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ABSTRACT 

 

The co-existence of C3 and C4 grass species significantly influence their spatio-temporal 

variations of biochemical cycling, productivity (i.e. biomass) and role in provision of 

ecosystem goods and services. Consequently, the discrimination of the two species is critical 

in understanding their spatial distribution and productivity. Such discrimination is 

particularly valuable for accounting for their socio-economic and environmental 

contributions, as well as decisions related to climate change mitigation. Due to the growing 

popularity of remotely sensed approaches, this study sought to discriminate the two grass 

species and determine their AGB using new generation sensors. Specifically, the potential of 

Landsat 8, Sentinel 2 and Worldview 2, with improved sensing characteristics were tested in 

achieving the above objectives.  

 

Generally, the results demonstrate the suitability of the adopted sensors in the discrimination 

and determination of C3 and C4 AGB using Discriminant Analysis and Sparse Partial Least 

Squares Regression models. Using multi-date Sentinel 2 data, the study established that 

winter period (May) was the most suitable for discriminating the two grass species. On the 

other hand, the winter fall (August) was found to be the least optimal period for the two grass 

species discrimination. The study also established that the amount of AGB for C3 and C4 

were higher in winter and summer, respectively; a variability attributed to elevation and 

rainfall. The study concludes that Sentinel 2 dataset, although had weaker performance than 

Worldview 2; it offers a valuable opportunity in understanding the C3 and C4 spatial 

distribution within a landscape; hence useful in understanding both temporal and multi-

temporal distribution of the two grass species. Successful seasonal characterization of C3 and 

C4 AGB allows for inferences on their contribution to forage availability and fire regimes; 

therefore, this contributes to the development of well-informed conservation strategies, which 

can lead to sustainable utilization of rangelands, especially in relation to the changing 

climate. 
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CHAPTERS ONE AND TWO: GENERAL OVERVIEW AND 

CONTEXTUALISATION 



 1 

1.1. Importance of grassland ecosystems 

Grasslands are an important component of the global terrestrial ecosystems. This biome 

occupies more than 30% of the global land area, contributing approximately 20% of total 

terrestrial primary productivity (Barbehenn et al., 2004; Jin et al., 2014). These ecosystems 

play a significant role in biodiversity conservation and in regulating biospheric and 

atmospheric carbon (Hill, 2013; O'Mara, 2012). Grasslands are also an important source of 

forage for livestock, which supports the livelihoods of the majority of communities and 

wildlife populations (Schmidt and Skidmore, 2001; Xu and Guo, 2015). For instance, in the 

rangelands of South Africa, which occupy more than 70% of the land area, grasslands are a 

critical foraging source for wildlife and livestock (Mansour et al., 2013), contributing 

approximately ZAR 2.88 billion to the country’s Gross Domestic Product per year (Mbatha 

and Ward, 2010). 

 

It has also been established that the photosynthetic pathway (i.e. C3 and C4) followed by 

these grass species is a crucial component of grassland ecosystems, which influence their 

functioning within an ecosystem (Barbehenn et al., 2004). For example, C4 species have a 

high carbon storage capability per unit of nitrogen, compared to the C3 species (Foody and 

Dash, 2007; Pau and Still, 2014). Although it has been generally accepted that C3 and C4 

grass species prefer certain conditions, there is also a co-existence of these species, due to the 

influence of local topographic and climatic factors (Yan and de Beurs, 2016). The co-

existence of C3 and C4 has been identified, for example, in the montane grasslands of South 

Africa (Adjorlolo et al., 2014), the Prairies of the United States (Foody and Dash, 2007) and 

temperate northern China (Guan et al., 2012). Their co-existence plays a considerable role in 

governing the spatial and temporal variations of biochemical cycling and productivity (i.e. 

biomass accumulation). The morphological, physiological and phenological variations 

between C3 and C4 grass species also influence their biophysical properties, their response to 

environmental changes and their ability to provide ecosystem goods and services (Barbehenn 

et al., 2004; Foody and Dash, 2010), which varies over space and time. 

 

Scientific evidence also shows that climate change impose significant threat to C3 and C4 

grass species, with implications on their geographical distribution, abundance and 

productivity (Xia et al., 2014). For example, there are concerns that an increase in 

atmospheric carbon dioxide (CO2) concentrations will be favourable to C3 species, and they 

are more likely to increase in distribution at the expense of C4 (Barbehenn et al., 2004). 
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These changes compromise the ability of C3 and C4 grass species to provide ecosystem 

goods and services. Therefore, monitoring these grass species becomes fundamental for 

proper management of these ecosystems, so as to ensure their sustainability. In addition, it 

enlightens the contribution of these grass species to forage, fuel load and as potential carbon 

pools, especially in the light of climate and land cover changes.  

 

So far, information on C3 and C4 grass species has traditionally been obtained by means of 

conventional field surveys (Adjorlolo et al., 2012b; Barbehenn et al., 2004). However, these 

approaches have been found to be costly, labour intensive, time consuming and restricted to 

smaller areas (Schmidt and Skidmore, 2001). This is insufficient to understand the spatial and 

temporal variability of co-existing C3 and C4 dominated grasslands, for continuous 

monitoring, as well as for development of management strategies. Alternatively, remote 

sensing data offers robust, instantaneous and efficient spatial and temporal data useful, at 

different spatial scales and geographical coverage, in a spatially explicit manner (Knox et al., 

2013; Peterson et al., 2002; Wang et al., 2013; Wang et al., 2010). The data therefore 

becomes more appropriate for characterizing and monitoring co-existing C3 and C4 grass 

species. 

 

1.2. Remote sensing of co-existing C3 and C4 grass species 

Since the emergence of remote sensing, monitoring of C3 and C4 grass species has been 

recognized (Adjorlolo et al., 2015; Liu and Cheng, 2011; Lu et al., 2009; Tieszen et al., 

1997). However, the remote sensing of C3 and C4 grass species has been associated with 

some challenges, which hinders continuous monitoring efforts. The major problem has been 

on finding appropriate datasets for optimum monitoring. For instance, the widely-used 

broadband multispectral sensors, such as the Advanced Very High Resolution Radiometer 

(AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have been 

reported to yield poor results. This has been attributed mainly to their coarse spatial 

resolution (i.e. 1 km
2
), which limits their potential to capture the spatial characterization of 

C3 and C4 biophysical properties (Peterson et al., 2002; Price et al., 2002). Moreover, their 

broad spectral settings have limited their ability to spectrally discern between C3 and C4 

species characteristics. On the other hand, the use of hyperspectral data, although it produces 

accurate results, literature shows that the acquisition cost, high data dimensionality and the 

inherent multi-collinearity makes their application a challenge in resource-constrained areas 

(Adjorlolo et al., 2012b; Mansour et al., 2012a). Hyperspectral data is also limited to small 
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geographical coverage, due to high acquisition cost. This limits any prospects for continuous 

monitoring of C3 and C4 grass species using hyperspectral datasets at large geographical 

coverage. 

 

Emerging remote sensing datasets, with advanced sensing capabilities are therefore perceived 

to provide new prospects for monitoring C3 and C4 grass species. Particularly, the 

development of new generation sensors, such as Landsat 8 Operational Land Imager (OLI), 

RapidEye, Worldview-2 and Sentinel-2 Multispectral Instrument (MSI) although not yet fully 

tested,  offer more hope for monitoring C3 and C4 grass species from local to regional scales. 

The improved spatial and spectral properties (e.g. 10 m with 13 spectral bands for Sentinel 2) 

are likely to provide a better spatial and spectral characterization of C3 and C4 grass species. 

This is also critical considering their phenological, morphological and physiological 

variations. Most importantly, the high temporal resolution (e.g. 5 days for Sentinel 2) and 

large geographical coverage (e.g. 185 km for Landsat 8 and 195 km for Sentinel 2 sensors) 

are invaluable for temporal analyses, over large geographical areas. 

 

Studies which applied new generation sensors demonstrated that they have the potential to 

characterize various species characteristics (Atzberger et al., 2015; Dube and Mutanga, 

2015a; Dudley et al., 2015; Ramoelo et al., 2014; Richter et al., 2012). For instance, the study 

by Dube and Mutanga (2015a) has highlighted the utility of the Landsat 8 sensor design, 

which improves its sensitivity to characterizing species biomass. The study by Mutanga et al. 

(2015) also reported the ability of the Worldview 2 multispectral data in predicting foliar 

grass nitrogen with high accuracy. Ramoelo et al. (2014), using Sentinel 2 observed that the 

sensor’s unique spectral configuration has high potential to monitor rangeland conditions in 

Southern Africa. These sensors are therefore more likely to be sensitive to various subtle 

properties of C3 and C4 grass species and their associated environmental conditions, thereby 

improving their accurate characterization and monitoring. It is upon this background that this 

work sought to seasonally discriminate and characterize AGB of C3 and C4 grass species in a 

spatially explicit manner, using new generation remote sensing sensors. This is perceived to 

offer a new horizon in the remote sensing of C3 and C4 grass species; a previously difficult 

task, due to lack of appropriate datasets, for large spatial monitoring, over time. 
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1.3. Study Aim and Objectives 

The primary aim of this research was to discriminate and estimate spatial and temporal 

variations of C3 and C4 grass species aboveground biomass in KwaZulu-Natal, South Africa 

using new generation multispectral remote sensing datasets. Specifically, the study aimed to: 

 

1. Evaluate the prospects of the varying spectral configurations of the new generation 

sensors for the seasonal discrimination of C3 and C4 grasses functional types, 

2. Examine the strength of the newly-launched Sentinel 2 MSI sensor in detecting and 

discriminating subtle differences between C3 and C4 grass, 

3. Determine the optimal season for discriminating the eco-physiological distinction 

between C3 and C4 grass functional types using multi-date Sentinel 2 data, 

4. Determine optimal new generation satellite for accurate C3 and C4 grass species 

aboveground biomass estimation in South Arica, 

5. Characterize the spatio-temporal variations of C3 and C4 dominated grasslands 

aboveground biomass in the Drakensberg, South Africa, and 

6. To determine remotely-sensed C3 and C4 grass species AGB variability in response to 

seasonal climate and topography. 

 

1.4. Study area 

The study site, covering an area of approximately 200 km
2
 is located in KwaZulu-Natal 

(Figure 1.1), which is one of the largest natural grassland areas in South Africa (Everson and 

Everson, 2016). The area is predominantly grassland, with patches of Afro-montane forests 

and rocky out crops. The climate varies remarkably, with wet humid summers, which extend 

from November to March and cold dry winters, from May to August (Nel, 2009). 

Temperatures are quite variable, from as low as 5°C in winter, to above 16°C in summer 

(Everson and Everson, 2016). The elevation of the area, according to the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation model 

(DEM) varies between 1200 and 3050 m above sea level. The area experiences regular 

snowfall and frost during the winter period, especially in higher altitude zones (Mansour et 

al., 2012b). Misty conditions, fire and herbivory are also typical across the study area, which 

influence the distribution and productivity of C3 and C4 grass species (Adjorlolo et al., 
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2014). The Drakensberg is regarded as a zone of biological transition, occurring within the 

intermediate temperate–tropical climatic conditions, characterized by patches of C3 grasses 

and C4 grasses, which are highly responsive to environmental changes, thereby 

compromising their distribution, productivity and functioning (Adjorlolo et al., 2012b). 

 
Figure 1.1: Study site location and DEM (DEM source: ASTER global DEM) 

 

1.5. Thesis outline 

Overall, this thesis focused on two key research areas of the remote sensing of C3 and C4 

grass species: single and multi-date discrimination and AGB estimation. The structure of the 

thesis is in eight chapters. The thesis/dissertation is structured as eight chapters, mostly stand 

alone papers. Consequently, repetitions in some sections may occur, since these chapters 

constitute stand-alone papers, which were or are intended to be submitted for publication to 

different journals.  
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1.5.1. Chapters 1 and 2: General Overview and Contextualisation 

The first Chapter is the general introduction to the study, as well as highlighting the main aim 

and specific objectives intended to be achieved. Chapter Two provides a review of literature 

on the progress of the remote sensing of C3 and C4 grass species AGB. The review 

highlights previous studies, sensors used, algorithms, as well as their performance, 

applicability and limitations. The review also noted prospects for C3 and C4 grass species 

AGB estimation, for improved management of these ecosystems. 

 

1.5.2. Chapters 3 – 5: C3 and C4 Grass Species Discrimination 

Chapter Three is based on a research paper focusing on the discrimination of C3 and C4 grass 

species. The study used in situ hyperspectral data to test spectral settings of new generation 

sensors, particularly, Landsat 8, Sentinel 2 and Worldview 2. These sensors have emerged 

with better spectral capabilities, than the previously-used broadband multispectral sensors. In 

this regard, they present a better opportunity for the discrimination of C3 and C4 grass 

species. Chapter Four further investigated how Landsat 8, Sentinel 2 and Worldview 2 

sensors used in Chapter three discriminate and map the spatial distribution of C3 and C4 

grass species. These sensors have different resolutions, which all influence their ability to 

detect and map C3 and C4 grasses. The study specifically examined the potential of the 

freely-available Sentinel 2, which has been recently launched in orbit, in discriminating and 

mapping C3 and C4 grasses. 

 

In Chapter Five, Sentinel 2 was used to determine the optimum period for the better 

discrimination and mapping of C3 and C4 grass species, using multi-temporal images. The 

sensor has demonstrated its potential in relation to the freely-available Landsat 8 and the 

Worldview 2 commercial sensor. This study was therefore intended to improve not only the 

discrimination and mapping of C3 and C4, but also for future prediction of their potential 

shifts, under the anticipated climate change. 

 

1.5.3. Chapters 6 and 7: C3 and C4 Grass Species Biomass Estimation  

After identifying the optimum period, the AGB estimation of these grasses was explored. 

Identifying sensors for AGB estimation was one of the challenges identified in exploring the 

progressing of C3 and C4 grass species AGB estimation. In Chapter Six, the three sensors 

were first tested to determine their ability in estimating and representing the spatial variations 

of C3 and C4 grass species AGB. This demonstrated the opportunity offered by Sentinel 2 in 
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estimating C3 and C4 grasses AGB, when compared to Landsat 8 and Worldview 2. The 

study was relevant in preparation for the estimation of spatial variations of species AGB over 

time. Chapter Seven therefore characterized AGB spatial variations over time, using Sentinel 

2 multi-temporal images.  

 

1.5.4. Chapters 8 and 9: Modelling and Synthesis 

In Chapter Eight, possible climatic and topographic factors influencing the observed AGB 

patterns within the study area were explored. This Chapter specifically examined the 

response of remotely-sensed C3 and C4 grasses AGB to seasonal climate and topography.  

Chapter Nine finally provides the synthesis of the study, by summarizing the major findings 

and conclusions. The relevant recommendations in the discrimination and AGB estimation of 

C3 and C4 grasses, using emerging remote sensing data are also presented for future studies.  
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CHAPTER TWO 
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2. Progress in the remote sensing of C3 and C4 grass species 

aboveground biomass over time and space: A review 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
This chapter is based on: 

Shoko C, Mutanga O and Dube T (2016): Progress in the remote sensing of C3 and C4 grass 

species aboveground biomass over time and space: ISPRS Photogrammetry and Remote 

Sensing, (120):13-24. 
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Abstract 

The remote sensing of grass aboveground biomass (AGB) has gained considerable attention, 

with substantial research being conducted in the past decades. Of significant importance is 

their photosynthetic pathways (C3 and C4), which epitomizes a fundamental eco-

physiological distinction of grasses functional types. With advances in technology and the 

availability of remotely sensed data at different spatial, spectral, radiometric and temporal 

resolutions, coupled with the need for detailed information on vegetation condition, the 

monitoring of C3 and C4 grasses AGB has received renewed attention, especially in the light 

of global climate change, biodiversity and, most importantly, food security. This paper 

provides a detailed survey on the progress of remote sensing application in determining C3 

and C4 grass species AGB. Importantly, the importance of species functional type is 

highlighted in conjunction with the availability and applicability of different remote sensing 

datasets, with refined resolutions, which provide an opportunity to monitor C3 and C4 

grasses AGB. While some progress has been made, this review has revealed the need for 

further remote sensing studies to model the seasonal (cyclical) variability, as well as long-

term AGB changes in C3 and C4 grasses, in the face of climate change and food security. 

Moreover, the findings of this study have shown the significance of shifting towards the 

application of advanced statistical models, to further improve C3 and C4 grasses AGB 

estimation accuracy. 

 

Keywords: climate change; food security; phenology; forage; spectral and spatial infidelity; 

sensor resolution 
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2.1. Introduction 

Grasslands are an important component of global terrestrial ecosystems, occupying over 30% 

of the land, with an estimated contribution of 20% to the total terrestrial primary productivity 

(Barbehenn et al., 2004; Jin et al., 2014). Furthermore, grasslands play a significant role in 

biodiversity conservation, in regulating biospheric and atmospheric carbon concentration and, 

most importantly, forms the backbone of the food web (Hill, 2013; O'Mara, 2012). In the 

tropics of southern Africa, grasslands are predominantly an important source of forage for 

livestock, which supports the livelihoods of the majority of communities, as well as for the 

vast wildlife populations (Schmidt and Skidmore, 2001; Xu and Guo, 2015). For instance, in 

the rangelands of South Africa, which occupy more than 70% of the land area, grasslands are 

a critical foraging source for wildlife and livestock (Mansour et al., 2013), contributing 

approximately ZAR 2.88 billion to the country’s Gross Domestic Product per year (Mbatha 

and Ward, 2010). Similarly, the Sahelian region in West Africa is characterized by an 

extensive use of rangeland pastures for livestock production (Diouf et al., 2015). 

