
 
 

Cytokine production by ME-180 cells and VK2 

E6/E7 cells on exposure to Neisseria gonorrhoeae, 

HIV, N. gonorrhoeae and HIV 

 

 

Merusha Govindasami 

 

Submitted as the dissertation component in fulfilment of the degree: 

MASTER OF MEDICAL SCIENCE 

In:  

Medical Microbiology 

School of Laboratory Medicine and Medical Sciences 

College of Health Sciences 

Nelson R Mandela School of Medicine 

University of KwaZulu-Natal  

Durban 

May 2018 



i 
 

 

 

 



ii 
 

 

 

 



iii 
 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my family 

 

 

  



iv 
 

Acknowledgements 

 

Those who leave everything in God’s hand will eventually see God’s hand in everything. 

Thank you for every step in my journey of life. 

 

I would like to extend my gratitude to the following people: 

Prof A. W. Sturm, my supervisor for guiding and mentoring me through the course of my study. 

I am most grateful and privileged to have been supervised by you. Thank you for always sharing 

your knowledge.  

Dr Alex Sigal, Africa Health Research Institute (AHRI), K-RITH Tower Building, Nelson R Mandela 

School of Medicine for his kind donation of HIV-1 serum. 

Mum and Dad, thank you for giving me the greatest gift of education, thank you for all the love, 

support, encouragement, patience and allowing me the freedom to further my studies. 

To my Sister, my “twin sister” thank you for all your support, guidance and love during this 

journey. 

To my Friends, thank you for all the guidance, technical support and assistance during my time 

at the department.  

College of Health Sciences for funding 

NRF for funding 

  



v 
 

TABLE OF CONTENTS 
 

CHAPTER 1 - INTRODUCTION ............................................................................................................. 1 

CHAPTER 2 - LITERATURE REVIEW ................................................................................................. 3 

2.1 History ................................................................................................................................................ 3 

2.2 Classification and Morphology ........................................................................................................ 4 

2.3 Clinical appearance .......................................................................................................................... 4 

2.4 Neisseria gonorrhoeae laboratory diagnosis ................................................................................... 6 

Microscopy ............................................................................................................................................ 6 

Culture .................................................................................................................................................. 6 

Non-culture methods ............................................................................................................................. 8 

Nucleic acid detection ........................................................................................................................... 8 

2.5 HIV laboratory diagnosis ................................................................................................................. 9 

Serological diagnosis ............................................................................................................................ 9 

Enzyme immunoassays (EIAs) .............................................................................................................. 9 

Rapid tests ............................................................................................................................................. 9 

2.6 Pathogenesis and Immune response .............................................................................................. 10 

2.7 Treatment ........................................................................................................................................ 13 

2.8 HIV Co-infection ............................................................................................................................. 15 

2.9 Cytokine Assays .............................................................................................................................. 16 

Enzyme-linked immunosorbance assay (ELISA) ................................................................................. 16 

Flow cytometry .................................................................................................................................... 16 

Bio-Plex Assay .................................................................................................................................... 16 

CHAPTER 3 - METHODOLOGY .......................................................................................................... 18 

3.1 Pathogenic microorganisms ........................................................................................................... 18 

3.2 Propagation, subculture and storage of N. gonorrhoeae ............................................................. 18 

3.3 Cell Culture ..................................................................................................................................... 19 

Cell lines and culture media ............................................................................................................... 19 

Propagation of cells ............................................................................................................................ 19 

Cryo-preservation ............................................................................................................................... 20 

3.4 Infection of cell lines ME-180/ VK2 E6/E7 ................................................................................... 20 

3.5 Cytokine Assay ................................................................................................................................ 20 

3.6 Statistical Analysis .......................................................................................................................... 21 



vi 
 

CHAPTER 4 - RESULTS ........................................................................................................................ 22 

CHAPTER 5 - DISCUSSION & CONCLUSION .................................................................................. 32 

CHAPTER 6 - REFERENCES ................................................................................................................ 36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Tables 

Table 1 Carbohydrate (sugar) utilization and enzyme activity of Neisseria 

gonorrhoeae and Neisseria meningitidis 

6 

Table 2 MIC (mg/L) distribution (%) of N. gonorrhoeae isolates (n=319) 11 

Table 3 Cytokine production (pg/ml) by uninfected ME-180 and VK2 E6/E7 cells 17 

Table 4 Cytokine production (pg/ml) by ME-180 cells exposed to N. gonorrhoeae or 

HIV 

18 

Table 5 Cytokine production (pg/ml) by VK2 E6/E7 cells exposed to Neisseria 

gonorrhoeae or HIV 

18 

Table 6 Production of cytokines (pg/ml) by ME-180 and VK2 E/E7 exposed to N. 

gonorrhoeae 

19 

Table 7 Production of cytokines (pg/ml) by ME-180 and VK2 E/E7 exposed to HIV 20 

Table 8 Cytokine production (pg/ml) by ME-180 cells exposed to N. gonorrhoeae 

and HIV 

21 

Table 9  Cytokine production (pg/ml) by VK2 E6/E7 cells exposed to N. gonorrhoeae 

and HIV 

21 

Table 10 Cytokine production (pg/ml) of ME-180 and VK2 E6/E7 cells exposed to       

N. gonorrhoeae followed by HIV 

22 

Table 11 Cytokine production (pg/ml) of ME-180 and VK2 E6/E7 cells exposed to 

HIV followed by N. gonorrhoeae 

23 

Table 12 Cytokine production (pg/ml) of ME-180 and VK2 E6/E7 cells exposed to  

N. gonorrhoeae and HIV together 

24 

 



viii 
 

Abbreviations 

µm Micrometer 

AIDS Acquired Immune Deficiency Syndrome 

ATP Adenosine triphosphate 

CDC Centre for Disease Control 

CO2 Carbon Dioxide 

DNA Deoxyribonucleic Acid 

EIA Enzymes Immunoassays 

g Gram 

GTP Guanosine-5’-triphosphate 

HIV Human Immunodeficiency Virus 

IL Interleukin 

IM Intramuscular 

LOS Lactosyl lipooligosaccharide 

M-CSF Macrophage colony stimulating factor 

MOI Multiplicity of Infection 

NAAT Nucleic Acid Amplification Testing 

NK Natural Killer 

Opa Opacity associated 

PID Pelvic Inflammatory Disease 

PMN Polymorphonuclear leukocyte 

PorB Porin B 



ix 
 

RANTES Regulated on activation, normal T cell expressed and secreted 

RNA Ribonucleic Acid 

STI Sexually Transmitted Infection 

TGF- β Transforming growth factor- beta 

TNF-α Tumor necrosis factor-alpha 

WHO World Health Organisation 

β Beta 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 

 

Abstract 

Gonorrhoea is a sexually transmitted disease caused by Neisseria gonorrhoeae. Women are more at risk 

in developing secondary complications due to asymptomatic infections. In 2001, a study was done on the 

different responses of epithelial cells from three different regions of the lower female genital tract 

exposed to N. gonorrhoeae. Upregulation of cytokines found in cervical and vaginal secretions has been 

linked with human immunodeficiency virus 1 infection. In vitro studies of the immune response following 

exposure to multiple STI pathogens are relevant as mixed infections are common and not many studies 

have been done. The aim of this study was to determine the cytokine response in a co-infection model 

with N.  gonorrhoeae and HIV using two genital epithelial cell lines. 

ME-180 cervical cells and VK2 E6/E7 vaginal cells were infected with N. gonorrhoeae and HIV only and 

with both organisms in different sequence. Infected cells were incubated at 37 °C in 5 % CO2 for 72 h. 

The supernatant was assayed for cytokines TNF-α, RANTES, IL-1β, IL-4, IL-6, IL-8, and IL-10 by 

means of the Bio-Plex Pro Cytokine, Chemokine, and Growth Factor Assay kit.  

The spontaneous cytokine release was higher in VK2 E6/E7 cells than in the ME-180 cells. On exposure 

to single organisms the response to N. gonorrhoeae was stronger than to HIV in both cells for IL-10, IL-8 

and IL-6. For infection with N. gonorrhoeae the VK2 E6/E7 cells had a stronger cytokine response than 

ME-180 but this was not so for HIV. The response the cells had to exposure to both organisms was 

independent of the sequence of exposure. Further studies should be done on mixed infections of N. 

gonorrhoeae and HIV with additional STI pathogens. 
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CHAPTER 1 - INTRODUCTION 

 

A common route of HIV transmission is through sexual intercourse with women contributing to almost 

half of the HIV infected population (Simon et al., 2006). One of the risk factors for HIV infection is 

thought to be the presence of other sexually transmitted infections (STIs), in women the greatest risk 

factors for HIV acquisition were new viral and bacterial STIs (Venkatesh et al., 2011). Neisseria 

gonorrhoeae is a human pathogen causing the disease gonorrhoea. Gonorrhoea is a global health problem 

as it is the second most common bacterial STI globally (World Health Organization, 2016b). 

Pathogenic microorganisms employ different survival strategies to avoid being killed by the host’s 

immune response. Such strategies include preventing activation of host defence mechanisms or activating 

the host immune response but evading the consequences by different mechanisms. N. gonorrhoeae uses 

the latter strategy by protecting itself from the host’s immune response during infection (Hedges et al., 

1998). During infection N. gonorrhoeae adheres to and invades epithelial cells of the genitalia. Type IV 

pili present on the organism facilitate adhesion (Jarvis et al., 1999) and stimulate an inflammatory 

response that is characterized by an intense cellular infiltrate predominantly of neutrophils (Naumann et 

al., 1997). During initial contact of a pathogen with mucosal surfaces cytokines produced play an 

important role in the antigen-specific immune response. This has a major impact on the outcome of an 

infection (Naumann et al., 1997).  

Despite cumulating evidence that infection with one or more STI pathogens other than HIV increases 

acquisition and transmission of the latter (Galvin and Cohen, 2004), in vitro studies on interaction 

between HIV and other pathogens are mainly done in immune cells. Studying co-infections in cells that 

make up the epithelial lining of the genitalia can potentially add to our knowledge of such infections. This 

should include cervical and vaginal epithelial cells. It has been shown that these cells  produce cytokines 

associated with pro-inflammatory and anti-inflammatory responses (Fichorova et al., 2001).  

In the vagina infection is generally restricted to Trichomonas vaginalis and Candida albicans with 

Human Papilloma Virus (HPV) infecting the ectocervix (Quayle, 2002).  

In the study presented here ME-180 and VK2 E6/E7 epithelial cells were used. The ME-180 cell line 

derived from the human cervix was isolated from an omental metastasis of a rapidly spreading cervical 

carcinoma (Sykes et al., 1970b). A simple epithelium of columnar cells lines the endocervix, major 

pathogens causing infection at this site are Neisseria gonorrhoeae and C. trachomatis (Quayle, 2002).  

Morphologically the cells have maintained many features of this differentiated stratified squamous 

epithelium of the endocervix (Tan et al., 1993). This cell line is therefore a suitable model for the study of 
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cervical infections (Tan et al., 1993). ME-180 cells produce the cytokines Interleukin (IL)-1β, IL-6, IL-8, 

IL-10, Regulated on Activation, Normal T-cell Expressed and Secreted (RANTES) and Tumor 

Necrosis Factor alpha (TNF-α) (Sabde, 2013).  

The VK2 E6/E7 cell line is a human vaginal epithelial cell line that expresses characteristics of stratified 

squamous non-keratinizing epithelia, which forms a barrier to pathogens (Fichorova, 1997). This non-

keratinized squamous epithelium has a thickness of 150-200 µm (Quayle, 2002). The VK 2E6/E7 cell line 

produces the cytokines IL-1, IL-6, Transforming Growth Factor β (TGF- β) and macrophage colony 

stimulating factor (M-CSF) (Fichorova et al., 2001).  

