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Abstract

Water quality variables change continually through time. The main focus of this study is

to study the low-frequency occurrence of microbiological organisms that may affect treated

water quality. The study, using long-term data sets, also seeks to understand water quality

predictor variables that correlate significantly with key microbiological determinants. The

microbiological organisms studied are Total Coliforms (TC) and Heterotrophic Plate Counts

at a temperature of 37◦C (HPC37) analyzed at different frequencies in final water samples

from three water treatment plants. The covariates or predictor variables that were studied in

relation to the occurrence of microbiological determinants of water quality are total chlorine,

free chlorine, pH, temperature (in the form of seasons, and probably indicative of rainfall

or other related variables) and turbidity. Two dummy variables, site, and seasonal time

variables were also introduced to capture the variability of HPC37 and TC counts among sites

and over time. Distributed Lag (DL) quasi-Poisson and negative binomial generalized linear

models (GLM) and generalized linear mixed model (GLMM) were developed based on the

assumption of independence or dependence among TC or HPC37 observations coming from

the same sampling point. Results show that temperature, turbidity, and chlorine correlate

significantly with the occurrence of microbiological determinants. Increased temperature and

turbidity levels appear to be linked to increased HPC37 and TC detection. Whereas in some

instances increased total chlorine levels link with HPC37 detection. However, as expected

from its use as a disinfectant in the treatment process, free chlorine has a negative association

with HPC37. In fact, free chlorine showed delayed effects on bacterial counts when on the

other side total chlorine showed immediate effects on bacterial counts. Relative to winter,
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HPC37 counts seemed to higher during the other seasons and TC counts seemed to be lower

during the other seasons. Such statistical assessments of relatively large data sets should prove

a useful additional tool in assessing water quality risks.

Key phrases: Time Series Analysis of Water Quality Assessment; Generalized Linear Models;

Generalized Linear Mixed Model; Distributed Lag Models.
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Acronyms

AIC Akaike Information Criteria

AV Assumed Variance
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Chapter 1

Introduction

1.1 Background

Healthy human life requires the availability of adequate and safe drinking water to sustain life.

That is, water is a vital natural resource since it is fundamental to any form of life. Therefore

a satisfactory (adequate, accessible and safe) supply must be available to all at all times. Safe

drinking water is water that does not pose any significant risk to health over a lifetime of

consumption, including any sensitivities that may occur during the life stages (WHO, 2004).

The guidelines for safe drinking water can be found in WHO’s editions of the Guidelines for

Drinking-water Quality. They provide reasonable minimum requirements for safe practice to

protect the health of consumers or derive numerical guideline values for constituents of water

or indicators of water quality.

This research project focuses on the microbial safety of drinking water. It seeks to find the

association between microbiological out-of-range data and water-quality data. Findings of

this study, will hopefully assist water agencies to statistically better understand data on the

link between water quality variables and the incidence of microbial in water. Multiple barriers

are used to secure the microbial safety of drinking water supplies, that is, from catchment to

consumer, to prevent the contamination of drinking-water or to reduce contamination to levels
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not harmful to health. Safety is guaranteed if barriers are employed, including protection of

water resources, proper selection, and operation of series of treatment steps and management

of distribution systems, that is, piped or otherwise to maintain and protect treated water

quality. The quality of water can be described as the suitability of water to sustain various

uses or processes (Bartram and Ballance, 1996).

Any use of water will have certain requirements for physical, chemical and or biological char-

acteristics. The quality of water depends on various factors that could limit or reduce the

use of water. That is, a certain amount of bacterial counts such as heterotrophic plate counts

at 37◦C (HPC37) or total coliforms (TC) in drinking-water might pose a health risk to the

public and hence limit the people from using drinking-water as a source of life. Human and

natural influences affect the quality of water. Natural influences can be geological, topological,

meteorological, hydrological and biological as these affect the quantity and quality of water

quality variables. These have a great impact when available water quantities are low and the

use of the limited resource is at maximum levels (Bartram and Ballance, 1996).

In ensuring that water is microbially safe for drinking and for any other use in general, bacterial

indicators of water quality are measured. These are HPC37 and TC. The HPC37 bacteria are

suspected to signal an increased health risk when elevated quantities are present in drinking

water. However, even though the literature document the universal occurrence of HPC37

bacteria in soil, food, air and water, there is insufficient clinical and epidemiological evidence to

conclude that HPC37 in drinking water poses a health risk. Heterotrophic bacteria comprises

of all bacteria that use organic nutrients for growth and these bacteria are found in all types of

water, food, soil, vegetation and air. These broad definitions include primary and secondary

bacterial pathogens known as coliforms (Escherichia, Klebsiella, Enterobacter, Citrobacter,

Serratia) (Allen et al., 2004).

Total coliforms are defined as a group of bacteria commonly found in the environment, for

example in soil or vegetation, as well as the intestines of mammals, including humans. These

are non-spore-forming bacilli capable of growing in the presence of high concentrations of bile
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salts with the fermentation of lactose and production of acid or aldehyde within 24 hours at

35-37◦C. They are comprised of Escherichia coli (E.coli) and thermotolerant coliforms and

can ferment lactose at high temperatures.

Water distribution systems are as important as the water resource itself and treatment fa-

cilities, in ensuring the supply of safe drinking water, but they also provide a habitat for

microorganisms which are sustained by organic and inorganic nutrients present on pipe and

in the conveyed water. Apparently, water distribution systems are difficult to maintain and

operate (Payment and Robertson, 2004). This is emphasized by Reilly and Kippin (1983) in

their study “Relationship of bacterial counts with turbidity and free chlorine in two distribution

systems”.

At Umgeni Water there has been incidences where TC and HPC37 would exceed limits set by

South African National Standards (SANS241-1, 2015). Since there is non-compliance results in

the distribution systems, there are five independent water quality variables or factors that will

be considered and hence relate to the microbiological out-of-range variables. These include

turbidity which can be thought of as the amount of cloudiness or haziness of water, the

free- and total chlorine which are both used as disinfectants, the pH-level of water which is

a measure of acidity or alkalinity of water, and the temperature of water. All these water

quality variables are measured from water samples that are routinely taken to monitor water

quality.

The next section reviews the literature in microbiological organisms found in water and the

water quality variables; both microorganisms and water quality variables discussed in this

section. The motivation for this study, the problem statement and the section on research

objectives and aims follows the section on literature review.
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1.2 Literature Review

This section reviews the related work done by other researchers. The review starts by men-

tioning a few health and development conferences held around the world as a way of informing

people and protecting them from water-related diseases. It then reviews the relationships be-

tween microbiological determinants and water quality data from other countries before looking

at those who were found in South Africa. Common techniques used by others to find these

relationships are discussed. It is important to understand how and why the techniques were

used when different applications were done. Through such an approach new methods and

other techniques can be introduced and the gap in the research filled. Lastly, the significance

of this study is stated and explained in terms of methods that are used and why they are used.

The importance of water, sanitation and hygiene for health and development has been em-

phasized by many international policy forums decades ago. These included health-oriented

conferences such as the International Conference on Primary Health Care in 1978, held in

Alma-Ata, Kazakhstan, the 1977 World Water Conference in Mar del Plata in Argentina

which launched the water supply and sanitation decade of 1981-1990, the Millennium Decla-

ration goals adopted by the General Assembly of the United Nation (UN) in 2000 and the

Johannesburg World Summit for Sustainable Development in 2002. Recently, the UN General

Assembly declared the period from 2005 to 2015 as the International Decade for Action,“Water

for Life” (WHO, 2004).

On the other hand, research on drinking water quality and their association with microbiolog-

ical out-of-range variables has been an ongoing process in many countries around the world.

A correlation between lack of disinfection and increase in anti-diarrheal drugs was found in

the city of Le Havre, France, during the study that was done by Beaudeau et al. (1999). This

means that lack of chlorine in the system was linked with the diarrheal-causing pathogens in

drinking water. “These viruses are responsible for a wide range of acute and chronic illnesses,

with the most common being diarrhea” (Shaban and Malkawi, 2007). In Jaipur city, India, the

presence of free residual chlorine in drinking water was found to be correlated with the absence
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of disease-causing organisms (Chandra et al., 2016). Some related studies have shown that

disinfection either by chlorine or chloramine plays a major role in reducing levels of bacteria

in water (Zhang and DiGiano, 2002; Power and Nagy, 1999).

In a study in Quebec city, Canada, a study that was conducted by Francisque et al. (2009)

showed that Heterotrophic plate counts or heterotrophic bacteria have an inverse relationship

with free chlorine residuals, and a positive relationship with water temperature. The study

showed that below the value of 0.3 mg/L of free chlorine, a standard target at the exit of the

water treatment, according to the United States Environmental Protection Agency (1989),

HPC37 exceeded the threshold of 100 and 500 CFU/mL. The results showed that residual

chlorine levels above the 0.3 mg/L favored HPC37 levels lower than 100 CFU/mL of free

chlorine. The study also showed that water temperature under winter conditions (water

temperature ≤ 4◦) had HPC37 levels lower than 500 CFU/mL. This means that the higher

the temperature the higher the HPC37 bacteria in drinking water (Zhang and DiGiano, 2002).

HPC37 bacteria has a positive correlation with water residence time, that is, the time it takes

for water to travel from the water treatment plant to a given sampling point, and a positive

correlation with water temperature and rainfall (LeChevallier et al., 1981; Zhang and DiGiano,

2002).

LeChevallier et al. (1981), in their study conducted in Oregon in the United States, found

turbidity to be negatively correlated with the log10 decrease in coliform numbers due to sea-

sonal changes, chlorine demand and the initial coliform level. Hsieh et al. (2015) in their study

conducted in New York city in the United States of America, found turbidity to be related to

diarrheal illness. It should be noted that diarrhea is an illness resulting from elevated bacteria

such as E.coli in drinking water (Levine, 1987; Sack et al., 1997). Turbidity is said to have an

impact in protecting microorganism from inactivation by disinfection and hence its removal is

needed in drinking water (Hendricks, 1978).

In South Africa, research linking microbiological out-of-range organisms to treated water qual-

ity data is still lacking. In the Eastern Cape province, a study was conducted where disinfection

5



practices and their effect on the quality of drinking water were examined. Out of the 55 plants

that were surveyed, 55% had the turbidity values within the acceptable South African Bureau

of Standards (SABS) limits and only 18% complied with the limits in terms of the microbio-

logical quality. The high bacterial numbers of total and fecal coliforms in the other plants were

associated with high turbidity, which was said to be a result of heavy rains, and inefficient

chemical dosing, and hence led to low chlorine residuals (Momba et al., 2006). Similar studies

were conducted in Limpopo and KwaZulu-Natal provinces of South Africa, but results were

based on untreated water from the river (Bezuidenhout et al., 2002; Lin et al., 2004; Germs

et al., 2004).

The literature on the relationship between microbiological out-of-range data and water quality

and/or other measurable variables of interest document Spearman’s rank correlation coefficient

and Pearson’s correlation coefficient as common statistical techniques used to measure the

degree of correlation (Carter et al., 2000; Zhang and DiGiano, 2002; Momba et al., 2006;

Wilkes et al., 2009). The Spearman’s rank correlation coefficient is a nonparametric technique

for evaluating the strength of association between two independent variables (Hauke and

Kossowski, 2011). Since this technique is nonparametric, it is unaffected by the distribution

of the data. It is insensitive to outliers because it operates on the ranks and not actual values of

the data and does not require the data to be collected at regularly spaced intervals. However,

this technique has the disadvantage of losing information when the data are converted to ranks

and, if the data are normally distributed, the Spearman’s correlation coefficient tends to be

less powerful than the Pearson’s correlation coefficient (Gautheir, 2001). Pearson’s correlation

coefficient can be defined as a measure of the strength of the linear relationship between two

variables such as HPC37 or TC and water quality variables in this case (Hauke and Kossowski,

2011).

This study is focused on time series analysis of microbiological out-of-range counts and water

quality variables. It is worth noting that the outcome variables are bacterial counts variables

which consist of many zeros. Consequently, it is not an ideal approach to use Spearman’s
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or Pearson’s correlation coefficient techniques because the data is zero inflated. Therefore,

models for count data and, incorporating time series techniques are considered in this study.

Beaudeau et al. (1999), in their study modeling the number of medication sales bought in a

pharmaceutical shop due to diarrhea illness, had suggested the use of a linear model. To model

counts, the commonly used model is the log-linear Poisson model (Peng and Dominici, 2008).

However, Bolker et al. (2009) point out that transforming non-normal data to achieve normal-

ity and homogeneity of variance is not ideal because random effects may be ignored or treated

as fixed effects and thus committing pseudoreplication, violating statistical assumptions or

limit the scope of inference.

