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Abstract

Biometric systems such as face, palm and fingerprint recognition are very com-
putationally expensive. The ever growing biometric database sizes have posed a need
for faster search algorithms. High resolution images are expensive to process and
slow down less powerful extraction algorithms. There is an apparent need to improve
both the signal processing and the searching algorithms. Researchers have continually
searched for new ways of improving the recognition algorithms in order to keep up
with the high pace of the scientific and information security world. Most such devel-
opments, however, are architecture- or hardware-specific and do not port well to other
platforms.

This research proposes a cheaper and portable alternative. With the use of the Sin-
gle Program Multiple Data programming architecture, a distributed fingerprint recog-
nition algorithm is developed and executed on a powerful cluster. The first part in the
parallelization of the algorithm is distributing the image enhancement algorithm which
comprises of a series of computationally intensive image processing operations. Dif-
ferent processing elements work concurrently on different parts of the same image in
order to speed up the processing. The second part of parallelization speeds up search-
ing/matching through a parallel search. A database is partitioned as evenly as possible
amongst the available processing nodes which work independently to search their re-
spective partitions. Each processor returns a match with the highest similarity score
and the template with the highest score among those returned is returned as match
given that the score is above a certain threshold. The system performance with respect
to response time is then formalized in a form of a performance model which can be
used to predict the performance of a distributed system given network parameters and
number of processing nodes.

The proposed algorithm introduces a novel approach to memory distribution of
block-wise image processing operations and discusses three different ways to process
pixels along the partitioning axes of the distributed images. The distribution and paral-
lelization of the recognition algorithm gains up to as much as 12.5 times performance
in matching and 10.2 times in enhancement.
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Glossary

1. Minutiae - Tinny features on a fingerprint pattern caused by discontinuity or forking
of the ridges

2. Bifurcation - Type of minutiae characterized by a single ridge that forks into two
branches

3. Termination/Ending - Type of minutiae characterized by a sudden ending/temination
of a ridge

4. AFIS - Automatic Fingerprint Identification System used to identify individuals au-
tomatically using their fingerprint information

5. Subject - A human individual who submits a trait to a recognition system

6. Trait - Distinguishing characteristic used for biometric recognition

7. Latent (fingerprint) - Fingerprint impression left behind on surface contact. Usually
used in crime scene investigation

8. Auxiliary angle - An angle that the base of the fingerprint image makes with the
line joining the core and the center of the fingerprint foreground at the bottom of the
fingerprint area

9. Gradient - A change in the slope of a straight line

10. Conjugal slope (C-slope) - The gradient of the line joining the core and the delta

11. Graph - A collection of nodes and edges, where edges represent some form of rela-
tion between the nodes

12. Isomorphism - Similarity of shape of two graphs

13. Classification error - Incorrectly classifying a fingerprint to a ridge class it does not
belong to

ix



Glossary

14. False match - Incorrectly confirming a match between two fingerprints which are not
the same

15. False rejection - Incorrectly rejecting a match between two fingerprints that are the
same

16. Winnowing - A way of reducing the search space of a template database by partition
the database according to some predetermined classes

17. Rotation - Alignment of a fingerprint in relation to the vertical axis through the center
of the background (acute angle if print rotated anticlockwise, reflex if rotated clock-
wise)

18. Translation - Position of a fingerprint image in relation to the background (whether
the print is positioned on the center or shifted to left, right, top or bottom)

x
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Chapter 1

Introduction

The US National Science and Technology Council (NSTC) “Biometrics Glossary” defines
biometrics as “a general term used to describe a characteristic or a process. As a char-
acteristic [the term biometrics refers to] a measurable biological (anatomical and physi-
ological) and behavioral characteristic that can be used for automated recognition. As a
process [biometrics refers to] automated methods of recognizing an individual based on
measurable biological (anatomical and physiological) and behavioral characteristics” [1].
In essence, the term biometrics refers to the automatic recognition of biological and be-
havioral traits. While biological traits are acquired by or before birth, behavioral traits are
learned and acquired overtime. Biological traits include fingerprints, palm prints, iris, vas-
cular patterns, hand geometry, face, retina, DNA and ear shape. Behavioral traits include
speech, gait, signature and keystroke. Biometrics have been in use for over thousands of
years, before computers were invented. Evidence of biometric use dates back to as early
as 8000 years ago where fingerprints were used to authenticate documents in Assyria and
Babylonia. Hand ridge patterns from 3000 years ago were discovered in Nova Scotia mark-
ing (signing) cave paintings. Fingerprints were used in Persia in the 14th century to authen-
ticate government documents. In the 1880s, Alphonse Bertillon created the Bertillonage for
forensic criminal identification. The system measured the length and breadth of the head,
the length of the middle finger, left foot, and forearm from elbow to middle fingertip. Eye
colour and length of the little finger were also recorded [1]. Since then, there has been ma-
jor breakthroughs in the history of biometrics. Figure 1.1 shows a timeline of the history of
biometrics development since the 1880s.

Today, biometrics has a large user market across the world, mainly with law enforce-
ment and government agencies. In the current age, the security offered by biometrics has
become a necessity, with the high rates of terrorist attacks like the 9/11 attacks in the United
States and the global pandemic of identity theft. According to data from Marcia Y. Jung,
International Biometric Groups “Biometric Market and Industry overview”, Africa con-
tributes a share of 6.1% to the global biometric market [1]. Figure 1.2 shows the global
biometric market share as depicted by Jung.

The common challenge facing most biometric systems today is the processing overhead
that is associated with growing databases and increasing image sizes and resolutions. The

1
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Figure 1.1: Biometric history timeline (taken from [1])
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Introduction 1.1 Background

processing of large contents of data is expensive. Most current biometric solutions deployed
globally use CPU-based systems [10]. CPU-based systems are considered general purpose
machines designed for all types of applications. Therefore, they are sequential processing
devices. Instructions are executed by Arithmetic Logic Units (ALUs)1. Some processors
may contain more than one ALU, in which case multiple instructions can be executed in
parallel, however, modern processors are limited in the number of ALUs they posses; most
of today’s CPUs do not exceed 4 ALUs [10] making their processing capability limited.
Research has identified this as a serious problem and as a result, a considerable amount of
research has been put into developing faster and more efficient biometric systems [10-20].
Most such developments however, are architecture- or hardware-specific and do not port
well to other platforms. This research proposes a cheaper and portable alternative through
the utilization of mixed-mode shared memory and distributed memory parallel processing
that makes use of multicore clusters.

Figure 1.2: Approximate Division of Global Biometric Market by Region (taken from [1])

1.1 Background

Traditional biometric software systems are based on serial computation. These algorithms
work by executing a serial stream of instructions. No two instructions may execute at the
same time. As one might deduce, this style of programming produces slow software. There
has been efforts in literature to parallelize biometric algorithms in order to improve their
performance [10–17].

1ALU - a digital circuit that performs arithmetic and logical operations

3



1.1 Background Introduction

1.1.1 Parallel and Distributed Processing

Parallel programming is a form of programming in which many computations are carried
out simultaneously. A large problem is divided into smaller subproblems which are solved
concurrently. Distributed programming divides a task into several subtasks which are ex-
ecuted concurrently by different processing nodes. A distributed system is made up of a
collection of autonomous computers that communicate through a network. The main dif-
ference between parallel and distributed systems lies in the memory usage. Parallel systems
are usually referred to as shared memory systems. All processors 2 access shared mem-
ory for their I/O operations. The shared memory can be used to pass information between
processors. Distributed systems on the other hand use local memory. Each processor reads
and writes to its own private memory. Information is passed between processors using a
technique known as message passing.

Parallel computers are classified according to the level at which their hardware supports
parallelism. Multicore systems are stand alone shared-memory machines which comprise
of multiple processing elements for parallel processing. Clusters, Massively Parallel Pro-
cessors (MPPs) and grids are distributed-memory systems which use multiple computers to
complete a task [18].

1.1.2 Message Passing Interface

Message passing is a technique used by distributed systems to share information between
the processing nodes. A few message passing paradigms exist including Parallel Virtual
Machine (PVM) and Message Passing Interface (MPI). This research uses MPI for its mes-
sage passing. MPI is a standardized and portable message passing paradigm which is used
by most industries. It allows for efficient communication between processors by avoiding
memory-to-memory copying, allowing overlaps in computation and communication [19].
MPI provides hardware abstraction, hence code written in MPI is portable and can be run
on heterogeneous systems. Processors can only read and write to their local memory. Com-
munication between processes, although crucial, is an expensive operation, as such it must
be kept at a minimum [19]. This research uses OpenMPI 1.4.2 which is an open source
MPI-2 implementation. Table 1.1 gives some strengths and weaknesses of MPI.

1.1.3 OpenMP

OpenMP is an open specification for multiprocessing. It is a shared memory programming
model which is normally used for fine grain parallelization. It is not appropriate for dis-
tributed memory environment because it has no message passing capability. OpenMP is
recommended when the goal is to achieve modest parallelism on a shared memory com-
puter. The parallelization is explicit allowing the programmer control over parallelization.
Table 1.2 shows strengths and weaknesses of OpenMP.

2 NOTE: Processor in the context of shared memory (fine-grain) parallelization refers to a single core/ALU,
while processor in the context of distributed (coarse-grain) parallelization refers to an autonomous system that
is part of an overall cluster

4



Introduction 1.1 Background

Table 1.1: Strengths and weaknesses of MPI [9]

Strengths Weaknesses
* MPI code runs on both distributed and
shared memory architectures

* Decomposition, development and de-
bugging of applications can be a consid-
erable overhead

* Code written in MPI is portable * Communication can often cause large
overhead, which needs to be minimized

* Coarse grain parallelism * The granularity has to be large, fine grain
granularity can create a large quantity of
communication

* Large number of vendor optimized MPI
libraries exist

* Global operations can be very expensive

* Each process has its own local memory * Dynamic load balancing is often difficult
* Allows static task scheduling * Making a transfer between serial and

parallel code can be difficult because of
significant changes that are required

* Data placement problems are rarely ob-
served
* Explicit parallelism often provides better
performance
* Communication & computation can be
overlapped

Table 1.2: Strengths and weaknesses of OpenMP [9]

Strengths Weaknesses
* Fairly portable * Code only runs on shared memory ma-

chines
* Permits both course grain and fine grain
parallelism

* Placement policy of data often causes
problems

* Each thread sees same global memory,
but has its own private memory

* Overhead can become an issue when the
size of the parallel loop is too small

* Higher level of abstraction (higher than
that of MPI)

* Threads are executed in a non-
deterministic order

* OpenMP applications are relatively easy
to implement
* Makes better use of shared-memory ar-
chitectures
* Allows run time scheduling
* Transferring between serial & parallel
code is relatively easy
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1.2 Research Problem Statement

Biometric recognition performance is measured using two interrelated factors: the accuracy
and the efficiency [20]. Accuracy rates are determined by factors like the size of template
database and the types of algorithms used.

The rapid increase in the use of biometrics, along with the advancement on scanning
devices has led to slow performing biometric systems. Research in the field of biometrics
relies heavily on the effective processing of tera bytes of digital data. For systems to be com-
petent and keep up with overwhelming growth in technology, research on power-efficient
and cost-effective computational techniques and platforms is necessary if systems are to
meet the demands associated with biometric processing. The quality of a system is highly
dependent on the amount of data marshalled to support it [13]. Despite the rapid growth
of biometric large-scale databases, the research community is still too far focused only on
the accuracy of systems within small databases, neglecting the real issue of scalability and
speed on large-scale applications [21]. On the other hand, large high resolution images are
expensive to process. Subjects rarely present their traits the same way, as such, there usually
is a need to normalize and enhance the input data so that it is noise free and falls within a
required region. The signal/image enhancement used involves a series of operations which
can be computationally intensive and take time to complete.

The ever growing database sizes cause major overheads during searching. Searching is
one of the biggest challenges facing large scale biometric systems. For instance, with the
Federated Bureau of Investigation (FBI) Intergraded Automatic Fingerprint Identification
System (IAFIS) housing 66 million criminal prints along with 25 million civilian prints,
it takes an average of 10 minutes to process a criminal fingerprint [22]. A response time
of 10 minutes might be acceptable for forensics, but it is not acceptable for commercial
applications. Imagine having to wait for 10 minutes to be granted access to your account.

The need for performance improvement among the biometric community is undeniable.
Parallel processing provides a low cost and high performance solution [23]. As a result
some algorithms that had been initially designed for sequential systems are being paral-
lelized [16, 17, 24, 25]. Most of these developments however, have low portability due to
architecture- or machine-dependency. One way out of the hardware and architecture de-
pendence is through a trend in parallel processing known as High Performance Computing
(HPC). HPC provides high computational power which helps process any complex recog-
nition algorithm in order to provide real-time authentication without relying on any partic-
ular hardware or architecture. This research investigates a cheaper and portable solution
through the utilization of HPC. A mixed-mode distributed and parallel system is proposed
that makes use of multicore clusters for performance strength. The algorithm is machine
and architecture independent, and can run on heterogenous systems.

1.3 Research Questions

1. Can the use of a parallel and distributed paradigm vastly improve the performance
of biometric identification with respect to time?
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2. Is it possible to increase identification accuracy through efficient processing?

3. Can we then, given the paradigm on Question 1, formalize the performance gain in
order to predict system performance of the distributed application before develop-
ment?

1.3.1 Thesis Goals

The purpose of this research is to:

1. Parallelize and distribute the fingerprint recognition algorithm and run it on a cluster
in order to gain performance. The distribution is targeted at image enhancement and
searching, as they are the most time consuming operations. I believe that using a
parallel structure paradigm should vastly improve the performance of this modality
with respect to computation time. A complex Supercomputer MPI architecture is
proposed with multicore processing nodes.

2. From this parallelization/distribution I hope to increase the accuracy of the system
by removing winnowing during the searching process. Reason for this is because
winnowing introduces tremendous error margins if the classification is not accurate.

3. Lastly, from the distributed system, an attempt is to be made to formalize the per-
formance of distributed applications on multicore clusters. In other words, I want to
model performance and ultimately enable performance prediction.

1.4 Delineations and Limitations

1. The main focus of this research is to develop strategies for improving the processing
speed of fingerprint recognition through parallel and distributed computation, hence
the accuracy of the recognition algorithm is not the primary concern of this research,
it is only noted as a resulting effect of the optimizations performed during the paral-
lelization process.

2. Only the enhancement and searching algorithms are considered for parallelization
and distribution.

3. The algorithms used do not address problems of latent or partial prints.

1.5 Motivation

Generally, the accuracy rates for fingerprint recognition are high. A 2004 study of the
US-VISIT 3 fingerprint matching system found the accuracy of the system for two-finger
identification to be 95% with a false match rate of 0.08%. In the verification mode, the

3US-VISIT - United States Visitor and Immigrant Status Indicator Technology is is a US Homeland Secu-
rity immigration and border management system which is biometric based
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matching rate was 99.5% with a false rate of 0.1% [1]. When it comes to efficiency, how-
ever, fingerprint recognition falls amongst the least efficient modalities, together with palm
print and face recognition.

The image enhancement and searching subsystems are the most time consuming steps
of the fingerprint identification process [26]. Input data is often corrupted by noise and
by variations in fingerprint impression conditions such as dry skin. Image enhancement
helps remove the effect of these corruptions through a series of image processing operations
which make minutiae more visible to facilitate the subsequent feature extraction [27]. The
enhancement process consists of the following image processing operations which are often
computationally expensive depending on the resolution of the image:

1. Normalization

2. Mask region generation

3. Ridge orientation estimation

4. Ridge frequency estimation

5. Ridge filtering

6. Thinning

Parallelizing and distributing this process provides a significant improvement in the ex-
ecution time of the algorithm [18]. Searching poses a very big challenge for large scale
systems because its efficiency is directly dependent upon the size of the template database.
The bigger the database, the longer and less accurate the results will be [28]. While finger-
print verification is fast and has high accuracy, identification is slow and has low accuracy
rate compared to verification. The reason for this is that verification mode performs only 1:1
match (i.e. it needs to only verify the claimed identity which the user provides), where as in
identification mode, the system requires a vigorous search of the database to perform 1 : N
matches where N is the size of the database. As database size increases, processing becomes
an overhead [26]. Assume a system consists of 100 subjects each with 10 fingerprint cap-
tures, cross matching the subject would generate about 17.3 trillion scores. Time taken to
process this much information on a general purpose CPU can be quite significant. Research
over the years has developed a searching technique known as winnowing. The process
of winnowing involves classifying features into different classes based on some degree of
similarity [26]. For fingerprint recognition, fingerprint patterns are classified according to
their ridge structure type. Ridge patterns can be classified into different classes based on
macro features such as arches, loops and whorls [29]. After the classification, templates are
grouped according to their classes. This reduces the search space during matching in the
following way: after enhancement, a probe is classified according to its ridge type and only
the corresponding subset/bin of the database is searched. This reduces the searching time in
fractions and reduces false match rate provided the classifications were accurate. The down
fall to this technique is that it is only as good as the classification algorithm. In other words,
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if the classification is not accurate, winnowing introduces binning errors and produces hor-
rendous results. Winnowing can be avoided through the use of parallel algorithms where
multiple processors virtually divide the database and search concurrently different parts of
the database [1].