An infection with N. gonorrhoeae may modulate the response to HIV infection at the genital mucosa by 

activation of immune cells and increasing the number of HIV target cells at the site of infection (Jarvis 

and Chang, 2012). Also cytokine upregulation of IL-1, IL-6, TNF-α and the chemokine RANTES in 

cervical and vaginal secretions has been linked with HIV-1 infection (Hill, 1999). 

The study presented here aimed to provide insight in the cytokine response during exposure of genital 

epithelium to N. gonorrhoea and HIV. 

Objectives 

1. To determine which cytokines are produced by ME-180 and VK2 E6/E7. 

 

2. To compare and quantitate the commonly produced cytokines by these cell lines on single exposure 

to Neisseria gonorrhoeae and HIV. 

 

3. To compare and quantitate the commonly produced cytokines by these cell lines on sequential 

exposure to Neisseria gonorrhoeae and HIV and vice versa. 
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CHAPTER 2 - LITERATURE REVIEW 

 

2.1 History 

 

The disease gonorrhoea has references in the biblical Book of Leviticus making it one of the oldest 

known human diseases (Edwards and Apicella, 2004; Unemo and Shafer, 2011). 

In CE 130, Galen referred to the disease as Greek words gonor (seed) and rhoia (flow), assuming the 

disease was linked to the flow of semen (Tønjum and van Putten, 2017). By the thirteenth century, 

Maimonides identified that the urethral discharge of infected male patients was not semen, but secretions 

induced by a sexually transmitted disease (Tønjum and van Putten, 2017). 

 

Although the German bacteriologist Albert Neisser observed the presence of gonococci in leukocytes 

from urethral exudates of infected patients (Tønjum and van Putten, 2017), it was only in 1882 that the 

organism was cultured by Leistikow and Löffler  (Handsfield, 1990). 

Before the discovery of antibiotics other treatment options were explored. These included the application 

of metals and plant extracts (Lancaster et al., 2015). With the use of sulphonamides in 1936 and penicillin 

in 1943 the prevalence of the disease declined (Handsfield, 1990). In 1978 the United States reported an 

incidence of more than one million cases per annum (Handsfield, 1990). With the onset of the HIV 

epidemic in the late 1980s the use of barrier contraceptives lead to decreased gonococcal infections 

(Knapp and Rice, 1995). This effect was reversed when anti-retroviral drugs became available which lead 

to decreased condom usage (Phillips et al., 2013). 

 

Gonorrhoea is the second most prevalent global sexually transmitted infection, with an estimated 87 

million new cases in 2016 (World Health Organization, 2018). Currently antimicrobial resistance is an 

international problem due to Neisseria gonorrhoeae having the capacity for genetic mutation and to 

acquire genetic elements from other species (Unemo and Shafer, 2011). 

Human immunodeficiency virus (HIV) is the etiological agent of acquired immune deficiency syndrome 

(AIDS) (Janas and Wu, 2009). AIDS cases were first described in 1981, and in 1983 the causative virus 

was isolated (Unemo et al., 2013). In 2015, there was an estimate of 36.7 million HIV infected people 

globally with 2.1 million new cases of infection (UNAIDS, 2016). 
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2.2 Classification and Morphology 

 

The family Neisseriaecea includes the three medically important genera Kingella, Eikenella  and 

Neisseria (Liu et al., 2015). Extensive revision of the family taxonomy has been done based on whole 

genome sequencing and gene sequence analysis of the 16S rRNA gene (Tønjum and van Putten, 2017).  

The genus Neisseria are Gram negative diplococci with adjacent flattened sides that measure 0.6 -1.9 µm. 

Their G + C content is between 48 and 56 mol % (Prescott et al., 2008). They are non-motile, aerobic, 

oxidase and catalase positive, whilst fimbriae (in Neisseria usually referred to as pili) and a capsule can 

be present (Prescott et al., 2008). Optimal growth temperature ranges between 35 – 37 °C (Tønjum and 

van Putten, 2017). 

The genus includes two genetically closely related obligate human pathogens: Neisseria gonorrhoeae and 

Neisseria meningitidis (Bonnah et al., 2000). N. gonorrhoeae mainly causes infections of the urogenital 

tract, whereas N. meningitidis colonizes the upper region of the respiratory tract as commensal and only 

strains that are encapsulated cause systemic infection resulting in bacteraemia and meningitis (Ison and 

Robertson, 1998). 

 

HIV is classified under the family Retroviridae, subfamily Lentiviruses (Unemo et al., 2013). The virion 

is ~ 100 nm in diameter with a conical capsid. The p24 capsid protein is a main component of the virus. 

The capsid is covered by a lipid envelope containing 2 glycoproteins, gp120 and gp41 (Unemo et al., 

2013). Inside the capsid are 2 copies of genomic RNA (Unemo et al., 2013). HIV has different subtypes 

worldwide, with some subtypes being more prevalent in certain regions of the world (Unemo et al., 

2013). The two major types of HIV are HIV-1 and HIV-2, with HIV-1 being most common dominating 

the epidemic. HIV-2 is mainly found in West Africa with occasional reported cases throughout the world 

(Unemo et al., 2013). 

 

2.3 Clinical appearance 

 

The epithelial lining of the urethra in both men and women and of the uterine cervix in women are the 

primary sites of infection for N. gonorrhoeae. (Edwards and Apicella, 2004). Other possible sites of 

infection include the rectal mucosa, pharynx and conjunctiva (Edwards and Apicella, 2004). Although it 

is uncommon, disseminated disease can cause endocarditis, arthritis dermatitis syndrome and meningitis 

(Edwards and Apicella, 2004). Exposure to infected secretions during birth can cause ocular infections in 

neonates which can result in blindness (Tapsall, 2001). 
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A higher probability of transfer of the infection exists from an infected man to a woman than vice versa 

(Handsfield, 1990). Infections with N. gonorrhoeae are asymptomatic in approximately  

50 % of women. Symptomatic women display non-specific symptoms that include an odourless 

mucopurulent discharge from the vagina, bleeding from the vagina especially after sexual intercourse as 

well as dyspareunia (McCormack et al., 1977).  

Pelvic inflammatory disease (PID) can develop in up to 20 % of infected women which leads to infertility 

in approximately 15 % of those. Thus early diagnosis and treatment is important in reducing the risk of 

reproductive complications (Lancaster et al., 2015). 

 

Reports on the prevalence of asymptomatic infections in men vary between 10 and 40 % (Handsfield et 

al., 1974). Symptomatic men present with a mucopurulent penile discharge and dysuria (Lancaster et al., 

2015). The discharge is due to polymorphonuclear leukocyte (PMN) influx and shedding of epithelial 

urethral cells (Edwards and Apicella, 2004). Acute urethritis is characterised by an inflammatory response 

caused by the organism itself (Ramsey et al., 1995). Symptoms in men usually occur 2 - 6 days after 

exposure to the organism. In men with delayed or inadequate treatment epididymitis can develop 

(Lancaster et al., 2015). 

Infection with HIV-1 in the female reproductive tract includes three different major events: entry of HIV 

via the mucosal epithelium, infection of the subepithelial mononuclear cells, and finally delivery of the 

virus to lymph nodes initiating systemic infection (Shen, Richter and Smith, 2014). 

HIV can be transmitted by exchange of body fluids through sexual contact and contaminated blood or 

blood products (Unemo et al., 2013). HIV infected pregnant women can transmit the virus to the infant 

during pregnancy, during delivery or through breast feeding (Unemo et al., 2013). 

The typical clinical course of HIV infection occurs in approximately 70 – 80 % of cases (Pantaleo and 

Fauci, 1996). Signs and symptoms of HIV infection depend on the stage of infection. Patients can be 

asymptomatic or experience an influenza-like illness which includes  headache, fever, rash, or sore throat 

in the first few weeks after infection (World Health Organization, 2010). 

As the infection with HIV progresses it weakens the immune system, and the development of other signs 

and symptoms occur, such as weight loss, swollen lymph nodes, fever, coughing and diarrhoea (World 

Health Organization, 2010). Without proper treatment patients could develop severe additional illnesses 

such as tuberculosis, severe bacterial infections, cryptococcal meningitis, and cancers like lymphomas 

and Kaposi sarcoma (World Health Organization, 2010). 
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2.4 Neisseria gonorrhoeae laboratory diagnosis 

 

The detection of N. gonorrhoeae includes presumptive and confirmatory tests. Presumptive laboratory 

diagnosis is based on the isolation of an oxidase positive Gram negative diplococcus from urogenital sites 

that grow on one of the selective media (Ng and Martin, 2005). Confirmatory tests include biochemical, 

serological, colorimetric tests and nucleic acid methods (Ng and Martin, 2005). 

 

Microscopy 

 

Microscopy of Gram stained smears is used for the direct detection of N. gonorrhoeae, in specimens 

collected from the vagina, cervix, urethra and/or conjunctiva (Ng and Martin, 2005). Swabs containing 

the specimen must be rolled onto a slide gently to maintain cellular morphology which allows for 

differentiation between N. gonorrhoeae and other species with similar morphology (Ng and Martin, 

2005). A significant proportion of the former will be seen intracellularly in the neutrophils. 

 

Urethral specimens from symptomatic men contain intracellular Gram negative, diplococci in PMNs 

(Janda and Knapp, 2003). If extracellular Gram-negative diplococci are present the specimen will be 

further tested on culture and/or nucleic acid tests for confirmation (Janda and Knapp, 2003). 

Endocervical, vaginal and rectal smears are more challenging to interpret due to the presence of other 

Gram-negative organisms (Weyant, Moss and Weaver, 1996).  

 

Microscopy on urethral specimens from symptomatic male patients have a  sensitivity of 90 % and a 

specificity of 95 % whilst endocervical  specimens have a 50 -70 % sensitivity and a reported specificity 

between 70 and 90 %  (Kellogg et al., 1976; Gaydos and Quinn, 1999).  

Reliability of results depends on quality of the specimen and experience of the laboratory technician (Ng 

and Martin, 2005). Most diagnostic laboratories restrict Gram stain microscopy to urethral specimens 

from male patients since performing this test on other specimens leads to a high frequency of false 

positive and negative diagnoses which can have major socio-psychological implications (A.W. Sturm, 

personal communication). 

Culture 

 

Culture is the preferred method for isolation, identification and diagnosis of N. gonorrhoeae infections 

(Ng and Martin, 2005). Specimens from patients are inoculated onto a selective agar plates such as 
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Thayer-Martin, New York City or Martin-Lewis medium (Papp et al., 2014). These media contain 

antimicrobial agents to inhibit growth of fungi and commensal bacteria (Ng and Martin, 2005). A non-

selective medium is usually added for the isolation of gonococci susceptible to one of the antimicrobials 

used in the selective medium. This can be a chocolate agar or the same medium as the selective one but 

without antibiotics.  

 

Inoculated plates are incubated at 35 °C – 37 °C with 3 % - 7 % CO2 (Janda and Knapp, 2003). Cultures 

are viewed after 18 h - 24 h incubation. Those without suspected colonies are re-incubated overnight and 

viewed again. Further testing will be done on suspected colonies (Ng and Martin, 2005). This includes 

identification and susceptibility tests.  

