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ABSTRACT

This thesis considers the problem of residue upgrading operations in an oil

refinery. Visbreaking is a residue-upgrading process that improves profitability

of a refinery. The economics of converting the heavy residue into the lighter and

more valuable streams, coupled with the installation of a modem visbreaker unit

at the Engen Refinery in Durban, provides sufficient motives to develop a

mathematical model to simulate the unit's capability and estimate the economics

of the visbreaking process and fuel oil operations. Furthermore, the proposed

model should provide a crude-dependent visbreaking yield that can be used in

the refinery's global linear programme (LP), employed to evaluate and select the

crude and to optimise refinery's operations.

Traditionally, kinetically based models have been used to simulate and

study the refining reaction processes. In this case, due to the complexity of the

process and some unknown reactions, the performances of existing visbreaking

simulators are not fully satisfactory. Consequently, a neural network model of

the visbreaking process and fuel oil blending operation is developed.

The proposed model is called the adaptive visbreaker paradigm, since it is

formed using neuroengineering, a technique that fabricates empirically-based

neural network models. The network operates in supervised mode to predict the

visbreaking yields and the residue quality.

It was observed that due to the fluctuation in the quality of feedstock, and

plant operating conditions, the prediction accuracy of the model needs to be

improved. To improve the system's predictability, a network reciprocation

procedure has been devised. Network reciprocation is a mechanism that controls

and selects the input data used in the training of a neural network system.

Implementation of the proposed procedure results in a considerable

improvement in the performance of the network.
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To facilitate the interaction between the simulation and optimisation

routines, an integrated system to incorporate the fuel oil blending with the

neurally-based module is constructed. Under an integrated system, the

economics of altering the models' decision variables can be monitored.

To account for the visbreakability of the various petroleum crudes, the yield

predicted by the adaptive visbreaker paradigm should enter into the visbreaker,s

sub-model of the global refinery LP. To achieve this, a mechanism to calculate

and update the visbreaking yields of various crude oils is also developed.

The computational results produced by the adaptive visbreaker paradigm

prove that the economics of the visbreaking process is a multi-dimensional

variable, greatly influenced by the feed quality and the unit's operating

condition. The results presented show the feasibility of applying the proposed

model to predict the cracking reaction yields. Furthermore, the model allows a

dynamic monitoring of the residue properties as applicable to fuel oil blending

optimisation.

In summary, the combination of the proposed models forms an integrated

decision support system suitable for studying the visbreaking and associated

operations, and to provide a visbreaking yield pattern that can be incorporated

into the global refinery LP model. Using an integrated decision support system,

refinery planners are able to see through the complex interactions between

business and the manufacturing process by performing predictive studies using

these models.
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CHAPTER 1

INTRODUCTION

This chapter provides some information on the background to the world-wide

problem of refining heavy petroleum crude and the incentives behind the residue

upgrading process. Visbreaking is a refinery process unit that allows refiners to

upgrade the crude's residue. It briefly discusses different visbreaking models

and the motives for the introduction of a new modelling concept that simulates

the visbreaking process and provides the necessary yield data required by the

refinery linear programme. The refinery linear programme is a mathematical

representation of a refinery that is used in crude selection and plant-wide

optimisation of a refinery. In this respect, an introduction into refinery planning

system and the application of the refinery linear programme as a managerial

decision support is also presented.

1.1 Background

Petroleum crude - Overview & Economics

Crude oils are complex mixtures of different species of chemical compounds. In

addition to the hydrocarbons, a number of elements appear in crude oil. From

the refiners point of view, some of these elements (such as sulphur, sodium,

vanadium...) are undesirable and must be removed from the petroleum products.

There has been an understandable tendency among refiners to select from the

crude's available those with the lower amounts of these undesirable materials.

As a result, the world reserves of more desirable crude's decline while the

reserves of less desirable and inevitably more viscous crudes grow (Hermes,

1998).

For a better understanding of crude processing and typical refinery products

yield, a simplified schematic of crude processing is shown below:
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Decision Making Levels
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Figure 1-1 A simplified schematic of a petroleum refinery

CDU = Crude Distillation Unit

VDU = Vacuum Distillation Unit

Light Ends System = Combination of several plants to process the light hydrocarbons

De-Sulphur Units = Sulphur Removing Process Units.

FCCD = Fluid Catalytic Cracker Unit

Visbreaker = Residue Upgrading Unit.

LPG = Liquid Petroleum Gas.

Fuel Oil System = Heavy Fuel Oil Blending (fuel oil blending pool) and Optimisation

systems.
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For the sake of clarity, the complete picture of the crude refining plants and

processes is not shown.

An internationally accepted yardstick to measure the specific gravity of the

crude is the API degrees, adopted by American Petroleum Institute. This is

based on the following equation:

141.5
API = SPG - 131.4

where the SPG. is the specific gravity of crude oil; a ratio of the density of the

materials at 60° Fahrenheit (15.5e) to the density of water at that same

temperature that is; the lower the API gravity, the more viscous or heavier the

crude oil.

On average, crude oils available to the refiners are becoming heavier and

therefore more difficult to convert to the light products, such as gasoline,

kerosene, or diesel fuel (Tamburrano, 1994). This is shown in the Figure 1-2,

where the trend of the crude's API during the years' 1975-1990 is depicted.

API Gravity of Crude to US Refineries
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Figure 1-2 API gravity of the crude. Source: Oil and Gas Journal

September 9, 1991
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In the past, demand for highly refined products such as transportation fuels

has largely been satisfied by processing relatively high quality, high API crudes.

This is no longer the case as the quality of crude oils processed around the world

is worsening (Tebbal et ai, 1997).

There has been a decline in the world reserves of the high quality crudes.

There is also a decreasing demand for heavy fuel oil and an increasing demand

for gasoline and distillates (also called white oil). This has resulted in a renewed

interest in converting the residual portion of the crude barrel. Consequently, the

change in the product slate has created a world-wide product imbalance. This is

shown in the Figure 1-3.

World Demand VS. Crude Yield
1995-2000

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

IIIIWhite Oil

CLPG, Nap

IIIFuelOil

Crude
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Product
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Figure 1-3 Product Demand VS. Crude Yield. Source: Bonner & Moore

NPRA March 1995. AM-95-06 (presented by G. Guariguata)

Anticipated changes in crude quality and the product slate are expected to

result in:

• Wider price differential between heavy and light crudes.

• Wider price differential between the white oils and heavy fuel oils.
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To illustrate the impact of a change in crude quality, Table 1-1 compares

the residue yields from two Arabian based crudes. Arab light crude contains

roughly 45 volume percent of residue (crude bottom).

Progressing to the Arab heavy crude increases the amount of the crude

residue by approximately 30 volume percent. In addition, the amount of

undesirable contaminants present in the residue also increases dramatically as

the crude becomes heavier (Hennico et aI, 1994). Obviously, refining a crude

with such characteristics is a cumbersome task.

Additionally, due to the higher contaminates (or undesirable materials) of

the heavy crude, the refining cost of a heavy crude is higher than that of a light

crude.

The expected product spectrum and the selling price of various petroleum

products are compared in Table 1-1. The residue upgrading incentive is based

on the given price and the volume of major products obtained from processing

of Arab Light and Heavy crudes. It is shown that the upgrading incentive of

Arab Heavy is greater than that of Arab Light.
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Table 1-1 Estimation of residue-upgrading incentive

Source: Hydrocarbon Technologies Inc. (HTI) Quarterly: Spring 1995

(presented by E. Houde et ai, 1995)

Crude Type Arab Arab

Light Heavy

CrudeAPI o 33.8 27.9

Crude Residue (bottom) 0lc. 45 54

Vacuum residue Volume 0lc. 15 28

Average Crude Price $/bbl spot Europe 14.18 12.25

1994

Average Gasoline Price $/bbl spot Europe 19.28 19.28

1994

Average Jet fuel Price $/bbl spot Europe 22.22 22.22

1994

Average Diesel fuel Price $/bbl spot 20.75 20.75

Europe 1994

Average Fuel Oil Price $/bbl spot Europe 9.70 9.70

1994

Expected Fuel Oil Yield Volume 0lc. 20.8 28.3

(No-Visbreaker)

Expected Fuel Oil Yield Volume % 16 21

(With-Visbreaker)

Estimated Upgrading Incentive $ per 0.55 0.82

barrel of crude

Clearly, it can be seen that the economics of petroleum refining are based

on ratio, or degree, of converting the heavy crude's residue to white oil

(gasoline, jet, diesel fuel). This is because of the higher marginal value of white

oil versus the petroleum crude as shown in the Table 1-2 below:
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Table 1-2 Crude and Product Pricing Profile

The price of petroleum crude is shown as P. The marginal values are the average

pricing obtained from various petroleum trading bulletins during 1996-1997.

White oil: High-selling price P+9

Products such as $/bbl

Gasoline -Jet- Low selling price P+2

Diesel $/bbl

Crude Benchmark price

$/bbl ( P )
petroleum

High selling price P-l

Black oil: $/bbl

Asphalt - Heavy Low selling price P-ll

Fuel Oils $/bbl

It should be noted that the crude price itself is steadily increasing. Burk (1995)

has estimated that the median price of crude petroleum (in 1994 dollars) for the

years 2000 to 2004 is about 20 to 24 Dollar per barrel respectively.

In summary, residue upgrading increases the white oil production, that in

turn results in an increase in the income of the refinery. This is demonstrated in

the Figure 1-4 below:



Heavy Crude
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Low --------- Cost
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Light Crude

High

High

High Residue---------

Residue Upgrading Results in:

Lower Heavy Fuel Oil Make -------­

Higher White Oil Make

Figure 1-4 Schematic of the Residue Upgrading Incentive

Low

Some words must be also said about the application of the residue

upgrading units (such as the visbreaking process) in South Africa. The South

African petroleum refineries produce the bulk of the fuel needed by the country.

The total crude usage of some 400,000 barrels per day must be imported. The

application of the residue conversion units, such as visbreaking, enables a

refiner to purchase heavier and cheaper crude thus saving much needed hard

currency for social upliftment projects.

Visbreaking Models - An overview

From the above discussion, we conclude that the key to economical refining is

in maximising the white oil to black oil ratio. To achieve this, many refineries

have embarked on various residue conversion schemes (Dawson, 1995). There

are many ways to convert the crude's heavy residue into the light products,

among them visbreaking; a non-catalytic thermal process widely used by

petroleum refiners (Hofmann, 1984). According to a survey by Bonnifay (1992),

about 22 percent of the world's residue upgrading units in use are visbreakers.
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Kinetic models have traditionally been used to simulate and study the

chemical reactions in the petroleum and petrochemical industry. In recent years,

few visbreaking simulation models have been developed. These models are

generally based on the empirical relationships derived from kinetic equations of

the thermal decomposition of the hydrocarbons. Among the most well known

visbreaker simulation models are Vistop™ and VispoTM; discussed below.

Vistop, a kinetic visbreaker simulator from KBC Process Technology Ltd,

is designed to monitor and optimise the furnace, transfer line, main fractionator

and the fuel oil blending facilities of visbreaking units. According to KBC

Technology, either coil or soaker units may be simulated and Vistop is capable

of predicting the visbreaker residue conversion based on the feedstocks quality.

Vispo simulator, from KTI-Spa Inc, is a computer program that simulates

the thermal process in a visbreaking furnace and joint soaking unit. According

to Bussani et al (1995), based on the coil and soaking unit geometry, feed

characterisation and operating conditions, the program can estimate the

visbreaking yields and some properties of the visbreaking effluents.

The kinetic models of the visbreaker have not been widely used by the

petroleum industry. This is due to the complexity of the modem visbreaking

process, where the relationships between the various process parameters are

often unknown or unattainable. It should be noted that, in the absence of a

catalyst, the visbreaking process of the heavy residues cannot be efficiently

controlled. In other words, the nature and composition of the free radicals

(Atkins, 1994) formed during the thermal decomposition of the heavy

hydrocarbons are often unknown and difficult to estimate.

Another problem associated with these models is their high dependency on

the layout of the visbreaking equipment. Thus, they are not easily adaptable

to a new environment.
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The estimation of visbreaking yields is often a difficult task because the

product is a mixture that cannot be completely analysed, and because the

viscosity of the residue cannot be accurately predicted (Orbey, et ai, 1993).

Laboratory-based yields (pilot plant) are in many instances worthless because

commercial conditions cannot be adequately simulated by the laboratory

procedures.

The overall reaction of visbreaking involves the decomposition of heavy oil

into gas, light naphtha, distillates, and heavy condensation products. Because of

the process's complexity as well as some unknown and uncontrollable reactions,

the conventional models based on the theory of thermo-kinetics have not been

truly satisfactory. Furthermore, these models do not generally account for the

quality of the fuel oil nor the economics associated with the visbreaking process

and fuel oil blending.

As a result, the predicting quality and applicability of the existing

visbreaking simulation model(s) is often poor and does not resemble the real

world of the visbreaking process and fuel oil blending operation. Additionally,

these models have traditionally been expensive to purchase and maintain.

..



22

Refinery Linear Programming Model - An overview

Industrial operations of any complexity require some degrees of planning. This

involves anticipating future problems and situations and deciding in advance

what steps need to be taken to deal with them.

In the petroleum refining industry the analysis of the economic aspects of a

chemical process provides an essential basis for process and plant decisions to

determine what, in any particular situation is the best thing to do. In this respect,

planning is broadly concerned with identifying courses of action and selecting

the best suited to the particular circumstances. In an economic context this

means finding the particular plan which is likely to be the most profitable (or the

least costly). The search for a "best" or "right" economic plan is referred to as a

procedure of optimisation.

For a plant or process the range of possible alternative plans and the scope

for optimisation depends on what flexibility exists in the way it can be run.

There may be flexibility in operating conditions, in feedstocks that can be used

and in relative amounts of different products that can be made. It should be

noted that each refinery has its own unique processing schemes, which are

determined by the equipment available, operating costs, and product demand.

The optimum flow pattern for any refinery is dictated by economic

considerations and no two refineries are identical in their operations.

It is against this background that mathematical techniques such as the

Linear Programming (LP) can be particularly helpful in planning and scheduling

applications. Linear programming (and associated techniques) enables a wide

variety of planning data to be properly evaluated. It enables the "best" economic

plan to be selected with confidence and provides valuable insight into

alternative plans and involved interactions, which occur in complex planning

situations.
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In many ways the refining industry was the investor and leader in the early

development of linear programming in the industrial sector (Coxhead, 1992).

Almost every refinery in the world is using the linear programming technique to

optimise its operation. This so called Refinery LP or Global Refinery LP (GLP)

usually consist of several sub-models, each representing a refinery process unit

or the product blending operation. The objective function is to maximise profit

(or minimise cost) of the refining operation by selecting the optimum quantity

of the petroleum crude, or mix of crude's, to satisfy a product slate.

Additionally, the Refmery LP is capable of blending these products according to

the specification stipulated by the refiner. The global LP is a mathematical

representation of the refinery. However, extensive knowledge of process

modelling, process chemistry, yield accounting, computer science, refinery

economics and finance is often needed to understand and address the various

planning issues arising in the petroleum industry. Detailed discussion of this

very important planning tool is presented in Appendix -4 of this thesis.

1.2 Problem Statement

As stated earlier, petroleum crude is the primary feedstock of the refinery. As

the petroleum crude available to the refining industry becomes expensive and

heavier, the more refiners will apply residue upgrading such as the visbreaking

process to convert heavy materials to more economically desirable products.

The refinery profitability is therefore highly sensitive to the optimality of the

visbreaking and fuel oil blending operation.

In addition to reducing the viscosity of the heavy residue, the modem

visbreaker units provide feed to the Catalytic Cracker unit, where the refinery's

most valuable products (gasoline and diesel stocks) are produced. In this

respect, the interaction between the visbreaker, catalytic cracker, and the heavy

fuel oil system plays a great role in the refinery's profitability.
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These interactions are mathematically modelled into the Global Refinery

LP. The yield and quality pattern of different crude dependent feedstocks and

other non-linear relationships, however, cannot be accurately modelled. The

main reasons for this deficiency are listed below:

• The Global Refinery LP is concerned with the global optimisation of a

refinery and thus can not satisfactorily be used to simulate the operation of a

specific unit, or for product blending, where the relationships are often non­

linear (Patterson, 1971).

• In primary upgrading of heavy oils (residue) to distillates (gas oils), highly

condensed aromatic rings are involved in a complex chemistry that is not

well understood (Rahimi & Dettman, 1997).

• More than 200 visbreaking units are now in operation. In spite of the large

number of publications on this process, many questions are still unanswered.

The role of asphaltenes in the thermal transformation of oil residues, the

interdependencies between the asphaltenes content, stability, viscosity and

other properties of feedstocks, and their effects on the products of

visbreaking are not clear (Brauch et aI, 1996).

The cost of purchasing petroleum crude is the highest single cost to a

refiner. In order to economically evaluate the crude and other refinery

feedstocks, it is necessary to account for the visbreaking yields and properties.

In this respect, mathematical models can be used to evaluate various refinery

feedstocks, and to quantify the economics of refinery operations. In scientific

terms" model" is used to describe a contrived representation of real processes or

phenomena (Rice et aI, 1995). Models are used both to quantify our knowledge

of reality and to make inferences about that reality (Malik, 1991). Reaction

simulation models are often used to predict the yields of refinery process units.

In practice many assumptions about the reaction course are normally made. In

some cases a "black-box" model is used with parameters gained from

experimental runs. These models are essentially based on detailed reaction
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engIneenng principles and thus are widely different from planning models

which are used in optimisation and process economics (Friedman, 1995). The

results produced from running this type of reaction simulation model can,

however, be used as the starting point in the refinery global LP model.

The search for the kinetically based visbreaker simulation model indicated

that the performances of the commercial visbreaker reaction simulation models

are not fully satisfactory; thus these models are not widely used by petroleum

refiners.

In view of the above, our aim to simulate the visbreaking process, optimise

the fuel oil blending operation, and to equip the refinery LP with the crude's

visbreakability relationships. It is, therefore, necessary to develop an alternative

mathematical model that can predict the visbreaking yields and properties. The

output of this model is used to update the visbreaking yield of the global

refinery LP model. The integrated system is used to economically evaluate the

various refinery feedstocks.
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1.3 Motivation of the research and objective of the thesis

The work presented here is part of an ongoing research effort, to understand the

visbreaking operations and its effect on the refinery's economics, and to

improve the accuracy of the refinery LP model that is used in refinery-wide

optimisation. To achieve this objective, it is necessary to develop computational

methods to model the visbreakability of different crude oils and other refinery

streams used as the visbreaker's feedstocks. It is also necessary to represent the

fuel oil blending system and it's influences on the visbreaking operations.

In recent years, through the business transformation process, the refining

industry has evolved into a commercial entity, where profit improvement and

survivability are the major issues facing refinery management (Brice, 1996). As

a result, optimisation of the decision making process requires constant

evaluation of available resources. Against this background, it might be said that

the cornerstone of a modem refinery is a sophisticated planning system (Tobin,

1997). Accordingly, the perspective that orients this work comes from a need to

develop some decision-making tool(s) for a multi-disciplinary problem, at an oil

refinery. Given that motivation, the emphasis is however, on the practicality of

the concept and decision analysis.

Many practical applications require a multitude of mathematical models

interacting not only with each other but also with a database, with a user

interface, and with models from other modelling traditions. In this respect, the

basic idea is to produce an integrated decision support system comprising an

artificial neural network model of a visbreaker process unit, a fuel oil blending

optimisation, and the global refinery LP model.

Decision support systems (DSS) are computer programs designed to

improve the process and outcome of industrial or business decision making.

DSS incorporate both data and models (Saaty, 1994). They are designed to assist
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managers in their decision process (Goodwin et aI, 1997). Using an integrated

decision support system, refinery planners are able to see through the complex

interactions between business and the manufacturing process by performing

predictive studies using these models.

The simulation model developed for this study will be called the "Adaptive

Visbreaker Paradigm" (AVP) that is based on the mechanism of

neuroengineering. Broadly speaking, neuroengineering is a term applied to any

empirically-based neural network model (HoIt, 1994). In this thesis we classify

and use neuroengineering as the technique employed in building an empirical

Artificial Neural Network System (ANNs) that can predict the yields of a

petroleum process unit. Neural network technology mimics the brain's own

problem solving process. Just as humans apply knowledge gained from past

experience to new problems or situations, a neural network takes previously­

solved examples to build a system of "neurons" that makes new decisions,

classifications, and forecasts (Hertz et aI, 1991). The reason for much

excitement about neural networks is their ability to generalise to new situations.

After being trained on a number of plant and laboratory examples, they can

often induce a complete relationship that interpolates and extrapolates from the

input examples in a sensible way. Consequently, neural networks are widely

used in a variety of business applications (Sharda, 1994).

In recent years, artificial neural network systems have successfully been

used for many chemical processing applications. Among the earlier works, a

paper by Reinschmidt, (1990) titled "Neural Networks for Process Forecasting"

is of particular interest. Baratti et aI.(1995) have successfully designed a neural

network system to control the butane splitter column at the SARAS refinery in

Italy. Ramasamy from the University of Louisville, and Paxton from Exxon

Chemicals (1995) have produced a non-linear "phenomenological model" that is

capable of explaining the underlying physics of the process identification

problem. Brambilla et al. (1996) had limited success in using artificial neural

networks to estimate product quality. Another interesting piece of work in the

field of refinery process control is by Jyh-Ming Horng et aI (1995) from
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National Tsing Hua University in Taiwan. Here the researchers have used neural

network systems to determine the operating conditions of a crude distillation

tower.

However, so far, not many integrated simulation-optimisation models of the

petroleum refinery processes have been reported. This is partly due to the fact

that in the refining industry, the artificial neural network is a new and unproved

tool. Moreover, developing a neural network system requires access to extensive

plant and laboratory data, often difficult to acquire.

This thesis comprises a host of related, but somewhat separate problems.

For example, the visbreaking operation concerns the optimal production of light

hydrocarbons, while the fuel oil blending operation is essentially an

optimisation problem concerned with the allocation of refinery streams to

produce a blend. Since the overall objective is to improve the accuracy of the

refinery LP model, it is imperative to frequently update and revise its

visbreaking yields, and these can be derived from the proposed adaptive

visbreaker paradigm.

In essence, the visbreaker paradigm is a neural network model of a

visbreaker unit, combined with the fuel oil blending operations. The objective of

AVP is to predict the visbreaking yield and quality, and to optimise the fuel oil

blending pool on an ongoing basis. This type of model delivers it's best results

when it has access to a large population of raw data. This is not a problem, as

the refinery's operation is a continuous process. The foundation of the

Visbreaker Adaptive Paradigm is based on the operation of the visbreaker unit

at the Engen Refinery in Durban. However, it is possible to re-train the neural

network paradigm and to learn other visbreaking process data in other working

environments. In other words, the application of the proposed neuroengineering

technique is not limited to the visbreaking operation nor to the existing Engen

refinery configuration. In essence, the underlying structure of the proposed

model provides sufficient flexibility for further refinement or usage at other
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locations. Similarly, the combination of the varIOUS mathematical models

developed for this study can be modified to suit other petroleum refineries.

This motivation leads us to define the project's objective as follows:

The primary objective of this project is to develop an integrated

decision support system that can be used to study the economics of

the visbreaking process and fuel oil blending operation. The system

should be capable of improving the accuracy of the refinery LP

model that is used in the global optimisation of the refinery.

The project consists of the following steps:

• To construct a mathematical model that can be used to simulate the

visbreaking process and to generate product yields, using a

neuroengineering technique.

• To develop a fuel oil blending optimisation model, SInce the

visbreaking operation is closely related to that of fuel oil blending.

• The integration of simulation optimisation models to study the

economics of the visbreaking operations.

• To test the interaction with the global refinery LP model by using the

data generated by the above mentioned integrated system and to

develop a mechanism to account for the visbreakability of various

crude petroleum.
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CHAPTER 2

DESCRIPTION & DEFINITION

This chapter is organised into the following sections:

Product blending: Product blending is one of the most important steps in the

transformation of crude petroleum into finished petroleum products. However,

for better understanding, the technical terms used in product blending should be

reviewed. This is presented in Appendix 1.

The fundamentals of product blending are discussed under the headings of

section 2.1.

Section 2.2: presents an overview of the visbreaking process and the fuel oil

blending operation. Further information on residue decomposition theory is

presented in Appendix-2.

For a better understanding of the visbreaking process and fuel oil blending, this

section begins by defining the general terms applied to the visbreaking

operations as outlined below:

Aromatic Hydrocarbons: Hydrocarbons derived from or characterised by the

presence of the benzene ring. Many of this large class of cyclic and polycyclic

organic compound are odorous.

Asphalt - also know as bitumen, pitch
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Asphaltenes - Asphaltic - Asphaltene: Are the coal-like materials which

occur in the residues obtained from refining petroleum crude oil. The

asphaltenes are rich in the undesirable elements (e.g. sulphur, nitrogen...) that

occur in fuel oil. It is generally believed that the visbreaking yield reduces with

an increase in the asphaltenes content of the feedstocks.

ASTM: The acronym of The American Society for Testing Materials. The test

procedures and specifications developed by ASTM for petroleum products are

used world-wide.

Atmospheric Residue (AR): A stream drawn from the bottom of the crude

distillation tower. It is also referred to as the crude tower bottom or long residue.

This product can be routed to vacuum distillation or alternatively, the visbreaker

unit.

Barrel: For statistical purposes, the petroleum industry uses a barrel (bbl)

containing 42 US standard gallons as volumetric unit of measure for crude oil

and petroleum products. The barrel is equivalent to 0.159 cubic meters.

Blending Stock(s): Materials suitable for blending into a refinery product.

Bottoms (Visbreaker Bottoms, Residue or Heavy Residue, Visbreakate,

Heavy Residual Oil, Heavy Oils): In distilling operations, that portion of

charge remaining in the still or flask at the end of the run. Also known as

residue, residuum, residua, or sediment.

Cracking: The process by which an organic compound is split into two or

more compounds of lower molecular weight. The cracking process may be

carried out with heat and pressure (Thermal Cracking) or in the presence of a

catalyst (Catalytic Cracking).

Chargestocks (charge-stocks or feedstocks, Feedstock): Any stream which

can be used as feed to a process unit.
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Cutterstocks (cutter-stocks, cutter): Any low viscosity material, which can

reduce the viscosity, density or other property. of Marine Fuel Oil.

Deasphalter bottom: A stream drawn from the bottom of the Solvent

extraction unit. This is referred to as TAR or PD-TAR.

Feedstock, Feedstocks, Charge or Chargestock: Primary feed for a process

unit.

Gain (volume gain): increases in volume during cracking.

Gas oil or Light Gas oil (LGO): Any stream which can be used to produce

Diesel fuel.

Marine Fuel Oil (Bunker Fuel Oil, BFO)

streams used by seafaring vessels as fuel.

A blend of various refinery

Medium Gas Oil (MGO) and Heavy Gas Oil (HGO): These gas oils are an

intermediate stream and usually haye to be re-processed or can be routed to the

fuel oil system.

Naphthenes: Cyclo-paraffin hydrocarbons in which all of the available bonds

of the carbon atoms are saturated with hydrogen are called naphthenes.

Normal Pentane Insoluble (n-Pentane Insolubles): A test to measure

Asphaltenes content of petroleum residue. It is expressed in weight percent of

the materials not being dissolved in normal pentane.

Olefins: A class of unsaturated, i.e. hydrogen deficient, paraffinic hydrocarbons

having one or more double bonds per molecule.
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Paraffins: The paraffin series of hydrocarbons is characterised by the rule that

the carbon atoms are connected by a single bond and the other bonds are

saturated with hydrogen atoms.

Severity: Process plants mode of operation(s). This is often expressed in terms

of pressure, temperature, or product yields.

Vacuum Residue (VR): Crude tower bottom (bottoms) is the primary feed to

the Vacuum distillation unit. The Vacuum tower bottom is often referred to as

the VDU-bottom or short residue. It can be routed to the visbreaker unit, solvent

extraction unit, and asphalt blending unit.

Visbreaker Residue : Visbreaker bottom (bottoms) or Visbreakate is the

heavy and viscous material obtained from the visbreaking process. This product

needs to be blended into Bunker Fuel Oil or burnt in a refinery as a fuel.

2.1 Product Blending

Almost all of the petroleum products are blends of the various streams mixed to

meet a rigid specification. Blending allows the refiner to allocate the available

blending stocks produced from the various refining process in such a way as to

meet product demands and specification at the least cost. In other words, to

optimise the use of the available raw materials (Grosdidier, 1997). The

availability and quality of the blending stocks are directly related to the quality

of the process unit's feedstock and the plant's mode of operations. Selection of

blend components and their proportions in the product blend is one of the most

complex problems facing the refiner (White, 1995).

The physical process of blending is relatively simple and may be carried out

in a number of ways, for example, by mixing the blend components in an

agitated storage tank on a batch-based operation. To ensure that the blended
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products meet the desired specifications, stream analysers may be installed to

provide feedback to the computerised control systems.

Since the blending operations offer such an enormous number of options,

most refiners use linear programming (LP) techniques to aid them in their

blending decisions (Bradley, 1976 and Winston, 1991).

Most refinery products are a blend of two or more streams, each having

different physical and chemical properties. A property is additive when the

blend quality can be expressed as the average quality of the blend components.

That is, it will blend linearly. In other words, one of the following equations

must be satisfied:

Ph I WiPi

Ph I V i Pi

Ph I X jP j

where

Ph property of total blend.

p. = property of component i.I

W; = weight fraction of component i.

Vi = volume fraction of component i.

Xi = mole fraction of component i.

(2.1)

(2.2)

(2.3)

Some properties are additive on either a volume, weight, or molal basis, for

example specific gravity and sulphur content; whereas others such as viscosity,

flash point and pour point do not blend linearly on any basis. To handle those

properties which do not blend linearly, one must convert these properties into

functions which behave in a linear fashion. These functions, which are referred
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to as blending numbers, blending indices, or blending factors, must satisfy one

of the following equations:

I b = I WiI i

I b = I ViIi

where

I b = blending index for total blend.

I. = blending index for component i.
l

(2.4)

(2.5)

(2.6)

The blending constraints are written using the blending index value instead

of the true property value of components. The product blending index in any

stage of the optimisation process has to be transformed back to the actual

product quality to meet the specification required (Baker et aI, 1996). Because

of the simplicity and universality of LP techniques, there are advantages in

transforming non-linearities into approximate linear equivalents, rather than in

using non-linear methods which have to be tailored to the specific problem

(Frank, 1995).

The qualities blended in the refinery LP model must be based on the same

units, that is weight, volume, or molal. In the USA, most refinery LP models

and blending calculations are based on volume units since these are the common

units for the domestic petroleum business. However, in Europe and elsewhere,

weight units are most often used. In South Africa, for example; blending of

Marine Fuel Oil (MFO) is volumetric, but the final product is sold in weight

units of metric tonnes.
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2.2 Visbreaking Process

The understanding of the visbreaking process requires firstly, a clear definition

of the process objective and the process variables, and secondly, a detailed

discussion of

• Process Description & Kinetics

• Process Performance

• Process Configuration

• Fuel Oil Blending

The following section attempts to define the process objective and the process

variables. This is followed by a detailed discussion on other aspects of the

visbreaking operations.

Process Objective is:

To reduce the viscosity and pour point ofresidua and use less cutter-stock;

To produce stable Marine Fuel Oil (MFO), which meets the required

specification;

To produce gasoline;

To produce light gas oil (diesel) and heavy gas oil (feed for catalytic cracker).

Process Variables are:

Temperature

Pressure

Time of reaction (residence time)

Characteristics of the charge stock (quality of feedstocks).

Process Description & Kinetics

Visbreaking is a relatively mild noncatalytic thermal cracking operation. It is

mainly used to reduce the viscosities and pour points of the refinery heavy

residua such as crude tower bottoms, vacuum tower bottoms, and deasphalter
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bottoms to meet the Marine Fuel Oil (MFO) specification. It is also used to

reduce the amount of light materials (cutterstock) required to dilute these

residua to meet the MFO's specification. Visbreaking can reduce a refinery's

production of fuel oil by 20-35% and cutter stock requirements by 20-30%.

