
THE EXTRACELLULAR MATRIX REGULATES MYOBLAST 

MIGRATION DURING WOUND HEALING 

 

 

by 

Kyle Peter Goetsch 
 

BSc. Hons (cum laude) 
 

 

Submitted in fulfillment of the academic requirements for the degree of Philosophy of Science in the 

Discipline of Biochemistry 

School of Life Sciences 

University of KwaZulu-Natal 

Pietermaritzburg 

 

November 2012 

 

 

As the candidate’s supervisor I have approved this thesis for submission. 

 

Signed: _____________      Name: Dr. C. U. Niesler        Date: ________________ 

 

As the candidate’s co-supervisor I have approved this thesis for submission. 

 

Signed: _____________      Name: Prof. K. H. Myburgh            Date: __________________



i 
 

ABSTRACT 

________________________________________________ 

Mammalian skeletal muscle can regenerate after injury and this response is primarily 

mediated by the satellite cell, a muscle stem cell.  Following injury, satellite cells are 

activated to myoblasts, undergo rapid proliferation, migrate towards the injury site, and 

subsequently differentiate into myotubes in order to facilitate functional muscle repair. 

Fibrosis, caused by the secretion of structural extracellular matrix (ECM) proteins such as 

collagen I and fibronectin, by fibroblasts, impairs complete functional repair of the muscle. 

In this study, the role of the microenvironment during wound conditions was assessed by 

analysing the effect of specific extracellular matrix and growth factors on myoblast 

migration. The role of the Rho/ROCK pathway as a possible mechanism in mediating the 

effects seen was investigated. In order to analyse wound repair in an in vitro setting, we 

optimised and improved a wound healing model specifically designed for skeletal muscle 

repair. To this end we also developed a co-culture assay using primary myoblasts and 

fibroblasts isolated from the same animal.  

The studies showed that collagen I and fibronectin both increased myoblast migration in a 

dose-dependent manner. Decorin displayed opposing effects on cellular movement, 

significantly increasing collagen I-stimulated, but not fibronectin-stimulated, migration of 

myoblasts. ROCK inhibitor studies revealed a significant increase in migration on 

uncoated plates following inhibition with Y-27632 compared to untreated control. When 

cells were cultured on ECM components (Matrigel, collagen I, or fibronectin), the 

inhibitory effect of Y-27632 on migration was reduced. Analysis of ROCK and vinculin 

expression, and localization at the leading front, showed that ROCK inhibition resulted in 

loosely packed focal adhesion complexes (matrix dependent). A reduced adhesion to the 

ECM could explain the increased migration rates observed upon inhibition with Y-27632.   

We also investigated the role of TGF-β and decorin during wound repair, as TGF-β is a 

known pro-fibrotic agent. TGF-β treatment decreased wound closure rates; however, the 

addition of decorin with TGF-β significantly increased wound closure. The addition of 

ECM components, Matrigel and collagen I enhanced the effect seen in response to TGF-β 

and decorin; however, fibronectin negated this effect, with no increase in migration seen 

compared to the controls. 
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In conclusion, the importance of extracellular matrix components in regulating myoblast 

migration and therefore skeletal muscle wound repair was demonstrated. We emphasize 

that, in order to gain a better understanding of skeletal muscle wound repair, the 

combination of ECM and growth factors released during wounding need to be utilised in 

assays which mimic the in vivo environment more closely.  
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CHAPTER 1 

LITERATURE REVIEW 

 

1.1 SATELLITE  CELLS 

Skeletal muscle regeneration is facilitated by satellite cells, a group of muscle-derived stem 

cells first discovered in 1961 between the sarcolemma and basal lamina of the myofiber 

(Mauro 1961). Other stem cells, such as hematopoietic stem cells from the bone-marrow or 

endothelial cells, have been shown to enter the satellite cell niche and contribute to skeletal 

muscle regeneration (Peault et al., 2007). However, satellite cells are thought to be the 

primary contributors to the postnatal growth, maintenance and repair of skeletal muscle 

(Figure 1.1).  

 

Previously satellite cells could only be identified by their location between the sarcolemma 

and basal lamina; however markers are now used to identify them. These include M-

cadherin, myogenic factor 5 (Myf5), paired box gene 3/7 (Pax 3/7), SMC 2.6 and CD34 

(Irintchev et al., 1994; Beauchamp et al., 2000; Seale et al., 2000; Nagata et al., 2006). 

Satellite cells are found in a mitotically quiescent state within their niche; however in 

response to certain stimuli (e.g. injury or stress) they can be activated to enter the cell cycle 

(Zammit et al., 2004). Once activated, satellite cells up-regulate the expression of Pax7 and 

myogenic regulatory factors, such as myogenic factor 5 (Myf5) and myoblast 

determination protein (MyoD) (Figure 1.1) (Cornelison and Wold 1997; Zammit et al., 

2004), and divide asymmetrically into two myogenic daughter cells (Moss and Leblond 

1971). One daughter cell re-enters the quiescent state, maintaining a constant satellite cell 

population via self-renewal, while the other, now termed a myoblast, begins to proliferate 

(Peault et al., 2007 6294)).  

 

The myogenic regulatory factors (MRFs) are the main transcription factors involved in 

satellite cell activation and differentiation. The expression of these MRFs is regulated by 

Pax3/7 which bind to proximal promoters of MyoD and distal enhancer promoters of 

Myf5, thereby regulating their expression (Bentzinger et al., 2012). Although Pax3 and 

Pax7 are paralogues with conserved amino acid sequences and almost identical sequence-

specific DNA-binding motifs, studies using knockout mice of either Pax3 or Pax7 have 

yielded distinct phenotypes, suggesting that Pax3 has specific functions during embryonic 
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development whereas Pax7 is more involved in post-natal satellite cell specification (Seale 

and Rudnicki 2000).  MyoD and Myf5 are the dominant MRFs and are required for 

myogenic determination, which is established when these genes are activated in 

progenitors at sites of myogenesis (Pownall et al., 2002). In contrast, the secondary MRFs, 

myogenin and MRF4, promote terminal differentiation (Figure 1.1) (Seale and Rudnicki 

2000). Myogenin and MRF4 are expressed in differentiating muscle and regulate 

contractile protein target gene expression (Nicolas et al., 2000). Muscle contractile protein 

genes are controlled by muscle-specific transcription enhancers which contain essential E-

box sites for binding MRFs. One such muscle transcription factor is MEF2, which 

cooperatively interacts with MRFs and their associated histone acetyltransferases and 

deacetylases (Puri et al., 2001). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 1.1: Satellite cell activation, proliferation, differentiation and concomitant transcription factor 
expression.  Pax7 is expressed within quiescent satellite cells, and is unregulated during activation of the satellite cell. 
This is followed by the expression of the primary MRFs, MyoD and Myf5. The secondary MRFs, myogenin and 
MRF4, are expressed during differentiation and subsequent fusion of the myotube to the myofiber. Diagram compiled 
from references within Section 1.1.  
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1.2 EXTRACELLULAR MATRIX COMPONENTS & GROWTH FACTORS 

1.2.1 Extracellular Matrix 

Skeletal muscle myofibers are surrounded by an extracellular matrix (ECM) which was 

initially thought to act only as a scaffold for maintaining tissue structure. It has since been 

shown to regulate many cellular processes, including survival, proliferation, migration, and 

differentiation of precursor cells (Bretscher 1996; Heino 1996; Friedl and Brocker 2000). 

The ECM is a complex meshwork of many different types of proteins, proteoglycans, and 

polysaccharides and differs in the ratio of these components depending on the tissue type. 

Specific spatial orientation of individual ECM components can facilitate directional 

migration and cellular orientation during proliferation. The ECM components are 

remodeled by proteases which degrade the ECM surrounding the cell (Bernal et al., 2005). 

These are activated and secreted following cell surface interactions with the ECM via 

specific receptor binding. The ECM has a complex relationship with cells located within it; 

on the one hand the cells control the matrix degradation (via secretion of proteases) and 

assembly, and on the other the ECM controls many vital cellular processes. In the 

following sections we will look at this relationship in more depth.  

1.2.2 Growth Factors  

Growth factors play a role in nearly every aspect of myogenesis, from activating quiescent 

cells, controlling proliferation and aspects of migration, to terminal differentiation and 

fusion of myoblasts into myotubes during muscle repair. The growth factors which 

contribute the most to these processes are: Hepatocyte Growth Factor (HGF), Fibroblast 

Growth Factor (FGF), Transforming Growth Factor beta (TGF-β), Insulin-like Growth 

Factors (IGFs) (Booth 2006), and Platelet-derived Growth Factors (PDGFs) (Kawada et 

al., 2009). 

1.2.2.1 Hepatocyte Growth Factors (HGF) 

HGF is particularly important in muscle repair (Birchmeier and Gherardi 1998), tissue 

development, and regeneration and exists in two isoforms, pro-HGF and mature HGF 

(Matsumoto and Nakamura 1997). Pro-HGF is secreted as a single chain and binds to 

ECM components until it is cleaved and activated by a serine protease (Catlow et al., 

2003). Mature HGF consists of a heavy α-chain and light β-chain of 69 kDa and 34 kDa, 

respectively. The α-chain consists of an N-terminal hairpin domain and four-kringle 

domains, whereas the β-domain contains a serine protease-like domain (Matsumoto and 
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Nakamura 1997). Once activated, HGF binds to its cell surface receptor c-met (a 

heterodimeric tyrosine kinase) (Catlow et al., 2003). Binding of HGF to the c-met receptor 

will cause auto-phosphorylation of tyrosine residues within the intracellular domain of the 

receptor, initiating downstream signaling of the Ras and PI3-Kinase pathways (Leshem et 

al., 2002). The binding of HGF to the c-met receptor also results in the silencing of MyoD 

and myogenin gene expression and inhibits the synthesis of muscle-specific structural 

proteins, such as MyHC, as well as myotube formation; this is thought to occur via the 

Twist protein, an inhibitor of MyoD expression (Karalaki et al., 2009). HGF is expressed 

during the early phases of muscle regeneration and its expression levels have been shown 

to be proportional to the extent of the injury (Kastner et al., 2000; Suzuki et al., 2002). 

HGF also plays a unique role during satellite cell activation by shortening the time the cell 

requires to re-enter the cell cycle, this is either via the MAPK or PI3K signaling pathways 

or by HGF down-regulating caveolin-1 protein expression, which results in the up-

regulation of the ERK pathway required for satellite cell activation (Tatsumi et al., 1998). 

HGF signaling can also be enhanced through the addition of co-receptors, such as heparan 

sulfate which increases the potency of HGF downstream signaling effects (Kemp et al., 

2006). 

1.2.2.2 Fibroblast Growth Factors (FGF) 

FGFs are known to play a role in apoptosis, as well as tissue and organ development 

(Ornitz 2005). FGFs are defined by two key features; a strong affinity for heparan sulfate 

proteoglycans (Kiselyov et al., 2006), and a core protein that is highly homologous in all 

FGFs and serves as the binding site to the FGF receptor (Ornitz and Itoh 2001). FGFs 

activate signaling pathways by a dual receptor system consisting of tyrosine kinase trans-

membrane FGF receptors (FGFR1- 4) and heparan sulfate proteoglycans which are 

required for the proper activation and binding of FGFs to their receptors (Ornitz and Itoh 

2001). FGF-6 expression is stimulated after skeletal muscle injury and induces strong 

morphological changes, alters satellite cell adhesion, and compromises their ability to 

differentiate into myotubes. FGF-6 also stimulates the proliferation and migration of 

satellite cells and induces the expression of genes required for terminal differentiation (i.e. 

MyoD and myogenin). This biphasic effect of promoting both proliferation and 

differentiation is possibly explained by a dose dependent mechanism of FGF-6, whereby 

FGF-6 up-regulates and down-regulates the expression of FGFR1 and FGFR4 depending 

on the concentration utilised (Armand et al., 2006; Karalaki et al., 2009).  
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1.2.2.3 Transforming Growth Factor beta (TGF-β) 

The TGF-β superfamily contains more than 40 different members including TGF-β 

isoforms, growth differentiation factors (GDFs), and bone morphogenetic proteins (BMPs) 

(Shi and Massague 2003). These members have important roles in tissue homeostasis, 

differentiation, migration, proliferation, and bone morphogenesis (Massague and Wotton 

2000; Attisano and Wrana 2002). TGF-β binds to and causes dimerization of the type I and 

II serine/threonine kinase TGF-β receptors on the cell surface. This allows for the type II 

receptor to phosphorylate the type I receptor kinase domain, which facilitates the 

phosphorylation of downstream Smad proteins and affects various cellular processes, such 

as proliferation and differentiation (Shi and Massague 2003). TGF-β1, 2, and 3 have all 

been shown to delay differentiation into myotubes while significantly increasing cellular 

proliferation of C2C12 myoblasts (Schabort et al., 2009), indicating a similar effect to 

FGF-6 (Section 1.2.2.2). The proteoglycan, decorin, has been shown to bind TGF-β 

through interaction with the lipoprotein related protein (LRP-1) and activate the PI3K 

dependent pathway. In a study by Cabello-Verrugio & Brandan, decorin null cells had a 

decreased responsiveness to TGF-β, indicating that decorin is required for optimal 

activation of the TGF-β signaling pathway (Cabello-Verrugio and Brandan 2007; Zhang et 

al., 2009).  

1.2.2.4 Insulin-like Growth Factor-I (IGF-I)  

During muscle regeneration IGF-I stimulates both proliferation and differentiation of 

muscle cells. It does this by enhancing the expression of intracellular mediators, such as 

cyclin-D, which increases the proliferation potential of satellite cells (Chakravarthy et al., 

2000); whereas for terminal differentiation IGF-1 induces myogenin gene expression. This 

dual regulatory mechanism (shown to be dose dependent) is important as during muscle 

regeneration, IGF-1 initially reduces myogenic factor expression and induces proliferation, 

after which myogenin gene expression is up-regulated and differentiation is induced 

(Engert et al., 1996). Decorin has also been shown to bind to both IGF-1 and its receptor 

(IGF-1R), thereby regulating this pathway in endothelial and fibroblast cells. The binding 

of decorin results in IGF-IR phosphorylation and activation, followed by receptor down-

regulation (Brandan et al., 2008). It is thought that decorin may regulate the ability of IGF-

I to modulate mitotic and myogenic activity of skeletal muscle, thereby playing an 

important role in skeletal muscle regeneration. Fiedler and colleagues demonstrated that 
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the decorin core protein binds to the IGF-IR and modulates cellular migration of 

endothelial cells as well as increasing affinity of integrins for their specific ligands, such as 

collagen I and the α2β1 integrin, through “inside-out” signaling (Fiedler et al., 2008).  

 

1.2.3 Skeletal Muscle ECM Components, Receptors and Proteases 

Satellite cells and activated myoblasts are located between the sarcolemma of the muscle 

fiber and the basement membrane. The basement membrane is further surrounded by 

interstitial connective tissue. The interstitial connective tissue provides a scaffold and 

support for blood vessels and nerves which surround the muscle fibers, as well as the 

elasticity to transfer mechanical force needed to move the skeletal frame (Kjaer 2004). 

Skeletal muscle is made up of different layers of interstitial connective tissue, The first 

layer outside individual myofibers is composed of random collagen fibrils to allow for 

movement during contraction; each myofiber is surrounded by an endomysium layer. 

Bundles of fibers are held together by the perimysium which contains the blood vessels 

and nerves that extend into the epimysium. The epimysium covers an entire muscle and is 

composed of two layers of collagen fibrils to form a sheet-like structure (Kjaer 2004). The 

intramuscular connective tissue is dominated by collagens, but contains other important 

components such as fibronectin, tenascins, laminins, and proteoglycans. These ECM 

components and related proteases, as well as their ECM location are summarized in Table 

1.1. 
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Table 1.1: ECM components and proteases within the interstitial ECM and basement 
membrane of skeletal muscle 

ECM 
Components 

Subtypes Interstitial 
ECM 

Basement 
Membrane 

References 

Collagen Col I, IV, VI, XV, 
XVIII, IX, XI 

Mainly Collagen I Collagen IV, VI, I Ricard-Blum & 
Ruggeiro, 2005; 
Kjaer, 2004; Gelse 
et al., 2003 

Tenascin Tenascin C, X, R, W Tenascin C - Chiquet-
Ehrismann, 2004; 
Chiquet-Ehrismann 
& Tucker, 2004 

Fibronectin Fibronectin Fibronectin - Jarvinen et al., 
2007 

Laminin Laminin 211, 221, 
411, 421, 511, 521 

- Laminin 211, 411, 
511 

Grounds et al., 
2005 

Proteoglycans Chrondroitin Sulfates 
Heparan Sulfates 
Dermatan Sulfates 

Heparan sulfates 
(decorin), Dermatan 
sulfates 

Heparan sulfates 
(biglycan), 
Syndecans 

Jenniskens et al., 
2006; Bishop et al., 
2007 

Proteases MMPs, plasmin, 
Trypsin, Calpain 

MMP-2, MMP-9 - Kherif et al., 1999; 
Bernal et al., 2005 

 

1.2.4 Integrins 

Integrins are the major transmembrane receptors that allow cell adhesion to ECM proteins 

and indirect interactions with other cells. Integrins are dimers composed of α- and β-

subunits which can combine to form 24 different integrin heterodimers, each with unique 

ligand specificities (Humphries et al., 2006). The α-chain is composed of two calf domains 

and a thigh domain linked to a β-propeller (Figure 1.2). The β-chain consists of a cystatin-

like domain bound to epidermal growth factor (EGF) repeats, which in turn are linked to 

the hybrid and βα-domains (Figure 1.2). The intracellular domains of integrins are 

associated with the actin cytoskeleton which allows for direct control of cell shape and 

rapid responses to environmental changes (Hynes et al., 2002). Integrins accumulate in 

clusters at the leading edge of the cell during migration, forming a stable platform or focal 

adhesion with an increased affinity for the ECM. These focal adhesions result in the 

formation of intracellular adhesion complexes which assist in signaling and cell-fate 

determination, by allowing direct interaction of the ECM with the intracellular actin 

cytoskeleton.  
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The interaction of integrins with the ECM can be enhanced by either the direct binding of 

growth factors or other ligands to the integrin, or the binding of ligands to their specific 

receptors, which in turn enhances the affinity of the integrin for its specific ligand. Beside 

conformational changes, integrin-ECM interaction can be enhanced by increased gene 

expression of integrin subunits. For example fibroblast growth factor-2 (FGF-2) increases 

α5β1 expression in endothelial cells and transforming growth factor-β1 (TGF-β1) increases 

β1 and β5 integrin levels (Moissoglu and Schwartz 2006; Streuli and Akhtar 2009). The 

engagement of integrins and growth factor/cytokine receptors in parallel can increase the 

signal output for a longer sustained synergistic signal via inside-out signaling (Figure 1.3) 

(Streuli and Akhtar 2009). 

In the early 1990’s it was  discovered that certain integrin heterodimers are internalized 

from the plasma membrane into endosomal compartments and are recycled back to the cell 

surface (Bretscher 1996; Caswell and Norman 2006).  This endo-exocytic cycle occurs at a 

relatively rapid pace with cycling being reported once every 30 minutes. This type of 

integrin trafficking has been observed in neural crest cells, as well as in fibroblasts and 

macrophages (Fabbri et al., 1999; Strachan and Condic 2004). Integrin trafficking is a 

selective process whereby specific integrins are trafficked rapidly and at a higher 

frequency than others depending on the cellular process being undertaken by the cell. This 

suggests that integrin presentation is reliant on specific cues and that cellular migration can 

be regulated with precision, in response to the changing environment (Strachan and Condic 

2004).  

Figure 1.2: The structural components of an integrin indicating the specific domains. The α-chain is made 
up two calf domains and a thigh domain linked to a β-propeller. The β-chain consists of a cystatin-like domain 
linked to epidermal growth factor (EGF) repeat. These in turn are bound to the hybrid and βα-domains. Each 
ECM component will bind to a specific αβ integrin combination (i.e. collagen binds to the α2β1 integrin via a 
critical GFOGER motif within the collagen I domain (Emsley et al., 2000)). 

α β β-propeller 
βA-Domain 

Hybrid Domain 

EGF Repeats 

Calf Domains 

Thigh Domain 

Cystatin-like Domain 

Plasma membrane 
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1.2.5 Collagens 

Collagens are important structural proteins which facilitate many functions within the 

ECM (Gelse et al., 2003; Abd-Elgaliel and Tung 2012). They are all composed of three 

polypeptide α-chains coiled into a triple helix structure rich in glycine. Twenty seven 

different collagens, each with their own distinct α-chains have been identified to date 

(Ricard-Blum and Ruggiero 2005). The fibrillar collagens are divided into collagen I, II, 

III, IV, V, VI and XI. Collagen I is the most abundant collagen and is the major component 

of the interstitial ECM surrounding skeletal muscle fibers (Kjaer 2004). In culture, 

collagen I increases β1-integrin expression in fibroblasts, which become clustered at the 

leading edge where they interact with the collagen fibers. Friedl and colleagues showed 

that after addition of the anti-β1 integrin antibody to block ligand binding, integrin 

clustering, fiber traction, and cell polarization were lost (Friedl et al., 1998). This 

demonstrated the importance of α2β1 integrin engagement with collagen I for the 

development of polarized morphology and migration. Collagen IV is the major structural 

component of the basement membrane and interacts with laminins and proteoglycans. The 

interstitial ECM is joined to the basement membrane via a microfilament network rich in 

collagen VI (Bonnemann and Laing 2004). Over time, collagens form increasing 

intermolecular cross-links leading to stiffness and reduced function in aged tissues (Avery 

and Bailey 2005). This is important to note for the repair of injured skeletal muscle. 

1.2.6 Tenascins 

Tenascins are glycoproteins which are involved in weak cell adhesion events and do not 

promote cell spreading (Chiquet-Ehrismann 2004). Tenascins consist of a large complex of 

six polypeptide chains attached to a central core by disulfide bonds. There are four 

members of the tenascin family; tenascin C, X, R and W. During muscle repair, tenascin C 

is expressed in skeletal muscle in close proximity to fibronectin and is up-regulated, 

especially during the inflammation phase (Fluck et al., 2003). Tenascin C counteracts the 

effects of fibronectin by acting as an anti-adhesive. This is achieved through syndecan-1 

and -4 expression, which subsequently prevents the binding of cells to fibronectin. 

Syndecans are ECM molecules which modulate cell adhesion, cell-cell interactions and 

ligand receptor interactions (Chiquet-Ehrismann and Tucker 2004; Midwood and Orend 

2009).  

 



10 
 

1.2.7 Fibronectin 

Fibronectin is a glycoprotein which exists in 3 different forms: a soluble dimeric form 

(located within the blood stream), cell surface fibronectin oligomers, and insoluble 

fibronectin fibrils which make up part of the ECM. Fibronectin is able to bind to other 

ECM components such as collagen and tenascin (Hocking et al., 2008). Fibronectin along 

with tenascin C are among the first ECM components to be produced by fibroblasts within 

a damaged muscle fiber. Fibronectin forms multimeric fibrils which aid in the formation of 

a super fibronectin molecule with strong adhesive properties. Fibronectin together with 

fibrin, forms a cross-linked structure in early granulation tissue, which is required to act as 

a scaffold for invading inflammatory cells. The anti-adhesive effect of tenascin C, via 

syndecan-4 expression, could help to prevent myoblasts from becoming attached to the 

fibronectin. This would be important during myoblast migration and subsequent wound 

repair (Jarvinen et al., 2007; Midwood and Orend 2009).  

1.2.8 Laminins 

Laminins are found almost exclusively in the basement membrane and are composed of 

multiple heterodimers consisting of α, β and γ chains. Laminin-2 (LM-211) is found 

around the sarcolemma of muscle fibers whereas laminin-4 (LM-221) is located at 

neuromuscular junctions (Grounds et al., 2005). Laminins bind to the collagen IV network 

in the basement membrane as well as the proteoglycan, perlecan. Laminins are key 

molecules which connect the myofiber directly to the basement membrane; without them 

the contractile force created by the myofiber cannot be transferred effectively to the 

interstitial connective tissue (Jenniskens et al., 2006). Loss of laminin or mutations of 

laminin result in congenital muscular dystrophies. 

1.2.9 Glycans 

Three main proteoglycan groups are involved in the skeletal muscle ECM; heparan 

sulfates, chondroitin sulfates, and dermatan sulfates. Chondroitin and dermatan sulfates fall 

under the name of galactosaminoglycans as they have N-acetyl-D-galactosamine and 

glucuronic acid dissacharides linked to their backbones (Bishop et al., 2007).  Heparan 

sulfates are complex macromolecules consisting of a protein core with one or more 

glycosaminoglycan (GAG) chains attached. Heparan sulfate proteoglycans play a major 

part in the regulation of the basement membrane and bind to underlying ECM molecules 



11 
 

due to their negative charge (Jenniskens et al., 2006). Perlecan (a heparan sulfate) is 

important in the assembly and integrity of the basal lamina. Two other heparan sulfates, 

syndecan-3 and -4, are abundant on the surface of skeletal muscle fibers where they play 

roles in regeneration and cell adhesion (Kanagawa et al., 2005). 

Decorin, a component of the ECM, is a member of the small leucine-rich repeat heparan 

sulfate family, which is composed of a leucine-rich repeat core protein, consisting of 12-

folded repeats, each containing a 24 amino acid residue. It also has a single covalently-

linked GAG chain at its NH2-terminus which can vary in length and composition (Scott 

and Haigh 1985). Decorin plays a key role in collagen fibrillogenesis (Fiedler et al., 2008; 

Dunkman et al., 2013). It binds to collagen via its core protein, at the peptide sequence 

SYIRIADTNIT, causing a delay in the collagen fibril assembly which results in the 

reduction of the average fibril diameter (Kresse et al., 1997; Kalamajski et al., 2007). In 

the absence of decorin the collagen network is loosely packed and exhibits irregular 

collagen contours where the fibrils are abnormally fused to larger collagen shafts (Weber 

et al., 1996; Keene et al., 2000). Keene and colleagues investigated the binding site of 

decorin to the collagen fibril and also whether this binding could affect the structure and 

cross-linking of collagen. They determined that decorin binds 25nm from the C-terminus 

in the region of the C1 band on the collagen fibril D-period. This binding area is located in 

close proximity to one of the major intermolecular cross-linking sites of collagen I, 

indicating that decorin possesses a unique binding specificity which can regulate collagen 

fibril stability (Keene et al., 2000).  

Fiedler and colleagues investigated the regulatory effects of decorin on the ability of 

collagen I to regulate endothelial cell motility. They discovered that decorin promotes 

α2β1 integrin-dependent binding of collagen I, which in turn enhanced cell adhesion and 

migration in endothelial cells. Decorin modulates cell-matrix interactions by stimulating 

focal adhesion reorganization via binding and activating the IGF-IR (Insulin-like Growth 

Factor I Receptor) and interacts with the α2β1 integrin via its GAG chain at a site distinct 

from that where collagen I binds the integrin (Figure 1.3A) (Fiedler et al., 2008). It has 

also been suggested that decorin, while bound to collagen I, may bind to the α2β1 integrin 

via its GAG chain, subsequently enhancing the signaling of the integrin (Figure 1.3B). In 

skeletal muscle decorin is located within the interstitial ECM. Collagen bound decorin 

within skeletal muscle is able to interact with TGF-β, with decorin still maintaining an 

active site within the core protein (Brandan et al., 2008); suggesting decorin is able to bind 
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multiple proteins at different active sites. These findings suggest that decorin plays a large 

role in cell-ECM regulation and that these roles are not distinct to one mechanism, but 

encompass a highly sophisticated array of binding mechanisms (Fiedler and Eble 2009). 