The literature on time series studies relating microbiological counts with water quality vari-

ables is scarce. A number of studies which related bacterial counts in water to the environ-

mental factors, as well as other water quality variables, have assumed that the effect of a

water quality variable or any environmental exposure takes effect over a single day (Zhang

and DiGiano, 2002; Allen et al., 2004; Chandra et al., 2016) among others. However, research

relating microorganism found in drinking water samples, to the external factors as well as

other related variables, particularly those that are believed to have influence in the quality

of water, have been an ongoing process. Francisque et al. (2009) in their study used similar

methods used in this research project, but made the assumption that the effect of a unit

increase in a water quality variables manifests over a single day. This project uses distributed

lag model to determine the effect of a unit increase in a water quality variable on the HPC37

and TC count outcomes. Distributed lag models assume that the effect of a unit increase in

a water quality variable on a given day is spread out over K days into the future (Francisque

et al., 2009). Alternatively, this also means the effect of a water quality variable at a given

day is a result of an action taken K days ago.
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1.3 Motivation of the Study

In 2002 South Africa had estimated that 84.5% of its population had access to piped and tap

water and this increased to 89.3% in 2010 (Luyt et al., 2012). Water agencies are responsible

for an independent and periodic review of all aspects of water quality and public health

safety. That is, they are responsible for quality and safety of the water that they produce

and distribute. The task of water-supply agencies includes carrying out routine testing and

monitoring of the quality of the water it produces. However, tests have shown that pathogens

may be present in water after treatment. At Umgeni Water, the department of microbiology

had non-compliance results for treated water samples in almost all of its sample sites in the

past years. But how this was possible is an interesting question of this study. Consequently,

there is a need to investigate the relationships between treatment and outcomes. That is,

validation is needed in terms of statistical methods as to what is the relationship between

microbiological out-of-range outcomes and the associated water quality outcomes in treated

water samples. Such historical data, if analyzed and interpreted correctly, will add value in

improving the understanding of the efficacy of the water treatment process and the risk to

public health.

1.4 Problem Statement

In this research-study our focus is on treated water samples for microbial organisms data.

The focus of this study is what appropriate statistical analysis techniques can tell us about

the relationships between microbiological out-of-range data (Total Coliforms, E. coli and Het-

erotrophic Plate Counts (HPC at 37◦C)) and other measurable variables at Umgeni Water.

The study also explores the relationship between microbiological exceedances and associated

water quality data (free and total chlorine, pH, turbidity, sample temperature) in treated

water samples. The study also probes if the extensive historical microbiological and other

water quality database be can used to improve our understanding of the efficacy of the water
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treatment process and the risk to public health.

1.5 Research Aims and Objectives

Aims

The main aim of the project is to link the microbiological out-of-range data to the water

quality data using time series statistical methods. The study also seeks to find the best model

for the analysis of these non-Guassian data sets.

Objectives

The study seek to relate the microbiological out-of-range data to the water quality data using

time series statistical models. Finding these relationships will then make it simple for deter-

mining if the available historical microbiological data and other water quality database can

be used to improve understanding of the efficacy of the water treatment process and the risk

to public health.

1.6 Research Methodology

In this research project the data used was provided by the Umgeni Water agencies. Statistical

modeling will be done using generalized linear models (GLM) and extension to generalized

linear mixed model (GLMM). The quasi-Poisson model for count data will be used. A Negative

Binomial model is also employed in the process of analyzing the data and also as one of the

count data model for over-dispersed data.
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1.7 Thesis Layout

In Chapter 2 we begin by describing the data, and thereafter explore it in terms of plots. In

Chapter 3, we look at the theory of GLM incorporating distributed lag model (DLM) and

the application to real water quality data. Chapter 4 is focused on the extension of GLM to

GLMM DLM and application to real water quality data. In Chapter 5 we compare models

and provide the discussion based on the information criteria. The conclusion and suggestions

for further research are in Chapter 6.
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Chapter 2

Exploratory Data Analysis

2.1 Introduction

There are a number of interesting features of the data that need to be looked at before actual

modeling, such as how the time series plots of the variables look like and the relationships

between time and the bacteria in drinking water. The purpose of this chapter is to provide

a number of different answers to these issues. Graphical and regression analyses were carried

out using the R statistical software (R Core Team, 2015).

2.2 Data Description

This research project uses microbiological data that was collected by the Umgeni-Water agency

for more than 20 years. Umgeni-Water supplies water to a large area of the KwaZulu-Natal

(KZN) province in South Africa and has more than 100 sampling sites. However, this project

uses three sampling sites located in the city of Durban, namely Durban-Heights 1, Durban-

Heights 2 and Durban-Heights 3. The acronyms or codes for the three sites are TDH007,

TDH008 and TDH010 respectively. It is worth noting that the data is from final water

samples taken daily since 1991 through 2015. Each site had more than 8000 observations
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recorded with some values missing. Table 2.1 shows variable names and their corresponding

units of measurements. Water samples in this study were taken from the tap and some quality

measurements are taken on site. For representative samples, initially water was allowed to

run for 5 minutes, then the tap was burnt for 30 seconds to kill pathogens, and then samples

were taken. The pH and temperature of water were measured immediately at the site while

other variables were measured at the laboratory. When sampling is done, samples are then

stored in a cooler box filled with ice to slow down reactions.

Table 2.1: Water quality variables and the units of measurement.

Variable Unit(s)

Free Chlorine Milligrams per litre (mg/L)
Total Chlorine Milligrams per litre (mg/L)
Total Coliforms Colony Forming Units per 100 millilitres (CFU/100mL)
HPC37 Colony Forming Units per millilitres (CFU/mL)
pH Moles per litre of hydrogen ions (mol/L)
Temperature Degree Celsius (◦C)
Turbidity Nephelometric Turbidity Unit (NTU)
Rainfall Millimetre (mm)

As displayed in 2.1, temperature was measured in degree Celsius (◦C), turbidity in nephelo-

metric turbidity units (NTU), pH is measured in moles per litre of hydrogen ions (mol/L), total

and free chlorine in milligrams per litre (mg/L) over time in days. To aid in the exploratory

data analysis two dummy variables were created namely, the seasonal time variable and the

site variable. The site variable consist of three levels namely TDH007, TDH008 and TDH010,

while the time variable is seasonal with four levels namely, summer , autumn , winter and

spring respectively. The levels of time variable take the months as shown in Table 2.2. The

seasonal variable was introduced to capture seasonal changes whereas the site variable was

introduced to capture variability among the three sites in order to give appropriate inference

about relationships.

The data can be used by both microbiologists to determine the microbiological quality of

water and statisticians to determine trends and correlations of microbiological pathogens with

water quality determinants. Thus sound statistical analysis are key to the current project.
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Table 2.2: A site and time dummy variables and respective levels.

Dummy Variable Levels

Site TDH007
TDH008
TDH010

Time Summer
Autumn
Winter
Spring

2.3 Results of the Exploratory Data Analysis

In this section a general description of the data is shown in terms of tables and graphs. The

summary description of the data is shown in Table 2.3. It can be seen from Table 2.3 that

each variable consists of more than 8000 observations in each site.

Table 2.3: Summary statistics of the data according to sites, 1991-2015.

Site Variables N Mean St. Dev. Min Max

TDH007 Free Chlorine (mg/L) 8,656 0.939 0.169 0.100 1.600
Total Chlorine (mg/L) 8,658 1.169 0.205 0.100 2.100
Total Coliforms (CFU/100mL) 8,634 0.050 2.429 0 201
HPC (CFU/10mL) 8,637 1.091 20.911 0 1,000
pH 6,391 7.829 0.133 7.200 9.000
Temperature (◦C) 5,902 21.292 3.332 13.000 29.100
Turbidity (NTU) 8,655 0.217 0.115 0.010 5.090
Rainfall (mm) 8,473 2.386 9.182 9.000 275.500

TDH008 Free Chlorine (mg/L) 8,705 0.989 0.171 0.100 1.700
Total Chlorine (mg/L) 8,706 1.226 0.204 0.500 2.400
Total Coliforms (CFU/100mL) 8,684 0.008 0.250 0 18
HPC (CFU/10mL) 8,686 0.815 13.631 0 936
pH 6,401 7.834 0.125 7.400 9.100
Temperature (◦C) 6,028 21.160 3.381 10.000 29.000
Turbidity (NTU) 8,694 0.201 0.103 0.000 3.170
Rainfall (mm) 8,519 2.403 9.194 9.000 275.500

TDH010 Free Chlorine (mg/L) 8,447 1.013 0.131 0.000 1.500
Total Chlorine (mg/L) 8,448 1.257 0.161 0.000 3.000
Total Coliforms (CFU/100mL) 8,425 0.004 0.112 0 6
HPC (CFU/10mL) 8,424 0.596 9.451 0 575
pH 8,443 7.826 0.133 7.300 8.900
Temperature (◦C) 8,146 21.283 3.226 11.900 29.100
Turbidity (NTU) 8,434 0.191 0.092 0.000 1.850
Rainfall (mm) 8,254 2.427 9.285 9.000 275.500
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However, other statistics in the table suggest slight differences in means, standard deviations,

minimum values and maximum values among variables across the sites. It is evident from

the descriptive statistics that HPC37 counts are more variable than total coliforms. The time

series plots of these variables for site TDH010 are shown in Figure 2.1 for the period from

1991 through 2015. In Figure 2.1 time series of variables shown in Table 2.3 is illustrated for

the years 1991 to 2015. Figure 2.1a show a time series of free chlorine, and it can be seen that

there is a step up movement in the series as time goes. In Figure 2.1b the movement of total

chlorine with time is shown and the series plot also shows a step up movement between 2000

and 2005.
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Figure 2.1: Data distributions for all variables, for site TDH010, 1991-2015.

According to South African National Standards (SANS 241) and the Umgeni Water internal

standards, chlorine levels met compliance throughout the years in all the sites. The total

coliforms (TC) and heterotrophic plate counts at 37◦C (HPC37) counts are illustrated in Figure

2.1c and Figure 2.1d. The pH levels of the water samples does not show too much acidity or

too much alkalinity but fall between the acceptable limits of 5.0-9.7 in most instances (Figure

2.1e). The water temperature shows strong seasonality throughout the years with peaks in

summer and troughs in winter months as expected, see Figure 2.1f. Turbidity shows higher

spikes during the first 5 years and between 2005 and 2010 when compared to other years,

see Figure 2.1g. Figure 2.1h shows rainfall data. Rainfall is also seasonal with high levels in
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warmer months than in colder months. It is worth noting that the rainfall data is the same

for the three sites. This is because the three sites are all situated in Durban and therefore

their rainfall data is assumed to be the same. There are fewer TC spikes than HPC37 spikes

(see Figures 2.1c and 2.1d respectively) and the two variables differ in their characteristics in

terms of their harmfulness hence their recommended standard limits are not the same.

In Figure 2.2, the distributions of HPC37 levels by seasons are illustrated using stacked bar

plots. It is interesting to note that winter has the highest percentage of zero counts of HPC37

in all sites compared to other seasons. Thus temperature which is season depended, among

other parameters, has an impact on HPC37 bacteria in treated water.
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Figure 2.2: Effect of time (seasons) on HPC37 levels, Durban-Heights, 1991-2015.
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The distribution of samples per TC class according to seasons across the three site is shown

in Table 2.4. The corresponding percentages are given next to each of the TC count values

in brackets. The percentage of TC zero counts are almost 100% in the three sites and hence

are shown in the table rather than plots. Also, Table 2.4 suggest that summer, autumn and

spring have high percentages of positive TC counts relative to winter across the three sites.

Table 2.4: Distribution of samples per TC class according to seasons, for TDH007, TDH008
and TDH010, 1991-2015.

Site TC classes
(NTU/100mL) Autumn (%) Spring (%) Summer (%) Winter (%)

TDH007 0 2176 (99.68) 2116 (99.58) 2117 (99.53) 2196 (99.86)
1-10 5 (0.23) 8 (0.38) 8 (0.38) 2 (0.09)
11-20 1 (0.05) 0 (0.00) 0 (0.00) 0 (0.00)
More than 20 1 (0.05) 1 (0.05) 2 (0.09) 1 (0.05)

TDH008 0 2172 (99.63) 2158 (99.77) 2130 (99.67) 2202 (99.91)
1-10 7 (0.32) 5 (0.23) 7 (0.33) 2 (0.09)
11-20 1 (0.05) 0 (0.00) 0 (0.00) 0 (0.00)
More than 20 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

TDH010 0 2134 (99.77) 2087 (99.86) 2118 (99.67) 2070 (99.95)
1-10 5 (0.23) 3 (0.14) 7 (0.33) 1 (0.05)
11-20 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)
More than 20 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

Durban Heights 1 (TDH007) is the only site where more than 20 TC positive counts were

observed during the period of 1991 to 2015. It is simple to see that the three sites have simi-

larities in terms of their behavior and the distribution of these bacterial counts. Apparently,

the maintenance of keeping low levels of HPC37 and TC under warm conditions is similar

across the sites. According to Francisque et al. (2009) summer is the season during which

higher levels of UV-254 nm (indicator of organic matter in water) are observed.
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Figure 2.3: HPC37 levels according to water-quality parameters, TDH007, 1991-2015.
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In Figure 2.3 the HPC37 percentage according to water-quality parameters is shown. Figure

2.3a shows that when total chlorine level is below 0.5 mg/L more positive counts are observed,

and in fact in site TDH007 only positive counts were observed throughout the years 1991-

2015 for total chlorine below 0.5 mg/L. When the level of total chlorine was between 0.5 and

0.79 mg/L a lower percentage of HPC37 positive counts is observed. Further, levels of total

chlorine above 0.79 mg/L increases the percentage of positive counts (see Figure 2.3a). Figure

2.3b shows that when levels of free chlorine are below 0.5 mg/L more positive counts are

encountered, but when they range between 0.5 and 0.79 mg/L positive counts decrease and

increase when free chlorine levels are between 0.8 and 1.09 mg/L and after that the percentage

of positive counts decrease with an increase in free chlorine levels indicating an effective killing

of HPC37 bacteria in drinking water.