 

Table 1: Carbohydrate (sugar) utilization of different Neisseria species (Unemo and Ison, 2013) 

                               Biochemical activity 

Species Glucose Maltose Lactose Sucrose Fructose 

N. gonorrhoeae + - - - - 

N. meningitidis + + - - - 

N. lactamica + + + - - 

N. cinerea - (+) - - - - 

N. sicca + + - + + 

N. subflava + + - +/- +/- 

- (+), mostly positive but negative strains exist; +/-, not consistent for the species 

 

Identification tests included in Table 1 show the different carbohydrate usage and enzyme activity 

between Neisseria species. Isolates should be sub-cultured after initial isolation before being used in 

diagnostic testing that requires a heavy inoculum (Ng and Martin, 2005). Subcultures should not be 

incubated beyond 48 hours as the organisms will not survive (Ng and Martin, 2005). Antimicrobial 

susceptibility testing should be performed to guide treatment in case of treatment failure, for surveillance 

purposes and preliminary outbreak characterisation (Ng and Martin, 2005).  
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Microbiological culture methods of N. gonorrhoeae are cheap and specific, with a reasonable sensitivity 

of 85 % – 95 %  for both urethral and endocervical infection. (World Health Organization, 2016b). 

Limitations include prolonged turnaround times and difficulty in maintaining viable specimens during 

transportation to the laboratory (Lancaster et al., 2015).   

 

Non-culture methods 

 

Non-culture methods to diagnose N. gonorrhoeae infections include nucleic acid amplification tests 

detecting RNA or DNA sequences and enzyme immunoassays (EIAs) that detect gonococcal proteins 

(Lancaster et al., 2015). Viable organisms are not required for detection with these tests (Lancaster et al., 

2015). 

 

Nucleic acid detection 

 

Nucleic acid amplification methods (NAATs) are specific, highly sensitive and rapid (Ng and Martin, 

2005). This form of detection permits diagnosis in women from vaginal swabs when endocervical 

specimen collection proves difficult (Smith et al., 2001). 

In addition DNA based NAATs can detect N. gonorrhoeae in specimens that have been subjected to long 

transportation periods or exposure to temperature conditions that result in non-viable organisms (Ng and 

Martin, 2005).  

The CDC recommends the use of NAATs to detect and identify N. gonorrhoeae in both symptomatic and 

asymptomatic men and women. This includes rectal and pharyngeal infections. NAATs have a + 35 % 

higher sensitivity in comparison to EIA tests (Papp et al., 2014). 

NAATs do not need bodily fluids collected with invasive techniques, provide results with short 

turnaround times, and other pathogens can simultaneously be detected (Lancaster et al., 2015). NAATs 

can be done on urine specimens, however urine specimens from women are not ideal due to suboptimal 

sensitivity for detection of N. gonorrhoeae (Unemo and Ison, 2013). 
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2.5 HIV laboratory diagnosis 

 

Serological diagnosis  

 

The diagnosis of HIV-1 is based on detection of specific antibodies and antigens in blood specimens or 

other body fluids (Simon, Ho and Abdool Karim, 2006). Detectable HIV antibodies are elicited ~ 4 – 6 

weeks after infection, but in some cases, formation of detectable antibody concentrations may take up to ~ 

3 – 6 months (Unemo et al., 2013). This means a negative test result for HIV antibodies cannot exclude 

infection at 4 – 6 weeks after HIV exposure (Unemo et al., 2013). During the initial phase of virus 

replication, antibodies are absent. Therefore diagnosis may not be made accurately using only antibody 

tests (Unemo et al., 2013). During that period tests that directly detect one or more components of the 

virus such as the p24 antigen or RNA (Unemo et al., 2013) can be used.  

Enzyme immunoassays (EIAs) 

 

EIAs are used as a screening assay for HIV and other infectious diseases (Fearon, 2005). HIV specific 

antibodies are detected in the test making the test highly sensitive and specific (Fearon, 2005; Unemo et 

al., 2013). Second-generation assays utilize more specific antigens (recombinant proteins or synthetic 

peptides) but they do not detect early Immunoglobulin M (IgM) antibody responses (Unemo et al., 2013). 

Thus, a third-generation test with a sandwich format which includes enzyme conjugated antibodies to 

detect IgM responses was created, reducing the window period for detection (Unemo et al., 2013).  

A new fourth-generation reduce the detection window period even further by combining detection HIV 

antibodies and the p24 viral antigen making this combination assay sensitive in detecting acute HIV 

infection (Unemo et al., 2013). 

Due to the high sensitivity of the tests, false positive results can occur. Therefore the diagnosis is based on 

two different immunoassays and if there is a discrepancy in results a confirmatory test such as Western 

blot will be done (Fearon, 2005).   

Rapid tests 

 

Rapid tests allow for HIV diagnosis in non-laboratory settings. These tests have two different formats, 

immuno-concentration devices and lateral flow cassette/strips (Unemo et al., 2013). Rapid tests are 

optimized to accelerate antigen-antibody interaction thus detecting HIV antibodies within a few minutes 

(1–15 min). In contrast, EIAs, which may take up to 2–4 hours. Rapid tests can provide results for remote 
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populations and pregnant women during ANC visits. HIV rapid tests can be done using plasma, serum or 

whole blood (Unemo et al., 2013). 

 

2.6 Pathogenesis and Immune response  

 

Neisseria gonorrhoeae 

 

N. gonorrhoeae colonizes and invades epithelial cells of the genital mucosa resulting in an inflammatory 

response (Nassif et al., 1999). Infection of epithelial cells involves adhesins including pili, opacity-

associated (Opa) proteins, lactosyl lipooligosaccharide (LOS) and porin proteins (Jarvis and Chang, 

2012).  

Type IV pili extends from the bacterial surface facilitating initial adhesion. Pili are filamentous structures 

made up of protein subunits (Nassif et al., 1999). The PilC is a 110 kDa molecule that is responsible for 

the pilus mediated adhesion to the complement regulatory protein CD46 which is the pilus receptor for 

pathogenic Neisseria (Källström and Jonsson, 1998).  

The opacity (Opa) outer membrane proteins mediate cellular interactions and invasion of host cells 

(Nassif et al., 1999). Opa proteins interact with PMNs resulting in an opsonin-independent uptake via 

phagocytes (Fischer and Rest, 1988). Opa proteins consist of two groups, the first interacts with a heparan 

sulphate proteoglycan (Van Putten and Paul, 1995) followed by adhesion and internalization of N. 

gonorrhoeae by epithelial cells (Nassif et al., 1999). The second group of Opa proteins interacts with 

eukaryotic cells receptor CD66 present on endothelial and epithelial cells and on PMNs  (Gray-Owen et 

al., 1997; Nassif et al., 1999).  

Porins PorA and PorB are produced by pathogenic Neisseria species. They function as pores in the 

plasma membrane for ion exchange and cause a transient change in membrane potential and cell 

signalling interference (Ulmer et al., 1992). LOS is a major immunogenic and antigenic component that 

induces the production of cytokines IL-1β, IL-6, IL-8 and TNF-α in primary urethral epithelial cells 

(Harvey et al., 2002). Infection with pathogenic Neisseria induces an inflammatory response. The pili, 

Opa proteins, LOS and porin proteins induce cytokine production by activating toll-like receptor 2 

(TLR2) and TLR4 (Jarvis and Chang, 2012). 

The innate immune response to bacterial infection is the influx of PMNs which phagocytose and kill 

microorganisms (Borregaard, 2010). In keeping with this, during infection with N. gonorrhoeae the 

inflammatory response is characterized by the recruitment and influx of PMNs (Johnson and Criss, 2011). 
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PMNs follow chemotactic signals resulting in migration to the site of infection (Johnson and Criss, 2011). 

Resident immune and mucosal epithelial cells release chemokines for PMNs. These include IL-1, IL-6,  

IL-8 and TNF-α (Borregaard, 2010). PMNs contain receptors that bind and engulf complement and 

antibody opsonized particles such as complement receptor 3 (CR3) and Fc receptor, killing the 

microorganism (Johnson and Criss, 2011). As a result the bactericidal activity of PMNs limits bacterial 

invasion into deeper layers (Fisette et al., 2003; Maisey et al., 2003). Although there is an influx of PMNs 

at the site of infection, viable gonococci can still be cultured from exudate taken from infected patients 

(Wiesner and Thompson, 1980). Thus, the PMN immune response to N. gonorrhoeae infection is not 

effective in clearing the organism at the site of infection  (Johnson and Criss, 2011; Stevens and Criss, 

2018) . The persistence of N. gonorrhoeae in the presence of PMNs enables long term colonization of the 

human host, creating an opportunity for both dissemination and transmission (Johnson and Criss, 2011; 

Stevens and Criss, 2018). In a limited subset of patients gonococci invade the sub-epithelial tissue and the 

bloodstream resulting in deep-seated infections like arthritis (Edwards and Apicella, 2004).  

Investigations into the anti-gonococcal immune response have focused mainly on the humoral response 

(Hedges et al., 1998, 1999). Repeated exposure to an organism’s antigens should enhance the immune 

response by evoking memory within the immune system (Hedges et al., 1999). During infection with N. 

gonorrhoeae anti-gonococcal antibodies were detected in secretions and serum from infected patients but 

their levels were very low (Hedges et al., 1998). This suggests that the level of anti-gonococcal antibodies 

induced during infections may be inadequate in providing protection against re-infection and this may 

explain the lack of immunity (Hedges et al., 1999).  

Pili proteins I (PI)and II (PII), H.8 protein, immunoglobulin A1 (IgA1) protease and LOS antigens induce 

antibody production during infection (Imarai et al., 2011). Pili proteins appear to be the main antigen in 

women, whilst men appear to have higher levels of antibodies directed against Opa and porin proteins 

(Brooks and Lammel, 1989). 

Pathogenic organisms can evade the host’s immune response using different mechanisms including 

antigenic variation of surface antigens and LOS (Meyer, Gibbs and Haas, 1990), production of IgA1 

protease (Plaut et al., 1975) and resistance to complement-mediated bacteriolysis (Rice et al., 1986; Smith 

et al., 1992). 

The cumulating effect of incomplete clearance of N. gonorrhoeae by PMNs and production of ineffective 

antibodies results in a state of non-protective immunity. This is supported by clinical data which indicate 

that prior infections with the organism do not provide an improved immune response thus allowing for 

repeated infection with N. gonorrhoeae (Hedges et al., 1999). 
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Human Immunodeficiency Virus 

The initial step in HIV infection is when the glycoproteins of the virus bind to CD4 carrying cells, 

generating a host immune response (Unemo et al., 2013). HIV contains a gp120 envelope protein that 

attaches to the CD4 glycoprotein surface receptor on CD4+ T cells, monocytes, macrophages and 

dendritic cells (Prescott, Harley and Klein, 2008). A co-receptor in addition to the CD4 receptor is 

required for virus entry. HIV macrophage tropic strains  that predominate early in disease, infect cells of 

the macrophage lineage. To enter these cells, the virus requires the CCR5 chemokine receptor protein as 

well as CD4 (Prescott, Harley and Klein, 2008). A second chemokine coreceptor CXCR-4 (fusion) is 

generally used by T-cell tropic strains to enter these cells. Such strains are mainly found in later stages of 

infection (Prescott, Harley and Klein, 2008). Fusion of the viral envelope and host cell plasma membrane 

results in the virus entering and releasing its core containing two RNA strands into the cytoplasm 

(Prescott, Harley and Klein, 2008). The RNA is copied into a single strand of DNA by the RNA-

dependent DNA polymerase activity of the reverse transcriptase enzyme (Prescott, Harley and Klein, 

2008). The RNA is then degraded by ribonuclease H and the DNA strand is duplicated to form a double 

stranded DNA copy of the original RNA genome (Prescott, Harley and Klein, 2008). The proviral DNA 

and integrase enzymes move into the nucleus and integrate the DNA into the host cell’s DNA. The 

integrated provirus can either be latent with no clinical signs or force the cell to synthesize viral mRNA 

(Prescott, Harley and Klein, 2008). RNA is translated to produce viral proteins, these viral proteins and 

the HIV-1 RNA genome are assembled into new virions that bud from the infected cell and eventually 

results in lysis of the host cell. Both budding and lysis contribute to spreading of the infection in the 

host’s body (Prescott, Harley and Klein, 2008). 

