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Abstract

Computer speech recognition techniques were

investigated. This investigation included a

study of the hearing and speech process. An

algorithm was developed that used nine

features to identify the phonemes in speech

signals.

Two of these features, the total energy and

the number of zero crossings in a specific

section of the speech signal, were obtained

directly from the digitized speech signal.

The other features, frequency energy bands and

formant frequencies, were measured from a

spectral analysis of the signal.

A Hewlett Packard mini-computer was used for

the development of the necessary software in

FORTRAN. For the testing of the algorithm

ten words, "zero" through to "nine" were used.
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1
Introduction to Speech Recognition Systems

1.1 In~oduction

This thesis reviews scme speech recognition techniques and describes the

development of a speech recognition system. Speech recognition is the

recognition of speech either by human beings or by machines. In order to

understand the mechanisms used in speech recognition, it was necessary to

study the speech process. Speech is a form of communication between human

beings which involves the generation and reception of complax acoustical

signals (Fig. 1.1), (1).

Fig. 1.1 The communication bet~een ~HO humans

generation of these

sounds are calied

If the

speech
speech signals is achieved by a machine. the

speech synthesized sounds. The recognition of
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speech sounds may be thought of as a decoding operation which takes place

in the human ear and the brain. The decoding operation can be described

as the identification of the different speech sounds and the understanding

of the messages conveyed in the speech. Speech can also be recognized by

limited extended computer systems and this is called Automatic Speech

Recognition.

SPEECH GENERATION

MESSAGE

FORMULA110N

PHONEMES

lANGUAGE

CODE

ARilCULATORY M0110NS

NEURO-MUSCUlAR
~~--';::ilI

CONTROLS

VOCAL TRACT

SYSIDA

DISCRErE INPUT CONTINUOUS INPUT
ACOUS11CAL.
WAVEFORM

1
INFORMATION RATE

SO BPS 2DO BPS 2000 BPS 30 000 - so co?
BPS

TRANSUlSSlON

CHANNEL

SPEECH RECOGNmON

SEUAtffiCS

MESSAGE

UNDERSTANDING

PHONEMES. WORDS

lANGUAGE

TRANSl.ATION

FEATURE EXTRACTION

NEURAl.

TRANSDUCTION

-r
ACOUS11CAL
WAVEFORM

SPECTRUM ANALYSIS

BASllAR
MEMBRANE

M0110N

DISCRETE OUTPUT CONTINUOUS OUTPUT

Fig. 1.2 Schematic representation of the speech chain (2)

Fig. 1.2 gives a schematic representation of human speech generation and

recognition together with the relevant information rates in terms of bits

per second. Simulating the two continuous output sections on a computer

is not difficult to achieve, but the language translation section and the

understanding of the message needs high intelligence as it takes place in

the cerebral cortex of the brain. Accomplishing this with a computer

requires recognition of phonemes, words, sentences and semantics, which is

no easy task.
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1.2 state of the Art

A number of speech recognition systems are already commercially available.

They include speaker-dependent and independent systems. However the

speaker independent systems can only be used with small vocabularies

(Chapter 3).

a) Bell Laboratories has been very active in the researching of speech

recognition systems. A system has been developed which can recognize

isolated words, from sentences of a single speaker who pauses between

words. This system, which is used for the retrieval of airline

timetable information, can recognize 127 words, with a 98\ sentence

recognition rate (2). However, it is still under development and only

a fast signal processor which is used as part of the system is

available on the market (3).

b) Interstate Electronics is one of the bigger suppliers of isolated word

recognition systems. This company offers two systems, a single chip,

VRC008, 16-word vocabulary speaker-independent system and a two chip,

VRC100-1, speaker-dependent 100-word vocabulary.

Both these systems are customized (made to the customer's

specification) by Interstate Electronics. The vocabulary is stored in

an external ROM. The word recognition accuracy is claimed to be

better than 99\ for the speaker-dependent system and 90\ for the

speaker-independent system. Interstate is also able to supply

companies with single-board recognition modules which are compatible

with DEC software and which can interface with any other system with

its serial RS232 C interface (4).

c) The Nippon Electronic Company (NEC) is also engaged in research and

development of speech recognition systems. Under development are a

number of systems which include an unlimited Japanese vocabulary,

speaker-dependent system and a 128-word vocabulary speaker-independent

model. NEC has a number of special purpose signal processors on the

which does

programs are

market
signal

inclUding a NMOS processor with a build in ROM,
processing like FFT and LPC algorithms. These
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stored in ROM (5), (6).

d) Texas Instruments has designed a voice recognition and speech-synthesis

board aimed at personal computers. The board, SBSP3001, is built

around the high-speed TMS320 single-chip signal processor. The system

is a non-customized product and is trained by the speaker who is going

to use the system. A maximum of 32 seconds of speech can be trained,

which allows about 50 utterences.

is more than 98% (7).

The recognition rate of the system

e) The Verbex model 1800 is a telephone data entry and retrieval system.

The 1800 accommodates eight users and can recognize the ten words

"zero" through to "nine" and the words "yes" and "no" of nearly all the

American dialects. The recognition vocabularies can be customized as

required for individual applications.

up to 50 words (8).

The vocabulary can be expanded

Other systems available are the T-500/580 range, which are voice data entry

terminals (speaker-dependent, isolated-words) systems from Threshold

Technology. The V10 range from Voicetex is a range of speec~ recognition

and voice output systems for personal computers and the V1000 form Votan

which is a speaker-dependent isolated-word recognition system (4).

1.3 Future Use

Speech recognition systems are not yet being widely used in the business

world. Only companies with money and patience are willing to install

speech recognition systems which are 98% reliable, and can only be used by

one speaker who in most cases is required to speak in a slow computer-like

manner with pauses between each word. As soon as the available systems

are speaker-independent and can understand continuous strings of words they

will become essential tools in working environments.

For example it would be very convenient if one could simply speak into a

telephone giving the name of the person one wished to talk to. The
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telephone speech recognition system would then find the number of the

person and then dial the number required.

The telephone airline timetable system presently under development at the

Bell Laboratories will be in use in the very near future. With this

system it will be possible to ask any information in connection with the

the airline timetable, in sentences with pauses between each word. The

system will then recognize certain words in the sentences and answer back,

with speech synthesized sentences stored in memory (9).

A speech typewriter or automated dictaphone which can convert any speech to

text of any speaker, might not happen in this century. However, a speech

typewriter with a limited speaker trained word vocabulary will probably be

available in the not too distant future. Speech typewriters could also be

used to help physically disabled people, enabling a blind person to "talk"

to a deaf person, (Fig. 1.3).

HELLO

-----,.-

­.,

Fig. 1.3 Communication between two physically-disabled persons

The age old idea of human beings simply commanding a machine to do a task,

seems to be possible and in some places is already in use. Although a

machine which can hear, speak and understand as well as humans, will

probably not be seen in the next ten years, it may become a reality before
the turn of the century.



6

1.4 Purpose of the Project

The task of the author was to investigate speech recognition systems and to

develop a system which might be used as a part of a speech typewriter.

This investigation included a study of speech and hearing processes which

helped to design a system which used minimum computer memory and minimum

calculation time.

The system proposed by the author is a software speech recognition system

which was developed on a mini-computer. A phonemic approach was used,

which recognizes the phonemes in continuous phoneme strings (the different

sounds in words). The author demonstrated that such a system is possible

and although the recognition rate of the phonemes was much lower than 99%

the word recognition rate of a limited vocubulary could easily be in the

region of 80%. The author believes that this type of system) which uses a

phonetic approach will in the end be the only method which can solve the

problems of unlimited vocabularies systems.

The material in this thesis is divided in~o the following chapters.

Chapter 1 consists of the introduction.

Chapter 2 describes the speech and hearing processes.

Chapter 3 presents various different speech recognition methods.

In Chapter 4 the theory of Chapter 2 and Chapter 3 is used to develop

a speaker-dependent, continuous phoneme recognition system.

Chapter 5 consists of the results obtained from tests done on the

proposed system.

Finally the conclusion of this thesis is presented in Chapter 6.
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2
The Speech and Hearing Processes

2.1 The Speech Process

Sounds are made by the expulsion of the air from the lungs. The air

passes through the vocal system and the acoustic filtering behaviour of the

system produces the speech sounds.

Speech consists of a sequence of different sounds. The transitions

between these sounds serves as a symbolic representation of information.

Phonetics is the study and classification of these sounds (symbols)

(Apendix A), (10), (11) J (12) J (13).

R 0
E
L
A -10
T
I
V -20
E

I
-30N

T
E
N -40

S
I
T -50
Y

L -60
E
V
E -70
l

in dB -80

-100

20

SPEemu. l£fli1./

63 125 250 500 1000 2000 4000 8000 16000

FREQUENCY in Hz

Fig. 2.1 Large time average spectrum of speech (10)
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2.1.1 The Vocal System

An understanding of the acoustics of speech production can be indicated

with the help of Fig. 2.2. The vocal organs are the lungs, the trachea

(the windpipe), the larynx (containing the glottis, the vocal cords), the

pharynx (the connection from the esophagus to the mouth, the throat), the

nasal cavity (the nose), and the oral cavity (the mouth). The vocal cords

are folds of ligament and are about 18 nm long. The space between the

vocal cords is called the glottis and is typically 5 mm2• Together, these

organs form an intricately-shaped acoustic tube extending from the lungs to

the lips.

TEETH RIDGE

DIAPHRAGM

THYROID CARTILAGE

't:.-l\"="":""7:'""~~---TRACHEA

LUNGS

PALATE

PHARYNX

ESOPHAGUS

VOCAL COROS

SOFT PALATE

l'~;::;;i~~~-- HYOID CARTILAGE
LARYNX __-I~.j.A,:\;.I1

CRICOID CARTILAGE ---f1'''''tt-~

Fig. 2.2 The vocal organs
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2.1.1.1 The Vocal Tract

The vocal tract is a nonuniform acoustic tube beginning at the opening

between the vocal cords and ending at the lips. The total length of this

acoustical tube is about 17 cm, in the average male and consists of the

pharynx and the oral cavity. The oral cavity begins at the velums and

terminates at the lips. The cross-sectional area of the tract varies from

complete closure to about 20 cm2 , determined by the position of the tongue,

lips, jaw and velum.

2.1.1.2 The Nasal Tract

The nasal tract begins at the

tract is about 12 cm long and

velum and terminates at the nostrils.
3has a fixed volume of about 60 cm •

The

The

nasal cavity can be coupled to the vocal tract by the use of the velum (the

soft palate).

2.1.2 The Speech Production

During speech, the diaphragm relaxes, and the degree of abdominal muscle

contraction controls the extent to which the contents of the abdomen are

pressed up against the diaphragm and carried into the chest cavity, where

they squeeze the air out of the lungs.

Air from the lungs travels up the trachea, a tube consisting of rings of

cartilage, and through the larynx towards the mouth and nose.

acts as a valve between the lungs and the mouth.
The larynx
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2.1.2.1 Vocal Cords

The valve action of the larynx depends largely on the vocal cords which

form a barrier. As the air pressure rises the air eventually blows the

cords apart. Once apart the excess pressure is released, the cords return

to their closed position, the pressure builds up again and the cycle is

repeated. The vocal cords vibrate rhythmically, opening and closing as

the air passes from the lungs to the mouth.

The frequency of the vibration is determined by how fast the cords are

blown apart and the time taken to close again. 'Ibe frequency is

controlled by the size of the vocal cords, their tension and length.

There is also the effect of' low air pressure created in the glottis by air

rushing through its narrow opening into the wider space above. Greater

air pressure from the lungs enhances this effect and increases the

frequency of vocal cord vibration. The range of these frequencies used in

normal speech extends from 60 Hz to 350 Hz. Higher frequencies are

occasionally used. Vocal cord vibration speech frequencies can cover

about one and a half octaves.

The spectrum of the pressure waves created in the glottis due to its non

sinusoidal and semiperiodic nature is rich in harmonics at the vocal cord

frequency. The amplitude of these waves generally -decreases as their

frequency increases. In loud speech the higher harmonic amplitude

increases and thus gives the sound a harsher quality.
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t d by th vocal cords and the lungs are radiatedThe pressure waves genera e e

by the mouth and nostrils as audible sound and the quality of this sound is

changed by the configuration of the vocal tract and ,nasal tract. The

shape and size of the pharynx changes during speech (Fig. 2.3). During

non-nasal sounds the velurn seals off the nasal tract and no sound is

radiated from the nostrils.

III 10: /

Fig. 2.3 Outlines of the vocal tract during the articulation of two vowels

2.1.2.2 The Mouth

The last and most important part of the vocal tract is the mouth. The

shape and size of the mouth can be varied (more extensively than any other

part of the vocal tract) by adjusting the relative positions of the palate,

the tongue, the lips and the teeth.

The tongue is the most flexible, because its tip, edges and base can 'be

moved independently. The tongue can move backwards, forwards and up and

down. The lips affect both the length and the shape of the vocal tract

and can be rounded or spread to various degrees. They can also be closed

to stop the air flow altogether. The teeth also affect the vocal tract's

shape. They can be used to restrict or stop the air flow by being placed.

close to the lips or the tip of the tongue.
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2.1.2.3 Articulation of Speech Sounds

Speech sounds can be divided into four groups:

a) The voiced sounds are produced when the vocal cords vibrate because of

the force of the air pressure from the lungs which produces periodic

broad spectrum pulses. For example the "e" sound IEI in "example".

b) Fricative sounds are generated by constricting the air flow in the oral

tract (usually toward the mouth end) enough to produce an air

turbulence. For example the "f" sound IfI in "fricative".

c) Plosive sounds are made by blocking the air pressure somewhere in the

oral tract and then abrubtly releasing the pressure. The airflow can

be blocked by pressing the labial together or by pressing the tongue

against the alveolar or the velar. For example the "p" sound Ipl in

"plosive" •

d) Click sounds are produced by blocking the vocal tract at two points and

then sucking the air out between the two blocks and then re-opening the

oral tract (14). These click sounds are not used in spoken English

and therefore will not be discussed any further in this thesis.

It must be noted, however, that fricative and plosive sounds can either be

voiced (V) or unvoiced sounds (U).

Thus by setting the shape of the vocal tract and its acoustic

characteristics the vocal organs enable us to distinguish one speech sound

(phoneme) from another.
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2.1.3 Phonemes

Languages can be described in terms of a number of distinctive sounds

called phonemes. There are more or less 47 phonemes in the English

language. These phonemes include vowels, diphthongs, semivowels and other

consonants (Appendix A), (14), (15).

2.1.3.1 Vowels

The enunciation of vowels (VC) can be described in terms of the tongue and

lip position. All the vowels are voiced and the velum most of the time

completely closes the nasal tract. The addition of a nasal quality to a

vowel sound is not used to distinguish one English vowel from another.

Tongue positions used for making vowels are usually described by comparing

them with the position used for making a number of references to cardinal

vowels. The position of the tongue is described by specifying where the

position of the highest part of the main body is. Cardinal vowels are a

set of standard reference sounds whose quality is defined independently of

language. There is no written definition of cardinal vowel quality

possible, because the definition of quality is perceived only when

listening to a trained phonetician making the sound.