1.6 Contributions

This research makes four main contributions to the field of biometrics, image processing
and parallel processing:

1. It presents the distribution process of the entire fingerprint identification procedure
(excluding minutiae extraction)

2. It presents a novel approach to memory distribution for block-wise image processing
operations in distributed environments

3. Three different ways of dealing with pixels along the partitioning axis of distributed
images are presented

4. A new performance model for distributed applications is introduced. This model
allows for the prediction of performance of distributed applications running on mul-
ticore clusters

1.7 Thesis Overview

This thesis is structured as follows: Chapter one gives the introduction and background.
Chapter two discusses related work. Chapter three outlines the serial implementation and its
performance. Chapter four discusses the parallel implementation of the fingerprint recog-
nition algorithm. Chapter five discusses application performance of distributed systems.
Chapter six gives the experimental results and chapter seven concludes the dissertation and
discusses future work.
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Chapter 2

Literature Review

This chapter discusses some of the efforts in literature towards the improvement of the
recognition algorithms with respect to time.

2.1 Introduction

Biometrics have been in use for over centuries. Despite the maturity and the continuous
advancements in this field, it is evident that recognition algorithms still exhibit some limi-
tations which need to be addressed [13]. The rapid advancement and growth in the usage
of biometric systems posses a serious problem when it comes to the performance of these
systems [1]. The increase in the use of biometrics has drastically increased the sizes of
template databases, while the advancement of scanning devices increases the resolution
of images thereby increasing the computation requirements. Performance in biometrics is
measured by accuracy and efficiency [26]. Accuracy alone is not useful if a system is too
slow. For example, DNA is a form of biometric identification with high accuracy, but as
an authentication system it is infeasible due to the process required for identification [26].
Conversely, speed alone obviously means nothing if the results are inaccurate.

There has been considerable work in attempting to improve the performance of bio-
metric systems. Research has shown parallel processing as a promising solution to the
problem of slow biometric systems. Work on parallelizing the processing of biometric
systems includes the use of Field-Programmable Gate Arrays (FPGAs) [10–15], Graph-
ics Processing Units (GPUs) [16], multicore architecture [30], cloud computing [31, 32],
mobile agents [33], High Performance Computing (HPC) [34] and using distributed de-
signs [35–37].

2.2 Field-Programmable Gate Arrays

Modalities such as face, palm, finger and speaker recognition are known for not being the
most efficient, they demand high computational power [15, 20]. For years researchers have
been working towards improving the efficiency and to speed up these systems [10,11,17,38–
40]. Performance improvement on biometric systems is targeted at two crucial subsystems:
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signal enhancement and searching/matching subsystem. To speed up signal enhancement,
recent techniques use FPGAs and GPUs [10, 11, 14, 16, 17].

“FPGAs are complex programmable logic devices that are essentially a ‘blank slate’
integrated circuit that can be programmed with nearly any parallel logic function” [11]. FP-
GAs are mostly used to accelerate embedded systems directly using hardware. Although iris
recognition is the fastest biometric in the industry [10] because of the smallness of the size
of the templates (a European Union technical report cited a 1.7 seconds processing time to
search a database of 1 million templates with a 2.2 GHz processor in 2005 [16]), researchers
are still skeptical about the performance of this modality on national-sized databases. It
is believed that as iris technology becomes widespread and databases grow, matching will
require higher speeds [16]. Rakvic et al [10] presented a direct and parallel processing alter-
native to the sequential iris recognition algorithm using FPGAs. The most time consuming
tasks in the modern iris recognition algorithm have been deconstructed and parallelized in
order to speed up the resulting system. In particular, portions of iris segmentation, tem-
plate creation, and template matching were parallelized on an FPGA-based system. Results
showed that the implementation on a modest sized FPGA (as opposed to CPU-based sys-
tem) executed approximately 9.6 times faster for iris segmentation, 324 times for template
creation and 19 times for template matching [10].

The fingerprint recognition algorithm comprises of series computationally intensive im-
age processing operations [13, 15, 18, 27]. Improving the efficiency of this modality has
opened up a large research area both in academia and industry due to its large user base. Xu
et al [11] and Hermanto et al [14] used FPGAs to accelerate the process of skeletonizing a
fingerprint image for minutiae extraction, i.e. the thinning process. These research endeav-
ors investigate hardware implementations of the thinning algorithm which exhibits efficient
performance. Special architecture was designed to enhance the parallelism of this algo-
rithm. Xu et al’s algorithm was implemented on the Xilinx Virtex II Pro developing system
with a highly-parallel architecture [11]. While Hermato et al uses the Xilinx Spartan III.
The algorithms take as an input a binary fingerprint image, and apply a set of intermediate
steps on the input image, to finally output the thinned image. Xu et al managed up to 50
times speedup, while Hermato et al achieved 3 times speedup.

Work by Qin [17] on acceleration of the fingerprint enhancement algorithm uses the
Spartan III chip with up 720k bits block RAM and 320k bits distributed RAM running at a
speed of 80MHz. The intensive image processing operations of the fingerprint enhancement
algorithm were ported to an FPGA device and accelerated by up to 6.79 times from the 6098
ms software implementation to a 898 ms on hardware [17].

Barrenechea et al [41], Yang et al [42], Danese et al [43], Fons et al [13,15] and Vitabile
et al [44] all ported the full fingerprint recognition algorithm to an embedded environment.
While work by Barrenechea et al [41] and Yang et al [42] fail to achieve any real-time
performance, Vitabile et al’s [44] work was able to achieve a recognition processing time
of a little under 200 ms on a Virtex-E FPGA device consisting of over 2M system gates.
The multiple parallel processors which are instantiated in a large FPGA enable very high
acceleration of the execution of the workload by distributing it to the multiple processors.
While this solution [44] achieves applaudable performance, the cost associated with such
a large FPGA device is not ideal. In order to lower the cost, Fons et al [13, 15] suggest
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using a small FPGA which is still able to achieve the same functionality without requiring a
large number of systems gates. This is achieved through the use of run-time reconfiguration
[13, 15]. Run-time reconfiguration allows for FPGAs to be reconfigured on-the-fly in order
to enable the reusage of resources.

Fons et al [15] investigate the applicability of using run-time partially reconfigurable
FPGAs on automatic fingerprint recognition. The partial reconfiguration concept enables
FPGA devices to adapt their hardware on-the-fly to meet the requirements of the applica-
tion by reusing resources. The same resources are able to play different roles at different
moments which helps maintain low cost as FPGA prices increase with the size of the hard-
ware. The Xilinx Virten FPGA family, in particular Virtex-4, Virtex-5 and Virtex-6 are
cited as FPGAs devices that support run-time reconfiguration [15]. This research [15] ex-
ploits the run-time reconfiguration computing to implement a software/hardware co-design
fingerprint recognition embedded system. The computationally intensive image processing
steps are ported to the custom hardware in order to accelerate the processing using custom
parallelism and pipeline under a programmable logic device. Tasks which are not consid-
ered time critical are left in software [15]. According to their research, the authors [15]
believe their reconfiguration controllers to be one of the fastest ever implemented in FPGAs
and published. They describe biometric recognition as a “Killer application” for run-time
reconfigurable computing in terms of efficiently balancing computational power, functional
flexibility and cost. The system was tested on images sized 268×460 pixels and performed
1.04 times better (from 541.100 ms to 521.933 ms) in comparison to the software version
executed on a general purpose desktop for enrolment, and 5.35 times better (from 3774.380
ms to 705.025 ms) for authentication. The performance of the same algorithm when ported
to an embedded system as-is was given to be 2933.468 ms and 143193.451 ms for enrolment
and authentication, respectively. To improve the performance of the embedded system, the
partial reconfiguration implementation was developed using a platform with 21504 1-bit
flip-flops, 21504 4-input LUTs, 1296kbit RAM blocks and 48 DSP blocks of the Xilinx
Virtex-4 running at a bandwidth of 32-bit at 100 MHz. Experiments showed a great im-
provement up to 5.62 times from the initial 143193.451 ms to 705.025 for enrolment and
an improvement of 203.104 times from 2933.468 ms to 521.933 ms for authentication [15].

Progressing further, the authors developed a fully reconfigurable implementation of
the fingerprint recognition application for embedded systems this time using a System-on-
Programmable-Chip (SoCP) device. The application was executed on a platform composed
of a 32-bit ARM922T RISC processor with up to 200 MHz frquencies, and an FPGA with
specific VLS1 hardware accelerators running at 48 MHz [13]. The software implementa-
tion of the fingerprint recognition algorithm was first ported to the embedded system as-is
in order to profile the performance and identify the time-consuming tasks of the algorithm
so that they can be accelerated using hardware. Unlike the previous system [15] which
was centered around partial reconfiguration, this implementation [13] uses full reconfigura-
tion. This full reconfiguration is achieved in the following way. The application is divided
into several FPGA contexts each of which corresponds to full bitstreams that are used to
describe the functional content of the FPGA; the Microprossor Unit (MPU) is responsible
for transferring the configuration data of the new context to a specific register. Hardware
co-processors are then instantiated in one context into the FPGA depending on the size of

13



2.3 Graphics Processing Units Literature Review

the FPGA and the resources needed by each of the co-processors. Depending on the al-
gorithm complexity, the FPGA is reconfigured as many times as required. A new context
is loaded each time the FPGA is reconfigured. The algorithm defines 3 contexts. In the
first context, which consists of fingerprint acquisition and image enhancement, the FPGA
accommodates necessary hardware accelerators to speedup the context tasks. The second
context downloads to the FPGA, the hardware accelerators for directional filtering and im-
age binarization. In the last context, the remaining co-processors are utilized for feature
extraction, alignment and matching processes on the FPGA [13]. While very useful for
reducing the cost of FPGA-based systems, this reconfiguration does, however, come with
a penalty; reconfiguration latency. The authors cite a latency of 37.646%, which basically
means that for every response time achieved, 37.646% is the overhead introduced by recon-
figuration. Experiments showed a 309.41 times performance gain of 955.84 ms from the
295748.05 ms of the software only embedded implementation and an improvement of 3.43
times from the desktop implementation [13].

FPGAs show high potential as the direct access to hardware reduces the power con-
sumption and improves performance, however, they often involve high complexity and high
cost [10, 16]. While Fons et al [13, 15] research investigates ways of reducing the cost, it is
evident that the overhead encountered is still problematic.

2.3 Graphics Processing Units

GPUs are commonly used to process matrices. They utilize immerse computational power
on Video Graphics Adapters (VGAs) to perform computations on matrix structures [16].
This makes them well suited for image enhancement techniques, as images are represented
as matrices in computer memory. A utilization of the immense computation power con-
tained within commodity VGAs can be used to effectively attain higher recognition speeds
using GPUs [16]. Modern computers can hold up to four video graphics cards which are
separately addressable allowing them to work independently of other cards. This physical
and logical separation of the GPU gives multiple VGAs inherent parallelism [10].

Broussard et al ported a highly optimized C++ iris template matching algorithm to a
video graphics card’s GPU using the High Level Shader Language (HLSL) which is part
of Microsoft’s DirectX 9.0. Their research focused on the field of iris identification to
demonstrate the acceleration achievable by using the GPU on the current video graphics
[16]. Current iris identification algorithms execute quickly on small database searches. To
demonstrate the acceleration gains, template matching in the form of a Hamming distance
calculation was performed on large iris template databases. Results showed that a state-
of-the-art video card performed template matching 9.5 times faster(24.65 million template
comparison per second) than a CPU [16].

Gannon Technologies [45] has developed a fully automatic latent print matching system
which makes use of ridge flows rather than minutiae to match fragments of partial prints
to templates stored on a database. The algorithm works by transforming an input image
into a highly contrast image which is then masked and thinned directly. Matching is then
performed using ridge-specific makers to describe and capture the curve shapes of ridges.
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Using this type of matching can require up to trillions of calculations. To deal with compu-
tation complexity, the system made up of the NVDIA Gemini PCI X3.0 running on a Dell
PowerEdge R720 with the FusionIO ioDrive2Dou is used to match the latent prints [45].

GPUs are more flexible than FPGAs in the sense that within the same architecture code
can be portable, but this is obviously still limited. FPGAs and GPUs use the Single Instruc-
tion Multiple Data (SIMD) architecture. While this architecture can be highly parallelized,
it has significant restrictions on the flow of an algorithm. SIMD imposes locksteps on data
in order to provide deterministic execution [30]. One other big concern with using FPGAs
and GPUs is the hardware/architecture dependency. Such systems have low portability and
can not be used on heterogenous systems.

2.4 Multicore

The focus on improving modern computer processing speeds has shifted from increasing
CPU clock speeds and moved towards increasing core counts [30]. Unlike CPU speed, in-
creasing the number of core doesn’t automatically benefit software. Code modification is
necessary to leverage the processing power offered by multicore systems. Multicore sys-
tems are shared memory systems, so they work best with shared memory parallel process-
ing. In order to gain the performance improvement, multithreading is necessary. Indrawana
et al [30] used a multicore system AMD Triple core running at 2.20GHz with RAM of 4GB
to accelerate the feature extraction (generation of image maps, binarization, thinning, minu-
tiae detection and removal of false minutiae) of fingerprint images using data parallelism.
Data parallelism (as opposed to task parallelism) produces systems that scale up easily on
highly parallel hardware. When an algorithm is data parallel, it contains minimal, if any,
shared data which in turn reduces contention and thread-safety issues [30]. Multicore sys-
tems are shared memory systems hence it makes sense for Indrawana et al to implement
multithreading to parallelize the fingerprint feature extraction algorithm. Each thread is as-
signed a number of blocks (of data) which it operates on independently of other threads.
Tested on three different databases, each with 80 fingerprints, the algorithm ran 57%, 55%
and 60% faster on the different databases [30]. While using multicore systems for accel-
erating biometric systems seems promising, one must bear in mind that general purpose
computers have a limited number cores, most being four, this greatly limits the amount of
process gain that can be achieved.

2.5 High Performance Computing

One other trend in parallel processing is towards the use of High Performance Comput-
ing (HPC). HPC is a parallel processing technology which provides massive processing
power of up to thousands of autonomous processing systems connected by networks. This
technology is used to solve computational or data-intensive applications which require sig-
nificant processing power in order to process large amounts of data in a very short period of
time [34]. The communication between the nodes of a cluster can be carried out by applica-
tions based on the message passing paradigm which uses the explicit programming method,

15



2.5 High Performance Computing Literature Review

in which the interaction between processes, data allocation and workloads must be specified
by the programmer. Frequently used options for the implementation of parallel applications
based on this model are message passing libraries like: PVM, MPI and MPI-2 [23].