Cellular immunity plays an important role in fighting or eliminating an infectious agent (Levy, 1993). 

During the acute stage of infection the virus multiplies rapidly and disseminates to the lymphoid tissues 

throughout the body until an acquired immune response (antibodies and cytotoxic T cells) can be 

generated to bring virus replication under control (Prescott, Harley and Klein, 2008). The HIV envelope is 

the main target for the humoral antibody response (Levy, 1993). Other cellular immunity responses 

include cytotoxic Natural Killer (NK) cells and CD4+ cell responses (Levy, 1993). HIV infected cells are 

killed by NK cells by the recognition of antibodies bound to the viral envelope proteins on the cell surface 

(Levy, 1993).  

Human CD4+ T cells can be divided into Th1 and Th2 subsets, Th1 cells secrete IL-2 and IFN-γ and Th2 

cells produce IL-4, IL-6, and IL-10 (Levy, 1993). During the chronic stage of HIV infection, gonococcal 

infection has been linked with a transient increase in plasma viremia and plasma Th2 cytokines IL-4 and 

IL-10, and decreased CD4+ T cell counts (Anzala et al., 2000). 
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Genital epithelial cells support transcytosis of extra-cellular HIV across the epithelium in primary human 

endocervical epithelial cells and genital mucosa derived cell lines (Stoddard et al., 2007, 2010). These 

include Endo1/E6E7, Ect1/E6E7, VK2/ E6E7 and HEC1A cell lines that are derived from the 

endocervical, ectocervical, vaginal and endometrial tissue, respectively (Stoddard et al., 2007, 2010). 

Primary cervical and endometrial epithelial cells interact with HIV-1 via gp120, eliciting pro-

inflammatory cytokine production such as TNF-α (Nazli et al., 2010). The production of TNF-α leads to 

barrier function impairment of the epithelium, allowing HIV-1 entry across the epithelial lining (Nazli et 

al., 2010). Also, the cervix derived epithelial cell line (ME-180) can be infected with HIV (Tan et al., 

1993). 

 

2.7 Treatment 

 

Antimicrobial resistance to first-line treatment with 3rd generation cephalosporins and azithromycin of N. 

gonorrhoeae is increasing globally (Lancaster et al., 2015). The WHO recommends treatment with dual 

or single agents based on local resistance data. When data is not available dual therapy is recommended 

(World Health Organization, 2016b). Dual therapy includes: 250 mg intramuscular (IM) administered 

ceftriaxone plus 1g oral azithromycin or 400 mg oral cefixime plus 1 g oral azithromycin (World Health 

Organization, 2016b). Single therapy includes: 250 mg ceftriaxone IM, 400 mg oral cefixime or 2 g 

spectinomycin IM (World Health Organization, 2016b). When treatment fails different combination 

treatments are recommended as per the WHO guidelines (World Health Organization, 2016b). Local data 

on antimicrobial resistance are shown in Table 2 (Rambaran et al., 2018). 

HIV infection is treated with antiretroviral agents. The WHO recommends immediate anti-retroviral 

treatment (ART) for all people diagnosed with HIV without restrictions of CD4 counts (World Health 

Organization, 2016a). First-line treatment should include one non-nucleoside reverse transcriptase 

inhibitor (NNRTI) plus two nucleoside reverse transcriptase inhibitors (NRTIs) or an integrase inhibitor 

(INSTI) (World Health Organization, 2016a). 
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Table 2: MIC (mg/L) distribution (%) of N. gonorrhoeae isolates (n=319)  

 

Antimicrobial agent ≤0.007 0.015 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16 ≥32 

Penicillin    2 10 13 10 5  11  17 32   

Cefixime 52 17 17 11 2 1        

Ceftriaxone 77  15  6.5 1 0.5         

Azithromycin      1 4 28  41  25  1    

Ciprofloxacin  16 9  4  1  1 3  4  15  8 38  1   

Ofloxacin  13  12  4 1 1  1 2 4 14  41 7   

Tetracycline            4 96 
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2.8 HIV Co-infection 

 

As of 2015, an estimate of 36.7 million people were infected with HIV with 2.1 million new infections 

occurring worldwide (UNAIDS, 2016). 

The main route of HIV transmission is sexual intercourse, yet transmission efficacy by this route is 

relatively low as seroconversion occurs in 1 in every 1000 episodes of sexual intercourse with an infected 

partner (Galvin and Cohen, 2004). Observational studies have indicated a strong link between the 

acquisition of HIV-1 and other STIs (Buvé et al., 2001). 

 

Replication rates differ between patients. Mechanisms that enhance replication rates are unclear but may 

be linked to increased numbers of activated CD4+ T lymphocytes due to concomitant infections. (Levine 

et al., 1998).  

A difference in HIV-1 plasma viremia levels in infected individuals could be due to various factors 

including the number of cells infected with HIV-1, level of cellular activation transcription of the HIV-1 

genome and the cellular and humoral immune responses to HIV-1 (Anzala et al., 2000). Cellular 

transcriptions factors are controlled by cellular activation via the action of inflammatory cytokines and 

mediators (Anzala et al., 2000). This is induced by other infections, including gonorrhoea. 

A longitudinal STI study conducted on female sex workers in Nairobi, Kenya presented data referred to 

as natural “challenge” as acute STIs could have resulted from re-activation of persistent infections or new 

infections (Anzala et al., 2000).  The main finding of the study identified that during dual HIV and 

gonococcal infection, HIV-1 RNA copy number in plasma as well as Th2 cytokines increase while the 

number of CD4+ T cells decrease (Anzala et al., 2000). Women experiencing acute PID showed an 

increase in plasma cytokines and plasma viremia but no increase in CD4 T cell and CD8 T cell counts 

(Anzala et al., 2000). A direct activation of HIV-1 replication via the action of bacterial products could 

also explain the increased plasma viremia during PID and gonococcal infection (Anzala et al., 2000) 

Thus, the data strongly suggests a linkage between gonococcal infection and plasma viremia. LOS has 

been reported to stimulate replication of HIV in vitro, this upregulation occurs via the activation of the 

NF- pathway (Anzala et al., 2000). Studies conducted on men did not result in change in the plasma 

viremia during gonococcal infection suggesting there are different systemic effects in men and women 

(Anzala et al., 2000). This highlights the complexities of studying co-infections.  

Immortalized human epithelial cells derived from the endocervical, ectocervical and vaginal tissue were 

infected with Mycoplasma genitalium (Mcgowin, Popov and Pyles, 2009). Post infection all three 
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epithelial cells expressed significant secretion of IL-6 and IL-8. It was suggested that IL-6 secretion and 

other cytokines could contribute to HIV pathogenesis (Mcgowin, Popov and Pyles, 2009). 

 

2.9 Cytokine Assays 

 

Enzyme-linked immunosorbance assay (ELISA) 

 

ELISA’s are considered the standard method for cytokine measurement, ELISA kits are commercially 

available and are used in biomedical research and clinical laboratories (Leng et al., 2008). This 

methodology allows for the detection of secreted cytokines at protein level (Amsen, de Visser and Town, 

2009). In a double antibody sandwich ELISA, the antibody is attached to the bottom of the well providing 

for both cytokine-antigen capture and immune specificity, while another antibody linked to an enzyme 

provides detection and amplification (Leng et al., 2008). Advantages include sensitive and accurate 

detection of the desired cytokine, and highly quantitative and reproducible results (Leng et al., 2008). 

Disadvantages of an ELISA is that the kit performance is dependent on antibody quality, operator 

experience and skills and that the measurement of only one cytokine at a time in a given sample can be 

done (Leng et al., 2008).  

Flow cytometry 

 

Flow cytometry uses beads coated with a specific capture antibody which capture a cytokine. Fluorescent 

labelled detection antibodies bind to a specific cytokine-capture antibody complex on a bead  (Leng et al., 

2008). The above allows for multiple cytokines to be measured in the same sample by using beads with 

different capture and detection antibodies with different fluorogenic substances resulting in chromogenic 

emissions measured by flow cytometric analysis (Leng et al., 2008). Other advantages include smaller 

sample volume required and time efficiency (Leng et al., 2008) Some of the disadvantages include the 

high cost (Amsen, de Visser and Town, 2009) and that multiplex data interpretation can be challenging 

(Leng et al., 2008). 

Bio-Plex Assay 

 

This system employs the xMAP technology allowing a multiplexing of up to 100 analytes (Houser, 2012). 

This multiplex system looks at analytes simultaneously providing more information from a smaller 

sample volume in a time efficient manner (Houser, 2012). The principle is similar to an ELISA, where the 
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xMAP uses an antibody sandwich for the detection but is different in the capture substrate and detection 

method (Houser, 2012). The Bio-Plex uses bead sets as a substrate capturing analytes in solution and uses 

a fluorescent method of detection (Houser, 2012). The bead sets identify the analytes and detection 

antibodies are used to measure the quantity of the analyte (Houser, 2012). The use of differentially 

detectable beads enables the simultaneous identification and quantification of many analytes in the same 

sample (Houser, 2012). 
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CHAPTER 3 - METHODOLOGY 

 

3.1 Pathogenic microorganisms 

 

A stored isolate of Neisseria gonorrhoeae from a previous study conducted at the Department of Medical 

Microbiology, Nelson R Mandela School of Medicine, UKZN was used. 

Serum containing HIV-1 at a concentration of 3 x 108 copies/ml was kindly donated by Dr Alex Segal of 

Africa Health Research Institute (AHRI), K-RITH Tower Building, Nelson R Mandela School of Medicine. 

 

The study was approved by the Biomedical Research Ethics Committee (BREC), University of Kwa-Zulu-

Natal (UKZN) – ethics number BE220/13. 

 

3.2 Propagation, subculture and storage of N. gonorrhoeae 

 

A vial with frozen suspension of N. gonorrhoeae was removed from the biofreezer. A sterile loop was 

twirled in the frozen suspension to pick up a bead containing the organism. This was immediately streaked 

onto pre-warmed non-selective New York City (NYC) agar plates. Streaked agar plates were incubated at 

37 °C in 5 % CO2 for 24 – 48 hours. Single colonies were sub-cultured onto fresh agar plates, colonies 

could either be used for experimental work or stored once grown. 

 

For non-selective NYC medium preparation 36 g of GC agar base (Oxoid, England) was dissolved in 860 

ml distilled water and autoclaved at 121 °C for 15 minutes. Thereafter 0.5 g of saponin (Sigma, USA) was 

dissolved in 10 ml distilled autoclaved water and filter sterilised. The saponin mixture was added to 100 ml 

of pre-dispensed horse blood in an autoclaved bottle and placed on the bench for 30 minutes. Yeast 

autolysate (Oxiod, England) supplements were reconstituted with distilled autoclaved water. The yeast 

autolysate supplement and blood were added to the media once it was cooled to 55 °C. Media was poured 

into 90 mm Petri dishes and stored at 4 °C. 

 

For storage of the organism a loop full of growth was suspended into 1 ml of storage broth (Appendix 1) 

in a cryo-preservation vial containing sterile glass beads. The vial contents was vortexed to break up any 

clumps before storage at -70 °C until needed. 
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3.3 Cell Culture 

 

Cell lines and culture media 

 

The ME-180 cervical cell line (ATCC® HTB­33™) and VK2 E6/E7 (ATCC® CRL-2616™) vaginal cell 

line were used. Both cell lines had nutritional requirements that differed. The recommended medium for 

ME-180 cells was McCoy’s 5a Modified Medium containing L-glutamine and 25 mM Hepes 

(BioWhittaker, USA) supplemented with 10 % Fetal Bovine Serum (FBS) (BioWest, France).  

