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ABSTRACT 

 

South Africa is naturally a water-scarce country and the climate is semi-arid hence, become 

particularly prone to droughts, which impact all facets of society and the environment. Climate 

change projections predict that droughts will worsen with the higher temperatures and 

fluctuating rainfall patterns. It is therefore vital that the country prepares for this natural 

phenomenon. In this study, drought estimation will be undertaken by using drought indices that 

have been utilised to analyse drought events in the past and by using the currently available 

sources of climatic data and satellite earth observation data. Since Evapotranspiration (ET) and 

rainfall drives the hydrological cycle, drought indices based on these variables will be 

investigated. The overall aim of this research study was to investigate, apply and evaluate a 

satellite-derived evaporative drought index in South Africa. The spatio-temporal evolution of 

droughts were analysed in the Upper Thukela and Umgeni Catchments, within the province of 

KwaZulu-Natal, South Africa for the study period 2011-2016. Drought analysis was carried out 

by using the Evapotranspiration Deficit Index (ETDI), the Standardized Precipitation Index 

(SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI), at a monthly 

temporal scale. The LSA-SAF DMET product was used to obtain actual ET (ETa) estimates for 

the study. A validation of the product against the surface renewal (SR) and eddy covariance 

(EC) systems within the Umgeni Catchment produced a correlation coefficient of 0.90 and a R2 

of 0.81. The satellite-derived Hargreaves-LST method was followed to obtain reference ET 

(ETo) estimates; the approach was calibrated using the FAO Penman Monteith ETo estimates 

and produced correlation coefficients of ≥0.86 for the selected quaternary catchment’s (QC’s). 

The SPI was calculated using in-situ data and the Famine Early Warning Systems Network 

African Rainfall Climatology (FEWS ARC 2.0) rainfall product for the Umgeni Catchment. 

This produced a R2, ranging from 0.80-0.96, whilst between the FEWS ARC 2.0 and in-situ 

data for the Upper Thukela produced an R2 that ranged from 0.55-0.72. The years, 2015 and 

2016, was revealed as major drought years by the SPI, SPEI and ETDI, with prolonged dryness 

being detected for 2010 until 2016. The ETDI was compared using cross correlation analyses, 

which produced R2 values that ranged from 0.31-0.73 for the Umgeni Catchment. Evaporative 

indices are suggested for use in semi-arid to arid regions as they contribute significantly to the 

water cycle. In addition, by utilizing satellite-derived drought indices, the analysis of the spatio-

temporal patterns of droughts can contribute to an understanding of the mechanism of drought 

propagation and planning required for drought hazard mitigation. 
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1. INTRODUCTION 

 

An essential element of life that is required by all inhabitants of our planet is water (Pedro-

Monzonís et al., 2015). South Africa has been characterized as a semi-arid to arid country that 

has highly constrained fresh water resources, due to a highly variable climate (Dennis and 

Dennis, 2012; WRC, 2015). Climate change and variability impose weather extremes, which 

affect these finite water resources (UNFCCC, 2011; Dennis and Dennis, 2012; WRC, 2015). 

The unprecedented and rapidly-growing human population, as well as the need for water for 

socio-economic development in South Africa, have further impacted the availability of the 

already limited water resources (Shoko et al., 2013; WWAP, 2015). The country consists of a 

number of water resource consumers, who are all competing for a share of the limited resource 

(Jarmain et al., 2009). Coupled with the predominately arid environment of the country, the 

growing demand for water resources has led to a situation in which the demand surpasses the 

natural availability of water in many areas in South Africa (Molobela and Sinha, 2011).  

 

Less than 500 mm of rainfall a year is received by three-quarters of the country (Dennis and 

Dennis, 2012; WRC, 2015), of which on average, South Africa receives about half the global 

mean annual precipitation (MAP) (860 mm) (Pitman, 2011; WRC, 2015). This natural water 

scarcity makes South Africa particularly prone to droughts (WRC, 2015). Hence, droughts are 

a regular feature of South Africa’s climate due to the characteristic features of the country’s 

greatly varied weather and climate extremes (Rouault and Richard, 2003). Droughts are 

acknowledged as being disastrous natural phenomena that have an impact on the environment, 

on agriculture and on the socio-economic spheres (Bhuiyan, 2004; van Loon and Laaha, 2014; 

Winkler et al., 2017). Epidemics, famine, the relocation of populations and malnutrition are 

some of the severe consequences brought about by droughts (Rojas, 2011).  

 

South Africa’s climate is further characterized by dry spells, also known as El Niño (years 

experiencing below-normal rainfall), and by wet spells known as La Niña (years experiencing 

above-normal rainfall) (WRC, 2015). These alternating wet and dry periods often amplify 

drought situations and escalate the risks associated with widespread water shortages (WRC, 

2015). In the late 2014 until the beginning of 2017, South Africa had been experiencing drought 

conditions, making the situation worse, the drought event had occurred within a prolonged dry 

period that had coincided with the El Niño phase. The country had therefore faced a severe 
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drought, with many of the country’s dam levels being drastically reduced, water-restrictions 

being implemented and many areas in the country have had to deal with lower assurance of 

supply levels, as the drought conditions continued to intensify. This event had been recognized 

as a national drought, with the driest cropping season in more than 35 years (SADC, 2016). 

Seven of the country’s nine provinces had to be declared as drought emergencies (SADC, 

2016).  

 

Furthermore, climate change may result in temperature increases and changes in rainfall 

patterns, leading to an increase in the frequency and intensity of droughts experienced 

worldwide (Burke et al., 2006; Lehner et al., 2006; Feyen and Dankers, 2009; Dai, 2011; Dai, 

2013; Prudhomme et al., 2014; Trenberth et al., 2014; Wanders and Wada, 2014). As a result 

of climate change, a warmer climate and reduced summer rainfalls combined with increased 

evaporation is predicted to prevail, hence the danger of droughts increases and food- and water-

security are placed at risk (UNFCCC, 2011).  

 

The key to drought readiness and preparedness is about being knowledgeable regarding the 

how, when and what of the drought event (WRC, 2015). In order to achieve this goal, the 

capability of the observation networks, the scientific expertise to monitor and predict, as well 

as information systems to provide for early drought warnings need to be upgraded, focused and 

targeted (WRC, 2015). Drought indices are an efficient way of quantifying the impacts derived 

from droughts, for monitoring droughts in a real-time manner and for risk management 

(Vicente-Serrano et al., 2012a). There are several of drought indices that have evolved over the 

years and the different drought indices have been established on distinct hydrological variables, 

such as soil moisture, precipitation or evapotranspiration (ET). 

 

Water is mainly consumed through evaporation (E), which accounts for water loss from the 

surface, and from transpiration, which accounts for water loss from vegetation (T), which are 

jointly termed evapotranspiration (ET) (Bastiaanssen et al., 2012; Sepulcre et al., 2014; Shoko 

et al., 2015). However, several authors state that the use of the term ET should be avoided, as 

it is a misleading term since it combines evaporation processes from different surfaces 

(Savenije, 2004; McMahon et al., 2012). Hence, in this document, evapotranspiration from a 

well-watered reference surface is termed reference evapotranspiration (ETo) (Tian and 

Martinez, 2012), actual evapotranspiration (ETa) refers to the quantity of actual water that is 

being removed from the earth’s surface as a result of evaporation and transpiration processes 
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occurring while, potential evapotranspiration (PET) represents the amount of evaporation that 

will occur if an adequate water source is available.  

 

It has been noted that 91% of the MAP that is received by the region of southern Africa, returns 

to the atmosphere by means of ETa (Whitmore, 1971). ETa is a key water cycle related variable, 

playing a crucial role in the carbon and energy cycles (Timmermans et al., 2010). Through 

these cycles, the estimation of ETa is therefore vital for agricultural irrigation management, 

drought monitoring and weather forecast modelling (Timmermans et al., 2010). Drought 

conditions and the need for irrigation can be obtained from ETa estimates, since they provide a 

direct forewarning of the growth rate and health status of crops. In addition, evaporation from 

open water bodies, soil water and plant transpiration merge as a lower forcing boundary 

parameter to the atmosphere which affects local and regional weather patterns (Timmermans 

et al., 2010). 

 

In water-scarce regions of the world, the ETa process dominates the hydrological cycle, hence, 

accurate ETa estimation can prove to be very valuable for improving water resources 

management and irrigation, which, in turn, contributes to the improvement of agricultural 

production and water conservation (Elhaddad et al., 2011). The estimation of historical ETa, as 

well as reliable short-term forecasts of ETa, play a crucial role in understanding the water 

balance, which is a key element in water accounting for the management and monitoring of 

water resources as well as for evaluating water productivity (Mutiga et al., 2010; Shoko et al., 

2013).  

 

In the light of the impacts associated with droughts, there is a need to manage our water 

resources. Whatever the approach to the management of droughts may be (water management, 

water planning, and economy), it is necessary to understand the relationship between the 

physical variables, such as reservoir volumes, temperatures, precipitation, infrastructure 

management, water demands (ETa), streamflows and piezometric levels, in order to enable the 

more efficient allocation of water resources. As a result, this study investigates the role of 

hydrological variables such as ETa, precipitation and temperature for drought monitoring and 

risk management. The reason for this, by convention it is assumed that the water cycle begins 

with ETa and it is through this process that increasing temperature in the coming decades as a 

result of climate change would most directly affect water resources. It is indicated that reduced 

summer rainfall with increased PET together with changes in seasonality and variability will 
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cause increased droughts (UNFCCC, 2011). As a result of the above-mentioned, the study 

places focus on ETa, precipitation and temperature-based drought indices, based on satellite 

earth observation data (SEO), since the monitoring of drought and drought severity using in-

situ data has often been difficult. This has been due to the lack of long-term data records, 

worsened by declining gauging networks and the incapability of in-situ data to capture the 

spatial and temporal coverage of such variables (Berhan et al., 2011; Sheffield and Wood, 

2011; Gokool, 2016). 

 

In addition, there is a significant need to develop and expand our existing knowledge and to 

better understand and quantify ETa at representative temporal and spatial scale to assist in 

assessing drought conditions. The conventional techniques used to estimate ETa are unable to 

obtain large-scale spatial ETa estimates, as they are only representative at point or localised 

field scales and cannot easily be extended over larger geographic scales (Gokool, 2016). Over 

the past four decades, the recent research and advances in satellite earth observation systems 

have provided new opportunities for obtaining hydro-meteorological data (Sorooshian and 

AghaKouchak, 2010). The utilisation of SEO has enabled us to capture hydro-meteorological 

data for large geographic scales, as well as for remote, ungauged areas, that are not easily 

accessible. Earth observational techniques provide near real-time, efficient and robust spatial 

and temporal data, which are applicable for extensive ETa estimation for better water resources 

management.  

 

As opposed to the conventional techniques, advances in modelling and the measurement of ETa 

and other variables within the hydrological cycle, using satellite observations, are advocated 

more frequently (Sorooshian and AghaKouchak, 2010; Gokool, 2016). These estimates and 

hydro-meteorological data obtained through satellite earth observation techniques enable 

drought indices to be calculated and for the spatio-temporal analyses of droughts to be achieved 

(Berhan et al., 2011). 

 

1.1 Research Aims 

 

The aim of this study was to investigate, apply and evaluate a satellite-derived evaporative 

drought index in South Africa, which can then be used to inform decision-making in water 

resources management, to assess drought conditions as well as to understand and to obtain 
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accurate estimates of ETa on a greater temporal and spatial scale, by using satellite earth 

observational techniques.  

 

1.1.1 Objectives 

 

The specific objectives of this study include the following: 

 

(i) The review of literature pertaining to current techniques, which utilize satellite derived 

earth observation data to estimate ETa and ETo.  

(ii) The investigation and application of the Evapotranspiration Deficit Index (ETDI) in 

South Africa, using satellite derived earth observation data. 

(iii) The estimation of ETo from satellite earth observation data for use in the ETDI 

calculation. 

(iv) The application and validation of a satellite-based ETa product as an input for the ETDI 

calculation. 

(v) The application of the Standardized Precipitation Index (SPI) and Standardized 

Precipitation Evapotranspiration Index (SPEI) to confirm the occurrence of drought 

events. 

(vi) The assessment of the ETDI, using the SPI and SPEI as indicators of droughts in 

selected Quaternary level sub-Catchments (QC’s) in South Africa. 

(vii) The investigation of the use of satellite-based drought indices in an ungauged 

catchment. 

 

1.1.2 Research questions 

 

The following research questions will be investigated: 

 

(i) Is the derivation of ETa from satellite-based data a reliable way of obtaining an 

evaporative drought index to monitor droughts? 

(ii) Is the calculation of an ETDI, using satellite earth observation data effective in the 

monitoring of droughts? 
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(iii) What is an appropriate method of estimating satellite-derived ETo? 

(iv) Can satellite data be used to calculate drought indices in an ungauged catchment? and 

(v) How is the resulting information utilizing satellite earth observation data going to assist 

in monitoring droughts?  

 

1.2 Organization of Dissertation 

 

This dissertation is divided into five chapters, starting with introduction in Chapter One and 

ending with conclusion and recommendations in Chapter Five. An overview of the dissertation 

is presented as follows: 

 

The literature review in the second chapter outlines the importance of droughts, drought 

monitoring and the different types of drought indices. An investigation of recent developments, 

specifically in the field of remote sensing (RS), which assist in drought monitoring using ETa 

is also detailed. In addition, there is focus on the case studies and products that are based on 

SEO, which are used to obtain the parameters of the hydrological cycle to assess drought 

conditions. Chapter Two ends with an evaluation of the literature. It is a significant section, 

which summarizes the evaluated literature, reports on the gaps identified within the literature 

review and paves the way for the methodology, which is presented in Chapter Three. This 

chapter outlines the study areas and provides a detail description of the satellite data, 

meteorological data and validation data that were used in the study, along with details of the 

various procedures and techniques that were implemented. Chapter Four contains the results 

and discussion of the research study. The conclusion, limitations and recommendations are 

discussed in Chapter Five. 
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2. LITERATURE REVIEW 

 

This chapter provides a review of literature pertaining to droughts, drought indices and the 

current techniques used to estimate ETa and ETo, using SEO. The use of SEO for providing the 

estimates of variables within the hydrological cycle is discussed, along with the use of the data 

used specifically for the monitoring of droughts. Information on satellite earth observation 

products is also contained in this review. 

 

2.1 Droughts 

 

Studies on droughts and drought management have gained increasing attention in recent years.  

Obtaining a unique definition for the term ‘drought’ is difficult, since there is no universally-

accepted definition (Eden, 2012; Wilhite et al., 2014; van Loon, 2015). Drought is associated 

with dryness that is brought about by a shortage of water, or by levels of precipitation that are 

considered to be lower than normal (Petja et al., 2008; Zargar et al., 2011; Eden, 2012; 

Singleton, 2012; Wanga et al., 2015). It is commonly a result of climatic variations 

(Kershavarz, 2014; Wanga et al., 2015) and is also caused by an interaction between natural 

processes, such as the demand from humans and the environment caused by ETa and 

precipitation factors (Eden, 2012). Relative humidity, wind and temperature are some of the 

important factors that should be included in the characterization of a drought (Mishra and 

Singh, 2010; WMO, 2012; Wanga et al., 2015). 

 

A drought is usually described as a natural phenomenon or hazard that has an impact on many 

aspects of life, including society, the economy, the environment and agriculture (Bhuiyan, 

2004; Petja et al., 2008; Singleton, 2012; Wilhite et al., 2014; Pedro-Monzonís et al., 2015; 

Russo et al., 2015). Droughts are perceived to be, costly and widespread, as well as one of the 

least understood natural disasters (Rivera and Penalba, 2014; Sheffield et al., 2014). The reason 

for this is the large spatial extent and lengthy duration that are attributed to droughts, and are 

driven by multiple regional or global features associated with this natural disaster such as the 

El Niño–Southern Oscillation (ENSO) (Rivera and Penalba, 2014; Sheffield et al., 2014). In 

addition, over a notable period of time, the repercussions of a drought are known to slowly 

accumulate and may last for many years after the event has occurred (Vicente-Serrano, 2006; 

Singleton, 2012; Wilhite et al., 2014). As a result of a lengthy period of dryness, precipitation 
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becomes inadequate to meet the needs of both humans and the environment. When compared 

to other natural disasters, droughts affect a larger proportion of a population (Sheffield et al., 

2014). Furthermore, human activities such as land use changes, the poor management of water 

resources and deforestation, lead to drought conditions being further exacerbated. With most 

of the African continent being greatly dependent on rain-fed agriculture and with the impacts 

of drought on water resources and agriculture occurring over a large temporal and spatial scale, 

there are deleterious effects on food and water security (Sheffield et al., 2014; Masih et al., 

2014). Droughts can occur anywhere in the world; however, the most severe drought 

consequences are felt in arid to semi-arid regions (van Loon, 2015). 

 

The investigation of the temporal and spatial analyses of droughts is critical for sustained water 

resources management especially within semi-arid areas, as well as for their contribution to the 

climatic evaluation of an area (Rivera and Penalba, 2014). Furthermore, planning and preparing 

for droughts relies on how knowledgeable and informed one is about the severity, extent and 

duration of the event (Rivera and Penalba, 2014). 

 

Droughts may be classified into different categories, based on their impact on the receiving 

environment. The different types of droughts are reviewed in the next section. 

 

2.1.1 Types of drought 

 

Droughts are known to be associated with timing (i.e. delays in the start of a rainy season, 

which is the main season of occurrence), as well as the effectiveness of rains (i.e. rainfall 

intensity, duration and spatial coverage) (Masih et al., 2014; Wilhite et al., 2014). According 

to Wilhite and Glantz (1985), climatology and hydrological parameters play an imperative role 

in assisting in the characterisation of droughts. Hence, a specific drought event is different in 

terms of its climatic and hydrologic characteristics, its impacts and spatial extent (Wilhite et 

al., 2014).  

 

The four most common types of droughts are as follows (Wilhite and Glantz 1985; Petja et al., 

2008; Wilhite et al., 2014): 

 

a) Agricultural drought: The agricultural sector is affected by this type of drought. It 

frequently occurs when cultivated crops are harmed due to, a prolonged moisture 
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deficit (Eden, 2012). Since the water requirements of plants are not met, levels of 

ground water, soil conditions and plant characteristics are accounted for in this 

definition (Petja et al., 2008; Eden, 2012). A decline in crop yields result from this 

agricultural drought as well as crop development is affected (Pedro-Monzonís et al., 

2015). Hence, the availability of soil water to aid crop and forage growth is commonly 

used to define an agricultural drought (Petja et al., 2008; Wilhite et al., 2014).  

b) Meteorological drought: An extended period of dry weather is defined by this type 

of drought. Increases in temperature, the prolonged absence of rainfall and an 

accompanying decrease in humidity, which increases evapotranspiration results in the 

occurrence of a meteorological drought (Petja et al., 2008; Eden, 2012; Pedro-

Monzonís et al., 2015). 

c) Hydrological drought: As the name suggests, it relates specifically to hydro (water 

storage and flow) levels. It is a slow process drought that results when the supply of 

water from various water sources (lakes, streams and aquifers) drops below its normal 

level (Petja et al., 2008; Eden, 2012; Pedro-Monzonís et al., 2015). It may also be 

defined as the departure of surface and subsurface water supplies from an average 

condition occurring during various points in time. Hence, this type of drought occurs 

as a result of a deficiency in the water supply. (Petja et al., 2008; Wilhite et al., 2014; 

Pedro-Monzonís et al., 2015).  

d) Socio-economic drought: Along with economic losses, this type of drought affects 

the social aspects. The demand for goods escalates, resulting in socio-economic 

impacts and famine or human starvation is usually inflicted. Supply-and-demand 

within a society is related to the socio-economic effect of the above-mentioned three 

droughts (Petja et al., 2008; Eden, 2012; Wilhite et al., 2014). This type of drought is 

therefore usually associated with the supply of a commodity, such as hydroelectric 

power, which is dependent on precipitation (Wilhite et al., 2014). 

 

The aforementioned categories of droughts are all interrelated since they all emanate from a 

deficit of precipitation (Eden, 2012; Wilhite et al., 2014). Figure 2.1 portrays the interaction 

between the natural characteristics and human activities that rely on precipitation to supply 

sufficient water to meet the demands of the society and the environment (Wilhite et al., 2014). 
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Figure 2.1 Drought types, the common sequence of occurrence and the causal factors of 

droughts (Source: National Drought Mitigation Center, University of Nebraska-

Lincoln, US; cited by Wilhite et al., 2014) 

 

From the above discussion, it is evident that drought conditions influence various spheres of 

life. The current pressures placed on our water resources and the country’s climatic variability 

indicate that it is extremely crucial to administer water resources to satisfy the needs of a 

growing population and that there is a great need for sustainable water resource management 

practices. The monitoring of droughts and their impacts can be quantified through drought 

indices. This allows for a convenient way to express the level of risk associated with droughts. 

The beneficial use of drought indices for drought monitoring is elaborated on below. 

 

2.1.2 Drought monitoring through drought indices 

 

In an attempt to mitigate the negative impacts associated with droughts, proper methodologies 

and scientific approaches are needed to assist in developing policies and in decision-making, 

so as to reduce the hazardous consequences on both humans and the environment. Effective 

drought monitoring systems/techniques and improved forecasting and planning are some of the 

many ways that this can be done. For instance, through drought forecasting, farmers can make 

adaptive choices regarding crop varieties, technology investment and the source of labour. 
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They can also predict the duration of a drought event and improve their planning and resource 

allocation (Sheffield et al., 2014). Drought monitoring, forecasting and hydrological 

predictions have the capability to provide key information to an area for several reasons 

including urban and agricultural water supply, water resources management, as well as drought 

risk reduction.  

 

Since droughts are often seen as creeping phenomena, with a slow onset and cessation,  the 

provision of seasonal forecasts and the monitoring of drought development are crucial for 

drought risk reduction (Gillette, 1950, cited by Wilhite et al., 2014; Sheffield et al., 2014). 

Droughts are generally measured by an index or by the departure of a climatic variable such as 

precipitation or ETa and the determination of impact is related to the duration of a drought event 

(Wilhite et al., 2014).  

 

Drought indices are representative of an anomaly in respect of the past climate by means of 

models or observations (Heim, 2002). They have been established to assess, monitor and detect 

droughts (Pedro-Monzonís et al., 2015), easy to understand and are comparable in space and 

time (Heim, 2002). Over the years, a number of different types of drought indices have evolved 

specifically for the quantification and monitoring of droughts (Wanga et al., 2015). The 

following section details the various types of drought indices that exist. 

 

2.1.3 Examples of different drought indices 

 

According to Vicente-Serrano et al. (2012a), the quantification of impacts derived from 

droughts, together with the monitoring of droughts in a real-time manner so that it can be 

understood by users can be conducted through drought indices. Over the years, several different 

types of indices have evolved and are used widely for the monitoring, risk management and 

assessment of droughts. A drought index is frequently termed as a typical single value that is 

efficient for decision-making and for providing decision-makers with information regarding 

drought severities (Hayes et al., 2007). 

 

Drought indices are further defined as quantitative measures that identify droughts by 

assimilating climatic data (i.e. rainfall, temperature and streamflow) from one or several other 

variables into a single numerical value (Petja et al., 2008; Zagar et al., 2011). There is no 

quintessential index, as some indices may be more favourably suited to one region than to 
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another (van Loon, 2015). The selection of an index for drought monitoring is determined 

merely by the availability of climatic data and the ability of a specific index to detect temporal 

and spatial variations during a drought event (Morid et al., 2006). Therefore, the choice of an 

index plays a pivotal role in the execution of drought management plans.   

 

It is important to identify the many types of drought indices that exist and which of them can 

be utilised for drought monitoring and management. Numerous drought indices have emerged 

to quantify droughts including the Standardised Precipitation Index (SPI), the Standardized 

Precipitation Evapotranspiration Index (SPEI), the Standardised Water-level Index (SWI), the 

Effective Drought Index (EDI), the Percent of Normal (PN), the Surface Water Supply Index 

(SWSI), the Evapotranspiration Deficit Index (ETDI), Four versions of the Palmer Indices 

(PHDI, WPLM, Palmer Z and PDSI), the Reconnaissance Drought Index (RDI), the Crop 

Moisture Index (CMI), the Deciles Index (DI), the Normalized Difference Vegetation Index 

(NDVI), the Vegetation Condition Index (VCI), the Temperature Condition Index (TCI), the 

Vegetation Health Index (VHI), the Rainfall Departure (RD), the Soil Moisture Deficit Index 

(SMDI) and the Rainfall Decile based Drought Index (RDDI). Information on these indices 

can be obtained from a variety of authors, including Heim (2002), Bhuiyan (2004), Morid et 

al. (2006), Hayes et al. (2007), Petja et al. (2008), Singleton, (2012), Vicente-Serrano et al. 

(2012), Jain et al. (2015), Vicente-Serrano et al. (2015b) and Wanga et al. (2015), amongst 

many other authors.  

 

The above-mentioned indices are a few of the many indices that exist, with each index 

possessing its own strengths and weaknesses. The advantages and disadvantages of each of the 

aforementioned techniques are listed below in Table 2.1. 
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Table 2.1 A summary of the advantages and disadvantages of the different commonly used 

drought indices 

Index Advantages Disadvantages Source 

SPI Simple index to calculate and 

can be computed for multiple 

timescales. Requires one input 

parameter, precipitation, in order 

to function. Monitors wet and 

dry conditions. 

No ratios can be calculated 

for ETa since the index does 

not account for any soil 

water-balance component. 

Requires a minimum of at 

least 30 years of continuous 

precipitation data. 

Morid et al., 2006; Petja 

et al., 2008; Singleton, 

2012; Vicente-Serrano 

et al., 2012a; WMO, 

2012;  Jain et al., 2015 

SWI Measures hydrological drought 

intensity and allows for the 

scaling of groundwater recharge 

deficit. 

Requires a long time series 

of observed data and the 

need to fit a probability 

density function. 

Bhuiyan, 2004; Petja et 

al., 2008; Broek et al., 

2014 

EDI Monitors duration and intensity 

of droughts over large areas, as 

well as wet and dry conditions. 

Calculates daily drought 

severity. Rapid detection and 

precise measurement of short-

term drought. 

Requires at least 30 years of 

precipitation data for 

calculation. 

Morid et al., 2006; Petja 

et al., 2008; Jain et al., 

2015  

PN Calculated for multiple time-

scales, simplest measurement of 

rainfall for a location and very 

effective when used for a single 

region or a single season. 

Mean precipitation not the 

same as the median 

precipitation. Not useful for 

analysing droughts based on 

a departure from normal. 

Hayes et al., 2007; Petja 

et al., 2008; Morid et 

al., 2008 

SWSI Simple to calculate and 

represents water supply 

conditions unique to each basin. 

A good measure to monitor the 

impact of hydrologic drought on 

urban and industrial water 

supplies, irrigation and 

hydroelectric power generation. 

Limits inter-basin 

comparisons and changes to 

data collection or water 

policies, or any extreme 

events that require new 

algorithms to be calculated. 

Not a suitable indicator for 

agricultural drought. 

Narasimhan and 

Srinivasan, 2005; 

Hayes et al., 2007 

ETDI Accounts for the actual state of 

the land surface dryness, benefits 

of spatial coverage is attained 

(energy balance models) and 

provides a representation of the 

environmental demand of ETa. 

Long datasets required to 

calculate the water stress 

anomaly. 

Narasimhan and 

Srinivasan, 2005; Eden, 

2012; Trambauer et al., 

2014 

PDSI Provides spatio-temporal 

representations of historical 

droughts and has been used to 

trigger actions associated with 

drought contingency plans. 

Measures wetness and dryness. 

May not detect droughts as 

quick as the other indices, 

highly complex and less 

suited for high altitude areas 

or areas of frequent climatic 

extremes. 

Narasimhan and 

Srinivasan, 2005; 

Hayes et al., 2007; Petja 

et al., 2008; Vicente-

Serrano et al., 2012a; 

Vicente-Serrano et al., 

2015b 

CMI More responsive to rapid 

changes in moisture conditions 

and responds to changes in 

weather conditions. 

Not intended to assess long-

term droughts. 

Narasimhan and 

Srinivasan, 2005; Petja 

et al., 2008; Eden, 2012 
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Table 2.1 A summary of the advantages and disadvantages of the different commonly used 

drought indices (continued) 

Index Advantages Disadvantages Source 

RDI Can be computed at 

multiple time-scales. 

Gives no valid values 

when ETo is equal to 0, 

mainly when ETo is 

calculated using 

empirical temperature-

based methods. 

Vicente-Serrano et al., 

2015b 

DI Severity of droughts can 

be assessed. 

Requires a long 

climatological record to 

calculate the deciles 

accurately. 

Morid et al., 2006; 

Smakhtin and Hughes, 

2007 

NDVI/ VCI/TCI/VHI Assessment of vegetative 

droughts. Vegetative and 

agricultural droughts 

reflect vegetation stress, 

provides a broad 

overview of the 

vegetation condition and 

spatial vegetation 

distribution in a region. 

Strong ecological 

component subdues the 

weather component. 

Bhuiyan, 2004; Rojas et 

al., 2011 

SPEI Sensitive to changes in 

evaporation demand, 

caused by temperature 

fluctuations and trends, 

through simple 

calculations and the 

multi-temporal nature of 

the SPI. 

Does not represent soil 

water content and 

droughts are assumed to 

be influenced by the 

temporal variability of 

precipitation. 

Vicente-Serrano et al., 

2012a; Vicente-Serrano 

et al., 2015a 

RD A good indicator of dry 

and wet conditions for a 

given time over specified 

areas. It is easy to 

understand and simple to 

calculate. 

Energy and water 

balances at the surface 

are not reflected, which 

indicates the effective 

amount of water left for 

agricultural purposes 

after runoff, evaporation 

and infiltration. 

Parry et al., 2012; Jain et 

al., 2015 

RDDI The use of decile is 

advantageous due to the 

simplicity of its 

computation. 

Conceptual difficulties 

and climates with highly 

seasonal precipitation 

may not be well suited to 

rainfall deciles. 

Jain et al., 2015 

SMDI 

 

Useful for the monitoring 

soil moisture stress of 

crops and short-term 

droughts.  

Data intensive. Narasimhan and 

Srinivasan, 2005 
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Following the literature review on droughts and drought indices, the ETDI was the evaporative-

based drought index selected for application in this study. The SPI and SPEI were also selected, 

to compare against the ETDI in determining the occurrence of a drought. As the ETDI, SPI and 

SPEI are prevalent in this study, a longer description is warranted. For the purpose of this study, 

the evaporative related drought index, ETDI, will be investigated for the monitoring of 

droughts. The ETDI was chosen because it is the only drought index that is based on an 

evaporation deficit (ETo-ETa) which has been found to be a good parameter for monitoring 

droughts. ETa is an important component within the water cycle as the cycle begins with 

evaporation and ends, since it determines the amount of precipitation that is generation by the 

cycle as well as controls soil moisture.  