The combination of decorin and collagen during skeletal muscle repair may play an 

important role in cell migration into the wound and reduce fibrotic scar tissue formation 

(Sato et al., 2003). 

 

 

 

  

 

 

 

 

 

 

 

 

1.2.10 Proteases Involved in ECM Degradation 

Proteolysis is essential for ECM maintenance and facilitates the constant turnover and 

remodeling of the ECM environment. Matrix metalloproteases (MMPs) are secreted 

enzymes which degrade components of the ECM, and cleave cellular receptors and 

cytokines. MMPs are produced as inactive zymogens and are activated extracellularly, 

either upon secretion or by other proteases such as MT1-MMP and plasmin (Bernal et al., 

2005; Suelves et al., 2005).  MMP-2 and –9 degrade many connective tissue components, 

including collagen I, II, III, IV, V, fibronectin, and many proteoglycans. MMP-2 has been 

shown to be essential for the degeneration of damaged myoblasts as well as for the 

regeneration of new myofibers. It has been proposed that MMP-9 expression is related to 

the inflammatory response and subsequent activation of satellites cells, since its expression 

is induced within 24 hours post damage and remains present for several days. (Kherif et 

Figure 1.3: Two distinct mechanisms for the binding of decorin to the α2β1 integrin. A) Decorin can bind 
to IGF-IR and enhance signaling of integrin via inside-out signaling. B) Decorin can also bind to collagen and 
may be able to bind directly to the integrin via its GAG chain while bound to collagen. Diagram compiled 
from references within Section 1.2.9. 

A. B. 
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Α2β1 Integrin Α2β1 Integrin 
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GAG chain 

Plasma membrane 
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al., 1999; Chen and Li 2009). These metalloproteinases appear to be differentially 

expressed at various stages of the degeneration and regeneration process within damaged 

skeletal muscle. A recent study has highlighted a relationship between MT1-MMP, MMP-

2 and ROCK inhibition in an endothelial cell line. When ROCK is inhibited there is an 

increase in cell surface localization of MT1-MMP, as well as an increase in PI3Kinase 

activity which is required for MMP-2 activation. These findings suggest an important role 

of these MMPs in regulating cellular migration (Ispanovic et al., 2008). 

1.3 MYOBLAST MIGRATION MECHANISMS 

1.3.1 Migration    

Cellular migration is essential for tissue development, wound repair, the inflammatory 

response, immune surveillance, and plays a role in pathological processes such as 

metastasis (Friedl and Brocker 2000). Cellular migration can be integrin-dependent (where 

re-organization of the matrix takes place) or independent (whereby the cell moves swiftly 

over the matrix, makes only minor adhesion contacts, and does not remodel the ECM). 

This second method is not directionally controlled by the ECM; however, chemokines can 

regulate the direction of migration in an integrin-independent manner. 

The migration of myoblasts, which plays an integral role in repair of a damaged myofiber, 

occurs both in a 2D manner (along the basement membrane in skeletal muscle myofibers) 

and in a 3D manner (into the interstitial tissue surrounding muscle myofibers). 2D 

migration on the basement membrane occurs in three parts. Firstly, the extension of the 

leading edge of the cell into lamellipodia and adhesion to the ECM, followed by the 

contraction of the main body of the cell through action of the actin fibers within the cell, 

and, lastly the detachment of the tail at the rear of the cell (Friedl and Brocker 2000).  

During 3D migration the cell has to interact with matrix ligands to produce a forward 

movement force and also has to overcome the biomechanical resistance created by the 

matrix network. This is evident in fibroblasts and myoblasts, which need to migrate 

through the interstitial ECM into the muscle wound to facilitate muscle repair (Friedl et al., 

1998). 3D migration includes, to a greater extent than in 2D migration, proteolysis of ECM 

components by serine proteases and metallo-proteinases, such as membrane type-1 matrix 

metalloproteinase (MT1-MMP) and matrix metalloproteinase-2 (MMP-2) (Birkedal-

Hansen 1995; Shapiro 1998).  
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1.3.1.1 Cell Shape During Migration 
 
At the leading edge of the cell, ruffling will occur followed by the protrusion of the 

lamellipodia. These are “arm-like” protrusions used to extend the cell forward during 

migration and form new attachments to the ECM surface (McLennan et al., 2012). The 

process of lamellipodia extension and cell ruffling involves actin polymerization, which is 

initiated and maintained mainly by the integrin receptor family as well as by cell surface 

proteoglycans, such as phosphacan and CD44 (Humphries et al., 2006). Filopodia on the 

other hand are used to probe the ECM and are not directly involved in the actual 

mechanism of migration (Figure 1.4) (Nobes and Hall 1995).  

During migration a “gradient” is established between the front and rear of the cell in terms 

of binding and traction factors resulting in forward movement in the direction of 

chemokine signaling. The forward motion is facilitated by the contraction of stress fibers, 

which consist of actin fibers containing myosin-motors between them. The contraction of 

the actin filaments is regulated by the GTPase family. 

In order for cell contraction and migration to occur, the focal contacts at the trailing edge 

of the cell have to be resolved so that the rear of the cell is released from the ECM. This is 

brought about by integrin detachment from the ECM, followed by endocytosis and 

recycling of integrins to the leading edge of the cell (Bretscher 1996). Alternatively the 

integrins may be released into the ECM where they are degraded (Figure 1.4A).  

Within a 3D environment the migration process follows a similar three step process as 

mentioned above. However, specific aspects of migration will differ in a 3D environment, 

e.g. cell polarity, to compensate for the addition of the extra dimension of depth. This can 

be seen in shape change (i.e. probing the ECM in all directions) and in the arrangement of 

receptors and proteases within the cell membrane (Figure 1.4B).  
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During migration the cell will adapt morphologically to the ECM and fol low the path of 

least resistance. F riedl et al.,  demonstrated that in 3D collagen matric es, de ndritic c ell 

migration oc curred a long the existing matrix  str ands, and a reas consisting of  dense 

collagen fiber networks were circumnavigated rather than being directly penetrated by the 

cells (Friedl et al., 1998). These findings showed that migration can occur independently of 

matrix remodeling in vitro. However, this is highly unlikely in in vivo situations where the 

ECM is densely pa cked. Dur ing mi gration, se creted and membr ane-bound pr oteases are 

essential for  proteolytic remodeling of  the ECM, as cells will need to lower the level of 

Figure 1.4: S pecific ECM inte ractions t hat f acilitate 2D and 3 D migration. A) 2 D migration o n t he ECM. 
Integrin clustering will occur at the front of the cell followed by the extension of the lamellipodia. The actin fibers 
will contract pulling the cell forward. This is then followed by the release of the tail at the rear of the cell. B) 3D 
migration occurs along the same basic migration principles as 2D migration. However, proteolysis can play a larger 
role in actively degrading the ECM and allowing for forward cell movement. MT1-MMP can actively degrade the 
ECM as well as activate p ro-MMP-2. Integrins such as αvβ3 can also bind activated MMP-2 lo cated w ithin th e 
ECM. MM P-2 a nd M T1-MMP a re g ood proteases of co llagen d egradation, which is  th e main co nstituent of t he 
skeletal muscle ECM. Diagram compiled from references within Section 1.3. Red arrow – migration direction, green 
arrow – lamellipodia extension.  
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obstruction caused by the ECM if alterations in morphology of the cell are unable to adapt 

to the existing matrix gaps. For instance, invasive melanoma cells can degrade the ECM as 

they have active MMP-2, which is bound to their cell surface via the integrin αvβ3, as well 

as MT1-MMP, which is localized on the leading edge of the migrating cell (Brooks 1996).  

Protease localization on the cell surface is brought about either by the binding of 

extracellular proteases (e.g. pro-MMP-2) to membrane receptors or by the expression of 

endogenous transmembrane proteases (e.g. MT1-MMP). MMP-2 and MMP-9 facilitate 

localized proteolysis of collagens and fibronectin, respectively. MT1-MMP cleaves 

collagen I, cartilage, proteoglycans, fibronectin and laminins, as well as pro-MMP-2, 

resulting in its activation (Ohuchi et al., 1997). Another family of transmembrane 

proteases termed, ‘a disintegrin and metalloproteinase’ (ADAMs), contains both a 

disintegrin and metalloproteinase domain which allows for the attachment and proteolysis 

to occur in a close proximity to each other. ADAMs can therefore play a role in cellular 

adhesion as well as in matrix remodeling by cleaving ECM components and shedding 

growth factors from membrane-anchored precursors (Black and White 1998). Specifically, 

ADAM17 is required for the growth of cultured vascular smooth muscle cells in vitro and 

has been implicated in angiogenesis and fibrosis (Takaguri et al., 2011).  

 

1.3.2 Intracellular Signal Transduction  

Cell migration is controlled by a vast array of intracellular signaling molecules, including 

phospholipases, serine/threonine and tyrosine kinases, and scaffold proteins. However, one 

particular group of proteins, the Rho GTPases, appear to outshine the rest in the regulation 

of cytoskeletal organization and thus cellular migration. Rho GTPases are frequently over-

expressed in invading tumor cells when the tumor cells increase cell motility to cross tissue 

boundaries during invasion (Sahai and Marshall 2003).  

Rho GTPases were first highlighted as key players in cytoskeleton shaping in 1992 and 

since then the intricate signaling and functioning of these proteins has been more clearly 

described and understood (Ridley and Hall 1992a; Ridley and Hall 1992b). To date, twenty 

genes encoding proteins that contain a small GTPase domain have been characterized in 

mammals. These include the Ras GTPases (H-Ras, K-Ras, N-Ras and R-Ras) (Ridley 

2001), and the Ras-homologous (Rho) GTPases which are divided into 5 subfamilies (Rho, 
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Rac, Cdc42, Rnd, and RhoBTB) (Figure 1.5). Rho, Rac, and Cdc42 are the most prevalent 

GTPases and will be discussed in detail (Burridge and Wennerberg 2004). The Rho-like 

subfamily contributes to actin fiber formation and contraction during migration and 

includes RhoA, B, and C. RhoA plays a large role in migration by activating the 

downstream effector, Rho kinase (ROCK) (Wennerberg et al., 2003). The Cdc42-like 

subfamily plays a large role in cell polarization via the organization of the orientation of 

the nucleus and Golgi apparatus at the front of the cell during myoblast migration, and 

binds to the Wiskott Aldrich syndrome protein (WASP) or N-WASP proteins which 

mediate the formation of filopodia (Kozma et al., 1995). Rac-like GTPases stimulate 

membrane ruffling at the leading edge of myoblasts and contribute to the formation of 

lamellipodia (Machesky and Hall 1997). Little is known about the Rnd and RhoBTB 

subfamilies, except that Rnd GTPases are highly expressed in the brain and contribute to 

neurite growth and branching and RhoBTB GTPases are down-regulated in breast cancer 

cells (Wennerberg et al., 2003). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rho - GTPases 

Rnd RhoBTB 

Rho-like 

Cdc42-like 

Rac-like 
-Contractility & stress fiber formation 

-Filopodia formation & cell polarization 

-Membrane ruffling & lamellipodia 

-Neurite branching in brain 
-Function not well known 

Figure 1.5: The major members of the Rho-GTPases and their respective functions. The five subfamilies of 
the Ras-homologous GTPase family are Rho, Rac, Cdc42, Rnd and RhoBTB. The Rho, Cdc42 & Rac subfamilies 
regulate cellular migration and will be focused on in detail within the text. Diagram adapted from (Wennerberg et 
al., 2003; Burridge and Wennerberg 2004). 



18 
 

1.3.2.1     Rho-GTPases Role in Cellular Migration 

Rho activity is associated with focal adhesion assembly and cell contractility via myosin 

light chain phosphorylation (Figure 1.6) (Chrzanowska-Wodnicka and Burridge 1996). 

This occurs at the rear of the cell where Rho facilitates the cell body contraction as well as 

cell retraction. The downstream effector of Rho is ROCK (also termed p160ROCK or 

ROK).  Once activated by Rho, ROCK can phosphorylate LIM-kinase (LIMK), which in 

turn can phosphorylate and inactivate cofilin. This will lead to actin filament stabilization 

within the actin:myosin filament bundles, as active cofilin degrades the actin filaments via 

subunit dissociation at the ends of the filaments (Figure 1.6) (Schmitz et al., 2000). In 

addition, ROCK phosphorylates the myosin binding subunit (MBS) of the myosin light 

chain (MLC) phosphatase resulting in its inactivation (Kawano et al., 1999).  

The inactivation of the MLC phosphatase leads to increased levels of myosin 

phosphorylation which enables the actin filaments to cross-link generating contractile force 

(Figure 1.7). Another downstream effector of Rho is mDia which also cooperates with 

ROCK in the assembly of actin:myosin filaments within the cytoskeleton of the myoblast, 

but to a lesser extent than that of ROCK alone (Watanabe et al., 1999).  

Both Rac and Cdc42 are required near the leading edge (front) of the cell. Rac has been 

shown to be spatially restricted to the leading edge of the cell where it is required for the 

regulation of membrane ruffling and for the formation of lamellipodia (Figure 1.6). Cdc42 

induces actin polymerization via the effectors WASP and myotonic dystrophy kinase-

related Cdc42-binding kinase (MRCK) and aids in the generation of filopodia (Figure 1.6), 

as well as regulating the direction of cellular migration. This was shown by Kozma et al., 

whereby a Swiss 3T3 fibroblast cell line was transfected with Cdc42 and a subsequent 

increase in filopodia formation was observed (Kozma et al., 1995). P21-activated kinase 

(PAK) is a downstream kinase for both Rac and Cdc42 and causes the localization of 

membrane ruffles and cytoskeletal rearrangement (Sanders et al., 1999). PAK can also 

phosphorylate and activate LIM kinase (LIMK), which in turn can phosphorylate and 

inactivate cofilin (Raftopoulou and Hall 2004), preventing actin fiber degradation during 

cytoskeletal rearrangement. PAK also facilitates the de-phosphorylation of the myosin 

light chain allowing for myoblast spreading (ruffling) to occur, as well as inhibiting Rho 

during this process at the cell front (Liu et al., 2011). 
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The spatial orientation of Rho GTPase activation is important for cytoskeletal organization 

that will  support for ward moveme nt of the cell. The refore, m echanisms must  be  put in 

place to inhibit Rho activity at the leading edge of the cell. This is achieved by means of 

Rac, as Rho and Rac are antagonists of each other ensuring that their specific mechanisms 

do not compete against each other and thus inhibit cell migration (Machesky 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The effect of GTPases on cellular migration with particular focus in the Rho/ROCK pathway. Activated Rac 
and Cdc42, localized near the front of the cell, regulate lamellipodia formation and cell polarization, respectively. Activated 
Rho on the other hand is localized at the rear end of the cell. Rho is activated by ECM components, such as collagen I. Once 
activated R ho will s ignal via ROCK. R OCK lead s to  t he phosphorylation o f the myosin b inding u nit lo cated o n t he ML C 
phosphatase. This inactivates the MLC phosphatase allowing for actin:myosin c ross-linking o f the actin f ilaments to  occur. 
ROCK can also  phosphorylate LIM-kinase which in turn will phosphorylate cofilin and thus inactivate it. This will lead  to  
actin fiber s tabilization as cofilin usually degrades t he actin filaments. All of these effects create a network o f ac tin fibers 
which create contractile strength to enable the cell to move forward. Diagram compiled from references within Section 1.3.2.1. 
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1.3.2.2      Rho/ROCK Activation 

As with  all GTP ases, Rho-GTPases have the  a bility to  c ontrol signal transduction 

pathways by cycling between an inactive guanine di-phosphate (GDP)-bound form and an 

active guanine tri-phosphate (GTP)-bound form (Figure 1.7). This Rho-GTPase activation 

cycle is regulated by guanine nuc leotide e xchange factors (GEFs), G TPase-activating 

proteins (GAPs), and guanine nucleotide dissociation inhibitors (GDIs). GEFs promote the 

activation of  the Rho-GTPase by p romoting the  exchange of  GDP for  GTP (Figure 1.7). 

This cycle is negatively regulated by GAPs which increase the intrinsic GTPase activity of 

Rho-GTPases to return it  to the inactive form. GDIs block the G TPase c ycle b y 

solubilising the GD P-bound for m of t he R ho-GTPase (Moon a nd Z heng 2003 ). 

Extracellular signals appear to promote the activation of Rho-GTPases via modification of 

the GEFs. The activated Rho-GTPases will then interact with downstream effectors (e.g. 

ROCK) to stimulate a n umber of  responses including a ctin c ytoskeletal rearrangements, 

gene transcription regulation, membrane trafficking, cell cycle regulation, and the control 

of apoptosis (Ridley 2001).   
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Figure 1.7: Mechanism of Rho activation and subsequent ROCK phosphorylation. 
(Detailed mechanism described in text above – Section 1.3.2.2). Diagram adapted from (Moon 
and Zheng 2003) 
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1.3.2.3     ROCK Structure 

ROCK consists of a serine/threonine kinase domain located at the amino-terminus, a 

coiled-coil domain forming the middle region, and a pleckstrin homology (PH) domain 

region, which contains a cysteine-rich zinc finger-like motif at the carboxyl terminus 

(Figure 1.8). Nakagawa and colleagues isolated cDNA from two distinct mouse libraries 

(Nakagawa et al., 1996). The first was the mouse counterpart of the human ROCK-1 and 

the second was a novel ROCK-related kinase (ROCK-2). They also demonstrated that the 

two similar, yet distinct, kinases were expressed in different tissues. ROCK-1 mRNA was 

expressed quite ubiquitously, with only low levels expressed within the brain and muscle, 

whereas ROCK-2 mRNA was found in abundance specifically in the brain, muscle, heart, 

lungs, and placenta (Shi and Wei 2007). These results suggest that the roles of ROCK-1 

and -2 should be examined independently as well as in combination to fully understand the 

downstream mechanisms involved in migration of different cell types.  
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Figure 1.8: The specific domains and regions of ROCK-1 and -2. ROCK sequences have a 
serine/threonine kinase domain located at the amino-terminus of the protein, followed by a central coiled-
coil domain containing a Rho-binding domain (RBD) and a carboxyl terminal pleckstrin homology (PH) 
domain with an internal cysteine-rich domain (CR). Diagram adapted from (Nakagawa et al., 1996) 
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1.4 SKELETAL MUSCLE GROWTH & REPAIR 

The optimal restoration of skeletal muscle tissue is critical for normal function of the 

repaired tissue. Growth factors, cytokines and ECM components regulate myogenic 

processes during muscle repair and regeneration; certain factors are known to be pro-

fibrotic and cause scar tissue formation in severe muscle injuries.  

1.4.1 Muscle Injury & Wound Repair 

Most common forms of muscle injury occur as a result of physical activities and can be 

divided into two types. During in situ necrosis the myofibers are degraded via specific 

necrotic mechanisms, while the basement membrane remains unbroken. However, 

following lacerations, severe muscle strain, and contusions, a shear type injury may result 

(Ehrhardt and Morgan 2005). Shear injuries are a severe form of muscle injury that results 

in the tearing or breaking of the basement membrane and allows for components of the 

interstitial ECM to enter the muscle fiber (Moyer and Wagner 2011).  

1.4.1.1    In Situ Necrosis 

Necrosis involves the rapid cell death of the skeletal muscle fiber. However, only a 

segment of the fiber is degraded, and the length of the segment depends upon the nature of 

the injury. At the onset of necrosis, both loss of sarcolemma integrity and myonuclear 

dissolution will occur. This is followed by the degradation of organelles with resultant 

debris within the necrotic segment (Moyer and Wagner 2011). Macrophages invade the 

segment and assist in phagocytosis and removal of the debris. This is essential for optimal 

regeneration to occur in the damaged area (Figure 1.9A). Satellite cells are activated by 

cytokines and growth factors, such as HGF, and migrate along the intact basement 

membrane (also termed basal lamina) to the site of injury where they differentiate into 

myotubes (Figure 1.9B) (Ehrhardt and Morgan 2005). The myotubes finally fuse with 

undamaged myofibers to facilitate complete repair (Figure 1.9C). Necrosis is triggered in 

many forms of muscle dystrophies and inflammatory myopathies such as 

Duchenne/Becker muscle dystrophy (DMD) resulting in a constant degradation-

regeneration state (Jarvinen et al., 2007). 
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Figure 1.9: Myofiber regeneration following necrosis. During in s itu necrosis, macrophages remove debris, 
while myotube formation a nd f usion with t he original myofiber allo ws healing o f t he myofiber. Du ring t his 
process the b asement membrane ( basal lamina) r emains in tact. Dia gram co mpiled f rom r eferences within 
Section 1.4. 
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1.4.1.2      Shear Type Injuries 

Following a shear type injury, the myofibers, surrounding blood vessels, myelin sheaths 

surrounding bundled myofibers, as well as the basal lamina, are all ruptured (Jarvinen et 

al., 2004).  Regeneration following contusions and lacerations occurs in a 3 step process; 

degradation of debris, repair and remodeling (Figure 1.10) (Rushton et al., 1997).  

i) Degradation of Debris 

The degradation process begins with necrosis of the damaged myofiber segment, followed 

several hours after the injury by establishment of a new sarcolemma to seal off the 

damaged segment (Figure 1.10A). The remaining myofibers then contract leaving a gap 

between them which is filled by red blood cells and platelets due to damaged blood 

vessels. This is followed by the invasion of macrophages and monocytes to phagocytose 

the necrotic debris (Tidball 2005). 

ii) Repair  

Satellite cells in the surrounding myofibers assist in the subsequent repair process (Figure 

1.10B). Satellite cells begin to proliferate and form a myoblast population which will 

differentiate into myotubes. At the same time that the satellite cells are beginning to 

proliferate, fibroblasts within the interstitial ECM become activated to myofibroblasts by 

growth factors, in particular HGF. The myofibroblasts migrate into the wound area and 

begin to secrete ECM components such as fibronectins and collagens to provide structural 

support for the damaged myofiber (Mackey et al., 2012). The newly formed myotubes will 

fuse with the existing segments, but rarely fuse with each other, due to scar tissue. The 

myofibers then begin to penetrate the connective scar tissue formed between the two 

myofiber segments, but are unable to penetrate entirely through the dense scar tissue. 

iii) Remodeling  

The remodeling process (Figure 1.10C) involves the formation of new contractile segments 

within the existing myofiber, and the attachment of these ends to the connective scar tissue. 

The scar tissue will contract, pulling the two ends of the myofiber closer together. 

However, the two ends will always be separated by the connective scar tissue and the 

optimal linear contractile force of the muscle is hampered. Fibrosis inhibits the complete 

repair of the myofiber and subsequently results in a loss of function of the damaged 

myofiber after repair (Rushton 2007). 
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Figure 1.10: Myofiber regeneration after shear injury. During a shear t ype injury the b asement membrane ( basal 
lamina) is broken. This allows for fibroblasts located within the interstitial ECM to enter into the damaged myofiber and 
secrete ECM components. Myoblasts facilitate repair by fusing with the damaged myofibers. However, they are unable 
to transverse the dense fibrotic scar tissue. The scar tissue laid down by the fibroblasts initially consists of fibronectin, 
but is later  r eplaced b y co llagen I  which i s a  s tronger scaffold. After r epair th e s car tis sue r emains, r educing t he 
contractile force of the muscle. Diagram compiled from references within Section 1.4. 
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1.4.2    Fibrosis 

Fibroblasts are activated during injury of the skeletal muscle and are subsequently termed 

myofibroblasts. As mentioned above, the myofibroblasts migrate into the wound and 

synthesize ECM proteins to strengthen the connective tissue framework during muscle 

repair (Sheffer et al., 2007).  

The first ECM components to be synthesized and laid down by the myofibroblasts are 

fibronectin and tenascin-C. These components create an elastic-type framework to support 

the mechanical load being applied to the injured muscle, as well as to provide support for 

the early granulation tissue, which was formed from the blood cells and was deposited in 

the wound. Collagen I and III are then synthesized to create a more permanent support 

scaffold. Collagen I is the major component of the connective scar tissue which remains 

after the muscle fiber has been regenerated (Ehrhardt and Morgan 2005). The tensile 

strength created by the collagen I is attributed to intermolecular cross-linking between the 

collagen I molecules during scar tissue maturation. Once the scar tissue has fully matured, 

the repaired area is no longer the weakest point in the muscle fiber, but it has lost the major 

part of its contractile function (Jarvinen et al., 2007). This suggests a survival mechanism 

of rapid, compromised repair predominates over slow, full repair of the muscle to ensure a 

quick return to functionality and ultimately the survival of the organism. 

A delay in inflammation or an impaired activation of satellite cells has been shown to 

result in excessive fibrotic tissue deposition. This may be due to factors and enzymes 

secreted by inflammatory cells and myoblasts, such as decorin and proteases (MT1-MMP 

and MMP-2) which possess anti-fibrotic characteristics. Fibrosis occurs in many muscular 

dystrophies and is enhanced by the growth factor TGF-β, which is regarded as the key 

mediator in tissue fibrosis. (Chua et al., 2005; Zanotti et al., 2005). TGF-β is contained in 

high concentrations within platelets and is released into the tissue at the site of injury. 

Inactive TGF-β is also found within the ECM and is released upon injury. An increased 

concentration of active TGF-β triggers fibroblasts to differentiate into myofibroblasts, 

migrate to the injured area and synthesize ECM components. TGF-β production in 

surrounding cells is also triggered in an autocrine fashion due to increased TGF-β found 

within the wound area (Border and Noble 1994; Li et al., 2004).  

Decorin has been shown to act as an anti-fibrotic agent in mouse skeletal muscle by 

binding to TGF-β and resulting in reduced fibrosis (Sato et al., 2003). In a study conducted 
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by Fukushima and colleagues, decorin was injected into a laceration created within murine 

muscle at 0, 5, 10, 15 days post-injury. The results demonstrated a decreased level of 

fibrotic tissue formation, as well as complete regeneration of the muscle to a level similar 

to that of non-injured muscle at all time points. However, addition at day 10 and 15 

showed the best reduction in fibrotic scar tissue. Decorin also reduced myofibroblasts 

proliferation when added separately or with TGF-β (Fukushima et al., 2001; Fukushima et 

al., 2006). This indicates that decorin may be used to counteract the fibrotic effect of TGF-

β resulting in optimal skeletal muscle wound healing with minimal scar tissue formation. 