 

However, literature shows that grassland ecosystems are vulnerable to climate change effects 

(e.g. the prevalence of drought and erratic rainfall) (Bond and Keeley, 2005; Kalwij et al., 

2014; Kemp and Michalk, 2007). These conditions compromise the Aboveground Biomass 

(AGB) of grassland ecosystems, with adverse effects on rangeland health, thereby posing 

significant challenges, not only to biodiversity conservation, but also to farmers and the 

livelihoods of communities at large. Therefore, the monitoring of grassland ecosystems 

becomes vital, to ensure their sustainability in maintaining ecosystem services. 

 

Within the grassland ecosystems, the photosynthetic pathways (C3 and C4) of grass species 

represent a unique functional type of species sharing physiological (physical and chemical 

processes e.g. carbon cycle or photosynthesis), phenological (life cycle e.g. annual or 

seasonal) and morphological (structure) properties (Díaz and Cabido, 1997; Duckworth et al., 

2000; Paruelo and Lauenroth, 1996). Typically, C3 are grasses characterized by incorporating 

carbon dioxide (CO2) into an initial three-carbon compound, whereas C4 are those grasses 

which incorporate CO2 into an initial four-carbon compound, during photosynthesis and are 

therefore, regarded as C3 and C4 grasses, respectively (Adjorlolo et al., 2012a; Foody and 

Dash, 2007). 
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In terms of their geographical distribution, C4 grasses are dominant in the warmer savannah 

areas of the tropics and the southern hemisphere (Fig.2.1 (a)) (Woodward and Lomas, 2004; 

Woodward et al., 2004). C4 grasses thus, prefer low latitude and altitude. On the other hand, 

C3 grasses predominantly occur in cool regions (Fig.2.1 (b)), particularly the high latitude 

and altitude Arctic and temperate zones of the northern hemisphere (Woodward and Lomas, 

2004; Woodward et al., 2004; Yao et al., 2011). Previous studies (Adjorlolo et al., 2014; 

Bremond et al., 2012; Yan and de Beurs, 2016) have also reported the co-existence of C3 and 

C4 grass species. The study by Yan and de Beurs (2016) have further highlighted that the 

distribution of C3 and C4 grass species at regional scale is influenced by rainfall and 

temperature variations, whereas at a local scale, topographic and edaphic variables exert more 

influence. It is well documented that C3 grass species prefer cool conditions, with higher 

moisture content and lower solar radiation, are hence, regarded as cool season grasses 

(Adjorlolo et al., 2012b; Foody and Dash, 2007). Moreover, C3 grasses are less sensitive to 

frost, have been reported to be active throughout the year and are sometimes referred to as 

annual grasses (Tieszen et al., 1997). In contrast, C4 grasses prefer lower moisture content, 

warm temperatures, and are sometimes referred to as warm season grasses (Pau and Still, 

2014; Ricotta et al., 2003; Tieszen et al., 1997). C4 grasses are highly sensitive to frost 

conditions, when compared to C3. 

 

The phenological profiles of C3 and C4 grasses also vary, which influence the availability 

and quantity of their AGB within the ecosystem (Bremond et al., 2012; Guan et al., 2012). It 

has been reported that the growth of C3 grasses begins in the early spring, reaching their peak 

in late spring and in summer they become senescent, whereas C4 grasses begin in the late 

spring and reach their peak in summer (Pau and Still, 2014; Wang et al., 2013). The different 

phenological profiles of C3 and C4 grasses have been attributed to their climatic 

requirements and any alterations to these profiles have major implications on the timing and 

accumulation of AGB (Rigge et al., 2013). Monitoring the AGB of C3 and C4 grasses 

therefore, becomes a major concern, especially considering the projected effects of climate 

change on their distribution and abundance. 
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Figure 2.1: The global distribution of relative fraction of (a) C4 and (b) C3 grass species functional 

types (Source: North American Carbon Program)  

 

The current concerns and the projected effects of global climate change on ecosystem 

functioning require the monitoring of C3 and C4 grasses AGB (Jin et al., 2014), considering 

their role in the carbon cycle. For example, C4 grass species tend to store more carbon, when 

compared to C3 (Davidson and Csillag, 2001). The study by Bremond et al. (2012) has also 

highlighted that C4 grasses respond positively, with an increase in warming, when compared 

to C3 grasses, whereas under elevated CO2 concentration, C3 species are anticipated to 

respond positively, when compared to C4 (Lee, 2011). Similarly, the projected changes in 

climatic conditions (e.g. the seasonality of rainfall), coupled with warming, are likely to 

influence the phenological profiles of C3 and C4 grasses (Thornton et al., 2014). This has 

major implications on the timing and accumulation of species AGB, thereby affecting their 

ability to provide services and maintain the integrity of the ecosystem.  

 

(a) 

(b) 
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So far, there have been different approaches for monitoring the AGB of C3 and C4 grass 

species, based on ground measurements and remote sensing (empirical and physical-based 

approaches). Ground-based measurements have been regarded as the most direct and accurate 

method of estimating AGB (Auerswald et al., 2012; Niu et al., 2008). However, ground-

based approaches are costly, time-consuming, labour-intensive and are difficult to implement 

effectively in assessing the spatial variations of AGB, especially across large areas (Adjorlolo 

et al., 2012b; Psomas et al., 2011). There is therefore, a widespread consensus that remote 

sensing approaches hold a pivotal and irreplaceable role in monitoring the AGB of C3 and C4 

grass species (Davidson and Csillag, 2003; Ustin and Gamon, 2010). 

 

Remote platforms gather remarkable information on the condition, distribution, spatial 

configuration, invasion and spread of vegetation (Tieszen et al., 1997), which is relevant to 

the monitoring of C3 and C4 grasses AGB at both local and regional scales. Furthermore, the 

ability of remote sensing to frequently offer data in a spatially distributed manner, with 

varying resolutions, provides a valuable complimentary data source and opportunity to 

monitor these grasses, when compared to the use of in situ measurements (Adjorlolo et al., 

2012a; Foody and Dash, 2007; Liu and Cheng, 2011). Since the emergency of remote 

sensing, the possibility of monitoring C3 and C4 grasses at different resolutions has been 

enlightened (Rigge et al., 2013; Tieszen et al., 1997). The advances in remote sensing 

technology, which have progressively expanded over the years, further enhance the ability to 

detect and distinguish the various morphological, physiological and phenological properties 

of C3 and C4 grass species, expanding their monitoring horizon. 

 

This paper demonstrates the progress of remote sensing applications in determining the AGB 

of C3 and C4 grass species. Firstly, the review highlights the significance of functional types 

in the remote sensing of C3 and C4 grasses, as well as its implications on AGB 

quantification. Parallel to this, the effect of species properties (e.g. leaf area index and the 

concentration of photosynthetic pigments) in the remote sensing of C3 and C4 grasses is also 

provided. The applicability of the available remote sensing sensors in determining seasonal 

and long-term variations in C3 and C4 grass species AGB is also discussed in detail. The 

potential of different algorithms for the remote sensing of grasses functional types is explored 

and future prospects in the monitoring of C3 and C4 grasses AGB is also provided. 
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2.2. The importance of the remote sensing of vegetation according to functional types 

and its implications on AGB estimation 

The use of species functional types, although it dates back to the 19
th

 century, has recently 

received renewed attention as a possible approach for monitoring vegetation conditions 

(Cousins and Lindborg, 2004; Gondard et al., 2003). Monitoring vegetation species according 

to functional type is an approach that quantifies the AGB of a group of species (e.g. grasses) 

that shares physiological, phenological and morphological properties. Compelling evidence 

has shown that functional types indicate close similarities of vegetation species in their use of 

resources and their responses (e.g. in their distribution and abundance) to environmental 

controls, such as climate variability (e.g. temperature and rainfall) or elevated CO2 (Díaz and 

Cabido, 1997; Louault et al., 2005). It also shows that the differences between species of the 

same functional type (e.g. C3 grasses) is quite negligible, when compared to those between 

functional types, such as C3 and C4 grasses (Duckworth et al., 2000; Skarpe, 1996). 

 

In addition, functional types influence variations in species AGB within an ecosystem 

(Homolová et al., 2013; Louault et al., 2005; Skarpe, 1996). Alterations in the key properties 

of species functional types (e.g. phenology) have a substantial effect on AGB and this can 

cascade across the ecosystem, with unpredictable consequences. Monitoring species AGB, 

based on functional types, is therefore indispensable, as it encompasses different species 

sharing morphological, physiological and phenological characteristics (Duckworth et al., 

2000; Gondard et al., 2003; Ivits et al., 2013), thereby providing a powerful approach, when 

compared to the use of broad vegetation biomes (e.g. grasslands) or the taxonomic approach, 

which is typically performed at species level. 

 

The use of species functional types in monitoring vegetation AGB, using field-based 

methods, remains restricted to small geographic coverage, for a specific period of time and, it 

focuses mainly on individual species (Homolová et al., 2013). Similarly, it is also impractical 

to develop models for monitoring C3 and C4 grass species at individual levels, considering 

the high demand for the large-scale monitoring of vegetation, especially in the light of the 

global effects of climate change and the provision of ecosystem services. Remote sensing 

therefore provides an invaluable means of monitoring vegetation AGB, according to their 

functional types. 
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Remote sensing offers spatially explicit data, repeated observations, covers large geographic 

areas, which cannot be achieved, when using ground-based observations (Díaz and Cabido, 

1997; Ustin and Gamon, 2010). For instance, the study by Woodward et al. (2004) reported 

the potential of the MODIS sensor in mapping the global distribution of different vegetation 

functional types. The availability of time-series satellite data and repeated observations also 

allow consistent monitoring of species cyclic patterns (i.e. phenology), which is one of the 

key concepts of species functional types. This improves the monitoring of species AGB, 

based on their asynchronous seasonality. Remote sensors have the ability to spectrally and 

spatially differentiate the species functional types (e.g. C3 and C4) from broad vegetation 

biomes, such as grasslands (Homolová et al., 2013; Ustin and Gamon, 2010). For instance, a 

body of literature has reported the ability of remote sensing to distinguish between the C3 and 

C4 grass species functional types (Foody and Dash, 2007; Peterson et al., 2002; Price et al., 

2002), which enhances the monitoring of their AGB. The ability of remote systems to detect 

the physiological and morphological characteristics of a species, which relate to AGB, also 

proves its potential in monitoring the species functional types. 

 

Advances in technology with improved image acquisition characteristics have progressively 

expanded the ability to distinguish the structure, phenology and physiology of vegetation, 

providing new insights into the concept of species functional types (Adjorlolo et al., 2014; 

2015; Ustin and Gamon, 2010). These systems have the capability to detect fine distinctions 

between species functional types, using hundreds of narrow spectral bands, ranging from the 

visible, near-infrared, to the shortwave-infrared portions of the spectrum. Thus, the 

aforementioned capabilities of remote sensing in discriminating and mapping C3 and C4 

grass functional types become relevant in determining their AGB and contribution to the 

functioning of grassland ecosystems. Remote sensing also facilitates change detection in 

AGB between C3 and C4 grass species for carbon or climate change modelling. Detailed 

information on the use of remote sensing technology to monitor the AGB of C3 and C4 grass 

species functional types is described in the following sections. 

 

2.3. Seasonal and long-term monitoring of C3 and C4 grass species AGB 

C3 and C4 grass species AGB varies spatially and temporarily, due to the influence of 

topography (e.g. soil type) and climatic conditions (e.g. temperature and rainfall). Of 

particular importance is the phenology of the C3 and C4 grass species, which determines the 

temporal variability in their AGB (Pau and Still, 2014; Ricotta et al., 2003; Wang et al., 
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2013). At different phenological phases, these grasses exhibit variations in their exchange of 

energy, water and carbon fluxes, as well as in nutrient uptake, storage and release, throughout 

the growing season, influencing the availability and amount of AGB (Adair and Burke, 2010; 

Jin et al., 2013). The timing, availability and amount of AGB is therefore sensitive to any 

alterations to the phenological profiles (e.g. the onset of green-up) of these grasses (Rigge et 

al., 2013). These unique and asynchronous phenological profiles of C3 and C4 grass species 

therefore facilitate the seasonal monitoring of their AGB using remote sensing. 

 

The seasonal monitoring of C3 and C4 grass species allows stakeholders to identify and 

predict potential variations in AGB, which is critical for effective management of forage, as 

well as for developing proper conservation strategies (Diouf et al., 2015). Moreover, Karlsen 

et al. (2008) stipulates that a shift in the phenological cycle (e.g. late green-up) of grasses is 

regarded as the foremost, immediate and observable indication of seasonal transition, due to 

environmental changes. This has immediate impacts on the timing of AGB, which affects the 

availability of forage for grazers. In this regard, the seasonal monitoring of these grasses 

AGB becomes more relevant, in the light of food security. In addition, a shift in the 

phenological cycle of C3 and C4 grasses can serve as a possible indicator of the effect of 

climate change on terrestrial ecosystems (Richardson et al., 2013). 

 

Considering the current trends and the anticipated impacts of global climate change on 

vegetation, long-term and systematic observations of C3 and C4 AGB are required, given the 

possibility that these changes are difficult to detect with short-term observations. Long-term 

observations provide a better understanding of the ecological transition of C3 and C4 

dominated grassland (Rigge et al., 2013). This is also supported by the studies of Diouf et al. 

(2015) and Eastman et al. (2013), which emphasized that any changes in vegetation AGB 

require repeated observations to be discernible. Long-term temporal coverage also increases 

the efficiency of rangeland management, by detecting areas of low AGB and the likely 

occurrence of degradation (Rigge et al., 2013), as well as assessing proper management 

practices to boost AGB (Atzberger et al., 2013). 

 

Thus far, remote sensing of C3 and C4 grass species AGB has focused on the long-term 

temporal coverage, such as annual variations, using large spatial resolution datasets (Pau and 

Still, 2014; Rigge et al., 2013; Tieszen et al., 1997). For instance, the study by Pau and Still 

(2014) determined the annual AGB of C3 and C4 grass species, using MODIS, from the year 
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2000 to 2010, covering a period of ten years, whereas Tieszen et al. (1997) and Rigge et al. 

(2013) covered a period of five (1989-1993) and seven years (2000-2008), respectively. 

Nevertheless, a few studies have attempted to determine short-term or cyclic variations in C3 

and C4 species AGB (Davidson and Csillag, 2001; ). These studies were confined to specific 

phenological phases, such as the start or end of the season. For instance, the study by 

Davidson and Csillag (2001) was limited to a two-day coverage, at the start and end of the 

season, whereas Foody and Dash (2010) focused on the period when grass growth was most 

active. In this regard, the phenological or cyclical variations of AGB in C3 and C4 grass 

species have been underestimated. This has resulted in uncertainties about the actual 

variations in the AGB of these grass species, especially considering their asynchronous 

seasonality. In addition, the use of large spatial resolution also results in the poor 

representation of AGB of these species functional types. 

 

2.4. C3 and C4 grass species properties and their influence on remote sensing 

measurements 

Although remote sensing provides a valuable tool for monitoring the AGB of grass species, 

the properties (i.e. leaf/canopy properties) of C3 and C4 grasses affect the reliable and 

accurate retrieval of spectral reflectance measurements, thereby playing a fundamental role in 

the discrimination and AGB estimation accuracy of these grasses. C3 and C4 grasses exhibit 

different properties over time and space, which influence their interaction with the incoming 

radiation (Dengler et al., 1994; Ustin and Gamon, 2010). For instance, Asner (1998) 

highlighted that the spectral signature of grass leaves within the visible and near infrared 

(NIR) portions of the electromagnetic spectrum is primarily affected by its properties (e.g. 

leaf area index and water content), as well as the concentration of photosynthetic pigments 

(e.g. chlorophyll), within these grasses (Clevers and Gitelson, 2013). 

 

In addition, it has also been discovered that leaf thickness, aggregation and orientation, 

strongly influence remote sensing measurements (Adam et al., 2010; Homolová et al., 2013). 

For instance, the study by Slaton et al. (2001) mentions that C4 grass leaves are significantly 

thinner, when compared to those of the C3 grass species. Leaves with thinner cell walls are 

generally associated with long palisade cells, which reflect more of incident radiation in the 

NIR region, than those with thick walls, which are normally associated with short, cylindrical 

mesophyll cells (Ollinger, 2011). The leaf internal properties of C3 and C4 grasses also 

influence the retrieval of reflectance and AGB estimation. C4 grass leaves are characterized 
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by more compact, spongy mesophyll cells, when compared to their C3 counterparts (Ueno et 

al., 2006). The study by Slaton et al. (2001) postulates that this enables them to spread light 

deep into the interior of the leaves. In agreement, Ustin and Gamon (2010) noted that the 

more compact mesophyll cells also strategically increase the internal scattering of light, 

thereby reducing its transmission through the leaf. C4 leaves also constitute a denser vascular 

system, with small interveinal distances, when compared to C3 leaves (Dengler et al., 1994). 

This influences leaf water content, with both direct and indirect effects on reflectance from 

water and other leaf absorption properties, which are associated with water stress and 

hydration (Ollinger, 2011). C4 grass leaves have few intercellular air spaces, which reduce 

light scattering from the air-water interface, when compared to C3 leaves, which comprise 

less compact and thinner cell structures (Ueno et al., 2006). 

 

Therefore, the spatial and temporal changes in the properties of C3 and C4 grass species (e.g. 

Leaf Area Index (LAI) and concentration of photosynthetic pigments) influence the ability of 

the remote sensing sensors to accurately estimate their AGB. Previous studies (Friedl et al., 

1994; Madugundu et al., 2008) have, for instance, reported the relationship between LAI and 

spectral vegetation indices (e.g. NDVI), as well as with AGB. The study by Friedl et al. 