 

Literature by Beguería et al. 2014, reports on the benefits of using ETa as it accounts for water 

lost during real conditions hence, accounting for water available in soils, climate, physiological 

mechanisms, vegetation as well as crop type and state. ETa is known to be dependent on the 

current water availability that prevails. Several research papers indicate that when a drought 

index is concerned, ETa would be able to determine drought conditions as well as the surface 

water balance. ETa allows for a better estimation of water that is transferred into the 

atmosphere, hence being more representative of the soil water balance than ETo. Furthermore, 

climate change projections threaten increases in droughts due to increases in temperature and 

fluctuating rainfall patterns and it is through the process of evaporation that increases in global 

temperatures resulting from climate change is expected in the coming decades.  

 

In addition, the ETDI requires a model output of ETa, which can easily be obtained from 

remotely sensed models. Therefore, the advantage of ETa estimation on a greater temporal and 

spatial scale as opposed to conventional techniques for obtaining ETa estimates is made 

possible through RS techniques. Furthermore, with the ETDI accounting for ETa, it is able to 

account for the actual state of the land surface dryness (Eden, 2012). This can be achieved by 

obtaining ETa estimations from RS using energy balance models. Furthermore, the study will 

also seek to obtain ETo estimates through RS methods, which will be used within the 

calculations of the ETDI. 

 

Since droughts have spatial and temporal dimensions, achieving coverage of drought 

monitoring at large geographic scales through RS will provide a more comprehensive view of 

the development of a drought (Sheffield and Wood, 2011). With the application of the ETDI, 
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required inputs can be attained using RS techniques, which will allow this to be achieved. 

Hence, the monitoring of droughts over increasing spatial and temporal dimensions is permitted 

in this study.  

 

In addition, the SPI and SPEI indices in this research study will be calculated to assess the 

potential/performance of the ETDI in detecting the occurrence of a drought.  The SPI and SPEI 

have been used extensively in several hydrological and climatological studies. The SPI and 

SPEI are both based on the same concept: they are dimensionless and are classified into wet or 

dry categories (ten Broek et al., 2014). The SPI is a well-recognised and frequently-applied 

index, and it is valued for its robustness, versatility and theoretical development concerning 

drought analysis. The SPI has been utilised in operation, in more than 70 countries, as well as 

for research initiatives (WMO, 2012). This index is based on the input of precipitation data 

only and is widely accepted for the monitoring of droughts. Since droughts are associated with 

a deficit of precipitation and the SPI is based only on precipitation data, a comparative analysis 

between the SPI and ETDI will be performed in this study, to confirm the occurrence of a 

drought. 

 

Despite rainfall being the main controlling factor for the occurrence of droughts, temperature 

has also been recognised in several studies as a key factor for explaining recent trends in water 

resources and for analysing droughts (Vicente-Serrano et al. 2011, 2012b, 2014; Schubert et 

al., 2014; Russo et al., 2015; Ceccherini et al., 2017). These studies have indicated an increase 

in temperature over the past 150 years along with climate models predicting a projected 

increase during the 21st century. Hence, the warming processes may have a negative impact on 

the availability of surface water, which are mainly driven by higher ETa rates. The combined 

effect of higher temperatures and less rainfall is bound to lead to increases in the severity, 

magnitude and frequency of drought episodes. Hence, the use of indices accounting for 

temperature is preferable as the manifestation of droughts are often brought upon as a result of 

a lack of rainfall and soaring temperatures.  

 

Hence, a drought index, SPEI was developed based on temperature and precipitation. These 

climate parameters are key drivers to the hydrological cycle. Similar to the PDSI, the SPEI is 

able to merge the sensitivity of changes in evaporation demand that result from temperature 

changes, with the multi-temporal nature and simplicity presented by the SPI. 
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The SPEI is similar to the SPI index, except that precipitation is not the only variable 

considered. This index takes into consideration the difference between the precipitation and 

evaporation variables (Trambauer et al., 2014). Hence, the SPEI uses a climatic water balance, 

thereby providing a more reliable measure of drought severity. Since the ETDI is calculated 

from evaporation variables and droughts are directly related to precipitation amounts, the SPEI 

will also be compared to the ETDI. The three indices used in this study all use some balance 

between the supply and demand of moisture, but each in their own unique way.  

 

2.2 The Evapotranspiration Deficit Index (ETDI)  

 

Narasimhan and Srinivasen (2005) developed the Evapotranspiration Deficit Index (ETDI). 

ETDI is a common agricultural drought indicator that was developed based on the weekly 

evapotranspiration deficit (Trambauer et al., 2014; Narasimhan and Srinivasen, 2005). It is 

calculated as a water stress ratio, which is the ratio between the ETo and a model output of ETa 

(Narasimhan and Srinivasen, 2005). The water stress values range from 0 to 1, where 0 is 

indicative of evapotranspiration occurring at the same rate as ETo and 1 represents no 

evapotranspiration (Eden, 2012).  

 

The water stress ratio (WS) for the month is calculated as follows (Narasimhan and Srinivasen, 

2005): 

 

𝑊𝑆 =
𝐸𝑇0−𝐸𝑇𝑎

𝐸𝑇0
           (2.1) 

 

where: 

WS = monthly water stress ratio (dimensionless), 

ETo = monthly reference evapotranspiration (mm), and 

ETa = monthly actual evapotranspiration (mm). 

 

Following the calculations of the WS, a water stress anomaly is calculated as expressed below 

(Narasimhan and Srinivasen, 2005): 

 

𝑊𝑆𝐴𝑖,𝑗 =
𝑀𝑊𝑆𝑗−𝑊𝑆𝑖−𝑗

𝑀𝑊𝑆𝑗−𝑚𝑖𝑛𝑊𝑆𝑗
∗ 100        if  (WSi-j = MWSj)         (2.2) 
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𝑊𝑆𝐴𝑖,𝑗 =
𝑀𝑊𝑆𝑗−𝑊𝑆𝑖−𝑗

𝑚𝑎𝑥𝑀𝑊𝑆𝑗−𝑊𝑆𝑗
∗ 100        if            (WSi-j>MWSj)         (2.3) 

 

where: 

WSA = monthly water stress anomaly,  

MWSj = long-term median water stress of month j,  

max WSj = long-term maximum water stress of month j,  

min WSj = long term minimum water stress of the month j, and  

WS = monthly water stress ratio (for example: i = 2011-2016 and j = January-

December). 

 

During any month, the water stress anomaly (WSA) extends from -100 to +100, indicating very 

dry to very wet conditions with respect to evapotranspiration (Narasimhan and Srinivasen, 

2005). Following the WSA calculations, a cumulating procedure is thereafter adopted for the 

ETDI to determine the severity of the drought due to the evapotranspiration deficit. This is 

given by Narasimhan and Srinivasan (2005) as follows: 

 

𝐸𝑇𝐷𝐼𝑗 = 0.5 𝐸𝑇𝐷𝐼𝑗−1 + 
𝑊𝑆𝐴𝑗

50
        (2.4) 

 

where: 

EDTIj-1 = the ETDI for the initial month, and  

WSAj = the monthly water stress anomaly. 

 

2.2.1 Case studies: application of the ETDI 

 

A concise description is presented below of a few studies that employ the ETDI, along with 

the key findings of these studies. 

 

Narasimhan and Srinivasen (2005) used the distributed hydrological Soil and Water 

Assessment Tool (SWAT) model to simulate soil moisture and ETa at a high spatial resolution 

(16 km2) using GIS. By utilizing this data, the ETDI index was established. The index was 

based on a weekly evaporation deficit. The results showed that the developed index, the ETDI, 

could be used as a good indicator for monitoring soil moisture stress during critical growth 

periods of the wheat and sorghum crops. Furthermore, the ETDI is acceptable for agricultural 



 

 19 

drought monitoring during short-term drought conditions. The key finding was that the ETDI 

was applicable for the monitoring of agricultural droughts. 

 

Eden (2012) conducted a study to quantify the severity of drought by ETa mapping in the 

Netherlands, for the period 2003-2010. The ETDI was used in the spatial and temporal 

distributional assessment of ETa. The WACMOS (WAter Cycle Observation Multi-mission 

Strategy) methodology was pursued to obtain estimates of ETa. The input data consisted of RS 

products from MODIS and meteorological data from the European Centre for Medium Weather 

Forecast (ECMWF). The results showed that the ETa followed a seasonal trend in all years and 

that in which ETa was greater for the growing seasons. The study also showed that the SEBS 

(Surface Energy Balance System) ETa from MODIS 1km and the ECMWF could be used to 

estimate ETa in the Twente region. The key finding was that ETDI and SPI are applicable for 

the assessment of droughts. 

 

Trambauer et al. (2014) conducted a study in the Limpopo River Basin to analyse hydrological 

droughts using a fine resolution model, PCRaster Global Water Balance (PCR-GLOBWB). 

The ETDI was computed along with other indices. The overall results of the study indicated 

that the identification of hydrological droughts is possible with a carefully set-up process-based 

model, even if the model is largely uncalibrated. The results also described the significance of 

computing indicators that can be related to hydrological droughts as well as the value of 

identifying hydrological droughts. A key finding of the research was that the drought severity 

in the basin could be characterised. This was shown by its intensity, duration and time of 

occurrence. 

 

2.2.2 The advantages and disadvantages of the ETDI 

 

The main advantage of utilizing the ETDI is that the index considers ETa and is able to account 

for the actual state of the land surface dryness (Eden, 2012). The index requires ETa estimates 

that can be obtained either using in-situ data or satellite-derived estimates. By using an energy 

balance model to obtain these estimates, the benefits of RS may be attained, as ETa estimation 

can be achieved over large geographic scales, accommodating for a more comprehensive view 

of the development of droughts. The ETDI also requires ETo, which provides a representation 

of the environmental demand of ETo. The main disadvantage of this index is the need for 

lengthy datasets to be able to calculate the WSA. 
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2.3 Standardized Precipitation Index (SPI) 

 

SPI (McKee et al., 1993, 1995) is one of the most widely applied meteorological drought 

indices that is based only on precipitation data. According to the WMO (2012), the SPI index 

provides better representations than the PSDI and is recognisably a powerful, flexible index 

that is simple to calculate. This index has been primarily developed for characterizing and 

monitoring droughts (Jain et al., 2015; Botai et al., 2016). The SPI may also be beneficial and 

useful to determine periods of anomalously wet events/flood events. 

 

The index is based on the probability of precipitation for multiple time scales which is 

thereafter transformed into an index (Narasimhan and Srinivasan, 2005; Zargar et al., 2011; 

WMO, 2012). In calculating the SPI, the precipitation record is first fitted to a Gamma 

distribution (Narasimhan and Srinivasan, 2005; Zargar et al., 2011; WMO, 2012; Trambauer 

et al., 2014; Jain et al., 2015; Kumar et al., 2016). The Gamma distribution is then transformed 

to a normal distribution, using an equal probability transformation (Narasimhan and 

Srinivasan, 2005; Zargar et al., 2011; Holloway et al., 2012; WMO, 2012; Trambauer et al., 

2014; Jain et al., 2015; Kumar et al., 2016). The mean is set to a value of zero, which results 

in values above zero indicating a wet period and values below zero indicating a dry period 

(Zargar et al., 2011; WMO, 2012; Jain et al., 2015). During any given drought event, an SPI 

score is representative of how many standard deviations its cumulative precipitation deficit 

deviates from the normalized average (Zargar et al., 2011; Kumar et al., 2016). Hence, if a 

specific precipitation event produces a low probability on the cumulative probability function, 

then this is indicative of a possible drought event. 

 

Several software tools have been developed to calculate the SPI and they can be could be 

operated both within a WINDOWS and a UNIX environment. Monthly precipitation values for 

at least 30 consecutive years, with 50-60 years (or greater) being optimal was preferred to run 

the programs (WMO, 2012; Jain et al., 2015). However, these programs have been replaced by 

an SPEI package within the R software, which also requires 30 years of continuous 

precipitation data. The SPEI R package is therefore recommended for use. Section 3.4.1 

expands on the R software. 
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McKee et al. (1993) defined the drought intensities produced from the SPI, using the 

classification system shown in the SPI value table below (Table 2.2). When the SPI is negative 

and approaches an intensity of -1.0 or less, it is indicative of a drought event occurring during 

that period and ends when the SPI becomes positive. In addition, the positive sum of the SPI 

for all months present within a drought event may be defined as the drought’s “magnitude” 

(WMO, 2012). 

 

Table 2.2 Category of SPI values (McKee et al., 1993) 

2.0 + Extremely wet 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately wet 

-0.99 to 0.99 Near normal 

-1.0 to -1.49 Moderately dry 

-1.5 to -1.99 Severely dry 

-2.0 and less Extremely dry 

 

The standardization technique of the SPI enables the index to determine the rarity of a current 

drought situation, as well as the probability of precipitation that is needed to end it (Table 2.3). 

Users are also given the opportunity to assess how frequent, or how rare a given drought event 

is (WMO, 2012). 

 

Table 2.3 Probability of Recurrence (WMO, 2012) 

SPI Category Number of times in 

100 years 

Severity of event 

0 to -0.99 Mild dryness 33 1 in 3 years 

-1.0 to -1.49 Moderate dryness 10 1 in 10 years 

-1.5 to -1.99 Severe dryness 5 1 in 20 years 

-2.0 and less Extreme dryness 2.5 1 in 50 years 

 

In addition, it is worth mentioning that a global SPI data set, with a spatial resolution of 2.5o is 

presently available (Ziese et al., 2014). The data set is based on the NOAA NCEP CPC 

CAMS_OPI monthly precipitation data, which can be obtained using the following link, 

(http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/SPI.html?var=.SPI-

CAMSOPI_12-Month#tabs-1). This dataset; however, has not been used in the study instead, 

in-situ data was used to provide more representative climatic conditions of the study areas. 

 

http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/SPI.html?var=.SPI-CAMSOPI_12-Month#tabs-1
http://iridl.ldeo.columbia.edu/maproom/Global/Precipitation/SPI.html?var=.SPI-CAMSOPI_12-Month#tabs-1
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2.3.1 The advantages and disadvantages of the SPI 

  

The following advantages can be derived from the SPI: 

 

 It is simple and relies only on precipitation data (WMO, 2012; Mu et al., 2013; Botai 

et al., 2016). 

 The index provides a good indication of the history of droughts for a specific station by 

simply plotting a time series of the year against the SPI. 

 By applying the SPI, the drought history of a site or region can be evaluated, including 

an analysis of the duration and frequency for a magnitude ranking of sorts. 

 From a temporal point of view, the SPI index can be computed for different time scales 

(3-, 6-, 12-, 24- and 48-month timescales). This enables an analyst to study rainfall 

events at different time scales, as well as it provides early warning and assists in drought 

warning (Zargar et al., 2011; WMO, 2012; Mu et al., 2013). 

 It is less complex in nature than the PDSI and several other indices (WMO, 2012). 

 Since the SPI can be computed for longer time scales (greater than three months), 

agricultural and hydrological droughts/impacts can be reflected (Zargar et al., 2011). 

 The SPI index is effective in analysing wet and dry climates and it can hence, be used 

to monitor dry periods (Zargar et al., 2011; WMO, 2012). 

 It accounts for the stochastic nature of the drought event and therefore a useful measure 

of short- and long-term meteorological droughts (Narasimhan and Srinivasan, 2005). 

 A comparison between different locations in different climates can be conducted as it 

is spatially consistent (WMO, 2012). 

 

Some of disadvantages of the SPI include the following: 

 

 Since it is based only on precipitation data, there is no direct connection to ground 

conditions (Trambauer et al., 2014; Zargar et al., 2011). 

 The SPI does not consider the effect of crop growth, land use, temperature anomalies 

and land characteristics that play a key role for agricultural drought monitoring 

(Narasimhan and Srinivasan, 2005). 
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 The presence of limitations that may be attached to the precipitation data such as the 

number of gauging stations, the length of the record and the accuracy of measurements 

(Zargar et al., 2011; WMO, 2012; Mu et al., 2013). 

 No ETa ratios can be calculated, as the index does not account for any soil water-balance 

component (WMO, 2012). 

 

2.4 Standardized Precipitation Evapotranspiration Index (SPEI) 

 

Proposed by Vicente-Serrano et al. (2010b), the Standardized Precipitation Evapotranspiration 

Index (SPEI) is an extension of the SPI, which takes into account the effects of 

evapotranspiration. Hence, the SPEI is a modification of the SPI, which was developed to 

address water supply and water demand issues (Botai et al., 2016). The SPEI, like the SPI, can 

be computed at various time scales, enabling users to determine the time scale at which the 

response to a drought is the greatest. However, unlike the SPI, the SPEI is able to capture the 

major impact of temperature on the water demand (Vicente-Serrano, SM and National Center 

for Atmospheric Research Staff, 2015). The index is based on temperature and precipitation 

data and is capable of including the effects of temperature variability on drought assessments 

and exploring the climate change effects on drought conditions (Vicente-Serrano et al. 2010a; 

Beguería et al., 2010). The index is comparable to the self-calibrated Palmer drought severity 

index (sc-PDSI) as the index is based on a water balance. The SPEI combines the sensitivity 

of the PDSI to evaporative demand changes (due to temperature fluctuations and trends) with 

the capability and simplicity of the calculation of the SPI to represent drought events on a 

multi-temporal scale (Vicente-Serrano et al. 2010b; Trambauer et al., 2014; Botai et al., 2016). 

The SPEI is used by different science disciplines for the monitoring, detection and analysis of 

droughts. 

  

According to Vicente-Serrano et al. (2010b), the SPEI can be computed at different temporal 

scales based on the non-exceedance probability of precipitation and PET differences. The SPEI 

is based on a monthly climatic water balance (PET-ETo), which is adjusted by using a three-

parameter log–logistic distribution. The values are accumulated at different time scales and 

converted to standard deviations, with respect to the average values (Vicente-Serrano, SM and 

National Center for Atmospheric Research Staff, 2015). In instances where limited climatic 

data is available, PET can be calculated using the simple Thornthwaite method (Vicente-
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Serrano, SM and National Center for Atmospheric Research Staff, 2015). In cases where more 

data is available, a more complex method for estimating PET can be opted for, to produce an 

overall accounting of drought variability. However, additional variables can produce greater 

uncertainties (Vicente-Serrano, SM and National Center for Atmospheric Research Staff, 

2015). Like the SPI, the SPEI R package requiring 30 consecutive years of precipitation and 

temperature data can be used to obtain SPEI values. The Section 3.4.1 elaborates further on the 

R software. 

 

A complete description of the theory behind the SPEI, including the computational details, 

operational use and comparisons between other popular drought indices, such as the SPI and 

PDSI is provided by Vicente-Serrano et al. (2010a, 2010b, 2011, 2012a), Beguería et al. 

(2014), and Manatsa et al. (2017). 

 

It is also beneficial to note that the Penman-Monteith method along with the CRU TS 3.2 input 

data have been utilised to produce a gridded SPEI data set for 1901-2011 (Vicente-Serrano, 

SM and National Center for Atmospheric Research Staff, 2015). The Thornthwaite method 

was used to generate a real-time SPEI for global drought monitoring. Finally, an R package is 

available for estimating SPEI from user-selected input data using the options of Penman-

Monteith, Hargreaves or Thornthwaite methods (Vicente-Serrano, SM and National Center for 

Atmospheric Research Staff, 2015). 

 

Furthermore, a “SPEI Global Drought Monitor” is presently available, which is based on 

precipitation data from the GPCC (Global Precipitation Climatology Centre), along with 

temperature data from the NOAA NCEP CPC GHCN_CAMS gridded data set (Ziese et al., 

2014). The PET is calculated based on the parameterization from the Thornthwaite (1948) 

method. The gridded data of the SPEI is produced at a 0.5o spatial resolution, at a monthly time 

resolution and at a timescale of between 1 and 48 months (http://sac.csic.es/spei/). This SPEI 

dataset; however, has not been used in the study instead, in-situ data was used to provide more 

representative climatic conditions of the study areas. 

 

2.4.1 Case studies: application of the SPI and SPEI 

 

As a result of the SPI’s reliability, and its ability to analyse droughts at multiple time steps for 

a variety of climatic regions, this index has been used extensively in several parts of the world. 

http://sac.csic.es/spei/
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A vast array of studies exist that have utilized the SPI; however, only a few selected case studies 

will be discussed in this section, along with their key findings. Studies by Rouault and Richard 

(2003), Sepulcre-Canto et al. (2014), Jain et al. (2015) and Kumar et al. (2016), amongst 

several others, can also be explored with regards to the application of the SPI. Various studies 

which utilise the SPI also include the SPEI, which is able to account for the role of ETa and 

temperature within drought monitoring and hence, both indices are discussed in this section. 

 

Palchaudhuri and Biswas (2013) applied the multi-temporal SPI to analyse the severity and 

spatial pattern of a meteorological drought in the Puruliya District, West Bengal, India. Some 

of the results and key findings of this study indicated that in the central portion of the study 

area, mild and moderate droughts occurred, whereas severe and extreme droughts occurred 

north-east, north-west and the south-west of the region. Overall, the study indicated that the 

SPI can be used for the assessment of droughts. 

 

Trambauer et al. (2014) conducted a study to assess historical droughts in a highly water-

stressed, semi-arid basin, by using different drought indicators. The Limpopo River Basin is 

recognised as one of the most water-stressed basins in Africa. A finer-resolution version of the 

global hydrological model (PCR-GLOBWB) was adapted to regional conditions in the basin. 

The model was then tested by comparing the simulated hydrological and agricultural drought 

indicators (ETDI, RSAI, SRI, GRI) in the period 1979–2010 with reported historic drought 

events in the same period. The SPI and SPEI drought indicators were also computed as a 

verification of the drought indicators and the type of drought. The key findings indicated that 

a combination of the drought indicators at different time scales (SPEI-3, SRI-6 and SPI-12 

computed together) are worthy for distinguishing between agricultural to long-term 

hydrological droughts in the Basin. Furthermore, it was possible to identify drought severity in 

the basin, which was indicated by its time of occurrence, duration and intensity. 

 

Botai et al. (2016) applied the SPI and the SPEI to investigate the historical evolution of 

drought within the Free State and North-West Provinces over the past 30 years. Monthly 

meteorological data, which were obtained from 14 weather/climate stations within the Free 

State (FS) and Northwest (NW) Provinces, were used to compute the drought indices. In 

addition to the computation of the drought indices, the meteorological data was also used to 

explore and identify variations in drought intensity, duration, frequency and severity in FS and 

NW Provinces during the period of 1985–2015. The key findings from this study indicated that 
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both the indices were able to display the drought development that was observed in the two 

provinces. 

 

2.4.2 Advantages and disadvantages of the SPEI 

 

The SPEI is simple to calculate and is based on the original SPI calculations. The index is 

particularly suited to monitoring, detecting and exploring the effects of global warming on 

drought conditions (Vicente-Serrano et al. 2010a, 2010b). Despite the index being relatively 

new, it has been used in several studies to analyse the variability of droughts (Potop, 2011; 

Paulo et al., 2012; Wei- Guang et al., 2012; Li et al., 2012; Spinoni et al., 2013; Sohn et al., 

2013). This index is representative of a simple climatic water balance (Thornthwaite 1948), 

since the index is based on the difference between the precipitation and PET. The SPEI is also 

known to be applicable within any climatic region of the world. In comparison to the sc-PDSI, 

the SPEI has the advantage of being multi-scalar, which is critical for drought monitoring and 

analysis.  

 

Some of the limitations of the SPEI may include more data is required than the SPI. Sensitivity 

is prevalent to the choice of method for calculating PET, due to the influence of global warming 

on the severity of droughts (Vicente-Serrano, SM and National Center for Atmospheric 

Research Staff, 2015). A long dataset that displays natural variability should be used (Vicente-

Serrano, SM and National Center for Atmospheric Research Staff, 2015).  

 

* * * * * * 

 

Within the hydrological cycle, ETa forms a vital component and greatly affects the availability 

of water resources present on earth. Globally, 64% of the precipitation is evapotranspired 

(Rivas and Caselles, 2004), of which the ETa from land surfaces forms 97% and 3% forms 

open-water evaporation (Rivas and Caselles, 2004). Furthermore, in the region of Southern 

Africa, 91% of the MAP is returned to the atmosphere by means of ETa (Whitmore, 1971). 

Hence, by monitoring ETa, droughts can be effectively monitored and planned for future 

events. Since the ETDI, which is investigated in this study, is based on ETa, the concept of ETa 

and its role in the monitoring of droughts is therefore further elaborated on the next section. 
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2.5 The concept of Evapotranspiration  

 

Evaporation is recognised as the process of water loss from the earth’s surface and transpiration 

is the water loss from vegetation (Sepulcre et al., 2014). Evaporation (E) and transpiration (T) 

(jointly termed as evapotranspiration (ET)) constitute the processes of moisture evaporation 

from water bodies, soil and wet vegetated canopies and the transpiration from crops (NOAA, 

2016). ET is recognisably one of the most effective variables in determining the water balance 

(Kiptala et al., 2013; Rahimi et al., 2015; Tian et al., 2015; Pandey et al., 2016). Several sources 

in literature report that the term ET should be avoided, as it accounts for evaporation from 

various surfaces (Savenije, 2004; McMahon et al., 2012). The term ETa provides a clearer 

description of the movement of water from the earth surface to the atmosphere due to the 

processes of evaporation and transpiration (NOAA, 2016). The rate of ETa is controlled by 

several environmental factors and, more so, by the availability of moisture to evaporate 

(NOAA, 2016). When holding all else equal, ETa increases with increasing wind speed, 

temperature and sunshine (NOAA, 2016). While ETa decreases with the increasing humidity, 

it is, however, always limited to the existence of moisture availability (NOAA, 2016). 

 

ETa plays a critical role in the understanding of land surface and atmospheric interactions as 

well as hydrological processes (Wang et al., 2007; Timmermans et al., 2010; Maeda et al., 

2011; Bachour, 2013). Continuous and accurate estimation and forecasts of spatial and 

temporal ETa variations are of  paramount importance for enhancing climate change simulation 

and mitigation, water resources management, as well as drought detection (Jiang et al., 2009; 

Siska and Takac, 2009; Dorigo et al., 2010; Mutiga et al., 2010; Timmermans et al., 2010; 

Maeda et al., 2011; Huang et al., 2015; Rahimi et al., 2015; Minacapilli et al., 2016). As a 

result, ETa estimations and forecasts provide an avenue for planning and scheduling purposes 

of reservoir operators, municipal water managers, as well as academic and operational 

hydrologists (NOAA, 2016). 

 

Different types of ET exist in literature, such as PET, ETo or ETa. Abouali et al. (2013), 

Srivastava et al. (2013),  Mutiga et al. (2010), Kovalskyy and Henebry, 2012, Cruz-Blanco et 

al. (2014), Salama et al. (2015) and Pandey et al. (2016) provide details on the aforementioned 

types of ET.  

 



 

 28 

Various methods can be used for the estimation of ETa, namely, field measurements, 

meteorological ground-based point data or remotely-sensed, spatially-explicit observations 

(Eden, 2012; Shoko, 2013). Conventional micro-meteorological-based techniques for 

estimating ETa are established by using on-ground measurements, examples of which are the 

weighing lysimeter, the Bowen Ratio, surface renewal pan evaporation, sap flow, eddy 

covariance and the scintillometer (Bastiaanssen et al., 2012; Tian et al., 2015; Sur et al., 2015; 

Minacapilli et al., 2016). However, these field-based measurements are unable to represent the 

hydrological processes with sufficient reliability over large areas, while the cost of equipment 

and extensive labour restricts the use of these methods on a large scale (Wang et al., 2007; 

Bachour, 2013; Bastiaanssen et al., 2012; Tian et al., 2015; Hu et al., 2015).  

 

In recent decades, the use of RS has enabled ETa estimation to be conducted spatially over 

large areas (Bachour, 2013). The retrieval of the extensive distribution of land surface 

parameters such as albedo, vegetation and temperature indices through the estimation of ETa 

by RS has been developed (Minacapilli et al., 2016). These provide a significant input into 

remotely sensed models that can be utilised for water resources, drought, flood and 

environmental planning and management (Minacapilli et al., 2016). The next section expands 

on the technique of obtaining ETa estimates by using the SEO approach. 

 

2.5.1 A brief review of current techniques to estimate evaporation based on satellite 

earth observation data 

 

During the 1970’s, the use of SEO was first proposed to estimate ETa (Gokool, 2014). With 

the advent and advancement of SEO over the years, the spatial monitoring of ETa over 

increasing spatial scales has improved (Shoko et al., 2013). Land surface parameters such as 

the Leaf Area Index (LAI), Albedo, NDVI, emissivity and temperature are retrieved through 

SEO and have been applied to drive ETa based models. Over the years, the type of ETa models 

that assimilate SEO to estimate ETa have evolved moderately and are becoming more complex 

in nature (Jarmain et al., 2009). 

 

According to Tian et al. (2015), four main categories of RS-based models have been 

established in recent decades to estimate ETa. These include; (i) energy balance models, (ii) 

empirical statistical models, (iii) physical models, and (iv) water balance models. These models 

have been applied in many studies and in numerous areas; however, uncertainties are correlated 



 

 29 

to the disadvantage of these models and their associated inputs, their scaling schemes and 

parameterization that still tend to exist (Tian et al., 2015). The increasing availability of 

measurements, the estimation of atmospheric and land surface parameters, as well as the 

enhancement of the model’s performance through the integration of various techniques and 

data sources have led to RS techniques receiving world-wide interest (Tian et al., 2015).  

 

Within the surface energy balance, ETa is a crucial component, which is based on the 

partitioning of available energy into sensible and latent heat fluxes (Hu et al., 2015). Of 

particular interest is latent heat, as it is representative of the link between energy and the water 

budget equation (Sepulcre-Canto et al., 2014). It is directly related to the soil-vegetation 

system’s moisture status and its integration over time, which generates the daily rate of ETa 

(Sepulcre-Canto et al., 2014). Accurate estimates of terrestrial ETa are vital for the study of 

regional and global climate change as well as net primary productivity, floods, droughts, 

irrigation and biogeochemical processes and cycles (Hu et al., 2015). Remotely sensed data 

have recently been utilised to characterize land surface biophysical processes and properties 

and to serve as the major forcing to several different ETa models (Hu et al., 2015). 

 

In the recent years, several global and continental ETa products have been produced on satellite 

retrievals (Hu et al., 2015). These monitoring systems exploit either polar or geostationary 

satellite data. The different data sets vary in terms of the governing equations used, the forcing 

data employed and their spatial and temporal scales. Table 2.5 displays the available remotely 

sensed global ETa products.  