Visbreaking is also used to increase the gasoline and gas oil yields and to

produce feedstocks for the Fluid Catalytic Cracker unit.

The conversion of the refinery heavy residue is accomplished by heating the

residue material to high temperatures in a furnace. The material is passed

through a soaking zone, located either in the heater or in an external drum,

under proper temperature and pressure constraints so as to produce the desired

products. The heater effluent is then quenched with a quenching medium to stop

the reaction. With refineries today processing heavier crodes and having greater

demand for distillate products, visbreaking offers a low-cost conversion

capability to produce incremental gasoline and distillate products while

simultaneously reducing fuel oil viscosity.

Long paraffinic side chains attached to aromatic rings are the primary cause

of high pour points and viscosities for paraffinic base residua. Visbreaking is

carried out at conditions to optimise the breaking off of these long side-chains

and their subsequent cracking to shorter molecules with lower viscosities and

pour points. The amount of cracking is limited, however, because if the

operation is too severe the resulting product becomes unstable. The oil then

forms polymerisation products during storage causing filter plugging and sludge

formation.

The extent of residue conversion is limited by a number of feedstock

characteristics, such as asphaltenes, sulphur, sodium, and Conradson carbon

content. A feedstock with high asphaltenes will result in an overall lower

conversion than normal asphaltene feedstocks, while maintaining production of

a stable fuel oil from visbreaker bottoms. Also the presence of sodium, as well

as higher levels of feed Conradson Carbon, can increase the rate of coking in the

heater tubes. Minimising the sodium content to almost negligible amount and
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minimising the conradson carbon weight percent will result in a longer cycle run

length.

In summary, the principal reactions that occur during the visbreaking

operations are:

1- Cracking of the side-chains attached to cycloparaffin and

aromatic rings at or close to the ring, so the chains are either

removed or shortened to methyl (CH3+) or ethyl groups (C2Hs+).

2- Cracking of resins to light hydrocarbons (primary olefins) and

compounds which convert to asphaltenes.

3- At temperatures above 900°F(483°C), some cracking of

naphthenic rings occurs. There is little cracking of naphthenic rings

below 900° F.

4- Chain radical reactions (dominant mechanism In visbreaking

process).

Although certain processes, such as polymerisation, are exothermic, the

visbreaking reaction essentially remains endothermic, meaning that high

temperature is required to achieve the target conversion in order to maximise the

yield of white oil.

From the aforementioned discussion, we conclude that in the absence of a

catalyst, the process of thermal decomposition of mixed-hydrocarbons, such as

the crude residue, is difficult to understand and almost impossible to control. On

account of the visbreaking reaction's complex nature, the extent and number of

process variables is unknown. However, the fundamental variables in all types

of cracking operations (namely; temperature, pressure, time, and feedstocks

quality) influence the visbreaking operations.
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Process Performance

The visbreaking process performance has historically been a controversial issue.

The yardstick used to measure the unit's performance is "Conversion"; the ratio

of the quantity of feed converted to other products in the process. Traditionally,

conversion is defined as the yield of gas plus gasoline. Some researchers

however, use the combination of the gas, gasoline, and distillate yields. Others

have related the conversion to the severity of the visbreaking process.

The severity of the visbreaking operation can be expressed in several ways:

the yield of materials boiling below 330°F(165°C) , the reduction in product

viscosity, and the amount of standard cutter stock needed to blend the visbreaker

bottom products to Marine Fuel Oil's specification compared to the amount

needed for the feedstocks (Cooper et aI, 1962).

Although the term used throughout this project IS "conversion"; its

definition greatly varies from the traditional definition(s) already explained

above. In line with the modern visbreaking process configuration and

economics, this project re-defines the term visbreaking conversion as:

Volume percentage of the visbreaker's white oils, obtained from the

visbreaking of the heavy residue(s). These products are; gasoline or

naphtha, kerosene, and the visbreaker's diesel, which are usually

collected from the atmospheric tower of the visbreaker unit.



Mathematically this can be shown as follows:

Conversion = (i Xi * 100 ) / VI
j=l

where

(2.7)
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Xi = Volume of white products i. Produced by the visbreaker and n is the number

ofproducts.

VI = Total volume of feed to the unit.

This definition of the visbreaking conversion IS also consistent with the

fundamentals of the visbreaking process variables and fuel oil blending operations.

Clearly, the objective is to find an optimal solution to the complex problem of an

integrated system that combines the visbreaking and fuel oil blending operations.

The importance of the conversion, and its effect on the overall system's optimality is

shown in the following diagram.

I I

I Good Fuel Oil Stability Poor I

•Low Severitv High
I

I I I I

Figure 2-2 Feasibility of the visbreaking operations. The higher severity result in

a higher profit but the fuel oil becomes unstable.
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It can be seen from Figure 2.2 that higher visbreaking severity results in

higher conversion, that in turn increases the white oil yield, which improves the

visbreaking performance. The drawback is the stability of the fuel oil, which is

adversely affected by an increase in the process conversion. In order to

understand this conflicting statement, a few words should be said about the

structure of a typical petroleum residuum and its transformations during the

process of visbreaking. A typical petroleum residuum, as obtained after a simple

distillation operation, consists of three classes of compounds, loosely defined as;

hydrocarbons, resins and asphaltenes (Siewert et aI, 1985).

As discussed earlier, the asphaltenes are high molecular weight

agglomerates held together by physical forces and they can be precipitated from

a residue by paraffinic solvents. The resins are thought of as very high

molecular compounds, which can be separated from a deasphalted residue by

adsorption. The typical petroleum residuum is a colloidal solution in which the

asphaltenes are held in a colloidal suspension in the hydrocarbon phase, the

resins and aromatic hydrocarbons acting as peptising agents (Sane et aI, 1992).

According to Dominici et al (1995,1) feedstock with low n-pentane

insolubles (low asphaltenes) show good susceptibility to visbreaking while

those having high values of n-pentane insoluble respond poorly. The following

figure shows the capability of greater conversion at lower n-pentane insoluble

for a 900 of (482°C) vacuum residue.
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Visbreaker Conversion vs n ·Pentane Insol.
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Figure 2-3 Visbreaking susceptibility (900 of + charge converted)

From "Handbook ofPetroleum Refining Processes by Meyers".

Undoubtedly, the n-Pentane insoluble of the feedstocks is one of the many

parameters affecting the visbreaker's conversion. The visbreaker's conversion is

also dependent on the process reaction. During the thermal process of

visbreaking, two processes take place. The hydrocarbons are partly cracked,

producing lighter products which can be distilled out and, at the same time,

carboids and coke are formed through polymerisation, condensation,

dehydrogenation and de-alkylation reactions.

These carboids and coke, as well as the asphaltenes, continue to be held in a

stable colloidal solution or suspension up to a certain limit of conversion. Past

this limit they tend to separate and to form deposits, either in storage tanks, or in

the equipment used for heating and burning the residual fuel oils. Additionally,

at the limit, operational difficulties can be experienced in the visbreaking unit

itself. This means that the visbreaker unit has to be temporarily shut down for a

coke clean up, a process often called a "de-coke". This phenomenon generally

sets the upper limit of conversion in a typical visbreaking process.
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Several analytical methods are used to determine the stability of the residual

fuel oil. These are:

• Sedimentation

• Navy Boiler and Turbine Tests.

• Hot filtration test

• Shell filtration test

• Institute of Petroleum testes)

Although all of them represent certain aspects of the stability of the visbreaker' s

residue, they are not equivalent. Some of them are only qualitative measures of

this stability.

To forecast the fuel oil stability, intensive experimental studies have been

performed on the characteristics of the visbroken residua. Janis and Carlo

(1992) have used the Nuclear Magnetic Resonance (NMR) technology to study

the nature and characteristics of the residuum and asphaltenes of the crude

atmospheric bottom. Using data from a visbreaker pilot plant, they have further

developed an empirical equation to estimate the maximum volume of a

paraffinic solvent (cetane) that can cause precipitation of asphaltenes. An

arbitrary term, "stability index" has been developed using the following

equation:

SX= 1 + Xmax (2.8)

where

X max is the maximum volume of cetane in millilitres that can be added to a

gram ofproduct without causing sedimentation.

In summary, so far, no satisfactory mathematical relationships exist that can

produce a meaningful and reliable forecast of the quality of the visbreaker's

products.
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Process configuration

There are many types of visbreaker operations. The soaker cracker developed by

Shell Petroleum (Geelen and Akabr, 1981) is known to be one of the popular

types used by many refiners. Foster Wheeler, UOP of USA and IFP of France

have engineered a number of these types of visbreakers as well.

In this configuration, a soaker drum is added to increase the residence time

and thus achieve a high volume conversion at longer de-coke cycles. In general,

the soaker process achieves some conversion within the heater, but the majority

of the conversion occurs in a reaction vessel or soaker which holds the two­

phase effluent at an elevated temperature for a predetermined length of time. By

providing the residence time required to achieve the desired reaction, the soaker

drum design allows the heater to operate at a lower outlet temperature. This

outlet temperature of the lower heater results in a lower fuel cost. Although

there is an apparent fuel saving advantage experienced by the soaker-drum type

design, there are also some disadvantages. The main disadvantage is the de­

coking operation of the heater and soaker drum. Although de-coking

requirements of the soaker design are not as frequent as those of the

conventional (coil-type) design, a visbreaker with the soaker configuration

requires more equipment for coke removal and handling.
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A simplified flow scheme ofa soaker visbreaker is shown in Figure 2.4

Heater

Atmospheric tower
l--- Gas

1--_ Naphtha

t--- Kero

t---LGO

Vacuum Tower

MGO

HGO

Residue

Figure 2-4 Typical Soaker Visbreaker with the Atmospheric and Vacuum

Towers.

The visbreaking operation occurs in the heater along a curve of increasing

temperature and decreasing pressure. Obviously, the rate of reaction increases with

the process temperature. In practice a so-called "soaking factor" is often used to

assess the total operating severity both for design purposes and for following the

operation of industrial plants. The soaking factor is calculated as follows:

v
1 JPt KtF =- --dV
D Po Ko

o

where:

(2.9)

F = soaking factor is defined as the equivalent coil volume in cubic feet per

daily barrel of charge to unit.

V =coil volume in cu ft per bbl of daily throughput

D = feedstocks flow rate in bbl/day
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Pt = pressure at a given point in the coil in PSIG.

Kt = reaction rate constant at a given temperature in Fahrenheit.

Po, Ko = standard reference values for Pt , Kt (relative cracking

reaction velocity at temperature Fahrenheit)

Such an equation permits the calculation of the conversion to be expected

in a given volume of heater coil, for a given feedstock and at given heater outlet

conditions. The use of the soaking factor must be combined with the correct

heat transfer characteristics of the coil, since a correct soaking factor does not in

itself guarantee either long cycles or a stable fuel oil (Gearhart et al , 1992).

This is mainly a function of feed quality and process kinetics. In essence, the

soaking factor is not strictly comparable with conversions for naphthas and gas

oil since each stock has a different equivalent datum temperature for initial

conversion due to thermodynamic consideration.

The unit under study is a soaker visbreaker with a vacuum flasher. In this

configuration, the visbreaker atmospheric tower bottom is sent to a vacuum

tower flash zone. The liquid portion of the feed falls to the bottom section of the

tower, where it is steam-stripped. The vapour portion rises through the tower

wash section and then is partially condensed into distillate products. Usually,

there are 2 to 3 side draws. On the lower drawoff, heavy visbroken vacuum gas

oil product and pumparound along with wash oil are withdrawn. On the upper

drawoff, light and medium gas oils and reflux are withdrawn. Linear

programming is used to determine the visbroken gas oil disposition (e.g.

catalytic cracker, thermal cracker, refinery residual fuel oil pool, ... etc.).

The overhead vapours from the vacuum tower flow to a multi-stage vacuum

ejector system. Condensed vapour and steam are collected in a condensate

accumulator.

Although the usual feed (chargestock) is a vacuum residuum, other stocks

that are occasionally visbroken are de-asphalter bottoms (TAR) and crude

atmospheric residua. Visbreaking produces a small quantity of gas and a fair
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amount of low octane gasoline often referred to as wild naphtha. The kerosene stream

is rich in olefins and in most cases it is used as the cutterstock (a product used to dilute

the bottom residue to the fuel oil viscosity limit). Depending on the visbreaker's

operation, and fuel oil blending, the light gas oil is either used as cutterstock, or can be

blended into diesel. The medium and heavy gas oils (MOO and HOO) are often routed

to the Fluid Catalytic Cracker Dnit (FCCD) for further processing.

A typical visbreaker's products and their possible disposition is presented in the Figure

2-5 below.

Visbreaker's Product(s) Dispositionr Na htha Kero LGO Rl-e_S_id_u_e__.,~:_G..--O_~~~_O

Fuel Gas Gasoline

FCCU

Fuel Oil Blending System

Alternative Disposition

Figure 2-5 Typical visbreaker's product disposition.

It is evident from the Figure 2.5 that, the visbreaker's products have many possible

dispositions (destinations), either as a feed to other units (FCCD) or, as a component in

product blending (various pools).

In summary, the main operating variables in visbreaking are temperature, pressure,

and residence time. The severity of the plant changes with a change in
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anyone of these three variables. To achieve a certain severity, these variables

can be interchanged within limits. For a given severity, as measured by

conversion, product distribution and quality are virtually unchanged (Dominici

et ai, 1995, 2).

An increase in yields of distillate and gaseous hydrocarbons can be

achieved by increasing visbreaking severity. For example, by raising the heater

outlet temperature. Increasing visbreaking severity will also result in a reduction

of cutter stock required to meet fuel oil specifications. However, the higher

severity will cause the heavy distillate oils to break down and crack to lighter

components. These heavy distillate oils act to solubilize (peptise) the asphaltic

constituents. The asphaltic constituents will then tend to separate out of oil and

fonn coke deposits in the furnace. Visbreaker operation at this level can cause

premature unit shutdowns. There is also a tendency to produce unstable fuel oils

at these more severe conditions.

Fuel Oil blending

Increased operating flexibility and profits result when refinery operations

produce basic intennediate streams that can be blended to produce a variety of

on-specification finished products. The objective of fuel oil blending is to

allocate the available blending components in such a way as to meet the end

product's specification at the least cost (Wenzel, 1992).

The refiner blends fuel oils for two reasons; first, to meet certain

specifications and second, to make the oil easier to handle. When blending the

heavy residual oils, the viscous nature of these residuals, as well as the wide

spread in gravity between the heavy oil and distillate, make mixing more

difficult. Complete mixing of these blends is not always satisfactorily

accomplished.

If a refinery is situated near a major waterway or port, then the fuel oil is

usually blended to meet the required bunker, or marine fuel oil specification.



49

Sophisticated linear programnung models are often used to generate the

blending recipe. However, blending components to meet all critical

specifications most economically is a trial-and-error procedure.

In most refineries, fuel oil blending is a batch process (Schmidt, 1985),

where the visbreaker's bottom residue is blended into marine fuel oil (MFO).

The finished fuel oil should also comply with international and local

limitations and requirements that may be stipulated by the customers, or

environmentally related laws and regulations.
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Typical components available to the residual fuel blending system are shown

below:

Crude Unit Visbreaker Unit

Figure 2-6 Typical components used in Fuel Oil Blending System.

As stated earlier, the refinery LP model is employed to generate the blend's

recipe as well as to determine the alternative routing of the other components.

The economics of the refinery is highly sensitive to the fuel oil recipe, blending

procedure, and the finished product's pricing structure.

In concluding this section, the review of the visbreaking operation reveals

that, because of the many contributing factors, the process of upgrading the

refinery residua is in fact complex in nature. As yet, no simple, generic solution
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can be identified which can fully describe the mechanism of the thermal

decomposition of the petroleum residues. Consequently, the practical plant

experience in many respects can provide a better understanding of the

visbreaking process.
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CHAPTER 3

MODELLING & METHODOLOGY

The purpose of this chapter is, firstly, to fonnulate the problem associated with

predicting the yields of the visbreaking process and, secondly, to propose a

computerised solution strategy using the principles of artificial neural networks

and other mathematical modelling techniques.

3.1 Model formulation

In the beginning of this thesis, we stated that a mathematical model based on the

principles of the artificial neural network can be utilised to predict the yields of

the visbreaking process. From a practical standpoint, this is because the process

of thenno-decomposition of hydrocarbon residue cannot satisfactorily be

described by the theory of the thenno-kinetics. What is required is an

amalgamation of physical modelling with that of the neural network systems. In

their recent survey Thompson & Martin (1996) have demonstrated that the

methods of large-scale neural network modelling are complementary with those

of physical modelling widely used in the refining and petrochemical process

industries.

Since the introduction of the visbreaking process, engineers and scientists

have been eager to find a way of estimating the product yields and properties of

the said unit. As stated previously, the complexity of the problem is
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compounded by the uncontrollable and often unknown reactions resulting in

asphaltenes formation, change of yield's pattern, or properties of the bottom

residue. In this respect, the important criteria in modelling the visbreaker unit

can be classified as follows:

Input

• Feed flow rate (velocity and resident time)

• Feed quality

• Unit's operating condition (temperature and pressure)

Output

• Product yields

• Quality of the visbreaker's products

As noted before, we will be using an artificial neural network system to

model the visbreaker unit. The neural network is an information processing

system that leams from the historical events and predicts the future trend. In this

context any neurally based system requires an input and an output layer.

Accordingly, in the remaining of this section, we present and describe the

methodology employed to prepare the system's input and output data sets.

System's Input: Feedstock Quality, and Unit Operating Conditions.

The system's input consists of two major parts; feedstock quality, and the unit's

operating condition, shown as follows:

System Input I = [~]

where;

fq = feedstock quality

Uc = unit's operating conditions

(3.1)
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Feedstock Quality

The quality of the feed charged to the visbreaker unit is represented by the

/1
vector fq =

This relationship can be shown as

n

~= LVi
;=1

(3.2)

where Vi is the volume fraction of the stream i. (i=1 ... ,n) and q iJ. (j=1... ,n)

represent various quality components of stream i. Obviously, this equation is

only valid if the blending relationships are linear. As discussed in section 2.2 of

chapter 2, the blending indices are used to form the non-linear relationships.

In this research work, the feed to the visbreaker unit consists of the

following refinery streams :

VR = Vacuum Residue

AR = Atmospheric Residue

TAR = De-asphalter Residue

HDON = Hydrogen Donor, often high aromatic diesel stock

The important properties of the feedstock are (as defined in Appendix-I):

VBI = Viscosity Blending Index at 122 OF (50°C)

CCR= Conradson Carbon Residue in weight percent

API = API degrees

KFC= K-factor (UOP K-factor or Watson K-factor, expressed as

an index or a factor defined in Appendix -1).

SUL = Sulphur content in weight percent
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Using the above terms, we define the relationships between the input

vectors and the feedstocks quality. This is shown below:

VBI VBI
CCR CCR

Iq = (VVR * API + VAR * API
KFC KFC
SUL SUL

VR AR

VBI VBI
CCR CCR

+ VTAR * API + VHOON *
API

) / VTotal (3.3)KFC KFC
SUL SUL

TAR HDON

It can be clearly seen that quality of the feed to the unit changes with a

change in the quality or volume fraction of the components contained in it.

Next, we have to define the total volume of the feed (per day of operation)

to the unit as the sum of the individual components of the feed. This is shown

below:

VTotal == VVR + VAR + VTAR + VHOON

Expressed in cubic meter per day of visbreaker operation.

Unit's Operating Condition

(3.4)

The unit's operating condition Uc is dependent on the temperature, pressure,

and flow rate. It should be noted that the overall process of visbreaking and fuel

oil blending are in fact extremely complex and dynamic. In this case, since the

possible effect of the equipment's ageing, cannot accurately be measured, or

ascertained, it will not count as an independent variable.

The plant monitoring system is programmed to update the material flow

every 60 seconds, then calculate and report the consolidated data for every 24
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hours of visbreaking operations. The volume of feed to the visbreaker unit is a

volatile variable that needs to be defined. In this respect, refinery planners

often introduce some empirical terms that can assist them in their estimation.

For the sake of clarity, let us introduce a term called the Transit Period, TRP ,

which represents the time in seconds for one cubic meter (m
3

) of feed to travel

through the visbreaker unit comprising of the soaker drum, the atmospheric

tower, and the vacuum tower. This is calculated as follows:

(24*60*60)

TRP = VTotal
-3)(s.m (3.5)

Where VTotal is the total volume of feed per day.

It should be noted that this is a convenient way of representing the volume of

feed charged to the visbreaker unit, therefore, this term should not be mistaken

with the cracking residence time, a term not applicable to this study.

As discussed earlier, the theory of thermo-kinetics cannot satisfactorily

provide a scientific correlation between all the pre-defined elements of the input

data and the process conversion. It does however provide some rules that can be

used as a yardstick to establish the validity of the input data. According to the

laws ofthermo-kinetics, an increase in the system's temperature should result in

a higher cracking rate for the heavy hydrocarbon residue. Inversely, the lowering

of the system pressure at a constant temperature results in an increase in the

process conversion. As a result, along with the TRP, it is necessary to include

both pressure and temperature in the proposed model.

Since the severity of the visbreaking process is time and temperature

dependent, the term TRP can be used to define the effect of the process severity

on one cubic meter of the mixed feed at temperature interval ~t. In this respect,

along with the variations in the feedstock quality, the relationships between the

TRP and temperature are extremely sensitive to the system's output. In other

words, the temperature at the Soaker drum should be adjusted to correspond to

the variation in the TRP. However, no pre-defined rules exist that can

satisfactorily be used to adjust the temperature with the variation in the TRP.
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Another advantage of the TRP is that unlike the total feed VTotal its value

is in line with the scale of the values applied to the other elements of the feed's

quality vector, as given in the equation (3.3).

The following schematic provides a complete picture of the paradigm's

input variables:

Figure 3-1 Illustration of an Individual Data set. (A total of 141 data sets,

each having 12 data elements. (the input nodes are defined under Feedstock

Quality in chapter 3. pp.54 . Further information on neural network model

formulation is presented in Appendix-3).
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System's Output: Product Yields and Quality.

At this stage, we define the system's output as a single response to a stimulus. In

other words, any change in the value of any element of the input data-set

generates a response. In line with the modem visbreaking process configuration

and economics, we define the system's response as the process conversion.

Furthermore, as explained earlier, the term conversion is defined as :

The volume percentage of visbreaker products obtained from the

thermal cracking of heavy residua. These products are; gasoline or

naphtha, kerosene, and visbreaker diesel, which are usually

collected from the atmospheric fractionation tower of the visbreaker

unit.

In modelling the visbreaking operations, we have assumed that the neural

network has to learn from the real world examples. The real world inputs are

observations (measurements of data), obtained by means of sensors designed to

probe the environment in which the neural network is supposed to operate.

Ordinarily, these observations are inherently noisy, being subject to errors due to

sensor noise and system imperfections. In any event, the observations so

obtained provide the pool of information from which the examples used to train

the neural networks are drawn. Needless to say, the predictability of the

paradigms trained with real world observations is often poor. This of course is

not a modelling fault. It is for these reasons that we base our proposed model on

a single response to the input stimulus; namely the visbreaker's volume

conversion. Accordingly, at the initial stage of model making, we introduce a

prototype paradigm of the visbreaking operation. The rationale behind prototype

fabrication, rather than a full-scale paradigm, will be discussed in the following

section.

Accordingly, the prototype neuronal model of the visbreaker unit needs to

learn from the historical data, concerning feed flow rate, feed quality, plant's

operating condition(s), and conversion achieved under these circumstances. In
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return, the model is expected to produce a single response to the given input;

and predict the percent volume conversion across the process unit. To determine

the quality of the response, the network results should be closely examined. If

the quality of the response is satisfactory, then a multi-response model can be

developed.

In summary, the proposed neural network model is a multi-layer system

with the following characteristics:

Input nodes: 12 input nodes related to the feed quality, feed rate, and unit's

operating condition.

Output nodes: Initially a single node (unit's volume percent conversion),

expanding to a multi-response neural system that has to be linked to the heavy

fuel oil blending module to optimise the blending operations.
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3.2 Proposed Approach - Solution Technique

This section begins with formulating a prototype paradigm to predict the

visbreaker's percent volume conversion. The rationale behind the prototype

fabrication, rather than full scale paradigm, is that we have no prior knowledge

regarding the complexity of the model nor the noisiness of the input data.

Hence, instead of developing a large network and then prune out the non­

contributing connections, we opted to build a prototype paradigm that, if

satisfactory, can later be extended to a full scale multi-response neural network

system. Accordingly, the process of the network formation is divided into the

following phases:

Prototype Fabrication Phase: Formation of the Many-To-One network,

where the objective is to produce a multi-layer neural system that is capable

of predicting the volume percent conversion of the visbreaker unit.

The development of the idea of the prototype paradigm, was influenced by

the work of Stephen Grossberg printed in the book "Neural Networks and

Natural Intelligence" (1989).

Full Scale Paradigm Fabrication Phase: Evolution of the Many-To-One

topology to the Many-To-Many network by extending the number of the

output nodes to accommodate the full spectrum of the visbreaker' s products

and the quality of the visbreaker's residue.

Fuel Oil Blending Phase: Where the Many-To-Many paradigm interacts

with the fuel oil blending and optimisation operations.

Prototype Paradigm Fabrication Phase

The input to this network consists of several data sets, each having 12 data

elements. The prototype paradigm is called "Many-to-One", since there is a

single system output, namely; volume percent conversion of the visbreaker unit.
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The next step is to select an architecture and the learning algorithm. This

research work uses the Cascade·method of network construction together with

the adaptive gradient back propagation learning rule. Back propagation is one of

the earlier learning algorithm used in neural systems. Back propagation

iteratively reduces the error of fit to learning samples by fine tuning the weights

in the network. Each iteration consists of two stages: forward propagation and

reverse propagation. Forward propagation computes the output of the network

using the input vector. The total error is derived in forward propagation by

comparing desired and actual outputs. Reverse propagation computes the error

derivative with respect to all the weights in the network. The error derivative

assigned to each weight estimates the effect of each weight on the total error.

Due to its simplicity, Cascade architecture is selected as the means to

develop the many-to-one paradigm. In this respect, the constructive approach in

paradigm building (developed by Scott Fahlman (1990) of Carnegie Mellon

University) is adopted. In its original form, this technique is referred to as the

Cascade Correlation. The "Cascade" part of this title refers to the architecture

and its mode of construction. This entails adding hidden units (network nodes

lying between input and output) one at a time, and always connecting all the

previous units to the current unit. The "Correlation" part of the title refers to the

way hidden units are trained by trying to maximise the correlation between the

output of the hidden unit and the desired output of the network across the

training data.

In general, the Cascade Correlation is a supervised learning architecture that

builds a near-minimal, multi-layer network topology in the course of training.

This single layer of connections is trained to minimise the error. When no

further improvement is seen in the level of error, the network's performance is

evaluated. If the error is small enough, the process is terminated. Otherwise a

new hidden unit is added to the network in an attempt to reduce the residual

error.
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The major benefit of using the Cascade Correlation algorithm is that there

is no need for the user to guess in advance the network's size, and topology. The

schematic of the Cascade architecture is shown below:

Initial State
No hidden Units

IInputs

Sigmoid Activation Function f

)------------------------+1.
}------------------~.

}---------------------+t.