1.4.3 Myoblast Transplantation Challenges 

Myofibers are mitotically inactive and cannot regenerate when damaged. Satellite cells and 

myoblasts within the myofiber are the primary means by which repair occurs and in the 

event of a major injury, they often cannot cope with the demands required to successfully 

repair the damaged muscle. Myoblast transplantation could aid in severe muscle injuries as 

the number of satellite cells able to divide and proliferate into myoblasts will be 

significantly increased upon transplantation (Usas et al., 2011). However, a number of 

challenges exist and have prevented successful myoblast transplantation and subsequent 

improved wound healing. These include the rejection of the transplanted myoblasts, an 

inability of the myoblasts to migrate to and penetrate the wound area successfully, and the 

death of a large number of myoblasts after transplantation (Guerette et al., 1997).  

The concept of myoblast rejection was largely overlooked in early human transplantation 

experiments as many of the mouse models used were nude mice, which have a deficient 

immune system (Usas et al., 2011). It was also thought that rejection would not be an issue 

in muscle transplantation as muscle cells were initially thought not to contain MyHC 

molecules. However, this theory was abandoned as it was shown that myoblasts do in fact 

express MyHC (Huard et al., 1994). Autologous transplantation of cultured human 

myoblasts isolated from muscle biopsies may circumvent this problem. However, the 

generation of sufficient cell numbers is still a hurdle to be overcome (Saihara et al., 2009). 

The low success rate of transplanted myoblasts is also due to the limited migration seen 

following injection into the wound (Rando et al., 1995). This may be due to the myoblasts 

becoming trapped within the interstitial connective tissue surrounding the myofiber, as 

well as negative effects of pro-fibrotic cytokines and ECM factors, such as TGF-β and 

collagen I. Kinoshita et al., showed that addition of bFGF, a MMP activating factor, to 
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myoblast cultures prior to transplantation increased migration and the success of myoblast 

transplantation four-fold, as increased MMP secretion aided in degradation of the 

surrounding interstitial ECM (Kinoshita et al., 1995). 

The third issue in myoblast transplantation is that 95-99% of myoblasts transplanted into a 

wound die within the first week after transplantation (Beauchamp et al., 1999). The cell 

death is accredited to the inflammatory response following myoblast transplantation. A 

method to overcome this high percentage of cell death is to enhance the proliferation of the 

surviving myoblasts within the wound. However, pre-treating the myoblasts with bFGF 

increases the proliferation of the myoblasts, but decreases their ability to fuse (Guerette et 

al., 1997). Leukemia inhibitory factor (LIF) and TGF-β have also been shown to increase 

the proliferation of myoblasts (Austin and Burgess 1991); however, TGF-β concomitantly 

decreases differentiation (Schabort et al., 2009). Therefore, stimuli that promote 

proliferation may decrease differentiation potential which is problematic for the technique 

of myoblast transplantation, indicating the need for further knowledge in this area. 

Aging also negatively affects the ability of muscle to repair as the deposition of ECM 

components changes in older muscle (Jasper and Kennedy 2012). Non-enzymatic glycation 

of collagen I occurs during aging and diabetes, affecting polymerization and intermolecular 

interactions (Young et al., 2006). A study conducted by Reigle and colleagues showed that 

not only was glycated collagen I less likely to form normal helical conformations, but that 

the binding of proteoglycans (such as decorin and biglycan) to collagen I was diminished, 

resulting in matrix integrity disruptions, decreased cell-collagen interactions and 

subsequent decreased cellular migration (Melrose et al., 2008; Reigle et al., 2008). 

Another key regulator of fibrosis within aged muscle is the Wnt family of secreted 

proteins, which have been shown to modulate myogenic, fibrogenenic and adipogenic 

activity within regenerating adult muscle (Wagers 2008). Age-dependent increases in Wnt 

signaling promote the transdifferentiation of activated myogenic satellite cells to fibrogenic 

cells and thereby contribute to deficient repair of aged muscle (Brack et al., 2007; 

Chakkalakal et al., 2012). These issues highlight the importance of cell-matrix interactions 

on cell migration and wound repair.  
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1.5 SUMMARY AND AIMS 

Throughout this chapter we have highlighted the components and mechanisms involved in 

regulating skeletal muscle migration to facilitate wound repair. Collagen, fibronectin, 

laminin, decorin and TGF-β are key ECM components found in the extracellular matrix 

which regulate aspects of myogenesis and fibrotic scar tissue formation (Figure 1.11). 

ROCK, a downstream effector of the Rho GTPase migratory pathway, is an important 

facilitator of cellular migration (Figure 1.11).  

Our objective within this study was to determine the effect of decorin, TGF-β, Matrigel 

(collagen IV and laminin), fibronectin and collagen I on myoblast migration. To achieve 

this we first needed to establish an assay best suited specifically for analyzing myoblast 

migration. Our specific aims were therefore to: 

Chapter 2: 
 

1) Optimize a scratch assay for our myoblast migration and analysis. 
 

2)  Develop a co-culture assay utilizing isolated primary culture murine myoblasts and 
fibroblasts to mimic in vivo conditions more closely. 

 

Chapters 3-5: 

1) Determine the effect of decorin, Matrigel, collagen I, fibronectin on murine and 
human myoblast migration 
 

2) Determine the role of ROCK in myoblast migration under the above-mentioned 
conditions 
 

3) Investigate the role of the TGF-β2/decorin complex on myoblast migration under 
different ECM conditions. 
 

Chapter 6:  

1) Develop a 3-dimensional skeletal muscle tissue model for analysis of ECM 
components within a 3D micro-environment. 
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CHAPTER 2 

IN VITRO MODEL DEVELOPMENT & OPTIMIZATION 

Includes data from:   

Goetsch, K. P. & Niesler, C. U. (2011) Optimization of the scratch assay for in vitro 
skeletal muscle wound healing analysis, Anal Biochem, vol. 411, no. 1, pp 158-160.  

Goetsch, K. P., Myburgh, K., Niesler, C. U. (2012) Simultaneous isolation of enriched 
myoblasts and fibroblasts for migration analysis within a novel co-culture assay, Stem Cell 
research – in Revision 

2.1 INTRODUCTION 

Skeletal muscle repair requires the activation of satellite cells to myoblasts and their 

migration to the region of injury. Initially myoblasts migrate along the basal lamina, in a 2-

dimensional manner and subsequently enter the injury site where they facilitate repair by 

fusing into myotubes (Ranzato et al., 2009). Currently, a range of assays (Table 2.1) are 

available to researchers who wish to study 2-dimensional migration, however the problem 

with several of these migration assays is they do not take into account many of the in vivo 

conditions which would be present during muscle regeneration.  

 

Table 2. 1: Summary of widely utilized migration assays and variations upon these models 

Migration Assay       Assay Variation References 
Chemotaxis  
Assay 

 Boyden chamber – top & bottom chambers 
 Zigmond chamber – side by side chambers 
 Dunn chamber – concentric ring chambers 
 Microfluidic chambers 
 µ-slide Chemotaxis assay  
 

Boyden, 1962 
 
Zigmond, 1988 
 
Zicha et al., 1991 
Meyvantsson & Beebe, 2008 
Zengel et al., 2011 
 
 

Stopper-Based Assay  OrisTM assay – silicone stopper 
 Cell exclusion zone assay 

Nizamutidnova et al., 2007 
Poujade et al., 2007 
 
 

Scratch/Wound 
Assay 

 Scratch assay with chemotactic gradient  
 Scratch assay – photoablation 
 Electrical wound assay 
 ECIS (electric cell-substrate impedance sensing) - 

fully automated 

Smith et al., 2010 
Tamada et al., 2007 
Keese et al., 2004 
Gorshkova et al., 2008 
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Depending on the cell type and aspect of migration under investigation, three migration 

assays are utilized routinely by researchers. These are the chemotaxis, stopper-based and 

scratch/wound healing assays (Table 2.1) (Goetsch and Niesler 2011). Chemotaxis assays 

involve the establishment of a temporary gradient, normally between two chambers 

separated by a microporous membrane. This is followed by the analysis of the movement 

of cells from one chamber to the other (Figure 2.1A & 2.1D) (Boyden 1962; Zigmond 

1988; Zicha et al., 1991; Meyvantsson and Beebe 2008; Zengel et al., 2011). However, for 

the study of adherent cells such as myoblasts, accurate quantification of migration using 

this system is difficult since migrated cells adhere to the underside of the membrane. 

Furthermore, the established gradient is short-lived, the use of the assay for analysis of the 

effect of ECM factors is limited, and morphological changes cannot be detected easily. In 

addition, using the traditional Boyden chamber, the mode of migration is not representative 

of the migration of myoblasts in response to injury in vivo, where myoblasts have to 

migrate along the basal lamina of the myofiber towards the injury site (Siegel et al., 2009).  

The stopper-based and scratch/wound healing assays are both two-dimensional assays and 

monitor the migration of a monolayer of adherent cells into an area which does not contain 

any cells (Figure 2B, C, E, F) (Keese et al., 2004; Liang et al., 2007; Poujade et al., 2007; 

Tamada et al., 2007; Gorshkova et al., 2008; Nizamutdinova et al., 2009; Smith et al., 

2010; Goetsch and Niesler 2011). The advantage of this strategy is that the rate of 

migration can be determined and visual changes in cell morphology can be observed via 

time-lapse microscopy. In addition, the wells can be coated with different ECM substrates 

allowing analysis of migration under conditions which mimic the in vivo environment 

more closely (Goetsch and Niesler 2011). When comparing the scratch/wound healing 

assay to the stopper-based assay, the scratch assay has the advantage that it incorporates 

the actual wounding of cells, and therefore to an extent, a response that would be elicited in 

vivo due to this “wounding”.  
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Figure 2.1 Pre- and post- cellular migration within different migration assays. The effects of 
migration depicted are that of adherent cells such as myoblasts. Initial seeding of cells prior to 
migration within the trans-well (A), stopper-based (B) and scratch assays (C). Post-migration effect 
for the trans-well (D), stopper-based (E) and scratch assays (F). The cells are seeded within the 
trans-well chamber which has a porous base to allow for migrating cells to pass through due to the 
chemotactic gradient. For the stopper-based assay the stopper is removed and the number of cells 
that migrate within the area which contained the stopper are counted. The scratch assay is analyzed 
by taking a series of images throughout the migration period and calculating the percentage wound 
closure from the area of the scratch. 

 

Despite these advantages, the scratch assay still fails to account for key migration 

regulatory signals secreted by other cells, such as fibroblasts, during the repair process 

(Cornelison 2008; Velnar et al., 2009; Ten Broek et al., 2010). The majority of in vitro 

assays used to study skeletal muscle cell migration within the healing context focus solely 

on the movement of myoblasts in response to various growth or extracellular matrix factors 

(Cooper and Isacson 2004; Goetsch et al., 2011). The addition of exogenous stimuli (e.g. 

growth factors) and substrates (e.g. collagen, laminin) to these systems represents an effort 

to mimic in vivo conditions. However, failure to include interstitial cells, such as 

fibroblasts (usually present in the wound post-injury) within the assay, prevents the 

researcher from establishing an accurate reflection of the replacement process occurring in 

vivo (Cornelison 2008; Ten Broek et al., 2010). Fibroblasts contribute to the milieu by 

secreting growth and extracellular matrix (ECM) factors which influence the migration of 

myoblasts (Murphy et al., 2011). For instance, following injury, satellite cells express the 
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functional CXCR4 receptor. This binds to stromal-derived factor-1 (SDF-1), a chemokine 

secreted by fibroblasts during muscle repair and facilitates the homing of satellite cells to 

the injury site (Ratajczak et al., 2003; Miller et al., 2008). Furthermore, hepatocyte growth 

factor (HGF), an important satellite cell activation factor, and fibroblast growth factor 

(FGF), a key regulator of myogenic proliferation, migration and terminal differentiation, 

are both secreted by fibroblasts and are required for muscle regeneration (Fedorov et al., 

1998; Neuhaus et al., 2003). It is therefore necessary to take into account the effect of the 

factors these cells secrete during myoblast migration. 

In this chapter we present the optimization of a scratch assay specifically designed for 

myoblast migration, the development of a primary culture isolation protocol for murine 

fibroblasts and myoblasts, and a unique co-culture assay utilizing these isolated cells. We 

also show that the isolation of highly pure cultures of myoblasts and fibroblasts from the 

same muscle slurry can be achieved consistently, rapidly and inexpensively.  Furthermore, 

the co-culture assay is designed to better mimic in vivo wound healing conditions, as both 

myoblasts and fibroblasts from the same animals are incorporated into one assay. This is 

unique to a wound healing assay as it allows for secreted factors from the fibroblasts to 

interact with the migrating myoblasts during wound repair and provides an in vitro 

environment which is closer to that of actual wound healing conditions in vivo.  

 

 

 

 

 

 

 

 

 

 



35 
 

2.2 EXPERIMENTAL PROCEDURES 

2.2.1 Animals 

BALB/c mice were bred and maintained at the University of KwaZulu-Natal (UKZN) 

animal house, Pietermaritzburg. Mice were utilized for skeletal muscle primary culture 

isolation at 3-6 weeks of age. All animals were handled in accordance with guidelines of 

the UKZN Animal Ethics Research Committee (Ethics number: 068/11/animal). 

2.2.2 Culture Conditions 

C2C12 myoblasts were used for initial scratch assay optimization experiments. The cells 

were maintained in a humidified incubator at 37°C, 5% CO2 in growth medium consisting 

of Dulbecco’s Modified Eagle’s Medium (DMEM, Highveld, cat. CN3193-9) 

supplemented with 2% L-glutamine (Cambrex, cat. 17-605E), 2% PenStrep (Cambrex, cat. 

17-602E) and 10% fetal calf serum (FCS, Invitrogen, cat. 10108165). Primary culture 

media consisted of Ham’s F-10 nutrient mixture (Gibco, cat. 31550) supplemented with 

20% FCS (Gibco, cat. 10108165), 2% penstrep (Gibco, cat. 15140), 50 µg/ml Gentamicin 

(Gibco, cat. 15750-037) and 2.5 ng/ml fibroblast growth factor (rhFGF, Promega, cat. 

G507A). The 6-well plates, T25 flasks and co-culture chambers (IVF center well dish, 

Nunc, cat. 1019411) used in the pre-plating, enrichment and co-culture steps were coated 

with 50 µg/ml rat tail collagen I (a gift from Dr. E. Elliott, Discipline of Biochemistry, 

University of KwaZulu-Natal). Enrichment media used after the initial pre-plating isolation 

consisted of a 1:1 Ham’s F-10 nutrient mixture with Dulbecco’s Modified Eagle’s Medium 

(DMEM) (Sigma, cat. D5648), 20% FCS, 2% penstrep, 2.5 ng/ml rhFGF. All cells were 

maintained in a humidified incubator at 37°C, 5% CO2. 

2.2.3 Scratch Assay  

C2C12 cells were plated at 5x104 cells per well in a 24-well plate (TPP, cat. 92024) and 

were incubated at 37°C until 80% confluent. The cultures were “wounded” with a loading 

tip (1-200µl, Whitehead Scientific, cat. 010), washed with PBS, and re-incubated with 

250µl growth media. Wounds were photographed at hours 0, 1, 3, 5, & 7 with the Motic 3 

megapixel camera (40 X magnifications, Olympus CKX41) and were analyzed via the 

Motic 2.0 image analysis software. All experiments were performed in triplicate and 

repeated three times. The following equation was used to determine the percentage wound 

closure: 
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2.2.4 Live Cell Imaging 

Cells were seeded onto a glass-bottom tissue dish (cat. P35G-1.5-14-C, Matek 

Corporation) and the scratch assay was performed, as previously described. Real-time 

visualization was determined by differential interference contrast (DIC) microscopy, 

utilizing the Zeiss LSM 710 confocal microscope, within an incubated chamber at 37°C 

and 5% CO2. Images were taken at 2 minute intervals for 3 hours. Live cell analysis was 

done with the manual cell tracker plug-in for ImageJ (available as freeware at 

rsbweb.nih.gov/ij/) which calculates distance and velocity of the cell migration. 

2.2.5 Preparation of Primary Cultures 

The isolation protocol was adapted from Rando and Blau (Rando and Blau, 1994). Briefly, 

3-6 week old mice (two mice per isolation; a single animal did not yield sufficient cells), 

were euthanized and submerged in 70% ethanol for 5 minutes within a sterile level II 

biological safety cabinet. The hindlimbs were removed and the muscle was dissected away 

from the bone and placed within a few drops of warm phosphate buffered saline (PBS, pH 

7.2). The muscle from both mice was minced into a coarse slurry using a razor blade. The 

cells were enzymatically dissociated by the addition of 2 ml of a 1 mg/ml 

collagenase/dispase solution (Roche, cat. 10269638001). The slurry was incubated at 37°C 

on a shaker for 40 minutes, with titration of the slurry every 10 minutes to dislodge the 

cells. The slurry solution was filtered through a sterile tea sieve and washed thoroughly 

with PBS (20 ml). The filtrate was then centrifuged at 350 g to pellet the cells. Finally, the 

supernatant was discarded and the pellet was re-suspended in 2 ml primary culture media 

and plated in one well of a 6-well plate coated with 50 µg/ml collagen I; this well was 

referred to as pre-plate 1 (PP1; Passage 0).   
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2.2.6 Isolation of Myoblasts and Fibroblasts 

Isolated cells went through a series of five pre-plating steps (PP1-PP5), all plates were 

coated with 50 µg/ml collagen I, in order to isolate both fibroblasts and myoblasts (Figure 

2.2). After 1 hour the cell suspension solution was moved from the PP1 well to the PP2 

well. Remaining PP1 cells (Passage 0) were washed with PBS and 2 ml new primary 

media was added to the well. This wash step with PBS and the addition of new primary 

media was repeated whenever the cell suspension was moved to a new well for PP2, PP3, 

PP4 and PP5. The incubation times for each pre-plate were 1 h (PP1), 2 h (PP2), 18 h 

(PP3), 24 h (PP4), 24 h (PP5). Following each subsequent incubation time, the non-

adherent cells transferred to a new well contained more myoblasts (green cells, Figure 2.2) 

and fewer fibroblasts (orange cells, Figure 2.2). Conversely, the adherent cells remaining 

behind consisted of fewer myoblasts and more fibroblasts in PP1; compared to PP5, which 

contained predominantly myoblasts. The media was replaced every day with two PBS 

wash steps prior to the addition of 2 ml primary media. Once the cells reached a density of 

approximately 70% within the wells of the 6-well plate they were transferred to collagen I 

coated T25 flasks (Passage 1) for enrichment. (Note: it was important to check for 

contaminants at this point to ensure optimal cell viability).    

Figure 2.2 Isolation of primary cultured fibroblasts and myoblasts. Diagram of the isolation 
procedure which utilizes consecutive pre-plating steps for the isolation and enrichment of 
myoblasts and fibroblasts. PP1-PP5 refers to consecutive pre-plates 1-5. PP2 & PP3 flasks were 
tested for desmin positive cells before being discarded.  
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2.2.7 Enrichment of Primary Cultures 

Only PP1, PP4 and PP5 (all Passage 0) were utilized for the enrichment of cells (Figure 

2.2). Enrichment of fibroblasts and myoblasts by pre-plating was adapted from Richler and 

Yaffe (Richler and Yaffe 1970). For fibroblast enrichment, adherent cells from PP1 

(Passage 0) in the initial isolation well were trypsinized (1 ml of 0.25% trypsin, Highveld 

Biological, cat. CN3649) and transferred with the addition of 5 ml enrichment media to a 

T25 flask. The flask was incubated for 1 hour after which the media, along with any non-

adherent cells was discarded and replaced with 5 ml enrichment media. This allowed for 

the enrichment of fibroblasts (now Passage 1), which have a shorter adhesion time 

compared to myoblasts. For PP4 and PP5 the opposite was carried out for enrichment. The 

cell suspension which did not adhere to the flask within the first hour was placed in a new 

T25 flask (now Passage 1), eliminating the majority of fibroblasts and resulting in 

myoblast enrichment due to the difference in cell adhesion times. The enriched populations 

were grown to a density of 70%. At this point the PP1, PP4 and PP5 cell populations were 

either frozen down (1 ml enrichment media containing 1% DMSO, 20% FCS) in liquid 

nitrogen or plated for experimental purposes.  

2.2.8 Immunofluorescence of Isolated Primary Cultures 

Cells were grown on glass coverslips coated with 50 µg/ml collagen I within a 24 well 

plate. The cells were fixed with a 4% paraformaldehyde solution for 10 minutes and 

washed twice with PBS for 5 minutes. For blocking, a 5% donkey serum solution (Sigma, 

cat. D9663)  was added for 1 hour at room temperature (RT), followed by the addition of 

the following primary antibodies for 2 hours at room temperature: polyclonal rabbit anti-

human desmin (1/500, Abcam, cat. AB15200) and monoclonal mouse anti-human Pax7 

(1/500, Abcam, cat. AB55494). The coverslips were then washed three times with PBS for 

5 minutes. Secondary antibodies, Dylight488 donkey anti-rabbit (1/1000, Jackson, cat. 

711-485-152) and Dylight594 donkey anti-mouse (1/1000, Jackson, cat. 715-515-151), 

were added for 1 hour at room temperature in the dark. This was followed by three washes 

with PBS (5 min), the addition of Hoechst (1/4000, Sigma, cat.B2261) for 5 minutes, and 

finally, four PBS wash steps. Coverslips were then mounted onto slides with moviol 

mounting media. The slides were viewed, directly after labelling, with a Zeiss 710 confocal 

microscope at 40X magnification.  
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2.2.9 Co-Culture Assay 

Enriched fibroblasts (PP1, Passage 1) were seeded in 2 ml enrichment media onto the 

outer-ring of collagen I-coated co-culture chambers, with 10 000, 20 000, 40 000, 80 000 

cells per dish. Enriched myoblasts (PP4/5, Passage 1) were seeded in 2 ml enrichment 

media in the inner chamber, at 70 000 cells per dish (Figure 2.2). Control conditions 

consisted of a co-culture chamber seeded only with enriched myoblasts in the inner 

chamber and media in the outer-ring. The seeded chambers were incubated for 16 hours at 

37°C, 5% CO2. A scratch was then performed as previously described (Goetsch and 

Niesler, 2011). Overflow of media between the outer-ring and inner chamber occurred 

directly after the scratch had been performed, with the addition of 13 ml enrichment media 

(Figure 2.3, blue arrows). Images were captured at initial “wounding” and at hours 3.5 and 

7 post-“wounding” with the Motic Image Plus 2.0 software.  

 

 

 

 

 

 

 

 

 
 
Figure 2.3 Co-culture assay utilizing isolated primary culture myoblasts and fibroblasts.  
Diagram of the co-culture assay which utilizes a two-chamber culture dish with myoblasts seeded 
in the center and fibroblasts seeded in the outer ring. PP1 & PP5 refers to pre-plates 1 & 5, 
respectively. 
 
 
 

 

Passage 1 

Passage 1 
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2.2.10 Statistics 

Statistical evaluations were performed for the scratch assay by non-parametric Mann-

Whitney U tests for all experiments. For the co-culture assay and isolation procedure, 

triplicate data points were obtained for each condition and a Student’s t-test was performed 

to calculate p-values for the differences between the means of experimental conditions and 

control. Genstat was used for all statistical tests and significance was determined as 

p<0.05. Results are presented as the mean +/- standard error of the mean (SEM) for three 

or more individual experiments. 
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2.3 RESULTS 

Initial migration analysis was carried out utilizing the OrisTM stopper-based assay 

(Nizamutdinova et al., 2009; Park et al., 2012), but it was found that only a few myoblasts 

moving around the edge of the area blocked originally by the stopper leading to 

inconsistent results (data not shown). This was attributed to the lack of signalling factors to 

promote the migration of myoblasts into the open area. The only promoting factor for 

migration was the lack of contact of surrounding cells (i.e. an open area for the cells to 

expand and proliferate into). We therefore, decided to adopt the scratch assay as our model 

of choice for myoblast migration as we could coat the flasks with different ECM 

components at varying concentrations, “wound” cells to release signalling molecules and 

monitor migration over an optimal time period to avoid proliferative effects.  This specific 

regulation while monitoring myoblast migration allowed us to better mimic in vivo 

conditions specific for myoblast migration. 

2.3.1 Scratch Assay Development 

We first needed to establish the best way to perform the scratch in order to ensure and 

remove the very minimal quantity of ECM coating as possible within the well. We initially 

tried a rigid tip (yellow pipette tip) and a flexible tip (loading pipette tip). Wounds created 

via the loading and yellow tip methods were analyzed and the percentage wound closure 

equation over a 7 hour period was assessed (Figure 2.4B). The loading tip, along with a 

streaking action (Figure 2.4ii), demonstrated the best method as smaller consistent wounds 

could be achieved and a greater wound closure over the twisting yellow tip method was 

observed (Figure 2.4B).   

Figure 2.4 Scratch assay optimization for C2C12 myoblast cell line. Scratches were performed 
in a 24-well plate containing C2C12 myoblasts at a 80% confluence level. A) Photos depicting the 
differences between the two scratch sizes of the yellow tip (i) and the loading tip (ii). B) Percentage 
wound closure for the plastic and loading tips over a 7 hour period. Images were taken with the 
Motic 3 megapixel camera at 4X magnification. All data shown as ±SEM. 

B 
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To ensure that the C2C12 cells were migrating into the wound area instead of encroaching 

on the wound area via proliferation, the cells moving across the wound edge were 

monitored for the classical migration shape. Migrating C2C12 cells will extend a number 

of lamellipodia at their front with the tapering off of the tail at the rear of the cell. This 

classical myoblast migration shape was witnessed throughout the scratch assay 

experiments ensuring that the results reflected migrating cells (Figure 2.5, black arrow). To 

determine the optimal time period, myoblast migration was monitored over a 24 hour 

period via live cell imaging (Figure 2.6). After ±8 hours the proliferative effects of the 

myoblasts begin to affect the percentage wound closure results and after 9-12 hours 

depending on treatment the “wound” area reached 100% wound closure. A 7 hour period 

was therefore determined as the optimal time period to monitor myoblast migration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 hour 7 hour 

Figure 2.5 Wound front at 0 and 7 hours depicting a classically migrating C2C12 myoblast. 
Scratches were performed, using a loading tip, on collagen-coated 12-well plates containing C2C12 
myoblasts at a 90% confluence level. Images were taken at 0, 1, 3, 5, & 7 hours with the Motic 3 
megapixel camera at 100x magnification. The white arrow shows the wound front. The black arrow 
depicts a C2C12 myoblast in the classical migration shape with lamellipodia extending into the 
wounded area. 

 

 

Lamellipodia formation 
of migrating C2C12 cell 
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Live cell tracking was also performed to monitor the movement of migrating cells into the 

“wound” area in terms of directionality and velocity. The outline of the lamellipodia as 

well as the nucleus was traced for each migrating myoblast (Figure 2.6). This allowed for 

individual cell tracking of migrating cells and up to 8 cells per field of view could be 

individually tracked at the same time utilizing this method of live cell imaging.  