 

ETa alone cannot indicate water stress; the variable is also influenced by water availability and 

factors like solar radiation and windspeed (Sepulcre-Canto et al., 2014). For this reason, ETa 

is commonly normalized by the PET or ETo to characterize water stress (Sepulcre-Canto et al., 

2014). The term “Evapotranspiration deficit” which is defined as the difference between ETo 

and ETa, is said be a good parameter for evaluating the drought conditions of a landscape on 

an agricultural level (Siska and Takac, 2009).  For the purpose of this study, the ETDI will be 

applied, which is based on the estimation of ETa and ETo. The variable ETo plays a significant 

role in hydro-meteorological applications, effects catchment water balance, and hence water 

yield and groundwater recharge (Srivastava et al., 2013). Obtaining accurate estimates of ETo 

from cropped surfaces is required for efficient irrigation scheduling and management 

(Srivastava et al., 2013).  
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2.5.2 Reference evapotranspiration (ETo) 

 

Rainfall and ETo are the most significant and fundamental water-cycle related variables in 

hydrological modelling. ETo is usually termed as the ET from a well-watered reference surface 

(Tian and Martinez, 2012). Crop water requirements can be estimated from ETo values (de 

Bruin et al., 2010). Over the past decades, several methods have been developed and 

recommended for the estimation of ETo under different climatic conditions. Measurements of 

weather variables, such as solar radiation, air temperature, dew point and wind speed, are 

usually required for the estimation of ETo. Accurate estimates of ETo have become available 

through the Penman-Monteith equation with the aid of ground-based observations. Several 

other techniques exist for estimating ETo. The A-pan or British Standard tank (S-tank) is an 

example of a micro-meteorological based method that can be used. Literature by Chen et al. 

(2005), provides further details on this method. Some of the most widely-used, 

meteorologically-based conventional techniques for estimating ETo are shown in Table 2.4. 

 

Table 2.4 Estimating reference evapotranspiration (ETo), using meteorological-based 

conventional techniques 

Technique Meterological Variables 

required 

Additonal parameters 

required 

Penman-Monteith (1948) 
 

Atmospheric pressure, relative 

humidity, wind speed radiation, 

daily temperature,   

Vegetation characteristics 

Thornthwaite (1948) Mean daily temperature Latitude, daytime length 

Makkink (1957) Mean daily temperature, radiation ___ 

Turc (1961) Mean daily temperature, relative 

humidity, radiation 

___ 

Blaney- Criddle (1962) Sunshine hours, wind speed, 

relative humidity, daily 

temperature 
 

___ 

Priestley-Taylor (1972) 
 

Mean daily temperature, radiation Calibration constant 

Kimberly-Penman (1982) Atmospheric pressure, radiation, 

wind speed, daily temperature 

___ 

Hargreaves-Samani (1985) 
 

Daily temperature, radiation Day of year (DOY), latitude 

 

The FAO Penman-Monteith (FAO-PM) technique given by Allen et al. (1998), has beeen 

recognised as the most reliable method for precise ETo estimation (Tian and Martinez, 2012; 

Bachour, 2013; Cruz-Blanco et al., 2014; Pandey et al., 2016). This technique is applicable 

globally under a wide range of climatic conditions and regimes. As a result, it has been regarded 

as the standard method for the verification of other meterological based methods and the 
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validation of RS methods (Maede et al., 2011). Despite this, the relatively large number of 

atmospheric variables required by the Penman Monteith method limits the widespread use of 

this equation. 

 

The techniques mentioned in Table 2.4 are based on meterological data, which are usually 

obtained from meterological stations that are often unevenly distributed spatially (Srivastava 

et al., 2015). In addition, these variables are generally unavailable over ungauged catchments 

in many regions (Tian and Martinez, 2012; Srivastava et al., 2013). Coverage of small areas is 

only conducted with ground-based observations (Srivastava et al., 2013). Furthermore, the 

above-mentioned approaches tend to be very expensive and labour-intensive (Srivastava et al., 

2013). However, the use of RS as an approach allows for efficient, robust and instantenous ETo 

estimation for the better management of our water resources (Winkler et al., 2017). This 

strategy has become promising, offering greater spatial and temporal coverage with variablity, 

as highilighted in Section 2.5.1. In addition, to overcome data inadequacy issue, various 

methods like the Hargreaves-Samani, Makkink, Turc and Priestly-Taylor are explored for the 

estimation of ETo with limited weather data. Table 2.7 displays some of the aformentioned 

techniques that have incorporated remotely-sensed data. 

 

A review was undertaken of the case studies pertaining to the various methods that can be 

utilised to obtain ETa (see Table 2.6) and ETo (see Table 2.7), by using SEO to enable the 

calculation of the ETDI. Table 2.5 displays the global ETa products that have been derived for 

use at different spatio-temporal scales.
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Table 2.5 Remote sensing-based global ETa products 

ET-Product Algorithm Input Dataset Grid Size Temporal 

Resolution 

Time 

Span 

Reference Data Source 

MOD 16-ET Penman-

Monteith 

Actual vapour pressure, 

solar radiation, daily 

temperature, NDVI, LST 

and LAI 

1 km Daily 2000-2013 Mu et al. (2007) GMAO, 

MODIS 

Zhang-ET PM of 

Vegetation + 

PM Soil 

evaporation 

Net radiation, daily 

temperature,  NDVI 
 

8 km Monthly 1983-2006 Zhang et al. (2010) NCEP/NCAR, 

GEWEX SRB, 

GIMMS 

GLEAM ET Priestley & 

Taylor 

Air temperature, 

Precipitation, 

Net Radiation, Vegetation 

optical depth, 

Snow water equivalents, 

Skin Temperature 

Soil Moisture, 

0.25 deg. Daily 1984-2007 Miralles et al. (2011) GEWEX SRB, 

CMORPH 

NSIDC, 

ISCCP, 

TMMI+AMSR-E 

CHEN-ET Surface 

Energy 

Balance 

canopy height, soil 

Moisture (ET partition), 

Air temperature, 

pressure, wind speed, 

humidity, 

Downward/upward 

shortwave/longwave 

radiation, albedo, LST, 

NDVI, FPAR, LAI 

 
 

5 km Monthly 2000-2014 Chen et al. (2014) ERA-I, 

MODIS, 

GlobAlbedo, 

ESA CCI 

EARS Surface 

Energy 

Balance 

Temperature, Albedo 5 km Daily, Monthly, Yearly 2000-2011 Rosema, 2006; 

Rosema et al. (2008) 

FengYun-2c 

Meteosat 

LSA-SAF: 

DMET 

Surface 

Energy 

Balance 

Air temperature, specific 

humidity, air pressure, 

wind speed, surface, soil 

temperature, soil moisture, 

land cover, solar radiation, 

long-wave radiation, albedo 

3- 5 km 

(dependent 

on latitude 

and 

distance to 

nadir view) 

Daily 2009- 

Present 

LSA-SAF 

2010:Algorithm 

Theoretical Basis 

Document (ATBD) 

available at: 

http://landsaf.meteo.pt/ 

ECMWF, 

ECOCLIMAP, 

MSG-SEVIRI 
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Table 2.6 Summary of studies utilizing different remote sensing techniques/methods for the estimation of ETa 

Reference Temporal/Spatial 

scale/sensor 

Method Data Requirements Key Findings 

Jiang et al., 2009 1998 and 1999,regional, 

Advanced Very 

High Resolution 

Radiometer (AVHRR) 

aboard NOAA-14 

satellite. 

ET estimation 

algorithm 

developed by 

merging satellite 

and in-situ data. 

Remotely sensed surface 

temperature, vegetation index 

(NDVI) and net radiation data 

obtained from in-situ data. 

 The proposed algorithm seems to be 

powerful and has the ability to 

provide near real-time land surface 

evapotranspiration at a very fine 

spatial and temporal resolution over 

wide heterogeneous areas. 

 

Elhaddad et al., 

2011 

2006,Catchment, Landsat 

(Land Remote-sensing 

Satellite) 

Remote Sensing 

of ET (ReSET) 

Model 

Landsat imagery  The ReSET model is encouraged to be 

utilised as a tool for water 

management. 

 Slight differences were obtained 

between ReSET ET estimates and 

conventional ET methods. 

Bastiaanssen et al., 

2012 

2007,regional, Advanced 

Microwave Scanning 

Radiometer (AMSR-E) 

aboard Aqua satellite 

ETLook remote 

sensing model 

Surface soil moisture, spectral 

vegetation index, surface 

albedo, atmospheric optical 

depth, land use and land cover 

(LULC), soil physical 

properties, and meteorological 

data(e.g., air temperature, 

relative humidity 

and wind speed) at 1 km 

resolution . 

 Satellite data must be available at all 

times, for an operational ET 

monitoring system. 

 The total ET value derived from the 

water balance for irrigated areas as 

one total system for the study areas 

were in agreement with the ET value 

from the ETLook surface energy 

balance computations. 

 ETLook is established as a novel 

model that can be operationalized 

further. 
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Table 2.6 (continued) Summary of studies utilizing different remote sensing techniques/methods for the estimation of ETa  

Reference Temporal/Spatia

l scale/sensor 

Method Data Requirements Key Findings 

Kovalskyy and 

Henebry, 2012 

 

2002-

2008,Field,MODIS 

and AVHRR 

VegET model Daily time series of 2 m air 

temperature [K]; 2 m specific 

humidity [kg kg−1]; surface 

pressure [Pa]; U wind component 

[m s−1];V wind component [m 

s−1; downward shortwave 

radiation [Wm−2]; downward 

longwave radiation [Wm−2]; total 

precipitation[kg/m2]; soil 

permanent wilting point and 

water holding capacity at each 

study site; descriptions of crops 

and grasses; MODIS and 

AVHRR NDVI’s. 

 Taking into account phenology 

enhances the accuracy of ETa 

estimation by the VegET model. 

 Utilising climatologies result in 

VegET overestimating daily ETa 

during the actual growing season 

and durations of seasons. 

Park et al., 2012 1 day (2009), 

Regional, 

Aqua·Terra/MODIS, 

SPOT/VGT satellite 

NIMR (National 

Institute of 

Meteorological 

Research at Korea 

Meteorological 

Administration) daily 

ETa algorithm 

Satellite data and ground based 

meteorological data (wind speed 

(10 m), air temperature (2 m), 

relative humidity, precipitation). 

 NIMR daily evapotranspiration 

displays fairly well in agreement 

with validation data as R2 is 0.671, 

RMSE is 0.067 mm·d-1 and Bias is 

0.09 mm·d-1. 

Kiptala et al., 2013 2008–2010, 

Catchment, MODIS 

SEBAL (Surface 

Energy Balance 

Algorithm for Land ) 

Model 

MODIS datasets; Daily rainfall 

data; Land Use and Land Cover 

Types; ground meteorological 

Data. 

 SEBAL overestimates ETa during 

dry periods. SEBAL ETa estimates 

were compared with global ETa 

from MODIS 16 algorithm 

(R50.74; R250.32; RMSE of 34% 

and MAE of 28%) and a 95% 

confidence level. 
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Table 2.6 (continued) Summary of studies utilizing different remote sensing techniques/methods for the estimation of ETa  

Reference Temporal/Spatial 

scale/sensor 

Method Data Requirements Key Findings 

Rahimi et al., 2015 

 

 

February to July 

2011, catchment, 

MODIS images 

located on Terra 

satellite  

 

SEBAL (comparing 

with calculated values 

by the FAO-PM) 

Temperature, wind velocity, 

relative humidity with a 6-hour 

period and MODIS imagery. 

 No significant difference between 

SEBAL algorithm and FAO-PM 

method in both hourly and daily 

states of ETa estimation. 

 The SEBAL algorithm produces 

ETa values of acceptable 

accuracy. 

 Considering the spatial resolution 

and freely available MODIS 

imagery, utilisation of such 

imagery is acceptable and 

practical for the estimation of 

daily water requirements, 

irrigation scheduling and 

management. 

 

Minacapilli et al., 

2016 

Observation period: 

2010–2012,regional, 

MODIS and MSG-

SEVIRI sensors 

Time-Domain 

Triangle Method 

(TDTM) 

Remotely sensed 

vegetation indices, day–night time 

land surface temperature 

differences 

 Estimation of daily ETa with 

reasonable accuracy for practical 

purposes. 

 TDTM regarded as a 

straightforward and effective tool 

to predict  ETa at regional scale, 

temporal and spatial scale 

changes 
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Table 2.7 A limited list of different methods which can be used to calculate ETo based on satellite earth observation data 

Reference Method Description Requirements Advantages Disadvantages 

Rivas and Caselles, 

2004 

Simpler form of the 

Penman–Monteith 

equation 

A simplified Penman–Monteith 

equation is used to produce 

spatial reference evaporation 

estimates from remotely sensed 

surface temperature and local 

meteorological data. 

NOAA-AVHRR 

imagery and 

ground weather 

data. 

Study demonstrates the 

potential of calculating ETo 

by integrating the surface 

temperature from satellite 

imagery with conventional 

weather information. 

Meteorological data is 

necessary to estimate 

reference ETo. 

Hart et al., 2009 ASCE-ET 

Formulation 

Meteorological data is merged 

with hourly 

NOAA Geostationary 

Operational Environmental 

Satellite (GOES) visible 

satellite data to produce spatial 

daily ETo. 

Hourly GOES 

satellite imagery 

and ground-based 

meteorological 

data. 

Demonstrates an approach of 

creating daily ETo maps by 

fusing satellite and ground 

station data. 

-Data intensive. 

Requires ground-based 

meteorological data. 

-Difficult to get accurate ETo 

estimation where ground-

based meteorological data is 

missing. 

Maeda et al., 2011 Use of Empirical 

models 

(Hargreaves, 

Thornwaite and 

Blaney-Criddle) 

ETo is estimated using remote 

sensing and empirical models 

in a region with limited ground 

data. 

 

Land surface 

temperature 

(LST) data 

(MODIS). 

Only air temperature data is 

required. The Hargreaves 

model produced results that 

were consistent with data 

collected in ground station 

and works well in semi-arid 

environments. 

 

 

Ground based LST data are 

required to calibrate the 

Hargreaves model. The 

Blaney Criddle and 

Thornwaite models are 

sensitive to temperature 

differences. 
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Table 2.7 (continued) A limited list of different methods which can be used to calculate ETo based on satellite earth observation data  

Reference Method Description Requirements Advantages Disadvantages 

Cruz-Blanco et al., 2014 MA + LSE approach Established on the 

Makkink-Advection 

(MAK-Adv) equation 

together with remotely 

sensed solar radiation and 

a numerical weather 

forecast of near surface air 

temperature. 

Rs and Ta (EUMETSAT 

LSASAF, a RS tool, and 

ECMWF products). 

Does not require local 

meteorological data. 

Produces good ETo 

estimates under semi-arid 

environments. 

Comparison of ETo values 

from MA + LSE approach 

with the PM-FAO56 

method values display a 

small underestimation in 

the ETo assessment using 

the MA + LSE approach. 

Rahimikhoob and 

Hosseinzadeh, 2014 

Blaney-Criddle (BC) 

model 

Daytime surface 

temperature is obtained 

from the AVHRR/NOAA 

sensor instead of air 

temperature in the BC 

equation for the 

estimation of ETo. 

NOAA/AVHRR imagery 

and ground weather data. 

Allows for the estimation 

of daily ETo in the areas 

where meteorological data 

is unavailable. 

-Limitation of 

NOAA/AVHRR imagery 

due to cloudy conditions. 

-FAO-56 PM model used 

to calibrate BC model. 

Castro and Parra, 2015 Multiple regression model ETo is estimated, at a 

regional scale, using data 

provided by the MODIS 

sensor on board the 

TERRA satellite platform. 

The input data assumed by 

the model include the 

Normalized Difference 

Infrared Index (NDII) and 

the earth's surface 

temperature. 

Meteorological data and 

data provided by the 

TERRA/MODIS sensor. 

Monthly ETo can be 

estimated based on the 

NDII vegetation index and 

surface temperature. 

Meteorological data is 

required to train and 

validate the model by 

utilising the FAO-PM 

model. 
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Many methods have been developed to assess ETa and ETo from meteorological data. However, 

existing weather station networks around the world is not sufficient to capture the spatial 

heterogeneity of these variables (Winkler et al., 2017). This poses as a greater challenge for 

developing countries. To improve water management, the contribution of SEO at various 

spatial scales has increased significantly over the years. Table 2.6 and Table 2.7 indicate recent 

studies, which display the combination of ETo models with satellite data as a feasible alternative 

for obtaining spatial and temporal data on the biophysical variables (Wagner et al., 2008). As 

a result, one of the components of this study seeks to apply a method that utilises SEO to attain 

reliable estimations of ETo. The Hargreaves method is a potential solution to the above 

problem, as the method requires only temperature data and radiation data to estimate ETo.  

 

The above-mentioned case studies in Table 2.7 expand on a few of the many approaches that 

one can adopt to obtain ETo values that are based on SEO. These, and several other case studies, 

indicate the methods used to attain satellite ETo values. Literature by Gavilan et al. (2006), 

Patel et al. (2006), Su et al. (2010), De Bruin et al. (2010), Aguilar and Polo (2011), Hart et al. 

(2012), Cammalleri and Ciraolo (2013), Miralles et al. (2015), Zheng and Zhu et al. (2015), 

Sur et al. (2015) and Pandey et al. (2016) provide details on such methods. 

 

The Hargreaves model was specifically chosen from the above-mentioned case studies, to be 

applied in this study (Table 2.7). The reasons for this choice are that it is simple to use, it is 

less demanding, as it only requires LST data, and it is a frequently-applied method. In addition, 

when compared to the Blaney-Criddle and Thornthwaite models, the Hargreaves model 

estimates closely follow the reference (FAO-PM) results, it achieves the best results in linear 

regression and the analysis of errors, which prove to be consistent with those results obtained 

in previous studies (Maeda et al., 2011). The Hargreaves model has been found to be most 

feasible method for application under semi-arid conditions. A few of the studies that have 

utilised the Hargreaves approach are Gavilan et al. (2006), Aguilar and Polo (2011), Maeda et 

al. (2011), and Zheng and Zhu (2015), amongst several others.  

 

It is also noteworthy to mention that the EUMETSAT LSA-SAF has produced an ETo product 

known as METREF. The LSA-SAF METREF provides daily ETo estimates from the daily 

global radiation derived from SEVIRI/MSG, as this is recognised as the main driver of ETo 

over a reference surface. However, the LSA-SAF METREF product does not utilise 

atmospheric humidity and only presents a slight dependency on near surface temperature. The 
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product is also not affected by local effects such as local advection or surface aridity. The LSA-

SAF documents provide further details on the product, describes the algorithm and can be 

accessed from the website http://landsaf.ipma.pt. De Bruin et al. (2015) also provide further 

details on the product. The product is disseminated in HDF (Hierarchical Data Format) and has 

been available since 07th August 2016. Due to the short data period, the product could not be 

used in this study; hence, the Hargreaves-LST approach was adopted to produce satellite based 

ETo estimates. 

 

In addition, several initiatives have been conducted to integrate different types of SEO and in-

situ observations to produce integrated data for key variables of the water cycle such as rainfall 

and temperature. This integrated initiative is certainly paving the way for a new era in water 

management. Through such integration, data and products are being produced that are more 

robust and useful in data-sparse areas.  

 

Knowledge obtained from the above literature reviews and case studies indicate that satellite 

earth observation techniques can prove to be very useful for obtaining estimates of parameters 

within the hydrological cycle, which can be used within drought indices to enable the 

monitoring of droughts. Hence, the following section discusses the monitoring of droughts by 

utilising the satellite earth observational approach. 

 

2.6 Drought Monitoring using Satellite Earth Observation/Remote Sensing 

 

Globally, the gathering of reliable information on land surface conditions using, RS or satellite 

earth observational techniques has been studied by many researchers. Su et al. (2001), Petja et 

al. (2008), Gibson et al. (2009), Anderson et al. (2012), Gokmen et al. (2012), Gibson et al. 

(2013), Mu et al. (2013), Shoko et al. (2013) and Byun et al. (2014), amongst several other 

studies give more detailed information on such studies.  

 

The term “RS” or “satellite earth observation" is associated with aerial photography and 

satellite imagery, which are utilised to obtain information about the features present on the 

earth’s surface (Gibson et al., 2009). It is a technique that allows for spatial and temporal 

coverage and it enables information to be retrieved from places that are inaccessible to man 

(Eden, 2012). Information from accessible areas can also be obtained. Further insights into RS 

are provided by Vinukollu et al. (2011) and Romaguera et al. (2014). 

http://landsaf.ipma.pt/
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RS sensors are devices that allow data, relating to an object, to be captured remotely. Landsat, 

MODIS, IKONOS, SPOT, NOAA-AVHRR and MSG-SEVIRI are amongst the most 

commonly-used sensors in hydrology. These sensors produce imagery that provides an 

understanding of the relationship between various parameters of the hydrological cycle. RS 

techniques make it possible to measure various components of the hydrological cycle on the 

land surface, as well as the state of natural vegetation and agriculture, often at very high spatial 

resolution (<1 km) depending on the purpose of the data and in near–real time, which is 

fundamental for early drought warning (Sheffield et al., 2014; Sepulcre-Canto et al., 2014).  

 

Concerning droughts, the approximation of the LST by thermal-infrared imagery that is 

captured by RS sensors such as, Landsat enables the mapping of ETa at the spatial scale at 

which water is being used. The monitoring and assessment of droughts can be performed, using 

this procedure. Drought events tend to occur with uneven spatial and temporal features (Petja 

et al., 2008). The wealth of available information and tools that are based on RS offer great 

opportunities for identifying the geospatial differences attributed to drought events and drought 

hot spots (Masih et al., 2014). The input of surface variables carried out by using RS 

techniques, into surface energy balance models enables the detailed mapping and monitoring 

of drought conditions/water stresses to be conducted (Sepulcre-Canto et al., 2014). A 

substantial and increasingly large body of literature currently exists on the potential for drought 

monitoring, (for example, in Anderson et al. (2011), Houborg et al. (2012), Sheffield et al. 

(2012) and Mu et al. (2013)).  

 

Specifically in the case of water management, RS techniques are currently in a growing market 

because of the complex environmental issues, climate change concerns as well as continuous 

increases in the demand for water, under the umbrella of global change (Bastiaanssen and 

Harshadeep, 2003). The scope of providing a holistic and consistent view of droughts has 

recently been broadened, by merging RS data with land surface hydrological modelling, either 

directly via assimilation (for example satellite retrievals of soil moisture), or indirectly via input 

drivers (for example precipitation) (Sheffield et al., 2014). Van Dijk and Renzullo, (2011), 

Anderson et al. (2012) and Winkler et al. (2017) are amongst several studies that have 

displayed this potential. Recently, an increasing number of satellite-based ETa products, at 

various temporal and spatial scales, has recently been generated (Hu et al., 2015). 
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The benefits of employing satellite-based techniques can be extremely useful for water 

resources management; however, it is crucial to take note that this technique also possesses 

limitations and disadvantages. Some of these limitations are attributed to all satellite-based 

techniques while, certain limitations are specific to the technique applied (Mertz, 2010). The 

next section will discuss details of these advantages and disadvantages/limitations.  

 

The listed advantages and disadvantages discussed below are not the only ones that exist with 

the utilisation of satellite techniques, but merely provide a brief overview of just a few. 

 

2.6.1 Advantages of remote sensing for drought monitoring 

 

Some of the several advantages relating to the use of RS for drought monitoring include the 

following: 

 

(i) In recent years, advancements in remote-sensing ETa models have paved the way for 

more accurate estimates of ETa to be obtained. This forms an essential component for 

understanding the consumptive use and availability of water resources (Schneider et 

al., 2008).  

(ii) Specifically in the fields of hydrology and agriculture, the availability of land surface 

information at a wide range of temporal and spatial scales through space-borne RS 

measurements is attainable, compared to in-situ measurements (Bastiaanssen et al., 

2000). It is useful for producing more accurate estimates of ETa and providing a more 

comprehensive view of drought development. 

(iii) The necessary water resource-related information can be made available to the public, 

consultancies, policy-makers and researchers to assist them in formulating legislation, 

for planning purposes as well as for impact assessments (Bastiaanssen et al., 2000). 

(iv) Spatial estimates of various water-cycle related variables provide water managers with 

the opportunity to use them for estimating water usage by alien invasive species, 

monitoring water rights, determining the allocation of water amongst the many sectors, 

monitoring drought and food insecurity and evaluating climatic models (Anderson et 

al., 2012). 

(v) The assessment of water use, crops biomass and yield production can be performed as 

a result of the recent developments in the use of RS information (Jarmaine et al., 2014). 
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Hence, the amount of ETo and ETa loss from crops and surfaces including water bodies 

can be accounted for and the assessments of the severity of droughts can be conducted. 

(vi) The high temporal resolution of geostationary satellites allows for the continuous 

monitoring of different applications and the availability of long-term data series to 

allow for studies to be directed towards possible change detection (Hu et al., 2015).  

(vii) Some sensors are well-suited for carrying out certain tasks, as opposed to others. For 

example, Landsat is useful for monitoring of the earth’s surface, for environmental 

monitoring and for vegetation and land cover classification. SPOT is used mainly for 

farming, fisheries, mapping and forestry, geology, land management and planning, 

security and defence as well as for risk mitigation, while NOAA satellites or ASTER 

are useful for providing information on the topography of an area. 

(viii) RS data obtained from polar-orbiting satellites are able to produce spatial and temporal 

information continuously over vegetated surfaces which is beneficial for monitoring 

surface variables that affect ET (Mu et al., 2013). This assists in producing more 

accurate ETa estimates to develop drought indices for the monitoring of droughts. 

(ix) The archives of RS imagery provide excellent sources of historical data for research, 

and other purposes (Gibson et al., 2009). This enables the comparison and analysis of 

drought events and it helps water resource managers to plan for the future. 

 

2.6.2 Disadvantages/limitations of remote sensing for drought monitoring 

 

The disadvantages and limitations associated with the use of RS include the following: 

 

(i) The high costs of training and providing the necessary skills for technicians depending 

on the models, products and images used (Bastiaanssen et al., 2000). 

(ii) There are differences between the spatial and temporal scales of satellites. 

(iii) The under-utilisation of RS data by water resource managers (Bastiaanssen et al., 

2000). This is because remotely-sensed products are often expensive and difficult to 

obtain, which prohibits or limits their use (Boyle et al., 2014). 

(iv) Difficulties prevail in relating observed radiances to landscape features in the absence 

of ground truth data (Kustas and Norman, 1996). 

(v) Satellite revisit and repeat cycles play a key role in the availability of images and 

thereby determine the amount of ETa estimates that can be produced (Schneider et al., 

2008). 
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(vi) Cloud coverage has a great influence on the reflected radiation for both optical and 

thermal wavelengths; hence, the number of images that can be processed is dependent 

on the availability of cloud-free imagery. This limits the number of ETa estimates that 

can be produced for the calculation of drought indices and hence, for the monitoring of 

droughts. 

(vii) The indirect nature of the retrieval of physical variables and changes in satellite sensors 

that can lead to temporal inhomogeneity’s (Sheffield et al. 2014). More specifically, 

the non-closure of the water budget, errors in individual products and inconsistencies 

between products imply that the use of RS to be accrued out with caution (Sheffield et 

al. 2014). 

 

Given the potential advantages and associated benefits of utilising satellite imagery as a data 

input, the use and development of models and ETa algorithms incorporating this data present 

themselves as an attractive collaborator or alternative to conventional ETa measuring methods 

for use in areas with limited ground station networks (data-sparse areas). Consequently, this 

research study explores the EUMETSAT LSA-SAF ETa product as a satellite-derived ETa 

product for incorporation into the ETDI index in this study. The list of globally available ETa 

products are displayed (in Table 2.5). However, the EUMETSAT LSA-SAF ETa product was 

chosen as it is a global product that is obtained by using a surface energy balance, which enables 

the spatial coverage of droughts to be captured. The product is freely available, has a high 

temporal resolution (daily) and, most importantly, the dataset is available for current years, in 

comparison to the other global datasets. Therefore, the EUMETSAT LSA-SAF ETa was chosen 

for use in this study. A detailed description of this product is provided in the next section. 

 

2.7 EUMETSAT Satellite Application Facility on Land Surface Analysis (LSA-SAF) 

ETa Product 

 

The LSA-SAF ETa product based on the SEVIRI sensor onboard the Meteosat Second 

Generation geo-stationary satellites (MSG-SEVIRI) is one of the few available operational 

products (Ghilain et al., 2011; Sepulcre-Canto et al., 2014; Hu et al., 2015). According to Hu 

et al. (2015), LSA-SAF MSG ETa and the MOD 16 (Mu et al., 2007) are two of the operational 

moderate spatial resolution ETa products that are based on satellite data at a global and 

continental scale. The LSA-SAF MSG ETa product is distributed by the EUMETSAT 

(European Organization for the Exploitation of Meteorological Satellites) Satellite Application 
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Facility on Land Surface Analysis (LSA-SAF) and the University of Montana, respectively 

(Hu et al., 2015). The major benefit of using this product is its spatial coverage, as it is 

generated over four geographical areas (Europe, North Africa, South Africa and the eastern 

part of South America) within the MSG disk and it is produced operationally in near-real time 

(every 30 mins in the case of ETa) (Figure 2.2) (Ghilain et al., 2011; Sepulcre-Canto et al., 

2014; Hu et al., 2015). The model does not take into account the Land Surface Temperature 

(LST) for an all-weather evaluation of ETa as a mandatory input of the model, since this would 

restrict the model’s evaluation to cloud-free sky conditions (Ghilain et al., 2011). Hence, ETa 

maps are produced for all weather conditions, allowing the model to provide continuous ETa 

series that are useful in various applications (Ghilain et al., 2011; Hu et al., 2015).  

 

The LSA-SAF includes the following two ETa products:  

 

(a) MET: These are instantaneous ETa estimates, with a time interval of 30-minute (MET). A 

quality flag image is produced together with the ETa map, providing information on a 

pixel-by-pixel basis. The quality of input variables and if pre/post-processing (gap 

filling) was performed on input or output data are contained within the quality flag 

image. 

(b) DMET: This is the daily ETa product that is produced by integrating the instantaneous 

values of each day (DMET) (Hu et al., 2015). Accompanying the DMET product are 

two images which are indicative of the number of values (slots) missing for each pixel 

and the percentage that it represents respectively. 

 

Table 2.8 includes the characteristics of the SEVIRI based ETa products. The method follows 

a physical approach and the model is forced with radiative data derived from MSG satellites, 

together with information on land-cover characteristics as displayed in Figure 2.3 and ancillary 

meteorological data from the NWP (Numerical Weather Prediction Model) (Ghilain et al., 

2011; Sepulcre-Canto et al., 2014).  
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Figure 2.2 The four geographical areas covered by the LSA-SAF ETa products: Europe, 

Northern Africa, Southern Africa, and South America (http://landsaf.meteo.pt/) 

 

Table 2.8 ETa product requirements, in terms of area coverage, resolution and accuracy (LSA-

SAF, 2015) 

ET 

Product 

Product Resolution Threshold Accuracy 

Target 

Optimal 

Identifier Coverage Tempo

ral 

Spatial 

MET: ET LSA_16 MSG 

Disk 

30 min MSG pixel 

resolution 

30 % MET>

0.4mm

/h: 

25%;  
 

10% 

DMET:ET LSA_17 MSG 

Disk 

1 Day MSG pixel 

resolution 

30 % MET<0.4

mm/h: 

0.1 mm/h

: 

0.2 20% 

10% 

 

2.7.1 Data requirements of model 

 

The ETa is obtained by modelling the energy exchange between the atmosphere and the earth’s 

surface (soil and vegetation). The model is driven by input data (‘forcings’) produced by the 

LSA-SAF MSG.  