Increased water temperature increases percentages of positive counts in the distribution sys-

tems, this is illustrated in Figure 2.3c and this confirms the relationships shown earlier in

Figure 2.2. Also, in Figure 2.3d it is shown that increased levels of turbidity increase the

percentages of HPC37 positive counts. Figure 2.3e shows percentages of HPC37 counts ac-

cording to pH levels. Below the pH value of 7.6 a few samples show that percentages of

HPC37 positive counts are high and above pH level of 7.6 there seems to be no change in

HPC37 counts and with increasing pH levels. Lastly, HPC37 percentages of positive counts

show a slightly negative relationship with rainfall (see Figure 2.3f). That is, when there are

heavy rains positive counts are more likely expected than when there is no rain at all.

Total coliforms cannot be simply demonstrated using stacked bar plots because they have low

percentages of positive counts and that makes it difficult to see how they are related with

water quality parameters. These bacteria also behave in a similar manner as HPC37 bacteria

but with less positive counts compared to the HPC37 across all the three sites.

In this chapter we looked at the descriptive statistics of the time series, namely HPC37, TC,

total- and free chlorine, turbidity, pH, rainfall. We looked at how HPC37, TC and other water

quality variables are distributed, their seasonal changes and the relationship of bacterial counts
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with water quality parameters. More bacteria is often observed during warmer seasons and

thus temperature, among other water quality parameters that influence positive counts in the

reservoirs, plays an important role in the presence of bacteria in water and hence decreases

the quality of drinking water. Both Total and Free Chlorine have shown slight negative

relationships with bacterial (positive) counts indicating reduction. Increased turbidity levels

is associated with decreased percentages of bacterial zero counts, which means that turbidity

should not be in the noncompliance categories (stated in SANS 241) in drinking water as

this may lead to water with unacceptable levels of microbiological contaminants. Further,

low pH levels were associated with the presence of bacteria in water and therefore a pH level

above 7.6 should be considered best because percentages of zero counts are increased. Lastly,

higher rainfall increases the levels of bacteria in the water hence lowers the percentages of

zero bacterial counts. However, it is worth noting that great impact on the quality of water is

observed or expected when a large number of samples is in the non compliance category. Non-

compliance in this project refers to water quality variables that do not fall within the numerical

limits specified in SANS 241-1. The significance of these variables will be demonstrated by

means of model fitting in the chapters that follow.
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Chapter 3

Generalized Linear Models

3.1 Linear Models

A linear model for an n× 1 response variable yn×1 = (y1, y2, . . . , yn)′ is given by

y = Xβ + ε, (3.1)

where X is an n×(p+1) design matrix whose ith row is (1, xi1, xi2, . . . , xip) with i = 1, 2, . . . , n,

β is a (p + 1) × 1 vector of parameters (β0, β1, . . . , βp)
′ and In linear models, parameter

estimation is often done using the method of least-squares (Olsson, 2002). The least-square

estimator β̂ of β, which is also the maximum likelihood estimator (MLE) if the independent

errors assumptions hold, is given by

β̂ = (X ′X)−1X ′y ∼ Np+1(β, σ
2(X ′X)−1),

where (X ′X)−1 is the inverse of X ′X and if (X ′X) is not of full rank this inverse is replaced

by a generalized inverse (X ′X)−.

The sampling distribution of β̂ ∼ Np+1(β, σ
2(X ′X)−1), is used to test the hypotheses about β.

In the case where the normal errors assumption and the central limit theorem conditions are
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not satisfied, linear models are not applicable, so generalized linear models are used instead

to model the data.

3.2 Generalized Linear Models

In this section we look briefly at the theory of generalized linear models (GLMs). According

to Olsson (2002), generalized linear models refers to a generalization of linear models whereby

assumptions made in linear models are relaxed to allow for any distribution that is a member

of the exponential family of distributions such as the Poisson, the Normal, the Binomial and

the Gamma. That is, in linear models of the form

E(Yi) = µi = x′iβ;Yi ∼ N(µi, σ
2),

we assume that the Yi’s are random variables that are independent normal and form the basis

of most analyses of continuous data, and x′i is the ith row of a design matrix X. Advancement

in computing and the statistical theory allow us to use methods comparable to those developed

for linear models in the following more general situations:

1. Outcome variables have other distributions beside the Normal distribution, and can be

categorical rather than continuous.

2. The relationship between the outcome variable and the predictor variables can be of any

form other than the simple linear form in (3.1) with the identity link.

The theory of generalized linear models is discussed in more details by Dobson and Bar-

nett (2008), McCullagh and Nelder (1989), Cantoni and Ronchetti (2001), and Olsson (2002)

among others.

Generalized linear models are a class of models that comprise many well known distribu-

tions that fall in the exponential family of distributions. Probability density functions in the
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exponential family can generally be expressed as

f(yi, θi, φ) = exp

(
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

)
, i = 1, 2, . . . , n, (3.2)

where ai(φ) = φ
wi

which a ratio of the dispersion parameter φ and wi the weight specific for

observation yi, θi is the natural parameter and b(θi) is the normalizing function. The function

b(θi) describes the relationship between the mean value and the variance in the distribution.

That is, the mean E(yi) and the variance var(yi) can be obtained by finding the first and the

second derivatives of b(θi) with respect to θi. According to the likelihood theory, it follows

that

E

(
∂l

∂θ

)
= 0, (3.3)

and that

(
∂2l

∂θ2i

)
+ E

[(
∂l

∂θi

)2]
= 0, (3.4)

Therefore from (3.2) we get l(θi, φ; yi) = (yiθi − b(θi))/ai(φ) + c(yi, φ) so that

E

(
∂l

∂θi

)
= E{[yi − b′(θi)]/ai(φ)} = 0, (3.5)

hence

E(yi) = µi = b′(θi). (3.6)

That is, the mean is obtained from the first derivative of b(θi) with respect to θi. By definition,

the variance of yi is

var(yi) = E[(yi)− E(yi)]
2.
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Therefore, the variance can be obtained from (3.5) and using the result in (3.6) to get

− b′′(θi)

ai(φ)
+

var(yi)

a2i (φ)
= 0, (3.7)

so that

var(yi) = ai(φ).b′′(θi). (3.8)

The variance is a product of two terms ai(φ), with φ being the dispersion parameter, and

b′′(θi) called the variance function. The linear predictor is given by is

ηi = x′iβ = (1, xi1, xi2, . . . , xp)β, i = 1, 2, . . . , n,

where x′i is the ith row of the design matrix.

Therefore ηi = g(µi) links the mean µi = E(yi) to the linear predictor x′iβ as follows

g(µi) = x′iβ, i = 1, 2, . . . , n.

3.2.1 Parameter Estimation

In generalized linear models, the estimation of parameters can be done by the maximum

likelihood approach or by the method of least squares (Dobson and Barnett, 2008); but often

done by the method of maximum likelihood if the response distribution is known (Myers et al.,

2012). The likelihood function L(θ; y) with θ and y = [Y1, . . . , Yn]′ is algebraically the same

as the joint probability function f(y; θ), that is Equation 3.2, with the change in notation

reflecting a shift of emphasis from the random variables y, with the θ fixed, to the parameters

θ with y fixed (Dunteman and Ho, 2006). The likelihood function is given by
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L(θ; y) = f(y; θ)

=
n∏
i=1

exp

(
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

)
, (3.9)

and therefore the log-likelihood function of (3.9) is

` = logL(θ; y) = `(θ; y) =
n∑
l=1

`i, (3.10)

where

`i =
yiθi − b(θi)
ai(φ)

+ c(yi, φ). (3.11)

Estimates of β can be obtained by differentiating the log-likelihood function with respect to βj

and equating the derivatives to zero, and then solving the system of equations simultaneously

for βj as follows;

∂`

∂βj
=

n∑
i=1

∂`i
∂βj

= 0, j = 0, 1, 2, . . . , p. (3.12)

By the use of chain rule of differentiation, we can obtain ∂`i
∂βj

as

∂`i
∂βj

=
∂`i
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

, (3.13)

called the score function and from (3.11) it can be seen that

∂`i
∂θi

=
yi − b′(θi)
ai(φ)

=
yi − µi
ai(φ)

,

since µi = b′(θi) from (3.6) and

∂µi
∂θi

= b′′(θ) = V (µi) or
∂θi
∂µi

= [V (µi)]
−1,

where V (µi) = b′′(µi) is obtained by differentiating µi with respect to θi. Now, from the linear
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predictor ηi = g(µi) = x′iβ = β0 + β1xi1 + . . .+ βpxip we have

∂ηi
∂µi

= g′(µi) or
∂µi
∂ηi

= [g′(µi)]
−1.

Given

∂ηi
∂βj

= xij,

then ∂`i
∂θi
, ∂θi
∂µi
, ∂µi
∂ηi

and ∂ηi
∂βj

in (3.13) gives

∂`i
∂βj

=
yi − µi
ai(φ)

[V (µi)]
−1[g′(µi)]

−1xij

=
(yi − µi)xij

ai(φ)V (µi)g′(µi)

=
(yi − µi)xij
var(Yi)g′(µi)

,

since var(Yi) = ai(φ)V (µi), where V (µi) = var(µi) = b′′(θi) . Hence, to obtain the βj’s we

solve the system of equations also called the score functions which are given as

Uj = U(βj) =
∂`

∂βj
=

N∑
i=1

(yi − µi)xij
var(Yi)g′(µi)

, j = 0, 1, . . . , p. (3.14)

The Uj’s variance-covariance matrix has elements given by

Ijk = E[UjUk],

from which we form the information matrix I which is referred to as the Fisher’s information

matrix I, with (j, k)th elements of I given as

−E

(
∂2`

∂βj∂βk

)
.

Now, from (3.14)
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Ijk = E

{
N∑
i=1

[
(yi − µi)xij
var(Yi)g′(µi)

]
N∑
i=1

[
(yi − µi)xik
var(Yi)g′(µi)

]}

=
N∑
i=1

E[(yi − µi)2]xijxik
[var(Yi)g′(µi)]2

, (3.15)

since E[(yi − µi)(yk − µk)] = 0 for i 6= k because the yi’s are independent. By the use of

E[(yi − µi)2] = var(Yi), (3.15) can be simplified to

Ijk =
N∑
i=1

xijxik
var(Yi)[g′(µi)]2

. (3.16)

Notice that the information matrix, I at β, has the following relationship with U at β

Ijk = E[UjUk] = −E

(
∂2`

∂βj∂βk

)
.

To obtain I, the iterative Newton-Raphson formula which generalizes to

b(m) = b(m−1) + [I(m−1)]−1U (m−1), (3.17)

is used, where b(m) is the vector of estimates β̂1, . . . , β̂p at the mth iteration, [I(m−1)]−1 is the

inverse of the information matrix with elements Ijk, and U (m−1) is the vector of elements given

by Uj, all evaluated at b(m−1). If we multiply both sides of 3.17 by I(m−1) we get

I(m−1)b(m) = I(m−1)b(m−1) + U (m−1). (3.18)

.
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Now from (3.16) I can be written as

I = X ′WX,

where W is an N ×N diagonal matrix with elements

wii =
1

var(Yi)[g′(µi)]2
. (3.19)

The right-hand side of (3.18) has the expression

p∑
k=1

N∑
i=1

xijxik
var(Yi)[g′(µi)]2

b
(m−1)
k +

N∑
i=1

(yi − µi)xij
var(Yi)[g′(µi)]2

,

evaluated at b(m−1); which follows from (3.14) and (3.16), hence the right hand-side of (3.18)

is therefore

X ′Wz,

where z has elements

zi =

p∑
k=1

xikb
(m−1)
k + (yi − µi)g′(µi), (3.20)

with µi and g′(µi) evaluated at b(m−1). Thus the iterative equation (3.18), can be written as

X ′WXβ(m) = X ′Wz, (3.21)

which has the same form as the normal equations for a linear model obtained by weighted

least squares, but since z and W generally depend on b, the maximum likelihood estimators

for generalized linear models are obtained by the iterative weighted least squares method.

Statistical packages that have commands for fitting GLMs have an algorithm based on (3.21).

First, the initial approximation b(0) is obtained to evaluate z and W , then (3.21) is solved

to give b(1) which is also used to obtain better approximations for z and W and so on until

convergence is achieved. That is, when the difference between the successive approximations
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b(m−1) and b(m) is sufficiently small, b(m) is taken to be the maximum likelihood estimate. The

theory above is discussed in a detailed manner by Dobson and Barnett (2008), Gill (2000) and

Christensen (2006) among others.

For example if the log linear model is assumed

`(µ, φ; y) =
n∑
i=1

[
φ−1yi log µi − µi − C(yi)

]
. (3.22)

then ηi = log µi = X ′β, then we get ∂ηi
∂µi

= µ−1i , wi = φ−1µi, µj = φ−1
∑n

i=1 µixji
yi−µi
µi

and

I = φ−1
∑n

i=1 µixjixki = φ−1(X ′WX), where W = diag(µi). Thus, following the procedure

discussed in 3.2.1, the Fisher scoring method for obtaining the maximum likelihood estimates

of the parameters β with φ = 1 is

β(m+1) = (X ′WmX)−1XWmzm. (3.23)

In the next subsection we discuss briefly the Poisson and the Negative Binomial distributions.