14

A The Physical Description of vowels

There are four points to be considered in connection with the definition of

vowel sounds.

i) Height of the tongue: The tongue may be in one of three positions in

the mouth; high, mid or low. The higher the tongue the nearer does

it approach to a consonant sound. Compare the "ee" sound li: I in

"see" with the "y," sound Iyl in "yet". If the tongue is positioned

for the vowel li:1 and then raised slightly at the front until the

sounds produces friction, the consonant Iyl is produced.

ii) Part of the tongue: In the formation of vowels, either the front or

the back of the tongue may be used. In the first case the front of

the tongue is raised towards the front of the palatum. The tongue

forms a slope from the front to the back and the sounds made are

called front vowels. When the tongue is retracted and is being

raised at the back, the slope is from the back to front. The sounds

made are called back vowels. There are also vowel sounds called

flat vowels, because the tongue does not slope either way.

iii) Condition of the tongue: Vowels may be either tense or slack. In

tense vowels the tongue is braced up so that there is a feeling of

tension and it takes a somewhat round position. The slack vowels

are produced when the tongue is relaxed and somewhat flattened.

iv) Condition of the lips: In standard English there are twice as many

unrounded as rounded vowels. The lips do not seem to make much

difference to the sound of a vowel although front vowels are usually

made with spread lips and back vowels with rounded lips.
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The schematic representation of the mouth and the position of the tongue

for the English vowels are shown, and the eight cardinal vowels are shown

by numeral, in Fig. 2.4 •

(15) •

Table 2.1 gives an example of each vowel (10),

HIGH

• I

1

FRONT
• E:

• e

• A

a

LOW

• u

8

u:

7 B
A
C
K

6

0:

5

Fig. 2.4 Schematic representation of the position of the tongue for the

vowels

PART Front Flat Back

CONDITION Slack Tense Slack Tense Slack Tense

POSITION

II/ li:1 lul lu:1
High sit seed full fool- - - -

IEI lel IE:I IAI
Mid set the bird fun- - - -

lael la:1 101 10:1
Low sat father f~g fall- - -

Table 2.1 Example of the part. condition and position of the tongue of

each vowe1 (1 1). (15 )
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B The Frequence Spectrum of Vowels

The cross-sectional area of the vocal tract determines the resonant·

frequenies of the tract and thus the sound. Resonances of the vocal tract

are called formants and their frequencies, the formant frequencies (f).

Every tongue position in the vocal tract has its own set of formant

frequencies. Thus, each vowel sound can be characterized by the vocal

tract configuration and also by the formant frequencies. Peterson and

Barney (13) have measured the formant frequencies of most vowels. Their

results are shown in Fig. 2.5 and Table 2.2 .

SECOND FORMANT FREQUENCIES (f2) in kHz

2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6

• i: 300 F• u:
I
R

• I 400 S

• u T
• E: 500 F• E 0

• 0: 600 R

• A
M

• ae A
700 N

.• a T

800
(fl )

in Hz

Fig. 2.5 Formant frequencies for vowels (13)
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Phoneme f1 f2 f3

li:1 270 2290 3010

III 390 1990 2550

IEI 530 1840 2480

lael 660 1720 2410

lA! 640 1190 2390

la:1 730 1090 2440

10:1 570 840 2410

lul 440 1020 2240

lu:1 300 870 2240

IE:I 490 1350 1690

Table 2.2 Average formant frequencies for vowels

If Fig. 2.4, which shows the tongue position, is compared with Fig. 2.5,

which shows the first and second formant frequencies, it is very clear that

the tongue position can be described in terms of the first two formant

frequencies of the vowel pronouced.
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2.1.3.2 Diphthongs

Diphthongs are produced by varying the vocal tract smoothly between two

vowel configurations. There are about five diphthongs in English which

may be classified into two classes. Table 2.3 shows all the diphthongs

(11) •

I-Diphthongs U-Diphthongs

leII
laII
loll

p~

b~

b~

laul
jeUI

out

slow

Table 2.3 The two classes of diphtongs (11)

Diphthongs are voiced

configuration is time

sound.

arid non-continuant sounds.

varying J the sound produced

If the vocal tract

is a non-continuant
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2.1.3.3 Consonants

Consonants consist of voiced sounds, plosives and fricatives. In the

production of consonant sounds, the oral tract is constricted, by either

the tongue, teeth or the lips. A classification of all English

consonants, according to place- and manner of articulation, is given in

Table 2.4 •

PIACE MANNER of ARTICILATION

of
Plosives Fricatives Glides Liquids Nasals

ARTICULATION
V U V U

Labial /p/ /b/ /w/ /m/

Labio-Dental /f/ /v/

Dental /th/ /the/

Aveolar /t/ /d/ /s/ /z/ /y/ /1/ /r/ /n/

. Palatal /sh/ /zh/

Velar /k/ /g/ /ng/

Glottal /h/

V - Voiced u - Unvoiced

Table 2.4 Consonant and semi~vowel classification (10)

A Semivowels

This group of sounds is called semivowels because of their vowel-like (VL)

nature. They are best described as transitional, vowel-like sounds and

are similar in nature to the diphthongs.

and can be divided into two classes.

All the semivowels are voiced
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i) The glides are produced by keeping the vocal tract briefly in a vowel­

like position and then changing it rapidly to the position required

for the the following vowel in the syllable.

ii) The liquids are made by putting the tip of the tongue against the gums

and allowing the air to pass on either side of the tongue. In the

case of the "r" sound Irl the air pressure pushes the tongue slightly

away from the gums.

B Nasals

Nasal consonants are also vowel-like sounds (VL), but the velum is lowered

and thus lets sound radiate from the nostrils. The oral cavity is

acoustically coupled to the nasal cavity and serves as a resonant cavity.

The resonant frequencies of the oral cavity appear as anti-resonances

(zeros) • The nasal consonants are characterized by resonances which are

spectrally broader than those for vowels. The reason for these broader

resonances is that the nasal cavity has a relatively larger ratio of

surface to cross-sectional area. Table 2.5 shows the half-power bandwidth

in Hz of the formants for various intervocalic nasal consonants (16).

FORMANTS Iml 1nl Ingl

f1 60 40 80

f2 60 100 100

f3 100 110 230

Table 2.5 The half-power bandwith in Hz of the formants for various nasals
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C Plosives

Plosives (stop consonants) can be classifed into two sections: voiced stop

consonants (VS) and unvoiced stop consonants (US). These consonants are

transient, non-continuent sounds which are produced by building up air

pressure behind a total constriction somewhere in the oral tract and then

suddenly releasing the pressure. The constriction can be achieved by

pressing the tongue either against the lips, gums or the soft palate see

Table 2.4 •

i) Voiced plosives: During the period when there is a total block in the

tract no sound radiates from the lips. However, a small amount of

low frequency energy radiates from the vocal

which follows the consonant, because of the

voiced consonant.

of the throat. Voiced plosives are highly

cords through the walls

influenced by the vowel

dynamical nature of the

ii) Unvoiced plosives are similar to their voiced counter-parts. Because

the vocal cords do not vibrate, the period folllowing the closure

consists of a brief interval of friction followed by a period of

aspiration before voiced excitation begins.

The period of friction is due to the sudden turbulence of the escaping air

and the period of aspiration is produced by the steady air flow from the

glottis exciting the resonances of the vocal tract. The frequency content

of the friction noise and aspiration varies greatly with the unvoiced

plosives.
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D Fricatives, Affricates and Whispers

i) Fricatives are produced by exciting the vocal tract with a steady

airflow which became turbulent in the neighbourhood of a constriction

in the oral tract. These sounds also have two classes: the voiced

fricatives (VF) and the voiceless fricatives (UF). The voiced

fricatives are produced by two excitation sources, because the vocal

cords vibrate as well.

components.

Thus we can expect two distinct frequency

From the Table 2.4 it is clear that the place of articulation serves

to determine which sound is produced. As in the case of nasal

The tongue

From the front

back cavity

sounds,

divides

. cavity

fricatives are influenced by two cavities.

the oral cavity into two separate cavities.

sound is radiated from the lips while the

introduces an anti-resonance (17).

ii) Affricates. The consonants /tf/ (the "ch" sound in "chew") and /dz/

(the "j" sound in "judge") are not true fricatives. They are

affricates and can be described as the linking of a stop and a

fricative.

iii) Whispers. The phoneme /h/ (the "h" sound in "hear") is produced by a

steady air flow which became turbulent in the region of the glottis

without the vocal cords vibrating. In the production of this

consonant the vocal tract assumes the characteristics of the

following vowel.

whispered speech.

These types of excitation are also used for

Fricatives, affricates and whispers have a large amount of high frequency

energy.
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2.2.1 The Human Ear

The ear is conveniently divided into three sections: the outer ear,

middle ear and the inner ear (Fig. 2.7), (18), (19), (20), (21), (22).

the

MIDDLE EAR

ROUND WINDOWS

Fig. 2.7 The hearing organs

2.2.1.1 The outer Ear

USTACHIAN TUBE

The outer ear plays a minor role in the hearing process and consists of the

outer visible portion of the ear (the pinna) and the air-filled passageway

(the auditory canal or meatus). The function of the outer ear is to

increase the air pressure variations produced by any sound. Any sound

wave reaching the ear is guided down into the head along the auditory canal

to the eardrum, which then starts to vibrate.

Theauditory canal is about 25 mm long and 8 mm in diameter. This canal

is open at the pinna and terminates at the eardrum (the tympanic membrane).

The meatus is an acoustic resonator and tends to amplify frequencies close

to its resonant frequency. This resonant frequency is more or less

between 3 000 and 4 000 Hz and amplifies sounds at these frequencies by
about 12 dB.
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2.2.1.2 The Middle Ear

The middle ear consists of three small bones: the malleas, the incus and

the stapes. These bones are also called collectively the auditory

ossicles. The auditory ossicles form a mechanical linkage between the

tympanic membrane and the inner ear.

The malleus (hammer), which is connected to the tympanic membrane,

transmits the vibrations from the eardrum to the inner ear with the help of

the incus (anvil) and the stape (stirrip). The sound waves arrive in the

form of amplified mechanical energy at the oval window, which is the

entrance to the inner ear and is covered by the stapes.

The middle ear can be compared with an electronic pre-amplifier and thus

performs two major functions.

a) It matches the acoustical impedance of air to that of the oval window.

If a sound wave in air were to arrive at the oval window directly,

almost all the incident energy would be reflected. The middle ear

accomplishes amplification in two ways.

i) The ossicles behave like a lever mechanism. The inner end

(stapes footplate) of the ossicle lever moves through a shorter

distance but exerts a greater force than the the outer end.

These bones double the force of the vibrations of the eardrum.

ii) It is the size of the oval window which produces an increase of

amplification needed to match the impedance between sound waves in

the air and the sound waves in the cochlea fluid. The area of

tne oval window is about thirty times smaller than the area of the

eardrum. When force is transmitted from a greater to a smaller

area the force is always increased proportionally.

The combined effect of the two methods makes the pressure at the

oval window about 60 times greater (35 dB) than it would be if the

eardrum and the ossicles were not present.
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b) The second function of the middle ear is to protect the inner ear from

extremely loud sounds • Loud sounds trigger two sets of muscles. One

pulls the stapes away from the oval window and the other tightens the

eardrum and thus restricts its ablilty to vibrate. The muscle

contractions also cause the ossicle to shift into a second mode of

vibration in which the stapes axis of rotation changes to decrease the

pressure variations transmitted to the inner ear.

2.2.1.3 The inner ear

The inner ear is perhaps the intricate section of the ear. This is the

section where a spectral analysis is performed on the sound

(Fig. 2.8).

wave

REISSNER'S MEMBRANE
VESTIBULAR CANAL

COCHLEAR PARTITION

SCALA

OVAL WINDOW SCALA VESTIBULI

APICAL END
~i:~~~~6-",,=~ ___

ROUND WINDOW

SPIRAL LISAMENT

Fig. 2.8 The inner ear

nerve impulses

t'NO distinct

The two regions are

The important transformation from mechanical vibrations to

takes place in the cochlea. The cochlea is divided into
regions by a membrane called the cochlea partition.
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The tympanic canal ends

at the round window, a membrane-covered opening that leads back into the

middle ear. This end is called the basal end. At the other end of the

canal (the apical end) the two cavities are connected and a fluid

(periymph) passes freely between the two canals. The vestibuli canal ends

at the oval window at the basal end of the cochlea. The cochlea partition

mentioned earlier consists of a hollow centre, the cochlea duct, which is

filled with fluid called endolymph. The basilar membrane separates the
,

tympanic canal from the duct. The scala vestibuli and the duct are

separated by the Reissner's membrane. The basilar membrane is at its

narrowest at the basal end, 0,04 mm, and about 0,5 mm wide at the apical

end. This membrane is also more stiff and lighter near the oval window

than at the helicotrema. When the oval window is set into vibration by

the displacement of the stapes, the entire cochlea partition starts to

vibrate. Sounds of various frequencies set the basilar membrane into

varying degrees of vibration at different distances from the oval window

(Fig. 2.9).
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Fig. 2.9 Maximal amplitudes of the oscillation of the basilar membrane for

sounds of different frequencies.

For higher frequencies the amplitude of the vibrations are highest at the

stiffer and lighter section of the basilar membrane, while for lower

frequencies, the point of maximum amplitude moves towards the broader and

more elastic end of the basilarmembrane. Thus the structure of the
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cochlea leads to a spatial separation of the maximum responses at different

frequencies. Because the maxima are relatively broad the complete

frequency. analysis performed by the hearing mechanism, which is very

selective analysis, cannot be accounted for by the formation of these

maxima.

2.2.2 The Organ of Corti

The vibrations of the basilar membrane are converted into signals that are

transmitted to the brain via the auditory nerve.

is perfomed by the organ of Corti (Fig. 2.10) •

INNER HAIR CELL. TECTCRUL ME!04SRANE

This complicated process

NERVE FIeERS CORTI' S ARCH

Fig. 2.10 The organ of Corti

The organ of Corti contains a number of small cells which are inside the

cochlea duct and are supported by the ba~ilar membrane. Fine hairs on

these cells are the actual sensory receptors in the organ. These very
fine hairs make contact with the tectorial membrane. There are two types

of hair cells, the inner and the outer cells, and they are separated by the

arch of Corti , which gives the organ its structural strength.

Movement of the the basilar membrane is transferred to the tectorial

membrane. Because the hair cells are supported by the basilar membrane

and the hairs rooted in the hair cells, the hair tops in contact with the

tectarial membrane will be twisted, pulled and pushed as the tW'O membranes
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vibrate. It is still not clearly understood how, but it is these physical

stresses of the hairs in the hair cells which generate electrochemical

pulses. Receptor cells, such as the hair cells, receive sensory

information from their environment and help to code this information into

the electrochemical pulses which are transmitted through the auditory

nervous system to the auditory area of the cerebral cortex in the brain.

2.2.3 The Auditory Nervous System

AUDITORY CORTEX

A4"1H~---- MEDIM. GENICULATE BODY

.,..---- MIDBRAIN LEVEL

NUCLEUS

COCHLEAR NERVE

TRAPEZOID BOOY

Fig. 2.11 The auditory nervous system

brainthetoearinnerthefrom

starts at the auditory nerve. The

about 30 000 individual fibers, which

the basilar membrane. These fibers

cells (neurons) each one starting near a

Nerve fibers extend all the way

(Fig. 2.11). The auditory pathway

auditory nerves are a broad bundle of

terminate in the cochlea, just above

branch out into individual nerve

hair cell in the Organ of Corti.
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Neurons are complex devices used for the detection and transmission of

electrical signals. Each neuron picks up external stimuli J such as the

hearing signal J from the hair cells. If such a stimulus is strong enough

to activate the neuron J it produces an electrochemical pulse.

The auditory nerve enters

interconnection called the

the central nervous sys tern in

cochlea nucleus. Each cell in

a complex

the cochlea

nucleus receives connections from many incoming fibers. From this

nucleus J nerve fibers run in a bundle of nerves J known as the trapezoid

bodYJ to the superior olivary complex. The auditory pathway consists of a

number of other bodies of cells which are used for the interconnections of

the nerve fibers. The very last one of these bodies is called the medial

geniculate body and from this point J the nerve fibers proceed directly to

the auditory projection of the sensory cortex.