VK2 E6/E7 cells were grown in Keratinocyte Cell Basal Medium (KBM) -Gold media (Clonetics, USA) 

supplemented with 0.1 % CaCl2. All media were warmed prior to usage. Cell growth required incubation 

at 37 °C in 5 % CO2. 

 

Propagation of cells 

 

Cells stored at -70 °C were thawed in a 37 °C water bath, the outer surface of the vial was wiped with  

70 % ethanol. The cells were seeded into a 75 cm2 tissue culture flask containing the culture medium 

required for each cell type. Incubated flasks were monitored daily for cell growth, colour change of media 

and possible contamination. Culture medium was changed 2-3 times a week or earlier, spent media was 

discarded, cells were rinsed with phosphate buffered saline (PBS) (Oxoid, England) (Appendix 1) to 

remove all unattached cells and fresh culture medium added. 

 

Once cells were 80 – 90 % confluent they were passaged. The passage procedure differed between the 

cells. Spent culture medium was discarded and the cells rinsed with PBS thrice. For ME-180 cells 1 ml of 

a trypsin solution containing 0.05 % trypsin and 0.02 % versine (EDTA) (BioWhittaker, USA) was added 

while for VK2 E6E7 2 ml was used. The flask was rotated to ensure even distribution and excess solution 

was discarded. After 1 - 2 minutes incubation for ME-180 cells and 3 - 4 minutes for VK2 E6/E7 cells, 

the flask was gently tapped to detach cells.  

 

To stop the action of trypsin 1 ml of FBS was added to ME-180 cells and 6 ml of blocking solution 

(Appendix 1) was added to VK2 E6/E7 cells and distributed evenly over the cell layer. The detached cells 

were transferred into centrifuge tubes. To remove the blocking solution, the VK2/ E6E7 cells were 

centrifuged at 1300 rpm for 10 minutes, the supernatant discarded, and the pellet re-suspended in 1 ml 

KBM-Gold media. The cells were either transferred into a new flask with fresh media, seeded onto 24- 

well collagen coated plates or cryopreserved depending on the requirements. 
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Cryo-preservation 

 

Cryopreservation fluid differed for each cell line. An equal volume of the appropriate cryopreservation 

fluid (Appendix 1) was added dropwise and gently swirled to ensure a homogenous suspension. Aliquots 

of 1 ml were dispensed into cryovials and stored at -70 °C for both cell types. 

 

3.4 Infection of cell lines ME-180/ VK2 E6/E7 

 

ME-180 or VK2 E6/E7 cells were seeded to reach a confluency of approximately 2 x 105 cells/ml into the 

wells of 24-well collagen coated plates and incubated for 24 hrs at 37°C in 5% CO2. The monolayers 

were then rinsed with PBS to remove unattached cells.  

 

N. gonorrhoeae grown on antibiotic free NYC media was suspended in enriched Brain Heart Infusion 

(BHI) Broth (Oxoid, England) (Appendix) to reach an OD of 1 at 450 nm (~ 4.69 x 108 CFU/ml). This 

was measured with the Bio-Rad iMark microplate reader (Bio-Rad, USA). The suspension was incubated 

at 37 °C, 5 % CO2 for 90 minutes, thereafter the undisturbed upper layer was collected, vortexed and used 

for the experiments. Serial 10-fold dilutions of this N. gonorrhoeae suspension was plated out to confirm 

its density by colony counts. At the time of infection the HIV stock solution of 3 x 108 copies/ml was 

diluted with cell type specific media to obtain an MOI of 1 (~ 2 x 105 copies/ml). 

 

The following experiments were done with each cell type: (i) N. gonorrhoeae alone, (ii) HIV alone, (iii) 

N. gonorrhoeae and HIV together, (iv) HIV first and N. gonorrhoeae 2 hours later, (v) N. gonorrhoeae 

first and HIV 2 hours later. Uninfected epithelial cells were used as controls. Infected cells were 

incubated for at 37 °C in 5 % CO2 for 72 h. After this incubation period, culture medium supernatants 

were collected from each well and centrifuged at 1,000 g for 15 minutes at 4 °C. Since the VK2 E6/E7 

cell line was cultured in serum free culture media a final concentration of 0.5 % BSA was added as a 

carrier protein to stabilize the protein analytes and prevent adsorption to labware, this is according to the 

Bio-plex kit instructions. Experiments were done three times in triplicate for each cell line.  

3.5 Cytokine Assay 

 

The instruction manual as per the Bio-Plex Pro Cytokine, Chemokine, and Growth Factor Assay was 

followed. A lyophilized standard was reconstituted with 125 µl of cell specific culture media, vortexed for 

5 seconds and incubated for 30 minutes on ice. A fourfold dilution of the standard was done using the cell 

specific culture media as the diluent.  
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The Bio-Plex Human Cytokine 7 Plex (Bio-Rad, USA) coupled magnetic beads were used in the assay. 

Capture antibodies directed against the desired cytokines TNF-α, RANTES, IL-1β, IL-4, IL-6, IL-8, and 

IL-10 are covalently coupled to these beads. Into each well 50 µl of coupled magnetic beads was dispensed, 

and the plate was washed twice with 100 µl of Bio-Plex wash buffer using the Bio-Plex Pro Wash Station 

(Bio-Rad, USA). A volume of 50 µl of the diluted standard, uninoculated cultured media (blank) and culture 

medium from the experiments were added to wells. The plate was sealed with aluminium film and incubated 

on a shaker (Shaker-Incubator Stat Fax-2200, Bio-Rad, USA) at 850 rpm for 30 minutes, all incubation 

steps on the shaker were done at room temperature. After the incubation step the sealing film was removed 

and the beads were washed thrice with 100 µl wash buffer. 

 

Into each well 25 µl of detection antibodies was added. Thereafter the plate was sealed and incubated on 

the shaker at 850 rpm for 10 minutes. This was followed by the addition of 50 µl of Streptavidin-PE (SA-

PE) per well. The SA-PE contains the Phycoerythrin Fluorescent Reporter.  The plate was sealed again and 

incubated on the shaker at 850 rpm for 10 minutes. Into each well 125 µl of assay buffer was added, the 

plate was covered with a sealing film and shaken at 850rpm for 30 seconds. The sealing film was removed, 

and the fluorescence intensity measured using the Bio-Plex 200 System (Bio Rad, USA). The concentration 

of the cytokine bound to each bead is proportional to the concentration intensity of the reporter signal. 

 

3.6 Statistical Analysis 

 

Statistical analysis was done using STATA. A p value of < 0.05 indicated significance. 

Cytokine levels were summarized using median and Inter Quartile Range (IQR). 

Two group comparisons were made using a Wilcoxon rank sum test whilst three group comparisons were 

tested first using a Kruskal Wallis test and if significant followed Dunn's pairwise comparisons with Sidak 

adjustment for multiple comparisons. The data was analyzed using STATA v13.1. 
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CHAPTER 4 - RESULTS 

 

Cytokine production of uninfected cells 

 

Table 3 compares the cytokine release of the ME-180 cells with that of VK2 E6/E7. The median cytokine 

production by the VK2 vaginal cells was significantly higher for all cytokines tested. This difference 

reached statistical significance for all cytokines produced. For both cells the highest levels of spontaneous 

production were seen with IL-8 and RANTES. 

 

Table 3: Cytokine production (pg/ml) by uninfected ME-180 and VK2 E6/E7 cells 

 Cell line  

Cytokine ME-180  VK2 E6/E7  

 Median IQR   Median IQR p value 

IL-1β 0.01 0 - 0.18   0.07 0.07-0.07 0.04 

IL-6 0.04 0.01- 0.05  0.2 0.2- 0.25 0.046 

IL-8 6.07 5.91 - 8.51  62.34 61.27 - 115.59 0.0495 

RANTES 1.58 1.56 - 1.68  21.74 13.83 - 26.65 0.0495 

TNF-α 0.71 0.71 - 0.71  1.71 1.56 - 2.28 0.04 

IL-4 0.02 0.02 - 0.02  0.05 0.05 - 0.05 0.03 

IL-10 0.23 0.03 - 0.32   0.48 0.44 - 0.54 0.0495 

ME-180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

 

The median production of the combined pro-inflammatory cytokines by ME-180 cells was 0.71 (IQR 

0.02 - 1.68) and 1.71 (IQR 0.2 - 26.65) for VK2 E6/E7 cells (p=0.051). For anti-inflammatory cytokines 

these values were 0.03 (IQR 0.02 - 0.23) and 0.25 (IQR 0.05 - 0.48) respectively (p=0.051) (Appendix 2 

Table 13). 

In the following tables results are presented as measured cytokine production minus the amount of 

cytokine produced by uninfected cells (Table 3).  
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Cytokine production of ME-180 cells infected with Neisseria gonorrhoeae or HIV 

only 

 

Table 4 compares cytokine release of ME-180 cells when exposed to N. gonorrhoeae and HIV separately 

for 72 hours. The median cytokine production was higher for IL-1β when infected with N. gonorrhoeae 

as compared to HIV infection but when infected with HIV higher cytokine medians were present for IL-6 

and IL-10 production. However, none of these reached statistical significance. 

 

Table 4: Cytokine production (pg/ml) by ME-180 cells exposed to Neisseria gonorrhoeae or   

              HIV  

Cytokine N. gonorrhoeae   HIV   

 Median IQR   Median IQR p value 

IL-1β 0.04 0.03 - 0.07   0.02 0 - 0.03 0.13 

IL-6 0 -0.02 to 0.03  0.05 0 - 0.08 0.2 

IL-8 0 -0.24 to 1.28  -0.7 -1.5 to 0.09 0.3 

RANTES -0.25 -0.31 to -0.24  -0.2 -0.3 to -0.1 0.4 

TNF-α 0 0 to 0  0 0 to 0 n/a 

IL-4 0 0 to 0  0 0 to 0 n/a 

IL-10 -0.12 -0.23 to 0.16   0.06 -0.2 to -0.07 0.8 

ME-180 - Cervical cell line, IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

A decrease of spontaneous cytokine release was observed for RANTES on exposure to both N. 

gonorrhoeae and HIV separately. Also, a decrease in IL-8 release occurred when exposed to HIV but not 

to N. gonorrhoeae, but none of these observations were statistically significant.  

If, on exposure to the infectious agents, cytokine production remained the same as by uninfected cells the 

median value is reflected as 0.  

The median production of the combined pro-inflammatory cytokines by ME-180 cells exposed to N. 

gonorrhoeae as well as to HIV was the same as that of uninfected cells (mean 0; IQR -0.2 - 0.03 and 0 

(IQR -0.2. - 0.03 respectively) (p=0.7). Anti-inflammatory cytokine mean values were also 0 for both 

microbes (p=0.9) with IQR -0.1 to 0 for N. gonorrhoeae and IQR 0 - 0.06 for HIV (Appendix 2 - Table 

14). 

 

 



24 
 

Cytokine production of VK2 E6/E7 cells infected with Neisseria gonorrhoeae or 

HIV only 

 

Table 5 depicts cytokine release of VK2 E6/E7 cells when exposed to N. gonorrhoeae or HIV separately 

for 72 hours. Cytokine production was higher for IL-10 when exposed to N. gonorrhoeae as compared to 

HIV infection (p=0.0495). 

 

Table 5: Cytokine production (pg/ml) by VK2 E6/E7 cells exposed to Neisseria gonorrhoeae  

              or HIV 

Cytokine N. gonorrhoeae   HIV   

 Median IQR   Median IQR p value 

IL-1β -0.04 -0.05 to 0.0   0 0 to 0 0.12 

IL-6 0.23 -0.02 to 0.29  0.01 -0.01 to 0.19 0.5 

IL-8 193.95 32.2 to 237.55  66.18 -8.8 to 188.6 0.3 

RANTES 13.63 -4.3 to 18.16  -4.1 -9.1 to 21.8 0.8 

TNF-α 2.88 0.43 to 4.04  0.28 -0.3 to 2.16 0.13 

IL-4 0 0 to 0  0 0 to 0 n/a 

IL-10 0.06 0.04 to 0.15   -0.01 -0.03 to 0 0.0495 

VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

The median cytokine production was higher for IL-6, IL-8 and RANTES with N. gonorrhoeae but 

without reaching statistical significance. Although not significant the highest levels of cytokine 

production were seen for IL-8 and IL-6 respectively when exposed to N. gonorrhoeae. 

