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Abstract 

Agricultural experimentation involves selection of experimental materials, 

selection of experimental units, planning of experiments, and collection of 

relevant information, analysis and interpretation of the results.  An overall 

work of this thesis is on the importance, improvement and efficiency of variety 

contrast by using linear mixed mode with spatial-variance covariance compare 

to the usual ANOVA methods of analysis. A need of some considerations on the 

recently widely usage of a bi-plot analysis of genotype plus genotype by 

environment interaction (GEE) on the analysis of multi-environmental crop 

trials. An application of some parametric bootstrap method for testing and 

selecting multiplicative terms in GGE and AMMI models and  to show some 

statistical methods for handling missing data using multiple imputations 

principal component and other deterministic approaches. 

Multi-environment agricultural experiments are unbalanced because several 

genotypes are not tested in some environments or missing of a 

measurement from some plot during the experimental stage. A need for 

imputation of the missing values sometimes is necessary. Multiple 

imputation of missing data using the cross-validation by eigenvector method 

and PCA methods are applied. We can see the advantage of these methods 

having easy computational implementation, no need of any distributional or 

structural assumptions and do not have any restrictions regarding the pattern 

or mechanism of missing data in experiments.  

 

Genotype by environment (G×E) interaction is associated with the differential 

performance of genotypes tested at different locations and in different years, 

and influences selection and recommendation of cultivars. Wheat genotypes 

were evaluated in six environments to determine the G×E interactions and 

stability of the genotypes. Additive main effects and multiplicative interactions 

(AMMI) was conducted for grain yield of both year and it showed that grain 
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yield variation due to environments, genotypes and (G×E) were highly 

significant. Stability for grain yield was determined using genotype plus 

genotype by environment interaction (GGE) biplot analysis. The first two 

principal components (PC1 and PC2) were used to create a 2-dimensional GGE 

biplot. Which-won where pattern was based on six locations in the first and five 

locations in the second year for all the twenty genotypes? The resulting pattern 

is one realization among many possible outcomes, and its repeatability in the 

second was different and a future year is quite unknown. A repeatability of 

which won-where pattern over years is the necessary and sufficient condition 

for mega-environment delineations and genotype recommendation.  

 

The advantages of mixed models with spatial variance-covariance structures, 

and direct implications of model choice on the inference of varietal 

performance, ranking and testing based on two multi-environmental data sets 

from realistic national trials. A model comparison with a �2-test for the trials in 

the two data sets (wheat and barley data) suggested that selected spatial 

variance-covariance structures fitted the data significantly better than the 

ANOVA model. The forms of optimally-fitted spatial variance-covariance, 

ranking and consistency ratio test were not the same from one trial (location) to 

the other. Linear mixed models with single stage analysis including spatial 

variance-covariance structure with a group factor of location on the random 

model also improved the real genotype effect estimation and their ranking. The 

model also improved varietal performance estimation because of its capacity to 

handle additional sources of variation, location and genotype by location 

(environment) interaction variation and accommodating of local stationary 

trend. The knowledge and understanding of statistical methods for analysis of 

multi-environmental data analysis is particularly important for plant breeders 

and those who are working on the improvement of plant variety for proper 

selection and decision making of the next level of improvement for country 

agricultural development. 
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Chapter 1 

Introduction 

Agriculture is a major industry in Ethiopia and there is a continual need to 

increase productivity. State-owned plant breeding programs play an important 

role aimed at developing varieties which are higher yielding, resistant to disease 

and have quality characteristics. Agricultural field trials involve selection of 

experimental materials, selection of experimental units, planning of 

experiments, and collection of relevant information, analysis and interpretation 

of the result.  There is no perfect experimental design nor are there any perfect 

analysis procedures known to account for all variations encountered in 

practice. Hence, the quality of the results depends on how well the selected 

experimental design or the method of analysis helps in estimation of spatial 

variations. Design based approaches fail to account for such variation, 

especially, when blocks cannot be laid out successfully. As a result, the 

experimental mean square error of classical analysis may be severely inflated 

(Warren and Mendez, 1982). High mean square error affects sensitivity of the 

test thus leading to inappropriate conclusions. An alternative would be to 

consider a modeling approach to account for spatial variations, in addition to 

the experimental design employed.   

In view of decreasing arable land and differing agro-ecology within countries, 

and also increase in population and the subsequent rise in demand for 

agricultural produce are expected to be greater in regions where production is 

already insufficient, in particular in Sub-Saharan Africa. The necessity and 

demand to increase agricultural production represents a huge challenge to 

local farming systems given it must come mainly from increased yield per unit 

area in addition to the limited extension of cultivated land in the country. 

Failure to account for spatial variation during experimentation has an impact 

on development of improved technology. There will not be an increase in crops’ 

area in the future due to the limited area of arable land. Therefore, the best 
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strategy of increasing production of crop is by increasing productivity per unit 

area using improved production technology. On the other hand, reliable 

improved technologies can be evaluated and adopted if proper designing and 

modeling is done by accounting for spatial variation. 

The recommendation of new varieties for farmers or commercial use is 

complicated by the fact that not all varieties respond in the same way to 

change in the environment, a phenomena known as variety by environment 

(V×E) interaction. Selection of high yielding and disease resistance varieties is a 

typical activity in variety trial programs. Crop breeding programs run at 

different stages, often from nursery to national variety trial with the following 

major (Aweke, 2005)  objectives: 

• To  generate new cultivars which are superior to the standard ones 

• To explore and adopt new technologies to increase food production 

• To study the effect of different factors of production on yield and quality 

and identify the best combination of these factors which can optimize the 

yielding ability of crop 

• To generate information about basic understanding of factors of 

production to be used by farmers and researchers  

• To develop recommendations regarding adaptability of selected varieties 

in different agro-ecologies to assist users.  

To full fill these objectives research needs to cover several crops grown in a 

range of agro-ecological zones under different conductions. Agro-ecological 

zones (AEZs) are geographical areas exhibiting similar climatic conditions that 

determine their ability to support rained agriculture. At a regional scale, AEZs 

are influenced by latitude, elevation, and temperature, as well as seasonality, 

and rainfall amounts and distribution during the growing season. In the light 

of scarce resources and high field variability, therefore, effort should be exerted 

to achieve the above goals through improved design and modeling approaches 

that account for spatial variation and variety by environment (V×E) interaction. 
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In breeding programs development and selection of new varieties requires a 

number of stages. At the beginning, namely the nursery stage, several breeding 

lines are included which require a large size experiment. At later stages where 

few and promising varieties are selected; only a small experimental set-up is 

required. This, therefore, calls for an optimum design and effective modeling 

approach. At each stage in the breeding program it is vital that selection 

decisions are made with minimal error. It is also important, particularly at the 

final stages, to accurately predict the future yield gains of new varieties relative 

to existing commercial varieties. Selections and predictions are based on the 

analysis of yield data from the appropriate series of trials (commonly referred to 

as to as multi-environmental trials (MET)). The aim of plant breeding is to 

develop varieties for wide-spread small holders and commercial use, so that in 

the MET, attention is focused on varieties which have both high overall mean 

yield across trials and consistent (stable) performance see (Piepho, 1996) for 

example.) Varieties which excel in some trials but have ordinary performance 

otherwise are also of interest since there may be potential for making 

environment specific recommendations.  

Irrespective of whether broad or specific recommendations of prime interest, it 

is important that an analysis of MET data provides both a measure of overall 

yield performance for each variety and information about the magnitude and 

nature of V×E interactions. In terms of the latter it is useful to distinguish 

between the two sources of V×E interaction, namely heterogeneity of genetic 

variances between environments (that is, change in scale) and lack of genetic 

correlation between environments ( change in variety rankings) (Cockerham, 

1963, Cooper et al., 1996, Robertson, 1959).An understanding of the latter, 

also known as cross-over interactions, is particularly important since it is this 

type of V×E interaction which can complicate selection and recommendation. 

To full fill the above five objectives research needs to cover several crops grown 

in a range of agro ecologies each under different conditions. In the light of 
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scarce resources and high field variability, therefore, effort should be exerted to 

achieve the above goals through improving design and modeling approaches 

that account for spatial variation and V×E interactions. In crop improvement 

programs the major interest is in detecting differences among varieties or 

treatments and on the method of modeling employed. To optimize the use of 

resources, the best method of describing and accounting for field variability 

should be used so that variety effects and differences between them are 

quantified as precisely as possible. This requires improvement in both design 

and modeling. 

A majority of research trials in sub-Saharan Africa are planned as randomized 

complete block design (RCBD) regardless of the size of experiments (Aweke, 

2005). Randomized complete block designs have been widely used in 

agricultural field experiments compared to other known designs such as Latin 

square and families of incomplete block designs. The major reasons for the 

popularity of this design are its computational convenience; flexibility and 

efficiency given the required assumptions are fulfilled. A review done to assess 

the type of designs used in early days shows the importance of randomized 

complete block design (RCBD) in the history of field experimentation. Most of 

these studies show that the layout of these field trials were RCBDs with or 

without split-plot. These studies include ( Atkinson et al., 2007, Cochran and 

Cox, 1957,  and Fisher, 1992). Based on a survey conducted on the type of 

design used in field trials in Ethiopia (EARO, 1996), it was found that about 

78% of the designs used in breeding and agronomy research programs are 

RCBD with and without split-plot. More recently it was found that large 

proportions of experiments (90%) were conducted as RCBD. The obvious 

reason for using RCBD so frequently are its simplicity and practical 

convenience for layout in a field.  Such designs are often applied at all levels of 

research, including nursery, regional variety trial, and national variety trial. 

This resulted in squeezing a large number of treatment combination into a 
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complete block, which led to loss of homogeneity within the block. This 

invalidated assumptions for tests of hypothesis affecting the analysis results.  

The major problem of designing large field trials in sub-Saharan African is the 

presence of considerable field variability. Often this is compounded by the 

presence of erratic rainfall conditions and a moisture stressed environment. In 

a study of the stability of major crops in Ethiopia (Taye et al., 2000) it was 

shown that variability in soil and environment is very high even within a very 

small area. Variability increase with the size of experiments and consequently 

the size of block. With the increases in the size of blocks, the possibility for 

controlling variability within a block diminishes leading to loss of precision. 

The advances in recent modeling approaches have even questioned the 

homogeneity of small blocks. However small a block may be there could be 

considerable spatial correlation between neighboring plots, regardless of 

direction. 

1.1 Some statistical approaches to the analyses of multi-

environmental trial (MET) data 

Multi-environmental trial (MET) data are often analyzed using a two-stage 

approach in which variety means are first estimated separately for an overall 

analysis. Individual trials have traditionally been analyzed using complete or 

incomplete block analysis, but recently the more efficient spatial techniques 

have been adopted. With the rapid development in computing technology and 

sophistication in the areas of computer science and mathematical statistics, 

the computational aspect is no longer a problem and it is only necessary to 

look for improved methods of designing and modeling large field trials to 

enhance precision of estimation and treatment composition.  

The classical method for the combined analysis of a series of agricultural 

experiments is an Analysis of Variance (ANOVA) which has a long history of 

application (Caliński et al., 2009, Cockerham, 1963, Dias and Krzanowski, 
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2003, So and Edwards, 2009, Smith et al., 2005, Yates and Cochran, 1938). 

Such analysis account variation for varieties (V), environments (E), V×E 

interaction and within trial error (the pooled error mean square from analysis 

of individual trials). Apart from the within trial errors, all other effects in the 

ANOVA are classically regarded as fixed so are estimated using least squares. 

Effects may be assumed random (Cockerham, 1963, Comstock and Moll, 1963, 

Kelly et al., 2007a, Masjkur, 2012) in which case the associated variance 

components are estimated by equating ANOVA mean squares with their 

expectation. 

The ANOVA approach can only be used when the data are complete, that is, 

when the same set of varieties have been tested in every trial. Often, this is not 

the case, particularly if the data set spans several years since varieties are 

continually moving through the breeding program. When the data are 

incomplete, variance components from random effects can be estimated using 

residual maximum likelihood (REML) (Patterson and Thompson, 1971). This 

procedure provides the same variance estimates as ANOVA method when the 

data are complete. The model underlying the analysis is usually a mixed model, 

that is, it comprises a mixture of fixed and random effects. There are many 

examples of fixed model analysis of V×E means in the literature, including 

Cullis et al. (1996a), Cullis et al. (1996b),  Frensham et al. (1997), Frensham et 

al. (1998), Patterson and Silvey (1980), Patterson et al. (1977) and Talbot 

(1984).  

In the early mixed model approaches to the analysis of MET data, variety 

effects were regarded as fixed. Cullis et al. (1996a), Cullis et al. (1996b) 

Frensham et al. (1997) and Frensham et al. (1998) treat variety effect as 

random whilst Patterson and Abugoomu (1992) consider both alternatives. The 

V×E interactions are always regarded as random. 

The two-stage analysis is an approximation to the analysis of individual plot 

data from all trials. When individual trials are analyzed using orthogonal 
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analysis such as randomized complete block there is no loss of information in 

the two-stage approach provided appropriate measures of within trial error 

variation are carried through into the second stage mixed model (through the 

use of weights). However, when more efficient, but non-orthogonal analyses 

such as spatial or incomplete block analysis can be applied in two-stage 

analysis may provide a poor approximation to the analysis of individual plot 

data. Frensham et al. (1997) present a weighted mixed model for the second 

stage analysis which aims at providing a reasonable approximation to the fully 

efficient spatial mixed model of Cullis et al. (1998a). In Cullis et al. (1998a) 

individual plot data are analyzed and allowance is made for a separate spatial 

covariance structure and error variance for each trial. Two-stage approaches 

such as that by  Frensham et al. (1997) arose from necessity, since historically 

individual plot data were often unavailable and mixed model software was 

unable to handle the size of some MET data-set. With the advancement of 

electronic storage of individual plot data and sophisticated mixed model 

software such as SAS, GenStat and ASReml, the efficient analysis of individual 

plot data analysis is usually feasible and is the preferred approach. 

The standard mixed model provides an estimate of the magnitude of V×E 

interaction (as reflected in the variance component) but does not provide any 

insight into its structure. Some researchers have addressed this by extending 

the model to include interactions with external covariate information, such as 

rain fall and soil acidity for the environments, and disease resistance and 

maturity for the varieties. Freeman and Perkins (1971) and Knight (1970) used 

this approach within the framework of a mixed effects model. An alternative 

method for examining the V×E interaction involves the use of multiplicative 

models. In these models V×E interaction is explained in terms of environmental 

and varietal parameters which have been estimated from the data. The earliest 

model of this kind is the regression on the mean model, in which yields for 

individual varieties are regressed on the mean yield of all varieties in an 

environment.   
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Many researchers used the general class of multiplicative model originally 

proposed by Mandel (1971) and popularized under the banner of AMMI 

(Additive Main effects and Multiplicative Interaction) (Gauch, 1992b). These 

models involve singular value decomposition (SVD) of the matrix of residuals 

from a two-way ANOVA with variety and environment main effects. V×E 

interaction is there by decomposed into a number of multiplicative terms from 

the SVD. The conjecture is that most of the V×E interaction can be explained 

by the first few terms from the SVD and that these have some meaningful 

interpretation. 

The aims of AMMI analysis clearly have merit but the approaches have many 

disadvantages compared with the mixed model approach. The AMMI models 

are fixed-effects models. But there are strong arguments for the use of random 

variety and V×E interaction effects. There are deficiencies in terms of handling 

unbalanced data, the assumption of a common error variance for all trials and 

inability to accommodate spatial variation within trials.  

1.2 Objectives 
 

The overall objectives of this thesis are: 

• To study the data and thereby investigate the impact and remedies of 

missingness in such multi-environmental crop variety trial data. 

• To assess the efficiency of variety contrast by using spatial-variance 

covariance.  

• To examine the usage of a bi-plot analysis of genotype plus genotype by 

environment interaction (GEE) on the analysis of multi-environmental 

crop trials. 

• To explore some parametric bootstrap method for testing and selecting 

multiplicative terms in GGE and AMMI models. 
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The knowledge and understanding of statistical methods for analysis of multi-

environmental data analysis is particularly important for plant breeders and 

those who are working on the improvement of plant variety for proper selection 

and decision making of the next level of improvement for country agricultural 

development.  

The thesis is organized into seven chapters. The study background and the 

objectives of the study is presented in Chapter 1. Chapter 2 deals with the 

description of the data as well as the theoretical and practical method of 

missing data handling mechanisms for multi-environmental crop variety trial 

data. Chapter 3 presents the additive main effects and multiplicative 

interactions model (AMMI) and genotype main effect and genotype by 

environment interaction (GGE) biplot analysis of multi-environmental trials. In 

Chapter 4 parametric bootstrap methods for testing and selecting multiplicative 

terms in GGE and AMMI Models are presented. Chapter 5 deals with spatial 

analysis of the field experiment. Chapter 6 focuses on the mixed model 

approach with spatial variance–covariance structure for accommodating local 

stationary trend and its influence on multi-environmental crop variety trial 

assessment. In Chapter 7, the discussions and conclusions as well as 

implications and avenues for future research are presented.  
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Chapter 2  

The Data and Missingness Assessment  

2.1 The Data  

Ethiopia is the second largest wheat and barley producer country in Sub-

Saharan Africa after South Africa (GAIN, 2012). Wheat and barley are 

cultivated on 1.605 and 1.02 million hectares and account for 12.94% and 

8.22% of the grain crop area, with an annual production of 3.4 and 1.91million 

metric tons respectively. Wheat contributes about 12.94% and barley 8.22% of 

cereal production in the country (CSA, 2013/14). Interims of area, wheat and 

barley ranks fourth and fifth after teff, maize and sorghum. These crops are 

widely grown by subsistent farmers and one-third of cereal farm households 

are dependent on wheat and barley farming (Shiferaw et al., 2014). 

According to ECEA (2008) the major wheat and barley producing regions in 

Ethiopia includes Oromia, Amhara, Southern Nations and Nationalities 

Peoples’ Region (SNNPR) and Tigray.  The data used in this thesis are from a 

study carried out between 2004 and 2008 in six different research stations in 

Ethiopian Agricultural Research Institute National Variety Trials for Bread 

Wheat and Barley Trial of 2004-2008. The locations are labelled as loc1 

(Kulumsa), loc2 (Adet), loc3 (Bekoji), loc4 (Sinana), loc5 (Holeta) and loc6 

(DeberZeit) that is, five research station from Oromiya region, which include 

the wheat belts in East Africa and one station from Amhara region. All the 

trials in each location were laid out as a randomized complete block (RCB) 

design with four replicates. Most data sets were obtained from the Ethiopian 

Agricultural Research Institute for further analysis consists from 5-40% 

missing values in different locations with different proportion. 
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Figure 2. 1 Location of the six research stations in the Oromya and Amhara 
regions 
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Missing data observations due to natural and man-made reason create 

difficulties for widely applicable agricultural experiment data analysis methods 

such as AMMI, GGE, regular grid REML, row-column design analysis which are 

only applicable for a balanced case. Twenty bread wheat genotypes were 

evaluated in each of the above locations (environments) in a randomized 

complete block design with four replications. These Twenty genotypes are 

coded from G1-G20.  Similarly 25 barley varieties were tested in five locations 

(environments). 

2.1.1 The impact of missing data 

In plant breeding, multi-environment trials are important for testing the 

general and specific adaptations of cultivars. Even in well-controlled trials or 

studies, missing data always occur in multi-environmental crop data analysis. 

Missing data can be due to weather issues, dead or damaged plants, incorrect 

data measurement or transcription, and many other situations that arise when 

working with real data.  Missing data may bias statistical analysis results, such 

as in the estimation of confidence intervals, reduce statistical power and bias 

parameter estimation. 

In the case of missing data, the loss of information produces unbalanced 

designs that lose their symmetry (i.e. the balance) of the design.  With this loss 

of symmetry goes the simplicity of the analysis as well. And as more and more 

values are missing, the analysis becomes more and more complex. Therefore, 

hypothesis tests of interest such as those for the difference between the 

treatments may need special theoretical development. Sometimes, if the 

proportions of missing data are large, some parametric functions are not 

estimable and wrong calculation of the degrees of freedom for the sums of 

squares may cause inappropriate inferences and poor conclusions about the 

experiment. A possible solution could be to repeat the experiment under 

similar conditions and in this way to obtain new values for the missing 
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observations. However, this solution, although ideal, might not be viable in 

terms of available time and money. Dodge (1985) and Little and Rubin (2014) 

present two of the most common approaches used to solve this problem. Dodge 

(1985) presents theoretical considerations for an analysis based only on the 

observed data, while Little and Rubin (2014) describe a large number of 

imputation methods in order to fill the empty cells. 

2.1.2 Missing Data Patterns 

Missing data patterns provide important information about the amount and 

structure of missing data. Through examination of the missing data pattern, 

the missingness can be characterized as arbitrary or a more specialized pattern 

of missing data such as monotone missing data. Nonmonotone (arbitrary) 

missing data are used to describe a missing data pattern that have 

missingness interspersed among full data values while monotone missing data 

are a pattern in which the missing data exists at the end (reading from left to 

right) of the data record with no gaps between full and missing data. In other 

words, once a variable has missing data, all variables to the right of the 

missing data variable in a rectangular data array are also missing. This is an 

important distinction due to the manner in which missing data are imputed, 

moving from left to right across the rectangular data array of columns and 

rows. The implication for the imputation step and selection of imputation 

method is that a monotone missing data pattern allows the analyst more 

flexibility in selecting an appropriate imputation technique.  

Analysis of existing missing data patterns is a critical first step in planning the 

overall imputation. Another important consideration in planning an imputation 

is the type of variables (numeric or character) that either require imputation or 

will contribute to the imputation process. Careful attention to the variable type 

will help ensure that the imputation is done correctly. Knowledge of the 

variables with missing data as well as variables used during the imputation will 
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allow the analyst to make correct decisions about how to set up the 

imputation.  

 

Fig 2.1 Monotone and Nonmonotone patterns of missingness (O=observed, 

M=missing) 

It may be necessary to reorder variables and/or individuals to change from 

non-monotone pattern to monotone missing data pattern. Assumptions and 

patterns of missingness are used to determine which methods can be used to 

deal with missing data (Yuan, 2005). When working with PROC MI of 

SAS/STAT, one has more flexibility in selecting the imputation method. 

Therefore, starting with a dataset with a non-monotone missing pattern, it is 

desirable to attempt to convert it to have a monotone pattern. This may be 

possible by simply reordering the variables, but this is not always guaranteed 

to succeed. In this case, we can impute just enough values to make n 

monotone and then apply one of the methods of monotone pattern.   

2.2 Missingness data mechanisms 

Missing data can introduce bias into studies and obscure implication might be 

imbedded in the missingness. Therefore, it is important that appropriate and 

effective methods available to resolve the problems of missing data be used. 

The impact of missing data and the ways to handle incomplete data depend 

much upon the patterns of incompleteness. A set of definitions for missing data 
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mechanisms has been provided by Little and Rubin (2014), including missing 

at random (MAR), missing completely at random (MCAR), and non-ignorable 

missing data (MNAR). Data are said to be missing at random (MAR) when the 

probability that responses are missing depends on the set of observed 

responses, but is unrelated to the specific missing values that, in principle, 

should have been obtained. 

Let  Y= complete data matrix, YO= observed part of Y, YM = missing part of Y 

and R is missing data indicator matrix where Rij=1 for missing, 0 for observed, i 

and j are indicating the position of Y in the row and column of a matrix. Then 

P(R|Y, φ) = P(R|YO, φ) for all YM , φ. Where φ denotes unknown parameter. 

MCAR occurs when the missing values on variable Y are independent of all 

other observed variables and the values of Y itself. When the probability that 

response are missing is unrelated to either the specific values that in principle, 

should have been obtained or the set of observed responses. MCAR is a special 

case of MAR, and occurs when the distribution doesn’t depend on observed 

data, either.  

In notation, P(R|Y, φ) = P(R| φ) for all Y, φ. The distinction between MCAR and 

MAR is that missingness cannot depend on observed values of the dependent 

variable YO in MCAR, but can in MAR. Therefore, the test of MCAR is based on 

analysis involving YO (Muthén and Khoo, 1998). The second pattern “missing at 

random” (MAR) provides a more realistic condition. MAR and MCAR are both 

ignorable when the parameters governing the missing data process are not 

related to the parameters of interest, and therefore it is not required to model 

the missingness as part of the estimation process. 

Data are said to be Not Missing At Random (NMAR) when the probability that 

responses are missing depends on both the set of observed responses and the 

specific missing values that, in principle, should have been obtained. 

Sometimes it is referred as Missing At Not Random (MANR) or Missing Not At 

Random (MNAR).Since the probability of missing data are related to at least 
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some elements of YM, NMAR is often referred as non-ignorable missingness. 

The term non-ignorable refers to the fact that missing data mechanism cannot 

be ignored. When missingness is non-ignorable, it means that we cannot 

predict future unobserved responses, conditional on past observed responses; 

instead, we need to incorporate a model for the missingness mechanism. It is 

common for bi-factorial experiments to have only one observation per cell and 

additionally to have missing data. An example of this situation is in multi –

environment experiments, where the cultivars are studied in different locations 

or environments, and each cell presents the mean of each factor level 

combination.  

Most statistical packages, like SAS exclude observations with any missing 

variable values from the analysis. In effect this assumes that the missing data 

mechanism is MCAR which us too restrictive as earlier stated. Although using 

only complete cases is simple, information that is in the incomplete cases is 

lost. Excluding observations with missing values also ignores the possible 

systematic difference between the complete cases and incomplete cases, and 

the resulting inference might not be applicable to the population of all cases, 

especially with a smaller number of complete cases. 

2.3 Methods of handling missing data. 

In this section, we describe some of the most commonly used methods and 

discuss the characteristics of the method to yield valid analysis. Some 

important references in the field can be found in Allison (2001), Demirtas and 

Schafer (2003), Fitzmaurice et al. (2012), Hedeker and Gibbons (1997), Hedeker 

et al. (2007) and Little and Rubin, (2014) .  
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2.3.1 Complete-Case Analysis (CCA) 

One approach to handling missing values is to simply omit all cases with 

missing values at any measurement occasion. This is called a Complete-Case 

Analysis (CCA). The advantage of this method is that it can be used for any 

kind of statistical analysis and no additional special computational methods 

are required. However, it will yield unbiased estimate of mean response trends 

only when the missingness is MCAR. When the missing data are not MCAR, the 

results from CCA may be biased because the complete case can be 

unrepresentative of the full population. Also, it can result in a very substantial 

loss of information by deleting all case with missing value, and this may lead to 

reduced statistical precision and power. If the missing-data problem can be 

resolved by discarding only a small part of the sample, then the method can be 

quite effective. But, CCA is very problematic and is rarely an acceptable 

approach to the analysis. This method can be done using PROC REG or PROC 

FACTOR in SAS. 

2.3.2 Available Case Analysis 

Another approach to handling missing values is Available Case Analysis. This 

is a general term for a variety of different methods that use the available 

information to estimate means and covariance. It can readily incorporate 

vectors of repeated measures of unequal length in the analysis. The popular 

method in available case analysis is pair-wise deletion method (Peugh and 

Enders, 2004). In this method, a covariance (or correlation) matrix is computed 

where each element is based on the full number of cases with complete data for 

each pair of variables. The attempt is to maximize sample size by not requiring 

complete data on all variables in the model. In general, Available Case Analysis 

is more efficient than CCA because it incorporate the partial information 

obtained from those who are missing. The disadvantage of this method is that 

the sample base changes from variable to variable according to the pattern of 
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missing data and the resulting correlation matrix might not be positive definite. 

This variability in the sample base creates practical problems such as the 

determination of sample size and degree of freedom. Also, it yields biased 

estimates of treatment comparisons unless missing data are MCAR. This 

method can be done using PROC CORR in SAS. 

 2.3.3 Single Imputation 

Third approach to handling missing values is Single Imputation. This is a 

method that involves replacing an incomplete observation with complete 

information based on an estimate of the true value of the unobserved variable. 

It is widely used in practice because the analysis is straight forward once 

imputation is done. The obvious disadvantage of single imputation is that 

imputing a single value treats that value as known, and thus without special 

adjustments, single imputation cannot reflect sampling variability. Single 

imputation does not reflect the uncertainty about the predictions of the 

unknown missing values, and the resulting estimated variances of the 

parameter estimates are biased toward zero. This clearly leads to inflated type I 

error in subsequent analyses. 

One of the most widely used single imputation method to handling missing 

value is mean imputation (Little and Rubin, 2014). This method is to fill in any 

missing values with mean of the non-missing values. It therefore assumes that 

the mean of the variable is the best estimate for any observation that has 

missing value on the variable. Even though it is simple to impute, this strategy 

can severely distort the distribution for the variable, leading to complication 

with summary measures including underestimates of the standard deviation. 

Also, the missing values require being MCAR as an assumption. Therefore, 

mean imputation is unacceptable in most applications. This method can be 

done using PROC STANDARD in SAS. 
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A more appealing method to carry out single imputation to handle missing 

values is Expectation Maximization (EM) algorithm. EM algorithm is an 

iterative algorithm that finds the parameters which maximize the log likelihood 

when there are missing values. It relies on the relationship between missing 

data and the unknown parameters of a data model (Dempster et al., 1977). A 

disadvantage of EM algorithm is that its rate of convergence can be painfully 

slow when there is a large fraction of missing values. Each iteration of EM 

consists of an E step (expectation step) and M step (maximization step). Given a 

set of parameter estimates, E-step calculates the conditional expectation of the 

complete data log likelihood given the observed data and the parameter 

estimates. Suppose �� is the current estimate of the parameter	�.  

Then, �(�|	��) 	= ∫ 	(�|	�)�	(�� ��⁄ , � = ��)���.	
where (�|	�) is the complete data log likelihood. Given complete data log 

likelihood, the M step finds the parameter estimates to maximize the complete 

data log likelihood from E step. 

���(���)	 ��⁄ � ≥ 	�(� ��⁄ )	���	���	�.	
And, these two steps are iterated until the iteration converges. 

2.3.4  Multiple Imputation 

The general statistical theory and framework for managing missing information 

has been well developed since Rubin (1987) published his pioneering treatment 

of multiple imputation methods for nonresponse in surveys. The most popular 

imputation and more robust method to handling missing value is multiple 

imputation (MI) (Little and Rubin, 2014). The method is valid under the 

ignorable assumption. MI provides a useful strategy for dealing with data sets 

that have missing values. Instead of filling in a single value for each missing 

value, a multiple imputation procedure replaces each missing value with a set 
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of plausible values that represent the uncertainty about the right value to 

impute. MI replaces each missing item with two or more acceptable values, 

representing a distribution of possibilities. The advantage of the method is that 

once the imputed data set have been generated, the analysis can be carried out 

using procedures in virtually any statistical package, which makes the analysis 

simple. Also, the inferences such as standard error, p-value, valid confidence 

intervals for parameters, etc. obtained from MI are generally valid because they 

incorporate uncertainty due to missing values. The MI can be highly efficient 

even if the number of imputation is relatively small, especially when between-

imputation variance is not too large. However, there are some disadvantages in 

MI. First, since we impute some values into missing values, missing value 

individuals are allowed to have varying probability. Thus, individual variation is 

being ignored. Secondly, the uncertainty inherent in missing values is ignored 

because the analysis doesn’t distinguish between the observed and imputed 

values. At last, the only disadvantage of MI over single imputation is that it 

takes more work to create the imputations and analyse the results. However, 

from SAS® version 8.2, the procedures PROC MI and PROC MIANALYZE, have 

been developed which improve the computing environment and save time to 

analyse and space to store data.  