 

 

Figure 2.6 Live cell tracking of migrating C2C12 myoblasts. C2C12 myoblasts were grown to 
80% confluency on glass coverslips prior to the scratch assay. Live cell tracking of a migrating 
C2C12 myoblast at the wound front. Images were taken at 1 hour (yellow), 2 hour (orange) and 3 
hour (red) post-wounding. Images were taken with the LSM 710 confocal microscope at 40X 
magnification. Scale bar = 10µm. 
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2.3.2 Isolation and enrichment of murine myoblasts and fibroblasts 

The isolation protocol of primary fibroblasts and myoblasts utilized a serial pre-plating 

technique specifically optimized for the enrichment of both cell types. To determine the 

percentage of myoblasts present at each pre-plate level (PP1-PP5), cells were fixed and 

immuno-labelled for desmin (a subunit of the intermediate filaments in skeletal muscle 

tissue commonly used to identify primary isolated myoblasts) and Pax7 (a satellite cell 

transcription factor). Although PP6 was isolated during initial experiments, it was not 

utilized further, as too few cells remained in the cell suspension to contribute to a viable 

cell population. 

After the establishment of an isolation protocol, myoblasts were identified as cells staining 

positive for desmin and Pax7 (Figure 2.7).  The percentage cells positive for desmin/Pax7 

was then determined (Figure 2.8). PP1 (Passage 0), which was subsequently utilized for 

fibroblast enrichment, contained an average myoblast population of 36 ± 7.53%. An 

increase in the percentage myoblasts present in each subsequent pre-plate was evident, 

with PP2, PP3, PP4 and PP5 (all Passage 0) containing a myoblast purity of 47 ± 6.64%, 

62% ± 0.27%, 80 ± 8.12% and 96 ± 0.9%, respectively (Figure 2.8). PP4 and PP5 were 

selected for myoblast enrichment due to the significantly higher percentage of myoblasts 

within these pre-plates when compared to PP1-PP3 (p<0.05 and p<0.005; Figure 2.8). 
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Figure 2.7 Primary cultured myoblasts from PP1-PP5.  
Micrographs of cell populations from PP1 through to PP5 immuno-labelled with mouse monoclonal anti-
desmin (green) and mouse monoclonal anti-Pax7 (red) antibodies. Hoechst (blue) was used as the nuclear stain. 
The cells were seeded on coverslips coated with 50 µg/ml collagen I and images captured using a Zeiss 710 
confocal microscope at 40X magnification. Scale bar = 20µm. n=3 (5 random fields of view per n). 
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Figure 2.8 Percentage desmin+/Pax7+ cells (PP1-PP5) of the total cellular population.  
Bar graph showing the percentage desmin and Pax7 positive cells (compared to total number of 
cells stained with Hoechst). Pre-plate 1 (PP1) through to pre-plate 5 (PP5) were isolated as 
previously described (Figure 2.2). *p<0.05, **p<0.005, n=3 (5 random fields of view per n), data 
= Mean ±SEM. 
 
2.3.3 Lineage confirmation for use in the co-culture assay 

Following the enrichment of fibroblasts and myoblasts, cells (Passage 1) were plated out 

into a co-culture dish. Myoblasts (PP4/5; Passage 1) were tested for their ability to migrate 

using the scratch assay (Figure 2.9Ai). Cells migrating into the “wound” area were 

immuno-labelled for desmin to ensure that myoblasts, and not any residual fibroblasts, 

migrated into the “wound” area (Figure 2.9Aii). Expression of Pax7 and desmin in PP1 

(Passage 1) was compared to the control myoblast C2C12 cell line (Figure 2.9B). 

Consistent scratches were readily reproducible within the primary myoblast cultures and a 

relatively low amount of debris was observed on the migration front (Figure 2.9Ai), 

resulting in consistent “wound” areas for all experimental groups and controls. All the cells 

on the migrating front at 7 hours post-“wounding” labelled positive for desmin, indicating 

the PP4/5 cells migrating into the “wound” area were myoblasts and that observations 

drawn from the co-culture assay would be a true reflection of myoblast migration (Figure 

2.9Aii). C2C12 cells were used as a positive control and labelled strongly for desmin and 

Pax7. (Figure 2.9Bi). The PP1 population which had been enriched for fibroblasts was not 

found to express either Pax7 or desmin (Figure 2.9Bii). Given the culture conditions 

employed, this suggested a population of predominantly fibroblasts. PP5 enriched for 

myoblasts showed desmin/Pax7 positive labelling for all cells (Figure 2.9Biii). 
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Figure 2.9 Validation of co-culture wound healing assay. (Ai) Micrograph of the scratch area 
within the myoblast-seeded inner chamber. All scratches were performed on 50 µg/ml collagen I-
coated co-culture chambers. (ii) Micrographs of desmin positive cells (green) at the leading front of 
the “wound” area. (B) Fibroblast purity within the outer-ring was determined by comparison 
between the C2C12 myoblast cell line (i), PP1 enriched fibroblasts (ii), and PP5 enriched myoblasts 
(iii). Desmin (green) and Pax7 (red) were used to distinguish myoblasts from fibroblasts. Hoechst 
(blue) was used as the nuclear stain. Images were captured using the Zeiss 710 confocal 
microscope at 40X magnification. Scale bar = 20µm.  
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2.3.4 Validation and application of co-culture assay to determine the effect of fibroblasts 

on myoblast migration 

To validate the newly developed co-culture assay, the percentage wound closure following 

myoblast injury was compared over time in the presence and absence of fibroblasts. It was 

found that, in the presence of fibroblasts (60 000 cells), the percentage wound closure 

negatively affected migration after 1 hour compared to control. However, after hours 5 and 

7 there was a significant increase (7 hour: 69.3±5.2%; p<0.001) when compared with 

control (7 hour: 40.4 ±2.4%), which lacked fibroblasts (Figure 2.10B). The rate of 

myoblast migration was also significantly increased in the presence of fibroblasts (10.0 ± 

0.8 %/hr; p<0.025) compared to control (5.4 ± 0.6 %/hr) conditions (Figure 2.10C).  
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Figure 2.10 Preliminary findings of co-culture assay versus scratch assay. 
(A) Micrographs of scratch assay control (collagen I 50 µg/ml) verses co-culture assay (collagen I 50 µg/ml) at 
initial wounding and, 3 and 7 hours post-wounding. (B) Line graph showing the percentage wound closure at 0, 
1, 3, 5 and 7 hours post-“wounding” for control (without fibroblasts) and co-culture (containing fibroblasts). All 
scratches were performed on 50 µg/ml collagen I coated co-culture chambers. Images were captured with the 
3MP Motic camera and analysed with the Motic Plus 2.0 software. (C) Plot of the rate of migration of myoblasts 
for control and co-culture assay at 7 hours post-“wounding”. *p<0.05, **p<0.005, n=3, error bars = ±SEM. 
 



49 
 

 

A dose response was then carried out to determine the exact effect of fibroblast number on 

myoblast migration. 10 000 - 80 000 enriched fibroblasts from PP1 (Passage 1) were 

seeded in the outer-ring and enriched myoblasts from PP4/5 (Passage 1) were seeded 

within the inner chamber (at 70% confluence). A co-culture dish containing PP4/5 

myoblasts within the inner chamber and only media within the outer-ring was used as the 

control for all co-culture experiments. Consistently sized scratches were induced for all 

experiments and the “wound” area was calculated at hours 3.5 and 7 (Figure 2.11A).   

The percentage wound closure was calculated and a noticeable effect was observed, 

whereby the increase in fibroblast number led to an increase in the percentage wound 

closure (Figure 2.11B). The percentage wound closure changed from 51.6 ±5.1% (no 

fibroblasts), 48.3 ±2.7% (10 000 fibroblasts), 60.0 ±5.9% (20 000 fibroblasts), 67.4 ±7.9% 

(40 000 fibroblasts; p<0.05) to 87.1 ±8.2% (80 000 fibroblasts; p<0.005). Co-culture with 

80 000 fibroblasts had the greatest significant effect compared to control (p<0.007) at 7 

hours post-“wounding”. At 3.5 hours post-“wounding” no significant difference in the 

percentage wound closure was observed for all experimental groups compared to the 

control (Figure 2.11B). The rate of migration was also consistent with the results observed 

above, with an increase in the rate of migration as fibroblast number increased. The rate (% 

per hour) of myoblast migration in response to co-culture with 80 000 fibroblasts was 12.4 

±1.2, a significant increase compared to the other 3 conditions: control 7.4 ±0.7 (p<0.011), 

10 000 fibroblasts, 6.9 ±0.4 (p<0.006), and 20 000 fibroblasts 8.6 ±0.8 (p<0.028) (Figure 

2.11C). 
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Figure 2.11 Dose response of fibroblast cell number on myoblast migration.  
(A) Micrographs of the “wounded” area within the myoblast monolayer (imaged at 0, 3.5 and 7 
hours post-“wounding”) in response to control, 10 000, 20 000, 40 000, 80 000 fibroblasts. All 
scratches were performed on 50 µg/ml collagen I coated co-culture chambers. Images were 
captured with the 3MP Motic camera and analysed with the Motic Plus 2.0 software. The white 
outline represents the calculated “wound” area. (B) Line graph showing the percentage wound 
closure at 3.5 and 7 hours post-“wound” in response to increasing number of fibroblasts initially 
seeded. (C) Graph of the rate of migration of myoblasts for control, 10 000, 20 000, 40 000, 80 000 
fibroblasts at 7 hour post-“wounding”. *p<0.05, **p<0.005 compared to control, n=3, Mean 
±SEM. 
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2.4 DISCUSSION 

In this chapter we report the development of an optimized scratch assay protocol 

specifically for the analysis of myoblast migration, as well as a novel co-culture assay 

which utilizes primary cultured myoblasts and fibroblasts from the same animal. The 

optimized scratch assay has numerous benefits over existing migration models including 

that it: a) is ideal for migratory studies of adherent monolayer cell types, b) is versatile; as 

it allows modification of the ECM coating on which the myoblasts migrate, c) mimics the 

in vivo situation, as the “wound” releases cytokines, d) allows for the analysis of both 

undifferentiated myoblasts and differentiated myotubes, e) can be adjusted to discount 

proliferation as a confounding factor, f) allows simultaneous microscopic analysis of 

morphology and protein distribution, g) permits accurate assessment of the percentage 

wound repair, and h) is cost effective and relatively simple to set up in a basic tissue 

culture lab (Goetsch and Niesler 2011). 

Numerous protocols for the isolation of primary myoblasts using culture procedures have 

been published, however, most protocols focus on acquiring significant myoblast numbers 

following consecutive pre-plate passages. To our knowledge, none of these isolate both 

myoblasts and fibroblasts simultaneously from the same animal to establish an in vitro co-

culture wound healing assay. Our optimised protocol efficiently generates low passage, 

pure myoblast and fibroblast populations. Furthermore, we were able to utilise it to 

establish a novel wound healing protocol which uses the co-culture of these two cell types 

to mimic the in vivo environment more closely.   

One of the major concerns with primary myoblast isolation relates to the purity and late 

passage number utilized in experimental designs. To address this we ensured our purity 

level was greater than 80%. It has been demonstrated that after passage three, isolated 

myogenic cells display a decrease in myogenic marker expression (Desmin, MyoD and 

Pax7) and lose a significant ability to differentiate (Machida et al., 2004). Due to this we 

have focused on maintaining a low passage number; we were consistently able to utilise 

cells at Passage 1 or 2 (for both fibroblasts and myoblasts).    

The inclusion of fibroblasts within our co-culture assay allows for multiple fibroblast-

secreted factors to bind to and stimulate myoblasts. In addition, fibroblasts and myoblasts 

are isolated simultaneously from the same muscle slurry, further ensuring a profile closer 

to in vivo conditions. This model is ideal for drug discovery and potentially myoblast 
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transplantation studies as it gives the researcher a better representative model of myoblast 

migration triggered by signals present under in vivo injury/wound conditions (Tremblay et 

al., 1997). Importantly, our newly optimised method is also relatively inexpensive and 

uncomplicated in comparison to other previously published methods (Rando and Blau 

1994; Gharaibeh et al., 2008; Musaro and Barberi 2010). 

The term “co-culture” is often used to describe a setup where two different cell populations 

are combined within the same dish, such as dermal fibroblasts and endothelial cells 

described in the study by Oberringer et al (Oberringer et al., 2007). However, in our study 

we use this term to refer to the simultaneous culture of two cell types in distinct 

compartments, but where the media, and therefore secreted soluble factors (e.g. 

chemokines and growth factors), is shared. In this way myoblasts can be exposed to signals 

released from fibroblasts, and vice versa, enabling some simulation of in vivo wound 

conditions (Ratajczak et al., 2003; Ten Broek et al., 2010). Our model mimics in vivo 

repair during the proliferative phase of repair, at approximately three weeks after initial 

injury (i.e. after hemostasis and the inflammatory phase) (Huard et al., 2002; Valluru et al., 

2011). Under these conditions we found that an eight-fold increase in fibroblast cell 

number resulted in significantly faster wound closure over seven hours. This is most likely 

due to known chemokine factors secreted by the fibroblasts, such as HGF, FGF and IGF-1, 

which contribute to regulation of myoblast migration (Neuhaus et al., 2003). Interestingly, 

analysis at 3.5 hours showed no significant differences, suggesting that a threshold time is 

needed for production and secretion of relevant factors required for myogenic migration. 

In this chapter, a specific fibroblast marker, such as TE-7 or Tcf4, to unambiguously prove 

the presence of fibroblasts in PP1 (Passage 1), was not used (Goodpaster et al., 2008; 

Mathews et al., 2011). However, the isolated muscle slurry contains primarily myoblasts 

and fibroblasts which can be distinguished morphologically from each other. Furthermore, 

the inability of the PP1 cells to differentiate into myotubes, and the lack of myogenic 

marker expression did prove the fibroblast nature of this population. These measures are 

currently accepted methods for fibroblast determination during myoblast isolation 

protocols.  
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In conclusion, we have optimized the scratch assay, specifically for myoblast migration 

(Goetsch and Niesler 2011) and developed a novel co-culture wound healing assay which 

uses an optimised protocol for the isolation and enrichment of both myoblasts and 

fibroblasts from the same muscle slurry (Goetsch et al., 2011). Future characterisation of 

these assays could include the analysis of the factors secreted by fibroblasts, followed by 

the use of antibodies to remove secreted factors from the media. Adaptation of the assay to 

low oxygen tensions would mimic the skeletal muscle environment even more closely. 

These could all be applied in order to more fully understand the factors critical to optimal 

myoblast migration during skeletal muscle regeneration and effective repair. In the 

subsequent chapters the scratch assay was utilized, however future work will involve the 

expansion of these chapters to incorporate the co-culture assay. 
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CHAPTER 3 

THE EXTRACELLULAR MATRIX AFFECTS C2C12 MYOBLAST MIGRATION 

Includes data from:  

Goetsch, K. P., Kallmeyer, K., Niesler, C. U. (2011) Decorin modulates collagen I-
stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts, Matrix Biol, 30 
(2): 109-117. 

3.1 INTRODUCTION 

Skeletal muscle contains satellite cells which are located between the basal lamina and 

sarcolemma, and can be activated following injury to initiate muscle fibre regeneration 

(Thorrez et al., 2008). Skeletal myofibers are surrounded by extracellular matrix (ECM) 

which was initially thought to act only as a scaffold for maintaining tissue structure. It has 

since been shown to regulate many cellular processes, including survival, proliferation, 

migration, and differentiation of satellite cells (Bretscher 1996; Heino 1996; Friedl and 

Brocker 2000). The ECM is a complex meshwork of many different types of proteins (i.e. 

collagens, laminins and fibronectins), proteoglycans (i.e. biglycan and decorin), and 

polysaccharides and differs in the ratio of these components depending on the tissue type. 

Following a severe shear-type muscle injury, platelets within the damaged area secrete 

cytokines and growth factors and, along with blood derived fibrin and fibronectin, form 

early cross-linked granulation tissue (Ranzato et al., 2009). This creates a scaffold for the 

invading inflammatory cells and fibroblasts (Ehrhardt and Morgan 2005).  

Fibroblasts are activated to myofibroblasts and migrate into the wound to synthesize more 

ECM proteins and restore the strength of the connective tissue framework (Sheffer et al., 

2007). The first ECM components to be synthesized and laid down by the myofibroblasts 

are fibronectin and tenascin C. These components create an elastic type framework to 

support the mechanical load being applied to the injured muscle, as well as to provide 

support for the early granulation tissue. Collagen I and III are then synthesized to create a 

more permanent support scaffold. Collagen I is the major component of the connective scar 

tissue which remains after the muscle fiber has been regenerated (Ehrhardt and Morgan 

2005). The tensile strength created by the collagen I is attributed to intermolecular cross-

linking between the collagen molecules during scar tissue maturation. Once the scar tissue 

has fully matured the repaired area is no longer the weakest point in the muscle fiber, but it 

has lost the major part of its contractile function (Jarvinen et al., 2007).   
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In response to a severe skeletal muscle injury, the activated satellite cell (now termed a 

myoblast) will migrate along the basal lamina, which consists primarily of laminin and 

collagen IV (Bonnemann and Laing 2004), and enter the wound site. Concomitantly, 

myofibroblasts from the interstitial space will move into the site of injury and secrete 

fibronectin, tenascin C and collagen I & III, thereby creating a ECM scaffold for structural 

support (Ehrhardt and Morgan 2005). As a result, migrating myoblasts are exposed to the 

ECM components of the developing wound scaffold; this influences their ability to 

facilitate repair. 

The migration process can be seen to occur in three parts: extension of lamellipodia, 

contraction of the cellular body, and detachment from the ECM at the rear of the cell 

(Friedl and Brocker 2000). At the leading edge of the cell, ruffling will occur followed by 

the protrusion of the lamellipodia. These are “arm-like” protrusions used to extend the cell 

forward during migration and form new attachments to the ECM surface it encounters. 

This process of the lamellipodial extension and cell ruffling involves actin polymerization, 

which is initiated and maintained primarily by the integrin receptor in concert with cell 

surface proteoglycans, such as phosphacan and CD44 (Nobes and Hall 1995; Humphries et 

al., 2006). A key kinase within the Rho-GTPase family which regulates myoblast 

migration is Rho-kinase (ROCK). Two isoforms of ROCK, ROCK-1 and -2 have been 

described. ROCK-1 is localized throughout the cytoplasm of the cell, whereas ROCK-2 

exhibits both cell membrane and intense perinuclear distributions in fibroblasts (Shi and 

Wei 2007; Jayo et al., 2012). ROCK-2 has been shown to be a crucial regulator of 

adhesion formation and release, as well as rear-end retraction in migrating NIH 3T3 

fibroblasts (Iwanicki et al., 2008). ROCK-1 is up-regulated at the onset of differentiation 

and down-regulated during fusion of C2C12 myoblasts (Fortier et al., 2008). This suggests 

potentially distinct roles for ROCK-1 and -2 in differentiation versus migration. 

Collagens are important structural proteins which facilitate many functions within the 

ECM (Gelse et al., 2003). They are all composed of three polypeptide α-chains coiled into 

a triple helix rich in glycine (Ricard-Blum and Ruggiero 2005). Collagen I is the most 

abundant fibrillar collagen and the major component of the interstitial ECM surrounding 

skeletal muscle fibers and binds to myoblasts via the α2β1 integrin receptor (Kjaer 2004). 

Collagen I increases β1-integrin expression in fibroblasts; these receptors then become 

clustered at the leading edge and increase the interaction of the cell with collagen fibers. 

Friedl and colleagues have shown that, after addition of an anti-β1 integrin antibody to 
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block ligand binding, integrin clustering and fiber traction, as well as cell polarization were 

lost (Friedl et al., 1998). This demonstrated the importance of α2β1 integrin engagement 

with collagen I for the development of a polarized morphology and ensuing migration.  

Fibronectin is a glycoprotein which exists in 3 different forms. A soluble dimeric form is 

located within the blood stream, whereas cell surface fibronectin oligomers and insoluble 

fibronectin fibrils form part of the ECM. Fibronectin, secreted by fibroblasts, forms 

multimeric fibrils which aid in the formation of a super fibronectin molecule with strong 

adhesive properties. Fibronectin, together with fibrin, forms a cross-linked structure in 

early granulation tissue, which is required to act as a scaffold for invading inflammatory 

cells. Fibronectin is also able to bind to other ECM components such as collagen and 

tenascin-C (Hocking et al., 2008).  

Decorin is a member of the small leucine-rich repeat heparan sulfate family. It is composed 

of a leucine-rich repeat core protein consisting of 12-folded repeats, each containing a 24 

amino acid residue. It also has a single covalently-linked GAG chain at its NH2-terminus 

which can vary in length and composition (Scott and Haigh 1985). Decorin binds to 

collagen via its core protein, at the peptide sequence SYIRIADTNIT (Kresse et al., 1997; 

Kalamajski et al., 2007). Decorin also binds to fibronectin via a pentapeptide sequence, 

NKISK, located within its core protein (Schmidt et al., 1991). Decorin has been shown to 

act as an anti-fibrotic agent in skeletal muscle by binding to TGF-β decreasing its 

interaction with its receptors (Droguett et al., 2006)  and reducing fibrosis (Fukushima et 

al., 2001; Sato et al., 2003; Fukushima et al., 2006).  

In this chapter we investigate the effect of decorin, collagen I, and fibronectin on myoblast 

migration utilizing the in vitro wound healing assay. We demonstrate that decorin 

significantly increased myoblast migration rates when added in combination with collagen 

I; whereas with fibronectin no noticeable effect was observed. We also compared the roles 

of ROCK-1 and ROCK-2 to investigate which isoform plays a predominant role in 

myoblast migration.   
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3.2 EXPERIMENTAL PROCEDURES 

All chemicals used were of an analytical grade and were purchased from either Sigma or 

Merck unless otherwise stipulated. All cell culturing was carried out under sterile 

conditions in a level II laminar flow hood (ESCO class II BSC) and incubated in a CO2 

incubator (Innova CO-170) at 37°C, 5% CO2. Brightfield images were captured using the 

Motic 3.0 MP camera on the Olympus CKX41 microscope. The Zeiss 710 confocal 

microscope was utilized for all fluorescence microscopy.  

3.2.1 Cell Culture 

The C2C12 cell line was donated by the Cape Heart Center, University of Cape Town. 

Growth media contained Dulbecco’s Modified Eagle Serum (DMEM) (Highveld, cat. 

CN3193-9), L-glutamine (2 % v/v) (Cambrex, cat. 17-605E), PenStrep (2 % v/v) 

(Cambrex, cat. 17-602E), Fetal calf serum (10 % v/v) (Invitrogen, cat. 10108165). 

Differentiation media contained DMEM, L-glutamine (2 % v/v), PenStrep (2 % v/v) and 

Horse serum (HS; 1 % v/v) (Invitrogen cat. 16050-130).  

3.2.2 Collagen I Coating 

Calf skin collagen I (Sigma, Cat. no. C9791) was utilized for all 2D collagen coating. 

Collagen I (1.5 mg) was added to 1.5 ml acetic acid (0.1 % w/v) for 2 hours at 4 °C. 

Chloroform (10 % w/v) was layered at the bottom of the collagen solution and stored at 4 

°C overnight. The collagen stock concentration was then diluted, for the dose response, to 

a range of 6.25-100 µg/ml with distilled water. The collagen solution was added to 24-well 

and 6-well plates and incubated at 37 °C for 4 hours, after which the excess collagen 

solution was removed and plates allowed to air dry overnight under a U.V. light. 

3.2.3 Fibronectin Coating 

Bovine plasma fibronectin (1 mg/ml, Sigma) was diluted with PBS to a concentration 

range of 2.5-20 µg/ml for the dose response. The fibronectin was added to 24 or 6 well 

plates and incubated for 2 hours at 37 °C, 5% CO2. The excess fibronectin was removed 

and plates were allowed to air dry overnight under a U.V. light. The plates were 

subsequently stored at 4 °C and washed with PBS prior to use.  
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3.2.4 Scratch Assay  

C2C12 cells were plated at 5x104 cells per well in a 24-well plate (TPP, Cat. no. 92024) 

and were incubated at 37 °C, 5% CO2 until 90% confluent. Wells were pre-coated with 

either collagen I or fibronectin at the required concentrations, ranging from 6.25-100 µg/ml 

for collagen I and 2.5-20 µg/ml for fibronectin, prior to the addition of the cells. The 

cultures were “wounded” with a loading tip (1-200 µl, Whitehead Scientific, Cat. no. 010), 

washed with PBS and re-incubated with 250 µl growth media. Decorin was added to the 

growth media at a concentration range of 5-20 µg/ml. Images of the scratch area were 

captured at initial wounding and hours 1, 3, 5, & 7 with the Motic 3 megapixel camera (40 

X magnifications, Olympus CKX41) and were analyzed via the Motic 2.0 image analysis 

software. All experiments were performed in triplicate.  

3.2.5 Immunocytochemical analysis of ROCK -1 & -2  

Cells were seeded on non-coated, as well as collagen I-coated or fibronectin-coated, glass 

coverslips and wounded as described above. Fixation was performed with a 4% 

paraformaldehyde solution followed by a blocking step with 5% donkey serum. Cells were 

incubated with monoclonal mouse anti-human ROCK-1 (1/500, IMGENEX, Cat. no. IMG-

383A) and polyclonal goat anti-rat ROCK-2 (1/500, Santa Cruz, Cat. no. Sc-1851) primary 

antibodies for 2 hours. This was followed by incubation with a FITC-conjugated donkey 

anti-mouse secondary antibody for ROCK-1 (1/4000, Jackson Scientific) or a Cy5-

conjugated donkey anti-goat secondary antibody for ROCK-2 (1/8000, Jackson Scientific) 

for 1 hour. A Phalloidin-TRITC conjugated cytoskeletal stain (1/15 000, Sigma) was added 

with the secondary antibody followed by the nuclear stain Hoechst (1/4000, Sigma). 

Images were captured and analyzed by use of the Zeiss LSM 710 confocal microscope. 

3.2.6 Western Blot Analysis of ROCK-1 & -2 

Cells were grown in 6-well plates (non-coated and coated) until 80% confluent. Plates 

were coated with either collagen I (25µg/ml) or fibronectin (5µg/ml). Decorin (10µg/ml) 

was then added and lysates harvested 8 hours later using RIPA buffer (Sigma, pH 8) 

containing a protease inhibitor cocktail (Sigma). Proteins (25µg) were separated on a 10% 

SDS-PAGE gel and transferred to nitrocellulose. Blots were probed separately using a 

polyclonal goat anti-human ROCK-1 primary antibody (1/2000, Santa Cruz, Cat. Sc-6055) 

and a polyclonal goat anti-rat ROCK-2 antibody (1/2000, Santa Cruz, Cat. Sc-1851). The 
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polyclonal rabbit anti-human GAPDH primary antibody (1/4000, Cell Signalling, Cat. 

2118) or monoclonal mouse anti-human alpha tubulin primary antibody (1/400, Santa 

Cruz, Cat. no.Sc5286) were utilized as internal controls. A HRP-conjugated donkey anti-

goat secondary antibody (1/20 000, Santa Cruz, Sc-5286) was used for ROCK-1 and -2, 

and an HRP-conjugated goat anti-rabbit secondary antibody (1/4000, Dako, Cat. P0448) 

and HRP-conjugated rabbit anti-mouse secondary antibody (1/16 000, Dako, Cat. P0260) 

for GAPDH and alpha tubulin, respectively. Enhanced chemiluminescence (ECL) was 

used to detect protein expression (Immun-Star WesternC, BioRad). Densitometry analysis 

was carried out using Quantity One 2.6 (BioRad).  

