GC',]   

          xyplot(radius ~ time|treeno, mygeno, groups=clone, type="l",  

          xlab=" Age in weeks ", main="Profile plot of Individual Trees",  

          ylab="  radial growth ")   

          interaction.plot(time, clone, radius, fun=mean, col=2:14, 

           xlab= "Age in weeks",ylab= " mean radius", 

          main="Mean profile of radial growth by hybrids",las=1) 

          interaction.plot(time, as.factor(treeno), radius, fun= var,  

          col=2:14, xlab= "Age in weeks", ylab= " mean radius", 

          main=" Profile plot of radial growth ",   las=1) 

          interaction.plot(time, as.factor(treeno), radius, fun= mean,  
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          col=2:14, xlab= "Age in weeks",ylab= " mean radius", 

          main=" Profile plot of radial growth ",   las=1) 

                  ## Figure 2.2 ## 

          par(mfrow=c(1,2)) 

          attach(dataGu) 

          interaction.plot(time, treeno, radius, fun= mean, col=2:14,  

          ylim=c(5000, 30000), xlab= "Age in weeks",ylab= " stem radius in micro metre", 

          main=" Profile plot of radial growth for GU clone ",   las=1) 

          attach(dataGc) 

          interaction.plot(time, treeno, radius, fun= mean, col=2:14,  

          ylim=c(5000, 30000), xlab= "Age in weeks",ylab= " stem radius in micro metre", 

          main=" Profile plot of radial growth for GC clone ",   las=1) 

       ########### Loess smoothed curves by clone Figure 2.3 ############################## 

        attach(dataGu) 

        plot(time, radius, type="n", ylim=c(5000, 30000), ylab=" Mean radius in micro metre",   

        xlab= " Age in weeks", main="Loess smoothed curves for radial growth of the two clones") 

        lines(loess.smooth(time, radius, span=0.6), lty=4) 

        attach(dataGc) 

        lines(loess.smooth(time, radius, span=0.6),lty=1) 

        temp <- legend("topleft", legend = c(" ", " "), 

               text.width = strwidth("1,000,000"), 

               lty = c(4,1), xjust = 1, yjust = 1, 

               title = "Legend") 

       text(temp$rect$left + temp$rect$w, temp$text$y, 

         c( " GU", " GC"), pos=2) 
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     ######################################################################## 

#############lot  of variances of radius  ######################### 

     attach(myg1) 

     attach(dataGu) 

     variance1<-tapply(dataGu$radius, time, var) 

     plot(unique(time), variance1, type="n", main=" Plot variance functions for GU and GC clones ", 

     xlab='Age in weeks', ylab='Variance') 

     lines(loess.smooth(unique(time), variance1, span=0.6), lty=4) 

     attach(dataGc) 

    variance2<-tapply(dataGc$radius, time, var) 

    lines(loess.smooth(unique(time), variance2, span=0.6),lty=1, xlab='Age in weeks', ylab='Variance') 

          temp <- legend("topleft", legend = c(" ", " "), 

               text.width = strwidth("1,000,000"), 

               lty = c(4, 1), xjust = 1, yjust = 1, 

               title = "Legend") 

     text(temp$rect$left + temp$rect$w, temp$text$y, 

       c(" GU",  "GC"), pos=2) 

    ## Figure 2.4 ## 

     par(mfrow=c(1,2)) 

     attach(myg1) 

     plot(unique(time), variance1, type="n", main=" Plot of variance for GC clone ",  

     xlab='Age in weeks',ylab='Variance in squared micro metre') 

     attach(dataGc) 

     variance2<-tapply(dataGc$radius, time, var) 

     lines(loess.smooth(unique(time), variance2, span=0.6),lty=1, 
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      xlab='Age in weeks', ylab='Variance') 

 

     attach(dataGu) 

     variance1<-tapply(dataGu$radius, time, var) 

     plot(unique(time), variance1, type="n", ylab='Variance in squared micro metre', 

     main=" Plot of variance for GU clone ", xlab='Age in weeks', ) 

     lines(loess.smooth(unique(time), variance1, span=0.6), lty=4 

         #############linear model that contains all covariates  ########################## 

     mygeno1<- read.spss(file="C:\\p2commod.sav") 

     mygeno<-as.data.frame(mygeno1) 

     mygeno1<-as.data.frame(mygeno1) 

     attach(mygeno1) 

     myg11<-groupedData(radius ~ time|treeno, data = mygeno, outer = ~ clone) 

     attach(myg11) 

     dataGu1<-myg11[clone=='GU',] 

     dataGc1<-myg11[clone=='GC',] 

     attach(dataGu1) 

     mod1<-lm(radius~time+ I(sqrt(time))+Temp+rainfall+relhum+solrad+windsp, data=dataGu1) 

     variance1<-tapply(mod1$residuals, time, var) 

     par(mfrow=c(1,2))  

     plot(unique(time), variance1, type="n", ylim=c(0, 2500000),xlab='Age in weeks', 

     main=" Plot of variance of residuals for GU clone ", ylab='Variance') 

     lines(loess.smooth(unique(time), variance1, span=0.6), lty=4) 

      attach(dataGc1) 

     mod2<-lm(radius~time+ I(sqrt(time))+Temp+rainfall+relhum+solrad+windsp, data=dataGc1) 
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     variance2<-tapply(mod2$residuals, time, var) 

     plot(unique(time), variance2, type="n", ylim=c(0, 2500000), xlab='Age in weeks',  

     main=" Plot of variance of residuals for GC clone ", ylab='Variance') 

     lines(loess.smooth(unique(time), variance2, span=0.6), lty=2) 

      attach(dataGu1) 

     mod1<-lm(radius~time+ I(sqrt(time))+Temp+rainfall+relhum+solrad+windsp, data=dataGu1) 

     variance1<-tapply(mod1$residuals, time, var) 

     plot(unique(time), variance1, type="n", xlab='Age in weeks', 

     main=" Plot of variance of residuals for GU and GC clones ",  ylab='Variance') 

     lines(loess.smooth(unique(time), variance1, span=0.6), lty=4) 

      attach(dataGc1) 

     mod2<-lm(radius~time+ I(sqrt(time))+Temp+rainfall+relhum+solrad+windsp, data=dataGc1) 

     variance2<-tapply(mod2$residuals, time, var) 

     lines(loess.smooth(unique(time), variance2, span=0.6), lty=1) 

     temp <- legend("topleft", legend = c(" ", " "), 

               text.width = strwidth("1,000,000"), 

               lty = c(4, 1), xjust = 1, yjust = 1, 

               title = "Legend") 

       text(temp$rect$left + temp$rect$w, temp$text$y, 

       c(" GU",  "GC"), pos=2) 

        ## Code to plot Figure 2.5 ################################### 

       ####################################################### 

      attach(myg11) 

      lmod<-lm(radius~time+ I(sqrt(time))+Temp+rainfall+relhum+solrad+windsp, data=myg11) 

     res<-cbind(myg11$time, lmod$residuals, myg11$clone) 
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     res11<-as.data.frame(res) 

     attach(res11) 

     rrd<-myg11$radius 

     rd40<-res11$V2[res11$V1 ==40] 

     rd41<-res11$V2[res11$V1 ==41] 

     rd70<-res11$V2[res11$V1==70] 

      rd100<-res11$V2[res11$V1==100] 

     rd101<-res11$V2[res11$V1==101] 

       radius1<-cbind(rd40, rd41, rd70, rd100, rd101) 

    cor(radius1) 

     panel.hist <- function(x, ...) 

     { 

      usr <- par("usr"); on.exit(par(usr)) 

      par(usr = c(usr[1:2], 0, 1.5) ) 

        h <- hist(x, plot = FALSE) 

     breaks <- h$breaks; nB <- length(breaks) 

       y <- h$counts; y <- y/max(y) 

    rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...) 

      } 

           panel.cor <- function(x, y, digits=2, prefix="", cex.cor, ...) 