The multiple imputation inference involves three distinct phases: (a) The 

missing data are filled in m times to generate m complete data sets (b) The m 

complete data sets are analysed by using standard procedures (c) The results 

from the m complete data sets are combined for the inference. PROC MI creates 

imputed data sets for incomplete multivariate data. It uses methods that 

incorporate appropriate variability across the m imputations. SAS multiple 

imputation procedures assume that the missing data are ignorable. Once the m 

complete data sets are analysed by using standard procedures such as PROC 

REG, PROC GLM or PROC MIXED, then PROC MIANALYZE can be used to 

generate valid statistical inference about these parameters by combining 

results from m complete data sets. There are three imputation mechanisms in 
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PROC MI. The method of choice depends on the type of missing data pattern. 

For monotone missing data patterns, either a regression method or propensity 

score method can be used. For an arbitrary missing data pattern, a Markov 

chain Monte Carlo (MCMC) method can be used. Without the detail of 

theoretical methods, Regression method is fitted for each variable with missing 

values with previous variables as covariates. Propensity Score method is that 

observations are grouped based on propensity scores, and an approximate 

Bayesian bootstrap imputation is applied to each group. At last, MCMC 

constructs a Markov chain long enough for distribution of the elements to 

stabilize to a common distribution (Yuan, 2000). 

A statistical package that has several features that allow the user to get inside 

the imputation process and evaluate the reasonableness of the resulting model 

imputation is mi package in R (R Development Core Team 2010). These 

features include: choice of predictors, models, and transformations for chained 

imputation models; standard and binned residual plots for checking the fit of 

the conditional distributions used for imputation; and plots for comparing the 

distributions of observed and imputed data. mi uses an algorithm known as a 

chained equation approach (Raghunathan, et al., 2001, van Buuren and 

Oudshoorn, 2000). The user can specifies the conditional distribution of each 

variable with missing values conditioned on other variables in the data, and the 

imputation algorithm sequentially iterates through the variables to impute the 

missing values using the specified models. The procedure to obtain sensible 

multiply imputed datasets approach requires four steps: setup, imputation, 

analysis, and validation. Each step is divided into sub steps as follows: 

1. Setup  

• Display of missing data patterns. 

• Identifying structural problems in the data and preprocessing. 

• Specifying the conditional models. 

2. Imputation 
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• ˆIterative imputation based on the conditional model. 

• Checking the tit of conditional models and checking to see if the imputed 

values are reasonable. 

• Checking the convergence of the procedure. 

3. Analysis 

• Obtaining completed data. 

• Pooling the complete case analysis on multiply imputed datasets. 

4. Validation 

• Sensitivity analysis. 

• Cross validation. 

• Compatibility check. 

At first glance, it may seem more complicated to conduct multiple imputations 

using mi compared to other available imputation software. However this is 

because of outline four steps that other packages have traditionally ignored. mi 

is designed for both novice and experienced users. For the novice users, mi has 

a step-by-step interactive interface where users choose options from the given 

multiple choices and a graphical user interface (GUI) where users click 

buttons. For more experienced users, mi has simple commands that users can 

use to conduct a multiple imputation. 

Another multiple missing data imputation methods, which are not so much 

affected by missing data patterns and assumptions is principal component 

analysis (PCA) based imputation method. Principal component analysis (PCA) 

methods basically allow performing PCA on incomplete data and thus may also 

be used for missing value estimation. When doing PCA one assumes that the 

data are restricted to a subspace of lower dimensionality. PCA aims to extract 

these structures there by filtering noise out. If only the most significant 

loadings (eigenvectors also referred to as principal components) are used for 

projection this can be written as: 
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� = 1 ×	 !̅# + %&# + ' .              (2.1), 
 
where the term 1 ×	 !̅# represents the original variable averages, X denotes the 

observations, % = (�, (), ⋯ , (+ k the latent variables or scores, & = ,�, ,), ⋯ , ,+ the 

transformation matrix (consisting of the most significant eigenvectors of the 

covariance matrix) and V are the residuals. 

Missing values may be estimated by projecting the scores back into the original 

space using		�- = 1 ×	 !̅# + %&#. Optimally, this produces an estimate of the 

missing data based on the underlying correlation structure, there by ignoring 

noise. This will only produce reasonable results if the residuals V are 

sufficiently small, implying that most of the important information is captured 

by the first k components. 

In order to calculate the transformation matrix P one needs to determine the 

covariance matrix between variables or alternatively calculate P directly via 

singular value decomposition (SVD). In both cases, this can only be done on 

complete matrices. However, an approximation may be obtained by use of 

different regression methods.  

 

SVD imputation, implements the SVDimpute algorithm as proposed by 

Troyanskaya et al. (2012). The idea behind the algorithm is to estimate the 

missing values as a linear combination of the k most significant loadings when 

PCA is applied considering variables as observations (eigengenes). The 

algorithm works iteratively until the change in the estimated solution falls 

below a certain threshold. Each step the eigengenes of the current estimate are 

calculated and used to determine a new estimate.  

 

An optimal linear combination is found by regressing an incomplete variable 

against the k most significant eigengenes. If the value at position j is missing, 

the jth value of the eigengenes is not used when determining the regression 

coefficients. SVDimpute seems to be tolerant to relatively high amount of 

missing data (>10%). 
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Probabilistic PCA (ppca), combines an EM approach for PCA with a 

probabilistic model (Stacklies et al., 2007). The EM approach is based on the 

assumption that the latent variables as well as the noise are normal 

distributed. PPCA defines a likelihood function such that the likelihood for data 

far from the training set is much lower, even if they are close to the principal 

subspace. This allows improving the estimation accuracy. PPCA is tolerant to 

amounts of missing values between 10% to 15%. If more data are missing the 

algorithm is likely not to converge to a reasonable solution. 

 

Bayesian PCA (bpca), Similar to probabilistic PCA, Bayesian PCA uses an 

EM approach together with a Bayesian model to calculate the likelihood for a 

reconstructed value. This approach seems to be tolerant to relatively high 

amounts of missing data (>10% ) (Stacklies et al., 2007). Scores and loadings 

obtained with Bayesian PCA slightly differ from those obtained with 

conventional PCA. This is because BPCA was developed especially for missing 

value estimation and is based on a variational Bayesian framework (VBF), with 

automatic relevance determination (ARD). In BPCA, ARD leads to a different 

scaling of the scores, loadings and eigenvalues when compared to standard 

PCA or PPCA.  

 

The algorithm does not force orthogonality between loadings. However, the 

(Stacklies et al., 2007), found that including an orthogonality criterion made 

the predictions worse. They also state that the difference between “real” and 

predicted Eigenvalues becomes larger when the numbers of observations are 

smaller, because it reflects the lack of information to accurately determine true 

loadings from the limited and noisy data. As a result, weights of factors to 

predict missing values are not the same as with conventional PCA, but the 

missing value estimation is improved. BPCA was proposed by Oba et al. (2003).  
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Inverse non-linear PCA (NLPCA), is especially suitable for data from 

experiments where the studied response is non-linear. NLPCA is based on 

training an auto-associative neural network composed of a component layer 

which serves as the \bottle-neck", a hidden non-linear layer and an output 

layer corresponding to the reconstructed data. The loadings can be seen as 

hidden in the network. Missing values in the training data are simply ignored 

when calculating the error during back-propagation. Thus NLPCA can be used 

to impute missing values in the same way as for conventional PCA. The only 

difference is that the loadings P are now represented by a neural network. A 

shortcoming of the current implementation is that there is no reasonable stop 

criterion. The quality of the estimated solution depends on the number of 

iterations. This should in most cases be somewhat between 500 and 1500.  

 

Nipals PCA (Nonlinear Estimation by Iterative Partial Least Squares) is an 

algorithm at the root of PLS regression which can execute PCA with missing 

values by simply leaving those out from the appropriate inner products. It is 

tolerant to small amounts (generally not more than 5%) of missing data. 

2.4   Data Imputation in multi-environment trials 

 

Genotypes by environment (G×E) experiments are unbalanced because 

several genotypes are not tested in some environments or missing of a 

measurement from some plot during the experimental stage. A common way 

of analyzing this type of study is by imputing the missing values and then 

applying established procedures on the complete dataset and fitting matrix 

(observed + imputed), for example, the additive main effects and 

multiplicative interaction model (AMMI) or factorial regression (Arciniegas-

Alarcón and Dias, 2009, Gauch, 2006, Romagosa et al., 2008, van Eeuwijk 

et al., 2005,  Van Eeuwijk et al., 2007). An alternative approximation is to 
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work with the incomplete data using a mixed model with estimates based on 

maximum likelihood (M. S. Kang et al., 2004).  

Several imputation methods have been suggested in the literature to solve the 

problem of missing values in multi-environmental trials. One of the first was 

made by Frensham et al. (1998), Gauch Jr and Zobel (1990), who suggested 

imputing the missing values iteratively by minimizing the residual sum of 

squares and doing the G×E analysis on the completed table, reducing the 

degrees of freedom by the number of missing values. This work was developed 

by Gauch Jr and Zobel (1990), who made the imputations using the EM 

algorithm and the AMMI model or EM-AMMI. Some variants of this procedure 

using multivariate statistics (cluster analysis) were described in Godfrey et al. 

(2002), and Godfrey (2004). Raju (2002) propose the EM-AMMI algorithm by 

treating the environments as random and suggested applying a robust statistic 

to the missing values in the stability analysis. Wasito (2003) proposed the 

imputation to be made in incomplete two-way tables using linear functions of 

the rows (or columns).  

Other studies recommended by van Eeuwijk and Kroonenberg (1998) as having 

good results in the case of missing values for G×E experiments have been 

developed by several authors (Calinski et al., 1992, Denis, 1991, Denis and 

Baril, 1992, Wold, 1978). These authors found that using imputations through 

alternating least squares with bilinear interaction models or AMMI estimates 

based on robust sub models could give results as good as those found with the 

EM algorithm. Additionally, Caliński et al. (1999) introduced an algorithm that 

combines the singular value decomposition (SVD) of a matrix with the EM 

algorithm, obtaining results very useful for experiments in which the 

alternating least squares have some problems, for instance, convergence 

failures (Piepho, 1995). Recently, Bergamo et al. (2008), proposed a 

distribution-free multiple imputation method that was assessed by Arciniegas-

Alarc´on (2008)  and compared by Arciniegas-Alarcón et al. (2010) with 
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algorithms that use fixed effects models in a simulation study with real data. 

Meanwhile, a deterministic imputation method without structural or 

distributional assumptions for multi environment experiments was proposed 

by Arciniegas-Alarcón et al. (2010). The method uses a mixture of regression 

and lower-rank approximation.  

Some studies for analysis of multi-environment experiments with missing 

values can be found in the literature. For example, methodologies for stability 

analysis have been studied by Raju and Bhatia (2003), Raju et al. (2009) and 

Raju et al. (2006). Recently, Pereira et al. (2007), Rodrigues et al. (2011), 

Rodrigues (2012) assessed the robustness of joint regression analysis and 

AMMI models without the use of data imputation. 

Given the historical information about data imputation in experiments, and 

specifically in two-factor G×E experiments, the objective of the next section is 

focus an application of a deterministic imputation algorithm without 

distributional or structural assumptions, using an extension of the cross-

validation by eigenvector method presented by Bro et al. (2008) and principal 

component analysis (PCA) based imputation method. 

2.4.1 Data Imputation Using the Cross-Validation by 

Eigenvector Method. 
 

The cross-validation method was presented by Bro et al. (2008) to find the 

optimum number of principal components in any data set that can be arranged 

in a matrix form. In this approximation, principal component analysis (PCA) 

models are calculated with one or several samples left out and the model is 

used to predict these samples. The method used cross-validation “leave-one-

out” and the same study showed it to be more efficient than other well-known 

methodologies used in multivariate statistics, such as those presented by 

Eastment and Krzanowski (1982a), Wold (1978). Because of this finding, 
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Arciniegas-Alarcón et al. (2011) used the method to determine the best AMMI 

models in (G×E) experiments. 

This methodology works through different stages. The first step is, consider the 

. × , matrix X with elements			!/0 	, (1	 = 1, . . . , .; 	3	 = 	1, . . . , ,	). The matrix is divided 

into disjoint groups, each group is deleted in turn (leave-one-out), and a PCA 

model (Z,P) is obtained from the remainder by solving   

	
41.56(7/) − 9:#5;)                        (2.2) 

with 4 ≤ (. − 1	, , − 1). Here 	6(7/)  represents the matrix after deleting the 1	�= 

group (leave-one-out), ‖. ‖) defines the squared Frobenius norm, PTP=I, and Z, 

P are scores and loadings matrices with dimensions (.	 − 	1) 	× 	4 and , × 4 

respectively, where , is the number of columns and 4 is the number of 

components. Note that, in this method the deleted group corresponds to the 1	�= 

row of X and according to Smilde A. et al. (2004) the model (1) can be rewritten 

in terms of the singular value decomposition (SVD) 

X(@) =	ABCD = ∑ AFdFCFDHFI�                                     (2.3), 

where A =	 J	A�, A), ⋯ , AHK,			C = 	 J	C�, C,⋯ , CHK, B = 	diagJ	d�, d), ⋯ , dHK,			9 = AB		and 

: = C 

A second step is a procedure to estimate the score 

O(7P)D = Q@(7P)D:(7P)D�:(7P)D:(7P)�7�                                (2.4), 

where :(7P)Dis the loading matrix found in step 1 with the 3	�= row excluded. 

	Q@(7P)D  is a row vector containing the 1	�= row of X except the Jth element. 

A third step, estimate the element  !/0 by  !R/0(;) = O@(7P)D:SD. Pj is the jth row of P 

the last Step which includes finding the prediction error of the (ij)UV element, 

e@P(H) = x@P − xR@P(H) and obtaining the criterion value  
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PRESS(m) = ^^�e@P(H)�)_
PI�

`
@I�

																																																		(2.5) 
In order to make the imputation of missing values in the matrix from (G × E) 

experiments, a change in the imputation method is proposed following the 

work of Arciniegas-Alarcón et al. (2010), Bergamo et al. (2008), Krzanowski, 

(1988) and Smilde A. et al. (2004) and using the singular value decomposition 

of a matrix (Good, 1969).  

Initially, suppose that .	 ≥ 	, and the matrix X has several missing values; in 

the case . < ,, the matrix should first be transposed. The missing values are 

replaced by their respective column means !̅0, and after this has been done the 

matrix is standardized by columns, subtracting !̅0 and dividing by s̅P (where !̅0 
and d̅0 	represent, respectively , the mean and the standard deviation of the 3�= 

column). The eigenvector procedure using the SVD in expressions (2.2)–(2.4) is 

applied to the standardized matrix to find the imputation of the (i, j) element, 

denoted by	d0xR@P(H). After the imputation, the matrix must be returned to its 

original scale, 	!/0 = !̅/0 + d0xR@P(H) . 
At this point the matrix does not have any missing values, but the imputations 

are rather basic and need to be refined. In the initial stage of imputation an 

iterative scheme is advocated, iterations continuing until the imputations 

achieve convergence (i.e., there is stability in successive imputed values), but 

Caliński et al. (1999) showed that this convergence is not always necessary 

when using a method that combines the EM algorithm with SVD. Therefore, 

taking this into account, It is possible to fix in advance the number of 

iterations between 0 and 3, as well as permitting the process to run until 

convergence has been achieved. As regards to the computing effort, 

convergence can depend strongly on the size of matrix analyzed and also on the 

data structure (size of correlations, proportion of missing values, etc.). But  for 

instance, the SVD method of Hastie et al. (1999), convergence is achieved 
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usually between 5 and 6 iterations, and in the Bergamo et al. (2008) method it 

is achieved in between 20 and 50 iterations maximum.  

On the other hand, the data imputation depends directly on (2.2) and (2.3). 

Equation (2.2) needs prior choice of the number of components (4) to extract 

from the SVD. Bergamo et al. ( 2008) and Krzanowski (1988) took 4 =
41.e. − 1, , − 1f with the objective of using the maximum amount of available 

information, but Hedderley (1995) asserted that if the estimation is based on 

the choice of a unique fixed number of dimensions, some of the lower 

dimensions may be essentially random. This can influence the imputation 

within an iterative scheme and can lead to the estimates becoming trapped in a 

cycle, hence preventing convergence. To solve this problem, Josse et al. (2011) 

suggested including a test to check on the convergence rate, and in case a 

specific criterion is not being attained the number of dimensions should be 

reduced. Another option that has satisfactory results, suggested by Josse et al. 

(2011) to choose an optimum 4, is through cross-validation based uniquely on 

the observed data. However, the computational cost of this option is likely to be 

high.   

Taking into account all the above mentioned in this sub-section, for imputation 

of each missing value of the matrix 6 the value of 4 in (2.2) is allowed to be 

different in each SVD calculated and is chosen according to the criterion used 

by Arciniegas-Alarcon et al. (2010). Thus, m is chosen such that 

((	 ∑ ghijhkl∑ ghimno	(pql	,rql)hkl )) 	≈ 	0.75.	 Moreover, in (3.3), the Moore-Penrose generalized 

inverse can be used instead of the classic inverse matrix as was studied in 

cross-validation by Dias and Krzanowski (2003). Five imputation methods 

using the cross-validation by eigenvector method have been assessed. These 

five imputations are denoted Eigenvector0, Eigenvector1, Eigenvector2, 

Eigenvector3, and Eigenvector where the number indicates the number of 

iterations used while in the case of Eigenvector the process is iterated until 

convergence is achieved in the imputations. 
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These imputation methods are all deterministic imputations, and they have the 

advantage over other stochastic imputation methods (parametric multiple 

imputations) that the imputed values are uniquely determined and will always 

yield the same results when applied to a given data set. This is not necessarily 

true for the stochastic imputation methods (Bello, 1994). 

2.5 Comparison Criteria. 
 

In general, the objective after imputation is to estimate model parameters from 

the complete table of information. One of the models frequently used in 

genotype-by-environmental trials is the AMMI (Gauch, 1992b, Gauch, 2006), 

and for this reason the methods of missing data imputations mentioned in the 

previous sections can be compared through the genotypic and environmental 

parameters of the fitted AMMI models using the root mean squared predictive 

difference (RMSPD) (Dias and Krzanowski, 2003). 

The AMMI model is first briefly presented here and also in detail in the next 

chapters. The usual two-way ANOVA model to analyze data from genotype-by-

environment trials is defined by 

v/0 = 	w + �0 + x0 + �x(/0) + y/0                              (2.6), 

(1 = 	1, . . . , .; 3	 = 	1, . . . , ,) where,	w, �0 , x0 , �x(/0)	and	y/0 are respectively, the overall 

mean, the genotypic and environmental main effects, the genotype-by-

environment interaction, and an error term associated with the 1�= genotype 

and	3�= location. It is assumed that all effects except the error are fixed effects. 

The following re-parameterization constraints are imposed:∑ (�x)// = ∑ (�x)00 =
∑ �// = ∑ x00 = 0 . 

The AMMI model implies that interactions can be expressed by the sum of 

multiplicative terms. The model is given by 

v/0 = 	w + �0 + x0 + ��{/�|0� + �){/)|0) +⋯+ y/0                  (2.7), 
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where, �/ , {/0 	and |/0(� = 	1,2, . . . , 41.(. − 1, , − 1) are estimated by the SVD of the 

matrix of residuals after fitting the additive part. �/ is estimated by the 	1	�=	 
singular value of the SVD,	{/0 and |/0 are estimated by the genotypic and 

environmental eigenvector values corresponding to	�/.  
Alternating regressions can be used in place of the SVD  García-Peña and Dias, 

(2009); depending on the number of multiplicative terms, AMMI family model 

that was used in this chapter for example, if no component is considered 

significant by the procedure of, we have the AMMI0 model that contains only 

the additive effects of genotypes and environments, without GEI. If a 

component is considered significant, we have the AMMI1 model, which 

contains a component that explains GEI, beyond the additive genotypes × 

environments effects. For two significant components, we have the 

AMMI2model that contains two components, which explain GEI, beyond the 

additive genotypes × environments effects, and so forth. These models may be 

called AMMI0, AMMI1, and so forth.  

AMMI0                  v/0 = 	w + �0 + x0 + y/0 
AMMI1                  v/0 = 	w + �0 + x0 + ��{/�|0� + y/0 
AMMI2                  v/0 = 	w + �0 + x0 + ��{/�|0� + �){/)|0) + y/0 

An inherent requirement of the AMMI model is prior specification of the 

number of multiplicative components (Dias and Krzanowski, 2006, García-

Peña and Dias, 2009, Hedderley, 1995). Rodrigues (2012) made an exhaustive 

analysis of the related literature and concluded that usually two or three 

components can be used because, in general, one component is not enough to 

capture the entire pattern of response (main effect and interaction effect 

between genotypes and environment) in the data, but with more than three 

components there are obvious visualization problems, and a huge quantity of 

noise is liable. 
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A comparison criteria used in this section the root mean squared predictive 

difference (RMSPD) are defined as follows 

 

}~�&�(y.) = �∑ (�/ − �R/))��/I� ��  }~�&�(y.�) = �∑ (x/ − x-/))��0I� ��  

}~�&��(y.�4��) = �∑ ∑ (|0= − |�0=))��/I�/=I� (��)1  }~�&��(y.4��) = �∑ ∑ ({/= − {R/=))��/I�/=I� (��)1  

 

Here }~�&�(y.) represents the RMSPD among the estimated parameters for 

genotype main effects from the original data �0 and the corresponding 

parameters obtained from the completed data sets by imputation �R0 . 

}~�&�	(y.�) represents the RMSPD among the estimated parameters for 

environments main effects from the original data x0 and the corresponding 

parameters obtained from the completed data sets by imputation x-0. 
}~�&��(y.4��) represents the equivalent RMSPD for the pairs of estimated 

parameters of genotype multiplicative components {/=, {R/=. }~�&��(y.�4��) 
represents the equivalent RMSPD for the pairs of estimated parameters of 

environments multiplicative components |0=, |�0=. In the statistics, NG 

represents the number of genotypes, NE the number of environments, and 

� = 2	��	3 depending on the considered model AMMI2 or AMMI3. 

The best imputation method is the one with the lowest values of RMSPD in 

each case. Summarizing, in each imputed data set with missing values, an 

application of the methods Eigenvector, Eigenvector0, Eigenvector1, 

Eigenvector2, and Eigenvector3 and, then, in the completed data (observed + 

imputed) a fitted AMMI2, AMMI3 models for the calculation of the respectively 

RMSPD statistics. In order to visualize any differences more readily, the 
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RMSPD values were standardized and the comparison was made directly. Note 

that because of the standardized scale, the values of the statistics can be either 

positive or negative. Figure 2.2 shows the }~�&�(y.	) distribution on the 

standardized scale for the BRVII data set, showing each imputation method 

and each percentage. It can be seen that the Eigenvector distribution is left 

asymmetric i.e most standardized RMSPD values are less than 0, and this 

asymmetry increases as the missing values percentage increases.  

   

Figure 2. 2 Box plot of the  RMSPD(gen ) distribution in BRVII data set. 

 

In general, the Eigenvector distribution has values above zero and when the 

number of missing values increases, it is concentrated above one. This means 

that this method had the biggest differences among the additive genotypic 

parameters of the real and completed (by imputation) data. 

The best method according to }~�&�(y.) is Eigenvector1, the method with 

just one iteration. This method has the smallest median for the 0.1% and 0.2% 

percentages. In the 0.4% percentage the medians of Eigenvector0 and 

Eigenvector1 are practically the same in the figure, but Eigenvector1 continues 

be preferable because it has the smallest dispersion. So, Eigenvector1 gave the 
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smallest differences between the additive genotypic parameters of the real and 

completed data. 

 

Figure 2. 3 Box plot of the  RMSPD(env) distribution in BRVII data set. 

 

Figure 2.3 shows the }~�&�	(y.�) on the standardized scale for the BRVII data 

set. It shows very similar behaviour to that of	}~�&�	(y.).Again the 

Eigenvector method presents the biggest differences among the additive 

environment parameters of the real and completed data because of the 

algorithm that maximizes the }~�&�	(y.�). In this case, the	}~�&�	(y.�) is 

minimized with Eigenvector0 and Eigenvector1, and in all the percentages of 

missing values the two have nearly equal medians. However, Eigenvector1 has 

the smallest dispersion and that makes this again the method of choice. 

The box plot figures from RMSPD was useful in determining the best 

imputation method for }~�&�	(y.), and }~�&�	(y.�)the and distributions, but 

in the case of 	}~�&�	(y.4��), and }~�&�	(y.�4��), a more formal analysis 

can be used to compare the distributions; for instance the Friedman 
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nonparametric test and, if this is significant, then the Wilcoxon test  (Sprent 

and Smeeton; 2001). Table 2.1 shows the Friedman test statistics. It can be 

seen that a significant difference exists among the imputation methods for the 

0.1% and 0.2% percentage of missing values, but with 0.4% the five methods 

have equivalent results. After the general test, it is necessary to make multiple 

pairwise comparisons for the two lower percentages. 

Table 2. 1 Test statistic for the standardized BRVII data set. 

 RMSPD2(genmult) RMSPD3(genmult) RMSPD2(envmult) RMSPD3(envmult) 

Perc Friedman P-value Friedman P-value Friedman P-value Friedman P-value 

0.1% 15.62 0.0036 34.48 0.0000 34.93 0.0000 30.49 0.0000 

0.2% 10.78 0.0291 11.36 0.0227 16.71 0.0022 11.11 0.0254 

0.4% 2.84 0.5847 2.55 0.6345 4.94 0.2925 5.94 0.2033 

 

Application of PCA method of multiple imputations for a missing data on mult-

environmental crop trial data are also showing the advantage of these methods. 

The independence on missing data pattern or some specific assumptions  are 

main advantage of PCA imputation method. In most case of small plot size 

mult-environmental crop variety trial data it is a common phenomenon missing 

a data at plot level without showing any specific type of pattern. Multiple 

imputation of such a missing data using these PCA methods is necessary, for a 

reason of most statistical applications on multi-environmental data analysis 

such as AMMI and GGE are applicable only for a balanced data case. 

 

A random deletion of 5% data for a data set BW01RVII was performed and a 

PCA methods are applied for multiple imputation. The random deletion process 

form a data matrix �	(.	 × ,)  was conducted as follows. Random numbers 

between 0 and 1 were generated in R with the runif function (R Development 

Core Team 2010). For a fixed � value 	(0	 < 	�	1) , if the (,1 + 3)th random 

number was lower than � , then the element in the (1 + 1, 3) position of the 
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matrix was deleted (1 = 0,1, 2,⋯ , .; 3 = 1,⋯ , ,) . The expected proportion of 

missing values in the matrix will be �. This technique was used with �	 = 0.05 

(i.e, 5%). The comparison and the performance of these PCA imputation (PCA, 

PPCA, BPCA, SVDimput, Nipals PCA and Nlpca) method is tested by a 

graphical eigenvalue structure as obtained with different methods and a simple 

linear regression analysis fit of original data set and the new imputed data 

(original + imputed).  

 

Figure  2.4 Eigenvalue structure as obtained with PCA, PPCA, BPCA, SVD, 
Npals and NLPCA methods 
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Figure 2.4 shows a plot of the eigenvalue structure. If most of the variance is 

captured with few loadings PCA is likely to produce good missing value 

estimation results. For BW01RVII data set all methods show similar 

eigenvalues. One can also see that most of the variance is already captured by 

the first loading, thus missing data estimation is likely to work fine on this 

data. For BPCA the eigenvalue are scaled differently for reason of it is based on 

variational bayesian framework (VBF), with automatic relevance determination 

(ARD) . To get an impression of the correctness of estimation it is a good idea to 

plot the scores/loadings obtained with classical PCA and one of the 

probabilistic methods against each other. A simple regression fit Figure 2.5  for 

original data set ( BW01RVII) and imputed values of PCA methods show the 

similarity on most of the multiple imputation  of (PCA, SVDimput, PPCA,Nipals, 

BPCA and Nipca) with a Percentage variance accounted for 98-99.1 
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Figure 2. 5 Plot for fitted and observed values. 

 

For a summary of this chapter, a multi-environmental small size plot crop 

variety trial which is known usual for missing data at a plot level. The modern 

treatment of missing values suggests multiple imputations as an alternative to 

find the standard error of the statistics of interest (van Eeuwijk and 

Kroonenberg, 1998), but in the case of deterministic imputation a solution well 

known and tested with success can be applied. This is the proportional 

bootstrap method proposed by Bello (1993), in which the proportion of present 

and missing values that appear in each bootstrap sample is exactly equal to 

the proportion that appear in the original incomplete data. 

 

Another aspect that can be of interest is the mechanism producing the missing 

data. Generally, in situations that involve the assessment of several genotypes 

in different environments, missing observations follow one of the definitions 

proposed by Little and Rubin (2014), namely, missing completely at random 

(MCAR), missing at random (MAR), and missing not at random (MNAR). Values 

missing completely at random can occur, for example, when plants are 

damaged due to uncontrollable factors in the experiments, or by incorrect data 

measurement or transcription. In this case the cause of the missing value is 

not correlated with the variable that has it. However, in the genotypes test 

program in which the cultivars are chosen during each year, using only the 
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observed data without considering the missing values, the missing mechanism 

is clearly random MAR, (Piepho and Möhring, 2006). The last type of missing, 

MNAR, can be seen usually when the same subset of genotypes can be missing 

in some environments of the same sub region, because the plant breeder in the 

location does not like these genotypes. So, a genotype missing in one 

environment possibly will be missing too in other environments. In these cases, 

the mechanism that produces missing values is naturally not at random. The 

present chapter has focused exclusively on the MCAR mechanism, and further 

research is needed to study the remaining mechanisms. 

  

Finally, the proposed methods in this chapter have easy computational 

implementation, but one of the main advantages is that a cross validation or 

PCA methods of imputation do not make any distributional or structural 

assumptions and do not have any restrictions regarding the pattern or 

mechanism of missing data in experiments.  Once we see the options and 

methods of handling missing data of multi-environmental trial, the next two 

chapters focus on the commonly applicable methods of analysis AMMI and 

biplot techniques which only applicable for a balanced (data without missing).  
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Chapter 3 

Biplot Analysis of Multi-Environmental Trials 

3.1   Introduction  

A demand for agricultural product increase from time to time. To meet this 

demand various crop improvement programmes have been initiated by the 

Ethiopian Institute of Agricultural Research (EIAR). Under any crop 

improvement programme a sample of promising genotypes are performance- 

tested asserted each year at a number of sites, representing major crop growing 

areas with the a view to identify genotypes which possess the dual qualities of 

high yield capacity and low sensitivity to adverse change in environmental 

condition. One of the important focuses in the current chapter is to assess the 

performance of improved genotypes in multi environment (multi-location, 

multi-year or both) trials.  

Multi-Environment Yield Trials (MET) are conducted for different crops 

throughout the world (Dehghani et al., 2006, Yan and Kang, 2002, Yan and 

Rajcan, 2002) not only to identify high yielding cultivars but also to identify 

sites that best represent the target environment (Yan, 1999, Yan et al., 2001, 

Yan et al., 2000). As usual in MET a number of genotypes are tested over a 

number of sites and years to see adaptation of the crop. But, it is often difficult 

to determine the pattern of genotypic responses across environments without 

the use of appropriate analytical and statistical tools such as additive main 

effects and multiplicative interactions (AMMI) and genotype main effect and 

genotype × environment interaction (GGE) biplot (Gauch, 1992b, Gauch and 

Zobel, 1996, Yan et al., 2000, Yan and Tinker, 2006a) for graphical display of 

data.  
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The measured yield of each cultivar in each test environment is a result of 

genotype main effect (G), and environment main effect (E) and genotype by 

environment (G×E) interaction (Yan and Kang, 2003). Though, E mostly 

accounts for about 80% of the total yield variation; it is only G and G×E 

interaction that are relevant to cultivar evaluation and mega environment 

classification (Kaya et al., 2006, Rao and Polignano Prabhakaran, 2005, Yan et 

al., 2000, Yan and Kang, 2002, Yan, 2002). AMMI and GGE models are 

analyses of variance and singular value decomposition (SVD) based statistical 

analyses often applied to yield trial studies for visualizing the data. The 

methods helps in understanding complex genotype by environment (G×E) 

interactions, determining which genotype has been best in which 

environments, and also helping in grouping environments with the same 

winner (or similar winners) into mega-environments.  