3.2.7 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) was performed on a collagen I (25 µg/ml) and 

fibronectin (5 µg/ml) coated coverslips. The samples were fixed with a 0.05 M cacodylate 

buffer containing 3 % glutaraldehyde (pH 7) for 1 hour and then washed with distilled 

water. A series of 5 minute ethanol washes to dehydrate the samples was performed in the 

following order; 50 %, 75 %, 90 %, and 100 % ethanol dilutions. The coated coverslips 

were then air dried and sputter coated with gold particles (2 minutes) before being viewed 

at high vacuum with the Zeiss EVO LSM 15 VPSEM microscope.  

3.2.8 Statistical Analysis 

Statistical evaluations were performed by non-parametric Mann-Whitney U tests for all 

experiments. All statistical analysis was performed using Genstat. Significant differences 

were taken as p < 0.05. All data is expressed as Mean ± S.E.M. 
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3.3 RESULTS 

3.3.1 Dose responses for decorin, fibronectin and collagen I 

To determine the concentrations at which decorin, collagen I and fibronectin influence 

wound closure, a dose response was carried out for each. Decorin (range 5-20 µg/ml) at a 

concentration of 10 µg/ml had the greatest effect, increasing the percentage wound closure 

from 30.2% to 35.4%, over a 7 hour period when compared to the control, a 1.2 fold 

increase (Figure 3.1A). Interestingly, at a concentration of 20 µg/ml, decorin decreased the 

percentage wound closure compared to control by 8.1%. Fibronectin (range 5-20 µg/ml) 

significantly increased the percentage wound closure at all doses and time points analysed 

(5, 10, and 20 µg/ml, p<0.001) compared to the control, with 5 µg/ml demonstrating the 

highest percentage wound closure at 49.3% representing a 3.5 fold increase compared with 

the control (Figure 3.1B, p<0.001). Collagen I (range 6.25-100 µg/ml), at 25 µg/ml and 50 

µg/ml, significantly increased the percentage wound closure (Figure 3.1C, p<0.05) at 7 

hours with an increase of 27.3% and 12.4% respectively over and above that of the control 

(20.1%). At 25 µg/ml the effect of collagen I on wound closure represented the largest 

increase at 2.4 fold compared to control. Analysis of collagen I and fibronectin coated 

coverslips by SEM confirmed successful fibril formation that coated the entire surface of 

the coverslips (Figure 3.1D). As a result of these studies, optimal doses of decorin, 

fibronectin and collagen I (10 µg/ml, 5 µg/ml and 25 µg/ml, respectively) were utilised for 

all subsequent experiments. 
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Figure 3.1 Decorin, fibronectin, and collagen I dose optimization. A) Decorin dose response (5, 
10 and 20 µg/ml). B) Fibronectin dose response (5, 10 and 20 µg/ml). C) Collagen I dose response 
(6.25, 12.5, 25, 50, and 100 µg/ml). The scratch assay was utilized with photos taken at hours 0, 1, 
3, 5, and 7. Growth media on non-coated wells was used as control for all experimental procedures.  
Percentage wound closure was calculated by determining the area of the wound. D) Scanning 
electron microscopy micrographs of fibril formation for collagen I (i, left 5.04x106 X, right 
18.30x106 X) and fibronectin (ii, left 30.23x106 X, right 25.59x106 X). *p<0.05, **p<0.005, n=3. 
All data shown as Mean ± SEM.  
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3.3.2 Decorin facilitates collagen I-stimulated wound closure 

To determine whether the decorin modulates collagen I-stimulated migration, myoblasts 

were seeded on collagen I-coated plates (25µg/ml) and treated with decorin (10µg/ml). The 

percentage wound closure was monitored over a 7 hour period. Decorin and collagen type I 

in combination, significantly (39.79 ± 5.79%, p<0.005) increased the percentage wound 

closure compared with control (15.73 ± 1.87%) and decorin (21.03 ± 3.07%) at all time 

points measured, with a 2.54 fold and 1.9 fold increase in wound closure at 7 hours 

compared with control and decorin, respectively (Figure 3.2i). The rate of wound closure, 

as calculated from the change in percentage wound closure over 7 hours, revealed that 

decorin and collagen I (5.55 ± 0.87%/hr) in combination showed a significantly (p < 

0.005) higher rate of wound closure compared to control (2.17 ± 0.28%/hr), decorin (2.83 

± 0.41/hr), and collagen (4.10 ± 0.92%/hr) (Figure 3.2ii). Furthermore, decorin 

significantly increased the rate of collagen-stimulated migration by 1.5 %/hr, whereas in 

the absence of collagen I, the increase in response to decorin was not significant and only 

0.6 %/hr. 

 

Figure 3.2 Effects of decorin on collagen I-stimulated myoblast migration. i) Effect of decorin 
(10µg/ml) and collagen I (25µg/ml) on the percentage wound closure of C2C12 myoblasts. ii) Rate 
of wound closure for decorin and collagen I. The scratch assay was utilized with photos taken at 
hours 0, 1, 3, 5, and 7. Growth media on non-coated wells was used as control for all experimental 
procedures.  Percentage wound closure calculated by determining the area of the wound (Section 
4.1.5). *p<0.05, **p<0.005, n=9. All data shown as Mean ± SEM.  
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3.3.3 Effect of Decorin and Collagen I on Myoblast Migration in Differentiated C2C12 

Myotubes 

Skeletal muscle segments are composed of differentiated myoblasts that have fused into 

multinucleated myotubes. These myotubes are unable to divide, therefore for regeneration 

to occur, satellite cells are activated and create a myoblast population which can 

differentiate and fuse to the existing skeletal muscle segments, facilitating repair. Not all 

the myoblasts differentiate into myotubes. A population of myoblasts remains as satellite 

cells within their niche and are the main source of cells during muscle regeneration.  We 

modeled this type of skeletal muscle regeneration by creating scratches in differentiated 

C2C12 myotubes and monitoring the migration rates of the undifferentiated population of 

myoblasts (mimic in vivo satellite cells to a certain extent) (Figure 3.3A). 

The myoblasts were grown until 80% confluent and were differentiated for 9 days (Figure 

3.3A). Scratches were created and analyzed as the previous described. Decorin and 

collagen in combination significantly (19.19 ± 1.48%, p<0.05) increased the percentage 

wound closure compared to control (5.87 ± 1.96%) at hour 7 by 6.2% (Figure 3.3B). 

Decorin (15.41 ± 2.05%) and collagen (14.39 ± 2.27%) had no significant effect on wound 

closure over the control at hour 7. Analysis of migration rates confirmed that decorin and 

collagen in combination significantly (2.67 ± 0.24%/hr, p<0.05) increased the rate of 

migration into the scratch area compared only to the control (1.76 ± 0.28%/hr) (Figure 

3.3C). 
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Figure 3.3 Effect of collagen type I and decorin on myoblast migration amongst differentiated C2C12 
myotubes. A) Photos depicting the wound size at 0 and 7 hours on collagen coated 24-well plates. Cells 
were allowed 9 days to differentiate and fuse into myotubes. The red line indicates the wound front.  B) The 
percentage wound closure was calculated for the control, decorin and collagen separately, as well as decorin 
& collagen in combination. C) The rate of wound closure. The scratch assay was utilized. Decorin and 
collagen concentrations of 10 and 25µg/ml respectively, were used as determined by the dose response 
assays. Cells were analyzed at 0, 1, 3, 5, & 7 hours. Growth media containing 10% fetal calf serum served as 
the control.  Photos were taken using the Motic 3 megapixel camera at 40x magnification. *p<0.05, 
**p<0.005, n=6. All data shown as Mean ± SEM.  
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3.3.4 Effect of Decorin and Collagen I on Primary Cultured Murine Myoblast Migration  

The isolation and propagation of primary cultured murine myoblasts provided cells which 

better mimicked in vivo cellular responses due to the lack of modifications required to 

immortalize a cell line. A similar trend was observed for the percentage wound closure 

between primary culture myoblasts (Figure 3.4A) and C2C12 myoblasts (Figure 3.2A). 

Decorin and Collagen I significantly increased the percentage wound closure compared to 

the control at hours 5 (45.70% ±7.01) and 7 (53.48% ±8.55), respectively. Collagen I also 

significantly increased the percentage wound closure at hour 7 (40.40% ±5.19) compared 

to the control (32.32 ±3.07). Collagen I increased the percentage wound closure by 8% 

compared to the control, whereas collagen I and decorin increased it by 21%, a 2.63 fold 

increase. Interestingly, when comparing the rate of migration no significant trends were 

observed even though decorin and collagen I increased the rate of migration over that of 

control, decorin, and collagen I (Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Effect of collagen type I and decorin on primary cultured murine myoblast migration. A) 
The percentage wound closure was calculated for the control, decorin and collagen separately, as well as 
decorin & collagen in combination. B) The rate of wound closure. The scratch assay was utilized. Decorin 
and collagen concentrations of 10 and 25µg/ml respectively, were used as determined by the dose response 
assays. Cells were analyzed at 0, 1, 3, 5, & 7 hours. Growth media containing 10% fetal calf serum served as 
the control. Photos were taken using the Motic 3 megapixel camera at 40x magnification. *p<0.05, n=4. All 
data shown as Mean ± SEM.  
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3.3.5 Decorin does not increase fibronectin facilitated migration 

To determine whether the interaction of fibronectin and decorin modulate migration 

compared with control, decorin (10µg/ml) was added to myoblasts seeded on  fibronectin-

coated plates (5µg/ml)  and wound closure monitored over a 7 hour period (Figure 3.5A). 

As expected, decorin showed no significant increase in wound closure compared to the 

control. Fibronectin demonstrated a 44% increase in the percentage wound closure 

compared to control and when combined with decorin, a 36% increase was observed 

(Figure 3.5A, p < 0.005).  Although decorin decreased fibronectin-stimulated migration, 

this effect was not significant. The rate of wound closure further supported these findings 

where both fibronectin, and fibronectin plus decorin, significantly increasing the rate of 

migration by 2.3 fold and 2.1 fold, respectively (compared with control), however, there 

was no significant difference between these two interventions (Figure 3.5B). 

 

Figure 3.5 Effects of decorin and fibronectin on the percentage wound closure and rate of 
C2C12 myoblast migration. A) Effect of decorin (10µg/ml) and fibronectin (5µg/ml) on the 
percentage wound closure of C2C12 myoblasts. B) Rate of wound closure for decorin and 
fibronectin. The scratch assay was utilized with photos taken at hours 0, 1, 3, 5, and 7. Growth 
media on non-coated wells was used as control for all experimental procedures.  Percentage wound 
closure calculated by determining the area of the wound. *p<0.05, **p<0.005, n=3. All data 
shown as Mean ± SEM.  
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3.3.6 Total ROCK-2 expression is higher than ROCK-1 expression in C2C12 myoblasts 

We next determined total ROCK-1 and -2 protein expression levels in non-wounded 

C2C12 myoblasts under control conditions and in response to decorin (10 µg/ml) and 

collagen I (25 µg/ml). ROCK-2 expression was also analysed in response to fibronectin (5 

µg/ml).  ROCK-2 was expressed at higher levels than ROCK-1 for all experimental groups 

analyzed (Figure 3.6B). No stark difference in expression of total ROCK-2 in response to 

decorin, collagen I, or fibronectin was detected (Figure 3.6ii and iii, Figure 3.6B).  

 

 

 

 

 

 

 

 

 

 

Figure 3.6 ROCK-1 and -2 protein expression in C2C12 myoblasts. Ai & ii) Analysis of total 
ROCK-1 and -2 protein expression within C2C12 myoblasts following the addition of decorin 
(10µg/ml) and collagen I (25µg/ml), added separately and in combination. Alpha-tubulin was used 
as an internal loading control. iii) Analysis of total ROCK-2 protein expression within C2C12 
myoblasts with the addition of fibronectin (5µg/ml). GAPDH was used as the internal loading 
control. B) Densitometric analysis of ROCK-1 and ROCK-2 expression. Growth media was used 
as the control for all experimental procedures. n=3-6. 
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3.3.7 ROCK 2, but not ROCK 1, localizes to focal adhesions in C2C12 myoblasts 

Co-localization analysis revealed that cells which had migrated into the wound area did not 

express ROCK-1 and ROCK-2 at the same location. ROCK-1 was found to be expressed at 

low levels and spread throughout the cytoplasm (observed in migrating myoblasts (five 

fields of view, n=3), Yellow arrow head, Figure 3.7); whereas ROCK-2 was expressed 

more strongly and located within the lamellipodia and tail of the migrating cell (white 

arrows, Figure 3.7).  

 

 

3.3.8 Increased number of ROCK-2-containing focal adhesions during decorin & collagen 

I facilitated migration 

ROCK-2 localization was assessed along the migration front of the wound in response to 

decorin and collagen I. ROCK-2 was primarily localized to focal points (confirmed with 

vinculin labeling, see Chapter 4) within the lamellipodia of migrating cells under control 

conditions (arrows, Figure 3.8A). Incubation with decorin did not result in any difference 

in the number of focal adhesion clusters containing ROCK-2 compared to control, with 

focal clusters ranged from 2-3 per migrating cell under both conditions (Figure 3.8B). 

Cells plated and wounded on collagen I showed an increase in the number of ROCK-2 

containing focal adhesion clusters (5 focal adhesion clusters per migrating cell), when 

compared to control (Figure 3.8B); this effect was not significant. However, decorin and 

collagen I together, significantly increased the number of focal adhesion clusters to a range 

of 7-8 points per migrating cell (Figure 3.8B). 

Figure 3.7 ROCK-1 and -2 localization in C2C12 myoblasts. Confocal images of migrating 
C2C12 myoblasts at 7 hours post-migration. ROCK-1 (green, FITC), ROCK-2 (red, Cy5), 
phalloidin-TRITC conjugated (grey) and Hoechst (blue). The Zeiss 710 LSM microscope was 
utilized for all confocal images. Scale bar = 20µm. 
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Figure 3.8 ROCK-2 localization in response to incubation with decorin and collagen I during 
C2C12 myoblast migration. A) Confocal images of migrating C2C12 myoblasts at 7 hours post-
scratch for decorin (10µg/ml) and collagen I (25µg/ml). ROCK-2 (red) is localized to focal points 
within the lamellipodia (arrows). Phalloidin-TRITC (grey) and Hoechst (blue) are utilized as 
reference stains. B) Bar graph representing the number of ROCK-2 containing focal adhesion 
clusters in response to decorin and collagen I. The Zeiss 710 LSM microscope was utilized for all 
confocal images. Scale bar = 20µm.  *p<0.05, **p<0.005, n=3. All data shown as Mean ± SEM.  
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3.3.9 Fibronectin does not increase active ROCK-2 focal adhesions during migration  

ROCK-2 localization was assessed along the migration front of the wound in response to 

fibronectin. Control cells demonstrated low numbers of ROCK-2 positive focal adhesions 

within the lamellipodia of the migrating myoblasts along the scratch front (arrows, Figure 

3.9) which was consistent with the previous control. With the addition of fibronectin the 

limited localization of ROCK-2 within the lamellipodia at the wound edge is lost (arrows, 

Figure 3.9). Furthermore, in response to fibronectin, the ROCK-2 appeared to be expressed 

at greater levels around the nucleus than within the lamellipodia or tail of the cells. 

Figure 3.9 ROCK-2 localization within C2C12 myoblasts migrating on fibronectin. Confocal 
images of migrating C2C12 myoblasts at 7 hours post-scratch on non-coated (control) and 
fibronectin-coated (5µg/ml) plates. ROCK-2 (red) is localized to lamellipodia within the control 
(arrows). Phalloidin-TRITC (white). The Zeiss 710 LSM microscope was utilized for all confocal 
images. Scale bar = 20µm. 
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3.4 DISCUSSION 

Following skeletal muscle injury, two key events take place concurrently in an effort to 

promote repair.  These are the deposition of extracellular matrix components (initially by 

fibronectin and later replaced by collagen I and III) as well as muscle regeneration via the 

activation of muscle stem cells (Quintero et al., 2009). Although both processes are 

required, the deposition of excessive fibrotic scar tissue (containing collagen I) severely 

hampers the ability of activated myogenic stem cells, termed myoblasts, to facilitate repair. 

Decorin has been shown to decrease the amount of scar tissue formed during skeletal 

muscle repair within a rat model, as well as increased the repair rate by several days 

(Fukushima et al., 2001). However, the mechanism for this is still unclear. 

We analysed the effect of collagen I, fibronectin, and decorin on the ability of myoblasts to 

promote repair via migration. Collagen I and fibronectin were both shown to have 

significantly increased migration at numerous doses, and demonstrated no negative effect 

on migration.  However, the novel results that will be discussed below include the finding 

that decorin influenced cell movement in both a positive and negative way, depending on 

the dose used. Decorin significantly increased collagen I-stimulated migration, but not 

fibronectin-stimulated migration.  The finding that ECM components influenced myoblast 

function in unexpected ways when assessed in combination, revealed how important it is 

that in vitro model design includes combination studies which mimic the in vivo micro-

environment. For example,  the effect of decorin and collagen I together was greater than 

the additive effect of decorin and collagen I separately, suggesting an additional interaction 

between decorin and collagen I. Decorin has been shown to modulate endothelial cell 

migration in vitro, and negatively regulate in vivo myoblast migration during embryonic 

development; however the effect of this proteoglycan on adult myoblast migration has 

been unclear to date ((Olguin et al., 2003; Sulochana et al., 2005; Fiedler et al., 2008).  

Given that embryonic and fetal generation are essentially free of the extensive fibrosis seen 

in adults, the effect of decorin on post-natal myoblast migration is likely to be different to 

that seen during embryonic development.  

A dose dependent response of decorin revealed that 10 µg/ml increased myoblast 

migration, whereas at 20 µg/ml, migration was decreased. Olguin et al., demonstrated that 

decorin inhibited myoblast migration at 40 µg/ml which was a necessary step in order for 

normal muscle differentiation to occur (Olguin et al., 2003). It is therefore important to 
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keep the dose used in different experiments in mind since this can differentially affect 

myoblast migration during muscle regeneration.  

In order to better understand the current results, it is also pertinent that dose dependent 

studies are carried out in order to assess any dose dependent effects. It has been shown 

previously by a number of authors that decorin can bind to collagen I and increase 

collagen’s binding affinity for the α2β1 integrin (Svensson et al., 1995; Keene et al., 2000; 

Ruhland et al., 2007). Another possible explanation for the increased migration rates with 

collagen I and decorin may be via “inside-out” signaling. This was proposed by Friedler et 

al.,  in a study whereby decorin regulated endothelial migration by binding to the IGF-1 

receptor, and through modulation of α2β1 integrin activity, increased the binding affinity 

within migrating endothelial cells (Fiedler et al., 2008). These studies reveal that there may 

be several different mechanisms in which decorin is modulating collagen I and 

subsequently increasing migration rates. 

Decorin was not able to significantly modify fibronectin-stimulated wound closure.  

Fibronectin can be detected immunohistologically as early as 1 hour post-injury during the 

initial stages of muscle fiber repair, and precedes the deposition of collagen III and 

subsequently collagen I in the granulation tissue (Lehto and Jarvinen 1985). The secretion 

of decorin by inflammatory cells and myoblasts coincides with the deposition of collagen 

and therefore the ability of decorin to modulate collagen I-, but not fibronectin-, stimulated 

cell movement would coincide correctly with their temporal expression during the 

physiological stages of repair. Another possible explanation is the attachment strength of a 

cell to the substratum with maximal migration at an intermediate level of adhesiveness 

(Goldstein and DiMilla 2003); suggesting that if decorin altered the binding of fibronectin 

to the cell by either reducing (loss of traction) or increasing (reduced disruption of 

adhesions), cell motility would be impaired.  

 

The Rho/ROCK pathway is required for actin-myosin cytoskeletal contraction as ROCK 

regulates actin-myosin cross-linking and the prevention of actin fiber degradation 

(Watanabe et al., 1999). Collagen I activates the Rho/ROCK pathway via the α2β1 integrin 

resulting in increased migration (Fiedler et al., 2008). We determined the effect of 

fibronectin, collagen I and decorin on ROCK isoform expression and localization, in order 

to begin to elucidate the mechanism by which ECM factors influence myoblast migration. 
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Total ROCK-1 and -2 protein expression levels were analyzed in C2C12 myoblasts. Our 

results indicate that ROCK-2 is expressed at higher levels than ROCK-1, suggesting 

perhaps a more prominent role for ROCK-2 in myoblast migration. ROCK-1 had been 

shown to be up-regulated during myogenic differentiation and is down-regulated prior to 

myoblast fusion (Fortier et al., 2008), further emphasizing a role for ROCK-1 in 

myogenesis rather than migration. We also demonstrate ROCK-1 to be expressed 

throughout the cytoplasm of migrating myoblasts, rather than being localized at active 

focal points. 

 

Analysis of total ROCK-2 protein levels revealed no significant change in expression in 

response to decorin, collagen 1 or fibronectin. However, analysis of focal points containing 

ROCK-2 (via confocal microscopy) demonstrated these focal points to be localized 

primarily to the lamellipodia and the tail of migrating myoblasts. The number of focal 

points positive for ROCK-2 correlated with the change in percentage wound closure for 

decorin and collagen I, suggesting that ROCK-2 plays a role in mediating the effect of 

these two factors on myoblast migration. ROCK proteins have recently been shown to be 

crucial in focal adhesion formation by enabling tension-dependent maturation of the focal 

adhesions (Papusheva and Heisenberg 2010).  Interestingly, ROCK-2-positive focal points 

did not differ significantly in number between control, collagen I-stimulated, and 

fibronectin-stimulated cells. These findings suggest that decorin and collagen I in 

combination are working via the Rho/ROCK pathway, whereas fibronectin and collagen I 

alone may not.    

In conclusion we have shown that collagen I and fibronectin can both increase myoblast 

migration at dose dependent levels. Also, decorin displayed dose-dependent opposing 

effects on cellular movement, and regulated collagen I-stimulated, but not fibronectin-

stimulated migration of C2C12 myoblasts. Finally, the effect of decorin plus collagen I, but 

not fibronectin or collagen I on their own, is at least in part mediated by the kinase, 

ROCK-2. These findings tie in with the wound repair process, whereby fibronectin is an 

early temporary scaffold which does not result in permanent fibrosis and is laid down prior 

to decorin secretion. However, collagen I is the major fibrotic component and therefore 

regulation of myoblast migration, via decorin, within this matrix is important to reducing 

scar tissue formation.  
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CHAPTER 4 

ROCK INHIBITOR (Y-27632) MODULATES MYOBLAST MIGRATION IN A 

MATRIX-DEPENDENT MANNER 

Includes data from:  

Goetsch, K. P., Snyman, C., Elliott, E., Niesler, C. U. (2012) Y-27632 modulates 
mesenchymal and epithelial cell migration in a matrix-dependent manner, Matrix Biology - 
Submitted 

4.1 INTRODUCTION 

Migration is an essential process undertaken by many cell types in order to facilitate new 

tissue growth or repair. Key steps in the motility of any cell include the process of 

polarization and formation of protrusions or lamellipodia (Vicente-Manzanares et al., 

2007). This is followed by the assembly of adhesions at the leading front to facilitate 

interaction with the substratum (Pollard and Borisy 2003; Vicente-Manzanares et al., 

2007). In areas of increased tension, scaffold molecules including talin and vinculin, 

accumulate intracellularly at the integrin cytoplasmic tail, and subsequently recruit and 

bind to cytoskeletal polymerized actin, which accumulates into stress fiber bundles 

(Humphries et al., 2006). The morphological behavior of the cell is governed by these 

adhesion points, with small protrusions forming from established leading edges. The 

assembly, disassembly and the reorganization of the actin cytoskeleton, which ultimately 

leads to the retraction of the rear tail, and detachment (Pollard and Borisy 2003), are 

critical to finally allow the cell to generate forward movement (Raftopoulou and Hall 2004 

).    

The ECM plays a major role in the regulation of cellular migration providing cues to 

influence velocity and directionality via intracellular signaling pathways. The cell binds to 

the underlying matrix via integrins and other adhesion molecules gathered within focal 

adhesion complexes (Humphries et al., 2006).  Early focal complexes are groupings of 

individual integrin-related adhesions within an area, held in complex by activated talin and 

vinculin (Humphries et al., 2006); which subsequently aggregate and mature into dense 

focal adhesions. These focal adhesions serve as traction points during migration.  The 



75 
 

morphological behavior of the cell is governed by these adhesion points, with small 

protrusions forming from established leading edges.   

The intracellular signaling molecules known to regulate cell migration include  Ser/Thr and 

Tyr kinases, lipid kinases, as well as the Rho GTPases (Nobes and Hall 1995; Raftopoulou 

and Hall 2004). The Rho proteins are associated with focal adhesion assembly and cell 

contractility and responsible for cell body contraction and retraction of the rear tail. An 

important Rho target is the Ser/Thr kinase, ROCK, which is involved in stimulating 

filament assembly, and therefore is one of the essential steps required for cell body 

contraction and subsequent motility (Gerthoffer 2007). 

The actin stress fibers and focal adhesion complexes in combination with the Rho/ROCK 

pathway play an important role in regulating cell migration (Nobes and Hall 1995; Ridley 

2001; Wehrle-Haller and Imhof 2002; Leboeuf and Henry 2006; O'Neill 2009; Petrie et al., 

2009). While two ROCK isoforms have been described, ROCK-2 is thought to be the 

predominant isoform expressed in migrating skeletal myoblasts (Goetsch et al., 2011). 

However, it is still not clear exactly what role ROCK plays. In addition to the role in 

assembling cytoskeletal actin fibers into contractile machinery, it may be involved in focal 

adhesion turnover and release at the rear of the cell by activating pathways resulting in 

phosphorylation of focal adhesion kinase (FAK) (Leboeuf and Henry 2006; Iwanicki et al., 

2008). In cells that have stress fibers, such as fibroblasts and myoblasts, the high level of 

substrate adhesion through stress-fibre-associated focal adhesions slows down cell 

migration. Reducing Rho activity can therefore have two opposing effects: migration is 

promoted by lowering adhesion to the ECM or decreased by inhibition of cell body 

contraction (Ridley 2001). Inhibition of ROCK by Y-27632 has been shown to induce a 

loss of focal adhesions, with cells moving faster and in a straighter line. Y-27632 is a 

synthetic compound that inhibits ROCK by competing with ATP for its binding site in the 

active region of this kinase (Ishizaki et al., 2000). Such treatment also stimulates ruffling 

of the leading front membrane and formation of new low density focal complexes (Small et 

al., 2002).   

In this chapter we investigated the role of ROCK, specifically ROCK-2, in migrating 

myoblasts. This was carried out on Matrigel, used to mimic the basement membrane, and 

collagen I and decorin, used to mimic wound conditions. We analysed ROCK-2 and 
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vinculin expression in focal adhesion complexes to help us understand the role of this 

kinase during myoblast migration.  