Addin Units
Hidden Unit 2 Sigmoid Activation Funct/

~~~~~~~Activatiy- • .••.•:I--------tH

IInputs Sigmoid Activation, : .
Function ../ 1t--------t-----1 Y

Figure 3-3. The Cascade architecture, initial state and after adding two

hidden units. The vertical lines sum all incoming activation. Boxed

connections are frozen, • connections are trained repeatedly.

Sigmoid activation function is defined in Appendix -3.

As stated earlier, the cascade correlation network consists of input units,

hidden units, and output units. Input units are connected directly to output units



with adjustable weighted connections. Connections from inputs to a hidden unit

are trained when the hidden unit is added to the network and are then frozen.

Connections from the hidden units to the output units are adjustable. It can be

seen from the above figure the second hidden unit receives an input signal both

from the input units and from the previous hidden unit. All weights on these

connections are adjusted and then frozen. The connections to the output units

are then trained. The process of adding a new unit, training its weight from the

input units and previously added hidden units, and then freezing the weights,

followed by training all connections to the output units, is continued until the

error reaches an acceptable level of the maximum number of epoch's (or hidden

units ) is reached. An epoch is defined as one pass through the entire training

set, followed by a weight update (Zupan, 1993). Here, the objective is to

construct and train a network that is capable of producing an output, namely,

"conversion".

The training of the output units, that is, volume percent visbreaker

conversion (defined as the sum of products that boil at a temperature less than

900 degrees F ), starts by minimising the sum-squared error function of E, as

given by:

1~ 2
E = 2 LJ (Yop - Top)

O,p
(3.6)

where Yop is the observed value of output 0 from training pattemp , and Top IS

the predicted. Although any optimisation algorithm can be used to minimise E

cascade correlation employs the gradient descent method using

and (3.7)

(3.8)
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where f ~ is the derivative of the sigmoid activation function of the output unit

for pattern p ,lip is the value of the input (or hidden unit) i and Woi is the

weight connecting input i to output O.

Candidate units are trained to maximise C, the correlation between the

candidate unit's output Y and the residual errors eo still observed at the outputs

of the active network. This correlation is computed over all the training patterns

p. The correlation between the candidate unit's, C is defined as

c= L L(Yp-y-)(eop-e-o)
o p

(3.9)

where y and e 0 are average of y and eo over all patterns p. The

maximisation of C proceeds by gradient ascent using

Jp = Lao (eop - e-o)f~ and
0

CC
L Jp lip-- -0Wi
p

(3.10)

(3.11)

where Cl) is the sign of the correlation between the candidate unit's value and

the residual error at output 0 . Each candidate unit in the pool starts from a

different set of initial weights and independently tries to maximise its own C

value.

Given the gradient values computed above, we could in principle minimise

E and maximise C by steepest gradient descent (or ascent). Instead, to get good

convergence in a reasonable number of cycles, we can use the quickprop

algorithm (Fahlman, 1990) to compute the updates. Abbreviating the slopes
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t3E CC
bfV and -ow by Sand t, respectively, the weight change Llw is computed

by

E S(t),

S(t)
Ll Wt = S(t-l)-S(t) Ll Wt -1

if Ll Wt -1 = 0

S(t)
,if LlWt -1 *0 and S(t-l)-S(t) < Jl

Jl Ll Wt -1, otherwise. (3.12)

Here, E is a parameter that controls the linear steps used to get the algorithm

started. The parameter Jl controls the maximum step-size compared to the

previous step. Weights are now updated using

W(t -1) = W(t) + LlW(t) (3.13)

This description of the cascade correlation and quickprop algorithm is

slightly over-simplified, but it is sufficient to demonstrate how the topology of

the many-to-one paradigm is formed. In this case, our multi-layer paradigm

consists of three layers; one input layer, one output layer, and an intermediate or

hidden layer. The number of the units per input and output layer is 12 and 1

respectively. The cascade correlation algorithm should determine the number of

nodes or units in the hidden layer. The process of node addition and learning

stops, when for every system patience (defined as 2 iterations) there is no

improvement to the objective function by the tolerance value of 0.002. In this

case the training is terminated and the network is preserved.

Since the optimal number of hidden units depends on the complexity of the

network, as well as the chosen representation of the input and output nodes, the

author feels it is not safe to rely exclusively on the given algorithm. It is better

to scan a range of possibilities. Accordingly, we impose some arbitrary error

tolerance to the learning process to see how the network behaves with the
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addition of a node (or nodes) to the hidden layer. Theoretically, the performance

of a network increases with an increase in the number of the hidden units. If

more hidden units are taken, the performance increases slightly to a limiting

value and often decreases again (Mukesh, 1997).

Another problem seen occasionally in practice is that the system will end up

In a local minima. Gradient descent, and almost all other optimisation

techniques can become stuck in the local minima of an objective or cost

function. The effect is that the network appears to stop learning: that is, the error

does not continue to decrease with the addition of a node or further system

training.

As stated previously, the visbreaker's conversion is often a yardstick used

to measure the performance of the visbreaking process. Additional information

is required in order to measure the overall profitability of the visbreaking and

fuel oil blending operations. This can be achieved by expanding the network's

output nodes to accommodate all the relevant data affecting the visbreaking

operations. This will lead us to expand the Many-To-One paradigm.

Full Scale Paradigm Fabrication Phase

A neural network system with an output node has already been defined, namely

the visbreaker's volume conversion. The objective is, however, to study the

visbreaking operation. This implies that the full spectrum of the visbreaker's

products must be available to the fuel oil blending pool. Accordingly, there is a

need to fabricate a neural system with the ability to:

• Predict the yield of the visbreaker product(s)

• Predict the quality of the bottom residue

To achieve this, the topology of the many-to-one network has to be

expanded by extending the number of the output nodes to accommodate the

visbreaker's product yields and quality. In this thesis, this is called the Many­

To-Many visbreaker paradigm, as the output layer of the network contains many

nodes.
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The question arises as to what these additional nodes are and how they

should be represented. The answer lies in the fuel oil blending pool, where the

system's objective is a function of the following parameters:

Volume of the product to be blended;

Quality of the product to be blended;

Cost of the product to be blended.

The additional nodes, therefore, should provide necessary information

needed by the fuel oil blending pool. In other words, the neural system should

predict the yield as well as the quality of the following:

• Visbreaker Naphtha (gasoline) = Gasol

• Visbreaker Kerosene = Kero

• Visbreaker Diesel = Diesel

• Visbroken Medium Density Gas oil = MGO

• Visbroken Heavy Gas oil = HGO

• Visbreaker bottom, or residue = Residue

Here, the objective is to produce an integrated predictionloptimisation

system. This is done by linking the prediction results of the full-scale visbreaker

paradigm to that of the marine fuel oil blending pool. Hence, along with the

visbreaker's product, the blending properties of the visbreaker's residue need to

be included in the output vector of the many-to-many paradigm.

The following nodes represent the quality of the visbreaker's residue:

RCCR = the Conradson Carbon Residue content, in weight percent of the

visbreaker' s residue

RSUL = the sulphur content, in weight percent of the visbreaker's residue
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RAPI = the API gravity of the visbreaker's residue

RVBI = the Viscosity Blending Index of the visbreaker's residue

For the sake of clarity, let us summarise the aforementioned assumptions.

In the process of converting the many-to-one to many-to-many paradigm, the 12

nodes forming the input vector are essentially unchanged. The ultimate goal is

to link the paradigm's response to the optimisation process of fuel oil blending.

To account for the economic evaluation of the visbreaking operation, the

presence of the visbreaker's products in the output vector is needed.

Accordingly, we may produce the volume conversion by simply summing up the

predicted yields of Gasoline, Kerosene, and Gas oils. When required, the

conversion can also be included in the model.

Fuel Oil Blending Phase

The physical process of blending IS relatively simple. The mathematical

program to optimise the fuel oil blending pool, on the other hand, is highly

complex. Since the main ingredient of marine fuel oil is the visbreaker' s

residue, the quality of this stream is extremely important. Essentially, the

properties of the visbreaker's residue are a function of the feed quality and the

unit's operating condition. The quality of the feed in turn is characterised by the

type ofpetroleum crude bought by the refinery.



69

This is shown in the following figure:

Figure 3-4 Yield & Quality of visbreaker product(s)

In contrast to the visbreaker's residue, many of the qualities of other

visbreaker's products 1) do not play a great role in the fuel oil blending system

and 2) do not violently change with changes in the feedstocks or operating

conditions. Consequently, for simplification purposes, we assume that the

variation in the feed quality and operating conditions only affects the quality of

the visbreaker's residue.

As stated earlier, beside the gas and gasoline, all other visbreaker's

products can be routed to the fuel oil blending pool. These products are listed

below:

• Visbreaker Kerosene

• Visbreaker Diesel

• Visbroken Medium Gas oil

• Visbroken Heavy Gas oil

• Visbreaker bottom, or residue

Here, the final product (Marine Fuel Oil, or Bunker Fuel Oil) is a blend of

various refinery streams. The equations to blend the necessary components are
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given below. These equations are used by the visbreaker adaptive paradigm (and

Global Refinery LP) to blend visbreaker bottoms into Bunker Fuel Oil.

Pb =I W;P; (3.14)

Pb =L ViP; (3.15)

where

P
b Blend Property.

p. = Property of component i.I

~. = Weight fraction of component i.I

Vi = Volume fraction of component i.

The blending optimisation system should be capable of estimating the optimum

values of V; in order to meet the stipulated specification imposed on the final

product. A linear programming technique is employed to generate the most

economical recipe. Any non-linear relationship is addressed by converting the

property into an appropriate blending index for linear calculation. The computed

result is transformed into its original unit of measure. Generally speaking, most

chemical processes are non-linear systems. Consequently, non-linear

mathematical models would describe their behaviour more accurately. Non­

linear models can be developed by utilising either first principles (such as

material and energy balances), or process input and output information. The

advantages of first principle models include the ability to incorporate the

scientist's view of the process into the model, the capacity to describe the

internal dynamics of the process, and the capability to explain the behaviour of

the process. Their disadvantages are the high cost of model development, the

bias that they may have because of the model developer's choices, and the

limitations due to a lack of information about specific model parameters. As

details are added to the model, it may become too complex and too large to run

the model on the computer within an acceptable amount of time. However, this

constraint has a moving upper limit, since new developments in computer
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hardware and software technologies permit faster execution times. Often, some

physical or chemical parameters are computed by using empirical relations, or

they are derived from experimental data. In either case, there is some

uncertainty about the actual parameter. The blending indices used in this

research work are based on practical experiments, and are thus empirical in

nature. However, these indices are widely used in the petroleum industry

(Maxwell, 1950).

In summary, the steps required to form the proposed integrated knowledge­

based model are presented below:

Table 3-1 Overview of the modelling tools and proposed solution

Model Modelling Tool Solution Technique

Prototype Paradigm Neural Networks ANNS-Genetic Algorithm

To produce Conversion

Full Scale Paradigm Neural Networks ANNS-Genetic Algorithm /

To produce Product yields Integer Programming

and quality

Fuel Oil Blending Mathematical Linear Programming / GRG2

To produce Recipe Programming Code

Integration of simulation and Visual Basic ANNS-Genetic Algorithm /

the optimisation phases Mixed Programming / GRG2

Code

The application of the above mentioned tools and techniques to construct a

paradigm that learns from the historical case, and predicts the visbreaking yield

will be discussed in the following chapter.
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CHAPTER 4

IMPLEMENTATION

So far, the motives for building a mathematical model of the visbreaking

operation have been presented. Essentially, such a model should be able to

predict the visbreaking yields, and to optimise the fuel oil blending operation.

The framework and methodology to be used in building the model were

presented in the chapter 3.

In keeping with the above objective, this chapter discuss the

implementation of the neuroengineering technique in forming the "adaptive

visbreaker paradigm". Here, neuroengineering is defined as a series of steps

required to fabricate an artificial intelligence system. In this context, the

neuroengineering method is employed to classify and link the physicochemical

parameters of the visbreaking process to form a neural network paradigm.

Having defined the chapters' objectives, the required stages in the model

building are given below:

Implementation

Section 4.1 - Collecting data

Section 4.2 - Data pre-processing

Section 4.3 - Network formation

Section 4.4 - Network reciprocation ,

Neuroengineering

steps required in

ANNs fabrication
& evolution

Section 4.5 - Fuel oil production

Section 4.6 - Integration & Interaction

Figure 4-1 Implementation Stages - Neuroengineering
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4.1 Collecting Data

The first step toward the building of a neural network is to identify and classify

the type and the format of data required by the neural systems. Ultimately, the

adaptive visbreaker,s paradigm should predict the quality and product-yields of

the visbreaking process. Undoubtedly, the accuracy of the final prediction

depends on the quality of the raw data used. To fulfil this objective, two types of

data are required:

Plant Process Data

This is the data related to the thermodynamics of the process, for example,

temperature, pressure, flow rate, time. The process control computers often

manage these.

Stream Property Data.

This is the data related to the physical and chemical properties, or quality of a

refinery stream or product. These are usually the results of laboratory tests.

Alternatively, on-line process analysers can provide the data.

At Engen Refinery, the plant process data is available from the

Honeywell™ TDC-3000 process control computer. The TDC controller

contains several computational slots each of which is capable of being

configured to perform a specific computation called an algorithm. The main

data sheet is designed to convert the in-coming signals into the characteristics to

be used by each algorithm in each of its operating nodes (process variables).

After proper configuration, the system is capable of measuring the properties of

a stream and the process kinetics (temperature, pressure) in real-time format.

The PITM Systems' Plants Information database is the medium to collect,

regulate, and store the plants' real-time data. The PI system is a set of software

modules for plant-wide monitoring and analysis. The Data Archive is the
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foundation of this system. It handles the collection, storage, and retrieval of

numerical and string data. The display system provides access to those data for

the system operator.

The PI system runs on Digital Equipment's VAX computers (Digital,

1991). The real-time data is updated every 60 seconds. The PI system can be

programmed to extract, record and amend the database whenever the variation

in the data set is greater than an expected range, in our case, when the variation

in range exceeds ± 5% of the statistical mean. Moreover, in line with the plant's

statistical input/output report, the PI system is capable of producing

consolidated data for every 24 hour of the operation.

Data on the properties of the streams on the other hand, are collected from

the Laboratory Computer Database, where the test results on the physical

samples of the visbreakers, feedstock, and products are stored.

The PI systems consolidated data, and the laboratory-based stream property

data, then enters the PC-based computers hosted by the VAX-based local area

network, or LANVAX. These data are often referred to as the coarse or raw data

that need to be further refined.

Our investigation to find a suitable data manipulation software package

with a programming interface resulted in selecting the Excel™ 5C package,

widely used in scientific and industrial applications.
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The schematic of the integrated plant and laboratory data acquisition system is

shown in the Figure 4.2.

Visbreaker Plant

, ,1.

[ TDC-3000 Process Control I Laboratory Test Results I
,1.

PI Plant Information System I
+

I
Process Database - Coarse Data I'

1 ~

AVP- database- Raw data

Figure 4-2 Process and Laboratory Data flow

The MS Excel5CTM data sheet is designed to extract the data required for

this project (AVP-database). The PI System™ is programmed to deal with the

data magnitude. This is to produce a daily consolidated report from the 356

process data tags that are automatically updated every 60 seconds. Additionally,

the daily test data from the laboratory consists of 29 test results on the

visbreaker's products, plus 6 test results on the final blend of the marine fuel oil.

In other words, the AVP database must be able to handle a total of 391 raw data

entries per day of the visbreaking operation.

In this research work, we have opted to use the plant data from a continuous

visbreaker cycle of 168 days operation. The total raw data in the AVP database

is therefore 168 x 391 = 65688 items.
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Input Data - Analysis

Here, the basic idea is to examine data range available to form the proposed

model. This will provide an insight into the model's limitations concerning the

data range employed. As discussed in the chapter 3, in modelling the

visbreaking operations, we have assumed that the neural network has to learn

from the real world examples. Accordingly, the model needs to learn from the

historical data, concerning feed flow rate, feed quality, plant's operating

condition, and conversion achieved under these circumstances. The available

data are categorised as the data sets that form the neural network nodes and

layer. It is worthwhile to mention that the proposed network can be formed

using fewer nodes. Obviously, this could improve the predictability and reduce

the processing time. Several extra nodes were employed. This was done for the

sake of completeness and to accommodate future research projects,. This is to

cover both the feedstock's quality and to account for the change in operating

condition. The following graphs show the range of various data obtained from

processing various refinery feedstocks. Where applicable, comments are

provided under the graph headings. Obviously, the prediction accuracy of the

model reduces, when data fall towards the boundaries or outside the range used

to train the AVP.
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Figure 4-3 Recorded Data Range - TRP represent the fluctuations in feed

volume to soaker drum
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Figure 4-4 Recorded Data Range on viscosity Blending Index of feed.

This value is influenced by the addition of light materials such as H­

Donors to the crude vacuum residue.
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Data Range - API
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Figure 4-5 Data Range - Using the API of the Feed.

Similar to the viscosity blending index, This value is influenced by the

addition of light materials such as H-Donors to the crude vacuum

residue
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Figure 4-6 Variation in Sulphur Content of the Feed. It is known that

operations severity decrease with an increase in the feed's sulphur content.
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Data Range - Pressure
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Figure 4-7 Variation in average Soaker Pressure. In practice, the effect of

soaker pressure on visbreaking yields find to be insignificant.
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Figure 4-8 Variation in the K-Factor of the Feed. Feeds with the high

Kfactor are preferred. Although waxy feed may adversely affect the fuel oil

stability.
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Data Range - Vacuum Residue
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Figure 4-9 Variation in the visbreaker Feed. Vacuum Residue Content

of the visbreaker feed.

The feed to the visbreaker process unit is vacuum residue drawn from the bottom of

vacuum distillation unit. There is however, other refinery stream that can be routed to

the visbreaker unit. Some materials such as catalytic gas oils from FCC units (often

classified as the H-Donors) are added to improve the visbreaking yields. Others, such

as the long residue (materials obtained from the bottom of the crude atmospheric

distillation unit) are also potential feed for visbreaking. The economics of routing

various streams to different destinations is estimated by the proposed decision support

system.
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Data Range - CCR
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Figure 4-10 Variation in the quality of the Feed - Conradson Carbon

Content adversely affects the visbreaking yields. This is an important

variable.

Data Range - Temperature

30
... 25c:::
'0

~ 20
m
"0 15'0
Q>

10.0
E
:::J
Z 5

0
400 410 420 430 440

Temp - Deg C

Figure 4-11 Variation in Operating Condition

Average Soaker Temperature expressed as the operations severity.

This is an important variable.
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4.2 Data Pre-Processing

The next step after data acquisition is data pre-processing, where the objective is

to convert the coarse or raw data into meaningful data set that eventually are

used to train the neural networks system. Since the AVP is trained under

supervision, examples (historical plant data) have to be available. As stated in

the previous section, data for 168 days of visbreaking operation have already

been recorded by the AVPs' main data-sheet. Another important decision that

must be made is the classification and subdivision of the data, which is

necessary to form the relevant data sets. This is required for network training

and testing. Data pre-processing is therefore concerned with information

science. In other words, along with data classification, the relationship between

the elements of each data set is subject to examination.

The PI system also records the temperature and pressure variations at the

top, middle, and the bottom level of the visbreaker's Soaker drum. To reduce

the amount of input data, we have opted to accept an average Soaker

temperature and pressure. To achieve this, we have used the programming

capability of Visual Basic to calculate and record the arithmetic mean of the

temperature and pressure across the Soaker drum. To be in line with the other

value scale, the PI's reported pressure units of kPa is converted to PSI(G)

(Himmelblau, 1989).

Moreover, we are concerned with data intensity, which along with data

validity and the inter-variable correlations among the selected system

parameters may deceive the paradigm's learning process. In other words, we

should not overload the neural networks with types of data that could result in

the system's confusion. To reduce the data intensity we have to rely on a priori

knowledge of the visbreaking operations. In this respect, we have used the

programming capability of Visual Basic to search for and to discard any data

sets when 1) the unit's feed rate is less then 2000 cubic metres per day of

operation 2) the average Soaker temperature is less than 410 degrees C.
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The above assumption is based on our understanding that firstly, the plant's

performance at a feed rate below the 2000 cubic metres per day (12580 bbl) of

operation may become erratic, thus not representing the real operation.

Secondly, there is little chance of performing a proper visbreaking at a

temperature as low as 770FO(41 OCO). Consequently, the data pre-processing is

employed to eliminate any data set that relates to an unstable unit operation.

The implication of applying the above rule results in reducing the number

of the data sets from 168 to 141. In other words, the data from 141 days (daily

averages of 24 hours of continuos operation) of the stable visbreaking

operations are available to the model.

In the following section, we use the processed data to fabricate and train the

adaptive visbreaker,s paradigm.
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4.3 Network Formation

At the beginning of this chapter, we presented a work flow, illustrating the

sequences of the neuroengineering process. The network formation is an

important building block in our endeavour to fabricate a neural network

paradigm.

As a new step in our neuroenglneenng technique, we introduce two

different but simultaneous approaches to this problem. First, we use a genetic

algorithm to search the network's weight and minimise the degree of the error.

Genetic algorithms perform a global search and are thus not easily fooled by the

local minima. A detailed discussion on the performance and limitation of the

genetic algorithm, will be presented in Appendix 4.

Second, we impose some arbitrary error tolerance to the learning process to

see how the network behaves with the addition of a node (or nodes) to the

hidden layer. We then measure the system's learning effectiveness in pre­

defined intervals. Whether or not this situation is acceptable depends on the

value of the error when the minimum is reached. If the error of the paradigm in

predicting the volume conversion is acceptable, then it does not matter whether

or not the minimum is global. If the error of prediction is unacceptable, then, the

process of training must continue.

It is imperative for our understanding of this approach to distinguish

between the error evaluation algorithm used by the cascade correlation and our

external error tolerance limit that is defined below:



(~ (Yap-Top )2)12
Error Tolerance == ET== L..J Yap *100

O,p

where

(4.1)
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where Yop is the observed value of output 0 from training pattern p , and Top IS

the predicted output.

The ET is a percentage deviation from the original observed value during

the learning process. As training continues, an improvement in the system's

recognition is expected. In other words, when

ET~ 0

Finally, we introduce a system profile table, where we record our

assumptions and impose some arbitrary tolerance limits on the network's

learning process.

Table 4-1 System Profile

Error Max Limit RUN # Action to be taken

Tolerance o~

ET-l ~±20 RUN-l Report on the networks' status, then

continue

ET-2 ~±15 RUN-2 Report on the networks' status, then

continue

ET-3 ~±10 RUN-3 Report on the networks' status, then

continue

ET-4 ~±5 RUN-4 Report on the networks' status, then

terminate

At this stage, using the common neural network heuristics described in

chapter 3 of this thesis, we initiate the process of network fabrication. Briefly,

the process starts with analysing and transforming the input data (12 variables in
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141 datasets). The steps to follow (after the data transformations) are initial

network fonnation and training, where the objective is to maximise the

correlation between the desired output and the predicted output. Accordingly,

this results in minimising the degrees of the error between the predicted output

and the desired value. The overall process, however, is interrupted at the

intervals when the error tolerance approaches the limits stipulated in the profile

table. In other words, the process of learning is repeated until the prediction

error reaches the acceptable tolerance level. It should be noted that the purpose

of this paradigm is to predict the visbreaker's conversion as defined in chapter

2. The following results were obtained from the "Many-To-One" paradigm runs,

using various error tolerance limits.

Table 4-2 Networks' Results

Status RUN-1 RUN-2 RUN-3 RUN-4

Max ET limit % ±20 ±15 ±10 ±5

Error reported % 15.2 13.6 10.5 0.46

No. Of hidden nodes 3 4 6 9

It is evident from the above table that the addition of hidden nodes results

in an increase in the accuracy of the prediction. However, there is no point in

increasing the number of the hidden nodes beyond 9 units because the system's

error ( 0.46) is much lower than our required value of ±5% ( from the profile

table).

The following chart illustrates, how the increase in the number of hidden nodes

can decrease the system's learning error.
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Paradigm Fabrication - The learning Process
%Total Error vs. Number of hidden nodes
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Figure 4-12 Comparison of the results produced by the "Many-To­

One" paradigm, predicting the visbreaker's volume percent conversion.

In summary, in this section, we have formulated an artificial neural network

system that is capable of forecasting the volume percent conversion of the

visbreaking process. Furthermore, this system is able to recognise the patterns

that were originally used in its training process. The theoretical results presented

above show that one hidden layer is sufficient for cascade correlation networks

to approximate any continuous mapping from the input pattern to the output

pattern to an arbitrary degree of accuracy.

Next, we have to measure the performance of the system.
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The performance of the Many-To-One Paradigm

Developing a neural network system is said to be an art. Many parameters have

to be set and this is often done based, to some extent, on neural network

heuristics. The spatial relationships between the networks' objects or nodes

cannot be shown schematically. However, in the following diagram, we attempt

to illustrate the topology of the many-to-one paradigm (RUN-4) of the

visbreaker unit.

Figure 4-13 The Topology of the Many-To-One Paradigm

(the input nodes are defined under Feedstock Quality in chapter 3)

For clarity, we have not shown a complete picture of the nodes'

interconnections.
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The purpose of developing a neural model is to produce a formula that

captures essential relationships in data. Once developed, this formula is used to

interpolate from a new set of inputs to corresponding outputs. In neural network

terminology, this is called generalisation. The training set is the set of points

that are used to fit the parameters of the paradigm. The test sets measures how

well the model interpolates. It is used as a part of the paradigm fabrication

process to prevent over-fitting. The validation set is used to estimate model

performance in a deployed environment.

The training data set used in the training of the many-to-one paradigm is

extracted from a continuous run of the visbreaker unit. This set contained no

missing data elements. Often the performance of a network is measured using

the test set, rather then the training data set. The test set consists of examples

other than the one used in the training of the neural network. The methodology

is somewhat different from that of the jack-knife method used in statistics. The

jack-knife computes the variance of the estimates by omitting each of the

observations in turn (Kennedy, 1994). However, in neural network computation,

it has been customary to divide the original input data into two sets. One set is

used for network training and the other for cross-validation testing.

In the testing phase, the input patterns are fed to the network and the

desired output patterns are compared with those given by the neural network

paradigm. The (dis)agreement of the two output sets gives an indication of the

performance of the trained network. When the performance meets the

requirements specified in advance, the network is ready for real analysis

purposes.

There are many statistical methods to test the performance of a neural

network paradigm. Statistical models often use the T-test confidence intervals at

the 90% or 95% certainly level. Just as the T-test is applied to linear models, it

can be applied as well to some neural paradigms. The only requirement is that

the residual errors are approximately normally distributed. If the residual meets
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this requirement, the T-test can be validly applied to either neural or linear

models. When performing this test, it is essential that the data selected for the

validation has the same distribution as the main population.

Another way to measure the performance of the prediction paradigm is to

calculate a near-match index. This is done by first, selecting the number of the

correct output patterns, and then to divide by the total number of pattern pairs

present in the final set (Wasserman, 1993).

In our case, the question arises regarding the type of data that could be used

as the test set, and how the network's performance should be judged?

To account for a test set, we may use the data acquisition procedure

(explained at the beginning of this chapter) to retrieve the operational data

obtained from another visbreaking cycle. Like any other refinery unit, the

visbreaker operation is cyclic. Thus, at the end of each cycle, the unit has to be

shut down, either for maintenance, or to clear the coke formed from cracking of

the residue (a process called de-coking). Obviously, after start up, the overall

unit's operating parameters have changed.

Using the data from another visbreaker cycle results in expOSIng our

paradigm to a new test set belonging to a different environment. Obviously, the

data distributions of these new data sets (test sets) are very different from the

original data used in the training of the many-to-one paradigm.

However, at this stage, the main objective is to fabricate a prototype

paradigm that is capable of recognising an unseen test pattern. Consequently, for.
the purpose of testing the model's validity, we prepare a new test set, using the

data from another visbreaker operational cycle.

Using the PI systems and Excel database, we managed to retrieve and

prepare a data set that represents 48 days of continuous visbreaker operations.

This we call the test set from cycle 2 of the visbreaking operations.
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Next, we measure the performance of the many-to-one visbreaker paradigm

using the following steps:

• Recall or Recognition process: measures the network's capability to

remember the training data patterns (data that is used in the training

process).

• Prediction process: measures the system's response to the test data (data that

is not used in the training process).

In summary, the many-to-one visbreaker paradigm was tested, using both

training and test data sets. The test sets were obtained from the second

visbreaker,s cycle. In this respect, we have exposed the paradigm to a new

stimulus. This is a new data set, unseen by the network. The new data set

contain 48 x 12 rows of plant data. The responses from running the

paradigm with the data and test sets are presented in the following figures.
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Figure 4-14 Paradigm's Response to training sets obtained from 141 days of the

continuous visbreaking operation (cycle-I)
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Figure 4-15 Paradigm's Response to test sets prepared from cycle-2 of the

visbreaking operation.
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It is evident from the first chart (Figure 4-5) that the paradigm is capable of

remembering the pattern(s), originally used in the learning process. By this, we

mean the 141 data sets that we used in training of the many-to-one visbreaker

paradigm. Figure 4-6 suggests that the network cannot produce a perfect match

for each of the 48 days of the visbreaker's operation. This is because of

exposing the network to the unseen test sets, obtained from cycle-2 of the

visbreaking operation. Nevertheless, the many-to-one paradigm exhibits a

strong pattern recognition ability.

Again, the question arises of how to measure the performance of a neural

network system and how reliable the results are? (taking into account that the

purpose of this model is to predict the yield of a refinery process unit). Several

different methods have been applied. Our investigation indicates that there is not

a universally agreed-upon method to measure the neural systems' performance.

Most researchers, however, are using root mean square (RMS) or mean absolute

deviation (MAD) to evaluate the efficiency of neural networks (Freeman, et aI,

1991).

The prediction capability of the many-to-one paradigm is an indication of

the correlation between the desired output and predicted one. In other words,

how well the paradigm's interpolation and extrapolation mechanism works.

At this stage, we only need to define a simple but practical statistical

method to measure and express the paradigm's accuracy of prediction. The

mean absolute deviation (MAD) is a simple, but accurate yardstick to judge the

network's performance.
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Yap is the observed value of output 0 from training pattern p , and Top is the

predicted output and Np is the number of test sets or patterns to be predicted

(Winston, 1991).

The result of running the many-to-one visbreaker paradigm with the training and

test sets is given in the following table.

Table 4-3 ANNs paradigm's response -Training set vs. Test set

Data Type Training Set Test set

Visbreaker cycle 1 2

Number of data set 141 48

Data dimension 141 x 12 =1692 48 x 12 =570

Data Range 10 - 30 10-30

Volume conversion 0/0

Mean Absolute Deviation of 1.78 2.28

volume conversion o~

The results are indicative of an artificial neural network system with the

capability to recognise the input patterns and producing desired responses. The

degree of the error of prediction is also estimated.

At this point, the process of generalisation of the many-to-one paradigm is

complete. To further improve the prediction accuracy, we have to modify the

network's topology. The next step is to expand the existing network and

fabricate the visbreaker' s final paradigm.
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Evolution of the Many To One visbreaker paradigm into a full scale

visbreaker-paradigm

Let us recap the work done so far. In the previous chapter of this thesis, we

fabricated and trained (under supervision) a multi-layer neural network that

learns by rules stipulated by cascade correlation architecture. Additionally, we

imposed on this network, some external error tolerance to ensure that the system

learns didactically. Since its topology requires only an output node, this fully

interconnected network is called a many-to-one paradigm. Furthermore, beside

the training data set, the network was also exposed to a set of stimuli that was

generated in a different environment. The system's response to the unseen data

set was monitored. Under these conditions, the performance of the many-to-one

visbreaker-paradigm, although not highly desirable, IS satisfactory.

Consequently, we may now proceed to the next phase of the neuroengineering

process, that is, to evolve the existing network into a full-scale prediction

apparatus.

According to our pre-defined solution approach described in chapter 3 , up

to this point, we have been using a network with an output node, namely the