           { 

            usr <- par("usr"); on.exit(par(usr)) 

             par(usr = c(0, 1, 0, 1)) 

            r <- abs(cor(x, y)) 

          txt <- format(c(r, 0.123456789), digits=digits)[1] 
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         txt <- paste(prefix, txt, sep="") 

         if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt) 

           text(0.5, 0.5, txt, cex = cex.cor * r) 

              } 

     pairs(radius1, panel=panel.smooth, cex = 1.5, pch = 24,bg="light green",diag.panel=panel.hist,  

      upper.panel=panel.cor,cex.labels = 2, font.labels=2) 

#######################################################################  

#################################  Code Figure 2.6  ####################### 

         myg11.lm<-lm(radius~time+ I(sqrt(time))+Temp+rainfall+relhum+solrad+windsp, data=myg11) 

             fm3Orth.lm <- update( myg11.lm, formula = . ~ . +clone ) 

             fm4Orth.lm <- update( myg11.lm, formula = . ~ . +clone+clone*time+clone*I(sqrt(time)) ) 

             fm5Orth.lm <- update( fm4Orth.lm, formula = . ~ . -relhum ) 

             fm6Orth.lm <- update( fm5Orth.lm, formula = . ~ . -windsp ) 

             fm7Orth.lm <- update( fm6Orth.lm, formula = . ~ . -clone ) 

            fm8Orth.lm <- update( fm7Orth.lm, formula = . ~ . -(clone*time)+time ) 

           summary(fm8Orth.lm) 

         bwplot(getGroups(myg11)~resid(fm8Orth.lm), xlab='residuals', 

         ylab='tree number', main='Boxplot of OLS residuals for each tree') 

                   ################  Figure 5.1 and Figure 5.2   #######            

          Gu.list<-lmList(radius~time+ I(sqrt(time))|treeno, subset=clone=='GU',  

         data=myg1, na.action= drop) 

          Gc.list<-lmList(radius~time+I(sqrt(time))|treeno, subset=clone=='GC',  

        data=myg1,na.action= drop ) 

          GcGU.list<-lmList(radius~time+I(sqrt(time))|treeno,  

        data=myg1,na.action= drop ) 

          old<-par(mfrow=c(1,3)) 
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                             ########   Figure 5.1  ############## ## 

      plot(intervals(Gu.list), main= 'Confidence interval for GU clone')    

         ## plot(intervals(Gc.list), main= 'Confidence interval for GC clone')##   

         ## plot(intervals(GcGU.list), main= 'Confidence interval for both clones')##    

           par(old) 

         ## Figure 5.2 ## 

          Gu.coef<-coef(Gu.list) 

          Gu.coef[1:5,] 

          Gc.coef<-coef(Gc.list) 

          Gc.coef[1:5,] 

         old<-par(mfrow=c(1,3)) 

         boxplot(Gu.coef[,1], Gc.coef[,1], main='Intercepts',names=c('GU', 'GC')) 

         boxplot(Gu.coef[,2], Gc.coef[,2], main=' coefficient of time ',names=c('GU', 'GC')) 

         boxplot(Gu.coef[,3], Gc.coef[,3], main=' coefficient of square root of time ',names=c('GU', 'GC')) 

         par(old) 

                      #### ## Selecetion of random effects  for fractional polynomial model ### ## 

     sqrfc1.lme<-lme(radius~ as.factor(clone)*I(time-39) + as.factor(clone)*I(sqrt(time-39)) 

      ,control= lmeControl(msMaxIter=100, 

   data = myg1,returnObject=TRUE), method= 'REML',random = ~I(sqrt(time-39))+I(sqrt(time-

39)^2)|treeno)  ## 

      sqr.lmeI <- lme(radius~ as.factor(clone) *I(time-39)+as.factor(clone)*I(sqrt(time-39)),  

   data = myg1,       method= 'REML', random =  ~1|treeno)  ## Model 5## 

      sqr.lme<-lme(radius~ as.factor(clone)*I(time-39) + as.factor(clone)*I(sqrt(time-111)),   

    data = myg1,    method= 'REML',random = ~ I(time-39)|treeno) ## Model 2## 

      sqr.lmes<-lme(radius~ as.factor(clone)*I(time-39) + as.factor(clone)*I(sqrt(time-39)),   

    data = myg1,    method= 'REML', random = ~ I(sqrt(time-39))|treeno)## model 3## 
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      sqrfc.lme<-lme(radius~ as.factor(clone)*I(time-39) + as.factor(clone)*I(sqrt(time-39)),   

      data = myg1,  method= 'REML', random = ~-1+I(time-39)+I(sqrt(time-39))|treeno) 

       sqrfcmod.lme<-lme(radius~ I(time-39)+ as.factor(clone)*I(sqrt(time-39)),  

     data = myg1,   method= 'REML', random = ~-1+I(time-39)+I(sqrt(time-39))|treeno) 

       summary(sqrfcmod.lme) 

      summary(sqrfc.lme)   ## Table 2 ## 

      plot( sqrfc.lme, treeno~resid(.), abline = 0 ) 

      plot(sqrfc.lme, resid(., type = "p") ~ fitted(.) | clone, id = 0.0005, adj = -0.3 )      

      anova(sqrfc.lme) 

    ## models with Different variance functions ## 

     sqrfcml.lme<-lme(radius~ as.factor(clone)*I(time-39) + as.factor(clone)*I(sqrt(time-39)),   

    data = myg1,  method= 'ML',random = ~-1+I(time-39)+I(sqrt(time-39))|treeno) 

    sqrd.lmes<-update(sqrfc.lme,  method='ML', weights = varIdent(form = ~I( sqrt(time-39))|clone) )   

     sqrd1.lmes<-update(sqrfc.lme,  method='ML', weights = varIdent(form = ~1|clone) ) 

     sqrd11.lme<-update(sqrfc.lme,  data = myg1, method= 'REML',  

      weights = varIdent(form = ~I(time-39)|clone)) 

     anova(sqrfc.lme, sqrd11.lme) 

     anova(sqrfc.lme) 

           sqrd12.lme<-update(sqrd11.lme, fixed=~as.factor(clone)+I(time-39) + I(sqrt(time-39)),  

    data = myg1, method= 'ML',    weights = varIdent(form = ~I(time-39)|clone)) 

      sqrd13.lme<-update(sqrd12.lme, fixed=~as.factor(clone)+I(time-39) , data = myg1,  

    method= 'ML',  weights = varIdent(form = ~I(time-39)|clone))   

      sqrd14.lme<-update(sqrd12.lme, fixed=~as.factor(clone)+I(time-39) , data = myg1,  

    method= 'REML',  weights = varIdent(form = ~I(time-39)|clone))   

          anova(sqrfcml.lme, sqrd13.lme) 
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          anova(sqrd.lmes, sqrd1.lmes, sqrd11.lme, sqrd13.lme) 

           plot( sqrd13.lme, treeno~resid(.), abline = 0 ) 

       sqrd1ff.lme<-update(sqrd12.lme, fixed=~as.factor(clone)*I(sqrt(time-39))+I(time-39) ,  

    data = myg1,   method= 'REML',weights = varIdent(form = ~I(time-39)|clone))   

      sqrd1ffi.lme<-update(sqrd12.lme, fixed=~as.factor(clone)+I(time-39) ,  

   data = myg1,   method= 'ML', weights = varIdent(form = ~I(time-39)|clone))   

          vf1fixed<-varFixed(~I(sqrt(time))) 

          vfifixed<-Initialize(vf1fixed, data=myg1) 

         sqrexp.lme <- update(sqrd11.lme, weights = varExp(form=~I(sqrt(time-39))|clone ))  

        ## It fitted well and also better than the constant variance ## 

          anova(sqrd11.lme, sqrexp.lme)  ## sqrd11 is choosen because of simplicity ## 

      sqrexptime.lme <- update(sqrd11.lme, weights = varExp(form=~I(time-39)+ 

           I(sqrt(time-39))|clone ))  

           anova(sqrd11.lme,sqrexptime.lme) 

              sqrexptimeml.lme <- update(sqrd11.lme, method='ml', 

        weights = varExp(form=~I(time-39)+I(sqrt(time-39))|clone ))  

           vf7 <- varComb(varIdent(form =~ I(sqrt(time-39))| clone) ,varExp(form =~I(sqrt(time-39) ))) 

       vf77 <- varComb(varIdent(form =~ I(time-39)| clone),varExp(form =~I(time-39) )) 

       vf8<- varComb(varIdent(form =~ I((time-39))| clone) ,varExp(form =~I((time-39 ) )|clone)) 

       sqrcom.lme <- update(sqrd11.lme, weights = vf77)   

       anova(sqrd11.lme, sqrcom.lme, sqrexptime.lme)  

       sqrcomvf8.lme <- update(sqrd11.lme, weights = vf8) 

       anova(sqrd11.lme, sqrcom.lme, sqrexptime.lme, sqrcomvf8.lme) 