It is worth noting that we want to analyze microbiological counts, and therefore as a result

we make use of Poisson and Negative Binomial count models.

3.2.2 The Poisson Regression Model

Suppose that Yi is a random variable representing counts with means µi, the simple Poisson

distribution is the probability function given by

p(yi) =
e−µiµyii
yi!

, (3.24)

for µi > 0. The mean and variance of this distribution can be shown to be

E(yi) = var(yi) = µi.
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The Poisson mass function can be written as a member of the exponential family of distribu-

tions as follows

f(yi;µi) =
e−µiµyii
yi!

= exp[yi log(µi)− µi − log(yi!)]. (3.25)

This expression can be compared to Equation 3.2 where θi = log(µi); meaning that µi =

exp(θi);so that Equation 3.25 is as follows

f(yi;µi) = exp[yiθi − exp(θi)− log(yi!)], (3.26)

thus θi = log(µi), b(θi) = exp(θi), c(yi, φ) = − log(yi!) and ai(φ) = 1.

The Poisson log-linear regression model, from the expression in Equation 3.25, can be obtained

by taking the log as follows

log f(yi;µi) = yiθi − exp(θi)− log(yi!). (3.27)

In generalized linear models the function b(·) describes the relationship between the mean and

the variance in the distributions. For a Poisson model and using Equation 3.6 the mean is

b′(θi) = exp(θi) = µi,

and the variance is

var(yi) = ai(φ).b′′(θi) = exp(θi) = µi,

which verifies that the mean and the variance function of the Poisson distribution are equal.
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3.2.3 Parameter Estimation for Poisson Log-linear Model

Suppose that yi’s are independent and identically distributed observations from a Poisson

distribution with unknown parameter µ. The log-likelihood for the Poisson regression model

is

`(µ; y) =
n∑
i=1

yi log(µi)− nµi. (3.28)

Equating the above expression to zero and solving for µ gives the MLE for µ,

µ̂ =
n∑
i=1

yi
n
,

as the sample mean. To obtain the vector of parameters βi’s we solve the system of equations

also called the score functions given in Equation 3.14.

3.3 Overdispersion

Overdispersion (underdispersion) means that the variance is greater (less) than the mean

(Cameron and Trivedi, 2013). When there is greater variability in the data than would be

expected by the Poisson regression model, then there is overdispersion (i.e φ > 1) in the

data. That is, the variances of Yi are greater than their expected values. According to Hinde

and Demétrio (1998), overdispersion might result from variability of experimental material

which can be thought of as individual variability of the experimental units, or result from

correlation between individual responses or cluster sampling or maybe aggregate level data

which is the aggregation process and can lead to compound distributions, and/or omitted

unobserved variables.
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Hinde and Demétrio (1998) state that overdispersion, when ignored, can lead to incorrect

standard errors obtained from the model and may be underestimated and consequently leading

to incorrect assessment of the significance of individual regression parameters.

It is worth noting that empirical count data sets typically exhibit over-dispersion and/or excess

number of zeros and therefore the use of classical Poisson regression model become limited.

That is, the requirement that the mean and variance of the standard Poisson regression model

are equal is hardly ever met. In such cases, alternative regression models such as overdispersed

Poisson regression (quasi-Poisson) and negative binomial models can be used.

Overdispersion parameter φ can be estimated separately using the method of moments esti-

mator as follows

φ̂ =
1

n− p− 1

∑ (yi − µ̂i)2

var(yi)
,

and the estimated asymptotic covariance matrix of coefficients β̂ is given by

cov = φ̂(X ′WX)−1,

where W is a diagonal matrix of weights wi.

The next subsection introduces the Negative Binomial distribution.

3.3.1 The Negative Binomial Regression (NB) Model

To model count data with overdispersion we use the NB distribution by adding a multiplicative

random effect parameter to represent an unobserved variation.

Let the random variables yi represent counts and E(θi) = µi and var(θi) = σ2, where θi’s are

random variables. According to Hinde and Demétrio (1998), unconditionally, E(yi) = µi and

var(yi) = µi + σ2 giving an overdispersed model. A common assumption is that θi ∼ Γ (k, λi)
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distribution and leads to a negative binomial distribution. Therefore, the negative binomial

distribution can be written as follows

f(yi;µi, k) =
Γ (k + yi)µ

yi
i k

k

Γ (k)yi!(µi + k)k+yi
, yi = 0, 1... (3.29)

with mean

E(yi) =
k

λi
= µi, (3.30)

and the variance

var(yi) = E[var(yi|θi)] + var(E[yi|θi])

= E[θi] + var(θi)

=
k

λi
+

k

λ2i

= µi +
µ2
i

k
. (3.31)

Parameter Estimation under NB

The log-likelihood under negative-binomial model has the expression

`(µ, k; y) =
n∑
i=1

{
yi log µi + k log k − (k + yi) log(k + µi) + log

Γ (k + yi)

Γ (k)
− log yi!

}

=
n∑
i=1

{
yi log µi + k log k − (k + yi) log(k + µi) + dlg(yi, k)− log yi!

}
, (3.32)

where dlg(yi, k) = logΓ (k + yi) − logΓ (k) and for fixed values of k the expression becomes

a linear exponential family model and consequently a generalized linear model (Hinde and

Demétrio, 1998).
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The score equations for maximum likelihood estimations can be obtained by modelling the

µi’s with a linear predictor ηi = x′iβ and the link function g(µi) = ηi as follows

∂`

∂βj
=

n∑
i=1

{
yi
µi
− k + yi
k + µi

}
∂µi
∂βj

=
n∑
i=1

(yi − µi)
µi(1 + µi

k
)

1

g′(µi)
xij, (3.33)

and

∂`

∂k
=

n∑
i=1

{
ddg(yi, k)− log(µi + k)− k + yi

k + µi
+ log k + 1

}
, (3.34)

where ddg(yi, k) = ∂
∂k

(dlg(yi, k)) = ψ(yi + k) = ψ(k).

The scores V (µ) = µ(1 + µ
k
) and g(µ) = η for β are the usual quasi-score equations for a

generalized linear model and thus provide a simple approach for fitting a negative-binomial

regression models using a Gauss-Seidel approach and iterating using the following steps

1. for fixed k, estimate β using an iterative re-weighted least squares with a variance func-

tion V (µ) = µ+ µ2

k
,

2. for fixed β, and hence µ, k is estimated using the Newton-Raphson iterative scheme

k(m+1) = k(m) −

(
∂`

∂k

/
∂2`

∂k2

)∣∣∣∣∣
k(m)

,

and continue iterating until convergence. The second order derivative with respect to k is

∂2`

∂k2
=

n∑
i=1

{
dtg(yi, k)− 1

µi + k
+

k + yi
(k + µi)2

− 1

µi + k
+

1

k

}
, (3.35)

where dtg(y, k) = ∂{ddg(y, k)}/∂k is a function of tri-gamma functions. The derivative
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∂2`

∂βj∂k
=

n∑
i=1

(yi − µi)
(k + µi)2

1

g′(µi)
xij, (3.36)

and E

(
∂2`
∂βj∂k

)
= 0, that is β and k are asymptotically uncorrelated.

The initial values for k can be obtained from fitting a Poisson model to obtain µ̂i and setting

k0 =

∑n
i=1 µ̂i(1− hiµ̂i)∑n

j=1
(yj−µ̂j)2

µ̂j
− (n− p)

.

where hi = var(β̂′xi) is the variance of the linear predictor (Breslow, 1984).

3.3.2 Quasi-Likelihood Estimation

The method of quasi-likelihood estimation is used when there is uncertainty about the dis-

tribution of the data. This uncertainty makes it impossible to directly use the techniques

discussed earlier. The basic idea behind the quasi-likelihood estimation method is to use in-

ferential methods which work as almost as well as maximum likelihood but without having

to make specific distributional assumptions. That is, a likelihood that has less restrictive

assumptions. Let us restate the score equation as

U =
∂`

∂βi
=

1

a(φ)

N∑
i=1

(yi − µi)xij
var(Yi)g′(µi)

The likelihood on the assumed distribution for yi is constructed through µi and var(µi) respec-

tively. Notice that the choice of the distribution determines the mean-variance relationship.

Also, it is worth noting that the probability distribution is not specified (unlike in full likeli-

hood estimation methods) but only the mean and variance function are specified.

By definition, the quasi-likelihood is defined as
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Qi(µi; yi) =

∫ µi

yi

yi − µi
φvar(µi)

ds

and by definition has the derivative with respect to µi which is equal to

qi =
yi − µi
φvar(µi)

.

The qi satisfies the same conditions satisfied by ∂`/∂µi, where

∂`/∂µi =
∂ log f(yi, θi, φ)

∂µi

for the exponential family of distributions.

The quasi-likelihood for the complete data is the sum of the individuals contributions

Q(µ, y) =
∑

Qi(µi, yi),

since the components of Y are independent by assumption.

By analogy, notice that the quasi-deviance function for a single observation is given in the

reversed order of integration as follows

Q(yi;µi) = −2σ2Q(µi; yi) = 2

∫ µi

yi

yi − µi
φvar(µi)

ds.

The total deviance, D(yi;µi), is the sum of the individual components, and depends only

on y and µ, but not on σ2. It is worth noting that the quasi-likelihood has a multiplicative

dependence on σ2, and does not affect the maximum likelihood estimators of β.

Recall from earlier that the log-likelihood of the exponential family is given as

`i =
yiθi − b(θi)

φ
+ c(yi, φ).
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It can be shown that

E(qi) = 0, E

(
∂`i
∂µi

)

and

var

(
∂`i
∂µi

)
=

1

φvar(µi)
.

Thus the log-likelihood and ∂`i
∂µi

played roles that can be taken up by Qi and qi respectively.

The φ in qi is the constant of proportionality relating the var(yi) to var(µi). The maxi-

mum quasi-likelihood method assume that these variances are proportional, that is var(yi) =

φvar(µi), where

var(µi) =
∂`i
∂µi

.

It is worth noting that the variance function var(µi) is specified using the information about

how the variance changes with the mean.

The maximum quasi-likelihood estimator of β can be obtained by solving the maximum quasi-

likelihood given by

∂

∂β
(
N∑
i=1

Qi) = 0. (3.37)

The above Equation 3.37 can be evaluated as follows:

∂

∂β

(
N∑
i=1

Qi

)
=

N∑
i=1

∂Qi

∂β
(3.38)

=
N∑
i=1

∂Qi

∂µi

∂µi
∂β

(3.39)

=
N∑
i=1

[
yi − µi
φvar(µi)

]
∂µi
∂q

∂q

∂β
(3.40)

=
N∑
i=1

[
yi − µi
φvar(µi)

]
xij
g′(µi)

= 0 (3.41)

In matrix notation the above expression can be presented as follows
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1

φ
X ′Wδ(Y − µ) = 0 (3.42)

Equation 3.42 is score statistic U under the GLM, with var(µi) determined by the mean-

variance relationship, not by the distributional assumptions. Therefore, the quasi-likelihood

model can be fitted using exactly the same method as for fitting a GLM to obtain the estimates

β̂.

3.4 The Distributed Lag Model

In this section we incorporate time by introducing the distributed lag model (DLM). The

DLM generally says that the effect of a unit increase in water quality determinant xt is spread

out over K number of days into the future (Peng and Dominici, 2008).

In time series studies of air pollution and health, the outcome is modeled as a time series of

counts representing the number of times a particular event has occurred on a given day (Peng

and Dominici, 2008). In this project, a microbiological outcome is modeled as a time series

of counts representing the number of colonies found in a 100mL water sample on a given day.

Therefore each observation of the outcome yt is a count per sample on day t. However, it

is worth noting that the assumption that the effect of a unit increase in the water-quality

determinant only plays out over a single day is relaxed by introducing the distributed lag

model. Therefore, for time series count response data, the log-linear Poisson model similar to

that used by Peng and Dominici (2008) takes the form

yt ∼ Poisson(µt),

where

log µt = β0 +

p∑
i=1

1∑
`=0

βi`Xt−`, (3.43)
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and β0 is the model intercept, βi` is the ith parameter at lag `, Xt−` is the known vector

of water-quality determinants that is included at lag `. Appropriate number of lags to be

included in the model is, however, a problem that generally need a subject matter knowledge

(Peng and Dominici, 2008).

Suppose that we observe Xt from 1991 to 2015. The lagged value of the independent variable

Xt is the same value but for the previous period, that is, 1990 to 2014. Note that since 1990

would not have been observed, the start date or time for the lagged value Xt−` would have to

be from 1991. Lagging once means that the current Xt series will have to start at 1992 and

end at 2015. In practical this means that when we lag once we loose one observation from

the data, whilst on the other hand one extra parameter β is estimated with every lag. This is

jeopardy with respect to loss of degrees of freedom. Apart from the loss of degrees of freedom,

regressors X ′ts are often highly correlated with their lagged values and thus introducing the

problem of multicollinearity among the regressors Xt. The higher the multicollinearity the

lower the reliability of the regression estimates (Baltagi, 2011).

The problem of multicollinearity can be dealt with using the methods used by Almon (1965).