(1994) reported a significant relationship between LAI and AGB and they exhibit the same 

spatial variations with elevation and the same responses to burning. In this regard, variations 

in the LAI of C3 and C4 grasses influences the variations in their AGB, as well as the ability 

of the remote sensing systems to accurately discern these variations. Recent studies have 

reported that the application of multispectral sensors under a high canopy cover (high LAI) 

results in saturation problems (Dube et al., 2015; Mutanga et al., 2012). Thus, the accurate 

estimation of C3 and C4 AGB under a high canopy cover will be achieved, using more 

advanced sensors, with strategically-positioned bands. This underscores the need to identify 

suitable remote sensing datasets, as well as variables (e.g. vegetation indices), which have the 

ability to characterize and discern C3 and C4 species characteristics for optimal AGB 

estimation. 

 

2.5. Remote sensing systems and their role in estimating the AGB of C3 and C4 grass 

species 

Remote sensing systems hold great potential for monitoring grass AGB on a local and a 

global scale, due to the availability of various satellite datasets (Price et al., 2002). Above all, 

remote sensing presents an appropriate solution to the labour-intensive, spatial coverage and 
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time challenges, which have been identified in the use of ground-based methods in estimating 

grass AGB (Psomas et al., 2011; Zhao et al., 2014). Ecological studies currently benefit from 

a variety of active and passive sensors, providing data at different resolutions, with the ability 

to extract various structural and physiological properties for determining grass AGB (Pau et 

al., 2013; Price et al., 2002; Ustin and Gamon, 2010). Moreover, remote sensors have the 

ability to detect important phenological indicators of grass species, such as the peak and 

senescence, which influence the timing and amount of AGB (Rigge et al., 2013). 

 

A range of remote sensing platforms, with different image acquisition characteristics 

(Ahamed et al., 2011; Shen et al., 2014) are currently in orbit (Table 2.1), providing an 

opportunity for the seasonal and long-term monitoring of AGB for C3 and C4 grass species. 

The emergence of broadband multispectral sensors (in this study referred to as traditional 

multispectral sensors), such as the Landsat TM/MSS/ETM+, the Advanced Very High 

Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer 

(MODIS), the MEdium Resolution Imaging Spectrometer (MERIS) and the Satellite Pour 

l’Observation de la Terre (SPOT), etc. (Cocks et al., 1998; Dube et al., 2014) marked a new 

beginning of the continuous and systematic monitoring of C3 and C4 grass species AGB. The 

availability of these affordable and freely-accessible sensors at large geographic coverage, 

with a high frequency for some sensors (e.g. daily for MODIS and AVHRR) and a long 

history of earth imaging (e.g. AVHRR since 1978 and since 1972, for Landsat series data), 

have facilitated the long-term monitoring on a regional and global scale (Tieszen et al., 

1997). For instance, the study by Tieszen et al. (1997) reported the potential (R
2
 = 0.52) of 

AVHRR-derived NDVI in predicting C3 and C4 grass species AGB across the Great Plains 

of North America, over a five-year period. Multispectral sensors have also been useful in 

determining C3 and C4 grass species AGB at a particular seasonal stage or phenological 

phase. The study by Foody and Dash (2010) reported the ability (R
2
 ranged from 0.46 - 0.52) 

of the MERIS sensor in estimating the variations of C3 grasses AGB, during the peak 

phenological phase. 

 

Broadband multispectral sensors also form the backbone in the development of algorithms, 

which are currently available for the estimation of C3 and C4 grasses AGB, using remote 

sensing, and further facilitate advances in the development of algorithms. Specifically, much 

of the development in spectral vegetation indices, which are currently available to determine 

the spatial and temporal variations of grass AGB, was facilitated by the availability of 
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multispectral sensors (Xie et al., 2008). For example, the widely-used Normalized Difference 

Vegetation Index (NDVI) was originally developed, using broadband channels from the 

Landsat data series. However, the use of freely-available medium-resolution sensors, such as 

Landsat (TM and MSS), has currently become a challenge, due to the fact that these satellites 

are no longer operating, whereas the ENVISAT MERIS mission became mulfunctional in 

early 2012. In the case of the Landsat ETM+, all images acquired after the 31
st
 of May 2003 

have since developed an anomaly caused by the failure of the Scan Line Corrector (SLC), 

which compensated for the forward motion of the spacecraft, so that all the scans were 

aligned parallel with each other. The malfunctioning of the sensor’s SLC has since resulted in 

approximately 22% data loss of the normal scene area (Chander et al., 2009; Dube and 

Mutanga, 2015a; Storey et al., 2005). The failure of the aforementioned medium resolution 

sensors (i.e. Landsat TM, MSS, and MERIS) to deliver real time images and the loss of data 

for the operational ETM sensor has resulted in considerable challenges in estimating C3 and 

C4 grass species AGB, especially considering their better performance, when compared to 

MODIS or AVHRR sensors. 

 

The development of hyperspectral sensors presents an advanced opportunity for the 

extraction of the important biophysical and chemical properties of vegetation (Asner et al., 

2000; Clevers et al., 2007) and it thus holds greater potential for estimating grass AGB. These 

sensors constitute hundreds of narrow and unique spectral bands, which are strategically-

positioned, increasing their ability to discriminate species spectral signatures for estimating 

species AGB (Lu et al., 2009; Mutanga et al., 2009). For example, the Airborne Visible and 

Infrared Imaging Spectrometer (AVIRIS) and Hyperion sensors deliver high resolution 

images in 224 and 220 spectral bands, respectively, at different wavelengths, ranging from 

400 to 2500 nm. The narrow spectral bands of these sensors are capable of separating grass 

species functional types, as well as across complex mixed grasslands for the accurate 

estimation of AGB, which is very difficult, when using broadband multispectral images (Xie 

et al., 2008). The development of in situ hyperspectral spectrometers also plays a significant 

role in extracting accurate vegetation reflectance at different wavelengths, which is necessary 

for the estimation of grass AGB, at plot level, or for “project-based application” (Chen et al., 

2009; Lu et al., 2009). However, the required pre-processing, high cost and limited spatial 

and temporal resolutions of hyperspectral data remain a challenge for their large-scale 

implementation or “wall-to-wall” monitoring, especially in resource-constrained regions 

(Adjorlolo et al., 2012b; Chen et al., 2009). 
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The advent of new generation sensors (e.g. Landsat 8, Worldview 2, Sentinel-2 MultiSpectral 

Instrument (MSI), Hyperspectral Infrared Imager (HyspIRI) and RapidEye (Dube et al., 

2014; Mutanga et al., 2015; Pahlevan and Schott, 2013; Sibanda et al., 2015a), with advanced 

image acquisition characteristics, offers a new outstanding dimension for the accurate and 

timely estimation of C3 and C4 grasses AGB, especially at both local and regional scales. 

These sensors have improved resolutions, which enhance their performance in acquiring 

images, when compared to the traditional broadband multispectral sensors (i.e. MODIS, 

MERIS, etc.) (Dudley et al., 2015; Roth et al., 2015a). Most importantly, some of these 

sensors acquire data at high frequency, with a large geographic footprint (e.g. 5 days, at 290 

km for Sentinel 2 MSI), in a cost-effective manner, hence the capacity to provide for the 

cyclical variations in C3 and C4 grass species AGB at large geographic coverage. 

Particularly, the strategically-positioned bands of some sensors (e.g. Worldview 2 and 

Sentinel 2 MSI) have the ability to extract the important subtle spectral variations in the 

structural, phenological and morphological characteristics of species functional types, at a 

more refined resolution (Roy et al., 2014), currently a challenge, when using broadband 

multispectral sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23 

Table 2.1: Availability of sensors for C3 and C4 grasses AGB estimation 

Sensor 
Pixel 

size (m) 

Swath 

width (km) 
Bands  

Revisit 

time 

Acquisition 

Cost 

Scale of 

application 

Predictive 

Performance 

AVHRR 1100 2900 5 1 
Readily 

available 

Regional to 

global  

Low 

Hyperspectral < 1 - >100 - 
Very 

Expensive 
Plot  

High 

HyspIRI 60 600, 150  8, 213 5, 19  - 
Local to 

regional 

Not yet tested 

IKONOS 4 11 5 1-2 Expensive Local Not yet tested 

Landsat  30 185 7; 11 16 
Readily 

available 

Local to 

regional 

Moderate 

MERIS 300 1150km 15 3 
Readily 

available 
Regional 

Low 

MODIS 
500, 

1000  
2330 7 1 

Readily 

available 

Regional to 

global 

Low 

Quickbird 2.4 16 5 1-3.5 Expensive Local High 

RapidEye 5 77 5 5.5 Expensive Local 
High 

Sentinel 2 MSI 
10, 20, 

60 
290 13 5 

Readily 

available 

Local to 

regional 

Not yet tested 

SPOT  10, 20 120 4 26 
Readily 

available 

Local to 

regional 

Moderate 

SPOT VGT 1150 2250 - 1 
Readily 

available 

Regional to 

global 

Low 

Worldview 2 < 1 16.4 8 1-3.7 
Very 

Expensive 
Local 

High 

* Shaded rows represent sensors which have been used in estimating C3 and C4 grass species AGB, whereas unshaded rows 

are those sensors which have been used in AGB estimation for grasslands ecosystems, without considering species 

functional types 

 

However, with a variety of remote sensing datasets available, the affordable and freely-

accessible broadband multispectral sensors (Table 2.2), notably MODIS and AVHRR, have 

thus far been the primary data sources for the estimation of C3 and C4 grass species AGB 

(An et al., 2013; Davidson and Csillag, 2003; Foody and Dash, 2010; Pau and Still, 2014; 

Rigge et al., 2013). For instance, Pau and Still (2014) have shown the applicability of 

MODIS in determining the annual variations of C3 and C4 grasses AGB, over a ten-year 

period (2000 - 2010), whereas the study by Rigge et al. (2013) used the integrated weekly 

MODIS NDVI dataset to determine the annual variations in C3 and C4 grasses AGB. 

However, these studies also noted a high probability of overlap in grass species reflectance, 

which results in uncertainties, such as the over- or under-estimation of species AGB, due to 

the coarse spatial and spectral resolutions of the sensors. In addition, the AVHRR sensor 

acquires images, using only the red and the near infrared spectral bands, at a coarse spatial 

resolution, which is not sufficient to distinguish the varying spectral signatures; hence the 

AGB of species functional types is poorly represented. 
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The medium spatial resolution Landsat, SPOT and MERIS data series have also contributed 

to the remote sensing of C3 and C4 grass species AGB (Grant et al., 2013; Peterson et al., 

2002). The use of these sensors yielded better predictive accuracy (Table 2.2), when 

compared to the use of MODIS and AVHRR. These studies reported that these sensors 

provide suitable datasets for assessing the temporal and spatial variations of grass AGB at a 

coarse temporal resolution, such as bi-weekly, monthly or at a specific phenological phase 

(e.g. the green-up phase). With the exception of a few studies (e.g. Lu et al. (2009)), the use 

of hyperspectral data in estimating the AGB of C3 and C4 grass species has thus far been 

proved to be difficult to achieve. This is supported by the fact that only a few studies have 

used these sensors, despite their high predictive accuracy in estimating AGB of species 

functional types, when compared to broadband multispectral sensors. 
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Table 2.2: The remote sensing of C3 and C4 grass species AGB 

Method Major findings reported References 

NOAA/AVHRR-based NDVI The grass AGB derived using ground-based measurements and statistical modelling were 

significantly (P = 0.037) related to NDVI derived from NOAA/AVHRR. C3 and C4 grasses 

AGB measurements were moderately correlated (R = 0.58) with those derived from 

remotely sensed data.  

Tieszen et al. (1997) 

NOAA/AVHRR-based NDVI The NDVI weekly composite data produced a reasonable agreement (R
2
 = 0. 54) with field 

based measurements. 

An et al. (2013) 

Cropscan Multispectral Radiometer-based NDVI  A high measure of association (Kendall’s τ = 0.778) and strength of fit (Cohen’s k =0.631) 

between NDVI and ground-based AGB was produced. 

Goodin and Henebry 

(1997) 

MERIS Terrestrial Chlorophyll Index (MTCI) 

 

The MTCI has a potential to explain approximately 60% of the variation in the prediction of 

C3 grasses AGB, with a better relationship (R
2 

of 0.62) from a weekly compositing period, 

compared to the use of longer time periods (e.g. two weeks, which produced an R
2 
of 0.46). 

Foody and Dash (2010) 

 

MODIS-based NDVI 

 

A moderate relationship (R
2
 = 0.58) was reported between field measured C3 AGB and 

NDVI-based estimates. However, field data produced AGB ranging between 55.4 and 69%, 

while remotely sensed data estimates ranged from 78.9 to 84.4%. The study further reported 

that a significant overlap occurred, which led to an overestimation of C3 AGB from 

remotely sensed data. 

Rigge et al. (2013) 

 

MODIS-based NDVI  Remotely-sensed estimates resulted in the underestimation of C4 grasses AGB. The study 

reported that C4 accounted for only 39% of AGB.  

Guan et al. (2012) 

Exotech Model 100BX radiometer measurements, 

based on Landsat TM bands and VIs (NDVI, 

SAVI, MSAVI2, MSR, DVI, RDVI, RVI and 

IPVI). 

C4 grasses AGB variations were best explained using NDVI, SAVI, MSAVI2, and MSR, 

producing an R
2
 of 0.64, whereas the DVI explained the least variations with an R

2
 of 0.51.  

Davidson and Csillag 

(2001) 

SPOT-based VIs (SR, NDVI, TVI, DVI, RDVI, 

MSR, NDGI and RI). 

The RDVI and TVI yielded the best overall prediction (R
2
 = 0.68), whereas the NDGI and 

the RI had the least overall predictions (R
2
 = 0.25) of AGB, but only marginally better than 

the NDVI, MSR and other indices tested. Transformation of VIs using the power function 

improves statistical predictive capabilities to an R
2
 range between 0.42 and 0.68, compared 

to untransformed indices (R
2 
ranging from 0.25 - 0.62).  

Grant et al. (2013) 
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Landsat TM 5-based NDVI There were no significant differences (MANOVA, p = 0.063) between C4 and C3 grass 

species AGB, based on NDVI. The study also reported that there were inconsistencies 

between NDVI-based estimates and field-based measurements.  

Peterson et al. (2002) 

MODIS NDVI The AGB of C3 and C4 grass species was not significantly different (p =0.07), based on 

remote sensing NDVI. The study reported that there was a significant overlap, which led to 

an overestimation of C3 AGB from remotely sensed data, compared to field measurements. 

Pau and Still (2014) 

AISA Eagle Hyperspectral sensor The band ratio method was the best approach for predicting AGB, with R
2
 values of 0.96 

and 0.69, compared to the use of the PCA, which produces the lowest R
2
 values of 0.83 and 

0.63, for the two C3 grass species, respectively. 

Lu et al. (2009) 

*SR = Simple ratio, NDVI = Normalised Difference Vegetation Index, TVI = Transformed Vegetation Index, DVI = Difference Vegetation Index, AISA = Airborne Imaging Spectroradiometer 

for Application, VI = Vegetation Indices, PCA = Principal Component Analysis, MANOVA = Multivariate Analysis of Variance 
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2.6. Available approaches for quantifying grass AGB using remote sensing 

Different algorithms are available for quantifying C3 and C4 grass species AGB, using 

satellite remote sensing data (Table 2.3). The remote sensing of AGB can be achieved using 

either physical-based or empirical models (Fang et al., 2003; Hall et al., 1997). The physical-

based approaches use radiative transfer models to estimate AGB (Darvishzadeh et al., 2008; 

Fang et al., 2003; Kimes et al., 2000). The study by Kimes et al. (2000) further reported that 

physical-based approaches use physical laws and the inversion of remote sensing data to 

derive vegetation biophysical properties. Although physical-based methods have been used, 

their application, especially for AGB estimation, has been limited. This might be attributed to 

the ill-posed nature of model inversion and the requirement of specific additional input 

variables (e.g. soil background reflectance), which complicates the successful inversion and 

estimation accuracy (Atzberger, 2004). Additional challenges include a large number of input 

parameters that must be specified, the computational load of inverting the radiative transfer 

models, and the fact that a stable and optimum inversion is not guaranteed (Houborg et al., 

2007; Kötz et al., 2004; Walthall et al., 2004). The study by Kimes et al. (2000) also reported 

that physical-based methods do not appear to be a realistic alternative for the continuous 

operational application of remote sensing data. This poses challenges for the accurate 

estimation of AGB for C3 and C4 grasses functional types. 

 

The empirical approach remains the widely-used approach for estimating AGB. Empirical 

methods involve the use of remote sensing variables (e.g. spectral bands, spectral vegetation 

indices and texture metrics) and statistical algorithms (Darvishzadeh et al., 2011; Hall et al., 

1997) to estimate AGB. The approach relates remote sensing variables to in situ grass AGB, 

which enables the identification of the most suitable variable that optimally predicts grass 

AGB (Chen et al., 2009; Clevers et al., 2007; Jin et al., 2014). Algorithms developed for the 

remote sensing of AGB have been generally identified as parametric and non-parametric 

(Verrelst et al., 2015). Parametric algorithms assume a linear relationship between AGB and 

remote sensing variables, and the most commonly used are the simple and multiple linear 

regression models (Davidson and Csillag, 2001; Foody and Dash, 2010; Grant et al., 2013; 

Rigge et al., 2013; Tieszen et al., 1997). These have produced moderate predictive accuracies 

(R
2
 ranging from 0.25 to 0.62), depending on the remote sensing dataset used to estimate C3 

and C4 grasses AGB. 
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However, although they produce satisfying predictions in estimating grass AGB, the use of 

parametric algorithms is associated with multiple challenges. Researchers have pointed out 

that parametric algorithms are insufficient to capture the complex relationships between 

remote sensing variables and AGB (Lu et al., 2014; Verrelst et al., 2015). For instance, the 

stepwise linear regression fails to correspond with known absorption bands, and parametric 

methods suffer from multi-collinearity, over-fitting and produce unstable estimates, when 

using small sample sizes and missing values (Chen et al., 2009). Conversely, the more 

advanced and flexible non-parametric machine learning algorithms present a powerful tool 

for estimating grass AGB. 