     ##sqrexptim.lme or sqrcom.lme are better ## 

       summary(sqrexptimeml.lme)    ## table 2 ## 
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       sqrd1ffi.lme<-update(sqrexptime.lme, fixed=~as.factor(clone)+I(time-39) , data = myg1,  

      method= 'ML', weights = varIdent(form = ~I(time-39)|clone))  ## selected model ## 

       anova (sqrexptime.lme, sqrfc.lme)   ## Table 3 ## 

       summary(sqrd1ffi.lme)   ## table 4 ## 

        ### ########## Code for Nonlinear mixed models   ##################  

            library(nlme) 

              library(lattice) ## will attach library lattice ## 

              library(foreign) 

             mygeno<- read.spss(file="C:\\summ98.sav") 

             mygeno<-as.data.frame(mygeno) 

             attach(mygeno) 

            myg1<-groupedData(radius ~ time|treeno, data = mygeno, outer = ~ clone) 

            attach(myg1) 

            plot(myg1, outer = ~ clone, legend="FALSE" ) 

             summary(myg1$clone) 

           myGU<-myg1[myg1$clone=="GU",] 

         plot(myg1)  ### gives graph of stem radius by time ## 

         plot(myGU) 

         myg12<-na.omit(myg1) 

     ## #########  Fitting separate model to GU and GC ################ 

        myg12GU<-myg12[clone=="GU",] 

        myg12GU<-na.omit(myg12GU) 

        myg12GC<-myg12[clone=="GC",] 

          myg12GC<-na.omit(myg12GC) 

    fm1radGU.nls <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myg12GU ) 
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    summary(fm1radGU.nls) 

    plot(fm1radGU.nls, main="Plot of residuals versus the fitted ") 

    attach(myg12GU) 

    plot(fm1radGU.nls, treeno~resid(.), abline=0, main="Box plot of residuals by tree") 

    

    fm1rad.lis <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myg12 ) 

    summary(fm1rad.lis) 

     plot(intervals(fm1rad.lis), layout=c(3,1)) 

      plot(fm1rad.lis, treeno~resid(.), abline=0)  

       pairs(fm1rad.lis, id=0:1)  

     fm1rad.nlme <- nlme(fm1rad.lis)  

      fm2rad.nlme <- update( fm1rad.nlme, random= Asym+xmid~1 ) 

      fm3rad.nlme <- update( fm1rad.nlme, random= Asym+scal~1 ) 

      fm4rad.nlme <- update( fm1rad.nlme, random= xmid+scal~1 ) 

       summary(fm1rad.nlme) 

          summary(fm2rad.nlme) 

           summary(fm3rad.nlme) 

           summary(fm4rad.nlme) 

          xv<-seq(40, 107, 0.5) 

       plot(time, radius, pch=16, col=as.numeric(treeno)) 

        sapply(1:18,function(i)lines(xv,predict( fm1radextar.nlme,list(treeno=i,time=xv)),lty=2)) 

     ##  ########## Model 1 Three parameter logistic Regression ################## 

       fm1rad.nls <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myeno ) 

      summary(fm1rad.nls) 

      plot(fm1rad.nls, main="Plot of residuals versus the fitted ") 
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      plot(fm1rad.nls, treeno~resid(.), abline=0, main="Box plot of residuals by tree") 

       fm1rad.lis <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myg12 ) 

       summary(fm1rad.lis) 

        plot(intervals(fm1rad.lis), layout=c(3,1)) 

        plot(fm1rad.lis, treeno~resid(.), abline=0)  

        pairs(fm1rad.lis, id=0:1)  

        fm1rad.nlme <- nlme(fm1rad.lis)  

        fm2rad.nlme <- update( fm1rad.nlme, random= Asym+xmid~1 ) 

        fm3rad.nlme <- update( fm1rad.nlme, random= Asym+scal~1 ) 

        fm4rad.nlme <- update( fm1rad.nlme, random= xmid+scal~1 ) 

        summary(fm1rad.nlme) 

        summary(fm2rad.nlme) 

         summary(fm3rad.nlme) 

           summary(fm4rad.nlme) 

          fm1radarma.nlme <- update(fm3rad.nlme, corr = corARMA(p=1, q=1)) 

         anova(fm1rad.nlme, fm2rad.nlme) 

         intervals(fm1rad.nlme, which="var-cov") 

         intervals(fm1rad.nlme) 

         E2<-resid(fm1rad.nlme, type="normalized") 

         F2<-fitted(fm1rad.nlme) 

         op<-par(mfrow=c(2,2), mar=c(4,4, 3,2)) 

         myYlab<-"Residuals" 

        plot(x=F2, y=E2, xlab="Fitted values", ylab=myYlab) 

        boxplot(E2~clone, data=myg12, main="Clone", ylab=MyYlab) 

        plot(x=myg12$time, y=E2, ylab=myYlab, main="Tree age", xlab=" age in weeks") 
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        par(op) 

        plot(augPred(fm1rad.nlme, level=0:1)) 

       plot( ACF(fm1rad.nlme, maxLag = 15, resType = "n"), alpha = 0.05 )   

       ## ########  extending the variance structure of the model ############ ## 

         vf1<-varFixed(~time) 

         vf2<-varIdent(form=~1|time) 

         vf3<-varExp(form=~time) 

         vf4<-varComb(varIdent(form=~1|time), varExp(form=~time)) 

         vf5<-varComb(varConstPower(power=0.1)) 

        fm1radVI.nlme <- update(fm1rad.nlme,weights=vf2 )   

        fm1radVE.nlme <- update(fm1rad.nlme,weights=vf3 )   

        fm1radVC.nlme <- update(fm1rad.nlme,weights=vf4 )    

        fm1radVCP.nlme <- update(fm1rad.nlme,weights=vf5 )   

          ## Fitting model 1 by clone ### 

          radFix <- fixef(fm1rad.nlme ) 

          options( contrasts = c("contr.treatment", "contr.poly") ) 

          fm1radclone.nlme <- update(fm1rad.nlme, fixed = Asym + xmid + scal ~ clone,  

          start = c(radFix[1], 0,  radFix[2], 0,  radFix[3], 0) ) 

          anova(fm1radclone.nlme, fm1rad.nlme) 

          vf3<-varExp(form=~time) 

          fm1radcloneex.nlme <- update(fm1radclone.nlme, weight=vf3) 

            xv<-seq(40, 107, 0.5) 

         plot(time, radius, pch=16, col=as.numeric(treeno)) 

         sapply(1:18,function(i)lines(xv,predict(fm1radextar.nlme,list(treeno=i,time=xv)),lty=2)) 

         summary(fm1rad.nlme) 
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         plot(fm1rad.nlme, id = 0.005, adj = -1, form = ~ clone ) 

         plot(augPred(fm1rad.nlme)) 

       fm3.nlme <- update(fm1rad.nlme, weights = varExp(form=~time)) 

        anova(fm1rad.nlme, fm3.nlme)   ## no significant difference observed ## 

         qqnorm(fm3.nlme ) 

         plot(augPred(fm3.nlme, level = 0:1) ) 

         plot( augPred(fm1rad.nlme, level = 0:1) ) 

          plot( augPred(fm1rad.lis, level = 0:1) ) 

          plot(ranef(fm1rad.nlme, augFrame = T), form = ~ clone, layout = c(3,1)) 

         plot(ranef(fm1rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 

        radFix <- fixef(fm1rad.nlme ) 

        options( contrasts = c("contr.treatment", "contr.poly") ) 

        fm3rad.nlme <- update(fm1rad.nlme, fixed = Asym + xmid + scal ~ clone,  

        start = c(radFix[1], 0,  radFix[2], 0,  radFix[3], 0) ) 

        anova(fm1rad.nlme,  fm3rad.nlme) 

        fm3rad.nlme   ## Score and Xmid are highly correlated ## 

        fm333rad.nlme<-update(fm3rad.nlme, random=Asym+xmid~1)   