visbreaker's volume conversion. Our objective is to study the visbreaking

operations. As a result, the full spectrum of the visbreaker's products must be

available to the fuel oil blending pool. The full scale neural system is in fact an

evolution of the many-to-one paradigm to a multi-layer, multi-response network

containing output nodes, representing the visbreaker's product and residue

quality.

The visbreaker' s product yields and the associated quality are available

from the PI System and the Laboratory Information computers respectively.

These data can easily be retrieved and made available to the neural system. The

visbreaker,s residue cannot be sold on its own. This is because of its high

density, viscosity, carbon residue, and sulphur content. Therefore, the objective

of the fuel oil blending operation is to convert the visbreaker's residue into a

saleable product that meets the marine fuel oil's specification.
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The next step in this phase of the neuroengineering process is to fabricate

the many-to-many paradigm by evolving, re-building, and re-training the

existing paradigm. The necessary steps are as follows:

Keep the input layer unchanged (12 nodes)

Modify and expand the output layer (11 nodes)

Re-build the network using the Cascade Correlation algorithm

Re-train the network using the training data set (141 days)

At this stage, the process of forming the system's input and output nodes is

complete. In what follows, we present a schematic of the many-to-many

topology.



Figure 4-16 The Topology of the Many-To-Many Paradigm

(input and output nodes are defined in chapter 3, pp 54 and pp. 67)
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As stated before, the spatial relationships between the networks' objects or

nodes cannot be shown schematically. However, in figure 4-16, we attempt to

illustrate the topology of the many-to-many paradigm of the visbreaker unit. For

clarity, the complete picture of the node connections is not shown.

Compared to the many-to-one paradigm, the above neural network system

is more representative of the modem visbreaking process. In this respect, the

process is a combination of cracking, atmospheric, and vacuum distillation.

Additionally, our ANNs is able to predict the quality of the visbreaker's residue

(collected from the bottom of the vacuum tower ). This information is vitally

important in our endeavour to link the ANNs responses to the fuel oil pool, and

to evaluate the economics of the visbreaking and blending operations.

In retaining the consistency of measuring the performance of the paradigm,

we will continue using:

1) Volume percent conversion as the measure of the visbreaking process

performance. As defined earlier, gasoline and distillate (the most valuable

visbreaker products) are the major constituents of the visbreaker's volume

conversion.

2) Mean absolute deviation (MAD) as the measure of the accuracy of the ANNs

prediction.

Moreover, for a better understanding of the networks' behaviour, in the

following paragraph, we introduce two additional performance-related criteria.

First, the percentage visbreaker residue, as an indication of the volume of the

residue that has to be converted (blended) into marine or bunker fuel oil.

Secondly, we introduce the Root Mean Square (RMS) as an additional

measure of the accuracy of the ANNs prediction. The RMS is defined by the

following equation:



Root Mean Square = ~L (Yop- Topi
Np

where

(4.3)
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Yop is the observed value of output 0 from training pattern p , and Top is the

predicted output and Np is the number of the test sets or samples used in the

training test. The RMS error often provides a good insight into the noisiness of

the input data. Also, it is in the same unit of measurement as the original data.

As a result, RMS is preferred by many researchers (Diederich et aI, 1997).

Obviously, the lower RMS of error, the higher the accuracy of prediction.

The characteristics of the many-to-many paradigm and the responses

obtained from running both training and test sets are shown in Table 4-4

Table 4-4 Network - Topology

Number of the input nodes 12

Number of the hidden layers 1

Number of the final hidden nodes 8

Number of the output nodes 11

Mode of operation Prediction

To assess the paradigm's performance, the network is trained using the data

from the first visbreaking cycle. The data set in the second cycle of visbreaking

operation is used to measure the networks performance. The results are shown

in the following table.
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Table 4-5 Network performance

Testing the network performance with regards to the Conversion and

Residue Yield

Description Recall Prediction

Data set used Training set Test set

Number of the data sets 141 48

1) Conversion in volume %

Data Range 10 - 30 10 -30

Volume conversion - %

Mean absolute deviation of 1.6364 3.5942

volume conversion %

Root mean square of the 2.1262 4.3145

volume conversion %

2) Visbreaker residue make in

volume %

Data Range 50 - 90 50-90

Visbreaker residue make %

Mean absolute deviation of 3.6767 9.9613

Visbreaker residue make %

Root mean square of 4.8851 12.4818

Visbreaker residue make %

The predictive results of the network shown in the above table are not

overwhelmingly impressive. With respect to the visbreaker's residue make, the

predictive figure is a function of the residue upgrading process through

hydrocarbon decomposition, and the stream separation through distillation. In

this research work, we regard the unit's yield as a measure of the visbreakability

of the heavy petroleum residue. Hence, due to the overlay in boiling range of



101

gas oils, separation of the bottom residue from the vacuum gas oils is not

accurately measured. This problem has resulted in the RMS error of 12.48

percent in Visbreaker residue make.

Upon closer examination of the visbreaking process data, we realise that the

process of gas oil recovery from the vacuum tower of the visbreaker has not

been consistent. This is purely an operational problem that is inherent in some

plants. The root of the problem resides in the separatability of the vacuum gas

oils, and not the crackability of the visbreaker's feed. Accordingly, using the

visbreaker's residue as a measure of the accuracy of the neural network's

prediction appears to produce some misleading values. Hence, it seems

reasonable to substitute the visbreaker's residue content with the combined

residue plus vacuum gas oils streams (this is essentially the product driven from

the bottom of visbreaker's atmospheric tower as seen in Figure 2-4).

The logic behind this proposition is that both the visbroken vacuum gas oils

and visbreaker's residue are represented in the model. Hence, by combining

their volumes we can account for the combined yield of the visbreaker bottom

and visbroken gas oils. This is to address the deficiency of the gas oil recovery

at the vacuum distillation tower. This stream is the bottom of the atmospheric

tower of the visbreaker unit (as shown in Figure 2-4). The procedure suggested

above should essentially assist us to calibrate the network. Once the network is

trained and calibrated, the volume of visbroken gas oils can be included into the

output nodes. This many to many paradigm is called a Standard Network.

Moreover, our suggestion is consistent with the process illustrated in Figure

2-4, where the combined stream from the bottom of the atmospheric tower is

routed into the vacuum distillation column for gas oil(s) recovery. Having this

in mind, we compute the network's measure of accuracy of prediction, using the

effect of the combined residue/gas oil's stream.
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The results obtained from re-computing the MAD and RMS error of the

combined streams are presented in the Table 4-6.

Table 4-6 Network performance

(Combining the visbreaker's bottom residue and medium and heavy vacuum gas

oils as one stream).

Description Recall Prediction

Data set used Training set Test set

Number of the data sets 141 48

1) Conversion in volume %

Mean absolute deviation of 1.6364 3.5942

the volume conversion%

Root mean square of the 2.1262 4.3145

volume conversion%

2) Visbreaker Residue make

in volume %

Mean absolute deviation of 2.2237 3.5095

the combined stream(vol%)

Root mean square of the 2.8977 5.0544

combined stream (vol%)

Our suggestion has resulted in a significant improvement in the network's

performance indicators. This can be viewed from Table 4-6, where the results of

measuring the networks' accuracy of prediction are illustrated. As a result, using

the combined stream of the visbreaker' s bottom plus gas oils is a preferred

method of calibrating the above network.
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Table 4-7 Networks performance - Comparison of the results

Description Recall Prediction

Mean absolute deviation of 3.6767 MAD 9.9613 MAD

the bottom residue make

vol%

Mean absolute deviation of 2.2237 MAD 3.5095 MAD

the combined stream vol%

Root mean square of the 4.8851 RMS 12.4818 RMS

bottom residue yield, vol%

Root mean square of the 2.8977 RMS 5.0544 RMS

combined stream, vol%

The degree of the improvement(s) made to the statistical performance

indicators is self-evident, having reduced the RMS error of bottom yield % from

4.8 to 2.8 in recall, and 12.4 to almost 5 in the prediction mode. As noted

earlier, the data set used in the prediction mode are derived from the second

visbreaking cycle.

The reduction in the RMS error improves the networks performance (or

paradigms predictability). The significance of this however, needs to be

quantified. In this respect, since visbreaker bottoms is the main product of the

visbreaking process, its effect on the refinery's profit can effectively be

measured. Accordingly, the sensitivity of the refinery's profit with the variation

in the visbreaker bottoms can be established.
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Using the refinery's Global LP model, the effect of varying the visbreaker

bottoms' product on the refinery's gross margin can be measured. The refinery's

gross margin is calculated as follows:

Gross Margin in $/ barrel = (Sales - Purchases - Operating Expenses) /

(Volume of crude in barrel used on that LP run). (4.4)

This is presented in the following graph, where the effects of varying residue

make (at constant quality) on the refinery margin are depicted.
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Figure 4-17 The Sensitivity of gross marine with the residue make

It is shown in the above graph that the refinery's gross profit is highly

sensitive to the visbreaker's residue make. This can be further demonstrated by

the following example:

In order to calculate the refinery's gross margin, a crude charge of 100,000

barrels per calendar day of Arab crude yielding a visbreaker residue make of
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59.6 volume percent is assumed. Using the above graph, the corresponding drop

in the margin for a 2% error in residue make is calculated as follows:

Drop in Margin = (3.32 - 3.43) = 0.11 $/bbl

For 100,000 bbl per calendar day: 100,000 * (- 0.11) = - 11000 $/day

For Annual loss 365 * (- 11000) * (4.5 exchange rate)

= - 18.6 Million Rand.

In calculating the loss reported above, we have assumed that the refinery's

operation can be re-optimised with a change in the quantity or quality of the

visbreaker's residue. Obviously, additional loss will occur, if such re­

optimisation can not be achieved.

Clearly, the magnitude of the loss reported above, justifies further

investigation into methods that can result in a lower degree of error in the

paradigm's output. It should be noted that the shift in profit is in fact the result

of downgrading some white oil into black oil. Moreover, reducing the prediction

error will assist the refinery planners with the feedstock evaluation and selection

process.

In summary, by evolutionary means, we have fabricated the many-to-many

visbreaker paradigm. This fully connected neural network paradigm can be used

as the forecasting apparatus to predict the yields of the visbreaking process. The

predictability of the paradigm is judged by the computed value of the

visbreaker's white oil. The performance of the neural system is measured using

statistical methods. It was also demonstrated that the profit of the refinery is

sensitive to the degree of error produced by the visbreaker adaptive paradigm.

However, before proceeding to the next stage, that is, to present the fuel oil

blending operation, the author feels that, in spite of its encouraging

predictability characteristics, the performance of the paradigm can stand further

improvement. Accordingly, we shall investigate ways and means of improving

the network's current performance.
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To test the potential of this proposition, in the next section we re-examine

the structure of the existing paradigm, and propose a computational

methodology to enhance the recognition capability of the network.

4.4 Network Reciprocation

In the previous section, using statistical performance indicators we analysed the

network's output. Furthermore, by re-defining (and subsequently re-computing)

the performance criteria, the predictive quality of the paradigm was greatly

improved.

The question, however, arises as to what degree of variability between the

network's actual and predicted output should be tolerated? The obvious

difficulty is that neural systems have no judgmental sense, meaning that the

predictive quality of the paradigm is an external parameter that needs to be

included in the systems' objective. That, of course, requires quantification.

Consequently, in this section, we attempt to examine the validity of the

paradigm's response to both seen and unseen inputs. To achieve this task, we

need to clarify the system's objective. In this respect, we shall employ the

aspiration-level criterion, often practised in decision theory (Taha, 1989).

Accordingly, we state that the aspiration-level criterion does not yield an

optimal decision in the sense of maximising profit or minimising cost. Rather, it

is a means of determining an acceptable course of action. In this context, the

aspiration-level theory requires firstly a priori knowledge of the process that

needs to be examined. Secondly, it requires an understanding of the degree of

tolerance that is acceptable as the upper and lower limits of the decision frame.

The application of the aspiration-level criterion enables us to define and

pre-set the limits of error that can be expected from neural network systems.
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The implementation of the above theory reqUIres further clarification

regarding the variability of the systems structure. In this respect, we have

borrowed the term "reciprocation", applied to electro-mechanical systems

(Walker, 1991). This is described as follows:

In electrical engineering terminology, the reciprocity theorem is defined as

the interchange of the electromotive forces at any point in a network and the

current produced at any other point, resulting in the same current for the same

electromotive force. For the sake of clarity, in this thesis, the term reciprocation

is further defined as the continuous evaluation of input data, to ascertain that the

allocated data set can in fact improve the predictability of the network. This

definition is consistent with the proposed adaptive neural network model of the

visbreaking process, where frequent training is provided. As stated earlier, the

process of petroleum refining is of a continuous nature and therefore a PI

monitoring system is employed to provide continuous plant data.

By analogy, the quantitative validation of the response should be

independent of the network's input and output nodes. In other words, the

system's requirements with regard to the network's processing elements

(stimulus and response) are essentially unchanged. The paradigm's topology,

however, mayor may not change. That is, there are no changes to the input and

output nodes.

Hence, in the last stage of the neuroengineering process, we employ the

network reciprocation theorem to find a practical procedure that can improve the

neural network's predictive quality by the aspiration-level criterion. Here, the

goal is to improve the network's predictability. This is done by removing the

data sets whose contribution result in an increase in the neural prediction error.

The network reciprocation procedure therefore prevents the formation of data

outliers. Essentially, the technique is more suitable in a continuous operation

scheme, where there is no limit to the number of process data available to

produce an accurate pattern. It should be noted that the network's prediction

results are updated regularly. This is because the process control computers
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continuously generate the process data. In this respect, Pass (1997) writes, it is

highly likely that not all data is appropriate for data mining. When seeking to

uncover patterns it only makes sense to seek out those that will have meaningful

impact on the business.

To illustrate the orderly application of network reciprocation we provide, in

the following format, a full explanation regarding the succeeding steps required

to develop our proposed procedure. We emphasise that at each stage the form of

the reciprocated network (regarding the stimulus and response) is equivalent to

that of the original paradigm. The paradigm's topology (and the number of

hidden nodes), however, mayor may not change.

The network reciprocation sequences are presented in the following pages:

Proposition: Improve the predictive quality of the visbreaker paradigm

employed by the neuroengineering process.

Procedure: Apply network reciprocation

Step 1: Fabrication and generalisation of a multi-layer, multi-response neural

network of the visbreaker unit. (Completion of the data processing stage is

assumed)

Comment: For the purpose of consistency, and in line with the work done in

the previous section, the cascade correlation architecture will be used in the

neuronal learning process.

Execution: Using all the available data from cyc1e-1 of the visbreaking

operation, proceed with topology formation and network training.

Step 2 This phase addresses network calibration, where the network is exposed

to the previously-seen data (the input data set used in the learning process). The

network's response to this stimulus is to produce a set of data that is essentially
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the neural network's prediction of visbreaking yields and residue quality. It is

recalled that the visbreaker's conversion is calculated by summation of the

gasoline, kerosene, and diesel streams flows. On the other hand, the volume of

the visbreaker's residue and the vacuum gas oils has to be combined to paint a

more accurate picture of their respective production volumes. As a result, for

every input vector, our neural system generates an output vector. This is shown

below:

Conversion

percent).

Volumetric sum of products boiling at less than 900 F (in

Conversion input vector~ in our case 141 actual data

output vector ~ in our case 141 predicted values

Residue make input vector~ in our case 141 actual data

output vector ~ in our case 141 predicted values

Step 3: In the optimisation step, we need to devise a mathematical programme

to minimise the RMS error between the actual and predicted results obtained in

the previous step. Based on the aspiration-level criterion, we can define the

system's objective, which is to minimise the prediction error subject to some

constraints that set upper and lower limits for the desired target (conversion, or

residue make). That is, we strive to search for the lowest possible value of the

objective function, provided that our target result is within a set boundary. In

this instance, the system's optimality criterion has been satisfied. Accordingly,

the system's constraints can be formed using the mean value of the predicted

output within a range, derived from the formula that is measuring the variability

in the given data sets. Mathematically speaking, this is essentially a constrained

optimisation problem that can be formulated as follows (Azizi, 1997):
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Minimise the following fitness or cost function:

z= L(L(Yop- Top)2)
Np

(4.5)

For Yop and Top and L that is defined as the load factor, that can only

accept an integer value of L = 0 or L = 1.

Subject to the following constraints

(4.6)

(4.7)

Where

Yop is the observed value of output 0 from training pattern p , and Top is the

predicted output and Np is the number of active data sets used in the

minimisation process.

and

Mp is the mean of the predicted value in a given data set

M -I Topp--=_....::...-
Np

MA is mean of the actual value in a given data set

Cd is the coefficient of the data variability

L (Top - MA)
Cd =

Np

(4.8)

(4.9)

(4.10)

This is a binary integer minimisation problem. The generalised reduced

gradient solver based on Lasdon and Smith (1992) GRG2 code is widely used in

product blending problems. Therefore, initially, this code was used to minimise
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the degree of error associated with accepting a data set for the learning process.

As expected, this method found to be problematic, since a G~G2 solver often

converged to local minima. The experimental result indicates that a solver based

on genetic algorithm is more suitable for the given binary integer and sparse

problem. Accordingly, Genehunter™ a solver based on the genetic algorithm is

used to minimise the fitness function. The fundamental of Genetic Algorithms

(Gas) and the method to calculate L is explained in Appendix 4 of this thesis.

Here, L is an integer chromosome whose value should be estimated by the

genetic algorithm. If the value of L is zero, the chromosome is not biologically

fit to live. Accordingly, the data set represented by an unfit chromosome is a

passive set. In this case, the entire data set is removed from further data

processing. On the other hand, if the value of L is 1, then the chromosome is fit

to live and the relevant data set is classified as the active set. Subsequently, the

minimisation process continues with the surviving chromosomes. That is, only

the data sets with a load factor of 1 will be used in further computation. In a

neurological context, the load factor role is somewhat similar to that of the

brain's thalamic unit. The purpose of thalamic unit is to compare the computed

output with the target value and evaluate the outcome. If they do not match, the

thalamic unit sends an error signal to the output synaptic unit of the brain for

further processing.

Step 4 At this point, the neural network needs to be re-trained with the

surviving data sets. The number of visible neurons remains unchanged, but the

cascade correlation algorithm is free to increment the hidden node(s)

dynamically, until no further improvement is seen in the level of error. At this

point, the network's performance is evaluated. If the error is small enough (in

our case the maximum tolerance is 1% from the previous result), the process is

terminated. Otherwise, a new hidden element is added to the network in an

attempt to reduce the residual error. This concludes the reformation and re­

training step.



Step 5

ILL

By removing the data sets whose contribution may result in an

Increase in the neural prediction error, the network reciprocation procedure

should essentially improve the quality of the paradigm response. At this step,

the reciprocated network is exposed to the previously unseen data set(s). The

responses are recorded and compared with that of an original network fabricated

in the Step-I.

The process of the network reciprocation procedure IS depicted in the

following diagram.

[ Start )

,Ir

[ Data Management & Processing J

Ir

[ Network formation &training J

'Ir

[ Network Calibration J

Ir

[ Optimisation )

'Ir

[ Reformation & Re-training 1

,Ir

[ Production ]

Figure 4-18 Network Reciprocation Procedure
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It is evident from the above figure that a reciprocated network needs to be re­

trained. In this case, the process of reciprocation and re-training may be

achieved by a back-to back run of the Predict (neural network) and Genehunter

(Genetic Algorithm) modules.

The following table compares the outcome of the reciprocation of the

visbreaker's neural network with that of the many-to-many paradigm, already

presented in the tables' 4-5 and 4-6.

Table 4-8 Reciprocated Neural Network

Conversion and Residue +gasoils make are expressed in volume %.

Standard Neural Network Reciprocated Network

Description Recall Prediction Recall Prediction

Visible nodes 12 , 11 12 , 11 12 , 11 12 , 11

Hidden nodes 8 8 14 14

Data set 141 48 56 48

Data Type Seen Unseen Seen Unseen

RMS Conversion 2.12 4.31 1.55 3.41

RMS 2.89 5.05 1.84 4.03
Residue+gasoils

corresponding 60 61.2
Visbreaker

residue %

Using the refinery's Global LP (GLP) the economics of using the reciprocated

network versus standard network can be measured. In this example, the

objective function value of GLP indicates that using the visbreaking yields

derived from the standard network result in over estimation of annual profit of

approximately $1,534,815 (6.9 million Rand). This information assists the

refinery planners in their evaluation of various refinery feedstock. To achieve

the same level of profit, other feedstock needs to be identified. Accordingly, the

plant's operating condition has to be reviewed. Consequently, a revised

production slate should be forwarded to the Marketing division. Against this
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background, it may be said that firstly, network reciprocation procedure

improves the accuracy of the planning system and secondly, its effect on the

refinery profitability is significant.

It can be argued that network reciprocation is a valuable procedure when

the quality of the visbreaker feed varies frequently. In other words, there is very

little use for this procedure if a refiner continuously uses a particular crude oil

(with no change in the physicochemical properties of visbreaker feed). This

option of course is neither practical nor economical. As discussed in chapter 1

of this thesis, the world reserves of the more desirable crude's decline, while the

reserves of the less desirable and inevitably more viscous crudes grow.

Moreover, anticipated changes in crude quality and the product slate are

expected to result in a wider price differential between heavy and light crudes.

As a result, refiners have to continuously evaluate various feedstock (cost and

quality), and select a crude or mix of crudes which can improve their

profitability.

It should be noted that a neural network model could only learn from the

examples (historical plant data). If a new crude is introduced, and if the

properties of this new crude are vastly different from the historical plant data,

then the system needs to be re-trained using the data pertained to the new crude.

Obviously, in a multi-crude environment, the process of learning needs to be

done more frequently.

The results presented in the above table prove that network reciprocation

improves the predicting quality of the visbreaker's neural systems. In this respect

the overall decrease in the RMS error between the actual plant data and the

predicted response from an unseen stimulus is significant. Again, we have to

remember that our unseen data are derived from cycle-2 of the visbreaking

operation. As stated earlier, in addition to the variation in the quality of the

feedstocks, the plant's operating condition surely differs in each of the

visbreaking cycles.
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Another impressive characteristic of the network reciprocation procedure is

that it does not result in the over-training of the neural system. This is evident

from the above table, where the RMS errors of both the recall and predicted

responses have simultaneously been reduced. It should be emphasised that the

refinery operation is of a continuous nature. Therefore, there is no limit to the

number of process data available to produce an accurate pattern. Moreover,

network reciprocation is not just a data or outlier eliminator, but a procedure to

continuously evaluate the available data sets. Accordingly, it can be stated that,

any data set originating from an unreliable or unstable unit operation should be

detected and deleted during the data pre-processing stage of the

neuroengineering procedure.

At this stage, we can conclude that our proposition regarding the

application of the network reciprocation procedure to improve the predicting

quality of the many-to-many visbreaker's paradigm has successfully been

implemented.

In summary, in the first three sections of this chapter we have used the

neuroengineering technique to fabricate an empirical neural network system.

The system is capable of processing some unseen data and producing patterns

that are related to the visbreaking yields and residue quality. In the fourth

section of this chapter, we proposed a network reciprocation procedure with the

intention of improving the predicting quality of the artificial neural network of

the visbreaking process. Note that the reciprocated data (yields, quality) enter

the fuel oil blending pool, where essentially the visbreaker's bottom residue is

blended into a product that is marketed on its own, namely bunker fuel oil used

by seafaring vessels as fuel. Since the economics of the visbreaker's operations

are closely related to that of the fuel oil production, in the next section a

mathematical model to optimise the blending operations will be presented.
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4.5 Fuel Oil Production

In the previous chapter, we commented that the objective of fuel oil blending is

to allocate the available blending components in such a way as to meet the

product's specification at the least cost and to produce incremental products that

maximise the overall profit. It was further explained that a refiner blends fuel

oils for two reasons first, to meet certain specifications and second, to make the

oil easier to handle.

Along with the above statements, there are, however, other points to

observe. The first point is the objective of the visbreaking process, that is, to

reduce the fuel oil make and save the expensive cutterstock that must be added

to reduce the viscosity of the visbreaker's bottom residue. The other pertinent

point is that most refiners have no alternative disposition for the visbreaker's

residue. In old days this material was burned as the source of the energy in the

refinery. Because of the environmental hazards, this of course is no longer an

option. Consequently, a refiner must find an outlet for the visbreaker's bottom

residue. Fuel oil blending provides an opportunity to produce a saleable product

when the refinery is close to a port. The visbreaker's product constitutes almost

70% of the final blend. This includes visbreaker's bottom plus other products

drawn from the atmospheric tower of this plant. Along with other environmental

limits, the sulphur content of the blend is controlled to meet an international

specification. This provides sufficient reasons to state that the economics of the

visbreaking operations should essentially include the fuel oil blending.

The blending operation is in fact an optimisation process that needs to be

mathematically modelled. In this respect, section 4-5 attempts to present a

mathematical model to blend the visbreaker's products into a marine fuel oil.
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In essence, we have an optimisation problem that can be formulated as follows:

Maximise Z = Profit

subject to the constraints

a 11X1+a12X2+ + alrXn ~bl

amlXl+am2X2+ + amrXn ~bm

X2 , ......... , Xn 2>0

To formulate the model, we begin by defining the profit as the objective:

Objective: Maximise the profit of selling marine fuel oil by blending various

components for:

n

Z = Wf Pf - IVi.di.Ci (4.11)

Decision variable is Vi = Volume of the component i in cubic meter that will

produce the fuel oil blend.

where

Z = Profit in US $

Wf = Weight of fuel sold in ton

Pf= Price of the fuel sold in $/ton

di = Specific gravity of the component i at 60/60 of (15/15 °C)

Ci = Cost of the component i in $/ton.



118

Constraints are

n

Subject to LVi. di. Qi

Qi == Quality of the component i in the blend

Qb == Quality of the final blend b

(4.12)

Qs== Specified quality of the final blend b, In accordance with the

manufacturing specification requirements presented in the following table:

Table 4-9 Typical CKS specification for the Marine Fuel Oil

Property Test Method Unit Minimum Maximum

Viscosity D445 cSt at 122 of 90 180

Specific Gravity D 1298 @60/60 of 0.992

Flash Point D93 Degree of 147

Pour Point D97 Degree of 75

Sulphur LABA-242 Percent WT 4

CCR D 189 PercentWT 20

Total Sediment IP 375 Percent WT Report

Stability IP 390 Percent WT 0.2

Source: International Standards Organisation using standard: ISO 8217 RMF 25

for Marine and Bunker Fuel Oil.

Each component of the blend has its own distinctive quality that could

greatly affect the quality of the final product. Some qualities (such as the

Viscosity, Flash and Pour point) do not blend linearly. To account for the above­

mentioned non- linearities, blending indices and a property transformation

method is used. The procedure to transform the non-linear properties into
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blending indices have been explained in section 2.1. The blending indices are

given in Appendix-I.

We recall that property transformation consists of the following steps:

Transform the property to the appropriate blending index

Blend linearly, using the relevant blending index

Convert the final value to the unit's stipulated in the Table 4-9.

In the remainder of this section, we present an overview of the proposed fuel oil

blending model.

With the exception of gas and gasoline, all the visbreaker's products can be

blended into fuel oil. In order to meet the prescribed fuel oil specification,

however, we need to expand our fuel oil recipe and include other refinery

streams whose inclusion could result in a higher profit margin. In this respect,

the structure of the proposed blending model is essentially a matrix of rows to

represent the volume of various components of the blend, and columns to

account for the specific gravity, cost, and associated qualities of each

component.

Historically linear programming has been used to blend marine fuel oil. The

LP model developed for this thesis uses the component's weight to blend the

final product, since it is sold by weight unit (Azizi, 1993).

Furthermore, for simplicity, we have introduced a new column in the

blending matrix. This new column should essentially account for an arbitrary

variable ~, that we define as the fraction factor. The fraction factor may accept

any value within the limits specified below:

o < < 1

Each component of the blend can have a fraction factor value within the

above range (for ~1 •••••••• ~n). In this case, a fraction factor of 1 means that the
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full available volume of the specific stream is blended into the fuel oil.

Conversely, when ~ = 0, that specific stream is removed from the blending pool.

Obviously, the optimal values of the variable ~ is computed by the system's

optimiser.

The structure of the fuel oil blending matrix is shown below:

Table 4-10 Fuel Oil Blending Matrix

Stock Volume Specific Cost Quality Fraction

Barrel Gravity $/ton Ql......Qn Factor

Kerosene VI d l Cl Q1.. ...Qln ~l

Diesel V2 d2 C2 Q2.....Q2n ~2

M-gasoil V3 d3 C3 Q3.....Q3n ~3

H-gasoil V4 d4 C4 Q4.....Q4n ~4

Visb-bottom Vs ds Cs Qs.....Qsn ~s

Crude Kero V6 d6 C6 Q6.....Q6n ~6

Crude Diesel V7 d7 C7 Q7.....Q7n ~7

FCCLOC V8 d8 C8 Q8.....Q8n ~8

FCC-HCN V9 d9 C9 Q9....Q9n ~9

FCC-bottom VlO dlO ClO QlO...QlOn ~IO

Others Vi di Ci Qi .....Qin ~i

The column "Quality" represents the related properties of the components of the

fuel oil blend. In its simplest form, the fuel oil blending is a 4 x 12 matrix

whose dimension increases with the number of desired properties to be included

in the model's constraints.
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The sources of data to initiate the above matrix are:

Table 4-11 Data sources

Data type Source

Available volume to blend Global refinery LP

Properties (stream's qualities) Global refinery LP

Cost of streams Global refinery LP

Price of products Global refinery LP

Visbreaker's products Adaptive visbreaker paradigm

Quality of the visbreaker bottom Adaptive visbreaker paradigm

We recall that equation (4.11) represents the model's objective whose value

needs to be maximised.

n

Z= Wf Pf - 'LVi.di.Ci (4.13)

In this respect the Fuel Oil Blending model (FOB) is in fact an optimisation

model whose solution produces a recipe for blending a marine fuel oil that

meets the required specification. Since the model's interface is through ExceFM,

we use an Excel compatible solver from FrontLine™ Systems to solve this

model. In contrast to the Genetic Algorithms solvers, the Premium solver is fast

to converge and employs the Reduced Gradient algorithm applied to linear

optimisation problems. In this respect, the Premium solver will replace the

standard solver bundled with MS ExceFM software.

It is worthwhile to mention that to start the process of optimisation, some

initial values for the variable ~ are needed. These initial values should

essentially produce a feasible solution. Setting a suitable value for the variable ~

is often an educated guess often initiated by the refinery planners.



4.6 Model Integration
In the previous sections, using neural networks we constructed a model that is capable

of predicting the yields and the quality of a refinery process unit called a visbreaker. In

order to explain the performance of the visbreaking process, one must look very closely

at the fuel oil blending operation, where the system's economic equilibrium is produced

by the blending optimisation program. Consequently, due to the complex interactions

among the parameters determining the economics of the visbreaking process (in terms

of AVP and FOB), an Integrated system to represent the real-world problem is highly

desirable. The schematic of the proposed system is shown below:

:" , , ,Nla,rRet,lRelatoo Data -liaterials Pnl:cl1~i~g'". .. .. , ;;;;,';' ";,
, , , ,'''' n 'Nlarl",t' R~h:tted BMA - D.:nautti Sales " ';,

"" .."" .. .. .. .... .. .. ,; .. ~?.. ~~ /" N"

; ,
.. .. . '. N" ..

• ':1---------------1..

Global Refinery LP Model

Adaptive Visbreaker Paradigm

Fuel Oil Blending Model

Figure 4-19 Model Integration and data flow chart in an integrated decision

support system
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In the "Roots of Backpropagation", P. J. Werbos (1994) writes:

"Within the brain, we know that there are subsystems and phenomena such as

memory and pattern recognition. But we cannot really hope to understand the

functions of a subsystem until we know how it fits in to the design of the whole

system; therefore, once again an understanding of neuro-control IS a

prerequisite."

Our task, therefore, is to study the profitability of the visbreaking process

based on the value of the objective function equation obtained from the

optimisation of the fuel oil blending system. Accordingly, it is imperative for

our understanding of the overall economics to examine the effect of parameter

changes in an Integrated simulation / optimisation system.

In this respect, the full connectivity between the visbreaker's paradigm and

the fuel oil blending model is highly desirable. Using the Excel and the Visual

Basic programming tools (Webb et aI, 1994), it is possible to produce an

automated computer program to update the coefficient of the blending matrix,

whenever the neural network's outcome has changed.

At this stage, we may add that, in an integrated system, it is possible to

quantify the value of a changing parameter in statistical format as well as in

monetary terms (Diaz et aI, 1997). In our case, this is the value of the objective

function equation expressed in US Dollars. This implies that the sensitivity of

the error in predicting the visbreaker's yields or quality can be monetarily

quantified.

In the next chapter, the financial impact of changing the major coefficients

of the neural network system, as well as those relevant to the fuel oil blending

matrix will be explored.
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CHAPTER 5

RESULTS & ANALYSIS

The recent developments in artificial intelligence and software engineering

promise a more complete programming environment for simulation

loptimisation studies in the refining industry than has transpired in the

traditional kinetically-based models. In a broader sense, any equation related to

the physicochemical properties of the hydrocarbons can be incorporated into an

artificially intelligent model. At the same time, such knowledge-based models

may be trained to provide some valuable information about the problem area.

Such models, although invaluable for observing behaviour of a complex

system in the closely replicated artificial setting, are, however, seriously limited