Suppose we want to fit the data using a finite DLM. A finite DLM is one in which the number

of lags to be included in the model are known (Almon, 1965). According to Almon (1965),

Weierstrass’s Approximation Theorem can be used to approximate a continuous function

defined on a closed form interval by a polynomial function of finite degree. For further details

on DLM you can refer to Almon (1965); Baltagi (2011) among others.

3.5 Application of GLM Quasi-Poisson Distributed Lag

Model to Water Quality Data

Quasi-Poisson models are used to allow the dispersion parameter to be estimated from the

data since under the Poisson model the variance is assumed to be equal to the mean. If this

assumption holds then the sample mean and variance of the dependent count variable should
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be equal.

In this section the quasi-Poisson distributed lag model is fitted to the microbiological count

data. When the quasi-Poisson is fitted to the data the dispersion parameter was estimated as

φ̂ = 158 from the data. This implied that the data is overdispersed and hence other models

should be considered to account for overdispersion.

The distributed lag model assumes that the effect of a unit increase in a water-quality determi-

nant on any given day is spread out over a number of days into the future. The seasonal time

variable has four levels where the winter season is a reference category because it is expected

to have the lowest bacterial counts than the other seasons. Also, a site variable with three

levels is used, where site 3 (TDH010) is used as a reference category because it is a site which

usually has the lowest counts than the other two sites.

Table 3.1: Results for a Quasi-Poisson Distributed Lag Model Fitted to HPC37 counts,
Durban-Heights, 1991-1997.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.2022 13.7421 2.78 0.0055

Temperature at lag 0 -0.0748 0.1301 -0.57 0.5654
Temperature at lag 1 0.1285 0.1281 1.00 0.3158

Turbidity at lag 0 0.4896 0.3811 1.28 0.1989
Turbidity at lag 1 0.6036 0.2864 2.11 0.0351

pH at lag 0 -2.3822 1.4808 -1.61 0.1077
pH at lag 1 -2.1758 1.4477 -1.50 0.1329

Free Chlorine at lag 0 -4.2663 1.7789 -2.40 0.0165
Free Chlorine at lag 1 -2.6950 2.2524 -1.20 0.2316

Total Chlorine at lag 0 -0.8672 1.8323 -0.47 0.6360
Total Chlorine at lag 1 1.0353 2.0138 0.51 0.6072

Rainfall at lag 0 0.0078 0.0135 0.58 0.5620
Rainfall at lag 1 -0.0159 0.0244 -0.65 0.5147

Summer 1.1285 1.1149 1.01 0.3115
Autumn 2.1430 1.0152 2.11 0.0348

Spring 1.5488 0.9264 1.67 0.0946
TDH007 0.3753 0.4806 0.78 0.4350
TDH008 0.2663 0.4919 0.54 0.5882

Table 3.1 shows the results from the DL GLM of HPC37 counts to all water quality determi-

nants of interest in this study.
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Note:

βi = ith parameter

βi ` = ith parameter at lag`

This project uses only two lags, that is lag zero and lag one. A seasonal-time variable and a

site variable are dummy variables introduced to capture time effects and site specific effects.

Table 3.1 shows the results of only the first 2000 observations from each of the three Durban-

Heights Final sites merged together to give a total of 6000 observations.

Turbidity at lag one was found to be significant at the 5% significance level (p-value = 0.0351),

which means that the effects of turbidity measured or observed on any day is expected to

be seen one day later. Therefore, on any given day of the week, a one unit increase in

nephelometric turbidity units (NTU) would increase HPC37 by a factor of exp(β̂4 1 = 0.603) =

1.828 colony forming units per mL (CFU/mL) of water sample one day later. Given the

sampling day, a 1 mg/L increase in free chlorine would decrease HPC37 counts by a factor

of exp(β̂7 0 = −4.266) = 0.0014 CFU/mL of water sample on the same day. The quasi-

Poison model in Table 3.1 also shows that, given the reference category as the winter season,

the autumn season has a significantly higher HPC37 CFU/mL counts (p-value = 0.0348)

than in winter season [exp(β̂14 = 2.143) = 8.525]. In short, this means increased levels of

turbidity would results in higher HPC37 positive counts. Free Chlorine reduces the HPC37

counts. Table 3.1 also shows that there are non-significant exp(β̂16 = 0.375) = 1.455 and

exp(β̂17 = 0.266) = 1.305 higher HPC37 positive counts in Durban Heights Final 1 and 2

relative to Durban Heights Final 3.

Total Coliforms Predictions

On the other hand, the quasi-Poisson model does not give any predictors for Total Coliforms

(TC) due to the proportion of counts being very small compared to that of HPC37. The AIC

suggest that the quasi-Poisson model is the best model, but the ICC under Poisson GLMM
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suggest that TC are greatly influenced by unobserved factors at the level of the sampling

point and therefore this model brings about a substantial improvement compared to the quasi-

Poisson model, thus the result from Poisson GLMM are therefore interpreted. These results

are discussed in Chapter 4. Before determining that the quasi-Poisson family is appropriate,

we check to see if the variance of the residuals is proportional to the mean. The plot of the

residuals squared is shown in Figure 3.1.

3.5.1 Model Validation in Quasi-Poisson GLM

In model validation, residuals are an important tools. They are used to check violations of

assumptions such as that of homogeneous variances and provide guidance concerning the ad-

equacy of the model.
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Figure 3.1: Mean-Variance Relationship.

· · · Squared Residuals

— Poisson AV

— Quasi-Poisson AV

— Smoothed Mean of Residuals

In Figure 3.1, the black line represent the Poisson assumed variance (AV), the green line

represent the quasi-Poisson AV, and the blue curve represent the smoothed mean of the

residuals square.
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Ideally the blue curve would be straight and it would be collinear with the green line for the

quasi-Poisson variance. The greater the deviation from the green line the greater the concern

is about the proportionality of the variance to the mean. Here we have some indication that

the variance may not be proportional to the mean. When applying the GLMs with a fixed

scale parameter, as is certainly the case for Poisson distribution where φ = 1, subject to

certain asymptotic conditions for a well fitting model we would expect

residual deviance ≈ residual degrees of freedom

If the residual deviance is greater than residual degrees of freedom we are faced with two

possible scenarios to consider. The first scenario is a bad fitting model for some reasons such

as

• omitting variables in the linear predictor;

• specifying the incorrect link function between the mean and predictor variables;

• outliers.

The second scenario is when variation is greater than that predicted by the model, that is

overdispersion. In essence the model is too restrictive for the data at hand. Overdispersion

may result from

• individual variability of the experimental units which may give an additional component

of variability which is not accounted for by the basic model;

• correlated individual responses;

• omitted unobserved variables.

It is therefore important to take overdispersion into account as this phenomenon renders

the results that are not reliable and thus leading to false conclusions. The standard errors

obtained from the model will be incorrect and therefore consequently we may end assessing the

significance of individual regression parameters that are incorrect. Changes in the deviance

become too large leading to selection of overly complex models. Lastly, the interpretation of
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the model will be incorrect and thus predictions will not be too precise (Hinde and Demétrio,

1998).

To define residuals in a GLM, consider the case for linear regression in which residuals are

defined as

ε̂ = yi − µi, (3.44)

which is the vertical distance between an observation and the regression line of the predicted

values. The types of residuals that are often used in a GLM used are the ordinary residuals,

the Pearson residuals, and the deviance residuals.

The Pearson residuals can be written as follows:

ε̂Pi =
yi − µ̂i√

µ̂i
, (3.45)

and for overdispersed count data with φ estimated from data the Pearson residuals is divided

by the adjusted square root of variance φµi.

The deviance residuals are said to be GLM equivalent of the residual sum of squares, whereby

the smaller the deviance residuals the better the model (Zuur et al., 2009). The contribution

of each observation to the residual deviance explain how the model fits the data. The residual

deviance are defined by

ε̂Di = sign(yi − µi)
√
di, (3.46)

where sign is positive when yi is greater than µi and negative when yi is less than µi, di is the

contribution of each observation to the deviance.

There is no much difference between the deviance and the Pearson residuals for a Poisson
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GLM, though however, this may not be the case for data with excess of zeros. Deviance

residuals are recommend by McCullagh and Nelder (1989) for model checking as these have

distributional properties that are closer to the residuals from a Gaussian linear regression

model than Non-Gaussian models. It is worth noting that the interest is not on normality

of the residuals from the Pearson and deviance residuals, but the lack of fit of the model by

looking for patterns in the residuals.

To validate the model we can plot deviance residuals against (i) each explanatory variable

in the model, (ii) the fitted values, and (iii) against time, if appropriate. If any patterns are

detected in the graph showing residuals against each explanatory in the model, then either

quadratic terms should be included, the use of GAM, or the conclusion should be that there

is violation of independence. If patterns are detected in graph showing residuals against fitted

values, then there is oversdispersion or the wrong use of mean-variance relationship, and if

plotting the residuals against time, and there are patterns, conclude there is an assumption

of independence violated. Meaning that nearly always an important covariate was excluded

from the model. If non of the above seem to be solution then generalized linear mixed model

should bale (Zuur et al., 2009).
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Figure 3.2: The residuals-squared plot versus the predicted mean of the quasi-Poisson model.
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Figure 3.2 shows graphs of response residuals, Pearson residuals, Pearson scaled residuals,

and deviance residuals, all plotted against the fitted values. The upper row shows the actual

residual plots from quasi-Poisson model and the lower row shows the zoomed in plots of the

upper residual plots against the fitted values since it is not simple to see if there are any trend

or patterns from those in the upper row.

From the upper row, it is clear that there are very high values in the residuals from this

model, indicating non-constant variance or the wrong mean-variance relationship. From the

lower row, the residuals form some parallel pattern with high variation at low fitted values

(mu). Therefore we conclude that there is overdispersion in the data and hence the negative

binomial model is introduced. Next we consider the application of a negative binomial model

which also account for overdispersion.

The results for predicting TC are shown in Table 3.2. The Quasi-Poisson model does not

show any significant predictors of TC. The proportion of positive counts is lower than that of

HPC37 and thus this model experiences difficulty compared to one fitted the HPC37 counts.

Table 3.2: Results for a Quasi-Poisson Distributed Lag Model Fitted to TC counts, Durban-
Heights, 1991-1997.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.3486 42.4353 0.01 0.9934

Temperature at lag 0 0.7266 0.4595 1.58 0.1138
Temperature at lag 1 0.0631 0.4347 0.15 0.8847

Turbidity at lag 0 -0.2425 5.8449 -0.04 0.9669
Turbidity at lag 1 0.8956 1.8268 0.49 0.6240

pH at lag 0 0.4698 4.1384 0.11 0.9096
pH at lag 1 -3.1002 4.3275 -0.72 0.4738

Free Chlorine at lag 0 3.7414 7.8255 0.48 0.6326
Free Chlorine at lag 1 -2.5416 7.4979 -0.34 0.7346

Total Chlorine at lag 0 -1.6485 6.7657 -0.24 0.8075
Total Chlorine at lag 1 0.2759 6.5552 0.04 0.9664

Rainfall at lag 0 -0.0688 0.1784 -0.39 0.7000
Rainfall at lag 1 -0.1084 0.3021 -0.36 0.7197

Summer -3.6844 3.3676 -1.09 0.2739
Autumn -4.1065 3.4042 -1.21 0.2277

Winter -3.1545 3.1970 -0.99 0.3238
TDH007 2.2541 1.7390 1.30 0.1949
TDH008 0.1393 2.3361 0.06 0.9524
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3.6 Application of GLM Negative Binomial Distributed

Lag Model to Water Quality Data

We now apply the negative binomial model to the data to see if it might be of better fit. It is

worth noting that the negative binomial model assumes independence among the observations.

Table 3.3 shows the results of the negative binomial model incorporating distributed lag model.

Parameter estimates for the negative binomial model are similar to those of the quasi-Poisson

model in terms of their signs and their magnitude. However, standard errors in the negative

binomial model have been reduced compared to those for a quasi-Poisson model. This is an

indication that the negative binomial model captures the variability much better than the

quasi-Poisson model. It is an issue of better precision.

Table 3.3: Results for a Negative Binomial Distributed Lag Model Fitted to HPC37 counts,
Durban-Heights, 1991-1997.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 23.7794 6.7853 3.50 0.0005

Temperature at lag 0 -0.0485 0.0641 -0.76 0.4490
Temperature at lag 1 0.2526 0.0640 3.95 0.0001

Turbidity at lag 0 1.4641 0.5875 2.49 0.0127
Turbidity at lag 1 1.4128 0.5861 2.41 0.0159

pH at lag 0 -2.0028 0.7425 -2.70 0.0070
pH at lag 1 -1.3577 0.7404 -1.83 0.0667

Free Chlorine at lag 0 0.8144 1.2133 0.67 0.5021
Free Chlorine at lag 1 -2.7320 1.2182 -2.24 0.0249

Total Chlorine at lag 0 -2.5025 1.0040 -2.49 0.0127
Total Chlorine at lag 1 1.0702 1.0124 1.06 0.2905

Rainfall at lag 0 0.0207 0.0088 2.36 0.0184
Rainfall at lag 1 0.0048 0.0092 0.52 0.6011

Summer -0.1568 0.4125 -0.38 0.7039
Autumn 1.4049 0.3604 3.90 0.0001

Spring 0.3646 0.2768 1.32 0.1878
TDH007 0.2091 0.2011 1.04 0.2985
TDH008 0.4503 0.1920 2.35 0.0190

Parameter estimates for a negative binomial model are interpreted in the similar way as those

for a quasi-Poisson model. At the 5% significance level, temperature is significant at lag one

(p-value = 0.0001). A one unit increase in temperature on any particular day would increase
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HPC37 counts by a factor of exp(β̂2 1 = 0.253) = 1.288 CFU/mL one day later.