      ## a model without scale random effect ## 

        fm33rad.nlme<-update(fm3rad.nlme, random=Asym+scal~1)   

     ## a model without xmid random effect ## 

        fm332rad.nlme<-update(fm3rad.nlme, random=xmid+scal~1)  

        ## a model without Asym random effect ## 

   

                    

 ## Extending model1 by using variance function ## 
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      fm1radext.nlme <- update(fm1rad.nlme , weights = varConstPower(power = 0.1) )   

        E2<-resid(fm1radext.nlme, type="normalized") 

        F2<-fitted(fm1radext.nlme) 

        op<-par(mfrow=c(2,2), mar=c(4,4, 3,2)) 

        myYlab<-"Residuals" 

        plot(x=F2, y=E2, xlab="Fitted values", ylab=myYlab) 

        boxplot(E2~clone, data=myg12, main="Clone", ylab=MyYlab) 

        plot(x=myg12$time, y=E2, ylab=myYlab, main="Tree age", xlab=" age in weeks") 

        par(op) 

        fm3radext.nlme <- update( fm3rad.nlme , weights = varConstPower(power = 0.1) )   

        fm32radext.nlme <- update( fm3rad.nlme , weights = varConstPower () )            

        plot( ACF(fm32radext.nlme , maxLag = 10), alpha = 0.05 , resType="n") 

        fm32radextar.nlme <- update(fm1radext.nlme, corr = corARMA(p=0, q=4),           

control=list(niterEM=100)) 

        corMatrix(fm32radextar.nlme)  

        plot( ACF(fm32radextar.nlme , maxLag = 10), alpha = 0.05 , resType="n") 

        fm32radextar.nlme <- update(fm1radext.nlme, corr = corARMA(p=0, q=2),   

control=list(niterEM=100))   

        ####   ## Model 2 The Asymptotic Regression Model #################### 

         fm221rad.lis <- nlsList( radius ~ SSasymp(time, Asym, resp0, lrc), data = myg12 ) 

         plot(intervals(fm221rad.lis) ) 

         fm221rad.nlme <- nlme(fm221rad.lis )  

       summary(fm221rad.nlme) 

        plot( augPred(fm221rad.lis, level = 0:1) )  

    ## gives plot of augumented prediction ## 

        qqnorm(fm221rad.nlme )  
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  ## gives the normal probability plot of residuals ## 

        plot(fm221rad.nlme) 

        plot(ranef(fm221rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1))  

        radFix1 <- fixef(fm221rad.nlme ) 

        options( contrasts = c("contr.treatment", "contr.poly") ) 

        fm223rad.nlme <- update(fm221rad.nlme, fixed = Asym + resp0 + lrc ~ clone,  

        start = c(radFix1[1], 0,  radFix1[2], 0,  radFix1[3], 0) ) 

        anova(fm223rad.nlme)  

        anova(fm223rad.nlme , Terms=c(2, 4,6))  

        fm223rad1.nlme<-update(fm223rad.nlme, random=Asym+resp0~1)   

      ## a model without scale random effect ## 

        fm223rad2.nlme<-update(fm223rad.nlme, random=Asym+lrc~1)   

    ## a model without xmid random effect ## 

        fm223rad3.nlme<-update(fm223rad.nlme, random=Asym+lrc~1) 

      ## a model without Asym random effect ## 

        ############### Extending model2 by using variance function ################## 

             fm22radext.nlme <- update( fm221rad.nlme , weights = varConstPower(power = 0.1) )   

         fm221radext.nlme <- update(fm223rad.nlme, weights = varConstPower(power = 0.1) )   

         fm222radext.nlme <- update( fm221rad.nlme , weights = varConstPower () )            

          ###  ########Model 3    Asymptotic Regression with an Offset ############# 

           fm331rad.lis <- nlsList(radius ~ SSasympOff(time, Asym, lrc, c0), data = myg12 ) 

           plot(intervals(fm331rad.lis) ) 

           fm331rad.nlme <- nlme(fm331rad.lis )  

           fm331rad.nlme 

           summary(fm331rad.nlme) 
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           plot( augPred(fm331rad.nlme, level = 0:1) ) 

           plot( augPred(fm331rad.lis, level = 0:1) ) 

           qqnorm(fm331rad.nlme ) 

           plot(fm331rad.nlme) 

           plot(ranef(fm331rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 

           radFix2 <- fixef(fm331rad.nlme ) 

           options( contrasts = c("contr.treatment", "contr.poly") ) 

           fm323rad.nlme <- update(fm331rad.nlme, fixed = Asym + lrc+c0 ~ clone,  

           start = c(radFix2[1], 0,  radFix2[2], 0,  radFix2[3], 0) ) 

           fm323rad.nlme  

           summary(fm323rad.nlme) 

         ## Extending model3 by using variance function ## 

             fm331radext.nlme <- update( fm331rad.nlme , weights = varConstPower(power = 0.1) )   

 fm323radext.nlme <- update(fm323rad.nlme,  weights = varConstPower(power = 0.1),      

control=list(niterEM=100))   

         fm333radext.nlme <- update( fm331rad.nlme ,  weights = varConstPower (), 

control=list(niterEM=100) )       

           ## Model 4  Gompertz model## 

           fm431rad.lis <- nlsList(radius ~ SSgompertz(time, Asym, b2, b3), data = myg12)   

          plot(intervals(fm431rad.lis) ) 

          fm431rad.nlme <- nlme(fm431rad.lis )  

         plot( augPred(fm431rad.nlme, level = 0:1) ) 

         plot( augPred(fm431rad.lis, level = 0:1) ) 

         qqnorm(fm431rad.nlme ) 

         plot(fm431rad.nlme) 

         plot(ranef(fm431rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 
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         radFix2 <- fixef(fm431rad.nlme ) 

         options( contrasts = c("contr.treatment", "contr.poly") ) 

         fm423rad.nlme <- update(fm431rad.nlme, fixed = Asym + b2+b3 ~ clone,  

          start = c(radFix2[1], 0,  radFix2[2], 0,  radFix2[3], 0) ) 

         anova(fm1rad.nlme, fm221rad.nlme ,fm331rad.nlme, fm431rad.nlme ) 

           

           ##  code additive mixed models  ############## 

            library(nlme) 

            library(lattice) ## will attach library lattice ## 

            library(foreign) 

             mygeno<- read.spss(file="C:\\summ98.sav") 

             mygeno<-as.data.frame(mygeno) 

             attach(mygeno) 

             myg1<-groupedData(radius ~ time|treeno, data = mygeno, outer = ~ clone) 

             attach(myg1) 

              plot(myg1, outer = ~ clone, legend="FALSE" ) 

              summary(myg1$clone) 

             myGU<-myg1[myg1$clone=="GU",] 

             plot(myg1)  ### gives graph of stem radius by time ## 

             plot(myGU) 

             myg12<-na.omit(myg1) 

         ## ######Fitting separate model to GU and GC  ####### ## 

             myg12GU<-myg12[clone=="GU",] 

             myg12GU<-na.omit(myg12GU) 

             myg12GC<-myg12[clone=="GC",] 
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             myg12GC<-na.omit(myg12GC) 

            fm1radGU.nls <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myg12GU ) 

            summary(fm1radGU.nls) 

            plot(fm1radGU.nls, main="Plot of residuals versus the fitted ") 

            attach(myg12GU) 

            plot(fm1radGU.nls, treeno~resid(.), abline=0, main="Box plot of residuals by tree") 

            fm1rad.lis <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myg12 ) 

            summary(fm1rad.lis) 

            plot(intervals(fm1rad.lis), layout=c(3,1)) 

            plot(fm1rad.lis, treeno~resid(.), abline=0)  

            pairs(fm1rad.lis, id=0:1)  

            fm1rad.nlme <- nlme(fm1rad.lis)  

            fm2rad.nlme <- update( fm1rad.nlme, random= Asym+xmid~1 ) 

            fm3rad.nlme <- update( fm1rad.nlme, random= Asym+scal~1 ) 

            fm4rad.nlme <- update( fm1rad.nlme, random= xmid+scal~1 ) 

            summary(fm1rad.nlme) 

            summary(fm2rad.nlme) 

            summary(fm3rad.nlme) 

            summary(fm4rad.nlme) 