2.2.4 Information Processing in the Auditory pathway

According to W.O.KeideI J 1974 (23) some of the neurons in the higher levels

of the auditory pathway activate ,on stimulus from sounds like vowels and

consonants. The results of W.O.Keidel can be summarized as follows:

a} There exist neurons at geniculate level which respond to fundamental

formant frequencies. Since a range of neurons is tuned in the same

way to a fundamental frequency as vowels J these neurons could be

considered to be vowel-detectors.

b} Another type of neuron fires when the stimulus frequency changes

continuously from low to high frequencies and back. There are

subgroups of neurons in this class which respond to a relatively slow

frequency-modulation type of stimuli. These neurons can therefore

correspond to phonemes which are transient speech sounds. Thus these

neurons can be labelled as consonant-detectors or transient-detectors.

It is therefore believed that neurons at geniculate level can be used to

detect and separate different phonemes in speech.
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3
Computer Speech Recognition Techniques

3.1 Introduction

The complete successful recognition of spoken words in electronic speech

signals will be one of mankind's greatest achievements. It is the subject

of intensive research but nevertheless the goal has not yet been achieved.

Perhaps the most successful results to date have been word recognition

systems with systems that are typically reported to be able to recognize

1 000 different spoken words, (24). Many different speech recognition

methods have been tried in the last two decades throughout the world

(America, 1984 (24), England, 1975 (25), 1977 (26), India, 1982 (27),

Japan, 1982 (28), Germany, 1983 (29), France, 1984 (30) ).

Speech recognition may be classified into three major study fields:

a) isolated word recognition (IWR) ,

b) connected word recognition (CWR) and

c) continuous speech recognition (CSR).

The first method has been used for some time in commercial systems.

Recently systems have been developed commercially which can recognize a

string of words from a small vocabulary. However, continuous speech

recognition systems are still the subject of intensive research, because of

their enormous commercial potential. Each one of these fields can be

subdivided into two categories according to the individuality of speakers,

speaker-independent systems and speaker-trained systems, which are more

commonly used in commercial systems.
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3.2 Isolated Word Recognition Models

The main objective of any recognition system is to classify a pattern, in

this case, the unknown digital speech waveform, into one of several

possible classes (words). IWR (isolated word recognition) systems usually

use words as the smallest recognition segment. Other systems use phonemes

and someti~es syllables, for the recognition of words.

REFERENCE

PATTERNS

'1/
TEST DISTANCE

EtCH FEATURE PATTERN PATTERN . SCORES ..... DEClSlON RECO

I~
..... ~
". '"MEASUREMENT Sll.lllARlTY RULE WOR

\

SP GNISED

S D(S)

Fig. 3.1 Model of isolated word recognition

According to Levinson and Rabiner, (2) most of the isolated word

recognition systems can be modelled with three basic building blocks

(Fig. 3.1). First the input speech signal must be analysed and the

necessary features extracted to obtain the test patterns. Secondly, these

test patterns are matched to reference patterns to find pattern

similarities. Finally, to recognize the actual word, distance scores,

which are a measure of the pattern similarities, are used in the decision­

making process of such systems. The distance scores are usually the

difference between the numerical values of the test pattern and the values

of the reference patterns (Section 3.2.2.2).
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3.2.1 Feature Extraction

The key problem in speech recognition is the extraction of the best

features. Mathematical and structural features are best suited for

automatic computer speech recognition, although they may be quite different

from features derived by the human recognition process, the hearing process

(Section 2.2).

In selecting a certain set of features the following considerations must be

optimized. The features must be computed in the shortest possible time,

must use the smallest possible computer memory and must be easy to

implement. Further, it must be noted that only a limited number of

features are extracted for classification of the test pattern.

3.2.1.1 Frequency Spectrum Analysis

This type of feature extraction is probably the most common method because

of its parallelism to the cochlea. The frequency spectrum of the input

speech signal is discussed in this section.

a) A bank of analog filters,

b) or a series of digital filters covering the whole frequency range of

the speech signal,

c) and a Fourier Transform can be used to obtain the power spectrum.

In the first two techniques, the analog and the digital methods, the speech

signal is passed through a bank of bandpass filters which covers the

frequency range of the speech signal, from just above 60 to 6 000 Hz

(Fig. 2.1). The number of filters used in analysis can vary from 5 to as

many as 35 filters (30). These filters can be spaced linearly in the

speech frequency band, or the percentage bandwidth of the filters can be

kept constant. In some cases the filters are spaced linearly up to more

or less 000 Hz and from then on the percentage bandwidths are held

constant. The output signal amplitude levels of the filters are usually

derived or computed using non-linear operations and low pass filtering.

often the filtered signal levels are converted toa logarithmic scale to
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obtain the power spectrum level of the input speech signal.

The third method, which uses a descrete Fourier transform (DFT) to obtain

the features, is also common in a number of recognition systems. Most of

these systems use a radix-2 fast Fourier transform (FFT) algorithm (27),

(31), which is a computationally efficient procedure, to calculate the DFT.

The speech signal is digitized and then weighted over a certain duration

with a window, cOIlll\only a Hamming or a Hanning window, to prevent leakage

(32), (33). The durations typically vary from 10 ms to. 25 ms. The FFT

is normally performed on either 128 or 256 samples depending upon the

sampling rate used. The logarithmic spectrum level in each of the

frequency samples (64 or 128) is then computed to obtain the power spectrum

of the input speech signal.

3.2.1.2 Linear Predictive Coding (LPC)

Linear predictive coding is a method of predicting the transfer function of

a system which assumes that the output of the system is a linear function

of the past outputs and the present and past inputs (34). In the case of

speech signals, the transfer function of the vocal tract is computed and

the linear predictor coefficients obtained are used as the recognition

features of the speech signals. The speech recognition systems which use

LPC, compare the measured speech signal with an artificially-generated

speech computed from the output signal of an all pole digital filter whose

input is then excited by either a random signal or a set of periodic

inpulses (34). By minimising the sum of the squared differences (over a

finite interval) between the actual samples arid the linearly predicted

samples, an individual set of predictor coefficients can be determined.
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The excitation signal is assumed to be either quasiperiodic pulses for

voiced sounds or random noise for unvoiced sounds (Fig. 3.2), (34), (35).

PITCH PERIOD

DIGITAL FlLTER COEfFlCIENTS

(VOCAL TRACT PARAMETERS)

--+-t
IMPULSE

TRAIN

GENERATOR

RANDOM
NUMBER

GENERATOR

AMPLITUDE

TIME VARYING

DIGITAL FlLTER
SPEECH
SAMPLES

Fig. 3.2 The model of the vocal tract

As in the FFT analysis, a bleck processing model is used in which a

frame consisting of a number of samples is processed at one time. The

duration of the frame is typically 10 to 30 ms • To obtain the predictor

coefficients the speech signal is first pre-emphasized to spectrally

flatten the speech signal. Secondly the data is weighted with a window

similar to the windows used for the FFT analysis. To find the predictor

parameters, an autocorrelation analysis is performed en the window data

(36) •
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3.2.1.3 Other Features

Sometimes in addition to above mentioned features zero-crossing rate (ZC)

and total energy (TE) are calculated. Zero-crossing rate is defined as

the number of zero crossings in a fixed frame length. Total energy is

defined as the sum of the squared values of the speech waveform in a given

frame J Table 3.1 (37).

ZERO-CROSSINGS TOTAL ENERGY (dB)

VOICED SOUNDS 12 J8 51 J5

UNVOICED SOUNDS 49 J8 30 J5

SILENCES 12 J1 18 J1

Table 3.1 Mean values of ZC and TE for room-quality speech

(absolute silence is 0 dB and the frame length is 10 ms)

3.2.2 Pattern Similarity Determination

After the feature extraction is performed J a test pattern J consisting of a

string of quantized numbers quantatively representing the extracted

featuresJ is computed for each frame. This test pattern J S, is then

matched to a reference patternJ AJ to determine the pattern similarity

(Fig. 3.1). In the case of isolated word recognition the reference

patterns and test patterns are usually the whole word rather than sections,

of the word like phonemes or syllables.
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The speaking rates of words normally vary considerably and therefore

. l' t To find the minimum distancepattern similarity involves t~me a ~gnrnen •

between the two patterns (words) an optimum time (warping) function, w(j),

must be found (Fig. 3.3).

REFERENCE PATIERN

i=wU)

'I J
I
I
I
I

Fig. 3.3 Example of a warping function

3.2.2.1 The Warping Functions

TEST PATIERN. BO)
J

The warping funtion, w(j), is a model of time-axis fluctuation in a speech

pattern. Accordingly, it should approximate the properties of the actual

time-axis fluctuation. In other words, function w(j), when viewed as a

mapping from the time axis of pattern A onto that of pattern E, must

preserve all the linguistically essential structures in pattern A time axis

and vice versa (2).
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A number of different techniques can be used to find the warping funtion.

a) Linear time alignment is used when the two patterns are linearly

matched and the alignment function is a straight line:

(1-1)

i w( j) = (j-1). +1 3.1
(J-1)

where j is
.th sample of the test pattern B, i is the .th sample ofthe J ~

pattern A and J and I are respectively the maximum number of saJll>les in

pattern B and pattern A.

The other techniques involve a nonlinear time alignment.

b) Time event matching is the matching in time of significant events in

the reference and test patterns. For each one of these events another

warping function is computed which is typically a linear time alignment

function.

c) Correlation maximisation is the warping function which is found when

the correlation between pattern A and pattern B is maximized (Eq. 3.2):

C(A,B) = max
w( j)

J
E (A( j) .B( j»

j=1
3.2
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d) Dynamic time warping (D'IW) , is the most important time alignment

function for isolated word recognition and is sometimes called dynamic

programming (DP), (40). Dynamic programming is the warping curve

which is determined from the solution to the optimization problem:

D(A,B) = min
(k)

K
( Ed(A(k),B(w(k»)

k=l
3.3

where d(A(k),B(w(k») is the distance between kth frame of the test

pattern Band w(k)th frame of the the reference pattern A, and w(k) is

a function of i(k) and j (k) (Fig. 3.3).

3.2.2.2 Distance Measurements

A number of different distance measurements are available and depend

heavily on the type of feature measured. In most recognition systems the

distance calculation is one of the most time consuming computations of the

system.

a) Euclidean distance is a very commonly used measurement and is of the

form (27):

K
B (B(k) -A(k) )2

k=l
3.4

where A(k) and B(k) are k
th

component of the reference and aligned test

pattern respectively and K is the maximum number of features. This

measurement requires K multiplications, subtractions and additions.
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b) The Minimum Prediction Residual, Itakura (39) has proposed a remarkably

useful distance measure for a feature set based on LPC parameters and

is of the form:

a.V'.a'
d(A,B) = log10

b.V'.b'
3.5

where a and b are the LPC coefficient vectors of the reference and test

patterns respectively, a' and b' are respectively the time differential

of a and b. V' is the matrix of the auto correlation coefficient

(Section 3.2.1.2) of the test pattern. LPC distance measurements need

a large number of additions and multiplication.

d can be rewritten in the form (39):

However, the distance

d(A,B) = 3.6

where r is the auto correlation vector (v(i)/v(O», (i=O, ••• ,p),

d=log10(b.b), and c is the vector (1,c(1), ••• ,c(p», whose elements

are defined by:

p-i
c(i) = 2. 1: a(j).a(j+i)/(a.a)

i=O
3.7

Using Eq. 3.6, the computation of the distance, reduce to only p+1

additions, multiplications and one log computation.
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3.2.3 The Decision Rule for Isolated Word Recogniton

The final step in the recognition model (Fig. 3.1) is the decision rule

operation. Here a reference pattern is selected which is the closest

match to the unknown test pattern. There are a number of rules which may

be used but the two most commonly employed are:

3.2.3.1 The Nearest Neighbour Rule

This rule can be explained as follows. Let there be N reference patterns,

A. ,i=1,2, ••• N, and the distance score for each pattern calculated is Di ,
1

from the pattern similarity algorithm. The test pattern, B, will be

classified the same as the reference pattern, A., with the smallest
1

distance score, D.•
1

3.2.3.2 The K-nearest Neighbour Rule

The K-nearest neighbour rule is used when each isolated reference word is

described by more than one reference pattern, as in the case where the

words must be independent of the talker. In speaker~independent

(Section 3.4) systems is it very common to have a template for a number of

speakers and another template for other speakers although both templates

are ~sed for the same isolated reference word. Therefore there are M

reference patterns for each of the N reference words. The jth occurrence

of the i th reference pattern can be expressed as
:thAi, j' 1 ~ i ~ N, 1 ~ i ~ M, implying that the distance for the J

occurrence of the i
th

reference pattern is D. .• The average distance of
1J

the K-nearst neighbour is then defined as:

d. =
1

K

~1 Di , (k) } /K
3.8

In.both cases, the nearest neighbour and the K-nearest neighbour, are the

the test patterns classified the same as the reference patterns, A., with
1

the smallest distance measurements to the test pattern, B.
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3.3 Connected Word and Continuous Speech ReCognition

Connected word recognition (CWR) and continuous speech recognition (CSR)

systems are able to recognize a string of words instead of single isolated

words. The model used to describe isolated word recognition (Section 3.2,

Fig. 3.1), can also be used to model connected word and continuous speech

recognition systems, with two modifications (Fig. 3.4): the incorporation

of endpoint detection, and feedback frcm the decision rule secticn to any

of the previcus sections of the model.

D(S)

COGNISED

fEAltJRE
'"......

MEASUREMENT

TEST
PATTERN r,~ '11

ISOLATED DISTANCE
END POINT PATTERNS.... PAITERN SCORES DECISION RE...
DETECTION

, , -SIMIlARITY RULE WOR

"\

REFERENCE

PATiERNS

SPEECH
~

SIGNAL.

Fig. 3.4 Model of connected speech recognition

The operation of the connected speech recognition model can be described as

follows.

a) The incoming string of words is analysed and a feature extraction

performed.

b) The start and end of the words are located.
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c) In the next step, as in isolated word recognition, these features are

matched to reference patterns, previously obtained, to find the pattern

s irnilarities.

d) At this stage it is important to decide if the word can be matched to a

word in the template. It is also possible to detect syntax and

semantic errors in this section. Syntax is the branch of linguistics

which deals with the grammatical arrangement of the words in sentences.

semantics is the branch of linguistics which deals with the study of

the meaning and the principles that govern the relationship between

sentences or words and their meanings (14).

e) Finally, if the decision rule decides that it is necessary to repeat

any of the previous sections it will go back to that section and repeat

the process, until the correct word is found.

3.3.1 Feature Extraction

Feature extractions in continuous speech recognition (CSR) systems is

similar to the techniques used in in the isolated word recognition (IWR)

systems (Section 3.2.1). However, most IWR systems extract their features

from whole words, while CSR systems obtain their features from sections of

the words (24), (25), (27), (41). This means that CSR systems use

phonemes or syllables as building blocks for the recognition of the words

and word strings. Hence, the period over which the features are extracted

is shorter than in IWR systems. Most of the features are non-time-

varying. The minimum length of a phoneme is about 30 ms, while the number

of available samples for the extraction of the feature varies between 150

large enough to

and 600 samples,

5 000 and 20 000 Hz).

depending on the

This number of data

sampling

samples is

rate (between

perform a frequency spectrum analysis.

It should be noted that CWR systems uses IWR reference patterns as

reference patterns to recognize the test patterns. They therefore use

exactly the same feature extraction techniques as the IWR systems.
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3.3.2 start and Endpoint Detection

start and endpoints can be very easily detected in connected speech as the

speaker pauses between each spoken word (9), (37), (38). These pauses can

be detected as silences in the speech signal. The words between the

pauses are recognized as isolated words which can be matched to a set of

isolated word reference templates (36), (38), (42).

commonly used in CWR systems.