 

The more advanced machine learning algorithms enhance the predictive accuracy of grass 

AGB. These algorithms include the Partial Least Squares Regression (PLSR) (Wold et al., 

1984), Sparse PLSR (SPLSR), Random Forest (RF) (Breiman, 2001), Discriminant Analysis 

(DA), Support Vector Machines (SVM), Artificial Neural Network (ANN) and Boosted 

Regression Trees (BRT), etc. These algorithms have been reported to be robust and more 

efficient alternatives, operating in a data-driven manner and reducing dimensionality 

problems with high accuracy, when compared to parametric algorithms (Rodriguez-Galiano 

et al., 2012; Verrelst et al., 2015). Machine learning algorithms thus overcome the challenges 

associated with the use of parametric algorithms, such as multi-collinearity (Chun and Keleş, 

2010; Sibanda et al., 2015a), over-fitting, handling small sample sizes and missing values, 

among others (Barrett et al., 2014; Rogan et al., 2008). Moreover, unlike parametric 

algorithms, non-parametric machine learning approaches are independent of data distribution 

(i.e. normality) and are flexible, with large volumes of data from different sources (Barrett et 

al., 2014; Rogan et al., 2008). For example, the studies by Rogan et al. (2008) and Ramoelo 

et al. (2015b) reported that the RF explained over 84% variation of grass AGB. The study by 

Rogan et al. (2008) also regarded the RF as the most superior algorithm, which is robust to 

noise and outliers, and has the ability to handle thousands of input variables, as well as to 

estimate variable importance. 

 

However, despite their outstanding predictive performance in estimating grass species AGB, 

using remote sensing, some of these machine learning algorithms are associated with some 

limitations. For example, ANN and SVM have been reported to be too complicated, too 

difficult to automate and they require an adjustment of large number of parameters (Mas and 

Flores, 2008). In addition, ANN is regarded as a black-box model, which does not easily 
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reveal the internal mechanism of the relationship between the dependent and the selected 

independent variables (Lu et al., 2014; Mas and Flores, 2008; Verrelst et al., 2015), and if the 

parameters used are not properly optimized, AGB estimation accuracy may be poor (Mas and 

Flores, 2008). In addition, some machine learning algorithms tend to be site-specific, hence 

the models developed are not applicable to other environments (Lu et al., 2014), and in the 

case of RF, it has been reported that the algorithm tends to underestimate the high values and 

overestimate the low values of AGB. 

 

Table 2.3: Available algorithms for C3 and C4 grasses AGB estimation, using remotely 

sensed data 

Algorithm Remote sensing dataset Performance (R
2
) Reference 

Simple linear 

regression 

 

AVHRR 0.58 Tieszen et al. (1997) 

MERIS Ranged from 0.46 – 

0.62 

Foody and Dash (2010) 

MODIS 0.58 Rigge et al. (2013) 

Envisat MERIS Ranged from 0.51 – 

0.64 

Davidson and Csillag (2001) 

MODIS Ranged from 0.25 – 

0.68 

Grant et al. (2013) 

Stepwise multiple 

linear regression 

Eagle Airborne Imaging  

Spectroradiometer for 

Application (AISA) 

Ranged from 0.63 – 

0.96 

Lu et al. (2009) 

*RF WorldView-2 Ranged from 0.84 - 

0.91  

Ramoelo et al. (2015b) 

*PLSR  Hyperspectral Ranged from 0.52-0.54 Chen et al. (2009) 

*SPLSR Hyperspectral  

Sentinel 2 MSI  

Landsat 8 OLI  

0.92 

0.76 

0.65 

Sibanda et al. (2015a) 

*SVM Hyperspectral 0.683 – 0.751 Marabel and Alvarez-

Taboada (2013) 

*ANN  Landsat ETM+ 7 0.817 Xie et al. (2009) 

Algorithms with steric (*) are the more advanced which have been used in grassland AGB estimation, but have not yet been 

fully explored (based on available literature) in remote sensing of C3 and C4 grasses functional types  

 

The quantification of grass AGB can also be achieved using advanced aircraft, such as the 

Small Unmanned Aircraft System (SUAS) (Wang et al., 2014; Watts et al., 2010; Zhang and 

Kovacs, 2012). These systems have the capability to acquire high spatial and temporal 

resolution images at lower altitudes, under different weather conditions (e.g. without the 

influence of cloud cover), have the potential to acquire data from a smaller geographic area 

and upscale it to aerial photos or satellite images that cover larger geographic areas, and they 

have therefore been successfully used in grassland ecosystems, especially of the developing 

world (Rango et al., 2009; Zhang and Kovacs, 2012). Consequently, although they hold the 
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potential to monitor grasses functional types (i.e. C3 and C4), their application is limited by 

their cost.  

 

2.7. Challenges of remote sensing of C3 and C4 grass species AGB 

Despite the availability of different remote sensors with considerable potential to estimate C3 

and C4 grasses AGB, finding the correct dataset, with the optimal spectral and spatial 

resolution, remains a major challenge to the remote sensing community. Currently, C3 and 

C4 AGB estimates are required over a large geographic coverage. Similarly, these sensors 

should also be able to provide sufficient information for well-informed management and 

conservation purposes at a reasonable cost and accuracy. 

 

Thus far, the available data on C3 and C4 grass species AGB have been derived, using coarse 

spatial resolution datasets, such as MODIS and AVHRR. Despite having a global footprint, a 

high frequency, being readily available and having a longer history of operation, which are all 

necessary for seasonal and long-term monitoring, data from these sensors have a low 

prediction accuracy (see Table 2), especially in mixed grasslands, which makes it difficult to 

apply and monitor these grasses. The spatial and spectral infidelity of MODIS in estimating 

C3 and C4 grasses AGB has been recently reported (Grant et al., 2013; Rigge et al., 2013). 

For instance, the study by Rigge et al. (2013) reported that remotely sensed AGB estimates, 

using MODIS, resulted in a significant overlap between the C3 and C4 grass species, which 

led to an overestimation of C3 AGB. The spatial resolution of MODIS is less appropriate to 

adequately characterise the inherent heterogeneity in mixed grassland ecosystems. These 

sensors fail to discriminate spatial and spectral variations in mixed grasslands, hence posing 

significant challenges in the estimation of C3 and C4 grassland AGB. Low spatial resolution 

sensors also result in inconsistency, with regard to the scale of observation, between the 

ground-based sampled plots and the satellite imagery (Shen et al., 2014). This results in 

uncertainties in the estimation of AGB, although the estimates are provided over a large 

geographic coverage. 

 

Moreover, broadband sensors sample at wavelengths that are too wide to distinguish subtle, 

but important, features that are related to the physiological and biochemistry properties of 

species functional types (Ustin and Gamon, 2010). The study by Forkel et al. (2013) has 

emphasized that one of the key elements for the application of remote sensing datasets in 

determining vegetation species AGB, lies in their ability to extract species structural, 
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physiological and morphological characteristics over space and time. In this regard, the 

applicability of MODIS, AVHRR and other related multispectral sensors, with a coarser 

spatial and spectral resolution, is discredited. Currently, the failure of the SLC of the 

operational Landsat ETM+ (which result in 20% data loss) and the lack of services of other 

freely-available broadband multispectral satellites (e.g. Landsat TM, MSS and MERIS), with 

a better estimation accuracy, also affect the accurate monitoring of AGB of C3 and C4 grass 

species functional types, especially considering the current demand of vegetation information 

and their role in the carbon cycle, in the light of current and projected climate change effects. 

 

In this regard, the remote sensing community is caught in the inherent trade-offs between 

image acquisition costs, spectral and spatial resolution, geographic coverage, as well as 

optimal prediction accuracies in determining AGB variations of C3 and C4 grass species, 

using the available sensors. Studies which have been conducted using broadband 

multispectral data have shown low accuracies, when compared to high resolution datasets, for 

instance, the study by Lu et al. (2009) demonstrates this aspect. 

 

The use of vegetation indices is also one of the major concerns in estimating the temporal 

variations of C3 and C4 grasses AGB using remote sensing. Initially, the remote sensing of 

C3 and C4 grasses AGB was estimated using spectral band information and vegetation 

indices, such as the standard NDVI, derived from the NIR and red bands (Paruelo et al., 

1999; Tieszen et al., 1997). However, some studies that have been conducted in grassland 

ecosystems, have reported the limitations of NDVI in estimating grass AGB (Chen et al., 

2009; Kawamura et al., 2005), which include its poor performance in sparsely vegetated areas 

and its saturation problem in densely vegetated areas or during the peak phase  (Mutanga et 

al., 2012; Mutanga and Skidmore, 2004a). This has prompted researchers to develop and 

implement other indices, which outperform the NDVI, such as the NDVI-based indices (e.g. 

NDVI derived using red edge bands) (Mutanga et al., 2012), the Enhanced Vegetation Index 

(EVI), the Soil Adjusted Vegetation Index (SAVI) and the Modified Soil Adjusted 

Vegetation Index (MSAVI) (Davidson and Csillag, 2001; Foody and Dash, 2010; Grant et al., 

2013). For instance, the study by Grant et al. (2013) has reported the better performance of 

SAVI, EVI and MSAVI indices in estimating C3 and C4 grasses AGB, using SPOT imagery 

under sparsely vegetated areas, when compared to NDVI. The study further reported an 

increase in predictive accuracy, when using transformed vegetation indices in estimating the 

AGB of C3 and C4 grasses. The implementation of an appropriate algorithm in estimating the 
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spatial and temporal variations of C3 and C4 grasses AGB is also of particular importance. 

Different algorithms exist for estimating AGB, using remote sensing data (Table 3), and their 

performances may vary, depending on the remote sensing dataset used. The study by Lu 

(2006) has also emphasized the importance of an appropriate algorithm for identifying the 

optimal remote sensing variables to improve the AGB estimation accuracy. 

 

2.8. Progress on C3 and C4 grasses AGB estimation over the years and the future 

The influence of inter-seasonal variability in C3 and C4 grass species AGB, due to changes in 

climatic conditions, has been undermined by previous studies, using broadband multispectral 

remote sensing datasets. This underscores the need for a substantial attention to the remote 

sensing of cyclical AGB in C3 and C4 grasses, which is a fundamental step towards the 

management of these grasslands. With the current demand for vegetation information at a 

regional scale, the future of C3 and C4 grasses AGB estimation lies on the implementation of 

remote sensing datasets, with appropriate resolutions, variables, as well as algorithms, which 

improve the prediction accuracy. The advances in remote sensing datasets at more refined 

resolutions have renewed the monitoring of C3 and C4 grasses AGB. As a major forage 

supply of wildlife and livestock, with multi-functions, the remote sensing of C3 and C4 

grassland will be continuously advanced in the next millennium, as societal and ecological 

demands increase. 

 

The availability of more advanced and affordable new generation sensors, with improved 

spatial (e.g. RapidEye and Worldview-2), temporal (e.g. newly launched Sentinel-2 MSI and 

the Hyperspectral InfraRed Imager (HyspIRI)), spectral (e.g. Sentinel-2 MSI) and radiometric 

(e.g. the Landsat 8 OLI) resolutions, offers a unique opportunity for the remote sensing of 

grass species AGB, based on functional types. For instance, the upcoming HyspIRI sensor 

will deliver 14-bit imagery, using the visible and shortwave infrared imaging spectrometer, 

with 213 spectral bands between 380 and 2 500 nm, and the multispectral thermal infrared 

instrument, with eight spectral bands (Devred et al., 2013), making it more sensitive to detect 

and distinguish subtle differences in grass species reflectance, that are undetectable, using 

broadband multispectral sensors. The Landsat 8 OLI has improved radiometric resolution 

(12-bit), signal to noise ratio and a refined NIR band (Dube and Mutanga, 2015b; El-Askary 

et al., 2014; Shoko et al., 2015), which enhance its sensitivity to grass species characteristics, 

compared to its predecessors. These sensors therefore provide potential prospects for future 

studies, to improve the monitoring of C3 and C4 grass species AGB. 



 33 

 

Studies that have used new generation sensors have demonstrated that they have the potential 

to characterize various species parameters. For instance, the study by Ramoelo et al. (2014) 

reported that the Sentinel-2 MSI sensor has a unique spectral configuration, which has a high 

potential to monitor the AGB of rangelands. Similarly, Dudley et al. (2015) demonstrated the 

possibility of using the HyspIRI imagery, as representing new access to high spectral 

resolution imagery for vegetation mapping and ecosystem monitoring. They reported that the 

sensor presents an opportunity to integrate the phenological effects in mapping species that 

have so far been unavailable. This was also confirmed by Roth et al. (2015a), who reported 

the applicability of the HyspIRI imagery in mapping species distribution, disturbance and 

ecosystem function on a scale much larger than ever before. The recent study by Sibanda et 

al. (2015a) has also reported the better performance (R
2
 = 0.76) of Landsat 8 OLI in 

estimating grass AGB under different management practices. In this regard, the future 

research on the monitoring of C3 and C4 grass species AGB is enlightened, and the improved 

properties associated with new generation datasets are more likely to offer the better temporal 

characterization of these grass species, for the better management of rangelands, in order to 

maintain food security, biodiversity and carbon cycling. 

 

With refined spatial and temporal resolutions, some of the new generation sensors provide 

appropriate datasets to monitor the inter-seasonal or cyclical variability in C3 and C4 species 

AGB, which is a major challenge of the multispectral datasets. For instance, the Sentinel 2 

MSI has two bands within the red edge, which can be used to derive vegetation indices for 

the estimation of C3 and C4 grasses AGB (Clevers and Gitelson, 2013). Studies which have 

used vegetation indices derived from the red edge band (Mutanga et al., 2012; Ramoelo et al., 

2015b) reported improved performance in estimating grasses AGB, when compared to the 

standard NDVI, derived from the NIR and red bands. Similarly, the high temporal resolution 

of Sentinel 2 MSI (5 days) and spatial coverage (290 km swath width) provide appropriate 

data for the large-scale monitoring of C3 and C4 cyclical AGB, especially in the light of 

environmental changes. 

 

In addition, the variations in the proportion of C3 and C4 grass species AGB at different 

phenological phases is also a possibility, for understanding the contribution of these grasses 

to food security over time. With varying temporal conditions, it is most likely that species 

AGB to support grazer populations will be different. This is supported by a study by 
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Bremond et al. (2012) in Colorado, USA, who reported that, although C3 grasses covered 

more than 50% of the area, they account for only 10% of AGB. Therefore, not only does the 

distribution, or the spatial extent of C3 and C4 grasses influence the functioning of the 

ecosystem, but also the proportion of their AGB over space and time. 

 

The use of more advanced non-parametric algorithms in estimating C3 and C4 grasses AGB 

has also been undermined, despite their higher predictive accuracy, when compared to 

parametric algorithms, even when using the broadband multispectral sensors. Advanced 

machine learning algorithms improve the use of remote sensing data to quantify grasses 

AGB. Studies which have been conducted in grassland ecosystems in general, have reported 

the potential of advanced algorithms in predicting AGB (Cho et al., 2007; Mutanga et al., 

2012; Ramoelo et al., 2015b). For instance, the study by Cho et al. (2007) reported the 

potential of the partial least squares, using hyperspectral indices, whereas Mutanga et al. 

(2012) and Ramoelo et al. (2015b) reported the strength of the random forest in the prediction 

of grasses AGB. Although these algorithms have not been specifically tested for the 

estimation of C3 and C4 grass species AGB, their reported high predictive performance in 

grassland ecosystems in general, offer great potential for C3 and C4 grasses. In the absence 

of remote sensing datasets, it is also possible to resample field spectra to upcoming or 

existing sensors’ band settings, in order to explore their potential in estimating grasses AGB 

(Sibanda et al., 2015a). Resampling of hyperspectral measurements is becoming a reliable 

alternative in testing the potential of available or upcoming sensors, especially considering 

the challenges associated with hyperspectral datasets. 

 

2.9. Conclusion 

The remote sensing of C3 and C4 grasses AGB has gained considerable attention, since the 

emergence of broadband multispectral datasets, which have enabled substantial research to be 

conducted over the past decades. Although multispectral sensors were the primary data 

sources for the estimation of C3 and C4 grass species AGB, their large pixel resolution 

imposes significant challenges in discerning subtle, but important and relevant, grass species 

parameters. Similarly, hyperspectral datasets are associated with their own challenges, 

including their small geographic coverage, their acquisition cost and pre-processing. This 

underscores a shift towards the use of affordable new generation sensors, with strategically-

positioned spectral bands, high temporal resolution and large geographic coverage, in the 

estimation of C3 and C4 grass species AGB. The development of these sensors, such as 
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Sentinel 2 MSI, provides an invaluable opportunity for the phenological monitoring of C3 

and C4 grasses AGB, which is a challenge, when using broadband multispectral sensors. The 

advances in algorithms have the potential to improve the identification of the optimal remote 

sensing variable for the accurate estimation of C3 and C4 grasses AGB. This prompt the need 

for future studies to test the applicability of new generation sensors, with advanced image 

acquisition characteristics, coupled with the use of non-parametric and robust machine 

learning algorithms, such as Discriminant Analysis, random forest, partial least squares, 

support vector machines and neural networks, for the well-informed management of 

rangelands. 

 

The review has provided detailed progress in the remote sensing of C3 and C4 grasses AGB. 