Turbidity is significant at both lags zero and one (p-values = 0.0127 and 0.0159). For one unit

increase in NTU on any given day, HPC37 counts would increase by a factor of exp(β̂3 0 =

1.464) = 4.323 CFU/mL on the same day and increase by exp(β̂4 1 = 1.413) = 4.108 CFU/mL

a day later.

At the 5% significance level pH is significant only at lag zero (p-value = 0.0070). On any

given day a one unit increase in pH would decrease HPC37 counts by a factor of exp(β̂5 0 =

−2.003) = 0.135 CFU/mL on the same day.

Free chlorine is significant at lag one only (p-value = 0.0249). This means that for a one unit

increase in free chlorine on any given day, the HPC37 counts would decrease by a factor of

exp(β̂8 1 = −2.732) = 0.065 CFU/mL a day later.

Total chlorine is significant at lag zero only (p-value = 0.0127). For a one unit increase in

total chlorine on any given day total chlorine would decrease the HPC37 counts by factor of

exp(β̂9 0 = −2.503) = 0.082 CFU/mL on the same day.

Rainfall is significant at lag zero (p-value = 0.0184). Therefore on any given day rainfall would

increase the log HPC37 counts by a factor of exp(β̂11 0 = 0.021) = 1.021 CFU/mL on the same

day.

The autumn season is highly significant at the 5% level of significance (p-value = 0.0001),

relative to winter season in DH-WTP by a factor of exp(β̂14 = 1.405) = 4.076 CFU/mL.

Sampling point TDH008 is significant at 5% level (p-value = 0.0190), meaning TDH008 has

higher HPC37 counts relative to TDH010 by a factor of exp(β̂18 = 0.450) = 1.568 CFU/mL.

3.6.1 Model Validation in Negative Binomial

Consider Figure 3.3, before we decide if the negative binomial is appropriate, we check if the

variance of the residuals is proportional to the mean. Plotting the square of the residual to the

fitted values, with a black line for Poisson, green line for quasi-Poisson, a blue line for smoothed

mean of the square of the residual, and a red line for predicted variance from the negative

49



binomial fit, we find that the blue line is no close nor parallel to the green line indicating that

the mean-variance relationship is not proportional. This means negative binomial model is

also not an appropriate model. However, the negative binomial predicted variance (red curve)

is close to the green line and therefore compared to the quasi-Poisson model, the negative

binomial seems to be behaving better.
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Figure 3.3: Mean-Variance Relationship.

· · · Squared Residuals

— Poisson AV

— Quasi-Poisson AV

— Smoothed Mean of Residuals

— NB Predicted variance

In Figure 3.4, graphical validation plots are shown. The negative binomial residuals does not

show patterns and therefore, again, this is an indication that the negative binomial model is

better than the quasi-Poisson. The upper left graph (A) does not show any pattern but has

extreme values.
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Figure 3.4: Graphical validation tools for the Negative Binomial.
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Chapter 4

Generalized Linear Mixed Models

4.1 Linear Mixed Models

The linear mixed model is an extension of linear models where the vector of the random effects

u is added and the response variable y which is normally distributed. The form of the linear

mixed model is therefore as follows:

y = Xβ + Zu+ ε, (4.1)

where yn×1 is a vector of the response variable, Xn×(p+1) is the design matrix for fixed effects,

β(p+1)×1 is a vector of fixed effect parameters parameters, Zn×q is a design matrix for the

random effects, uq×1 is a vector of unknown random effects parameters assumed to have a

multivariate normal distribution with mean vector 0 and covariance matrix G, i.e u ∼ N(0, G)

and εn×1 is a vector of random errors assumed to have a multivariate normal distribution with

mean vector 0 and covariance matrix R, i.e ε ∼ N(0, R). However, for non-normal data

which belong to the exponential family of distributions, generalized linear mixed models are

deployed.
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4.2 Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) provide an extension to generalized linear models

(GLMs) by addition of random effects that are not captured in the GLM. This chapter looks

at the extension of GLM and the estimation algorithm. The following theory on GLMMs is

discussed in details by Jiang (2007); Littell et al. (2006); Wood (2006) among others.

A standard GLM assumes that the expectation of the response Yij can be written as a function

of linear predictor,

η = x′ijβ,

where xij is a vector of covariates and β is a vector of fixed effects parameters respectively.

Now let ui be a random effect parameter to account for individual variability or equivalently

an individual effect parameter. Assuming observations are conditionally independent given

the vectors xij, β and ui the likelihood of the ηi observations, Yi1, Yi2, . . . , Yimi
, coming from

the same cluster i, is given by

Pr(Yi1, Yi2, . . . , Yim|x, β, ui) =

ni∏
j=1

Pr(Yij|xij, β, ui). (4.2)

GLMMs are an extension of GLM to longitudinal data that accommodates correlated and over-

dispersed data by adding random effects to the linear predictor η. The frequently encountered

non-Gausian models for repeated or longitudinal measured outcomes have binomial or Poisson

distributions. The generalized linear mixed model conditionally satisfies the exponential family

of distribution structure. Therefore, given u and xij the probability density function for the

observations yij’s is given by

f(yij|u, β) = exp

[
yijθij − b(θij)

φ
+ c(yij, φ)

]
(4.3)

where µij = E(Yij|ui) is modeled through a linear predictor containing a fixed regression
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parameter vector β and a vector of subject specific parameters ui as follows

g(µij) = x′ijβ + z′ijui. (4.4)

Assuming that the link function g and the vectors of covariate values xij and zij are known, if

the natural or the canonical link function given as g(µij) = ηij holds, then the model becomes

θij = x′ijβ + z′ijui.

The model assume that conditionally on the subject-specific effect ui, the responses Yij are

independent and ui are normally distributed with mean zero and variance matrix G among

the random effects. Notice that the function c(yij, φ) may or may not depend on Yij. By

inventing the link function the conditional mean and variance are given by

µij = E[Yij|ui] = g−1(x′ijβ + z′ijui)

and

var(Yij|ui) = V (µij)φ

where g and V are the link and variance functions. Assuming that ηij is the corresponding

linear predictor of the form

ηij = x′ijβ + z′ijui, (4.5)

the commonly used link function for the count Poisson model with log link is specified as

log(µij) = ηij

Yij|µij ∼ Poisson(µij).
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When we introduce random effects in the above models we end up with the corresponding

specific GLMM. It is worth noting that the dispersion parameter φ accounts for extra vari-

ability in the model where random effects are not included. When fitting the model, φ in is

known prior or may require that it be estimated using methods such as moment estimation.

For Poisson model, the model implied variance function may not be consistent with the actual

distribution. The quasi-likelihood methods can be used to estimate the dispersion parameter,

φ.

4.3 Maximum Likelihood Estimation

The likelihood function under GLMM is said not to have a closed-form expression when the

data is non-normal (Jiang, 2007). This means that obtaining the marginal distribution is not

easy if the conditional distribution of y, given u, is non-normal. Such likelihood may involve

high-dimensional difficulties and hence approximation becomes one of the alternatives (Jiang,

2007). The difficulty in maximizing the likelihood is due to the presence of N integrals over

the q dimensional random effects ui. Therefore, numerical approximation methods that can

be used include the approximation of the integrand, approximation of the data, and those

that are based of the integral itself. For an extensive overview of these approximations, see

Tuerlinckx et al. (2004); Molenberghs and Verbeke (2006) among others. The likelihood is

given by

L(β,G, φ) =
N∏
i=1

fi(yi|β,G, φ)

=
N∏
i=1

∫ ni∏
i=1

fij(yij|β, ui, φ)f(ui|G)dui. (4.6)

This expression in Equation 4.6 is the same as in the case of the marginal distribution of Y

obtained by integrating the joint distribution of Y and u with respect to u. We will briefly
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discuss the methods of approximations.

4.3.1 Laplace Approximation

The Laplace integrals are a well known methods of approximating the integrand and is one

of the commonly used methods when the likelihood function is difficult to compute. The

objective of the approximated integrands is to obtain the traceable integrals such that closed

form expressions can be obtained through the feasibility of numerical maximization of the

approximated likelihood. Tierney and Kadane (1986) used the Laplace method designed to

approximate integrals of the form

I =

∫
exp{q(x)}dx, (4.7)

where q(x) is a known, unimodal and bounded function of a q−dimensional variable x. Let x̂

be the value of x that maximizes q. The second-order Taylor expansion of the function q(x)

is of the form

q(x) ≈ q(x̂) +
1

2
q′′(x̂)(x− x̂)2 (4.8)

where q′′(x̂) is equal to the Hessian of q, which is the matrix of the second-order derivative of

q evaluated at x̂. Notice that when we replace q(x) in Equation 4.7 by its approximation in

Equation 4.8 we get

I ≈ (2π)r/2| − q′′(x̂)|−1/2 exp{q(x)}.

The integral in Equation 4.6 is proportional to an integral of the form given by Equation 4.7

for functions of q(x) given by
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q(x) =

ni∑
i=1

[yij(x
′
ijβ + z′iju)− ψ(x′ijβ + z′iju)]− 1

2
u′D−1u

such that the Laplace method can be applied. Note that the function q(x̂) depends on the

uknown parameters β, φ andD such that in each iteration of the numerical maximization of the

likelihood, x̂ will be recalculated conditionally on the current values of parameter estimates.

4.3.2 Penalized Quasi-Likelihood

The theory of quasi-likelihood is a basis for the analysis of over-dispersed count data (Wed-

derburn, 1974). The method of penalized quasi-likelihood (PQL) may be illustrated under a

general framework as an approximate quasi-likelihood estimate approach. The PQL method

uses Taylor expansion around current estimates β̂ of fixed effects and ûi of random effects

assuming canonical or natural link. This gives

Yij = µij + εij = h(x′ijβ + z′iju) + εij

≈ h(x′ijβ̂ + z′ijû)

+ h(x′ijβ̂ + z′ijû)x′ij(β − β̂)

+ h(x′ijβ̂ + z′ijû)z′ij(ui − ûi) + εij

= µ̂ij + V (µ̂ij)x
′
ij(β − β̂) + V (µ̂ij)zij(ui − ûi) + εij, (4.9)

where µ̂ij equals its current predictor h(x′ijβ + z′iju) of the conditional mean E[Yij|ui]. This

expression can be written in vector form as follows

Yi ≈ µ̂ij + V̂iXi(β − β̂) + V̂iZi(ui − ûi) + εi, (4.10)
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where Xi and Zi are design matrices and Vi is a diagonal matrix with diagonal entries V (µ̂ij).

Re-ordering the above expression yields

Y ∗i ≡ V̂ −1i (Yi − µ̂i) +Xiβ̂ + Ziûi ≈ Xiβ + Ziui + ε∗i , (4.11)

where ε∗i = V −1i εi and has a mean of zero. The modified response Y ∗i allow for the approxi-

mation of the problem as a linear mixed model. The resulting estimates are called penalized

quasi-likelihood estimates since they are obtained by optimizing a quasi-likelihood function

which only involves first and second order conditional moments augmented with a penalty

term on the random effects.

4.3.3 Marginal Quasi-Likelihood

The alternative approximation method is the marginal quasi-likelihood (MQL) which is very

similar to the PQL method. The PQL approach is the most common estimation procedure

for the GLMM. The difference between MQL and PQL is that the MQL does not incorporate

the random effects in the linearization process, but they both have the same key idea and

similar properties. The current predictor has the form h(x′ijβ) which result in the expression

that follow

Y ∗i ≡ V̂ −1i (Yi − µ̂i) +Xiβ̂, (4.12)

which satisfy the approximate linear mixed model in Equation 4.11. More information can be

found in Molenberghs and Verbeke (2006) among others.
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4.4 Prediction of Random Effects

To predict the values of the of the random effects we make use of the conditional expectations

of the random effects, given the observed response values yi. The conditional expectation for

u is

u = E(u|y) = ĜZ ′ ˆV −1(y −Xβ̂). (4.13)

The predicted values in Equation 4.13 are the expected values of the random effects, u,

associated with the ith-level of a random factor, given the observation yi. These conditional

expectations are referred to as empirical best linear unbiased predictors (EBLUPs) because

they are based on the estimates β̂ and θ̂ parameters.

The variance-covariance matrix is therefore

var(û)− ĜZ′(V̂ −1 − V̂ −1X(
∑

XV̂ −1)X)−1XV̂ −1)ZĜ. (4.14)

These predictors are “best” because they have a minimum variance among all linear estimators.

They are “linear” in that they are linear functions of the observations, “unbiased” in that their

expectation is equal to the expectation of the random effects for a single subject and that they

are “predictors” based on the observed data (West et al. 2014; Jiang 2007).

4.5 Application of the GLMM Poisson Distributed Lag

Model for Heterotrophic Plate Counts (HPC37) Pre-

dictions

In this section we fit a Poisson model to the Durban-Heights data but now with site as a random

variable. It is worth noting that DH-WTP supply water to more than forty reservoirs, but for
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this study the interest is only on the three sites selected; namely TDH007 (site 1), TDH008

(site 2) and TDH010 (site 3).