Understanding genotype by environment interaction (GEI) helps plant breeders 

to design better breeding strategies. Therefore, the objectives of this chapter are 

to evaluate the yield performance and stability of genotypes in relation to 

environment (location) on year to year basis. Secondly the study will examine 

the possible existence of different mega environments and the wining genotype 

for each mega environments and consistency of genotype performance on a 

year to year basis.  

3.2 The Model   

Plant breeding programs commonly analyse the existence of a genotype by 

environment interaction in a two-way table (genotypes by environments).This 

type of table features multi-environment trials (MET), where it is important to 

test general and specific adaptation of genotypes. The genotypes are influenced 

by different environmental conditions and may show significant variation in the 

yield performance in relation to other genotypes. This type of behaviour is 

known as GEI. 
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The AMMI and GGE method, recommended by Crossa (1990) and Ferraudo 

and Perecin (2014), is nothing more than a combination between the usual 

univariate analysis of variance (ANOVA) and principal components analysis 

(PCA), which can be treated directly through the mathematical technique called 

singular value decomposition (SVD). AMMI and GGE are relies, initially, on the 

estimation of additive effects of genotypes and environments by the method of 

conventional variance analysis. 

The residuals obtained from this matrix constitute the interactions matrix 

where the GEI effects are estimated, considered multiplicative, using PCA. 

Interims of effects the basic model for a multi-environment trial can be written 

as  

																																				�/0� 			= 	w	 + 	{	/ +	|0 +	�/0 +	�/0�.			                               (3.1), 

where �/0�	 is the measured yield value of the ith genotype in the jth environment 

and lth replicate, w is the grand mean, 	{	/ is the main effect of the ith 

genotype,			|0 is the main effect of jth environment, �/0 is interaction between ith 

genotype and jth environment and �/0� is random error. Were we assume that 

�/0�		~	indep N (0, δj 2). The ranges of indices are    i = 1, 2,..., 20  j = 1, 2,..., 6  l 

=1, 2, 3, 4  

Thus the cell mean for the model is  

						w/0 	= 	���/0�� = 	 	{	/ +	|0 +	�/0																				             (3.2)	
In GGE biplots genotype plus genotype × environment (G + GE) interaction are 

studied together and to achieve this G+GE effect is separated out from the 

observed mean and eventually the model becomes (omitting the random error)  

	w/0 − �w	 +	|0� = 	 	{	/ +	�/0.	                                                 (3.3) 
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However in the case of the AMMI model, the effect of genotypes is also 

separated out only genotype × environment (GE) interaction is studied for 

biplot, and eventually the model becomes  

w/0 − �	w	 +	|0 + 	{	/� = 	 �/0.                                                   (3.4) 

The mathematical expressions for partitioning of G+GE for GGE biplots and GE 

for AMMI models are similar except a difference in model formulation. The 

G+GE for GGE and GE for AMMI effects are partitioned into multiplicative 

terms by using the singular value decomposition (SVD) as  

w/0 − w −	|0 	= ��	��/��0� + �)	��/)�0) + �/0		 and 

w/0 − w −	|0 − 	{	/ = �∗�	��∗/��∗0� + �∗)	��∗/)�∗0) +			�/0∗	.                         (3.5) 

                                                                                                                           

respectively, where ��	 (�∗�) and �) (�∗)) are the singular values (SV) for the first 

and second principal component (PC1 and PC2),  ��/� (��∗/�) and ��/) (��∗/)) are 

eigenvectors of genotype i for PC1 and PC2, �0� (�∗0�) and �0) (�∗0)) are 

eigenvectors of environment j for PC1 and PC2 and �/0 (�/0∗)	is the residual not 

explained by PC1 and PC2 for genotype i in environment j. The PC1 and PC2 

eigenvectors cannot be plotted directly to construct a meaningful biplot before 

the singular values are partitioned into the genotype and environment 

eigenvectors. To generate a biplot that can be used in visual analysis of MEYT 

data, the SVs have to be partitioned into the genotype and environment 

eigenvectors so that Eq. (3.5) can be written in the form of  

	w/0 − w −	|0 = ∑ �/�+�I� y��0	 + �/0	and		w/0 − w −	|0 − 	{	/ = ∑ �/�+�I� y��0	 + �∗/0 		.					  (3.6),                                                                                  

where  �/� and y′�0	 are called PCl scores for genotype i and environment j, 

respectively. In a biplot, genotype i is displayed as a point defined by all �/� 
values, and environment j is displayed as a point defined by all y′�0	 values (l = 1 
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and 2 for a two-dimensional biplot). Singular-value partitioning is implemented 

by  

�/� 	= 	 ���� 	�/�	�.�	y′�0	 	= 	 ���7�� 	��0 	.                         (3.7), 

where			�/ is the partition factor for PCl. Theoretically, �/  can be anything 

between 0 and 1 although 0.5 is so far the most commonly used partition 

factor (Yan, 2002). In this chapter we have use a value of 0.5 to give equal 

importance to both genotype and environment. 

3.3 Result and Discussion of Graphical Statistical Methods 

Based on GGE  Biplot Analysis  
 

The data used in the current chapter are from a study carried out between 

2004 and 2005 in six different research stations in Ethiopia. The locations 

consist of loc1 (Kulumsa), loc2(Adet), loc3 (Bekoji), loc4 (Sinana), loc5 (Holeta) 

and loc6 (DeberZeit). Twenty bread wheat genotypes were evaluated in each of 

the above locations (environments) in a randomized complete block design with 

four replications. These Twenty genotypes are coded from G1- G20. 

The AMMI analysis of variance of grain yield (Table 3.1) showed significant 

effects of genotype, environment (location) and Genotype by Environment 

interaction. Location explained 84.65% of the total (G + E + GE) variation of 

year 2004 and 70.63% for year 2005, whereas the genotype by environment 

interaction and genotype captured 12.5% and 0.0029% of year 2004 and 

15.34% and 14.03% for year 2005, respectively. The magnitude of genotype by 

environment interaction as compared to genotype suggested a possible 

existence of different mega environments in year 2004. The partitioning of GGE 

sum of squares through the GGE biplot analysis showed that PC1 and PC2 

accounted 43.21% and 26.43% of GGE sum of squares of year 2004 and 

58.01% and 22.14% for year 2005, respectively. The two principal components 
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explained a total of 69.6% and 80.16 % variation in the two years respectively. 

Nonetheless agricultural biplot literature provides no guidance concerning how 

much of the total variability accounted for by the first two principal 

components are considered adequate (Sabaghnia et al., 2012b, Yang et al., 

2009b). This result revealed that there was a differential yield performance 

among wheat genotypes across testing environment (location) due to the 

presence of genotype by environment interaction. 

Table 3.1  ANOVA table for AMMI model.  

Year 2004 Year 2005 
Source df SS MS F F-prob df SS MS F F-prob 
Total 479 54590 114 399 27188 68.1 

Treatments 119 41599 349.6 10.2 <0.001 99 19806 200.1 9.93 <0.001 
Genotypes 19 1187 62.5 1.82 0.01944 19 2779 146.3 7.26 <0.001 

Environments 5 35212 7042.4 99.8 <0.001 4 13988 3497.1 31.97 <0.001 
Block 18 1270 70.6 2.06 0.00706 15 1641 109.4 5.43 <0.001 

Interactions 95 5200 54.7 1.6 0.00134 76 3038 40 1.98 0.00003 
IPCA 23 2035 88.5 2.58 0.00012 22 1459 66.3 3.29 <0.001 
IPCA 21 1588 75.6 2.21 0.00193 20 897 44.9 2.23 0.00227 

Residuals 51 1577 30.9 0.9 0.66493 34 682 20.1 1 0.47979 
Error 342 11721 34.3 285 5742 20.1 

Note. The block source of variation refers to blocks within environments.         

(IPCA) Interaction Principal Component Axes  

3.3.1 Relationships Among Test Environments  

GGE biplot, which was based on environment focussed scaling, was used to 

estimate the pattern of environments (locations) as shown in Fig 3.1. 

Environment PC1 score had both negative and positive scores indicating that 

there was a difference in rankings of yield performance among genotypes 

across environments leading to cross-over G × E interactions.  

Like PC1, the environment PC2 scores had both positive and negative values. 

This gave rise to crossover, leading to inconsistent genotype yield performance 



47 

 

across environment (locations). To visualize the relationship between 

environments, lines are drawn to connect the test environments to the biplot 

origin known as environment vectors. The cosine of the angle between two 

environments is used to approximate the correlation between them as 

described and used in Dehghani et al. (2009), Dehghani et al. (2010), Kaya et 

al. (2006), Yan and Tinker (2006a). For example locations 2, 3 and 6 were 

positively correlated (an acute angle), location 1 and 5 were negatively 

correlated (an obtuse angle), and location 1 and 4 were not correlated (a right 

angle) in year 2004.The presence of wide obtuse angle (i.e., strong negative 

correlations) among test environments is an indication of high cross over GEI 

(Yan and Tinker, 2006a).  

The distance between two environments measures their dissimilarity in 

discriminating the genotype, thus the six locations in (Figure 3.1(a)) fell into 4 

apparent groups where locations 2,3 and 6 form the first group while lactations 

1,4 and 5 each of them separately form their own group. The presence of close 

associations among some test locations in year 2004, suggest that the same 

information about genotypes could be obtained from fewer test locations, and 

hence the potential to reduce test cost (Choukan, 2010, Tukamuhabwa et al., 

2012). If two test locations are closely correlated consistently across years, one 

of them can be drooped without loss of much information about the genotypes.  
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Figure(a)                                                       Figure(b)           

  

Figure 3. 1  Scatter plot of environments (a) year 1 (b) year 2. 

However, in reality the correlation consistency for formation of a group between 

the locations vary from year to year as it shown in Figure 3.1. This 

inconsistency is much reflected on location 2 and 5, which form their own 

group on the first year but it forms same group in the second year. Clearly 

Figure 3.1 (a) and Figure (b) show differing genotype and environment 

structure. However it should be noted that data in 2005 had only five of the 

location in 2004. 

3.3.2 Discriminating Ability and Representativeness of the Test 

Environment   

GGE biplot discriminating ability and representativeness is an important 

measure of the testing environments. The concentric circles on the biplot as 

shown in Figure 3.2 help to visualize the length of the environment vectors, 

which is proportional to the standard deviation within the respective 

environments and is a measure of the discriminatory ability of the 

environments. Therefore, among the six environments, E1 and E4 were most 
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discriminating (informative) and E5 least discriminating in year 1; whereas in 

year 2 (Figure 3.2) E5 and E4 are most discriminating and E2 was least-

discriminating. Test environments that are consistently non-discriminating 

(non-informative) provide little information on the genotypes and, therefore, 

should not be used as test environments.  

The average environment (represented by the small circle at the end of the 

arrow) has the average coordinates of all test environments, and AEA or ATA 

(Average-Environment Axis or Average-Tester-Axis) is the line that passes 

through the average environment and the biplot origin (Yan, 2002). A test 

environment that has a smaller angle with the AEA is more representative of 

other test environments. Thus, E1 and E4 are most representative whereas E5 

and E3 least representative in their respective year. Test environments 

(locations) that are both discriminating and representative (e.g., E1) are good 

test environments for selecting generally adaptable genotypes. Discriminating 

but non-representative test environments like E3 are useful for selecting 

specifically adapt-able genotypes if the target environments can be divided into 

mega-environments or they are useful for culling unstable genotypes if the 

target environment is a single mega-environment. A mega-environment is 

defined as a group of locations that consistently share the same best cultivar(s) 

(Yan and Rajcan, 2002).  

This definition involves several essential elements: 1) mega-environments are 

defined by different winning cultivars, noting that different genotypes can be 

equally adapted to the same mega-environment and that a mega-environment 

may need different types of genotypes to stabilize the overall 

production; 2) mega-environment is a concept of geographical locations; and 

3) the cultivar-location interaction pattern should be repeatable across years.  
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                      Figure (a)                                                                      Figure (b) 

Figure 3. 2 GGE biplot based on environment-focused scaling for comparison of 

the environment with ideal environment (a) year 1 (b) year 2.  

3.3.3 Ranking Genotypes Relative to the Ideal Genotype  

An ideal genotype should have the highest mean performance and be 

absolutely stable (i.e performs the best in all environments). Such an ideal 

genotype is defined by having the greatest vector length of the high yielding 

genotypes and with zero GEI, as represented by an arrow pointing to it (Figure 

3.3). Although such an ideal genotype may not exist in reality, it can be used 

as a reference for genotype evaluation (Yan and Tinker, 2006a). A genotype is 

more desirable if it is located closer to the ideal genotype. Thus, using the ideal 

genotype as the centre, concentric circles were drawn to help visualize the 

distance between each genotype and the ideal genotype. Because the units of 

both PC1 and PC2 for the genotypes are the original unit of yield in the 

genotype-focused scaling (Figure 3.3), the units of the AEC abscissa (mean 

yield) and ordinate (stability) should also be in the original unit of yield. The 
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unit of the distance between genotypes and the ideal genotype, in turn, will be 

in the original unit of yield as well. Therefore, the ranking based on the 

genotype-focused scaling assumes that stability and mean yield are equally 

important ( Farshadfar E. et al., 2012, Yan, 2002). Figure 3.3 revealed that G5, 

which fell into the centre of concentric circles, was the ideal genotype in terms 

of higher yielding ability and stability, compared with the rest of the genotypes. 

In addition, G6 and G14, located on the next consecutive concentric circle, may 

be regarded as desirable genotypes.   

 

  Figure (a)                                                                          Figure (b)  

Figure 3. 3  GGE biplot based on genotype-focused scaling for comparison of 

the genotype with ideal genotype (a) year 1 (b) year 2.  

3.3.4 Mean Performance and Stability of the Genotypes  

Yield performance and stability of genotypes were evaluated by an average 

environment coordination (AEC) method (Farshadfar et al., 2011). Within a 
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single mega-environment, genotypes should be evaluated on both mean 

performance and stability across environments. Figure 3.4(a) gives the average 

environment coordination (AEC) view of the GGE biplot. The single-arrowed line 

is the AEC abscissa, it points to higher mean yield across environments. Thus, 

G5, G18, G6 and G14 had the highest mean yield. The non-arrowed line is the 

AEC ordinate; it points to greater variability (poorer stability) in either 

direction. Thus, G12 and G20 ware highly unstable and below average yield, 

whereas G4 and G14 highly stable, were followed by G5, G6, and G3 with had 

above average yield in the first year.  

 

 

 Figure (a)                                                                            Figure (b)  

Figure 3. 4  GGE biplot based on environment-focused scaling for mean 

performance and stability of the genotypes (a) year 1 (b) year 2.  

The mean performance and stability of these 20 genotypes in five locations 

(environment) in the second year of the trial shows some variation from the 
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first year as it shown in Figure 3.4(b). However G6, G5 G4 and G18 were 

relatively high yielding and stabile genotypes in both trial years.  

 

Figure 3.5 GGE biplot based on environment-focused scaling for mean 

performance and stability of the genotypes for the combined data. 

A comparison of the year by year data analysis (Fig 3.4 a and b) and a 

combined data analysis (Fig 3.5) on the mean performance and stability of 

genotypes for a combined data analysis shows the presence of some variation. 

A low mean performing and low stable genotypes like G20 and G12 are the 

most affected on a combined data analysis. However G6, G5 G4 and G18 were 

relatively high yielding and stabile genotypes in both year by year and 

combined data analysis of GGE. 
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3.3.5 Which Genotype Won Where and Mega Environments 

With GGE biplot  

One of the most attractive features of a GGE biplot is its ability to show the 

which-won-where pattern which-won-where pattern (specific genotypes 

recommended to specific environments) of a genotype by environment data set 

(Yan, 2002). Many researchers find this use of a biplot intriguing, as it 

graphically addresses important concepts such as crossover genotype-

environment interaction, mega environment differentiation, specific adaptation, 

etc as discussed in Yan and Tinker (2006a) and Gower et al. (2011). Crossover 

GEI is the differential response of genotype to divers environments, when 

genotype ranks change from one environment to another. The polygon is 

formed by connecting the markers of the genotypes that are further away from 

the biplot origin such that all other genotypes are contained in the polygon.  

Genotypes located on the vertices of the polygon performed either the best or 

the poorest in one or more locations since they had the longest distance from 

the origin of biplot. The perpendicular lines are equality lines between adjacent 

genotypes on the polygon, which facilitate visual comparison of them. For 

example in Figure 3.6, the equality line between G5 and G18 in 2004 indicates 

that G5 was better in E1, whereas G18 was better in E2, E3 and E6. An 

interesting feature of this view of a GGE biplot is that the vertex genotype(s) for 

each sector has higher (sometimes the highest) yield than the others in all 

environments that fall in the sector (Gauch et al., 2008b, Yan, 2002).These six 

equality lines divide the biplot into six sectors, and the environments fall into 

four of them (Figure 3.6). This pattern suggests that the target environment 

may consist of four different mega-environments and that different cultivars 

should be selected and deployed for each.  
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Figure (a)                                                                                  Figure (b)  

Figure 3.6 The which-won-where view of the GGE biplot to show which 

genotypes performed best in which environment (a) year 1 (b) year 2.  

In which-win-where GGE biplot for the second year Figure 3.6(b), eight equality 

lines divide the biplot into eight sectors and the five locations fell into three of 

them. The mega-environment classification of these five trial location is 

different from the first year. This difference leads to a different wining genotype 

in different locations (environment) across a year.  
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Figure 3.7 The which-won-where view of the GGE biplot to show which 

genotypes performed best in which environment of a combined data of year1 

and year 2.  

Fig 3.7 the which-win-where GGE biplot for the two year combined data clearly 

indicate the presences of year to year variation of on the classification of mega-

environments. For example E1 and E7, E2 and E8, E3 and E9, E4 and E10, E5 

and E11 all these pair are the same geographical locations, but most of them 

are classified into different mega-environments.  This difference leads to a 

different wining genotype in different locations (environment) across a year. 
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These differences on the classification of geographical location and which 

genotype win where of a separate and combined data analysis of GGE indicate 

a need of the decision of analysis procedure ( separate or combined )  and 

careful recommendations of crop varieties to small holder farmers or large scale 

farms should be based on the performance of genotypes in different locations.  

4 Conclusions   

The GGE biplots of MEYT data allow visualizing the inter relationship among 

genotypes including the ranking of genotypes based on both mean performance 

and stability, inter-relationship among environments, and interaction between 

genotypes and environments including the which-won-where pattern. The 

result of this chapter indicated that wheat yield performance was highly 

influenced by the environment effect followed by the magnitude of GEI and 

genotype. The AMMI result shows that, total yield variation accounted by the 

genotype increased from 0.0029% in first year to 14.03% in the second year 

which had almost equal effect with the G × E interactions. These two years 

repeated over location data analysis result; which-win-where pattern, yield 

performance and stability of genotype indicate that repeatability pattern over 

years is the necessary and sufficient condition for mega-environment 

delineation and genotype recommendation for small holder farmers and 

commercial farm crop producers in terms of adaptability of different 

environment and yield performance. Decision making based on one year data 

should be done with caution. One lop of AMMI and GGE in agricultural biplot 

literature provides no guidance concerning how much of the total variability 

accounted for by the first two principal components are considered adequate or 

how many principal components (PC) are important for testing multiplicative 

terms, this will be addressed in the next chapter. 
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Chapter 4 

Testing and Selecting Multiplicative Terms in 

GGE and AMMI Models 

4.1 Introduction  

 

When differences between genotypes depend on environment, then there exists 

a genotype-by-environment interaction is present. Genotype-by-environment 

interaction is studied in many branches of biology, not least in agriculture. In 

plant breeding and crop variety experimentation, cultivars or potential cultivars 

are commonly investigated at several environmentally different locations. For 

analysis of such data, two bi-additive models are commonly used (Denis and 

Gower,1994). These include genotype main effects and genotype-by-

environment interaction effects (GGE) model  (Yan and Kang, 2002, Yan et al., 

2000) and the additive main effects and multiplicative interaction (AMMI) 

model (Gauch, 1988, 1992b). Both GGE and AMMI explore a matrix of 

genotype-by-environment means, using a combination of analysis of variance 

(ANOVA) and singular value decomposition. With GGE, singular value 

decomposition is performed on the matrix of residuals from a one-way ANOVA 

with fixed effects for environments. With AMMI, singular value decomposition 

is performed on residuals from a two-way ANOVA with fixed effects of 

genotypes and environments. Cornelius et al. (1996) called the GGE model a 

sites regression model (SREG). For a discussion about the relative merits of 

GGE and AMMI, see Gauch (2006), Gauch et al. (2008b), Yan and Tinker 

(2006a) and Yan et al. (2007).  

The present chapter considers GGE and AMMI models with fixed main effects 

and normally distributed errors, although extensions have been made to mixed 

models (Piepho, 1998a, Piepho, 1999, Smith et al., 2001b, Yan and Kang, 

2002), other distributions and three-way interactions (Eeuwijk and 
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Kroonenberg, 1998). The data used in the current chapter are data set we used 

in chapter three (BW00RVTI) and additional one data set (BW01RVII) of 25 

barley varieties were tested in five locations (environments) in 2007/8. All the 

trials in each location were laid out as a randomized complete block (RCB) 

design with four replicates. The locations consist of loc1 (Kulumsa), loc2 (Adet), 

loc3 (Bekoji), loc4 (Sinana), and loc5 (Holeta). 

The result of the singular value decomposition is often presented in a biplot 

illustrating the first two multiplicative terms of the singular value 

decomposition as explained in chapter three. With GGE, such a biplot presents 

a rank-two approximation of the sum of genotype effects and genotype-by-

environment interaction effects, which is a useful and popular tool for breeders 

(Yan and Tinker, 2006a). With AMMI, genotype-by-environment interaction is 

studied separately from main effects of genotypes. Figure 4.1 is a biplot for an 

AMMI analysis of a dataset with twenty genotypes (G1–G20) investigated in 11 

environments (E1–E11). Points near the origin have small interaction effects, 

and points near each other have similar interaction effects (Gauch, 1992b). 

Yang et al. (2009b) discussed the validity of the biplot as a statistical method 

for analysis of genotype-by-environment interaction. One of their main 

concerns was the frequent lack of statistical hypothesis testing for determining 

the number of multiplicative terms. Figure 5.1 illustrates the first two 

multiplicative terms, but it is possible that more or fewer terms give a better 

description of the interaction. In practice, researchers would like to separate 

fixed genotype-by-environment interaction from random noise. This main 

objective of this chapter is : (1) to show a method for significance testing of 

multiplicative terms (2) to show statistical hypothesis testing for determining 

the number of multiplicative terms in GGE and AMMI models. 

Testing for interaction in non-replicated two-way layouts goes back to Tukey 

(1949), who introduced the one-degree-of-freedom test for additivity, and 

Mandel (1961), who proposed row-specific regression on additive column 
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effects. Finlay and Wilkinson (1963) and Yates and Cochran (1938) proposed 

genotype-specific regression of yield on site means. Such models can be fitted 

using nonlinear regression (Ng and Grunwald, 1997, Piepho, 1999a) and 

Mandel, (1971) proposed the AMMI model. Johnson and Graybill (1972) derived 

a likelihood ratio test for the first multiplicative term of the AMMI model. 

 

Based on their work, Marasinghe (1985) and Schott (1986) proposed a 

sequential testing procedure for all terms. This procedure tests the (K+1)th 

multiplicative term as if it were the first term in a problem with the numbers of 

rows and columns reduced by Cornelius et al. (1996) presented the 

approximately F-distributed JG/SM test statistic, which is built on the 

contributions by Johnson and Graybill (1972), Marasinghe (1985) and Schott 

(1986). Cross-validation is another option for selecting the number of 

multiplicative terms (Dias and Krzanowski, 2006 and Dias and Krzanowski, 

2003).  
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Figure 4. 1 AMMI biplot for the BW00RVTI ALL data  

 

For replicated data, Gollob (1968) proposed an F-test for selecting the number 

of multiplicative terms. According to this method, the mean square of the 

multiplicative term is divided by the error mean square and compared with an 

F-distribution, similarly as with ANOVA. The Gollob (1968) approximation F-

test assume that  .��)+ �)�  is distributed as chi-square variable, and he suggests 

using the statistics 

    		� = ��); (��~�(�����	4y�.))�  
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against an F-distribution with �� = � + � − 1 − (24) and ��(. − 1) degrees of 

freedom, or �(� − 1)(. − 1) degrees of freedom if blocks are present, to test the 

mth multiplicative term of the model for significance. 

 

It is well-known that this method is too liberal (Cornelius et al., 1996). 

Cornelius (1993), Cornelius et al (1996),  and Piepho (1995), proposed and 

investigated various other F-tests for replicated data. In these tests, an error 

mean square is calculated from replicates within genotype-by-environment 

combinations. When there is only a single observation for each cell of the 

genotype-by-environment table, these methods do not apply. 

 

The present chapter considers using resampling for the problem of separating 

fixed genotype-by-environment interaction from random noise. Following 

Mandel (1971), it is suggested that the fixed interaction be modeled by the first 

K terms of the singular value decomposition. Random noise is estimated as the 

remainder when K is smaller than the maximum possible number of terms. 

The proposed methods for selecting K use the parametric bootstrap technique 

(Efron and Tibshirani, 1993). With this approach, the distributions of the 

observed data are assumed to belong to a parametric family, and the expected 

value follows a statistical model, specifically the GGE or AMMI models. The 

model parameters are estimated from the observed data, and random samples 

are generated from the estimated model.  

 

Based on these so-called bootstrap samples, distributions of test statistics or 

other statistics can be approximated. In the present application, the 

distribution of a test statistic, T, for the significance of the (K+1)th multiplicative 

term is approximated and used as a reference distribution for calculation of the 

p-value. When K=0, this test statistic is the same as the likelihood ratio 

statistic used by Johnson and Graybill (1972), and when K>0, the test statistic 

is the same as the likelihood ratio statistic that was derived by Yochmowitz and 
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Cornell (1978) and advocated by Schott (1986). When K >1, an exact test based 

on T is not possible, since the distribution of T depends upon unknown 

singular values (Schott, 1986). In the context of hypothesis testing, these 

singular values are nuisance parameters that are not specified by the null 

hypothesis. 

A parametric bootstrap method presented in the present chapter resolves this 

problem by substituting estimates for unknown parameters. By this method, 

simulation of the null distribution is made possible. Utilizing an approximate 

result for distributions of eigenvalues (Muirhead, 1978), a simplified version of 

parametric bootstrap method is derived. This parametric bootstrap method is 

particularly easy to apply, because it uses standard normally distributed 

values as bootstrap samples. Thus, with this method it is not necessary to 

estimate the parameters; it suffices to assume that errors are normally 

distributed. The proposed bootstrap methods for GGE and AMMI can with 

small adjustments also be used for the completely multiplicative model 

(COMM), and the genotypes regression model (GREG) (Cornelius et al., 1996). 

Furthermore, the methods may be used for testing components in principal 

component analysis (PCA). 

4.2. Methods 

4.2.1 Statistical Model 

Assume that J genotypes have been investigated in I environments. Let yij 

denote the observed mean yield of the j th genotype in the ith environment 

(1 = 	1,2,⋯	, �	; 	3 = 	1,2,⋯	, �	). Let Y denote the I × J matrix of observations v/0 i.e. 

� = �v/0 	. GGE and AMMI models can be written in the form � = ¡ + ¢, where A 

denotes an additive part and E denotes a matrix of interactions and residual 

errors. Let £ = ({�, {), ⋯{¤)# be a vector of environment main effects, and 

| = �|�, |), ⋯ , |¥�# a vector of genotype main effects. Let ¦¤ denote an I-vector of 
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ones,¦¥ a J-vector of ones, and   §¤×¥ = ¦¤¦¥# and I × J matrix of ones. Including 

an overall mean, µ, the additive part of the GGE model is  

¡ = w§¤×¥ + £¦¥#																																																																																			(4.1) 

and the additive part of the AMMI model is  

¡ = w§¤×¥ + £¦¥# + ¦¤|#                                               (4.2) 

In this chapter, it will be assumed that E can be written as 

¢ = ¨+ + © = ª+Ʌ+¬#+ + ©																																																																(4.3),	
where ¨+ models interaction and © = ��/0  is a matrix of independent �(0	;	�)) 
distributed errors �/0. In (3), 	ª+Ʌ+¬#+	,  is the singular value decomposition 

of		¨+.  

The subscript (k) indicates that the rank of ¨+		is k. Thus, the singular value 

decomposition of		¨+ 	comprises multiplicative terms that are not 0. It will be 

assumed that the diagonal elements of Ʌ+	are sorted in decreasing order. The 

singular values will be denoted by  ��, �), ⋯ , �+ , i.e.	Ʌ+ 	= 	�1�(��, �), ⋯ , �+	). The 

I×k matrix of left-singular vectors is ª+ =	 (��, �),⋯ , �+	), and the J×k matrix of 

right singular vectors is as				¬+ = (®�, ®), ⋯ , ®+	)	. In scalar form, GGE and AMMI 

models can be written v/0 = w + {/ + �/���®0� + �/)�)®0) +⋯+ �/+��+®0+ +	�/0 and 

v/0 = w + {/ + |0 +	�/���®0� + �/)�)®0) +⋯+ �/+��+®0+ + �/0	     respectively. 

The general mean, w, can be estimated as the average 

ŵ = 	∑ ∑ v/0 (��)°¥0I�¤/I� , 

and the row and column effects		as {R/ = ∑ v/0 (� − ŵ)°¥0I�  and |�0 = ∑ v/0 (� − ŵ)°¤/I� , 

respectively. Define ±� as the least squares estimator of A in (4.1) or (4.2) when 

ŵ	, {R/ and  |�0 respectively. Let ²- = ³́ + µ́ .  Let M denote the rank of ¢́. Generally, 
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~ = 	41.	(�	, � − 1)		 in GGE analysis, whereas ~ = 	41.	(� − 1	, � − 1)		in AMMI 

analysis. Through singular value decomposition, ²- = Á	Ʌ́	Ć¶	, where ·́ =
	(�R�, �R),⋯ �R;	) is an I×M   matrix of estimated left singular vectors, Ʌ́ =
diag	(	���, ��), ⋯ , ���)	 is an M×M diagonal matrix of estimated singular values 

sorted from largest to smallest, Ć = �®��, ®�), ⋯ , ®�+	� is  a J×M matrix of estimated 

right- singular vectors. 

Consider testing the null hypothesis ¸¹: » = ¼ against the alternative 

hypothesis �̧: » > 	¼ note that » is the actual number of multiplicative terms, 

where ¼ is the assumed number of multiplicative terms under the current null 

hypothesis. The ratio 

T = 	 λ-À��)∑ λ-F)ÁFIÀ��
																																																															(4.4) 

can be used as a test statistics for ¸¹. Large values of T present evidence 

against ¸¹. For ¼ = 	0, Johnson and Graybill (1972) provided simulation-

derived critical  values for selected rows and columns. 