This method is

The CSR systems do not depend upon pauses in the speech, although the

pauses do help in the decision rule section (Fig. 3.4). CSR systems first

recognize all the phonemes in the speech frame, using the similarity

section, and then pass this string of phonemes to the decision rule

subdivision to analyse the phonemes and find the appropriate word (25),

(41).

With other words the start and endpoints can be detected by detecting the

pauses between the words of connected speech. In the case of an endpoint

being wrongly detected, the error can be corrected by going back and trying

to find other pauses in the connected speech. CWR systems need endpoint

detection, although CSR systems can use it to improve the recognition rate.

3.3.3 Pattern Similarity Determination

It is again important to show the different methods used in CWR and CSR

systems.

The CWR and IWR systems have similar problems, namely that the speaking

rates of the words change from time to time. Therefore it is necessary to

use a time alignment procedure (Section 3.2.2.1). Different types of

dynamic time-warping algorithms have been proposed by a number of people

and have been used with some success (9), (28), (29), (36), (38), (43).

The determination of the distance between the input features and reference

features is identical to the methods used in IWR systems (Section 3.2.2.2).
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CSR systems extract features from very short time periods (Section 3.3.1),

sometimes a fraction of the time it takes to say one single phoneme.

These systems use these small time segments in their reference-templates as

computer phonemes (24), (25), (27), (30), (41). Therefore the recognition

is performed on phonemes and so the need for time alignment is eliminated,

because most phoneme's features do not vary in time (11). It is therefore

clear that CSR systems do not have the problem of time alignment, while the

determination of the distance between the test pattern and the features of

the reference pattern stay exactly the same for IWR, CWR and CSR systems

(Section 3.2.2.2).

3.3.4 Decision Rule for CWR and CSR systems

This decision rule is much more involved than the decision rule for IWR

systems. The first part of this section is more or less the same as the

decision rule for IWR systems. The decision rule normally chooses the

reference pattern closest to the unknown pattern (Section 3.2.3). The

choice is a word in the case of CWR systems and a computer-phoneme in the

case of CSR systems.

In most CSR systems the unknown pattern is first classifed into a certain

broad acoustic category and then afterwards classified as a specific

computer-phoneme in that broad acoustic category. For example, the system

first recognizes the input pattern as a vowel and then afterwards

classifies this vowel as a phoneme.

The output from the first part of the decision rule for CSR systems is a

string of computer-phonemes, and it is at this stage that some time

alignment must take place. The string of phonemes may contain several

repeats of the same phoneme, because the speaking rates of the phonemes

vary. This type of time alignment is very easy to handle as it is just a

question of deleting all the extra phonems.

The next processing step for a CSR system is to convert the strings of
phonemes into words. This can be done in t~ ways: namely, by constantly
trying to match the string of phonemes to a dictionary of phonetic
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transcriptions, or to use some phoneme to text rules to obtain the correct

words. Phoneme to text rules require considerable processing power (44).

A string of phonemes cannot be directly converted into a word by using only

simple spelling rules, because of phonological variations in natural

speech. However, a number of the variations can be captured in general

phonological rules, because ,some of these variations are governed by

phonological environments. According to Oshika (44) one of the most

apparent trends in continuous speech is the reduction of a vowel. The

rule specifies that a vowel carrying reduced stress may be realized as le/.

Example 3.1 is

spectrogram

Is p E k t r 0 g r ae rn/ Is p E k t r ~ g r ae rn/

Another rule states that if a stressed syllable is followed by two

syllables with less stress, then the vowel immediately following the

stressed syllable is deleted

Example 3.2 is

chocolate

Ic 0 k e I I tl Ic 0 k I I tl

This method might need more processing than the matching of the phonemes to

a dictionary of phoneme transcriptions, but will use less memory and there

is the possibility of an unlimited vocabulary. This level of recognition

is usually called the lexical level of recognition.
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Fig. 3.5 shows the flow diagram of two typical recognition systems, a CWR

and CSR system.

661 kHz
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Fig. 3.5 (a) Flow diagram of a CWR system, (2)
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Fig. 3.5 (b) Flow diagram of a CSR system, (30)
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Having recognized the word, the next step is

possible word. It is therefore necessary

semantics of the words. If the syntax or

specific sentence is wrong the system must try to find a new word. This

means there must be a feedback loop to help in correcting the error. The

level at which the system decides if the syntax is correct is commonly

known as the phrasal level. The semantics level is also called the

conceptual level. The difference between syntax and semantics is clearly

shown by the following example (45).

Example 3.3 is

The green colourless cloud pulled coldly

on the fast shirt.

According to any of the English syntax rules this sentence is formed

correctly, but the sentence is not correct at all (see Section 3.3 for

definitions of syntax and semantics). For this reason is it very useful

to have some semantics rules in both the CWR and CSR systems.

A typical syntax rule is that prepositions should appear before the words

they govern (46).

Example 3.4 is

We worked on the computer through the night.

If we apply this rule to Example 3.3, we will find that the preposition

"on" is in correct position and the syntax is therefore correct. For the

system to check these semantic errors, is it necessary however, to

determine the SUbject. Looking at Example 3.4, the system must know the

type of words that can follow the preposition "through". Nouns like

"computer" and "cloud" will not fit and therefore the system must not only

know the type (noun, verb, ••• ) of word which can follow another word, but

also which words can follow a certain word.
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3.3.5 The Feedback Loop

CWR systems recognize isolated words in connected speech from isolated word

templates and therefore it is necessary for the feedback loop to return to

the endpoint detection section of the connected speech recognition model

(Fig. 3.4, Section 3.3.2) to obtain a word. This process must be repeated

until the correct word is recognized. On the other hand, the CSR systems

recognize small sections of words, normally phonemes, ana therefore do not

use endpoint detection. Phonological, syntax and semantics rules are

applied to correct the phonemes and words. This means that the feedback

loop must return to certain levels in the decision rule section. Fig. 3.6

shows the size and the complexity of a CSR system (after HEARSAY II, (47».

- LEVELS -

CONCEPTUAL

PHRASAL

LEXICAL

SYLLABIC

SURFACE­
PHONEMIC
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SEGMENTAL

PARAMETRIC
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- - - - - - - - SEMANTIC WORD HYPOTHESlZER

__ • SYNTACTlC PARSER

• __.SYNTACl1C WORD HYPcmtESlZER

__ •PHONOLOGiCAl RULE APPuER

- - - - PHONE - PHONEME SYNCHRONISER

I . PHONE SYNTHESISER

/ - - - - - P~ETER - SEGMENT
SYNCHRONISER

- - - - - - _ SEGMENTER-et.ASSlFIER
-----1----t7----

Fig. 3.6 Decision rule and feedback section of a CSR system
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3.4 Speaker Independent and Speaker-trained systems

speaker-trained systems can only recognize words and phonemes spoken by the

person who trained the recognition system. In the training operation a

template is determined consisting of a set of features for a specific word

or phoneme. This process is repeated until all the necessary templates

are labelled (25), (38).

The speaker-independent systems usually have a number of labelled templates

for each word, which are chosen in such a way that the system can recognize

the words of any speaker's voice or at least a number of 'speakers' voices.

Some of these systems use normalization factors to normalize the frequency

and amplitude of the extracted features of the speakers' words. To find

these normalising factors, the system asks the user to say a known word,

the system then extracts the factors by calculating the difference between

the features in the template of the known word and the features of the

spoken word (28), (36).
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4.1 Introduction

In this section the author gives a detailed description of the goal,

restrictions and implementation of a computer speech recognition system.

4.1 .1 The Goal

The original end goal of the system was to be able to recognize any letter

of the alphabet in a continuous speech section. The idea behind this goal

was that any speaker could could train the system to recognize his voice

and then use the system as a dictaphone. The speaker will then speak into

the computer rather than typing the text into the computer.

Dear sir

Dear sir

Fig. 4.1 The ultimate goal
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This goal was set as the end product of the project, not to be accomplished

in the amount of time given to the project. TO achieve this goal it was

necessary to look at all the systems presently available. Chapter 3

describes the three different study fields in speech recognition. See

also Table 4.1.

STUDY FIELD MODE OF SPEECH TYPE OF PROCESSING VOCABULARY SIZES

Isolated Isolated recognize isolated 10 - 1000 (24)

Word words words words

Recognition

Connected Senteces with recognize isolated 10 -127 (38)

Word short pauses words words

Recognition between the words

Continuous Continuous recognize the 47 (30)

Word speech, phonemes or syllables phonemes

Recognition no pauses in the words

Table 4.1 Different speech recognition systems

In the studying of the goal, it was found that there are three factors

which are the deciding factors in what type of recognition method must be

used. First of all the system must be able to recognize any letter of the

alphabet. Secondly, the speech will be continuous and finally the system

can be speaker dependent.

By comparing these factors with the features of the different speech

recognition systems (Table 4.1), the wanted system can be classified as a

speaker dependent (speaker-trained), continuous speech recognition system.
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To determine how to implement a set goal it is necessary to investigate

the:

a) practical implication involving such a system,

b) availability of equipment,

c) cost of time and cost of computer memory.

4.1.2 A Practical Approach to the Goal

After a thorough investigation into continuous speech recognition systems

and the equipment available it was time to re-evaluate the first goal and

set a new goal. The new goal was set in such a manner that by constantly

improving on the system, the initial goal can be accomplished.

goal can be seen as the first stage of the initial goal.

The practical approach can be summarized as follows:

The new

a) Develope the system on the mini-computer available for the project.

b) Digitize speech with the analog to digital converter and store the

digitized speech samples in the mini-computer.

c) Recognize as many phonemes as possible.

d) Convert these phonemes to text.

4.1.3 Reasons for Using such an ApproaCh

a) The use of a computer for the development of the system is of great

value, because software programs can easily be changed with minimal

cost, as opposed to a hardware system. Once the system works

effectively, it can be analysed to see which sections of the system are

the most time consumming sections and then the speed of these sections

can be optimized, by integrating software and hardware. Futhermore a

system developed on a computer can efficiently be changed to work on
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any other type of digital means, like other computers, hardware systems

or even'micro-computers. A HP 1000 F-series mini-computer (HP1000)

was used for the development of the software system.

b) For convenience the speech signals are recorded on a tape-recorder

beforehand, rather than talking straight into the computer each time

the system must be trained or tested in the development process.

These recordings can then be made with any type of background noise and

are not limited to computer-room background noise.

The recordings are digitized with an analog to digital converter and

are stored in the computer as files and thus save an immense amount of

time, especially where one speech sample is continuously used to train

the system and another sample is constantly used for the testing of the

system. For the development of the system it was decided to train and

test the system on the words "zero" through to "nine", which were

spoken in a slow connected manner. These words were chosen, because

they are very commonly used in speech and contain half of all the

English phonemes. A system which can recognize the ten digits can be

used in a number of practical applications, like a speech telephone

dialling system and perhaps a calculator.

An UHER 4000 tape recorder is used for the analog recordings and a

CAMAC 12 bit analog to digital converter (ADC) is used for the digital

recordings which are stored in the mini-computer.

c) Why a phoneme based recognition system?

The answer to this is straightforward. The end goal of the the system

is to use it as a dictaphone, and it must therefore be able to

recognize any word used by the user (speaker).

There are two methods of achieving this. The first is to train the

system with every word in the English language. Secondly, train the

,system on all the phonemes in the English language, which will take up

much less computer memory and will take only a fraction of the time it

will take to train with all the English words. To recognize a word

from a 1000 word vocabulary will take much longer than to recognize a
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phoneme from a 47 phoneme template.

d) Once the phonemes are recognized, they need to be converted to ordinary

English text, (Section 3.3.4 and Section 3.3.5). To convert these

phonemes to words, two major study directions can be implemented. A

string of phonemes can either be matched (looked up) in a phoneme

transcriptions dictionary which contains all the phoneme transcriptions

of all the English words (say about 10 000 words) or sirrple phoneme to

text rules can be applied to convert the phonemes to text.

The later-mentioned method will need more intelligence, but will use

less corrputer memory. Because the first method will need more and

more memory as the dictionary enlarges, it was decided to implement the

phoneme to text rules. The major advantage of such a system is that

if this system is trained on the phonemes of the words "zero" to

"nine", it can also convert other words to text (Exarrple 4.1).

Example 4.1 is phonetics If e nEt I k si

Every phoneme in the word "phonetics" can be found in the ten words

mentioned above (Table 4.2).

To achieve the initial end goal from here, it 1S necessary to:

a) improve the phoneme recognition rate,

b) improve the phoneme to text program,

c) speed up the whole system, by using a very fast signal processor with

an analog input (microphone) and digital output (monitor or printer).
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4.2 System Implementation

In Fig. 4.2 a model of the proposed system is given and in Fig. 4.3 the

recognition section is given in more detail. A detailed explanation of

the recognition section can be found in section 4.2.2.

REFERENCE

PAnr:RNS

I1
DlcmzED STRING of

EECH DlcmzE the SIGNAL SIGNAL SPEECH PHOND.lES " PHOND.lE to TEXT TEXT

~ and .... RECOGNTTlON I---

GNAL STORE In COUPIJT£R SYSm.t CONVERSION
F1lES

SP

SI OUTPUT

Fig. 4.2 A practical approach

4.2.1 Speech Data Acquisition

To obtain the necessary speech signals for the training and testing of the

system J the speech was recorded on an UHER 4000 Reporter II J analog tape

recorder J at a tape speed of 475 mm/s J with a M 514 UHER microphone. The

recordings were done in a quiet room and thus the quality of the speech can

be described as room-quality speech. Table 4.1 shows the words which were

used in the testing and training of the system.

The digitizing of the speech signals were done with the departments HP1000-

CAMAC system. A program written by one of the author's fellow-students

was used J to perform the data transfer from the CAMAC's linear 12 bit

analog

(48) •

to digital converter (ADC) to the mini-computer' s (HP1 000) memory J

The program uses a direct memory block access (DMA) technique to

aquire the very fast sample rate require for speech signals. Because of

the fact that the DMA drivers of the HP1000 can only access 32 000 words in

which the actual program and the data must be stored J to save time J it was

necessary to limit the maximum amount of samples digitized to 25 000

samples. At a sampling rate of 10 000 Hz the maximum length of of a

continuous speech signal which can be recorded is 2 J 56 seconds.
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For anti-aliasing, an adjustable 8th order Butterworth lowpass filter

(ROCKLAND Model 1042F) was used and was set at a 3 dB cutoff frequency of

4,5 kHz. To eliminate the chances of adding a zero frequency (direct

current, DC) noise or the main power supply frequency (50 Hz) noise, an

8 ' th order Butterworth highpass filter (ROCKLAND) was used at a 3 dB cutoff

frequency of 60 Hz. This bandwidth (60 Hz to 4 500 Hz) is wide enough to

contain all the important frequencies produced py the vocal system see

Fig. 2.1 in Chapter 2 •

. The four sets of the words "zero" to "nine" (see Table 4.2 for the phonetic

transcriptions of these words) were recorded and stored on disc in 20

files. Each file consists of 200 frames (2 560 ms of speech) each. All

the records (also called frames) contain 128 speech samples (12,8 ms of

speech), because a radix-2 FFT was used to obtain the frequency spectrum

(25
= 128) and the frames must be short enough to contain features of any

phoneme (phonemes can be as short as 30 ms). There are normally two words

in each one of ~~e files. For example the first and the fifth file both

contains the words "zero" and "one".