 

4.2 EXPERIMENTAL PROCEDURES 

4.2.1 Collagen & Matrigel Coating 

Calf skin collagen I (Sigma, Cat.C9791) was utilized for all collagen coating. Matrigel 

(BD, cat.356231, 10.1 mg/ml) was coated at 60 µg/ml. The stock solution (10.1 mg/ml) 

was diluted with DMEM. Plates were coated for a 1 h period at 37°C after which the 

excess solution was discarded and plates were U.V. sterilized and stored at 4°C. 

4.2.2 Scratch Assay 

The scratch assay was adapted from (Goetsch et al., 2011). Briefly, the C2C12 cell line 

was cultured to 80% confluence in 24-well culture dishes which had either been left 

uncoated or had been coated with Matrigel (60 µg/ml) or collagen I (25 µg/ml) prior to 

seeding.  A scratch was made using a sterile pipette tip and the percentage wound closure 

was assessed over a period of 7 h in the presence or absence of Y-27632 at 10 µM (ROCK 

Inhibitor, Calbiochem, cat.688001). To determine the percentage wound closure, wounds 

were photographed at hours 0, 3, 5, and 7 with the Motic 3 megapixel camera linked to an 

Olympus CKX41 inverted microscope (40X magnification). Percentage wound closure 

was calculated for all wounds by tracing the area along the border of the wound using the 

Motic 2.0 image analysis software. 

4.2.3 Live Cell Imaging  

Cells were cultured until 80% confluence on glass-bottomed culture dishes (Mattek 

Corporation, cat.P35G-1.5-14-C) that were left either uncoated or coated with Matrigel (60 

µg/ml) or collagen I (25 µg/ml). The cells were wounded as described above and cultured 

for a further 4 h in fresh media, or media containing 10 µM Y-27632.  Over this period, 

DIC images of cells migrating into the wound were recorded at 2 min intervals using a 

Zeiss 710 confocal microscope.  Four hundred images were recorded and subsequently 

analysed. Images of cells migrating into the wounded area from the cell monolayer edge 

were captured as a time-lapse series.  The paths of six representative cells (using the nuclei 

as points of reference) were tracked using the “manual tracking” plug-in in the ImageJ 
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software (rsbweb.nih.gov/ij). This was repeated in triplicate.   Individual tracks were 

plotted as an overlay onto the final image of the time series and presented as a scatter plot, 

using the “chemotaxis and migration” tool in ImageJ.  Data gathered in this way was 

applied to the “chemotaxis tool” ImageJ plug-in to generate scatter plots.  

4.2.4 Immunocytochemical Analysis of ROCK-2 & Vinculin 

C2C12 cells were cultured to 80% confluence in 24-well plates on coverslips that were 

uncoated or coated with Matrigel (60 μg/ml) or collagen I (25 µg/ml) prior to seeding.  

Cultures were wounded and after 3 hours cells were washed with PBS and fixed in a 4% 

paraformaldehyde solution.  Cells were incubated in blocking solution [1% BSA in PBS 

buffer (pH 7.4)] for 1 hour and immunolabelled using primary antibodies to ROCK-2 

(1/1000, polyclonal goat anti-rat ROCK-2, Santa Cruz, cat.Sc-1851) and vinculin (1/1000, 

monoclonal mouse anti-human vinculin, Sigma, cat.V9131) for 4 h at room temperature. 

Cells were then washed with PBS and incubated (room temperature) with secondary 

antibodies, Dylight 549 donkey anti-goat (1/800, Jackson Scientific) and Dylight 488 

donkey anti-mouse (1/800, Jackson Scientific) for 1 hour. The actin cytoskeleton was 

visualized using TRITC-conjugated phalloidin (1/20 000, Sigma, cat.P1951) which was 

added with the secondary antibody. Hoechst (1/4000, Sigma) was used as a nuclear stain 

for both cell types and added 5 minutes prior to mounting after secondary labeling. 

Coverslips were mounted with moviol and viewed on the Zeiss 710 confocal microscope.     

 

4.2.5 Statistics 

For the scratch assay n=6 data points were obtained for each condition. Data was 

determined to be non-parametric. The Mann-Whitney U test was therefore used to calculate 

p-values for the differences between the means of experimental conditions and control. 

Image quantification (cell number, length and area) was performed in triplicate and the 

Student’s t-test was utilized for statistical analysis. Genstat was used for all statistical tests 

and significance was determined as p<0.05. Results are presented as the mean ± the 

standard error of the mean (SEM). 
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4.3 RESULTS 

4.3.1 Y-27632 differentially affects myoblast morphology and velocity  

Given the key role of ROCK in conventional cell migration, we initially investigated the 

influence of Y-27632, a ROCK inhibitor, on the morphology and migration patterns of 

C2C12 myoblasts.  Under control conditions (uncoated) migrating C2C12 cells displayed 

lamellipodia with membrane ruffling at the front of the cell (white arrows) tapering to a 

pointed tail at the rear (Figure 4.1A). However, inhibition of ROCK generated several 

lateral protrusions that formed and collapsed quickly on an ongoing basis. A distinct 

change in myoblast morphology was evident when Y-27632 was added to the media. 

Scatter plot analysis of migrating C2C12 nuclei’s trajectories can be used to determine a 

track or patterning for migration trajectories (Figure 4.1B). The total distance travelled by 

C2C12 myoblasts increased when treated with Y-27632 compared to the untreated control 

(Figure 4.1B). Interestingly, persistence of direction (directionality) of migrating C2C12 

myoblasts was evident, indicating that cells continued to migrate uniformly in the same 

direction. 
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Figure 4.1 Effect of Y-27632 on morphology and migration patterns of C2C12 myoblasts on 
uncoated plates. A) Micrographs of cells within “wounded” monolayers at 4 hours post-injury. 
Cells were cultured after wounding in growth media with or without Y-27632 (10 µM) as 
indicated.  Outline of representative cells are shown in black.  Leading fronts are designated by 
white arrows.  B) Migration pattern of cells over a 4 hour period is illustrated as scatter plots. Y-
axis is distance travelled. X-axis is the displacement from original position. Images were taken at 
2 minute intervals with the Zeiss 710 confocal microscope.  Scale bar = 20µm. 
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4.3.2 Effect of Y-27632 on migration of C2C12 myoblasts cultured on Matrigel 

In vivo, activated myoblasts initially migrate along a basement membrane to facilitate 

wound healing. Matrigel was used to mimic the ECM of the basal lamina in order to 

determine the effect of ROCK inhibition on myoblasts during the early migration phase of 

wound repair. Matrigel is a reconstituted basement membrane preparation which contains 

primarily laminin and collagen IV. Compared to control (uncoated conditions), C2C12 

myoblasts migrating on Matrigel showed a significant increase in the percentage wound 

closure from 34.96 ± 6.84% to 66.64  ± 14.07% at 7 hours, a 31.68% increase (p<0.026) 

(Figure 4.2). As expected, Y-27632 also significantly increased the percentage wound 

closure at 7 hours to 58.88 ± 10.59% when compared to untreated control, a 23.93% 

increase (p<0.026). The combination of Matrigel and Y-27632 maintained this increase in 

the percentage wound closure of 71.59 ± 14.27% when compared with control (p<0.001), 

but did not significantly increase the percentage wound closure when compared to Matrigel 

or Y-27632 alone (Figure 4.2).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4.2. Effect of Y-27632 on C2C12 myoblast wound closure when cultured on Matrigel.  
C2C12 cells were cultured on uncoated or Matrigel-coated (60 μg/ml) plates.  Cells were wounded 
(scratch assay) and migration monitored over a 7 hour period in the presence or absence of Y-27632 
(10 μM). Percentage wound closure graph for C2C12 myoblasts.  Results are presented as Mean 
±SEM.  Significance is compared to the control (uncoated and growth media only) unless otherwise 
indicated. *p<0.05 and **p<0.005 compared to control, unless otherwise stated.  n=3.   
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4.3.3 Effect of Y-27632 on C2C12 myoblast migration cultured on collagen I 

 

Collagen I is a key extracellular matrix protein which is laid down by fibroblasts as a 

structural scaffold within the skeletal muscle repair site. Therefore, investigating the effect 

that collagen I has on myoblast migration is important in order to understand the role of the 

ECM on skeletal muscle regeneration. 

 

Compared to the percentage wound closure of untreated control at 7 hour (51.37 ± 7.82%), 

C2C12 myoblasts migrated significantly faster when cultured either on collagen I (88.87 ± 

8.48%; p<0.002) or in the presence of Y-27632 (76.85 ± 10.08%; p<0.026) (Figure 4.3). A 

further significant increase was seen when cells migrated on collagen I in the presence of 

Y-27632 (97.26 ± 2.74%; p<0.009) compared to both control and inhibitor alone (Figure 

4.3). These data highlight that in contrast to Matrigel, collagen I elicits a further increase in 

migration in Y-27632-treated C2C12 myoblasts.  The ROCK inhibitor was not able to 

increase collagen-induced migration significantly beyond collagen I alone. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.3. Effect of Y-27632 on C2C12 myoblast wound closure when cultured on collagen I. 
C2C12 cells were cultured on uncoated or collagen I-coated (25 μg/ml) plates.  Cells were wounded 
(scratch assay) and migration monitored over a 7 hour period in the presence or absence of Y-27632 
(10 μM). Percentage wound closure graph for C2C12 myoblasts.  Results are presented as Mean 
±SEM.  Significance is compared to the control (uncoated and growth media only) unless otherwise 
indicated. *p<0.05 and **p<0.005 compared to control, unless otherwise stated.  n=3.   
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4.3.4 Localization of ROCK-2 & vinculin within migrating C2C12 myoblasts cultured on 

Matrigel and collagen I 

 

We have previously shown that ROCK-2, but not ROCK-1, is the more predominantly 

expressed isoform during the migration of skeletal myoblasts (see Chapter 3) and 

furthermore that ROCK-2, not ROCK-1, is localized to focal adhesion complexes. In the 

current study, ROCK-2 localization to focal adhesion sites was confirmed by co-labeling 

with vinculin, an indicator of integrin-related cell-matrix adhesion points.  

 

Following wounding of C2C12 myoblasts, ROCK-2 expression was observed to 

correspond with vinculin staining under control, Matrigel, and collagen I conditions 

(Figure 4.4A); however, no visible changes in ROCK-2 expression levels were evident. 

Interestingly, irrespective of extracellular matrix factors, the addition of Y-27632 did not 

decrease the visible ROCK-2 expression in the focal adhesion sites (Figure 4.4A). Vinculin 

expression levels decreased with collagen I, but not Matrigel. RGB Profiler was utilized to 

determine localization of ROCK-2 and vinculin within the focal adhesion complexes at the 

leading front of the “wounded” area (Figure 4.4B). Y-27632 did not prevent or decrease 

the localization of ROCK-2 at the focal adhesion complex. Notably, a decrease in vinculin 

expression was seen in response to collagen I, but not Matrigel (Figure 4.4B). 
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A 

B 

Figure 4.4. Cellular expression of ROCK-2 and vinculin in response to Matrigel and collagen I ± Y-27632. A) Confocal microscopy of ROCK-2 and vinculin expression 
at the cell-matrix adhesion plane of C2C12 myoblasts. Panel of representative images showing ROCK-2 (red) and vinculin (green) expression.  Actin (white) was fluorescently 
labelled with TRITC-conjugated phalloidin.  Nuclei were labelled with Hoechst (blue).  B) RGB intensity profiles for vinculin (green) and ROCK-2 (red) determined at a focal 
adhesion complex cluster (white line in (A)).  All immunocytochemical labelling was performed at 7 hours post wounding and images were captured along the leading front.  
Matrigel (60 µg/ml), collagen I (25 µg/ml) and Y-27632 (10 µM) were used.  Cells cultured on uncoated plates in the presence of growth media (10% FCS) were used as 
control. Images were captured using a Zeiss 710 inverted confocal microscope. Scale bar = 20 µm.  
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4.3.5 Y-27632 increases the total area of ROCK-2-containing focal adhesion clusters in 

C2C12 myoblasts 

 

Despite the apparent lack of effect of Y-27632 or Matrigel on ROCK-2 or vinculin 

expression levels, a change in the number and size of focal adhesion complexes in C2C12 

myoblasts under these conditions was observed. We therefore assessed the number of focal 

adhesion clusters containing ROCK-2 (white arrow heads, Figure 4.5A) and the area of these 

clusters at the leading front.  

 

Although both Matrigel and Y-27632 appeared to increase the number of focal adhesion 

clusters containing ROCK-2 when compared to control (Figure 4.5B), the effect was not 

significant. However, the addition of Y-27632 to C2C12 cells cultured on Matrigel 

significantly increased the number of clusters compared to both Matrigel and inhibitor alone 

(p<0.05). Collagen I significantly increased the number of clusters compared to the untreated 

control from 1.76 ±0.20 to 3.95 ±0.39, a two-fold difference (p<0.05, Figure 4.5B). 

However, the addition of Y-27632 to cells cultured on collagen I had a negative effect on 

cluster number, decreasing the number to 2.71 ±0.15 when compared to collagen I alone.   
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A 

B 

Figure 4.5. Effect of Matrigel and collagen I ± Y-27632 on the number of ROCK-2 containing focal adhesion clusters in C2C12 myoblasts. Ai) Confocal microscopy of 
ROCK-2-positive clusters (red) in migrating cells at the leading front (white box). ii) Focal adhesion clusters within the white box from (i)  B) The number of focal adhesion 
clusters within the C2C12 cells (white arrow heads in (A) were counted and represented as a bar graph showing the average number of focal adhesion clusters per migrating 
cell. All immunocytochemical labelling was performed at 7 hours post wounding and images were captured along the leading front. Matrigel (60 µg/ml), collagen I (25 µg/ml) 
and Y-27632 (10 µM) were used.  Actin was fluorescently labelled with TRITC-conjugated phalloidin (white) and nuclei were labelled with Hoechst (blue).  Images were 
captured using a Zeiss 710 inverted confocal microscope. Scale bar = 20 µm. *p<0.05, n = 3.  Results are presented as Mean ± SEM.  
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Analysis of vinculin-positive focal adhesion clusters revealed minimal increases in cluster 

area for Matrigel and collagen I compared to the untreated control (Figure 4.6A). However, 

an increase in focal adhesion cluster area to 107.41 ± 5.83 µm2 was evident when Y-27632 

was added compared to the control (41.08 ± 1.87 µm2, p<0.005; Figure 4.6B). The effect of 

Y-27632 was even more prominent when the inhibitor was added to C2C12 cells cultured on 

collagen I, with clusters covering an average area of 202.20 ± 26.60 µm2 when treated with 

collagen I and Y-27632 compared to collagen I alone (58.22 ± 5.42 µm2)  (p<0.006) (Figure 

4.6B).  
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Figure 4.6. Effect of Matrigel and collagen I ± Y-27632 on the area of focal adhesion clusters in C2C12 myoblasts. A) Confocal microscopy of vinculin-positive 
clusters (green) in migrating cells at the leading front (white box). B) Bar graph showing the area of focal adhesion clusters per migrating cell. All immunocytochemical 
labelling was performed at 7 hours post wounding and images were captured along the leading front. Matrigel (60 µg/ml), collagen I (25 µg/ml) and Y-27632 (10 µM) 
were used.  Actin was fluorescently labelled with TRITC-conjugated phalloidin (white) and nuclei were labelled with Hoechst (blue).  Images were captured using a 
Zeiss 710 inverted confocal microscope. Scale bar = 20 µm. *p<0.05, **p<0.05 compared to control.  #p<0.05 compared to Y-27632. n = 3.  Results are presented as 
Mean ± SEM.  
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4.4 DISCUSSION 

Cells that have been activated to migrate by “wounding”, use cues from the extracellular 

environment to influence and guide forward motility.  Myoblasts in vivo migrate from the 

niche towards a wound and may therefore be influenced by both the BM components and 

collagen I secreted at the site of injury by infiltrating fibroblasts (Bentzinger et al., 2012). 

In order to understand some of the mechanisms influencing myoblast migration in these 

two distinct environments, this study assessed whether the kinase, ROCK, a major 

component in the regulation of myoblast migration, was involved differently during in 

vitro migration on different substrata. 

In response to injury, the morphology of migrating myoblasts into the scratch area was 

seen to be affected by experimentally-induced ROCK inhibition. ROCK-inhibited C2C12 

myoblasts displayed an increasing number of distinct protrusions at the leading front 

compared to single lamellipodia in untreated cells.  Inhibition of ROCK during migration 

thus altered cytoskeletal dynamics; this was accompanied by an increased velocity 

reflected by a faster wound closure.  The change in morphology and velocity following 

inhibition suggests that ROCK may play a restraining role, through increased stress fiber 

formation and focal adhesions, in myoblast migration.  Interestingly, directionality of 

migration was retained despite the appearance of more lamellipodia in the absence of 

ROCK activity.   

 

The underlying matrix not only serves as a base to which cells adhere, but supports 

survival and provides traction influencing forward motility. The experimental substratum 

that most closely resembled the basement membrane (Matrigel) hastened wound closure in 

vitro compared to the condition without any simulated ECM; however, addition of the 

ROCK inhibitor did not significantly improve C2C12 myoblast migration into the wound 

in comparison with Matrigel alone. This suggests that migration along the basement 

membrane may not be regulated by ROCK, thus limiting the influence of ROCK to earlier 

events or to less organized niches. An alternative explanation is that ROCK is indirectly 

inhibited when Matrigel-C2C12 adhesion complexes are formed (possibly by structural 

constraints: on ATP binding sites on ROCK, or the phosphorylation sites of targets are no 

longer accessible) so further addition of the ROCK inhibitor would not have an effect.  
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ROCK may also inhibit the interaction of the laminin α7β1 integrin since laminin is known 

to increase myoblast migration rates; and laminin is a major constituent of Matrigel 

(Crawley et al., 1997). Similar to Matrigel, a substratum of collagen I also significantly 

enhanced migration of C2C12 cells. Again, the inhibition of ROCK did not further alter the 

migration of myoblasts on collagen I. This was unexpected as collagen I is known to 

activate the Rho/ROCK pathway via the α2β1 integrin of epithelial cells (Friedl et al., 

1998; Humphries et al., 2006).  

 

Given that activated ROCK is known to be involved in the process of migration (Nobes et 

al., 1995; Raftopoulou and Hall 2004), we were not able to properly explain why ROCK 

inhibition did not affect wound closure in all of the conditions. We also assessed the 

localization of ROCK-2 in myoblasts migrating on the different ECM components found in 

the basal lamina and during wound repair. The mechanism by which the extracellular 

matrix and ROCK may influence stress fibre-related migration was investigated by 

analyzing the localization of vinculin at adhesion sites.  Alterations in vinculin 

accumulation at cell-matrix adhesion sites reflected the influence of the underlying matrix 

on the number and strengthening of stress-related adhesions, and thus exhibit control over 

forward movement.  Myoblasts formed several adhesion cluster sites defined by a 

surrounding layer of actin which contained a number of well-defined vinculin-positive 

complexes. The defined adhesion cluster sites observed may restrain migration. As a result, 

C2C12 myoblast migration may be more targeted, as demonstrated in the scatter plot 

analysis. Also, vinculin-positive focal adhesion clusters in C2C12 myoblasts cultured on 

collagen I had an enlarged morphology and were increased in number compared to the 

control, where no matrix was present.   

 

The change in stability of cell-matrix adhesions may, therefore, be an underlying factor in 

the increased velocity of ROCK inhibited myoblasts. A cohesive contractile mechanism is 

required to ensure persistence of directionality.  However, strengthening of focal adhesion 

sites and the development of stress fibers during this process may actually restrain the 

mechanism of forward sliding. It was proposed in 1995 that ROCK-2 coordinates 

adherence and the connection of adhesion proteins to the cytoskeleton (Nobes and Hall 

1995).  Cell-matrix adhesion complexes are strengthened through phosphorylation of the 

myosin light chain, which results in condensation of these intracellular focal complexes 

into focal adhesions.  Such dedicated, well developed sites are related to slower migration, 
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with retention of directional persistence.  Nobes proposed that the advantage might be that 

these processes result in a more determined, and thereby ultimately faster, mode of 

migration (Nobes and Hall 1999). 

  

Using this information to explain our results, we observed the non-coated control closed 

the “wound” area at approximately half the rate of collagen I and Matrigel; however, 

treatment with the ROCK inhibitor more than doubled the percentage wound closure on 

non-coated plates (Figure 4.7A). No major change was observed in focal adhesion number 

with the ROCK inhibitor (uncoated), but an increase in focal adhesion area was observed 

compared to the non-treated control (Figure 4.7B). This possibly explains the increase in 

wound closure observed, as the focal adhesion complex sites are not as tightly packed and 

therefore are not restraining migration as well as tightly packed complexes. ROCK induced 

focal adhesions with limited size allow for the formation of many stress fibers (reduced 

migration and increased directionality) rather than only a few large ROCK-induced actin 

bundles (increased migration, reduced directionality) (Dhawan and Helfman 2004). 

Collagen I had a relatively large number of tightly packed focal adhesion complexes which 

would explain the increase in percentage wound closure on collagen I alone. Although the 

addition of experimentally-induced ROCK inhibition increased the focal adhesion area (on 

both matrices and uncoated), which would increase migration, focal adhesion cluster 

number decreased to a level similar to that of the inhibitor alone, leaving less focal 

adhesion clusters to facilitate myoblast migration. A direct correlation between myoblast 

adhesion and β1-integrin expression has been shown (Modulevsky et al., 2012) implicating 

collagen I in cell adhesion regulation. Although addition of ROCK inhibition to cells 

cultured on Matrigel increased focal adhesion cluster number and focal adhesion area, the 

effect observed during wound closure was minimal (Figure 4.7). This supports the idea that 

Matrigel is regulating myoblast migration via integrin specific mechanisms and not 

directly via the ROCK pathway.      
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Myoblasts rely on mechanical cues from the ECM. This requires robust cell adhesion to 

the microenvironment via integrins and focal adhesion sites for the transmission and 

conversion of mechanical information into biochemical signaling (Modulevsky et al., 

2012). The mechanisms of migration during wound repair are complex, involving 

changing microenvironments, cytokines and cell types. However, these external changes 

facilitate a highly regulated and controlled mode of migration by regulating cellular 

velocity and directionality.  

 

 

 

 

 

 

 

 

 

Figure 4.7. Effect of Y-27632 on myoblast migration in relation to untreated ECM-coated plates. A) 
Maximum migration rates of Y-27632 over and above the effect of untreated collagen I, Matrigel, and the 
non-coated control. Bi) Effect of Y-27632 and ECM on focal adhesion (FA) number. ii) Effect of Y-27632 
on focal adhesion area compared the respective control. Green arrow – ECM effect, red arrow – Y-27632 
effect. Arrow length refers to migration rates. 
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CHAPTER 5 

THE TGF-β/DECORIN COMPLEX DIFFERENTIALLY INFLUENCES 

MYOBLAST MIGRATION IN A ECM DEPENDANT MANNER 

Contains data from: 

Goetsch, K. P., Myburgh, K.H., Niesler, C. U. (2012) The TGF-β/decorin complex 

differentially influences myoblast migration in a ECM dependant manner– in preparation 

5.1 INTRODUCTION 

In vivo, muscular injuries that destroy the basal lamina result in a poor functional recovery 

of the skeletal muscle compared to injuries that minimally disrupt the muscular integrity 

and orientation (Sanes 2003). This is due in part, to the presence of pro-inflammatory 

cytokines, such as TGF-β, which promote the deposition of collagen I by infiltrating 

fibroblasts (Serrano et al., 2011). During tissue repair, collagen forms the tensile strength 

of the healing wound, while fibronectin forms a scaffold to which cells migrating into the 

wound area can attach. TGF-β increases the accumulation of these matrix proteins at the 

injury site, resulting in increased connective tissue formation and subsequent scarring 

(Roberts et al., 1992). In vivo studies have highlighted the negative role of TGF-β on 

functional skeletal muscle repair, whereby an increase in TGF-β1 signaling increased 

muscular fibrosis and muscle fibre degeneration (Mezzano et al., 2007; Mendias et al., 

2011).  

 

Decorin and biglycan are proteoglycans that bind TGF-β, as well as ECM proteins, such as 

collagens (Yamaguchi et al., 1990; Ameye et al., 2002). Decorin constitutes an attractive 

candidate for the modulation of TGF-β bio-availability, as it has a high affinity for TGF-β 

and the decorin/TGF-β complex is rapidly endocytosed (Hausser et al., 1996). Studies of 

TGF-β/decorin interactions have focused primarily on understanding the anti-fibrotic effect 

of decorin against TGF-β and have found that decorin decreases fibrotic scar tissue 

formation by sequestering TGF-β (Cabello-Verrugio et al., 2012). However, the effect of 

this complex on myoblast migration is not well characterized (Li et al., 2008). 
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We have previously shown that decorin increases the rate of migration of C2C12 

myoblasts on collagen I and fibronectin compared to an uncoated control (Goetsch et al., 

2011). Also, Marmotti et al., (2012) recently reported that primary chondrocyte migration 

was increased with TGF-β1 exposure (Marmotti et al., 2012), while Finnson et al., (2012) 

indicated that keratinocyte migration was increased by TGF-β3 (Finnson et al., 2012). 

However, this may be a cell-specific response since the dermis and cartilage ECM 

compositions and cell-types differ from that of the skeletal myofiber micro-environment. 

This was seen in the interaction between ECM and TGF-β on cell migration of liver 

microvascular endothelial cells which were influenced by substrate rigidity but not by 

TGF-β (Tian et al., 2012). 

In this chapter, we investigate the combined effect of TGF-β & decorin on migration of 

C2C12 murine myoblasts and primary cultured human skeletal muscle myoblasts. We also 

further investigate whether ECM components such as, collagen IV & laminin (Matrigel), 

collagen I and fibronectin modulate the response of myoblasts to the TGF-β/decorin 

complex. 
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5.2 EXPERIMENTAL PROCEDURES 

5.2.1 General 

All chemicals used were of an analytical grade and were purchased from either Sigma or 

Merck unless otherwise stipulated. All cell culture was carried out under sterile conditions 

in a level II lamina flow hood (ESCO class II BSC) and incubated in a CO2 incubator 

(Innova CO-170) at 37°C, 5% CO2. Brightfield images were captured using the Motic 3.0 

MP camera on the Olympus CKX41 microscope. The Zeiss 710 confocal microscope was 

utilized for all fluorescence microscopy.  

5.2.2 Cell Culture 

The C2C12 cell line was donated by the Cape Heart Center, University of Cape Town. 

Primary cultured human skeletal myoblasts (HSKM) were purchased from Lonza. Growth 

media contained Dulbecco’s Modified Eagle Serum (DMEM, Highveld, cat.CN3193-9), L-

glutamine (2% v/v, Cambrex, cat.17-605E), Penstrep (2% v/v, Cambrex, cat.17-602E), 

fetal calf serum (10% v/v, Invitrogen, cat.10108165). Human culture media contained 

HAMS-F10 (Gibco, cat.15140), FCS (20% v/v), Pentrep (2% v/v), L-glutamine (2% v/v), 

fibroblast growth factor (FGF, 2.5 ng/ml, Promega, cat.G507A). 