 

The main input data necessary to retrieve MET and DMET include the following: 

 

A. Radiative data: The required LSA-SAF MSG data inputs to the ETa algorithm are 

fractional vegetation cover, LAI, albedo, snow cover, down-welling shortwave and 
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longwave fluxes and land cover (Hu et al., 2015). These atmospheric model inputs are 

obtained from corresponding LSA-SAF products produced from the MSG-SEVIRI.  

B. Meteorological data: The meteorological data is provided by the ECMWF numerical 

weather prediction analyses and forecasts (Gellens-Meulenberghs et al., 2007; Ghilain 

et al., 2011). The input non-satellite data are ECMWF four-dimensional variational 

(4DVAR) reanalysis data (Hu et al., 2015). This data is originally obtained at ECMWF 

spatial resolution, which is thereafter transposed into the MSG grid and spatially 

interpolated. Currently, the meteorological variables used by the MET algorithm 

include the following: 2m temperature (K), soil temperature for 4 soil layers (K), 2m 

dew point temperature (K), atmospheric pressure at sea level (Pa), 10m wind speed 

(m/s) and soil moisture for 4 soil layers (m3/m3). 

C. Land cover: ECOCLIMAP land cover classification (Masson et al., 2003) is used in 

the current versions for identifying and characterizing the land cover at 1 km resolution 

and the vegetation parameters required in SVAT (Soil Vegetation Atmosphere 

Transfer) models. 

 

 

Figure 2.3 Schematic representation of a MSG pixel composition (bare soil, forest, crops and 

grassland (LSA-SAF, 2015) 

 

For detailed information about the capabilities and validation of the LSA-SAF MET and 

DMET product Version 4.0, one should consult the Product User Manual (PUM) and 

Validation Report (VR) (Gellens-Meulenberghs et al., 2007, 2008, 2009; Arboleda et al., 2011; 

Ghilain et al., 2011, 2013). The VR gathers all the results of performed validation tests as well 

as details of the possible causes of uncertainty and it leads the way towards further 

improvements. In the PUM, it is stated that the product in its current state is useful for many 

applications, such as environmental monitoring, for assimilation in models, for long-term 

studies on ETa (that are) linked to climate and for regional ETa estimates, where no 

measurements exist. 
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2.7.2 Calculation of the ETa and model description at tile level 

 

To produce ETa products, the model is based on the specific parameterization of the TESSEL 

SVAT scheme (Viterbo and Beljaars, 1995; van den Hulk et al., 2000; Balsamo et al., 2009; 

Ghilain et al., 2011). The area for which ETa has to be assessed is divided into independent 

pixels, in a one-to-one correspondence with the pixels of a satellite image. Within the model, 

each pixel is interpreted as a mix of homogenous tiles, representing particular land cover types. 

The land cover types include deciduous, coniferous and evergreen broadleaf trees, bare soil 

and rocks, rainfed and irrigated crops and natural herbaceous plants (Sepulcre-Canto et al., 

2014). For each respective pixel, a maximum of four tiles (three vegetation tiles and bare soil) 

are allowed (see Figure 2.3).  

 

Hence, the energy balance equations are solved at a tile level and the global pixel value is 

obtained through the weighted contribution of each pixel (Sepulcre-Canto et al., 2014). The 

surface dimension represented by the pixel varies in the function of its location (longitude and 

latitude) and is 3x3 km at the MSG sub-satellite point. This is one of the first methods to derive 

ETa operationally over large areas (Arboleda et al., 2011).  

 

The MET algorithm is an energy balance model that aims to compute, for each tile i in the 

considered pixel, the partition of net radiation (Rni), the sensible heat flux (Hi), the latent heat 

flux (LEi) and the heat conduction flux into the ground (Gi), according to (Equation 2.5 below): 

 

𝑅𝑛𝑖 − 𝐻𝑖 − 𝐿𝐸𝑖 − 𝐺𝑖 = 0         (2.5) 

 

2.7.3 Daily evapotranspiration product (DMET) 

 

The temporal integration of instantaneous values produced by the MET algorithm yields daily 

evapotranspiration according to Equation 2.6: 

 

𝐷𝑀𝐸𝑇 =  ∫ 𝑀𝐸𝑇𝑖(𝑡)𝑑𝑡
ℎ2

ℎ1
          (2.6) 

where: 

METi = the instantaneous evapotranspiration estimated by the MET algorithm every 30 

minutes for a day.  
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The integration limits (h1, h2) relate to the first (theoretically at 00:30 UTC) and last 

(theoretically at 24:00 UTC) existing slots for a day. In an ideal situation, 48 images in total 

are generated, which is interpreted as being that, for each MSG pixel, 48 ETa values have to be 

integrated. To generate a daily consistent value for each pixel, a linear interpolation between 

the closest slots is applied according to Equation 2.7: 

 

𝑀𝐸𝑇𝑗 = 𝑀𝐸𝑇𝑗−1 + 0.5(𝑀𝐸𝑇𝑗 + 𝑀𝐸𝑇𝑗−1)𝑁       (2.7) 

 

where: 

METj-1 and METj = previous and next existing ETa values for the same pixel in 

considered day, and  

N = the number of time steps between previous and next existing ETa 

values. 

 

For a more detailed description of the LSA-SAF MSG ETa products regarding; the model, the 

methodology, theoretical framework and mathematical description of the algorithms, 

documents by the LSA-SAF are available and include: the PUM, the Algorithm Theoretical 

Basis Document (ATBD), the VR and the Product Output Format (POF), which are available 

at: http://landsaf.meteo.pt/. Literature by Ghilian et al. (2011) and Hu et al. (2015), amongst 

many others also provide details on the LSA-SAF MSG ETa products.  

 

2.7.4 Processing scheme 

 

As detailed within the PUM, the execution of the algorithm is performed in three steps. The 

first step corresponds to the pre-processing, where all the input data is verified by the algorithm, 

the gap-filling procedure over the missing DSLF pixels values over land is conducted, internal 

structures are initialised and input data is loaded into internal arrays. The second step 

corresponds to the equation-solving process, where the first pixel on the image is the starting 

point for the algorithm. If all necessary input data is available, the algorithm solves the set 

equations for each tile and, if convergence is reached, the ETa for the whole pixel is computed. 

Depending on the performances of the algorithm and the quality of input data, a quality flag 

value is generated for the pixel. Finally, the third step is the output formatting. In this step, the 

scaling factor for the whole image is set by the algorithm, data type casting is carried out, the 
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data and attributes are set and the output is written in HDF5 format. Thereafter, used memory 

is freed by the algorithm, it returns the control to the wrapper and stands idle until the next call. 

Figure 2.4 below provides a generalised view of the procedures that were followed. 

 

 

Figure 2.4 The diagram of ETa processing chain (LSA-SAF, 2015) 
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2.8 Synthesis of Literature 

 

Given projections of an increase in the occurrence and severity of extreme climate events for 

many regions around the world, it is imperative that nations now move towards more risk-

based strategies to drought management. It is quite clear from the literature review that 

scientific research and expertise is needed to monitor and predict natural hazards such as 

droughts. Drought indices are one of the approaches that can be used to assess and monitor 

droughts. 

 

Monitoring drought and drought severity using in-situ data has often been difficult due to the 

lack of long-term data records, worsened by declining gauging networks. Traditionally, local 

risk management approaches placed emphasis only on short-term climatic events without 

accounting for long-term climate changes. To fill this gap, drought indices that consider 

different variables and time scales in their formulation (SPI, SPEI) may be utilised, more so 

for investigating future climate change scenarios. Nowadays, drought monitoring using SEO 

has been receiving a significant amount of attention. As opposed to obtaining point 

measurements from in-situ methods, which do not represent spatial characteristics of different 

meteorological and climatic variables, satellite earth observation approaches are able to capture 

the spatial and temporal coverage of such variables. Since droughts are known to have spatial 

and temporal dimensions, achieving coverage of drought monitoring over large geographic 

scales through satellite earth observation will assist in providing a more comprehensive view 

of the development of a drought. This will enable better management of water resources and 

improved disaster risk management. 

 

Quantification of the hydrological cycle components is fundamental to managing water 

resources. ETa is one of the critical variables in semi-arid and arid countries like South Africa. 

In water scarce regions around the world, ETa or crop water use is the greatest water user, hence 

a vital parameter in assisting water resource management. Thus, ETa estimation is a vital 

element in water accounting for water resources monitoring and management. Through the 

investigation of how the content of ETa varies in time and space, a crucial component of the 

water cycle may be understood and quantified. Conventional techniques of ETa estimation 

possess capacity constraints such as time and expenses as well as they contain poor spatial 

resolution as they only representative at point or localized field scales. However, recent 

advances in modeling and estimating ETa using satellite observations, which generate hyper- 
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or multi-spectral digital images, have become more sought after by many water resources 

managers and planners due to cost-effective and time-less means of acquiring spatial 

representative ETa. These techniques were not available in the past, however due to 

technological advances, spatial and temporal coverage and resolution have improved. 

Nowadays, there is a growing number of earth observational products derived from satellite 

images available at a global and continental scale for the estimation of hydrological cycle-

related variables such as precipitation, ETa and soil moisture to name a few. 

 

The focus on this research is on a satellite based, spatially derived evaporative drought index, 

the ETDI. The evaporative drought index accounts for ETa thereby accounting for the actual 

state of the land surface dryness. Within the ETDI calculation, ETo is also required which will 

be calculated from satellite data. With the incorporation of satellite data, drought monitoring 

over large-scales can be achieved, providing a more comprehensive view of drought 

development over differing spatial scales.   

 

From the literature reviews conducted, it was further found that all droughts emanate from a 

deficit of rainfall; hence, the SPI, which is the most widely used drought index based on rainfall 

was used to assess the ETDI in detecting the occurrences of droughts. The SPEI accounts for 

the deficit between ETa and precipitation, which are vital drivers to droughts. Furthermore, the 

SPEI accounts for temperature and in drought analysis it is found to be beneficial, more so for 

climate change analysis as scientists have predicted a marked increase in temperature over the 

years.  Therefore, the SPEI, which is based on the SPI algorithm incorporating ETa was utilised 

in addition to the SPI as a comparison to the ETDI. The use of satellite data and the associated 

products to obtain estimates for the various components within the hydrological cycle was 

reviewed and used to display the relationship between droughts and the various hydrological 

parameters. 

 

The literature reviews undertaken in this section brought to light many research gaps, which 

informed this research study. Some of the many research gaps found within the literature 

included: 

 

a) There is a significantly increasing number of scientific studies and information on 

various aspects of drought. However, these studies often do not incorporate satellite 

data as well as the spatial scale perspective. 
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b) Relatively few studies that focus on evaporative drought indices exist despite, 

evapotranspiration being one of the most critical water-cycle related variables in 

semi-arid and arid areas. 

c) The ETDI determines drought severity based on an ET deficit, which is a good 

parameter for evaluating drought conditions of a landscape on an agricultural level. 

Despite this, the ETDI has not been applied in many regions of the world and 

especially not in those countries where agricultural productivity is a dominate 

sector. 

d) Alternate methods of obtaining estimates of ETo based on satellite earth 

observational data presents themselves as feasible approaches of obtaining spatial 

and temporal data on this biophysical variable, hence should be explored and 

investigated.  

e) There is demand for more accurate and reliable drought monitoring studies along 

with forecasting systems/approaches for South Africa. 

 

The knowledge gained from the above literature along with the findings has assisted in, 

informing the methodology that will be used for this study. The following chapter details the 

methodology to be carried out for this research study. 
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3. METHODOLOGY 

 

The methodology component of this research stems from the evaluation of literature gaps 

identified in the previous chapter.  The overall aim is to estimate a satellite-based spatially-

derived drought index from the hydrological system drivers. This study investigated a 

methodology for estimating drought indices by combining satellite earth observation data 

(SEO) with conventional in-situ data. This chapter details the general methodology, a 

description of the research areas, the ETDI, SPI and SPEI indices along with the inputs, 

necessary calculations and procedures that were required to obtain the spatial and temporal 

drought monitoring results.  

 

3.1 General Methodology 

 

The general methodology adopted in this study aimed to achieve the research objectives that 

were posed in Chapter One, which included: 

 

i. an investigation into, and the application of, the ETDI in South Africa, using satellite-

derived earth observation data, 

ii. an estimation of ETo from satellite earth observation data (SEO) for use in the ETDI 

calculation, 

iii. the application and validation of a satellite-based ETa product as an input for the ETDI 

calculation, 

iv. the application of the SPI and SPEI to confirm the occurrence of drought events, 

v. the assessment of the ETDI, using the SPI and SPEI as indicators of droughts in selected 

Quaternary level sub-Catchments (QC’s) in South Africa, and 

vi. an investigation into the use of satellite-based drought indices in ungauged catchments. 

 

The first section of this study was aimed at monitoring historical droughts using SEO through 

the calculation of the ETDI from two key water-cycle related variables, namely, ETa and ETo. 

The research work carried out in this section of the study was divided into three main phases. 

Phase One involved the use of a global daily evapotranspiration product, to generate the ETa 

estimates. The LSA-SAF product was downloaded for the period 01st January 2011 to 31st 
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December 2016 and furthered processed using Python scripts. With respect to Phase Two, as a 

result of a declining availability of meteorological data from ground stations in poor and 

developing regions, and due to maintenance and cost-related issues, data from such stations are 

insufficient to represent the spatial-temporal variation of ETo.  An alternative method that can 

be used in poor and developing countries, such as South Africa, is a combination of the 

Hargreaves Model (Hargreaves and Samani, 1985) and RS (remote sensing) data, which 

enables a spatial-temporal variation of ETo to be calculated, thereby assisting for the proper 

management of water resources. The final and third phase of this section was the calculation 

of the ETDI from the WSA. 

 

The methodology for the second section of the research work focused on calculating the SPI 

and the SPEI from the R software package. The research work carried out in this section of the 

study was divided into five main steps. The first step involved obtaining the SPEI-R package, 

while Steps 2 and 3 consisted of creating 30-year historical records of continuous rainfall data 

and temperature from different sources to form the data inputs into the SPEI package within 

the R software and to enable the calculation of the SPI and SPEI. Step 4 consisted of structuring 

the data and creating the text input files for the SPEI-R package. Finally, running the R software 

to obtain results formed the fifth step. 

 

 

Figure 3.1 General methodology for drought assessment 
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3.2 Description of the Study Area 

 

Upper Thukela and Umgeni Catchments, located in the KwaZulu-Natal province in South 

Africa, were selected for this research study (Figure 3.2). In 2015, 2016 and at the beginning 

of 2017, these catchments were severely affected by an ongoing drought event, which 

coincided with an El Nino event. This research study was thus undertaken in the above 

catchments in an attempt to depict the drought event that had occurred and to assist in 

improving the water resources management by advocating the use of SEO. This will attempt 

to contribute to a better understanding of the spatio-temporal patterns of droughts, which is 

needed for implementing strategies of drought risk planning and management. 

 

Additionally, drought analysis in these catchments is important as the 2015/2016 drought 

caused significant economic losses, whilst the urban and agricultural water demands have 

increased considerably. This has further highlighted the need to understand the temporal 

behaviour of droughts and their spatial patterns in order to assist in the development plans for 

future risk mitigation.  This study reports and detects the important drought events that have 

occurred within these catchments.  

 

In South Africa, a classification system is used to categorize hydrological unit boundaries, 

which are endorsed by the Department of Water Affairs (DWA) (Maherry et al., 2013). These 

range from primary, secondary and tertiary, with the smallest operational unit being the 

quaternary catchment (Maherry et al., 2013). To enable the validation of the LSA-SAF ETa 

product, a quaternary level sub-catchment (QC) was selected, which is located immediately 

next to the QC’s within the Umgeni Catchment of the study area. QC U40C was chosen to be 

the validation site. The Two Streams Research Catchment is located within the QC from which 

data was received (Figure 3.2).  

 

3.2.1 Upper Thukela Catchment 

 

The Upper Thukela Catchment extends from the river’s headwaters in the Ukhahlamba-

Drakensberg Mountains (3000 m above sea level) and flows to the Indian Ocean (de Winnaar 

et al., 2010; Andersson et al., 2011; Graham et al., 2011). The catchment covers an area of 

approximately 29 297.54 km2, within which the Department of Water Affairs (DWA) has 

delineated 86 QC’s (Kongo et al., 2011). More recently, other researchers have delineated the 



 

 56 

QC’s further into 235 sub-catchments (Kongo et al., 2011). The focus of this study are 55 of 

the headwater QC’s that make up the Thukela Catchment, which are located in the upper 

Thukela within the secondary catchments V1, V2, V6 and V7, and cover an area of 16265.41 

km2.  

 

The catchment is diverse in terms of its culture, landscape and climate (Andersson et al., 2011). 

Various land uses occur within the study area of the Upper Thukela Catchment, as shown in 

Figure 3.3. In respect to the climate characteristics of the Upper Thukela Catchment, it is highly 

seasonal, with warm summers and dry cool winters, and a large variation of precipitation is 

exhibited (Andersson et al., 2011). The mean annual potential evapotranspiration of the 

catchment ranges between 1600 to 2000 mm (Andersson et al., 2011). The MAP ranges from 

approximately 2000 mm in sections of the Drakensberg mountains to as low as 550 mm in the 

drier lower valley regions (Lynch, 2004; Kongo et al., 2011). Several large reservoirs that are 

used for hydropower and other downstream services are fed by the abundant runoff received 

from the Drakensberg Mountains (Wilk et al., 2013). The conditions are known to be generally 

good for farming, which stretches over much of the catchment (Graham et al., 2011). 

 

3.2.2 Umgeni Catchment 

 

The Umgeni Catchment (4 481.25 km2) is located in the Province of KwaZulu-Natal, South 

Africa (see Figure 3.2). The catchment extends between the longitudes of 29o47’6.90”E and 

31o3’28.73”E and the latitudes of 29o13’6.35”S, 29o50’12.37”S. The Umgeni Catchment is 

strategically and economically important for South Africa. Water resources from the Umgeni 

Catchment supplies nearly 15% of the country’s 41 million inhabitants as well as a region that 

is known to produce approximately 20% of the country’s Gross Domestic Product (GDP) 

(Schulze et al., 2004; Warburton et al., 2010).    

 

Sub-tropical climatic conditions prevail within the catchment with an average annual 

temperature ranging from 12oC in the escarpment areas to 20oC towards the coastal areas of 

the catchment (Warburton et al., 2010; Dube and Mutanga, 2015, 2016). The altitude in the 

catchment extends from 1913 m a.s.l in the western escarpment of the catchment to sea level 

at the catchment’s outlets to the Indian Ocean (Warburton et al., 2010). The MAP varies 

between 730 mm in the drier middle sections of the catchment and 1500 mm in the dominant 

water source areas found in the west of the catchment (Dube and Mutanga, 2015, 2016). The 
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rainy season occurs in the summer months from October and February, with the high summer 

rainfall providing favourable conditions for the production of timber in commercial plantations 

(Dube and Mutanga, 2015). The mean annual potential evaporation ranges between 1 567 mm 

and 1 737 mm (Warburton et al., 2010). The area is characterised by moderately steep and 

undulating slopes stretching between 644 m and 1266 m above sea level (Dube and Mutanga, 

2015, 2016).   

 

There are intensive cultivation of commercial timber and sugar plantations as well as 

subsistence crop husbandry (Schulze et al., 2004). There are also irrigated crops/pastures and 

over-grazed areas present within the catchment (Schulze et al., 2004). The aforementioned 

contrasting agricultural systems affect hydrological responses in vastly different ways (Schulze 

et al., 2004). The land cover types present within the catchment are shown in Figure 3.3. 

 

Four major dams (Midmar dam, Albert Falls, Inanda dam and Nagle dam), are located within 

the Umgeni Catchment that form the water engineering system of the Umgeni (Warburton et 

al., 2010).  For this study, 12 QC’s that make up the Umgeni catchment were the main focus 

for the study. These QC’s form part of the U20 tertiary catchment. Figure 3.2 displays the 

location of the catchment.  

 

3.2.3 Validation site: Two Streams Research Catchment 

 

The Two Streams Catchment was chosen as the validation site for the LSA SAF DMET product 

based on the availability of in-situ measurements (Figure 3.2). The catchment is located 70 km 

northeast of Pietermaritzburg, in the seven Oaks District (Lorentz et al., 2004; Bulcock and 

Jewitt, 2012; Everson et al., 2014) and is at an altitude of approximately 1050 m (Lorentz et 

al., 2004). Mucina and Rutherford (2006) classified the area as the “Midlands Misbelt 

Grassland” (Bulcock and Jewitt, 2012; Everson et al., 2014), with a rolling landscape and the 

majority of the land is arable (Everson et al., 2014). Commercial forestry dominates the areas, 

with Eucalyptus, pine (Pinus) and wattle (Acacia) being the genera of choice (Lorentz et al., 

2004; Bulcock and Jewitt, 2012). Sugarcane plantations are also grown where the drainage of 

cold air is good to ensure that light or no frost occurs (Bulcock and Jewitt, 2012). The climate 

is humid, with an annual summer rainfall of 659 mm to 1139 mm (Bulcock and Jewitt, 2012; 

Everson et al., 2014) and most rainfall occurs during the summer months from October to 

March (Bulcock and Jewitt, 2012). During the winter months, dry and windy conditions prevail 
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with occasional low frontal systems. Heavy mists, frost, hail, Berg winds and droughts are 

common to the area (Mucina and Rutherford, 2006; Everson et al., 2014).  

 

 

Figure 3.2 Location of the Umgeni and Upper Thukela Catchment within the province of 

KwaZulu-Natal, South Africa, along with the location of the 22 meteorological 

stations used to obtain precipitation and temperature data 
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Figure 3.3 Land cover map for the research study sites (GEOTERRAIMAGE, 2015) 
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3.3 Monitoring Droughts with the Evapotranspiration Deficit Index (ETDI) 

 

The research work involved in this component of the study focused on calculating the ETDI to 

enable the monitoring of droughts. The methodology was divided into three steps. The first 

step required obtaining ETa estimates, while the second step looked at calculating ETo using a 

satellite-based technique. In the third step, ETa and ETo were used to calculate the ETDI. 

 

3.3.1 Actual evapotranspiration estimates (ETa) 

 

This study uses the daily ETa product known as DMET (Hu et al., 2015), which is produced 

by integrating instantaneous 30 min ETa values (MET product) over an entire day (mm/d-1). 

Section 2.7 describes the method briefly and presents the main equations; however, the 

complete procedure is described in the User Manual and various supporting documents for the 

product (LSASAF, 2011). 

 

3.3.2 Imagery retrieval and processing 

 

The LSA-SAF DMET product was downloaded from the EUMETSAT’s LSA-SAF website 

(http://landsaf.meteo.pt/), which is an FTP site. Registered users have free access to LSA-SAF 

ETa results through the LSA-SAF website (see http://landsaf.meteo.pt/) or via EUMETCast 

(http://www.eumetsat.int/ Home/Main/DataAccess/EUMETCast/index.htm) dissemination in 

near-real time. Off-line distribution to users is also possible via ftp (http://landsaf.meteo.pt) or 

on request from helpdesk.landsaf@meteo.pt. Prior to the date 11/11/2015, four areas (Europe, 

North Africa, South Africa and South America) were available; the area of South Africa was 

downloaded for this study. However, after the above specified date, only the full MSG-Disk 

was available and had to be downloaded. The area of South Africa was therefore chosen (prior 

to 11/11/2015), and the MSG Disk was chosen afterwards due to a change in the product 

format. The files were downloaded in HDF format for a six-year period (2011-2016). A total 

of 2170 DMET files were utilised in this study. 

 

Provided that optimal conditions prevail, one image is available per day. Each image is stored 

in an HDF5 file, which also contains information about the quality of the generated output. 

Every output file is composed of three images containing: (i) the DMET estimates, (ii) the 

number of values (slots) missing for each pixel, and (iii) the percentage it represents 

http://landsaf.meteo.pt/
http://www.eumetsat.int/
mailto:helpdesk.landsaf@meteo.pt
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respectively. The product has a one-day distribution delay and a spatial resolution of 3-5 km, 

which is dependent on the latitude and the distance to the nadir view (Sepulcre-Canto et al., 

2014). The product has been operationally available since the 13th of December 2010. 

 

Once the DMET HDF5 files are downloaded, HDFView software 

(http://www.hdfgroup.org/hdf-java-html/hdfview/index.html#download_hdfview) can be 

utilised to view the data, for basic statistics, line-plotting and histogram generation. The three 

files contained within the ETa product in the HDFView software can be displayed using colour 

palettes, the files can be inspected and the dataset attributes can be viewed. 

 

GIS tools are required for the visualization and analysis. The HDFView is a tool that provides 

for a quick inspection, while GIS tools are more useful for map-making, visualization and 

analysis.  However, most GIS tools cannot recognize LSA-SAF coordinate information; 

therefore, the files need to be projected, hence an MSG toolbox has been provided by the LSA-

SAF for geo-referencing LSA-SAF products.  

 

Within the MSG toolbox, HDF5 files can be converted to a geotiff format, which is based on 

an interchange format for georeferenced raster imagery that is suitable for further processing 

in GIS software. The toolbox offers other file format conversions such as for ILWIS (.mpr) and 

IDL-ENVI/SPIRITS (.img). Temporal compositing, quality filtering and composite files based 

on daily composites, periodic composites and a number of observations using minimum, 

maximum, sum or average of the values, are some of the various options provided by the 

toolbox. However, this toolbox has not yet been adapted to work with the full MSG disk. The 

LSA-SAF has been contacted and it was envisaged that the modified version of the toolbox 

would work with the full MSG disk and be released by July 2017. However, due to delays the 

modified version was not yet ready when this study required it. 

 

Open source tools such as GDAL, Proj and Qt4 have the ability to work as a geo-reference tool 

for the LSA-SAF products. Python scripts using GDAL were written to further process the 

DMET product for this study. A scaling factor of a 1000 was applied as indicated by the 

metadata supplied by the files and the images were clipped according to the study area. The 

ETa data was obtained in HDF5 format; therefore, Python was employed to convert the DMET 

files into a geotiff format (World Geodetic System 1984 datum) for further processing within 

the GIS (Geographical Information System) software as well as for extracting a time series of 
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the ETa estimates for the chosen study sites. Since LSA-SAF data are kept in native 

geostationary projection, centred at 0º longitude and latitude, specific longitude and latitude 

files had to be downloaded from the website.  A quality control procedure was also introduced 

and carried out within the scripts, whereby those images that possessed >30% “bad pixels” 

within a shape file were excluded. These “bad pixels” included missing pixel values and scan 

lines. This step was undertaken to ensure that accurate estimates of the ETa could be obtained. 

A few images from the year 2011 had to be discarded due to significant scan line issues. 

Significant scan lines were detected only for the year 2011 and ended in May of the same year. 

The dates of the eight discarded images as a result of the scan lines were: 2011/01/09, 

2011/02/02, 2011/02/03, 2011/02/20, 2011/03/19, 2011/03/22, 2011/05/10 and 2011/05/11. 

Overall, 2162 good images were processed and utilised to obtain ETa estimates. 

 

3.3.3 Validating the LSA SAF DMET product 

 

In-situ ETa estimates obtained from the surface renewal (SR) and eddy covariance (EC) 

systems were sourced from Dr Alistair Clulow in the Hydrology Department of the University 

of KwaZulu-Natal, for the Two Streams Catchment. These ETa estimates were obtained as part 

of a WRC project by Everson et al. (2014). These estimates were used together with LSA-SAF 

ETa estimates to enable the validation of the DMET product for use within the study site. 

 

3.3.4 Reference evapotranspiration estimates 

  

For the purpose of this section of the study, literature by Maeda et al. (2011) was utilised as the 

key reference paper. ETo estimates were attained by applying the Hargreaves equation 

(Hargreaves and Samani, 1985) on the basis of surface temperature being sourced from 

remotely sensed products. 

 

Hargreaves and Samani (1985) developed the Hargreaves equation by using eight years of daily 

lysimeter data that had been obtained from Davis and California (Maeda et al., 2011; Zheng 

and Zhu, 2015). The method was applied and tested in different locations, including Haiti, 

Australia and Bandgladesh (Maeda et al., 2011; Zheng and Zhu, 2015). Since the development 

of the method, the Hargreaves Model has been successfully applied throughout the world 

(Gavilán et al., 2006; Maeda et al., 2011; Aguilar and Polo, 2011; Zheng and Zhu, 2015). 
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The Hargreaves method requires only maximum and minimum air temperatures and extra-

terrestrial radiation data. The equation can be expressed as follows: 

 

𝐸𝑇𝑜 = 0.0023 𝑥 𝑅𝐴 𝑥 ((𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛))0.5 𝑥 (𝑇𝑚𝑒𝑎𝑛 + 17.8)    (3.1) 

 

where:  

ETo  = the reference evapotranspiration [mm.day-1],  

RA = the extra-terrestrial radiation [mm.day-1],  

Tmax = the maximum temperature [o C],  

Tmin = the minimum temperature [o C], and  

Tmean = mean temperature [o C]. 

 

The extra-terrestrial radiation (RA) was calculated from the solar constant, the catchment’s 

latitude, the solar declination and the time of year using the following equation (Zotarelli et al., 

2013): 

 

𝑅𝐴 = (
24 (60)


 𝐺𝑠𝑐𝑑𝑟[(𝜔𝑠𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝛿) + (𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝛿𝑠𝑖𝑛𝜔𝑠

)]/2.45)    (3.2) 

 

where: 

RA = the extra-terrestrial radiation [mm.day-1],  

Gsc = solar constant (0.0820 MJ m-2), 

dr = inverse relative distance Earth-Sun, 

φ = latitude (radians), 

δ = solar declination, and 

ωs = sunset hour angle (radians). 

 

3.3.5 Data input and collection  

 

The use of meteorological data from ground-based weather stations as input to models is known 

as the traditional approach for estimating ETo.  However, as previously mentioned, in poor, 

developing countries, the availability of data from weather stations is insufficient for it to be 

representative of the spatial distribution of ETo at a detailed spatial scale. Obtaining long 

records of near surface air temperature is often complex especially in developing countries due 
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to the limited availability of ground-based weather stations. Satellite earth observation 

techniques are used to obtain estimates for various meteorological variables such as 

temperature. However, deriving near surface air temperature from LST, which is derived from 

satellites, is not simple. This is because the near surface and LST vary strongly, depending on 

cloud cover, seasonality and ecosystems.  

 

In order to obtain the minimum and maximum temperatures for input into the Hargreaves 

equation, remotely-sensed data was sourced from the Moderate Resolution Imaging 

Spectroradiometer (MODIS).  

 

LST products, that have been produced, include the LST from NOAA-AVHRR, which has an 

8 km spatial resolution, a daily temporal resolution and it is available for 1995-2000. While the 

LST from MODIS (Aqua and Terra) possesses a 1 km and 5km spatial resolution, daily, eight-

day composites, monthly temporal resolution and is available from 2000-present (Aqua) over 

Africa. Examples of the various MODIS LST products include the MOD11_L2, MOD11A1, 

MOD11B1, MOD11A2, MOD11C1, MOD11C2 and MOD11C3 

(http://www.icess.ucsb.edu/modis/LstUsrGuide/usrguide_intro.html). This study utilised a 

quality-flagged MODIS Aqua/Terra land data product known as the eight-day LST 

(MOD11A2-Version 6) (http://modis-land.gsfc.nasa.gov/temp.htm). Various MODIS LST 

products exist; however, the choice of the averaged eight-day product was more suitable due 

to its high spatial resolution of 1 km and the computational ease, since the ETDI is calculated 

on a monthly basis. 