The data overload associated biometrics can negatively affect researchers as current
state-of-the-art requires researcher to have a heroic level of expertise in systems software to
perform large scale experiments [46]. To address this problem Bui et al [46] designed and
implemented BXGrid, a data repository and workflow abstraction for biometric research.
The system is composed of a relational database, an active storage cluster and a campus4

computing grid. BXGrid is a collaboration between a systems research group and a bio-
metrics research group at the University of Notre Dame. The computing grid is made up of
500 CPU Condor pool, where each node is also equipped with a chirp fileserver to export
each local disk [46]. Megherbi et al [24] proposed a high performance distributed memory
& computing algorithm for face recognition via conformal mapping. Much work has been
done in the past using object representations that are not unique e.g. curve fitting repre-
sentation. Megherbi et al’s [24] research introduced a new innovative technique for face
representation and recognition using HPC. MPI was used to perform face recognition in
a distributed environment. Some facial features are grouped together and then processed
in parallel in a distributed-network of workstations via MPI over TCP/IP. A master-slave
paradigm was used to implement the parallel and distributed algorithm and is based on a
distributed-memory approach [24]. Sasaki et al [47] proposed a compact cluster computer,
called Ubiquitous Computing Cluster (UCC), which provides a cost-effective prototyping
environment for design and test of ubiquitous applications. UCC supports a variety of
development tools and libraries for parallel programming including MPI. A fingerprint ver-
ification system was implemented as an application example of UCC. The purpose of the
case study was to find an efficient implementation of the verification algorithm for typical
embedded applications using a combination of phase-based matching algorithm and embed-
ded parallel processing [47, 48]. The verification algorithm was implemented on an eight
node cluster system using two UCCs. The algorithm is summaries as follows: first, the
master node computes the phase component (capture input image, calculate 2D DFT of the
input image and calculate the phase spectrum) of the image while the rest idle and wait for
completion of the computation; second, the master node then broadcasts the phase compo-
nent to all other processing nodes; thirdly, after receiving the phase component, each node
computes the cross-phase spectrum, the BLPOC function and the matching score between
probe and registered template; fourthly, each node sends back its match score to the master
node which then finds the highest and returns it as a match [47]. The parallel implemen-
tation of the verification algorithm using distributed processing achieved a speedup factor
of up to 6 times for 8 nodes. Although this implementation manages to achieve scalable
results, the researchers had poor design choices. Performing master-only operations on par-
allel systems incurs high overhead due to idle processors [49]. The performance can be
improved through better optimization, such as overlapping the communication with com-
putation thereby avoiding idle processors. A parallel AFIS was developed using a cluster by
Din et al [34]. The authors [34] perform distributed matching, where a fingerprint database

4University of Notre Dame, Department of Computer Science and Engineering
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is divided evenly among three computation nodes. Results showed a significant improve-
ment on the searching time as the database grows. At 400000 records, the parallel algorithm
gains up to 300% speedup [34].

Some researchers [31,50] have used cloud computing for biometrics. While cloud com-
puting offers great computational power, its security is questionable [50,51], which becomes
an issue because the enrolment information of biometric systems is sensitive in nature. Se-
curity and privacy is imperative to biometric systems because they hold sensitive personal
information.

2.6 Work on search optimization

Storage can be classified into two categories: centralized and decentralized storage. Cen-
tralized storage experiences bottlenecks in network speed and capacity, and the increase in
storage space increases the probability of false matches exponentially. Distributed (decen-
tralized) storage’s redundant design on the other hand increases the speed by maintaining
relatively small parts of the database, but introduces new security risks. Multiple servers
offer multiple points of possible attacks during data transmission.

Searching is directly linked to the matching process. Matching usually requires an en-
tire database to be searched regardless of whether or not a match has been found [26]. This
increases accuracy and reduces false matches by returning a candidate list rather than the
first individual over the matching threshold. Searching the entire database does however,
mean that for larger databases, searching becomes computationally intensive. To improve
searching time most serial algorithms employ some form of classification technique which
partitions the database into several classes thereby reducing the search space [26,52]. While
parallel searching can be achieved by using GPUs [16], multicore systems and HCP [34].
Performing winnowing techniques is one possible way used to alleviate the computation
complexity of searching large databases [21, 29, 53]. Winnowing techniques partition a
database into partitions based on some predetermined categories. The second way is using
parallel or distributed computing to split up the data into virtual partitions and assign dif-
ferent processors to each partition so that the database can be searched in parallel [16, 26].
Serial search algorithms require template data to be classified, indexed, and database parti-
tioned in some manner [21]. The Henry classification system [54] is a well known and estab-
lished classification system used to classify fingerprint patterns into different ridge classes
such loops, whirls and arches. Serial search algorithm [29, 53, 55] classify the fingerprint
images into the Henry system classes and use them to index and partition the database with
cited false rejection rate errors ranging from 20% for Hong & Jain [53], 12.4% for Jain et
al [29] and 10% for Ratha et al [55]. Mhatre et al [21] perform coarse level classification on
template in order to bin templates and prune the database before performing the exhaustive
matching on a multimodal system. The database is partitioned using the k-means clustering
algorithm. A probe is assigned to a certain partition on the template database and that par-
tition is searched for potential matches. In order to reduce false rejection errors associated
with inaccurate binning, the algorithm searches C closest bins. In contrast to Henry clas-
sification based systems, Mhatre et al’s approach partitions the database to N bins which
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need to be specified for the algorithm rather than depending on the number of fingerprint
macro feature classes. The goal of winnowing is to reduce the penetration rate of a search
algorithm which in turn reduce false accept rates [26]. One major complication associated
with winnowing techniques is the strong dependency on classification. If an image is as-
signed an inaccurate bin, then the matcher spends time searching for a matching template
on the wrong partition. One of two things could happen: 1. A wrong match will be returned
or 2. A non-match will be returned. Either way, the system error rates increases. Parallel
searching on the other hand eliminates the need for bins and ultimately classification. With
enough processing power, a database is virtually partitioned into bins equal to the number
of processing elements available. And unlike winnowing, ALL partitions are searched con-
currently, and each processor returns a match with the highest score from their respective
partition, and finally the match with the highest score is selected.

2.7 Conclusion

Although much has been done in the literature, there is still much lacking. Most work
towards the improvement of recognition systems seems to be directed towards hardware.
While embedded systems are becoming more and more common, it is important for the
software approach to be given more attention as well. Hence this research focuses of the
improvement of software-based biometrics.
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Chapter 3

Serial Implementation

In this chapter, a serial fingerprint recognition algorithm has been implemented using
mostly parts of the popular Hong et al recognition algorithm. The algorithm was imple-
mented and tested on the CASIA database.

3.1 Introduction

Fingerprint recognition is the most used biometric technique in the commercial industry
and crime forensics [26]. Fingerprints are a highly universal and unique trait. A fingerprint
pattern is made up of ridges and valleys. The chaotic way in which these ridge and valley
structures are formed makes them unique to each individual, including identical twins. La-
tent prints are easily and unintentionally left behind on surface contact which makes them
well adapted for crime scene forensics. The fingerprint recognition process can be fully
automated by Automatic Fingerprint Identification Systems (AFIS). The process includes
the following steps:

1. Sensing and Acquisition: A fingerprint is scanned by a scanning device and the image
is acquired by the image processing subsystem

2. Enhancement: The acquired fingerprint goes through a series of image processing
techniques in order to remove noise and clarify ridges

3. Feature Extraction: Minutiae is extracted from the enhanced image

4. Searching/Matching: Checking the similarity between extracted minutiae and the
minutiae of templates in the database

5. Decision: Accept or Reject probe

Figure 3.1 shows the chain of processes that make up automatic fingerprint identifica-
tion.

This research focuses on the enhancement and matching (searching) subsystems. Sens-
ing devices often produce noisy/corrupted images. Image enhancement helps to remove
the effect of these corruptions and make minutiae more visible to facilitate the subsequent
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3.2 Normalization Serial Implementation

Figure 3.1: Fingerprint identification process (taken from [1])

feature extraction. The enhancement procedure takes in an input image and divides it into
two categories - recoverable and unrecoverable regions. The recoverable regions are well-
defined or slightly corrupted but visible and can be recovered by using the neighbouring
regions to predict their true structure. Unrecoverable regions are corrupted to an extent
that the ridge structure is not visible and neighbouring regions do not provide sufficient in-
formation to predict their structure [27]. Fingerprint enhancement improves the quality of
recoverable regions and removes the unrecoverable regions. The main stages in fingerprint
enhancement include normalization, mask region generation, ridge orientation estimation,
ridge frequency estimation and ridge filtering [27, 39, 56–59]. Parts of the popular Hong et
al [27] algorithm are used for the serial enhancement algorithm presented here.

3.2 Normalization

Normalization is a global operation that adjusts data to fit a certain acceptable region. There
often are variations in the way subjects present their traits caused by factors such as dryness
of skin, uneven pressure on the scanner, which makes the acquired images to vary. Normal-
ization standardizes the intensity of each pixel to lie within a required range. This process
reduces the effects of variations that occur during acquisition and reduces chances of false
rejections. For a gray-scale image I, defined as:

I = {(i, j,xi j)|0≤ i≤ N−1∧0≤ j ≤M−1∧0≤ xi j ≤ g−1} (3.1)

where (i, j,xi j) is a pixel of the image I, with (i, j) being the position of the pixel and
xi j being its gray value. More often the pixel (i, j,xi j) is represented by (i, j), which is
adopted in this dissertation. Denote M and VAR as the estimated mean and variance of I,
respectively. A normalized image of I can then be expressed as follows:
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Serial Implementation 3.3 Ridge Orientation Estimation

G(i, j) =

 M0 +

√
VAR0(I(i, j)−M)2

VAR if I(i, j)> M

M0−
√

VAR0(I(i, j)−M)2

VAR otherwise
(3.2)

where M0 and VAR0 are the desired mean and variance values, respectively.

3.3 Ridge Orientation Estimation

Fingerprint patterns are regarded as oriented texture patterns [27,57]. An orientation image
is made up of directional vectors estimated from a normalized image which represent the
orientation of local ridges [56]. A considerable amount of techniques exist which can be
used to estimate the local orientation of an image [27, 39, 56–58, 60–62]. The method of
averaging square gradients of the gradient covariance matrix seems to be the most widely
used approach [27,56,60,61,63,64]. This research uses this approach also adopted by Hong
et al to compute gradients of the normalized image. The gradients are then used in the least
mean square orientation estimation algorithm.

A normalized image is divided into W ×W non-overlapping blocks then gradients
σx(i, j) and σy(i, j) are computed for each block using a Sobel or Marr-Hildreth opera-
tor. For each block, an orientation vector is derived by averaging all vectors orthogonal to
the x and y gradients. The algorithm is summarized as follows:

1. Divide G into w×w blocks

2. Compute gradients σx(i, j) and σy(i, j) at each pixel using Sobel operator. Each pixel
of the window w×w is convolved using horizontal and vertical Sobel kernels sx and
sy, respectively in order to determine the direction of the maximum intensity change.

Sx =

−1 0 1
−2 0 2
−1 0 1



Sy =

 1 2 1
0 0 0
−1 −2 −1


3. Estimate local orientation of each block centered at pixel (i, j) using the following:

γx(i, j) =
i+w/2

∑
u=i−w/2

j+w/2

∑
v= j−w/2

2σx(u,v)σy(u,v), (3.3)

γy(i, j) =
i+w/2

∑
u=i−w/2

j+w/2

∑
v= j−w/2

(σ2
x(u,v)σ

2
y(u,v)), (3.4)

θ(i, j) =
1
2

tan−1 γy(i, j)
γx(i, j)

, (3.5)
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3.4 Frequency Estimation Serial Implementation

where θ(i, j) is the least square estimate of the local ridge orientation at the block
centered at pixel (i, j).

4. To remove noise, a low pass filter is used. In order to use the filter, the orientation
image needs to be continuous. The following transformation of the orientation image
into a continuous vector field is applied:

Φx(i, j) = cos(2σ(i, j)), (3.6)

Φy(i, j) = sin(2σ(i, j)), (3.7)

where Φx and Φy are the x and y components of the vector field, respectively. The
vector field is then used for low-pass filtering as follows:

Φ
′
x(i, j) =

wΦ/2

∑
u=−wΦ/2

sumwΦ/2
v=−wΦ/2W (u,v)Φx(i−uw, j− vw) (3.8)

and

Φ
′
y(i, j) =

wΦ/2

∑
u=−wΦ/2

wΦ/2

∑
v=−wΦ/2

W (u,v)Φy(i−uw, j− vw) (3.9)

where W is a 2D low-pass filter with unit integral and wΦ×wΦ is the size of the filter.

5. The local ridge orientation of pixel (i, j) is then computed using

O(i, j) =
1
2

tan−1 Φ
′
y(i, j)

Φ
′
y(i, j)

(3.10)

The orientation estimation is a prerequisite step for fingerprint filtering, as Gabor filtering
relies on accurate local orientation to work correctly.

3.4 Frequency Estimation

Frequency estimation is a block-wise operation which determines the local frequency of
ridges along a direction normal to the local ridge orientation [27]. The frequency estimation
procedure requires a normalized image which is divided into W ×W blocks. A frequency
estimation algorithm used by Hong et al [27] computes oriented windows of size L×W for
each block. These oriented windows are used to compute x-signatures, defined in [56] as
the projection of gray-level values from the oriented window to the ridge orientation along
an orthogonal direction. The x-signatures of windows without singularities and minutiae
form sinusoidal-shape waves with the same frequency as the ridges in the oriented window.
Thus the frequency of ridges can be directly estimated from consecutive x-signatures by
calculating the distance between their wavelengths [27].

From a normalized image G and an orientation image O, the local ridge frequency is
estimated as follows:
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1. Divide G into blocks of size w×w

2. For each block centered at (i, j), compute an oriented window of size l×w that is
defined in the ridge coordinate system

3. For each block centered at (i, j), compute the x-signature, X [0],X [1], ...,X [l− 1], of
the ridges and valleys within the orientated window, where

X [k] =
1
w

w−1

∑
d=0

G(u,v),k = 0,1, ..., l−1 (3.11)

u = i+(d−w/2)cosO(i, j)+(k− l/2)sinO(i, j), (3.12)

v = j+(d−w/2)sinO(i, j)+(l/2− k)cosO(i, j) (3.13)

Let τ(i, j) be the average number of pixels between two consecutive peaks in the x-
signature, then the frequency, Ω(i, j), is computed as Ω(i, j)= 1

τ(i, j) . If no consecutive
peaks can be detected from the x-signature, then the frequency is assigned a value of
-1 to differentiate it from the valid frequency values.

4. For invalid frequency values, a frequency value between the range [1/3, 1/25] is esti-
mated.

5. Blocks with minutiae or singular points or corrupted regions do not form well-defined
sinusoidal-shaped waves and thus can not be used to estimate the frequency. For such
cases, the frequency values are interpolated from frequencies of neighbouring blocks
which have well-defined frequencies. This interpolation is performed as follows:

a) For each block centered at (i, j)

Ω
′
(i, j) =


Ω(i, j) if Ω(i, j) 6=−1

∑
wΩ/2
u=−wΩ/2 ∑

wΩ/2
v=−wΩ/2 Wg(u,v)µ(Ω(i−uw, j−vw))

∑
wΩ/2
u=−w

Ω)/2 ∑
wΩ/2
v=−wΩ/2 Wg(u,v)δ(Ω(i−uw, j−vw)+1)

otherwise

(3.14)
where

µ(x) =
{

0 if x≤ 0
x otherwise

(3.15)

δ(x) =
{

0 if x≤ 0
1 otherwise

(3.16)

Wg denotes a discrete Gaussian kernel with a mean of 0 and a variance of 9,
while wΩ = 7 is the size of the kernel

b) If there exists at least one block with the frequency value of -1, then swap Ω and
Ω
′
and go to step (a)
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3.5 Mask Region Generation Serial Implementation

6. Lastly, a low-pass filter is used to remove any possible outliers in Ω′:

F(i, j) =
wl/2

∑
u=−wΩ/2

wl/2

∑
v=−wΩ/2

Wl(u,v)Ω′(i−uw, j− vw) (3.17)

Wl is a 2D low-pass filter with unit integral and wl = 7 is the size of the filter

3.5 Mask Region Generation

The mask region generation process segments a normalized image into recoverable and
unrecoverable regions per processing block. The mask is then used to separate the Region
Of Interest (ROI) from the rest of the image. Hong et al [27] use the amplitude α, frequency
Ω and variance v of each block centered at pixel (i, j) to characterize a sinusoidal-shape
wave into the two regions. Let X [1],X [2], ...,X [l] be the x-signature of a block centered at
(i, j). The three features are computed as follows:

1. α = (average height of the peaks - average depth of the valleys)

2. β = 1
τ(i, j) , where τ(i, j) is the average number of pixels between consecutive peaks

3. v = 1
l ∑

l
i=1[X [i]− (1

l ∑
l
i=1)X [i]]2

This process is used to assist determine the quality of a fingerprint image. If the percentage
of the recoverable regions is less than a certain threshold, the image is rejected.

3.6 Ridge Filtering

Gabor filters are bandpass filters that have frequency-selective and orientation-selective
properties. Thus the success of the filtering stage of fingerprint enhancement relies on the
accurate construction of the orientation field and ridge frequency from the previous stages
for parameter tuning. As mentioned earlier, fingerprint patterns are essentially oriented
texture patterns. This property together with the ability to estimate local ridge frequency
makes Gabor filters ideal for fingerprint filtering as the orientation and frequency parameters
of Gabor filters can be tuned to match the local ridge orientation and frequency [56].