5.2.3 Scratch Assay 

The scratch assay was adapted from (Goetsch et al., 2011). Briefly, the C2C12 and HSKM 

cells were cultured to 80% confluence in 24-well culture dishes which had either been left 

uncoated or had been coated with Matrigel (60 µg/ml), collagen I (25 µg/ml) or fibronectin 

(5 µg/ml) prior to seeding (see Chapter 3, Section 3.2.2 for detailed coating methods). 

Briefly, a scratch was made using a sterile pipette tip and the percentage wound closure 

was assessed over a period of 7 hours in the presence or absence of TGF-β2 (10 ng/ml, 

Sigma) and/or decorin (10 µg/ml, Sigma, cat.D8428). To determine the percentage wound 

closure, wounds were photographed at hours 0, 3, 5, and 7 with the Motic 3 megapixel 

camera linked to an Olympus CKX41 inverted microscope (40X magnification). 

Percentage wound closure was calculated for all wounds by tracing the area along the 

border of the wound using the Motic 2.0 image analysis software. The rate of migration 

was determined by calculating the gradient of the percentage wound closure for each 

treatment group. 
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5.2.4 Immunocytochemical Analysis of ROCK-2 & Vinculin 

C2C12 and HSKM cells were cultured to 80% confluence in 24-well plates on coverslips 

that were uncoated or coated with Matrigel (60 μg/ml), collagen I (25 µg/ml) or fibronectin 

(5 µg/ml) prior to seeding.  Cultures were wounded and after 7 hours cells were washed 

with PBS and fixed in a 4% paraformaldehyde solution.  Cells were incubated in blocking 

solution [1% BSA in PBS buffer (pH 7.4)] for 1 hour and immunolabelled using primary 

antibodies to ROCK-2 (1/1000, polyclonal goat anti-rat ROCK-2, Santa Cruz, cat.Sc-1851) 

and vinculin (1/1000, monoclonal mouse anti-human vinculin, Sigma, cat.V9131) for 4 h 

at room temperature. Cells were then washed with PBS and incubated (room temperature) 

with secondary antibodies, Dylight 549 donkey anti-goat (1/800, Jackson Scientific) and 

Dylight 488 donkey anti-mouse (1/800, Jackson Scientific) for 1 h. Hoechst (1/4000, 

Sigma) was used as a nuclear stain for both cell types and added 5 minutes prior to 

mounting after secondary labeling. Coverslips were mounted with moviol and viewed on 

the Zeiss 710 confocal microscope.     

 

5.2.5 Statistics 

The Mann-Whitney U test was used to calculate p-values for the differences between the 

means of experimental conditions and control. Genstat was used for all statistical tests and 

significance was determined at p<0.05. Results are presented as the mean ± the standard 

error of the mean (SEM). 
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5.3 RESULTS 

5.3.1 Decorin modulates the inhibitory effect of TGF-β on myoblast migration 

To study the effect of decorin & TGF-β on myoblast migration, we incubated the C 2C12 

cell line and HSKM primary cultured myoblasts with  decorin (10 µg/ml) and/or TGF-β2 

(10 ng/ml). I n C 2C12 c ells, TGF-β2 (12.67 ± 2.69%) caused a pe rceived decrease, o f 

3.06%, in the percentage wound closure compared to control (15.73 ± 1.87%) at 7 hou rs, 

whereas decorin increased mi gration to 21% (Figure 5.1A) . W hen de corin was added 

together with TGF-β2 (29.37 ± 4.75%), a significant increase in percentage wound closure 

was observed compared to control, with an increase of 14% (p < 0.05, Figure 5.1A). This 

effect was also observed when looking at the rate of migration, whereby decorin and TGF-

β2 in combination (4.14 ± 0.67%/hr) significantly incr eased the rate of mi gration ov er 

TGF-β2 (1.77 ± 0.39%/hr, p < 0.005) and the control (2.17 ± 0.28%/hr, p < 0.05, Figure 

5.1B). 

 

 

 

 

 

 

 

 

A B 

Figure 5.1 Decorin & TGF-β2 enhance C2C12 myoblast migration. (A) Percentage wound closure of 
cells in r esponse to decorin ( 10 µg/ml), T GF-β2 (10 ng/ml), and decorin & TGF-β2. Growth media 
containing 10% foetal calf serum served as the control. Cells were analyzed at 0, 1, 5 & 7 hours. Decorin 
and TGF-β2 in combination significantly increased the percentage wound closure compared to the control 
at 7  hou r po st-injury. ( B) Decorin and TGF-β2 in combination significantly increased the rate of 
migration compare to TGF-β2 and control. *p<0.05, **p<0.005, n=3. All data shown as Mean ± S.E.M. 
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In human skeletal myoblasts, TGF-β2 significantly (p<0.032) reduced the wound closure 

at 7 hours post-wounding, to almost half of what was achieved in the absence of the 

growth factor (15% and 31%, respectively). In real terms, this difference amounted to 

16.06% of the wound area (Figure 5.2i).  Decorin (33.67 ± 3.84%) had no significant effect 

on the percentage wound closure which was consistent with the C2C12 data at 7 hours 

(Figure 5.1A). Decorin & TGF-β2 in combination increased the percentage wound closure 

at the 5 hour time point (55.71 ± 9.56%). The improvement was approximately of 14% 

better compared with control and 23% compared with TGF-β2. At 7 hours post-wounding 

the increase in percentage wound closure in response to decorin & TGF-β2 was even 

greater when compared to the control (increase of 25%), decorin (increase of 22%), and 

TGF-β2 (increase of 41%) (Figure 5.2i). The rate of migration decreased significantly 

(2.19 ± 0.85%/hr, p<0.035) when treated with TGF-β2 compared to control and increased 

significantly with the combination treatment, TGF-β2 & decorin (8.09 ± 1.38%/hr) 

compared to control (4.41 ± 0.42%/hr, p<0.032) (Figure 5.2ii). This difference was even 

greater when comparing TGF-β2 (2.19 ± 0.85%/hr) with TGF-β2 & decorin (8.10 ± 

1.38%/hr, p<0.015).   

Analysis of vinculin and ROCK-2 localization and expression revealed no differences in 

intensity and localization of ROCK-2 in myoblasts incubated with TGF-β2 and/or decorin 

where compared with control. However, an increase in vinculin intensity and distribution 

within the cell could be seen in response to TGF-β2, in the presence or absence of decorin 

(Figure 5.2iii).  
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Figure 5.2 Decorin and TGF-β2 in combination promote the migration of HSKM myoblasts. i) 
Percentage wound closure at 0, 3, 5 & 7 hours for decorin (10 µg/ml), TGF-β2 (10 ng/ml). Growth 
media containing 10% fetal calf serum served as the control. ii) Rate of migration. iii) Expression of 
vinculin, (green) ROCK-2 (red), and nuclei (blue). Cells were fixed at 7 hours post-wounding utilizing 
the scratch assay. *p<0.05 compared to control, #p<0.05 compared to TGF-β2, $p<0.05 compared to 
decorin. n=4. All data shown as Mean ± S.E.M. Scale Bar = 20µm. 
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5.3.2 Decorin and TGF-β promote HSKM cell migration in the presence of Matrigel  

To determine whether basal lamina ECM components modulate the effect of decorin and 

TGF-β on HSKM myoblasts we cultured cells on Matrigel (to mimic the basal lamina 

which consists primarily of collagen IV and laminin) (Roberts et al., 1992).   

Percentage wound closure of myoblasts on Matrigel-coated plates was dereased by 14% in 

the response to TGF-β2 (26.88 ± 4.89%) when compared to Matrigel control (40.68 ± 

5.30%, p<0.056) at 7 hours post-wounding. In response to both decorin + TGF-β2, human 

myoblasts migrating on Matrigel significantly increased migration at 7 hours by 8% to 

49% compared to control (p<0.016) (Figure 5.3i). TGF-β2 significantly decreased the rate 

of migration (3.83 ± 0.66%/hr, p<0.031), however when decorin was added in 

combination with TGF-β2 to cells on Matrigel, a significant increase (6.95 ± 0.74, 

p<0.013) in the rate of migration was observed (Figure 5.3ii). No specific focal adhesion 

sites could be identified despite clear expression of vinculin. In addition, no distinct 

differences were observed for ROCK-2 expression and localization in cells cultured on 

Matrigel and treated with TGF-β2 and/or decorin (Figure 5.3iii). However, an increase in 

vinculin expression levels was observed in cells on Matrigel when treated with TGF-β2 (in 

the presence or absence of decorin) compared to the Matrigel control (Figure 5.2iii). 
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5.3.3 Decorin and TGF-β promote HSKM cell migration in the presence of collagen I, but 

not fibronectin 

0

10

20

30

40

50

60

70

80

-1 1 3 5 7

Pe
rc

en
ta

ge
 W

ou
nd

 C
lo

su
re

 o
f H

Sk
M

 
M

yo
bl

as
ts

  (
%

) 

Matrigel
Matrigel & TGF-B2
Matrigel & decorin
Matrigel, TGF-B2 & decorin

Figure 5.3 Decorin and TGF-β2 in combination promote the migration of HSKM myoblasts on 
Matrigel-coated plates. i) Percentage wound closure at 0, 3, 5 & 7 hours for decorin (10 µg/ml), TGF-β2 
(10 ng/ml) and Matrigel (60 µg/ml). Growth media contains 10% fetal calf serum. ii) Rate of migration. iii) 
Fluorescent labeling for vinculin (green), ROCK-2 (red), and nuclei (blue). Cells were fixed at 7 hours post-
wounding utilizing the scratch assay. *p<0.05 compared to matrigel, #p<0.05 compared to TGF-β2. n=4. 
All data shown as Mean ± S.E.M. Scale Bar = 20µm. 

 

i 

* 

# 

# 

Hours T
G

F-
β2

 

T
G

F-
β2

 &
 

de
co

ri
n 

D
ec

or
in

 

C
on

tr
ol

 

* 

ii 

* 

Control TGF-β2 Decorin TGF-β2 & Decorin 

M
at

ri
ge

l 

Blue – Hoechst 
Green - Vinculin 

Blue – Hoechst 
Red – ROCK-2 

iii 



101 
 

In the presence of collagen I, TGF-β did not decrease the percentage wound closure (40.42 

± 5.28%) or the rate of migration (5.75 ± 0.75%/hr) compared to the collagen I control 

(42.27 ± 3.83% and 6.08 ± 0.50%/hr, respectively) (Figure 5.4i & ii). However, the 

addition of TGF-β2 + decorin to cells migrating on collagen I significantly (66.28 ± 7.20%, 

p<0.016) increased the percentage wound closure by 26% (7 hours) compared to collagen I 

with (40.42 ± 5.28%) or without (42.27 ± 3.83%) the addition of TGF-β2. The rate of 

migration of myoblasts in response to TGF-β2 + decorin + collagen I (9.23 ± 0.97%/hr) 

was significantly increased compared to collagen I (6.08 ± 0.50%/hr) and TGF-β2-treated 

collagen I (5.75 ± 0.75%/hr). A significant increase was also observed when cells cultured 

on collagen I were treated with decorin (7.66 ± 0.77%/hr), compared to collagen I (Figure 

5.4ii).  An increase in the localization and intensity of vinculin expression following TGF-

β2 treatment was observed when compared to cells cultured on collagen I alone. No 

difference in ROCK-2 localization or intensity was apparent following either TGF-β2 or 

decorin incubation in the presence of collagen I (Figure 5.4iii). 
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Figure 5.4 Decorin and TGF-β2 in combination promote the migration of HSKM myoblasts on 
collagen I-coated plates. i) Percentage wound closure at 0, 3, 5 & 7 hours for decorin (10µg/ml), TGF-β2 
(10ng/ml) and collagen I (25µg/ml). Growth media contains 10% fetal calf serum. ii) Rate of migration. iii) 
Expression and localization of vinculin (green), ROCK-2 (red), and nuclei (blue). Cells were fixed at 7 
hours post-wounding utilizing the scratch assay. *p<0.05 compared to collagen I, #p<0.05 compared to 
TGF-β2. n=4. All data shown as Mean ± S.E.M. Scale Bar = 20µm. 
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In the presence of fibronectin, TGF-β2 significantly (32.29 ± 2.73%, p<0.016) decreased 

the percentage wound closure compared to fibronectin (46.86 ± 5.34%) by 15% at 7 hours 

post-injury (Figure 5.5i). However, decorin & TGF-β2 (46.47 ± 7.48%) were not able to 

significantly increase the percentage wound closure compared to fibronectin alone (46.86 ± 

5.34%), or even fibronectin treated with TGF-β2 (32.29 ± 2.73%) (Figure 5.5i & ii). Only 

a minor increase of 0.39% (TGF-β2 + decorin) for the percentage wound closure was 

observed. The rate of migration results also did not show any significant change when 

comparing the treatment and control groups (Figure 5.5ii).  

Immuno-fluorescent labeling for vinculin revealed an increase in intensity and localization 

within TGF-β2 treatment groups (± decorin addition) which is consistent with matrigel and 

collagen I findings (Figure 5.5iii). An increase in intensity of vinculin staining in cells 

treated with fibronectin and decorin was also observed compared to fibronectin alone 

which differed from the other matrix factors. ROCK-2 expression levels appeared to be 

higher when TGF-β2 or decorin was present compared to the fibronectin control (Figure 

5.5iii).   
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Figure 5.5 Decorin and TGF-β2 in combination do not promote the migration of HSKM 
myoblasts on fibronectin-coated plates. i) Percentage wound closure at 0, 3, 5 & 7 hours for decorin 
(10µg/ml), TGF-β2 (10ng/ml) and fibronectin (5µg/ml). Growth media contains 10% fetal calf serum. 
ii) Rate of migration. iii) Expression of vinculin (green), ROCK-2 (red), and nuclei (blue). Cells were 
fixed at 7 hours post-wounding utilizing the scratch assay. *p<0.05 compared to fibronectin, #p<0.05 
compared to TGF-β2. n=4. All data shown as Mean ± S.E.M. Scale Bar = 20µm. 
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5.3 DISCUSSION 

Decorin is known to act as an anti-fibrotic and pro-myogenic agent in skeletal muscle 

(Fukushima et al., 2001; Droguett et al., 2006; Miura et al., 2006; Zhu et al., 2007; 

Brandan et al., 2008; Kishioka et al., 2008). In vivo studies, where decorin was injected 

directly into lacerated muscle, revealed that this proteoglycan could promote the complete 

regeneration of the injured murine skeletal muscle with minimal fibrotic scar tissue 

formation (Fukushima et al., 2001; Fukushima et al., 2006). This effect may be due to its 

modulation of collagen fibrillogenesis and its ability to reduce myofibroblast proliferation 

in vitro (Fukushima et al., 2001; Fukushima et al., 2006). However, decorin is able to bind 

members of the TGF-β super-family, such as TGF-β1, 2, 3 and myostatin, thereby 

antagonizing their activities and acting as an antifibrotic agent (Verrecchia and Mauviel 

2007; Cabello-Verrugio et al., 2012). In this way decorin would indirectly enhance muscle 

regeneration.  

This study provides evidence that the interaction between decorin and TGF-β2 can have a 

direct effect on myoblast migration. Specifically, in the presence of decorin, TGF-β2 was 

shown to promote myoblast migration and could in this way positively influence skeletal 

muscle regeneration. A critical observation is that the addition of decorin to TGF-β2 (in the 

presence or absence of Matrigel, collagen I or fibronectin) resulted in a significant increase 

in migration (compared to treatment with TGF-β2 alone). This is despite the fact that 

treatment with decorin did not have a significant effect in increasing migration rates, and 

TGF-β2 was predominantly anti-migratory, decreasing migration rates.  

A possible explanation for this phenomenon involves mechanisms that attenuate TGF-β-

dependent signaling. This could occur in part via a reduction in TGF-β bioavailability due 

to the presence of decorin, limiting its access to specific receptors and resulting in a 

diminished cellular response (Droguett et al., 2006). However, the increase in migration 

suggests the activation of either alternate pathways or changes in signaling behavior caused 

by the TGF-β/decorin complex binding to TGF-β and decorin receptors. The TGF-

β/decorin complex has been shown by others to result in a greater biological activity 

compared with the growth factor alone (Riquelme et al., 2001). This supports the premise 

that a specific response is being induced due to the biological constellation (i.e. the TGF-

β/decorin complex), which is now presented to TGF-β or decorin signaling receptors 

(Schonherr et al., 2001). Within this study we suggest that not only is the binding of TGF-
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β-to decorin acting as a TGF-β antagonist, but the subsequent complex enhances myoblast 

migration by altering the interaction with cell surface receptors. 

TGF-β is present during skeletal muscle formation and regeneration. Therefore it is not 

surprising that mechanisms controlling bio-availability to regulate the modulatory effect 

TGF-β on myogenesis evolved.  Interestingly, in the presence of fibronectin, TGF-β2 plus 

decorin were not able to significantly increase the migration rate compared with either 

TGF-β2, decorin or the untreated fibronectin control.  A possible explanation for this is the 

binding of TGF-β to the latent TGF-β binding protein (LTBP-1). LTBP-1 has been shown 

to co-localize and physically interact with fibronectin (Schlotzer-Schrehardt et al., 2000; 

Kottler et al., 2005). Therefore, fibronectin may sequester TGF-β via LTBP-1 and reduce 

the effect of both TGF-β2 and the TGF-β/decorin complex by reducing its bio-availability. 

However, localization of the TGF-β/decorin complex to different areas within the ECM 

during wound repair may have an inhibitory effect or result in greater biological activity 

(Schonherr et al., 2001). Independent binding sites of decorin for collagen I and TGF-β 

exist, allowing decorin to simultaneously bind collagen I and TGF-β (Schonherr et al., 

1998). Furthermore, decorin bound to collagen I via its core protein has the ability to 

sequester TGF-β (Markmann et al., 2000). Downstream effects of temporary decorin-

induced sequestering of TGF-β within the ECM, was suggested in 1998 by Schonherr to be 

a result of modulating the interaction of TGF-β with its signaling receptors (Schonherr et 

al., 1998). Since then the responses of signaling pathways, gene expression and associated 

protein synthesis have been studied in various contexts. 

TGF-β affects integrin-mediated cell adhesion and migration by regulating the expression 

of integrins, their ligands and integrin-associated proteins (Margadant and Sonnenberg 

2010). In a study utilizing human peritoneal fibroblasts, TGF-β1 facilitated vinculin 

expression and localization, primarily to the focal adhesion contacts of the cells, which 

caused distortion of F-actin structure. TGF-β may promote adhesion formation by altering 

expression levels and patterns of specific integrin subunits, vinculin, and F-actin (Rout et 

al., 2002). The increased expression of vinculin upon TGF-β addition was apparent within 

our findings. However, there appeared to be no direct correlation between TGF-β and 

vinculin localization within migrating myoblasts.  

Another interesting observation was the delayed onset of the TGF-β/decorin complex 

effect in HSKM myoblasts compared to C2C12 myoblasts, which did not display a delay 
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in the percentage wound closure. This would seem to point to a signaling effect and a 

“wait” for the protein that is having the effect to be expressed, which differs in murine and 

human skeletal muscle.  

In summary, in this study we demonstrate a unique mechanism for increased muscle 

regeneration (through increased migration rates) via the regulation of TGF-β signaling. We 

propose that the interaction of decorin with TGF-β2 alters the signaling effects by forming 

the TGF-β/decorin complex, which can either sequester or promote alternate signaling 

pathways.  Investigations into the mechanistic process causing this effect are underway. 
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CHAPTER 6 

3D SKELETAL MUSCLE TISSUE DEVELOPMENT & FUTURE WORK 

6.1 INTRODUCTION 

The ability of cells to migrate within an extracellular matrix depends on the physical and 

biochemical characteristics of the particular matrix as well as on the properties of the 

migrating cells. Analysing changes in migration patterns within different matrices is vital 

for our understanding of how mobility and homing is influenced by physiological and 

pathological conditions. In vivo, cells migrate through different types of extracellular 

matrix: dense connective tissue, loose connective tissue or basement membrane tightly 

packed as an acellular layer (Wang et al., 2012). The different environments affect the 

ability of a cell to migrate, its mode of migration and its directionality. Mesenchymal cell 

migration is triggered in response to either mechanical or biochemical cues and is 

characterised by the following steps: extension of the leading edge, cellular attachment to 

the ECM, maturation of adhesions, advancement of the cellular body, and release of the 

rear adhesions (Cukierman et al., 2001; Modulevsky et al., 2012).   

 

Although direct experimentation in vivo would be favourable, it is necessary to isolate and 

define the specific contribution of single factors to migration in order to understand the 

overall process; therefore in vitro models are indispensable. The mechanism and regulation 

of cell migration has been studied extensively in 2-dimensional models. However, 

discrepancies between cell behaviour in in vitro verses in vivo have led many research 

groups to develop 3D models in order to better mimic the natural micro-environment 

(Even-Ram and Yamada 2005).  

 

3-Dimensional models have obvious advantages over 2-dimensional cultures in mimicking 

in vivo conditions, such as allowing for the study of dimensionality, cellular architecture 

and cell polarity. However, the complexity and diversity of in vivo ECM organisation is 

difficult to mimic in vitro. Although collagens contribute the major component of the 

ECM, other components are also important (Friedl et al., 1998).  
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Several different types of gel constructs have been utilized to achieve a desired ECM 

architecture in vitro. Important characteristics of these constructs include molecular 

composition and concentration, macromolecular orientation, and the degree of cross-

linking (Even-Ram and Yamada 2005).  Collagen and laminin are able to polymerize and 

spontaneously form 3D gels, whereas fibronectin fibrillogenesis is an active, cell-

dependent process involving integrin translocation to facilitate polymerization (Pankov et 

al., 2000). Nonetheless, fibronectin is an important component since it promotes fibroblast 

migration in 3D matrices and the addition of fibronectin to collagen I substrates has been 

shown to enhance the migration of these cells (Cukierman et al., 2001). 

 

In vitro preparations of collagen are limited by the maximal concentration of the stock 

solution (3-5 mg/ml). Yet the in vivo concentration of the epidermis is nearly 140 mg/ml 

collagen in wet weight and is nearly 100 times higher than what can be utilized within the 

in vitro model (Robins et al., 2000). The tumor basement membrane extract (Matrigel) 

produced by Engelbrecht-Holm-Swarm sarcoma cells, which is used to mimic the in vivo 

basement membrane, differs from normal basement membranes in vivo. It is significantly 

less cross-linked and is therefore more susceptible to proteolysis, remodelling and 

turnover. However, Matrigel can promote 3D tissue organization and is often added with 

collagen I to form 3D gel constructs (Kalluri 2003). Fibrin gels are also commonly used for 

the study of mesenchymal cell migration studies. Thrombin cleavage of fibrinogen 

generates fibrin, which assembles into a tight meshwork of fibers; cells must therefore be 

able to degrade the ECM in order to migrate through the gel. Within our study we have 

focused on several different types of gel constructs and assessed how they affect skeletal 

muscle tissue development. 
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6.2 EXPERIMENTAL PROCEDURES 

6.2.1 General 

All chemicals used were of an analytical grade and were purchased from either Sigma or 

Merck unless otherwise stipulated. All cell culturing was carried out under sterile 

conditions in a level II lamina flow hood (ESCO class II BSC) and incubated in a CO2 

incubator (Innova CO-170) at 37°C, 5% CO2. Brightfield images were captured using the 

Motic 3.0 MP camera on the Olympus CKX41 microscope. The Zeiss 710 confocal 

microscope was utilized for all fluorescence microscopy.  

6.2.2 Cell Culture 

The C2C12 cell line was donated by the Cape Heart Center, University of Cape Town. 

Primary cultured human skeletal myoblasts (HSKM) were purchased from Lonza. Growth 

media contained Dulbecco’s Modified Eagle Serum (DMEM) (Highveld, cat.CN3193-9), 

L-glutamine (2% v/v) (Cambrex, cat.17-605E), PenStrep (2% v/v) (Cambrex, cat.17-

602E), fetal calf serum (10% v/v) (Invitrogen, cat.10108165). Differentiation media 

contained DMEM, L-glutamine (2% v/v), PenStrep (2% v/v) and horse serum (HS; 1% 

v/v) (Invitrogen cat.16050-130). Human culture media contained HAMS-F10 (Gibco, 

cat.15140), FCS (20% v/v), Pentrep (2% v/v), L-glutamine (2% v/v), fibroblast growth 

factor (FGF, 2.5 ng/ml, Promega, cat.G507A). 

6.2.3 MC-8 chamber 

MC-8 chambers were obtained from In vivo Sciences. A 10% FBS solution was added to 

each well 30 minutes prior to the addition of the gel construct and incubated at 37 °C. This 

created a favourable condition of cell attachment on the stainless steel pins. 225 µl cell/gel 

solution was added per MC-8 cell (for details on each gel construct refer to Section 6.2.5 – 

6.2.8). MC-8 chamber sterility was maintained by keeping the chambers within 10 cm 

culture dishes. Either growth media or differentiation media was added directly after 

seeding on experimental application. 
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6.2.4 Silicone chamber 

Biological grade silicone tubing was utilized for all the silicone models. The tubing was 

cut to fit a well within a 24-well plate. The stainless steel pins were cut and inserted into 

the silicone tubing to achieve a distance of 8 mm between pins. The tubes containing the 

pin inserts were glued within the wells with SYLGARD 182 (Figure 6.1). The plates were 

cured overnight under an ultraviolet light to maintain sterile conditions. A 10% FBS 

solution was added to each well 30 minutes prior to the addition of the gel construct and 

incubated at 37 °C. This created a favourable condition for cell attachment on the stainless 

steel pins. 

6.2.5 Collagen I Gel Construct 

Calf skin collagen I (Sigma, cat. C9791) was dissolved in 0.1% acetic acid to give a final 

concentration of 5 mg/ml. A 280 µl volume of collagen I (5 mg/ml) was neutralized with 

11.2 µl of a 2% NaOH solution. A 5X DMEM solution (72.8 µl) and a cell suspension 

(730 µl) containing 800 000 cells were added to the collagen I solution prior to plating 

within the MC-8 chamber or silicone tubes. The gel/cell suspension polymerized after a 20 

minute incubation period at 37 °C. A 350 µl volume of growth media was added to each 

well after complete polymerization had occurred.  

6.2.6 Collagen I/Matrigel Construct 

Calf skin collagen I was dissolved in 0.1% acetic acid to give a collagen I concentration of 

2 mg/ml. 10X DMEM, reconstitution buffer (50 ml distilled water, 1.1 g sodium 

bicarbonate, and 2.4 g HEPES), and collagen I solution (2 mg/ml) were added at a ratio of 

1:1:12 (i.e. 167 µl 10X DMEM, 167 µl reconstitution buffer, and 2 ml collagen I). The 

solution was neutralized by 10% NaOH (30 µl). A cell suspension (120 µl) containing 

800 000 cells was added to the collagen I solution along with 20 µl Matrigel (10.1 mg/ml, 

BD Biosciences, cat.356231). The subsequent cell/gel suspension was plated into either 

MC-8 chamber wells or silicone tubes and incubated at 37 °C for 20 minutes to allow for 

complete gel polymerization to occur. Following complete polymerization the wells were 

supplemented with 350 µl growth media. 
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6.2.7 Fibrin Gel Construct 

A 20 µl thrombin (10 Units, Sigma, cat. T4648) solution was added to 180 µl growth 

media containing 800 000 myoblasts (determined by cell count) per MC-8 chamber well or 

per silicone tube. Gel polymerization occurred ~10 minutes after the addition of 80 µl 

fibrinogen (20 µg/ml, Sigma, cat.F8630) and incubation at 37 °C.  The fibrin gel/cell 

suspension was supplemented with 350 µl growth media every 24 hours.   