Decreased spontaneous cytokine release occurred for IL-1β on exposure to N. gonorrhoeae and for IL-10 

and RANTES when exposed to HIV. None of these observations were statistically significant.  

The median production of the combined pro-inflammatory cytokines by VK2 E6/E7 cells exposed to N. 

gonorrhoeae was 0.43 (IQR -0.02 - 18.2) and 0 (IQR -0.03 - 2.2) when infected with HIV (p=0.2). For 

anti-inflammatory cytokines these values were 0.02 (IQR 0 - 0.06) when exposed to N. gonorrhoeae and 

0 (IQR -0.01 - 0) when exposed to HIV, reaching statistical significance (p=0.03) (Appendix 2 – Table 

15). 
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Comparison of cytokine production by the two cell lines when infected with 

Neisseria gonorrhoeae only 

 

Table 6 compares the cytokine production by ME-180 and VK2 E6/E7 cells when exposed to N. 

gonorrhoeae for 72 hours. Statistical significance was just reached for IL-1β and IL-8 cytokine 

production p=0.0459 whereas IL-1β levels were higher in ME-180 and IL-8 higher in VK2 E6/E7 cells 

when exposed to N. gonorrhoeae. 

Table 6: Production of cytokines (pg/ml) by ME-180 and VK2 E/E7 exposed to   

              N. gonorrhoeae 

 ME-180  VK2 E6/E7  

Cytokine N. gonorrhoeae   N. gonorrhoeae   

 Median IQR   Median IQR p value 

IL-1β 0.04 0.03 - 0.07   -0.04 -0.05 to 0.0 0.0495 

IL-6 0 -0.02 to 0.03  0.23 -0.02 to 0.29 0.4 

IL-8 0 -0.24 to 1.28  193.95 32.2 to 237.55 0.0495 

RANTES -0.25 -0.31 to -0.24  13.63 -4.3 to 18.16 0.5 

TNF-α 0 0 to 0  2.88 0.43 to 4.04 0.04 

IL-4 0 0 to 0  0 0 to 0 n/a 

IL-10 -0.12 -0.23 to 0.16   0.06 0.04 to 0.15 0.5 

ME-180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

A statistical significance difference was also observed for TNF-α cytokine levels with higher cytokine 

production by the VK2 E6/E7 cells (p=0.04).  

Decreased cytokine production was observed for IL-10 and RANTES by ME-180 cells as well as for IL-

1β by VK2 E6/E7 cells. These observations were not statistically significant.  

Statistical significance was observed for the combined pro-inflammatory cytokine release by ME-180 and 

VK2 E6/E7 cells exposed to N. gonorrhoeae (mean 0; IQR 0.2 -  0.03 and 0.43; IQR -0.02 – 18.2 

respectively; p=0.02). No statistical significance was observed for the combined anti-inflammatory 

cytokine production (ME-180: mean 0; IQR -0.1 – 0); VK2 E6/E7: mean 0.02; IQR 0 - 0.06; p=0.2) 

(Appendix 2 – Table 16). 
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Comparison of cytokine production by the two cell lines when infected with 

Neisseria gonorrhoeae only 

 

A comparison of cytokine production by ME-180 and VK2 E6/E7 cells when exposed to HIV for 72 

hours is shown in Table 7. A higher expression of TNF-α and IL-8 was observed in VK2 E6/E7 cells 

compared to ME 180 cells, but this did not reach significance. 

Table 7: Production of cytokines (pg/ml) by ME-180 and VK2 E/E7 exposed to HIV 

 ME-180  VK2 E6/E7  

Cytokine HIV  HIV  

 Median IQR   Median IQR p value 

IL-1β 0.02 0 to 0.03   0 0 to 0 0.12 

IL-6 0.05 0 to 0.08  0.01 -0.01 to 0.2 0.8 

IL-8 -0.7 -1.47 to 0.09  66.18 -8.76 to 188.65 0.51 

RANTES -0.2 -0.31 to -0.1  -4.1 -9.14 to 21.8 0.5 

TNF-α 0 0 to 0  0.28 -0.29 to 2.16 0.49 

IL-4 0 0 to 0  0 0 to 0 n/a 

IL-10 0.06 -0.24 to 0.07   -0.01 -0.03 to 0 0.5 

ME-180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

When exposed to HIV the ME-180 cells showed higher cytokine expression for IL-1β, IL-6, and IL-10 

but no statistical significance was reached. 

Decreased cytokine expression was observed for RANTES for both cells, decreases also occurred for IL-8 

in the ME-180 cells as well as IL-10 in the VK2 E6/E7 cells. None of these observations reached 

statistical significance.  

The median production of both the combined pro-inflammatory and anti-inflammatory cytokines by both 

type of cells when exposed to HIV was 0. The pro-inflammatory response had an IQR -0.2 – 0.03 for ME-

180 cells and IQR -0.3 – 2.2 for VK2 E6/E7 cells (p=0.5). The anti-inflammatory response had an IQR 0 - 

0.03 for ME-180 and IQR -0.01 – 0 for VK2 E6/E7 cells p= 0.28 (Appendix 2 – Table 17). 
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Cytokine production of ME-180 cells infected combinations of Neisseria 

gonorrhoeae and HIV in different order of exposure 

 

Table 8 compares cytokine release of ME-180 cells when infected with N. gonorrhoeae and HIV in 

different sequence. The first columns show the results when cells were first exposed to N. gonorrhoeae 

for 2 hours after which HIV was added for the remaining 72 hour incubation period. The second set of 

columns show the results when the sequence of exposure was reversed while the last columns show the 

effect of simultaneous exposure. No differences in production of any of the cytokines was found.  

 

Table 8: Cytokine production (pg/ml) by ME-180 cells exposed to N. gonorrhoeae and HIV  

Cytokine 

N. gonorrhoeae  

followed by HIV 

HIV followed  

by N. gonorrhoeae 

N. gonorrhoeae  

and HIV together  

 Median IQR Median IQR Median IQR Overall p value 

IL-1β 0.03 (0 - 0.04) 0.05 (0.02 - 0.05) 0.02 (0.01 - 0.07) 0.7 

IL-6 0.06 (-0.02 to 0.08) 0.02 (-0.03 to 0.04) -0.02 (-0.02 - 0.12) 0.7 

IL-8 0.5 (-3.9 to 2.8) -1.14 (-4.3 - 6.2) -1.67 (-2.7 to -0.07) 0.8 

RANTES -0.13 (-0.3 to 0.2) -0.14 (-0.4 to -0.1) -0.13 (-0.3 to -0.05) 0.4 

TNF-α 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0.9 

IL-4 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0.9 

IL-10 0.06 (0.02 to 0.08) 0.18 (-0.2 to 0.3) -0.18 (-0.2 to 0.3) 0.5 

ME-180 - Cervical cell line, IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

The combined pro-inflammatory cytokines produced by ME-180 cells when exposed to N. gonorrhoeae 

followed by HIV was the same as by uninfected cells (mean 0; IQR -0.02 - 0.08). The same was observed 

when HIV exposure was followed by N. gonorrhoeae (IQR -0.1 - 0.04) (p=0.3). When the cells were 

infected with both N. gonorrhoeae and HIV at the same time spontaneous cytokine production was 

slightly inhibited (mean -0.02; IQR -0.1 - 0.01) but this did not reach clinical significance (p=0.3). Mean 

anti-inflammatory cytokine values were 0.01 (IQR 0 - 0.06) when exposed to N. gonorrhoeae followed 

by HIV, 0 (IQR 0 - 0.2) when exposed to HIV followed by N. gonorrhoeae and 0 (IQR 0.2 - 0) when 

exposed to N. gonorrhoeae and HIV together (p=0.5) (Appendix 2 – Table 18). 
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Cytokine production of VK2 E6/E7 cells infected with combinations of Neisseria 

gonorrhoeae and HIV in different order of exposure  

 

In Table 9 cytokine release is compared when VK2 E6/E7 cells were infected with N. gonorrhoeae and 

HIV in different sequence. Cells were exposed as follows: N. gonorrhoeae for 2 hours followed by HIV, 

HIV for 2 hours followed by N. gonorrhoeae and N. gonorrhoeae and HIV together. No differences in 

production of cytokines were found. 

Table 9: Cytokine production (pg/ml) by VK2 E6/E7 cells exposed to N. gonorrhoeae and HIV  

Cytokine 

N. gonorrhoeae 

 followed by HIV 

HIV followed 

 by N. gonorrhoeae 

N. gonorrhoeae  

and HIV together  

 Median IQR Median IQR Median IQR 

Overall p 

value 

IL-1β -0.02 (-0.07 to 0) -0.03 (-0.04 to 0) 0 (0 to 0) 0.3 

IL-6 0.32 (0.04 to 0.5) 0.26 (-0.1 to 0.3) 0.06 (-0.02 to 0.2) 0.4 

IL-8 298.64 (60.6 to 345.9) 268.94 (-108.4 to 279.9) 50.4 (29.0 to 214.8) 0.3 

RANTES 16.63 (4.2 to 54.8) 23.56 (-26.2 to 37.5) 7.34 (-5.5 to 7.5) 0.6 

TNF-α 5.05 (0.9 to 8.7) 4.47 (-1.4 to 5.3) 1.59 (0 to 3.2) 0.5 

IL-4 0 (0 to 0) 0 (0 to 0) 0 (0 to 0) 0.9 

IL-10 0.06 (0 to 0.06) 0.03 (-0.03 to 0.04) -0.06 (-0.1 to 0.07) 0.6 

VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

The combined pro-inflammatory cytokines produced by VK2 E6/E7 cells when exposed to N. 

gonorrhoeae first was 4.2 (IQR 0.04 – 54.8), HIV first 0.26 (IQR -0.1 – 23.6) and N. gonorrhoeae and 

HIV exposure at the same time 0.19 (IQR 0 – 7.5) with no overall statistical significance (p=0.3). The 

mean anti-inflammatory cytokine values were 0 for all three experiments (IQR 0 - 0.06 for N. 

gonorrhoeae first, IQR 0 - 0.03 for HIV first and (IQR -0.06 - 0 when exposed together; p=0.5) Appendix 

2 – Table 19). 
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Cytokine production of cells infected with Neisseria gonorrhoeae followed by HIV  

 

The comparison of cytokine production of ME-180 and VK2 E6/E7 cells when exposed to N. 

gonorrhoeae followed by HIV is shown in Table 10. A higher cytokine expression occurred for TNF-α in 

the VK2 E6/E7 cells as compared to the ME-180 cells (p=0.04). With the latter, cytokine production 

remained the same as by uninfected cells. 

Table 10: Cytokine production (pg/ml) of ME-180 and VK2 E6/E7 cells exposed to  

                N. gonorrhoeae followed by HIV  
Cytokine ME-180  VK2 E6/E7  

 Median IQR   Median IQR Overall p value 

IL-1β 0.03 (0 - 0.04)   -0.02 (-0.07 to 0) 0.08 

IL-6 0.06 (-0.02 to 0.08)  0.32 (0.04 to 0.5) 0.3 

IL-8 0.5 (-3.9 to 2.8)  298.64 (60.6 to 345.9) 0.0495 

RANTES -0.13 (-0.3 to 0.2)  16.63 (4.2 to 54.8) 0.0495 

TNF-α 0 (0 to 0)  5.05 (0.9 to 8.7) 0.04 

IL-4 0 (0 to 0)  0 (0 to 0) n/a 

IL-10 0.06 (0.02 to 0.08)   0.06 (0 to 0.06) 0.5 

ME-180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells     

 

The highest cytokine expression overall was observed for IL-8 in VK2 E6/E7 cells while the expression 

of RANTES was also higher in VK2 E6/E7 cells as compared to ME-180 cells (p = 0.0495). 