It was noted that information on the variability of C3 and C4 grass species AGB over space 

and time is still rudimentary and uncertain. A lack of appropriate sensors is one of the major 

challenges to characterize these species. Emerging new generation sensors have also been 

identified to offer better characterization of C3 and C4 grass species AGB. To have a better 

characterization of these species AGB or accounting for their productivity over space and 

time, their discrimination becomes a fundamental foundation. The next chapter therefore 

constitute an experimental survey that tested the potential of emerging sensors’ spectral 

settings in the seasonal discrimination of C3 and C4 grass species, using in situ 

hyperspectral measurements. 
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CHAPTERS THREE TO FIVE  
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C3 AND C4 GRASS SPECIES DISCRIMINATION 

 

 

View of Festuca (C3) dominated landscape, with a patch of Themeda (C4) in the study site 

(Photograph courtesy: Trylee Matongera; in May 2016).  
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3. Seasonal discrimination of C3 and C4 grasses functional types: 

An evaluation of the prospects of the varying spectral 

configurations of the new generation sensors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on:  

Shoko C and Mutanga O (2017a): Seasonal discrimination of C3 and C4 grasses functional 

types: An evaluation of the prospects of the varying spectral configurations of the new 

generation sensors. International Journal of Applied Earth Observations and 

Geoinformation, (62):47–55. 
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Abstract 

The present study assessed the potential of varying spectral configurations of Landsat 8 

Operational Land Imager (OLI), Sentinel 2 Multi-Spectral Instrument (MSI) and Worldview 

2 sensors in the seasonal discrimination of Festuca costata (C3) and Themeda Triandra (C4) 

grass species in the Drakensberg, South Africa. This was achieved by resampling 

hyperspectral measurements to the spectral windows corresponding to the three sensors at 

two distinct seasonal periods (summer peak and end of winter), using the Discriminant 

Analysis (DA) classification ensemble. In summer, standard bands of the Worldview 2 

produced the highest overall classification accuracy (98.61%), followed by Sentinel 2 

(97.52%), whereas the Landsat 8 spectral configuration was the least performer, using 

vegetation indices (95.83%). In winter, Sentinel 2 spectral bands produced the highest 

accuracy (96.18%) for the two species, followed by Worldview 2 (94.44%) and Landsat 8 

yielded the least (91.67%) accuracy. Results also showed that maximum separability between 

C3 and C4 grasses was in summer, while at the end of winter considerable overlaps were 

noted, especially when using the spectral settings of the Landsat 8 OLI and Sentinel 2 

shortwave infrared bands. Test of significance in species reflectance further confirmed that in 

summer, there were significant differences (P < 0.05), whereas in winter, most of the spectral 

windows of all sensors yielded insignificant differences (P ˃ 0.05) between the two species. 

In this regard, the peak summer period presents a promising opportunity for the spectral 

discrimination of C3 and C4 grass species functional types, than the end of winter, when 

using multispectral sensors. Results from this study highlight the influence of seasonality on 

discrimination and therefore provide the basis for the successful discrimination and mapping 

of C3 and C4 grass species.  

 

Keywords: spectral-separability-windows, Festuca costata, Themeda triandra, climate change, 

carbon cycle, ecosystems goods and services 
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3.1. Introduction 

C3 and C4 grasses represent a unique species functional type, which influences the function 

and provision of ecosystem goods and services. For instance, C3 and C4 grass species play an 

important role in regulating the carbon cycle, whereby C4 species store more carbon, when 

compared to their C3 counterparts (Foody and Dash, 2007; Pau and Still, 2014). C3 and C4 

grasses also play a fundamental role in maintaining biodiversity and are an important source 

of forage for livestock and wildlife populations (Mansour et al., 2012a; Niu et al., 2008; Pau 

and Still, 2014). The ability of these grass species to provide services also varies with season 

(Pau and Still, 2014; Rigge et al., 2013; Wang et al., 2013). For instance, the study by Rigge 

et al. (2013) has highlighted that the timing or availability of rainfall and temperature 

variations influence the phenology and chemical processes of C3 and C4 grasses. However, 

the current and projected environmental changes, notably temperature and rainfall variations, 

are more likely to compromise C3 and C4 grass species’ distribution, seasonal forage 

availability and timing (Díaz and Cabido, 1997; Xia et al., 2014). There is also a growing 

concern that increase in atmospheric CO2 concentrations will be favourable to C3 species, 

and they are more likely to increase in distribution and abundance at the expense of C4 

(Barbehenn et al., 2004; Bremond et al., 2012). On the other hand, other studies (Adair and 

Burke, 2010; Niu et al., 2008) have reported that increase in temperature favour C4, when 

compared to C3. Therefore, accurate and routine information is required to monitor these 

grass species functional types, especially considering the anticipated environmental change 

effects, their contribution to biodiversity conservation, biochemical cycles (e.g. carbon cycle) 

and most importantly food security. 

 

Remote sensing has proven to be a suitable means to monitor the subtle seasonal variations of 

vegetation species, according to their functional types (Roth et al., 2015b; Woodward et al., 

2004). The ability of remote sensors to spectrally distinguish species functional types, as well 

as detecting species physiological and morphological characteristics further enhances the 

seasonal discrimination for mapping and monitoring (Homolová et al., 2013; Ustin and 

Gamon, 2010). Spectral discrimination of C3 and C4 grass species, using remotely sensed 

data could provide a basis for mapping their spatial variations, with high accuracy, as well as 

a platform upon which to determine their possible shifts, especially in the face of climate 

change. Advances in sensor technology with improved image acquisition characteristics have 

progressively expanded the ability to distinguish the structure, phenology and physiology of 

vegetation, providing new insights into the seasonal monitoring of C3 and C4 species 
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functional types (Adjorlolo et al., 2014; Adjorlolo et al., 2015; Shoko et al., 2016b; Ustin and 

Gamon, 2010). Moreover, with different emerging remote sensing systems, knowledge of the 

seasonal spectral dynamics of C3 and C4 grasses provides a foundation on the relevance of 

these systems in discriminating grass species according to their functional types. 

 

Currently, in situ hyperspectral data is regarded as one of the most advanced remote sensing 

technology for vegetation discrimination at species level and its measurements have been 

successfully acquired to extract and understand species spectral profiles (Adam et al., 2010). 

The technique acquires detailed spectral data using hundreds of narrow bands, ranging from 

the visible, near-infrared, to the shortwave-infrared portions of the spectrum (Adam et al., 

2012; Adelabu et al., 2014; Liu and Cheng, 2011), which enables accurate and reliable 

seasonal spectral separability of C3 and C4 grasses. However, previous studies (Adam et al., 

2012; Adjorlolo et al., 2013; Peerbhay et al., 2015) have noted that the high expenses 

required for the acquisition of hyperspectral data, as well as the high dimensionality, inherent 

multi-collinearity associated with the data and technical difficulties concerned with the 

extraction of information and data analysis impose challenges in species discrimination. The 

study by Price et al. (2002) also reported a decrease in the discrimination accuracy when 

using hundreds of bands. This has prompted researchers to resample hyperspectral 

measurements to the spectral configuration of existing multispectral sensors to determine 

accurate species spectral signature (Adam et al., 2012; Adelabu and Dube, 2015; Sibanda et 

al., 2015b). The resampling of hyperspectral measurements has also been frequently 

performed to examine the potential and suitability of sensors’ spectral configuration or 

settings in discriminating vegetation species. The future of C3 and C4 grass species 

monitoring therefore lies on the potential of the operational and upcoming multispectral 

sensors. 

 

The new generation of multispectral sensors that have emerged, which are characterised by 

strategically-positioned spectral bands, notably the Landsat 8 Operational Land Imager 

(OLI), Sentinel 2 Multi-Spectral Instrument and Worldview 2 present a valuable opportunity 

to monitor the seasonal variations of C3 and C4 species functional types (Shoko et al., 

2016b). These sensors have improved image acquisition characteristics for detecting subtle 

spectral seasonal variations between C3 and C4 grasses, critical in their discrimination and 

monitoring. For example, the additional red edge bands (e.g. four bands for Sentinel-2 MSI 

and 1 for Worldview-2) are perceived to have the capability of expanding the detection 
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windows for the spectral separability of C3 and C4 grass species. In addition, red edge 

windows have been reported to be highly sensitive to vegetation species characteristics 

(Marshall et al., 2012; Mutanga et al., 2012; Rapinel et al., 2014), which improve their ability 

to discriminate between species. The high frequency and large swath width (e.g. 285 km of 

Sentinel 2) further enhance the cyclical monitoring of C3 and C4 species at large geographic 

scales (Stratoulias et al., 2015). The studies by Richter et al. (2012) and Immitzer et al. 

(2016) highlighted the strength of the spectral configuration of Sentinel 2 in estimating crop 

leaf area index and tree species classification, respectively. Landsat 8 OLI has also been 

reported for vegetation monitoring, particularly species biomass quantification and mapping 

(Dube and Mutanga, 2015a; El-Askary et al., 2014; Hauglin and Ørka, 2016). These studies 

have revealed the potential of the sensor spectral configuration (e.g. refined near infrared 

band) in expanding the monitoring of vegetation at large geographical coverage, in a cost 

effective manner. However, the performance of these sensors in discriminating and mapping 

C3 and C4 grass species remains unknown.  

 

Therefore, in an attempt to renew and expand the continuous monitoring of vegetation 

species according to functional types, this study assessed the potential of the Landsat 8 OLI, 

Sentinel 2 MSI and the Worldview 2 spectral configurations in discriminating between C3 

and C4 grass species at two distinct seasons, using in situ hyperspectral measurements. 

Despite the importance of spatial resolution or any other image acquisition characteristics, 

which play significant roles in species discrimination, this study held these characteristics 

constant. This was aimed to evaluate the robustness of new generation spectral configurations 

in the seasonal discrimination of C3 and C4 applications. Although the mentioned sensors are 

available for monitoring C3 and C4 spectral discrimination; the high acquisition cost of 

Worldview 2 present a major challenge to understand the seasonal spectral differences of the 

target grasses. In addition, hyperspectral data provide the most accurate and reliable measures 

of species spectra and the high dimensionality and large volumes of the data further 

emphasize the need for spectral resampling to reduce such problems. The objectives of this 

research were therefore to: (i) determine the most suitable seasonal period to spectrally 

distinguish and classify Festuca (C3) and Themeda (C4) grass species, with better accuracy, 

(ii) identify the most relevant sensor’s spectral windows in seasonal discrimination of the two 

grasses and (iii) identify the most relevant variables (among standard bands, vegetation 

indices and combined indices and standard bands) in the seasonal discrimination of the two 

species when using multispectral sensors. 
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3.2. Materials and Methods 

3.2.1. Field data collection 

The collection of hyperspectral data was conducted at two distinctive seasons; specifically 

during the peak of summer (February) and end of winter (August) in 2016. The target grasses 

were Festuca costata (C3) and Themeda triandra (C4) grass species, which predominantly 

occur in the area. In addition, a close association has been noticed between these two species 

with different photosynthetic pathways. Hyperspectral measurements were collected during 

the two periods, using an Analytical Spectral Device (ASD) FieldSpec spectrometer 

(FieldSpec®3, ASD, Inc., Boulder, CO, USA). The ASD device records canopy reflectance 

between the range of 350 and 2500 nm. The collection of spectral measurements was 

performed using a random sampling strategy after Adjorlolo et al. (2012a). The reflectance 

data for the target grasses was recorded between 1000 hr and 1400 hr, under clear conditions, 

which is regarded as the ideal period for determining vegetation spectral characteristics. 

Spectral measurements were also normalized using a standard white panel to take into 

account any changes in the atmospheric condition and irradiance of the sun (Sibanda et al., 

2015b). In each plot, 30 spectral measurements were consistently taken at nadir, for each 

grass species. A total of 120 plots were sampled for each grass resulting in 3600 spectral 

samples, for each season. 

 

3.2.2. Spectral resampling 

Prior to analysis using hyperspectral measurements, previous studies (Adjorlolo et al., 2013; 

Thenkabail et al., 2004) have emphasized the removal of some noise wavelengths in the 

spectral range of 350–390, 1350–1440, 1790–1990 and 2360–2500 nm. The data were then 

resampled to Landsat 8 OLI, Sentinel 2 MSI and Worldview 2 sensors spectral configuration 

using the spectral analysis routine in ENVI 4.7 software (ITT Visual Information Solutions, 

2009).The technique fits a Gaussian model with the Full Width at Half Maximum (FWHM) 

equal to a specified band width. The procedure involved resampling in situ data to the 

specific bandwidth interval across the 400 – 2500 nm spectrum, matching those of the 

Landsat 8, Sentinel 2 and the Worldview 2. This was done to simulate the spectral response 

function of the sensors presented in Table 3.1. Detailed information on this hyperspectral 

resampling approach used in this study is provided in Adjorlolo et al (2013). In addition, not 

all bands of the three sensors were considered for resampling and analysis in this study. For 

example, using the Landsat 8, the thermal infrared and the panchromatic bands were 
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excluded. Similarly, for the Sentinel 2, bands 1 (coastal aerosol), 9 (water vapour) and eleven 

(SWIR cirrus) were also excluded. These bands were previously reported to be inapplicable 

for vegetation monitoring (Féret et al., 2015; Immitzer et al., 2016). For the Worldview 2, all 

bands were considered for resampling and further analysis. 

 

Table 3.1: New generation sensors spectral configurations 

Sentinel 2 MSI Landsat 8 OLI Worldview 2 

Band Name Centre Width Name Range Name Range 

1 Coastal aerosol 443 20 Coastal blue 435-451 Coastal blue 400–450  

2 Blue 490 65 Blue 452-512 Blue 450–510  

3 Green 560 35 Green 533-590 Green 510–581 

4 Red 665 30 Red 636-673 Yellow 585–625  

5 Red edge 705 15 NIR 851-879 Red 630–690 

6 Red edge 740 15 SWIR1 1566-1651 Red edge 705–745 

7 Red edge 783 20 SWIR2 2107-2294 NIR1 770– 895 

8 NIR 842 115 Panchromatic 503-676 NIR 2 860–1040 

8a Red edge 865 20     

9 Water vapour 945 20 Cirrus 1363-1384   

10 SWIR-Cirrus 1375 30 TIR1 1060-1119   

11 SWIR 1375 30 TIR2 1150-1251   

12 SWIR 2190 180     

Italized bands were not used in this analysis 

 

3.3. Data Analysis 

To determine the potential of the three sensors’ spectral configuration in discriminating the 

two species functional types at two distinct seasonal periods, the Discriminant Analysis (DA) 

function embedded in Microsoft Excel 2013 was used. The data used with the DA was 

randomly split into 30% testing and 70% training sets, which is a requirement for all machine 

learning algorithms (Adelabu et al., 2014; Adjorlolo et al., 2013; Sibanda et al., 2015a). The 

training sample trains the model in discriminating between the two species, whereas the test 

sample validates the performance of the model. The DA function was used to: (i) determine 

the most suitable seasonal period to spectrally distinguish and classify Festuca and Themeda 

grass species with better accuracy, (ii) to identify the relevant sensor’s spectral configuration 

in seasonal discrimination and classification of the two grasses and (iii) identify the most 

relevant variables in the seasonal discrimination of the two species. The vegetation indices 

which were used with the resampled hyperspectral measurements are shown in Table 3. 2. 

These indices were chosen based on their performance in discriminating C3 and C4 grass 

species, which has been reported by previous studies (Adjorlolo et al., 2012a; Davidson and 

Csillag, 2001; Peterson et al., 2002; Price et al., 2002).  
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Table 3.2: Vegetation indices calculated using the resampled hyperspectral measurements 

Vegetation Index Formula Reference 

Simple ratio NIR/R Jordan (1969) 

Standard NDVI (NIR–R)/(NIR+R) Tucker (1979) 

NDVI 4 (NIR2− Y)/(NIR2+ Y) Adjorlolo et al. (2012) 

NDVI 5 (RE− CB)/( RE + CB) Adjorlolo et al. (2012) 

SAVI ((NIR2-R)*(1+L))/(NIR2+R+L) Huete (1988) 

G Chl index (NIR2/G)-1 Gitelson et al. (2003) 

EVI 2,5((NIR2-R)/(1+NIR2+6R-7,5*B)) Huete et al. (1997) 

 

3.3.1. Accuracy assessment 

The classification accuracy for the two species at different seasonal periods was assessed 

using the classification matrices generated from the DA model. The classification accuracies 

of the individual species using the different variables derived from the resampled data were 

also reported using the user’s and producer’s accuracies. The method by Pontius Jr and 

Millones (2011) was also used to assess the seasonal classification accuracies produced by 

the different sensors’ spectral configuration for the two species. The method provides 

accuracy assessment at individual classes (i.e. species level) using the errors of omission and 

commission, which in this case measure the seasonal ability of the resampled variables to 

correctly classify the target species. Commission error stems from the incorrect inclusion of 

the species in the other class or category, whereas omission error occurs when a sample of a 

particular class is excluded from the class under consideration (Zhou et al., 2014). Statistical 

significance test was also performed to determine significance difference in seasonal 

reflectance between the two species using the different sensors spectral settings. The overall 

classification accuracies derived from the three sensors spectral configurations were also 

tested for significance difference. These tests were performed using the T-test of significance 

embedded in Microsoft Excel 2013. 

 

3.4. Results 

3.4.1. Grass species spectral response patterns during the two distinct seasonal periods 

Figure 3.1 shows the derived seasonal spectral response patterns of Themeda and Festuca 

grasses, using hyperspectral measurements resampled to Landsat 8, Sentinel 2 and 

Worldview 2 spectral configurations. The graph illustrates that Themeda grass species exhibit 

higher reflectance across the spectrum, when compared to the Festuca. The two grass species 

were spectrally distinct during the summer period across the spectrum of all the sensors 

spectral configuration. During winter, although there were considerable spectral separability 

for some portions of the spectrum (e.g. Sentinel 2 bands 5 to 8), it was noted that using the 
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Landsat 8 spectral configuration, notably the SWIR bands 6 and 7, the two species were 

spectrally identical. The same was observed from SWIR band 10 of Sentinel 2 and red band 5 

of Worldview 2. The visual comparison was also confirmed by the T-test of significance 

difference in reflectance between the two species at different spectral windows. In summer, 

the spectral difference between Festuca and Themeda was significant (P < 0.05), for all bands 

of the sensors spectral configuration, whereas in winter, a limited number of bands exhibited 

significant differences (P < 0.05), notably all sensors’ blue band. 
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(a) Summer 

 
(b) End of winter 

 
Figure 3.1: Seasonal spectral signatures of the two species derived from averaged resampled hyperspectral measurements 
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3.4.2. Influence of sensor variables on seasonal species discrimination 

Overall, all sensors’ spectral configurations revealed high potential in seasonal discrimination 

of the two grass species functional types, especially in summer. The Sentinel 2 MSI and 

Worldview 2 spectral configurations provided more bands which influence species 

discrimination, whereas for the Landsat 8, it was only the green and the SWIR1 bands. 