Table 4.1: Results for a GLMM Poisson Distributed Lag Model Fitted to HPC37 counts,
Durban-Heights, 1991-1997.

Estimate Std. Error z value Pr(>|z|)
(Intercept) 38.4337 1.0905 35.24 < 0.001

Temperature at lag 0 -0.0748 0.0103 -7.24 < 0.001
Temperature at lag 1 0.1285 0.0102 12.61 < 0.001

Turbidity at lag 0 0.4901 0.0303 16.16 < 0.001
Turbidity at lag 1 0.6041 0.0228 26.50 < 0.001

pH at lag 0 -2.3834 0.1176 -20.27 < 0.001
pH at lag 1 -2.1755 0.1150 -18.92 < 0.001

Free Chlorine at lag 0 -4.2700 0.1416 -30.17 < 0.001
Free Chlorine at lag 1 -2.6978 0.1792 -15.06 < 0.001

Total Chlorine at lag 0 -0.8697 0.1458 -5.97 < 0.001
Total Chlorine at lag 1 1.0333 0.1602 6.45 < 0.001

Rainfall at lag 0 0.0078 0.0011 7.29 < 0.001
Rainfall at lag 1 -0.0159 0.0019 -8.20 < 0.001

Summer 1.1296 0.0887 12.74 < 0.001
Autumn 2.1439 0.0808 26.55 < 0.001

Spring 1.5491 0.0737 21.02 < 0.001

less than 0.001 as shown in the table.

The main effects of temperature on HPC37 counts are negative at lag zero and positive at lag

one. It is estimated that the mean HPC37 counts of a 1mL water sample in Durban-Heights

on a given day would be decreased by exp(β̂1 0 = −0.075) = 0.928 CFU/mL and increased

by exp(β̂2 1 = 0.129) = 1.138 CFU/mL a day later, adjusting for seasonal changes and all the

covariates conditional on samples that share the given site.

Effects of turbidity are positive at both lags zero and one. This means on any given day,

the mean HPC37 counts of a 1mL water sample in Durban-Heights would be increased by

exp(β̂3 0 = 0.490) = 1.632 CFU/mL on the same day and by exp(β̂4 1 = 0.604) = 1.829

CFU/mL a day later , adjusting for seasonal changes and all the covariates conditional on

samples that share the given site.

The main effects of pH are both negative at lags zero and one. It is estimated that the mean

HPC37 counts of a 1mL water sample in Durban-Heights on a given day would be decreased
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by exp(β̂5 0 = −2.383) = 0.092 CFU/mL on a particular day and exp(β̂6 1 = −2.176) = 0.113

CFU/mL one day later, adjusting for seasonal changes and all the covariates conditional on

samples that share the given site.

The main effects of free chlorine are both negative at lag zero and lag one. It is estimated

that the mean HPC37 counts of a 1mL water sample in Durban-Heights on a particular day

would be decreased by factor of exp(β̂7 0 = −4.270) = 0.014 CFU/mL on the same day and

exp(β̂8 1 = −2.698) = 0.067 CFU/mL a day later, adjusting for seasonal changes and all the

covariates conditional on samples that share the given site.

The main effect of total chlorine is negative at lag zero and positive at lag one. It is estimated

that the mean HPC37 counts of a 1mL water sample in Durban-Heights on a particular day

would be decreased by exp(β̂9 0 = −0.869) = 0.419 CFU/mL and increased by exp(β̂10 1 =

1.033) = 2.810 CFU/mL on the next day, adjusting for seasonal changes and all the covariates

conditional on samples that share the given site.

The effect of rainfall is positive at lag zero and negative at lag one. It is estimated that the

mean HPC37 counts of a 1mL water sample in Durban-Heights on a particular day is increased

by exp(β̂11 0 = 0.008) = 1.008 CFU/mL on the same day and decreased by exp(β̂12 1 =

−0.016) = 0.984 CFU/mL a day later, adjusting for seasonal changes and all the covariates

conditional on samples that share the given site.

The main effects of seasons (summer vs winter, autumn vs winter and spring vs winter)

are all positive. It is estimated that the mean HPC37 counts in the summer, autumn and

spring are exp(β̂13 = 1.129) = 3.093 CFU/mL, exp(β̂14 = 2.144) = 8.534 CFU/mL and

exp(β̂15 = 1.549) = 4.707 CFU/mL higher that the mean HPC37 counts during winter,

adjusting for all water quality variables conditional on samples that share the same site.
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4.6 Application of the GLMM Poisson Distributed Lag

Model for Total Coliforms Predictions

GLMM Poisson distributed lag model has shown that all water quality variables are the good

predictors of Total Coliforms occurrence in the DH system, however, not at both lags in some

predictors. It is worth noting that p-values in Table B.1 found in Appendix B are denoted

in terms of asterisks, where ∗, ∗∗ and ∗∗∗ denote p-value that is less than 10%, 5% and 1%

respectively.

All the covariates or predictor variables interpreted here are significant at 5% level of signif-

icance. The main effects of temperature on TC count are positive at lag zero. It is estimate

that the mean TC counts of a 100mL water sample in DH would be increased by a factor of

exp(β̂1 0 = 0.727) = 2.069 CFU/100mL on the same day, adjusting for seasonal changes and

all the covariates conditional on samples that share the same site.

The main effects of turbidity on TC counts are positive at lag one. It is estimated that

the mean TC counts of a 100mL water sample in DH would be increased by a factor of

exp(β̂4 1 = 0.896) = 2.450 CFU/100mL one day later, adjusting for seasonal changes and all

the covariates conditional on samples that share the same site.

The main effects of pH at lag one are significant at the 5% level of significant. It is estimated

that the mean TC counts of a 100mL water sample in DH would be decreased by a factor of

exp(β̂6 1 = −3.105) = 0.045 CFU/mL one day later, adjusting for seasonal changes and all

the covariates conditional on samples that share the same site.

The main effects of free chlorine are significantly positive at lag one and negative at lag two,

at the 5% level of significance. It is estimated that the mean TC counts of a 100mL water

sample in DH would be increased by a factor of exp(β̂7 0 = 3.744) = 42.267 CFU/100mL on

same day and decreased by exp(β̂8 1 = −2.524) = 0.078 CFU/100mL one day later, adjusting

for seasonal changes and all the covariates conditional on samples that share the same site.

The main effects of total chlorine are significantly negative at lag zero. It is estimated

that the mean TC counts of a 100mL water sample would be decreased by a factor of
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exp(β̂9 0 = −1.655) = 0.191 CFU/100mL on the same day, adjusting for seasonal changes

and all the covariates conditional on samples that share the same site.

The main effects of rainfall are significantly negative at lags one and two. It is estimated

that the mean TC counts of a 100mL water sample in DH would be decreased by a factor

of exp(β̂11 0 = −0.069) = 0.933 CFU/100mL water sample on the same day and exp(β̂12 1 =

−0.108) = 0.898 CFU/100mL water sample a day later, adjusting for seasonal changes and

all the covariates conditional on samples that share the same site.

The main effects of seasons (summer vs winter, autumn vs winter and spring vs winter)

are all negative. It is estimated that the mean TC counts in the summer, autumn and

spring are exp(β̂13 = −3.688) = 0.025 CFU/mL, exp(β̂14 = −4.110) = 0.016 CFU/mL and

exp(β̂15 = −3.157) = 0.043 CFU/mL lower mean TC counts during winter, adjusting for all

water quality variables conditional on samples that share the given site.

4.7 Intraclass Correlation Coefficient

The intraclass correlation coefficient (ICC) is a measure describing the homogeneity of obser-

vations (or responses) on the dependent variable within a cluster (West et al., 2014).

Examples of clustered data include:

• individuals sampled within sites. In this case the sites are the clusters.

• longitudinal data (repeated measures) where multiple observations are collected from

the same individual over time. The ICC is the ratio of the between-cluster variance to

the total variance. It explains the proportion of the total variance in the response that

is accounted for by the clustering or the correlation among observations within the same

cluster. It helps determine whether or not the use of a mixed model is necessary.

According to Francisque et al. (2009) this coefficient is equal to zero if HPC37 measures are
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independent. On the other hand, it is equal to one if HPC37 measures are exactly the same

and not equal to zero implies that the HPC37 measures are not independent. That is, the

ICC not equal to zero means that HPC37 measures in the same sub-system (reservoir) are

found in similar environment or affected by the unobserved sub-system factors; for example

the location of pipe, the material of pipe, the age of the pipe, the amount of time spent by

water in the pipe, the velocity and flow, etc.

Recall that under GLM, the distributed lag Poisson model for HPC37 counts yt takes the form

yt ∼ Poisson(µt),

log µt = θt, (4.15)

where θt = β0 +
∑p

i=1

∑1
`=0 βi`xt−`.

Also, recall that under GLMM, the distributed lag Poisson model can be represented as

log µts = θts + γs, (4.16)

where site s = 1, 2 and 3 for sampling sites, θts and µts are defined as in Equation 4.15, and

in addition, γs is the sampling site (reservoir) random effect, that is γs ∼ N(0, τ).

Now to measure the intraclass correlation, that is the correlation among HPC37 count obser-

vations within a sub-system, we use the ICC denoted by ρ and it ranges between zero and

one. This correlation coefficient can be obtained as:

ρ = corr(yts, yt′s) =
τ

τ + ζ
. (4.17)
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4.8 Model Validation

The distribution of residuals for the distributed lag Poisson GLMM is similar to those in

Chapter 3, see Figure 4.1. These residual confirm that the data is overdispersed. It is not

easy to tell if the model is adequate for this microbiological data using these plots.
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Figure 4.1: Graphical validation tools for the Poisson GLMM.

However, in comparing the fitted models in Chapter 3 with the distributed lag Poisson GLMM

we make use of the information-theoretic approaches. Information-theoretic model selection

allow comparison of multiple, non nested models (Bolker et al., 2009).

4.9 Random Effects Model Validation

To diagnose random effects effects, West et al. (2014) recommend the use of standard diagnos-

tic plots like histogram, Q-Q plots, and scatterplots to investigate empirical Bayes predictors,

which are also referred to as random-effects predictors or empirical best linear unbiased pre-

dictors (EBLUPs). This investigation is conducted for detection of potential outliers that

may warrant further investigation. According to West et al. (2014) checking for normality is
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of limited value because their distribution does not necessarily reflect the distribution of the

random effect.
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Figure 4.2: Within site graphical validation tools for the Poisson GLMM.

Figure 4.2 shows the within site deviance residuals against the predicted values of the dis-

tributed lag Poisson GLMM. The distribution of the residuals is similar across the three sites.
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Chapter 5

Model Comparison and Discussion

Models for explanations and predictions of HPC37 and Total Coliforms in the water treatment

plant (distribution system) were developed based on multiple regression analysis. Identifica-

tion of the association between HPC37 and other water quality parameters is allowed through

the regression approach. Three models were developed and fitted to the data under the

assumption of independence or not about HPC37 and Total Coliform count observations. A

distributed lag (DL) quasi-Poisson model and a DL negative binomial were applied in Chapter

3 and a DL Poisson GLMM was applied in Chapter 4.

After estimating parameter values, the next step is statistical inference: that is, hypothesis

testing, drawing of conclusions, selection of best model and evaluation of goodness-of-fit among

models.

Deviance and Pearson’s chi-square statistics measure the discrepancy of fit between the max-

imum log-likelihood achievable and achieved log-likelihood by the fitted model Christensen

2006. However, obtaining a goodness of fit test for over-dispersed models is not as simple as

fitting a Poisson model where the residual deviance or the Pearson’s χ2 can often be used

(Hinde and Demétrio, 1998). It is important to know which among the fitted model best fit

the data.
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Deviance is two times the difference between the maximum likelihood of the saturated model

and the maximum log-likelihood of the specified generalized linear model, that is,

D(y, µ̂) = 2{`(y; y)− `(µ̂; y)}, (5.1)

where `(y; y)) is the log-likelihood under the maximum achievable model and `(µ̂; y) is the

log-likelihood under the current model. The main aim is to minimize D(y, µ̂), scaled by the

dispersion parameter φ, by maximizing `(µ̂; y) as follows

D∗ =
1

φ
D, (5.2)

where D∗ denote the scaled deviance. In cases where φ is not known

φ̂ =
D

n− p
, (5.3)

where n is the number of observations, and p is the number of parameters (Lindsey, 1997).

The deviance D ∼ χ2
n−p, where n−p are the degrees of freedom (McCullagh and Nelder, 1989;

Lindsey, 1997). This statistics is called the goodness-of-fit and test the hypothesis

HO: Model is adequate

HA: Model is not adequate

The null hypothesis HO is rejected if D > χ2
n−p,α, where α is the level of significance.

Therefore models fitted in Chapters 3 and 4 are compared using information theoretic ap-

proaches. Information theoretic approaches such as Akaike’s inforamtion criteria (AIC; Akaike

1973) or Bayesian information criteria (BIC; Schwarz 1978) are often considered for selection

between quasi-Poisson model and a negative binomial (Ver Hoef and Boveng, 2007). It is

worth noting that these approaches depend on a distributional form and the likelihood; there-

fore since quasi models are characterized by their mean and variance and do not have the
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distributional form Burnham and Anderson (2003) developed quasi-AIC for comparing within

the class of quasi models.