The Gabor filter used has the general form

H(x,y;φ, f ) = exp
{
−1

2

[
x2

φ

δ2
x

+
y2

φ

δ2
y

]}
cos(2π f xφ), (3.18)

xφ = xcosφ+ ysinφ, (3.19)

yφ =−xsinφ+ ycosφ (3.20)

where φ is the orientation of the Gabor filter, f is the frequency of a sinusoidal plane wave,
and δx and δy are the space constants of the Gaussian envelope along the x and y axis,
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Serial Implementation 3.7 Binarization

respectively. The values for the frequency and orientation images come directly from the
frequency and orientation images, respectively. The standard deviation values δx and δy in
this context are set to 4.0 each [27]. The enhanced image E is then defined as follows

E(i, j) =

{
255 if R(i, j) = 0

∑
wg/2
u=−wg/2 ∑

wg/2
v=−wg/2 h(u,v : O(i, j),F(i, j))G(i−u, j− v) otherwise

(3.21)
where R is the recoverable mask (R = 0 represents an unrecoverable region), G is the nor-
malized image, F is the frequency image and O is the orientation image. The value for wg

set to 11 specifies the size of the Gabor filters.

3.7 Binarization

Binarization is a pixel-wise operation which converts a gray-scale fingerprint image into
a binary image with 1-valued pixels representing ridges and 0-valued pixels representing
the valleys. The Gabor filters used to enhance the fingerprint images have DC-balanced
waveforms resulting in filtered images with zero mean pixel values [56]. This mean value
(zero) is then used as a threshold in order to convert the greyscale filtered image to a binary
image. Binarization is achieved through the thresholding technique. The mean value of 0 is
used as the global threshold to transform an image E into a binarized image B as follows:

B(i, j) =
{

1 if E(i, j)> 0
0 otherwise

(3.22)

3.8 Thinning

Thinning reduces the binarized images to unit width skeletons. This reduces the amount of
data the minutiae extractor has to process and helps to make critical features such as bifur-
cations, lakes and ridge endings more visible and easier to extract. Thinning is a pixel-wise
operation which requires neighbouring pixel values to make a decision about the deletion
of a particular pixel. The thinning algorithm used in this paper is adopted from the work
presented in [65]. This algorithm modifies the two-subiteration algorithm presented in [66]
to preserve connectivity properties and produce thinner skeletons.

Figure 3.2: Support window used by the thinning algorithm
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3.8 Thinning Serial Implementation

The algorithm uses operators with the support window shown in Figure 3.3. C(P1) is the
number of 8-connected components of 1s in P1’s 8-neighbourhood. T (P1) is the number
of distinct 0 to 1 transitions and G(P1) is number of 4-connected components. Symbols
“ ¯ ” , “∧ ” and “∨ ” refer to logical complement, AND and OR, respectively; and + refer
to arithmetic addition. A function N(P1), defined in (3.23) detects end-points and help
produce unitary skeletons [65].

N(P1) = min[N1(P1),N2(P1)] (3.23)

where
N1(P1) = (P9∨P2)+(P3∨P4)+(P5∨P6)+(P7∨P8) (3.24)

and
N2(P1) = (P2∨P3)+(P4∨P5)+(P6∨P7)+(P8∨P9) (3.25)

N1(P1) and N2(P1) each break the ordered set of P1’s neighbour pixels into four pairs
of adjoining pixels and count the number of pairs which contain one or two 1s [65].

The function L(P1) is defined as :

L(P1) = (((P̄2)∧P6∧ (P̄20))∧ (P1∨P0∨P7)

∧(P5∨P4∨P3))∨ ((P̄0)∧P4∧ (P̄16))
(3.26)

checks for m-connectivity. The pseudocode of the thinning algorithm is presented in algo-
rithm 1.

Algorithm 1: Procedure for the thinning process that extracts the approximate of the
skeleton of a given binary image

Input: Binary filtered image, I
Output: Thinned image, T
Variables: Deletion counter,DelCounter; iteration counter, Iter;

1: Read I, Initialize DelCounter = 1
2: while DelCounter 6= 0 do
3: DelCounter← 0
4: for Iter = 1 : 2 do
5: Update T
6: for j = 1 : M, i = 1 : N′ do
7: if pixel p(i, j) = 1 then
8: if T (P1) = 0 and G(P1) = 0 and C(P1)> 2 and L(P1) = 0 then
9: p(i, j)← 0

10: DelCounter++
11: end if
12: else
13: Read 8-neighbours of p(i, j)
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Serial Implementation 3.9 Minutiae Extraction

14: if Iter = 1 then
15: if C(P1) = 1; and 2≤ N(P1)≤ 3;

and (P2∨P3∨ P̄5)∨P4 = 0 then
16: p(i, j)← 0
17: DelCounter++
18: end if
19: end if
20: if Iter = 2 then
21: if C(P1) = 1; and 2≤ N(P1)≤ 3;

and (P6∨P7∨ P̄9)∧P8 = 0 then
22: p(i, j)← 0
23: DelCounter++
24: end if
25: end if
26: end if
27: end for
28: end for
29: end while

The algorithm preserves connectivity and produces non-spurious unitary skeletons. N(P1)
is able to detect end-points whether or not they have one or two 8-neighbors. Unlike Zhang-
Suen [66], in algorithm 1 2-pixel thick diagonal lines are not deleted.

3.9 Minutiae Extraction

After enhancement, minutiae features are extracted. Minutiae is defined as local disconti-
nuity in the fingerprint patterns [20]. This discontinuity can be in forms of islands, ridge
endings, bifurcations, etc. There are over 150 different defined minutiae types in the litera-
ture [2]. Figure 3.3 shows examples of minutiae structures.

For practical purposes, only ridge endings and bifurcations are usually used. The minu-
tiae extraction algorithm takes as input, a thinned image I and an orientation image O. To
detect minutiae, the method of counting neighbours in a 3×3 block is used. A ridge ending
has exactly 1 neighbour, while a bifurcation has exactly 3 neighbours. However, not all pix-
els with 3 neighbours reflect a bifurcation, for this reason, a lookup table is used to define
minutiae from false minutiae [2]. Figure 3.4 shows various scenarios where 3 neighbours
encountered form genuine minutiae data.
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Figure 3.3: Example minutiae structures (redrawn from [2])

Figure 3.4: Genuine bifurcation minutiae data (adapted from [2])

Minutiae points are represented and stored as 4-tuple sets in the following manner:

M = {mi|mi = (xi,yi,φi, ti);xi,yi ∈ N,0≤ φi ≤ 360, ti ∈ [0,1]} (3.27)

where (xi,yi) is the minutiae coordinate, ti is the minutiae type with 0 and 1 representing
ridge ending and bifurcation respectively. The inclination angle φi is as:

φi = tan−1
(

yi
1− yi

2

xi
1− xi

2

)
(3.28)

where xi
1, xi

2, yi
1 and yi

2 are represented in Figure 3.5.

3.10 Classification

Fingerprint patterns consists of global/macro features larger than minutiae which can be
used in matching as well as classification. Classification is a process of categorizing finger-
print patterns into different classes using only macro features. These features are identified
by using the orientation field curves. The classification process is used to partition the
database into classes according to the similarity in the macro features. Two macro features
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Figure 3.5: Representation of a minutiae point

are defined here: a core and a delta. “ A core is the area around the center of the fingerprint
loop and a delta the area where the fingerprint ridges tend to triangulate” [3]. Figure 3.6
shows an example of a core and a delta.

Figure 3.6: A delta and a core (taken from [3])

The Henry classification system defines fingerprint classes: arches, loops and whorls
[20].

1. Arches
Arches represent only about 5% of the fingerprint patterns. The ridges that make up
an arch flow in one direction without doubling back. They can be sub-dived into plain
arch, radial arch, ulnar arch and tented arch.

2. Whorl
Whorls comprise between 25-30% of all fingerprint patterns and are defined by ridges
that circle the core(s). Whirls posses two or more deltas.

3. Loops
Loops cover about 65% of all fingerprint patterns. They are characterized by ridges
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3.10 Classification Serial Implementation

which loop/turn backwards. They are classified as left, right, radial or ulnar according
to the direction of the downward slope.

4. Composites
Composites are patterns which include a combination of the arch, loop and whorl on
the same print.

Figure 3.7: Ridge macro classes [4]

The approach proposed in [3] is used for classifying the fingerprints into five classes:
Central Twins (CT), Tented Arch (TA), Plain Arch(PA), Left Loop (LL) and Right Loop
(RL).

The CT class is made of fingerprints whose ridge patterns form circular patterns along
the center of the print. These patterns include whorls and double loops shown in Figure
3.7. The two patterns have one thing in common, they contain two cores and may or may
not contain up to two deltas. Ideally, these two patterns should contain two deltas and two
cores and hence most classification algorithms use this as a classification rule, but Msiza
et al [3] state that this is a great limitation because acquisition conditions are hardly ever
ideal and more often than not images do not give full view of the fingerprint, and the delta
information may be missing.

The TA class is characterized by ridge patterns that enter the fingertip on one side,
making a rise that is at least 450 along the center of the fingertip and exit on the opposite
side of the finger. TA fingerprints consist of one delta and one core.

The PA class is characterized by ridge patterns that enter the fingertip on one side, make
a slight rise (less that 450) and exit on the opposite side of the finger. PA fingerprints neither
have a core nor a delta.

The LL class consists of ridge patterns that enter the fingertip on the lefthand side of
the finger, loop backwards in the middle of the fingertip and exit the fingertip on the same,
lefthand side of the fingertip. They contain one core and one delta.
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The RL class shares the same properties as the LL class except that the ridges enter and
exit on the righthand side of the fingertip.

Figure 3.8: Classification procedure (taken from [3])

Figure 3.8 shows the chart diagram of the classification procedure. C-slop is defined
as the gradient of the line joining the core and the delta, while the auxiliary angle (AUX)
is an angle that the base of the fingerprint image makes with the line joining the core and
the center of the fingerprint foreground at the foot (bottom) of the fingerprint area. Finally,
x-diff is the distance, in pixels, between the core and the delta along the x-axis [3]. An
image first goes through the enhancement procedure after which it is sent to the classifier.
The classifier then allocated all present cores from the fingerprint ridge pattern. If none
is present, the print is classified as belonging to the PA class. If one core is detected, the
classifier proceeds to search for any present deltas. If no delta is detected, the AUX angle
is computed; if its greater than 900, print is classified as RL, if the AUX angle is greater
than or equal to 900, the print is classified as LL. If there is one delta present, the classifier
computes the x-diff. If x-diff is greater than 30 pixels, and the C-slope is negative, the print
is classified as LL. If on the other hand the C-slope is positive, the print is classified as RL.
If after having detected one core and one delta, the computed x-diff is smaller than or equal
to 30 pixels, the print is classified as TA. If two deltas are detected, the print is classified as
belonging to the CT class.

Classification helps in reducing the size of the database to be searched by grouping
images with similar features into the same class through a process formally known as win-
nowing [26]. For this research, the winnowing technique used is binning. The database is
logically partitioned into the five classes which reduces the search space.
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3.11 Alignment

This research adopts alignment proposed by Msiza et al [5] based on True Fingerprint Cen-
ter Point (TFCP). The algorithm [5] tracks the TFCP both horizontally and vertically. The
x-coordinate is tracked by navigating horizontally through the x-axis, while the y-coordinate
is tracked by navigating vertically through the y-axis. The navigation begins at the geomet-
ric center (xb,yb) of the image:

xb = 0.5×w (3.29)

yb = 0.5×h (3.30)

where w is the width of the frame and h is the height of the frame. Reason for this is because,
intuitively, subjects will place their finger more or less along the center of the scanner.

Figure 3.9: A fingerprint rotated clockwise (taken from [5])

Algorithm 2: A procedure for locating the TFCP based on the fingerprint mask im-
age [5]

Input: Fingerprint mask image, M
Output: TFCP coordinates, (x f ,y f )
Constants: W , the width of M; and H, the height of M
Variables: Extreme right x-value (navigation from x f ),xr; extreme left x-value (naviga-
tion from x f ), xl; extreme right y-value (navigation from y f ), yu; and extreme left y-value
(navigation from x f ), yl

1: Compute: (xb,yb) using (3.29) and (3.30)
2: if M(xb,yb) = 1 then
3: Initialize: xr = xb
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4: while M(xr,yb) = 1 && xr ≤W do
5: xr ++
6: end while
7: Initialize: xl = xb
8: while M(xl,yb) = 1 && xl ≥ 0 do
9: xl−−

10: end while
11: Initialize: yu = yb
12: while M(xb,yu) = 1 && yu ≥ 0 do
13: yu−−
14: end while
15: Initialize: yl = yb
16: while M(xb,yl) = 1 && yl ≤ H do
17: yl ++
18: end while
19: Compute: (x f =

xr+xl
2 ,y f =

yu+yl
2 )

20: end if

Algorithm 2 illustrates a used procedure by [5] to locate the TFCP of a fingerprint
image.

Figure 3.10: A fingerprint rotated anti-clockwise (taken from [5])

Algorithm 3: A procedure for determining the alignment direction of a rotated finger-
print [5]

Input: Fingerprint mask image, M; TFCP x-coordinate, x f ; and extreme right y-value
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(navigation from TFCP y-coordinate y f ), yu

Output: Alignment direction, D
Constants: W , the width of M
Variables: xu;C1 and C2

1: Initialize: xu = x f

2: Start: at point (xu,yu), the upperEdge
3: if M(xu,yu) = 1 then
4: while M(xu,yu) = 1 && xu ≤W do
5: xu ++
6: end while
7: Compute: C1 = xu− x f

8: Re-initialize: xu = x f

9: while M(xu,yu) = 1 && xu ≥ 0 do
10: xu−−
11: end while
12: Compute: C2 = x f − xu

13: if C1 <C2 then
14: D is clockwise
15: else
16: if C2 <C1 then
17: D is anti-clockwise
18: end if
19: else
20: D is upright
21: end if
22: Re-initialize: xu = x f

23: end if

Algorithm 3 illustrates the procedure used by [5] to determine the alignment direction
of a rotated fingerprint. Variables upperEdge,T FCP,C1,C2,C3,C4 and Q used in the algo-
rithms 2,3 and 4 are shown as symbols on Figures 3.9 and 3.10

Algorithm 4: A procedure for determining the alignment angle of a rotated finger-
print [5]

Input: Alignment direction, D;C1;C2; TFCP y-coordinate, y f and extreme right y-value
(navigation from y f ), yu

Output: Alignment/rotation angle, Q
Variables: C3 and C4

1: Initialize: Q = 00

2: if D is not upright then
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3: Compute: C4 = y f − yu

4: if D is not clockwise then
5: Add: an offset, C3 =C1 to the left of C2
6: else
7: if D is not anti-clockwise then
8: Add: an offset, C3 =C1 to the right of C2
9: end if

10: end if
11: Q = tan−1

(
C2+C3

C4

)
12: end if

Algorithm 4 illustrates the procedure used by [5] to determine the alignment angle of
a rotated fingerprint. The alignment procedure correctly aligns the template data with the
probe data in order to ensure that the same features sets are matched to each other on the
same locations [26]. When performed correctly, alignment reduces errors during the match-
ing stage by ensuring that the same points/same locations are compared by the matcher.

3.12 Matching

Matching is defined by the NSTC “Biometric Glossary” as “ the process of comparing
a biometric sample against a previously stored template and scoring the level of similar-
ity (difference or hamming distance). Systems then make decisions based on this score
and its relationship (above or below) a predetermined threshold” [26]. There are four ba-
sic approaches for matching; image-based, ridge pattern-based, minutiae pattern-based and
graph matching schemes [29]. Matching defines a similarity metric between a probe and a
template. A probe is considered a match if the similarity distance is above a certain pre-
determined threshold [29]. Minutiae pattern-based matching scheme requires registration.
Registration involves alignment based on rotation/transaltion.

A probe fingerprint first goes through enhancement, alignment and classification before
arriving to the matcher. During the matching/searching stage, an aligned probe minutiae set
P is matched to the template minutiae set corresponding to the claimed identity (for verifi-
cation) or to all contents of the partition/bin corresponding to the ridge class obtained from
the template by the classifier. Let and T = (t1, t2, ..., tn) denote the probe minutiae set and
the template minutiae set, respectively. The matching procedure is detailed in Algorithm 5.