4.2.2   JG/SM –statistics 

 

Yochmowitz and Cornell (1978) and Schott (1986) proposed using the test 

statistic (4) for the problem of selecting the number of multiplicative terms. In 

(4), the squared singular values are distributed as eigenvalues of a Wishart 

matrix (Johnson and Graybill, 1972).  Cornelius et al. (1996) showed, based on 

Johnson and Graybill (1972), Marasinghe (1985) and Schott (1986), that (4.4) 

can be transformed into an approximately F-distributed statistic. To test the 

¼�= term, the approximate F-test is computed as follows:  

�	 = 	 ((	~ − ¼)% − 1)/(~ − ¼ − 1), 
Ã� = �� − Ä + ¼(Ä − ¼)(~ − ¼ + 1), 
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Ã) = (~ − ¼)(Ä − ¼)�)) − 2��)(Ä − ¼))(~ − ¼)(Ä − ¼) + 2)(~ − ¼ − 1)), 
� = (Ã�(1 − Ã�) − Ã))Ã�/Ã), 
x = (Ã�(1 − Ã�) − Ã))/Ã), 
F¥�/Æ� = (xQ)��(1 − �)�. 

For ~ = 41.	(�, � − 1) and	Ä = 	4�!(�, � − 1). For AMMI, ~ = 41.	(� − 1, � − 1) 
and	Ä = 4�!(� − 1, � − 1). The distribution of 	F¥�/Æ� is approximated by F with 

df= (2a, 2b) (Cornelius et al. (1996). ��	and �) are calculated according to the 

approximating functions given by Liu and Cornelius (2001) for mean and 

standard deviation, respectively, of the first squared singular value divided by 

the error variance. The values � and x are functions of expressions that 

approximate the first two moments, estimated through Monte Carlo simulation, 

of eigenvalues of Wishart matrices (Liu and Cornelius, 2001). 

 4.2.3  Parametric bootstrap method  
 

Forkman and Piepho (2014) propose a parametric bootstrap for computing the 

p-value associated with the JG/SM statistic. According to this approach (Efron 

and Tibshirani, 1993), the null distribution is simulated using parameter 

estimates under the null hypothesis. First, the model parameters, including the 

variance, are estimated, and then a large number, B, of samples are drawn 

from the fitted model using the estimates. For each sample, the test statistic, T, 

is calculated. The obtained distribution of simulated test statistics 

approximates the true sampling distribution of T under H0 and can be used for 

estimation of the p-value. 
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In this application, the first K terms from the singular value decomposition are 

taken to represent the true fixed interaction (¨+ ) in all B bootstrap simulations. 

Thus, (	¨+ ) in (4.3) is estimated as 

 

¨+ = È 0																	1�	» = 0∑ �R+��+®�+#			1�	¼ > 0								ÉÉI� 																																																									4.5 

 

To simulate residual error, random noise is added. Specifically, a random 

matrix }ÊË of independent �(0	, �R(+))) distributed errors is added to ΅+. The 

superscript, B, indicates that }ÊË  is a bootstrap version of R, whereas the 

subscript, b, indicates that }ÊË  is the bth bootstrap sample. The variance,	�R(+)), 
which is an estimate of �), can be derived as follows. 

 

Consider an I-by-J two-way layout with additive main effects of rows and 

columns, additive fixed effects of interactions, and independent additive errors 

with variance	�). When there is no replication within cells, a two-way ANOVA 

without interaction is commonly fitted. In this case, the expected residual sum 

of squares equals the unknown interaction sum of squares plus (� − 1)(� − 1)	�)      
(Searle et al., 1992, 2008). Similarly, as relevant for GGE analysis, when a one-

way ANOVA with row effects is performed, the expected residual sum of 

squares equals the unknown sum of squares due to column and interaction 

effects plus �(� − 1)	�). Under ¸¹, the sum of squares of true interaction effects 

is 0 when K= 0 and ∑ ∑�É)+ÉI�  when 1 ≤ ¼ ≤ ~ − 2. It is proposed that the 

observed error sum of squares from the additive model, i.e. the model without 

multiplicative terms, be equated to the expected error sum of squares under HÍ 
, that is 

∑ ∑λÀ) + vσ),FÀI�              1	 ≤ 	K	 ≤ 	M − 	2                       (4.6), 
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where � = �(� − 1) for GGE, and � = (� − 1)(� − 1) for AMMI. When fitting the 

additive model, the error sum of squares always equals ∑ ��É)�ÉI� . Hence, by 

substituting ��É) for �É) in (4.6), the estimating equation ∑ ��É)�ÉI� = ∑ ��À) +FÀI�v�R(+)), 1	 ≤ 	K	 ≤ 	M − 	2 , is obtained. Solving for �R(+)), the error variance σ) in 

(4.3) can be estimated as  

�R(+)) =	1�	 ^ ��É)
�

+IÉ��
,				1	 ≤ 	K	 ≤ 	M − 	2	

where � is defined as in (4.6).	
An approximate version of the above parametric bootstrap method can be 

derived as follows. Let (Ò¥ ) be a � × (� − 1) matrix such that  Ò§Ò#¥ = Ó¥ −
Ô1 �	° Õ �¥×¥ . Then ¢́ equals �Ò§Ò#¥ and Ò§Ò#¥�Ò§Ò#¥  in GGE and AMMI analysis, 

respectively. For the AMMI model with � < � Johnson and Graybill (1972) 

showed that ¢́¢́#/σ) is non-centrally Wishart distributed with � − 1 degrees of 

freedom, scale matrix Ó, and noncentrality matrix Ò#¥¨#(+)¨ÖÒ§/σ)	, that is 

¢́¢́#/σ) is ×¥7� Ø� − 1, ÒÙÚ¨Ù(h)¨ÖÒ§Ûi Ü		. When � > 1					¢́¢́#/σ) is ×¤7� Ø� − 1, ÒÙÝ¨Ù(h)¨ÖÒÓÛi Ü. 
The positive eigenvalues of  ¢́#¢́/σ)	 are the same as those of		¢́¢́#/σ)	and equal     

���)/σ), ��))/σ), ⋯ , ���)/σ) provided that ¸¹	is correct and ���)/σ), ��))/σ), ⋯ , ���)/
σ) are large, the asymptotic joint distribution of these eigenvalues can be 

approximated by the joint distribution of the eigenvalues of a central Wishart 

matrix distributed as ×¥7�7É(� − 1 − ¼, Ó) (Marasinghe, 1985, Muirhead, 1978). 

As a result, the distribution of %	in (4.4) may be approximated by the 

distribution of the ratio of the first eigenvalue to the sum of all eigenvalues of a 

central Wishart matrix. Since the joint distribution of the eigenvalues of a 

×¥7�7É(� − 1 − ¼, Ó) distributed matrix is equal to the joint distribution of the 

squared singular values of a random (� − 1 − ¼) × (� − 1 − ¼) matrix of 

independent standard normal values is large, the parametric bootstrap 

procedure proceeds as follows 



69 

 

1. For x = 	1, 2,⋯ , Þ, where Þ is large, the following can be done.  

a. Sample a (�	 − ¼	) × (	� − 1 − ¼) matrix �-ËË of independent �(0	; 1) 
distributed errors, where � = � − 1	 in AMMI analysis and � = � in GGE 

analysis. 

b.  Subject �-ËËto singular value decomposition and use the obtained 

singular values for calculation of bootstrap samples %Ê according to the 

right hand side of (4), here using K= 0 (i.e. compute %Ê as the ratio of the 

first squared singular value to the sum of all squared singular values). 

2. Estimate the p-value as the observed frequency of %Êlarger than %	computed 
from the data. 

4.2.4 Sequential F-test and Cross-validation method  

 

A study by Gollob (1968) and Wold (1978) defined degrees of freedom 

associated with parameters in multiplicative models as the number of 

parameters minus the number of constraints. With this definition, the number 

of degrees of freedom, DFK, needed to estimate the Kth interaction are � + � − 2¼ 

and 	�	 + � − 2¼ − 1 term is in GGE and AMMI analysis, respectively. 

Consequently, the residual error degrees of freedom, DF Residual , is �	(� − 1) −
∑ (� + � − 2») = (� − ¼)(� − 1 − ¼)ÉÉI�  and  (� − 1)	(� − 1) − ∑ (� + � − 2» − 1) =ÉÉI�(� − 1 − ¼)(� − 1 − ¼) in GGE and AMMI analysis, respectively. (Gollob, 1968) 

proposed an F-test with denominator mean squared error calculated from 

replicates within genotype-by-environment combinations. This test was not 

applicable to the examples of the following section, since these examples used 

means or non-replicated data. For this reason, sequential F-test statistics were 

instead calculated as ratios between the mean square due to fixed interaction, 

i.e. the multiplicative terms, and residual mean square. 

Dias and Krzanowski (2003, 2006)  also proposed cross-validation for choosing 

the number of multiplicative interaction terms. Based on their work, the 

following is presented. Denote by ²-(7ß) the result of deleting the jth column of ²- 
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and after this subtracting row means. Denote by ²-(7à) the result of deleting the 

ith row of ²- and after this, in case of AMMI-analysis, subtracting column 

means. Let Á(7à) and		ª́(7ß)	denote the matrix of left-singular vectors,	Ʌ́(7à)  and 

Ʌ́(7ß)	the matrix of singular values, Ć(7à)	and Ć(7ß) the matrix of right-singular 

vectors, of ²-(7à) and ²-(7ß) , respectively. Write	Á(7à) = ��Rá�(7â) , 
Á(7ß) = ��Rá�(7â) , Ć(7à) = ��Rá�(7â)  and Ć(7ß) = ��Rá�(7S) . Denote by ��+(7@)	and ��+(7P) the 

kth diagonal element of the diagonal matrix Ʌ́(7à)  and Ʌ́(7ß) respectively. Define 

ŷ/0 through ²- = �ŷ/0  and let ŷã/0(+) = ∑ �R/+(7S)ä��+(7@)��+(7P)++I� �R0+(7P) where c 

indicates that ŷã/0(+) is a cross-validation prediction of ŷ/0. Following Eastment 

and Krzanowski (1982a), when calculating		ŷã/0(+), the sign of 

�R/+(7S)ä��+(7@)��+(7P)�R0+(7P) was set equal to the sign of �R+��+®�+#. This is the cross-

validation method, because due to deletion of rows and columns before 

singular value decomposition, ŷ/0 is not used in  ŷã/0(+). With ŷã/0(+) as prediction 

of ŷ/0, the prediction residual sum of squares is  

&}���+ = 1��^^(¥
0I�

¤
/I�

ŷã/0(+) − ŷ/0)) 
where ŷã/0(å) = 0. Eastment and Krzanowski (1982), proposed using 

 × = (æç�ÆÆhql7æç�ÆÆhèéh )/( æç�ÆÆhèéêëì�íîïðì) 
as a decision rule for model section. According to their suggestion, the 

optimum value for K is the largest value of K at which W is greater than 1. 

4.3 Application of parametric bootstrap methods  
 

In this section, a parametric bootstrap method is compared with the cross-

validation method, the sequential F-test and the JG/SM-test, using three 

datasets from the GGE and AMMI BW00RVTI and BW01RVII datasets of mean 

yields from two wheat and one barely trial. The two first multiplicative terms of 
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the AMMI analysis of the BW01RVII ALL datasets were shown in Figure 4.1. 

Principal component axis 1 (PC1) displays the values of �R�ä��� and	®��ä���, 
whereas axis 2 (PC2) displays the values of �R)ä��) and®�)ä��) . GGE and AMMI 

analysis can be used to determine which genotypes are performing similarly 

(e.g., G4 and G14) or dissimilarly (e.g., G12 and G18) in varying environments, 

and to classify environments into groups of environments that are similar with 

regard to performance of genotypes. Table 4.1 and Table 4.2 present results of 

AMMI and GGE analyses, respectively.  
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Table 4.1 AMMI analysis of  BW00RVTI  and the BW01RVII datasets (sum of squares, test statistics for the cross-validation 
method(W), the sequential F-test (F),the JG/SM-test and the parametric bootstrap test (T), probability value for the sequential F-test, the JG/SM-
test, and the simple parametric tests. Bootstrap test p-values where computed using B=100000 bootstraps samples. Under H0, the model has K 
terms) 

 

 AMMI 
Term Data set Sum of 

squares 
Test statistics Probability value 

K+1 BW00RVTI 
Year1 

 

��É��) W F G T F-test JG/SM Simple Bootstrap 

1 508.8582 -0.2181 2.0135 1.20 0.3914 0.0131 0.0273 0.0269 
2 397.0113 0.4086 2.4460 1.69 0.5018 0.0048 0.0436 0.0486 

3 203.2656 0.2400 1.7931 1.06 0.5157 0.0705 0.4193 0.4161 

4 98.8242 0.0203 0.9468 0.08 0.5176 0.5469 0.9960 0.9910 

          

1 BW00RVTI 
Year2 

 

364.7664 0.1272 2.2680 1.53 0.4803 0.0075 0.1144 0.1170 

2 224.2592 0.2653 2.2359 1.60 0.5681 0.0188 0.1439 0.1473 

3 140.8219 0.1814 4.2159 4.31 0.8259 0.0029 0.0145 0.0112 

         

1 BW00RVTI 
(year 1 & 2) 

693.6966 0.3676 2.6576 1.56 0.3148 0.0001 0.0148 0.0199 

2 415.9191 -0.0794 1.9881 1.04 0.2754 0.0062 0.4073 0.3900 

3 345.0615 0.0412 2.1493 1.18 0.3153 0.0040 0.2421 0.2329 

4 232.7798 0.1980 1.8439 0.94 0.3107 0.0236 0.5688 0.5542 

5 182.9161 0.1001 1.9195 1.01 0.3542 0.0241 0.4697 0.4545 

          

1 BW01RVII 454.4874 0.0622 3.0491 2.06 0.4813 0.0001 0.0092 <.0001 

2 224.4913 0.0701 2.1482 1.28 0.4584 0.0066 0.2372 0.0009 

3 167.5780 0.1889 3.0019 2.29 0.6317 0.0009 0.0333 0.0960 

4 97.6916 0.1535 6.48E+28 0 1 0.0001 <.0001 <.0001 
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Table  4.2 GGE analysis of  BW00RVTI  and the BW01RVII datasets (sum of squares, test statistics for the cross-validation 
method(W), the sequential F-test (F),the JG/SM-test and the parametric bootstrap test (T), probability value for the sequential F-test, the JG/SM-
test, and the simple parametric tests. Bootstrap test p-values where computed using B=100000 bootstraps samples. Under H0, the model has K 
terms) 

 

 GGE 

Term Data set Sum of 
squares 

Test statistics Probability value 

K+1 BW00RVTI 
Year1 

��É��) W F G T F-test JG/SM Simple Bootstrap 

1 9207.5563 0.7943 32.5601 31.6 0.9114 0.0001 <.0001 <.0001 

2 494.4637 0.1312 3.0264 2.34 0.5522 0.0005 0.0085 0.0145 

3 203.3296 0.0437 1.7484 1.04 0.5070 0.0737 0.4397 0.4675 

4 98.8785 -0.0043 0.8894 0 0.5002 0.5977 0.9998 1 

          

1 BW00RVTI 
Year2 

3671.7824 0.2871 15.5584 15.99 0.8626 0.00010 <.0001 <.0001 

2 346.2378 0.0419 2.4873 1.93 0.5920 0.0079 0.0672 0.0834 

3 207.2377 0.0532 5.9063 6.70 0.8684 0.0003 0.0021 0.0020 

          

1 BW00RVTI 
(year 1 & 2) 

13843.8972 1.1645 43.2276 10.28 0.8800 0.0001 <.0001 <.0001 

2 671.2481 -0.0794 2.9413 6.40 0.3555 1.86E-05 <.0001 0.0085 

3 350.4476 0.0436 1.9247 8.47 0.2879 0.0103 <.0001 0.5128 

4 255.3868 0.0581 1.7437 5 0.2947 0.0325 <.0001 0.7205 

5 187.49399 -0.0135 1.5799 15.44 0.3067 0.0777 <.0001 0.8582 

          

1 BW01RVII 3671.7824 0.2871 15.5584 15.99 0.8626 0.0001 <.0001 <.0001 

2 346.2378 0.0419 2.4873 1.93 0.5920 0.0079 0.0672 0.0841 

3 207.2377 0.0532 5.9063 6.70 0.8684 0.0003 0.0021 0.0017 



74 

 

 

The tables show tests of the first three to five multiplicative terms were tested. 

The p-value of the parametric bootstrap test was derived using B=100,000 

bootstrap samples.  

 

The parametric bootstrap tests and the JG/SM-tests gave some similar, but 

not identical, p-values. The sequential F-test was generally much more liberal. 

In most cases, the cross-validation W-statistic was smaller than 1 although the 

parametric bootstrap and JG/SM-tests indicated significant effects at level 

0.05. Following Eastment and Krzanowski (1982a) decision rule, the cross-

validation method agreed with the parametric bootstrap and JG/SM-tests.  

 

Using the bootstrap tests, an AMMI model with two terms was appropriate for 

the BW00RVTI (year1) and the BW01RVII datasets. For the BW00RVTI (year 2) 

dataset, there were no significant patterns in the interaction. For the 

BW00RVTI All dataset, AMMI PC1 and PC 2 captures 31.5% and 19 % of the 

genotype-by-environment interaction, respectively (Table 4.1). The parametric 

bootstrap methods indicate that the first term (PC1) is significant, but the 

second term (PC2) is not. Since ¸¹:	» = 1 cannot be rejected, the interaction 

pattern displayed by the vertical axis in Figure 4.1 is not larger than one would 

expect by chance. For example, the difference between genotypes G12 and G18 

should not be overemphasized. In this case, a biplot that illustrates genotype 

and environment means on the horizontal axis and PC1 on the vertical axis 

(Gauch, 1992b) is appropriate. Forkman and Piepho (2014) propose that terms 

are tested sequentially until a non-significant result is obtained. With this 

decision rule, the final model for the BW00RVTI All dataset contains a single 

multiplicative term.  

 

The problem of testing multiplicative terms in GGE and AMMI analysis is 

complicated, because estimated squared singular values are not chi-squared 
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distributed (Schott, 1986). The F-distribution has been proposed as reference 

distribution for various approximate test statistics based on ratios of mean 

squares (Cornelius et al., 1996), and the question has been how to calculate 

numbers of degrees of freedom (Gauch, 1992b, Mandel, 1971). Using 

resampling methods, the degrees-of-freedom problem of identifying the actual 

reference distribution can be circumvented. The reference distribution is 

simulated, which enables approximate inference. Forkman and Piepho (2014) 

proposed parametric bootstrap methods for testing multiplicative terms in GGE 

and AMMI models. The results of the simulation study indicated that these 

methods can be used to select the number of multiplicative terms to be 

retained in the model. According to Bradley (1978), the empirical level should 

not deviate from the nominal level by more than 10 %. Under this rule, the 

Type I error rate should, at nominal level 0.05, not exceed 0.055. The 

parametric bootstrap methods fulfill this requirement, but the JG/SM-test does 

in general not.  

The JG/SM-test was proposed together with a sequential testing procedure 

(Schott, 1986), under which terms are tested sequentially, beginning with K=0 

and continuing with ¼ = 1,2, . . . , ~ − 2 as long as H0 is rejected. The (¼ + 1)(ℎ 

term should not be tested unless the ¼(ℎ term is significant. Through this 

procedure, the requirement that the first ¼ singular values be large is expected 

to be fulfilled. Since a simple parametric bootstrap method makes use of the 

same approximation, a sequential testing procedure can be recommended for 

this method as well. Equivalently, if all multiplicative terms are tested and the 

results compiled in a table similar to Table 4.1, a forward selection procedure 

may be applied when deciding on which terms to retain in the final model. If 

models are tested sequentially until a non-significant result is obtained, then 

computed p-values are not strictly correct provided they have not taken into 

account the probabilities that the tests are performed at all.  
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The parametric bootstrap methods of the present section can be used for the 

problem of selecting principal components in PCA. Due to the demonstrated 

fine performance with regard to power and probability of Type I errors by 

Forkman and Piepho (2014), a parametric bootstrap methods for testing 

multiplicative terms in GGE and AMMI analyses is recommended. A parametric 

bootstrap methods which is easier to program and computationally more 

effective, it is advisable to determine the number of multiplicative terms to 

retain in the model through a forward-selection procedure.  

 

The previous chapters demonstrated performance with regard to methods of 

missing data imputation and AMMI and GGE statistical data analysis methods 

which are dependent on a balanced data case and also do not consider spatial 

variability in the experiment. The next two chapters cover a case of unbalanced 

data analysis and spatial variations with experimental plot through a mixed 

model approach. 
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Chapter 5  

Spatial analysis of a field experiment  

5.1 Introduction 
 

Crop breading data from field experiment exhibit spatial variation, so-called 

because it is a function of the location of the plot in the field (Gilmour et al., 

1997a) present a method of analysis in which spatial variation is modelled, 

resulting in estimates of treatment effects can be attributed to small scale 

which have greater accuracy and precision than more traditional methods such 

as RCB and IB  see Gleeson and Cullis (1987), for example. Gilmour et al. 

(1997a) partition spatial variation into two type of smooth spatial trend (local 

and global) and extraneous variation.  

Local trend effects can be attributed to small scale soil depth and fertility 

fluctuations. Global trend effects could be non-stationary trend across the 

field. Extraneous variation is often linked to the management of the trial. An 

example is the effect of harvesting in a serpentine manner up and down the 

rows in the field, with plots harvested in ‘up’ direction being consistently lower 

or higher yielding than plots harvested in ‘down’ direction. Global trend and 

extraneous variation are accommodated in the model by including appropriate 

terms such as design factors and polynomial functions of the spatial co-

ordinates of the field plots. Local stationary trend is accommodated using a 

covariance structure. 

The decomposition of error variation provides a more plausible approach than 

the original spatial methodology of Gleeson and Cullis (1987) and Cullis and 

Gleeson (1991a) in which error variation as a whole was modelled using a 

covariance structure. It is assumed that an individual experiment consists of n 

plots which are laid out in the field as rectangular array of r rows and c 
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columns (n=rc). The data y(n×1) are ordered correspondingly ( as rows within 

columns).  The model for y is given by  

ò = �ó + ôõ + ö                            5.1, 

where ó(÷×¦) and õ(ø×¦) are the vectors of fixed and random effects respectively. 

 �(ù×÷) and ú(ù×ø) are associated design matrices for these two types of effects 

respectively, the former assumed to be of full column rank. The vector of 

residual is given by ö(ù×¦). It is assumed that the joint distribution of (ª,ö) is 

Gaussian with zero mean and variance matrix  

ûü(ý) þþ ©(∅)�    

Where � and ∅ are vectors of variance parameters. The marginal distribution of 

the data are thus Gaussian with mean �ó and � = ôüô� + © variance matrix. 

The vector of errors ö is decomposed into a vector �(ù×¦) of spatial trend effects 

and a vector of independent errors denoted by  . The spatial process is 

assumed to be second order stationary with var[ ���� ]=�)�(�) where �	denotes the 

spatial correlation matrix which is a function of parameters  f and		�)  the 

associated variance . The independent measurement error has a variance	��	. 
Thus the errors in 5.1 are given by 

ö = �+ 	�	                            5.2 

With associated variance matrix 

© =	�	�(�) + 	��	Óù   

Traditional methods of analysis such as RCB and IB are a special case of 5.1. 

For an RCB analysis ª contains replicate effects, � is omitted and 
 = �	Óù is 

simply the trial error variance, the REML estimate of which is identical to the 

error mean square from an ordinary ANOVA. For an IB analyses with recovery 
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of inter block information, ª contains effects for replication and within 

replicates and blocks within replicates, � is omitted and 
 = Óù�	 is within 

block error variance. Treatment effects will be included in either @ or u 

depending on the aims of the experiment. 

The key in the Gilmour et al. (1997a) approach to spatial analysis is the 

identification of an appropriate variance structure for plot errors. There is no 

longer a dichotomy between spatial analysis and traditional methods such as 

RCB and IB. The latter provides a legitimate error variance model which would 

be adopted in the spatial approach if found to be consistent with the data. This 

is rarely the case, however. 

5.2 Local spatial trend 
 

Local trend reflects the fact that in the absence of design effects, data from 

plots which are close together are more similar than those which are further 

apart. Thus the element of � are correlated, the correlation being a function of 

spatial distance between plots. Let 
 = e�âSf where ��âS  = J�â, �SK is the spatial 

correlation between plot i and j. Since field experiments are arranged as 

rectangular arrays a two-dimensional co-ordinate system is required to define 

the location of each plot. Let �â = (�â, �â�) denote the spatial location of the ith 

plot in the field, where d/� and d/ã are the row and column co-ordinates 

respectively. The spatial correlation between �â =	�â(�â) and �S =	�S(�S) can then 

be written as  

�âS = ¬(�â, �S	; 	£) 
Where the correlation function V depends on the vector of unknown 

parameters f. Since the process for ���� is second order stationary the correlation 

between two plots depends on only on the distance between them. Thus 

  �âS = ¬��â, �S	; 	£� = ¬(�â�; 	£) 
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Where �âS = (�â�	, �â��) = �â − �S	. It is further assumed that the two–dimensional 

process is separable so that the correlation function is given by the product of 

the correlation function for each dimension. The separability assumption is 

computationally convenient and with field trials see Cullis and Gleeson 

(1991b),  and  Martin (1990) for example. 

Thus  

	¬(�âS; £) = ¬��âS; 	£�¬(�âS�; 	£�) 
Where ¬ and ¬� are the correlation functions from the rows and columns 

respectively. Correspondingly, the variance matrix for ���� can be written as  

  ���(�) = 	�	�({) = �	
�(£�)⊗ �	
(£)		 
Where 
 and 
� are r×r and c×c correlation matrices for row and columns 

respectively. 

Many forms for V are possible. Zimmerman and Harville (1991a) give an 

example used in geostatistical applications including the exponential model, 

which, for single dimensions is given by 

 '��/0	; {� = exp	(−{�	��/0��� − {ã��/0ã�� .                       5.3 

The model with p=1(referred to by Cullis et al. (1998a), as the directional 

exponential covariance (DEC) model) is particularly important for field 

experiments. 

In a field experiments plots are often of equal size and laid out in a contiguous 

array so that the distance between plots can be measured simply in terms of 

row and column numbers. Let  �∗/0� be the difference in row number between 

plots i and j  so that �∗/0� has possible values 0,1,…, (r-1). Define �∗/0ã similarly. 

If dr and dc are the actual directions respectively then �/0� = ���∗/0� so that 
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y!,	�−{�	��/0��� = ����∗���� where �� = exp(−{���).  The function in 3.4 with p=1 is 

then given by 

   '��/0	; {� = ����∗�����Ã��∗����                                                     5.4, 

where �� and �Ã are by definition positive. If this restriction is lifted 5.4 is the 

correlation function for a separable autoregressive process of order 1 (AR1 

×AR1). Cullis and Gleeson (1991b) proposed this as a plausible correlation 

structure for the spatial trend. The parameters		£ = (��, �Ã) are known as 

autoregressive correlation coefficients. Many other forms of spatial correlation 

matrix (Σ) are possible, Gleeson and Cullis (1987) for example gives the 

subclass of ±}�~±	(,�, ��, ��) 	× 	±}�~±(,), �), �))	 models with &� =	&) = 	0 

and		�� =	�) = 	0, 1 and �� =	�) =	0, 1 fitted most uniformity data sets. 

Experience by Cullis et al. (1998a) has shown, however, that the 

AR1×AR1model (or variant with an identity matrix for one of the dimension) 

usually provides an adequate variance structure for local spatial trend. 

5.3 Global trend and extraneous variation 
 

The determination of an appropriate variance structure for separable spatial 

trend process and the detection of extraneous effect are made possible through 

the use of graphical diagnostics. Two key graphs are of estimated residuals 

against row or column number and the three-dimensional graph of the sample 

variogram. 

Global trend, non-stationary global trend in the row direction, say, can be 

displayed in the residual plot as a smooth trend (linear or non-linear) over row 

number for each column. A sample variogram which fails to reach a plateau in 

the row/ column direction is the evidence of global trend. To see this consider, 

without loss of generality, an experiment in which all plots are laid out in a 

single column. Assume that the errors are functionally related to the row co-
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ordinates of the plots. If the relationship is linear, for example, then in the 

absence of measurement error  

�/ =	�/ + 	|d/� 
where β is a regression coefficient. Assume that the second order stationary 

trend process � has an AR1 structure. The variogram for ε non-zero 

displacement �∗/0� is given by  

���/0�� = �) 	� ���/ − �0�)�		= 
�) 	� �Ô�ξ/ − ξ0�) + |�s/� − s0��)Õ� 

= 
�) 	� ��ξ/ − ξ0�)�+	�) 	|)�s/� − s0��) 

The first term is the variogram for AR1 process � so that it can be written as 

���/0�� = �) 1 − ����∗����	! +	12	�|���∗/0� 	) 
The first term in this equation tends to  �) as the displacement �∗/0� increases 

but the second term keeps increasing. Hence the variogram for the non –

stationary process ε never reaches a plateau. 

Historically non-stationarity of this type was corrected by differencing the data 

see Gleeson and Cullis (1987) for example but this complicates the analysis. 

Gilmour et al. (1997a) recommend an alternative approach which involves the 

fitting of polynomial functions or cubic smoothing splines to row and/or 

column coordinates of the plots. Thus the non-stationary global trend is 

explicitly modelled. 

Extraneous variation that comes as a result of management of field trials 

involves procedures which are aligned with the rows and columns. Examples 

are the sowing and harvesting of plots. Certain procedures may result in row 

and column effects (systematic and or random) in the data. Gilmour et al. 

(1997a) identifies this extraneous variation to distinguish it from smooth trend. 
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Extraneous variation may be evident from an examination of residual plots. It 

may be more clearly seen, however, using the sample variogram. 

The inclusion of a measurement error term can be justified on both biological 

and statistical grounds as it constitutes lack of fit about the smooth spatial 

model. The philosophy of inclusion of a measurement error has been adopted 

by several authors including Wilkinson et al. (1983a) in their smooth trend 

plus independent error model for field experiments. The need for measurement 

error may be revealed in the sample variogram. 

5.4 Correlation modelling 
 

For a mixed model of equation 5.1, each element of the residual vector � follows 

a normal distribution with mean zero and variance �). Equivalently, we can say 

that the vector � follows a multivariate normal distribution with a mean vector 

of zeros, and variance-covariance matrix �)I, where I is the identity matrix. 

Likewise, each element of the vector of random effects �/ follows a normal 

distribution with mean zero and variance �/�). Again, equivalently, we can say 

that the vector �/ 	follows a multivariate normal distribution with mean vector of 

zeros, and variance-covariance matrix  �/�)Ó. 
 

In correlation modelling, the equation of the mixed model remains the same, 

but the vectors of random effects ªâ now follow multivariate normal 

distributions with a variance-covariance matrix �/�), ü, where �/ is a variance 

ratio and the matrix G is defined using a correlation model (or it may remain 

the identity matrix I if the effects are independent, i.e. uncorrelated, as in 

traditional model). Likewise, the residual vector ö now follows a multivariate 

normal distribution with variance �)© , where the matrix R may be defined 

using a correlation model. (Again R remains the identity matrix I if the effects 

are independent.) If we write the value in the correlation matrix C (either G or 
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R) Cij in row i and column j as Cij, the most useful models for spatial modelling 

can be defined as follows in table 5.1. 