The AIC can be calculated as follows:

AIC = −2`(µ; y) + 2p,

where p is the number of parameters in the model.

In cases where count data are overdispersed, quasi-likelihood methods are appropriate and

the theory leads to modified information criteria such as QAIC and QAICc (Burnham and

Anderson, 2003; Kim et al., 2014). According to Burnham and Anderson (2003) the principles

of quasi-likelihood suggest modification of AIC to

QAIC = −[2 log(L(µ̂); y)φ̂] + 2p.

From Table 5.1, the AIC suggest that the distributed lag quasi-Poisson is a better model for

the data since it has the smallest AIC value.

Table 5.1: A comparison of distributed lag count regression models for HPC37 occurrence.

Dependent variable:

HPC37

GLM: Quasi-Poisson Negative
link = log Binomial

(1) (2)

Quasi-/Akaike Inf. Crit. 393.2104 6,193.071

The quasi-Poisson and the negative binomial models assume independence among HPC37

observations coming from the same reservoir (sampling site). The assumption holds, since

on the basis of the generalized linear mixed model only about 2% of the variability was ex-

plained by the reservoir. Note that the quasi-AIC is compared to the AIC for the negative

binomial model. For further details on the comparison between AIC and QAIC can be found
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in Sileshi (2006) among others. According to Ver Hoef and Boveng (2007), to choose between

a quasi-Poisson and the negative binomial needs a good understanding between them. Model

selection using likelihood-based methods is still a problem. However, Ver Hoef and Boveng

(2007) emphasize that an important way to choose an appropriate model is based on scien-

tific reasoning; that is understanding the difference in weighting between quasi-Poisson and

negative binomial. It is important to note that only models falling under the same class of

models are compared. In this case we are comparing the quasi-Poisson with negative binomial

which are GLMs. The Poisson under GLMM is not compared to any model because it is a

model in its own class. Moreover, the sampling-point level ICC for HPC37 appears to be

very weak,ρ̂ = 0.002. This result suggest that the HPC37 measures originating from the same

sampling-point/tap are practically independent.

The sampling-point level ICC for total coliforms appears to be strong, ρ̂ = 0.8. This result

suggests that the total coliforms measures coming from the same sampling-point/tap are

greatly influenced by unobserved factors at the sampling point level. These include factors

such as location, the age of the pipe, the material of pipe, the amount of time spent in the

pipe, the velocity of water and its flow. Therefore, the quasi-Poisson GLMM approach is

preferred than the quasi-Poisson GLM in predicting total coliforms positive counts. That

is, the use of generalized linear mixed models for a clustering effect at the level of sampling

points/subsystems is suggested for modeling total coliforms data, respectively. This is based

on the fact that quasi-Poisson model violate the independence postulate of the observations.
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Chapter 6

Conclusion and Further Research

6.1 Conclusion

This thesis was primarily concerned with modelling the role of the water quality and environ-

mental factor variables on the occurrence of HPC37 and TC counts in the Durban Heights

(DH) water treatment plant that supply water to Durban city in KwaZulu-Natal province in

South Africa. The statistical models that were developed fall under the framework of GLMs

and GLMMs which allow for predictions and investigation of count data such as HPC37 and

TC.

The exploratory data analysis showed that temperature influences bacterial counts in the

system. That is, as seasons change, so does the temperature and thus bacterial counts differ

across the four seasons. High turbidity, rainfall and temperature levels seemed to be associated

with high bacterial counts and high chlorine and pH levels seemed to be associated with low

bacterial counts. These are similar to findings of a study by Francisque et al. (2009) among

others.

Models showed that, on average, the effects of temperature on HPC37 can be explained or

observed one day later, which means there is a time lapse of one day before the effects of
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increased or decreased temperature on HPC37. Free chlorine showed consistency in bacterial

reduction in all the models across the three DH sites on HPC37. On any particular day,

increased levels of turbidity are related to bacterial counts in the DH system on the present

day and also one day later. The pH of final water in DH has shown negative effect with

bacterial counts in the system as well as rainfall. Total chlorine effects significantly reduce

HPC37 positive counts on the present day but not one day later. Lastly, relative to winter,

autumn is the season with the highest number of HPC37 positive counts followed by summer

then spring comes last.

On the other hand, a GLMM showed that the effects of temperature on TC can be explained or

observed on the same day, which means there are immediate effects of increased or decreased

temperature on TC. There is a time lapse of one day before the effects of increased or decreased

turbidity on TC. The effects of free chlorine can be explained on the same day and one day

later on TC counts. There is a time lapse of one day before the effects of increased or decreased

pH of water on TC counts. The effects of total chlorine can be explained or observed on the

same day, which means there are immediate effects of increased or decreased total chlorine on

TC. The effects of rainfall can be explained or observed both on the same day and one day

later. According to the results of a GLMM, winter relative to summer, spring and autumn is

expected to have more TC counts.

Models were compared using quasi-/AIC information criterion. Results showed that simple

quasi-Poisson performed better than the negative binomial model. In fact, GLM and GLMMs

are the appropriate framework of models to use when dealing with non-normal data. Thus,

the Quasi-/Poisson and negative binomial model for counts data were used and relationships

between microbiological-out-of-range data and measurable variables were obtained.

The ICC indicated a strong intra-site or system correlation of about 80%, meaning that,

assuming water samples coming from a specific site are independent when analyzing the data

is not justified. This also means that TC counts may not result from water quality or external

environmental factors but may be a result of subsystem factors such a the age of the pipe,
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material of the pipe, amount of time water spends in the system/reservoir, velocity and the

flow of the water or other possible unobserved factors (Francisque et al., 2009). These factors

need to be investigated.

The historical microbiological data is useful for understanding previous patterns and trends so

that future events can be predicted. The time series approach in this project has shown how,

on average, various predictors influence the TC and HPC37 bacteria over a two-day period.

That is, it should be easy to control for bacteria over a certain period of time through the use

of distributed lag models GLMs and GLMMs respectively.

This work is of use to microbiologists, statisticians and water supply agencies in general.

6.2 Further Research

The major challenges in statistical modeling of bacterial counts is concerned with understand-

ing water quality dormancy and relapse and their interactions within the system. This thesis

sought to find the relationship between microbiological out of range counts and related water

quality including other measurable variables at Umgeni Water. Nonetheless, it is impractical

to incorporate all the variables influencing the bacteria in final water. Statistical modeling of

these bacterial counts therefore leave out certain aspects which when considered could give

more insights concerning microbiological out of range, water quality and other measurable

variables at Umgeni Water.

Accounting for missing data is important but has limitations if the amount of missing in-

formation is large, thus loss of information during data collection should be minimized. A

missing rate of 5% or less is recommended, see (Schafer, 1999). Variability of microbiologi-

cal occurrences located at different locations but supplied by one reservoir can be looked at.

That is, water samples from different locations supplied by one reservoir can be used to test

if there is variability due to different places. The model need to be enhanced in order to

account for excess zeros in the data and inclusion of the capacity to handle latent effects by
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using Bayesian estimation methods. Bayesian estimation methods have the potential of being

used as a decision making tool by continually updating it with new information to adapt to

changing operational needs. The goal should be to move towards a predictive dynamic model

for monitoring and intervention purposes.
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Appendix A

R Code

This appendix show the R statistical software commands used.

A.1 Data Preparation in R

Given data sets TDH007, TDH008 and TDH010 with equal number of columns variables that

are in the same order, the R code to column merge data is:

data12 <- rbind(TDH007,TDH008) # Merge site 1 with site 2

data123 <- rbind(data12,TDH010) # Merge sites 1 and 2 with site 3

# Declare a date variable:

data123$date <- as.Date(data123$date, format="%d-%m-%y")

# Convert dates in data123 to months:

data123$time <- month(as.POSIXlt(data123$date, format="%d/%m/%Y"))

# Declare a site variable and time as factors:

data123$site <- as.factor(data123$site)
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data123$time <- as.factor(data123$time)

# Group months from time-variable into seasons and create a new categorical

# variable and call it Time":

data123$t <- unclass(data123$time)

data123$Time <- rec(data123$t, "5,4,3=1;1,9,8=2;6,2,7=3; 11,10,12=4")

data123$Time <- factor(data123$Time)

# Categorize observations within a variable using function "Recode":

data123$HPC37.cat <- Recode(data123$HPC37, "0 =’0’;

0.1:10=’1-10’;

10.1:100=’11-100’;

100.1:1000=’101-1000’;

1000.1:10000000=’> 1000’",

as.factor.result=TRUE)

A.2 R Code Used For Exploratory Data Analysis

Note that R can generate Latex commands. To produce summary statistics tables for Latex

in R:

stargazer(TDH007); stargazer(TDH008); stargazer(TDH010)

The plots showing the distribution of the data in R:

# Put multiple plots as a single figure:

# Example: for plotting in 2 rows and 4 columns use:

par(mar=c(2,4,2,2), mfrow=c(2,4))
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with{data123,

plot(date, HPC37, xlab="Time (Years)", ylab="HPC37 (Counts)",

main="Heading of the graph")

}

Plotting stacked bar plots in R as follows:

cat1<- data123$rain.cat

HPC <- data123$HPC37.cat

df1 <-data.frame(cat1,HPC)

df3 <- df1 %>%

group_by(cat1, HPC) %>%

summarise(n=n()) %>%

mutate(percent = (n / sum(n)), cumsum = cumsum(percent),

label=ifelse(HPC=="11-100", paste0("n=", sum(n)),""))

ggplot(df3[order(df3$HPC),],aes(x=cat1, y=percent, fill=HPC,na.rm=TRUE)) +

scale_y_continuous(labels = scales::percent) +

scale_fill_grey(drop=FALSE) +

labs( y = "Distribution of HPC classes (%)") +

labs( x= "Time (Seasons)")+

geom_bar(position = ’fill’,color = "black", stat="identity") +

geom_text(aes(y=cumsum + 0.02, label=label,na.rm=T), vjust=0,

position = "identity") +

ggtitle("TITLE")
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A.3 R Code Used for Model Fitting

Start by setting the reference category using the commands:

data123 <- within(data123, site <- relevel(site,ref=3))

data123 <- within(data123, Time <- relevel(Time,ref=3))

For fitting distributed lag quasi-/Poisson GLM:

model 1 <- glm(HPC37 ~ Lag(Temperature, 0:1, Time)+Lag(Turbidity, 0:1, Time)+ ...

+Lag(Rainfall, 0:1, Time),family="quasipoisson" data="data123")

For fitting distributed lag negative binomial GLM:

model 2 <- glm.nb(HPC37 ~ Lag(Temperature, 0:1, Time)+Lag(Turbidity, 0:1, Time)+ ...

+Lag(Rainfall, 0:1, Time), data="data123")

For fitting distributed lag Poisson GLMM:

model 3 <- glmer(HPC37 ~ Lag(Temperature, 0:1, Time)+Lag(Turbidity, 0:1, Time)+ ...

+Lag(Rainfall, 0:1, Time),family="poisson", data="data123")

A.4 Output ready for Latex in R

Regression model output codes were generated in R using:
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xtable(summary(model 1)) # Or model 2

For extracting GLMM fitted model:

Reg_glmm <- coef(summary(model 3))

xtable(Reg_glmm)
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Appendix B

Results for Total Coliforms occurrence

Table B.1: Regression models 1 and 3 for Total Coliforms occurrence, DHF 1, 2 and 3:
1991-1997.

Dependent variable:

Total Coliforms

Model 1: Quasi-Poisson Model 3: Generalized Linear
link = log Mixed-Effects
Estimate Estimate

(Std. Error) (Std. Error)

Temperature at lag 0 0.727 0.727∗∗∗

(0.459) (0.048)
Temperature at lag 1 0.063 0.063

(0.435) (0.046)
Turbidity at lag 0 −0.243 −0.235

(5.845) (0.613)
Turbidity at lag 1 0.896 0.896∗∗∗

(1.827) (0.192)
pH at lag 0 0.470 0.469

(4.138) (0.435)
pH at lag 1 −3.100 −3.105∗∗∗

(4.327) (0.455)
Free Chlorine at lag 0 3.741 3.744∗∗∗

(7.825) (0.824)
Free Chlorine at lag 1 −2.542 −2.545∗∗∗

(7.498) (0.789)
Total Chlorine at lag 0 −1.649 −1.655∗∗

(6.766) (0.712)
Total Chlorine at lag 1 0.276 0.271

(6.555) (0.689)
Rainfall at lag 0 −0.069 −0.069∗∗∗

(0.178) (0.019)
Rainfall at lag 1 −0.108 −0.108∗∗∗

(0.302) (0.032)
Summer −3.684 −3.688∗∗∗

(3.368) (0.354)
Autumn −4.106 −4.110∗∗∗

(3.404) (0.358)
Spring −3.155 −3.157∗∗∗

(3.197) (0.336)
DHF 1 2.254 RF

(1.739)
DHF 2 0.139 RF

(2.336)
Constant 0.349 1.189

(42.435) (4.500)

sampling-point ρs n.a. 0.825
Quasi-/AIC 83.343 4,502.682

∗∗ significant at 5%; ∗∗∗ significant at 1%,

n.a.: not applicable; ρs: correlation within the reservoir;
RF: random factor.
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