Algorithm 5: A procedure for matching with winnowing-based serial search

Input: Probe minutiae set, P = (p1, p2, ..., pn); Template minutiae set, T = (t1, t2, ..., tm)
Output: Similarity score, S(T,P)
Variables: dist di f f ,angular di f f

1: Compute: Euclidean matrix for P and T
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dist2DT =
√

(xi− x j)2 +(yi− y j)2 (3.31)

dist2DP =
√

(xi− x j)2 +(yi− y j)2 (3.32)

2: Initialize: count = 1
3: while count > min(m,n) do
4: if minutiaeType((pcount) == minutiaeType(tcount)) then
5:

dist di f f = |dist2Dtcount −dist2Dpcount | (3.33)

6:

angular di f f =
{
|φtcount −φpcount | if |φtcount −φpcount | ≤ 1800

3600−|φtcount −φpcount | if 1800 ≤ |φtcount −φpcount | ≤ 3600

(3.34)
7: end if
8: if angular di f f < threshold then
9:

S(T,P) =
1

min(n,m) ∑
ti∈T

minp j∈Pdist di f f (ti, p j) (3.35)

10: end if
11: end while

The serial searching algorithm uses the five classes discussed in the classification sec-
tion. During enrollment, each fingerprint is classified, indexed and placed and the appropri-
ate bin depending on the class. When a probe is submitted for identification it goes through
the same procedure and only the corresponding partition/bin is searched.

3.13 Experimental Result Analysis

The fingerprint enhancement algorithm was tested on 60 CASIA fingerprint database im-
ages. Figure 3.11 shows the results of the timed experiments, separated into segmentation
time, orientation estimation, frequency estimation, filtering, thinning, alignment, minutiae
detection and classification.

A winnowed search is compared to a winnowed search at different database sizes of up
to 4000 records in Figure 3.12. It can be seen from the diagram that an exhaustive search is
not efficient at all, it consumes a lot of time. Where as the winnowed search maintains low
search times, which indicate very low penetration rates.

3.14 Conclusion

A serial fingerprint recognition algorithm based on Hong et al’s and Mzisa et al’s works was
developed and tested on the CASIA database. Fingerprint recognition (on the identification

36



Serial Implementation 3.14 Conclusion

Figure 3.11: Fingerprint enhancement performance on 60 images

Figure 3.12: Winnowed search vs the exhaustive search
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side) is computational intensive and requires a lot of processing power. The response time
of the enhancement subsystem (with the highest being 727 ms) is not practical for real-
time systems. Search is also ready tedious when performed exhaustively. A winnowing
technique known as binning is applied to decrease the searching complexity and ultimately
improve efficiency.
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Chapter 4

Parallel Implementation

In this chapter, a parallel and distributed fingerprint recognition is presented. The algo-
rithm uses the best parts of Hong et al’s and Thai’s algorithms and applies neccessary
optimizations in order to boost the performance.

4.1 Introduction

This chapter discusses the system architecture and the distribution of the fingerprint recogni-
tion algorithm. Mixed-mode parallel and distributed computation is used to take advantage
of the multicore cluster. Distributing the computation poses a few design complications.
Distributed image processing often requires excessive inter-processor communication in or-
der to access neighbour information to process boundary pixels for pixel-wise operations.
Communication (message passing) is associated with large amounts of overhead and this
brings forth the task of proper optimization and minimization of communication.

4.2 Architecture Study

There are two types of parallelism: data parallelism and task parallelism [30]. Task paral-
lelism assigns different tasks to different processors which are then required to apply the
tasks to the same data. Data parallelism on the other hand partitions the data and assigns
it to different processors which then apply the same tasks on the independent sets of data.
Data parallelism is generally easier and less error prone in comparison to task parallelism.
Task parallelism tends to be error prone because it is unstructured and depends on careful
thread coordination to avoid data racing [30]. Data parallelism scales easily to highly paral-
lel hardware because there is very little if any shared data (i.e. data parallel programs tend
to be embarrassingly parallel) [30].

The Single Program Multiple Data (SPMD) parallel programming model uses data par-
allelism. In SPMD algorithms, data is divided as evenly as possible and multiple processing
elements execute the same program at independent data points (see Figure 4.1), avoiding
locksteps. SPMD programs run on distributed environments and it is the model this research
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adopts. A fingerprint image is split up and assigned to different processors which then work
independently on the sub-images.

Figure 4.1: Single Program Multiple Data

The system is parallelized in two levels: per-processor and across processors. Per-
processor parallelization refers to the fine-grain parallelization achieved through multi-
threading. Through multithreading, we take advantage of the multicore cluster by using
OpenMP. Across processor parallelization refers to the coarse-grain parallelization or dis-
tributed computing, where processing is distributed across the processing nodes. The multi-
level parallelization shown in Figure 4.2 leverages the cluster architecture by matching the
hardware hierarchy. Message passing paradigms such as Message Passing Interface (MPI)
and Parallel Virtual Machine (PVM) can be used for coarse parallelization with multiple
threads running on each core for fine-grain parallelization.

Figure 4.2: Parallelism structure architecture
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4.2.1 Data Dependence

The image processing enhancement techniques have strong dependence between pixels.
Data dependence can hugely impede the parallelism of an algorithm by making the data
path overlap. Figure 4.3 models data dependency graphically.

Figure 4.3: (a) Data independence (b) Example of data dependence

When data dependence occurs, parallelism often leads to race conditions which produce
erroneous results, deadlocks or potentially trash the entire system. For this reason, not all
the algorithms forming part of the recognition process can be parallelized, e.g. minutiae
extraction. For algorithms that can be parallelized, we overlap our input data along the
boundaries where data dependency can not be satisfied within the processor. Figure 4.4
shows an example of overlapped input data.

Figure 4.4: Data overlapped along processor boundaries

The overlaps are created through a process known as prefetching. Prefetching not only
helps us deal with boundaries, it also helps improve the performance of the system. All data
is fetched before it is needed, avoiding idle processors.
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4.2.2 Data Layout

In SPMD parallel programs, global data is partitioned and distributed among the processing
nodes. There are many approaches that can be taken to partition data for processing by a dis-
tributed algorithm. We investigate two types of data partitions: row-wise and column-wise
partitions. The choice of data partitioning patterns has a direct impact on the performance
of an algorithm. Partitioning an image in a row-wise manner provides contiguous5 access
to data. Each processor can access all its data in a single atomic read operation. An atomic
operation is an operation which is indivisible, i.e. results indicate that an entire operation
occurred or nothing happened at all. This means that operations can not be interleaved.
When an image is partitioned in a column-wise manner, access to data is not contiguous.
If each processor is assigned M×N′ subarray of an image, then the distance between two
consecutive rows is N > N′. It is not possible for a processor to access all its data in a single
read operation, as is the case with row-wise partition [6]. Each processor requires M read
operations. The same applies for write operations. In image processing operations such as
thinning, pixels require access to neighbour information. This becomes a problem when
working with SPMD programs. The boundary pixels do not have access to their neighbour
information, which can lead to erroneous data.

4.2.3 Distributed Memory Model

Most fingerprint enhancement techniques operate in a block-wise manner as opposed to
pixel-wise. This makes distributing the data a slightly more complex. There is a need to
ensure that all partitions are in multiples of the processing block size. Let I be an N×M
gray scale image and np be the number of processors. The following derivation shows how
the data is distributed when a processing block of size W ×W is used.

The remainder theorem states that if r,d ∈ N with d > 0, then ∀a ∈ R, ∃q ∈ N such
that:

a = qd + r (4.1)

where 0 ≤ r < d. Let N′ be the number of columns on each processor. We can express
( N

np)/W in terms of equation (4.1):

N
np

= qW + r (4.2)

The difference between the integer r and window size W represents the number columns
that each processor needs to add to N

np in order to have local columns that are a multiple of
W . Hence:

N′ =
N
np

+(W − r) (4.3)

This ensures that the partitions are in multiples of W so that no pixels are left unpro-
cessed. The image is split into np sub-images of size N′ ×M, each operated on by its
respective processors [18].

5Assuming row-major representation in memory, e.g. C arrays
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4.2.4 Parallel Input/Output

MPI offers parallel I/O, where each processor is responsible for its own I/O operations.
Parallel I/O allows computations and I/O operations to overlap. This increases performance
as it reduces chances of idle processors which are waiting on I/O operations in order to
continue processing.

Figure 4.5: Parallel input/output diagram showing how I/O is performed by the algorithm

Figure 4.5 illustrates parallel I/O. The image is split up and assigned to different pro-
cessors. Each processor works on its own region of the file and writes back the results to
a corresponding region on the output image.Using parallel I/O leverages performance of a
distributed algorithm. Algorithms with serial I/O where only the master node is responsible
for I/O operations suffer from overhead caused by idle processors, because while the mas-
ter is performing I/O, the rest of the processors are not doing anything. The enhancement
algorithm presented here makes use of parallel I/O.

4.2.5 System Configuration

The system used for experiments has the following specifications:

Table 4.1: System Configuration

Model SuperMicro

Filesystem GPFS

Network Gigabit Infiniband

Number of nodes 5

CPU Cores 80

CPU Cores per Node 16

CPU Model Intel Xeon

CPU Speed 2.4 GHz

Peak Performance 16 TFlops

This is a powerful publicly available cluster. Access to the cluster can be obtained on
www.chpc.ac.za
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4.3 Image Enhancement Algorithm Description

The fingerprint enhancement algorithm takes in a raw gray-scale digital image as input,
applies a series of steps and outputs a thinned binary image ready for feature extraction.
This algorithm performs the following tasks in sequence:

1. Normalization;

2. Mask region estimation;

3. Orientation field estimation;

4. Ridge frequency estimation;

5. Ridge filtering;

6. Binarization;

7. Ridge thinning;

All these operations are block-wise with an exception of normalization, binarization
and thinning which are pixel-wise operations. In order to facilitate pixel-wise operations
which depend on neighbour data, two solutions overlap the data across processors, while
the third solution depends on message passing. Since the block-wise operations require the
sub-images to be in multiples of processing windows, it is necessary to overlap the window
containing the boundary pixels for all processors. This is done by modifying the initial sub-
image size of N′×M to add ghost cells of size W ×M which gives new sub-image size of
(N′+W )×M. For notation simplicity we assign N′ = N′+W . Each overlap portion is of
size W ×M in order to ensure that the overall sub-image sizes are in multiples of processing
block sizes.

4.3.1 Normalization

We employ the technique used by Hong et al [27] to perform normalization. For a gray-scale
partial image Ip, we denote Mp as the estimated mean and VARp as the estimated variance.
A normalized pixel is computed as follows:

Np(i, j) =

 M0 +
√

VAR0(Ip(i, j)−Mp)2

VARp
if Ip(i, j)> Mp

M0−
√

VAR0(Ip(i, j)−Mp)2

VARp
otherwise

(4.4)

where M0 and VAR0 represent the desired mean and variance, respectively. M0 and
VAR0 have values 0 and 1, respectively. The reason we give the mean and variance these
values is because a Gaussian function has a normal distribution.
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4.3.2 Mask Region Estimation

Masking is a process that segments an image into two types of regions: recoverable or un-
recoverable region. Segmentation is an image processing technique which separates strong
correlated parts of the image into regions [67]. We use thresholding to segment the image
into the two regions. Thresholding is a a segmentation process that transforms an input gray
scale image to another image with a lesser number of gray level [68]. Most of the time an
image is transformed into an image consisting of two gray levels, in this case, it is called
binarization. Masking is a process that thresholds an image into two segments that contain
either recoverable or unrecoverable regions. Only the standard deviations of the normalized
image are used to estimate the mask. Standard deviations are computed for each block, and
if they fall below a given threshold the block is assigned to unrecoverable region, otherwise
it is assigned to recoverable. From the mask image, the ROI can be constructed by removing
all the unrecoverable regions in mask from the normalized image.

4.3.3 Ridge Orientation Estimation

The local orientation of pixels per block must be estimated. Figure 4.6 shows an example
of a ridge orientation at pixel (i, j).

Figure 4.6: Orientation of a ridge at pixel (i, j)

Each processor divides its sub-image into W ×W blocks. Then each block computes
the x and y directional gradients Gp

x (i, j) and Gp
y (i, j). To compute these gradients, the first

order derivative of a Guassian function is used. The gradient sub-image is given by the
vector:

5Gp(i, j) = [Gp
x (i, j),Gp

y (i, j)]T (4.5)

The gradient vectors are estimated using Cartesian coordinates. After which they are
converted to polar coordinates in order to obtain double angles and squared lengths.[

Gp
ρ

Gp
φ

]
=

[√
(Gp

x )2 +(Gp
y )2

tan−1 Gp
y

Gp
x

]
(4.6)

with −1
2 π ≤ Gp

φ
≤ 1

2 π. When these are obtained, the gradient vectors are squared and
expressed in terms of the double angles. Using trigonometric identities, the vectors are
expressed as follows:[

(Gp
ρ)

2 cos2Gp
φ
)

(Gp
ρ)

2 sin2Gp
φ
)

]
=

[
(Gp

ρ)
2(cos2 Gp

φ
− sin2 Gp

φ
)

(Gp
ρ)

2(2sinGp
φ

cosGp
φ
)

]
=
[
(Gp

x )2− (Gp
y )2

2Gp
x Gp

y

]
(4.7)
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The square gradients are then averaged to obtain:

1
n

[
∑W [(Gp

x )2− (Gp
y )2]

∑W 2Gp
x Gp

y

]
=

[
Gp

xx−Gp
yy

2Gp
xy

]
(4.8)

This gives the variances and crosscovariance of Gp
x and Gp

y averaged over a block of size
W ×W . To obtain the orientation field we divide the average square gradients by the abso-
lute values of the squared gradients.∣∣∣∣∣∑W ((Gp

x )
2,(Gp

y )
2)

∣∣∣∣∣=√(Gp
xx−G2

yy)
2 +(2Gp

xy)2 (4.9)

The detailed derivations of some of these equations can be obtained from [61]. The local
orientation of the block centered at pixel (i, j) can then be estimated by (Φp

x (i, j),Φp
y (i, j))

in the following manner:

Φ
p
x (i, j) =

Gp
xx−Gp

yy√
(2Gp

xy)2 +(Gp
xx−Gp

yy)2
(4.10)

Φ
p
y (i, j) =

2Gp
xy√

(2Gp
xy)2 +(Gp

xx−Gp
yy)2

(4.11)

The orientation field is smoothed using a low-pass Gaussian filter to reduce possible
effects of noise. The field is filtered as follows:

Φ
′p
x (i, j) =

wΦ
2

∑
u=−wΦ

2

wΦ
2

∑
u=−wΦ

2

ℑ(u,v)Φp
x (i−uw)( j− vw) (4.12)

Φ
′p
y (i, j) =

wΦ
2

∑
u=−wΦ

2

wΦ
2

∑
u=−wΦ

2

ℑ(u,v)Φp
y (i−uw)( j− vw) (4.13)

where ℑ denotes a Gaussian low-pass filter of size wΦ×wΦ. The final orientation sub-
image image is given by:

Op(i, j) =
π+ tan−1(Φ

′p
x (i, j)

Φ
′p
y (i, j)

)

2
(4.14)

4.3.4 Frequency Estimation

We use the approach given by Hong et al to perform local ridge frequency estimation.
The x-signature signals form discrete sinusoidal-shape waves which consists of the same
frequencies as ridges in the oriented window. This can be used to directly estimate the local
ridge frequencies by averaging the number of pixels between the wavelengths, denoted as
τ(i, j). The ridge frequency Fp for a block centered at pixel (i, j) is thus computed as:

Fp(i, j) =
1

τ(i, j)
(4.15)
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Corrupted blocks and the ones that contain singularities and minutiae do not form well-
defined sinusoidal-shape waves. For such blocks, an estimation for Fp is interpolated from
neighbouring blocks [27].

4.3.5 Ridge Filtering

Gabor filters are used to remove noise and preserve the true ridge structure. The following
is an even-symmetric Gabor filter given by a cosine wave modulated by Gaussian [56]:

H(x,y;θ, f ) = exp
{
−1

2

[
x2

θ

σ2
x

+
y2

θ

σ2
y

]}
cos(2π f xθ), (4.16)

xθ = xcosθ+ ysinθ, (4.17)

yθ =−xsinθ+ ycosθ (4.18)

where θ is the orientation of Gabor filter, f is the frequency cosine wave, σx and σy are
standard deviations of the Gaussian envelope along the x and y axes, respectively. In order
for a Gabor filter to convolute a pixel (i, j) belonging to processor p, it requires the corre-
sponding orientation pixel Op(i, j) and frequency pixel Fp(i, j) of that pixel. The enhanced
pixel, Ep(i, j), is computed as follows:

Ep(i, j) =

wx
2

∑
u=− wx

2

wy
2

∑
v=− wy

2

G(u,v;Op(i, j),Fp(i, j))(Np(i−u, j− v)) (4.19)

where G denotes a Gabor filter and Np denotes the normalized fingerprint sub-image of
processor p, and wx and wy are the width and height of the Gabor mask, respectively. Hong
et al [27] fixed both σx and σy to 4.0. This becomes problematic when there are variations
in the value of a ridge frequency. It can lead to non-uniform enhancement, Thai [56] used
the values σx and σy that are dependent on the ridge frequency parameter.