as a decision making tool for a multi-dimensional problem, where the decision

incentive is often economical rather than operational. Addition of an

optimisation module, however, improves the decision making process. This is

where the application of an integrated decision support system can be

particularly useful.

Accordingly, in this chapter, along with the presentation of results, we

demonstrate the potential of using an integrated system of an artificial neural

network and optimisation technique. This is to produce a business-oriented

solutions to the problem of residue upgrading in an oil refinery.

This chapter is organised as follows:

Section 5.1 Computational Results: Discussion and analysis on the

significance and meaningfulness of the results obtained.
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Section 5.2 Sensitivity Analysis: An important step in many applications of

simulation modelling is to perform a sensitivity analysis on the performance of

the model. Accordingly, this section evaluates the performance and limitations

of the AVP.

Section 5.3 Interaction with the global refinery LP model: This section

explores the practicality of an integrated decision support system to produce

operational as well as economical data of the visbreaking operations.

Accordingly, this section demonstrates the various applications of the adaptive

visbreaker paradigm when is used as a vehicle to provide the visbreaking yield

of crude petroleum. This is to improve the accuracy of the global refinery LP

model used in crude selection and refinery-wide optimisation.

Section 5.4 Practical Consideration & Future Research Direction: The fuel

oil storage stability criteria can not mathematically be formulated. In this

section, we present an overview of the fuel oil storage stability performance and

the motivation for further research into the fuel oil stability phenomenon.
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5.1 Computational Results

In previous chapters, we have defined, designed, and consequently developed an

integrated data management, simulation, and optimisation system. We have also

described the tools applied and demonstrated the results produced. However,

thus far, we have not yet fully discussed the significance and meanings of our

computational results. Accordingly, in this section, we present the

computational results obtained and endeavour to examine the meaningfulness of

these results.

To begin with, we consider the many-to-many visbreaker paradigm. This is

a multi-response neurally fabricated network. To improve the predictive quality

of the paradigm, we introduced "network reciprocation". The network's topology

can be modified by removing the undesirable input data set(s) and increasing

nodes in the hidden layer of the network. The network reciprocation procedure

resulted in the evolution of the many-to-many paradigm into a new and fully

interconnected topology that is used to integrate with the fuel oil blending

model.

The above discussion leads us to confine our ANNs response to real-world

expectations. We need firstly to show a picture of the reciprocated network and

secondly, a demonstration of its performance.

Thus in the following pages we present the topology of the standard and

reciprocated network of the visbreaker unit. A plastic overlay-sheet is employed

to illustrate the changes resulted from the network reciprocation procedure.

Obviously, the spatial relationships between the network's objects or nodes

cannot be shown schematically. Again, for the purpose of clarity, we have not

shown a complete picture of the real connections of any node.
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Figure 5-1 The Topology of the standard and Reciprocated Adaptive

Visbreaker Paradigm
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We observe that in a reciprocated network such as the visbreaker paradigm

(shown above) the number and the properties of the input as well as the output

units are essentially unchanged. The reciprocation procedure however, has

resulted in the following changes:

• The number of data sets used in the training of the network has been

reduced.

• The number of hidden units used in the training of the network has been

increased.

We have already demonstrated that the implementation of the above change

(using a reciprocation procedure) improves the predictive quality of the

visbreaker paradigm. However, we have yet to demonstrate that our proposed

procedure does not transform the given network into a parrot-like machine that

captures the outgoing data from the neural network's memory field. This

phenomenon often results in a discrepancy between the quality of the network

output in respect of seen and unseen data. In other words, although the network

produces an excellent match for the recall process, the predictive quality of the

test set (unseen data) is often poor. One natural idea for dealing with this is to

measure the RMS error of both seen and unseen input sets. If the RMS errors of

both recall and test processes have been reduced, then the network is a reliable

apparatus, otherwise the computational results are suspect and the given

network has to be re-trained.

We have provided two additional charts. Figure 5-2A and 5-2B compares

the actual visbreaker's conversion data with those predicted by the reciprocated

network. The minimum and maximum conversion values of 13 to 28 volume

percent are well within the historical data obtained from both cycle-l and the

cyc1e-2 of the visbreaking operations.
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Figure 5-3A and 5-3B compares the actual versus predicted results of the

combined residue plus gas oils make. In this case the minimum and maximum

values of 75 and 90 percent reflect a realistic range for the residue plus gas oil

recovery from the vacuum tower of the visbreaker unit.

The results obtained thus far are in line with the actual plant data reported

by other researchers (Kuhn, 1979 and Maple, 1993). Furthermore, the following

graphs attempt to demonstrate how the network reciprocation procedure has

resulted in an improvement in the predicting quality of the adaptive visbreaker

paradigm. Once again, we emphasise that the graphs are based on actual plant

data obtained from the cycle-2 of the visbreaking operations.
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Another important property of the reciprocation procedure is the

preservation of the original data range. In other words, a data set that is removed

from a training cycle may enter another training cycle, if its presence can

contribute toward a reduction in prediction error. Thus, a reciprocated network

should be capable of recognising a variety of data patterns. In this respect, it is

desirable to widen the volume conversion range to account for the variation in

the unit's severity. Given these complexities, it is not surprising that often the

neural network system can not produce an exact match.

Lastly, in order to examine the validity of the paradigm's response, we have

prepared the following graph:

Conversion, Residue, and CCR
Residue+GasOils

Number of daysConversion

1(!)-.---------........- .....
V 86

°65
L

45

%25

5-............~..........~.........~..............1IM

Figure 5-4 Reciprocated Paradigm's Response to Unseen data (cycle-2) for

48 days of continuos operation. Simultaneous prediction of Volume

Conversion, Residue + Vacuum Gas oil make and Predicted CCR of the

visbreaker bottom.



A multi-response paradigm is required to produce meaningful, accurate

results. Here, the basic idea is to see if the predicted values are in line with the

real world data. The above chart relates the adaptive visbreaker paradigm's

prediction of the conversion, residue + gas oils to the CCR of the visbreaker

bottom. It shows that using the actual data set properties, the predicted value of

the CCR increases with an increase in volume conversion (and decreases when

the residue + gas oil increase). Since the CCR content of the feed is expected to

be concentrated in the visbreaker's bottom residue, the reported pattern in the

above Figure is in fact an accurate account of the CCR disposition in the

visbreaking process.

It is interesting to note that there are several contradicting theories

regarding the CCR disposition (or asphaltenes formation) across the visbreaker

unit (Giavarini et ai, 1989). The increase in the CCR level can be as a result of:

Feed CCR

Feed Quality (Paraffinic, Aromatics, Metal Content, Sulphur, etc.)

Operating Conditions

and other unknown parameters.

Non the less, the most important issue remains to be the effect of

asphaltenes content of the visbreaker feed. That is, an increase in asphaltenes in

the feedstock reduces the yield of white products obtained from the visbreaking

process.

In summary, from the materials presented in this section, we conclude that

the computational results produced by the visbreaker paradigm correlates with

experimental data obtained from the cyc1e-l and cyc1e-2 of visbreaking

operation..
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5.2 Sensitivity Analysis

Modelling has always been a way of understanding the structure and function of

a system. The purpose of model building is to explain, predict, or control a

system. Businesses use different models for different reasons. The purpose of

building a visbreaker model is to simulate the visbreaking process in order to

understand the economics associated with its operations. Often, data in multi­

criteria decision-making problems are imprecise and changeable. Therefore, an

important step in many applications of simulation modelling is to perform a

sensitivity analysis on the performance of the model. In this respect, the basic

idea is to re-train and expose the model to various stimuli. This is to establish

the limitations of the model in predicting the process yields. The method

employed for this study consists of the following steps.

The sensitivity analysis concerns the re-training of the visbreaker model.

This is to establish the limitations of the model in predicting the process yields.

The visbreaker's process yield is of course dependent on the feed quality and

unit's operating condition. The network stimuli are Conradson Carbon Residue

(CCR) and the average soaker temperature, often expressed as the process

severity. The visbreaker feed tank is regularly sampled and tested for the CCR

content. This is because CCR is one the most important property of the

visbreaker feed. CCR affects both the process yield and the quality of the

visbreakate that need to be blended into the marine fuel oil. The sensitivity

analysis on the adaptive visbreaker model consists of the several stages. The

basic idea is, however, to re-train the network, expose the AVP to stimulus such

as CCR and temperature, record and analysis the results.

This is explained below:

Stagel - Data Preparation and Network Training

As stated previously, the pre-processed data from PI system represents 141 days

for cycle-l and 48 days for cycle-2 of the visbreaking operations. For the

purpose of the sensitivity analysis, the model is re-trained twice. In the first re­

training, only half of the data sets from the first cycle are used. For the second
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training, all the data from the second cycle are used. The idea is to measure the

network's prediction error when training data sets are vastly different.

Essentially, the training process of AVP is similar to the method described in

chapter 3. The nature and number of input and output nodes is also unchanged.

Stage2 - Network Testing Procedure

The model has been exposed to two stimuli: temperature, to represent the

process severity, and Conradson Carbon Residue to represent the quality of

feedstock. As stated above, the severity of the visbreaking process is often

expressed as the average soaker temperature in degrees Celsius. The

temperature range has been extended to measure the network's prediction error

when the model is exposed to the data falling beyond the range previously seen

by the AVP. The re-training and testing on each visbreaking cycle is carried out

independently.

Stage3- Network Response

The response is defined as the visbreaker,s conversion, expressed as the volume

percent of the white oils obtained from the atmospheric tower of the visbreaker

unit.

Stage4 - Presentation of Results

Results are shown in the following four graphs. The results are self-explanatory.

For the sake of clarity, however, further explanations are given below:

4-1 : Network Response when Stimulus is reaction "Temperature"

Results are shown in Figure 5-5, Figure 5-6.

Figure 5-5 - Re-trained model uSIng data from cycle-l of the visbreaking

operations.

The model was tested by varying the unit's severity from 400 to 450 QC.

The network's response and conversion in volume percent, at the gIven

temperature, have been calculated and recorded.
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It is clearly shown that conversion increases with an increase in the reaction

temperature. The straight line is the linear trend.

Figure 5-6 - Re-trained model using data from cycle-2 of the visbreaker.

This is similar to the Figure 5-5, except that the data from the second cycle of

visbreaking has been used. As before, the variations in the unit's severity and

the model response to the change in the soaker temperature have been shown in

this figure. It is clearly shown that conversion increases with an increase in the

reaction temperature. The straight line is the linear trend.

The charts depicted on the transparency paper show the percent of absolute error

of prediction calculated for each visbreaker cycle(s). This is to demonstrate how

the error is distributed. It is clearly shown that the error increases at both side of

the temperature range (where there is less data point). The straight line is the

linear trend.

4-2 : Network Response when Stimulus is feed "CCR"

Similar work has been carried out to show the effect of varying the CCR of the

visbreaker feed on the unit's volume conversion. In this respect, the model has

been exposed to the variation in the feed's CCR. Results are shown in Figure 5­

7 and Figure 5-8. As before, both visbreaking cycles has been used to

demonstrate how the variation in the feed CCR will affect the volume

conversIon.

Figure 5-7 Re-trained model using data from cycle-l

The model was tested by varying the feed's CCR from 17 to 25 weigh percent

(WT). The network's response and conversion in volume percent, at the given

CCR, have been calculated and recorded.

Figure 5-87 Re-trained model using data from cycle-2

The variations in the feed's CCR in weight percent and the model response to

this stimulus have been shown in this Figure. The charts depicted on the

transparency paper show the percent of absolute error of prediction calculated

for each visbreaker cycle.
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Stage5 - Analysis of Results

The results are summarised in the following Table.

Table 5-1 Error Summary

Source of test data Cycle - 1 Cycle - 2

No. of original data 71 48

set

A - Average of No. of Error No. of Error

absolute error % in data sets 0/0 data set 0/0

temperature range

400-410 QC 6 54.3 4 100.0

410-420 QC 11 4.0 11 13.8

420-430 QC 27 1.9 14 2.3

430-440 QC 31 3.7 23 4.2

440-450 QC 8 88.8 6 84.8

Mean of vol% 18.78 20.49

converSIon

Confidence at 95% 0.27 0.81

B- Average of No. of Error No. of Error

absolute error % in data sets 0/0 data sets 0/0

CCRrange

17-19 WT% 6 52.0 4 75.0

19-21 WT% 37 3.0 16 7.3

21-23 WT% 32 3.9 33 2.3

23-25 WT% 8 74.2 5 78.0

Mean of vol% 16.82 19.51

Conversion

Confidence at 95% 0.26 0.74

As expected, the above figures shows that the prediction error decreases with

the increase in the number of data sets used in training of the network. This is
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valid for both temperature and CCR stimulus. More importantly, the prediction

becomes unreliable towards the outer limits of the range of the input data.

Another interesting observation is the limitation of the model to accurately

predict the residue-cracking yield outside the temperature range seen during the

training process. Using the statistical values shown above, the lower and the

upper limit on the conversion with the confidence of 95% is 18.8 to 19.3 %.

This corresponds to a severity of 429 to 433°C, which is normally the

temperature range, applied for this type of applications. Beyond this range, the

prediction error increases radically. It is worthwhile to mention that severity of

the visbreaking process is limited by over- cracking reactions, when the yield

pattern changes violently. This of course affects the fuel oil stability; a

phenomenon that will be fully discussed later in this chapter.

It should be noted that the primary objective of this exercise is to confirm

the sensibility of the results produced by the model and whether the model's

behaviour conform to the real world of visbreaking operations. From a practical

standpoint, it is known that increasing the process severity produces more white

oils. Conversely, feedstock with the high percentage of CCR will yield very

little white oil. In other words, feedstocks with a low CCR are preferred.

In summary, it can be concluded that results produced by re-training the

model conform to the real world of residue upgrading scheme presented in this

thesis.
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5.3 Interaction with the global refinery LP model

Since the interaction with the global LP model is one of the most important task

of an integrated decision support system, let us to recap the work done so far.

Using artificial neural networks and a genetic algorithm, we have custom-made

a paradigm capable of predicting the yields of the visbreaking operations. As is

seen earlier, the key issue in using the neuroengineering concept concerns the

generalisation and the practicality of our decision support system. We have

already discussed the validity of the model's findings and demonstrated that the

paradigm's response and computational results are in line with the experimental

data obtained from the plant. Accordingly, the roles or application of the

adaptive visbreaker paradigm can be categorised as follows:

1- To be used as an integrated simulator/optimiser:

This is to predict the visbreaking yields and to measure the economICS of

visbreaking operations.

This application helps the refinery planners to simulate the visbreaking

operation and fuel oil blending systems and thus set correct targets that affect

production as well as scheduling, including tank capacity management.

2-To be used as a vehicle to improve the accuracy of the global refinery LP:

This is to produce yield patterns that can be used in the visbreaker sub-model of

the global refinery LP.

This application improves the accuracy of the refinery LP model and thus helps

the refinery planners with the crude evaluation and selection process as well as

the global optimisation of the refinery.

Consequently, this section attempts to quantify the value of the system's

decision parameters and to provide some insight into the real-world application

(in the framework of the roles described above) of the adaptive visbreaker

paradigm.



145

AVP - As an integrated simulator/optimiser model

In a neurodynamic environment, the quality of the system response needs to be

economically quantified (Ozden, 1994). A systematic approach is to optimise

the fuel oil blending module whenever the visbreaker paradigm produces data

that are substantially different from the existing ones. The accuracy of these

values depends on the computational hardware employed.

The operation's profit itself is a function of a multi-variable system, described

below:

• The profit associated with selling the visbreaker's product.

• The profit associated with selling the marine fuel oil.

• The cost associated with purchasing the visbreaker's feed and fuel oil

blending components.

The task is to evaluate the economICS of the visbreaking operation by

changing the decision parameters of the model. In essence, this concerns

changing the unit's operating condition or feed quality. In this particular case,

we intend to investigate the effect of changing the unit's severity of operation.

The problem solving approach is shown below:

Goal: Evaluate the economics of the visbreaking operation.

Decision Parameter to change: Visbreaker's severity as represented by the

average soaker temperature.

Stage-I: Obtain the product pncIng from OilNet (Oil&Gas information

network) and other sources such as the Petroleum Economist journal or New

York Mercantile Exchange.

Stage-2: Calculate the streams' value and volume balances using the global

refinery linear program.
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Stage-3: Data Management (PI, Excel, Visual Basic)

Stage-4: Neural Network Fabrication-Topology formation

Stage-5: Learning, Network Reciprocation, Calibration & Training

Stage-6: Neural Network Production

Stage-7: Fuel Oil Recipe- Optimisation

Stage-8: Computational results

Stage-9: Iteration to calculate the economics as a function of unit severity

Using the blending matrix presented in the Table 4-9, we have produced

economic data related to the operation of the adaptive visbreaker paradigm.

These are presented in the following tables. The refinery stream prices are in

fact the shadow prices generated by the global refinery linear program (GLP). In

this respect, we have produced a mathematical model of a complex refinery

running 100,000 barrel per day of Arab crude. The selling price of petroleum

products was obtained from the Petroleum Economist (PE) journal (average ­

first half 1996). For the sake of consistency, the selling price of all products is

assumed to remain constant throughout this study. The estimated price of the

various refinery products is given below:
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Table 5-2 Product pricing

Product Usage Price $/ton Source

Crude Oil Crude Tower 94 PE

Gasoline Final Product 183 PE

Jet Fuel Final Product 180 PE

Diesel Final Product 171 PE

Marine Fuel Final Product 90 PE

Refinery Fuel Furnace Fuel 40 GLP

FCC Diesel Marine Fuel Oil Cutterstock 169 GLP

FCC Residue Marine Fuel Oil Cutterstock 59 GLP

It can be seen from the above table that the selling price of the white products

(Gasoline, Jet, and Diesel) is much higher than that of the marine fuel oil. The

objective is to blend the visbreaker's bottom residue to a final marine oil

specification, minimising the usage of the white products (cutterstock) and thus

maximising the total operating profit.

The above prices are used in the integrated simulator/optimiser for the

blend optimisation. At this stage, the model is ready to provide the product

yield, properties and economic data related to the visbreaking operations. The

investigation will evaluate the effect of increasing the unit's severity on the

residue make and properties. In other words, by changing the unit's operating

condition, we will measure the effect of increasing the temperature T, while the

feed rate per day of operation TRP, feed quality fq , and soaker average pressure

P remain constant. This is shown below:

System Input I = (5.2)

where;

fq = feedstock quality

Uc = unit's operating conditions



Operating condition = Uc = rr?1

TRP = Transit period in s.m-3

T= Temperature in QC

P = pressure in PSIG

(5.3)
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In this respect, we have used the reciprocated paradigm to predict the

visbreaking yields and properties of the bottom residue, when the temperature is

the only stimulus to the neural network system. A total of 10 cases were used.

The results generated by the reciprocated visbreaker paradigm were subject to

evaluation by the GRG2 optimisation package on a personal computer. The

times taken to process these ten cases are shown in the Table 5-3.

Table 5-3 Time used by the Computer to Process The Model

Stage Time - Minutes

Neural Network Fabrication & Preparation

Data Preparation, Data pre-processing 45

Topology Formation, Initial Training 129

Network Reciprocation 57

Neural Network ProductionlResponse

Recipe generation & Optimisation per case 11

Reporting & recording 14

It can be seen from the above table that once a neural network is formed,

trained, and calibrated, several cases can be run in a relatively short period of

time.
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The adaptive visbreaker's response is in the form of a matrix as presented in

Table 5-4, below.

Table 5-4 Experimental results from the Adaptive Visbreaker Model

(variable =reaction temperature)

Case Temperatur Conversion CCR wet Residue Make Operating Profit

e in Degrees Volume % % VOL% (Sales-Purchases-

F (C) Operating expenses)

in 1000 $ per day

1 780(415) 15.35 31.6 82.2 29.865

2 785(418) 15.88 31.19 83.4 30.087

3 791(421) 16.38 33.01 78.76 30.93

4 795(424) 16.80 33.7 77.15 31.340

5 801(427) 17.40 35.59 73.05 31.729

6 807(431) 18.21 37.33 69.64 32.965

7 811(433) 18.83 37.58 69.18 34.870

8 815(435) 19.37· 39.11 66.47 35.110

9 817(436) 21.89 39.76 65.39 35.01

10 819(437) 22.09 41.08 63.29 34.167

It is known from thermodynamic theory as well as empirical studies, that

increasing the furnace (or soaker) temperature results in an increase in the

severity of the reaction, which intensifies the process of hydrocarbon

decomposition. The results presented in the above table are in line with the

empirical studies and the theory of thermal cracking. Furthermore, it indicates

that increasing the temperature results in an increase in the volume conversion.

The growth in the overall operations profit is also attributable to the increase in

the conversion of black oil to white products.
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In summary, the computational results presented above indicate that the

operations profit increases with an increase in the operating severity and white

oil production. However, increasing the reaction temperature beyond a certain

temperature may result in polymerisation of the cracked molecules and thus

asphaltenes formation. The increase in the asphaltenes affects the Conradson

Carbon level and the storage stability of the fuel oil. As a result, the dispersion

of the asphaltenes and dilution of the Conradson Carbon require additional

amount of white oils. Consequently, this results in the quality imbalances. To

obviate this difficulty, and to meet the stringent quality limits, the system

optimiser needs to use increased volume of white oils which in turn results in a

decline in the operating profit. Graphically, this is shown using Figure 5-9 to

illustrate the effect of increasing the unit's severity (temperature) on volume

conversion and CCR (weight %) of the residue.

Conversion and CCR vs. Operating Condition (ex: Table 5-4)
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Figure 5-9 The effect of changing the paradigm's decision parameter ­

increasing the severity (Temperature) increases conversion and residue

CCR.
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Figure 5-10 is to illustrate the effect of increasing the unit's severity

(temperature) on operating profit (visbreaking process + fuel oil blending).

Operating Profit vs. Operating Condition (ex: Table 5-4)
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Figure 5-10 The effect of changing the paradigm's decision parameter ­

increasing the severity (Temperature) affects the operating profit.

The information given above is an excellent example of how an integrated

knowledge-based system can assist scientists and engineers to evaluate the

technical as well as the monetary value of their decision. Additionally, an

integrated simulator/optimiser system is a valuable planning and scheduling tool

that can be used to estimate the operating targets such as feed rate, severity,

cutter type, inventory, , and other important scheduling parameters.

The neural network's response to the variation in the soaker pressure was

found to be negligible, the reason for which was found to be in the input data

used in the training of the adaptive visbreaker paradigm. An examination of the

data sets obtained from the first 141 days of visbreaker's operation shows little

change in the pressure pattern.
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Lastly, due to the variation in the residue content, hydrocarbon

composition, metallo-organic compounds such as, nickel, vanadium, sodium,

and potassium of crude petroleum, the visbreaking yields of various crude oils

were found to be vastly different. This of course affects the white oil production

and ultimately the refinery's profit. Consequently, refinery's crude mix and

purchasing policy needs to be revised.
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AVP - As a vehicle to improve the accuracy of the global refinery LP

As mentioned earlier, the major goal of this study is aimed at improving the

efficiency and accuracy of the refinery's planning systems and tools and in

particular, the global refinery LP model that is used to evaluate the refinery's

feedstock, and to optimise refinery operations. Accordingly, it is expected that

the visbreaker' s sub-model of the global refinery LP uses the same yield pattern

that is generated by the proposed reciprocated visbreaker paradigm. This is to

provide a crude-dependent visbreaking yield thus enabling the GLP to account

for the visbreaking yield of various crudes and other heavy residues used as the

visbreaker's feed. Since these models are run independently, some

computational method needs to be developed.

The method developed for this thesis is to produce a crude dependent

correction vector that can change the visbreaking base yield of the GLP. This

correction vector should be inserted into the GLP's matrix as a column vector X

, Xn ), where the elements in bracket are the corrective

coefficients of visbreaking yields. Using a crude's physicochemical property

such as CCR, the dependency of the vector X with the associated crude oil can

be established. The importance of the CCR and its relationship with the

residue's asphaltenes are to be discussed in the next section, but for the purpose

of clarification, some description of this term is given below.

One of the most important characteristics of the· visbreaker' s feedstock is

the Conradson Carbon Residue (CCR). CCR is measured by a test used to

determine the amount of carbon residue left after the evaporation and pyrolysis

of an oil under specified conditions, expressed as weight percent (American

Society for Testing Materials AST~ D-189). Additionally, the bunker fuel oil

produced from the visbreakate should meet (among other requirements) the

CCR specification stipulated by the international standards. Against this

background, and for the purpose of creating a dependency, this thesis employs

CCR as the dominant variable affecting the visbreakability of a crude.
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Accordingly, a procedure to update the visbreaking yields (visbreaker sub­

model) of a GLP has been developed. This is highlighted below (for the sake of

clarity, some real-world examples are used to demonstrate the viability of the

proposed method):

Step 1 - Laboratory testing of crude petroleum to determine its physicochemical

properties including the CCR of various residue cuts.

(This is normally done at the refinery's laboratory. Alternatively, crude assay

data can be purchased from a consulting firm or another oil company.

Depending on the details and distillation cut point, an assay data bank may cost

between 300 to 1000 US $ per individual crude. The number of crude assay data

in the refinery's LP model depends on the availability of crude, process

configuration, etc. Recently, the author had an opportunity to inspect a crude

evaluation LP model of an International oil company with 250 crude assays. In

this case, the crude assay formed a matrix of250 columns by 198 rows).

The crude data bank should be accessible by both the AVP and the GLP.

Step 2 - To train the Adaptive Visbreaker Paradigm to produce a yields pattern

for various feedstocks with different CCR quality.

This is done by using the reciprocated AVP to simulate the visbreaking unit as

explained in chapter 5 of this thesis. For the purpose of this study, we have

selected 8 crudes from middle east (Dubai, Arab Light, Iran Light, Basrah Light,

Kuwait, Iran Heavy, Arab Medium, and Arab Heavy) having an API range of 28

- 34 degrees. These crodes are available to South African refiners.

The AVP was used to produce a yield pattern for each individual crude (8 runs).

The input data covered all the available laboratory assay data on the vacuum

residue of these crodes. For consistency, the operating conditions (temperature,

pressure) were assumed to be constant. This of course, may not be the case in

real world applications, as the severity of the operation is often changed to

optimise the white oil production.
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Step 3 - To prepare a matrix of visbreaking yield for each individual crude

(obtained in step 2 of this procedure), using CCR as the dependent variable as

shown in the following Table:

Table 5-5 Experimental results from the Adaptive Visbreaker Model

(variable =Feed Quality, CCR).

Note: The visbreaking yield of vacuum residue (VR in weight percent) of

various middle-eastern crude have been normalised to 100% . The abbreviation

for the given crudes are:

DUR= Dubai

BLR = Basrah Light

AMR = Arab Medium

ALR = Arab Light

!HR = Iran Heavy

AHR = Arab Heavy

Crude Type vs. VR's CCR

ILR = Iran Light

KWR=Kuwait

Crude DUR ALR ILR BLR !HR KWR AMR AHR

CCR 19 19 21 22 25 26 27 31

% Product Yields per Crude Type

Gas 3 3 2 2 2 2 2 2

Gasol 7 6 5 5 5 5 4 4

Kero 9 10 10 9 8 8 7 5

LGO 9 9 9 9 8 8 8 6

MGO 4 4 4 4 4 3 3 3

HGO 9 9 10 11 9 10 9 8

BOT 59 59 60 60 63 64 67 72

It can be seen that the visbreaking of the vacuum residue of the above crudes

produces 7 products. Additionally, the visbreaker bottoms make (visbreakate)

increases with an increase in the CCR of the feedstock (assumed to be vacuum

residue of above erudes).
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Step - 4 Using the data from the above Table, develop the corrective

coefficients of the vector X (defined as the CCR of visbreaker feed). This is

achieved by the following methodology:

Calculate the slope b of the linear regression line through data points in an

array Y (product yield), and X (CCR) for the number of data points n , using the

following equation:

nLXY-(LX)(LY)
b = nLX'-(LXr (5.4)

Here, the slope is the vertical distance divided by the horizontal distance

between any two points on the line, which is the rate of change along the

regression line.

Dsing the above equation, the slope of 7 lines representing 7 visbreaker

products from 8 crudes can be calculated.

Next, the base yields are assumed to be from the crude with the lowest CCR, in

this case, using Dubai crude with the VR's CCR of 19% (first column of Table

5.5). We recall that the basic idea is to insert the base yield into the GLP's

visbreaker sub-model and to change these yields with a change in the CCR of

crude's VR, using the correction vector X. Accordingly, a change in the CCR

of the visbreaker feed affects the visbreaking yield of the global refinery LP.

The method applied in generating the correction coefficients (elements of

vector X) is to use the slope b to linearise the yield pattern produced by the

adaptive visbreaker paradigm. The difference between the highest and lowest

linearised yield is the correction coefficient for that particular product. The

following example illustrates how the correction coefficient for the visbreaker

bottom (visbreakate) has been generated:
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The yield pattern produced by the adaptive visbreaker paradigm is shown in

Table 5.5. The required data arrays are:

Crude DUR ALR ILR BLR IHR KWR AMR AHR

CCR% 19 19 21 22 25 26 27 31

I...B_O_T_%......1_59_.......1_59__1_6_0_.....1_60_.......1_63__1...6_4__167

Using equation 5.4 calculate the slope of the linear regression line through data

point CCR and BOT (visbreaker bottom or visbreakate). In this case b = 1.0518.

The linearised yields are calculated as follows:

Linearised Yield of a crude = (CCR of crude - Base CCR) * b + Base Yield

Using the above expression, the linearised yield of the visbreakate can be

calculated. This is shown below:

Crude DUR ALR ILR BLR !HR KWR AMR AHR

CCR% 19 19 21 22 25 26 27 31

I BOT% 1
59.0 1

59.0 1
61.1 1

62.1 1
65 .3 1

66.4 1
67.4 1

71.6

Clearly, it can be seen that the yield penalty by moving from a crude with the

VR's CCR of 19 to a crude with the VR's CCR of 31 is equal to (71.6 - 59 =

12.6 % or simply, 12.6/ (31-19) = 1.0518. Expressed in percent (incremental)

visbreakate make for an increase of 1 CCR.

This value is in fact the correction coefficient used in the correction vector X.

By repeating the same procedure, we can now generate the correction

coefficient(s) for every product produced from the visbreaking of vacuum

residue of various crude as listed above (Table 5-4). This is illustrated as

follows:
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Table 5-6 Correction Coefficient for Vector X (Yield Change Vector for

a Change in feed's CCR)

Visbreaking Product Correction Vector X, for 1 CCR Change

(expressed in percent)

Gas - 0.0047

Gasol - 0.1972

Kero - 0.3039

LGO - 0.3547

MGO - 0.1016

HGO - 0.0896

BOT +1.0518

Step - 5 Modify the visbreaker sub-model of the global refinery LP to include

the correction vector X next to the column representing the base visbreaking

yield. This is a simple task and it can be done by inserting a column labelled

CCR (to represent the correction vector X) into this sub-model. Additionally,

the modified sub-model should include an equality row to declare the CCR of

the base yields. The basic idea is to adjust the base yield by the CCR

differentiation, adding the elements of vector X to the base yields of their

respective products. This is further explained by the following example:

Lets assume that a refinery is running a 100 % Dubai crude and wishes to

examine the visbreakate make if Dubai crude is replaced with the crude from

Kuwait. To achieve this, it is necessary to calculate the delta CCR between

Dubai and Kuwait crude. Using the correction vector and the delta CCR, the

new yields can be formed. This shown in Table 5-7:
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Table 5-7 An example of using the Correction Coefficients to account for

the visbreaking yields of the Kuwait crude.

DUR Correction New Yields

Base Vector X For Kuwait Crude
Yield

Having a VR's CCR of

26

CCR 19 Delta CCR %

= 26 -19 = 7

New Yield % = Delta CCR * Correction Coefficient + Base Yield

Gas 3 - 0.0047 2.97

Gasol 7 - 0.1972 5.62

Kero 9 - 0.3039 6.87

LGO 9 - 0.3547 6.52

MGO 4 - 0.1016 3.29

HGO 9 - 0.0896 8.37

BOT 59 +1.0518 66.36

It can be seen that using the proposed mechanism it is possible to evaluate a

combination or blend of crude oils. Using the mixed integer capability (MIP) of

the global refinery LP it is also possible to evaluate a "mixed bag" or a crude

parcel (a cargo consisting of several crudes), where the whole parcel is either

selected or rejected.

Further refinement of the above sub-model is the addition of a row to alter the

unit's capacity with the type of crude processed. This is to account for the "coke

forming" property of a crude's VR which reduces the visbreaker's cycle length

(discussed in section 2.2 of this thesis). To include this feature, the correction
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vector needs to be extended to include a new element representing the "coke

forming" property.

A simplified example of the visbreaker sub-model is shown in the following

Table. In this example, RRR is a row identifier, followed by a text showing the

name of visbreaker's product. BAS is a column heading to include the base

yields. The heading XXX is a column heading to represent the correction vector

X. Two different feedstock under FEED 1 (Vacuum residue) and FEED2 (De­

asphalter tar) are classified as the feed to the visbreaker sub-model. As

discussed the coke formation results in a decrease in the visbreaker's cycle

length. This is calculated by the row 19 (RI9) of the following Table.

Table 5-8 A sample of the visbreaker sub-model of the global refinery LP

model that is used in crude evaluation.

RRR xxx

** BAS CCR FEED1 FEED2

**
R01 VACUUM REI DUE 1. 0000

R02 DEASPHALTED TAR 1.0000

R03 LOSS 1. 0250 -1. 0000 -1. 0000

R04 OFF GAS -0.0091 0.0010

R05 PROPANE -0.0081 0.0008

R06 PROPANE BALANCE -0.0081

R07 ISO BUTANE -0.0044

R08 IC4 BALANCE -0.0044

R09 N BUTANE -0.0044

RIO NC4 BALANCE -0.0044

Rll C5-330 NAPH -0.0661 0.0003

R12 VISBR GAS OIL -0.0678 0.0005

R13 VISBREAKER FLUX -0.0900 0.0009

R14 VISB LIGHT VAC GAS OIL -0.0777 0.0012

R15 VISB HEAVY VAC GAS OIL -0.0980 0.0015

R16 VISBREAKER BOTTOM -0.6100 -0.0062

R17 CHARGE BALANCE ROW 1. 0000 -1.0000 -1. 0000

R18 CCR OF BASE YIELDS 22.0000 1.0000 999.0000 999.0000

R19 VISB CAPACITY 1. 0000 0.0100

R20 CCR REPORT 1. 0000

R21 AVE FEED CCR 22.0000 1. 0000

R22 PLT FUEL MMBTU 0.1500

R23 POWER KWH 1. 0150

R24 STEAM MLBS -0.0890

R25 COOL H20 MGAL 0.6910

R26 S02 CONTROL LIMIT 0.0001
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Other rows and columns represent customised features of the LP model. In the

example above, row 20 and 21 are for reporting purposes. Row 22 to row 26