 

In a two-dimensional spatial model, a correlation model is fitted to a random 

term field row and field column, where field row and field column are factors 

representing row and column positions up-and-down or from side-to-side of the 

whole field (rather than within replicates). Usually a separable correlation 

model is fitted, in which the correlation between the plots at coordinates (1, 3) 
and (», �) is the product of a correlation from a model defined on the rows of the 

experiment, and a correlation from a model defined on the columns of the 

experiment: i.e. correlation Ã�/+ between rows (1 − ») apart × correlation Ã�0� 
between columns (3 − �) apart with the correlations Ã�/+ and Ã�0� being defined by 

one of the models above. 

 

Table 5.1 Four spatial models and their parameter structure. 

Identity "/,/ 	= 1	"/,0 = 0, for 1 ≠ 3 
Auto-regressive order 1 (AR1) "/,/ 	= 1	

"/�+,/ = $+ 
Auto-regressive order 2 (AR2) "/,/ 	= 1	"/��,/ = φ�/1 − φ) "/,0 = φ�"/7�,0 + φ)"/7),0 1 > � + 1,−1 < φ�,φ) < 1 |φ� + φ)| < 1,φ) + φ� < 1,φ) > −1 
Power-distance "/,/ 	= 1	

"/�+,/ = $g � = |1 − 3| 
 

Separable correlation models are often represented using the direct product 

symbol ⊗: so a model constructed from two AR1 models is written as 

AR1⊗AR1. 
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5.4.1 Correlation model application to BW01RVII data set 

 

A spatial correlated model was fitted for data set BW01RVII (location1-5) with 

fixed term variety, and then considered the error model by specifying the row 

and column factors and selecting one of the four correlation model (identity, 

power, AR1 or AR2). In addition we include a random row or column effect 

or/and a linear trend across arrow or/and a column. The functional form of 

three models with one of the four correlation structures (identity, power, AR1 

or AR2) applied in this chapter are as follows: 

� = �| + � + Ã + � × Ã + �                                    5.5 

										� = �| + x�% + xã% + � × Ã + �                              5.6 

																											� = �| + x�% + xã% + � + Ã + � × Ã + �                   5.7 

 

where | is either a vector of variety effect or variety and block effect r and c are 

the random row and column effects, x�% and xã% represents a fixed linear trend. 

 

The results for each location are given in Table 5.2 and Appendix A.  These 

tables show the fact that the F-statistics in the spatial analysis is larger than 

the F-statistics from the analysis of variance of randomized complete block 

design suggests that the spatial analysis capacity to model the fertility of the 

field more effectively for all five different locations. The assessment of the effect 

of extending or simplifying the random model by a more complicated 

correlation structure is performed through Akaike information criteria (AIC) 

values between the models.  

 

The best model from is the one with the smallest AIC value and it is the fixed 

model of Constant + entry + lin_row + lin_col and random effect of row × 

column with an auto-regressive order 2 (AR2) correlation for location 1 and 

location 5 and auto-regressive order 1 (AR1) for location 4 . An identity and 

auto-regressive order 1 (AR1) correlation structures with a fixed effect model 
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constant +entry and random model row + column + row × column are the best 

models for location 2 and location 3 respectively. An additional fit of a linear 

trend across rows (lin_row)  and columns ( lin_col) on the fixed effect model for 

location 1, location4 and location 5 improve the fit and smoothens of the 

variaogram.  The addition of lin_row or lin_column and correlated structures 

improve the analysis which can lead to increase in efficiency of genotypes 

comparisons and decision making for variety recommendations. The presence 

of best model difference between the locations is also an indication of the pre-

question of doing one type of analysis for the different data sets emanating 

from different locations that is a usual practice of most plant breeders. The 

next chapter addresses the spatial variation of experimental plots and variety 

ranking in a better way using more complicated spatial isotropic and 

anisotropic covariance structures.   
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Table 5.2 Results from the application of the linear mixed correlation models with four correlation structures 

to the  BW01RVII data set in Location 1.  

Model for location1 Correlation structures AIC Fixed term df F-value p-value 
Response  yield Fixed model: 
Constant +entry 
Random model: row + 
column +row.column 
(5.5) 

identity 358.81 Entry(genotypes) 24 2.04 0.013 

Power 354.96 Entry(genotypes) 24 2.70 0.002 
auto-regressive order 1 (AR1) 354.96 Entry(genotypes) 24 2.70 0.002 
auto-regressive order 2 (AR2) 345.74 Entry(genotypes) 24 3.73 <0.001 

Response yield 
Fixed model: Constant + 
entry + lin_row + lin_col 
Random model: row.column 
(5.6) 

 
identity 

 
353.42 

Entry(genotypes) 24 2.05 0.010 
lin_row 1 11.63 0.001 
lin_col 1 8.01 0.006 

 
Power 

 
349.66 

Entry(genotypes) 24 2.61 0.002 
lin_row 1 4.60 0.050 
lin_col 1 4.72 0.048 

auto-regressive order 1 (AR1) 
 

 
349.66 

Entry(genotypes) 24 2.61 0.002 
lin_row 1 4.60 0.050 
lin_col 1 4.72 0.048 

auto-regressive order 2 (AR2)  
341.39 

Entry(genotypes) 24 3.59 <.001 
lin_row 1 1.07 0.379 
lin_col 1 2.53 0.158 

 
Response :yield 
Fixed model: Constant + 
entry + lin_row + lin_col 
Random model: row + 
column + row.column 
(5.7) 

 
identity 

 
353.68 

Entry(genotypes) 24 2.24 0.005 
lin_row 1 2.80 0.236 
lin_col 1 8.79 0.004 

 
Power 

 
352.92 

Entry(genotypes) 24 2.60 0.002 
lin_row 1 2.49 0.245 
lin_col 1 5.20 0.039 

auto-regressive order 1 (AR1) 
 

 
352.92 

Entry(genotypes) 24 2.60 0.002 
lin_row 1 2.49 0.245 
lin_col 1 5.20 0.039 

auto-regressive order 2 (AR2)  
344.95 

Entry(genotypes) 24 3.74 <.001 
lin_row 1 0.90 0.428 
lin_col 1 2.79 0.153 

*(ANOVA  model  Entry(genotypes) F-value 1.96, P-value 0.015) 
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Chapter 6 

Local stationary trend and its influence on multi-

environmental crop variety trial assessment 

6.1 Introduction 

National multi-environmental yield trials (MET), allow assessment of the 

potential yield performance of different varieties across a range of environments 

(locations and possibly over years, as well as combination of the two). These 

trials play an important role in crop variety evaluation in breeding programs 

and varietal recommendations for plant production. It is therefore vital that the 

statistical methods used to design the studies and analyse data from national 

yield trial evaluation programs are as accurate, efficient and informative as 

possible. Although the development of statistical methods for analysing variety 

trial data has a long history, due to the complexity of varietal and 

environmental interactions there is no specific model that is generally suitable 

for analysing combined data sets from national trials. Spatial variability often 

exists in field experiments due to factors such as moisture, fertility, pH and 

structure of the soil, as well as the pressure of diseases and pests (Davidoff and 

Selim, 1988, Scharf and Alley, 1993, Stroup, 2002, Wu and Dutilleul, 1999). 

Multi-environment crop variety trials and field evaluations are a particularly 

well-known example of this. Failure to effectively control for spatial variability 

greatly increases the risk of misleading interpretations or erroneous inferences 

(Mo and Si, 1986, Stroup, 2002, Yang et al., 2004). 

Historically, the analysis of variance (ANOVA), along with randomised block 

designs (including complete, incomplete blocks), has been used to deal with the 

spatial variability of these trials. Numerous studies have shown that such 

design-based control of the spatial variation of field trials are often not optimal 

and results in poor analysis efficiency (Yang et al., 2004). Statistical procedures 

that account for spatial variation between plots within trials have been 
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proposed to address the topic of modelling spatial variation in crop evaluation 

trials using polynomial trend analysis, nearest neighbour analysis and a model 

with correlated errors. 

The problem with the ANOVA method as a means to analyse multi-

environmental crop variety trials is that it requires the assumption of 

homogenous variance–covariance structures across locations or environments. 

This homogeneity of variance and covariance may be unrealistic in many 

circumstances (Kempton, 1984, Piepho, 1999a). As a result, a range of more 

complex and informative models that can account for variance or/and 

covariance heterogeneity have been proposed for analysing MET data Stefanova 

and Buirchell, (2010). While other models are available, the problem of how the 

models should be assessed and which model is more suitable for a given trial’s 

data has not been solved. This restricts the applicability of the models and 

model choice. Therefore, a linear mixed model approach with flexible spatial 

variance–covariance structures is proposed. Correspondingly, model-based 

approaches for analysing field trials that focus on the need to control spatial 

variation have been put forward. These approaches include nearest neighbour 

adjustment (NNA) analysis and its modifications (Bartlett, 1978, Clarke and 

Baker, 1996, Cullis and Gleeson, 1991b, Yang et al., 2004). Other options 

include linear mixed models with spatial covariance structures such as those 

used in geostatistics (Gilmour et al., 1997a, Stroup, 2002, Zimmerman and 

Harville, 1991a). The efficiency of spatial approaches has been compared with 

the no spatial analyses found in the literature (Brownie and Gumpertz, 1997, 

Hong et al., 2005, Smith et al., 2001a, Wu and Dutilleul, 1999, Yang et al., 

2004). 

However, most comparisons of efficiency in the literature appear to focus on 

the nearest neighbour adjustment (including its modification or extensions) 

and/or the linear mixed model with one special covariance structure (usually 

the first order autoregressive model, AR(1)) against the analysis of variance of 
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block designs (Aweke, 2005). There have been few comparisons of mixed 

models with different spatial covariance structures. Now a migration seems to 

be taking place from the NNA to a fully-fledged mixed model analysis with 

different spatial components for spatial variability because of the flexibility, 

simplicity of use and other advantages of mixed model analysis (Piepho et al., 

2008). Recently, linear mixed models have become well developed, and range 

from simple variance component models that provide information similar to 

ANOVA, to models with complex variance–covariance structures that aim to 

explore complex sources of variability and better accommodate interactions. 

Specifically, different analytical models can be cast in a unified mixed 

modelling framework (Denis et al., 1997, Piepho, 1998a, Piepho, 1999).Within 

such a framework, different models can be handled as mixed models with 

different variance–covariance structures. Thus candidate models can be 

assessed and selected for MET data analyses, which can result in high 

accuracy when estimating variety effects and testing for differences between 

them. 

Within advanced experimental designs, many spatial methods were proposed 

for adjusting the spatial trend (Bartlett, 1978, Gilmour et al., 1997a, Gleeson, 

1997, Piepho, 1999, Schwarzbach, 1984, Wilkinson et al., 1983a, Williams, 

1986). A common feature of these methods is that plots that are closer together 

are assumed to have a higher correlation than plots farther apart. Via such 

models the precision of genotypic value estimates can be improved through 

both blocking and the adjustment of spatial trend in one or two dimensions. 

With regard to the practical application of the linear mixed model with a spatial 

component, various unsolved problems must be dealt with. Among other 

issues, these are concerned with the selection of a suitable covariance model, 

i.e., a model with criteria that form the basis for a user's choice of whether or 

not to use a spatial model at all. Another point in this regard is the fact that 

the covariance parameters are unknown in practice and the estimated values 
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based on observed data have to be used. In this case the statistical tests about 

the fixed effects of linear mixed models are generally not exact and their 

degrees of freedom are obtained by an estimation process Kenward and Roger 

(1997). For some types of mixed models, the available methods for 

approximating degrees of freedom have been well examined (Schaalje et al., 

2002, Spilke et al., 2004, Spilke et al., 2005). For mixed models with spatial 

covariance structures, however, the use of the approximation methods has to 

be undertaken with care. In addition of the approximation, further 

consideration has to be given to the question of what influence the various 

spatial models have on the statistical tests used for, ranking and selection of 

lines in cultivar trial evaluations, apart from on efficiency vis-a-vis standard 

errors for line effects estimates. In MET, the local spatial tendency within trials 

and the residual heterogeneity between trials can be jointly modelled in the 

context of linear mixed models. By using a two-dimensional coordinate system 

at each trial, it is possible to define the plot location in a field, for example by 

specifying the latitude and longitude of plot centres (Casanoves et al., 2005, 

Casanoves et al., 2013). 

The main objective and present contribution of this paper were (1) to highlight 

the advantages of mixed effect models in the data analysis of a national MET; 

(2) to show the importance of several main spatial variance–covariance 

structures, and direct implications of model choice for the inference of varietal 

performance, ranking and testing based on two data sets from real national 

trials by comparing blocking without spatial effect (ANOVA) model and a model 

with a block and spatial effect; the mixed models with spatial variance-

covariance structure models were fitted using restricted maximum likelihood 

(REML) approach; and finally (3) we were able to compare parameter estimates, 

ranking of varieties and comparing estimates, ranking order and tests of 

varietal effects between the ANOVA model with only block effects and the mixed 

effects model with a block effect with selected spatial variance–covariance 

structure. 
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6.2 Material and methods 

Linear mixed models have become well developed, and range from simple 

variance component models that provide information similar to ANOVA, to 

models with complex variance–covariance structures that aim to explore or 

better accommodate interactions. Specifically, different analytical models can 

be cast in a unified mixed modelling framework (Denis et al., 1997, Piepho, 

1998,1999). Within such a framework, different models with specific variance–

covariance structures can be formulated. Thus candidate models can be 

assessed and selected for MET data analyses, which result in high accuracy 

when estimating and testing varietal effects. Although there are already some 

general reviews of crop breeding analysis and variety evaluation trials (Davidoff 

and Selim, 1988, Smith et al., 2001a, 2005), as well as studies on the analysis 

of MET data using the mixed models (Bartlett, 1978, Kelly et al., 2007a, 

Piepho, 1997, Piepho and Möhring, 2010, Stefanova and Buirchell, 2010), most 

references just contain some examples for demonstration, or contain just one 

specific type of mixed model in data analysis. 

Both traditional block design ANOVA models and spatial effect models can take 

the general form of the linear mixed model: 

ò = �| + ô� + y																																																																							(6.1) 
where y stands for the vector of observations, X is a matrix of constants 

associated with the fixed effects contained in the vector ß, ß is a vector of 

unknown fixed effects, Z is a matrix of constants associated with the random 

effects, u is a vector of random effects, and e is a vector of random residual 

errors. The random effects are assumed to be distributed as multivariate 

normal (MVN) or more precisely u ~MVN (0, G) and the residual errors	(y) 
distributed as MVN (0, R). It follows that the vector of observations is 

distributed as '~MVN(	6β, C) where V = ZGZ'+R, The matrix G is the covariance 

matrix among random effects, R is the covariance matrix among the random 
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residual errors, and V is the covariance matrix of y. For block designs, block 

effects may be regarded as fixed or random effects. A random block analysis 

makes additional use of the so-called inter-block information and is generally 

the preferred approach (Littell et al., 2006). In this article, block effects will be 

considered random in a combined analysis of data from different location. In 

this situation, u is the vector of block effects, and Z corresponds to the block 

effect design.  

For analysis of variance models for block designs, block effects are assumed to 

be iid ~ N (0,�)Ê), and residual errors are assumed to be iid N~ (0,�)), where iid 

denotes independent and identically distribution, and �)Êand �)are variance 

components of blocks and residual errors, respectively. Hence, G = Ib�)Êand R 

= In�), where Ib is an identity matrix whose dimension equals the number of 

blocks, In is an identity matrix whose rank equals the number of observations. 

The main feature of analysis of variance models for block designs is that 

random variables located in the same block have the same covariance 

regardless of the extent of spatial variation; random variables not located in the 

same block have a covariance of zero.  

In spatial effect models, R takes the form R = In�) + �)áF, where �)á is the 

covariance parameter of spatial structure variation, F is a square matrix with a 

dimension reflecting the number of observations, whose ijth element is f(dij), in 

which dij is the Euclidian distance between spatial observation points i and j. 

Suppose (xi,yi) and (xj ,yj) describe the coordinates of the median points of plots 

for observations i and j, respectively, then their distance is: 

�/0 = ä(!/ − !0)) + (v/ − v0))																																																(6.2), 
where x and y denote horizontal and vertical directions. The variable f(dij) is 

generally a function of dij and its form is dependent on the spatial model used, 
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which is dependent on the characteristics of spatial variation. The spatial 

covariance structures available for analysing field trials are listed in Table 1. 

In Table 1 c-list contains the names of the numeric variables used as 

coordinates of the location of the observation in space, and �/0 is the Euclidean 

distance between the ith and jth vectors of these coordinates, which correspond 

to the ith and jth observations in the input data set. For SP(POWA) and 

SP(EXPA), c is the number of coordinates, and �(1, 3, ») is the absolute distance 

between the kth coordinate, » = 1… , Ã	, of the ith and jth observations in the input 

data set. For the geometrically anisotropic structures SP(EXPGA), SP(GAUGA), 

and SP(SPHGA), exactly two spatial coordinate variables must be specified as c1 

and c2 . Geometric anisotropy is corrected by applying a rotation θ and λ 

scaling to the coordinate system,	�/0(�	, �)which represents the Euclidean 

distance between two points in the transformed space. SP(MATERN) and 

SP(MATHSW) represent covariance structures in a class defined by Matérn see 

(Handcock, 1994, Handcock and Stein, 1993, Matérn, 1986). The function ¼,is 

the modified Bessel function of the second kind of (real) order	�	 > 	0; the 

parameter governs the smoothness of the process (for further detail see SAS 

9.3 help and documentation). The five spatial-variance covariance structures 

presented above belong to isotropic models, i.e., the variation properties are the 

same in both directions x and y; the other models, as their names show, belong 

to anisotropic covariance structures, i.e., the variation properties can be 

different in directions x and y. 
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Table 6.1 Spatial Covariance Structures 

Structure Description Parameters  (i ,j) elements 

SP(EXP)(c-list )  Exponential  2 σ)exp�−d@P/θ  
SP(EXPA)(c-list )  Anisotropic Exponential  

2c + 1 σ) . exp�−θFd(i, j, k)_F 0
FI�  

SP(EXPGA)(c1c2)

 

2DExponential,Geometrically 

Anisotropic 

4 σ)exp�−d@P(θ, λ)/ρ  

SP(GAU)(c-list )  Gaussian  2 σ)exp�−d@P)/ρ)  
SP(GAUGA) 

(c1c2) 

2DGaussian,Geometrically 

Anisotropic 

4 σ)exp�−d@P(θ, λ))/ρ)  
SP(LIN)(c-list )  Linear  2 σ)�1 − ρd@P�1(�ρd@P ≤ 1� 
SP(LINL)(c-list )  Linear Log  2 σ)�1 − ρlog	(d@P)� × 1(�ρlogd@P ≤ 1� 
SP(MATERN)(c-

list)  
Matérn  

3 σ) 1
Γ(v)5d@P2ρ6

7 2K7 5d@Pρ 6 

SP(MATHSW)(c-

list)  

Matérn (Handcock-Stein-

Wallis) 

3 σ) 1
Γ(v)5d@P√v2ρ 6

7 2K7 52d@P√vρ 6 

SP(POW)(c-list)  Power  2 σ)ρ9n: 
SP(POWA)(c-list)  Anisotropic Power  C + 1 σ)ρ�9(@,P,�)ρ)9(@,P,)) …ρ09(@,P,0) 
SP(SPH)(c-list )  Spherical  

2 σ) ;1 − 53d@P2ρ 6+ 5d<@P2ρ<6	=1(�ρd@P ≤ ρ� 

SP(SPHGA)(c1c2)  
2D Spherical, Geometrically 

Anisotropic 

4 σ) ;1 − 53d@P(θ, λ)2ρ 6+ 5d@P(θ, λ)<2ρ< 6	=
× 1�d@P(θ, λ) ≤ ρ� 

 

Estimation and statistical test of varietal effects for the classical analysis of 

block designs uses ANOVA, which is, equating the observed mean squares to 

the expected mean squares with the assumption of independence, normality 

and homogeneity of the variances of the residuals. Spatial models analyses use 

REML for estimating variance components. Estimable functions Ò> of linear 

contrast of fixed effects (variety) are estimated based on 

Ò>́ = 	Ò(�	′'7��)7�	′	'7�ò with V being replaced by a REML estimate '- . The 
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variance of Ò>́ is determined based on ���(Ò>́) 	= 	Ò(�	′¬́7��)7Ò′ (Hartley and 

Rao, 1967; Harville, 1977). Null hypotheses of the form of ¸¹:	Ò>́ = 	0	 are tested 

using the statistic 

(	 = Ò>́
ä���(Ò>́)	~((�. �. )																																																											(6.3) 

In general, the test statistic in (6.3) is only approximately t-distributed and its 

degrees of freedom must be estimated. The approximate degrees of freedom in 

this research were determined using the Kenward-Roger method (Kenward and 

Roger, 1997). This approximation also uses the basic idea of Satterthwaite 

(1941). Its extension relative to the Satterthwaite method of Giesbrecht and 

Burns (1985) and Hrong-Tai Fai and Cornelius (1996) is an asymptotic 

correction of the estimated standard error of fixed effects due to Kackar and 

Harville (1984) in small and/ or unbalanced data structures. 

6.3 Statistical tools for model selection and test of consistency 

Two questions in the analysis of practical trials are whether there is significant 

spatial variability and whether spatial models should be used (and if so, which 

models are most appropriate for data analysis). To answer these questions, 

statistical tools include likelihood-based methods (Oman, 1991, Wolfinger, 

1993).The likelihood-ratio test (LRT) allows the comparison of the model's fit, 

provided that one of the models is hierarchically subordinated to the other or 

similarly the smaller model is nested with the larger one. This is the case if one 

model can be seen as a special case of a more general model due to certain 

model restrictions. The LRT then results from  

Ä}%	 = 	−	2	��.ÄÄ? 	− �.ÄÄá�~	�)(�. �)																																											(6.	4), 
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where lnLLg and lnLLs denote the log likelihood of the general model g and the 

special models, respectively. Given certain regularity conditions, the LRT 

testing statistic asymptotically follows a 	�) distribution, with the degrees of 

freedom (d.f.) resulting from the number of restrictions that are necessary to 

transform the general model g into the special model (Fahrmeir L and Hamerle 

A, 1984, Greene WH, 2003). The general model fit, when compared to the 

special model, is considered better if LRT >�) (1-α, d.f.) with a significant level 

of α. If the model comparison focuses on the covariance structure of a constant 

expectation structure, the likelihoods are employed via the REML method 

(Wolfinger, 1993). This can be used for the first question. In this case, g 

corresponds to the model with spatial correlations among observations, and 

corresponds to the model without spatial correlation among observations. The 

LRT based on formula (4) can also be used for testing the difference between 

the block design ANOVA model (block effects as random) and the model 

without correlations among observations, because the latter is also a special 

model variation of the former. Thus, it can be used for testing the difference 

between the spatial models with and without block effects. 

As mentioned above, the LRT is only applicable when comparing two nested 

models. For model comparisons that do not require hierarchical models, there 

are a number of analytical criteria. These are so-called "Information Criteria" 

based on likelihood estimations. In the current work Akaike's Information 

Criterion (AIC) is used for comparing the covariance structures for an identical 

expectation structure using the REML estimation methods and is generally 

given by: 

±�"	 = 	−	2	�.ÄÄ	 + 	2�																																																																	(	6.5), 
where lnLL is the log-likelihood same as in formula (4) and q is the number of 

the parameters of the variance-covariance structure. Thus, the formula of the 

information criteria is given in such a way that the model with the smaller 
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value for the AIC is preferred (Burnham and Anderson, 2002, Bozdogan, 1987). 

For un-nested model we prefer to use the AIC but we note that there are other 

available information criteria, such as the Schwarz Bayesian Information 

Criterion (BIC) (Schwarz, 1978). Guerin L and Stroup WW (2000) compared the 

performance of AIC and BIC on covariance model selection for repeated 

measures and stated that AIC tends to select a more complex model but with a 

better control of type I error than the BIC. To assess consistency (or 

inconsistency) in the statistical tests on varietal effects between two models one 

can use the test consistency ratio, which is computed as follows: 

(yd(	Ã�.d1d(y.Ãv	��(1� = 

(ℎy	.�4xy�	��	d1.1�1Ã�.(	���1y(1��	�1��y�y.Ãydd	(yd(y�	d14��(�.y��d�v	1.	(@�	4��y�dmax	((ℎy	.�4xy�	��	d1.1�1Ã�.	���1y(1��	�1��y�y.Ãydd	(yd(y�	�.�y�	(ℎy	(@�	4��y�d	Ã�.d1�y�y�)	 

6.4 Data set and analysis 

The data sets used in this study are taken from the Ethiopian Agricultural 

Research Institute National Variety Trials for Bread Wheat (BW00RVTI data) 

and Barley Trial (BW01RVII data) of 2006-2008. Some 20 bread wheat (Triticum 

aestivum) varieties were tested in at six locations (environments) on the first 

year (2006/7) and five locations (environments) among the six of the first used 

on the second year (2007/8). Similarly 25 barley (Hordeum vulgare) varieties 

were tested in five locations (environments) in 2007/8. All the trials in each 

location were laid out as a randomized complete block (RCB) design with four 

replicates. There are two approaches to analysing MET data using mixed 

model, the so-called one- and two-stage approaches (Welham et al., 2010b). In 

a one-stage analysis, individual plot data from all trials are combined in a 

single analysis (Cullis et al., 1998a). In a two-stage analysis, variety means are 

first obtained from the separate analysis of individual trials (Stage I), and are 

then combined in an overall mixed model analysis (Stage II). The two-stage 

analysis can be unweighted (e.g. Patterson & Silvey, 1980) or weighted to 
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reflect the relative precision of variety means from each trial (e.g., Smith et al., 

2001a). A one-stage approach provides the most accurate predictions of variety 

performance, but it can be computationally difficult to use when the variance 

models involved are complex. With the steady improvements in computing 

power, single-stage analyses are becoming feasible. Apart from computational 

speed, the main advantages of the two-stage approach are that one can 

carefully analyse each trial individually, taking into account any specifics of the 

design or field trends. 

In this study we used two approaches for analysis; the first one was a separate 

individual analysis of each location of the BW00RVTI data set of wheat and 

BW01RVII data set for barley. The second one was a one-stage analysis, 

individual plot where data from all trials (locations)are combined in a single 

analysis of a two year BW00RVTI data set of wheat and a one year BW01RVII 

data set of six location. Each data set was separately fitted per location and per 

year using the mixed model with fourteen variance-covariance structures. The 

mixed model with compound symmetry (CS) variance-covariance structures 

was identical to the ANOVA model. The optimally fitted spatial model and the 

ANOVA model are used for further varietal effect assessment and statistical 

tests (or inference). The single-stage analysis was applied to each of the data 

sets by fitting one spatial-variance covariance structure at a time for all 

location.  Putting location as random group factor on SAS (proc mixed) analysis 

gave a different random parameter estimate for each location. All the analyses 

ware conducted using standard SAS software version 9.3. The results from the 

two models were compared and used to assess consistency (or inconsistency) in 

statistical tests on varietal effects between the two models, using consistency 

ratio defined earlier. 
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6.5 Results and discussion 

The results of the fitted ANOVA and the mixed model with various variance-

covariance structures are summarised in Tables 6.2, 6.3 and 6.4. Note that “-” 

denotes the failure of a model to converge. This occurred with the sp(lin) and 

sp(linlog) structures in any of the locations, which shows that these models 

may not suitable for that trial data (Schabenberger and Pierce, 2002). The 

smallest AIC value (bold in Tables 6.2, 6.3 and 6.4) indicates that for 

BW00RVTI trial data set year 1 and 2 support the Anisotropic Power [spa 

(powa)] and Exponential [spa (exp)] variance-covariance structures as the best 

compared to the ANOVA model for seven trials (locations) out of eleven. 

Similarly for the BW00RVTI trial five different spatial variance-covariance 

structures [sp(pow), sp(expga), sp( mathsw), sp(expga) and sp(powa)] models 

were selected as the best compared to the ANOVA model for the five location 

BW01RVII trial data set. 

A model comparison between a block effect without spatial structure (ANOVA) 

and a model with a block and spatial effect using the LRT �)-test for the trials 

for the two (BW00RVTI and BW01RVII) data sets suggested that the selected 

spatial variance-covariance structure fitted the data significantly better than 

the ANOVA model. However the optimally-fitted spatial variance-covariance 

structures were not the same from one location to the other. Optimally fitted 

spatial variance-covariance structure was spatial power [sp(powa)] for most of 

the locations. These results showed that assuming a homogeneous variance-

covariance structure in the ANOVA model is generally not realistic, and 

therefore using a linear mixed model with spatial variance-covariance is 

necessary to improve the efficiency of the data analysis and accommodation of 

local stationary trend of MET data. 

It appears the year to year effect on variance-covariance of varieties is greatly 

exhibited in the BW00RVTI data set. This is shown through the variance-

covariance structures being mostly consistent for different locations in the 
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same year, but obviously not consistent between years as shown in Table 6.2 

and 6.3. This result is easily understood by realising that within a year we 

expect only between location differences, but between years there could be 

differences in environments (years). The failure of some spatial variance-

covariance structures to converge may indicate that they are not suitable or 

compatible with the structure of the current MET data but could work with 

other data sets.  