 

On board the Terra and Aqua polar-orbiting satellites is the MODIS sensor, which possesses 

36 spectral bands over a wide range at moderate resolutions (250, 500, and 1000 m) with a 

nearly daily coverage of the earth (http://modis.gsfc.nasa.gov). The MOD11A2 Version 6 

product contains both day- and night-time surface temperature bands together with their quality 

indicator layers, MODIS Bands 31 and 32 as well as 8 observation layers. The LST day and 

night data is stored as an average eight-day, per-pixel LST within a 1200 x 1200 kilometre grid 

and a pixel size of 1 km. The compositing period of eight days was chosen primarily since 

twice that period is the exact ground tracking repeat period of the Terra and Aqua platforms. 

 

The temporal extent of the MOD11A2- Version 6 product is from March 2000 until the present. 

The product also possesses a global spatial extent. Each file size is ~3.86 MB along with an 

http://www.icess.ucsb.edu/modis/LstUsrGuide/usrguide_intro.html
http://modis-land.gsfc.nasa.gov/temp.htm
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HDF file format and a sinusoidal coordinate system. The LST obtained from MODIS is 

representative of the radiometric temperature corresponding to the thermal infrared radiation 

(TIR) that is emitted from the land surface and observed by an instantaneous MODIS 

observation (Maeda et al., 2011). MOD11A2 products are validated over a wide range of 

conditions, with product uncertainties being well-defined. Furthermore, the products have been 

applied within a variety of scientific studies producing; satisfactorily results (Maeda et al., 

2011). The daytime LST correlates to measurements obtained around 10:30 am, while the 

night-time LST is obtained at around 22:30 pm (Maeda et al., 2011). These times are regarded 

as local solar time. 

 

In total, 274 LST images corresponding to the complete MOD11A2 dataset for the years 2011-

2016 were obtained from the USGS Earth Explorer website (https://earthexplorer.usgs.gov/), 

through a free download procedure. MOD11A2 datasets can also be retrieved from the Land 

Processes Distributed Active Archive Center (LP DAAC). Within the NASA LP DAAC 

collections, the MODIS MOD11A2 Version 6 product was downloaded to obtain the day and 

night LST values. The data was received in HDF format and the HDFView tool was used to 

provide a quick inspection of the datasets contained within the product. 

 

The images were thereafter processed using Python scripts. Within the Python scripts, imagery 

file names were converted from a Day of Year (DOY) format to a date format (year, month, 

day) as understood by the Python scripts. Following this step, LST day and night sub datasets 

were then extracted from the main dataset along with the application of the scaling factor (x 

0.02). All images were then converted to a geotiff file format and clipped according to the study 

sites. A quality control step was also introduced and carried out within the scripts, whereby 

images containing >30% “bad pixels” within a shape file were excluded. This was done to 

ensure that accurate estimates of the LST could be retrieved. LST values were then converted 

to degrees Celsius from the original Kelvin units within the software. Finally, time series of 

daily LST values were extracted using the Python scripts. These values where then used within 

Excel to be complied into monthly averaged LST values. 

 

3.3.6 Calibrating the Hargreaves-LST equation 

 

The empirical nature of the Hargreaves-LST approach means that local calibration should be 

conducted. Hence, the calibration of the empirical equation is usually performed using the 
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FAO-PM approach (Allen et al., 1998). The FAO-PM approach is recognised as being the 

standard ETo method and it is able to produce the most precise and reliable results compared 

to other equations tested in various regions across the world.  

 

Although, inherent errors and uncertainties are contained within the FAO-PM approach, this 

method has been shown to perform considerably well under different climatic conditions 

(Maeda et al., 2011). The validation and calibration of empirical equations such as the 

Hargreaves-LST are therefore performed using this approach. 

 

The FAO-PM method (Allen et al., 1998) is given as: 

 

𝐸𝑇𝑜 =
0.408∆(𝑅𝑛−𝐺)+𝛾 

900

𝑇𝑚𝑒𝑎𝑛+273
𝑢2(𝑒𝑠−𝑒𝑎)

∆+𝛾(1+0.34𝑢2)
        (3.3) 

 

where:   

ETo = reference evapotranspiration [mm.day-1],  

Rn = net radiation at the crop surface [MJ.m2.day-1],  

G = soil heat flux density [MJ.m2.day-1] which can be neglected (G=0),  

Tmean = mean air temperature [°C],  

u2 = wind speed measured at 2 m height [m.s-1],  

es = saturation vapour pressure [kPa],  

ea = actual vapour pressure [kPa],  

es-ea = saturation vapour pressure deficit [kPa], 

∆ = slope vapour pressure curve [kPa/°C], and  

𝛶 = psychometric constant [kPa/°C]. 

 

For this study, FAO-PM ETo estimates for selected QC’s were obtained from the Institute for 

Soil, Climate and Water of the Agricultural Research Council (ISCW-ARC), whereby the 

calibration of the Hargreaves equation was performed. ETo values were also calculated for 

these QC’s using the MODIS LST data together with the empirical model. The details of the 

stations from which the FAO-PM ETo estimates were obtained can be seen in Figure 3.2.  
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Allen et al., 1998; defined the calibration parameters using Equation 3.4 below: 

 

𝐸𝑇𝑜𝑐𝑎𝑙 = 𝑎 + 𝑏 . 𝐸𝑇𝑜𝑙𝑠𝑡           (3.4) 

 

where:   

ETocal = the calibrated ETo values [mm],  

a and b  = the calibration parameters obtained from a regression analysis that uses as 

reference the FAO-PM method, and 

ETolst = the ETo values that are estimated using the Hargreaves empirical model, 

and MODIS LST as data input [mm]. 

 

3.3.7 Calculation of the ETDI 

  

Once the two parameters that are significant inputs for the ETDI calculation, namely ETo and 

ETa have been calculated, the ETDI estimates can then be obtained. The ETDI values were 

calculated following the WS and WSA calculations. The WS, WSA and ETDI equations are 

described in section 2.2. Following these equations, ETDI estimates were produced to enable 

the monitoring of drought conditions within the Upper Thukela and Umgeni Catchments. 

 

3.3.8 Comparison of the ETDI with variables from the hydrological cycle 

  

Once the results for the ETDI were obtained, a spatial comparison between the ETDI and 

various hydrological variables such as ETa, ETo, precipitation, elevation, soil moisture and 

temperature was performed to determine the relationship between them. In addition, the spatial 

and temporal analysis of a drought contributes significantly to the evaluation of the dynamic 

climate in an area. 

 

MAP (Lynch, 2004) and elevation (Weepener et al., 2011) raster images were obtained from 

the University of KwaZulu-Natal’s Centre for Water Resources Research (CWRR). ETo and 

ETa were retrieved as detailed in the above sections, while temperature was retrieved using the 

MOD11A2 product. Soil moisture values were retrieved from the Satellite Applications and 

Hydrology Group (SAHG) website http://sahg.ukzn.ac.za/soil_moisture/sm/. 
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An outcome of one of the South African Water Research Commission funded projects (Sinclair 

and Pegram, 2010) on soil moisture estimation is the Soil Saturation Index (SSI), which was 

produced by automated real-time computations of the TOPKAPI hydrological model in the 

LSM mode using three-hourly rainfall and ETa forcing. Using the above-mentioned forcing 

datasets, the percentage of soil saturation was automatically computed once daily, for each of 

the 6984 TOPKAPI cells at three-hourly time-steps. The SSI product is an estimate of the soil 

moisture state over South Africa at a three-hour time steps on a 0.125o spatial grid. Literature 

by Sinclair and Pegram, (2010) gives the details of the SSI, the results of which are easily 

obtained from the SAHG website (http://sahg.ukzn.ac.za/). The website provides FTP access 

to results in geo-referenced ASCII and geotiff formats. 

 

For the comparison between soil moisture and ETDI, 247 geotiffs at 3-hourly intervals for the 

month of May 2015 were downloaded for the SAHG website. The 247 geotiff’s were then 

combined to create daily images and then into a monthly image for May 2015 within the 

ArcGIS software. A clip tool within the ArcGIS software was used to produce spatial monthly 

SSI maps for the study areas. 

 

3.4 The Standardized Precipitation Index (SPI) and the Standardized Precipitation 

Evapotranspiration Index (SPEI) 

 

The research work involved in this section was aimed at calculating the SPI and SPEI using 

the inputs of rainfall and temperature data in the SPEI-R software. The calculation of these 

indices were divided into five steps, which are detailed below.  

 

3.4.1 SPEI-R package 

 

The first step involved downloading and obtaining the R software, as well as gaining insight 

on the necessary documents and requirements needed to run the software. The SPEI R package 

(Vicente-Serrano et al., 2010) consists of a set of functions to compute SPI and SPEI (Penman-

Monteith, Thornthwaite and Hargreaves methods) as well as many widely used drought 

indices, which currently include the SPI and the SPEI. The SPEI-R package requires monthly 

input data for 30 years. 

 

http://sahg.ukzn.ac.za/
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The SPEI R library can be obtained from the Comprehensive R Archive Network, CRAN 

(https://CRAN.R-project.org/package=SPEI). Several versions of the package exist with 

different corrections and modifications made to each. The current version, Version 1.7 was 

used in this study. The SPEI R package has been used to calculate SPI and SPEI in several 

studies. Literature by Vicente-Serrano et al. (2010a), (2010b), (2011), (2012a), (2012b), (2015) 

and (2016), as well as by Begueria et al. (2010) and (2014), provide further details on the SPEI 

library. The following website also details the SPEI R package, http://spei.csic.es. 

 

3.4.2 In-situ precipitation data 

 

The second step entailed obtaining 30 years of historical precipitation data (1986-2016) for the 

Upper Thukela and Umgeni study areas. As a result of insufficient meteorological data for each 

of the QC’s within the study areas, four QC’s within each study area were chosen based on 

those QC’s which had the longest record of meteorological data. Figure 3.2 displays the 

location of the 22 ground stations that were used to obtain rainfall and temperature data for the 

selected QC’s to enable the calculation of the SPI and SPEI. Hence, SPI and SPEI results are 

only produced for the four selected QC’s within the two study sites.  

 

Precipitation data was obtained from the South African Weather Service (SAWS), from the 

ISCW-ARC as well as from the South African Sugarcane Research Institute (SASRI). Despite 

all efforts in trying to source precipitation data from the various Institutes, the Upper Thukela 

Catchment had very few gauges. To address the challenge of obtaining a reliable 30-year record 

of precipitation data for the Upper Thukela Catchment to enable SPI and SPEI calculations, 

satellite based rainfall estimates were used. The estimates were obtained from the satellite 

rainfall product, Famine Early Warning System Network African Rainfall Climatology, 

version 2.0 (FEWS ARC 2.0) (Novella and Thiaw, 2012), which is elaborated in the following 

section. 

 

3.4.3 Satellite-based rainfall data 

 

The FEWS ARC 2.0 product was chosen for use in this study as it had a suitable spatial and 

temporal coverage as well as its applicability to climate and hydrological studies has been 

proven (Novella and Thiaw, 2012; Bangira 2013; Bayissa et al., 2017). The product was further 

decided for use over others as it has the longest stable data record period of more than 30 years. 

https://cran.r-project.org/package=SPEI
http://spei.csic.es/
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Although it is considerably costly to produce these datasets, they are provided at no cost to 

users and can be downloaded from the Internet. Novella and Thiaw (2012), describe the details 

and algorithm of the new daily remotely sensed precipitation product, ARC 2.0. ARC 2.0 was 

developed by utilising datasets of historical rain gauge data as well as IR (Infrared) data. The 

ARC 2.0 product can also be used to identify wet and dry periods, extreme rainfall events along 

with the peaks, onset and departure of seasonal trends (Novella and Thiaw, 2012). The new 

dataset provides more than 30 years of reliable precipitation estimates using reliable inputs, 

which allows for climate variability and change to be understood.  

 

The study by Novella and Thiaw (2012) indicates that the ARC 2.0 rainfall estimates are 

consistent with other long-term datasets. In addition, the study proves that the ARC 2.0 

estimates compared more favourably to the other products with long-term rainfall datasets, 

when validated against rain gauge measurements. All FEWS products and data are available 

via http:// and CPC’s ftp server: ftp://ftp.cpc.ncep.noaa.gov/fews/. 

 

Various analyses and comparisons with representative rain gauge rainfall data were carried out 

in the Umgeni Catchment, prior to the use of the satellite rainfall product in the Upper Thukela 

Catchment. The FEWS ARC 2.0 rainfall product was obtained by first creating and setting up 

a personal FTP site, after which, the images were downloaded from the following website: 

http://www.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2. The images were downloaded as 

zipped geotiff files and a total of 11 110 daily files were downloaded. The Python scripts were 

then used to unzip the compressed files, to extract the satellite rainfall data for the relevant 

study sites and to perform the necessary steps to produce a daily time series of rainfall estimates 

for the Upper Thukela Catchment. The following QC’s and years indicate the period for which 

satellite rainfall was used, while for the remaining years, in-situ rainfall data from weather 

stations were used to complete the 30 year data record (1986-2016): V11C = 1986-2009, V14D 

= 1986-2002, V20B = 1986-2002 and V20E = 1986-2000. 

 

3.4.4 Temperature data 

 

The third step was to obtain air temperature (minimum and maximum) data records for 30 years 

(1986-2016) for the four selected QC’s within each of the two study areas. As previously 

mentioned, sufficient temperature data was obtained from SAWS, ISCW-ARC and SASRI, to 

form 30-year records (1986-2016) for the Umgeni Catchment; however, the presence of very 

http://www.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2
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few gauges within the Upper Thukela Catchment was a limitation to form historical 30-year 

records.  

 

Hence, to enable the SPEI to be calculated within the Upper Thukela Catchments, the Database 

of Gridded Daily Temperatures for Southern Africa by Schulze and Maharaj, (2003); was used 

together with available data from weather stations within the catchment to extend and form 

historical 30-year temperature records. The monthly temperature records for the eight selected 

QC’s within the two study sites were accessed from the University of KwaZulu-Natal’s 

CWRR. Schulze and Maharaj (2003) detail the development of the gridded daily temperature 

database for Southern Africa. 

 

3.4.5 Calculation of the SPI and SPEI indices 

 

The fourth step involved setting up text files containing the rainfall and temperature data of the 

selected QC’s, which were structured into a specific format as required by the SPEI R package. 

The final and fifth step was running the SPEI-R package to obtain SPI and SPEI statistics and 

graphs for the Umgeni and Upper Thukela Catchments.  
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4. RESULTS AND DISCUSSION 

 

This chapter intends to present the results and discussion of the various aspects of the research 

study. The section will detail the following aspects: 

 

(i) The validation of the LSA-SAF DMET product with a representative in-situ ETa dataset 

for the Two-Streams Research Catchment. 

(ii) Producing a spatial averaged illustration of the satellite-derived ETo estimates for the 

research study area, which have been derived by using the Hargreaves-LST approach. 

(iii) The calibration of the Hargreaves-LST data with available meteorological data. 

(iv) A detailed investigation into the spatial and temporal distribution of ETa obtained from 

LSA-SAF and ETo using satellite-derived estimates to calculate water stress ratio’s and 

water stress anomaly’s to enable the calculation of the ETDI index for drought 

assessment. 

(v) A spatial and temporal investigation into land surface variables such as ETa, ETo, 

precipitation, soil moisture and temperature as notable driving forces to droughts. 

(vi) An assessment of the use of satellite rainfall estimates for the calculation of the SPI and 

SPEI. 

(vii) An investigation into the SPI and SPEI to assess the link between meteorological 

droughts and the estimated ETDI. 

(viii) A cross-comparison of the drought indicators in order to investigate the potential of 

synergy. 

 

The types of analyses that have been implemented in this research study include: 

 

(i) A time series analysis; 

(ii) The correlation coefficient (r) and coefficient of determination (R2): 

(iii) The Nash- Sutcliffe efficiency index; 

(iv) Paired t-test; and 

(v) Standard statistics namely: the Mean Absolute Deviation (MAD), Mean Square Error 

(MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error 

(MAPE) were computed using the following equations (Douglas et al., 2009; Maeda et 

al., 2011) : 
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𝑀𝐴𝐷 =
∑ ⃓𝐸𝑇𝑂𝑐𝑎𝑙−𝐸𝑇𝑂𝑅⃓𝑛

𝑡=1

𝑛
         (4.1) 

 

𝑀𝑆𝐸 =
∑ (𝐸𝑇𝑂𝑐𝑎𝑙−𝐸𝑇𝑂𝑅)2𝑛

𝑡=1

𝑛
         (4.2) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑇𝑂𝑐𝑎𝑙−𝐸𝑇𝑂𝑅)2𝑛

𝑡=1

𝑛
        (4.3) 

 

𝑀𝐴𝑃𝐸 =
∑ ⃓

𝐸𝑇𝑂𝑐𝑎𝑙−𝐸𝑇𝑂𝑅
𝐸𝑇𝑂𝑐𝑎𝑙

⃓𝑛
𝑡=1

𝑛
х 100        (4.4) 

 

The above-mentioned statistical analyses are amongst the most commonly-used analyses in 

current satellite-based studies. These selected analyses have also been considered appropriate 

for the various aspects of the research project to generate reliable conclusions. The selected 

statistical analyses are not used in every result section, but they are rather selected for use in 

appropriate sections. 

 

4.1 Validation of the LSA-SAF DMET Product 

 

In recent years, several global products and datasets derived from earth observation have been 

made available to the public. One of the key objectives of this research project is the use of 

earth observation data to enable the calculation of an evaporative drought index. As detailed in 

Section 2.2, one of the required inputs into the drought index calculation is the ETa variable. In 

order to achieve this, this study opted to use a freely available global ETa (LSA-SAF DMET) 

product to provide the spatial estimates of ETa.  

 

To validate the DMET product, correlations and linear regression models between in-situ 

measurements and satellite estimates at a daily temporal resolution were evaluated. Due to the 

absence of in-situ measurements within the research area, the Two Streams Research 

Catchment found in QC U40C, which is within the same climatic region as the Umgeni 

Catchment was used. Figure 3.2 illustrates the QC used for the validation of the DMET product.  

 

The in-situ measurements were conducted at the Two-Streams Research Catchment site, which 

is found at the coordinates of 29o11’47.99” S and 30o39’58.73” E. Satellite-derived ETa 
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estimates were processed using Python scripts as detailed in the methodology in Chapter 3 and 

averaged over the QC. 

 

The comparison between the in-situ measurements and the satellite-derived ETa product were 

evaluated by means of classical statistical indicators (a time series analysis, 1:1 line, paired t-

test, Nash index, R2 and Pearsons correlations). For in-situ measurements, the surface renewal 

(SR) and eddy covariance (EC) systems were used to obtain ETa estimates for the period 

between 27 October 2011 and 25 October 2013 as data was only available for this period 

(Figure 4.1). The time period was considered adequate for the validation procedure since wet 

(summer) and dry (winter) periods were included within the data record. The SR and EC 

systems were used alternatively to ensure that a complete dataset of ground-based ETa 

estimates were obtained, because in some instances where one system may have experienced 

technical failure, the alternative system was utilised. As illustrated in Figure 4.1, to patch a 

period of missing data, a relationship between ETa and net radiation (Rn) was observed and 

this relationship was used to patch the missing data period.  

 

A time series analysis was plotted to visually interpret and compare the performance of the 

satellite LandSAF DMET product in estimating ETa and the in-situ data set. The satellite-

derived LandSAF daily ETa temporal behaviour correlated to the in-situ measured ETa at the 

Two Streams site for the period of 27 October 2011-25 October 2013 (Figures 4.1 and 4.2).  

As shown in Figure 4.1, the LandSAF DMET estimates follow the same trend as the in-situ 

data set. The LandSAF DMET estimates correlate to in-situ ETa data better during the summer 

months (wetter period) compared to the winter months (drier period). Although the DMET 

estimates are seen to underestimate ETa throughout the data period when compared to in-situ 

data, the underestimation is more visible during the drier periods. 
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Figure 4.1 Daily in-situ and LSA-SAF DMET ETa estimates for the validation site: Quaternary 

Catchment U40C 

 

The DMET’s product validation report also illustrated an underestimation of ETa for the 

Sahelian savannah in Africa, which has a semi-arid climate. The potential sources attributed to 

this error are discussed in the validation report, with the main reasoning being the input 

variables of soil moisture and the vegetation characteristics. The ECMWF soil moisture 

provides lower values than in-situ measurements and this is attributed to the difference in 

spatial scale between the ECWMF grid and the in-situ measurements. The ECOCLIMAP/MSG 

tile may not fully correspond to the vegetation type of the QC, namely, the fraction of 

vegetation cover (FVC) and leaf area index (LAI), which may influence the estimates of ETa 

from crop types, conditions and phenology characteristics. For example, the research area used 

in this study does consists of crops such as maize, sugarcane and commercial forestry. In the 

case of commercial afforestation, trees are able to access soil water or ground water deeper 

down that is why they are stable, able to have higher water use and transpire for a longer period.  

 

Other sources of error result from input variables, including the differences in solar radiation, 

which is the main driver of the algorithm, vegetation characteristics and available soil moisture 

that are caused either by the model errors or spatial scale differences which could explain the 

difference between the product and in-situ measurements. Overall, it can be seen that the 

DMET product followed the general trend of the in-situ ETa variations. There were differences 
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between the datasets, as the DMET product was generally slightly lower than the in-situ 

dataset. This difference was more noticeable during the winter months.  

 

A scatter graph was plotted with the measured ETa estimates on the x-axis and the satellite-

derived daily LandSAF ETa estimates on the y-axis (Figure 4.2). From Figure 4.2, it can be 

seen that the majority of the points are below the 1:1 line (red), however they are in close 

proximity to the 1:1 line. The negative y-intercept of 0.1629 is indicative of an underestimation 

of the DMET product when compared to measured ETa estimates. The slope is 0.7943 and this 

value is representative of the relationship between the variables plotted, with respect to their 

increases and decreases. Since the value is close to 1, this indicates that there is a good 

correlation between both data sets. Judging by the 1:1 line, the LandSAF ETa tends to 

underestimate compared to observed ETa values.  

 

 

Figure 4.2 Relationship between in-situ ETa and satellite-derived daily LandSAF ETa 

estimates. 

 

The R2 is 0.81. The correlation between the data was determined by a Pearson correlation 

coefficient for the daily integration of the measured and estimated data, which was 0.90, and 

the relationship was statistically significant. A Pearson correlation coefficient is a measure of 

the strength of the association between the two data variables. Since the value 0.90 is close to 

1, there is a good relationship between the two variables. The Nash-Sutcliffe efficiency index 

y = 0,7943x - 0,1629
R² = 0.8129
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yielded a value of 0.57. This statistic is used to assess the predictive power of model when 

compared to observed data. A MSE of 1.09 and a RMSE of 1.04 was also obtained between 

the datasets. 

 

A paired t-test was also conducted on the two data sets (Table 4.1). From Table 4.1, it can be 

seen that the mean of the LSA SAF DMET product is lower than that of the in-situ dataset, 

which results in the t-stat value being positive. These statistics further support the above results 

and prove that the LSA SAF product underestimates ETa.  

 

Table 4.1 T-test of in-situ against LSA SAF estimates 

  In-situ LSA SAF  

Mean 3,01 2,23 

Variance 2,53 1,96 

Observations 719 719 

Pearson Correlation 0,90  
Hypothesized Mean Difference 0  
df 718  
t Stat 30,49  
P(T<=t) two-tail 1,17E-131  
t Critical two-tail 1,96  

 

The inconsistences seen in the data comparison can be attributed to the previously mentioned 

reasons as well as the following reasons. The in-situ dataset that was used to validate the DMET 

product was not the actual average of the QC, but it was rather obtained from a point within 

the QC. If the sensors were placed at different locations in the QC, the in-situ dataset could be 

different. Overall, despite the underestimation that was observed, it can be seen that the DMET 

product followed the trend and correlated well with the in-situ data (R2 = 0.81, r = 0.90), hence 

was suitable to provide spatial estimates of ETa for the ETDI calculation.  

 

Ghilian et al. (2011) compared LSA-SAF satellite ETa estimates with in-situ measurements, 

which produced an overall good confidence in the ETa results. Ground measurements were 

retrieved from FLUXNET eddy correlation towers, which displayed positive overall 

performances, as a correlation between 80%-90% was noted. The product’s user manual further 

stated that the DMET product produces globally lower estimates when compared to the 

ECMWF, especially in Africa and South America. The validation report also indicates that the 

model tends to underestimate ETa in dry climatic conditions, such as the African dry savannah. 
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The possible reasons for the discrepancies between the model and ground observations are 

explained in the validation report in detail, with more research and improvements suggested 

for African countries 

 

In addition, Jovanovic et al., (2014) conducted a study in the Western Cape in South Africa 

that evaluated the reliability of the LSA-SAF MET (30-min estimates) and DMET (30-min 

estimates) products by comparing it with in-situ measurements obtained through a 

scintillometer system. The study was undertaken at the Riverlands Nature Reserve located in 

the Western Cape, South Africa. The results produced by the study included Pearsons 

correlation coefficients of 0.85 and 0.91, and linear regressions produced R2 values of 0.72 and 

0.75 for the MET and DMET products, respectively. 

 

Overall, these results, along with those of a study undertaken in South Africa by Jovanovic et 

al. (2014), show that the results obtained in this study are within the range of correlations and 

that the satellite derived ETa estimates correspond relatively well to the ground-based measured 

ETa at a daily temporal scale. Hence, the product is able to reproduce a temporal development 

of ETa with values comparable to observations. However, it is significantly important that the 

model quality should be further investigated due to the limited validation in the driest regions 

of the world (mainly in African countries). It is also important for the model to be validated 

over other land covers to further improve the results globally. 

 

4.2 Spatial and Temporal Distribution of Actual Evapotranspiration Estimates 

obtained from the LSA-SAF DMET Product 

 

This section will display the spatial annual mean ETa maps that were calculated from daily ETa 

over the six-year period (2011-2016) and derived from the LSA-SAF DMET product (Figure 

4.3). ETa values were extracted for the Umgeni Catchment at a tertiary and QC level, while the 

Upper Thukela Catchment values were extracted for the entire Upper Thukela (V) and at a 

secondary level (V1, V2, V6, V7) as well as at a QC level.  
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Figure 4.3 Annual averaged ETa estimates for 2011-2016  

 

From Figure 4.3, it can be seen that ETa values are higher in the Umgeni Catchment in 

comparison to the Upper Thukela Catchment. Furthermore, higher ETa values are shown 

for the years 2011, 2012, 2013 and 2014 in comparison to the years 2015 and 2016 for 

the Umgeni Catchment. This could be due to the catchment experiencing higher rainfall 

for the years 2011 to 2014 than for the years 2015 and 2016, which have been labelled 

as the “drought years” that have negatively impacted the Umgeni Catchment. Therefore, 

years 2011 to 2014 had adequate rainfall, hence a higher availability of water for 

evaporation to occur which resulted in higher ETa values. This is illustrated further in 
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Figure 4.4. Annual rainfall totals for QC U20J indicate a decreasing trend in rainfall over 

the years (2011-2016) as seen in Figure 4.4. As depicted by Figure 4.4, 2011-2013 

displays higher rainfall totals explaining the higher ETa while, 2014-2016 display lower 

rainfall totals. Figure 4.3 displays high ETa values for 2014, which may be due to the ETa 

that was being detected following the higher rainfall experienced in the previous year. 

 

 

Figure 4.4 Annual rainfall totals for U20J, in the Umgeni Catchment (2011-2016) 

 

The Upper Thukela Catchment located directly north of the Umgeni Catchment, displayed 

higher ETa values along the Upper Thukela Catchment boundary, where high elevation occurs 

as compared to the rest of the catchment. The high ETa values seen at a higher elevation for the 

Upper Thukela can be a result of more rainfall occurring in these areas due to the rising and 

cooling of air, which results in rainfall, and hence there is adequate moisture to allow for ETa 

processes to occur. Overall, low ETa values for the Upper Thukela are seen for years 2015 and 

2016 indicating dry conditions within the catchment. 

 

4.2.1 Trends of LSA-SAF derived actual ET 

 

The trend of derived ETa from 2011-2016 was analysed at a tertiary level (U20) for the Umgeni 

Catchment and for the Upper Thukela Catchment as shown in Tables 4.2 and 4.3. The ETa 

values over the six year period at a monthly timescale have been used for the temporal 
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distribution analysis in drought assessment in order to display trends in the seasons (Figures 

4.5 and 4.6). 

 

Table 4.2 Daily averaged ETa (Umgeni) 

Daily actual ET tertiary averaged for Umgeni Catchment (U20) 

 2011 2012 2013 2014 2015 2016 

Jan 1,94 3,28 3,03 3,05 2,75 2,38 

Feb 2,18 2,89 3,18 2,85 2,71 2,64 

Mar 1,77 2,69 2,34 2,45 2,26 2,30 

Apr 1,26 2,13 2,29 1,95 1,74 1,63 

May 1,24 1,53 1,63 1,37 1,19 1,28 

Jun 1,22 1,11 1,24 0,99 0,60 0,78 

Jul 0,95 1,10 1,17 0,94 0,72 0,71 

Aug 1,63 1,58 1,40 1,04 0,93 1,35 

Sep 1,80 1,56 1,38 1,13 1,14 1,31 

Oct 2,05 1,86 1,72 1,59 1,37 1,63 

Nov 2,37 2,46 2,70 2,01 1,75 1,92 

Dec 2,83 3,08 2,44 2,48 2,45 2,38 

 

Table 4.3 Daily averaged ETa (Upper Thukela) 

Daily actual ET primary averaged for the Upper Thukela Catchment (V) 

 2011 2012 2013 2014 2015 2016 

Jan 2,73 2,94 3,34 2,97 3,04 2,46 

Feb 2,62 2,94 3,09 2,78 2,81 2,77 

Mar 1,87 2,33 2,25 2,48 2,35 2,24 

Apr 1,44 1,45 1,99 1,73 1,45 1,10 

May 1,02 0,83 1,41 0,89 0,76 0,64 

Jun 0,82 0,46 0,87 0,49 0,32 0,37 

Jul 0,55 0,50 0,69 0,46 0,48 0,39 

Aug 1,16 0,92 0,75 0,57 0,54 0,79 

Sep 0,95 1,37 0,60 0,53 0,61 0,78 

Oct 1,35 1,80 1,06 1,39 0,91 1,17 

Nov 1,74 2,87 2,26 2,23 1,04 1,85 

Dec 2,57 3,22 2,72 2,75 2,22 2,11 
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Figure 4.5 ETa trend for 2011-2016 for catchment average (Umgeni) 

 

 

Figure 4.6 ETa trend for 2011-2016 for catchment average (Upper Thukela) 

 

Tables 4.2 and 4.3 display the ETa trend for different years from the averaged monthly values 

for the Upper Thukela and Umgeni Catchments. Tables 4.2 and 4.3 display higher ETa values 

during the summer months in comparison to the winter months (seasonal fluctuations). This is 

attributed to wetter periods that occur during the summer as a result of, rainfall generating 

sufficient moisture for ETa processes to occur. Other factors that influence ETa estimates may 
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include higher temperatures and solar radiation as well as increases in the vapour pressure 

deficit (VPD) during the summer seasons. For both catchments, the lowest ETa values during 

the summer and winter months were recorded for years 2015 and 2016. From Figures 4.5 and 

4.6, the highest average ETa is observed for the year 2013 during the summer period. The black 

dotted line in both graphs shows the mean ETa over the six-year period, while the rest display 

the monthly averaged ETa. The monthly values of averaged daily ETa values fall within the 

range of 0-3.5 mm.day-1, with the highest average ETa values being recorded during the 

summer months. Hence, the temporal trend of ETa for all years are following a seasonal trend 

with maximum ETa values occurring during the growing season (summer months). 