Although higher expressions of IL-6 were seen for VK2 E6/E7 cells, this did not reach statistical 

significance. Decreases in cytokine production occurred for IL-1β in VK2 E6/E7 cells and RANTES in 

the ME-180 cells. Cytokine expression of IL-10 remained the same for both cells when compared with 

uninfected cells.  

Exposure of N. gonorrhoeae followed by HIV resulted in an overall increase in pro-inflammatory 

cytokine production by VK2 E6/E7 cells while the production by ME-180 cells remained at baseline.   

0 (-0.02 – 0.08) and 4.2 (IQR 0.04 -54.8) for ME-180 and VK2 E6/E7 cells respectively this reached 

statistical significance (p =0.003). The anti-inflammatory cytokine response: did not differ between the 

cell types (p=0.6) (Appendix 2 – Table 20).  
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Cytokine production of cells infected with HIV followed by Neisseria gonorrhoeae  

 

The cytokine production of ME-180 and VK2 E6/E7 cells when exposed to HIV followed by N. 

gonorrhoeae is seen in Table 11. 

Table 11: Cytokine production (pg/ml) of ME-180 and VK2 E6/E7 cells exposed to HIV  

                followed by N. gonorrhoeae 

Cytokine ME-180  VK2 E6/E7  

 Median IQR   Median IQR 

Overall p 

value 

IL-1β 0.05 (0.02 - 0.05)   -0.03 (-0.04 to 0) 0.0495 

IL-6 0.02 (-0.03 to 0.04)  0.26 (-0.1 to 0.3) 0.5 

IL-8 -1.14 (-4.3 to- 6.2)  268.94 (-108.4 to 279.9) 0.5 

RANTES -0.14 (-0.4 to -0.1)  23.56 (-26.2 to 37.5) 0.5 

TNF-α 0 (0 to 0)  4.47 (-1.4 to 5.3) 0.5 

IL-4 0 (0 to 0)  0 (0 to 0) n/a 

IL-10 0.18 (-0.2 to 0.3)   0.03 (-0.03 to 0.04) 0.5 

ME-180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

A higher cytokine median for IL-1β response occurred in ME-180 cells when compared to VK2 E6/E7 

cells (p=0.0495). Also increases in cytokine expression were observed for IL-10 in ME-180 cells and IL-

6, IL-8, TNF-α and RANTES in VK2 E6/E7, but none of these reached statistical significance. 

The highest cytokine expression occurred for IL-8 in the VK2 E6/E7 cells. Exposure to microbes in this 

sequence lead to decreased cytokine expression for IL-8 and RANTES in the ME-180 cells and IL-1β in 

the VK2 E6/E7 cells (p=0.0495).  

The pro-inflammatory cytokine response remained for this exposure sequence at baseline for ME-180 and 

was slightly elevated (0.26; IQR -0.1 – 23.6) for VK2 E6/E7 (p =0.3). The anti-inflammatory cytokine 

response remained the same as of unexposed cells for both ME-180 and VK2 E6/E7 (p =0.8) (Appendix 2 

– Table 21).  
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Cytokine production of cells infected with Neisseria gonorrhoeae and HIV together  

 

Table 12 summarizes the cytokine production of ME-180 and VK2 E6/E7 cells when exposed to N. 

gonorrhoeae and HIV together. 

Table 12: Cytokine production (pg/ml) of ME-180 and VK2 E6/E7 cells exposed to  

                 N. gonorrhoeae and HIV together 

Cytokine ME-180  VK2 E6/E7  

 Median IQR   Median IQR Overall p value 

IL-1β 0.02 (0.01 to 0.07)   0 (0 to 0) 0.04 

IL-6 -0.02 (-0.02 to 0.12)  0.06 (-0.02 to 0.2) 0.5 

IL-8 -1.67 (-2.7 to -0.07)  50.4 (29.0 to 214.8) 0.0495 

RANTES -0.13 (-0.3 to -0.05)  7.34 (-5.5 to 7.5) 0.5 

TNF-α 0 (0 to 0)  1.59 (0 to 3.2) 0.12 

IL-4 0 (0 to 0)  0 (0 to 0) n/a 

IL-10 -0.18 (-0.2 to 0.3)   -0.06 (-0.1 to 0.07) 0.5 

ME-180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 

Cytokine levels represent the difference between infected and uninfected cells (baseline).  

Median = 0: cytokine production remained the same in uninfected and infected cells   

 

IL-1β cytokine release was higher in ME-180 cells than in VK2 E6/E7 cells (p=0.04). A higher IL-8 

cytokine expression was observed in VK2 E6/E7 cells as compared to ME-180 cell (p=0.0495).  

The VK2 E6/E7 cells had a higher cytokine expression for IL-6 and TNF-α but this did not reach 

statistical significance. 

Decrease cytokine expression mostly occurred for the cytokines IL-6, IL-8, and IL-10 in ME-180 cells 

and IL-10 in VK2 E6/E7 cells with no statistical significance. 

The combined pro-inflammatory cytokine response of VK2 E6/E7 was with a mean of 0.19 (IQR 0 – 7.5) 

significantly higher than that of ME-180 cells (p =0.006). The anti-inflammatory cytokine response 

remained the same for both ME-180 and VK2 E6/E7 (p=0.8) (Appendix 2 – Table 22). 
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CHAPTER 5 - DISCUSSION & CONCLUSION 

 

Pathogens that are sexually transmitted cause extensive morbidity and mortality (Fichorova and 

Anderson, 1999). In vitro studies of the immune response following exposure to multiple pathogens are 

relevant in studies of STIs as mixed infections are common and not many studies have been done. 

Furthermore, sexually transmitted pathogens can increase susceptibility to infection with HIV and HIV 

shedding (Anzala et al., 2000). This emphasizes the importance of the study of mixed infections with 

sexually transmitted pathogens. 

 

The aim of our study was to determine the change in production of cytokines by epithelial cells of the 

female genital tract when exposed to N. gonorrhoeae and HIV. This was done by determining which 

cytokines were produced by endocervical (ME-180) and vaginal (VK2 E6/E7) epithelial cells without 

exposure to microbes and comparing this qualitatively and quantitatively with the cytokines produced 

when exposed to N. gonorrhoeae and HIV in different sequence. To the best of our knowledge this study 

is novel with regard to the combination of organisms and sequence of exposure. 

 

N. gonorrhoeae is one of the organisms that forms aggregates in fluid. A suspension of the organism with 

as few clumps as possible is desirable for use in tissue culture-based experiments. By allowing the 

microbial suspension to stand, the larger clumps settle at the bottom and the upper layer was used for 

infection experiments.   

 

The ME-180 and VK2 E6/E7 epithelial cells were exposed to the organisms in three different sequences: 

(i) HIV followed by N. gonorrhoeae, (ii) N. gonorrhoeae followed by HIV and (iii) HIV and N. 

gonorrhoeae at the same time. Cells were also exposed to N. gonorrhoeae and HIV alone the results of 

which were used for comparison. For each experiment cytokine expression levels were measured for 

TNFα, RANTES, IL-1β, IL-4, IL-6, IL-8, IL-10. These cytokines were chosen based on the overlap of the 

commonly produced cytokines by the ME-180 and VK2 E6/E7 epithelial cells. 

 

An infection with pathogenic organisms activates host transcription factors and production of 

immunomodulatory cytokines. Epithelial cells and other immune cells containing specific genes encoding 

inflammatory cytokines are controlled by the transcriptional factor Nuclear Factor Kappa Beta (NF-) 

(Naumann et al., 1997). Ramsey et al. (1995) reported that infection with N. gonorrhoeae induces the 

release of cytokines IL-1β, IL-6, IL-8 and TNF-α, which results in neutrophil influx to the site of 

infection. However, N. gonorrhoeae escapes kill by neutrophils (Johnson and Criss, 2011). Not only 
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neutrophils but also other immune cells like macrophages and lymphocytes are recruited while, due to 

inflammation, the amount of exudate also increases. The resulting increase in secretions may amplify and 

aid the spread of the N. gonorrhoeae. In mixed infections, concomitant pathogens will also be more 

effectively transmitted due to these increased secretions. In addition, it has been postulated that the 

presence of increased numbers of immune cells in the genitalia allows for more effective acquisition of 

HIV (Ostrowski et al., 1998; Shen et al., 2014). 

 

ME-180 and VK2 E6/E7 epithelial cells represent different compartments of the female genital tract. The 

vagina is composed by stratified squamous non-keratinizing epithelium forming a physical barrier to 

pathogens (Fichorova, 1997). The endocervical epithelium contains a single layer of columnar epithelial 

cells which plays a significant role in mucosal immunity (Fichorova, 1997). The main site of gonococcal 

infection in women is the endocervix (Stevens and Criss, 2018) but vaginal cells are also exposed during 

the acquisition of the infection as well as during the infection when cervical secretions containing the 

pathogen are shed into the vagina. 

 

Spontaneous release of cytokines was tested in both types of epithelial cells. This spontaneous release by 

vaginal epithelial cells was higher for both the pro-inflammatory and anti-inflammatory cytokines. Our 

findings differ from those of Fichorova and Anderson, (1999) who reported that endocervical epithelial 

cells had a higher spontaneous cytokine release than vaginal epithelial cells. The two studies differed in 

the endocervical cell line used. The Fichorova study used a primary endocervical epithelial cell line that 

they immortalized by expression of E6 and E7 genes of the human papilloma virus type 16 (End/E6E7) 

(Fichorova, 1997). We used the ME-180 cell line which is derived from the epithelial human cervix 

which was established from an omental metastasis of a cervical carcinoma (Sykes et al., 1970a). 

 

Further work by Fichorova, (2001) reported a marked increase of IL-6, and IL-8 in cervical and vaginal 

epithelial cells when exposed to N. gonorrhoeae (Fichorova et al., 2001). Similarly, our experiments with 

exposure of N. gonorrhoeae only for both epithelial cell lines resulted in a strong cytokine response for 

IL-1β, IL-8, and TNF-α.  

 

When both cell types were exposed to HIV, cervical cells showed a higher cytokine expression than 

vaginal cells for IL-1β, IL-6, and IL-10 but with no statistical significance. 

In comparison, on single exposure a stronger cytokine response to N. gonorrhoeae than HIV is evident. In 

addition, the pro-inflammatory response was also higher for N. gonorrhoeae exposure when compared to 
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HIV. Since these cells are not the primary target for HIV, a lower response to this virus could be due to 

relatively low levels of HIV adhesion to the epithelial cell surface. 

.  

The ability of N. gonorrhoeae to elicit expression of IL-6 and IL-8 by epithelial cells of the lower region 

of the female genital tract may contribute directly to the inflammatory infiltrate characteristic for this 

organism (King, James and Swanson, 1978). IL-8 attracts and activates polymorpho-nuclear leukocytes 

(Eckmann, Kagnoff and Fierer, 1993) and the function of IL-6 is neutrophil priming to chemotactic 

factors (Linder et al., 1990). The anti-inflammatory cytokine IL-10 inhibits the activity of macrophages, 

Th1 lymphocytes and NK cells during infection. These cells are needed for optimal pathogen clearance 

but they can also contribute to tissue damage (Couper, Blount and Riley, 2008). 