represent the plant's utility consumption and sulphur Di-oxide emission control.

It is clear that the yield pattern obtained from the adaptive visbreaker

paradigm can be used to equip the global refinery LP with the capability of

differentiating between the visbreakability of various crude. As a result, the

GLP can be used to economically evaluate various feedstocks. This is shown

below.

In the following example, the significance of using different crude with

different visbreakability is demonstrated. In this case the yield pattern produced

by the AVP has been copied to the refinery global LP model. Accordingly, using

the refinery's global LP model the economics of processing 100,000 bbl per day

of Arab Light (ALR) versus Iran heavy (IHR) at different visbreakate make can

be calculated. This is shown in the following graph:

Visbreakate Make vs Margin
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Figure 5-11 The effect of changing the Visbreakate make of different crude.

It can be seen from the above graph that the refinery margin is higWy sensitive

to the visbreakate produced by two different petroleum crudes. The deterioration

in the visbreaking yield produces a ±0.19 $/bbl penalty for Arab Light and ±0.15

$/bbl for Iran Heavy. The overall penalty (by moving from Arab Light to

process Iran Heavy with high visbreakate yield) is ± 0.28 $/bbl change in the

daily margin. For a 100,0000 bbl/day refinery, this value translates into $28000

per day of operation. This amount is of course significant and can influence the

decision making chain involved in the crude evaluation and selection process.

As seen in Table 5-4, the adaptive visbreaker paradigm can be employed to

produce a detailed picture by predicting the residue make as well as the quality

of the visbreaker bottoms. Accordingly, to maintain an accurate refinery LP

model, a frequent update of the GLP's correction vector is necessary. This of

course requires an input from the adaptive visbreaker paradigm.

The material presented in this section shows the feasibility of the

application of the adaptive visbreaker paradigm to predict the cracking reaction

yields. Additionally, the proposed integrated system allows dynamic monitoring

of the residue properties as applicable to fuel oil blending optimisation. It was

also demonstrated that through interaction the global refinery LP model can be

equipped to differentiate between the visbreaking yield of various crude oils.

Besides the known parameters affecting the visbreaker's operations, there

are other practical constraints, which are often difficult to define, quantify, or

model. These are discussed in the forthcoming section.
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5.4 Practical Considerations and Future Research

Direction

In the last section of this chapter, we discuss another important characteristic of

the visbreaking operation; namely fuel oil stability.

A stable fuel oil is a complex solution of asphaltenes and malthenes.

According to the Institute of Petroleum IP375/IP390 test methods, the

precipitation of asphaltenes from a residual fuel during storage and handling

causes severe difficulties, which in extreme cases can render the fuel unfit for

use. Once out of solution, it is extremely difficult to re-peptise the asphaltenes

into their original state.

The precipitation of asphaltenes results in further polymerisation and sludge

formation. Consequently, the use of such an unstable oil causes filter plugging

and other mechanical problems.

From the practical standpoint, this is a disaster. Firstly, the instability

phenomenon may occur up to several days from the date of manufacture. Thus a

product that meets all the specification-related tests on the date of transfer to the

customer may be unfit to use when needed. Such products must be returned to

the refinery for correction. This can be constrained by storage tank limitations.

Secondly, to re-peptise an unstable fuel oil, the severity of the visbreaking

operations must be greatly reduced to ensure that the freshly-made products are

able to re-establish and stabilise the colloidal suspension. Undoubtedly, the

financial loss is enormous. In view of the above, the stability of visbroken fuel

oil is generally accepted as the criterion limiting conversion of the visbreaking

process.

The adaptive visbreaker paradigm is not equipped to predict the stability of

the final fuel oil recipe, for the following reasons:
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• There are no universally agreed upon criteria (or definitions) of stability.

• The stability of the fuel oil is often measured using different laboratory test

methods.

• The thermal and chemical ageing of the fuel oil can not scientifically (or

mathematically) be related to the feed's quality, operating conditions, or

blending procedure (addition of aromatics followed by olefinics and lastly

paraffinic materials).

To expand on the fuel oil storage stability problem and its possible causes,

we provide the following explanations.

In the previous chapter, we commented that, beyond a certain point, an

increase in the severity of the operation often results in, firstly, asphaltenes

precipitation and secondly, an increase in asphaltenes formation. As discussed,

asphaltenes are polycyclic and the most polar compounds found in crude oil,

and in their natural form, these highly complex macromolecules are dispersed in

the gas oils and other components of visbreaker feed. In general, the asphaltenes

and high molecular weight aromatic malthenes form a stable colloidal system.

This complex system can be visualised as the cross-linked or associated

condensates of a multi-component system. This is made of individual molecules

of aromatics, paraffins, naphthenics, macrocyclics and heterocyclics, in which

the bridges or links can be cleaved under selective chemical or physical

conditions. Transition metals such as nickel and vanadium are also present in

the macrocyclic or heterocyclic systems in the form of porphyrin or non­

porphyrin. Free radicals sites of asphaltenes are associated with the aromatic

moieties of the asphaltic skeleton. The concentration of these organic radicals in

asphaltenes is relatively high, of the order 107 to 108 radicals/g asphaltenes. The

chemical activity of these radicals is of considerable importance with regard to

the polymer, mesophase and coke-forming propensity of the asphaltenes

(Khulbe et aI, 1996). For simplicity, often the petroleum fraction which is
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benzene soluble and normal pentane insoluble IS generally referred to

asphaltenes.

According to Hus (1981) "the micelle consists of core asphaltenes to which

high-molecular weight aromatic hydrocarbons from the malthenes fractions are

absorbed. To these high-molecular weight hydrocarbons, other hydrocarbons

with somewhat higher hydrogen content are absorbed, until the micelles at their

periphery contain hydrocarbons with a hydrogen content which is about equal to

that of the continuous malthene phase" .

In a stable fuel oil, the system of absorbed malthenes is such that all

absorption forces are saturated. The micelle is then in physical equilibrium with

the surrounding oil phase. In other words, the asphaltenes are peptised.

The absorption equilibrium can be disturbed in several ways, for instance,

by adding hydrocarbons with a higher hydrogen content (aliphatic, or paraffinic

hydrocarbons) and by increasing the temperature. Part of the absorbed

compounds then dissolve in the continuous malthene phase, whereby the

asphaltene cores precipitate.

During the visbreaking process, the continuous oily phase is cracked to

small molecules. Also, new asphaltenes are formed from malthenes, and the

malthene phase composition changes in character, so that eventually the

equilibrium between asphaltenes and malthenes is disturbed to such an extent

that part of the asphaltenes will flocculate. At this point, the cracked fuel oil

becomes unstable.

In recent years, scientists have tried to introduce an early-warning system

enabling refiners, firstly, to select an optimum visbreaker severity and secondly,

to produce a stable fuel oil blend. The problem is, however, compounded by the

fact that there is no universally accepted test method to approve or reject a batch

of the fuel oil. In general, the stability of fuel oil is a function of:

• Feed-stock quality
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• Operating condition

• Components used in blending the fuel oil

The experimental work by Castellanos et al (1991) with the Maya and

Isthmus crude's at the Azcapotzalco refinery in Mexico city, suggests that the

operating conditions (in term of the temperature and residence time) are key

elements of the visbreaking operation. Their kinetically-derived model uses up

to ten pseudo-components to characterise and categorise the various

hydrocarbons according to their carbon number and hydrogen content. The

model is, however, blind to the residue quality and its consequent effects on

fuel oil blending.

According to C.J. Kuo (1984) from Singapore Petroleum, the stability of

the fuel oil is also affected by the coke formation phenomena. He states that the

petroleum coke formed during cracking apparently also affects the stability of

visbroken fuel oils. When the coke is freshly formed, the particles are so fine

that they can be easily suspended in the petroleum oil phase and partially, if not

all, pass through the filter of the hot filtration test (JP370). Pilot plant tests also

indicate that the resins present in the feedstocks act as the peptising agent and

therefore their presence results in a higher visbreaker conversion and better fuel

oil stability. Based on the colloidal solution theory of phase equilibrium, Kuo

has defined a "stability factor" that is quality dependent. The experimental work

with Chinese and Arab crudes indicates that the stability factor SF is closely

related to the visbreaker's feed quality as shown below:-

SF = (A + R ) / (8 * CCR)

where

A - Aromatics, in weight percent

R = Resins, in weight percent

S = Saturates, in weight percent

CCR = Conradson Carbon Residues, in weight percent

(5.4)
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The CCR in the above equation is intended to reflect asphaltenes, as they can be

correlated by the following empirical equations (suggested by Kuo):

For atmospheric residues, asphaltenes ASPAR, weight percent are estimated

from:

ASPAR = 0.2854 CCR + 0.0049 CCR2 (5.5)

For vacuum residues, asphaltenes ASPVR, weight percent are estimated from:

ASPVR" = 0.3373 CCR + 0.0058 CCR2 (5.6)

The process weight percent conversion at 662°F (350°C) CONY, is obtained

from the following equation:

CONY = - 0.7922 CCR + 41.804 (SF) (5.7)

Where: SF = Stability Factors as defined in the equation (5.4)

The empirical equations presented above are of great value to a refiner, when

the feedstocks quality, or unit operating condition is fairly constant.

Unfortunately, this is not the case in the real world. Moreover, some scientists

believe that various correlation's made of paraffin content, asphaltenes, and

characterisation factor K of the feedstocks cannot fully describe the behaviour

of certain feedstocks. Others believe that the metallo-organic compounds of the

residue also improve the condensation and polymerisation process leading to

asphaltenes formation (Holmes, 1993).

In order to illustrate the effect of asphaltenes' precipitation, two

microscopic photographs of the stable and unstable fuel oil have been prepared.

In this respect, the specimen of colloidal suspensions is photographed using a

laboratory microscope. These photographs are presented as Exhibits-1 and 2 in

Appendix-5 of this thesis.

From the theoretical arguments presented above, we conclude that the

process of thermal decomposition of the heavy hydrocarbons is indeed of a
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complex nature. Thus far, there exists no kinetically-based model that can

satisfactorily predict the visbreaking yields or fuel oil stability.

It was demonstrated that an ANNs system based on neuroenglneenng

technique can predict the yields of the visbreaking process unit. As stated

earlier, an artificial neural network is a massive processing element that can

learn from historical data in order to predict the future trend. If a refiner can

categorise and monitor the relevant parameters (involving feedstocks, the

visbreaking process and fuel oil blending) then the knowledge-based system

presented in this thesis can be expanded to accommodate fuel oil stability.

In this respect, it is not necessary to change the structure or the topology of

the adaptive visbreaker's paradigm. What we are proposing is in fact an addition

of a neuro fuzzy element to the AVP. Fuzzy logic is an area of research based

on the work of L.A. Zadeh (1973). It is a departure from classical two-valued

sets and logic that uses "soft" linguistic system variables and a continuous range

of truth values in the interval [0,1], rather than strict binary (True or False)

decision and assignments. Fuzzy logic is used where a system is difficult to

model exactly (but an inexact model is available), is controlled by a human

operator or expert, or where ambiguity or vagueness is common (Yager et ai,

1994).

In this respect Zadeh wrote:

"More often than not, the classes of objects encountered in the real world do

not have precisely defined criteria of membership. For example, the class of

animals clearly includes dogs, horses, birds, etc, as its members, and clearly

exclude such objects as rocks, fluids, plants, etc. However, such objects as

starfish, bacteria, etc, have an ambiguous status with respect to class of

animals".

A typical fuzzy system consists of a rule base, membership functions, and

an inference procedure. Neuro fuzzy combines the fuzzy logic and neural
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network approaches to predict the so-called the grey or dusky areas. The

rationale behind combining fuzzy logic and neural networks is because the

fuzzy systems have no memory by themselves. Moreover, the learning

capability of a hybrid fuzzy-neural net is superior to that of fuzzy logic alone

(Harris et aI, 1996).

In general, fuzzy sets divide their universe of applications into three parts,

the positive (or right), the negative (or left), and a borderline (or a centre,

usually graduated). In our case, these parts can be assigned to different sediment

levels, representing the fuel oil stability status.

The proposed neuro fuzzy complex is an enhancement to the existing

knowledge-based system. In this respect additional learning enables the system

to act as the "Early Warning System" that tracks the operating condition and the

feed quality to predict the fuel oil stability. The input data required in building

the neuro fuzzy complex is given below:

• Feed Composition (AR, VR, TAR, Hdon)

• Feed Quality (K factor, API, PNA, CCR, Asphaltenes, VBI)

• Operating Condition (TRP, Soaker Temperature)

• Fuel Oil Blending ( Residue CCR, API, VBI, Vol %, Cutterstocks %,

PNA and stability test pattern)

Using the Flame Ionisation technique, the average boiling point of heavy

hydrocarbons can be measured. In this respect, the American Standard for

Testing Materials, test method D 2887 can be utilised to determine the boiling

range distribution of petroleum fractions. This is needed to calculate the K

factor. As defined previously, K factor is an empirical value that provides an

insight into the composition of feedstocks and products related to petroleum

refining processes.
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Gel Permeation Chromatography can also be used to determine the

asphaltenic, paraffinic, and volatile aromatic content of heavy fuel oil. In

addition, the fraction insoluble in n-pentane is an indication of the residue's

asphaltenes content (Bakashi et aI, 1987). The HDON stream (see below) is an

aromatic-rich stream that can help to disperse the asphaltenes. The name HDON

reflects the hydrogen donating capability of the cracked gas oil, which has a

high aromatic content. Scientifically, the chemistry of hydrogen migration from

materials such as the fluid catalytic cracker's cracked gas oil has not been

proved. Nevertheless the addition of such rich aromatic materials should

improve the asphaltenes' dispersion to form a more homogenous colloidal

solution.

In this case, the fuel oil stability is defined as the total sediment in residual

fuel as governed by the Institute of Petroleum IP 375/390 test methods. In this

respect, the total sediment is the sum of the insoluble organic and inorganic

material which is separated from the bulk of the sample by filtration through a

Whatman GF/A type filter medium, and which is also insoluble in

predominantly paraffinic solvent. Generally, a total sediment content of 0.1

weight percent is the maximum acceptable limit.

Often a problem can be split into sub-problems such that solving the sub­

problems leads us to solving the problem. This method can be used to model the

fuel oil stability problem. In this respect, let us assume that our aim is to model

Y as a fuel oil stability. Mathematically, for a model of

Y = f(xI , X2 ) , the relationships XI and x2 belong to the universe UI and U2

respectively. Each considered universe of discourse, Ui , can be covered by an

arbitrary number of fuzzy subsets, and the belongingness of the independent

variable, Xi ,to each particular fuzzy subset can then be described by the

Membership Function (MF), which attains numerical values from 0 to 1. In Our

case, three fuzzy linguistic variables (Right, Left, and Centre) are formed.

The relationships can be introduced using:
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Or

IF xl IS MFli THEN y=wi

Where MFij (j =1,2; i=1,2, ....n; n = number of fuzzy subsets) is the membership

function describing the belongingess of Xj to the ith subset of the domain

space. In this respect, the terms IF, THEN, OR, AND are often defined as the

system's production rules (Shinghal, 1992).

In the light of the above description of the neuro fuzzy complex, the goal is

to train and enhance the capability of the system to produce an appropriate

action/reaction to a given condition (Walczak et aI, 1994). Undoubtedly, the

system needs to learn the pre-defined rules based on the historical pattern (plant

data and laboratory test results).

According to Kosk et al (1992) fuzzy sets represent points in an n­

dimensional hypercube. Each edge of the hypercube represents one element of

the fuzzy set. The membership value of that element determines a point on the

edge. When all the elements of the set are considered, these points on the edges

define a point in n-space within the hypercube. If all the membership values are

o or 1 then the points define the corners of the cube. This is consistent with

Boolean logic. If all the memberships values are 1/2 then the point is the

midpoint of the cube. This violates Aristotle's law of the excluded middle, A

and not-A.

Further enhancement is an addition of the backward chaining programme

(as an Excel add-in), where the system's rules can be run in a "goal driven" way.

In backward chaining, if a piece of information is needed, the programme will

automatically check all of the rules to see if there is a rule that could provide the

needed information. The programme will then "chain" to this new rule before

completing the first rule. The programme will then again automatically test this

new rule. The logic of why the information is needed goes backward through the
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chain of rules. This is a useful tool when some laboratory fuel oil stability data

are either missing or lack the required accuracy.

Based on the three fuzzy categories of Right, Left, and Centre, we can now

devise our fuzzy rules by introducing the following expression:

Fuzzy left = Comfort Zone: This is when the visbreaker feed is low in

asphaltenes, visbreaker severity has been low, a cutterstock system with a

low paraffin solvent has been selected.

Assume that fuel oil is definitely stable.

IF < Asphaltenes is Low AND Paraffin's is Low AND Severity is Low>

THEN < Sediment is close to zero AND Fuel Oil is Stable>

Fuzzy centre - Stable State: This is when the visbreaker has been

processing a feed with low to medium asphaltenes at medium severity and

the cutterstock system contains some considerable amount of paraffinic

cutterstock. Assume that the fuel oil is almost stable (it may not be stable at

all times and under all conditions).

IF < Asphaltenes is Medium AND Paraffins is Medium AND Severity is

Medium>

THEN < Sediment is close to 0.06 AND Fuel oil is almost Stable>

Fuzzy right - Un-Stable Zone (Warning): This is when the visbreaker has

been running a high asphaltene feedstock at high severity with a

cutterstock system that contains large amount of paraffinic solvents.

Assume that fuel oil is definitely unstable.

IF < Asphaltenes is High AND Paraffin's is High AND Severity is

High>

THEN < Sediment is over 0.09 AND Fuel Oil May Not be Stable>
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The determination of the action variables is relatively straightforward, because there

are basically only three conditions or things that can happen. Specific subsets can also

be formed. Other linguistic terms (such as Very Low, Mild, and Very High) can also be

used to describe the pertinent variables in the fuel oil stability system. In this respect,

the visbreaker's severity is a multi-dimensional parameter whose 3 dimension(s) of

High, Medium, and Low can occur in the Fuzzy-Right, Fuzzy-Left, and Fuzzy-centre

parts of the proposed system. Membership functions (MF1, MF2, and MF3) of the

arbitrarily chosen three fuzzy (Low, Medium, and High) subsets of the universe of

discourse can be shown in the following diagram:

MFt=Low

Fuel Oil is Stable

Acceptable Stability State

Unstable
Fuel Oil

Fuzzy Left

Fuzzy Center

Fuzzy Right

Figure 5-12 Schematic of The Proposed Neuro Fuzzy Complex to Foresee the

Fuel Oil Stability Phenomena.
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It was previously stated that there is no universally agreed upon test or

method to measure the fuel oil's stability. As a result, the proposed neuro fuzzy

complex should be used with caution. This is because, in the visbreaker unit, a

number of reactions can take place, apart from cracking reactions. In

particularly, condensation can occur when aromatic, polynuclear aromatics, and

petroleum wax are present (Kok et aI, 1996). These condensation reactions are

largely responsible for asphaltenes formation which, at high conversion, can

lead to the production of unstable fuel oil.

Accordingly, when dealing with fuel oil stability, a safe margin should

always be kept to account for disturbances in the colloidal structure because of

prolonged storage at elevated temperature, oxidation by air, etc.

Moreover, we should note that aromaticity is not the only parameter needed

to be considered for the suitability of cutterstock (although aromatics are a

better cutterstock than olefins, and olefins are better than paraffins). It is

generally believed that metallo-organic compounds are also the cause of

asphaltene formation and precipitation (Santarelli, 1992). Because of differences

in the chemical and physical nature of petroleum residue, the stability may

change after adding other products to a stable fuel oil.

Another problem is the availability of the meaningful data required to

identify the cause and the nature of the unstable fuel oil. The following data sets

are needed:

• Daily Plant Operating Data

• Daily Plant Yield Data

• Daily Laboratory Test Data on the visbreaker products and other potential

blend components.

• Accurate records of the volume and property of each component of the blend

• Accurate records of the final blending volumes, procedure, and properties
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In our case, the research into the second cycle of the visbreaking operation

produced two instances of unstable fuel oil production. Unfortunately, due to

the inconsistency in the plant and laboratory data, and the unavailability of a

clear blending record, the real cause could not be established. Accordingly, the

results obtained from the proposed neuro fuzzy complex could not be truly

verified. In this respect, further experimental work is planned. This includes the

use of a neuro fuzzy system as the early warning system to track the operating

condition and the feed quality to predict the fuel oil stability.

As stated earlier, the work presented here is part of an ongoing research

effort, to improve the refinery's planning systems and tools employed to

increase the refinery's profitability. To achieve this objective, it is necessary to

develop a computational method to model the visbreakability of various crude

oils, simulate the visbreaking operations, fuel oil blending, and at the later stage

the fuel oil storage stability problem. A neuro fuzzy addition to the adaptive

visbreaker paradigm can act as an early warning system. However, due to

overall system complexity, data inconsistency, and some unknown parameters,

the prediction results should be treated with caution. The latter will be the

subject of future research into the stability phenomenon and asphaltene

precipitation. Recently, there have been some new and interesting research

projects to study the nature of asphaltene and its effect on the stability of

residual fuel oil (Tojima et aI, 1997). The molecular structure and properties of

asphaltene varies with factors such as the crude petroleum, processing severity,

perception mode..etc. In order to model the asphaltene perception accurately,

further research work in this field is required.
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CHAPTER 6

DISCUSSION & CONCLUSION

Summary

As reported In section 1.3 of this thesis (Motivation of the research and

objective of the thesis), since the refinery's profitability is highly sensitive to the

visbreaking and fuel oil blending operations, a further initiative to develop an

alternative method to simulate the visbreaking process, optimise the fuel oil

blending, and equip the refinery LP with the visbreaking yields of various crude

oils is well justified. Accordingly, the work done so far is summarised below:

• In the absence of complete scientific understanding of the visbreaking

operation, using a neuroengineering procedure a mathematical model of the

visbreaker model is developed (the adaptive visbreaker paradigm).

• Since the fuel oil blending can influence the visbreaking operation, firstly, a

mathematical model of the fuel oil blending is constructed. Secondly, an

integration of the AVP with the fuel oil blending model is proposed.

• To improve the predictability of the model, a network reciprocation

mechanism is developed. Statistical methods were employed to measure the

improvements claimed. Economic analysis proves that improvements

resulting from the network reciprocation procedure are significant.
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• The reciprocated visbreaker model is employed in 2 distinct roles. In the first

role, the model is used to study the visbreaking operation and fuel oil

blending, assisting the refinery planning and scheduling systems. A practical

example of this application is given in section 5.3 of this thesis.

• In the second role, the adaptive visbreaker paradigm is used to simulate the

visbreaking operation and to generate yield patterns. These data are used in

the global refinery LP model, a planning tool used to evaluate a refinery's

feedstock and to optimise a refinery's operation. To use the AVP's yield

pattern, a correction vector is developed. This is to account for the

visbreakability of individual crude oils available to a refiner. The analysis

performed shows that the proposed procedure has improved the accuracy of

the LP model. Furthermore, it can influence the decision-making chain

involved in the crude evaluation and selection process.

• The use of a fuzzy complex system as the early warning system to track the

operating condition and the feed quality to predict the fuel oil stability is also

researched. Further experimental work in this field will be also the subject of

future research into the stability phenomenon and asphaltene precipitation.

In view of the above, it can be concluded that, the work presented in this

thesis demonstrates the practicality of the methods and models developed and

comply with the objective of the research outlined in section 1.3 of this thesis.

Discussion and Conclusion

In today's competitive world, most organisations are feeling the pressure to

change. This pressure stems from such factors as the drive for profit

improvement, actions by competitors, regulatory activities, customer and

employee needs, and the introduction of new technology. In the refining

industry, profit improvement and regulatory actions clearly head the list of
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change drivers. In the past decade, the economics of the industry have been

hindered by requirements for large mandated capital expenditures, whilst

expenencIng volatile crude and refined product prices. Consequently, the

constant evaluation of available resources and the optimisation of the decision­

making process are a prerequisite to survivability. This of course requires access

to various sophisticated planning tools and systems. Against this background, in

recent years, mathematical programming and associated techniques have been

widely used as decision-making tools.

The cost of purchasing petroleum crude is the highest single cost to a

refiner. As the differential between heavy, light and sweet crude increases, the

incentive to convert the bottom of barrel becomes more attractive. According to

the Petroleum Economist (December 1995), the overall refinery conversion

margin is expected to increase from $1.65 per barrel in 1996 to $3.00/ barrel by

the year 2000. Although the forecast is based on the Salomon Brothers' recent

European market research, the situation in other parts of the globe is not far

from this forecast. Based on an analysis of refineries without conversion

capacity, the study forecasts that there could be plant closures of up to 1 million

barrels per day of refining capacity by the year 2000. Furthermore, Salomon

sees the differential between light and heavy crude increasing from less than $1

per barrel now to $2-3/ barrel by the year 2000.

Moreover, with widening light-to-heavy differentials, refiners will probably

choose to process heavier crude oils in the future. These indications coupled

with heightened environmental awareness and continued increases in distillate

demand are expected to increase interest in processing routes that improve white

oil yield and reduce production of heavy fuel oil.

According to Sloan (1991) the bottom-of-barrel conversion encompasses

two broad alternatives: carbon rejection and hydrogen addition. The selection of

the best option depends on many factors: specific crude availability, market

conditions and product distribution for existing refinery units. Previously, many

refineries had sufficient markets for heavy or marine fuel oil, so that bottom-of-
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barrel conversion was not needed. Due to the new environmental regulation this

is no longer the case. As refiners have begun to see heavier crude feedstocks, the

push to convert heavy fuel to higher value light products has become stronger.

As reported in chapter 1, the market demand for increased volumes of lighter

distillates and gasoline coincides with the lower demand for heavy fuel oil.

Therefore, conversion of the bottom of a heavy crude barrel is essential for a

refinery to remain viable. The economics of residue upgrading, based on the

real-world data, was demonstrated in chapter 1.

Among the most popular carbon rejection converSIon schemes is

visbreaking; a mild thermal cracking process aimed at reducing the viscosity of

vacuum residuum. This is done to minimise the amount of cutter-stock (light

distillate products) needed to meet the viscosity specification of the finished

product (marine fuel oil. As reported in chapter 2 of this thesis, the heavy gas oil

produced may be used as a catalytic cracker feed. Since visbreaking is limited in

severity by a number of factors, the reduction in refinery heavy residue yield is

often less than for other bottom's conversion process. However, if the refinery is

situated close to a major sea port, then the residue can be blended into bunker or

marine fuel oil.

It is estimated that visbreaking accounts for about 22% of the world's

residue upgrading units. The economics of converting the heavy residue into the

lighter and more valuable streams, coupled with the installation of a modem

visbreaker unit at the Engen Refinery in Durban, provided sufficient motive to

build a model to simulate the unit's capability and estimate the economics of the

visbreaking process and fuel oil operations. Furthermore, as discussed, the

proposed model provides a crude-dependent visbreaking yield that is used in the

refinery's global linear programme, a software employed to evaluate and select

the crude needed and to optimise the refinery's operations.

The kinetic models of the visbreaker in particular have not been widely

used by the petroleum industry. This is due to the complexity of the modem
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visbreaking process, where the relationships between the varIOUS process

parameters are often unknown or unattainable.

Due to the limitations of the kinetically-based model, an Adaptive

Visbreaker Paradigm (AVP), based on the principles of an artificial neural

network was constructed to study the visbreaking process. The neuroengineering

technique has been employed to construct an empirically-based model to predict

the yields of the visbreaking process. Since the visbreaking process is an

essential precursor to fuel oil manufacture, the proposed model has been

expanded to integrate the fuel oil blending and optimisation system.

Accordingly, the adaptive visbreaker paradigm is designed to be used for two

distinct applications. Firstly, as an integrated simulator/optimiser, to predict the

visbreaking yields and to measure the economics of visbreaking operations.

Secondly, as a vehicle to improve the accuracy of the global refinery LP. This is

to help the refinery planners with the crude evaluation and selection process as

well as the global optimisation of the refinery.

It was observed that due to fluctuations in the feedstock quality (due to

variation in crude mix) and plant operating conditions, the prediction accuracy

of the model needs to be improved. To improve the system's predictability, a

network reciprocation procedure has been devised. Network reciprocation is a

mechanism that controls and selects the input data used in the training of a

neural network system. Using a genetic algorithm, the network reciprocation

procedure minimises the system's prediction error by selecting the best available

data sets. These selected data sets are eventually used to re-train the reciprocated

network. Implementation of the proposed procedure results in a considerable

improvement in the network's performance.

It should be emphasised that any data set originating from an unreliable or

unstable unit operation should be detected and deleted during the data pre­

processing stage of the neuroengineering procedure. The network reciprocation

therefore is a procedure to continuously evaluate the valid data set and select

those data whose contributions may result in improving the quality of the
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paradigm's response. From this standpoint, network reciprocation differs from

data pre-processing or other empirical methods used to detect the data outliers.

Undoubtedly, some of outlier detection (Massart, 1995) models are useful

diagnostic and identification tools, when single and multiple outliers already

exist in the system. Unavoidably, the network reciprocation procedure becomes

a complex method to use. However, it was discussed that the network

reciprocation becomes a valuable tool when feedstocks quality is not consistent,

for example, when a refinery is evaluating or using various mixes of crude oils,

having different residue content and properties. It should be noted that this type

of model delivers its best result when it has access to a large population of raw

data. This is not a problem as the refinery operation is of a continuous nature,

and therefore there is no limit to the number of process data available to the

model. In reality however, the re-training of the model is not a simple task. This

is not due to the data limitation, but rather the integrity of data received from the

visbreaker plant, online analysers, and laboratory test results. A further difficulty

is the scarcity of methods that determine the concentrations of different reactive

species. Powerful analytical apparatus and chemical methods are expensive and

not generally amenable to on-line operation. The information they provide is

however, imperative to chose the correct operating parameters required by the

adaptive visbreaker paradigm.

The preliminary results and associated graphs presented in chapter 4 of this

thesis indicate that the implementation of the proposed network reciprocation

procedure has indeed produced a complex neural network suitable for studying

the visbreaking process. Economic analysis proves that the improvements

resulting from the network reciprocation procedure are significant.

In order to explain the performance of the visbreaking process, one must

look very closely at the fuel oil blending operation, where the blending

optimisation program produces the system's optimal blend. Consequently, due

to the complex interactions among the parameters determining the economics of

the visbreaking process and fuel oil blending, the evolution of the proposed

model to an integrated system becomes essential. This resulted in the formation
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of an integrated knowledge-based system capable of representing the real world

of the visbreaking operation. To select the optimum quantity of products, the

fuel oil blending module of the proposed model uses sophisticated mathematical

equations and an optimisation algorithm (fuel oil blending indices are presented

in Appendix -1).

The computational results produced by the model prove that the economics of

the visbreaking process is a multidimensional variable greatly influenced by the

feed quality and the operating condition. The results presented show the

feasibility of the application of an adaptive visbreaker paradigm in predicting

the cracking reaction yields. Furthermore, the model allows dynamic monitoring

of the residue properties to the point of fuel oil blending optimisation.

Besides the sensible results presented in the body of this thesis, there are

some practical difficulties associated with neurally-based models in general, and

the adaptive visbreaker paradigm in particular. Due to the variation in crude

quality (frequent change of crude and other feedstock), precision of prediction

was found to be low during the model cross validation and sensitivity analysis

phase. Further research indicates that the major element of this problem is input

data, sourced from the visbreaker plant. The wide variability in the input data

coupled with data inconsistency can influence the models learning process.

Using some pre-conditioned rule such as the proposed network reciprocation

procedure can, somewhat, improve the predictability of the network. However,

to improve the model's resolution, meaningful, consistent and coherent input

data are also of importance. Moreover, the proposed system is difficult to

operate and slow to converge. Consequently, more computational power is

desirable.

In the second role, the AVP is used to simulate the visbreaking operation

and to generate yields pattern that are used in the global refinery LP model. To

reflect the variation in the visbreakability of individual crudes available to a

refiner, a. procedure to generate a correction vector is developed. The analysis

performed shows that the proposed procedure has improved the accuracy of the
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LP model and can influence the decision-making chain involved in the crude

evaluation and selection process. The refinery LP model is one the most

important managerial decision tool used in the refinery-wide resource evaluation

and optimisation. Accordingly, an accurate refinery LP model is the centre of an

integrated decision support system.

Looking at some practical considerations in section 5.4, the fuel oil stability

phenomena were discussed. In this respect, a fuzzy model was also proposed to

act as the early warning system. In order to train, the fuzzy model, proper

monitoring of the feed quality, plant operating condition, fuel oil blending, and

tank batching records are required. These types of data are not freely and easily

available. To provide such records, sophisticated, expensive control systems and

equipment have to be purchased and installed.

In respect of the off-line modelling tools, it can be seen (Appendix -4) that

extensive time and effort have been spent to evaluate and select a suitable mix

of computational and modelling software. These include neural networks,

genetic algorithm and other tools. Undoubtedly, the application of these