6.2.8 Hydrogel Construct 

For the hydrogel construct, QGel (QGelSA, ref.1001) was utilized. We used the soft I and 

soft III gel constructs were used. The QGel powder was resuspended in 400 µl PBS buffer. 

200 µl QGel solution and 50 µl cell suspension containing 500 000 cells were added per 

silicone tube for the soft III gel construct. For the soft I gel construct, 200 µl  QGel 

solution, 80 µl PBS buffer, and 70 µl cell suspension containing 500 000 cells were added 

per silicone tube. Gel polymerization occurred 5-6 minutes after incubation at 37 °C. 

Growth media (500 µl) was added per well following gel polymerization.  
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6.3 RESULTS 

6.3.1 Development of an in vitro 3-Dimensional Skeletal Muscle Tissue Model 

To develop a 3D model of skeletal muscle in vitro, we resuspended myoblasts in a variety 

of gel constructs within both a commercially available tissue chamber (MC-8, in vivo 

Sciences) as well as a silicone chamber constructed within our lab (Figure 6.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stainless Steel Pins 

Tissue Formation 
between Pins 

Gel Construct 

Culture well of 
a 24-well plate 

Biological Grade Silicone 

Gel Construct 
layered between Pins 

Stainless Steel Pins 

Silicone Chamber 

MC-8 Chamber 

Figure 6.1 MC-8 and customized silicone chamber for the development of in vitro 3D skeletal 
muscle. MC-8 chambers were purchased from in vivo Sciences. Silicone chambers were created within 
our laboratory. For detailed information on both models and tissue constructs utilized within these 
models see section 6.2 Experimental Procedures. 
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Four different gel constructs (Collagen I, Matrigel/collagen I, fibrin, and hydrogel) were 

used within the MC-8 and silicone chambers with cell number, cell type and media 

variations to optimize skeletal muscle tissue development between the two anchor points. 

Attachment of the gel construct to the pins and tissue formation spanning the two anchor 

points were both assessed (Table 6.1). Better attachment of the myoblasts to the pins was 

seen within the silicone chamber compared to the MC-8 chamber for the collagen 

I/Matrigel, collagen I and fibrin gel constructs (Table 6.1). Tissue formation between the 

two anchor points was only achieved with the silicone chamber utilizing the collagen I 

construct for both murine C2C12 and human myoblasts (HSKM).  

The media did not appear to play a direct role in the initial attachment and spanning 

between the pins. However, continued use of the differentiation media (DM) resulted in 

sustained spanning of the tissue between the pins (Table 6.1). The fibrin construct 

presented numerous difficulties as the addition of the thrombin to the fibrinogen caused the 

gel to set very rapidly, not giving the cells enough time to spread evenly throughout the 

gel. The hydrogel construct did not result in any tissue formation; this was primarily due to 

low viscosity levels which prevented the cells from being held in suspension.   

 

Table 6.1: Optimization of 3D construct model within two different chamber systems 
Gel Construct Chamber  Cell Number Media Successful Pin 

Attachment 
Tissue Formation 

Collagen I / 

Matrigel 

MC-8, 

Silicone 

1.6 million (C2C12)  

800 000 (C2C12) 

1.3 million (HSKM) 

800 000 (HSKM) 

DM, 

GM, 

SkGM 

MC-8, Silicone  

All cell numbers tested 

All media tested 

Tissue clumping around pins 

No tissue formation across 

pins 

Collagen I  MC-8, 

Silicone 

1.6 million (C2C12)  

800 000 (C2C12) 

1.3 million (HSKM) 

800 000 (HSKM) 

DM, 

GM, 

SkGM 

MC-8, Silicone  

All cell numbers tested 

All media tested 

MC-8 tissue clumping around 

pins and within gel 

Silicone – tissue formation 

across pins for 800 000 

C2C12 with GM or DM 

media.  

Fibrin MC-8, 

Silicone 

1.6 million (C2C12) 

800 000 (C2C12) 

DM, GM MC-8 

All cell numbers tested 

All media tested 

MC-8 tissue formation around 

pins 

Silicone – less tissue 

formation and no attachment 

to pins 

Hydrogel 

(QGel) 

Silicone 800 000 HSKM 

cells 

SkGM No attachment No attachment of cells to pins 

or tissue formation due to 

insufficient gel viscosity  

 HSKM – Human Skeletal Myoblasts, GM – Growth Media, DM – Differentiation Media, SkGM – HSKM Growth Media. For 

detailed information, such as gel concentrations or incubation periods see section 6.2 Experimental Procedures. 
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6.3.2 MC-8 Chamber  

The MC-8 chamber did not allow for spanning of the skeletal muscle tissue between the 

pins, furthermore visualization of the 3-dimensional attachment and tissue formation was 

difficult due to the chamber design. Attachment of the cells to the MC-8 pins was achieved 

with the collagen I/Matrigel, collagen I and the fibrin gel constructs (Figure 6.2A). 

However, the pin angle resulted in the cells, especially within the collagen I/Matrigel 

construct, attaching and aggregating along the stainless steel pins instead of spanning the 

space between them. The collagen I gel construct allowed spanning of the gel construct 

between the pins in a sheet-like manner when utilizing 1.6 million C2C12 cells (Figure 

6.2A). When analyzing the spanning of the cells within the collagen I gel construct (1.6 

million C2C12 cells, 1% HS) clumping was observed instead of continuous spanning 

across the pins (Figure 6.2B&C, white arrows). Tube formation was observed between the 

clumps showing that the cells were capable of differentiation into myotubes, but not in an 

evenly spread manner (Figure 6.2C black arrows). The fibrin construct resulted in reduced 

clumping and better alignment of the myotubes in a linear formation. However, the 

directionality was not consistent, with myotubes aligning in different directions within the 

same construct (Figure 6.2D&E). 
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1 600 000 cells 1 600 000 cells 800 000 cells 800 000 cells 

Collagen I/Matrigel constructs Collagen I constructs 

1% HS 

5% FBS  
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Figure 6.2 Development of a 3D in vitro muscle tissue model utilizing the MC-8 chamber system. A) 
CollagenI/Matrigel gel construct verses Collagen I gel construct within the MC-8 chamber. 800 000 and 1.6  
million C2C12 cells were used within both gel constructs with either differentiation media (1 % horse serum) or 
growth media containing 5 % foetal calf serum. The cells were incubated within these media solutions for 3 days. 
Media was changed daily. Dashed lines indicate visible tissue formation. B) 1.6 million cells within the collagen I 
gel construct supplemented with 1 % HS. C) Magnification of black box in B. Myotube formation (black arrow) 
between cellular clumps (white arrows). D & E) Reduced clumping of cells (yellow arrows) within fibrin gel 
constructs supplemented with 1.6 million cells and 1 % HS.  
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6.3.3 Silicone Chamber 

The use of a silicone-based model was determined by: biological grade silicone being 

readily available, ability to shape silicone to existing culture dishes and chambers within 

our laboratory, the relative ease of pin insertion, and subsequent tissue manipulation. The 

distance between pins published by other researchers ranged from 8-20 mm, depending on 

the model being used (Powell et al., 2002; Huang et al., 2005). We utilized 8 mm for all 

initial studies as this should result in tissue formation due to the close proximity of the 

pins. SYLGARD 182 was used as biological glue (Huang et al., 2005) to seal the silicone 

tube into place within the 24-well plates and prevent any leaking of the gel construct 

before setting the gels at 37°C (Figure 6.3). 

The silicone tube-based model proved to have many advantages over the MC-8 chamber 

for skeletal muscle formation.  The vertical postioning of the pins (rather than horizontally 

in the MC-8 model) allowed for better attachment and anchoring of the cell/gel suspension 

during the setting stage at 37°C (Figure 6.4 A). Furthermore, the utilization of the collagen 

I gel construct resulted in the cell formation across the pins once the collagen I gel had 

dissipated into the media (Figure 6.4C). The fibrin and collagen I/Matrigel constructs 

formed clumps of cells around the pins and did not span across the pins as observed with 

the collagen I gel construct (data not shown). Successful tissue formation was achieved 

between the pins within the silicone tube model for both C2C12 and HSKM cells on 

repeated occasions (Figure 6.4 C&D).  
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Figure 6.3 Skeletal muscle formation using a silicone tube model. This model was developed due to 
the lack of  ad aptability w ithin other com mercially av ailable models, as well a s the high expe nse in 
continually purchasing these models. Within our model, several different gel constructs can be utilized 
and pin diameter, pi n t ype, pre-coating, and media exc hange can al l be adapted. For a detailed 
description on the silicone model assembly see section 6.2 Experimental Procedures.     
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large scale production of in vitro 3D tissues 
can be grown utilizing this model 
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Figure 6.4 Development of a 3D  in vitro muscle tissue model utilizing the silicone tube system. Ai 
& ii) Gel/cell suspension (collagen I gel) attachment to a stainless steel pin. iii) Orientation of pin and 
gel cons truct. C) G el/cell suspension spa nning bet ween pi ns for C 2C12 m yoblasts within co llagen I 
construct. D) Gel/cell suspension spanning between pins for HSKM cells within collagen I construct.  
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6.3.4 Conclusion  

Contractile skeletal muscle tissue engineered from myoblasts has a number of potential 

applications, such as, therapeutic protein delivery, tissue repair, and in vitro drug screening 

(Vandenburgh 2010). In a 3-dimensional setting, naturally derived hydrogels (e.g. collagen 

I, Matrigel, fibrin) have been employed as a microenvironment for the growth and 

differentiation of skeletal myoblasts because they support: a high density and even 

spreading of myoblasts, positive unidirectional cell alignment, and muscle-specific tissue 

contractions (Hinds et al., 2011). These hydrogels have been used to successfully engineer 

muscle-based tissues which contain striated and aligned myotubes. However, the 

contractile forces of these tissues have been limited to several hundred µN (one to two 

orders of magnitude less than measured in normal adult muscle). This loss in contractile 

force has been attributed to inadequate myotube diameter, volume density, and the level of 

functional differentiation (Vandenburgh et al., 2008).  

In order to address these issues we will employ the use of an electrical stimulator 

(Purchased from Ion Optix). This will aid in the alignment of myoblasts prior to 

differentiation and increase myotube formation by simulating the polarized environment in 

which muscle fibers and axons form junctions (Langelaan et al., 2011). The use of short 

electrical pulses will also be used to simulate nerve impulse-induced calcium release and 

sarcomere shortening, thus preconditioning the newly formed muscle tissue for increased 

contractile force generation. In combination with electrical stimulation we will introduce 

other cell types present during muscle regeneration in a controlled manner. We aim to add 

fibroblasts to the base of our wells which will allow the interaction of secreted 

cytokines/growth factors to aid in 3D tissue formation. We suspect the combination of 

electrical stimulation along with a co-cultured microenvironment will increase the 

contractile force of the in vitro grown muscle tissue which will better mimic in vivo muscle 

functionality.    

Within this chapter we have optimized culture conditions within our silicone chamber for 

in vitro muscle tissue formation. This platform will work as part of our in vitro testing 

platform where initial testing in 2-dimensional assays will be followed by testing in the 3-

dimensional model. 
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CHAPTER 7 

CONCLUDING REMARKS  

Stem cell transplantation is an innovative therapy for tissue regeneration and repair after an 

injury or during disease. Optimal cell therapy would be autologous transplantation to 

circumvent the need for immune-suppression. Satellite cells function as the major 

myogenic precursors for muscle growth and repair (Ferrari et al., 1998; Asakura and 

Rudnicki 2002). Studies, where either single intact myofibers (containing a pure 

uncommitted satellite cell population) or individual satellite cells were isolated and 

transplanted into radiation-ablated muscle, demonstrated rapid satellite cell proliferation 

and new myofiber formation (Collins et al., 2005; Sacco et al., 2008). As few as seven 

satellite cells within one myofiber were reported to generate over 100 new myofibers 

containing thousands of nuclei; furthermore, the satellite cells had a high self-renewal 

potential, repopulating the host muscle satellite cells (Collins et al., 2005).  

When cultured in vitro, the lack of niche components leads to a loss of proliferative 

capacity and results in defective regeneration when implanted back into a muscle defect 

(Boonen and Post 2008; Cosgrove et al., 2009). Changes in the muscle microenvironment, 

rather than modification of the satellite cells themselves, also appears to be the main factor 

responsible for the declining regenerative response seen in aged muscle tissue (Shefer et 

al., 2006; Collins et al., 2007; LaBarge et al., 2009). This highlights the importance of 

maintaining satellite cell populations within their niche microenvironment prior to 

transplantation (Zammit 2008). 

Rapid loss of stem cell properties once removed from the muscle fiber, presents a major 

limitation to the study and clinical application of satellite cells. This is further confounded 

by our poor comprehension of niche composition and the regulation it imposes when 

guiding the behavior and fate of satellite cells (Bentzinger et al., 2012). Due to this, there is 

a need to create novel in vitro microenvironments that allow for the maintenance and 

propagation of satellite cells while retaining their potential to function as muscle stem 

cells.  

Standard tissue culture protocols typically supplement growth factors and cytokines within 

the media, while in tissues these secreted factors are most commonly presented to the cells 

tethered to the ECM (Griffith and Swartz 2006). Attachment of secreted growth factors to 
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biomaterial surfaces (such as Matrigel, collagen I, and fibronectin utilized within our 

study) have demonstrated improved stability of proteins and persistent signaling resulting 

in long-term maintenance of signaling without further supplementation required (Alberti et 

al., 2008). Also, when comparing ligand presentation, soluble factors result in divergent 

effects on cell fate compared to factors tethered to the ECM (Beckstead et al., 2006; Mehta 

et al., 2010). This was demonstrated within our own study whereby the addition of TGF-β 

or decorin or the TGF-β/decorin complex on different biomaterials resulted in distinctly 

different effects on myoblast migration.  

Approaches utilizing biomaterials in a 2-dimensional manner (i.e. coating tissue culture 

plates with collagen I) are well suited for the study of cellular and molecular mechanisms 

involved in cell fate regulation (Ravin et al., 2008). While 2-dimensional assays enable 

controlled platforms for analyzing single niche elements on cell fate, they do not take into 

account the fact that many stem cells are embedded within a complex 3-dimensional 

matrix. Three-dimensional tissue engineering attempts to reconstruct the complex 

architecture of the tissue to achieve a physiologically relevant structure (Gilbert and Blau 

2011). By extending the design principles established in 2-dimensional assays and building 

on these assays towards a 3-dimensional model, these complexities can be systematically 

expanded in order to increase our understanding of in vivo tissue function. 

The integration of cell biology with bioengineering approaches has the potential to 

substantially change the practice of applied science and medicine in the future. Both 2- or 

3-dimensional biomaterial approaches are changing the way scientists think about the stem 

cell microenvironment. In order to accelerate the impact of biomaterials towards the 

treatment of human disease or injury, emphasis should also be placed on utilizing human 

stem cells. In this respect, our study has shown some differences between murine and 

primary human cell cultures. Ultimately, the development of 2- and 3-dimensional in vitro 

microenvironments in which niche features can be systematically modulated will be 

instrumental in future therapeutic approaches to muscle regeneration caused by injury, 

disease, and aging.  
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CONFERENCE ATTENDENCE  

1) Postgraduate Research Day, Faculty of Science & Agriculture, UKZN (2009) 

The Extracellular Matrix Factors, Decorin and Collagen I, Play an Essential Role in C2C12 
Myoblast Migration  

Goetsch, K.P. & Niesler, C.U. 

School of Biochemistry, Microbiology and Genetics 

Skeletal muscle repair is facilitated by activated muscle progenitor cells, termed myoblasts. 
Following injury these cells migrate towards the wound area where they differentiate and fuse to 
form new myotubes. Interactions between myoblasts and the extracellular matrix allow the cellular 
environment to regulate the rate and direction of migration; understanding these interactions 
provides a tool for improving wound repair. The proteoglycan decorin, a soluble extracellular 
matrix component, along with other matrix components, such as collagen, activate cellular 
pathways by binding to specific cell surface receptors. These pathways have been shown to 
modulate migration in endothelial cells, but very little is known about their effect in muscle cells.   

In the current study we utilize the C2C12 myoblast cell line to determine the effect of decorin, 
TGF-β2, and collagen I on migration in vitro. Dose responses for both decorin and collagen I at 7 
hours showed optimal concentrations of 10µg/ml and 25µg/ml for decorin and collagen I, 
respectively. Higher concentrations of decorin and collagen I had a negative effect on cell motility, 
demonstrating the sensitivity of the cellular response to its environment. An in vitro wound assay 
was developed to analyze the effect of the matrix components on migration during wound closure.  

Decorin and collagen I increased the percentage wound closure by 6% and 13%, respectively 
(compared to control). However, in combination decorin and collagen I had a synergistic effect and 
increased the percentage wound closure by 25% after 7 hours. TGF-β2, a cytokine known to 
interact with decorin, increased the effect on wound closure by 17%. The exact mechanisms for 
this increase are not yet fully understood and the signaling pathways mediating these effects are 
currently being investigated. These studies will help to show how interactions between the cell and 
matrix factors are pivotal in regulating cellular processes. 
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2) 37th Annual Congress of the Physiological Society of Southern Africa (2009) 

The Extracellular Matrix Factors, Decorin and Collagen I, are Essential for Myoblast 
Migration 

Goetsch, K.P. & Niesler, C.U 

School of Biochemistry, Microbiology and Genetics 

Skeletal muscle repair is facilitated by activated muscle progenitor cells, termed myoblasts. 
Following tissue injury these cells migrate towards the wound area where they differentiate and 
fuse to form new myotubes. Interactions between myoblasts and the extracellular matrix allow the 
cellular environment to regulate the rate and direction of migration; understanding these 
interactions provides a tool for improving wound repair. The proteoglycan decorin, a soluble 
extracellular matrix component, along with other matrix components, such as collagen, activate 
intracellular pathways and influence cellular migration. The Rho activated Kinase (ROCK) 
pathway is of particular interest as its activation controls actin fibre contraction and pulls the cell 
forward during migration. The ROCK pathway is mediated by ROCK1 and 2, and has been shown 
to be activated by collagen I. However, the effect of decorin and collagen I on this pathway and on 
myoblast migration is unclear. 

In the current study we utilize the C2C12 myoblast cell line to determine the effect of decorin and 
collagen I on migration in vitro. A wound assay was developed to analyse the effect of the matrix 
components on migration during wound closure. Dose responses after 7 hours showed optimal 
concentrations of 10µg/ml and 25µg/ml for decorin and collagen I, respectively. Higher 
concentrations of decorin and collagen I had a negative effect on cell motility, demonstrating the 
sensitivity of the cellular response to its environment. Decorin and collagen I increased the 
percentage wound closure by 6% and 13%, respectively (compared to control). However, in 
combination, decorin and collagen I had a synergistic effect and increased the percentage wound 
closure by 25% after 7 hours. Analysis of ROCK-1 protein expression in response to decorin, 
collagen1 or a combination of both showed no significant difference to control. However, ROCK-2 
protein expression showed a significant increase in response to Collagen I as well the Collagen I 
and decorin combination.  

These results show that decorin and collagen together play a significant role in regulating myoblast 
migration and that the pathway by which this is achieved appears to be directly linked to the ROCK 
pathway, and specifically using ROCK-2 to enhance migration.  
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3) 2nd School Postgraduate Research Day, School of Biochemistry, Genetics & 
Microbiology, UKZN (2009) 

 

The wise man built his house on ROCK 

Goetsch, K.P, Snyman C. & Niesler, C.U. 

Department of Biochemistry, University of KwaZulu-Natal, Pietermaritzburg 

 

Skeletal muscle repair is facilitated by activated muscle progenitor cells, termed myoblasts. 
Following tissue injury these cells migrate towards the wound area where they differentiate and 
fuse to form new myotubes. The proteoglycan decorin, a soluble extracellular matrix component, 
along with other matrix components, such as collagen, activate intracellular pathways and influence 
cellular migration. The Rho activated Kinase (ROCK) pathway is of particular interest as its 
activation controls actin fibre contraction and pulls the cell forward during migration. The effect of 
decorin and collagen I on expression of the two isoforms of ROCK (ROCK-1 and -2) and on 
myoblast migration is unclear and requires further investigation. 

In the current study we developed a wound assay to analyse the effect of decorin and collagen I on 
in vitro migration of the C2C12 myoblast cell line. Dose responses following 7 hours migration 
showed optimal concentrations of 10µg/ml and 25µg/ml for decorin and collagen I, respectively. 
At these concentrations, decorin and collagen I increased wound closure by 6% and 13% 
respectively when compared to control. Interestingly, decorin and collagen in combination had a 
synergistic effect, increasing wound closure by 25%. Analysis of ROCK revealed isoforms-specific 
differences in both their level of protein expression and localisation in response to decorin and 
collagen.  Furthermore, inhibition studies revealed a key role of these isoforms in myoblast 
migration. 
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4) 39th Annual Congress of the Physiological Society of Southern Africa (2011) 

 

Myoblast migration is facilitated by essential extracellular matrix components 

Skeletal muscle repair is facilitated by activated muscle progenitor cells, termed 
myoblasts. Following tissue injury these cells migrate towards the wound area where they 
differentiate and fuse to form new myotubes. Interactions between myoblasts and the 
extracellular matrix allow the cellular environment to regulate the rate and direction of 
migration; understanding these interactions provides a tool for improving wound repair. 
The proteoglycan decorin, a soluble extracellular matrix component, along with other 
matrix components, such as collagen, activate intracellular pathways and influence 
cellular migration. The Rho activated Kinase (ROCK) pathway is of particular interest as 
its activation controls actin fibre contraction and pulls the cell forward during migration. 
The ROCK pathway is mediated by ROCK1 and 2, and has been shown to be activated 
by collagen I. However, the effect of decorin and collagen I on this pathway and on 
myoblast migration is unclear. 

In the current study we utilize the C2C12 myoblast cell line to determine the effect of 
decorin and collagen I on migration in vitro. A wound assay was developed to analyse the 
effect of the matrix components on migration during wound closure. Dose responses after 
7 hours showed optimal concentrations of 10µg/ml and 25µg/ml for decorin and collagen I, 
respectively. Higher concentrations of decorin and collagen I had a negative effect on cell 
motility, demonstrating the sensitivity of the cellular response to its environment. Decorin 
and collagen I increased the percentage wound closure by 6% and 13%, respectively 
(compared to control). However, in combination, decorin and collagen I had a synergistic 
effect and increased the percentage wound closure by 25% after 7 hours. Analysis of 
ROCK-1 protein expression in response to decorin, collagen1 or a combination of both 
showed no significant difference to control. However, ROCK-2 protein expression showed 
a significant increase in response to Collagen I as well the Collagen I and decorin 
combination. These results show that decorin and collagen together play a significant role 
in regulating myoblast migration and that the pathway by which this is achieved appears 
to be directly linked to the ROCK pathway, and specifically using ROCK-2 to enhance 
migration.  

Currently, we are repeating this experimental procedure utilizing primary cultured mouse 
myoblasts. The method of primary culture isolation is varied and outcomes are not 
guaranteed. However, the use of primary culture is a far better model and mimics in vivo 
conditions to a greater extent than an immortalized cell line. Furthermore, we will be 
developing a 3-dimensional model based on in vitro muscle tissue which will be grown in 
our lab. We will then analyse the effect of ECM components on muscle repair within the 
new model and compare this artificially grown muscle with in vivo conditions. 
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5) Swiss-South African Joint Business Development Program (2011) 

 

In vitro cell models are currently being used for drug discovery and screening within the 

biotech and pharmaceutical community. However, many of the cellular assays use cell 

lines or tumor derived cells which are “abnormal” and differ substantially from in vivo 

tissue. As a result, data derived from these models is often difficult to translate into 

animal and human drug trials contributing to the current high attrition rate of drug trials.  

The model we are developing involves the use of both animal and human stem cells to 

bioengineer functional 3D skeletal muscle in vitro. Minimal modifications to stem cells are 

made prior to in vitro tissue formation. Mechanical and electrical systems for muscle 

stimulation are also being developed to ensure optimal skeletal muscle formation. 

Endpoints to be measured include, but are not limited to, contractile response, rate of 

fatigue, utilization of glucose and rate of repair following damage. 

The development of functional three dimensional skeletal muscle in vitro represents a cell 

based assay which mimics in vivo conditions closely and can be used to test new or 

existing pharmaceutical or biotech compounds.  This method would be adapted and 

developed to allow for high through-put screening of multiple compounds at varying 

concentrations within a short period of time.  It is envisaged that the pharmaceutical and 

biotech (local and international) would be very interested in this type of assay system. 
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6) SASBMB FASBMB Congress (2012) 

 

Effect of extracellular matrix factors on myoblast migration  

Kyle P. Goetsch1, Kathy Myburgh2, Carola Niesler1 

1Department of Biochemistry, University of KwaZulu-Natal, Pietermaritzburg, 
South Africa; 2Department of Physiological Sciences, University of Stellenbosch, 
Stellenbosch, South Africa 

Email: 205508050@ukzn.ac.za / kpgoetsch@gmail.com  

Skeletal muscle regeneration is facilitated by satellite cells located between the 
basal lamina and sarcolemma of a mature myofiber. In response to injury, 
activated satellite cells (myoblasts) migrate to the wound area, differentiate and 
fuse to facilitate repair. Myoblast migration is regulated by several extracellular 
matrix (ECM) and growth factors, which have different effects on the morphology 
and rate of migration. One of the major regulatory pathways for migration involves 
Rho/ROCK, which facilitates correct tubule alignment and contraction during 
migration. Previously, we have shown that decorin, a proteoglycan secreted during 
severe muscle injury, significantly enhances myoblast migration when added in 
combination with collagen I, the major structural protein laid down during muscle 
regeneration. We have now expanded our study to include other key ECM and 
growth factors that myoblasts will encounter during migration. C2C12 myoblasts 
were grown on matrigel, laminin, collagen IV, fibronectin and TGF-β2. The rate of 
migration was assessed and results showed that the ECM factors increased 
migration at different rates, whereas TGF-β2 decreased the rate of migration. 
Unexpectedly, inhibition of ROCK using the Y-27632 inhibitor increased the rate of 
migration. To try and understand this we assessed the localization of ROCK-2 and 
vinculin, a marker for focal adhesion sites, as well as investigated the effect of the 
inhibitor on directional migration of the cells. Preliminary results suggest that 
ROCK-2 plays a role in directional migration through the regulation of focal 
adhesions. Primary cultured murine and human myoblast studies to confirm these 
results are underway. 
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