WORDS PHONETIC TRANSCRIPTIONS

zero Iz le r eUI
one IwA nl
two It u:1
three Ith r i:1

four If 0:1

five If aI vi
six Is I k si
seven Is E v e nl
eight leI tl
nine In aI nl

Tab+e 4.2 Phonetic Transcriptions of the Words "zero" to "nine"

Appendix A
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4.2.2 A Phonetical Approach to Speech Recognition

I
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Fig. 4.3 Flow diagram of the proposed speech recognition system

According to Fig 4.3 it is clear that the recognition process is done in

stages. First of all some features are extracted from every 12,8 ms of

the speech samples (each frame). These frames are then classified as

either a silence, voiced sounds or unvoiced sounds. Then more features

are extracted and the sound (frame) is now classified as a vowel and vowel-

like sound or as a nonvocalic sound. The final features are then
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extracted to recognize the actual phoneme. This type of stage recognition

system (segmental recognition) has been used in a number of systems (25),

(26), (27), (30), (41), (47).

The reason for using this type of recognition is to save on execution time

and to reduce the recognition error rate. For example once a frame is

classified as a silence it is unnecessary to do any more processing on that

frame. Also, once a frame is classified as a vocalic sound or nonvocalic

it is not necessary to extract all the phonemic features but only the

relevant features (Section 4.2.2.1 C). This method prevents the

unnecessary matching of a vocalic sound to the nonvocalic templates and

thus saves on exacution time. This also seems to be the method the human

auditory system uses to recognize the phonemes (Section 2.2.4).

This approach is described in three sections:

a) feature extraction (Section 4.2.2.1),

b) pattern similarity (Section 4.2.2.2),

c) decision rule (Section 4.2.2.3).

Because the system is a segmental recognition system, it is divided into

three recognition stages:

a) voicing (used for the classification of voiced, unvoiced sounds and

silences, Sections 2.1.2.3)

b) acoustical (vowels, stops, fricatives, see Section 2.1.3)

c) phonemic (/A/, Itl, IfI, ... see Appendix A) recognition stages.

Therefore the Section 4.2.2.1 is also divided into three sUbsections (A, B

and C). Section 4.2.2.2 and Section 4.2.2.3 describe the pattern

similarity and decision rule respectively in general, because the same

method is used in all three of the recognition stages, although in

Section 4.2.2.3 the segmentation of the phonemes is also explained

(Fig. 4.3).
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4.2.2.1 Feature Extraction

This system extracts four different types of features for the

classification of the input speech pattern.

A Voicing Features

I
INPVT DIG;'.... SIGNAl.

J/
VOIC:NG FEATURES

ZE.~O CROSSiNGS (ze)

TOTAL ENE.'<C;Y (TC:)

SIL'::NCS:S

EXTRACT the VOICING

FEAnJRES

FRAME by !'"RAME

from the

INFUT DIG:TAL SIGNALS

'IOICED and UNIIOICED SOUNDS

I

VOIC:NG ClASSE:S

VOICS) SOUNDS ('I)

UNVOICED SOUNDS (U)

SILENCES (511

Fig. 4.4 Voicing features extraction

Each frame (record) of the speech samples is analysed and then classified.

To obtain the voicing features, which will be used later to determine

whether the frames are voiced, unvoiced or a silence, the total energy and

the zero-crossings of the frames are calculated '(27) , (37)

(Section 3.2.1.3).
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The total energy is calculated with the following formula:

4.1

where N is the maximum nwnber of samples in a frame (N=12a) and

N is
th sample of th .th record of thex(n)J n = 1 J 2J 3 J•••N-1 J the n e ~.

input speech pattern (file).

The zero-crossings are defined as the number of times the digital signal's

digital value changes from a positive value to a negative value and thus

is:

N
zc = E (x. (n-1 »0 AND x. (n)<O). ~ - ~

~ n=2
4.2

where N is the maximum nwnber

x(n)J n = 1 J 2 J 3J •••N~1J N is

of samples in a

the nth sample of

frame (N=12a)

the i th record of

and

the

200 record digital speech file. The function in the round brackets is

conditional formuia which will have result of nil when the answer is false

and a result of unity when the answer is true.

Once the voicing features are extracted they are matched to the features in

the reference templates and then labelled as either a voice frame J unvoiced

(voiceless) frame or a silence (Section 2.1.2.3). If the frame is a

silence no further processing is done on that frame and this 12 Ja ms of the

signal is labelled a silence. On the other hand J if the frame is

classified as a voiced or voiceless frame more processing is done on the

frame.
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B Acoustical Features

I
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VOICE:D FREQUENCY ENE.~GY BAND (VE)

LOW FREQUENCY ENERGY BAND (LE)

MID FREOUENCY ENE.~GY BAND (ME)

HIGH FREQUENCY ENERGY BAND (HE)

ond the two

VOICING FEATURES (ZC ond Tt)

CALCULATE the POWER

SPECTRUt.A of eoch
FRAME of the

INPUT DIGITAL SIGNALS

EXTRACT the four new

ACOUSTICAL FEATURES
from the

POWER SPECTRUt.A

VOICED SOUNDS

VOWELS (VO)

VOWEL-UKE (VL)

FRICATIVES CVF)
STOPS (US)

UNVOICED SOUNDS

FRICATIVES (UF)

STOPS (US)

VOCAUC SOUNDS
r:ATURES ond POWER SPECTRUM

I

Fig. 4.5 Acoustical features extraction

NON VOCAUC SOUNDS
POWER SPECTRUt.A and FEATURES

I

The next set of features are extracted from the frames to find out in what

broad acoustical category the specific frame is.
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1 the ones described in Section 2.1.3 seeThe categories are more or ess

also Table 4.3 and Fig. 4.5.

VO VI VS VF US UF

le m d v p f VO - Vowels and

diphthongs

eU n t vh t th VL- Vowel-like

A ng g z k s VS - Voiced stops

u: r dzh zh tsh sh VF - Voiced fricatives

I I US - Unvoiced stops and

affricates

aI w UF - Unvoiced fricatives

E

e

eI

Table 4.3 The acoustical categories are the phonemes (note, not all the

vowels are given in the table above)

Six parameters are selected for the classification of the acoustical

category of the frames, total energy (TE) and the zero crossings rate (ZC)

as previously explained. A further four energy bands are calculated from

the power spectrum of the frames.

The power spectrum is computed from a discrite fourier transform (DFT)

which is calculated using the 128 samples in each frame. In order to

minimize the leakage between two neighbouring frames each frame is weighted



with a window prior to the calculation of the OFT.
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The other reason for

doing so is to ensure a smooth estimation of the power spectrum (32),

(section 3.2.1.1). A 12,8 rns Hanning window is used to weight the digital

speech signals, the window can be describes as follows (33):

2. 11.n
hen) = O,5-0,5.cos( )

N-1

4.3

where hen) is the nth value of the window and N is the maximum number of

samples in a frame. To obtain the weighted speech signal the signal is

multiplied with the window.

yen) = x(n).h(n)

The windowed speech signal is defined as:

4.4

thand yen) is the n sample of the input signal, where n = 1, 2, 3, •••128.

The OFT is the Fourier representation of a finite-duration sequence (like a

speech signal> and is of the form:

N-l kn

{ 0:0
yen) .W O<k<N-1

Y{k)
N

=

otherwise

where W
N

= e-j (2.11" IN) and yen) may be complex.

4.5

A Fortran program of a

method to calculate the

FFT algorithm which uses the decimation in
iOFT of 2 number of samples (pionts), where

time

i is

any positive integer is given in Appendix B. This algorithm computes the

Each stage has N complex multiplications and Ntransform in log2N stages.

complex additions, thus

Thismultiplications and

there

additions.

will be a

is

total of N.log
2

N complex

a considerable drop in

cal9ulations opposed to the original number of calculations needed for the

calculation of the OFT.
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In order to obtain the power spectrum from the FFT of the windowed signal

y(n), n=l, 2, 3, •••N:

X(k) = 20.log10 (Y(k» 4.6

where N=128 for all the frames of the 200 frame files.

The four extra acoustical features are a voiced-frequency energy-band (VE,

80 - 300 Hz), a low-frequency energy-band (LE, 300 - 1 000 Hz), a mid­

frequency energy-band (ME, 1 000 - 3 200 Hz) and a high-frequency energy­

band (HE, 3 200 - 4 500 Hz) (Eq. 4.7). These parameters are found to

provide adequate discrimination between the different acoustical categories

and are based on work done by Paliwal and Roa (27). The Sperry Univac

speech recognition system uses similar energy bands (49).

This calculation of the power spectrum and the classification of the frames

into acoustical categories is closely related to what happens in the ear.

The chochlea in the ear transforms the input signal to the power spectrum

of signal (Section 2.2.1.3). It is believed that some kind of acoustical

classification is done in the higher levels of the auditory pathway

(Section 2.2.4).

C The Phonemic Features

From Fig. 4.3 it is obvious that depending on whether the segment is a

vocalic or a nonvocalic sound a different set of features is extracted.

In both cases it is necessary to calculate three more features. The first

six features already explained in the previous sections are used with the

new features. The system will thus use nine parameters to recognize a

phoneme.
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(1) Vowel and Vowel-like Sounds

1)

f2)

3)

see APENDlX A

VOCALIC CLASSES

1 and TABLE 4.3

---
CALCULATE the

SMOOTHED SPECTRUM VOCALIC FEATURES
from the

POWER SPECTRUM fiRST FORMANT FREQUENCY (f

1 SECOND FORtJANT FREQUENCY (

THIRD FORtJANT FREQUENCY (f
EXTRACT the three new ond the

VOCAUC rtAruRES
~from the six ACOUSTICAL FEAruRES

SMOOTHED SPECTRUM (ZC, TE. \/E. LE. ME and HE)

1
/

I

VOCAUC SOUNDS
FIAruRES and POWER SPECTRUM

OUTPUT a string

of PHONEMES

I

Fig. 4.6 Vocalic features

If these two acoustical categories are observed (Section 2.1.3.1 Band

Section 2.1.3.3 A and B) it is clear that the formant frequencies of these

categories are a very important feature (Fig. 4.6). The first two

formants contain almost enough information for the recognition of any vowel

(13) • However J it was decided to use the first three formants J as the

extra three features, to identify the vowel arid vowe i-like sounds. The

use of these three parameters is very common in speech recognition systems

(25)J (27), (31)J (49)J (50)J (51).

The formant frequencies of these sounds can be extracted from the power

spectrum of each frame in the phonemic segment either by using a peak­

picking procedure or by means of iterative methods (analysis-by-synthesis J

(52» • Because the iterative methods use too much computation time J the

peak-picking procedure is used for the extracting of the first three

formants of all the frames.
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The peak-picking method used is based on work done by Schafer and Rabiner

(53) and is actually a double peak-picking procedure. The first peak­

picking is done to smooth the spectra of the sound (Fig.4.7).

5.4.3.I. :2.

g. 1-:......:.-:.._':....:,'....:.'....:.... ..,,:,_...:,. ....:.'....:.... ..,,:'......:.'--=-~....I....:.,...:,.'~
e.

72. r--.....-----------------.,

57.

iXl
"'] .i3.

c-
::: 29.-..
<>

14.

G.3.2.I.
a. L-:............,:.........' .........' --=-...'.............:..--=-.~I......,-.:.....:...~I......,-.:..--~

9.

14.

57.

72. ,--~---------------,

c

c 29 ~-..
to

l'l
1) 43.

Frequ~ncy in kHz Frequ~ncy in kHz

Fig. 4.7 Normal and smoothed spectra of the vowel /0:/ in word four

Although other systems use a selective linear predictive technique to

smooth the spectra (27), (54), (55) the above-mentioned method is found to

be an efficient method of smoothing the the power spectrum of the sound.

The second peak-picking procedure uses this smoothed spectra to obtain the

first three formants. This procedure involves slightly more than just

picking the first three highest peaks and labelling them as formants.

From experimental data obtained from the speech recorded digitally and from

results of previous analysis of the frequency regions of the different

formant freqency, the following regions for the different formants arrives:

a) The First formant (f1) ranges from 230 to 1090 Hz,.

b) the second formant (f2) ranges from 630 to 2890 Hz and

c) the third formant (f3) ranges from 1880 to 3670 Hz.



68

Analysis also showed that relative amplitudes of the formant peaks plays an

important role in the estimation of the formants. For example if the

difference between the amplitude of f2 and that of f3 is less than 17 dB,

the chances are good that the formants f2 and f3 are incorrect and two new

peaks must be found. (see Appendix C for the flow charts of the

estimation of the formants).

(11) Nonvocalic Features

NONVOCAUC ClASSES
NOrwOCAUC SOUNDS

FEATURES and POWER SPECTRUM

J
EXTRACT the three new

NOrwOCAUC FEATURES

) from the

) POWE.~ SPECTRUM

)

-

1

I

and the

see APPENDIX A

and TABLE 4.3

NONVOCAUC FEATURES

six ACOUSTICAL FEATURES

(ZC, rE. YE. LE, ME and HE)

HIGH-MID ENERGY BAND (HME

LOW-HIGH ENERGY BAND (LHE

VERY-HIGH ENERGY BAND (\/HE

OUTPUT a string
of PHONEMES

I

Fig. 4.8 Nonvocalic features extraction

The nonvocalic sounds usually contain more information in the higher

frequencies than the vocalic sounds and therefore it is advisable to

extract more features from the higher frequencies (25), (27), (50), (56),

(Fig. 4.8 and Fig. 4.9).
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;.4.3.2.I.

25.

J rze.

.
vJ ~'0 IS.

~ {c hJ •

\~
....

If I 151s.

9.
9. I. z. 3. 4. l- 2. 3.

F'r'Qutncy In kHl rr'Qu.ncy in kHt

Fig. 4.9 Spectrograms of three Nonvocalic Sounds (compare with the spectra

of the vocalic sound in Fig. 4.7)

Data obtained from analysing the nonvocalic sounds proved that the

following three frequency bands will contain information which can be used

to identify the different nonvocalic sounds,

a) The high mid-frequency energy-band (HME, 2000 to 2750 Hz),

b) the low high-frequency energy-band (LHE, 2750 to 3750 Hz) and

c} the very high-frequency energy-band (VHE, 3750 to 4500 Hz).

The frequency energy-bands are of the form:

n
i2

Ei = 1O.logl O. (1: Xi (k)
k=ni1

}/K.
1

4.7

where E. is the .th
1

1

E. = VE, LE, ME, HE, HME, LHE, VHE,
1

frequency of E. , K. = n. 2-n. 1 , X(k)
1 1 1 1

and,

n = BW.(N/2+1)/(S/2)

frequency energy-band,

ni 1 is the minimum and ni2 the maximum

is the k
th value of the power spectrum

4.8

N is the number of samples used for each power spectrum (N=128, Eq. 4.6), S

is the sampling rate (S=10 kHz), SW is the frequency-range of the frequency
energy-band in Hz.
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Table 4.4 shows a sumrna~y of the features being used for the recognition of

the two types of sounds.