To examine the impact of the spatial variance-covariance structures on 

estimates on test of varieties, the number of significant varietal means yield 

differences by the t-test are given in Table 6.5. Using the ANOVA model and 

mixed model with the optimally-fitted spatial variance-covariance for each 

location, we assessed the consistency between these two models. The number 

of significant varietal differences by t-test is not the same between the ANOVA 

model and the mixed model with optimally fitted spatial variance-covariance 

structures. The consistence ratio test between the two models falls in the range 

of 33-84%. From the average of all trials (locations), the test consistency ratio 

of two models is approximately 64%, which means that approximately 36% of 

the pairwise varietal yield differences being tested as significant in one model 

cannot be tested as significant or very significant by the other model. This 

indicates the need for consideration of spatial correlation between plots during 

the analysis which can lead to better understanding of the performance of 

genotypes.  
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Table 6.2 Related fitting statistics of ANOVA model and linear mixed model with spatial variance-covariance 

structures for the first year BW00RVTI data set  

 

  location- 1 location-2 location-3 location-4 location-5 location-6 

Model LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 

RCBD 385.1 387.1 - 344.2 346.2 - 398.8 400.8 - 426.4 428.4 - 421.7 423.7 - 377.3 379.3 - 

sp(sph) 408.5 412.5 1 360.8 364.8 1 407.5 411.5 1 442.1 446.1 1 441.4 445.4 1 364.4 368.4 0.0003 

sp(exp) 385.1 387.1 1 343.7 347.7 0.4869 394.2 398.2 0.0303 426.4 428.4 1 421.7 423.7 1 361.8 365.8 <.0001 

sp(gau) 384.9 388.9 0.6537 343.8 347.8 0.5743 394.7 398.7 0.0425 426.3 430.3 0.746 421.7 423.7 1 365.5 369.5 0.0006 

sp(lin) - - - - - - - - - - - - - - - - - - 

sp(linlog) - - - - - - - - - - - - - - - - - - 

sp(pow) 385.1 389.1 0.865 343.7 347.7 0.4869 394.2 398.2 0.0303 426.2 430.2 0.63 421.7 425.7 0.9213 361.8 365.8 <.0001 

sp(mat) 385.1 387.1 1 343.7 349.7 0.7806 394.1 400.1 0.0953 426.1 432.1 0.8603 421.6 427.6 0.9648 359.7 365.7 0.0001 

sp(EXPA) - - - - - - 386.4 396.4 0.0144 - - - - - - - - - 

sp(EXPGA) 385.1 391.1 0.0608 334.5 342.5 0.0179 386.1 394.1 0.0747 426.4 432.4 0.2721 421.7 427.7 0.1855 353 361 0.0034 

sp(GAUGA) 379.3 387.3 0.0339 344.2 352.2 1 398.8 404.8 1 426.4 432.4 0.3575 421.7 427.7 0.2295 363.9 371.9 0.1199 

sp(MATHSW) 385.1 389.1 1 343.7 349.7 0.7806 394.1 400.1 0.0953 426.4 430.4 1 421.7 425.7 1 359.7 365.7 0.0001 

sp(POWA) 372.7 378.7 0.002 332.5 338.5 0.003 386.4 392.4 0.002 424.8 430.8 0.4545 420.1 426.1 0.4665 349 355 <.0001 

sp(SPHGA) 393.8 399.8 1 - - - - - - - - - 439.2 447.2 1 355.6 363.6 <.0001 
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Table 6.3 Related fitting statistics of ANOVA model and linear mixed model with spatial variance-covariance 

structures for the second year BW00RVTI data set. 

  location- 1 location-2 location-3 location-4 location-5 

Model LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 

RCBD 370 372 - 334.2 336.2 - 345.6 347.6 - 395.2 397.2 - 284.1 286.1 - 

sp(sph) 382.4 386.4 1 351.9 355.9 1 366.4 370.4 1 394.2 398.2 0.317 303 307 1 

sp(exp) 367.1 371.1 0.091 333.5 337.5 0.428 345.6 347.6 1 387.3 391.3 0.005 284.1 286.1 1 

sp(gau) 368.3 372.3 0.195 332.4 336.4 0.189 345.6 347.6 1 388.7 392.7 0.011 284.1 286.1 1 

sp(lin) - - - - - - - - - - - - - - - 

sp(linlog) - - - - - - - - - - - - - - - 

sp(pow) 367.1 371.1 0.091 333.5 337.5 0.428 345.5 349.5 0.659 387.3 391.3 0.005 284 288 0.762 

sp(mat) 365.8 371.8 0.124             386.9 392.9 0.016       

sp(EXPA) 366.2 374.2 0.29 322.9 330.9 0.01 343.9 353.9 0.79 384.9 394.9 0.036       

sp(EXPGA) 363.8 371.8 0.339 323.1 331.1 0.003 340.5 348.5 0.108 384.6 392.6 0.232 284.1 290.1 0.234 

sp(GAUGA) 370 378 1 325.6 333.6 0.032 344 352 0.976 395.2 403.2 1 284.1 290.1 0.594 

sp(MATHSW) 365.8 371.8 0.124 - - - - - - 386.9 392.9 0.016 284.1 288.1 1 

sp(POWA) 367.9 373.9 0.367 322.7 328.7 0.003 344.1 350.1 0.464 386.3 392.3 0.011 283.6 289.6 0.773 

sp(SPHGA) 382.4 390.4 1 - - - 356.1 364.1 1 391.3 399.3 0.273 - - - 
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Table 6.4 Related fitting statistics of ANOVA model and linear mixed model with spatial variance-covariance 

structures for the one year    BW01RVII data set 

 

  location- 1 location-2 location-3 location-4 location-5 

Model LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 LL AIC Pr > χ2 

RCBD 475.5 477.5 - 454.5 456.5 - 421.6 423.6 - 506.9 508.9 - 524 526 - 

sp(sph) 475.5 477.5 1 454.5 456.5 1 427.7 431.7 1 506.9 508.9 1 551.3 555.3 1 

sp(exp) 468.5 472.5 0.0083 452.3 456.3 0.142 410.9 414.9 0.001 503.7 507.7 0.0712 524 526 1 

sp(gau) 471 475 0.0341 452.4 456.4 0.145 414.1 418.1 0.006 504.8 508.8 0.1409 523.9 527.9 0.689 

sp(lin) - - - - - - - - - - - - - - - 

sp(linlog) - - - - - - - - - - - - - - - 

sp(pow) 468.5 472.5 0.0083 452.3 456.3 0.142 410.9 414.9 0.001 503.7 507.7 0.0712 524 528 0.8947 

sp(mat) - - - 452 458 0.283 407.7 413.7 0.001 502.9 508.9 0.1344 524 526 1 

sp(EXPA) - - - 452.4 462.4 0.711 - - - - - - - - - 

sp(EXPGA) 466.7 474.7 0.347 447.7 455.7 0.07 421.6 429.6 1 493.2 501.2 0.0141 524 530 0.0323 

sp(GAUGA) 469 477 0.3427 449.6 457.6 0.157 410.1 418.1 0.275 498.6 506.6 0.0619 529.9 530.5 0.1424 

sp(MATHSW) - - - 452 458 0.283 407.7 413.7 0.001 502.9 508.9 0.1344 524 528 1 

sp(POWA) 467.4 473.4 0.0179 458.8 459.2 0.435 413.7 419.7 0.02 497.1 503.1 0.0071 519.2 525.2 0.0873 

sp(SPHGA) 475.5 481.5 1 458.7 466.7 1 420.4 428.4 0.742 495 503 0.0077 - - - 
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Table 6.5 The number of significant and very significant variety contrasts of t-test for trials of the BW00RVTI 

and BW01RVII data set trials   and the test of consistency ratio between the ANOVA model and the spatial 

linear mixed model with optimally fitting spatial variance –covariance structure(SLMM). 

Data set BW00RVTI Data set   BW01RVII 

Year-1 Year-2 Year-1 

ANOVA SLMM Consistency ANOVA SLMM Consistency ANOVA SLMM Consistency 

No Ratio (%) No Ratio (%) No Ratio (%) 

location-1 60 78 53 67.94 44 40 37 84.09 location-1 46 65 43 66.15 

location-2 53 50 37 69.81 33 35 26 74.29 location-2 67 79 60 75.95 

location-3 10 18 6 33.33 * * location-3 97 157 94 59.87 

location-4 * * 45 50 41 82 location-4 47 36 22 46.8 

location-5 * * * * location-5 36 45 26 57.78 

location-6 45 20 15 33.33 

Average 42 41.5 22.75 51.11 40.67 41.66 34.67 80.13 Average 58.6 76.4 49 61.31 

Note * the optimally fitting model is ANOVA  
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6.6 Varietal ranking 

Apart from contrasts between new varieties, the ranking of varietal productivity 

and a comparison of new varieties with standard variety is also important for 

variety trials. We consider the trial from the five locations of BW01RVII data to 

compare variety estimated means ranking between the ANOVA model and the 

optimal spatial variance-covariance model. A trial corresponds to a single 

experiment at a single location. Table 6.6 shows the ranking for the first eight 

entries from the optimal spatial variance-covariance mixed model compared to 

the ranking from the ANOVA model across the locations. The model with 

spatial structure is relatively more consistent in its top eight ranking than the 

ANOVA model. The ranking are different for different locations and differ 

between the spatially structured model and ANOVA. A rank difference of 

genotype between the locations is showing the presences of genotype by 

environment interaction. This also indicates the advantage of single stage 

spatial models on the handling of the spatial trend and variation of the trials. 

Table 6.6 The first eight genotype ranking comparison between ANOVA and 

optimally fitting spatial variance –covariance structure (SLMM) of five trials of 

data set BW01RVII location by location and a single- stage analysis  

 

Rank Location -1 Location-2 Location-3 Location- 4 Location- 5 ALL 

 
ANOVA SLMM ANOVA SLMM ANOVA SLMM ANOVA SLMM ANOVA SLMM SLMM 

1 G23 G23 G21 G23 G23 G23 G23 G23 G23 G23 G23 
2 G13 G13 G23 G21 G4 G4 G11 G2 G2 G2 G21 
3 G5 G21 G3 G3 G17 G17 G19 G1 G4 G1 G4 
4 G17 G3 G17 G2 G2 G21 G15 G5 G8 G19 G13 
5 G21 G17 G7 G17 G21 G10 G2 G19 G13 G10 G2 
6 G4 G4 G11 G13 G10 G2 G5 G8 G14 G4 G17 
7 G3 G5 G9 G16 G8 G8 G8 G15 G1 G3 G8 
8 G19 G15 G13 G9 G6 G15 G13 G11 G19 G13 G3 
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The simple homogenous variance–covariance structures implied by ANOVA 

models, which assume that the interaction effects of varieties are independent, 

is mostly not appropriate for data analyses of MET. The fact that the goodness 

of fit of one variance–covariance structure was different for various trial data 

sets, and that none fitted all trial data sets optimally throughout, indicates that 

the heterogeneous characteristics of variance–covariance are not identical 

across the trials. Therefore, the arbitrary use of a homogeneous variance–

covariance structure (e.g. ANOVA model) to analyse the MET cannot ensure a 

high degree of accuracy. In this study, the ANOVA model, as a special case 

form of mixed models, showed obvious inconsistency in estimates and tests of 

varietal effects compared to the linear mixed model with the optimally-fitted 

spatial variance–covariance structures. 

Both effective experimental results and spatial analyses can have an important 

role in improving the reliability and precision of experimental results. The 

importance of spatial variability to be expected from a logical assumption of the 

presence of external local or global variation and subjective-related perspective 

is confirmed in a variety of experiments. As presented in much of the literature, 

spatial analysis may lead to higher efficiency with regard to standard error of 

estimation of fixed effects than a non-spatial analysis, provided that spatial 

variability is present. Based on this work, the commonly used ANOVA mixed 

model is not an appropriate model for data analysis of MET trials. The spatial 

variance–covariance models are more useful in a practical sense, given that 

they can describe actual existing variance–covariance characteristics more 

accurately than the ANOVA model. Of course, with one-stage analyses, the 

proposed spatial variance–covariance models are expected to yield identical 

mean yields for balanced data, and differences are expected only for 

unbalanced data. Even so, a selection of variance–covariance structures based 

on the mixed model framework is important since the standard error of varietal 

effect estimates (i.e. the accuracy of varietal effect estimates) is different under 

the various models, and unbalanced data are common in MET (Möhring and 
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Piepho, 2009). The advantage and validity of using spatial variance-covariance 

structure depends on the present spatial variability. Most of the investigated 

spatial models showed better data fitting and smaller standard error for variety 

contrasts than the ANOVA model.  

The main purposes of the present chapter was to show the importance of 

variance–covariance structure selection and to illustrate that the classical 

ANOVA model is inferior to more elaborate mixed models in the analysis of 

MET data. This does not imply that the models considered in this paper are 

appropriate for any situation. For example, in some locations (trials) the 

ANOVA model still optimally fitted the data better than the spatial models. 

6.7  Single-stage analysis 

The analysis of the resulting MET data are often done by mixed models, which 

may be complex when different types of models are needed to characterise 

within-environment variation in the various environments. Single-stage 

analysis is regarded as preferable from theoretical considerations, because it 

provides best linear unbiased estimators (BLUE) of all fixed effects and best 

linear unbiased predictors (BLUPs) of all random effects under the assumed 

single-stage model. Optimal performance of this approach has been 

substantiated based on simulation evidence (Welham et al., 2010b). 

Thus, single-stage analysis is usually considered the gold standard Smith et 

al., (2001).  Consider a series of trials (BW00RVTI) laid out as randomised 

complete block designs in different locations (environments). Factors used for 

analysis are location (environment), complete replicate (nested within location) 

and genotype. All model effects will be defined in terms of these factors. A 

simple linear mixed model for analysing of this kind of experiment is 
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y@PF = μC(@) + tC(P) + vC(@P) + rF(PF) + εF(@PF) 

where 	y@PF (i = 1, . . . , p; j = 1, . . . q, k = 1, . . . , s) is the response of the i-th 

genotype in the k-th replicate of the j-th location (environment), μC(@) is the i-th 

genotype mean, tC(P) is the j-th location(environment) main effect, vC(@P) is the ij-

th genotype–environment interaction effect, rF(PF) is the effect of the k-th 

replicate in the j-th environment, and εF(@PF) is the within-environment plot 

error associated with y@PF. The expected genotype means μC(@) are taken as fixed. 

For the random effects we assume	tC(P)) ∼ 	N(0, σ)U	)	 and vC(@P) ∼ 	N(0, σ)7	), 
	rF(PF) 	∼ 	N(0, σ)I(U)	)  and 		∼ 	N(0, σ)J(P)	).  
A location by location analysis in the above discussion indicates the need of 

spatial-variance covariance and the presence of a variation on estimates from 

on location to the other. To accommodate these differences a mixed model with 

spatial variance covariance structure with a group factor of location on the 

random model was fitted for the one stage analysis using the MIXED procedure 

of SAS. A model with spatial-variance covariance of sp(exp), sp(gau), sp(linl), 

sp(pow) and sp(sph) have the smallest AIC value compare to the rest of 

structures. As long as these models have equal AIC value, we can select a 

model with a smaller number of parameters and has a simple structure.  

Single stage analysis estimates of parameters as it shown in Table 6.7 indicate 

the presence of variation from location to location and its advantage on 

handling of additional sources of variation that is location and genotype by 

location (environment) interaction variation. Most variation of replicate within a 

location, between locations variations and a genotype (entry) by location 

(environment) interaction variation are very significant and significant at 5% 

level of significance. 

A significant variation of estimated values of a parameter for power covariance 

structure is also observed on this single stage analysis. These estimated values 
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indicate the presence of plot to plot correlation. The inclusions of these 

variations in single stage analysis will also improve the real estimation of 

genotype effect and their ranking. 

Table 6.7 Variance parameter estimates for single-stage analysis of BW00RVTI 
data sets. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covariance Parameter Estimates 

Cov Parm Group Estimate Standard Error Z Value Pr Z 

rep(loc) loc 1 12.1452 3.3177 3.66 <.0001 

rep(loc) loc 2 0 . . . 

rep(loc) loc 3 8.3059 3.5686 2.306 0.0104 

rep(loc) loc 4 4.7991 2.8205 1.702 0.0455 

rep(loc) loc 5 0 . . . 

loc loc 1 90.3913 30.81 2.9338 <.0001 

loc loc 2 32.3509 18.3752 1.76 0.0392 

loc loc 3 115.43 157.78 0.73 0.2322 

loc loc 4 48.425 23.7017 1.436 0.0207 

loc loc 5 0 . . . 

entry*loc loc 1 0 . . . 

entry*loc loc 2 5.0156 3.023 1.659 0.0475 

entry*loc loc 3 4.5663 2.0231 2.257 <.0001 

entry*loc loc 4 12.2776 4.8818 2.515 0.0061 

entry*loc loc 5 10.6646 5.4038 1.973 0.0244 

Variance loc 1 24.8749 3.7637 6.61 <.0001 

SP(POW) loc 1 0.9 0.35 2.571 <.0001 

Variance loc 2 17.597 2.8736 6.12 <.0001 

SP(POW) loc 2 0.9 0.35 2.571 <.0001 

Variance loc 3 11.8619 1.9521 6.08 <.0001 

SP(POW) loc 3 0.9 0.35 2.571 <.0001 

Variance loc 4 45.7003 7.4987 6.09 <.0001 

SP(POW) loc 4 0.9 0.35 2.571 <.0001 

Variance loc 5 55.5086 9.0645 6.12 <.0001 

SP(POW) loc 5 0.9 0.35 2.571 <.0001 
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Model diagnostic plots in fig 6.1, plot of residuals do not show any systematic 

pattern. 

 

Figure 6. 1  Model diagnostic plots 
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Chapter 7  

Conclusions and Future Research 
 

In Ethiopia there is national and regional system for variety evaluation. The 

national agricultural research organization (EARO) with collaborations of 

regional agricultural research institutes has helped to promote consistency in 

trial design, methods of analysis and reporting results. The recommendation of 

new plant varieties for small holder farmers or commercial use requires reliable 

and accurate predictions of the average yield of each variety across a range of 

target environments and knowledge of important interactions with 

environment. This information is obtained from a series of plant variety trials, 

also known as multi-environment trials (MET). Each year, a huge amount of 

money is spent world-wide on the acquisition of such data. Unfortunately the 

value of this effort may be discounted with the use of inappropriate or 

inefficient statistical analysis.  

 

The challenge of controlling field variability has been felt since the beginning of 

the 20th century. A design-based approach was widely used as a method of 

controlling variability. But, presence of correlation between adjacent plots led 

to a search for more efficient methods of controlling variation. Although several 

spatial models were implemented to account for spatial variations over years, 

problem of confounding between local and global variations hindered efficiency 

of these methods. In this thesis we cover some problems on the analysis of 

multi-environmental data analysis starting with the problem of handling 

missing data to accommodating of spatial variations on the large experimental 

fields. In the case of missing data, the loss of information produces unbalanced 

designs that lose their symmetry and, therefore, hypothesis tests of interest 

such as those for the difference between the treatments may need special 

theoretical development. We cover methods of handling missing data for multi-

environment trial such as a complete-case, available case, single imputation, 
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multiple imputation and missing data patterns. A multiple data imputation 

with cross validation and principal component analysis methods are an options 

for missing data handling at plot level. Missing data at a plot level is common 

on multi environment agricultural trial. A multiple data imputation is 

necessary for AMMI and GGE analysis which is only applicable for a balanced 

data case.  All the five methods (PCA, BPCA, SVDI, Nipls and NLPCA) show 

nearest imputation values of missing data observation when we compare each 

other based on eigenvalue structure and plot for fitted and observed values. A 

cross validation or PCA methods of imputation have great advantages of easy 

computationally and non-dependency on the pattern or mechanisms of missing 

data in experiments which covered on Chapter 2.  

 

We covered the most commonly applied statistical method, the additive main 

effects and multiplicative interactions model (AMMI) and genotype main effect 

and genotype by environment interaction (GGE) biplot analysis on chapter 3. 

Here we see the advantages of this method on classification of the environment 

in to mega environment classification and which-won-where pattern of 

genotypes. The problem of repeatability on the performance and stability of 

genotype on two years repeated over location data analysis leads to a decision 

making on genotype recommendations and mega–environment delineation 

should be done with a caution. A selection of the number of multiple 

interactions and testing of a multiplicative term on the AMMI and GGE model 

using a parametric bootstrap method for the two data sets on chapter 4 is also 

one example for a way of handling problems in the selection and test for these 

models. The different statistical tests results comparisons also supporting the 

advantage of these methods.  

A common procedure for analyzing multi-environmental trials is based on the 

assumption that the residual error variance is homogenous across all locations 

considered. However, this may often be unrealistic, and therefore limit the 

accuracy of variety evaluation or the reliability of variety recommendations.In 
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chapter 5 and 6 we try to see the advantages of applying some linear trends on 

the row and column and spatial variance covariance structures to improve the 

analysis results on the varietal comparisons using a mixed model. A smooth 

spatial local and global variation are accommodated in the model by including 

linear terms on the row and column terms to the design and a spatial variance- 

covariance structure respectively. A correlated mixed model with power, AR1 or 

AR2 with a random linear trend model result showed an improvement and 

need for more appropriate and strong spatial variance covariance mixed model 

to accommodate local trend and its influence. The advantages of mixed models 

with spatial variance–covariance structures, and direct implications of model 

choice on the inference of varietal performance, ranking and testing based on 

two multi-environmental data sets from realistic national trials was shown in 

chapter 6.  

A model comparison with a χ2-test for the trials in the two data sets (wheat 

dataset BW00RVTI and barley dataset BW01RVII) suggested that selected 

spatial variance-covariance structures fitted the data significantly better than 

the ANOVA model. The forms of optimally-fitted spatial variance-covariance, 

ranking and test consistence ratio were not the same from one trial (location) to 

the other. Linear mixed models with single stage analysis including spatial 

variance-covariance structure with a group factor for location on the random 

model also improved the real estimation i.e estimation which considers spatial 

variation, of genotype effect on yield and their ranking. The model also 

improved varietal performance estimation because of its capacity to handle 

additional sources of variation, location and genotype by location (environment) 

interaction variation and accommodating of local stationary trend. A 

relationship between plot size and covariance structure was developed as a 

justification to use spatial modelling. It is necessary for national agricultural 

research system to develop optimal plot size, block size and orientation using 

the relationship established to improve results from data analysis.  
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The PCA method and spatial-variance covariance structures mixed model 

analysis provided some evidence regarding the missing data imputation and 

handling of spatial variation on the experimental fields and variety ranking. A 

potential future research area are combination of a design and modelling 

approach of applying different spatial variance covariance structure for each 

location on a single stage analysis to obtain a maximum benefit in improving 

the multi-environment data analysis. Further research can be focussed a 

multivariate or a covariate approach of AMM or GGE biplot analysis.    
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 Appendix  A 
Table A 1 Results from the application of the linear mixed correlation models with four correlation structures 
to the BW01RVII data set in Location 2. 

Model for location2 Correlation structures AIC Fixed term df F-value P-value 
Response  yield Fixed model: Constant 
+entry 
Random model: row + column 
+row.column 
 

Identity 330.60 Entry(genotypes) 24 2.83 <0.001 

Power 333.30 Entry(genotypes) 24 2.84 <0.001  
auto-regressive order 1 
(AR1) 

333.30 Entry(genotypes) 24 2.84 <0.001  

auto-regressive order 2 
(AR2) 

331.46 Entry(genotypes) 24 5.14 <0.001  

Response yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row.column 
 

 
Identity 

 
331.71 

Entry(genotypes) 24 2.83 <0.001 
lin_row 1 0.89 0.348 
lin_col 1 1.52 0.222 

 
Power 

 
334.52 

Entry(genotypes) 24 2.83 <0.001 
lin_row 1 0.71 0.414 
lin_col 1 0.95 0.343 

auto-regressive order 1 
(AR1) 
 

 
334.52 

Entry(genotypes) 24 2.84 <0.001 
lin_row 1 0.71 0.414 
lin_col 1 0.95 0.343 

auto-regressive order 2 
(AR2) 

 
335.48 

Entry(genotypes) 24 3.18 <0.001 
lin_row 1 2.38 0.150 
lin_col 1 2.27 0.147 

 
Response :yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row + column + 
row.column 

 
identity 

 
335.70 

Entry(genotypes) 24 2.81 <.001 
lin_row 1 0.90 0.346 
lin_col 1 1.41 0.248 

 
Power 

 
338.52 

Entry(genotypes) 24 2.83 <0.001 
lin_row 1 0.71 0.414 
lin_col 1 0.95 0.343 

auto-regressive order 1 
(AR1) 
 

 
338.52 

Entry(genotypes) 24 2.83 <0.001 
lin_row 1 0.71 0.414 
lin_col 1 0.95 0.343 

auto-regressive order 2 
(AR2) 

 
334.75 

Entry(genotypes) 24 5.29 <0.001 
lin_row 1 2.45 0.232 
lin_col 1 2.20 0.155 
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Table A 2 Results from the application of the linear mixed correlation models with four correlation structures 
to the BW01RVII data set in Location 3. 

Model for location3 Correlation structures AIC Fixed term df F-value P-value 
Response  yield Fixed model: Constant 
+entry 
Random model: row + column 
+row.column 
 

identity 297.85 Entry(genotypes) 24 4.20 <0.001 

Power 296.95 Entry(genotypes) 24 4.62 <0.001 
auto-regressive order 1 
(AR1) 

296.50 Entry(genotypes) 24 4.62 <0.001 

auto-regressive order 2 
(AR2) 

296.60 Entry(genotypes) 24 5.11 <0.001 

Response yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row.column 
 

 
identity 

304.24 Entry(genotypes) 24 3.48 <0.001 
lin_row 1 4.47 0.038 
lin_col 1 0.00 0.984 

 
Power 

298.88 Entry(genotypes) 24 4.35 <0.001 
lin_row 1 2.21 0.153 
lin_col 1 0.03 0.865 

auto-regressive order 1 
(AR1) 
 

298.88 Entry(genotypes) 24 4.35 <0.001 
lin_row 1 2.21 0.153 
lin_col 1 0.03 0.865 

auto-regressive order 2 
(AR2) 

298.15 Entry(genotypes) 24 5.10 <0.001 
lin_row 1 0.82 0.380 
lin_col 1 0.06 0.809 

 
Response :yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row + column + 
row.column 

 
identity 

303.04 Entry(genotypes) 24 4.18 <0.001 
lin_row 1 1.63 0.330 
lin_col 1 0.00 0.967 

 
Power 

302.04 Entry(genotypes) 24 4.60 <0.001 
lin_row 1 1.40 0.325 
lin_col 1 0.02 0.877 

auto-regressive order 1 
(AR1) 
 

302.04 Entry(genotypes) 24 4.60 <0.001 
lin_row 1 1.40 0.325 
lin_col 1 0.02 0.877 

auto-regressive order 2 
(AR2) 

302.16 Entry(genotypes) 24 5.02 <0.001 
lin_row 1 0.81 0.416 
lin_col 1 0.08 0.787 

 *(ANOVA  model  Entry(genotypes) F-value  3.73 <.001) 
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Table A 3  Results from the application of the linear mixed correlation models with four correlation structures 
to the BW01RVII data set in Location 4. 

Model for location4 Correlation structures AIC Fixed term df F-value P-value 

Response  yield Fixed model: Constant 
+entry 
Random model: row + column 
+row.column 
 

identity 392.66 Entry(genotypes) 24 2.24 0.005 

Power 387.75 Entry(genotypes) 24 1.53 0.102 
auto-regressive order 1 
(AR1) 

387.47 Entry(genotypes) 24 1.50 0.121 

auto-regressive order 2 
(AR2) 

391.23 Entry(genotypes) 24 1.51 0.157 

Response yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row.column 
 

 
identity 

401.36 Entry(genotypes) 24 1.76 0.035 
lin_row 1 5.01 0.028 
lin_col 1 1.58 0.212 

 
Power 

384.92 Entry(genotypes) 24 1.52 0.099 
lin_row 1 1.01 0.343 
lin_col 1 1.73 0.211 

auto-regressive order 1 
(AR1) 
 

384.13 Entry(genotypes) 24 1.50 0.119 
lin_row 1 0.95 0.359 
lin_col 1 2.22 0.165 

auto-regressive order 2 
(AR2) 

388.03 Entry(genotypes) 24 1.43 0.182 
lin_row 1 0.88 0.383 
lin_col 1 2.32 0.167 

 
Response :yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row + column + 
row.column 

 
identity 

393.70 Entry(genotypes) 24 2.27 0.004 
lin_row 1 0.62 0.514 
lin_col 1 1.98 0.164 

 
Power 

387.73 Entry(genotypes) 24 1.52 0.104 
lin_row 1 0.50 0.553 
lin_col 1 1.87 0.198 

auto-regressive order 1 
(AR1) 
 

387.20 Entry(genotypes) 24 1.49 0.126 
lin_row 1 0.50 0.560 
lin_col 1 2.29 0.161 

auto-regressive order 2 
(AR2) 

 Entry(genotypes) 24 1.45 0.176 
lin_row 1 0.49 0.564 
lin_col 1 2.20 0.177 
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Table A 4 Results from the application of the linear mixed correlation models with four correlation structures 
to the BW01RVII data set in Location 5. 

Model for location5 Correlation structures AIC Fixed term df F-value P-value 
Response  yield Fixed model: Constant 
+entry 
Random model: row + column 
+row.column 
 

identity 409.20 Entry(genotypes) 24 1.74 0.038 

Power 409.93 Entry(genotypes) 24 1.95 0.020 
auto-regressive order 1 
(AR1) 

408.41 Entry(genotypes) 24 2.20 0.011 

auto-regressive order 2 
(AR2) 

409.08 Entry(genotypes) 24 2.42 0.006 

Response yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row.column 
 

 
identity 

 
417.45 

Entry(genotypes) 24 1.43 0.123 
lin_row 1 0.41 0.522 
lin_col 1 0.09 0.769 

 
Power 

 
411.02 

Entry(genotypes) 24 2.14 0.010 
lin_row 1 0.25 0.622 
lin_col 1 0.37 0.547 

auto-regressive order 1 
(AR1) 
 

 
409.95 

Entry(genotypes) 24 2.29 0.008 
lin_row 1 0.34 0.570 
lin_col 1 0.36 0.559 

auto-regressive order 2 
(AR2) 

 
408.63 

Entry(genotypes) 24 2.48 0.005 
lin_row 1 0.28 0.616 
lin_col 1 0.11 0.754 

 
Response :yield 
Fixed model: Constant + entry + lin_row 
+ lin_col 
Random model: row + column + 
row.column 

 
identity 

 
412.52 

Entry(genotypes) 24 1.71 0.042 
lin_row 1 0.06 0.829 
lin_col 1 0.10 0.748 

 
Power 

 
412.52 

Entry(genotypes) 24 2.00 0.017 
lin_row 1 0.07 0.815 
lin_col 1 0.33 0.573 

auto-regressive order 1 
(AR1) 
 

 
411.21 

Entry(genotypes) 24 2.30 0.008 
lin_row 1 0.08 0.804 
lin_col 1 0.31 0.583 

auto-regressive order 2 
(AR2) 

 
411.85 

Entry(genotypes) 24 2.45 0.005 
lin_row 1 0.11 0.775 
lin_col 1 0.12 0.742 

 *(ANOVA  model  Entry(genotypes) F-value  1.74, P-value 0.038) 
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Appendix B Codes used in the study 
 

B.1 Data Imputation using the cross-validation by 

Eigenvectors method 

 

######################################################################

###################################### 

#                      

#  

#     Data Imputation Using the Cross-Validation by Eigenvector 

Method           

#                      

# 

#                 

       # 

######################################################################

###################################### 

 

######Importing a matrix with missing values 

X<-matrix(scan('C:/SAA/Eigenvector(2008)_Pesquisa/MissingValues.txt'), 

ncol=5, byrow=T)  

X # Data Matrix 

is.matrix(X)  

nfilasX<-nrow(X)  

ncolX<-ncol(X) 

nfilasX 

ncolX 

totalelementos<-nfilasX*ncolX 
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#######Creating a vector of missing positions and replacing the 

missing values by the mean of each column 

 

XMISSING=X 

indicamissing<-is.na(XMISSING) 

indicadora<-indicamissing*1 

totalfaltantes<-sum(indicadora) 

medcol<-t(matrix(colMeans(XMISSING, na.rm=TRUE)))  

incompleta<-XMISSING 

XMISSING 

posicfaltantes<-matrix(0,totalfaltantes,2) 

indi3<-0 

for (indi1 in 1:nfilasX){ 

 for(indi2 in 1:ncolX){ 

  if (indicadora[indi1,indi2]==1){ 

  indi3<-indi3+1 

  posicfaltantes[indi3,1]=indi1 

  posicfaltantes[indi3,2]=indi2 

  XMISSING[indi1,indi2]=medcol[1,indi2] 

  } #FIN DEL if (indicadora[indi1,indi2]  

 }# FIN DEL for(indi2 in 1:ncolX) 

} # FIN DEL for (indi1 in 1:nfilasX) 

 

posicfaltantes 

XMISSING 
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completed_matrix<-XMISSING 

maxiter<-50 

iter<-0 

desvest<-sqrt(t(diag(var(XMISSING)))) 

#print(desvest) 

Xmissingestand<-scale(XMISSING) 

epsilon<-1*(10**(-6)) 

stabilitycrit<-1 

stabilityiter<-0 

 

######Imputation by eigenvector 

 

while (stabilitycrit>epsilon & stabilityiter<=500){ 

 

 

for (i in 1:totalfaltantes){ 

 

B.2 AMMI and GEE codes 

OPTIONS PS = 5000 LS=78 NODATE; 

FILENAME BIPLOT 'EXAMPLE1.CGM'; 

GOPTIONS DEVICE=CGMMWWC GSFNAME=BIPLOT GSFMODE=REPLACE; 

DATA RAW; 

 INFILE 'c:\mydata\amii\EXAMPLE1.DAT'; 

 INPUT ENV $ GEN $ YIELD; 

 YLD=YIELD/1000; 

PROC GLM DATA=RAW OUTSTAT=STATS ; 
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 CLASS ENV GEN; 

 MODEL YLD = ENV GEN ENV*GEN/SS4; 