        ## #####   Model 1 Three parameter logistic Regression ############### 

              fm1rad.nls <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myeno ) 

            summary(fm1rad.nls) 

            plot(fm1rad.nls, main="Plot of residuals versus the fitted ") 

            plot(fm1rad.nls, treeno~resid(.), abline=0, main="Box plot of residuals by tree") 

               fm1rad.lis <- nlsList(radius ~ SSlogis(time, Asym, xmid, scal), data = myg12 ) 
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            summary(fm1rad.lis) 

            plot(intervals(fm1rad.lis), layout=c(3,1)) 

            plot(fm1rad.lis, treeno~resid(.), abline=0)  

            pairs(fm1rad.lis, id=0:1)  

            fm1rad.nlme <- nlme(fm1rad.lis)  

            fm2rad.nlme <- update( fm1rad.nlme, random= Asym+xmid~1 ) 

            fm3rad.nlme <- update( fm1rad.nlme, random= Asym+scal~1 ) 

            fm4rad.nlme <- update( fm1rad.nlme, random= xmid+scal~1 ) 

            summary(fm1rad.nlme) 

            summary(fm2rad.nlme) 

            summary(fm3rad.nlme) 

            summary(fm4rad.nlme) 

           fm1radarma.nlme <- update(fm3rad.nlme, corr = corARMA(p=1, q=1)) 

           anova(fm1rad.nlme, fm2rad.nlme) 

           intervals(fm1rad.nlme, which="var-cov") 

           intervals(fm1rad.nlme) 

           E2<-resid(fm1rad.nlme, type="normalized") 

           F2<-fitted(fm1rad.nlme) 

           op<-par(mfrow=c(2,2), mar=c(4,4, 3,2)) 

          myYlab<-"Residuals" 

          plot(x=F2, y=E2, xlab="Fitted values", ylab=myYlab) 

          boxplot(E2~clone, data=myg12, main="Clone", ylab=MyYlab) 

          plot(x=myg12$time, y=E2, ylab=myYlab, main="Tree age", xlab=" age in weeks") 

          par(op) 

          plot(augPred(fm1rad.nlme, level=0:1)) 



324 

 

         #############   extending the variance structure of the model  ########### # 

         vf1<-varFixed(~time) 

         vf2<-varIdent(form=~1|time) 

         vf3<-varExp(form=~time) 

         vf4<-varComb(varIdent(form=~1|time), varExp(form=~time)) 

         vf5<-varComb(varConstPower(power=0.1)) 

         fm1radVI.nlme <- update(fm1rad.nlme,weights=vf2 )   

         fm1radVE.nlme <- update(fm1rad.nlme,weights=vf3 )   

         fm1radVC.nlme <- update(fm1rad.nlme,weights=vf4 )    

         fm1radVCP.nlme <- update(fm1rad.nlme,weights=vf5 )   

           ## Fitting model 1 by clone ### 

         radFix <- fixef(fm1rad.nlme ) 

         options( contrasts = c("contr.treatment", "contr.poly") ) 

         fm1radclone.nlme <- update(fm1rad.nlme, fixed = Asym + xmid + scal ~ clone,  

         start = c(radFix[1], 0,  radFix[2], 0,  radFix[3], 0) ) 

         anova(fm1radclone.nlme, fm1rad.nlme) 

         vf3<-varExp(form=~time) 

         fm1radcloneex.nlme <- update(fm1radclone.nlme, weight=vf3) 

         xv<-seq(40, 107, 0.5) 

         plot(time, radius, pch=16, col=as.numeric(treeno)) 

        sapply(1:18,function(i)lines(xv,predict( fm1radextar.nlme,list(treeno=i,time=xv)),lty=2)) 

        summary(fm1rad.nlme) 

        plot(fm1rad.nlme, id = 0.005, adj = -1, form = ~ clone ) 

        plot(augPred(fm1rad.nlme)) 
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        fm3.nlme <- update(fm1rad.nlme, weights = varExp(form=~time)) 

        anova(fm1rad.nlme, fm3.nlme)   ## no significant difference observed ## 

        qqnorm(fm3.nlme ) 

        plot( augPred(fm1rad.lis, level = 0:1) ) 

        plot(ranef(fm1rad.nlme, augFrame = T), form = ~ clone, layout = c(3,1)) 

        plot(ranef(fm1rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 

        radFix <- fixef(fm1rad.nlme ) 

       options( contrasts = c("contr.treatment", "contr.poly") ) 

       fm3rad.nlme <- update(fm1rad.nlme, fixed = Asym + xmid + scal ~ clone,  

         start = c(radFix[1], 0,  radFix[2], 0,  radFix[3], 0) ) 

       anova(fm1rad.nlme,  fm3rad.nlme) 

       fm3rad.nlme   ## Score and Xmid are highly correlated ## 

       fm333rad.nlme<-update(fm3rad.nlme, random=Asym+xmid~1)  

    ## a model without scale random effect ## 

       fm33rad.nlme<-update(fm3rad.nlme, random=Asym+scal~1)   

    ## a model without xmid random effect ## 

       fm332rad.nlme<-update(fm3rad.nlme, random=xmid+scal~1)   

   ## a model without Asym random effect ## 

        ## Extending model1 by using  different variance functions 

####################################### 

         fm1radext.nlme <- update(fm1rad.nlme , weights = varConstPower(power = 0.1) )   

        E2<-resid(fm1radext.nlme, type="normalized") 

        F2<-fitted(fm1radext.nlme) 

        op<-par(mfrow=c(2,2), mar=c(4,4, 3,2)) 

        myYlab<-"Residuals" 

        plot(x=F2, y=E2, xlab="Fitted values", ylab=myYlab) 
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        boxplot(E2~clone, data=myg12, main="Clone", ylab=MyYlab) 

        plot(x=myg12$time, y=E2, ylab=myYlab, main="Tree age", xlab=" age in weeks") 

        par(op) 

        fm3radext.nlme <- update( fm3rad.nlme , weights = varConstPower(power = 0.1) )   

        fm32radext.nlme <- update( fm3rad.nlme , weights = varConstPower () )            

        plot( ACF(fm32radext.nlme , maxLag = 10), alpha = 0.05 , resType="n") 

        redfm1radextclone.nlme<-update(fm1radextclone.nlme, random=Asym+xmid~1) 

        red1fm1radextclone.nlme<-update(fm1radextclone.nlme, random=Asym+scal~1) 

        red2fm1radextclone.nlme<-update(fm1radextclone.nlme, random=scal+xmid~1) 

        anova(fm1radextclone.nlme)      ### final model ##  

        plot(augPred(fm1radextclone.nlme, level=0:1)) 

        qqplot(ranef(fm1radextclone.nlme)) 

        plot(fm1radextclone.nlme, treeno~resid(., type="normalized"), abline=0,  

        main="Box plot of residuals by tree") 

        anova( fm1radextar.nlme, fm1rad.nlme, fm3radextma2.nlme, fm1radextma10.nlme)    

         plot(fm1radextclone.nlme, resid(., type="normalized") ~ fitted(.) | clone, 

        panel = function(x, y, ...) { 

        panel.grid() 

        panel.xyplot(x, y) 

        panel.loess(x, y, lty = 2) 

        panel.abline(0, 0) 