Features Vocalic sounds nonvocalic sounds

Voicing

acoustical

Phonemic

Total Energy (TE)

Zero Crossings (ZC)

both above mentioned features and

Voiced-frequency Energy-band (VE, 80 - 300 Hz)

Low-frequency 'Energy-band (LE, 300 - 1000 Hz)

Mid-frequency Energy-band (ME, 1000 - 3200 Hz)

High-frequency Energy-band (HE, 3200 - 4500 Hz)

all above mentioned features and

First Formant (fl)

Second Formant (f2)

Third Formant (f3)

High Mid-freqency Energy­

band (HME, 2000 - 2750 Hz)

Low High-freqency Energy­

band (LHE, 2750 - 3750 Hz)

Very High-freqency Energy­

band (VHE, 3750 - 4500 Hz)

Table 4.4. Features of the different recognition stages
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4.2.2.2 Pattern Similarity

I
DIGITAL SIGNAL INPUT

(200 frames)

1

VOICING1FEAlURES

DISTANCE
MEASUREMENT VOICING

between the REfERENCE
INPUT and the PATTERNS

REFERENCE FEAlURES

SILENCES

9<CED "d "'''''''EO SOU'OS

ACOUSTlCAL.I, FEAlURES

DISTANCE
ACOUsnCALMEASUREMENT

between the REfERENCE
INPUT and the PATTERNS

REfERENCE features

VOWELS and VOWEL-UKE SOUNDS A NONVOCAUC SOUNDS

1 1
VOCAUC .J L NONVOCAUC

FEAlURES '1 r FEAlURES

PHONEMIC1SEGMENTS

DISTANCE
MEASUREMENT ACOUSTICAL
between the REFERENCE

INPUT and the PATTERNS
REFERENCE FEAlURES

...1
'1

STRING of PHONEMES

Fig. 4.10 Pattern similarity

In the system proposed by the author two classifications are done before

the actual phoneme can be recognized, (Section 4.2.2 and Fig. 4.10)

therefore it is necessary to monitor the pattern similarity at three

different points in the system. The voicing , the acoustical and the

phonemic features of the input pattern need to be checked with the

reference patterns for pattern similarity.
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Each frame of the input pattern is matched with the necessary reference

patterns (templates), to find the distance measurement between the input

pattern, B, and reference patterns, A, (Section 3.3.3 and Section 3.2.2.2).

The pattern similarities are obtained by calculating the distance between

the features of the input frames and that of a specific set of reference

patterns, which are of the same class (voicing or acoustical class) as the

input frames (patterns).

For example, the word "four" If 0:1, (Fig. 4.13). First of all the

voicing features are extracted (Section 4.2.2.1 A) from each one of the

frames and the distance between the voicing reference templates and the

frames is calculated (Fig 4.10) to classify the frame to an appropriate

voicing class (a description of how the classification works can be found

in Section 4.2.2.2 and Section 4.2.2.3). In this case the first number of

frames will be classified as silences, the second lot as unvoiced sounds,

the third couple of frames as voiced sounds and the final number of frames

as silences again (that is if the word is pronounced in an isolated

manner) •

Now the acoustical features are extracted (Section 4.2.2.1 B) and the

frames labelled as unvoiced sounds are matched to the unvoiced acoustical

reference templates and the voiced frames are matched against the voiced

acoustical reference patterns (Table 4.3) to find the pattern similarity

between the test frames and the specific range of reference templates

(Fig. 4.10). The system will now have segmented and classified (see

Section 4.2.2.2 and Section 4.2.2.3 for explanation of classification of

the frames) the two sets of frames into their acoustical group, the

unvoiced frames as unvoiced fricatives (UF) and the voiced frames as vowels

(VO) (Section 4.2.2.1 B).

The phonemic features are' extracted (Fig. 4.6 and Fig 4.8) and the third

pattern similarity takes place (Fig 4.10). In this case the distances

between the features of the UF segments and UF phonemic reference templates

has been calculated to find the correct fricative. The same is done with

the features of the VO segments to recognize the correct vowel.
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In the present system a weighted Euclidean distance measurement is in use

(57) (Section 3. 2• 2 B) and is of the form:

and N the maximum

jth feature of the

th . th fe 1. re erence

where d. is the distance
1.

number of features in the

reference

template,

N

= E (W ..• (B .-A .. ) )
2

j=1 l.J J l.J .

of the i th reference template

templates, A. . and W. . are the
l.J l.J

vector and the weight vector, respectively, of

B. is the jth feature of the input (test)
J

pattern to

4.9

be

classified. Each feature of each template (reference template) has a

weight W.. which is proportional to the standard deviation of the
l.J

respective features.

The reference vector can actually be described as a mean vector and the

weight vector as a standard deviation vector:

and

A. 0

l.J

2
W..
~J

N.
1.

( LT. ·k)/N.
k=1 l.J 1.

N.
1. 2

= ( E (T. ok-A .. ) )/(N.-1)
k=1 ~J ~J ~

4.10

4.11

where N.

the i tfi

training

is the maximum number of training patterns being used to obtain

template (reference pattern) and T
ijk

the jth feature of the kth

pattern of the i th template.
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This means that A.. is the mean of a number of training patterns and W.. is
~J ~J

the standard deviation of these training patterns and thus from Eq. 4.10

and Eq. 4.11:

2
W•.
~J

4.12

The values for i and j change for each one of the three distance

measurements (voicing, acoustical and phonemic distance measurement).

WEIGHT REFERENCE PLATES FEATURES

W.. minimum i j
~J

Voicing 3 2

Acoustical 3 V 6

3 U 6

Phonemic 4 UF 9
,
4 US 9

4 VF 9

4 VS 9

6 VL 9

9 VO 9

Table 4.5 Different values for i and j for Eq.4.12

The minimum number of templates (minimum i) is based on the phonemes in

Table 4.3 (Section 4.2.2.1). The values of i are given as minimum values,

because there might be times when the phonemic, the acoustical or the

voicing classes need more than one template to identify a specific class,

as in the cases where the pronunciations of a phoneme change so

drastically, because of the following phoneme, that by averaging two

pronunciations the recognition rate will worsen.



4.2.2.3 The Decision Rule

I
DIGITAl SIGNAl INPUT

(200 frames)
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DECISION RULE
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1 VOCAUC SOUNDS RUl.£ NONVOCAllC SOUNDS1
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FEAnJRES IFEAnJRES STEADY-STATE
SEGMENT

PHONEMIC1SEGMENTS

SMALLEST
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DECISION

RULE

.I
1

STRING of PHONEMES

Fig. 4.11 Decision rule
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Similar to the pattern similarity section (Section 4.2.2.2) the decision

rule will take place at three points in the proposed system (Fig. 4.11).

This decision rule takes place directly after the distance measurements

have been calculated.

In all three cases the input patterns are labelled by the same name as the

name of the template which gives the minimum distance according to Eq. 4.9,

Eq. 4.10 and Eq. 4.11. This method is also called 'the nearest neighbour'

rule (Section 3.2.3), (50), (57), (58).

However, to. identify a phoneme some pre-processing needs to be done and

this is to find the steady-state segment of the input pattern (frames)

section 4.2.2.1 B 11 explains how the phonemic segments are obtained.

Once the six acoustical parameters (ZC, TE, VE, LE, ME and HE) are

extracted from the input signal, and the frames are classified into the

acoustical groups (Section 4.2.2.1 B and Table 4.3), these classified

frames must now be segmented into phonemic segments (a group of frames

which belong to the acoustical group).

recognized from these phonemic segments.

The actual phoneme will be

From previous studies (25), (27), (51), (59) it is acceptable to assume

that the minimum duration of a phonemic segment will be 30 ms and therefore

these phonemic segments will always be longer than three frames (three

times 12,8 ms, 38,4 ms). Bearing this assumption in mind, whenever a

frame differs from both its neighbours it is taken that this different

frame is wrongly classified and it is then corrected, by classifying this

frame to the same acoustical class as its neighbours.

Adjacent frames with the same acoustical label are grouped together to form

a phonemic segment and segment boundaries are inserted wherever the present

frame has a different label from the previous frames. In the cases where

two contiguous phonemic segments belong to the same acoustical category

(for example the "i"-sound III and the "ou"-sound lel of the word

"previous" Ip r i: v I e si, both are vowel-sounds), the segment boundary

will be missed. However, these segments can be detected on the basis of

their long duration. These long segments are divided into two equal

segments and treated independently as two separate segments. The maximum
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duration of any segment is taken as 10 frames of 12,8 ms each. In other

words, any segment longer than 128 ms is treated as two separate segments.

In the case where the segment is longer than 256 ms, the system will first

process the first 256 ms as two segments and then proceed to the rest of

the original segment. The system will recognize, these segments with the

help of six more features, as one of the phonemes the system is trained on.

The steady-state segments are calculated in two steps. The middle 20% of

the segment is considered as steady-state segment. Then for the vocalic

sounds the average value of the second formant frequency is computed over

the middle 20% of the segment. And the steady-state segment is then

extended in both directions until the deviation of the formant exceeds 5%

of the averaged formant value. In the cases where the steady-state

segment exceeds 40% of the original segment, the middle 40% of the segment

is considered as the steady-state segment. In the cases of nonvocalic

phonemic segments, the middle 40% of the segment will be taken as the

steady-state segments (Fig. 4.12).

for I < j < J
1-2 1-1I 11 I 10

rlSTEADY-STATE SEGMENT, VOCAUC SEGMENTr-- MIDDLE 20~---l 1-14 < i < I

deviation > 57- deviation > 57-
fl

90 92 94 96 99 101 100 102 105 108 108 f2...

I f.3
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J-2
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E
A
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VOCAUC FRAMES for 1 < i < 1

for 1 < j < J
1-2 1-1o

r--STEADY-STATE SEGMENT-----j NONVOCAUC SEGMENT
MIDDLE 407. 1-14 < j < I

I I VHE

91 90 92 I94 96 99 101 102 100 1105 108 LHE...
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NONVOCALIC FRAMES

Fig. 4.12 Segmentation of the sounds

for 1 < i < I
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All the features of the steady-state segment are now averaged to obtain the

averaged features of the original segment. These averaged parameters are

used to calculate the distance measurement of the phonemic segment and are

then used in the decision making process.

I
DIGITAL SIGNAL INPUT

frame~ af the word If 0:1
J,

VOICING
fEATURE EXTRACTION

(TE ond ZC)

,L

PATTERN REFERENCE

SIMILARITY PATTERNS

151 SI SI SI/. ISI SI SI SI SI/ <$;;,RUt!

IU U U U U U U/. ,NvvvvvI

ACOUSTICAL
fEATURE EXTRACTlON

(ZC. TE. VE.
LE. ME and HE)

"
PATTERN REFERENCE

SIMILARITY PATTERNS

,No VO VO VO vo VOI ~~ IUF UF UF UF UF UF UFI

J. RUt! 1
VOCALIC NONVOCALlCfEATURE EXTRACTION

J SEG- ~ FEATURE EXTRACTION
(ZC. rE. YE. LE. ME

(ZC. TE. YE. LE. ME. HEHE. f1. f2 and f3) 1MENTATION I
HME. LHE and VHE)

,NO VOI JfUF UF/

PHONEMIC
PATTERN SIMILARITY REFERENCE

and DECISION RULE PATTERNS

.1
I

151/. IfI. 10:/. ISI/

I

Fig. 4.13 An example of how the proposed algorithm uses three feature

extractions, pattern similarities and decision rules to obtain

the correct phoneme
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4.2.3 Training Process

The training of the system is done with exactly the same program as the one

which has been used for the recognition of the phonemes. The only

difference is that the input pattern is no longer a test pattern,but a

training pattern (Fig. 4.14).

I
FlRST SIX fEATURES

(200 frame,)

I
DIGITAL SIGNAL INPUT

(200 frame,)

..It '"HAND LABEl.. (VOICING)
the fEATURE

fRAMES EXTRACTION

I J..
STRING of HAND LABEllED

PHONEMES PATIERN
REfERENCE

SIMILARllY
and TRAINING PATIERNS

li INPUT from T
_NER ~DECISION

RUl£ SILENCES
VOICED and UNVOICED

SOUNDS
(ACOUSTICAL)

fEATURE

EXTRACTlON

,L

PATIERN
REfERENCE

SIMILARI1Y

INPUT from and TRAINING PATIERNS

T~NER~
VOWELS and VOWEL-UKE SOUNDS NONVOCAUC SOUNDS

DEC1S1OH.J, RUl£ J,

(VOCALIC) (NONYOCALlC)
fEATURE

" SEG- I fEATURE
EXTRACTlON -I MENTATION I EXTRACTlON

J
(PHONEMIC)INPUT from REfERENCEPATIERN SIMILARITY

~NER TRAINING PATIERNS
and DECISION RULE

il ""'"STRING of PHONEMES

Fig. 4.14 The training process
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In these types of systems (phoneme recognition systems (27), (49), (60),

(61» it is necessary to have a proper knowledge of each one of the

training patterns. In other words everyone of the 200 frames (records)

of the training pattern (each training pattern like the test patterns is

stored in files consisting of 200 records, Section 4.2.1> must be hand

labelled before the system can be trained. This is done with the help of

two programs: a graphics program and the program mentioned above.

The graphics program, written by the author, can display the actual input

signal, draw a three dimensional spectro-gram of any section of the signal,

average any section of the spectro display and draw it and can also display

a number of the previous mentioned features the ZC, TE, VE, LE, ME and the

HE (Section 4.2.2.1 A and E, Table 4.4).

Fig. 4.15 shows example graphs of the graphics program and demonstrates how

the displays can help to identify first of all where the the words are and

secondly where to find the actual phonemes.

Ill. ,-----------------------,

'I I \
I I

s.

10

'"
-5.

silence If I 10: I

I

446. 489. 632. 6;06.

Tim@ in illS

Fig. 4.15 (a) The time domain signal of the word 'four'
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Fig. 4.15 (c) Feature display of the word 'four'
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Fig. 4.15 (d) The frequency spectrums of the phonemes If I and 10:1 (see

also Fig. 4.7 and Fig. 4.9)

After the position of the phonemes is established from the graphs, it is

now necessary to label each frame. This is done by making a printout of

the first six features (Table 4.6) with the frame's number next to it, with
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the help of the recognition program (sys tem) • The system is written in

such a manner that the six features of all the frames can nC7ti be printed on

either a computer terminal or a printer.

Once the printout of the first six features of the 200 frames is made, it

is fairly easy to identify the phonemes (Table 4.6).

ZC TE VE LE ME HE

2 14 48 26 19 11

2 15 49 31 22 10 Silence

4 16 50 29 26 13

13 12 41 28 32 20

19 13 49 26 34 26

18 11 41 29 33 21 If I
22 22 34 37 45 39

23 28 46 46 52 36

14 24 50 50 47 17

4 41 73 68 48 22

6 43 72 71 52 25

5 43 72 71 48 25

6 42 73 70 45 22 10:1

6 40 73 69 42 22

5 41 72 70 41 22

6 40 73 70 42 21

3 38 71 65 37 17

3 28 63 51 37 15
8 9 36 30 27 13 Silence
8 8 39 28 28 10

Table 4.6 Computer printout of the feature of the word "four" (these
values are not the exact values, but rather proportional to the
correct values)
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The frames are now hand-labelled and the system is ready to be trained.

Once again the procedure is done in three stages and in exactly the same

way as the recognition process. Although there are two ways to achieve

this, the author preferred the second method. The first method is to

train all the voicing templates with numerous input patterns and for the

time being to forget about the rest of the stages. Then train all the

acoustical templates and finally train all the phoneme templates. The

second method takes an input pattern and trains the system to recognize

this input pattern in all its stages (voicing, acoustical and phoneme).

In other words the system will be able to identify in which voicing and

acoustical class each phoneme is and also to recognize the actual phonemes.

This procedure is continued until the system can recognize and identify all

the necessary voicing classes, acoustical classes and phonemes.