DATA STATS2; 

SET STATS ; 

DROP _NAME_ _TYPE_; 

 IF _SOURCE_ = 'ERROR' THEN DELETE; 

MSE=0.1580245; 

DFE=94; 

NREP=3;  

SS=SS*NREP; 

MS=SS/DF; 

F=MS/MSE; 

PROB=1-PROBF(F,DF,DFE); 

PROC PRINT DATA=STATS2 NOOBS; 

 VAR _SOURCE_ DF SS MS F PROB; 

PROC GLM DATA=RAW NOPRINT; 

 CLASS ENV GEN; 

 MODEL YLD = ENV GEN / SS4 ; 

 OUTPUT OUT=OUTRES R=RESID; 

PROC SORT DATA=OUTRES; 

 BY GEN ENV; 

PROC TRANSPOSE DATA=OUTRES OUT=OUTRES2; 

 BY GEN; 

 ID ENV; 

 VAR RESID; 

PROC IML; 
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USE OUTRES2; 

READ ALL INTO RESID; 

NGEN=NROW(RESID); 

NENV=NCOL(RESID); 

USE STATS2; 

READ VAR {MSE} INTO MSEM; 

READ VAR {DFE} INTO DFEM; 

READ VAR {NREP} INTO NREP; 

CALL SVD (U,L,V,RESID);  

MINIMO=MIN(NGEN,NENV); 

L=L[1:MINIMO,]; 

SS=(L##2)*NREP;  

SUMA=SUM(SS); 

PORCENT=((1/SUMA)#SS)*100;  

MINIMO=MIN(NGEN,NENV);  

PORCENTA=0; 

 DO I = 1 TO MINIMO; 

  DF=(NGEN-1)+(NENV-1)-(2*I-1); 

  DFA=DFA//DF; 

  PORCEACU=PORCENT[I,]; 

  PORCENTA=PORCENTA+PORCEACU; 

  PORCENAC=PORCENAC//PORCENTA; 

 END; 

DFE=J(MINIMO,1,DFEM); 

MSE=J(MINIMO,1,MSEM); 

SSDF=SS||PORCENT||PORCENAC||DFA||DFE||MSE; 
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L12=L##0.5;  

SCOREG1=U[,1]#L12[1,]; 

SCOREG2=U[,2]#L12[2,]; 

SCOREG3=U[,3]#L12[3,]; 

SCOREE1=V[,1]#L12[1,]; 

SCOREE2=V[,2]#L12[2,]; 

SCOREE3=V[,3]#L12[3,]; 

SCOREG=SCOREG1||SCOREG2||SCOREG3; 

SCOREE=SCOREE1||SCOREE2||SCOREE3; 

SCORES=SCOREG//SCOREE; 

CREATE SUMAS FROM SSDF; 

APPEND FROM SSDF;  

CLOSE SUMAS;  

CREATE SCORES FROM SCORES; 

APPEND FROM SCORES ; 

CLOSE SCORES; 

/* obtaining the polygon and its perpendiculars */ 

d1=scoreg[,1:2][cvexhull(scoreg[,1:2])[loc(cvexhull(scoreg[,1:2])>0),],]; 

d=d1//d1[1,]; 

xxx=J(nrow(d)-1,1,0); 

yyy=J(nrow(d)-1,1,0); 

ppp={0 1,1 0}; 

 do i=1 to nrow(d)-1 ; 

  dd=d[i:i+1,]; 

   if dd[1,1]>dd[2,1] then ddd=ppp*dd; 

   else ddd=dd; 
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  p=(ddd[2,2]-ddd[1,2])/(ddd[2,1]-ddd[1,1]) ; 

   if p<0 then ss=1 ; 

   else ss=-1 ; 

  r=tan((180-90-abs(atan(p)*180/3.14156))*3.14156/180)*ss ; 

  aa=(ddd[1,2]+ddd[2,2])/2-p*(ddd[1,1]+ddd[2,1])/2; 

  xx=aa/(r-p) ; 

   if abs(r)<1 then xxx[i,]=1; 

   else xxx[i,]=1/abs(r); 

    if xx<0 then xxx[i,]=-xxx[i,] ; 

    else xxx[i,]=xxx[i,]; 

  yyy[i,]=xxx[i,]*r; 

 end; 

kk=xxx||yyy; 

xx1={V1 V2}; 

create pol from d[colNAME=xx1]; 

append from d ; 

close pol; 

xx2={V3 V4}; 

create perp from kk[colNAME=xx2]; 

append from kk ; 

close perp; 

data pol; set pol; TYPE="pol"; 

data perp; set perp; TYPE="per"; 

 

DATA SSAMMI; 

SET SUMAS; 



150 
 
 

 

 

SSAMMI =COL1; 

PORCENT =COL2; 

PORCENAC=COL3; 

DFAMMI =COL4; 

DFE =COL5; 

MSE =COL6; 

DROP COL1 - COL6; 

MSAMMI=SSAMMI/DFAMMI; 

F_AMMI=MSAMMI/MSE; 

PROBF=1-PROBF(F_AMMI,DFAMMI,DFE); 

PROC PRINT DATA=SSAMMI NOOBS; 

 VAR SSAMMI PORCENT PORCENAC DFAMMI MSAMMI F_AMMI PROBF; 

PROC SORT DATA=RAW; 

 BY GEN; 

PROC MEANS DATA = RAW NOPRINT; 

 BY GEN ; 

 VAR YLD; 

 OUTPUT OUT = MEDIAG MEAN=YLD; 

DATA NAMEG; 

 SET MEDIAG; 

 TYPE = 'GEN'; 

 NAME = GEN; 

 KEEP TYPE NAME YLD; 

PROC SORT DATA=RAW; 

 BY ENV; 

PROC MEANS DATA = RAW NOPRINT; 



151 
 
 

 

 

 BY ENV ; 

 VAR YLD; 

 OUTPUT OUT = MEDIAE MEAN=YLD; 

DATA NAMEE; 

 SET MEDIAE; 

 TYPE = 'ENV'; 

 NAME1 = 'S'||ENV; 

 NAME = COMPRESS(NAME1); 

 KEEP TYPE NAME YLD; 

DATA NAMETYPE; 

 SET NAMEG NAMEE; 

DATA BIPLOT0 ; 

 MERGE NAMETYPE SCORES; 

 DIM1=COL1; 

 DIM2=COL2; 

 DIM3=COL3; 

 DROP COL1-COL3; 

data biplot ; 

 set biplot0 pol perp;  

PROC PRINT DATA=BIPLOT NOOBS; 

 VAR TYPE NAME YLD DIM1 DIM2 DIM3; 

Data labels; 

 set biplot ; 

 retain xsys '2' ysys '2' ; 

 length function text $8 ; 

 text = name ; 
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  if type = 'GEN' then do; 

   color='black '; 

   size = 0.6; 

   style = 'hwcgm001'; 

   x = dim1; 

   y = dim2; 

    if dim1 >=0 

     then position='5'; 

    else position='5'; 

   function = 'LABEL'; 

   output; 

  end; 

  if type = 'ENV' then DO; 

   color='black '; 

   size = 0.6; 

   style = 'hwcgm001'; 

   x = 0.0; 

   y = 0.0; 

   function='MOVE'; 

   output; 

   x = dim1; 

   y = dim2; 

   function='DRAW' ; 

   output; 

    if dim1 >=0 

     then position='5'; 
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    else position='5'; 

   function='LABEL'; 

   output; 

   end; 

  if type = "per" then do; 

   color='red'; 

   line=2; 

   size = 0.6; 

   style = 'hwcgm001'; 

   x=0.0; 

   y=0.0; 

   function='MOVE'; 

   output; 

   x=v3; 

   y=v4; 

   function='DRAW'; 

   output; 

  end; 

Proc gplot data=biplot;  

Plot dim2*dim1 v2*v1 / overlay Annotate=labels frame 

 Vref=0.0 Href = 0.0 

 cvref=black chref=black 

 lvref=3 lhref=3 

 vaxis=axis2 haxis=axis1 

 vminor=1 hminor=1 nolegend; 

 symbol1 v=none c=black h=0.7 ; 
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 symbol2 v=none c=blue i=j line=3 ; 

 axis2 

  length = 6.0 in 

  order = (-1.0 to 1.0 by 0.2) 

  label=(f=hwcgm001 h=1.2 a=90 r=0 'Factor 2') 

  value=(h=0.8) 

  minor=none; 

 axis1 

  length = 6.0 in 

  order = (-1.0 to 1.0 by 0.2) 

  label=(f=hwcgm001 h=1.2 'Factor 1') 

  value=(h=0.8) 

  minor=none; 

Title1 f=hwcgm001 h=1.0 'AMMI biplot for Example 1 using adjusted 

means'; 

run; 

 

  



155 
 
 

 

 

Appendix  C Published Papers 
 

 



Introduction

National multi-environmental yield trials (MET),
allow assessment of the potential yield performance
of different varieties across a range of environments
(locations and possibly over years, as well as
combination of the two). These trials play an important
part in crop variety evaluation in breeding programs
and varietal recommendations for plant production. It
is therefore vital that the statistical methods used to
design the studies and analyse data from national yield
trial evaluation programs are as accurate, efficient and
informative as possible. Although the development of
statistical methods for analysing variety trial data has

a long history, due to the complexity of varietal and
environmental interactions there is no specific model
that is generally suitable for analysing combined data
sets from national trials. Spatial variability often exists
in field experiments due to factors such as moisture,
fertility, pH and structure of the soil, as well as the
pressure of diseases and pests (Davidoff & Selim,
1988; Scharf & Alley, 1993; Wu & Dutilleul, 1999;
Stroup, 2002). Multi-environment crop variety trials
and f ield evaluations are a particularly well-known
example of this. Failure to effectively control for
spatial variability greatly increases the risk of
misleading interpretations or erroneous inferences (Mo
& Si, 1986; Stroup, 2002; Yang et al., 2004).
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Historically, the analysis of variance (ANOVA),
along with randomised block designs (including
complete, incomplete blocks), has been used to deal
with the spatial variability of these trials. Numerous
studies have shown that such design-based control of
the spatial variation of field trials are often not optimal
and results in poor analysis eff iciency (Yang et al.,
2004). Statistical procedures that account for spatial
variation between plots within trials have been
proposed to address the topic of modelling spatial
variation in crop evaluation trials using polynomial
trend analysis, nearest neighbour analysis and a model
with correlated errors.

The problem with the ANOVA method as a means
to analyse multi-environmental crop variety trials is
that it requires the assumption of homogenous
variance-covariance structures across locations or
environments. This homogeneity of variance and
covariance may be unrealistic in many circumstances
(Kempton, 1984; Piepho, 1999a). As a result, a range
of more complex and informative models that can
account for variance or/and covariance heterogeneity
have been proposed for analysing MET data. While
other models are available, the problem of how the
models should be assessed and which model is more
suitable for a given trial’s data has not been solved.
This restricts the applicability of the models and model
choice. Therefore, a linear mixed model approach with
flexible spatial variance-covariance structures is
proposed. Correspondingly, model-based approaches
for analysing f ield trials that focus on the need to
control spatial variation have been put forward. These
approaches include nearest neighbour adjustment
(NNA) analysis and its modifications (Bartlett, 1978;
Cullis & Gleeson, 1991; Clarke & Baker, 1996; Yang
et al., 2004). Other options include linear mixed
models with spatial covariance structures such as those
used in geostatistics (Zimmerman & Harville, 1991;
Gilmour et al., 1997; Stroup, 2002). The efficiency of
spatial approaches has been compared with the no
spatial analyses found in the literature (Brownie &
Gumpertz, 1997; Wu & Dutilleul, 1999; Smith et al.,
2001; Yang et al., 2004; Hong et al., 2005).

However, most comparisons of eff iciency in the
literature appear to focus on the nearest neighbour
adjustment (including its modification or extensions)
and/or the linear mixed model with one special
covariance structure (usually the f irst order
autoregressive model, AR(1)) against the analysis of
variance of block designs. There have been few

comparisons of mixed models with different spatial
covariance structures. Now a migration seems to be
taking place from the NNA to a fully-fledged mixed
model analysis with different spatial components for
spatial variability because of the flexibility, simplicity
of use and other advantages of mixed model analysis
(Piepho et al., 2008). Recently, linear mixed models
have become well developed, and range from simple
variance component models that provide information
similar to ANOVA, to models with complex variance-
covariance structures that aim to explore complex
sources of variability and better accommodate
interactions. Specifically, different analytical models
can be cast in a unified mixed modelling framework
(Denis et al., 1997; Piepho, 1998, 1999b).Within such
a framework, different models can be handled as mixed
models with different variance-covariance structures.
Thus candidate models can be assessed and selected
for MET data analyses, which can result in high
accuracy when estimating and testing varietal effects.

Within advanced experimental designs, many spatial
methods were proposed for adjusting the spatial trend
(Bartlett, 1978; Wilkinson et al., 1983; Schwarzbach,
1984; Williams, 1986; Gilmour et al., 1997; Gleeson,
1997; Piepho, 1999a). A common feature of these
methods is that plots that are closer together are
assumed to have a higher correlation than plots farther
apart. Via such models the precision of genotypic value
estimates can be improved through both blocking and
the adjustment of spatial trend in one or two
dimensions.

With regard to the practical application of the linear
mixed model with a spatial component, various
unsolved problems must be dealt with. Among other
issues, these are concerned with the selection of a
suitable covariance model, i.e., a model with criteria
that form the basis for a user’s choice of whether or not
to use a spatial model at all. Another point in this regard
is the fact that the covariance parameters are unknown
in practice and the estimated values based on observed
data have to be used. In this case the statistical tests
about the f ixed effects of linear mixed models are
generally not exact and their degrees of freedom must
be determined by approximation. For some types of
mixed models, the available methods for approxi-
mating degrees of freedom have been well examined
(Schaalje et al., 2002; Spilke et al., 2004, 2005). For
mixed models with spatial covariance structures,
however, the use of the approximation methods has to
be undertaken with care. In addition of the approxi-
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mation, further consideration has to be given to the
question of what influence the various spatial models
have on the statistical tests used for, ranking and
selection of lines in cultivar trial evaluations, apart
from on efficiency vis a vis standard errors for line
effect estimations. In MET, the local spatial tendency
within trials and the residual heterogeneity between
trials can be jointly modelled in the context of linear
mixed models. By using a two-dimensional coordinate
system at each trial, it is possible to define the plot
location in a f ield, for example by specifying the
latitude and longitude of plot centres (Casanoves et al.,
2005, 2013).

The main objectives and contribution of this paper
were (1) to highlight the advantages of mixed effect
models in the data analysis of a national MET; (2) to
show the importance of several main spatial variance-
covariance structures, and direct implications of model
choice for the inference of varietal performance,
ranking and testing based on two data sets from real
national trials by comparing blocking without spatial
effect (ANOVA) model and a model with a block and
spatial effect; the mixed models with spatial variance-
covariance structure models were fitted using restricted
maximum likelihood (REML) approach; and finally
(3) to compare parameter estimates, ranking the
varieties and ranking order and tests of varietal effects
between the ANOVA model with only block effects and
the mixed effects model with a block effect with
selected spatial variance-covariance structure.

Material and methods

Linear mixed models have become well developed,
and range from simple variance component models that
provide information similar to ANOVA, to models with
complex variance-covariance structures that aim to
explore or better accommodate interactions. Speci-
f ically, different analytical models can be cast in a
unif ied mixed modelling framework (Denis et al.,
1997; Piepho, 1998, 1999b). Within such a framework,
different models with specif ic variance-covariance
structures can be formulated. Thus candidate models
can be assessed and selected for MET data analyses,
which result in high accuracy when estimating and
testing varietal effects. Although there are already
some general reviews of crop breeding analysis and
variety evaluation trials (Davidoff & Selim, 1988;
Smith et al., 2001, 2005), as well as studies on the

analysis of MET data using the mixed models (Bartlett,
1978; Piepho, 1997; Kelly et al., 2007; Piepho &
Möhring, 2010; Stefanova & Buirchell, 2010), most
references just contain some examples for
demonstration, or contain just one specif ic type of
mixed model in data analysis.

Both traditional block design ANOVA models and
spatial effect models can take the general form of the
linear mixed model:

[1]

where y stands for the vector of observations, X is a
matrix of constants associated with the fixed effects
contained in the vector β, β is a vector of unknown
fixed effects, Z is a matrix of constants associated with
the random effects, u is a vector of random effects, and
e is a vector of random residual errors. The random
effects are assumed to be distributed as multivariate
normal (MVN) or more precisely u ∼ MVN (0, G) and
the residual errors (e) distributed as MVN (0, R). It
follows that the vector of observations is distributed
as y ∼ MVN (Xβ, V) where V = ZGZ’ + R, The matrix
G is the covariance matrix among random effects, R
is the covariance matrix among the random residual
errors, and V is the covariance matrix of y. For block
designs, block effects may be regarded as f ixed or
random effects. A random block analysis makes
additional use of the so-called inter-block information
and is generally the preferred approach (Littell et al.,
2006). In this article, block effects will be considered
random in a combined analysis of data from different
location. In this situation, u is the vector of block
effects, and Z corresponds to the block effect design.

For analysis of variance models for block designs,
block effects are assumed to be iid ∼ N (0,σ2

b), and
residual errors are assumed to be iid N ∼ (0,σ2

b), where
iid denotes independent and identically distribution,
and and are variance components of blocks and
residual errors, respectively. Hence, G = Ibσ2

b and
R = Inσ2

b, where Ib is an identity matrix whose
dimension equals the number of blocks, In is an identity
matrix whose rank equals the number of observations.
The main feature of analysis of variance models for
block designs is that random variables located in the
same block have the same covariance regardless of the
extent of spatial variation; random variables not
located in the same block have a covariance of zero.

In spatial effect models, R takes the form
R = Inσ2 + σ2

sF, where σ2
s is the covariance parameter

of spatial structure variation, F is a square matrix with

y X Z= + +β u e
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a dimension reflecting the number of observations,
whose ijth element is f(dij), in which dij is the Euclidian
distance between spatial observation points i and j.
Suppose (xi,yi) and (xj ,yj) describe the coordinates of
the median points of plots for observations i and j,
respectively, then their distance is:

[2]

where x and y denote horizontal and vertical directions.
The variable f(dij) is generally a function of dij and its
form is dependent on the spatial model used, which is
dependent on the characteristics of spatial variation.
The spatial covariance structures available for
analysing field trials are listed in Table 1. In Table 1

c-list contains the names of the numeric variables used
as coordinates of the location of the observation in
space, and is the Euclidean distance between the ith and
jth vectors of these coordinates, which correspond to
the ith and jth observations in the input data set. For
SP(POWA) and SP(EXPA), c is the number of
coordinates, and d(i, j, k) is the absolute distance
between the kth coordinate, k = 1 ..., c, of the ith and jth

observations in the input data set. For the geometrically
anisotropic structures SP(EXPGA), SP(GAUGA), and
SP(SPHGA), exactly two spatial coordinate variables
must be specified as c1 and c2 . Geometric anisotropy
is corrected by applying a rotation ı and Ï scaling to
the coordinate system, dij (θ, λ) which represents the
Euclidean distance between two points in the

d x x y y
ij i j i j

= −( ) + −( )
2 2

Table 1. Spatial covariance structures

Structures Description Parameters (i,j) elements

SP(EXP)(c-list ) Exponential 2 σ θ2exp d
ij

−{ }/

SP(EXPA)(c-list ) Anisotropic Exponential 2c + 1 σ θ2

1k

c

k

pk
exp d i j k

=

∏ − ( ){ }, ,

SP(EXPGA)(c1c2) 2D Exponential, Geometrically Anisotropic 4 σ θ λ ρ2exp d
ij

− ( ){ }, /

SP(GAU)(c-list ) Gaussian 2 σ ρ2 2 2exp d
ij

−{ }/

SP(GAUGA) (c1c2) 2D Gaussian, Geometrically Anisotropic 4 σ2exp{–dij(θ, λ)2/p2}

SP(LIN)(c-list ) Linear 2 σ ρ ρ2 1 1 1−( ) ≤( )d d
ij ij

(

SP(LINL)(c-list ) Linear Log 2 σ ρ ρ2 1 1 1−( ) × ≤( )log( ) (d logd
ij ij

SP(MATERN)(c-list) Matérn 3 σ
ρ ρ

2 1

2
2

Γ v

d
K

d
ij

v

v
ij
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⎝
⎜⎜

⎞

⎠
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ρ ρ
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2
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2
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⎜
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⎟

SP(POW)(c-list) Power 2 σ ρ2
dij

SP(POWA)(c-list) Anisotropic Power c + 1 σ ρ ρ ρ2
1

1

2

2d i j d i j

c

d i j c, , , , , ,( ) ( ) ( )…

SP(SPH)(c-list ) Spherical 2 σ
ρ ρ

2
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1
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θ λ

ρ

θ λ

ρ
2

3

3
1

3

2 2
−

( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟+

( )⎛

⎝

⎜
⎜

⎞

⎠

⎟d d
ij ij

, ,
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥× ( ) ≤( )1 d

ij
θ λ ρ,



Spatial variance-covariance structure and local stationary trend 199

transformed space. SP(MATERN) and SP(MATHSW)
represent covariance structures in a class defined by
Matérn (see Matérn, 1986; Handcock & Stein, 1993;
Handcock, 1994). The function Kv is the modif ied
Bessel function of the second kind of (real) order v > 0;
the parameter governs the smoothness of the process
(for further detail see SAS 9.3 help and documen-
tation). The five spatial-variance covariance structures
presented above belong to isotropic models, i.e., the
variation properties are the same in both directions x
and y; the other models, as their names show, belong
to anisotropic covariance structures, i.e., the variation
properties can be different in directions x and y.

Estimation and statistical test of varietal effects for
the classical analysis of block designs uses ANOVA,
which is, equating the observed mean squares to the
expected mean squares with the assumption of
independence, normality and homogeneity of the
variances of the residuals. While spatial models
analyses use REML for estimating variance
components. Estimable functions Lβ of linear contrast
of f ixed effects (variety) are estimated based on
Lβ̂ = L(X 'V–1X)–X 'V–1y with V being replaced by a
REML estimate V̂. The variance of Lβ̂ is determined
based on var(Lβ̂) = L(X 'V̂–1X)–L' (Hartley & Rao,
1967; Harville, 1977). Null hypotheses of the form of
H0: Lβ̂ = 0 are tested using the statistic

[3]

In general, the test statistic in [3] is only
approximately t-distributed and its degrees of freedom
must be estimated. The approximate degrees of
freedom in this research were determined using the
Kenward-Roger method (Kenward & Roger, 1997).
This approximation also uses the basic idea of
Satterthwaite (1941). Its extension relative to the
Satterthwaite method of Giesbrecht & Burns (1985)
and Hrong-Tai Fai & Cornelius (1996) is an asymptotic
correction of the estimated standard error of f ixed
effects due to Kackar & Harville (1984) in small and/or
unbalanced data structures.

Statistical tools for model selection and test
of consistency

Two questions in the analysis of practical trials are
whether there is signif icant spatial variability and

whether spatial models should be used (and if so,
which models are most appropriate for data analysis).
To answer these questions, statistical tools include
likelihood-based methods (Oman, 1991; Wolfinger,
1993).The likelihood-ratio test (LRT) allows the
comparison of the model’s fit, provided that one of the
models is hierarchically subordinated to the other or
similarly the smaller model is nested with the larger
one. This is the case if one model can be seen as a
special case of a more general model due to certain
model restrictions. The LRT then results from

[4]

where lnLLg and lnLLs denote the log likelihood of the
general model g and the special models, respectively.
Given certain regularity conditions, the LRT testing
statistic asymptotically follows a χ2 distribution, with
the degrees of freedom (d.f.) resulting from the number
of restrictions that are necessary to transform the gene-
ral model g into the special model (Fahrmeier & Ha-
merle, 1984; Greene, 2003). The general model fit, when
compared to the special model, is considered better if
LRT > χ2 (1-α, d.f.) with a significant level of α. If the
model comparison focuses on the covariance structure
of a constant expectation structure, the likelihoods are
employed via the REML method (Wolfinger, 1993).
This can be used for the first question. In this case, g
corresponds to the model with spatial correlations
among observations, and corresponds to the model
without spatial correlation among observations. The
LRT based on formula [4] can also be used for testing
the difference between the block design ANOVA model
(block effects as random) and the model without
correlations among observations, because the latter is
also a special model variation of the former. Thus, it
can be used for testing the difference between the
spatial models with and without block effects.

As mentioned above, the LRT is only applicable when
comparing two nested models. For model comparisons
that do not require hierarchical models, there are a
number of analytical criteria. These are so-called
«Information Criteria» based on likelihood estimations.
In the current work Akaike’s Information Criterion
(AIC) is used for comparing the covariance structures
for an identical expectation structure using the REML
estimation methods and is generally given by:

[5]

where lnLL is the log-likelihood same as in formula [4]
and q is the number of the parameters of the variance-

AIC LL q= − +2 2ln

LRT LL LL d f
g s

= − −( ) ( )2 2ln ln ~ . .χ

t t d f=
( )

( )L

L

ˆ

ˆvar
~ . .

β

β
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covariance structure. Thus, the formula of the
information criteria is given in such a way that the
model with the smaller value for the AIC is preferred
(Bozdogan, 1987; Burnham & Anderson, 2002). For
un-nested model we prefer to use the AIC but we note
that there are other available information criteria, such
as the Schwarz Bayesian Information Criterion (BIC)
(Schwarz, 1978). Guerin & Stroup (2000) compared
the performance of AIC and BIC on covariance model
selection for repeated measures and stated that AIC
tends to select a more complex model but with a better
control of type I error than the BIC. To assess
consistency (or inconsistency) in the statistical tests
on varietal effects between two models one can use the
test consistency ratio, which is computed as follows:

[6]

Data set and analysis

The data sets used in this study are taken from the
Ethiopian Agricultural Research Institute National
Variety Trials for Bread Wheat (BW00RVTI data) and
Barley Trial (BW01RVII data) of 2006-2008. Some 20
bread wheat (Triticum aestivum L.) varieties were
tested in at six locations (environments) on the first
year (2006/7) and five locations (environments) among
the six of the first used on the second year (2007/8).
Similarly 25 barley (Hordeum vulgare L.) varieties
were tested in five locations (environments) in 2007/8.
All the trials in each location were laid out as a
randomized complete block (RCB) design with four
replicates. There are two approaches to analysing MET
data using mixed model, the so-called one- and two-
stage approaches (Welham et al., 2010). In a one-stage
analysis, individual plot data from all trials are
combined in a single analysis (Cullis et al., 1998). In
a two-stage analysis, variety means are first obtained
from the separate analysis of individual trials (Stage I),
and are then combined in an overall mixed model
analysis (Stage II). The two-stage analysis can be
unweighted (e.g., Patterson & Silvey, 1980) or weighted
to reflect the relative precision of variety means from
each trial (e.g., Smith et al., 2001). A one-stage
approach provides the most accurate predictions of
variety performance, but it can be computationally
difficult to use when the variance models involved are
complex. With the steady improvements in computing
power, single-stage analyses are becoming feasible.

Apart from computational speed, the main advantages
of the two-stage approach are that one can carefully
analyse each trial individually, taking into account any
specifics of the design or field trends.

In this study we used two approaches for analysis;
the first one was a separate individual analysis of each
location of the BW00RVTI data set of wheat and
BW01RVII data set for barley. The second one was a
one-stage analysis, individual plot where data from all
trials (locations)are combined in a single analysis of a
two year BW00RVTI data set of wheat and a one year
BW01RVII data set of six location. Each data set was
separately f itted per location and per year using the
mixed model with fourteen variance-covariance
structures. The mixed model with compound symmetry
(CS) variance-covariance structures was identical to
the ANOVA model. The optimally fitted spatial model
and the ANOVA model are used for further varietal
effect assessment and statistical tests (or inference).
The single-stage analysis was applied to each of the
data sets by f itting one spatial-variance covariance
structure at a time for all location. Putting location as
random group factor on SAS (proc mixed) analysis
gave a different random parameter estimate for each
location. All the analyses ware conducted using
standard SAS software version 9.3. The results from
the two models were compared and used to assess
consistency (or inconsistency) in statistical tests on
varietal effects between the two models, using
consistency ratio defined earlier.

Results and discussion

Model f it statistics from ANOVA and the mixed
model with various spatial variance-covariance
structures and results of possible LRT and AIC for all
models are summarised in Tables 2, 3 and 4. Note that
“—” denotes the failure of a model to converge. This
occurred with the sp(lin) and sp(linlog) structures in
any of the locations, which shows that these models
are not suitable for that trial data (Schabenberger &
Pierce, 2002). The smallest AIC value (bold in
Tables 2, 3 and 4) indicates that for BW00RVTI trial
data set year 1 and 2 support the anisotropic power [spa
(powa)] and exponential [spa (exp)] variance-
covariance structures as the best compared to the
ANOVA model for seven trials (locations) out of
eleven. Similarly for the BW00RVTI trial five different
spatial variance-covariance structures [sp(pow),

text consistency ratio =
number of significaant varietal differences tested simultaneouusly in two models

(number of significamax nnt varietal differences tested under the twwo models considerated)
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sp(expga), sp( mathsw), sp(expga) and sp(powa)]
models were selected as the best compared to the
ANOVA model for the five location BW01RVII trial
data set.

A model comparison between a block effect without
spatial structure (ANOVA) and a model with a block
and spatial effect using the LRT χ2-test for the trials
for the two (BW00RVTI and BW01RVII) data sets
suggested that the selected spatial variance-covariance
structure fitted the data significantly better than the
ANOVA model. However the optimally-fitted spatial

variance-covariance structures were not the same from
one location to the other. The optimally fitting spatial
variance-covariance structure was spatial power
[sp(powa)] for most of the locations. These results
showed that assuming a homogeneous variance-
covariance structure in the ANOVA model is generally
not realistic, and therefore using a linear mixed model
with spatial variance-covariance is necessary to
improve the eff iciency of the data analysis and
accommodation of local stationary trend of MET data.

It appears the year to year effect on variance-

Table 2. Related fitting statistics for the ANOVA model and the linear mixed model with spatial variance-covariance structures
for the first year BW00RVTI data set

Model
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

�
Location-6

LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2

RCBD 385.1 387.1 — 344.2 346.2 — 398.8 400.8 — 426.4 428.4 — 421.7 423.7 — 377.3 379.3 —
sp(sph) 408.5 412.5 1,0000 360.8 364.8 1,0000 407.5 411.5 1,0000 442.1 446.1 1,0000 441.4 445.4 1,0000 364.4 368.4 0.0003
sp(exp) 385.1 387.1 1,0000 343.7 347.7 0.4869 394.2 398.2 0.0303 426.4 428.4 1,0000 421.7 423.7 1,0000 361.8 365.8 <.0001
sp(gau) 384.9 388.9 0.6537 343.8 347.8 0.5743 394.7 398.7 0.0425 426.3 430.3 0.7460 421.7 423.7 1,0000 365.5 369.5 0.0006
sp(pow) 385.1 389.1 0.8650 343.7 347.7 0.4869 394.2 398.2 0.0303 426.2 430.2 0.6300 421.7 425.7 0.9213 361.8 365.8 <.0001
sp(mat) 385.1 387.1 1,0000 343.7 349.7 0.7806 394.1 400.1 0.0953 426.1 432.1 0.8603 421.6 427.6 0.9648 359.7 365.7 0.0001
sp(EXPA) — — — — — — 386.4 396.4 0.0144 — — — — — — — — —
sp(EXPGA) 385.1 391.1 0.0608 334.5 342.5 0.0179 386.1 394.1 0.0747 426.4 432.4 0.2721 421.7 427.7 0.1855 353,0 361,0 0.0034
sp(GAUGA) 379.3 387.3 0.0339 344.2 352.2 1,0000 398.8 404.8 1,0000 426.4 432.4 0.3575 421.7 427.7 0.2295 363.9 371.9 0.1199
sp(MATHSW) 385.1 389.1 1,0000 343.7 349.7 0.7806 394.1 400.1 0.0953 426.4 430.4 1,0000 421.7 425.7 1,0000 359.7 365.7 0.0001
sp(POWA) 372.7 378.7 0.0020 332.5 338.5 0.0030 386.4 392.4 0.0020 424.8 430.8 0.4545 420.1 426.1 0.4665 349,0 355,0 <.0001
sp(SPHGA) 393.8 399.8 1,0000 — — — — — — — — — 439.2 447.2 1,0000 355.6 363.6 <.0001

—: denotes the failure of a model to converge. Bold values indicate smallest AIC (Akaike’s information criteria). LL: log-likelihood.
Locations 1, 2, 3, 4, 5 and 6 are Kulumsa, Adet, Bekoji, Sinana, Holeta, and DeberZeit (Ethiopia), respectively.