software require comprehensive knowledge of refinery operations as well as

mathematical modelling and computer proficiency.

It should be noted that the foundation of the adaptive visbreaker paradigm

is based on the operation of a new visbreaker unit at the Engen Refinery in

Durban. It is, however, possible to re-train the neural network paradigm and to

learn other visbreaking process data for different working environments. In

other words, the application of the neuroengineering technique, network

reciprocation procedure, and LP correction vector mechanism is not limited to

the visbreaking operation or to the existing Engen refinery configuration. In

essence, the proposed models and procedures provide sufficient flexibility for

further refinement or use at other locations.

As a concluding remark, we may add that the application of mathematical

models such as the proposed integrated decision support system results in a
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better understanding of the refinery process economICS. In spite of their

limitations, these models are useful planning tools that are used to measure the

overall economics of the petroleum refining processes.
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APPENDIX-l

Terms Used in Blending the Petroleum Products

The petroleum refining industry, like other industry, uses terms which in most

cases are specific to the nature of their business. The major terms applied to this

project are described below:

API Gravity: Arbitrary scale for measuring the gravity or density of liquid

petroleum products (expressed in degrees), adopted by the American Petroleum

Institute (1983) . Its relation to specific gravity is shown below:

141.5
API == SPG - 131.4 (ALl)

where the SPG. is the specific gravity of crude oil; a ratio of the density of the

materials at 60° Fahrenheit (15.5C) to the density of water at that same

temperature meaning; the lower the API gravity, the more viscous or heavier the

crude oil.

Conradson Carbon Residue (CCR) : A carbon residue test method for

determining the amount of carbon (in percent weight) deposited after oil has

burned. It indicates the relative carbon-forming tendency of an oil. Accordingly,

materials with the high CCR content are classified as undesirable fuels.

Flash point : The lowest temperature at which, under specified test conditions,

a petroleum product vaporises rapidly enough to form above its surface an air-
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vapour mixture which gives a flash or slight explosion when ignited by a small

flame. The flash point of an oil is an indication of the risk of fire or explosion

associated with its use or storage. Flash point is an important specification for

various petroleum products.

The Hu-Burns (1970) method is used to blend for the Flash point using the

Flash Point Blending Index (based on conversion to the degrees Rankine)

method calculated as follows:

FLI = 10 (42.1093-14.286 * LOGIO(FL+R))

where

FLI = Flash point blending index.

FL = Flash point in Degrees Fahrenheit F.

R = Degrees Rankine = 459.69.

(A1.2)

To convert the FLI to Flash point (FL):

. F (10 ((LOGIO(FLI)-42.1093)/(-14.286))) R (A13)FL In degrees = - •

KFACTOR : Watson characterisation factor, or Kfactor is a calculated value

which has been used widely as a parameter for correlating properties of

petroleum products.

The defining equation is:

(A1.4)

Where MeABP is the mean average boiling point of the fraction in degrees

Rankine, and SPG is the specific gravity of the material; a ratio of the density of

the materials at 60° Fahrenheit to the density of water at that same temperature.

The Watson characterisation factor ranges from 9 for highly aromatic materials
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to almost 16 for the higWy paraffinic compounds. The use of characterisation

factor takes into account the major differences in charge stocks (feed). However,

the boiling range, degradation by previous cracking, entrained carbonaceous

material, metallic containment's, high percentage of nitrogen, or extremely high

percentages of sulphur are extra factors all of which influence the cracking

yields,

Pour point : The lowest temperature at which an oil will pour when chilled

without disturbance under specified conditions. It indicates the temperature

below which it may not be possible to use an oil without some heating to

maintain flow from storage.

The pour point index is calculated as follows (HPI, 1979) :

PPI = (lOOOO(PP+R)(1/0.08) ) / «140+R)(1/0.08) )

where

PPI = Pour point blending index.

PP = Pour point in degrees Fahrenheit F.

R = Degrees Rankine = 459.69.

To convert the PPI to Pour point (PP):

(A1.5)

pp . d (1/0.08) / (0.08)
ID egrees F = «PPI*(R+140) ) (10000 » - R

(A1.6)

Sulphur content: A measure of sulphur in the oil, expressed in percent weight

of sulphur. Sulphur is an undesirable product. The sulphur content of most

petroleum products is limited by environmental regulations.
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Specific gravity : The ratio of the weight of given volume of material to the

weight of an equal volume of some standard substance, in our case distilled

water at 60 degrees Fahrenheit (F) .

Viscosity : The measure of the internal friction or resistance to flow of a fluid.

The kinematic viscosity, which is measured in centiStoke (cSt) at 122 degrees

Fahrenheit (F) equal to 50°C, will be used.

The kinematic viscosity of petroleum products is converted into the viscosity

blending index by the following equation (HPI, 1979) :

VBI = (41.10743 - 49.08758(LN(LN(cSt+0.8))))

where

VBI = Viscosity blending index.

cSt = Viscosity in centiStoke at 122 degrees Fahrenheit (SOC).

(AI.7)

To transform the VBI to Viscosity in cSt at 122 degrees Fahrenheit (SOC):

Viscosity in cSt =

= (EXP(EXP(VBI-41.10743)/(-49.08258))) -0.8 (A1.8)
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APPENDIX - 2

Thermal Decomposition Theory

In addition to the quality and nature of the visbreaking feedstocks, the cracking

process is time-temperature-pressure dependent. It was the great Swedish

chemist Arrhenius, who first suggested that the temperature dependence of the

specific reaction rate, k, could be correlated by an equation of the type:

Ea
Lnk=LnA- RT (A2.!)

That is, for many reactions it is found that a plot of Ln k against j gives a

straight line. The Arrhenius equation (Holland, 1989) is often written as

k=Ae-EaIRl (A2.2)

The factor A is called the pre-exponential factor or the frequency factor; Ea is

called the activation energy, often expressed as kilo calorie per Mol.

Collectively, the two quantities are called the Arrehenius parameters of the

reaction as defined below:

A = pre-exponential factor or frequency factor.

Ea = activation energy, J/mol or calorie/mol

R = gas constant =8.314 J/mol.K=1.987 calorie/mol.K

T = absolute temperature, K

It should be noted that the temperature dependence of some reactions is not

Arrhenius-like. It is, however, possible to express the strength of the

dependence by defining an activation energy as:



2 [dLnK]
Ea = RI dl (A2.3)
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This definition reduces to the earlier one (as the slope of an Arrhenius plot) for a

temperature-independent activation energy. Thus, by using d( i) = - (rdll)

the above equation can be re-written as:

[ dLnK]
Ea=-R d(IfT) (A2.4)

which integrates to equation (A2.2) if Ea is independent of temperature.

However, the definition in equation (A2.3) is more general than equation

(A2.2), because it allows Ea to be obtained from the slope (at the temperature

of interest) of a plot of Ln k against i even if the Arrenius plot is not a straight

line.

Equation (A2.3) shows that the higher the activation energy, the stronger

the temperature dependence of the rate constant. That is, a high activation

energy signifies that the rate constant changes rapidly with temperature.

The activation energy Ea has been equated with the minimum energy that

must be possessed by the reacting molecules before the reaction will occur.

From kinetic theory of gases, the factor e -Ea I RI gives the fraction of the

collision between molecules that together have this minimum energy Ea.

Although this might be an acceptable elementary explanation, some suggest that

Ea is nothing more than an empirical parameter correlating the specific reaction

rate to temperature (Truhlar, 1978). Nevertheless, postulation of the Arrhenius

equation remains the greatest single step in chemical kinetics, and retains its

usefulness today, nearly a century later.
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The activation energy is determined experimentally by carrying out the

reaction at several different temperatures. The equation (A2.4) is then used to

1
plot the Ln k versus 1 as shown below:

Activation Energy
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Figure A2-1 Diagram to calculate the activation energy for decomposition

of hydrocarbons.

It can be seen from Figure A2.1 that the larger the activation energy the

more temperature-sensitive is the rate of reaction. A number of correlation's can

be used to estimate the activation energy; however, the determination of the

change in rate of reaction with the temperature is valid only for a specific

combination of activation energy and temperature.

The study of the thermodynamics of cracking leads to several interesting

conclusions. Considering the thermal cleavage of the members of the paraffin

series, two types of reaction can occur: dehydrogenation and true chain rupture

(Kopsch, 1995).

Schultze (1937) has represented the variation of free energy change with

temperature and composition for these types of reaction (under equilibrium

conditions) by the following equations:
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Free Energy Change of Reaction ==

11/ == -RTLnk

C n H 2n+2 =:> C n H 2n + H 2

C(m+n) H 2(m+n)+2 =:> C mH 2rn+2 + C nH 2n

(Al.S)

(Al.6)

(Al.7)

In its simplest form, the dissociation of a compound into free radicals

ICmH2rn+2 ,CnH 2n I is believed to be the most important reaction in the

visbreaking process. These electrically-neutral but highly reactive particles are

formed by scission of C-C or C-H bonds, with each fragment retaining one

of the pair of shared electrons that made up the bonds. The free radicals are

highly reactive, short-lived particles that, depending upon their size and

environment, (1) react with other hydrocarbons, (2) decompose to olefins and

smaller radicals, (3) combine with other radicals or (4) react with metallic

compounds. The hydrogen, methyl and ethyl radicals are more stable than larger

radicals, and they react with other hydrocarbons by capturing a hydrogen atom

and forming a new radical. The larger radicals are unstable and decompose to

form olefins and smaller radicals. The free-radical chain reaction is terminated

when two radicals combine or when a radical reacts with a stable metallic

compound. Alkyl chains on naphthenic or aromatic rings are presumed to react

in the same way as paraffins.

The extent to which the thermal decomposition of heavy residue proceeds

by the free radical mechanism is uncertain and cannot kinetically be proved. In

the initial stages of cracking when paraffin molecules are large, rupture may

occur at any carbon-carbon bond, and medium chain-length olefins and

paraffins are obtained. When the cracking reaction has progressed further and it

becomes more severe the smaller-chain paraffins begin to crack. The free radical

theory does not account for the production of materials heavier than feed, such

as those found in the visbreaker's bottom residue. This phenomenon is
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presumed to result from the polymerisation of olefins and condensation of

aromatics, although alkylation and other processes may also occur.

According to Fogler (1992), polymers are macromolecules made up of

monomer units. Polymers and polymerisation can be classified by 1)

composition/structure, 2) reaction mechanism, or, 3) process conditions. For

example, based on the composition/structure of polymer product,

polymerisation process are divided into two groups known as condensation

reactions and addition reactions. In condensation reactions, often two

monomers are reacted and a small molecule is formed in addition to the

polymer. However, based on the reaction mechanism there are three types of

polymerisation: chain-wise, stepwise and ring-opening. Chain-wise

polymerisation itself can be either free-radical or ionic. Free-radical

polymerisation is believed to be the major contributor towards the formation of

the molecules larger than the ones found in the feed to the visbreaker unit. The

basic steps in free radical polymerisation are initiation, propagation, chain

transfer and termination. Depending upon some known and unknown factors the

chain transfer process can be a free-radical transfer to a monomer of another

species, or to the solvent. The termination itself can be a process of the addition,

or disproportionation (Morrison et aI, 1992).

Certainly, the empirical chemical kinetics provide sufficient theories (such

as the Integrated Rate Law) to reveal some aspects of the complex reactions, for

example, the dissociation of the heavy hydrocarbons. However these theories

are often based on the process stoichiometries, the order of the process, and a set

of dynamic variables, often difficult to isolate and impossible to control

(Levenspiel, 1972).

According to Dente & Ranzi (1992), it is quite evident that termination

reactions are in fact the reverse of chain initiation ones; moreover, radical­

additions to double bonds can be related to radical-decomposition reactions.

Most reactions involve radicals, but some purely molecular reactions also play a

significant role. However, the key variable in the thermo-kinetic theory remains



194

the amount of heat required to initiate the process of visbreaking. It is noted that

the thermal cracking of the crude's heavy residue results in multiple chemical

reactions with unknown stoichiometry. Another complicating factor is the

variation in the feedstocks quality, which varies with the petroleum crude type

and the way that it is processed in other upstream refinery units such as:

• Crude distillation unit

• Vacuum distillation unit

• Propane De-asphalting unit

Research on the behaviour of various feedstocks (Brauch et al. 1996b)

during the visbreaking indicates that sulphur as well as the asphaltenes contents,

density and viscosity play a great role in the visbreaker,s conversion. They have

concluded that there is a good deal of "individuality" in the behaviour of various

feedstocks used in the visbreaking process.

Beside the physical and chemical properties of the feedstocks, the

visbreaking process is in fact a series of multiple and parallel reactions, which

are temperature, pressure and time dependent. In its simplest form, in order for a

single reaction such as the one presented in the equation (A2.6) to take place at

about 752°P(400°C), that is to give negative value for the free energy change,

the molecules must be the size of dodecane or (n = 12) or tridecane (n = 13).

Similarly, dehydrogenation of the lighter molecules such as heptane can occur

only at temperatures in excess of 1112pO(600°C). On the other hand the

equation (A2.7) is thermodynamically possible for all paraffins above propane

at the temperatures encountered in commercial visbreaking units. The typical

carbon number(s) versus API gravity for the visbreaker's products is illustrated

in the Table A2-1.
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Table A2-l Typical carbon number of the Visbreaker' products

Feedstocks [ClO••••••••••••••••••••••n] API 6-13

Gasoline(light naphtha) [C5 ........................7] API > 35

Distillate [C8......................10] API > 20

Residue (bottom) [CI0 ......................n] API < 12

The theory of free energy can be extended to estimate the feasibility of a

chemical reaction (Nelson, 1958). The common values of ~f (change in free

energy as defined above) for hydrocarbon processing is tabulated below:

Table A2-2 Reaction Feasibility

~f < 0 Reaction is well possible

~f = 0 ~f< 6 Reaction May be possible/ Doubtful

~f > 10 Reaction is in-feasible.

In respect of the feedstocks' s characteristics, the degree of viscosity and

pour point reduction is a function of the composition of the residua fed to the

visbreaker unit. Heavy feedstocks achieve pour point reduction from 15-35° F

and the final viscosities from 25-75% of the feed, depending on the severity of

the visbreaker. A high asphaltene content in the feed reduces the conversion

ratio at which a stable fuel oil can be made (Gary, 1984), which results in

smaller changes in the properties.

The properties of the cutter stocks used to blend with the visbreaker

bottoms also have an affect on the severity of the visbreaker operation. The

molecular structures of the compounds in petroleum which have boiling points

above 1000°F (540+ °C) are highly complex and historically have been
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classified arbitrarily as oils, resins, and asphaltenes according to solubility in

light paraffinic hydrocarbons.

It is generally believed that asphaltene formation from a predominately

paraffinic feed is less severe when compared to that of aromatics and naphthenic

feedstocks. This claim, however, does not always hold, especially when the

feedstocks is subjected to high temperature and long residence time (Levenspiel,

1972). High pressure steam sometimes is used to control the residence time at a

given level of pressure and at a given feedstocks flow rate. Generally, the steam

injection helps to reduce the coking effect.

Many investigators (Rhoe et aI, 1979) believe that the asphaltenes are not in

solution in the oil and resins but are very small, perhaps molecular size solids,

held in suspension by the resins. There is a definite critical ratio of resins to

asphaltenes below which the asphaltenes will start to precipitate. During the

cracking phase, some of the resins are cracked to lighter hydrocarbons and

others are converted to asphaltenes. Both reactions affect the resin-asphaltenes

ratio, the resultant stability of the visbreaker bottom product, and serve to limit

the severity of operation.
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APPENDIX-3

Artificial Neural Networks - An Overview

It was stated earlier that artificial neural networks are essentially the pillars of

the neuroengineering technique that is used to develop the adaptive visbreaker

paradigm. Thus, it is necessary to provide an elementary view of the key

elements, terminology, topology, and infrastructure of the neural networks

system. Building an intelligent system that can model human behaviour has

captured the attention of the world for years. Therefore, it is not surprising that a

technology such as neural networks has generated great interest. In essence,

neural networks are the quintessential complex adaptive system used in many

real-world applications.

The perspective taken in this section and throughout this project is largely

that of a scientist, emphasising the application potential of neural networks and

drawing comparisons with other techniques that have similar motivations. As

such, at any point, the focus will be on the application of neural networks'

systems in a planning environment in the petroleum refining industry. In short,

this thesis is not concerned with the physicochemical characteristics of the

brain's neurons, neurology, biophysics, or bio-mathematical methods. It rather

blends the principles of thermo-kinetics with those of artificial neural networks

to address a chemical processing problem in the refining industry.

This section begins with a review of what neural networks are and why they

are so appealing. Also referred to as connectionist architectures, parallel

distributed processing, and neuromorphic systems, an artificial neural network

(ANNs) is an information-processing paradigm inspired by the way the densely

interconnected, parallel structure of the mammalian brain processes information.

Artificial neural networks are collections of mathematical models that emulate

some of the observed properties of biological nervous systems and draw on the
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analogies of adaptive biological learning. The key element of the ANNs

paradigm is the novel structure of the information processing system. It is

composed of a large number of higWy interconnected processing elements that

are analogous to neurons and are tied together with weighted connections that

are analogous to sYnapses.

Learning in biological systems involves adjustments to the synaptic

connections that exist between the neurons. This is true of ANNs as well.

Learning typically occurs by example through training, or exposure to a set of

input/output data where the training algorithm iteratively adjusts the connection

weights (sYnapses). These connection weights store the knowledge necessary to

solve specific problems.

Although ANNs have been around since the late 1950's, it wasn't until the

mid-1980's that algorithms became sophisticated enough for general

applications. Today ANNs are being applied to an increasing number of real­

world problems of considerable complexity. They are good pattern recognition

engines and robust classifiers, with the ability to generalise in making decisions

about imprecise input data. They offer ideal solutions to a variety of

classification problems such as speech, character and signal recognition, as well

as functional prediction and system modelling where the physical processes are

not understood or are highly complex. ANNs may also be applied to control

problems, where the input variables are measurements used to drive an output

actuator, and the network learns the control function. The advantage of ANNs

lies in their resilience against distortions in the input data and their capability of

learning. They are often good at solving problems that are too complex for

conventional technologies (e.g., problems that do not have an algorithmic

solution or for which an algorithmic solution is too complex to be found). They

are often well suited to problems that people are good at solving, but for which

traditional methods are not.
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There are multitudes of different types of ANNs. Some of the more popular

include the multilayer perception which is generally trained with the

backpropagation of error algorithm, learning vector quantization, radial basis

function, Hopfield, and Kohonen, to name a few. Some ANNs are classified as

feedforward while others are recurrent (i.e., implement feedback) depending on

how data is processed through the network. Another way of classifying ANN

types is by their method of learning (or training), as some ANNs employ

supervised training while others are referred to as unsupervised or self­

organising. Supervised training is analogous to a student guided by an

instructor. Unsupervised algorithms essentially perform clustering of the data

into similar groups based on the measured attributes or features serving as

inputs to the algorithms. This is analogous to a student who derives the lesson

totally on his or her own. ANNs can be implemented in software or in

specialised hardware. For scientific applications, neural networks can be thought

of as an architectural solution to common planning problems such as forecasting

and optimisation. Just as in building architectures, there are many tastes and

styles. Broadly speaking, artificial neural networks can be divided into two

classes: those that involve learning and those that do not. The neural networks

that involve learning and adaptation are sometimes called recurrent networks, or

backpropagation networks. The neural networks that do not involve learning are

sometimes called feed-forward nets.

Here, we note that the foundation of the Adaptive Visbreaker Paradigm is

based on the prediction capability of the neural network system, that in turn,

requires Training; a process that in this research work is defined as follows:

"Training is a process used by the neuroengineering technique to teach

the adaptive visbreaker paradigm, to learn, and to forget".

It is equally important to point out that any system with the capability to

learn, and to forget, should also have a capability to recall what it has learnt.

This definition leads us to conceptualise artificial neural networks as an

information processing system.
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Today's research in neural computation is largely motivated by the

possibility of making artificial computing networks. Yet, as the term "neural

network" implies, it was originally aimed more towards modelling networks of

real neurons in the brain.

Although the biology is and has been the inspiration, much of the

technology is trying to mimic nature's approach in order to acquire some of

nature's capabilities (Holland, 1975). Assumptions that are not biologically

accurate are used in building artificial, as opposed to biological, neural systems.

The real motivation for studying neural computation is its robustness, flexibility,

and simplicity. Its potential applications lie of course mainly in computer

science and other applications such a chemical processing.

The neural networks field is also known as neurocomputing, associative

networks, collective computation, connectionism, and probably many other

things. For the purpose of clarity, the term artificial neural networks system

(ANNs), or neural nets are freely used throughout this research work.

Next, we will briefly discuss the anthropomorphism, or the structure of the

neurons themselves. The brain is composed of about 1011 neurons (nerve cells)

of many different types. Figure A3-1 is a schematic drawing of a single neuron.
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Figure A3-1 Schematic drawing of a typical genetic biological neuron.

It can be seen from the above diagram that, tree-like networks of nerve fibre

called dendrites are connected to the cell body or soma, where the cell nucleus is

located. Extending from the cell body is a single long fibre called the axon,

which eventually branches or arbourises into strands and sub-strands. At the

ends of these are the transmitting ends of the synaptic junctions, or synapses

connected to another neuron. The axon is the nerve cell process that conducts

impulses away from the cell body. The axon of a typical neuron makes a

thousand synapses with other neurons. Although we could look at many other

types of neurons, this one gives us the functionality and vocabulary required to

present the analogies. In fact, there is a close analogy between the structure of a

biological neuron and the artificial neuron presented in Figure A3-2 of this

Appendix..
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Generally, a neural network is characterised by :

Architecture: Pattern connections between the neurons.

Algorithm: Method of determining the weights on the connections.

Activation function.

Since that which distinguishes artificial neural networks from other

approaches to information processing provides an introduction to both how and

when to use neural networks, let us consider the defining characteristics of

neural networks further.

A neural network consists of a large number of simple processing elements

called neurons, units, or nodes. Each neuron is connected to other neurons by

means of directed communication links, each with associated weight. The

weights represent information being used by the network to solve a problem.

Neural network can be applied to a wide variety of problems, such as storing

and recalling data or patterns, classifying, grouping, performing general

mapping from input pattern to output pattern, or finding solutions to constrained

optimisation problems.

Each neuron has an internal state, called its activation or activity level,

which is a function of the inputs it has received. Typically, a neuron sends its

activation as a signal to several other neurons.

Figure A3-2 illustrates a typical neural network. In this diagram, neuron Y

receives inputs from neurons Xl, X2, andX3. The activation's (output signals) of

these neurons are x}, X2, and X3, respectively. The weights on the connections

from Xl, X2, and X3 to neuron Yare Wl, W2, W3, respectively. The ANNs input,

y-in , to neuron Y is the sum of the weighted signals from neurons Xl, X2, and

X3, i.e. ,
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(A3.1)

The activation y of neuron Y is given by some function of its network input,

Y = f (y-in), e.g., the logistic sigmoid function (an S-shaped curve) or any of a

number of other activation functions.

(A3.2)
1

j(x)== l+exp(-x)

It is important to note that a neuron can send only one signal at a time,

although that signal is broadcast to several other neurons. It was mentioned

earlier that neural networks consist of processing elements and weighted

connections.

!
W1

! !
W3

/
Figure A3-2 A simple artificial neuron

Warren McCulloch and WaIter Pitts (1943) designed what is generally

regarded as the first neural networks. These researchers recognised that

combining many simple neurons into neural systems was a source of increased

computational power.
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In line with the aforementioned statement, let us suppose that neuron y is

connected to neuron ZI and Zz, with weights VI and vz, respectively, as shown

in the Figure A3-2. Neuron Y sends its signal y to each of these units. However,

in general, the values received by neurons ZI and Zz will be different, because

each signal is scaled by the appropriate weight, VI and Vz. In a typical neural

network, the activation Zl and Zz of neurons ZI and Zz would depend on inputs

from several neurons, not just one, as shown in the Figure A3-3. Although the

neural network shown here is very simple, the presence of a hidden unit,

together with a non-linear activation function, gives it the ability to solve many

more problems than can be solved by a network with only input and output units

(Sanchez et al, 1992). On the other hand, it is more difficult to train (i.e., find

optimal values for the weights) than a network with hidden units.

( Output Layer)

( &idden Layer)

!
W3

!
W1

-------------­
~

Figure A3-3 A Multi-layer artificial neuron
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A multi-layer neural network can also solve more complicated problems than a

single layer network and thus is the most likely candidate to be used in the

initial design of the adaptive visbreaker paradigm. The three principle elements

to be included in the design phase of the AVP are:

Topology - how the ANNs is organised into layers and how these layers are

connected.

Learning - how information is stored in the AVP.

Recall - how the stored information is retrieved from the network.

After a description of the terminology used to describe neural networks systems,

each of above mentioned elements will be examined in turn.

Terminology

Neural network's terminology remains varied, with a standard yet to be adopted.

For clarity in further discussion, this thesis adopts the terminology proposed by

Simpson (1991), described below.

Each neural network system has at least two physical

components/connections and processing elements. The combination of these

two components creates a neural network. In addition to the connections and

processing elements, threshold functions and input/output patterns are also basic

elements in the design, implementation, and use of artificial neural network

systems.

Input and output vectors (patterns) are often denoted by subscripted capital

letters from the beginning of the alphabet. For input patterns, this is shown as:



and for the output patterns as follows:

k=1,2, ..... ,m

k=1,2, ..... ,m

(A3.3)

(A3.4)
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The processing elements in a layer will be treated in the same manner, where the

collection of processing elements in a layer form a vector, and these vectors will

be denoted by the capital letters from the end of alphabet. The input layer of

processing elements is denoted by:

(A3.5)

where each xi receives input from the corresponding input pattern component

aki The next layer of processing elements will be Fy then Fz (if this layer is

necessary). This is illustrated in the Figure 2.10

(bkl' bk2, bk3 bkp ) = Bk

..... 1 ~

~

1 ~
(akl' ak2, ak3 akn ) = Ak

Figure A3-4 Illustration of the Artificial Neural Networks Terminology.

The second layer of the network (in this case the output) can be represented as

follows:
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(A3.6)

Weight connections are stored in weight matrices. The weight matrix W for the

above network is presented in the Figure A3.5.

................. Wnp

Yl Y2 Y3

W
ll

W
12

W
13

W
21

W
22

W
23

................. ...............

................. ................ ..................

W n1 W n2 W n3

WFx

Figure A3-5 Illustration of the Weight Matrix.

Topology

It was mentioned earlier that a neural network consists of one or more layers of

processing elements interconnected by weighted connections. The arrangement

of the processing elements, connections, and patterns into a neural network is

referred to as topology. Among the most common topologies are; Instars,

Outstars, (Grossbeg, 1989), ADALINE (Adaptive Linear Neuron), and

MADLINE (Multiple ADALINE),.....etc.

In addition to the common topology, both ADALINE and MADLINE use the

least mean square (LMS) algorithm.
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Learning

The most appealing quality of the artificial neural networks system is their

ability to learn. Learning, in this context, is defined as change in connection

weight values that results in the capture of information that can later be recalled.

The methods used to adjust these connection weights are often referred to as the

neural network algorithms. There are two distinct types of learning:

• Supervised.

• Unsupervised.

In supervised learning, the neural network system has access to the correct

information, in other words, the answers are already provided. The system then

tries to learn how to solve the given problem in order to produce the right

answer. Learning is the most important part of the system training. The process

of supervised learning is sometimes referred to as teaching the network, which

thus acts as a machine learning device conditioned to provide the desired

response to the stimulus provided by the training data. The goal of supervised

method is to find a model - a general procedure - that will correctly associate

the inputs with targets. In essence, learning requires historical data that

describes sets of corresponding process input and outputs during a certain

period of time (Joubert et aI, 1996).

In unsupervised learning on the other hand, there is no information that

could lead to the correct answer. The system has to guess and produce a pattern

based on what it knows. The learning equations (often referred to as the learning

rules) are in fact rules of algorithms applied to the networks. Inherent in any

unsupervised learning system is an optimisation (or decision) criterion that is

used for the evaluation of the result at the end of each cycle. This, however, is a

very general one, such as minimisation of energy or distance, maximisation of

profit, etc.

Among the most common learning rules (Zahedi, 1993) are:
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• Hebb rule

• Delta rule

• Generalised delta rule

• Kohonen rule

Recall

Recall is a procedure to retrieve the information already stored in the neural

network. The quality of the retrieved information is directly related to the

method used in training the neural network. An alternative term is "system

production" or production, often used to describe the neural networks response

to the system's stimuli.

So far, we have defined artificial neural networks as information processing

models and have characterised their nature. In the remainder of this section, we

explain:

• The major application of neural networks

• How to build a neural network model

• How a neural network model works

We begin by listing the major applications of the neural network model.

According to Werbos (1994), artificial neural networks have dual use as

mathematical tools used for tasks ranging from reducing pollution through to

political forecasting, and as models of intelligence. Among many of the

problems which have already been successfully addressed by using neural

computing are:

- Stock Portfolio Adviser

- Market Timing

- Credit Risk

- Word Recognition

- Object Recognition

- Jet Engine Diagnostics

- Paint Formulation
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- Predicting Business Failure

It is this predicting capability of artificial neural networks systems that

enticed us to use neural networks in this research work. According to

Illingworth et al (1990), neural computing builds models based on historical

data. Artificial neural networks systems can be used in any situation where there

is an unknown relationship between a set of input factors and an outcome, and

for which a representative set of historical examples of this unknown mapping

is available. The objective of building a model is to find a formula or program

that facilitates predicting the outcome from the input factors. This is particularly

useful when modelling non-linear chemical process systems (Bhat et aI, 1990).

The models that are expected to produce a prefect match are often referred

to as the physical, as oppose to the behavioural applications, where the outcome

is often an approximation (Berger et aI, 1996). Some problems are physical in

nature, meaning that although there are some underlying physical relationship

between input and output, the exact correlation between predicted and real

outputs can not be quantified. The adaptive visbreaker paradigm is an example

of such a neural networks model.

Neural network model building requires careful planning at every stage.

The required stages to model an ANNs are summarised as follows:

Required stages in paradigm building

Defining the system objectives

Collecting data

Domain dependent processing of raw data

Selecting, training, testing, and validation sets

Analysing and transforming data

Variable selection

Network construction, topology, and training

Model verification.
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Defining the system objectives

It is necessary to clearly define the system's objectives, influencing parameters,

perspective, and solution methodology. Computer software and other analytical

tools are required both in the data pre-processing and model building stages.

These need to be identified and evaluated.

Collecting data

The process of learning requires historical examples, and is based on the set of

data used to prepare these historical examples. The data collection and pre­

processing therefore plays a great role in the quality of the response or system

performance. The process of collecting data also involves verifying it.

Generally, there are several key points in this process. Three in particular are:

• Data formats: essential and recent data

• Field Usage: relevant, and related data

• Data Availability: consistent, and economically viable to acquire
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Domain-dependent processing of raw data

Data pre-processing is another important step in the design and construction of

neural network models. This process evaluates the raw data and provides a

reduced but more tractable representation of the real world samples. There are

two levels of data pre-processing required when trying to build a neural network

model. The first level is domain-dependent pre-processing in which relevant

features are derived from the raw collected data. The second level is generic in

nature and is used to transform and shape the data into a useful form for

interfacing with the neural network system.

Selecting; training, testing, and validation sets

The purpose of developing a neural network model is to produce a formula that

captures essential relationships in a data set. Once developed, this formula is

used to interpolate from a new set of inputs to corresponding outputs. In neural

nets, this is called generalisation. The training set is the set of points that are

used to fit the parameters of the model. The test set measures how well the

model interpolates. It is used as part of the model building process to prevent

over-fitting. The validation set is used to estimate model performance in a

deployed system.

Analysing and transforming data

Converting data into a form suitable for building effective models is an iterative

process that interacts with the model development process. At this stage, the

critical issues are: Structuring or formulating the problem, and transforming

enumerated data.
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Variable selection

Picking the right input variable is critical to effective model development. A

good subset of variables can substantially improve the performance of a model.

The challenge is finding ways to pick good subsets of variables. A variety of

techniques have been suggested for variable selection. Most of them fail to

produce the best possible results. One of the most common approaches to

variable selection is step-wise linear regression widely used in neural

computing.

Network construction, topology, and training