Furthermore, the Landsat 8 SWIR 1, the red edge bands of the Sentinel 2 and the Worldview 

2 yellow band were the most influential wavebands in summer, whereas in winter, the blue 

band of all the three sensors was the most influential band in discriminating the two grasses. 

It was also found that the Landsat 8 NIR, the Sentinel 2 NIR and the Worldview 2 blue bands 

were the least influential in summer, whereas in winter, the green band of all sensors was the 

least influential in discriminating between the two species. The derived vegetation indices 

have agreed that during the two distinct seasonal periods, the G Chl index, EVI and the 

standard NDVI were the most influential indices in discriminating between the two species, 

with the standard NDVI identified as the most influential variable, whereas the SAVI was the 

least. 

 

3.4.3. Seasonal classification of C3 and C4 grass species 

Figure 3.2 shows the overall classification accuracies produced using the three variables 

(standard bands, vegetation indices (VIs) and combined standard bands and indices), derived 

from the resampled data, during the peak of summer and end of winter. All sensors’ spectral 

settings produced high classification accuracies, for both grass species, although the summer 

period showed slightly higher accuracies than winter. In summer, Worldview 2 produced the 

highest overall accuracy of 98.61%, followed by the Sentinel 2 (97.52%), using standard 

bands spectral configurations. In winter, the Sentinel 2 standard bands spectral configuration 

outperformed the other sensors, with 96.18% classification accuracy, followed by Worldview 

2 (94.44%). The performance of the Sentinel 2 and Worldview 2 standard bands was also as 

good as the use of indices for the two periods. The spectral configuration of Landsat 8 

comparatively yielded the least overall classification accuracies, ranging between 90.14% and 

95.83%, with standard bands producing the lowest accuracies. In winter, lower classification 

accuracies were produced compared to summer. For example, in summer Landsat 8 produced 

overall accuracies ranging from 90.24 to 95.83% and Worldview 2 varied from 97.18 to 

98.61%, whereas in winter, Landsat 8 yielded a range between 90.18 and 91.67%, whereas 

Worldview 2 dropped to a range between 90.28 and 94.44%. 
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Figure 3.2: Overall accurracies in (a) summer and (b) winter derived using different variables 

 

Considering the performance of the different variables, the use of indices using the 

Worldview 2 and Sentinel 2 did not improve the overall classification in summer, it actually 

decreased it. However, for the Landsat 8, indices slightly improved the overall classification 

accuracy by 5.59% in summer and by 1.49% in winter, from standard bands. The use of 

combined variables using all sensors also resulted in considerable decrease in overall 

classification accuracies, during the two seasonal periods. For example, the Sentinel 2 overall 

classification dropped by 3.15% in summer and by 8.33% in winter, whereas for the 

Worldview 2, it slightly dropped (by 0.02%) in summer and by 4.16% in winter. 

 

3.4.4. Classification assessment results 

Figures 3.3(a) and (b) show the commission and omission errors encountered using standard 

bands and indices, respectively, in the seasonal classification of Festuca and Themeda grass 

species. In summer, (Figure 3.3b (i)), indices had the lowest commission and omission errors 

(ranging between 2.7% and 5.7%), than standard bands (Figure 3.3a (i), ranging between 0 

and 13.8%), whereas in winter, standard bands (Figure 3.3a (ii)) produced lower errors 

(ranging between 0 and 11.1%), compared to indices (Figure 3.3b (ii), ranging between 5.4 

and 11.4%). In summer, standard bands spectral windows of the Worldview 2 image 

produced the lowest commission and omission errors (between 2.77 and 2.85%), followed by 

Sentinel 2 (between 0 and 10.8%), whereas the Landsat 8 produced the largest errors between 

5.71 and 13.89% in classifying the two species. In winter, standard bands of the Landsat 8 

also had the highest errors (between 8.3 and 10.8%), followed by Worldview 2 (between 2.70 

and 8.57%), whereas the Sentinel 2 had the lowest (between 0 and 6.25%) errors in 

classifying the target species. 
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Figure 3.3: The classification errors using (a) standard bands and (b) indices in summer (i) 

and winter (ii) for the two grass species 

 

It was also found that Landsat 8 derived variables produced the lowest user’s and producer’s 

accuracies in summer, ranging between 86.11% (for Festuca) and 97.30% (Themeda), 

whereas the Worldview 2 produced the highest between 97.14 and 100% in classifying the 

target species. The classification of Themeda species also produced higher user’s accuracies 

(ranging between 94.29 and 97.22%) in summer, compared to Festuca (ranging between 

86.11 and 97.37%), using all sensors. There were also mixed results in the producer’s and 

user’s accuracies obtained when classifying the two species using the three sensors’ 

variables. Some accuracy for the individual species slightly improved, while others worsened, 

especially in winter. For example, the Landsat 8 standard bands produced 89.19% and 

91.43%, indices produced 94.59% and 88.57%, whereas the use of combined variables 

produced 91.89% and 88.43%, user accuracies, for Festuca and Themeda, respectively.  

 

3.5. Discussion 

The seasonal accurate and reliable spectral information of C3 and C4 grass species is 

becoming critical for species mapping with higher accuracy, for understanding their response 

to environmental changes and for well-informed management. This study aimed to assess the 

potential of the spectral configurations of Landsat 8 OLI, Sentinel 2 MSI and Worldview 2 
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sensors in the seasonal discrimination of C3 and C4 grass species functional types in the 

Drakensberg of South Africa, using in situ hyperspectral measurements. 

 

3.5.1. Species seasonal spectral response curves 

Overall, the spectral signature of Themeda grass was higher than that of Festuca, especially 

in summer, based on all sensors spectral configuration. This confirmed the previous findings 

by Adjorlolo et al. (2013), which was conducted during the peak of the summer period. This 

may be attributed to the interior leaf properties (e.g. the concentration of nitrogen) which 

influence the species interaction with incoming radiation and subsequently reflectance. For 

example, previous studies (Adjorlolo et al., 2014; Adjorlolo et al., 2015) have revealed that 

Themeda consists of significantly higher nitrogen and crude protein content, compared to 

Festuca, during the peak of the summer period. The concentration of these variables has been 

reported to influence species spectral signatures. For instance, the study by Walburg et al. 

(1982) has demonstrated the influence of nitrogen on the seasonal reflectance of corn and 

reported a positive response of reflectance with nitrogen application. 

 

It was also found that the two grass species were spectrally distinct in February across the 

spectrum of all sensors spectral configurations. Consequently, for a successful discrimination 

of these species, the period when both species are active becomes most suitable, especially 

when using multispectral sensors. This was also noted in a separate study by López-Granados 

et al. (2006), which used hyperspectral measurements to discriminate grass weeds from 

wheat. They reported that the discrimination of grass weeds is feasible before vegetation 

becomes inactive or reach their senescence stage, which makes them become spectrally 

identical. In agreement, Féret et al. (2015) and Schmidt et al. (2014) have identified the 

period of photosynthetically active as optimal for vegetation spectral discrimination, 

compared to senescence or dormancy. In contrary, at the end of winter, some portions of the 

spectrum (e.g. Landsat 8 SWIR bands), were spectrally identical. Thus at the end of the 

winter period, a limited number of spectral windows have the potential to discriminate 

between the two species, compared to the summer period. This might result in over or under-

estimation of the target species, thereby compromising the overall classification accuracy of 

the two species. The spectral signatures at the end of the winter period for both species also 

showed lower reflectance, compared to the summer period; thus both species were 

photosynthetically active in February, whereas in August they were less active. This is 

supported by the study of Everson and Everson (2016) which highlighted the high frequency 
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of frosts during the winter period within the study area, resulting in both grasses becoming 

dormant. Although the two species have been reported to have different phenological 

profiles, this study has revealed that at the end of the winter period in August, the two grasses 

are difficult to distinguish. In agreement with the findings of this study, Price et al. (2002) 

noted that during the winter period, especially where snow is frequent, both C3 and C4 grass 

species become dry thereby appearing spectrally similar. This period therefore becomes a 

challenge to distinguish these species.  

 

3.5.2. The influence of sensors spectral configuration on seasonal discrimination 

Different sensors’ spectral configuration showed different abilities in the seasonal 

discrimination of grass species functional types. The influence of the Landsat 8 SWIR 1, 

Sentinel 2 red edge four and the Worldview 2 yellow spectral bands in summer is consistent 

with the findings of previous studies which resampled hyperspectral measurements to 

different sensors (Féret et al., 2015; Marshall et al., 2012). The study by Féret et al. (2015) 

revealed that the yellow region of the Worldview 2 is an intermediate domain which is more 

sensitive to chlorophyll content, when compared to the green domain, thereby enhancing its 

ability to discriminate vegetation species. The studies of Collin and Planes (2011) and 

Robinson et al. (2016) further confirmed the potential of the yellow spectral window in the 

classification of vegetation species. They revealed that the detection windows of the yellow 

band provide critical information about the carotenoid and chlorophyll pigments of the 

species, respectively, which enhance the classification accuracy.  

 

The potential of the red edge and SWIR spectral windows, notably of the Sentinel 2, which 

are currently not present within the spectral configuration of multispectral broadband sensors, 

becomes promising in the seasonal discrimination of C3 and C4 grass species. Considerable 

studies have admitted the strength of the red edge spectral window in species discrimination 

and mapping (Rapinel et al., 2014; Robinson et al., 2016; Schmidt et al., 2014; Schuster et al., 

2012). However these studies have used commercial sensors, notably Worldview 2 and 

RapidEye; in this regard the presence of this region within the Sentinel 2 spectrum provides a 

valuable window for species discrimination in a cost-effective manner. Similarly, findings 

from this study concur with those of Ramoelo et al. (2015a) and Laurin et al. (2016) who 

reported the substantial importance of the two SWIR and the red edge 1 spectral 

configurations of the Sentinel 2 in determining grass nitrogen, as well as in discriminating 

species functional types, respectively. They further emphasized that the availability of the red 
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edge which is available in commercial satellites, such as RapidEye and Worldview 2, as well 

as the refined SWIR provide easy accessibility of refined spectral data for grasslands 

monitoring. The potential of the SWIR region, notably above 2000 nm was also reported by 

Adjorlolo (2013), as critical for classifying C3 and C4 grass species functional types. 

Similarly, Ferreira et al. (2015) has also confirmed the potential of the Worldview 3 SWIR 

spectral window in discriminating forest species, using hyperspectral measurements.  

 

This study also found that the green spectral window of all the three sensors was the least 

influential in discriminating between the two species in winter. This confirms the fact that 

during the end of winter, the species lose their vigour, with less chlorophyll content, hence 

less reflectance in the green and NIR portions (Gitelson et al., 1996; Gitelson and Merzlyak, 

1996; Marshall et al., 2012). This possibly explains why the green band was less influential in 

discriminating the two species. On the other hand, during the summer period, the green band 

was not influential; this may be attributed to the fact that although it was a period of high 

chlorophyll concentration, the band was not as sensitive as the red edge of Sentinel 2, yellow 

of the Worldview 2 and SWIR of the Landsat 8. In addition, Landsat 8 NIR, the Sentinel 2 

NIR and the Worldview 2 blue spectral bands were the least influential in summer. Similar 

findings, notably of Worldview 2 were reported by Marshall et al. (2012); the study found 

that the traditional NIR band contributed the least in discriminating buffel, an invasive C4 

grass species in Australia, during the summer season.  

 

3.5.3. Sensors performance in the seasonal classification of C3 and C4 grass species 

The Worldview 2 and Sentinel 2 produced better and comparable results during the two 

seasonal periods, whereas the Landsat 8 was the least performer. This was also reported by a 

previous study (Féret et al., 2015), the best performances were produced from either 

Worldview 2 or Sentinel 2 sensors spectral configurations. This possibly results from the 

presence of red edge windows of these sensors which enhance their discrimination ability, 

compared to Landsat 8. In this regard, this provides an insight to the potential of the Sentinel 

2 spectral windows in the discrimination and possible means for the spatial representation of 

these grass species. The sensor spectral separability windows thus provides a suitable 

alternative for the spectral discrimination of C3 and C4 grass species in a cost-effective 

manner, since Worldview 2 images are provided on a commercial basis. However, the 

performance of the Landsat 8 is much better than the findings of Féret et al. (2015). Their 

findings showed that the Landsat 8 produced overall classification accuracies between 81.1 
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and 88.6% for different vegetation types (grasslands, ferns and fields), which are lower than 

those produced in the present study in classifying grass species of different photosynthetic 

pathways. They also noticed misclassification of the vegetation species using the Landsat 8 

spectral bands; hence they recommended the use of indices or combined variables for better 

species discrimination. Furthermore, the study of Price et al. (2002), which used Landsat TM 

in discriminating C4 and C3 grass species under different management practices, during the 

winter period of the Great plains of Kansas in United States reported the poor classification 

performance, which they attributed to the dryness of the grasses during that period, making it 

difficult to distinguish them. The lower performance of the Landsat 8 OLI spectral setting 

was also reported by Sibanda et al. (2016); the sensor produced the lowest classification 

accuracies across all the grassland management practices, compared to other sensors. The 

lower performance of the Landsat 8 sensor may be primarily attributed to its much wider 

spectral settings and limited bands (Féret et al., 2015; Sibanda et al., 2016), compared to 

Sentinel 2 or Worldview 2; which all limit its potential in discriminating between the species. 

 

The use of indices did not significantly improve the overall classification accuracies for all 

the sensors, except for the Landsat 8. This might be attributed to the fact that the spectral 

separability windows of the Landsat 8 are much wider such that the species spectral 

differences are difficult to detect. The lower performance of the Landsat 8 standard bands 

was also confirmed by the assessment results at species level, where the sensor reported the 

largest commission and omission errors in classifying the two grass species. This indicated a 

spectral confusion between the two species, when using the spectral configuration of Landsat 

8, which may result in considerable over or under-classification of the target species, 

although it showed high overall classification results. Indices therefore present a better 

solution to discern such variations, when using the Landsat 8 sensor. The absence of the red 

edge spectral window within the Landsat 8 (which is present within the other sensors spectral 

range) possibly limits its potential in species discrimination.  

 

3.6. Conclusion 

The present study assessed the potential of new generation sensors, with strategically-

positioned spectral bands in discriminating between Festuca (C3) and Themeda (C4), its 

counterpart. Based on the findings of this study, it can be concluded that: 
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(a) the ability of Landsat 8 OLI, Sentinel 2 MSI and the Worldview 2 spectral 

configurations to successfully detect species spectral differences and classification 

varies with season,  

(b) the performance of standard bands spectral configuration, notably of the Sentinel 2 

and Worldview 2 was as good as that of vegetation indices in classifying the target 

grass species, 

(c) the peak of the summer season (when both species are photosynthetically active) has 

been identified as the suitable period for the successful discrimination of C3 and C4 

grass species functional types, and 

(d) the use of hyperspectral measurements still remains critical to understand the seasonal 

spectral behaviour of vegetation species with high accuracy.  

 

Overall, results from this chapter have highlighted the potential of the spectral windows of 

new generation sensors in the seasonal discrimination of C3 and C4 grass species. Most 

importantly, the experiment have highlighted that when species are active, they become more 

distinct and separable using remote sensing. However hyperspectral measurements are 

limited to plot level; there is therefore a need for further research to explore these new 

generation sensors’ fidelity in detecting and mapping the spatial distribution of the target 

species, considering their varying acquisition characteristics. The succeeding chapter 

therefore used the real images of Landsat 8, Sentinel 2 and Worldview 2 to test how the 

sensors, particularly the newly-launched Sentinel 2 can achieve the task, within a specific 

period.  
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CHAPTER FOUR  
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4. Examining the strength of the newly-launched Sentinel 2 MSI 

sensor in detecting and discriminating subtle differences between 

C3 and C4 grass species 
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Abstract 

C3 and C4 grass species discrimination has increasingly become relevant in understanding 

their response to environmental changes and to monitor their integrity in providing goods and 

services. While remotely-sensed data provide robust, cost-effective and repeatable 

monitoring tools for C3 and C4 grasses, this has been largely limited by the scarcity of 

sensors with better earth imaging characteristics. The recent launch of the advanced Sentinel 

2 MultiSpectral Instrument (MSI) presents a new prospect for discriminating C3 and C4 

grasses. The present study tested the potential of Sentinel 2, characterized by refined spatial 

resolution and more unique spectral bands in discriminating between Festuca (C3) and 

Themeda (C4) grasses. To evaluate the performance of Sentinel 2 MSI; spectral bands, 

vegetation indices and spectral bands plus indices were used. Findings from Sentinel 2 were 

compared with those derived from the widely-used Worldview 2 commercial sensor and the 

Landsat 8 Operational Land Imager (OLI). Overall classification accuracies have shown that 

Sentinel 2 bands have potential (90.36%), than indices (85.54%) and combined variables 

(88.61%). The results were comparable to Worldview 2 sensor, which produced slightly 

higher accuracies using spectral bands (95.69%), indices (86.02%) and combined variables 

(87.09%), and better than Landsat 8 OLI spectral bands (75.26%), indices (82.79%) and 

combined variables (86.02%). Sentinel 2 bands produced lower errors of commission and 

omission (between 4.76 and 14.63%), comparable to Worldview 2 (between 1.96 and 7.14%), 

than Landsat 8 (between 18.18 and 30.61%), when classifying the two species. The 

classification accuracy from Sentinel 2 also did not differ significantly (z = 1.34) from 

Worldview 2, using standard bands; it was significantly (z > 1.96) different using indices and 

combined variables, whereas when compared to Landsat 8, Sentinel 2 accuracies were 

significantly different (z > 1.96) using all variables. These results demonstrated that key 

vegetation species discrimination could be improved by the use of the freely and improved 

Sentinel 2 MSI data. 