         } ) 

        plot(augPred(fm1radextclone.nlme, level=0:1)) 

        par(mfrow=c(2,2)) 

        plot(profile(fm1radextclone.nlme)) 
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       ## ########### Model 2 The Asymptotic Regression Model  ########### 

          fm221rad.lis <- nlsList( radius ~ SSasymp(time, Asym, resp0, lrc), data = myg12 ) 

          plot(intervals(fm221rad.lis) ) 

          fm221rad.nlme <- nlme(fm221rad.lis )  

          summary(fm221rad.nlme) 

          plot( augPred(fm221rad.nlme, level = 0:1) ) 

          plot( augPred(fm221rad.lis, level = 0:1) ) 

          qqnorm(fm221rad.nlme ) 

          plot(fm221rad.nlme) 

          plot(ranef(fm221rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 

          radFix1 <- fixef(fm221rad.nlme ) 

          options( contrasts = c("contr.treatment", "contr.poly") ) 

          fm223rad.nlme <- update(fm221rad.nlme, fixed = Asym + resp0 + lrc ~ clone,  

          start = c(radFix1[1], 0,  radFix1[2], 0,  radFix1[3], 0) ) 

          anova(fm223rad.nlme)  

          anova(fm223rad.nlme , Terms=c(2, 4,6))  

          fm223rad1.nlme<-update(fm223rad.nlme, random=Asym+resp0~1)   

         ## a model without scale random effect ## 

          fm223rad2.nlme<-update(fm223rad.nlme, random=Asym+lrc~1)  

         ## a model without xmid random effect ## 

          fm223rad3.nlme<-update(fm223rad.nlme, random=Asym+lrc~1)  

       ## a model without Asym random effect ## 

         ## Extending model2 by using variance function## 

     

         fm22radext.nlme <- update( fm221rad.nlme , weights = varConstPower(power = 0.1) )   
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         fm221radext.nlme <- update(fm223rad.nlme, weights = varConstPower(power = 0.1) )   

         fm222radext.nlme <- update( fm221rad.nlme , weights = varConstPower () )            

         plot( ACF(fm222radext.nlme , maxLag = 10), alpha = 0.05 , resType="n") 

            #### ###   Model 3    Asymptotic Regression with an Offset by clone  ######## 

            fm331rad.lis <- nlsList(radius ~ SSasympOff(time, Asym, lrc, c0), data = myg12 ) 

            plot(intervals(fm331rad.lis) ) 

           fm331rad.nlme <- nlme(fm331rad.lis )  

           fm331rad.nlme 

           summary(fm331rad.nlme) 

           plot( augPred(fm331rad.nlme, level = 0:1) ) 

           plot( augPred(fm331rad.lis, level = 0:1) ) 

           qqnorm(fm331rad.nlme ) 

           plot(fm331rad.nlme) 

           plot(ranef(fm331rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 

          radFix2 <- fixef(fm331rad.nlme ) 

          options( contrasts = c("contr.treatment", "contr.poly") ) 

          fm323rad.nlme <- update(fm331rad.nlme, fixed = Asym + lrc+c0 ~ clone,  

           start = c(radFix2[1], 0,  radFix2[2], 0,  radFix2[3], 0) ) 

          fm323rad.nlme  

          summary(fm323rad.nlme) 

         ## ######  Extending model3 by using variance function ################## 

          fm331radext.nlme <- update( fm331rad.nlme , weights = varConstPower(power = 0.1) )   

          fm323radext.nlme <- update(fm323rad.nlme, weights = varConstPower(power = 0.1), 

          control=list(niterEM=100) )   

          fm333radext.nlme <- update( fm331rad.nlme , weights = varConstPower (),  
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          control=list(niterEM=100) )  ##  did not converge  ## 

                ## ####  Model 4  Gompertz model  by clone  ###### 

          fm431rad.lis <- nlsList(radius ~ SSgompertz(time, Asym, b2, b3),  

          data = myg12)  ## Model 4 did  converge ## 

          plot(intervals(fm431rad.lis) ) 

          fm431rad.nlme <- nlme(fm431rad.lis )  

          plot( augPred(fm431rad.nlme, level = 0:1) ) 

          plot( augPred(fm431rad.lis, level = 0:1) ) 

          qqnorm(fm431rad.nlme ) 

          plot(fm431rad.nlme) 

          plot(ranef(fm431rad.nlme, augFrame = T), form = ~ clone , layout = c(3,1)) 

         radFix2 <- fixef(fm431rad.nlme ) 

         options( contrasts = c("contr.treatment", "contr.poly") ) 

         fm423rad.nlme <- update(fm431rad.nlme, fixed = Asym + b2+b3 ~ clone, 

         start = c(radFix2[1], 0,  radFix2[2], 0,  radFix2[3], 0) ) 

         anova(fm1rad.nlme, fm221rad.nlme ,fm331rad.nlme, fm431rad.nlme ) 

  

  #########  Code for additive mixed models   #################### 

        library(nlme) 

          library(lattice) ## will attach library lattice ## 

          library(foreign) 

          mygenoad<-read.spss(file="C:\\Sclimate.sav") 

         mygenoad<-as.data.frame(mygenoad) 

         attach(mygenoad) 

         myg1<-groupedData(radius ~ time1|treeno, data = mygenoad, outer = ~ clone) 
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        attach(myg1) 

         plot( myg1, outer = ~ clone ) 

        summary(myg1$clone) 

        myGU<-myg1[myg1$clone=="GU",] 

        myGC<-myg1[myg1$clone=="GC",] 

        plot(myg1)  ### gives graph of stem radius by time ## 

        plot(myGU) 

        myg12<-na.omit(myg1) 

        #############  ## Additive model code ############################## 

          library(lattice) 

          op<-par(mfrow=c(3,2),mar=c(5,4,1, 2)) 

          plot(myGU$time, myGU$radius, type="p", xlab='time', ylab='radius') 

         plot(myGC$time, myGC$radius, type="p", xlab='time', ylab='radius') 

         library(splines) 

         library(gam) 

         M1<-gam(radius~s(I(time1-39),3), span=0.5, data=myGU) 

         M2<-gam(radius~s(I(time1-39), 3), span=0.5, data=myGC) 

         par(mfrow=c(1,2)) 

         plot(M1, se=TRUE,  main="Additive model for GU clone ") 

         plot(M2, se=TRUE,   main=" Additive Model for GC clone") 

         par(mfrow=c(1,2)) 

         M11<-predict(M1, se=TRUE) 

         plot(myGU$time, myGU$radius,  type='p', ylab='radius', xlab=' Tree age in weeks') 

        I1<-order(myGU$time) 

        lines(myGU$time[I1], M11$fit[I1], lty=1) 
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        lines(myGU$time[I1], M11$fit[I1]+2*M11$se[I1], lty=2) 

        lines(myGU$time[I1], M11$fit[I1]-2*M11$se[I1], lty=2) 

        M21<-predict(M2, se=TRUE) 

        plot(myGC$time, myGC$radius,  type='p', ylab='radius', xlab='Tree age' ) 

       I1<-order(myGC$time) 

       lines(myGC$time[I1], M21$fit[I1], lty=1) 

       lines(myGC$time[I1], M21$fit[I1]+2*M21$se[I1], lty=2) 

       lines(myGC$time[I1], M21$fit[I1]-2*M21$se[I1], lty=2) 

       par(op) 

      library(mgcv) 

       plot(myGU$time, myGU$radius,  type='p', ylab='radius', xlab=' Tree age in weeks') 

       M3<-gam(radius~s(I(time-39), fx=FALSE, k=-1,bs='cr'), data=myGU) 

       M31<-gam(radius~s(I(time-39), fx=FALSE, k=-1,bs='cr'), data=myGU, method='GACV.Cp') 

       M32<-gam(radius~s(I(time-39), fx=FALSE, k=1,bs='cr'), data=myGU, method='P-ML') 

       M33<-gam(radius~s(I(time-39), fx=FALSE, k=-1,bs='cr'), data=myGU, method='P-REML') 

       I1<-order(I(time-39)) 

       M4<-gam(radius~s(I(time-39), fx=FALSE, k=-1,bs='cr'), data=myGC) 

       par(mfrow=c(1,2)) 

       plot(M3, se=TRUE, main=" The cubic regression spline model to GU clone phase I ",  

        xlab ="Tree age", ylab="radius" ) 

       plot(M4, se=TRUE, main=" The cubic regression spline model to GC clone phase I ", 

         xlab ="Tree age", ylab="radius" ) 

       summary(M3) 