σx = kxFp(i, j), (4.20)

σy = kyFp(i, j), (4.21)

where kx and ky are some constant variables.
In order to accommodate Gabor waveforms of different sized bandwidths, in [56] the author
set the filter size to depend on standard deviations parameters

wx = 6σx, (4.22)

wy = 6σy (4.23)

where wx and wy are the width and height of the Gabor filter mask, and σx and σy are
the standard deviations of the Gaussian envelope along the x and y axis, respectively.
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4.3.6 Binarization

Binarization process is identical to that of the serial implementation. The mean value of 0
is used as the global threshold to transform the sub-image Ep into binarized sub-image Bp

as follows:

Bp(i, j) =
{

1 if Ep(i, j)> 0
0 otherwise

(4.24)

where Bp is the binary sub-image of processor p and Ep is the filtered sub-image.

4.3.7 Thinning

The thinning algorithm is identical to that used on the serial implementation. I/O occurs
only twice during enhancement, when the raw image is first read and at the end of thinning.
Since thinning is a pixel-wise operation which relies on neighbour data, extra care has to
be taken when performing thinning and I/O. Pixels along the partitioning axis do not have
access to their neighbouring pixels and hence can not be correctly processed. There are two
ways around this (discussed in the Section 4.6):

1. Inter-processor communication to exchange boundary pixels (known as halo exchange)

2. Overlapping processor data along the boundaries

4.4 Minutiae Extraction

Minutiae points are represented as 3-tuple sets consisting of geometric coordinates and
minutiae type. The inclination angle i not considered in order to promote rotation invari-
ance. Mathematically, a minutiae point is represented as:

M = {mi|mi ∈ (xi,yi, ti);xi,yi ∈ N, ti ∈ [0,1]} (4.25)

where (xi,yi) is the minutiae coordinate and ti = 0 represents a ridge ending and ti = 1
represents a bifurcation. Removing the inclination angle from the minutiae representation
aids in making the minutiae matching algorithm rotational invariant, therefore eliminating
the need for alignment and registration.

4.5 Matching/Searching

Through closer inspection of the minutiae on fingerprint patterns, it can the observed that
the minutiae points in fact form a graph. Figure 4.7 shows a possible subgraph overlaid on
the minutiae points marked on a thinned image.

The graph G depicted on the diagram can be expressed as follows:
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Figure 4.7: Graph pattern formed by minutiae points

G = (Vi,Ei) where ,

Vi = {mi|mi ∈ (xi,yi, ti)},
Ei = {ei j|ei j = dist(mi,m j)}

(4.26)

where xi,yi are the geometrical coordinates, ti ∈ [0,1] is the minutiae type: 0 represents a
ridge ending and 1 represents bifurcation and dist(mi,m j) is the Euclidean distance between
points mi and m j. Graph matching can thus be applied to fingerprint minutiae matching.

Graph isomorphism is a very large and established research field [68]. Isomorphism
helps to prove that two graphs are structurally the same; i.e. given two graphs, is there
a 1-to-1 mapping of vertices between the two graphs that preserves their adjacency [4]?
Mathematically, given G1 = (V1,E1) and G2 = (V2,E2), G1 ∼= G2 (G1 is isomorphic to G2)
if there exist a function f such that

(a,b) ∈ E1 ⇐⇒ ( f (a), f (b)) ∈ E2 for any a,b ∈V1 (4.27)

Graph isomorphism can be applied to fingerprint minutiae matching [69]. Using graph
isomorphism eliminates common problems associated with minutiae matching, including
rotation and translation [69]. Each vertex of the graph represents a minutiae point as a 3-
tuple set consisting of the x and y coordinates and the minutiae type. The inclination angle
is not included on the minutiae representation for matching in order to facilitate in making
the algorithm rotational invariant. Each edge connects a minutiae point to other all other
minutiae points.

Graph isomorphism is used to match minutiae by connecting each minutiae point of the
template to all other minutiae points there by forming a complete graph. A probe is then
treated as a subgraph, and subgraph matching is performed on the template. The reason
behind matching a subgraph rather than a full graph is because it can not be guaranteed that
the same number of minutiae points will be detected from the probe as was detected on the
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template. If the number of minutiae points obtained from the probe is greater than that of
the template, then the template is treated as a subgraph and matching is performed on the
probe. Matching can still be performed if some points are missing as subgraph matching
visit each and every node on the larger graph and compares it with the subgraph nodes. If
Gt = {Vt ,Et} and Gp = {Vp,Ep} are graph representations of the template and the probe
respectively, the matching then becomes the task of finding a function F, that transforms X
into F(X), where X is a set of at least 16 vertices ( minutiae ) of the probe, and forms a
subgraph Gp,F(X) ⊆ Gp, such that

Gp,F(X)
∼= Gt,S, (4.28)

with GS,t ⊆ Gt . Hence the similarity score is simply the number of matched vertices6.
Parallel search mimics the phenomenon of distributed (decentralized) storage in that

the database is divided into virtual sub-databases or partitions equal to the number of com-
puting nodes. Each node works completely independent on its own partition and returns
the candidate with the highest similarity/match score based on the above algorithm. While
centralized storage does not scale up well (false match rates increase exponentially), when
using parallel search on centralized databases, it eliminates this concern.

4.6 Dealing With Boundary Pixels

Distributed image processing algorithms are required to provide a way in which the bound-
ary pixels can access their neighbouring processors boundary data as it becomes impossible
to process a pixel without knowledge of its neighbouring pixels.

Figure 4.8: (a) Boundary pixels between P1 and P2 (b) Example of an image processed
disregarding neighbour data

6NOTE: Graph matching is outside the scope of this research. For the detailed graph isomorphism al-
gorithm employed please consult the VFLib2 library available at http://www.cs.sunysb.edu/˜algorith/
implement/vflib/implement.shtml and [70].
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Figure 4.8 shows an example of a connected component being partitioned. Boundary
pixel p according to processor P1 has a total value of one 1-valued neighbours, which by
definition of the thinning algorithm entails that p is a ridge ending pixel. This means p will
be treated as an endpoint and preserved even though when we look at P2 we see it is in fact
not a ridge ending.
Distributed algorithms need to provide processors with a way to access their neighbour-
ing processors’ boundary data. When a partition divides a component into two parts, the
contours describing these components will no longer be closed [71]. Kwok [71] defined
different contour configurations at the borders of the sections by using chain code repre-
sentations for border pixels. The configurations help preserve connectivity of components
along the borders. In order to access neighbouring processor boundary data, a communica-
tion channel may need to be established between the processors which is often expensive.
As an alternative, processors may be allowed overlapping access to boundary data. The im-
age is partitioned into subarrays which are then assigned to processing nodes. In order for
boundary pixels to access their neighbouring pixels, processors need to overlap data along
boundaries or use message passing to share data. The overlapped areas of subarrays shown
in Figure 4.9 are usually referred to as ghost cells.

Figure 4.9: Data overlap among processors. The shaded areas represent the overlapped
regions

Whenever more than one processor access the same file region for a read and write
operation, we often run into nasty racing conditions. Data race occurs when a processor
writes to a file region that has not yet been read by all processors that are required to read
before any write, or when processors interleave their write operations. This can lead to
disastrous results. It is for this reason that MPI requires a developer to enforce operational
atomicity.
Consider a scenario shown in Figure 4.10 where column-wise overlapping data is being
written to a file. If the write operation is not atomic, it might be interleaved and since
processors arrive at their write operations in any arbitrary order, it is impossible to know
before hand which processor will write after which. This could result in a final solution that
does not reflect the actual computation configuration.

The next three subsections present some solutions to dealing with boundary pixels.
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Figure 4.10: Interleaved write operation (adapted from [6])

4.6.1 Halo Exchange

In order to process boundary pixels, neighbouring processors establish communication
along the boundaries. A processor is allocated extra memory along the boundaries known
as ghost cells. These are used to store data from neighbouring processors, which is used
only for computational purposes.

Performing a halo exchange consists of processing nodes sharing their data with their
neighbouring processors through message passing. Unless architecture specifically opti-
mizes for it, halo exchange is quite an expensive operation which is unscalable. Increasing
the number of processors increases the number of communication nodes. Communication
often incurs a large overhead which needs to be minimized. Direct memory access is easier
to use than message passing. With message passing, processors must agree to communi-
cate. Each processor must first send its buffers and then wait for the corresponding buffers
to arrive from neighbouring processors [72].

Figure 4.11: Halo exchange between three processes

Figure 4.11 shows a diagram of 3 processors engaging in a halo exchange. Each pro-
cessor maintains a ghost cell which will accommodate its neighbours’ boundary subarrays.
The ghost cells are updated using MPI send/recv prior to any processing. The code fragment
shown in Figure 4.12 shows how MPI is used to perform the halo exchange on a row-wise
partition.
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Figure 4.12: MPI code fragment for performing a row-wise halo exchange

4.6.2 File locking

The most intuitive way of dealing with overlaps is enforcing explicit file locks in order to
grant processors exclusive access to overlaps. This can be achieved though the use of mutual
exclusion synchronization. When a processor is operating on its region of the file, no other
processor can operate on that region. When using column-wise partition, file locking is the
worst thing a programmer can do. As mentioned earlier, column-wise partitioning results
in noncontiguous data access. Locking a file region ultimately locks the entire file. Shown

Figure 4.13: File locking in column-wise partition

in Figure 4.13, for processor P0 to write to the first element of R1 after writing to R0, it
needs to traverse to the end of the row (i.e. N columns) before coming back to R1. Locking
this operation will consequently lock the entire file resulting in completely serialized I/O
operations which renders MPI parallel I/O useless. Idle processor cause quite a large over-
head while waiting on the operating processor to complete its write operation. When using
row-wise partitioning, file locking does not cause any atomicity problems because only one
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processor can access the overlapped region at a time. The solution presented in the next
section discusses a way around file locking.

4.6.3 Process-Rank Ordering

This third approach to dealing with boundary pixels is based on a strategy termed by Liao
et al [6] as process-rank ordering. The processors are granted priority levels to be used to
give them exclusive access to overlapped data. The higher ranked processor wins when
an overlap is encountered. Lower ranked processors then must modify their requests by
subtracting the overlaps. Data resulting in overlaps will only be written by the processor
with the higher rank. This effectively eliminates all overlaps and achieves atomicity. The
overhead in rank ordering is the cost of re-generating access regions for all processors [6].

Figure 4.14: Overlapped data access using process-rank ordering

Figure 4.14 shows a graphical view of the file views resulting from process-rank order-
ing. A file view for processor Pi (0 < i < j), is an M×N′ subarray and the file view for P0
and Pj are M× (N′−W ) and M× (N′+W ), respectively. Since each processor surrenders
its write to the rightmost column, all overlaps are removed and MPI atomicity is main-
tained. A code fragment presented in Figure 4.15 shows how the file view are constructed
for column-wise partitions.

Figure 4.15: MPI code fragment for column-wise file view construction

Figure 4.16 summarizes the parallel algorithm decomposition in graphical view.

4.7 Conclusion

This chapter presents a cheaper way of improving the scalability of fingerprint identification
systems through distributed and parallel processing. Three different strategies of processing
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Figure 4.16: Graphical view of the system code flow

boundary pixels are discussed along with a novel approach to memory distribution of block-
wise image processing operations on distributed environments.
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Chapter 5

Performance Analysis

This chapter discussed the factors that affect the performance of distributed systems along
with the necessary optimizations to improve the efficiency of such systems. A novel perfor-
mance model is introduces which enables performance prediction.

5.1 Introduction

Distributed systems are collections of autonomous computing systems which are connected
by some network. These systems work together as one entity to solve large problems by
splitting them up into smaller subproblems in a divide and conquer manner. The processing
time of algorithms running on distributed systems is calculated as the total computation time
plus the time spent on communication among the processors. Performance is an important
part of software development. Clients often need to know the expected performance so that
they can make an informed decision on whether or not to invest in a project. For devel-
opers, performance prediction gives a good idea of how the system may behave, allowing
them to locate possible bottlenecks from the system before development [73]. Performance
prediction methods in literature can be classified into three categories; analytical [74–79],
profile-based [80, 81] and simulation-based [82–85]. Analytical methods work by decom-
posing an application into an algebraic expression [77] and model the performance mathe-
matically. Simulators on the other hand analyze the source code directly, which reliefs users
of the duty of having to analyze lengthy programmatic features into mathematical models.
They characterize the code and the hardware it is running on and use the resulting models
collectively to derive the predictive execution data. Although simulation-based approaches
have high accuracy, they have high computational cost [86]. Existing simulations-based
approaches include MPI-SIM [83], PACE [87], WARPP [88] and SimOs [84]. Analytical
solutions have the advantage of efficiency over the rest of the prediction methods, however,
it is limited by the fact that many complex systems are analytically intractable [89].

Amdahl came up with a law for predicting performance of parallel systems, which has
long after been disputed. The skepticism surrounding Amdahl’s law is over the assertion
that parallel processing is unscalable [74]. Amdahl’s law stipulates that even when the serial
fraction of a problem, say s, is considerably small, the maximum attainable speedup is only
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Figure 5.1: Amdahl’s fixed-size speedup

1
s even for an infinite number of processing nodes [74]. If s is the time spent by N processors
executing the serial fraction of the computation time of a program and p is the time spent
executing the parallel portion, then Amdahl’s law states that the estimated speedup is given
by:

Speedup =
1

(s+ p
N )

, with s = 1-p (5.1)

Amdahl’s law assumes that the problem size remains fixed after parallelization. This,
however, is usually not the case. It has been shown that in practise, parallel processing work-
load scales up with the number of processers [74,75]. Gustafson [74] discussed the concept
of scalable parallel processing and introduced the scaled-sized model for speedup. When
it comes to parallel processing, Gustafson states that the parallel portion of the program
scales up with the problem size, while the serial portion, comprised of program loading,
serial bottlenecks and I/O, stays fixed.

Figure 5.1 plots five curves using Amdahl’s law. From the graph, the assumption that
p is independent of N is implicit, even though this is hardly ever the case [74]. Figure
5.2 plots five curves using Gustafson’s law under conditions identical to those of Figure
5.1. The plot shows great scalability without any upper bounds. Gustafson argued that the
workload of parallel problems scales up with the increase of processing nodes making the
speedup linearly dependent on the number of processors N.

To derive Gustafson’s law, consider using a serial processor to process the entire work-
load. It would take s+ pN to complete the task. From this the scaled speedup is calculated
as:
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Figure 5.2: Gustafson’s scaled-size speedup

Scaled speedup =
(s+ pN)

(s+ p)
= s+ pN

(5.2)

Hill & Marty [90] revised Amdahl’s law for multicore architectures. In order to apply
Amdahl’s law in a multicore environment, a cost model for performance of the cores that the
chip supports is required. Assume a symmetric multicore architecture with each core having
its own L1 cache, where the memory bound is the cumulated capacity of the L1 caches.
Variable per f (r) is defined as the sequential performance of a powerful core with r Base
Core Equivalents (BCEs). “Under Admahl’s law, the speed up of symmetric multicore chips
depends on the software fraction that is parallelizable (f), the total chip resources in the
BCEs (n), and the BCE resources (r) devoted to increasing each core’s performance” [90].
The resulting speedup for the symmetric multicore architectures is as follows:

Speedup( f ,n,r) =
1

1− f
per f (r) +

f .r
per f (r).n

(5.3)

Figure 5.3 is a plot of six curves at different f-values. Like Amdahl’s law, Hill & Marty’s
corollary lacks scalability. Since the corollary applies Amdahl’s concepts, it made the same
inaccurate assumption that problem workload remains fixed after parallelization. This as-
sumption lead to the conclusion that multicore architectures’ scalability is questionable,
which was quickly challenged by Sun & Chen [75]. Sun & Chen applied the scalable com-
puting principals presented by Gustafson’s law. The same hardware model architecture
proposed by Hill & Marty was used to demonstrate the scalability of multicore architec-
tures through a fixed-time model (as opposed to fixed-size) [75]. Sun & Chen define the
fixed-time speedup as:
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Figure 5.3: Hill & Marty’s fixed-size performance model

SpeedupFT =
Sequential Time of Solving Scaled workload

Parallel Time of Solving Scaled workload
(5.4)

Let w be the original workload and w′ be the scaled workload. Supposing the time
taken to process w sequentially is the same as the time taken to process w′ in parallel using
m processors.