 

4.3 Estimating Reference Evaporation using Remote Sensing and the Hargreaves 

Empirical Model  

 

During the duration of this study, the search for ETo estimates from ground stations turned into 

a complex task. ETo estimates especially in the high mountainous areas within the Upper 

Thukela Catchment were not available. In addition, ground stations are found to be insufficient 

to represent the spatial and temporal variation of ETo. The lack of meteorological data from 

ground stations is a barrier to the management of water resources within a country, especially 

in developing countries. The study undertaken by Maeda et al. (2011) was used as a reference 

paper in this section of this study. 

 

This study employed and evaluated the temperature-based Hargreaves empirical equation and 

to overcome the poor availability of meteorological data, LST data acquired by the MODIS 

sensor were tested as an alternative input into the model. Chapter 3 discusses the methodology 

that has been adopted by this study. Since LST data was used to replace the air temperature 

from ground stations, the Hargreaves model will be hereafter be referred to as the Hargreaves-

LST. LST maps obtained from the MOD11A2 product for the study period (2011-2016) are 

shown in Figure 4.7. 

 

Spatially, the distribution of the MOD11A2 LST product over the period from 2011 to 2016 

for the study areas is represented in Figure 4.7. Temperature fluctuations are seen to occur 

during the different months in response to the seasonal differences. The maps depicted a clear 

spatial pattern with higher LST values during the spring-summer months and lower LST values 

during the autumn-winter months and in high altitude areas.  
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Figure 4.7 Monthly average MOD11A2 Land Surface Temperature (LST) maps for the Upper 

Thukela and Umgeni Catchments for 2011-2016 

 

The estimates from the MOD11A2 product were used as an input into the Hargreaves model 

to enable the calculation of satellite-derived ETo estimates. Spatial distribution of the 

Hargreaves-LST estimates for the period 2011 to 2016 is shown below in Figure 4.8. 
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Figure 4.8 Monthly average Reference Evapotranspiration (ETo) maps obtained using the 

Hargreaves model and averaged 8-day LST records from 2011-2016 

 

Changes in the ETo over the months can be attributed to differences in land surface and 

atmospheric temperature. In general, the spatial distribution in all the maps depicted a clear 

seasonal spatio-temporal pattern of ETo, which was higher between September to March, and 
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which reached the lowest values between April to August. During the winter season, clear 

changes in the spatial patterns are displayed with low ETo values being detected due to drier 

conditions prevailing and a lower availability of water/moisture for evaporation to occur. 

Overall, these maps displayed the potential of the Hargreaves-LST methodology in providing 

information over large spatial areas as well as in mountainous areas, which are not often 

provided by weather stations. 

 

4.3.1 Calibrating the Hargreaves empirical model 

 

Studies that have applied the Hargreaves model report on the effectiveness of the model in 

estimating ETo; however, the empirical nature of the model makes local calibration necessary 

(Maeda et al., 2011). This study utilised available FAO-PM estimates from the ISCW-ARC 

ground stations within the study area. The calibration procedure of the empirical model was 

conducted only on selected QC’s within the research study area due to the limited availability 

of meteorological data. In total, eight calibrations were completed. Four calibrations were 

completed within the Umgeni Catchment and four calibrations were completed within the 

Upper Thukela Catchment. The selected QC’s on which the calibration was performed can be 

seen in Table 4.4 along with the respective station’s necessary information.  

 

A comparison between the air temperature data measured at the respective weather stations and 

the LST data obtained by the MODIS sensor is presented for each QC within the Umgeni 

Catchment in Figure 4.9, while comparisons for the Upper Thukela Catchment are presented 

in Figure 4.10. The Figures display the monthly averages from 2011 to 2016. 
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Table 4.4 List of selected Quaternary Catchment’s used in the calibration of the Hargreaves 

empirical model. A summary of the coordinates of the selected meteorological 

weather stations, including their respective altitudes 

UMGENI CATCHMENT 

Quaternary 

Name 

 Station Name Altitude (m) Longitude Latitude 

U20E Cedara_PP 1068 30.26498 -29.54190 

U20F New Hanover 822 30.50000 -29.36666 

U20G Faulklands 660 30.52147 -29.55431 

U20J PMB; Ukhulinga  809 30.40615 -29.66787 

UPPER THUKELA CATCHMENT 

Quaternary 

Name 

Station Name Altitude (m) Longitude Latitude 

V11C Drakensville Educational 

Centre (DEC) 

1226 29.12320 -28.61337 

V14D Weenen; Sun Valley  699 30.08891 -28.78301 

V20B Kamberg-Meshlynn: 

AWS 

1552 29.72355 -29.33741 

V20E Weston College 1469 30.03594 -29.21299 

 

As depicted in Figure 4.9, a close fit between the mean air temperature (Tmean) and the mean 

MODIS LST is observed as well as, between the minimum air temperature (Tmin) and the night 

MODIS LST. However, variations in the comparison between the maximum air temperature 

(Tmax) and day MODIS LST are displayed. In QC U20J, seasonal variations are visible between 

the maximum air temperature and the day LST, while QC’s U20E, U20F and U20G have 

similar variations from September to December. The reason for the discrepancies between the 

maximum air temperature and day LST are discussed further below. 
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Figure 4.9 Monthly averages of maximum, minimum and mean air temperature for selected 

Umgeni QC’s, along with monthly averages of day, night and mean Land Surface 

Temperature (LST)  

 

From Figure 4.10, as also seen in Figure 4.9 there is a close fit between the mean air 

temperature (Tmean) and the mean MODIS LST as well as between the minimum air 

temperature (Tmin) and the night MODIS LST for the Upper Thukela quaternaries. Variations 

in the comparison between the maximum air temperature and day LST were once again 

observed.  
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Figure 4.10 Monthly averages of maximum, minimum and mean air temperature for selected 

Upper Thukela QC’s, along with monthly averages of day, night and mean Land 

Surface Temperature (LST)  

 

The differences observed between the MODIS-LST maximum temperature data and day air 

temperature have already been reported in literature especially season differences. Authors 

suggest that changes in the vegetation phenology during the summer play a key role in reducing 

the correlation between LST and max/min air temperatures (Ceccato and Dinku, 2010; 

Vancutsem et al., 2010). Vancutsem et al. (2010) compared the MODIS day LST with the 

maximum air temperature in Africa over different ecosystems. These authors reported that in 

addition to seasonality factors, the discrepancies between day LST and Tmax may vary, in 

accordance with the solar radiation, cloud cover and ecosystems. The IRI Technical Report 

(Ceccato and Dinku, 2010), reported on comparisons between the air temperature and MODIS 

temperature, MODIS night-time products displayed a good estimation of minimum air 
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temperature over all ecosystems in Africa. However, comparisons between maximum air 

temperature and MODIS daytime data showed differences that varied with the ecosystems, 

cloud cover, seasonality and solar radiation. This indicates that further research needs to be 

undertaken on robust methods to retrieve maximum air temperature data. 

 

With respect to the reliability of the MOD11A2 product, it has been noted to have been 

extensively tested using radiation-based validation and that it has in-situ values (Wan et al., 

2002, 2004; Wan, 2008; Coll et al., 2009). The results produced by these tests indicated that in 

the majority of cases the MODIS LST error is found to be lower than 1 Kelvin. Therefore, 

intrinsic errors of air temperature data should also be accounted for as a possible cause of the 

discrepancies observed. Despite the fact that the surface air temperature data used in this 

current study was screened to eliminate missing records, it is noted that various other sources 

of error can be identified from the ground station records. The sources of such error may 

include, but may not be limited to, failure in equipment, uncalibrated and old equipment that 

usually cause low quality measurements or unskilled operators. Overall, it can be seen that the 

MOD11A2 is suitable for providing spatial estimates of LST for use within the Hargreaves-

LST approach to enable the calculation of the ETDI. 

 

The performance of the model was determined by using standard statistics and linear regression 

analysis, with the reference dataset being the surface air temperature data obtained from 

meteorological weather stations. The performance of the Hargreaves-LST estimates was also 

evaluated using the following: the Mean Absolute Deviation (MAD), the Mean Square Error 

(MSE), the Root Mean Square Error (RMSE), the Mean Absolute Percentage Error (MAPE) 

and the Pearson correlation coefficient. The coefficient of determination was considered to be 

a measure of precision. The results obtained in the evaluation of the model are summarized 

below in Table 4.5, while graphs of the regression analysis are shown in Figure 4.13 and Figure 

4.14. These figures provides a visual illustration for ETo estimates using different inputs to 

allow for visual interpretation and comparison of the models performance in estimating ETo. 
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Table 4.5 Summary of the results obtained from the model's error analysis between the 

calibrated Hargreaves-LST and the FAO-Penman Monteith estimates obtained 

from the ARC. 

UMGENI CATCHMENT 

Quaternary 

Name 

MAD  MSE  RMSE MAPE Correlation Coefficient 

(r) 

U20E 0,21 0,06 0,25 7,23 0,90 

U20F 0,23 0,08 0,28 7,24 0,92 

U20G 0,25 0,09 0,31 8,84 0,88 

U20J 0,20 0,05 0,23 6,48 0,93 

 UPPER THUKELA CATCHMENT 

Quaternary 

Name 

 MAD  MSE  RMSE MAPE Correlation Coefficient 

(r) 

V11C 0,15 0,03 0,17 4,28 0,98 

V14D 0,37 0,20 0,44 9,35 0,93 

V20B 0,19 0,05 0,22 6,35 0,91 

V20E 0,28 0,11 0,33 8,38 0,86 

 

As described in Equations 4.1, 4.2, 4.3 and 4.4, these standard statistics were used to quantify 

the differences between the ETo that was estimated by using the reference method (FAO-PM), 

which was obtained from the ISCW-ARC and the estimates obtained by using the Hargreaves 

equation parameterized using MODIS LST data. The statistics are similar for each of the QC’s. 

The MAD, which describes the sum of the absolute differences, ranged between 0.20 mm.m-1 

to 0.25 mm.m-1 for the Umgeni Catchment, while it ranged between 0.15 mm.m-1 to 0.37 

mm.m-1 for the Upper Thukela Catchment.  

 

MSE ranged between 0.05 mm.m-1 to 0.09 mm.m-1 for the Umgeni Catchment and between 

0.03 mm.m-1 to 0.20 mm.m-1 for the Upper Thukela Catchment. RMSE ranged between 0.23 

mm.m-1 to 0.31 mm.m-1 for the Umgeni Catchment, and between 0.18 mm.m-1 to 0.44 mm.m-

1 for the Upper Thukela Catchment. The smaller the RMSE value, the closer the predicted and 

observed values are. The MAPE known as the error percentage was found to be between the 

range of 6.48 % to 8.83% for the Umgeni Catchment and between 4.28% to 9.35% for the 

Upper Thukela Catchment. The MAPE showed no statistically significant errors as; all errors 

were below 10 %. The correlation coefficient r, which is a measurement of the strength of the 

linearity relationship that occurs between two variables on a scatterplot, ranges between +1 to 

-1, with a value closer to 1 indicating that the datasets correlate better. For the Umgeni 
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Catchment, r ranged between 0.88 to 0.93, while with respect to the Upper Thukela Catchment 

r values ranged between 0.86 to 0.98.  

 

The monthly MSE and RMSE obtained by the Hargreaves-LST model were found to be 

consistent with the results observed in other studies. For instance, a study undertaken by 

Ahmadi and Fooladmand (2008) in the South of Iran achieved monthly errors, which ranged 

from 0.37 to 0.62 mm day-1 and the average RMSE obtained was 0.47 mm day-1. A study by 

Gavilán et al. (2006), which focused on the evaluation of the Hargreaves equation under a 

semi-arid environment, was carried out in Southern Spain. The results of this study produced 

an RMSE ranging from 0.46 to 1.65 mm day-1, which were found to be compatible with the 

results produced by the above study by Gavilán et al. (2006). Narongrit and Yasuoka (2003) 

compared the Hargreaves-LST model with the FAO-PM method, which achieved an R2 of 0.57 

and 0.60.  

 

Maeda et al. (2011) performed a study evaluating the Hargreaves-LST model in Kenya and 

produced results that consisted of a RMSE of 0.47 mm day-1and a correlation coefficient (r-

value) of 0.67 when compared to the FAO-PM method. The above studies are among many 

other studies that have showed the same ranges. Another study by Zheng and Zhu et al. (2014), 

which was undertaken in North China incorporated MODIS LST data into the Hargreaves 

model, while a study by Castro and Parra (2015) proposed a multiple regression model to 

estimate ETo using MODIS/TERRA data. Results from that study indicated the feasibility of 

utilising data from satellite sensors, particularly from the MODIS/TERRA sensor for 

estimating ETo as the images consists of known spatial ranges. From the results of the 

mentioned studies and the results produced from these studies, it is clearly understood that the 

results achieved in this study are consistent with those results observed in previous published 

research. Overall, by taking into account the above statistics, the model performed well.  

 

The monthly average values of ETo estimates for the period 2011 to 2016 with respect to the 

Umgeni Catchment are shown in Figure 4.11. It illustrates the profiles obtained by the reference 

method (denoted as “ARC-ET0” in the graphs) that were obtained from the ISCW-ARC along 

with three more profiles, which utilised different LST inputs. “Hargreaves-LST” refers to the 

non-calibrated ETo estimates, “Hargreaves-Calibrated” refers to the calibrated ETo estimates 

and “Hargreaves-ARC” refers to the Hargreaves approach, which used ground station 

temperature values as an input into the model. 
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The profile of the curve formed by the calibrated Hargreaves-LST model estimates closely 

follows the profile obtained by using the reference method (ARC-ET0) during the entire study 

period. The worst fit profiles are the non-calibrated Hargreaves-LST and the Hargreaves 

methods using ARC temperature as an input. It is therefore recommended that the calibrated 

Hargreaves-LST estimates be used if sufficient data is available to allow the calibration 

procedure to be performed. 

 

     

      

Figure 4.11 Monthly average distribution of ETo estimated by the ARC and compared with the 

values calculated by the Hargreaves method using different LST input data for 

selected QC’s within the Umgeni Catchment (2011-2016) 

 

Figure 4.12 shows the monthly averaged values of the ETo estimates for the Upper Thukela 

Catchment for the period 2011 to 2016. Once again, the profile curve formed by the calibrated 

Hargreaves-LST model estimates correlate well with the profile obtained using the reference 
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method (ARC-ET0) for the entire study duration. The worst fit profiles are the non-calibrated 

Hargreaves-LST and the Hargreaves methods using ARC temperature as an input for V20B 

and V20E, while these profiles for QC’s V11C and V14D display seasonal QC’s fluctuations 

with a close fit visible during winter months while significant comparisons are seen during the 

summer months. It should be noted that QC’s V11C and V14D have higher altitudes compared 

to V20B and V20E, which may have influenced the results achieved.  

 

    

       

Figure 4.12 Monthly average distribution of ETo estimated by the ARC and compared with the 

values calculated by the Hargreaves method using different LST input data for 

selected QC’s within the Upper Thukela Catchment (2011-2016) 

 

Overall, if sufficient data is available to allow the calibration procedure to be performed, it is 

recommended that the calibrated Hargreaves-LST estimates be used as the model is empirically 

based therefore local rigorous calibration is needed. 
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The fitted regression lines obtained in the regression analysis was performed using the 

reference and calibrated model are displayed in Figure 4.13 for the Umgeni Catchment and in 

Figure 4.14 for the Upper Thukela Catchment.  

 

The Hargreaves-LST model performed well for the Umgeni and Upper Thukela Catchments. 

R2 values ranging between 0.74 to 0.96 are produced for the Umgeni and Upper Thukela 

Catchments indicating a good fit between the data and the regression lines. The negative y-

intercepts of 0.0187 and 0.0844 for QC’s V11C and V14D, which are located at higher altitudes 

compared to the other QC’s are indicative of an underestimation of ETo estimates produced by 

the Hargreaves-LST approach when compared to the reference estimates. The remaining QC’s 

with a positive y-intercept represent a slight over-estimation of ETo estimates produced by the 

Hargreaves-LST approach in comparison to the reference estimates. 

 

               

               

Figure 4.13 Fitted regression lines obtained from the regression analyses performed using the 

reference method (ARC-ET0) and the calibrated Hargreaves-LST method for the 

Umgeni Catchment 
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Figure 4.14 Fitted regression lines obtained from the regression analyses performed using the 

reference method (ARC-ET0) and the calibrated Hargreaves-LST method for the 

Upper Thukela Catchment 

 

Considering the results achieved in this study and the comparisons with previous studies, it is 

concluded that the calibrated Hargreaves-LST model achieved good results in the linear 

regression and in the analysis of errors, and that they are consistent with results obtained in 

previous studies. In addition, studies by Ahmadi and Fooladmand (2008) and Gavilán et al. 

(2006) utilised ground data from weather stations as input for the evaluation of the Hargreaves 

model. However, the results produced from the above studies and the results produced by this 

study were seen to be consistent, yet this study evaluated the Hargreaves model, using MODIS-

LST as an input. Despite this empirical model being initially developed using air temperature, 

this particular study demonstrated that similar results can be attained by using SEO of land 

surface temperatures (MODIS-LST) as an alternative input in areas within South Africa and 

areas where the availability of ground data is poor. Nevertheless, Figures 4.9, 4.10, 4.11 and 

4.12 indicate that the errors and accuracy of this method may vary with the season and different 
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ecosystems. However, it is feasible to assert that this methodology is appropriate for this study, 

which incorporates RS data.  

 

It is also worth mentioning that the use of LST data from orbital sensors presents the benefit of 

enabling the spatial analysis of ETo at a greater spatial resolution. The benefit of using a 

spatially-explicit technique is portrayed in the maps in Figure 4.8 which allow for the 

identification of the spatio-temporal variation of ETo at different spatial scales. This advantage 

would be technically impossible using conventional methods, which utilise data from ground 

stations. A spatially-explicit characteristic of the ETo model can benefit the monitoring of 

droughts, provide relevant information on crop water requirements, risk assessments, improve 

water resources management, play a role in policy decision-making for land use allocation and 

the forecasting of agricultural yields. 

 

This section of the research study presented an alternative for estimating ETo using LST data 

from the MODIS sensor and an empirical model, for use in South Africa. Based on the statistics 

and regression analysis, the Hargreaves-LST approach is appropriate for use within South 

Africa. Despite some drawbacks when utilising the maximum LST data as input into the model, 

the MOD11A2 LST product was satisfactorily incorporated into the model. The results and 

outcomes of this approach are consistent with previous research, including research that utilised 

air temperature obtained from ground stations. Furthermore, the uncertainties and errors 

associated with the LST data can be tolerated when accounting for the limited availability of 

ground data. The methodology presented in this study can be noted to be a feasible alternative 

for estimating ETo in South Africa without additional cost since the MODIS LST product is 

freely available and it can be improved with the use of low cost direct methods such as the use 

of lysimeters to calibrate the empirical model. It must be noted that calibration is necessary to 

signify the changes in climatic variables. 

 

The Hargreaves model with its respective calibration parameters and the input data acquired 

by the MODIS sensor was applied in this study to represent the averaged spatio-temporal 

distribution of the ETo in the study area. In addition, the ETo estimates were further used as an 

input into the ETDI calculation for the assessment of droughts. 
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4.4 Drought Assessment Results 

 

For this study, the ETDI was used to analyse drought conditions for the period 2011 to 2016. 

The assessment was based on the spatial and temporal distribution of ETa and ETo which were 

used to calculate ETDI. The use of SEO as a potential data source for monitoring droughts to 

assist in water resources and disaster management in South Africa was investigated. Since, the 

ETDI requires ETo as an input, which used LST data from the MOD11A2 product and the other 

input being ETa, was obtained from the LSA-SAF DMET product, the study was able to utilize 

the spatial benefits provided by SEO.  

 

Given the difficulties in defining the beginning and end of drought events, their slow 

development and multiple climatic features, the temporal and spatial characteristics of the 

ETDI were produced. The investigation of the spatial and temporal characteristics of a drought 

provide a framework for sustainable water resources management, especially in semi-arid 

regions. Maps expressing the quantitative monitoring of drought occurrences in terms of the 

drought severity characteristics obtained from the ETDI drought indicator, such as duration, 

magnitude, and spatial extent, are produced for the study areas, which constitute part of a 

hazard assessment. A four-month consecutive period was found to be suitable for displaying 

the spatial development of droughts for this study (April to June).  

 

The drought indices were calculated at different catchment levels in an attempt to display the 

development of a drought at different spatial scales. For the Umgeni Catchment results were 

produced at a tertiary and QC level, while for the Upper Thukela results were obtained for the 

entire Upper Thukela Catchment as well as at a secondary and QC level. Greater details are 

discussed at a QC level, as this level was considered most appropriate for decision-making in 

water resources management. 

 

4.4.1 Evapotranspiration Deficit Index (ETDI) 

 

The ETDI is calculated as described in Section 2.2 using a monthly water stress ratio (WS) and 

a monthly water stress anomaly (WSA). An average monthly WSA value ranges from -100 to 

+100, representing very dry to very wet conditions, respectively. The monthly WS ranges from 

0 to 1, whereby 0 is indicative of evapotranspiration occurring at the same rate as reference 

evapotranspiration and 1 represents no evapotranspiration (Eden, 2012). The investigation of 
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the temporal trend of a drought is conducted through WS, WSA and ETDI analyses for the two 

study sites at different spatial scales. Spatially, the WS and ETDI maps were produced for the 

years, which were the driest during the 2011-2016 research period, namely 2015 and 2016. 

Spatially averaged maps were not produced for every level at which calculations were done 

but rather at appropriate levels to display drought patterns, considering that the calculations 

were obtained as a spatial average and not at a pixel by pixel basis. 

 

Umgeni Catchment: Tertiary Level 

 

With respect to the Umgeni Catchment, results are displayed at a tertiary and QC level. To 

investigate the temporal trend of drought within the Umgeni Catchment, the WS, WSA and 

ETDI were analysed using the Hargreaves-LST derived ETo and the LSA-SAF ETa as inputs. 

Figures 4.15, 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21 display the results, respectively. Spatial maps 

are illustrated where necessary. 

 

 

Figure 4.15 Water stress ratio for the Umgeni Catchment at a tertiary level (2011-2016) 

 

The WS at a tertiary level for the Umgeni Catchment is shown in Figure 4.15. The WS ranges 

from 0 to 1 and is useful for providing information on the presence of moisture within the area. 

A WS of 0 indicates there is sufficient water/moisture available for ETa to take place at the 

same rate as ETo, while a value closer to 1 is indicative of insufficient moisture/rainfall being 
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present; hence, no evapotranspiration can occur as the catchment is stressed. In the year 2012 

the lowest WS of 0.46 was shown, while the year 2015 indicated the highest WS of 0.62, 

followed by the year 2016 with a ratio of 0.59. In the year 2011 a WS of 0.52 was displayed, 

2013 a ratio of 0.46 and the year 2014 yielded a ratio of 0.56.  

 

The above results indicate that the years 2015 and 2016 displayed severe stress within the 

catchment, due to insufficient moisture/rainfall being available. Furthermore, in the year 2015, 

the month of October displayed the highest WS within the entire study period (2011-2016). A 

ratio of 0.79 was obtained. 

 

A spatial investigation of the WS is shown in Figure 4.16. The maps show the WS’s for the 

driest years (2015 and 2016) within the duration of the study. The maps display three summer 

months and three winter months for the dry years, ensuring that the seasonal trends can be seen. 

Spatially, the distribution of the significant water stress that occurred within the catchment 

during 2015 and 2016 was displayed in the map (Figure 4.16). Winter months display more 

water stress compared to the summer months. This is due to the changes in weather conditions 

brought by seasonal differences. 
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Figure 4.16 Water stress ratio maps for 2015 and 2016 for the Umgeni Catchment at a tertiary 

level 
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To further investigate the temporal trend of drought, WSA and ETDI were analysed at tertiary 

level and QC level for Umgeni, as shown in Figures 4.17, 4.18, 4.19 and 4.20, respectively. 

 

 

Figure 4.17 Water stress anomaly for the Umgeni Catchment at a Tertiary level (2011-2016) 

 

 

Figure 4.18 Water stress anomaly for the Umgeni Catchment at a QC level (2011-2016) 

 

Average monthly WSA values ranged from -100 to +100, displaying very dry to very wet 

conditions, respectively. 
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Tertiary level: In Figure 4.17, the red bars represent the dry months and blue bars represent 

the wet months. The beginning of 2011 as well as October displayed dryness, while the 

remaining months, wet conditions prevailed. 2012 and 2013 are the years with the most wet 

months namely October 2012, August 2013, September 2013 and October 2013. 2012 is the 

year with the majority of significantly wet months and this correlates with the lowest WS of 

0.46, indicating that sufficient moisture was present for the year within the catchment to allow 

for processes of ETa to occur, hence a higher ETa was experienced. A continuous trend of 

dryness is shown from May 2014 until December 2016. This indicates a period of extreme 

dryness lasting for almost two consecutive years. The WSA is in agreement with the results 

achieved from the WS. The WS for the years 2014-2016 ranged from 0.56-0.62, which were 

the highest of the WS’s for the study period displaying the presence of a great deal of water 

stress in the catchment.  

 

QC level: In Figure 4.18, the WSA for the tertiary level represented by U20 as well as for the 

12 QC’s (U20A-U20M) are illustrated. The WSA at tertiary level as well as for the 12 separate 

QC’s within the catchment follow the same trend. The beginning of 2011, displays dry 

conditions, while the rest of the months going into the year 2013 display wet conditions. April 

2014 until December 2016 displays dry conditions, while U20M, the month of September and 

October had a WSA of +100 indicating extreme wetness. 

 

Overall, both levels follow a similar trend. The drought severity due to the deficit of ETo-ETa 

was calculated based on a cumulating procedure, which gave the ETDI results as shown below 

(Figures 4.19 and 4.20): 
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Figure 4.19 ETDI plot for the Umgeni Catchment at a tertiary level (2011-2016) 

 

 

Figure 4.20 ETDI plot for the Umgeni Catchment at a QC level (2011-2016) 

 

Tertiary level: Figure 4.19 similar to the WSA, displays red bars which represent dry months 

and blue bars, which represent wet months. The ETDI ranges from -4 to +4 indicating wet and 

dry conditions, respectively. In 2011, from January to April, all the remaining months showed 

positive ETDI indicating wet conditions with ETDI reaching almost +4 in September. The 

entire year of 2012 was wet and displayed a positive ETDI. In 2013, except for November and 
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December, all months showed a positive ETDI. In 2014, January to May were wet but with an 

ETDI not greater than +1. From May 2014 until December 2016, all months were dry, with 

most months having an ETDI greater than -2. Slight wetness was displayed in October 2016 

with an ETDI of 0.05 that is almost near normal. Extreme dryness with an ETDI approaching 

-4 was displayed for October to December of 2015. In November 2015, the second highest 

negative ETDI of -3.50 was displayed, with the highest for the study period being December 

2015 of -3.87. This correlates to ARC-ISCW (Agricultural Research Council-Institute for Soil, 

Climate and Water) issue for the month of November 2015 (ARC-ISCW, 2015). The report 

stated that hot and dry conditions prevailed in November 2015, with the month being extremely 

dry for the northern areas of KwaZulu-Natal. The SPI map produced within the report showed 

that severe to extreme drought conditions were confined to the parts of KwaZulu-Natal and the 

PET remained low. The Standardized Difference Vegetation Index (SDVI) indicated drought 

stress over the northern parts of KwaZulu-Natal. 

 

According to the Centre for Research on the Epidemiology of Disasters (CRED), South Africa 

experienced a heat wave during week three in 2016 (January 11-January 17) (CRED, 2015). 

The ETDI result for this period at tertiary level was -1.65 indicating dryness, while the ETDI 

for the QC also displayed low negative ETDI values representing the dry conditions that were 

experienced as a result of the heat wave. CRED also reported on a drought event experienced 

in South Africa during week 46 in 2015 (November 9-November 15). The ETDI value 

produced for this drought period for the tertiary level was -3.75, which was the second highest 

negative ETDI value for the entire study period and which is indicative of the severe dryness. 

The QC also illustrated extremely low negative ETDI’s well above -2 which is representative 

of dryness. 

 

The results produced by ETDI are in agreement with results produced by the WS and WSA. 

Year 2012 was highlighted as a wet year and year 2015 was highlighted as the driest year. 

Continuous dryness was displayed from 2014 until the end of 2016. 

 

QC Level: The ETDI ranged between -4 to +4 representing wet and dry conditions. The results 

produced by the ETDI (Figure 4.20) are in agreement with the results produced by the WSA. 

The ETDI of the separate QC’s and the ETDI at tertiary level follow the same trend with same 

months indicating wetness and same months displaying dryness. The spike caused by U20M 

for October 2016 explains the extreme wetness that was depicted by the WSA in Figure 4.18. 
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A spatial distribution of the ETDI at a QC level is illustrated in Figure 4.21. The spatial maps 

are produced for four consecutive months within the most driest year (2015). These maps were 

produced to investigate and display the development of a drought over a large spatial scale. 

Droughts are known for their spatial and temporal dimensions, hence achieving coverage of 

drought monitoring over a vast area, allows for a more comprehensive view of the development 

of droughts to be seen. Figure 4.21 below displays that an area affected by a drought is rarely 

static; as a drought event emerges and intensifies, the core area affected by the drought and its 

spatial extent, spreads throughout the duration. 

 

 

Figure 4.21 ETDI maps for 2015 for the Umgeni Catchment at a QC level 

 

From these maps, the progression and onset of an intensifying drought over the Umgeni 

Catchment is shown, which had been previously detected by the spatial and temporal trends of 

the WS, WSA and the temporal trend of the ETDI. The effect of the drought accumulates 

gradually over the four-month period, displaying the slow-onset, creeping effect of the natural 

hazard (van Loon, 2015). The ETDI displays the drought as slowly gripping one quaternary at 

a time, eventually tightening its grip over the months as illustrated in Figure 4.21. The 

characteristics (duration, intensity and spatial coverage) of a drought are shown to be 
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interrelated by Figure 4.21, whereby with an increase in duration, the intensity of the drought 

intensifies and spreads slowly over a spatial area. A study by Demuth and Stahl emphasizes 

the need to study the characteristics of droughts at different temporal and spatial scales. Since 

there is the possibility for the characteristics and propagation of droughts to differ under 

different spatial scales.  