I
INPVT DIGITAl. S1~NAL

VOIC:NG FEATURES

ZE.~O CROSSINGS (ZC)

TOTAL ENERGY (TE)

EXTRACT the VOICING

fEATURES
FRAME by rRAME

from the

INPUT DIGITAL SIGNALS

VOICiNG CLA,SSC:S

VOICED SOUNDS (V)

UNVOICm SOUNDS (U)

SILENCES (511

INPUT from

the TRAINER
USING the HAND LASEll..E!J

PHONEMES

DlSiANCE MEASUREMENT
between the

INPUT and the

REr~ENCE FEATURES

REFERENCE
PATTE.~NS

allready TRAINED

SI1.ENCES
NEW REr-S=<ENCE ?ATTE.~N

\"ClICED and UNVOICED SOUNDS

I

Fig. 4.16 The training of the voicing templates

The training procedure from here onwards is very similar to that of the

to do a

the

many

trainer has

system program is run,
the training pattern and how

recognition procedure for the system, although the

number of extra tasks (Fig~ 4.16). When the
system is notified of the name of
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features must be displayed to the trainer's display unit. The system will

now try to identify in which voicing category the first frame of the

training pattern is, but because the templates contain zero features the

system will come back and ask the trainer if these features of this frame

are going to be a new template, or if they are already correctly

classified. The computer always assumes that the features of the first

frame are going to be a new template, for obvious reasons. The system

will now ask the trainer what the name of the new template is. Once the

trainer enters a name the system will then store two values (Eq. 4.13 and

Eq. 4.14) for each feature of the frame as the parameters of the first

template. The two values are used to obtain the weight vector and average

features of the templates so that when the system is in recognition mode

the weighted Euclidean distance between the templates and the input

patterns can be calculated (Eq. 4.9). For each one of the features (j)

the following three values are stored in the templates (i):

The sum of the squares of all features,

5M2. ,
~J

N.
~ 2

= ET. 'k
k=1 ~J

4.13

The sum of all the features,

5M..
~J

N.
~

ET. 'k
k=1 ~J

4.14

where N. is the maximum number of training patterns
th ~

the i template (reference pattern) and T., is the
th ~Jk

k training pattern of the i th template.

being used to obtain
.th fJ eature of the
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stored with these values are the name of template, the number of frames

used to obtain these features and the error-limit.

a) The number of frame's is the total number of frames or segments used. for

the training of the template is (CNT), N. (Eq. 4.10. and Eq. 4.12).
1.

b) The maximum weighted Euclidean distance (Eq. 4.9) calculated between

the features of the training patterns and the averaged features already

stored in the templates are called the error-limit (EL). When the

first frame's features are stored in the template the EL is set to a

preset small value, because it is impossible to calculate the Euclidean

distance when the templates contain no features.

After the first frame has been trained on to a template the template is no

longer empty and the Euclidean distance can be calculated (Eq. 4.9).

Every time a new frame is trained onto a template the Euclidean distance

between the features of this frame and the parameters of the current

template is stored as the new EL (error-limit) if this distance is more

than the previous EL. This is only done when the trainer told the system

that the new . frame is actually of the same type as the template it was

matched to. In the case where the system thinks the the new f:r;ame is of

the same type as the template, the system can be corrected by the trainer

by either specifying the correct template's name, or telling the system

that the frame is a completely new template. The system will then ask the

trainer what the name of the new template is and then create a new template

with the name the trainer specified in exactly the same way it was

explained above.

For example, if the frame to be trained, has a minimum distance to' the

voiced template and this distance is less than the EL of the voiced

template, the present frame will be recognized as a voiced frame and the

system will not ask the trainer whether the frame is an old or new

template. The system will accept that the frame is voiced (Fig. 4.19).

On the other hand, if the minimum distance between the frame's features and

the template's parameters is more than EL and the template is the correct

one, the system will take the features of the frame and use it to update

the parameters of the template by adding the squared features to SM2, add
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the features to SM,increment CNT and store this new minimum distance as

the new EL. It must be remembered however, that each feature has its own

three parameters which must be updated. But when the trainer corrects the

system and tells it that the frame is actually an unvoiced sound, the

system will create a new template.

I
INPUT SIGNAL of the VOICa and UNVOIC::::: SOUNDS

ACOUSTICAL C~SSESACOUSTICAL FEATURES

VOICED FREQUE:~CY ENE:::GY BAND (VE)

LOW rRECUENCY t:N::'''GY BAND (LE:)

MID rREQUENCY EN::'''GY BAND (ME)

HIGH FREQUE:~CY ENERGY BAND (HE)

and the two

VOIC:NG ;:-~TURES (ZC and 7E)

CALCULATE the ?OWER

SPECTRUM of each
FRAME of the

INPUT DIG:TAL SiG~lALS

EXTRACT the four new

ACOUSTICAL ~TURES
from the

POWER SPECTRUM

VOICED SOUNDS

VOWELS (VO)

VOWEL-UKE (VL)

FRICAT1VES (VF)

STOPS (US)

UNVOICED SOUNDS

FRICATIVES (UF)

STOPS (US)

INPUT from the
TRAINER. USING

the HAND l..),BEU.ED
P!-!ONEMES

DISiANCE ME.l,SURMD/T

b.etween the

INPUT and the

R~~ENCE FEATURES

REFEROlCE
PATT'ERNS

allready in the
TEMPLATE

VOCAUC SOUNDS
r~TURES and POWER SPEC7RUM

I

NON '10CAUC SOUNDS
POW::'" SPEC';'RUM and FEATURES

I

Fig. 4.17 Training of the acoustical templates

The next step in the training procedure of the specific frame is to train

the system to identify what type of acoustical class the frame is

(Fig. 4.17). Exactly the same method is used as mentioned above. The

only difference is that more parameters are used in each one of the

acoustical templates, and of course there are more acoustical templates

than voicing templates.
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Fig. 4.18 Training of the phonemic templates

The final step is the training of the phoneme templates. Before the

phoneme templates can be created, the steady-state segment of the

phonemical segment must be calculated (Section 4.2.2.3 and Fig. 4.18).

This steady-state segment consists of a number of frames of the same

acoustical class and the features of these frames are then averaged to

obtain a single set of features. The rest of the training procedure is

again the same as the training of the voicing templates, the only



88

differences are that once again more features have been used and the input

pattern is more than just a single frame. It is an averaged frame.

Let us continue with the example of the frame which was labelled 'voiced'

(Fig. 4.19). The system now extracts the four acoustical features and

then tries to identify in which acoustical class the frame is. In the

case where the acoustical templates are still empty, the system will ask

the trainer what the acoustical name of the of the present frame is. The

system will show on command the six features of the specific frame so that

the trainer can more easily identify the frame. The system will now

create the first acoustical template. In this case the frame could have

been a vowel sound.

But when the acoustical templates are not empty and the system identifies

the frame as a vowel sound, but the Euclidean distance between the

template's parameters and frame's features is more than the EL of the

template, the system will ask the trainer if this frame is correctly

identified or if the frame belongs to a new acoustical group which has not

yet been trained. On the answer that the frame is correctly identified,

the system will update the parameters of the template (six SM2's, six SM's,

the eNT, the EL and the name of the template). If the trainer specifies

another template, the system will update the parameters of the other

template with these new features. In the case where the trainer tells the

system that the frame belongs to a new class, say vowel-like, the system

will create a vowel-like-template with this frame's features.

with the addition of the three phonemic features (f1, f2 and f3) the

average steady-state segment can be recognized as the phoneme 10:/. When

the phonemic templates are still empty the system will ask the trainer what

the phoneme name of the segment is and then create the 10:/-template. As

in the previous cases, once the templates contain parameters, the system

will only recognize a segment to a template when the Euclidean distance is

less than EL. In the cases where this is not the case, the system will

again ask the trainer what to do. The system will update the template if

the segment was correctly recognized, otherwise the system will create a

new template or update the correct template.
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Fig. 4.19 Example of how the training procedure is done
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4.2.4 Phoneme to Text Conversion

Once the recognition mode of the system recognizes the different phonemes

of the test pattern, these phonemes are stored in a file. This file

containing the phonemes is then read by a phoneme to text conversion

program which will convert the phoneme strings to a more readable form.

The program is actually part of the decision making process, but because

the program is not part of the intial system it is dealt with in this

section. Unlike the system which can be used to recognize any phoneme

that is trained on the system, this conversion program can only be used to

convert the testing words ("zero" to "nine") to text. To enlarge the

capabilities of the program is not a difficult task. The conversion

program works in such a mannarthat the conversion of the phoneme is

sometimes dependent on the previous phoneme.

Let us consider the three words which contain the "n"-sound 1nl,

a) o~e, Iw A !!!'
b) seve~, Is Eve El and

c) nine, I~ aI !!! (Table 4.2).

From these three words it is clear that to convert the phoneme 1nl to text

it is necessary to have two conversion rules. The first rule is to add an

"e"-letter onto the "n"-letter when the phoneme before the 1nl is an IAI or

an laI/. The second rule is that all the other 1nl-phonemes are directly

converted to "n"-letters.
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The algorithm for the conversion of the 1nl phoneme to text can be seen in

Fig. 4.20.

STRING OF ?HONEMES
FROM PHONE.'.lE RECOGNiTION

PROGRAM

NO

YES

as the TEXT for 1nl

PHONE = 1nl

YES

PREY • /A/
Of'

PREY - /01/

CONTlNIUE to rest
;>--------o-f-th--e PROGRAM

NO

OUTPUT
"nU

as the TEXT for 1nl

Fig. 4.20 Conversion of the 1nl phoneme

This program has other functions as well and one is to merge phonemes which

follow similar phonemes into one phoneme. Another feature of the program

is that silences are denoted by spaces between the words, except in the

cases where the silence is followed by a plosive-sound. for eXartq:)le the ItI
phoneme in the word "eight" (Section 2.1.3.3 C).

Example 4.2 is:

input phoneme string to the conversion program,

/silencel, lell, lell, lell, Isilencel, Itl,

after merging,

leI/, Itl,

output of the program,

ei, ght (Table 4.7).
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The output of this program is a more readable one than the phonemic

transcriptions of the recognition system. It must be noted however, that

the system up to this stage has no knowledge of the meaning or even the

correct spelling of any word. The program only works according to the

rules and is unable to detect phonemes which are deleted or even phonemes

which are inserted.

Example 4.3 is:

If the input phoneme string of the program is the following,

/silence/, /f/, /f/, /0:/, /0:/, /u:/, /silence/,

and after the merging,

/f/, /0:/, /u:/,

the output will be,

f, our, wo (Table 4.7).

This method of converting sounds (phonemes) to text is a very common

process which everyone of us uses when we are writing a word down on

paper, especially the words with a difficult spelling. We do not remember

the spelling of the word, we merely use some simple spelling rules to

convert the sound of the word to text.
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PREVIOUS PHONEME

Iwl
Ikl
lA!
laIl
larl

lerl

CURRENT PHONEME TEXT OUTPUT

laIl five i

Irl six i

IEI seven e

lerl eight ei

li:1 three ee

Irel zero e

leul zero 0

10:1 four our

lu:1 two wo

Iwl one nil

Ik/ six nil

IAI one 0

Isl six x

1nl one ne

1nl nine ne

Ivl five ve

1nl nine n

Ivl seven v

Ithl three th

ItI eight ght

ItI two t

Irl three r

IfI four f

Isl six s

Table 4.7 Conversion rules for the phonemes of the words "zero" to "nine"
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5
Recognition Rates of Various Sections of the System

5.1 Introduction

In order to obtain the recognition rates it is necessary to have a set of

words to train and another set of words to test the system on

(Section 4.2.1). Unfortunately it was impossible to capture and test the

data in real- time using the HP CAMAC system and therefore the amount of

training and testing of words was severely limited. At the time the

system was developed and tested no ADC was readily available to capture the

data. However, the HP CAMAC system proved to be reliable but rather

tedious to use and speech samples were limited to 2,56 s. For this reason

it was decided to digitize the words "zero" to "nine" (Section 4.2.1) and

store them in 20 data files. Twenty of these words were used for the

training procedure and all forty words for the testing of the system

(Table 4.2).

5.2 Voicing Recognition Results

For the detection of the voicing class of the words two features were used,

the zero-crossings (ZC) and the total energy (TE) (Section 3.2.1.3 and

Section 4.2.2.1).
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1 f th two features of the three voicing classes canThe averaged va ues 0 ese

be seen in Fig. 5.1 and Table 5.1 •

templates (Table 5.1).

These values were used as the voicing

FEATURES

VOICING ZC TE

mean deviation mean deviation

SI1 5 1 13 8

SI2 16 2 11 4

U 19 5 19 7

V 8 3 32 6

Table 5.1 Voicing features (TE is measured in dB)

1.00

0.75

0.50

0.25

SI1 VOICED 512 UNVOICED

0.00 L _

o ... 6 8 10 12 ,... 16 18 20 22 2... 26

NUMBER of ZERO CROSSINGS per FRAME

VOICED512 511 UNIIOICED
1.00

0.75

0.50

0.25

0.00

0 3 8 9 12 15 18 21 2... 27 30 33 36 39

TOTAL ENERGY per FRAME in dB

Fig. 5.1 The mean and standard deviation values of the features for the

different classes.

Two types of silences are tabulated in Table 5.1. Silence (SI1) has a

very low ZC rate of about 470 Hz. This frequency correlates very well

with results of experiments done by L R Rabiner and M R Sambur (37) taking

into account the fact that these experiments counted both the negative and

positive zero crossings unlike this thesis (Section 4.2.2.1 A, Eq. 4.2).
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The other silence (SI2) is a soundless whisper (Section 2.1.3.3 D 3).

These whispers are usually present after a voiced sound (Fig. 5.2). It

seems that the speaker1s vocal cords stop vibrating (Section 2.1.2.1) but

the speaker is still exhaling air and thus generating a whisper. Normally

whispers consist of high frequencies, and therefore the ZC rates of silence

(SI2) are higher than that of voiced sounds (Fig. 5.1).

Izl IIel lrol leul

ze

43. J r--
TE 22 • A~

"~...-'----'--
dB e. ! ! !

676. 886.

~ ].''"---....~
, !

1096. 1306,

Time in ms

Fig. 5.2 ZC 'and TE of the word "zero", /z le r eu/

186 segments were tested and of these only 17 voicing segments were

completely misrecognized giving a voicing recognition rate of 90,8%. This

rate does not take account of extra silences which are detected in the

decision rule section of the system (Section 3.3.4)'. Furthermore the /z/

was trained as a unvoiced sound, because the speaker1s /z/ (ZC=19,

TE=21 dB, Fig. 5.2) had similar features to the unvoiced sounds (ZC=19,

TE=19 dB). To try and train the /z/ as a voiced sound would decrease the

recognition rate.

RECOGNIZED

HAND LABELLED SI U V

SI 42 - 1

u 7 34 -
V 6 3 93

Table 5.2 The voicing recognition rate
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5.3 Acoustical Recognition Rates

six features (TE, ZC, VE, LE, ME and HE) are used to recognize the six

acoustical classes (Section 4.2.2.1 B and Table 4.3). In Table 5.3 the

values of the acoustical templates were used to retrieve the acoustical

classes of the frames. These values were calculated by the systems during

the training process (Eq. 4.11 and Section 4.2.2.1).

ZC TE VE LE ME HE

mean dev mean dev mean dev mean dev mean dev mean dev

VF1 5 3 31 9 63 10 54 11 40 4 33 4

VF2 22 1 20 1 45 4 42 6 42 1 32 1

UF 17 6 24 4 48 12 47 7 45 4 34 6

VL 5 1 33 6 66 5 55 9 41 7 20 5

VO 6 1 42 1 72 1 68 2 49 1 34 2

dev - deviation

Table 5.3 Values used in the acoustical templates (energy bands are

measured in dB)

The fricative /v/ was classified as VF1 and fricative /z/ as VF2. The

voiced fricative /z/ and the unvoiced stops ,,1t/ and /k/, were trained as

unvoiced fricatives, because the error distance (Section 4.2.2.2) between

the unvoiced sounds and these sounds was too small for the sounds to be

unique.
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Fig. 5.3 shows the different features of some of the phonemes that were

trained as unvoiced fricatives.
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Fig. 5.3 (a) The features of the unvoiced phoneme Isl
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Fig. 5.3 (b) The features of the unvoiced phoneme If I
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/Z/
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Fig. 5.3 (c) The features of the phoneme /z/

with this method of combining the unvoiced stops, the one voiced fricative

(VF2) and the unvoiced frictives as one acoustical class, produced an

acoustical recognition rate of 82% (Table 5.4) • It must be noted that

only the acoustical classes of the phonemes in the words "zero" to "nine"

have been used in the training process (Compare Table 4.2 with Table 4.3).