Table 3. Related fitting statistics for the ANOVA model and the linear mixed model with spatial variance-covariance structures
for the second year BW00RVTI data set

Model
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2

RCBD 370,0 372,0 — 334.2 336.2 — 345.6 347.6 — 395.2 397.2 — 284.1 286.1 —
sp(sph) 382.4 386.4 1,000 351.9 355.9 1,000 366.4 370.4 1,000 394.2 398.2 0.317 303,0 307,0 1,000
sp(exp) 367.1 371.1 0.091 333.5 337.5 0.428 345.6 347.6 1,000 387.3 391.3 0.005 284.1 286.1 1,000
sp(gau) 368.3 372.3 0.195 332.4 336.4 0.189 345.6 347.6 1,000 388.7 392.7 0.011 284.1 286.1 1,000
sp(pow) 367.1 371.1 0.091 333.5 337.5 0.428 345.5 349.5 0.659 387.3 391.3 0.005 284,0 288,0 0.762
sp(mat) 365.8 371.8 0.124 — — — — — — 386.9 392.9 0.016 — — —
sp(EXPA) 366.2 374.2 0.290 322.9 330.9 0.010 343.9 353.9 0.790 384.9 394.9 0.036 — — —
sp(EXPGA) 363.8 371.8 0.339 323.1 331.1 0.003 340.5 348.5 0.108 384.6 392.6 0.232 284.1 290.1 0.234
sp(GAUGA) 370,0 378,0 1,000 325.6 333.6 0.032 344,0 352,0 0.976 395.2 403.2 1,000 284.1 290.1 0.594
sp(MATHSW) 365.8 371.8 0.124 — — — — — — 386.9 392.9 0.016 284.1 288.1 1,000
sp(POWA) 367.9 373.9 0.367 322.7 328.7 0.003 344.1 350.1 0.464 386.3 392.3 0.011 283.6 289.6 0.773
sp(SPHGA) 382.4 390.4 1,000 — — — 356.1 364.1 1,000 391.3 399.3 0.273 — — —

—: denotes the failure of a model to converge. Bold values indicate smallest AIC (Akaike’s information criteria). LL: log-
likelihood.
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covariance of varieties is greatly exhibited in the
BW00RVTI data set. This is shown through the
variance-covariance structures being mostly consistent
for different locations in the same year, but obviously
not consistent between years as shown in Table 2 and 3.
This result is easily understood by realising that within
a year we expect only between location differences,
but between years there could be differences in
environments (years). The failure of some spatial
variance-covariance structures to converge may
indicate that they are not suitable or compatible with

the structure of the current MET data but could work
with other data sets.

To examine the impact of the spatial variance-
covariance structures on estimates on test of varieties,
the number of signif icant (at α = 0.05) varietal
differences by the t-test are given in Table 5. Using the
ANOVA model and mixed model with the optimally-
fitted spatial variance-covariance for each location, we
assessed the consistency between these two models.
The number of significant varietal differences by t-test
is not the same between the ANOVA model and the

Table 4. Related fitting statistics of ANOVA model and linear mixed model with spatial variance-covariance structures for
the one year BW01RVII data set

Model
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2 LL AIC Pr > χχ2

RCBD 475.5 477.5 — 454.5 456.5 — 421.6 423.6 — 506.9 508.9 — 524,0 526,0 —
sp(sph) 475.5 477.5 1,0000 454.5 456.5 1,000 427.7 431.7 1,000 506.9 508.9 1,0000 551.3 555.3 1,0000
sp(exp) 468.5 472.5 0.0083 452.3 456.3 0.142 410.9 414.9 0.001 503.7 507.7 0.0712 524,0 526,0 1,0000
sp(gau) 471,0 475,0 0.0341 452.4 456.4 0.145 414.1 418.1 0.006 504.8 508.8 0.1409 523.9 527.9 0.6890
sp(pow) 468.5 472.5 0.0083 452.3 456.3 0.142 410.9 414.9 0.001 503.7 507.7 0.0712 524,0 528,0 0.8947
sp(mat) — — — 452,0 458,0 0.283 407.7 413.7 0.001 502.9 508.9 0.1344 524,0 526,0 1,0000
sp(EXPA) — — — 452.4 462.4 0.711 — — — — — — — — —
sp(EXPGA) 466.7 474.7 0.3470 447.7 455.7 0.070 421.6 429.6 1,000 493.2 501.2 0.0141 524,0 530,0 0.0323
sp(GAUGA) 469,0 477,0 0.3427 449.6 457.6 0.157 410.1 418.1 0.275 498.6 506.6 0.0619 529.9 530.5 0.1424
sp(MATHSW) — — — 452,0 458,0 0.283 407.7 413.7 0.001 502.9 508.9 0.1344 524,0 528,0 1,0000
sp(POWA) 467.4 473.4 0.0179 458.8 459.2 0.435 413.7 419.7 0.020 497.1 503.1 0.0071 519.2 525.2 0.0873
sp(SPHGA) 475.5 481.5 1,0000 458.7 466.7 1,000 420.4 428.4 0.742 495,0 503,0 0.0077 — — —

—: denotes the failure of a model to converge. Bold values indicate smallest AIC (Akaike’s information criteria). LL: log-
likelihood.

Table 5. The number of significant and highly significant variety contrasts of t-test for trials of the BW00RVTI and BW01RVII
data sets and the consistency ratio test between the ANOVA model and the spatial linear mixed model with optimally fitting
spatial variance-covariance structure (SLMM)

Data set BW00RVTI Data set BW01RVII

Year-1
�

Year-2 Year-1

��������������
Consistency

��������������
Consistency

ANOVA SLMM
Consistency

ANOVA SLMM
No. Ratio (%)

ANOVA SLMM
No. Ratio (%) No. Ratio (%)

Location-1 60 78,0 53,00 67.94 44,00 40,00 37,00 84.09 Location-1 46,0 65,0 43 66.15
Location-2 53 50,0 37,00 69.81 33,00 35,00 26,00 74.29 Location-2 67,0 79,0 60 75.95
Location-3 10 18,0 6,00 33.33 * * Location-3 97,0 157,0 94 59.87
Location-4 * * 45,00 50,00 41,00 82,00 Location-4 47,0 36,0 22 46.80
Location-5 * * * * Location-5 36,0 45,0 26 57.78
Location-6 45 20,0 15,00 33.33
Average 42 41.5 22.75 51.11 40.67 41.66 34.67 80.13 Average 58.6 76.4 49 61.31

*: the optimally fitting model is ANOVA.
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mixed model with optimally f itted spatial variance-
covariance structures. The consistency ratio test
between the two models falls in the range of 33-84%.
From the average of all trials (locations), the test
consistency ratio of two models is approximately 64%,
which means that approximately 36% of the varietal
differences being tested as signif icant or very
significant in one model cannot be tested as significant
or very significant by the other model.

Varietal ranking

Apart from contrasts between new varieties, the
ranking of varietal productivity and a comparison of
new varieties with standard variety is also important
for variety trials. We consider the trial from the five
locations of BW01RVII data to compare variety mean
ranking between the ANOVA model and the optimal
spatial variance-covariance model. A trial corresponds
to a single experiment at a single location. Table 6
shows the ranking for the first eight entries from the
optimal spatial variance-covariance mixed model
compared to the ranking from the ANOVA model
across the locations. The model with spatial structure
is relatively more consistent in its top eight ranking
than the ANOVA model. The ranking are different for
different locations and differ between the spatially
structured model and ANOVA. A rank difference of
genotype between the locations is showing the presen-
ces of genotype by environment interaction. This also
indicates the advantage of single stage spatial models on
the handling of the spatial trend and variation of the trials.

The simple homogenous variance-covariance
structures implied by ANOVA models, which assume

that the interaction effects of varieties are independent,
is mostly not appropriate for data analyses of MET.
The fact that the goodness of f it of one variance-
covariance structure was different for various trial data
sets, and that none fitted all trial data sets optimally
throughout, indicates that the heterogeneous characte-
ristics of variance-covariance are not identical across
the trials. Therefore, the arbitrary use of a homo-
geneous variance-covariance structure (e.g. ANOVA
model) to analyse the MET cannot ensure a high degree
of accuracy. In this study, the ANOVA model, as a
special case form of mixed models, showed obvious
inconsistency in estimates and tests of varietal effects
compared to the linear mixed model with the
optimally-fitted spatial variance-covariance structures.

Both effective experimental designs and spatial
analyses can have an important role in improving the
reliability and precision of experiment results. The
importance of spatial variability to be expected from
a logical and subjective-related perspective is confir-
med in a variety of experiments. As presented in much
of the literature, spatial analysis may lead to higher
efficiency with regard to standard error of estimation
of fixed effects than a non-spatial analysis, provided
that spatial variability is present. Based on this work,
the commonly used ANOVA mixed model is not an
appropriate model for data analysis of MET trials. The
spatial variance-covariance models are more useful in
a practical sense, given that they can describe actual
existing variance-covariance characteristics more
accurately than the ANOVA model. Of course, with
one-stage analyses, the proposed spatial variance-
covariance models are expected to yield identical mean
yields for balanced data, and differences are expected
only for unbalanced data. Even so, a selection of

Table 6. The first eight genotype ranking comparison between the ANOVA model and the optimally fitting spatial variance-
covariance structure (SLMM) of five trials of data set BW01RVII location by location and a single-stage analysis

Rank
Location-1

�
Location-2

�
Location-3

�
Location-4

�
Location-5

�
All

ANOVA SLMM ANOVA SLMM ANOVA SLMM ANOVA SLMM ANOVA SLMM SLMM

1 G23 G23 G21 G23 G23 G23 G23 G23 G23 G23 G23
2 G13 G13 G23 G21 G40 G40 G11 G20 G20 G20 G21
3 G50 G21 G30 G30 G17 G17 G19 G10 G40 G10 G40
4 G17 G30 G17 G20 G20 G21 G15 G50 G80 G19 G13
5 G21 G17 G70 G17 G21 G10 G20 G19 G13 G10 G20
6 G40 G40 G11 G13 G10 G20 G50 G80 G14 G40 G17
7 G30 G50 G90 G16 G80 G80 G80 G15 G10 G30 G80
8 G19 G15 G13 G90 G60 G15 G13 G11 G19 G13 G30
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variance-covariance structures based on the mixed
model framework is important since the standard error
of varietal effect estimates (i.e. the accuracy of varietal
effect estimates) is different under the various models,
and unbalanced data is common in MET (Möhring &
Piepho, 2009). The advantage and validity of using
spatial variance-covariance structure depends on the
present spatial variability. Most of the investigated
spatial models showed better data fitting and smaller
standard error for variety contrasts than the ANOVA
model.

The main purposes of the present paper was to show
the importance of variance-covariance structure
selection and to illustrate that the classical ANOVA
model is inferior to more elaborate mixed models in
the analysis of MET data. This does not imply that the
models considered in this paper are appropriate for any
situation. For example, in some locations (trials) the
ANOVA model still optimally fitted the data better than
the spatial models.
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Genotype by environment (G×E) interaction is associated with the differential performance of 
genotypes tested at different locations and in different years, and influences selection and 
recommendation of cultivars. Wheat genotypes were evaluated in six environments to determine the 
G×E interactions and stability of the genotypes. Additive main effects and multiplicative interactions 
(AMMI) was conducted for grain yield of both year and it showed that grain yield variation due to 
environments, genotypes and (G×E) were highly significant (p <0.01). Stability for grain yield was 
determined using genotype plus genotype by environment interaction (GGE) biplot analysis. The first 
two principal components (PC1 and PC2) were used to create a 2-dimensional GGE biplot. Which-won-
where pattern was based on six locations in the first and five locations in the second year for all the 20 
genotypes. The resulting pattern is one realization among many possible outcomes, and its 
repeatability in the second was different and a future year is quite unknown. A repeatability of which-
won-where pattern over years is the necessary and sufficient condition for mega-environment 
delineations and genotype recommendation. 
 
Key words: Additive main effects and multiplicative interactions (AMMI), genotype×environment (G×E) 
interactions, wheat, stability.  

 

 
INTRODUCTION 
 
The increase in population and the subsequent rise in 
demand for agricultural produce are expected to be 
greater in regions where production is already 
insufficient, in particular in Sub-Saharan Africa. The 
necessity and demand to increase agricultural production 
represents a huge challenge to local farming systems 
given it must come mainly from increased yield per unit 
area in addition to the limited extension of cultivated  land 
 

in the country. To meet this requirement various crop  
improvement programmes have been initiated by the 
Ethiopian Institute of Agricultural Research (EIAR). Under 
any crop improvement programme a sample of promising 
genotypes are performance tested each year at a number 
of sites, representing major crop growing areas with the a 
view to identify genotypes which possess the dual 
qualities   of   high  yield  capacity  and  low  sensitivity  to 
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adverse change in environmental condition. One of the 
important focuses in the current paper is to assess the 
performance of improved genotypes in multi environment 
(multi-location, multi-year or both) trials. Multi-
Environment Yield Trials (MEYT) are conducted for 
different crops throughout the world (Yan and Rajcan, 
2002; Dehghani et al., 2006) not only to identify high 
yielding cultivars but also to identify sites that best 
represent the target environment (Yan, 1999; Yan et al., 
2000, 2001). As usual in MEYT, a number of genotypes 
are tested over a number of sites and years to see 
adaptation of the crop. But, it is often difficult to determine 
the pattern of genotypic responses across environments 
without the use of appropriate analytical and statistical 
tools such as additive main effects and multiplicative 
interactions (AMMI) and Genotype main effect and 
Genotype×Environment interaction (GGE) biplot (Gauch, 
1992; Gauch and Zobbel, 1996; Yan et al., 2000; Yan, 
Tinker, 2006) for graphical display of data.  

The measured yield of each cultivar in each test 
environment is a result of genotype main effect (G), and 
environment main effect (E) and genotype by 
environment (G×E) interaction (Yan and Kang, 2003). 
Though, E mostly accounts for about 80% of the total 
yield variation; it is only G and G×E interaction that are 
relevant to cultivar evaluation and mega environment 
classification (Rao et al., 2005; Yan et al., 2000; Yan, 
2002; Yan and Rajcan 2002; Kaya et al., 2006). AMMI 
and GGE models are singular value decomposition 
(SVD) based statistical methods often applied to yield 
trial studies for visualizing the data. The methods helps in 
understanding complex genotype by environment(G×E) 
interactions, determining which genotype has been in 
which environments, and also helping in grouping 
environments with the same winner (or similar winners) 
into mega-environments.  

Wheat is the most important cereal crop in Ethiopia and 
represents nearly 14% of grain crop production. It covers 
71,786.86 ha of cropped land area with average 
productivity of 9.86 qut/ha but it is less than half of the 
world average yield (ECSA, 2011). Understanding 
genotype by environment interaction (GEI) helps plant 
breeders to design better breeding strategies. Therefore, 
the objectives of this study are to evaluate the yield 
performance and stability of genotypes in relation to 
environment (location) on year to year basis. Secondly 
the study will examine the possible existence of different 
mega environments and the wining genotype for each 
mega environments.  
 
 
MATERIALS AND METHODS  
 
Description of the data  
 
The data used in the current paper are from a study carried out 
between 2004 and 2005 in six different research stations in 
Ethiopia. The locations consist of loc1 (Kulumsa),loc2(Adet), loc3 
(Bekoji), loc4 (Sinana), loc5 (Holeta) and  loc6  (DeberZeit).  Twenty 

 
 
 
 
bread wheat genotypes were evaluated in each of the above 
locations (environments) in a randomized complete block design 
with four replications. These Twenty genotypes are coded from G1-
G20.  
 
 
The model  
 
In terms of effects, the basic model for a multi-environment trial can 
be written as  
 

                                                  (1) 
 
Where 𝑌𝑖𝑗𝑙  is the measured yield value of the ith genotype in the jth 

environment and lth replicate, 𝜇 is the grand mean,  𝛼 𝑖  is the main 
effect of the ith genotype, 𝛽𝑗  is the main effect of jthenvironment, 𝛾𝑖𝑗 is 
interaction between ith genotype and jth

 
environment and 𝜖𝑖𝑗𝑙 is 

random error. Were we assume that 𝜖𝑖𝑗𝑙  ~indep N(0,δ
j 

2
). The 

ranges of indices are i=1, 2,...,20j =1, 2,..., 6 l =1, 2, 3, 4. Thus the 
cell mean for the model is  
 

                        (2) 
 
In GGE biplots genotype plus genotype × environment (G + GE) 
interaction are studied together and to achieve this G+GE effect is 
separated out from the observed mean and eventually the model 
becomes (omitting the random error)  
 

                                    (3) 
 
However in the case of the AMMI model, the effect of genotypes is 
also separated out only genotype × environment (GE) interaction is 
studied for biplot, and eventually the model becomes  
 

                                      (4) 
 
The mathematical expressions for partitioning of G+GE for GGE 
biplots and GE for AMMI models are similar except a difference in 
model formulation. The G+GE for GGE and GE for AMMI effects 
are partitioned into multiplicative terms by using the singular value 
decomposition (SVD) as  
 

 
 
and 
 

             (7) 
 
respectively, where 𝜆1 (𝜆∗1) and 𝜆2 (𝜆∗2) are the singular values 
(SV) for the first and second principal component (PC1 and PC2), 
𝜉 ′
𝑖1

(𝜉 ′∗
𝑖1

) and𝜉 ′
𝑖2

 (𝜉 ′∗
𝑖2

) are eigenvectors of genotype i for PC1 and 
PC2, 𝜂𝑗1 (𝜂∗

𝑗1
) and 𝜂𝑗2 (𝜂∗

𝑗2
) are eigenvectors of environment j for 

PC1 and PC2 and 𝛾𝑖𝑗 (𝛾𝑖𝑗 ∗) is the residual not explained by PC1 and 
PC2 for genotype i in environment j. The PC1 and PC2 
eigenvectors cannot be plotted directly to construct a meaningful 
biplot before the singular values are partitioned into the genotype 
and environment eigenvectors. To generate a biplot that can be 
used in visual analysis of MEYT data, the SVs have to be 
partitioned into the genotype and environment eigenvectors so that 
Equation (5) can be written in the form of  
 

                                                                                                       (6)  
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Table 1. ANOVA table for AMMI model. 
 

Source 
Year 2004 Year 2005 

df SS MS F F-prob df SS MS F F-prob 

Total 479 54590 114   399 27188 68.1   
Treatments 119 41599 349.6 10.2 0 99 19806 200.1 9.93 0 
Genotypes 19 1187 62.5 1.82 0.01944 19 2779 146.3 7.26 0 
Environments 5 35212 7042.4 99.8 0 4 13988 3497.1 31.97 0 
Block 18 1270 70.6 2.06 0.00706 15 1641 109.4 5.43 0 
Interactions 95 5200 54.7 1.6 0.00134 76 3038 40 1.98 0.00003 
IPCA 23 2035 88.5 2.58 0.00012 22 1459 66.3 3.29 0 
IPCA 21 1588 75.6 2.21 0.00193 20 897 44.9 2.23 0.00227 
Residuals 51 1577 30.9 0.9 0.66493 34 682 20.1 1 0.47979 
Error 342 11721 34.3 

  
285 5742 20.1 

   

The block source of variation refers to blocks within environments.  
 
 
 
Where 𝑔′

𝑖𝑙
 and𝑒′𝑙𝑗   are called PCl scores for genotype i and 

environment j, respectively. In a biplot, genotype i is displayed as a 
point defined by all 𝑔′

𝑖𝑙
values, and environment j is displayed as a 

point defined by all 𝑒′𝑙𝑗  values (l = 1 and 2 for a two-dimensional 
biplot). Singular-value partitioning is implemented by  
 
𝑔′

𝑖𝑙
 =  𝜆𝑙

𝑓𝑖𝜉𝑖𝑙  𝑎𝑛𝑑 𝑒′𝑙𝑗   =  𝜆𝑙
1−𝑓𝑖𝜂𝑙𝑗                                                    (7) 

 
where 𝑓𝑖  is the partition factor for PCl. Theoretically, 𝑓𝑖  can be 
anything between 0 and 1 although 0.5 is so far the most commonly 
used partition factor (Yan, 2002). In this paper we have use a value 
of 0.5 to give equal importance to both genotype and environment. 
 
 
RESULTS AND DISCUSSION  
 
The AMMI analysis of variance of grain yield (Table 1) 
showed significant effects of genotype, environment 
(location) and genotype by environment interaction. 
Location explained 84.65% of the total (G + E + GE) 
variation of year 2004 and 70.63% for year 2005, 
whereas the genotype by environment interaction and 
genotype captured 12.5 and 0.0029% of year 2004 and 
15.34 and 14.03% for year 2005, respectively. The 
magnitude of genotype by environment interaction as 
compared to genotype suggested a possible existence of 
different mega environments in year 2004. The 
partitioning of GGE sum of squares through the GGE 
biplot analysis showed that PC1 and PC2 accounted 
43.21 and 26.43% of GGE sum of squares of year 2004 
and 58.01 and 22.14% for year 2005, respectively. The 
two principal components explained a total of 69.6 and 
80.16% variation in the two years respectively. 
Nonetheless agricultural biplot literature provides no 
guidance concerning how much of the total variability 
accounted for by the first two principal components are 
considered adequate (Sabaghnia et al., 2012b; Yang et 
al., 2009). This result revealed that there was a 
differential yield performance among wheat genotypes 
across testing environment (location) due to the presence 

of genotype by environment interaction.  
 
 
Graphical statistical methods based on GGE biplot 
analysis  
 
Relationship among test environments  
 
GGE biplot, which was based on environment focussed 
scaling, was used to estimate the pattern of environments 
(locations) as shown in Figure 1. Environment PC1 score 
had both negative and positive scores indicating that 
there was a difference in rankings of yield performance 
among genotypes across environments leading to cross-
over G ×E interactions.  

Like PC1, the environment PC2 scores had both 
positive and negative values. This gave rise to crossover, 
leading to inconsistent genotype yield performance 
across environment (locations). To visualize the 
relationship between environments, lines are drawn to 
connect the test environments to the biplot origin known 
as environment vectors. The cosine of the angle between 
two environments is used to approximate the correlation 
between them as described and used in Dehghani et al. 
(2009, 2010), Kaya et al. (2006), Yan and Tinker (2006).b 
For example locations 2,3 and 6 were positively 
correlated (an acute angle), location 1 and 5 were 
negatively correlated (an obtuse angle), and location 1 
and 4 were not correlated (a right angle) in year 
2004.The presence of wide obtuse angle (that is, strong 
negative correlations) among test environments is an 
indication of high cross over GEI (Yan and Tinker, 2006).  

The distance between two environments measures 
their dissimilarity in discriminating the genotype, thus the 
six locations in (Figure 1a) fell into 4 apparent groups 
where locations 2,3 and 6 form the first group while 
lactations 1,4 and 5 each of them separately form their 
own group. The presence of close associations among 
some test locations in year 2004, suggest that  the  same  
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Figure 1. Scatter plot of environments (a) year 1 (b) year 2. 

 
 
 

 
 
Figure 2. GGE biplot based on environment-focused scaling for comparison of the environment with ideal environment (a) year 
1 (b) year 2.  

 
 
 
information about genotypes could be obtained from 
fewer test locations, and hence the potential to reduce 
test cost (Choukan, 2010; Tukamuhabwa et al., 2012). If 
two test locations are closely correlated consistently 
across years, one of them can be drooped without loss of 
much in-formation about the genotypes. However, in 
reality the correlation consistency between the test 
locations vary from year to year as it shown in Figure 1. 
Clearly Figure 1a and Figure 2b show differing genotype 
and environment structure. However it should be noted 
that data in 2005 had only five of the location in 2004. 

Discriminating ability and representativeness of the 
test environment  
 
GGE biplot discriminating ability and representativeness 
is an important measure of the testing environments. The 
concentric circles on the biplot as shown in Figure 2 help 
to visualize the length of the environment vectors, which 
is proportional to the standard deviation within the 
respective environments and is a measure of the 
discriminatory ability of the environments. Therefore, 
among   the   six  environments,  E1  and  E4 were   most  
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Figure 3. GGE biplot based on genotype-focused scaling for comparison of the genotype with ideal genotype (a) year 1 (b) year 2.  

 
 
 
discriminating (informative) and E5 least discriminating in 
year 1; whereas in year 2 (Figure 2) E5 and E4 are most 
discriminating and E2 was least-discriminating. Test 
environments that are consistently non-discriminating 
(non-informative) provide little information on the 
genotypes and, therefore, should not be used as test 
environments. The average environment (represented by 
the small circle at the end of the arrow) has the average 
coordinates of all test environments, and Average-
Environment Axis (AEA) or Average-Tester-Axis (ATA) 
(Yan, 2002) is the line that passes through the average 
environment and the biplot origin. A test environment that 
has a smaller angle with the AEA is more representative 
of other test environments. Thus, E1 and E4 are most 
representative whereas E5 and E3 least representative in 
their respective year. Test environments (locations) that 
are both discriminating and representative (e.g., E1) are 
good test environments for selecting generally adaptable 
genotypes. Discriminating but non-representative test 
environments like E3 are useful for selecting specifically 
adapt-able genotypes if the target environments can be 
divided into mega-environments or they are useful for 
culling unstable genotypes if the target environment is a 
single mega-environment.  
 
 
Ranking genotypes relative to the ideal genotype  
 
An ideal genotype should have the highest mean 
performance and be absolutely stable  (that  is,  performs 

the best in all environments). Such an ideal genotype is 
defined by having the greatest vector length of the high 
yielding genotypes and with zero GEI, as represented by 
an arrow pointing to it (Figure 3). Although such an ideal 
genotype may not exist in reality, it can be used as a 
reference for genotype evaluation (Yan and Tinker, 
2006). A genotype is more desirable if it is located closer 
to the ideal genotype. Thus, using the ideal genotype as 
the centre, concentric circles were drawn to help visualize 
the distance between each genotype and the ideal 
genotype. Because the units of both PC1 and PC2 for the 
genotypes are the original unit of yield in the genotype-
focused scaling (Figure 3), the units of the AEC abscissa 
(mean yield) and ordinate (stability) should also be in the 
original unit of yield. The unit of the distance between 
genotypes and the ideal genotype, in turn, will be in the 
original unit of yield as well. Therefore, the ranking based 
on the genotype-focused scaling assumes that stability 
and mean yield are equally important (Farshadfar et al., 
2012; Yan, 2002). Figure 3 revealed that G5, which fell 
into the centre of concentric circles, was the ideal 
genotype in terms of higher yielding ability and stability, 
compared with the rest of the genotypes. In addition, G6 
and G14, located on the next consecutive concentric 
circle, may be regarded as desirable genotypes.  
 
 
Mean performance and stability of the genotypes  
 
Yield   performance   and   stability   of   genotypes   were 
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Figure 4. GGE biplot based on environment-focused scaling for mean performance and stability of the genotypes (a) year 1 (b) year 2. 

 
 
 
evaluated by an average environment coordination (AEC) 
method in Farshadfar et al. (2011). Within a single mega-
environment, genotypes should be evaluated on both 
mean performance and stability across environments. 
Figure 4a gives the average environment coordination 
(AEC) view of the GGE biplot. The single-arrowed line is 
the AEC abscissa, it points to higher mean yield across 
environments. Thus, G5, G18, G6 and G14 had the 
highest mean yield. The non-arrowed line is the AEC 
ordinate; it points to greater variability (poorer stability) in 
either direction. Thus, G12 and G20 ware highly unstable 
and below average yield, whereas G4 and G14 highly 
stable, were followed by G5, G6 and G3 with above 
average yield in the first year.  

The mean performance and stability of these 20 
genotypes in five locations (environment) in the second 
year of the trial shows some variation from the first year 
as it shown in Figure 4b. However G6, G5, G4 and G18 
were relatively high yielding and stabile genotypes in both 
trial years. 
 
 
Which genotype won where and mega environments 
with GGE bi-plot  
 
One of the most attractive features of a GGE biplot is its 
ability to show the which-won-where pattern of a 
genotype by environment data set (Figure 5). Many 
researchers find this use of a biplot intriguing, as it 
graphically addresses important concepts such as 
crossover GE, mega environment differentiation, specific 
adaptation, etc as discussed in Yan and Tinker (2006). 
The polygon is formed by connecting the markers of the 
genotypes that  are  further  away  from  the  biplot  origin 

such that all other genotypes are contained in the 
polygon. Genotypes located on the vertices of the 
polygon performed either the best or the poorest in one 
or more locations since they had the longest distance 
from the origin of biplot. The perpendicular lines are 
equality lines between adjacent genotypes on the 
polygon, which facilitate visual comparison of them. For 
example, the equality line between G5 and G18 in 2004 
indicates that G5 was better in E1, whereas G18 was 
better in E2, E3 and E6. An interesting feature of this 
view of a GGE biplot is that the vertex genotype(s) for 
each sector has higher (some times the highest) yield 
than the others in all environments that fall in the sector 
(Gauch et al., 2008; Yan, 2002). These six equality lines 
divide the biplot into six sectors, and the environments 
fall into four of them (Figure 5).This pattern suggest that 
the target environment may consist of four different 
mega-environments and that different cultivars should be 
selected and deployed for each.  

In which-win-where GGE biplot for the second year 
(Figure 5b), eight equality lines divide the biplot into eight 
sectors and the five locations fell into three of them. The 
mega-environment classification of these five trial 
location is different from the first year. This difference 
leads to a different wining genotype in different locations 
(environment) across a year.  
 
 
Conclusions  
 
The GGE biplotsof MEYT data allow visualizing the inter-
relationship among genotypes including the ranking of 
genotypes based on both mean performance and 
stability,   inter-relationship   among   environments,   and  

 

 
                                       (a)                                                                                    (b) 
 
 
 

 
 
 

 
 



Negash et al.          1039 
 
 
 

 
 
Figure 5. The which-won-where view of the GGE biplot to show which genotypes performed best in which environment (a) 
year 1 (b) year 2. 

 
 
 
interaction between genotypes and environments 
including the which-won-where pattern. The result of this 
study indicated that wheat yield performance was highly 
influenced by the environment effect followed by the 
magnitude of GEI and genotype. Total yield variation by 
the genotype increased from 0.0029% in first year to 
14.03% in the second year which had almost equal effect 
with the G×E interactions. These two years repeated over 
location data analysis result; which-win-where pattern, 
yield performance and stability of genotype indicate that 
repeatability pattern over years is the necessary and 
sufficient condition for mega-environment delineation and 
genotype recommendation. Decision making recommen-
dation based on one year data should be done with 
caution.  
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