 

Upper Thukela Catchment 

 

With respect to the Upper Thukela Catchment, results are displayed for the entire catchment 

and at a secondary as well as QC level. To investigate the temporal trend of drought within the 

Upper Thukela Catchment, the WS, WSA and ETDI were analysed using the Hargreaves-LST 

derived ETo and the LSA-SAF ETa as inputs. Figures 4.22 to 4.29 display the results. Spatial 

maps were further generated to investigate the spatial distribution of droughts over a 

geographic area.  

 

WS was calculated for the Upper Thukela Catchment and the results are displayed in Figure 

4.22. WS were calculated from ETo and ETa estimates and therefore provide beneficial data on 

the presence of moisture within an area. In the year 2013, the lowest WS of 0.60 was displayed 

followed by the year 2012, which had a WS of 0.62. A WS of 0.62 was displayed for the year 

2014. The highest WS were obtained for the years 2015 and 2016 with values of 0.72 and 0.71, 

respectively. 
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Figure 4.22 Water stress ratio for the Upper Thukela Catchment (2011-2016) 

 

The above WS values are mostly found to be closer to 1 suggesting that the catchment was 

stressed as insufficient moisture was available for evapotranspiration to occur. The year 2015 

and 2016, displayed the highest WS indicating extreme dryness and lack of moisture. The 

months from September to November in 2015 and the months between June and October of 

2016 showed the highest WS over 0.80. 

 

An investigation of the spatial trend of the WS for the catchment was shown in Figure 4.23. 

Spatial maps of WS were produced for the driest years, namely; 2015 and 2016. Maps are 

displayed for three summer months and the three winter months as result of seasonal 

differences. Moisture stress within the catchment is clearly depicted in Figure 4.23. Severe 

stress is further highlighted for the winter months as a result of the weather conditions brought 

about by the season. During winter, less rainfall and moisture are present compared to the 

summer months, which further worsen the stress within the catchment.  
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Figure 4.23 Water stress ratio maps for 2015 and 2016 for the Upper Thukela Catchment  

 

To investigate the temporal trend of droughts, WSA and ETDI were analysed for the Upper 

Thukela Catchment and at a secondary level, as shown in Figures 4.24, 4.25, 4.26 and 4.27, 

respectively. However, for the investigation of the spatial development of drought, ETDI maps 

were produced at a secondary and QC level. These spatially averaged maps are shown in 

Figures 4.28 and 4.29. 
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Catchment level: In Figure 4.24, the red bars are representative of dry months and the blue 

bars are presentative of wet months. At a catchment level, January, March and November of 

2011 displayed dryness and rest of the months were displayed as wet. March to July 2012 

experienced dry conditions, while the remaining months of 2012 were wet. The majority of the 

months for 2013 displayed wetness, which is in agreement with the lowest WS of 0.60 that was 

produced, indicating a wet year with high ETa experienced. August, September and October of 

2013 were the exception as they displayed dry conditions. For 2014, apart from the dry months 

January, February, July and September, the remaining months were wet. The two-year period 

(2015-2016) indicated extreme dryness, while January 2015, March 2015, August 2016 and 

September 2016 displayed wetness. The extended period of dryness within these two years 

(2015-2016) correlated with the highest WS that were produced for the years 2015 and 2016 

with values of 0.72 and 0.71, respectively. These results indicate that the year 2015 and 2016 

were extremely dry years with a low ETa experienced. 

 

 

Figure 4.24 Water stress anomaly for the Upper Thukela Catchment (2011-2016) 

 

Secondary level: Figure 4.25 illustrates the WSA for the secondary level catchments (V1, V2, 

V6, V7) as well as for the whole catchment (V). The WSA at a secondary level follow the same 

trend as the WSA on a catchment level. The majority of wet months during 2013 indicate a wet 

year and the extreme dryness for the years 2015 and 2016 was clearly depicted.  
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Figure 4.25 Water stress anomaly for the Upper Thukela Catchment at a secondary level (2011-

2016) 

 

Overall, both levels follow a similar trend with no significant changes noted in the difference 

between the levels. The drought severity due to the deficit of ETa was thereafter calculated 

based on a cumulating procedure, which gave the ETDI results as shown below (Figures 4.26 

and 4.27). The range of ETDI is between -4 to +4, which is representative of wet and dry 

conditions, respectively. 

 

Catchment Level: Figure 4.26 displays red bars that represent dry months and blue bars that 

represent wet months, similar to the WSA. In 2011, the majority of the months displayed a 

positive ETDI indicating wetness with the exception to the months January, March, April and 

December, which displayed dry conditions and produced a negative ETDI. For 2012, the 

months from March to July showed a negative ETDI indicating dryness while the remaining 

months were wet. In 2013, a positive ETDI was displayed for the majority of the months 

indicating a wet year, while the months September to November displayed a slight dryness, 

with low negative ETDI values (-0.32- -1.14). January, February, July, August, September and 

October indicated dryness with a negative ETDI, while the remaining months displayed wet 

conditions. Years 2015 to 2016 all displayed negative ETDI values, with January and April 

2015 displaying near normal values (0.01, 0.05).   
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November 2015 produced a negative ETDI of -3.59, which was amongst the extremely high 

negative ETDI values for the study period. This correlated to UMLINDI: The Watchman issue 

for the month of November 2015 (ARC-ISCW, 2015), which reported November 2015 was 

characterized by extremely hot conditions, with the month being extremely dry for the northern 

areas of KwaZulu-Natal. These results were in agreement with results achieved by the WS and 

WSA, which pointed out a two-year consecutive period of dryness. 

 

As previously stated, CRED reported on the heat wave in South Africa during January 2016 as 

well as the drought experienced in South Africa in November 2015. The ETDI for the 

catchment for November 2015 was -3.60 which was amongst the highest ETDI’s experienced 

during the study period, while for January 2016 an ETDI of -2 was achieved. These ETDI 

results indicate the severely dry conditions that were experienced as reported by media reports. 

While for the secondary level catchments, during November 2015, ETDI’s produced were all 

reaching close to -4 and for the month January 2016, low negative ETDI were achieved, 

representative of the dry conditions and the dryness that was experienced.  

 

 

Figure 4.26 ETDI plot for the Upper Thukela Catchment (2011-2016) 

 

Secondary Level: Figure 4.27 shows that the ETDI results at a secondary level follow the 

same trend of the ETDI produced at a primary level for the Upper Thukela, with same months 
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indicating wetness and same months displaying dryness. Hence, no significant difference are 

noted for the WSA and ETDI calculated at different levels. 

 

 

Figure 4.27 ETDI plot for the Upper Thukela Catchment at a secondary level (2011-2016) 

 

To investigate the spatial distribution of a drought, spatial maps were produced at a secondary 

(Figure 4.28) and at a QC level (Figure 4.29). The spatial maps are produced for four 

consecutive months within the driest year (2015). These maps were generated to investigate 

and display the development of a drought over different spatial scales.  

 

A study by Leelaruban and Padmanabhan, (2017) indicated that drought conditions at a state 

level differs from those of a country, whereby the drought information of a smaller area could 

be masked when the drought is reported at a state level. This is because the more homogenous 

hydrological conditions enable sudden variations of the area coverage of certain drought 

intensity. The recognition of this feature is important from a drought management perspective 

across scales because the small scales are subject to sudden drought and can be unnoticed at a 

larger spatial scale, which is evident from this figures displayed below. Spatial maps are 

produced at a secondary (Figure 4.28) and at a QC level (Figure 4.29) for the Upper Thukela 

study site. 
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Spatially, at a secondary level, ETDI maps are displayed in Figure 4.28, while Figure 4.29 

displays the ETDI maps at a QC level. There is considerable variability with regards to the 

different classes of droughts. The smaller scales are a subset of the larger spatial scales. The 

number of drought events appear to be increasing from a larger spatial scale to a smaller spatial 

scale. In Figure 4.28 the secondary catchments are classified broadly, hence the ETDI values 

are generalized and do not detect the severe dryness occurring within particular QC‘s within 

the secondary catchments as displayed in Figure 4.29. It is therefore advised that spatial 

investigations of droughts be conducted at a QC level, as this level provides greater and finer 

details that can assist in water resources management and drought assessment. 

 

 

Figure 4.28 ETDI maps for 2015 for the Upper Thukela Catchment at a secondary level 
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Figure 4.29 ETDI maps for 2015 for the Upper Thukela Catchment at a QC level 

 

Episodes of droughts affect wide areas over long periods of time. The spatial patterns of 

droughts are seemingly complex as it is common for an area to suffer dry conditions, whilst 

the neighbouring areas experience humid or normal conditions (Figure 4.29). Vicente-Serrano 

(2010b) accounts for such variation by mentioning atmospheric circulation patterns, as 

droughts cannot be associated with one single atmospheric conditions, more specifically; 

spatial variability in precipitation and its variability are the attributable causes. Thus, the 

determination of areas over which drought development is homogenous becomes difficult.  

 

The spatial maps show that more intense droughts occur spatially at a QC level and are less 

intense when the QC is spatially connected to form the secondary catchments. The study by 

Leelaruban and Padmanabhan (2017) indicates that the spatio-temporal features of the 

propagation of a drought event can significantly change with spatial scale. The same drought 

may appear to have different characteristics when viewed at different spatial scales, and this 

needs to be considered in drought management. This study is in line with the results shown in 

previous research.  
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Overall, the results produced by the ETDI for the Umgeni Catchment and for the Upper 

Thukela Catchment were consistent with several research and media articles and reports 

produced for the region of South Africa. According to a report produced by the SADC 

(Southern African Development Community), South Africa was amongst the SADC’s regions 

that experienced a rather devastating drought that was said to be associated with the 2015/2016  

El Niño event. The 2015/2016 rainfall season in South Africa was delayed, which was evident 

as both catchments during the period 2015-2016 displayed prolonged dryness. The Umgeni 

Catchment between January 2015 to December 2016 negative ETDI were achieved indicating 

dry conditions with an exception to October 2016 (EDTI = 0.05) with near normal condition. 

While with respect to the Upper Thukela, January 2015 and April 2015 displayed near normal 

conditions, while the remaining months between January 2015-December 2016 showed 

dryness.  

 

A rainfall analysis performed by the SADC indicated that the period between October to 

December 2015 was the driest in more than 35 years along with higher than averaged 

temperatures occurring consistently within the same period (SADC, 2016). In addition, the 

October 2015 report on drought conditions across the country indicated that drought conditions 

were being experienced in KZN. These drought conditions and the intense dryness that was 

displayed between these months were depicted by the ETDI for both study areas. In the Umgeni 

Catchment, the ETDI for months October 2015 - December 2015 were amongst the highest 

negative values for the entire study period (2011-2016). October 2015 had an ETDI of -3.50, 

November 2015 was -3.75 and December 2015 was -3.87. For the same months, the Upper 

Thukela Catchment also produced an extremely high negative ETDI of -3.19 for October 2015, 

-3.59 for November 2015 and -3.79 for December 2015. The extremely high negative ETDI 

therefore indicated the intense dryness that was experienced in the respective catchments. 

 

Following the dry conditions heavy rains occurred for approximately 30 days between 21 

February 2016 to March 2016. However, these rains followed several months of poor rainfall; 

hence, they were insufficient for the rainfall deficits since October to be eliminated. The rainfall 

was reported to have amounted to twice the normal amount for South Africa. The ETDI for the 

Umgeni for February was -1.98 and for March it was -1.39 whereas, for the Upper Thukela, 

February was -2.32 and March was -1.37. These Figures remained negative despite heavy rains 

because the rains were insufficient. However, an extremely high negative ETDI of above -3 

was noticed for October –December 2015, and the ETDI for February and March was lower 
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due to the effect of the heavy rains. The results produced by the ETDI for both study sites 

correlated with the report since, January-December 2014 for both catchments majority negative 

ETDI’s for majority of the months within the period were achieved. For the Umgeni 

Catchment, January 2014-May 2014 were nearly normal, while the rest of the months were 

negative ETDI, indicative of dryness. For the Upper Thukela Catchment, positive ETDI’s were 

not greater than +2 in 2014, while negative ETDI’s were as high as -3 with the highest for 

August 2014 (-2) and September 2014 (-3). 

 

As a result of the investigation into the ETDI in the assessment of droughts, it can be concluded 

that it is a useful indicator for monitoring drought conditions. The ETDI was able to simulate 

the wet and dry conditions within the study areas reasonably well. The spatial variability 

analysis showed that the spatial variability in ETa is critical in ETDI for identifying drought 

conditions. The ETa deficit calculated by the ETDI can be a good parameter for the evaluation 

of drought conditions within a landscape, at an agricultural level. 

 

High totals of ETa can evoke the occurrence of droughts more frequently as indicated by the 

WS and the WSA. With that being said, crop sections and water saving rotation can play a role 

in assisting and minimizing the impacts of droughts within an area. In Morocco, drought 

tolerant crops such as winter chickpea are grown as a drought mitigation strategy. These crops 

make beneficial use of the autumn and winter rains. Such techniques can substantially improve 

and stabilize crop yields, protect the environment and reduce the impact of droughts on society.  

 

A combination of the spatial analysis and temporal analysis of droughts can help to develop an 

improved understanding of agricultural droughts and droughts in general. Additionally, it can 

be beneficial in the monitoring and planning of droughts to mitigate their impacts. The spatio-

temporal analysis can enable the monitoring of moisture within any space and time scale. The 

ETDI is a spatial indicator that can be estimated at any location within an area. From the spatial 

analysis, it could be seen that droughts are characterised by their duration, intensity and spatial 

coverage. Spatially-averaged maps displayed how affected/ severely affected areas gradually 

evolve and how the QC’s of maximum intensity expand. 

 

Depending on the size of the governing unit such as a QC or catchment, an understanding of 

the scale-dependency is crucial for resource allocation and drought management.  The spatio-

temporal characteristic of droughts illustrated by Figures 4.21, 4.28 and 4.29 display that the 
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average area, maximum percentage of the area and total duration are found to be decreasing 

with an increase in the drought intensity for the different spatial scales. However, with respect 

to smaller spatial scales, drought occurrences persist for a shorter period compared to a larger 

spatial scale. Quantitatively this study was able to demonstrate that there is a visible variation 

within the drought characteristics (duration, intensity and spatial coverage) at different spatial 

scales. These findings emphasize and acknowledge that the management of droughts and the 

allocation of resources should be developed for different spatial scales, more so at smaller 

administrative units such as at a QC level. 

 

To enable the improved management of drought impacts within any administrative area in any 

geographic location, the dependency of drought characteristics on the spatial scale should be 

studied at that location to derive the appropriate drought characteristics for that specific scale. 

Studies seeking to better quantify drought characteristics and their variations can prove to be 

valuable for society. In that context, studies focusing on the dependency of spatial scale of 

drought characteristics such as this will be helpful in drought management, resource allocation 

and improved water resources management. 

 

The verification of the presence of the spatial scale’s effect on drought characteristics for 

investigating the effect of the scale on the spatio-temporal characteristics of droughts was 

shown in this section of the study. Such scale investigations are necessary in order to account 

for the scale dependence of drought characteristics for effective management of droughts and 

allocation of water resources. 

 

4.4.2 Standardized Precipitation Index (SPI) and Standardized 

Precipitation Evaporative Index (SPEI)  

 

Despite all droughts originate from a lack of precipitation, hydrologists want to know how the 

precipitation shortage influences the hydrological system. Thus, the time scale over which 

water deficits accumulate becomes extremely important when assessing droughts. For these 

reasons, it is beneficial for drought indices to be associated with timescales to assist in 

managing and monitoring water resources. The popular SPI and SPEI indices can be computed 

at different time scales; however, the choice of a time scale is dependent on the choice of the 

drought analysis. SPI and SPEI are able to monitor wet and dry climates hence; an added 
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benefit of these indices includes the monitoring of wet periods. The SPEI holds the advantage 

of combining the effect of temperature and rainfall variability for drought assessment as well 

being more sensitive to global warming. As a result, the SPEI presents a more complete 

approach to explore the effects of climate change on drought conditions. 

 

In this study the SPI and SPEI was calculated for QC’s within the Umgeni and Upper Thukela 

Catchment based on the 22 meteorological stations together with satellite data, which covered 

the periods between 1986-2016. This study analysed the presence of trends in drought-affected 

areas across South Africa. In this section in order to define drought conditions, the SPI and 

SPEI was calculated on a 12-month (yearly) time scale. These indices were calculated to allow 

for comparison between the ETDI in detecting the occurrence of droughts or not. Calculations 

were carried out for four QC’s within the Umgeni Catchment and four QC’s within the Upper 

Thukela. The chosen QC’s refer to those in which the calibration of the Hargreaves-LST was 

performed (Section 4.3.1). Table 4.4 provides details on the selected QC’s, which were 

selected, based on the availability of meteorological data.  

 

Sufficient meteorological data for a 30-year period was available for the Umgeni Catchment 

however, several years of historic data within the 30-year period was unavailable for the Upper 

Thukela Catchment. Hence, in order for the SPI and SPEI to be calculated for the Upper 

Thukela Catchment, the FEWS rainfall product was utilised to provide a 30-year record of 

rainfall and the temperature database for Southern Africa was able to provide the temperature 

data. The temperature database provides records only for 50 years from 1950-2000. However, 

the 30-year period considered in this study was from 1985-2016. Hence, to accommodate for 

the missing temperature for the period 2000-2016, temperature from nearby weather stations 

within the catchments were used to form a complete dataset. 

 

Results of the SPI and SPEI produced by the R software are displayed with inputs of rainfall 

and temperature obtained from gauged data as well as from satellite data. The encouraging 

results produced from the use of the satellite data within the Umgeni catchment allowed for 

use of the satellite data to calculate the SPI and SPEI in the Upper Thukela Catchment. 
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Umgeni Catchment: using observed and satellite data to produce SPI and SPEI values. 

 

Figure 4.30 to 4.33 represent the SPI and SPEI outputs and results from the SPEI-R software 

for the selected QC’s. Cross comparisons between drought indicators was performed in order 

to investigate the ETDI in detecting the occurrences of droughts. Figure 4.30, Figure 4.31, 

Figure 4.32 and Figure 4.33 illustrate comparison of drought indices using observed data and 

using FEWS satellite rainfall data combined with the temperature database for the Umgeni 

catchment as inputs. Within these Figures, A-D represents results using observed data while E-

H represent results using satellite rainfall estimates. In this study, SPEI results are displayed 

using two methods. The first method is through the Thornthwaite equation whereby 

evapotranspiration is computed as PET while the second uses the Hargreaves equation where 

evapotranspiration is computed using ETo. The differences between the two methods and the 

results produced are not discussed in detail as it is found to be beyond the scope of the study. 

The SPEI results are only used to assess the ETDI in detecting the occurrence of a drought. 

 

To interpret the SPI and SPEI, negative values represent a deficit in rainfall as well as dry 

conditions while, positive values represent rainfall and wet conditions occurring. Furthermore, 

negative SPI and SPEI trends account for an observed general increase in droughts. 

Technically, when SPI values drop below 0, droughts conditions prevail and the drought ends 

when the SPI becomes positive again. The duration of a drought is said to equal to the number 

of months the SPI was negative. However, the theoretical limits are (-∞,∞). Figure 4.30, Figure 

4.31, Figure 4.32 and Figure 4.33 display very slight discrepancies between the results obtained 

using observed data and satellite data. Overall, both instances correlate well and agree in 

detecting severe wetness and severe dryness. The 2015/2016 El Niño drought was detected by 

all SPI’s and SPEI’s within the study period. No significant difference in noted in the SPEI 

calculated using the Thornthwaite and Hargreaves equations. SPI and SPEI display similar 

results relating to drought variability and trends across the different QC’s. Positive and negative 

trends exist across all QC’s. Overall, it can be concluded that both SPI and SPEI trend analysis, 

yield similar results. From these results, incorporating satellite data for use in calculating SPI 

and SPEI within the R package is advocated. Utilizing satellite data is recommended especially 

in poor developing countries and regions where limited data is available to assist in water 

resources management and for decision-making purposes.   
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                                          U20E: Observed                                                                                         U20E: Satellite-derived 

A E  

B     F   

C     G  

D     H  

Figure 4.30 SPI and SPEI results for U20E.C and G represent SPEI calculated using the Thornthwaite method while Figure D and H the Hargreaves 
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                                      U20F: Observed                                                                                         U20F: Satellite-derived 

A E  

B     F  

C    G  

D   H  

Figure 4.31 SPI and SPEI results for U20F.C and G represent SPEI calculated using the Thornthwaite method while Figure D and H the Hargreaves 
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                                       U20G: Observed                                                                                         U20G: Satellite-derived 

A E  

B     F  

C    G  

D    H  

Figure 4.32 SPI and SPEI results for U20G.C and G represent SPEI calculated using the Thornthwaite method while Figure D and H the Hargreaves 
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                                     U20J: Observed                                                                                         U20J: Satellite-derived 

A  E  

B      F  

C      G  

D      H  

Figure 4.33 SPI and SPEI results for U20J.C and G represent SPEI calculated using the Thornthwaite method while Figure D and H the Hargreaves 
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4.4.3 Comparison of the SPI, SPEI (Thornthwaite, Hargreaves) with the ETDI: Umgeni 

Catchment 

 

Cross comparisons between drought indicators was performed in order to investigate the ETDI 

in detecting the occurrences of droughts. Figure 4.34, Figure 4.36, Figure 4.38 and Figure 4.40 

show comparison of drought indices using observed data as inputs. Figure 4.35, Figure 4.37, 

Figure 4.39 and Figure 4.41 illustrate the comparison of drought indices using FEWS satellite 

rainfall data, combined with the temperature database for southern Africa. In all Figures, the 

ETDI, when compared to the SPI and SPEI, displays a similar trend in peak and a drop in the 

amplitude of the indices. When closely observed, the ETDI shows subsequent peaks and drop 

in amplitude while the SPI and SPEI shows a gradual trend when compared. The SPI, SPEI-

Thornthwaite and SPEI-Hargreaves are observed to be correlated.  

 

Beguería et al. (2014), state that the Hargreaves equation does not have the limitations of the 

Thornthwaite equation as well as at a monthly and yearly timescale, ETo estimates from both 

equations are found to be very similar, with differences being less than 2 mm per day. The 

study results are thus consistent with previous literature. The Hargreaves equation is the 

preferred option, when sufficient data is not available, or with the second option being the 

Thornthwaite. 

 

Overall, all indices including the SPEI using observed and satellite data managed to display 

the similar trends in dryness and wetness that were experienced within the different 

quaternaries. The slight discrepancies in the peaks and drop in amplitude of the ETDI to the 

SPI and SPEI can be attributed to the fact that the indices are based on and account for different 

meteorological variables. Therefore, the environmental demand for the different 

meteorological variables vary. Additionally, in the case of the SPI and SPEI, it takes longer for 

precipitation shortage to become evident in soil moisture, which may explain the slight 

differences with the ETDI. The ETDI is derived from ETo and ETa while the SPI and SPEI is 

computed based on temperature and precipitation. Several studies have also reported on the 

SPEI correlating better with ecological and hydrological variables than other drought indices.  

 

Despite the slight discrepancies, the SPI, SPEI and ETDI may all be used to detect drought 

occurrences. 
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Figure 4.34 Comparison of drought indices for U20E using observed data 

 

Figure 4.35 Comparison of drought indices for U20E using satellite-derived data 
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Figure 4.36 Comparison of drought indices for U20F using observed data 

 

Figure 4.37 Comparison of drought indices for U20F using satellite-derived data 
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Figure 4.38 Comparison of drought indices for U20G using observed data 

 

Figure 4.39 Comparison of drought indices for U20G using satellite-derived data 
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Figure 4.40 Comparison of drought indices for U20J using observed data 

 

Figure 4.41 Comparison of drought indices for U20J using satellite-derived data 
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Cross correlation analyses were conducted between the ETDI, the SPI and the SPEI using 

observed data for the four selected QC’s. Figure 4.42 displays the cross correlation results 

for QC U20J along with the R2 values, while the R2 values for the remaining three QC’s 

are displayed in Table 4.6.  

 

Figure 4.42 Correlation between the ETDI, SPI and SPEI for U20J (2011-2016) 

 

Table 4.6 R2 results obtained from performing ordinary least square regression analyses 

 U20E U20F U20G U20J 

SPEI-Thornthwaite 0.43 0.62 0.48 0.73 

SPEI-Hargreaves 0.42 0.57 0.48 0.69 

SPI 0.31 0.44 0.40 0.61 

 

The highest R2 values for the QC’s were obtained from the cross correlations between 

the ETDI and the SPEI-Thornthwaite, hence, displayed a better comparison to the ETDI. 

The SPEI-Thornthwaite requires mean daily temperature and the latitude of the study 

area. As with the Thornthwaite approach, the SPEI-Hargreaves also requires minimum 

and maximum daily temperatures. Beguería et al. (2010), reported on previous research 

that indicated that the Thornthwaite approach underestimates ETo in arid and semi-arid 

environments and overestimates in tropical and humid equatorial regions. The negative 

y-intercept (-0.06) indicates an underestimation and is in line with the previous research 

results.  

 

The greater difference between the ETDI and the SPEI-Hargreaves compared to the 

SPEI-Thornthwaite may be due to the discrepancies in the MOD11A2 maximum 
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temperature that was used within the Hargreaves-LST approach to obtain ETo estimates 

as an input into the ETDI calculation.  

 

Within this study, the Hargreaves and Thornthwaite equations were able to depict wet 

and dry events respectively and it was found to be valuable for use when limited 

meteorological data is available. The Hargreaves equation is preferred over the 

Thornthwaite, as it does not possess the limitations of the Thornthwaite equation 

(Begueria et al., 2014); hence, use of the Hargreaves is recommended first and the second 

would be the Thornthwaite. 

 

In comparison to the SPEI and the SPI with the ETDI, the SPEI results were better 

correlated to the ETDI. This is because the ETDI is an evaporative index and the SPEI 

techniques account for evaporation either through PET in the case of the SPEI-

Thornthwaite approach or through ETo with respect to the SPEI-Hargreaves approach. 

The SPI is calculated purely on rainfall and the index is unable to account for the 

evaporation component therefore, R2 values were least correlated to the ETDI as opposed 

to the SPEI results. 

 

4.4.4 Normalization performed on the indices using in-situ data: Umgeni Catchment 

 

Normalization were performed on all three-drought indices for better comparison of the 

indices. The normalized indices were plotted for U20J as shown below in Figure 4.43 and the 

cross correlation of the normalized indices for U20J are shown in Figure 4.44. The Figures of 

the normalized indices for the remaining QC’s are shown in Appendix A. 

 

After normalization, a better comparison of the indices for U20J are displayed in Figure 

4.43 than the previous without normalization, which is displayed in Figure 4.40. In terms 

of the correlation, R2 values did not change after normalization, as values remained 

within the same range; however, the boxing co-ordinates of the plot changed, which 

resulted in a better display between the different indices (Figure 4.44). Computation of 

the ETDI based on the same time series as the SPI and SPEI is expected to result in a 

better correlation; however, the present results are suitable for assessing droughts within 

semi-arid to arid regions.  
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Figure 4.43 Comparison of normalized ETDI, SPI and SPEI for U20J (2011-2016) 

 

 

Figure 4.44 Correlation between normalized ETDI, SPI and SPEI for U20J (2011-2016) 

 

The ETDI is suggested to be considered over the SPI and the SPEI where drought 

monitoring is concerned. The index accounts for the actual state of the land surface 

dryness through ETa, which is known to be dependent on the current water availability 

that prevails. The ETDI is based on the evaporation deficit (ETa – ETo) and evaporation 

is considered to be a significant variable in semi-arid to arid regions like South Africa. 

At the land surface, evaporation provides the link between the energy and the water 

cycles, including between the water and the carbon cycle by means of vegetation 

transpiration. By accounting for evaporation and changes in the variable, a vital 

component of the water cycle can be accounted for. Evaporation is found to be a 

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

2
0

1
1

-0
1

2
0

1
1

-0
4

2
0

1
1

-0
7

2
0

1
1

-1
0

2
0

1
2

-0
1

2
0

1
2

-0
4

2
0

1
2

-0
7

2
0

1
2

-1
0

2
0

1
3

-0
1

2
0

1
3

-0
4

2
0

1
3

-0
7

2
0

1
3

-1
0

2
0

1
4

-0
1

2
0

1
4

-0
4

2
0

1
4

-0
7

2
0

1
4

-1
0

2
0

1
5

-0
1

2
0

1
5

-0
4

2
0

1
5

-0
7

2
0

1
5

-1
0

2
0

1
6

-0
1

2
0

1
6

-0
4

2
0

1
6

-0
7

2
0

1
6

-1
0

In
d

ic
e

s

Months (2011-2016)

SPEI_Thornthwaite SPEI_Hargreaves SPI ETDI



 

 133 

significant contributor to droughts and drought severity, more so for semi-arid to arid 

regions. Bugan et al., 2012, states that ETa can reach to 100% rainfall.  

 

4.4.5 Comparison of SPI using in-situ rainfall data and satellite rainfall data within the 

Umgeni Catchment 

 

SPI was calculated using 30 years precipitation data from in-situ data as well as from FEWS 

satellite rainfall data for the Umgeni Catchment. Comparisons between SPI calculated from 

observed data and SPI calculated from satellite data was performed. These comparisons were 

made to investigate how the two SPI’s varied from each other and how they represented each 

other, because the SPI calculated from observed data was obtained from point measurements, 

and the SPI calculated from satellite data was from a spatially-averaged value of rainfall over 

a quaternary. Bar graphs were plotted to visually interpret and compare the two data sets for 

the four selected QC’s within the Umgeni catchment (Figure 4.45). As shown in Figure 4.45 

the satellite derived SPI for most months follow the same trend as the SPI values obtained from 

in-situ data. However, both datasets differed in a few cases, such as for the month of December 

and for the months within QC U20G. This difference could be attributed to the difference 

between the spatial scales at which rainfall estimates were obtained. It should also be noted 

that there were quite a few missing days of rainfall imagery seen within the FEWS rainfall 

product. 
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Figure 4.45 SPI calculated using in-situ and satellite rainfall data for the Umgeni Catchment 

(2011-2016) 

 

A graph of correlation coefficients was plotted with SPI calculated from the representative in-

situ dataset on the x-axis and the SPI calculated from satellite rainfall data on the y-axis. Figure 

4.46 displays one common extreme outlier representing the difference in the SPI’s for the 

month of December with majority of the points in close proximity to each other. The positive 

y-intercept for QC’s U20E, U20F and U20J is indicative of an over-estimation by the satellite. 

Whereas, the negative y-intercept for QC U20G indicates an under-estimation by the satellite. 