       M34<-gam(radius~s(I(time-39)+factor(clone), fx=FALSE, k=-1,bs='cr', data=myg1)) 

       gam.vcomp(M34,rescale=TRUE,conf.lev=.95) 
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      ## Additive mixed modeling ## 

       library(mgcv) 

       M3M<-gamm(radius~clone+s(time), random=list(clone=~1), data=myg1) 

       M3Mtree<-gamm(radius~clone+s(time1), random=list(treeno=~1), data=myg1) 

       plot(M3Mtree$gam, xlab="tree age",rug=FALSE, se=TRUE, pages=1, 

       too.far=1000, n=10000,pers=TRUE) 

       M3Mtemp<-gamm(radius~clone+ s(time1)+s(Temp)+s(rainfall)+s(relhum)+s(windsp)+s(solrad),  

       random=list(treeno=~1), data=myg1) 

    M3Mtemptt<-gamm(radius~clone+s(time1)+s(Temp)+s(rainfall)+s(relhum)+s(windsp)+s(solrad),  

       random=list(treeno=~1+time1), data=myg1)  ## Good moodel for gam ## 

   M3Mtempss<-gamm(radius~clone+   

season+s(time1)+s(Temp)+s(rainfall)+s(relhum)+s(windsp)+s(solrad),  

        random=list(treeno=~1+time1), data=myg1) 

          ## Radius and ecah climatic variable  ## 

       ## Temperature ## 

        Temp1r<-gamm(radius~ s(Temp), random=list(treeno=~1), data=myg1) 

        plot(Temp1r$gam, xlab="Temperature",rug=FALSE, se=TRUE, pages=1,too.far=1000,  

        n=10000,pers=TRUE) 

        gam.check(Temp1r$gam)  ## Validation graph ## 

        summary(Temp1r$gam) 

        summary(Temp1r$lme) 

             ## Rainfall ## 

           rainfallr<-gamm(radius~ s(rainfall), random=list(treeno=~1), data=myg1) 

           plot(rainfallr$gam, xlab="rainfall",rug=FALSE, se=TRUE, pages=1,too.far=1000,  

           n=10000,pers=TRUE) 

           gam.check(rainfallr$gam)  ## Validation graph ## 
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           summary(Temp1r$gam) 

           summary(rainfallr$lme) 

            ## Relative humidity ## 

        relhumr<-gamm(radius~ s(relhum), random=list(treeno=~1), data=myg1) 

        plot(relhumr$gam, xlab=" relative humidity",rug=FALSE, se=TRUE, pages=1, 

        too.far=1000, n=10000,pers=TRUE) 

        gam.check(relhumr$gam)  ## Validation graph ## 

        summary(relhumr$gam) 

        summary(relhumr$gam) 

        ## wind speed ##  

       windspr<-gamm(radius~ s(windsp), random=list(treeno=~1), data=myg1) 

       plot(windspr$gam, xlab=" wind speed",rug=FALSE, se=TRUE, pages=1, 

       too.far=1000, n=10000,pers=TRUE) 

       gam.check(windspr$gam)  ## Validation graph ## 

       summary(windspr$gam) 

       summary(windsp$lme) 

       ## solar radiation ## 

       solradr <-gamm(radius~ s(solrad), random=list(treeno=~1), data=myg1) 

       plot(solradr$gam, xlab=" Solar radiation",rug=FALSE, se=TRUE, pages=1, 

       too.far=1000, n=10000,pers=TRUE) 

       gam.check(solradr$gam)  ## Validation graph ## 

       summary(solradr$gam) 

       summary(solradr$lme) 

  

        ## time (tree age) ## 
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       timer <-gamm(radius~ s(time1), random=list(treeno=~1), data=myg1) 

       plot(timer$gam, xlab=" Tree age",rug=FALSE, se=TRUE, pages=1,too.far=1000, n=10000,pers=TRUE) 

       gam.check(timer$gam)  ## Validation graph ## 

       summary(timer$gam) 

       summary(timer$lme) 

        par(mfrow=c(3,2)) 

        plot(Temp1r$gam, xlab="Temperature",rug=FALSE, se=TRUE,main="additive mixed model fit ",  

        too.far=1000, n=10000,pers=TRUE) 

        plot(rainfallr$gam, xlab="rainfall",rug=FALSE, se=TRUE, too.far=1000, n=10000,pers=TRUE) 

        plot(relhumr$gam, xlab=" relative humidity",rug=FALSE, se=TRUE, too.far=1000, 

n=10000,pers=TRUE) 

        plot(windspr$gam, xlab=" wind speed",rug=FALSE, se=TRUE, too.far=1000, n=10000,pers=TRUE) 

        plot(solradr$gam, xlab=" Solar radiation",rug=FALSE, se=TRUE, too.far=1000, n=10000,pers=TRUE) 

        plot(timer$gam, xlab=" Tree age",rug=FALSE, se=TRUE, too.far=1000, n=10000,pers=TRUE) 

### #############   Models by clone ############################## 

         mmad$Age<-mmad$time1 

         ageclone<-radius~s(Age, by= as.factor(clone)) 

         Tempclone<-radius~s(Temp, by= as.factor(clone)) 

         mod1clone<-gamm(ageclone, random=list(treeno=~1), data= mmad) 

         plot.gam( xlab= " Tree age   ", mod1clone$gam, pers= TRUE, pages=1,  seWithMean=TRUE) 

         anova(mod1$lme, mod1clone$lme) 

         par(mfrow=c(1,2)) 

         plot(mod1clone$gam,residuals=TRUE,pch=19) ## calls plot.gam 

         summary(mod1clone$gam) 

       gam.check(mod1clone$gam,  pch=19, cex=.3) 

      ageclone1<-radius~ as.factor(clone)+s(Age, by= as.factor(clone)) 
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     mod1clone121<-gamm(ageclone1, random=list(treeno=~1), data= mmad) 

     gam.check( mod1clone121$gam,  pch=19, cex=.3) 

       #####################  Models that smooth by season for tree age by  

              including clone and season in the parameteric part     ############# 

      ageclone1sea<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season)) 

      ageclone1add<-radius~ as.factor(clone)+as.factor(season)+s(Age, by= as.factor(season)) 

      modadd<-gamm( ageclone1add, random=list(treeno=~1), data= mmad) 

      modseason<-gamm(ageclone1sea, random=list(treeno=~1), data= mmad) 

      summary(modseason$gam) 

      plot(modseason$gam,residuals=TRUE,pch=19, pages=1, xlab="Tree age") 

      gam.check( modseason$gam,  pch=19, cex=.3) 

        vis.gam(modseason$gam,theta=-35,color="heat")  

   vis.gam(modseason$gam, view=c("season", " Age"), theta=-35,color="heat", type="response", 

ticktype="detailed") 

    #####################  Models that smooth by season for Temp ############# 

       Tempclone1sea<-radius~ as.factor(clone)+as.factor(season)+s(Temp, by= as.factor(season)) 

       Tempcloneadd<-radius~ as.factor(clone)*as.factor(season)+s(Temp, by= as.factor(season)) 

      modTempseason<-gamm(Tempclone1sea, random=list(treeno=~1), data= mmad) 

      modTempadd<-gamm( Tempcloneadd, random=list(treeno=~1), data= mmad) 

       anova(modTempseason$lme, modTempadd$lme) 

      summary(modTempseason$gam) 

      plot(modTempseason$gam,residuals=TRUE,pch=19, pages=1, xlab=" Temperature") 

      gam.check( modTempseason$gam,  pch=19, cex=.3, pages=1) 

    vis.gam(modTempseason$gam,theta=-35,color="heat")  

vis.gam(modTempseason$gam, view=c("season", "Temp"), theta=-35,color="heat", type="response", 

ticktype="detailed") 
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    #####################  Models that include rainfall smooth by season  ############# 

    rainfallpclone1sea<-radius~ as.factor(clone)+as.factor(season)+s(rainfall, by= as.factor(season)) 

    rainfallinter<-radius~ as.factor(clone)*as.factor(season)+s(rainfall, by= as.factor(season)) 

      modrainfallseason<-gamm(rainfallpclone1sea, random=list(treeno=~1), data= mmad) 

     modinter<-gamm(rainfallinter, random=list(treeno=~1), data= mmad) 

     anova( modrainfallseason$lme,  modinter$lme) 

      summary(modrainfallseason$gam) 

      plot(modrainfallseason$gam,residuals=TRUE,pch=19, pages=1, xlab=" rainfall") 

      gam.check( modrainfallseason$gam,  pch=19, cex=.3, pages=1) 

    vis.gam(modrainfallseason$gam,theta=-35,color="heat")  

vis.gam(modrainfallseason$gam, view=c("season", "rainfall"), theta=-35,color="heat", type="response", 

ticktype="detailed") 