RECOGNIZED

HAND LABELLED VO VL VF UF

VO 55 1 3 -
VL 10 10 8 -
VF - 1 8 -
UF - - - 34

Table 5.4 The confusion matrix of the acoustical classes

From the results in Table 5.4 it can be seen that the VL class segments

have the lowest recognition rate of 64%. The reason for this is probably

that the variations in the features of VL phonemes vary widely and

therefore more distinct features must be used.
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In section 2.2.4 it is mentioned that the neurons at the genticulate level

of the hearing process can detect two different acoustical classes.

Therefore a possible solution might be to reduce the number of acoustical

classes used in the system.

5.4 Recognition rates of the Phonemes

To improve the phoneme recognition rate the system was trained and tested

with three different sets of templates, the vowels (Template1 with 11

vowels), the vowel-like phonemes and the voiced fricatives (Template2 with

5 phonemes) and also the unvoiced fricatives (Template3 with 5 phonemes).

5.4.1 Vowels (Template1)

A total of nine parameters (ZC, TE, VE, LE, ME, HE, and the first three

formant frequencies f1, f2 and f3) were used to train and recognize a

vowel, as previously mentioned in Section 4.2.2.1 C (11). Results

obtained from the training process (Table 5.5 and Fig. 5.4) showed that the

formant frequencies compare well with the results in Fig. 2.4 and Fig. 2.5

in Chapter 2.

first formant second formant

i: 301 2 690

I 461 2 306

E 538 845

0: 538 768

e 461 306

u: 307 922
A 691 076

aI 384 846

eI 691 2 229

le 304 1 306

eU 768 846

Table 5.5 The first two formant frequencies in Hz



SECOND FORMANT FREQUENCIES (f2) in kHz
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Fig. 5.4 Formant Frequencies (f1 against f2)

The confusion Table 5.6 shows a vowel recognition rate of 71,4%.
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RECOGNIZED

HAND LABELLED le eU A u: I 0: aI E eI e

le 1 - - - - - - - - 1

eU - 2 - 1 - - - - - -
A - 1 1 - - - 1 - - -
u: - - - 3 1 - 1 - . - -
I - - - - 5 - - - 1 -
0: - - - - - 4 - - - -
aI - - - - - - 5 - - -
E - - - - - - - 1 2 -
eI - - - - - - - - 3 -
e - - - - - - - - - -

Table 5.6 Results of the vowel recognition rate
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5.4.2 Vowel-like and Voiced Fricative Phonemes (Template2)

The vowel-like sounds use exactly the same features as the vowels

(Section 5.4.1), but the voiced fricatives use three other features (HME,

LHE and VHE) in place of the three formants (Section 4.2.2.1 C (Il) and

Table 4.4). Results obtained from tests showed that the VL and VF

recognition rate was 75.6% and are tabulated in Table 5.7.

RECOGNIZED

HAND LABELLED z v r w n

z 3 1 - - -
v 1 5 - - 2

r - 5 4 - -
w - - ~ 4 -
n - - - - 12

Table 5.7 Confusion matrix of the VL and the VF phonemes

The worst confusion was between the /r/ and the /v/. This was actually an

error that repeated itself, the /r/ in the word "three" was constantly

recognized as a /v/, because the /r/ in "thE,ee" follows the unvoiced /th/

phoneme which contains a great amount of high frequency energy (Fig. 4.9)

and some of this high frequency energy continues into the /r/. On the

other hand, the /r/ in the word "zero" follows a voiced sound IIe/ which

does not contain the high frequency energy and therefore is not recognized

as a voiced fricative. Thus to improve the recognition rate the system

can be trained with two different /r/ templates or the phoneme to text

conversion program can correct the error.
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5.4.3 Unvoiced stops and Fricatives (Template3)

The features used for the recogintion of the US and UF are similar to those

of the voiced fricatives (Section 5.4.2 and Table 4.4). It must be noted

that because of the small error distance between the two acoustical classes

(US and UF) all the phonemes were trained as UFo A recognition rate of

71,8% was calculated from the test results (Table 5.8).

RECOGNIZED

HAND LABELLED th f s t k

th 5 - - - -
f - 4 6 - -
s - 1 13 - -
t 1 - 4 3 -
k - 1 - - 3

Table 5.8 Test results of the UF phonemes

Two cases given in the above results have poor recognition rates, the If I

in "four" and the ItI in "!wo". In both cases they were recognized as a

Isl phoneme. These common errors can be eliminated in the phoneme to text

conversion program (Section 5.5). The average phoneme recognition rate is

in the region of 72,3% and with the help of the phoneme to text conversion

program it can be improved.
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5.5 Phoneme to Text Conversion

The recognized phonemes were entered into the conversion program and the

results are given in Table 5.9 (Examples of twenty words are tabulated).

PHONEME INPUT TEXT OUTPUT

Iz e r eu/, Iz le r eUI zero, zero

Iw eU ni, Iw A nl on, one

Is u:/, Is u:1 swo, swo

Ith v i:I, Ith v i:1 thvee, thvee

Is 0:1, Is 0:1 sour, sour

If aI vi, If aI vi five, five

Is I k fl, Is I k si sikf, six

Is E v ni, Is eI v nl sevn, seivn

leI tl, leI tl eight, eight

In aI ni, In aI nl nine, nine

Table 5.9 The input and output of the conversion program

There is an error in ten of the words in Table 5.9 and this gives a very

low word recognition rate of 50\. However, this is not a true indication

of the system's performance, because in most cases there is only one letter

wrong in the word. If the conversion program is now changed to cater for

common errors, like the ItI in "!WO", the If I in ",four", the Irl in "th£ee"

and the lel in "sev~n", the word recognition rate could be as high as 85\

(Table 5.10).

FOUR COMMON ERRORS

swo

thvee

sour

sevn

Table 5.10 The common errors

CORRECT WORDS

two

three

four

seven
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6
Conclusion and Recommendations

6.1 Conclusions

Speech recognition systems have been investigated and a continuous phoneme

recognition algorithm has been developed. The system was developed and

tested using a HP 1000 mini-computer.

The algorithm used a 128-point Fast Fourier Transform to calculate the

frequency spectrum of the speech signals. A fixed frame length of 12,8 rns

was used and the sample rate was 10 kHz. Two time domain features were

calculated from the frames and the rest of the features from the frequency

spectrum of the speech signal.

Before a phoneme could be recognized, the voicing and acoustical class of

the phonemes had to be identified, by using different features, like zero-

crossings and frequency energy bands. The recognition tests done with

continuous phoneme strings showed that the voicing class recognition rate

was 90,8% and the acoustical classes were 82,0% correctly classified.

This acoustical recognition rate is a reasonable score compared with other

phoneme recognition systems (83,9% (62) and 86,1% (63».

Recognition tests using small reference templates produced an overall

phoneme recognition rate of 72,3%. Although this score compares very well

with scores of other systems (27), (50), the score is less than expected

because of the fairly small templates. On the other hand it must be

remembered that the amount of data used for training and testing purposes

was limited and therefore the values in the templates are not a very good

representation of the phoneme's features.

With the help of a phoneme to text conversion program it would be possible

to have word recognition rate of about 80,0%. This score cannot be

compared with isolated recognition systems, because they do not use
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continuous speech.

The system takes 35 seconds to recognize one data file which contains

2,56 seconds of speech. The system thus takes about 14 times real time to

process the speech.

This proposed system demonstrates that phoneme

answer to the speech recognition problem and

areas.

recognition could be the

isolated practical problem
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6.2 Recommendations

The most important recommendation is the need for a data acquisition system

that is readily available and that can capture more than 2,56 seconds of

speech at a tUne. Such a system is now available in the Department and

this will help any future research in speech signal processing it the

Department tremendously.

The voicing recognition score is relatively low. If this score can be

improved to very near 100,0% the total recognition rate will also improve

significantly. Other methods of obtaining the voicing class of the

phonemes might be investigated.

The frame's features must be optimised so that the best frequency energy­

bands are used and thus improve the acoustical recognition score. There

must be an investigation into how the auditory system classifies these

sounds and what features are the most. important ones. The proposed

recognition system tries to classify the sounds into acoustical classes

like the human thinks the sounds should be classifed and not like the

auditory system classifies the sounds. Once the recognition system can

identify the phonemes' acoustical classes correctly, the phonemes will be

more easily recognised.

In the recognition of the phonemes it might be a good idea to look at the

previous phonemes. The pronounciation of a phoneme can change depending

on its predecessor. The transition stage between the two phonemes can

play a promising role in the recognition of the phonemes. Again it is

necessary to find the most unique features for the recognition of the

phonemes. The frequency energy bands and the sample rate of speech signal

could be changed to notify their effect on the recognition rate. New

methods of calculating the frequency spectrum and formant frequency could

be developed to simulate the cochlea of the inner ear.
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To summarise J it would be very useful to do more investigation on what

features are used in the recognition process of the auditory system and how

the phonemes are classified. The importance of the transition stage

between two phonemes must also be investigated. The phoneme to text

program can be extended to be able to convert more than just the phonemes

of the words "zero" to "nine" to text.
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A
Pronunciation Key of the Phonemes

The symbols used in the pronunciation transcriptions and in the rest of the

thesis are an orthographic representation based on the International

Phonetic Alphabet. The following consonant symbols have their usual

English values: b J d J fJh, k, IJ rn J n J PJ rJ s, t J . V J WJ z. The other

sYmbols and their interpretation are listed in the table below (ll)J (14).

INTERNATIONAL

PHONETIC ALPHABET

ORTHOGRAPHIC

REPRESENTATION

INTERPRETATION

la:!

la: I

laIl
laIel
lauI

laual
IEI

leII

!f.~1

IgI
III
li:1

IIal
Ijl
101

lalll

I "J:I

I 'OIl

lul
lu:1
lual

la:1

lael

laII
lalel

laUI
laUel

IEI
leII
IEel
IgI
III
li:1

IIel
Ijl
101

leUI
10:1

loll
IUI
lu:1
IUel

father

act

dive

fire

out

flour

bet

paid

bear

,[et

pr~tty

see

fear

yes

p~t

note

~rgan

void

p~ll

zoo

If a: the el

lae k tl

Id aI vi

If aIel

laU tl
If 1 aUel
Ib E tl
Ip eI dl

Ib Ee rl

Ig E tl
Ip r I t 11

Is i:1

If Iel
Ij E si

Ip 0 tl
In eU tl
10: g e nl

Iv ol dl

Ip U 11
Iz u:1

Ip Uel



INTERNATIONAL ORTHOGRAPHIC INTERPRETATION

PHONETIC ALPHABET REPRESENTATION

lal lel pott~r Ip 0 t e rl
13:1 IE:I fern If E: nl
IAI IAI cut Ik A tl
ISI Ishl ship Ish I pi
131 Izhl closure Ik 1 eU zh el
ItSI Itshl chew Itsh u:1

Id-Sl Idzhl i aw Idzh 0:1

lel Ithl thin Ith I nl
Ib/ Ithel these Ithe i: zl

191 Ingl siE3, Is I ngl
lal lel bundle Ib And e 11

111
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E3 FORTRAN Program of
a Fast Fourier Transform Algorithm

This program is based on an algorithm proposed by Oppenheim and Schafer

(32). The digital input signal must be stored in a Common Complex aray x

before the SUbroutine FFT is called, the output of the FFT subroutine will

be placed in the same Complex aray x. A 128-point radix-2 FFT was used in

this case.

FORTRAN77

Subroutine FFT

Complex x, u, w, temp

Common /fft/ x(128)

Data pi /3.14159265359/

n = 128

m 7

nv2 n/2

nm1 = n-1

j

Do i = 1, nm1

If (i .It. j) Then

temp x(j)

x (j) x<i)

x(i) temp

End If

k = nv2

Do While (k .It. j)

j j-k

k = k/2

End Do

j = j+k

End Do

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022



Do 1= 1, m

le = 2**1

le1 le/2

u= (1.0,0.0)

w = cmplx(Cos(pi/Float(le1», Sin(pi/Float(le1»)

Do j = 1, le1

Do i = j, n, le

ip = i+2**(1-1)

t = x(ip) *u

x(ip) x(i)-t

x(i) x(i)+t

End Do

u = u*w

End Do

End Do

Return

End

113

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039
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~ Algorithm for
the Estimation of the Formant Frequencies

This algorithm is based on work done by Schafer and Rabiner (53). The

method uses a peak-picking method to obtain the formants J the peak-picking

is done on the smoothed spectra of the input speech signal.

FIND ALL PEAKS in the
SPECTRUM and RECORD

FREQ. ans LEVEL

fOAMP=LEVEL of the
HIGEST PEAK in the
RANGE 0 to 900 Hz

fl =LOCATION OF HIGHEST
PEAK in fl REGION

flAMP=LEVEL of PEAK

EXPAND and ENHANCE NO
REGION 0 to 900 Hz
fl =HIGHEST PEAK

in fl REGION

YES

YES

flAMP=fOAMP-8,69 dB t------~

fl has been
PICKED



115

YES

SEARCH REGION fL to
f2MX. f2=LOCATION of

HIGHEST PEAK for which
f1AMP-f2AMP EXCEEDS
the THRESHOLD, 8,6 dB

THRESHOLD for f3
PEAK=-17,38 DB

EXPAND and ENHANCE
REGION f1-450 to IF-------".....

f1 +450 Hz.

f.1 =HIGHEST LEVEL
PEAK in f1 REGION

f2=SECOND HIGHEST
LEVEL PEAK

YES

L- ~ f1 and f2
have been
PICKED

THRESHOLD for f3 I-------'--->f
PEAK=-1000 dB

NO
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YES

SEARCH REGION fL to
f3MX. f3=LOCATION of

HIGHEST PEAK for which
f2AMP-f3AMP EXCEEDS

the THRESHOLD.

EXPAND and ENHANCE NO
REGION f2-450 to

f2+450 Hz

YES

f2=HIGHEST LEVEL
PEAK in f2 REGION

f3=SECOND HIGHEST
LEVEL PEAK

YES

NO

YES

NO

'-------?/ f1, f2 and f3
have been
PICKED
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Pronunciation Key of the Phonemes

The following consonant symbols have their usual English values: b,

d, f, h, k, 1, m, n, p, r, s, t, v, w, z. The other symbols and

their interpretation are listed in the table below.

ORTHOGRAPHIC INTERPRETATION

REPRESENTATION

la:1 father If a: the el

lael act lae k tl

laII dive Id aI vi

lalel fire If aIel

laUI out laU tl

laUel flour If 1 aUel

IEI bet Ib E tl

leII paid Ip eI dl

IEel bear Ib Ee rl

Igl g,et Ig E tl

III pr~tty Ip r I t II

li:1 see Is i:1

IIe/ fear If Iel

Ijl yes Ij E si
101 p~t Ip 0 tl
leUI note In eU tl
10:1 ~rgan 10: g e nl

loll void Iv oI dl
IUI p~ll Ip U 11
lu:1 zoo Iz u:1
IUel poor Ip Uel

lel pott~r Ip 0 t e rl

IE:I fern If E: nl
IAI cut Ik A tl

Ishl ship Ish I pi
Izhl closure Ik 1 eU zh el
Itshl chew Itsh u:1
Idzhl i aw Idzh 0:1
Ithl thin Ith I nl
Ithe/·. these Ithe i: zl
Ingl si!!.9: Is I ngl
lel bundle Ib And e 11
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