 

Keywords: grassland ecosystems, climate change, remote sensing, spatial representation, red 

edge 
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4.1. Introduction 

C3 and C4 grasses are an important species functional type of terrestrial ecosystems 

responsible for carbon sequestration, maintaining biodiversity and as forage for wildlife and 

livestock (Bremond et al., 2012; Foody and Dash, 2007; 2010). The distribution of these 

grass species is primarily linked to climatic and topographic conditions (Bremond et al., 

2012; Woodward et al., 2004; Yan and de Beurs, 2016) and so does their ability to provide 

services. Thus, any changes in climatic conditions are most likely to alter their distribution 

and function. For example, C3 species are anticipated to move to cooler and moister south-

facing slopes or to higher altitudes areas in response to rises in temperature, whereas C4 

grasses will have an advantage of expanding (Adjorlolo et al., 2012b; Bremond et al., 2012; 

Shoko et al., 2016b). In contrast, accumulating evidence have confirmed that increase in 

carbon dioxide will favour the expansion and abundance of C3 grasses than C4 

(Chamaillé‐Jammes and Bond, 2010). Consequently, environmental changes are more likely 

to compromise C3 and C4 grasses distribution and these changes are anticipated to vary from 

place to place (Lei et al., 2016). It has also been noticed that grassland areas are facing 

considerable threats from bush encroachment and invasion by alien species (Everson and 

Everson, 2016). The discrimination and mapping of C3 and C4 grass species is therefore 

inevitable, so as to monitor their possible shifts, as a result of environmental changes. It is 

also desirable to evaluate the contribution of these grasses to the provision of services (e.g. 

forage) over time and ensure their sustainability in providing the required services. 

 

The discrimination of C3 and C4 grass species, using remote sensing has so far been 

primarily achieved, using broadband and coarse spatial resolution multispectral sensors, 

notably Advanced Very High Resolution Radiometer (AVHRR), MEdium Resolution 

Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS), 

(Foody and Dash, 2007; Guan et al., 2012; Liu et al., 2015; Wang et al., 2013; Wang et al., 

2010), and to a lesser extent, using Landsat TM (Guo et al., 2003; Liu et al., 2015; Price et 

al., 2002). However, studies which have used MODIS and AVHRR have noted that these 

sensors mis-represent the spatial variations of C3 and C4 grasses. Currently, the inability of 

the medium resolution MERIS and Landsat TM sensors to provide real time images further 

hampers the monitoring of C3 and C4 grass species. As the need for more detailed 

characterization of vegetation species arises and new ecological questions emerge, 

hyperspectral and commercial multispectral sensors (i.e. Worldview 1-3 and RapidEye) have 

been reported to be the most accurate sensors in monitoring C3 and C4 grass species 
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(Adjorlolo et al., 2012a; Liu and Cheng, 2011; Lu et al., 2009). Although the use of 

hyperspectral data has gained considerable attention in discriminating C3 and C4 grasses, 

their limitation in spatial coverage, high acquisition cost, challenges in data pre-processing, 

due to high volumes of data, as well as multi-collinearity problems, present major challenges 

for large scale and continuous monitoring of C3 and C4 grasses (Price et al., 2002; Shoko et 

al., 2016b). Similarly, the high acquisition cost of commercial satellites, hampers continuous 

monitoring of C3 and C4 grasses at large geographic coverage. In this regard, the monitoring 

of C3 and C4 grasses lies in the ability of emerging sensors to accurately discriminate and 

map their spatial variations.  

 

Recent advances in technology have produced innovative remote sensing sensors, creating 

new opportunities for vegetation monitoring according to functional types. The emergence of 

multispectral sensors with improved image acquisition characteristics, notably Landsat 8 OLI 

and Sentinel 2 has renewed the monitoring of C3 and C4 grasses. The provision of data by 

these sensors at large geographical coverage is becoming necessary as vegetation information 

is now required at broader scales for ecological monitoring and to enhance management 

practices. For instance, the Sentinel 2 was recently launched to enhance the monitoring of 

terrestrial and coastal ecosystems (Delegido et al., 2011; Richter et al., 2012; Stratoulias et 

al., 2015). The sensor is a polar-orbiting one that acquires super-spectral high-resolution 

images at a nadir position, covering 290 km field of view, at a high temporal resolution of 

five days (Immitzer et al., 2016; Laurin et al., 2016). The sensor thus presents an invaluable 

opportunity for monitoring C3 and C4 grass species functional types, when compared to the 

available broadband multispectral sensors. For instance, the refined spatial resolution (10 and 

20m) allows for better and more accurate spatial representation of species, which is one of the 

major challenges, that have been encountered from the use of broadband multispectral 

sensors (i.e. MODIS and AVHRR). Furthermore, the presence of four bands within the red 

edge region, centred at 705 (band 5), 740 (band 6), 783 (band 7) and 865 nm (band 8A), 

which are not present in freely-available multispectral sensors, widens the spectral windows 

for species identification and discrimination at broader scales. Red edge bands have so far 

been typically restricted to commercial satellites; hence Sentinel 2 now provides the easy 

accessibility of this key information. Previous studies (Clevers and Gitelson, 2013; Marshall 

et al., 2012; Robinson et al., 2016; Schuster et al., 2012) have also reported the red edge 

region as critical for enhancing species spectral responses and understanding vegetation 

status. For example, the study by Schuster et al. (2012) indicated that the incorporation of red 



 62 

edge spectral bands increases the classification accuracy of vegetation species, whereas 

Marshall et al. (2012) demonstrated the potential of red edge band of the Worldview 2 sensor 

in discriminating buffel C4 grass, from other vegetation types. 

 

The aforementioned image acquisition characteristics currently make the Sentinel 2 sensor a 

prime data source for vegetation monitoring, especially in resource-constrained areas of 

Africa. In this regard, this study examined the potential of the newly-launched Sentinel 2 MSI 

sensor in discriminating Festuca, C3 and Themeda, C4 grasses. The performance of the 

sensor was also examined against that of the Landsat 8 OLI and well-known Worldview 2 

sensor. The choice of the two sensors has been motivated by their previous application and 

performance in vegetation species mapping (Mustafa et al., 2015; Rapinel et al., 2014; 

Robinson et al., 2016), biomass estimation (Dube and Mutanga, 2015a; b; Mutanga et al., 

2012) and land cover studies (El-Askary et al., 2014; Jia et al., 2014; Momeni et al., 2016). 

The slightly weak performance of previous Landsat data series (TM4, TM5 and ETM+7) in 

classifying C3 and C4 grasses (Guo et al., 2003; Lauver and Whistler, 1993; Liu et al., 2015; 

Price et al., 2002) therefore underscores the need to examine the recently-launched Landsat 8 

sensor, which has better acquisition characteristics than its predecessors. 

 

4.2. Materials and methods 

4.2.1. Field data collection 

Ground-based location points of the target grass species were collected using a sub-metre 

Trimble Global Positioning System (GPS) during summer period of February 2016. The 

collection of ground points was performed using randomly generated sampling points across 

the area. The points were randomly-generated using ARGIC 10.2. A total of 120 points were 

collected for each grass, resulting in 240 points. These points were then used to classify the 

two grass species functional types, for the study area, using the three satellite images. The 

sampled points were also used to extract grass species spectral data from the remote sensing 

images for further analysis. 

 

4.2.2. Satellite image acquisition and processing 

The Landsat 8 OLI, Sentinel 2 MSI and Worldview 2 remote sensing images were acquired 

to test their ability in discriminating between the target species. The characteristics of the 

images used for analysis are presented in Table 4.1. The area under study is covered by a 

single Landsat 8 scene with path/row of 169/80. A cloud-free image was downloaded from 
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the United States Geological Survey (USGS) website and calibrated as outlined at the website 

(http://landsat.usgs.gov/). Atmospheric correction was also performed for the Landsat 8 OLI 

image using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) 

model and ground points for geometrical correction in ENVI environment. Sentinel 2 MSI 

images are delivered orthorectified top of atmosphere reflectance in Universal Transverse 

Mercator (UTM) projection, with the World Geodetic System (WGS84), and are freely-

available for download at the Sentinels Scientific Data Hub website 

(https://scihub.copernicus.eu/). The data is acquired in 13 spectral bands, spanning from the 

visible through the near infra-red (NIR) and red edge, to the short wave infra-red (SWIR) at 

10, 20 and 60 spatial resolutions (Table 4.1). Bands acquired at 60 m (coastal aerosol band 1, 

water vapour band 9 and cirrus band 10) spatial resolution are dedicated primarily for 

detecting atmospheric features and were therefore excluded from the analysis (Drusch et al., 

2012). The atmospheric correction of the Sentinel 2 image was also performed using the 

Sen2cor atmospheric correction toolbox, an inbuilt algorithm within the Sentinel Application 

Platform (SNAP) tool version 4.0. The tool was developed primarily to work with Sentinel 

images. The Worldview 2 image was on the other hand purchased and delivered with 

orthorectified and radiometric corrections already applied by the supplier (Digital Globe, 

Longmont, Colorado, USA). These images were then used for classification of the two grass 

species using the ground truth points.  

  

Table 4.1: Sensors spectral and spatial characteristics 

Sentinel 2 MSI Landsat 8 OLI Worldview 2 

Band Centre (nm) GSD (m) Range (nm) GSD (m) Range (nm) GSD (m) 

1 443 60 435-451 30 400-450 0.5 

2 490 10 452-512 30 450-510 0.5 

3 560 10 533-590 30 510-581 0.5 

4 665 10 636-673 30 585-625 0.5 

5 705 20 851-879 30 630-690 0.5 

6 740 20 1566-1651 30 705-745 0.5 

7 783 20 2107-2294 30 770-895 0.5 

8 842 10 503-676 15 860-1040 0.5 

8a 865 20 -  -  

9 945 60 1363-1384 30 -  

10 1375 60 1060-1119 100 -  

11 1375 20 1150-1251 100 -  

12 2190 20 -  -  

*GSD: Ground sampling distance 

 

http://landsat.usgs.gov/
https://scihub.copernicus.eu/
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4.3. Data analysis 

The Discriminant analysis (DA) algorithm was used to examine the potential of the Sentinel 2 

against that of Worldview 2 and Landsat 8 OLI in discriminating between the two grass 

species. The DA has been used successfully in discriminating between C3 and C4 grass 

species (Foody and Dash, 2007; Marshall et al., 2012; Price et al., 2002; Roth et al., 2015b). 

The model discriminates between species using a linear transformation of the remote sensing 

variables by aggregating the variables into latent factors, in which their influence to species 

discrimination is determined by variable scores. The performance of the DA also produces 

confusion matrices derived in species discrimination using the remote sensing variables.  

 

The DA was performed using three sets of remote sensing variables; (i) standard bands, (ii) 

vegetation indices and (iii) combined variables, in XLSTAT, Microsoft Excel 2013. The data 

used with the DA were randomly split into 30% testing and 70% training sets, which is a 

requirement for all machine learning algorithms (Adelabu et al., 2014; Adjorlolo et al., 2013; 

Sibanda et al., 2015a). The vegetation indices which were used are presented in Table 4. 2. 

These indices were chosen considering their previous performances in C3 and C4 grass 

species discrimination as highlighted in literature (Adjorlolo et al., 2012a; Davidson and 

Csillag, 2001; Peterson et al., 2002; Price et al., 2002). The red edge-based Normalized 

Difference Vegetation Indices (NDVIs) were derived by replacing the standard red band with 

the red edge bands according to previous studies (Gitelson and Merzlyak, 1994; Kross et al., 

2015; Sharma et al., 2015). Red edge-based NDVIs 1-4 were derived using Sentinel 2 red 

edge bands, whereas 5 and 6 were derived from Worldview 2. 

 

Table 4.2: The derived vegetation indices used in the analysis 

Indices  Formula References 

Standard NDVI  

NDVI 4 

NDVI 5 

Simple ratio  

SAVI  

G Chl index  

EVI  

(NIR-R)/(NIR+R) 

(NIR2−Y)/(NIR2+Y) 

(RE−CB)/(RE+CB) 

(NIR/R) 

((NIR2-R)*(1+L))/(NIR2+R+L) 

(NIR/G)-1 

2.5*((NIR-R)/(1+NIR+6R-7.5B)) 

Tucker (1979) 

Adjorlolo et al. (2012a) 

Adjorlolo et al. (2012a) 

Jordan (1969) 

Huete (1988) 

Gitelson et al. (2003) 

Huete et al. (1997) 

Red edge-based 

NDVIs:  1 

  2 

  3

  4

  5

  6 

 

(NIR-RE1)/(NIR+RE1) 

(NIR-RE2)/(NIR+RE2) 

(NIR-RE3)/(NIR+RE3) 

(NIR-RE4)/(NIR+RE4) 

(NIR1-RE)/(NIR1+RE) 

(NIR2-RE)/(NIR2+RE) 

 

 

(Gitelson and Merzlyak (1994); Kross et 

al., 2015) 

 

Pu and Landry (2012) 

Pu and Landry (2012) 

*B, G, R, NIR, RE, represent blue, green, red, near infrared and red edge spectral bands, respectively, whereas EVI, SAVI 

and G Chl represent enhanced vegetation index, soil adjusted vegetation index and green chlorophyll, respectively 
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4.3.1. Accuracy assessment 

Accuracy assessment of the classification results produced by the DA model was performed 

using the Pontius Jr and Millones (2011) approach. This has been regarded as more accurate 

and reliable in assessing classification accuracies using remote sensing data. The approach 

was therefore used to assess the ability of the sensors, the model and the derived variables in 

classifying the target grass species to their respective classes. Errors of commission and 

omission were therefore used to report the performance of the sensors and the derived 

variables in classifying Festuca and Themeda grass species. A McNemar test was also 

performed to compare classification accuracies derived using Landsat 8 OLI, Sentinel 2 MSI 

and Worldview 2 sensors in classifying the two grasses. McNemar is a robust test that has 

been successfully used to compare classification accuracies (Adelabu et al., 2013; Manandhar 

et al., 2009; Sibanda et al., 2016). More details on the execution of the test are well 

documented (de Leeuw et al., 2006; Petropoulos et al., 2012). A McNemar test result 

(indicated by z score) above 1.96 indicates that the classification accuracies derived from the 

different sensors and associated variables are significantly different, at a confidence of 95%. 

 

4.4. Results 

4.4.1. Species spectral response profiles using different sensors 

Figure 4.2 illustrates the species spectral response curves derived from the three respective 

remote sensing images. These are averaged reflectance values extracted from the three 

images using ground points of the target grasses. Overall, Themeda shows higher reflectance, 

when compared to Festuca, using all the three sensors, at all wavelengths. Sentinel 2 also 

show separable species response curves, comparable to Worldview 2, whereas Landsat 8 

show a close spectral response between the two grasses. 
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Figure 4.1: Species spectral response using the different sensors 

 

4.4.2. Sensors classification performance  

Figure 4.2 illustrates the derived overall classification accuracies when classifying the two 

species using the three sensors’ variables. Overall, Sentinel 2 sensor outperformed the 

Landsat 8 in classifying the two grasses, and it was slightly lower, when compared to 

Worldview 2. Sentinel 2 standard bands produced high overall classification accuracy 

(90.36%), comparable to that of Worldview 2 (95.69%) and better, when compared to those 

produced using the Landsat 8 (75.26%). The use of indices and combined variables did not 

improve the classification results, when using Sentinel 2 and Worldview 2 sensors, the 

variables actually decreased the overall accuracies. For example, the use of derived indices 

decreased the overall classification of Sentinel 2 by 4.89%, whereas for Worldview 2, it 

dropped by 9.68%, from standard bands. The use of indices increased the overall 

classification accuracy of the Landsat 8 sensor by 7.527%, from standard bands. 
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Figure 4.2: Overall classification accuracies derived using the three sensors’ variables. The 

red line marks the lowest accuracy using Sentinel 2 in relation to the other sensors 

 

4.4.3. The influence of sensors spectral bands on species discrimination 

Figure 4.3 shows the influence of the spectral bands of the three sensors on discriminating 

between Festuca and Themeda grass species, using variables scores, derived from the DA 

model. Sentinel 2 sensor provides more bands which have great potential (indicated by the 

high variable scores) in discriminating between the two species. The red edge bands, notably 

centred at 705 and 740 nm, the blue (490 nm) and the SWIR (centred at 2190 nm) spectral 

bands of the Sentinel 2 were the most influential in classifying Festuca and Themeda grasses. 

Comparatively, for Worldview 2 sensor, the blue (between 450 and 510 nm) and red edge 

bands between 705 and 745 nm were also the most influential bands, whereas for the Landsat 

8, it was the red (636-673 nm) and the NIR (851-879 nm). On the contrary, the SWIR 

(centred at 1375 nm) and green (centred at 560 nm) bands of Sentinel 2 were the least 

influential in the classification of the two grasses, whereas for the Worldview 2 and Landsat 

8, the green (between 510 and 595 nm) and blue (between 452 and 512 nm) were the least 

influential, respectively. When using indices, the standard NDVI was the most influential 

index in discriminating between the two species using all the three sensors, whereas the least 

influential index varied with sensor. Using Sentinel 2, the EVI was the least influential, the 

SAVI for Worldview 2 and for Landsat 8 sensor it was the G Chlorophyll index. When 

indices and standard bands were combined, Sentinel 2 red edge band (centred at 783 nm) and 

the Landsat 8- derived standard NDVI were the most influential in discriminating between 

the two grasses, whereas using the Worldview 2 variables, it was the red edge-based NDVI, 

which is derived using the additional NIR (between 860 and 1040 nm) band. 
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Figure 4.3: Influence of sensors’ spectral bands on the discrimination of the two grasses 

 

4.4.4. Classification accuracy assessment results 

Figure 4.4 shows the commission and omission errors encountered when classifying Themeda 

and Festuca grasses using standard bands, indices and combined variables of the three remote 

sensing images. Sentinel 2 standard bands produced errors between 4.76 and 14.63%, 

between 2.38 and 21.15% using indices, whereas combined variables produced between 7.69 

and 12%. This was better than those encountered using Landsat 8, which produced errors 

between 18.18 and 30.61% using standard bands, between 9 and 26.82% using indices, as 

well as between 12 and 16.27% using combined variables. The errors encountered using 

Sentinel 2 were better close to those of the Worldview 2 sensor, which resulted in the 

minimum errors encountered, ranging between 1.96 and 7.14% using standard bands, 10.24-

17.98%, using indices and between 8.33 and 17.78%, using combined variables.  