The R2 values for all four selected QC’s range between 0.80 to 0.96, which is found to be close 

to 1 indicating that the datasets correlate well and are considered satisfactorily good. Overall, 

it can be seen that the FEWS rainfall product was suitable to provide spatial estimates of rainfall 

for use within the SPI and SPEI. This result encouraged the use of the FEWS rainfall product 

to enable calculations of the SPI and SPEI within the Upper Thukela Catchment as the 

catchment did not have sufficient meteorological data. 
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Figure 4.46 Scatterplot of in-situ calculated SPI values against FEWS rainfall calculated SPI 

values 

 

4.4.6 Validation of the FEWS rainfall product within the Upper Thukela Catchment 

 

Precipitation is notable the main factor that controls the persistence and development of 

droughts and since the quality of satellite rainfall products developed are subjective, it is 

beneficial for independent validation to be achieved.  

 

The results from the previous section displayed the potential of using the FEWS satellite 

rainfall product to run the R package to obtain SPI and SPEI values for the Upper Thukela 

Catchment as a result of insufficient meteorological data to form 30 year precipitation and 

temperature datasets. Rainfall data from weather stations within the catchment consisted of 

data for a few years however not enough to form a 30 year record. A common period, 2011-

2016 was identified whereby rainfall data was available for the selected QC’s from weather 
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stations. This data was compared against rainfall data obtained from FEWS ARC 2.0 product 

for the same period to check the applicability of the product for use within the Upper Thukela 

Catchment. 

 

Figure 4.47 illustrates a time-series analysis that was plotted to visually interpret and compare 

the FEWS dataset with the representative in-situ dataset. As shown in Figure 4.47 the FEWS 

estimates follow the same trend as the in-situ rainfall dataset and correlate with each other. 

Overall, the FEWS dataset followed the general trend of the in-situ rainfall estimates. 

 

       

       

Figure 4.47 In-situ and FEWS annual rainfall estimates for the Upper Thukela (2011-2016) 

 

Graphs of correlation coefficients were plotted with majority of the points in close proximity 

to the 1:1 line with no extreme outliers depicted (Figure 4.48). The positive y-intercepts for the 

four selected QC’s within the Upper Thukela Catchment indicate an over-estimation of rainfall 

by the FEWS rainfall product. The slope is 0.88 for V11C, 0.64 for V14D, 0.42 for V20B and 
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0.68 for V20E, which represent the relationship between the two variables with regard to their 

increases and decreases. A value close to 1 is indicative of a good correlation between datasets. 

For this study, the values are considered acceptable. The R2 for the quaternaries range from 

0.55 to 0.72. This gives a further indication of the linear association that occurs between the 

datasets. Overall, it can be seen that the FEWS rainfall product was suitable to provide spatial 

estimates of rainfall. The FEWS rainfall product, together with the temperature database for 

Southern Africa, was therefore used to calculate the SPI and SPEI for the Upper Thukela 

Catchment. 

 

    

    

Figure 4.48 Scatterplots of in-situ rainfall estimates against FEWS estimates for the Upper 

Thukela Catchment 
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4.4.7 Calculation of the SPI and SPEI for the Upper Thukela Catchment incorporating 

satellite data 

 

Given the situation of very few gauges being present with the catchment, the study opted to 

advocate the use of satellite data in such instances. However, various comparisons and analyses 

were performed prior to incorporating satellite data to generate SPI and SPEI results for the 

Upper Thukela catchment. The Umgeni Catchment, located directly below the Upper Thukela 

consisted of sufficient in-situ data to form 30-year records. Hence, comparison between the 

SPI’s using different data inputs were performed and graph of correlation coefficients was 

plotted between the representative in-situ dataset and the satellite rainfall dataset for the 

Umgeni Catchment. R2 values ranged from 0.80 to 0.96 and was considered satisfactorily good. 

Following these results for the Umgeni Catchment, time series analyses and graphs of 

correlation coefficients were then plotted between the representative in-situ rainfall dataset and 

the FEWS satellite rainfall estimates for the Upper Thukela Catchment. Majority of the points 

were in close proximity to the 1:1 line and it was observed that the FEWS rainfall product was 

suitable for providing spatial estimates of rainfall to calculate the SPI and SPEI for the Upper 

Thukela Catchment. 

 

Following the promising results, the FEWS rainfall product together with the temperature 

database for Southern Africa formed 30-year records and the R software was able to produce 

SPI and SPEI results for the Upper Thukela Catchment. Figure 4.49 and Figure 4.50 present 

the results for the four selected QC’s within the Upper Thukela catchment with SPEI results 

displayed using two methods. The first method used the Thornthwaite equation computed using 

PET, while the second used the Hargreaves equation computed using ETo. 

 

Figure 4.49 and Figure 4.50 results indicate that the 2015/2016 drought was detected within 

the catchment. Results display the potential of using SEO in an ungauged catchment or in a 

region with limited data availability. SEO can prove to be advantageous for water resources 

management and disaster risk monitoring in data-sparse areas. Satellite data provides a wealth 

of data on a large scale, which creates the potential for more intense drought research to be 

undertaken. 
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                                                         V11C                                                                                                       V14D 

A      E  

B   F  

C  G  

D  H  

Figure 4.49 SPI and SPEI results for V11C and V14D.C and G represent SPEI using the Thornthwaite method while Figure D and H the Hargreaves 
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                                                           V20B                                                                                                     V20E 

A E  

B       F  

C       G  

D        H  

Figure 4.50 SPI and SPEI results for V20B and V20E.C and G represent SPEI using the Thornthwaite method while Figure D and H the Hargreaves
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4.4.8 Comparison of SPI, SPEI (Thornthwaite, Hargreaves) and ETDI using satellite 

data in the Upper Thukela Catchment 

 

Cross-comparisons between the different indices were undertaken to confirm the ETDI in 

detecting the occurrences of droughts. The comparison of drought indices using satellite data 

as inputs for QC’s V11C, V14D, V20B and V20E are shown in Figure 4.51 to Figure 4.54. The 

figures display the SPI and SPEI to be well correlated as they follow the same trend and are in 

agreement with each other. Majority of instances display the ETDI following the general trend 

of the SPI and SPEI in most instances however, there are a few cases where an inverse in trend 

is observed.Additionally, the ETDI displays subsequent peaks, drops in amplitude while the 

SPI and SPEI show a gradual trend. 

 

 The differences may be attributed to the indices being based on different inputs and thereby 

accounting for different meteorological variables. The ETDI is computed from ETo and ETa 

variables, which may strongly depend on soil moisture, soil moisture holding capacity and the 

soil characteristics of the study area. Study by Vicente-Serrano et al. (2014), indicated that the 

SPI and SPEI display the largest sensitivity to ETo variations.  Furthermore, Beguería et al. 

(2010), stated that the climatic used in the SPEI does not represent the real moisture deficit that 

is experienced by a system. As a result, to overcome this, the different timescales offered by 

the index enables the user to find the appropriate time scale at which the response to droughts 

in said to be the highest. Hence, it may be beneficial for future studies to produce the drought 

indices at different time-scales. Several studies have also reported that the SPEI is known to 

correlate better with ecological and hydrological variables than with other drought indices 

within a number of natural and manages systems. 

 

In respect to the SPI, it takes longer for precipitation shortage to become evident in soil 

moisture, streamflow, groundwater and dam levels. A 3-month SPI may be used to monitor soil 

moisture conditions at the start of the growing season or precipitation during the different 

stages of plant development or reproduction. Hence, it is recommended for the SPI to be 

calculated at different time scales to draw better comparisons between the ETDI and the SPI. 

Overall, all indices managed to display significant dry and wet periods well within the study 

period 2011-2016.
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Figure 4.51 Comparison of drought indices for V11C 

 

Figure 4.52 Comparison of drought indices for V14D 
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Figure 4.53 Comparison of drought indices for V20B 

 

Figure 4.54 Comparison of drought indices for V20E
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Several literatures discuss the various factors that contribute to triggering drought conditions, 

which include sea surface temperature (SSTs) and the ENSO (El Niño–Southern Oscillation) 

with SSTs being regarded as the major influencing factors. Nicholson (2000) conducted a study 

that showed SST, ENSO and land–atmospheric feedback, governs rainfall variability in South 

Africa. Results from the study further indicated that during the warm phase of the ENSO, 

droughts in Southern Africa are known to occur. A study by Rouault and Richard (2005) 

utilised the SPI to assess the spatial and temporal extent of droughts in South Africa and 

confirmed the strong relationship that exist between the ENSO and the drought conditions in 

southern Africa. According to the National Agro-meteorological Committee (NAC) Advisory 

on the 2015/2016 summer season, provinces including Kwa-Zulu-Natal displayed 

drought/very-dry conditions, which remained within the summer season. The drought indices 

including the ETDI was able to successfully detect those dry conditions that prevailed between 

2015-2016.  The report furthered stated that observations indicated that the ENSO was in a 

strong El Niño situation and the atmosphere was responding the strong SST warming. 

 

SPI and SPEI produced for the Umgeni Catchment and for the Upper Thukela Catchment, 

based on ground measurements as well as those produced using satellite data were consistent 

to reports made by the media. According to the 1988 Global Register of Extreme Floods 

Events, Kwa-Zulu Natal was amongst some of the many areas within South Africa that 

experienced extreme flooding. The flooding resulted from heavy rains, which began on the 

10/02/1988 and ended on the 02/03/1988. The SPI and SPEI values obtained within this study 

for the two study sites within the KwaZulu-Natal province was able to display this wetness 

through positive SPI’s and were represented by blue shading indicating wet periods.  

 

Additionally, numerous SAWS reports and media articles reported on what is known to be one 

of the greatest natural disasters in South Africa in September 1987, which resulted in several 

deaths and severe damage to the infrastructure. Areas within the province of KwaZulu-Natal 

interior were affected by the cut-off low, a significant synoptic-scale weather system that is 

responsible for most large-scale severe precipitation events to occur in South Africa. This 

resulted in large-scale extreme precipitation events. The SPI and SPEI values produced by the 

study was able to produce positive results indicating wetness. These correlating results prove 

the accuracy of the SPI and SPEI as they are in accordance to what we have experienced. In 

addition, the use of satellite data for drought indices is promoted as the results from this study, 

if given an ungauged catchment scenario, the drought indices were able to display previous wet 
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and dry events that occurred by displaying low, negative values for dry conditions and high, 

positive values for wet conditions. 

 

All drought indices were able to successfully detect the 2015/2016 El Niño event that was 

experienced in KwaZulu-Natal. SPI and SPEI results for the 30-year period (1985-2016) 

clearly illustrate that from the year 2010 onwards sustained prolonged moderate to severe 

dryness has been occurring. 

 

4.4.9 Discussion on drought propagation 

 

The occurrences of droughts are termed complex due to them being dependent not only on the 

atmosphere, but as well as the hydrological  processes that are responsible for feeding moisture 

to the atmosphere and causing water storage and runoff to streams (van Loon, 2014). 

Atmospheric processes take control of the development of a drought primarily due to climatic 

variability. Generally, prolonged durations of rainfall generates less input into the hydrological 

cycle triggering drought conditions (van Loon, 2014). Alternatively, anomalies in temperature 

also trigger drought condition. The abovementioned have been illustrated by the SPI, SPEI and 

ETDI results produced in this study. 

 

Temperature and rainfall can both be associated with large-scale atmospheric or ocean patterns 

like ENSO, NAO (Northern Atlantic Oscillation), and SST’s. Additionally, the depletion of 

soil moisture occurs resulting from antecedent conditions, evaporation from the soil, ET 

through the vegetation, drainage to groundwater as well as runoff contributing to stream flow. 

During dry conditions and lower than normal rainfall periods, runoff and drainage may be low; 

however, ETa may increase as a result of increased wind speeds, radiation or vapour pressure. 

This paves the way for increases in ETa, leading to extra water loss from open water bodies 

and the soil. Whilst during an extreme drought event, insufficient soil moisture and the wilting 

of plants can limit ETa, further depleting soil moisture and restricting locally generated 

precipitation, thus contributing to drought conditions. This may explain why results produced 

by the ETDI were further enhanced compared to results produced by the SPI and SPEI (Figures 

4.34-4.41, Figures 4.51-4.54). 

 

Hence, the development of droughts are dependent on climate as during the warm seasonal 

climates, majority of the recharge occurs during the wet season. Whilst during the dry season, 
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ETa is found to be higher than precipitation, thus ETa plays a larger role during drought 

development. ETa can aggravate a drought and during a typical dry season prevent the recovery 

of a drought. This aforementioned is further elaborate in the subsequent section (Section 

4.4.10) and illustrated by Figure 4.55. The characteristic of a catchment may also play a role 

within drought development, the most significant characteristic being the storage capacity of 

the catchment.  

 

It is noteworthy to mention that a study by Pozzi et al., (2013) explicitly mentions the diversity 

of variables that need to be monitored to capture the development of a hydrological drought 

and its impact on different water-related sectors. Furthermore, since declining groundwater 

levels are brought upon by a decreased recharge to the Ground Water (GW) system caused by 

a depletion of soil moisture, it may be valuable for further drought indices studies such as this 

study to account for GW levels. 

 

4.4.10 Comparing the ETDI with hydrological parameters 

 

When discussing droughts, the commonly employed variables within the definitions are often 

precipitation combined with other variables such as soil moisture and temperature, just to name 

a few. These hydrological variables are the driving forces to droughts (Eden, 2012). Previous 

research studies as well as results from this study have indicated that ETDI takes into account 

soil moisture with temperature, precipitation and elevation being interrelated. In order to 

further understanding these relationships, maps displaying the spatial distribution of these 

variables have been produced as shown in Figure 4.55.  This analysis was carried out for a 

month (May 2015). 

 

Elevation (Lynch, 2004) and precipitation (Weepener et al., 2011) are representative of the 

annual average expected ranges that are expected for the catchments as displayed in Figure 

4.55. The Soil Saturation Index (SSI) is displayed for May 2015, which was retrieved from the 

SAHG-UKZN website and the average minimum and maximum temperatures had been 

obtained from the MOD11A2 LST product. The ETo, ETa, WS and ETDI are representative for 

May 2015.  

 

Amongst the drought study years for this study (2011 to 2016), the year 2015 was considered 

to be the driest followed by 2016. Within the year 2015, the month of May was considered to 
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be amongst the dry season/winter season as well as produced ETDI values that were amongst 

the lowest. Hence, in order to display comparisons between the drought index and other 

hydrological variables, a dry season was considered appropriate. 

 

The relationship that exists between the different variables of the hydrological system such as 

soil moisture, precipitation, discharge, GW, runoff and discharge may be an old concept in 

hydrology; however, the application of this knowledge to drought is relatively recent (van 

Loon, 2015). The precipitation regime in South Africa is characterized by high temporal and 

spatial variability, with the former being connected with seasonal cycles and inter-annual 

variability as well as the latter bring driven by marked topography (Figure 4.55).  

 

Several studies that are linked to drought characteristics suggest that it is possible to quantify 

the hydrological variability that exists over an area, by combining monthly temperature and 

precipitation variability. The above-mentioned is illustrated by Figure 4.55 where those regions 

within the study areas that display high maximum temperatures along with poor precipitation 

are amongst those areas that received a more negative ETDI, indicating droughts conditions. 

The WS, which is computed from ETo and ETa displays low ETa values for areas of low 

precipitation, low elevation, higher temperatures and low soil moisture, thus creating a 

favourable situation for droughts to develop, as indicated by the ETDI spatial maps.  

 

The SSI and ETDI further display a distinct relationship, in that areas experiencing low soil 

moisture conditions, display lower ETDI values, which indicates more dryness for those areas 

with a low soil moisture. In concluding the discussion, when assessing, evaluating or 

monitoring drought conditions with the ETDI it is beneficial to account for the soil moisture 

within the region/area. It is also worth mentioning that the ETDI could be a useful indicator for 

monitoring soil moisture stress and that it can be used to assess the soil moisture of plants 

during their critical growth stages, thereby beneficial to agricultural sector. In addition, it is 

also clearly seen that the drivers of the hydrological cycle are all interrelated and each play a 

vital role when detecting droughts. 
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Figure 4.55 ETDI with the driving forces of droughts for the Upper Thukela and Umgeni Catchments for May 2015
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5. CONCLUSION AND RECOMMENDATIONS 

 

The conclusions and recommendations drawn from this research study are detailed in this 

chapter. 

 

5.1 Conclusions 

 

Droughts are a natural disaster and are driven by extremes in the natural variations in climate, 

which are forced by interactions found between the land surface, atmosphere and the oceans. 

With climate change, changes in rainfall patterns and projected increases in temperatures may 

result in an increase in the severity and intensity of droughts worldwide. Furthermore, the 

increasing demand from water supplies by growing populations and for socio-economic 

development affects the availability of water resources, creating unfavourable situations that 

places food, water and society at risk. There is a need to monitor droughts, and drought indices 

form a competent way of doing so. 

 

In arid and semi-arid areas, ETa forms a critical component of the hydrological cycle, which 

are crucial for assessing naturally varying climate and human-induced effects on hydrological 

systems as well as for better water resources management and disaster reduction plans. In 

recent years, the estimation of this variable has received substantial attention in an attempt to 

better quantify the loss of water from land surfaces and to assist in detecting the occurrences 

of droughts. Conventional field-based techniques, which are used to retrieve ETa estimates 

have been utilised for several years to assist water resources management; however, the spatial 

resolution of the estimates along with the associated costs and time constraints have limited the 

practicality of this approach to the management of water resources over a larger-scale. 

 

From the review of literature, it can be concluded that earth observation is seen to be an 

important tool in ETa estimation over various spatial and temporal scales and it can be done in 

a cost-effective and timeous manner. The focus of this research study was to investigate and 

apply a satellite-derived evaporative drought index to assist in detecting the occurrence of 

drought conditions in South Africa. Recently, South Africa suffered one of the worst droughts 

of the century, linked to climate change and the El Niño phenomenon, which has resulted in 

warmer surface waters in the eastern tropical Pacific Ocean. The fact that South Africa is a 
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semi-arid country inundated by such conditions and, more so, that it faces a decrease in ground-

based meteorological monitoring networks, has encouraged the use of satellite-derived data in 

the present drought monitoring study. To determine the potential risk of droughts in the future, 

it is critical to analyse the historical trends of drought events, and this has been aided by the 

use of drought indices. 

 

In order to achieve the aim of this research study, specific objectives were outlined to inform 

the methodology and analyses that were performed. Three different drought indices (ETDI, 

SPI and SPEI) were used for the monitoring of droughts in this study. The drought indices were 

derived by using satellite earth observation data as inputs into the indices calculations.  

 

The LSA-SAF DMET product was utilised to provide estimates of daily ETa for input into the 

ETDI calculation. The product was validated for a period within the study period, with in-situ 

ETa data being obtained from surface renewal (SR) and eddy covariance (EC) systems. Results 

showed that the DMET daily ETa product is suitable in providing continuous spatial ETa 

estimates as the product’s temporal behaviour followed the general trend of the in-situ 

measured ETa, although, the DMET estimates displayed a slight underestimation throughout 

the data period in comparison to in-situ data. Overall DMET was suitable for providing spatial 

estimates of ETa for the ETDI calculation. However, the quality of the SVAT model should be 

further investigated due to its limited validation in the driest regions of the world (mainly in 

African countries) and be validated over other land covers to further improve results globally. 

The study was able to illustrate that the temporal distribution of ETa for all the years followed 

a seasonal trend with maximum ETa values occurring during summer months. 

 

The Hargreaves method, developed by Hargreaves and Samani (1985), was used to obtain ETo 

estimates for use within the ETDI calculations of this study. The Hargreaves equation was 

chosen as it is has been proven to be a feasible approach for use in semi-arid to arid 

environments, such as South Africa. This technique has received great attention within the 

research community due to its limited data requirements. To overcome the poor availability of 

meteorological data, LST data acquired by the MODIS sensor was used as input into the 

equation. The MOD11A2 product provided a spatial distribution of temperature for the study 

area, which depicted a clear spatial pattern with higher LST values during the spring-summer 

months and the lower LST values during the winter months and in high altitude areas. The 

spatial maps displayed the potential of the MOD11A2 product in providing information for 
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ungauged and for large geographical areas. Comparisons between air temperature data from 

ground-based meteorological stations indicated that the night and mean MODIS LST’s were 

well correlated. However, discrepancies between the MODIS day LST and the maximum 

temperature from ground-based meteorological stations were observed as a result of variations 

occurring in accordance to the solar radiation, cloud cover ecosystems and vegetation 

phenology. These results indicate that further research is warranted for robust methods to 

retrieve maximum air temperature data. Overall, the estimates from the MOD11A2 product 

were found to be satisfactory and was used as an input in the Hargreaves equation to enable 

the retrievable of satellite-derived ETo estimates. 

 

The Hargreaves-LST method was calibrated by using FAO-PM ETo estimates based on 

measured meteorological data. The calibrated Hargreaves-LST model estimates were found to 

closely follow the trends of the FAO-PM ETo estimates and the results were in accordance with 

results observed in previous studies. It is recommended that the calibrated Hargreaves-LST 

estimates be used if sufficient data is available to allow for the calibration procedure to be 

performed. The Hargreaves-LST method of incorporating satellite LST data was therefore 

considered to be appropriate for the methodology of the study. Based on the statistics and 

regression analyses, the Hargreaves-LST approach was found to be applicable for use within 

South Africa. The methodology presented in this study provides a feasible alternative for 

estimating ETo in South Africa as well as under limiting data conditions, without there being 

any additional data costs involved. The MODIS LST product is freely available and the method 

can be improved by using low cost direct methods to calibrate the empirical model. It is advised 

that calibration is necessary to signify the changes in the climatic variables. The Hargreaves-

LST ETo estimates were used as an input into the ETDI calculation for the assessment of 

droughts within the study. 

 

The incorporation of satellite data into the Hargreaves equation is an advantage for water 

resources planning, agricultural water management and other hydrological related studies that 

can assist in the more viable and efficient management of water resources. In addition, ETo is 

spatially variable due to the complex interaction that exists between the climate and the 

topography as well as solar radiation, which is influenced by cloud cover. Point estimates of 

these variables lack the spatial information required; however, to overcome this, satellite data 

can be incorporated. Hence, satellite data is advocated as an attractive tool for obtaining data 

and detecting change in an anomaly across vast areas as well as on a local scale. These findings 
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have critical implications for the water resources and agricultural sector of South Africa, which 

is already a water-stressed country. 

 

The WS, WSA and the ETDI were calculated at different spatial scales for the Umgeni and 

Upper Thukela Catchments and were successful in detecting wet and dry periods, with results 

being in accordance with various recorded information. To confirm the occurrence of drought 

conditions that were detected by the ETDI, the SPI and SPEI were applied. All the indicators 

considered (SPI, SPEI, ETDI) were able to represent the most severe droughts within the study 

area including the 2015/2016 El Niño drought event as well the spatial variability of droughts. 

Results showed that persistent drought conditions affected the Upper Thukela and Umgeni 

Catchments. It was clear that from 2010 onwards there has been sustained prolonged moderate 

to severe dryness, with the longest and most intense drought recorded between 2010-2016, with 

2015-2016 characterized by the occurrence of several widespread droughts in all three-drought 

indices. The ETDI was able to assist in the identification of the spatial and temporal evolution 

of droughts. There is added value in calculating indices based on variables such as rainfall in 

the case of the SPI and SPEI as they enable the identification of not only droughts but also 

floods and their severity. With droughts and floods receiving much attention and with the 

concern over how the threat of climate change may increase their severity and frequency over 

time, this study displays great relevance for further climate change studies. It is also suggested 

that the SPEI would be preferred to the SPI when exploring the evolution of climate change 

and the variation in drought events, since temperature is accounted for. 

  

Overall, the SPI and SPEI confirmed the results that were produced by the ETDI. However, a 

comparative analysis of the different drought indices indicated that wet and dry conditions were 

more enhanced by the ETDI in comparison to the SPI and SPEI since the different indices 

account for different meteorological variables. The satellite-derived SPI and SPEI produced 

satisfactory results and were able to detect major dry and wet events including the 2015/2016 

El Niño drought event for the Upper Thukela Catchment. The ETDI was further spatially 

compared to land surface variables namely precipitation, elevation, ETa and soil moisture, 

which are recognisable driving forces to droughts. The results indicated that a distinct 

relationship exists between the land surface variables. The drivers of the hydrological cycle are 

all interrelated, each playing a vital role in detecting droughts.  
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The spatial distribution of droughts, using the ETDI was conducted in this study at different 

spatial scales displaying the creeping phenomenon of droughts. The results of this study were 

able to quantitatively demonstrate that there is a visible variation within the drought 

characteristics (the duration, intensity and spatial coverage) at different spatial scales. Spatially, 

the maps displayed how affected and severely affected areas gradually evolve and how the 

quaternary catchments (QC’s) of maximum intensity expand. The spatial scale dependence of 

drought characteristics was evident in this particular study and such scale investigations are 

necessary for the effective management of droughts and the allocation of water resources. It 

was verified that droughts are a phenomenon of limited extension, in which several local factors 

act to determinate their extreme values. These findings emphasize and acknowledge that the 

management for the droughts and allocation of resources should be developed for different 

spatial scales, and more so at smaller administrative units such as at a QC level.  

 

Aside from the general patterns, the analyses carried out in this study also indicated that the 

temporal evolution of droughts can be very diverse. Normal or humid conditions were observed 

in one QC, whilst another QC suffered drought over the same period. These patterns have been 

explained and attributed to the fact that the spatial differences are brought about by the 

influence of certain atmospheric patterns, such as the ENSO (Rodó et al., 1997). According to 

Rouault and Richard (2003), El Niño is usually linked to droughts in South Africa (van Heerden 

et al., 1988; Lindesay and Vogel, 1990). Overall, the combination of the spatial and temporal 

analyses of droughts can prove to be valuable in developing an improved understanding of 

droughts, assist in the establishment of effective and comprehensive tools for drought 

preparedness and they can be beneficial for the monitoring, which form the backbone of robust 

water resources planning to mitigate impacts at an adequate spatial division. 

 

Overall, the ETDI was found to be a good indicator for the assessment and monitoring of 

drought conditions, due to its capability to timeously detect the onset of drought, and its 

realistic quantification of the severity of droughts within the study area. The spread of droughts 

over a large geographical area was successfully illustrated. One of the most important scientific 

developments is the growing view that droughts cannot simply be characterized by a lack of 

rainfall, and many recent papers including this study have shown the increased complexity of 

droughts including their hydrological processes. This study also displayed that the resulting 

differences in the indices can be attributed to the meteorological variables used to calculate 

them and that the choice of drought index is relevant. 
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This study has shown that the application of satellite products in water resource management 

is very promising. However, only their appropriate usage, an awareness of their limitations and 

the correct interpretation of remote-sensing data can facilitate water management and planning 

operations. SEO provides a great opportunity for identifying drought hot spots and geospatial 

differences (Rojas et al., 2011) as they enable the geospatial and temporal variability of 

droughts to be monitored. In this study, it was also demonstrated that the development of 

drought indices based on the merging of available climatic data with SEO and their 

implementation in GIS technologies, is a definite advance in assessing the spatial and temporal 

variability of droughts in South Africa. The study displayed that the low cost, good availability, 

accessibility, complete spatial coverage, and high temporal and spatial resolutions, are strong 

advantages for using SEO for the analysis of droughts in South Africa. This is because South 

Africa is a country where environmental and climatic data are often inaccessible, unavailable 

or expensive. Current earth observational satellites provide beneficial data to enable the 

assessment of vegetation, land cover and disasters, amongst several others, for example, the 

soil moisture product by (Sinclair and Pegram, 2010) by means of satellite imagery. 

 

A major limitation of this study included the unavailability of good quality and undisturbed 

observational data as required by the SPI and SPEI as well as for the calibration of the 

Hargreaves-LST method for estimating ETo. Another limitation included that this study 

conducted drought analyses within a 5-year period due to time constraints however; it is 

recommended that drought analyses be conducted preferably over a longer period such as 10 

years and more. One of the main findings of this research is that the combined use of in-situ 

observations and satellite data is useful for ensuring that key variables of the water cycle are 

estimated adequately to meet the needs of national scale monitoring systems, planning tools 

and warning systems. In addition, for South Africa, education and training are critically needed 

to ensure that people in the country will be able to access and utilize such information, so that 

they can continue to research, in order to plan, prepare and avoid disasters.  

 

5.2 Recommendations: 

 

The following recommendations can be used to address some of the main limitations 

experienced within the study as well as provide assistance for future studies: 
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 The spatio-temporal drought analysis in this study can be improved using more 

observed ground-based meteorological data and different datasets, as there were slight 

discrepancies among the temperature, ETa and ETo data and datasets. The energy 

balance model, SEBS global monthly evapotranspiration product for the period 

between 1 April 2000 until 30 June 2017 has been made available recently, of which, 

the global daily evapotranspiration product is planned to be released end of 2017. It is 

recommended that for future research, the global monthly and daily evapotranspiration 

products be considered for drought monitoring.  Interested users can access the monthly 

data through the FTP address: ftp://jmReGk8d:QR5X5cT2GLI@210.72.14.140 or visit 

the website of the TPE database 

http://en.tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=249454 . 

 The METREF product, global SPI data set and SPEI Global Drought Monitor have not 

been attempt for use due to the scope of the current study however; they are 

recommended for future investigations into drought and within the ETDI. 

  Comparison of the ETDI with the SPI and SPEI resulted in low correlation due to the 

differences in the calculation of the indices and the time-period. For further 

improvement on this, it is recommended that calculation of the indices for the same 

time-period to be conducted which may result in better assessments and correlations. 

 For future studies, research on a study site’s vegetation, soil moisture, runoff, discharge 

and ground water levels, is recommended for drought monitoring and prediction 

purposes. It is also recommended that when assessing, evaluating or monitoring 

drought conditions with the ETDI, it is beneficial to account for the soil moisture within 

the area. 

 With declining gauging networks and poor correlation being detected between earth 

observation data and maximum air temperature data, research is needed on more robust 

methods to be able to retrieve accurate maximum air temperature data. 

 For the comparison between drought indices using satellite data and in-situ data, spatial 

scale differences between the data must be accounted for in future studies.  

 Studies focusing on ways of obtaining reliable short-term forecasts of ET may be 

beneficial for future drought studies. The investigation into the influence of ENSO on 

South Africa’s droughts may also be beneficial to be included when analysing droughts 

using drought indices. 

 

ftp://jmReGk8d:QR5X5cT2GLI@210.72.14.140/
http://en.tpedatabase.cn/portal/MetaDataInfo.jsp?MetaDataId=249454
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7. APPENDIX A 

 

In this appendix, the normalized drought indices (SPEI-Thornthwaite, SPEI-Hargreaves, SPI 

and ETDI) for U20E, U20F and U20G are displayed (Figures 7.1 to 7.3). 

 

Normalization was performed for a better comparison of the indices. R2 values produced by the 

correlation analyses remained unchanged from those presented in Table 4.5. Section 4.4.4 

provides further details on the normalization that was performed. 

 

 

Figure 7.1 Comparison of normalized ETDI, SPI and SPEI for U20E (2011-2016) 
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Figure 7.2 Comparison of normalized ETDI, SPI and SPEI for U20F (2011-2016) 

 

 

Figure 7.3 Comparison of normalized ETDI, SPI and SPEI for U20G (2011-2016) 
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