Assuming that the scale of the workload is only on the parallel portion; w′ becomes:

w′ = (1− f )w+m f w (5.5)

Therefore

SpeedupFT =
Sequential Time of Solving w’

Parallel Time of Solving w’
(5.6)

SpeedupFT =
Sequential Time of Solving w’
Sequential Time of Solving w

(5.7)

w′

w
=

(1− f )w+m f w
w

= (1− f )+m f (5.8)

which gives Gustafson’s law [74]. The scaled-sized model assumes that the scaling is
only at the parallel portion. Based on this assumption and following (5.3), Sun & Chen
constructed the fixed-time speedup model to be:

(1− f )w
per f (r)

+
f w

per f (r)
=

(1− f )w
per f (r)

+
f w′

per f (r)m
(5.9)
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If we let n = mr be the scaled number of cores, with n = r being the initial point, then
w′ = mw. The final scaled speedup compared with n = r becomes:

SpeedupFT =
Sequential Time of Solving w’
Sequential Time of Solving w

=

(1− f )w
per f (r) +

f w′
per f (r)

w
per f (r)

= (1− f )+m f
(5.10)

Figure 5.4: Sun & Chen’s fixed-time performance model

Figure 5.4 shows six curves of the fixed-time performance model at different f-values.
The fixed-time speedup model demonstrates the scalability of multicore systems. Like the
scaled-sized model, it is linearly dependent on the number of processors m. Although Sun
& Chen successfully model the performance of parallel processing on multicore systems,
they do not cater for distributed multicore systems.

Figure 5.5: Structure of a dual-core system (taken from [7])
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Distributed computation differs from parallel computation in the way in which mem-
ory is used. In parallel systems, all processing elements use the same shared memory for
communication and I/O, whereas distributed systems are autonomous systems with private
memory connected by a network which is used for communication between the processing
nodes. Figure 5.5 shows an internal structure of a parallel/shared memory system in the
form of a dual-core system, while Figure 5.6 shows an example of a multicore distributed
system, where multicore machines are combined by a network to function as one.

Figure 5.6: Example structure of a multicore cluster (adapted from [7])

Parallel code often runs on the same system and thus has no need for external communi-
cation. Distributed code, on the other hand, can not work without external communication.
This communication, however, often consists of some overhead which, in large amounts,
can affect performance drastically. The performance prediction models discussed above
do not address the communication issue associated with distributed processing. For this
reason, this research presents a way of predicting performance for code distributed on mul-
ticore clusters.

5.2 Factors Affecting Performance in Distributed Systems

The performance of a distributed algorithm is affected by more than just the application effi-
ciency and the number of processing nodes used. Since clusters are connected by networks,
network factors like latency and bandwidth have a considerable impact on the performance
of a distributed system. As such, it is necessary to take into account the network influence
when predicting the performance of these systems [91].

Bandwidth and latency capture the volume and time dimensions of information process-
ing, respectively. Latency measures the time taken to complete a request, while bandwidth
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measures the volume of information transmitted in a time interval [8]. The next subsections
go into greater detail about the factors that impact information processing performance.

5.2.1 Application Efficiency

Algorithm efficiency is the most crucial factor when it comes to parallel algorithm perfor-
mance. If an algorithm is not efficient in how it utilizes resources, even the most powerful
machines can not improve its performance. Distributed algorithms have to be optimized at
two levels: per-processor (i.e. each core of a machine) and across-processors (i.e. commu-
nication across the cluster) [91, 92]. Optimization techniques include code modifications
and compiler optimizations. Per-processor optimizations include but no limited to [49]:

1. Loop optimization

a) Unrolling

b) Splitting

2. Memory optimization

a) Prefetching

b) Cache alignment and coherence

c) Stride-one memory access

3. Floating point arithmetic

4. Use of optimized mathematical libraries

Across processors optimizations mainly deal with [49]:

1. Minimizing:

a) Communication overhead

b) Synchronization overhead

c) Load imbalance

d) Memory consumption

e) Computation overhead

2. Latency hiding techniques such as overlapping computation and commucation

3. Efficient network interconnection

4. Avoiding master-only operations as they force the rest of the processors to idle

Lastly, compilers like GNU come with optimization flags such as -ffast-math which opti-
mizes mathematical functions.
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5.2.2 Application Latency

Application latency is defined by Shaffer [76] as the total amount of time that an application
has to wait for a response after issuing a request for some data. The application delay reflects
the total wait time incurred by the system, including all subsystems and kernel overhead as
well as network latency [76].

Network latency is the time spent waiting, from the instantiation of an operation un-
til the return of the desired results [76]. A distinction can be made amongst the different
types/sources of network latency. Three types of network latencies are discussed; the prop-
agation delay, transmission delay, and physical latency. Figure 5.7 is a representation of
these two network latency sources as a single server open queueing system.

Figure 5.7: Network latency presented as a propagation and transmission delay server
(adapted from [8])

Propagation Delay

Propagation delay is defined as the time taken waiting for the last bit to arrive plus the
overhead that comes with the device [76]. The propagation delay can not be eliminated or
avoided because the speed of light is inviolable [76]. Transmission speed can not be im-
proved beyond propagation delay. A propagation of a certain system indicates the maximum
transmission rate that the system can achieve.

Physical latency

Physical latency measures the processing time on a device without waiting (i.e. the service
time). It varies according to device utilization or load [8]. The physical latency can be
halved to double the bandwidth. Ding [8] showed that halving the physical latency yields
better results than actually doubling the bandwidth. The system is able to perform twice the
amount of work without saturation.

Transmission Delay

Transmission delay is the amount of time taken to transmit all the packet’s bits into the link.
In most networks, transmission of packets occurs in a first come first serve manner, which
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results in queueing for transmission rates that are not high [93]. It is determined by the
packet size and the transmission rate of the network and not at all affected by the distance.

5.2.3 Bandwidth

Bandwidth determines how much information can be processed within a certain time in-
terval. It has a direct impact on the response time of data acquisition [8]. Low bandwidth
can result in extremely slow systems. If an application must be able to transmit at a certain
rate in order to be effective, then that application must transmit and receive at that rate. If
that amount of bandwidth is not available, the application is most likely to give up [93].
Bandwidth may be increased to improve performance of a certain system and compensate
for the propagation delay. However, increasing the bandwidth does not automatically guar-
antee performance gain. In order to benefit from high bandwidth, software often needs to
be modified in order to leverage the high bandwidth. For example, applications developed
for 32-bit systems may run slower on 64-bit systems [8].

5.3 Performance Model

Efficiency of a parallel algorithm is measured by the speedup attained. If T1 is the execution
time for the serial implementation, the speedup can be computed as T1

TN
, where TN is the

execution time attained when using N processors. Efficiency is then calculated as:

EN =
TN

N
(5.11)

An efficient algorithm attains a speedup close to N for every TN , (i.e. EN = 1). It has
been established in the literature that for distributed systems, this is not always the case.
As the number of processors increases, speedup of the distributed systems starts to decline.
This is usually because of the increased interprocessor communication, known as message
passing. Adding computation nodes increases the networks communication links which
ultimately increases propagation delay.

This research focuses on the performance of multicore clusters using an analytical ap-
proach based on Sun & Chen’s [75] and Shaffer’s [76] works. Multicore clusters are ideal
for hybrid programming, (i.e. a mixture of distributed and parallel processing). While mul-
ticore systems are scalable and provide high performance, they have their limits. Writing
thread-safe programs is not easy, especially as the number of threads increases [30]. En-
rico Clementi, a former IBM fellow and pioneer in computational techniques for quantum
chemistry and Molecular dynamics, once said “I know how to make 4 horses pull a cart - I
don’t know how to make 1024”. Introducing clustered systems relieves the strain of using
too many threads on one machine.

5.3.1 Computational Cost

In distributed processing, an application can only run as fast as the slowest processor. Thus,
following Sun & Chen’s fixed-time model, per f (r) is redefined to be:
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per f (r′) = max(per f (ri)) (5.12)

where per f (ri) is the sequential performance of a powerful core of a processing node i
with r BCEs. Using (5.9) and the assertion that w′ = mw we get the following,

(1− f )w
per f (r′)

+
f w′

pre f (r′)m
=

(1− f )w
per f (r′) +

f w
per f (r′)

w
per f (r′)

= (1− f )+m f (5.13)

This gives us the expected speedup [92].

5.3.2 Communication Cost

The communication overhead associated with message passing can be quite large. Shaf-
fer [76] proposed a theoretical predictive measure of communication cost in wide area dis-
tributed systems to be:

Comm Time = m× [
s
b
+d×7.67×10−6 + ε] (5.14)

where m is the frequency of messages needed during the task, b is the bandwidth in
bits/second, ε is the overhead incurred per message and s and d represent the size of the
message and the length of the communication channel in miles, respectively.

Propagation delay is normally calculated as the reciprocal of the speed of light which
is currently 299792.458 km/s. However, Shaffer stated that this value is not the same for
all types of cables. Different types of cables transmit at different speeds, which is less than
the actual speed of light. This speed is known as the normal velocity of propagation (NVP).
Optical fiber has an NVP close to 0.7 [76].

We define the cost of sending an L bit message between two processors as:

Tcomm(L)≤
L
τ
+(σmax×dist)+ εL (5.15)

where τ is the upper bound of the network bandwidth, σmax is the maximum delay
incurred by the system, dist is the physical distance between the network points and ε(L) is
the overhead associated with each message of size L bits, i.e. the send and receive overhead
[92].

5.3.3 Prediction Model

The total estimated running time is calculated as:

TEST (m) = Tcomp(m)+Tcomm(m,L) (5.16)

where Tcomp(m) is the computation time and Tcomm(m,L) is the total time spent by m nodes
communicating messages of sizes L.

Tcomp(m) = Tseq/SpeedupFT (5.17)

Tcomm(m,L) = ∑Tcomm(L) (5.18)

Tseq is sequential time and SpeedupFT is defined in (5.13).
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5.4 Conclusion

This chapter presented optimization techniques which can be used to improve the efficiency
of distributed systems through code modifications, design choices and network manipula-
tion. A new performance prediction model was presented which models both the computa-
tion and communication complexity of distributed applications.
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Chapter 6

Experimental Results

In this the performance of the serial implementation is compared with the implementation
of the distributed algorithm. The results are shown and discussed.

6.1 Introduction

The two fingerprint algorithms discussed in this research were both implemented and tested
on the CASIA fingerprint database v5. This chapter presents the results obtained from the
experiments and a few discussions on what those results entail.

6.2 Results

Figure 6.1 shows the results obtained using the prediction model separated into communi-
cation and computation time.

Figure 6.1: Total execution time (computation + communication).

From the graph, a drastic increase in the communication time with the increase of pro-
cessing nodes can be observed on the halo exchange predictions. This is mainly due to the
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frequency of message passing during the prefetching of boundaries cells as well as the size
of the messages.

Figure 6.2: Experimental results from the halo exchange experiments plotted against the 5
prediction models

A total of three sets of experiments were performed using the algorithm. Figure 6.2
shows results obtained from using halo exchange on both row- and column-wise partitions
of the data plotted with the predictions from the five models.

Figure 6.3: Experimental results from file locking experiments plotted against the 5 predic-
tion models
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From experiment it can be observed that Gustafson’s and Sun & Chen’s models over
estimates the speedup, whereas Hill & Marty’s and Amdahl’s models under estimates.
Gustafson’s and Sun & Chen’s models do not consider the effects of communication as-
sociated with distributed systems. The propsed model does not give the exact estimates, it
over estimates the speedup but the error margins are better than those experienced by other
models.

Figure 6.3 shows the results obtained of using file locking on both row- and column-wise
partitions plotted with the predictions made by the five models. The performance observed
from this experiment shows a good example of poor optimization techniques and bad design
choices. When using column-wise partition, file locking is the worst design choice one can
make.

Figure 6.4: Experimental results from the process-rank ordering experiments plotted against
the 5 prediction models

Column-wise partition causes noncontiguous access patterns. What this means is if
each processor is assigned M×N′ subarray of an image, then the distance between two
consecutive rows is N > N′. It is not possible for a processor to access all its data in a single
read/write operation. Row-wise partition is better in this manner as it does not lock the
entire file.

Figure 6.4 plots the results obtained using process-rank ordering on row- and column-
wise partitions. Process-rank ordering maintains full I/O parallelism for both column-wise
and row-wise partitions and hence is expected to out-perform the file locking strategy. Row-
wise partition requires less effort to construct, while column-wise partition requires a little
more effort due to the noncontiguous access patterns. This would explain the slight variation
the performance. The proposed model, Gustafson’s and Sun & Chen’s models estimations
produces better error margins than those produced by Hill & Marty and Amdahl’s models.

To compare the speed gain when using the distributed version of the enhancement algo-
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Figure 6.5: Performance gain graph showing the different speedups achieved by the differ-
ent strategies.

rithm, speedup curves corresponding to the three strategies are plotted in Figure 6.5 to show
a graphic view of the performance gain.

Figure 6.6: Searching times on different database sizes

A parallel searching algorithm was developed which virtually splits the database and as-
sign the different partitions to different processing nodes. The partitioning of the database
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helps in reducing the penetration rate similar to the advantage of winnowing, without the
penalty of binning errors brought fourth by winnowing. Figure 6.6 shows the results from
performing an exhaustive search, a winnowed search and the parallel search at different
number of processing nodes. The experiments were performed at different database sizes,
note that a database containing 4000 fingerprint can produce roughly 392000 minutiae
records to search through.

Figure 6.7: Observed False Rejection Error Rates

NP = 1 represents an exhaustive search (uses only one processor to search a database
sized N). From the experiments, a tremendous improvement from exhaustive searching
can be observed. The parallel implementation is highly scalable and performs closely to the
winnowed at search at NP= 5 nodes with introducing any errors (as opposed to winnowing).
Figures 6.7 and 6.8 plot the error rates incurred by the two systems.

Figure 6.8: Observed False Acceptance Error Rates
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The observed False Rejection Rates (FRR) show that the exhaustive search and the
winnowed search have higher FRR rate in comparison to the parallel search and these rates
as expected, increase with the increase of the database size.

The observed False Acceptance Rates (FAR) are fractions higher for the exhaustive
search, and this is caused by the increase in database size. The number of FAR grows
geometrically with the size of the database for identification systems. In verification mode,
FAR is calculated as [26]:

FAR = 1−FRR (6.1)

So for identification on a database of size N [21]:

FARN = 1−FRRN = 1− (1−FAR)N ' N×FAR (6.2)

From (6.2) and Figure 6.8 it can be seen that large scale databases scale poorly. Mhatre
et al [21] state that to attempt to reduce the identification error on an biometric system, two
approaches can be taken:

1. Reduce the FAR of the matching algorithm

2. Reduce the search space

The first choice can only provide limited improvement before it starts increasing the
FRR by disallowing intra-user variation [21, 26]. The more practical solution is reducing
the search space. This research uses a parallel searching algorithm which reduces the search
space without compromising the accuracy of the system. Winnowing effectively increase
the efficiency of the search algorithm but introduces new errors associated with classifica-
tion.

6.3 Conclusion

Experimental results show great improvement on the fingerprint enhancement subsystem
as well as the matching/searcing subsystem. The distribution of the fingerprint recognition
process does indeed improve its performance.
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Chapter 7

Conclusions and Future Work

This chapter gives an overview of the this research’s contributions. After which, the author
reflects on the results and gives some conclusions. Finally, some ideas for future work are
to be discussed.

7.1 Conclusions

Does using a parallel and distributed paradigm vastly improves the performance of biomet-
ric identification with respect to time? Indeed this research clearly showed that parallelizing
the fingerprint recognition algorithm and porting it to a distributed environment improves
its response time greatly. The fingerprint enhancement subsystem gained up to 10.2 times
speed up while the searching time gained an improvement of up to 12.5 times in comparison
to the exhaustive search.

Is it possible to increase identification accuracy through efficient processing? This
research showed that the error rates of associated with exhaustive searching increase geo-
metrically with the increase of the database size which renders identification systems poor
when it comes to scaling. In order to decrease the false acceptance rates associates with
large databases, the search space needs to be reduced. While winnowing effective achieves
this, it introduces new errors to the system which if not properly calibrated can lead to the
system performing worse than it does under exhaustive search. Parallel searching effectively
reduces the search space without introducing any new errors to the system.