Neural network models are referred to as "paradigms". There are many types of

neural network models, but the majority of applications to date use some form

of Multi-Layer Perceptions (MLP) due to its wide applicability and the

compactness of its representation. According to Gelenbe (1992) the multi-layer

ANNs is widely used in generalisation problems, where a network is expected to

correctly predict outputs for inputs previously unseen during learning. Learning

algorithms need to avoid over-fitting to successfully generalise. Over-fitting (or

over-training) can be explained as a consequence of parameter redundancy; that

is, the system has more parameters than needed for the solution of the problem.

In curve-fitting, we might see this in a polynomial with too many terms: it can

make a "better" fit to a set of data by adapting to, rather than smoothing out, the

"wiggles" caused by noise. Backpropagation, stochastic backpropagation, and

cascade learning, among the many, are examples of the learning algorithms used

in generalisation problems.

Paradigm verification

Perhaps one of the biggest problems with neural net paradigms is how to

quantify their respective performance. Statistical models often use the T-test to

establish confidence intervals at the 90% or 95% certainty level (Willemse,

1994). Similar approaches can be taken with linear paradigms. In this case, the
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residual errors are approximately normally distributed. If the residuals meet this

requirement, the T-test can often be applied to either neural or linear models.

When performing this test, it is essential that the data selected for validation has

the same distribution as the main population. This is one of many ways to report

on the model's performance and improving acceptance of the neural network

paradigm.

A neural network is a massive system of parallel distributed processing

elements connected in a graphical topology. By defining proper processing

functions for each node and defining associated weights for each interconnect, it

is possible to solve an optimisation problem relatively rapidly. System operators

can consider a neural network as a large-dimensional non-linear dynamic

system, which is defined by a set of first-order non-linear differential equations.

In its simplest form, however, the output St of a linear neural network system is

a linear combination, of its inputs. Using this analogy, let us define a neural

network system that at temperature t, receives an input vector Xt and predicts a

desired response dt using a weight vector Wt as shown in the following

diagram:
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Figure A3-6 Illustration of the Actual Output vs. Predicted Output.

During the training process, input patterns and the corresponding desired

responses are presented to the linear combiner. In this example, an adaptation

algorithm automatically adjusts the weights so that the output responses to the

input patterns will be as close as possible to their respective desired responses.

There are many ways to generate approximations to the system's characteristic

surface. One of the most popular method for adapting the weights is the simple

least mean square (LMS) algorithm, often called the Widrow-Hoff delta rule

(Fausett, 1994). This algorithm minimises the sum of squares of the linear errors

over the training set. The linear error Et is defined to be the difference between

the desired response dt and the output St . In essence, the minimisation of the

Et over the regions Xt and St should provide optimality for the desired output

dt . This is a simple example of how the learning algorithm can be used to train

a network. Even though leaming algorithms have successfully been used for

many recognition problems, it is not clear if they can generalise well to

previously unseen examples. As explained above, these algorithms tend to
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minimise error of fit to learning samples. This may result in memorising the

learning sample including any noise present. Such memorisation leads to poor

prediction performance on unseen inputs, a phenomenon known as over-fitting.

Secondly, some of these learning algorithms do not provide robust stopping

criteria to terminate the learning process. The typical stopping rules are based on

a given number of learning iterations and a target value for the total error fit,

which are to be supplied by the end user. An inexperienced end user has no

guidance in selecting these values, leading to the selection of very small or very

large values for the parameters. A large value for the target error of fit or small

value for the number of learning iterations leads to under-fitting of the learning

sample.

Finally, generalised learning algorithms are expected to filter out the noise

present in learning samples. This implies that learning should terminate before

the error of fit becomes less than the noise present in the learning sample. If the

level of noise is known a priori, the end user can set the target value of the error

of fit for terminating the learning algorithm. However, in the absence of any

information about the noise level, learning becomes more difficult.

Due to the difficulties in learning for generalised problems, there is a need

to evaluate the learning algorithms. An experimental framework to evaluate the

algorithms can be defined around a set of generalisation metrics, and the

framework should include the ability to measure the generalisation ability of

different algorithms. Generalisation metrics are quantitative performance

properties that characterise the ability of an algorithm to generalise previously

unseen input vectors. A sample metric is the per-pattern error produced by a

trained network over a set of testing samples. The trained network is the result

of discovering the weights generated when using a given learning sample for a

learning algorithm. Obviously, the testing samples are a set of previously unseen

input-output vectors.
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Other examples of metrics for generalisation performance include accuracy

of prediction, shape of the learned function and ability to avoid over-fitting.

Accuracy in prediction of a test sample measures the number of correctly

classified individual patterns within a sample, relative to the size of this testing

sample. Accuracy of prediction is more appropriate than pattern per square error

in classifications where the output takes discrete values. The shape of the

learned function provides global information about the result of learning over

the input domain.

The generalisation ability of learning algorithms depends on a number of

parameters, called performance parameters. Some performance parameters are

common to backpropagation and stochastic backpropagation. These include the

number of learning iterations (also termed as nepoch), network size, and

generalisation problem class (Gail et aI, 1992).

Other parameters are specific to the algorithms. These include learning rate,

momentum (for backpropagation), delta, stability count, starting temperature,

and cooling factor (for stochastic backpropagation).

The algorithm-specific parameters are specified with the description of the

algorithms. The number of learning iterations determines the quality of the

learned weights. A low number of learning iterations can lead to under-fitting,

since each iteration changes the weights by a small amount. For example, a

network with no hidden nodes in the layers enables learning algorithms to

generalise to non-linear functions. However, a large number of the hidden nodes

also makes it easier to learn the noise and other peculiarities in the learning

sample.

There are many ways to evaluate the effectiveness of a learning algorithm.

When information over a wide range of target data is in hand, then the measure

of the fitness is probably an attractive proposition (Gerald et aI, 1983). At this
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(A3.7)Error

stage, we introduce the system's error or miss-match as the measure of the

effectiveness of the learning algorithm.

Yap-Top
Yap *100

where

where Yap is the observed value of output 0 from training pattern p , and Tap IS

the desired or target output.

Another method often used to measure the pattern recognition ability of the

neural network is to calculate the R-squared value. The R-squared values are

often used to evaluate the estimates obtained from different prediction models.

Creese & Li (1995) have compared the output of a neural network model with

that of a linear regression model. They have shown that in linear regression

analysis, R-squared, the coefficient of determination, is a measure of the effect

of independent variable X in reducing the variation in Y, and is defined by the

following equation:

Ss-Se
Ss (A3.8)

where

Ss = measurement of the variation in the observation Yi (i 1,2, ....n)

when no independent variable~ as input is considered.

Se = measure of the variation in Yi when the use of independent input

variable X is considered. In this respect, the equation (2.32) can be written

as;

~ -2
Ss= ~ (Yi - Y)

I
(A3.9)

in this case the Y can be shown as



- LYi
y==­

n

and when X is in use:

where

Y k = the estimated value using the model

Y i = the actual value

Y = the mean value

for 0 S Se S Ss

then 0 S R
2

S 1

(A3.10)

(A3.11)

(A3.12)
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As R-squared increases, the total variation of Y is reduced. They have

concluded that, in their line of work, the output of the neural network model

agrees with the results obtained from the linear regression method.

In summary, it may be said that an artificial neural network is a modelling tool

that can process information and carry out solutions almost simultaneously. In

most cases, it learns by being trained. The technology is showing a great deal of

promise in areas that have posed problems for conventional systems.
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APPENDIX-4

Decision Support Tools (Software evaluation)

As described in the section 4.1 of this thesis, using PIVAXTM and other local

area network facilities, the plant and laboratory data is routed into an Excel™

database hosted by a pc. An Intel™ based computer is employed to run various

software applications pertinent to both neuroengineering and the optimisation

phases of the project.

Broadly speaking, the applicable software can be classified into the

following category:

• Data Management

• Neural Networks' application

• Optimisation

Data Management

Data management is an essential element of this research work. In this respect,

Microsoft Excel version 5CTM proved to be an excellent vehicle to perform tasks

such as data collection and data pre-processing. Along with its powerful

spreadsheet computation and data manipulation capability, Excel offers a few

exceptional features described below:

• The connectivity to other LAN-based computer software using Microsoft

Windows as the graphical user interface.

• The availability of the "Add-ins" applications in almost any field including

artificial neural networks, fuzzy logic, genetic algorithms, and other

scientific principles.
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• The addition of Visual Basic for Applications provides an invaluable

programming tool to this package. Visual Basic is a powerful programming

language that can be used as the mathematical programming tool in many

applications. Additionally, Visual Basic provides various facilities to design

a graphical user interface.

Neural Networks' application

An extensive search was carried out to find a suitable neural network software

able to read and process the Excel data to form the neural network's topology.

Our investigation indicated that although many products are capable of reading

the spreadsheet data, most are unable to produce a result that can be converted

into the Excel or another spreadsheet format. This is not a serious problem, if

the software is intended to be used in a stand-alone application. However, in an

integrated networking environment, data portability is required for further

refinement or processing. Having this in mind, we evaluated three products as

described below:

1- NeuroForecaster

NeuroForecaster from Midaz Technic Co. is an advanced Windows-based,

neural network tool. It is packed with the latest technologies including fuzzy

computing and non-linear dynamics. When combined with Genetica™, the

system is capable of building an intelligent neural network system and uses

genetic algorithms to perform optimisation. NeuroForecaster is designed

primarily for stock market forecasting and analysis, therefore, the package is not

widely applied to the chemical processing environment.

2- NeuroShell & NeuroWindows

NeuroShe1l2 and NeuroWindows are neural network programs from the Ward

Systems Group, Inc. NeuroWindows is a powerful programmer's tool kit for

neural network functions that may be called from Visual Basic or C and Pascal
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which run under Windows. It is a function library in a Dynamic Link Library for

an advanced user wishing to build his own custom interfaces or networks.

NeuroShell 2 is a Windows-based neural network package designed for

non-programmers. NeuroShell 2 has a beginner's system, an advanced system

and facilities for creating runtime versions of trained nets. The beginner's

system has a subset of the advanced system's menus and routines. The network

fabrication involves; data input, pre-network data operations, network

formation, network application, post-network processing, and a results-output

module. The data input module imports files into the program. This module is

capable of reading Papyrus Clarity, Excel, and financial data in Equis Metastock

format. The network fabrication module supports various neural network­

building routines. One may choose from twelve network architectures.

NeuroShell 2 support six kinds of backpropagation and three kinds of recurrent

backpropagation, along with Generalised Regression (GRNN), Probabilistic

(PNN), and Kohonen. The TurboProp backpropagation training algorithm does

not require the specification of any momentum or learning-rate parameters, and

trains a network automatically. Although several hidden layers can be formed,

Ward cautions against increasing the number of hidden layers because of the

increased training time and loss of meaning that occurs when more than one

layer is fabricated. In this respect the allocation of the output layer's errors to the

middle layer according to the connection weight is, in a very real sense, only a

guess of what the middle layer's error should be. That guess becomes even more

problematic when passed back another layer. In a multi-layers network, this

results in compounding the guesses and subsequently decreases the system's

performance and effectiveness

In summary, our evaluation revealed that the NeuroShell 2 and

NeuroWindows are excellent neural networks programs to be used in financial,

business, and in some of the chemical processing applications. An interface with

Excel needs to be developed.
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3- NeuralWare Software

NeuralWorks Professional, Explorer, Designer Pack, and Predicts are various

products of NeuralWare, Inc. (A member of Aspen Technology Group).

NeuralWorks Predict is the program that we have employed to fabricate the

adaptive visbreaker paradigm. The major features of this product are discussed

below.

Predict™ is a neural network package that integrates all the components

needed to apply neural computing to a wide variety of problems (Suleiman et al

1997). The primary end-user interface to Predict is through Microsoft Excel.

This provides a familiar front end for supplying data to and receiving results

from the Predict "engine". The Excel interface also provides ready access to all

the parameters that control the various algorithms, and allows the user to

examine the results of all the following components of the trained paradigm:

• Train/test set selection

• data analysis and transformation

• Selected variables

• Network architecture

Within Excel, one can also use charting capabilities to analyse the results of the

model. Third-party modules and add-ins are available to domain-dependent

processIng.

A secondary interface is the command-line interface. This allows all the

functionality of Excel through a command-line language. Access to the various

parameters is more involved and less intuitive than with Excel itself, but the

advantage of the command line version is that a file of commands can be

created to run Predict in batch mode.

Both Excel and command-line versions allow conversion of trained models

into C, FORTRAN, or Visual Basic Code. The complete Predict functionality is

also available for embedded systems support via Dynamic Links Libraries under

Visual Basic and C/C++, and via object libraries for UNIX system. Three levels



224

of interface address the diverse needs of the end-users, application engineers,

system integrators, and neural network engineers. The complete system has six

components.

The Train/Test selection component picks out training and test sets for

model building. It tries to do this in such a way that the test set, or pattern is

statistically close to the training set.

The Data analysis and transformation component automatically analyses

data and transforms it into forms suitable for neural network application. This

component expands categorical data into numeric data, shapes numeric data to

get rid of skewness and other undesirable characteristics, deals with outliers in

the data, and screens out data that contain no information. The user may change

the transformation function and save the model under a different name.

The Input Variable selection component uses a genetic algorithm to search

for sYnergistic sets of input variables which are good predictors of the output.

Because of the evolutionary nature of the Input Variable selection algorithm,

different initialisations of the algorithm will yield different variable sets. This

tool can be used by experience users to build several paradigms based on

different variable sets and combine the outputs of those models. Each model can

be thought of as an expert system which uses a different set of criteria (the

selected variables) to make its decision.

The neural computation component of Predict supports two proprietary

non-linear feed-forward constructive algorithms. One of the algorithms is based

on a non-linear Kalman filter (Pierre, 1992) learning rule and it is designed for

very noisy regression problems. In this research work we have used the other

one, the adaptive gradient learning rule. This is a general purpose learning

algorithm suitable for multi-response predictive networks such as the many-to­

many visbreaker paradigm.
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As stated earlier, cascade correlation is the architecture used in the adaptive

visbreaker paradigm. In cascade training mode, the neural network is

constructed incrementally by adding nodes one or two at a time. Each hidden

node or pair of hidden nodes has its weights trained from several initialisations.

Each initialisation is referred to as a candidate. The best candidate is established

in the network, and then all the weights to the output node(s) of the network are

re-trained.

Optimisation software

This section describes three computer packages:

• Genehunter genetic algorithm package used in the neuroengineering process.

• Premium Solver used in the fuel oil blending and optimisation.

• Refinery and Petrochemical Modelling System (RPMS) used in modelling

the global refinery configuration and optimisation.

Genehunter genetic algorithm

As reported in the chapter 4 of this thesis, initially, the generalised reduced

gradient solver was used to minimise the degree of error associated with

accepting a data set for the learning process. This method however, was found

to be problematic, since a GRG2 solver often converged to a local minima. The

experimental result indicates that a solver based on the fundamentals of the

genetic algorithm is more suitable for the given binary integer and sparse

problem.

Genehunter genetic algorithm from the Ward Systems Group, Inc. is an

optimisation package used in the network reciprocation procedure. We recall

from section 4.4 that a genetic algorithm was used in the neuroengineering

process. The reason is that gradient descent and almost all other optimisation

techniques can become stuck in any local minima of an objective or cost

function. Genetic algorithms perform a global search and are thus not easily

fooled by a local minima, most notably in the network reciprocation process that

involves the minimisation of the error function Z
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here, L is an integer with the value of L= 0, or L= 1, that removes (or

introduces) a data set into the overall computation. Most conventional

optimisation packages are either unable to solve such problems, or the solution

time is unacceptably long. Genetic algorithms (GAs), on the other hand, seek to

solve optimisation problems using the methods of evolution, specifically

survival of the fittest. Genetic algorithms have been also used for training

recurrent neural nets, particularly for real time applications. GAs were thought

to be an appropriate tool because they are frequently good for high-dimensional

search spaces with rough landscapes. They also provide a wide coverage of the

search space which should be useful for avoiding problems associated with local

minima.

In a typical optimisation problem, there are a number of variables which

control the process, and a formula or algorithm which combines the variables to

fully model the process. The problem is then to find the values of the variables

which optimise the model in some way. If the model is a formulation, then we

will usually be seeking the maximum or minimum value of the formulation. The

traditional optimisation programs tend to break down in combinatorial models

or when the variables are non-continuous. Genetic algorithms, on other hand,

are search algorithms founded upon the principles of natural evolution and

selection. Possible solutions to the problem are coded as binary strings or

"genes." The search is initialised with a random population of possible

solutions. Each solution is tested against some criteria and numbers of the

population are ranked according to their "fitness." Fit solutions are allowed to

live and breed while unfit solutions die. An iteration is performed until solutions

converge.

According to Goldberg (1989) in order for genetic algorithms to surpass

more traditional cousins in the quest for robustness, GAs must differ from more

normal optimisation and search procedures in four ways:
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1. GAs work with a coding of the parameter set, not the parameter

themselves.

2. GAs search from a population of points, not a single point.

3. GAs use payoff (objective function or fitness function) information, not

derivatives or other auxiliary knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

Genetic algorithms require the natural parameter set of the optimisation problem

to be coded as a finite-length string over some finite alphabet.

Genetic algorithms mimic evolution theory. In this context, the theory is

that a population of a certain species will, after many generations, adapt to live

better in its environment. The members of this population are called individuals.

Individuals carry strings or chromosomes that are the values of variables of the

problem. Roughly speaking, the strings of artificial genetic systems are

analogous to chromosomes in biological systems. The formulation for

minimisation (or maximisation) is called the fitness function. A standard genetic

algorithm deals with a set (a population) of possible solutions (individuals) to a

problem. Each individual is a point in the search space, so we can think of the

genetic algorithm as a multi-point optimisation technique for multi-dimensional

spaces. Usually, the size of the population is in the range from 20 to 300.

Traditional methods require a starting point to begin the optimisation. Often the

quality of the final solution is very dependent upon the position of the starting

point in a search space, particularly for problems with a large number of local

optima. Genetic algorithms, which offer many solutions and can search multiple

points simultaneously, do not suffer as much from this drawback.

It was previously mentioned that populations are composed of individuals,

and individuals are composed of chromosomes, which are equivalent to

variables. Chromosomes are composed of smaller units called genes. A

continuous chromosome is composed of either 8, 16, or 32 genes, which are

implemented in the computer as binary bits. The two distinct values of a gene, 0

and 1, are called alle1es, as shown below:
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Multiple chromosomes make up the individual. Each partition is one

chromosome, each binary bit is a gene, and the value of each bit (expressed

as (1,0,1,1,1,0) ) is an allele.

The genes in a chromosome can take on a wide range of values between the

minimum and maximum values of the associated variables. There are only a

finite number of values that the chromosomes can take on, however, and the

number depends upon the precision sought. For example, if the desired

precision is 8 bits, then there are 28 or 256 possible values for the chromosome,

which will be evenly spread out between the upper and lower bounds of the

given variable (Menczer et aI, 1992).

Another type is the integer chromosome, a continuous' chromosome that

can only take integer values. Integer chromosomes use only 16 bit resolution

and their values range from -32,768 to +32, 767.

In our case, using the genetic algorithms (within the Genehunter package),

we produced a mathematical formula to minimise the value of the fitness

function Z, while endeavouring to search for the value of the load factor(s) L,

where L is in fact a non-continuous function or an allele with a value of°or 1.

To determine the best point at which to stop the genetic algorithm, we should

compare the best fitness since the start of evolution with the best one reached in

the current generation. If the best fitness for the current generation does not

exceed the previous best fitness for a number of generations (typically 20-200),

then the best solution has probably been reached. The results of minimising the

fitness function Z in the reciprocation of the adaptive visbreaker paradigm is

given in the following table.
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Table A4-1 Fitness function of the network reciprocation

Function Value # of Generation Time to converge- seconds

Minimisation 0.9902 86 2160

Premium Solver

Under an Integrated system, the Ward's genetic algorithms package can also be

applied to other optimisation problems including the allocation of the necessary

components to optimise the fuel oil blending operations. In practice, this is

unfortunately found to be problematic. The major drawback in using a genetic

algorithm in a non-linear blending problem is the time that it takes to produce a

recipe that meets the required technical specification. In a dynamic environment,

any change in the neural network's response(s) results in a change in the volume

or the quality of the visbreaker's product. This of course, necessitates re­

optimisation of the marine fuel oil blend.

The latest trend in petroleum product blending indicates that non-linear

optimisation programs are gaining popularity. An interesting example of using

non-linear programming in product blending is the Industry-University

Collaboration Project (Waren et aI, 1995), designed to update Texaco's

blending system. Accordingly, to optimise the fuel oil blending pool, we have

selected a fast optimisation package operating on a Generalised Reduced

Gradient algorithm.

Generalised Reduced Gradient (GRG) algorithms, introduced by Abadie

and Carpentier (1969) are widely used to solve small- to medium-size

nonlinearly constrained problems. Premium Solver from Frontline systems is

computer software that uses enhanced GRG code originally developed by

Lasdon et al. (1992) to solve nonlinear problems. The GRG codes have

successfully been used in various optimisations and pooling problems within the

petroleum industry. It is known that the GRG method is subject to the intrinsic

limitations of its ability to find the globally optimal solution. However, limited
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guarantees can be made about the GRG method's ability to find a "local

optimum", in particular where the objective function and all the constraints are

twice continuously differentiable. When these are combined with prior

knowledge of the problem structure in a specific case, the result will often be a

definitive "optimal solution".

Depending on the computer's memory, Premium Solver is capable of

solving non-linear problems with a maxim of 800 variables and 400 constraints.

Global Refinery LP

In many ways the refining industry was the investor and leader in the early

development of linear programming in the industrial sector (Coxhead, 1992).

Bonner & Moore Management Associates (B&M) are one of first pioneers in

the field of LP and MIP applications in the refining and petrochemical industry.

The Global refinery LP model was constructed, using the RPMS and GAMMA

from Bonner & Moore (1990) as described below:

RPMS-PROGRAM : RPMS (Refinery and Petrochemical Modelling Systems)

is a comprehensive system supporting the development and analysis of

mathematical models of refining and petrochemical facilities. It is a system for

the creation of models and reports for those models' solutions. RPMS accepts

technology-oriented input, logical requests, and data tabulations and converts

them into an LP matrix and associated reports. The user may supply all

information explicitly, or may allow the system to retrieve information from any

one of several system data bases or libraries to augment user-prepared input. Its

function is to generate a model (matrix) for linear programming optimisation

and to generate report s for publishing salient information from the optimal

solution once one has been obtained. RPMS requires the support of a

mathematical programming system (MPS) such as IBM's MPS XJ370 standard,

or CLP- Professional linear programming module from Bonner & Moore to

perform the optimisation process.
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The various modules of RPMS are, themselves, written in the GAMMA

(modified C) language which is a B&M-proprietary high-level language for

matrix and report generation, employing a relational-database and list-driven

concepts. All input to RPMS is, therefore, in the form of the GAMMA data and

information structures called "Tables".

The organisation of GAMMA reflects the general organisation of a

mathematical programming systems (MPS) problem, in which three distinct

phases should be developed:

• Data Definition.

• Problem Definition.

• Report Definition.

GAMMA is primarily a language for the generation of mathematical

programming matrices, beginning with tables of business and technical data and

control. The system allows for the generation of dynamic programs which

conform automatically to changes in data availability, and which make it

possible to communicate results from the mathematical programming system to

the GAMMA program itself.

The program performs the following functions:

The data editor provides a method for manipulating data, and automatically

imposes the correct GAMMA syntax.

The pre-processor process GAMMA source input, performs syntax and

logic checking, and prepares input to the generator phase.

The generator processes input from pre-processor, databases, and MPS

communication files, and can produce output to the MPS, and to the extract and

publisher phase.

The extract processor processes input from the generator, MPS solution,

and matrix data, and also provides input to the publisher phase.
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The publisher processes input from the generator and extract phases, and

accesses the MPS solution matrix data. The publisher also creates reports.

RPMS Solution technique: The engine used to solve the model is CLP (an

adoption from the Constraint Logic Programming technique). CLP is a general

purpose linear programming code, well-suited for use in the solution of

complex, medium-sized linear programming problems for industrial

applications on personal computers and workstations. It is oriented toward the

IBM MPSXl370 version 2 standard with respect to its procedures and data

input/output formats for linear programming applications.

The standard CLP does not include pure or mixed integer programming

(MIP) features. However, the new generation of the CLP processor is based on

the IBMTM OSL optimisation package that provides mixed integer programming

facilities. CLP comprises two major processors, firstly, the CLPCOMP, which

compiles a control language program by defining the logical sequences of the

CLP procedure execution, and secondly, the CLP executor which accepts a

compiled control language program and executes the procedure sequences

applying the Revised Simplex Method briefly discussed below:

The method often used for initiating linear programs is called the phase I ­

phase II procedure. Phase I determines a canonical (standard representation of

the problem) form for the problem by solving a linear program related to the

original problem formulation. Phase II starts with this canonical form to solve

the original problem. The revised simplex method, or the simplex with

multipliers, as it is often referred to, is a modification of the simplex method

that significantly reduces the total number of calculations that must be

performed at each iteration of the algorithm. Essentially, the revised simplex

method, rather than updating the entire tableau at each iteration, computes only

those coefficients that are needed to identify the pivot element. Clearly, the

reduced costs must be determined so that the entering variable can be chosen.

However, the variable that leaves is determined by the minimum ratio rule, so



233

that only the updated coefficients of the entering variable and the current right­

hand-side values are needed for this purpose.

It is now evident that this project is largely implemented by applying three

mathematical programming techniques, namely; artificial neural networks,

genetic algorithms, and optimisation either by linear programming or with the

generalised reduced-gradient method. With this focus, we have been able to

form an integrated knowledge-based system of data management, simulation,

and optimisation.

It should be noted that the application platform is currently Microsoft

Windows NT4™ running on a InteFM based Pentium 166 computer and the

IBMTM Optimisation Sub-routine Language (OSL) has replaced the eLP Linear

Programming module.

At this stage, in order to illustrate a simplified but macroscopic view of the

interactions between the aforementioned computer applications, we provide the

following diagram:
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APPENDIX-5

EXHIBIT-l

Microscopic photography of the Asphaltenes:

Prepared by the Petroleum Section of the South African Bureau of

Standards for this project.

Description:

Sample "A" contains 50 ml of Bunker Fuel Oil (BFO) with stability of 0.05% as

measured by the Institute of Petroleum test method IP 375/390.

As explained in the section 5.4, fuel oils having IP 375 sediment contents of

0.06 (or less) are classified as the "Stable "fuels. In this respect, exhibit-1 is a

microscopic photograph of a stable fuel oil, where both the large and small

molecules of the asphaltenes are in solution with the peptising agent (gas oil).



, .....

Gas Oil SOultioD
.....

Exhibit - 1. Asphalten are dispersed in oil solution.
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EXHIBIT- 2

Microscopic photography of the Asphaltenes:

Prepared by the Petroleum Section of the South African Bureau of

Standards for this project.

Description:

Sample "B" contains 50 ml of Bunker Fuel Oil (BFO) with stability of 6.1% as

measured by the Institute of Petroleum test method IP 375/390.

As explained in the section 5.4, fuel oils having IP 375 sediment contents of

0.09 (or more) are classified as the "Unstable "fuels. In this respect, exhibit-2 is

a microscopic photograph of an Unstable fuel oil, where the large molecules of

the asphaltenes are not in solution with the peptising agent. Consequently,

conglomeration and sedimentation of the asphaltenes produce unstable fuel oil.



__Eiiiiiiiiixh__i.....b.....it~-__2__•___.......phalten are not ID solution.
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APPENDIX-6

List of symbols

Chapter-2 Fuel Oil Blending

Ph property of total blend.

p. = property of component i.I

Wi = weight fraction of component i.

Vi = volume fraction of component i.

Xi = mole fraction of component i.

I b = blending index for total blend.

I. = blending index for component i.
1

Chapter-2 Volume Conversion

Xi == Volume of white product i. produced by the visbreaker and n is the

number of products.

VI == Total volume of feed to the unit.

X max is the maximum volume of cetane in millilitres that can be added to a

gram of product without causing sedimentation.

Chapter-2 Soaking factors

F = soaking factor is defined as the equivalent coil volume in cubic feet per

daily barrel of charge to unit.

V = coil volume in cu ft per bbl of daily throughput

D = feedstocks flow rate in bbl/day

Pt = pressure at a given point in the coil in PSIG.
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Kt =reaction rate constant at a given temperature in Fahrenheit.

Po, Ko = standard reference values for Pt , Kt (relative cracking

reaction velocity at temperature Fahrenheit)

Chapter-3 Feed & Quality Matrix

fq = feedstock quality

Uc = unit's operating conditions

TRP = Transit period

VR = Vacuum Residue

AR = Atmospheric Residue

TAR = De-asphalter Residue

HDON = Hydrogen Donor, often high aromatic diesel stock

VBI = Viscosity Blending Index at 122 of (50°C)

CCR= Conradson Carbon Residue in weight percent

API = API degrees

KFC= K-factor (UOP K-factor or Watson K-factor, expressed as an index or a f

actor defined in Appendix -1).

SUL = Sulphur content in weight percent

Chapter 3 - Cascade Correlation

Yop i= Observed value of output 0 from training pattern p

Top = Predicted value of output 0 from training pattern.

E = Sigmoid activation function used in cascade correlation

Ci> = The sign of the correlation.

0= Output for each candidate.

W=Weight

Chapter-4 System Profile - Error

ET = A percentage deviation from the original observed value.

Np = is the number of the test sets or samples.

RMS = Root Means Square of Error.



Z = Fitness or cost function

L = Defined as the load factor.

Mp = Mean of the predicted value in a given data set

MA = Mean of the actual value in a given data set

Cd = The coefficient of the data variability

Chapter - 4 Fuel Oil Blending LP

Z == Profit in US $

Wf == Weight of fuel sold in ton

Pf== Price of the fuel sold in $/ton

di == Specific gravity of the component i at 60/60 OF (15/15 °C)

Ci == Cost of the component i in $/ton.

Qi == Quality of the component i in the blend

Qb == Quality of the final blend b

Qs== Specified quality of the final blend b.

~ = Define as the fraction factor.

Chapter -5 Sensitivity Analysis

DUR = Dubai crude

LR = Arab Light crude

ILR = Iran Light crude

BLR = Basrah Light crude

IHR = Iran Heavy crude

KWR = Kuwait crude

AMR = Arab Medium crude

AHR = Arab Heavy crude

b = Slop of the linear regression.

Y = Data array (product yield),

X = (CCR) for the number of data points n
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n = Number of observations

Chapter 5 - Fuel Oil Stability

SF = Stability factor.

A = Aromatics, in weight percent

R = Resins, in weight percent

S = Saturates, in weight percent

CCR = Conradson Carbon Residues, in weight percent

ASPAR = Asphaltenes weight percent for atmospheric residues,

ASPVR, = Asphaltenes weight percent vacuum residues.

CONV = The process weight percent conversion at 662°F (350°C)

MFij (j =1,2; i=I,2, ....n; n = number of fuzzy subsets.

Appendix -1

FLI = Flash point blending index.

FL = Flash point in Degrees Fahrenheit F.

R = Degrees Rankine = 459.69.

PPI = Pour point blending index.

PP = Pour point in degrees Fahrenheit F.

R = Degrees Rankine = 459.69.

VBI = Viscosity blending index.

cSt = Viscosity in centiStoke at 122 degrees Fahrenheit (50C).

Appendix -2

A = Defined as pre-exponential factor or frequency factor.

Ea = Activation energy, J/mol or calorie/mol

R = Gas constant =8.314 J/mol.K=1.987 calorie/mol.K

T = Absolute temperature, K

f1/ = Defined as the change in free energy.
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Appendix -3

Et = Defined as the linear erro.

d f = Defined as desired output.

Sf = Defined as actual output

W= Weight

Ss = Measurement of the variation in Y.

Se = Measure of the variation in X

Yk = the estimated value of input

Yi = the actual value of input

Y = the mean value of input

Appendix -4

Z = Objective function

L = Load factor having an integer with the value of L= 0, or L= 1,
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