 

A study by Hedges, (1998) found that women with gonococcal cervicitis did not demonstrate elevated 

cytokines levels of IL-1, IL-6 and IL-8 in serum and cervical mucus specimens. This is in contrast with 

the work of Fichorova, (2001) and ourselves. 

Experimental gonococcal inoculation of the urethra in male volunteers conducted by Ramsey, (1995) an 

increase of IL-8, IL-6 and TNF-α was found in urine specimens. This differs from the findings by 

Hedges, (1998) but is similar with our findings. Harvey et al (2002) found that the LOS component of N. 

gonorrhoeae elicits secretion of TNF-α, IL-1β, IL-6, and IL-8 from primary urethral epithelial cells. We 

found similar activity by epithelial cells from the female genital tract. 

 

When both epithelial cell types were exposed to N. gonorrhoeae followed by HIV, increase of IL-8, 

RANTES and TNF-α reached statistical significance, whilst when cells were exposed to HIV followed by 

N. gonorrhoeae there was a significant IL-1β response. When cells were exposed to both N. gonorrhoeae 

and HIV at the same time only the responses of IL-1β and IL-8 were significant,while no response was 

seen with RANTES and TNF- Overall comparison of the three experiments (Table 8-9) with the 

combined co-infections no differences were found for both cell types. Perhaps more isolates of N. 

gonorrhoeae need to be included as the organism has the ability to change its antigenic make-up and this 

impacts on interaction with human cells. Also testing of a variety of genotypes of the organism (Moodley, 

2001) could result in differences in observation between these genotypes.  

The responses in all three experiments with both organisms in combination follow the trend of exposure 

to N. gonorrhoeae only.  

 

Pro-inflammatory cytokines such as IL-6 and IL-8 are controlled by the NF- pathway and this pathway 

is induced in vivo as well as in vitro in many cell types by IL-1 or TNF-α, produced by activated immune 
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cells, or by direct contact with pathogenic bacteria or bacterial products (endotoxin or LOS) (Holtmann et 

al., 1999). However, whether those responses will be the same and of the same magnitude in vivo as 

compared to in vitro is difficult to establish if possible at all. A tissue culture model that includes multiple 

cell types in layers mimicking complete tissues (Ryndak, Chandra and Laal, 2017) may result in in vitro 

responses closer to those in vivo.  

 

Cytokine production of IL-6 and IL-8 by epithelial cells could amplify the immune response by recruiting 

PMNs to the site of infection which release soluble mediators. Large amounts of soluble mediators can 

result in cell death destroying the protective cell layer allowing for further invasion (Fisette et al., 2003). 

 

A limitation of the study is that cell viability was only assessed at the start of the experiment and not 

during the course of the experiment or at the end. Cell death during the experiments could have 

influenced the results. However, microscopic viewing of the cells did not indicate significant loss of 

viability.  

 

In conclusion, from the results of this study it is clear that the vaginal cells are more responsive than 

cervical cells. We also found that the response to N. gonorrhoeae exposure is stronger than to HIV in both 

cell types and that on dual exposure the response does not differ from single exposure to N. gonorrhoeae. 

Further studies should be done on mixed infections of N. gonorrhoeae and HIV with additional 

pathogens. 
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APPENDIX 1 – REAGENTS AND MEDIA 

 

Phosphate Buffered Saline 

1 PBS tablets 

100 ml distilled water 

One PBS tablet was added to every 100 ml distilled water and mixed until dissolved. This was autoclaved 

for 10 minutes at 121 °C. Once cooled 20 ml aliquots were refrigerated. 

ME-180 cell cryo-preservation fluid 

(80 % McCoy’s 5a, containing 10 % FBS and 10 % DMSO) 

16 ml McCoy’s 5a medium 

2 ml FBS 

2 ml DMSO 

Sixteen millilitres of McCoy’s 5a medium was added to 2 ml FBS and 2 ml DMSO. The solution was 

filter sterilised into a sterile container. 

VK2/ E6E7 cell cryo-preservation fluid 

(85 % DMEM-F12, containing 10 % FBS and 5 % DMSO) 

17 ml DMEM-F12 

2 ml FBS 

1 ml DMSO 

Seventeen millilitres of DMEM-F12 was added to 2 ml FBS and 1 ml DMSO. The solution was filter 

sterilised into a sterile container. 
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Blocking solution for VK2/ E6E7 cells 

5.7 ml DMEM-F12 media 

300 ul FBS 

Three hundred microliters was added to 5.7 ml DMEM-F12 media and dispensed into a sterile tube for 

single use. 

GC Agar 

36 g GC agar base 

Distilled water 

2 x yeast autolysate 

0.5 g saponin 

100 ml of horse blood 

Thirty six grams of GC agar base was weighed and dissolved in 860 ml of distilled water and autoclaved 

for 15 minutes at 121 °C. 0.5 g of saponin was dissolved in 10 ml of distilled autoclaved water and filtered 

sterilised. The saponin mixture was added to 100 ml of pre dispensed horse blood in an autoclaved bottle 

and placed on the benchtop for 30 minutes. 2 yeast autolysate supplements was suspended with 15 ml of 

distilled autoclaved water per vial. The yeast autolysate supplements and blood were added to the media 

once it was cooled to 55 °C. 

Storage broth for N. gonorrhoeae isolates 

3.7 g BHI 

80 ml distilled water 

20 ml glycerol 

To 80 ml od distilled water 3.7 g of BHI broth was added and mixed, this was autoclave for 15 minutes at 

121 °C. 20 ml of glycerol was added to the broth by filter sterilisation. 
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Enriched BHI for N. gonorrhoeae suspension 

3.7g BHI 

100 ml distilled water 

 4 % Yeast Extract 

5% Haemin 

10 % Vitamin K 

Into 100 ml distilled water 3.7 g BHI and 4 % Yeast Extract was added and autoclaved for 15 minutes at 

121 °C. Once cooled 5% Haemin and 10 % Vitamin K were filter sterilised and added to the broth. 
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APPENDIX 2 – PRO-INFLAMMATORY AND ANTI-INFLAMMATORY CYTOKINE 

DATA 

Table 13: Inflammatory cytokine production (pg/ml) by uninfected ME180 and VK2 E6/E7  

  Cell line   

 ME180  VK2  

 n median IQR   n median IQR p value 

Pro-inflammatory cytokines 15 0.71 0.02 - 1.68   15 1.71 0.2 - 26.65 0.051 

Anti-inflammatory cytokines 6 0.03 0.02 - 0.23   6 0.25 0.05 - 0.48 0.051 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 
 

Table 14: Inflammatory cytokine production (pg/ml) by ME180 cells exposed to Neisseria gonorrhoeae or HIV 

   ME180  
   N. gonorrhoeae  HIV   

   n median IQR n median IQR p value 

Pro-inflammatory 
cytokines 15 0 (-0.2 to 0.03) 15 0 (-0.2 to 0.03) 0.7 

Anti-inflammatory 
cytokines 6 0 (-0.1 to 0) 6 0 (0 to 0.06) 0.9 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 
 

Table 15: Inflammatory cytokine production (pg/ml) by VK2 E6/E7 cells exposed to Neisseria gonorrhoeae or  
                 HIV 

 VK2 E6/E7  

 N. gonorrhoeae  HIV  

 n median IQR n median IQR 
p 

value 

Pro-inflammatory cytokines 15 0.43 (-0.02 to 18.2) 15 0 (-0.03 to 2.2) 0.2 

Anti-inflammatory cytokines 6 0.02 (0 to 0.06) 6 0 (-0.01 to 0) 0.03 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range     
 

Table 16: Inflammatory cytokine production (pg/ml) by ME180 and VK2 E6/E7 cells exposed to Neisseria  
                 gonorrhoeae 

 N. gonorrhoeae  

 ME180    VK2 E6/E7  

 n median IQR   n median IQR 
p 

value 

Pro-inflammatory cytokines 15 0 
(0.2 to 
0.03)   15 0.43 (-0.02 to 18.2) 0.02 

Anti-inflammatory cytokines 6 0 (-0.1 to 0)   6 0.02 (0 to 0.06) 0.2 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range     
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Table 17: Inflammatory cytokine production (pg/ml) by ME180 and VK2 E6/E7 cells exposed to HIV 

 HIV  

 ME180      VK2 E6/E7  

 n median IQR   n median IQR 
p 

value 

Pro-inflammatory cytokines 15 0 (-0.2 to 0.03)   15 0 (-0.3 to 2.2) 0.5 

Anti-inflammatory cytokines 6 0 (0 to 0.06)   6 0 (-0.01 to 0) 0.28 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range   
 

Table 18: Inflammatory cytokine production (pg/ml) by ME180 cells exposed to Neisseria gonorrhoeae and HIV 

  ME180  

  

N. gonorrhoeae  
followed by HIV 

HIV followed  
by N. gonorrhoea 

N. gonorrhoeae  
and HIV together  

  n median IQR n median IQR n median IQR 
p 

value 

Pro-
inflammatory 
cytokines 15 0 

(-0.02 to 
0.08) 15 0 

(-0.1 to 
0.04) 15 -0.02 

(-0.1 to 
0.01) 0.3 

Anti-
inflammatory 
cytokines 6 0.01 (0 to 0.06) 6 0 (0 to 0.2) 6 0 (0.2 to 0) 0.5 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 
 

Table 19: Inflammatory cytokine production (pg/ml) by VK2 E6/E7 cells exposed to Neisseria gonorrhoeae and HIV 

 VK2 E6/E7  

 

N. gonorrhoeae 
 followed by HIV 

HIV followed 
by N. gonorrhoeae 

N. gonorrhoeae 
and HIV together  

 n median IQR n median IQR n median IQR 
Overall p 

value 

Pro-inflammatory 
cytokines 15 4.2 

(0.04 to 
54.8) 15 0.26 

(-0.1 to 
23.6) 15 0.19 

(0 to 
7.5) 0.3 

Anti-inflammatory 
cytokines 6 0 

(0 to 
0.06) 6 0 

(0 to 
0.03) 6 0 

(-0.06 
to 0) 0.5 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range 
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Table 20: Inflammatory cytokine production (pg/ml) by ME180 and VK2 E6/E7 cells exposed to Neisseria  
                 gonorrhoeae followed by HIV 

 ME180  VK2 E6/E7  

 n median IQR   n median IQR 
p 

value 

Pro-inflammatory cytokines 15 0 (-0.02 to 0.08)   15 4.2 (0.04 to 54.8) 0.003 

Anti-inflammatory cytokines 6 0.01 (0 to 0.06)   6 0 (0 to 0.06) 0.6 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range     
 

Table 21: Inflammatory cytokine production (pg/ml) by ME180 and VK2 E6/E7 cells exposed to HIV followed by  
                  Neisseria gonorrhoeae 

 ME180  VK2 E6/E7  

 n median IQR   n median IQR p value 

Pro-inflammatory cytokines 15 0 (-0.1 to 0.04)   15 0.26 (-0.1 to 23.6) 0.3 

Anti-inflammatory cytokines 6 0 (0 to 0.2)   6 0 (0 to 0.03) 0.8 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range     
 

Table 22: Inflammatory cytokine production (pg/ml) by ME180 and VK2 E6/E7 cells exposed to Neisseria  
                 gonorrhoeae and HIV together 

 ME180  VK2 E6/E7  

 n median IQR   n median IQR p value 

Pro-inflammatory cytokines 15 -0.02 (-0.1 to 0.01)   15 0.19 (0 to 7.5) 0.006 

Anti-inflammatory cytokines 6 0 (-0.2 to 0)   6 0 (-0.1 to 0) 0.8 

ME180 - Cervical cell line; VK2 E6/E7 - Vaginal cell line; IQR - Inter Quartile Range     
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APPENDIX 3 – BREC APPROVAL 

 