Using the parallel and distributed paradigm proposed for this research, is it possible
to formalized the performance of the proposed system in order to predict the performance
before development? A new performance prediction model was developed during the course
of this research. The model improves on Amdahl’s law and factors in the effects of network
on the performance of distributed systems.

7.2 Discussions and recommendations

The experimental results show that it possible to improve the performance of biometric
system though High Performance Computing. Three different implementation strategies
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were proposed for processing pixels during enhancement. Of the three strategies, process-
rank ordering shows the promising results with great scalability, reaching up to 10.2 times
speedup. While halo exchange offers performance gain, it scales poorly in comparison
to process-rank ordering, achieving only 4.5 times speedup. The main reason behind the
poor scalability is the overhead introduced by the excessive communication required to
perform the halo exchange. Adding more processing nodes (in order to increase processing
power) increases communication nodes which in turn increase the overhead incurred by the
system. File locking perform the most poorly of the three strategies, only achieving up to
2.7 times speedup. Main reason for the poor performance is due to bootlenecks caused by
idle processors during the locks.

While this research successfully showed an improvement on the fingerprint recognition
algorithm, it still has its short comings and limitations. The most obvious one being the
high false rejection rates. The proposed matching algorithm still needs further calibration
as it allows very little intra-user variation. As for the enhancement algorithm, the minutiae
extractor was not parallelized as distributing the thinned image would have broken up some
of the minutiae points.

7.3 Future work

For future, the network (bandwidth×latency) product can be manipulated in order to further
increase processing time of the system. The matching algorithm still needs some improve-
ment in order to reduce the false rejection rates which are quite high. The parallel search
algorithm can be further improved by performing winnowing within each node, provided
the classification algorithm is very good and produces minimal classification errors.
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[23] L. F. W. Góes, L. E. S. Ramos, and C. P. S. Martins. (Last accessed on 16 Feb 2011)
Parallel image filtering using WPVM in a windows multicomputer. Internet draft.
[Online]. Available: http://www.research.rutgers.edu/\∼luramos/pdf/csitea02filtering.
pdf

[24] D. B. Megherbi, A. J. Boulenouar, and V. Rajagopalan, “A high performence dis-
tributed memory & computing algorithm for face recognition via conformal map-
ping”,” Proceedings of the SPIE on Visual Information Processing, vol. 4388, pp.
246–257, 2001.

78



BIBLIOGRAPHY

[25] H. Xu, Y. Qu, and F. Zhao, “FPGA based parallel thinning for binary fingerprint im-
age,” IEEE Chinese Conference on Pattern Recognition, pp. 1–4, Nov 2009.

[26] P. Campisi, R. L. Carter, C. W. Crooks, and V. Govindaraju, IEEE Certified Biometric
Professional (CBP) Learning System. Module3: Biometric System Design and Evalu-
ation, USA, 2010.

[27] L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: Algorithm and per-
formance evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. 08, pp. 777–789, Aug 1998.

[28] K. Beyer, J. Goldstein, R. Ramakrishnan, and V. Shaft, “When is ”nearest neighbour”
meaningful?” International Conference on Database Theory, pp. 217–235, 1999.

[29] A. Jain and S. Pankanti, “Fingerprint classification and matching,” 2000.

[30] G. Indrawan, B. Sitohang, and S. Akbar, “Parallel processing for fingerprint feature
extraction,” International Conference on Electrical Engineering and Informatics, pp.
1–6, Jul 2011.

[31] (Last accessed on 16 Feb 2011) Biometric identification on cloud computing.
Internet draft. [Online]. Available: http://www.afisandbiometrics.com/biometric
identification on cloud computing

[32] N. Vaidya and S. Sherekar, “Study of biometric data processing by hadoop,” MPGI
National Multi Conference, pp. 26–31, Apr 2012.

[33] J. You, D. Zhang, J. Cao, and M. Guo, “Parallel biometrics computing using mobile
agents,” Proceedings of the 2003 IEEE International Conference on Parallel Process-
ing, pp. 305–312, 2008.

[34] M. Din, M. Maarof, and M. Salleh. (2006) Paralle matching system for digital
non text information (fingerprint image). Internet draft. [Online]. Available:
http://eprints.utm.my/4244

[35] P. Zhang, X. Guo, and J. Gadedadikar, “Online fingerprint verification algorithm and
distributed system,” Journal of Signal and Information Processing, vol. 2, pp. 79–87,
Mar 2011.

[36] R. Miron and T. S. Letia, “Two server topology for a distributed fingerprint-based
recognition system,” 15th International Conference on System Theory, Control and
Computing, 2011.

[37] M. Hulea, A. Astilean, T. Letia, R. Miron, and S. Folea, “Fingerprint recogniton dis-
tributed system,” 8th Proceedings of the IEEE International Conference on Automa-
tion, Quality and Testing, Robotics, vol. 3, pp. 423–428, 2008.

79



BIBLIOGRAPHY

[38] D. A. Bader, J. JaJa, D. Harwood, and L. S. Davis, “Parallel algorithm for image
enhancement and segmentation by region growing with an experimental study,” Pro-
ceedings of the 10th International Parallel Processing Symposium, pp. 414–423, Apr
1996.

[39] T. Nakamura, M. Hirooka, H. Fujiwara, and K. Sumi, “Fingerprint image enhance-
ment using a parallel ridge filter,” IEEE Proceedings International Conference Pattern
Recognition, vol. 01, no. 08, pp. 536–539, Aug 2004.

[40] N. Ikeda, M. Nakanish, K. Fujii, and T. Hatano, “Fingerprint image enhancement by
pixel-parallel processing,” IEEE Proceedings International Pattern Recognition and
Machine Intelligence, vol. 03, pp. 752–755, Dec 2002.

[41] M. Barrenechea, J. Altuna, M. Mendicute, and J. D. Ser, “A low-cost fpga-based em-
bedded fingerprint verification and matching system,” Intelligent Technical Systems,
vol. 38, no. 05, pp. 247–260, 2009.

[42] S. Yang, K. Sakiyama, and I. Verbauwhede, “Efficient and secure fingerprint verifi-
cation for embedded devices,” EURASIP Journal on Applied Signal Processing, pp.
1–11, 2006.

[43] G. Danese, M. Giachero, F. Leporati, and N. Nazzicari, “A multicore embedded pro-
cessor for fingerprint recognition,” IEEE Euromicro Conference on Digital System
Design: Architectures, Methods and Tools, pp. 779–784, 2010.

[44] S. Vitabile, V. Conti, C. Militello, and F. Sorbello, “A self-contained biometric sensor
for ubiquitous authentication,” Internation Conference on Intelligent Pervasive Com-
puting, pp. 289–294, 2007.

[45] G. T. Group, “Using GPU technology to solve the latent fingerprint matching prob-
lem,” GTC Express Webnar, July 11 2012.

[46] H. Bui, M. Kelly, C. Lyon, M. Pasquier, D. Thomas, P. Flynn, and D. Thain, “Ex-
perience with BXGrid: a data repository and computing grid for biometric research,”
Journal of Cluster Computing, pp. 394–395, Dec 2008.

[47] Y. Sasaki, K. Ito, T. Aoki, and T. Higuchi, “A compact cluster computer with embed-
ded CPUs and its application to rapid prototyping of fingerprint verification,” IEICE
Electronic Express, vol. 02, pp. 465–470, Sep 2005.

[48] K. Ito, H. Nakajima, K. Kobayashi, T. Aoki, and T. Higuchi, “A finngerprint matching
algorithm using phase-only correlation,” IEICE Transactions on Fundamentals, vol.
E87-A, no. 03, pp. 682–691, 2004.

[49] R. Rabenseifner, G. Hager, G. Jost, and R. Keller, “Hybrid MPI and OpenMP parallel
programming: MPI + OpenMP and other models on clusters of SMP nodes,” Tutorial
M09 at SUPERCOMPUTING, Nov 2008.

80



BIBLIOGRAPHY

[50] B. R. Kandukuri, R. V. Puturi, and A. Rakshit, “Cloud security issues,” IEEE Interna-
tional Conference on Services Computing, pp. 517–520, 2009.

[51] N. R. Putri and M. C. Mganga, “Enhancing information security in cloud computing
services,” MSc Thesis, Blekinge Institute of Technology, 2011.

[52] F. Hao, J. Dougman, and P. Zielinski, “A fast search algorithm for a large fuzzy
database,” IEEE Transactions on Information Forescics and Security, vol. 03, no. 02,
pp. 203–212, June 2008.

[53] L. Hong and A. Jain, “Classification of fingerprint images,” Proceedingds of the 11th
Scandinavian Conference on Image Analysis, June 1999.

[54] I. B. Group. (Last accessed on 17 Sep 2011) The henry classification system. Internet
draft. [Online]. Available: http://www.biometricgroup.com/

[55] N. Ratha, K. Karu, S. Chen, and A. Jain, “A real-time matching system for large fin-
gerprint databases,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 18, no. 08, Aug 1996.

[56] R. Thai, “Fingerprint image enhancement and minutiae extraction,” Honours Thesis,
University of Western Australia, 2003.

[57] N. K. Ratha and S. C. A. K. Jain, “Adaptive folw orientation based feature extraction
in fingerprint images,” Pattern Recognition, vol. 28, no. 11, pp. 1657–1672, 1995.

[58] S. Chikkerur, C. Wu, and V. Govindaraju, “A systematic approach for feature
extraction in fingerprint images,” Biometric Authentication, 2004. [Online]. Available:
http://www.springerlink.com/index/7a63a3q9qf1p9ttt.pdf

[59] L. Hong, A. Jain, S. Pankanti, and R. Bolle, “Fingerprint enhancement,” IEEE Work-
shop on Applications of Computer Vision, pp. 202–207, 1996.

[60] X. Jiang, “On orientation and anisostropy estimation for online fingerprint authentica-
tion,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp. 4038–4049, Oct
2005.

[61] A. M. Bazen and S. H. Gerez, “Systematic method for the computation of the direc-
tional fields and singular points of fingerprints,” IEEE Transactions on Pattern Analy-
sis And Mechine Intelligence, vol. 24, no. 07, pp. 905–919, July 2002.

[62] M. Kass and A. Wikkin, “Analyzing oriented patterns,” Proceedings of the Interna-
tional Joint Conference Artificial Intelligence, 1985.

[63] A. Almansa and T. Linderberg, “Fingerprint enhancement by shape adaptation scale-
space operator with automatic scale selection,” IEEE Transations on Image Process-
ing, vol. 09, no. 12, pp. 2027–2042, Dec 2000.

81



BIBLIOGRAPHY

[64] A. K. Jain, D. Prabhakar, and L. Hong, “Filterbank-based fingerprint matching,” IEEE
Transactions on Image Processing, vol. 09, no. 05, pp. 846–859, May 2000.

[65] Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration algorithms,” Commu-
nications of the ACM, vol. 32, pp. 359–373, Mar 1989.

[66] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital patterns,”
Communications of the ACM, vol. 27, pp. 236–239, Mar 1984.

[67] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine Vision,,
3rd ed. Toronto: Thompson Learning, 2007.

[68] M. Behzad, G. Chartrand, and L. Lesniak-Foster, Graphs and Digraphs. Wadsworth
International Group, 1979.

[69] R. de Cassia Nandi and A. L. P. Guedes. (Accessed 28 Aug 2012) Graph isomorphism
applied to fingerprint matching. [Online]. Available: euler.mat.ufrgs.br/∼trevisan/
workgraph/regina.pdf

[70] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub)graph isomorphism
algorithm for matching large graphs,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 26, no. 10, pp. 1367–1372, Oct 2004.

[71] P. C. K. Kwok, “Thinning in a distributed environment,” Proceedings of the 6th Eu-
romicro Workshop on Parallel and Distributed processing, pp. 257–263, Jan 1998.

[72] A. Wallcraft, P. Pacheco, and I. Foster. (Last accessed on 23 Aug 2011) Co-array
fortran vs MPI. Internet draft. [Online]. Available: http://www.co-array.org/cafvsmpi.
htm

[73] H. Wang, Y. Teo, and S. Tay, “An analytic method for predicting simulation paral-
lelism,” April 2000, pp. 211 – 218.

[74] J. L. Gustafson, “Reevaluating amdahl’s law,” Communications of the ACM, vol. 31,
pp. 532–533, May 1988.

[75] X.-H. Sun and Y. Chen, “Reevaluating amdahl’s law in the multicore era,” Journal of
Parallel and Distributed Computing, vol. 70, pp. 183–188, 2010.

[76] J. H. Shaffer, “The effects of high bandwidth networks on wide area distributed sys-
tems,” PhD Thesis, University of Pennsylvania, 1996.

[77] A. van Gemund, “Symbolic performance modelling of parallel systems,” IEEE Tans.
on Parallel and Distributed Systems, vol. 14, no. 02, pp. 154–165, 2003.

[78] D. Sundaram-Stukel and M. Vernon, “Perdictive analysis of the waveform application
using LogGP,” in Proc. 7th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, vol. 34, no. 08, 1999, pp. 141–150.

82



BIBLIOGRAPHY

[79] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian,
and T. von Eickev, “LogP: towards realistic model for parallel computation,” in Proc.
4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
vol. 28, no. 07, 1993, pp. 1–12.

[80] J. Bourgeois and F. Spies, “Performance prediction of the NAS benchmark program
with ChronosMix environment,” in Euro-Par ’00: Proc. 6th Int’l Euro-Par Conf. on
Parallel Processing. Springer-Verlag, 2000, pp. 208–216.

[81] R. Saavedra and A. Smith, “Analysis of benchmark characteristics and benchmark
performance prediction,” ACM Trans. on Computer Systems, vol. 14, no. 04, pp. 344–
384, 1996.

[82] H. Casanova, A. Legrand, and M. Quinson, “SimGrid: A generic framework for
large-scale distributed experiments,” Proceedings of the 10th International Confer-
ence Computer Modelling and Simulation, pp. 126–131, 2008.

[83] S. Prakash and R. L. Bagrodia, “MPI-SIM: Using parallel simulation to evaluate MPI
programs,” WSC: Proceedings of the 30th Conference on Winter Simulation, pp. 467–
474, 1998.

[84] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod, “Using the SimOs mechine
simulator to study complex computer systems,” ACM Trans. on Modelling and Com-
puter Simulation, vol. 07, no. 01, pp. 78–103, Jan 1997.

[85] Y. Luo, “MPI performance study on the SGI origin 2000,” Pacific Rim Conf. on Com-
munications, Computers and Signal Processing, pp. 269–272, 1997.

[86] B. Cornea and J. Bourgeois, “Performance prediction of distributed applications using
block benchmarking methods,” in Proceedings of the 19th International Euromicro
Conference on Parallel, Distributed and Network-based Processing, Feb 2011, pp.
183–190.

[87] S. Jarvis, D. Spooner, H. K. L. Choi, J. Cao, S. Saini, and G. Nudd, “Performance pre-
diction and its use in parallel and distributed computing systems,” Future Generation
Computer Systems, vol. 22, no. 7, pp. 745–754, Aug 2006.

[88] S. Hammond, G. Mudalige, J. Smith, S. Jarvis, J. Herdman, and A. Vedgama,
“WARPP - a toolkit for simulating high-performance parallel scientific codes,” Pro-
ceedings of the 2nd International Conference on Simulation Tools and Techniques,
vol. 41, no. 7, pp. 19:1–19:10, March 2009.

[89] R. Bagrodia, E. Deelman, S. Docy, and T. Phan, “Performance prediction of large
parallel applications using parallel simulations,” ACM SIGPLAN 1999 Symposium on
Principles and Practice of Parallel Programming, pp. 151–162, May 1999.

[90] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” IEEE Computer,
vol. 41, no. 7, pp. 33–38, 2008.

83



BIBLIOGRAPHY

[91] N. P. Khanyile, R.-J. Tapamo, and E. Dube, “An analytic model for predicting perfor-
mance of distributed applications on multicore clusters,” IAENG International Journal
of Computer Science, vol. 39, no. 03, pp. 312–320, Aug 2012.

[92] N. Khanyile, R.-J. Tapamo, and E. Dube, “Performance prediction model for dis-
tributed applications on multicore clusters,” Lecture Notes in Engineering and Com-
puter Science: Proceedings of The World Congress on Engingeering 2012, WCE 2012,
vol. 02, pp. 1119–1124, July 2012.

[93] J. F. Kurose and K. W. Ross, Computer Networks: A Top-Down Approach Featuring
the Internet. Addison-Wesley, 2001.

84


	Title page
	Abstract
	Preface
	Glossary
	Contents
	List of figures
	List of tables
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References