#####################  Models that smooth by season for relative humidity ############# 

    relhumclone1sea<-radius~ as.factor(clone)*as.factor(season)+s(relhum, by= as.factor(season)) 

    relhumcloneadd<-radius~ as.factor(clone)+as.factor(season)+s(relhum, by= as.factor(season)) 

      modrelhumseason<-gamm(relhumclone1sea, random=list(treeno=~1), data= mmad) 

      modrelhumadd<-gamm( relhumcloneadd, random=list(treeno=~1), data= mmad) 

    anova(modrelhumseason$lme, modrelhumadd$lme) 

      summary(modrelhumseason$gam) 

      plot(modrelhumseason$gam,residuals=TRUE,pch=19, pages=1, xlab=" relative humidity") 

      gam.check( modrelhumseason$gam,  pch=19, cex=.3, pages=1) 

   vis.gam(modrelhumseason$gam,theta=-35,color="heat")  

vis.gam(modrelhumseason$gam, view=c("season", "relhum"), theta=-35,color="heat", type="response", 

ticktype="detailed") 

#####################  Models that smooth by season for solar radiation ############# 

     solradintera<-radius~ as.factor(clone)*as.factor(season)+s(solrad, by= as.factor(season)) 
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    solradclone1sea<-radius~ as.factor(clone)+as.factor(season)+s(solrad, by= as.factor(season)) 

  modsolradint<-gamm( solradintera, random=list(treeno=~1), data= mmad) 

  anova( modsolradint$lme, modsolradseason$lme)  

      modsolradseason<-gamm(solradclone1sea, random=list(treeno=~1), data= mmad) 

      summary(modsolradseason$gam) 

      plot(modsolradseason$gam,residuals=TRUE,pch=19, pages=1, xlab=" solar radiation") 

      gam.check(modsolradseason$gam,  pch=19, cex=.3, pages=1) 

   vis.gam(modsolradseason$gam, view=c("season", "solrad"), theta=-35,color="heat", 

   type="response", ticktype="detailed") 

####################  Models that smooth by season for wind speed ############# 

   windspclone1sea<-radius~ as.factor(clone)+as.factor(season)+s(windsp, by= as.factor(season)) 

    windspcloneinter<-radius~ as.factor(clone)*as.factor(season)+s(windsp, by= as.factor(season)) 

       modwindspseason<-gamm(windspclone1sea, random=list(treeno=~1), data= mmad) 

           modwindinter<-gamm(windspcloneinter, random=list(treeno=~1), data= mmad) 

      anova(modwindspseason$lme, modwindinter$lme) 

      summary(modwindspseason$gam) 

      plot(modwindspseason$gam,residuals=TRUE,pch=19, pages=1, xlab=" solar radiation") 

      gam.check(modwindspseason$gam,  pch=19, cex=.3, pages=1) 

   vis.gam(modwindspseason$gam, view=c("clone", "windsp"), theta=-35,color="heat", 

    type="response", ticktype="detailed")  

   vis.gam(modwindspseason$gam, view=c("season", "windsp"), theta=-35,color="heat",    

type="response", ticktype="detailed")  

  ######## Smoothing two covaiates at a time  Age and Temperature  ############################ 

    ageTempsea<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+ 

   s(Temp, by= as.factor(season)) 

    ageTempone<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+s(Temp) 
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      ageTem00<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season)) 

      ageTemp11<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+Temp 

      ageTemp11clone<-radius~ as.factor(clone)*as.factor(season)+ 

        s(Age, by= as.factor(season))+Temp*as.factor(clone)  

      ageTemp11seas<-radius~ as.factor(clone)*as.factor(season)+ 

        s(Age, by= as.factor(season))+Temp*as.factor(season) 

           modAgeTemp00<-gamm(ageTem00, random=list(treeno=~1), data= mmad) 

     modAgeTemp11<-gamm(ageTemp11, random=list(treeno=~1), data= mmad) 

   modAgeTemp11clon<-gamm( ageTemp11clone, random=list(treeno=~1), data= mmad) 

    modAgeTemp11seas<-gamm( ageTemp11seas, random=list(treeno=~1), data= mmad) 

    modAgepar<-gamm(ageTemppar, random=list(treeno=~1), data= mmad) 

    anova( modAgepar$lme,  modAgeone$lme) 

     ageTemp11<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season)) 

    modAgeone<-gamm(ageTemp11, random=list(treeno=~1), data= mmad) 

      modcloneintsea<-gamm(ageTempcloseas, random=list(treeno=~1), data= mmad) 

       ageTemp11<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season)) 

    modAgeTemp<-gamm(ageTempsea, random=list(treeno=~1), data= mmad) 

     modAgeTemp11<-gamm(ageTemp11, random=list(treeno=~1), data= mmad) 

      anova( modAgeTemp$lme, modAgeTemp11$lme)   

   ##  A model with smoothed temperature is not significantly better ### 

      summary(modAgeTemp$gam) 

      plot(modAgeTemp$gam,residuals=TRUE,pch=19, pages=1 ) 

      gam.check(modAgeTemp$gam,  pch=19, cex=.3, pages=1) 

        vis.gam(modAgeTemp$gam, view=c("Temp", "Age"), theta=-35,color="heat",  

       type="response", ticktype="detailed")  
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      vis.gam(modAgeTemp$gam, view=c("Temp", " Age"), theta=-35,color="heat", ticktype="detailed")  

             ###########    Use temperature  in the parameteric part   ###### 

  ageTemppar<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+Temp 

*as.factor(season) ## Model that uses temperature in parameteric part ## 

  ageTemppar1<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+Temp  

    modAgeTemppar<-gamm(ageTemppar, random=list(treeno=~1), data= mmad) 

    modAgeTemppar1<-gamm(ageTemppar1, random=list(treeno=~1), data= mmad) 

    summary(modAgeTemppar$gam) 

    summary(modAgeTemppar1$gam) 

  ######## Smoothing two covaiates at a time  Age and rainfall ############################ 

    agerainfall<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+ 

      s(rainfall, by= as.factor(season)) 

     agerainfallone<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season))+s(rainfall) 

       agerainfall22<-radius~ rainfall+as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season)) 

        agerainfall33<-radius~ as.factor(clone)*as.factor(season)+s(Age, by= as.factor(season)) 

        modAgerainfallone<-gamm(agerainfallone, random=list(treeno=~1), data= mmad) 

     modAgerainfall<-gamm( agerainfall, random=list(treeno=~1), data= mmad) 

     modAgerainfall22<-gamm(agerainfall22, random=list(treeno=~1), data= mmad) 

      modAgerainfall33<-gamm(agerainfall33, random=list(treeno=~1), data= mmad) 

       anova(modAgerainfall22$lme,  modAgerainfall33$lme) 

     anova( modAgerainfall$lme, modAgerainfall11$lme)   

   ##  A model with smoothed rainfall is not significantly better ### 

      summary(modAgerainfall$gam) 

      plot(modAgeTemp$gam,residuals=TRUE,pch=19, pages=1, xlab= "Tree age" ) 

      gam.check(modAgeTemp$gam,  pch=19, cex=.3, pages=1) 

      vis.gam(modAgeTemp$gam, view=c("Temp", "Age"), theta=-35,color="heat",  
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     type="response", ticktype="detailed")  

      vis.gam(modAgeTemp$gam, view=c("Temp", " Age"), theta=-35,color="heat", ticktype="detailed")  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 