 

 
Figure 4.4: Commission and omission errors encountered when classifying the two species 

using: (a) standard bands, (b) indices and (c) combined variables of the three sensors 

 

McNemar test results have also shown that there were statistically significant differences (z > 

1.96) in classification accuracies using the different sensors. For example, Sentinel 2 

accuracies were significantly higher than Landsat 8, when using standard bands (z = 3.87), 

indices (z = 2) and combined variables (z = 2.23). Sentinel 2 and Worldview 2-derived 

classification accuracies using standard bands were not significantly different (z = 1.34), 

whereas significant differences were found when using indices (z = 3.01) and combined 
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variables (z = 2.11). The DA model was also found to perform well in classifying the two 

species using the different remote sensing datasets. High amount of agreement was shown 

between the training and the validation samples. For example, using the Landsat 8, the 

training sample produced an overall accuracy of 75.26%, whereas the validation sample was 

70.33%. Similar findings were observed for Sentinel 2 and Worldview 2 datasets, with 

differences between training and testing samples within 5%. 

 

4.4.5. Potential of the three sensors in mapping the spatial variations of the target 

species 

Figure 4.5 shows the potential of the three sensors in mapping the spatial variations of 

Festuca and Themeda grass species. Overall, the western and southern most parts of the study 

area are largely composed of Festuca, whereas the eastern parts are dominated by Themeda, 

according to the three sensors. The visual inspection of Figure 4.5 also illustrates an 

observable improvement of the quality of the classification of the two species with Sentinel 2 

data. Sentinel 2 shows a fine representation of the target grasses, which is as good as that of 

the Worldview 2 sensor, whereas the Landsat 8 sensor provides a coarse spatial 

representation. Like the Worldview 2, Sentinel 2 managed to detect the small patches of 

Themeda, which were not detectable using the Landsat 8 sensor. 

 

 
Figure 4.5: Potential of (a) Landsat 8, (b) Sentinel 2 and (c) Worldview 2 sensors in mapping 

the spatial distribution of Festuca and Themeda grass species 

 

(a) (b) 

(c) 
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4.5. Discussion 

The prime focus of this study was to explore the feasibility of the newly-launched Sentinel 2 

MultiSpectral sensor in discriminating and mapping the spatial variations of Festuca (C3) and 

Themeda (C4) grasses in the Drakensberg of KwaZulu-Natal, South Africa. This study 

therefore investigated the potential of the unique data acquisition properties of Sentinel 2, 

notably more spectral bands, availability of red edge and refined spatial resolution, in 

discriminating between the two species. The results were compared to those derived using the 

freely-available Landsat 8 and the Worldview 2 commercial sensor. For the first time, this 

study attempted to examine the potential of the newly-launched Sentinel 2 in mapping the 

subtle spatial variations of C3 and C4 grass species. 

 

The study proved the ability of the newly-launched Sentinel 2 MSI in classifying C3 and C4 

grasses. Overall classification results obtained from the sensor were comparable to those 

obtained using the Worldview 2 and better than when using the Landsat 8 sensor. The 

performance of the Sentinel 2 in the overall classification is primarily attributed to the 

presence of more spectral bands, which provide more windows for the spectral separability of 

the two species. For example, ten (excluding aerosol, cirrus and water vapour bands) spectral 

bands were used in this analysis, with four of them within the red edge, compared to the 

Landsat 8. In addition, the relevance of Sentinel 2 spectral band width and position in 

vegetation monitoring has been documented (Aria et al., 2012; Dian et al., 2016; Pesaresi et 

al., 2016). They noted that Sentinel 2 bands are more refined, than those of the Landsat 8 or 

the available broadband sensors. 

 

Sentinel 2 also provides better spatial variations of the target species, compared to those of 

Landsat 8. For example, according to the Landsat 8 sensor, the western parts of the area 

under study are composed of the Festuca, without Themeda. In contrary, Sentinel 2 managed 

to capture and represent the small patches of Themeda grasses, within the western part, 

comparable to the performance of the high resolution Worldview 2 sensor. The combined 

contribution of more spectral bands and better spatial resolution of Sentinel 2 improves the 

capability of the sensor in detecting the spatial and spectral differences between the two 

species. The spatial resolution of the Sentinel 2 thus offers a better spatial characterization of 

C3 and C4, which has been one of the major challenges associated with the widely-used 

broadband multispectral (e.g. MODIS and AVHRR) sensors in classifying C3 and C4 grasses 
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(Shoko et al., 2016b). Consequently, Sentinel 2 provides a beneficial alternative, than the 

available broadband and low spatial resolution sensors. 

 

The 30 m Landsat 8 was not as good as Sentinel 2 in characterizing the spatial distribution of 

Festuca and Themeda grasses. The use of the Landsat 8 results in considerable over or under 

classification of the target species, as it becomes too coarse to represent the fragmentation in 

their distribution. This confirms the coarse spatial representation map produced using the 

30m Landsat 8 sensor, when compared to that derived from Sentinel 2 and Worldview 2. This 

possibly emanates from the spatial configuration (e.g. patch area) of the target species, which 

influence the ability of the sensor to capture those patches (Hauglin and Ørka, 2016; Roth et 

al., 2015b). For example, the study by Hauglin and Ørka (2016) has highlighted that small 

patches, particularly less than the spatial resolution of the sensor are more likely to be 

dissolved within the major surrounding class. On the other hand, large stands or patches of 

species have been reported to be reliably detected, than smaller patches, especially when 

using coarse or medium resolution multispectral sensors (Bradley, 2014; Fuller, 2005).  

 

Nevertheless, the 30m spatial resolution of the Landsat 8 sensor most likely provides better 

performance, than the reported previous Landsat series, MODIS or AVHRR sensors. For 

example, using the Landsat 7 ETM+ in classifying C3 and C4 grasses, the study by Liu et al. 

(2015) has reported overall classification accuracies ranging between 62.65 and 72.35%. This 

study has produced better accuracies (between 75.26 and 86.02%); also, given the 22% data 

loss of the Landsat 7 ETM, Landsat 8 provides a better alternative for large scale mapping of 

C3 and C4 grasses. The better performance of the Landsat 8 also confirms previous findings 

by Yan and de Beurs (2016) in classifying C3 and C4 grass species for the mixed grassland 

Prairies of United States. The study found overall classification accuracies between 73.21 and 

79.23%, which are comparable to the present study.  

 

Sentinel 2 spectral bands also prove their valuable potential in discriminating C3 and C4 

grasses. For instance, highest classification accuracy was obtained using standard bands, than 

when using indices or a combination of variables. The species spectral response using 

Sentinel 2 shows separable curves between the grasses, when compared to that of Landsat 8. 

In addition, the unique red edge bands (centred at 705 and 740nm) and SWIR (centred at 

2190 nm) were the most influential in classifying the two grasses. The classification accuracy 

produced using the Sentinel 2 standard bands also did not differ significantly (z < 1.96) from 
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Worldview 2, when using standard bands, but it was significantly different (z > 1.96) from 

Landsat 8. These results confirm the reported potential of the strategically-positioned, as well 

as additional bands in enhancing the ability of the sensor in discriminating species (Immitzer 

et al., 2016; Laurin et al., 2016). Previous studies (Clevers and Gitelson, 2013; Delegido et 

al., 2011; Ramoelo et al., 2015a; Richter et al., 2012; Sibanda et al., 2016) have reported the 

potential of the unique spectral settings of the Sentinel 2 in vegetation monitoring, over those 

of the available multispectral sensors. For example, the study by Ramoelo et al. (2015a) 

reported the importance of the red-edge and SWIR bands in estimating grass nitrogen 

concentration, whereas Sibanda et al. (2016) reported its potential in discriminating grasses 

under different management practices. In agreement, the study by Adjorlolo (2013) have 

admitted the influence of the SWIR (above 2000 nm) in discriminating C3 and C4 grasses, 

whereas Laurin et al. (2016) identified the SWIR as carrying water, nitrogen and carbon 

(lignin, cellulose) content information, which all enhance its ability to separate species. Sims 

and Gamon (2002) have also noted the sensitivity of reflectance near the 705 nm portion to 

changes in the concentration of chlorophyll. This possibly enlightens why the red edge of the 

Sentinel 2 centred at 705 nm was the most influential in discriminating the two grasses. 

 

This was contrary to the performance of the Landsat 8 variables; indices produced better 

classification accuracies than standard bands, and the most influential index was the standard 

NDVI. This confirmed previous findings using Landsat TM 5 data (Price et al., 2002), where 

indices were better in discriminating among different C3 and C4 grasses than standard bands. 

Thus, when using Landsat 8 sensors, the use of vegetation indices provides a better 

classification of C3 and C4 grasses, than standard bands. Landsat 8 also agrees with the other 

sensors that the standard NDVI, derived using the standard red and NIR bands was the most 

influential in discriminating between the two species, when using vegetation indices. This 

indicated the strength of the long-established and widely-used NDVI, not only in C3 and C4 

grasses discrimination, but in different vegetation species at large. On the contrary, the 

performance of the standard NDVI was not as sensitive as the standard or original bands of 

Sentinel 2 and Worldview 2 spectral range. The original spectral bands of the Sentinel 2 and 

Worldview 2 have shown unprecedented level of performance over the use of indices in 

discriminating between Festuca and Themeda grasses. 

 

However, the discrimination of the target species in this study was limited to a specific 

period; in summer. C3 and C4 grass species functional types has different phenological 
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phases, which influence their spectral response and subsequently, species classification. In 

this regard, there is need to identify the optimal period to map these grass species to provide 

more detailed understanding of their spatial or temporal variations for successful 

management and monitoring of these ecosystems. Although the Worldview 2 provides better 

spatial variations of the target species than the other sensors, its high acquisition cost hinders 

the continuous or seasonal monitoring of these grass species, especially considering the need 

for detailed vegetation information in the face of climate change and its effect on their 

distribution and productivity. Sentinel 2 and Landsat 8 therefore present primary data sources 

suitable for large scale mapping and monitoring of C3 and C4 grasses. 

 

4.6. Conclusion 

The present study examined the potential of the newly-launched Sentinel 2 multispectral 

instrument, with that of the Landsat 8 and the Worldview 2 in discriminating and mapping 

Festuca and Themeda grasses. Based on our findings we conclude that: 

1. The newly-launched Sentinel 2 offers an invaluable primary data-source required for 

C3 and C4 species discrimination, 

2. The spatial representation of the Sentinel 2 sensor is not as good as that of the 

Worldview 2, but it is better than that of the Landsat 8 OLI, 

3. The Sentinel 2 sensor provides more bands which have the potential in discriminating 

C3 and C4 grasses, compared to Worldview 2 and the Landsat 8. 

 

This chapter have demonstrated the potential of the Sentinel 2 as an invaluable primary data 

source currently promising for monitoring of vegetation species according to functional 

types, which was previously a challenge using broadband multispectral sensors. Although 

Sentinel 2 showed ability in discriminating and mapping C3 and C4 grass species, the 

discrimination of these species is linked to their biophysical, morphological and phenological 

characteristics, which influence their interaction with radiation. It is therefore a need to 

consider classification accuracies derived using images acquired at different periods. This 

provides the optimal period to discriminate and map the target grass species, with high 

accuracy. The succeeding chapter therefore used multi-temporal Sentinel 2 images to 

determine the most optimal period for discriminating and mapping C3 and C4 grass species. 
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CHAPTER FIVE 
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5. Determining the optimal season for discriminating the eco-

physiological distinction between C3 and C4 grass functional 

types using multi-date Sentinel 2 data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Shoko. C, Mutanga. O, Dube. T and Slotow. R. (2018): 5. Determining the optimal season 

for discriminating the eco-physiological distinction between C3 and C4 grass functional 

types, using multi-date Sentinel 2 data. 
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Abstract 

The ability of remote sensing systems to optimally discriminate and map C3 and C4 grass 

species varies over time. This is due to environmental changes, which influence their 

phenological, physiological and morphological characteristics. These variations determine 

their classification accuracy from remotely-sensed data. In this regard, the discrimination of 

C3 and C4 grasses is insufficient when using a single image acquired at a specific period. In 

this study, multi-date Sentinel 2A MultiSpectral Instrument (MSI) data was explored to 

determine the optimal period for discriminating and mapping the eco-physiological 

distinction between C3 and C4 grass functional types in the montane grasslands of South 

Africa. The results showed that seasonality influence species discrimination accuracy, spatial 

representation and the performance of remote sensing variables. The winter period presents a 

better temporal window for discriminating C3 and C4 target grass species, with higher overall 

classification accuracies (between 91.8 and 95.3%), than summer (between 81.4 and 90.3%). 

Lower classification errors (between 2.5 and 14.2%) were also observed when discriminating 

using winter images, as compared to those acquired in summer (between 4.7 and 22.2%). The 

two grass species were found to occupy more than 40% of the studied area. However, 

Festuca (C3) occupied the majority of the area, compared to Themeda (C4), except using an 

image acquired in November. The largest species areal coverage was also derived in March, 

whereas August produced the least coverage.  

 

Keywords: Environmental change; grass type; separability windows; phenological 

characteristics; seasonal variability 
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5.1. Introduction 

C3 and C4 grass species discrimination present a fundamental foundation towards monitoring 

their integrity, as an important component of grassland ecosystems. These grasses contribute 

immensely to forage availability (Auerswald et al., 2009; Barbehenn et al., 2004), store a 

significant amount of carbon (Davidson and Csillag, 2001; Still et al., 2003) and contribute to 

the occurrence of fire, which is an important mechanism in maintaining grasslands (Everson 

and Everson, 2016). At a global scale, C4 grasses predominantly occupy low altitudes and 

latitudes areas, whereas C3 typically occupy higher altitude and latitude areas (Woodward et 

al., 2004; Yao et al., 2011). Moreover, C4 photosynthetic pathway constitute most grass 

species of southern Africa, than C3 (Milton, 2004). There is also a co-existence of C3 and C4 

grass species, due to the influence of local topographic and climatic factors (Yan and de 

Beurs, 2016), for example, in the montane grasslands of South Africa (Adjorlolo et al., 2014), 

the Prairies of the United States (Foody and Dash, 2007) and temperate northern China (Guan 

et al., 2012). Their co-existence plays a considerable role in governing the spatial and 

temporal variations of biochemical cycling, ecological productivity (i.e. biomass 

accumulation) and plant–animal interactions. 

 

The distribution of C3 and C4 grass species is facing substantial threat from global 

environmental changes, at both local and regional scales (Liu and Cheng, 2011; Liu et al., 

2015) and these changes are anticipated to vary spatially and according to species functional 

types (Adjorlolo et al., 2012b). It is projected that elevated carbon dioxide (CO2) will be 

favourable to C3 grass species and they will increase in abundance, whereas increase in 

warming will favour C4 grass species, such that they will expand to currently cooler areas 

(Bremond et al., 2012; Moncrieff et al., 2015). Considerable uncertainties about the future 

distribution of C3 and C4 grass species also exist under a CO2-enriched and warmer 

environment, as well as under the influence of local environmental conditions 

(Chamaillé‐Jammes and Bond, 2010). These shifts in the distribution of C3 and C4 grass 

species will result in variations in the provision of a range of ecosystem services, such as 

forage and carbon storage.  

 

Although substantial strides have been made to discriminate C3 and C4 grass species 

(Adjorlolo et al., 2013; Dronova et al., 2012; Liu et al., 2015; Shoko and Mutanga, 2017a), 

these studies have been restricted to specific seasonal periods. For example, the studies by 

Dronova et al. (2012) and Shoko and Mutanga (2017a) were conducted during the summer 
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season in China and South Africa, respectively. The influence of seasonality and the potential 

of using images acquired at different periods to discriminate C3 and C4 grass species have 

not been fully explored. Results based on a specific period undermine the phenological and 

eco-physiological variations of these species, which influence their classification accuracy. In 

addition, the success of discriminating C3 and C4 grass species is quite variable during the 

growing season and this change dramatically from one wavelength to another, even within 

the same portion of the spectral range. Species photosynthetic pigments (e.g. chlorophyll) are 

also seasonally unique, with distinct interactional features with radiation, which cannot be 

captured, using single-date image of a specific period.  

 

The discrimination of C3 and C4 grass species using images acquired at different seasonal 

periods has been largely limited by the availability of free sensors with appropriate temporal, 

spatial and spectral capabilities. For example, the daily availability of the MODIS sensor has 

so far made it the primary data source for discriminating C3 and C4 grass species (Guan et 

al., 2012; Pau et al., 2013). Nevertheless, the coarse spatial resolution and broad spectral 

range have been reported to mask the spectral and temporal separability of C3 and C4 

grasses, hence are insufficient to characterize their variations (Guan et al., 2012). As the 

significance of C3 and C4 species became increasingly recognized, the remote sensing 

community prompted to use more advanced hyperspectral and commercial satellites to 

discriminate them (for example, Adjorlolo et al., 2012a). Although the use of these data 

sources provides more accurate spectral variations of C3 and C4 grasses, it is challenging to 

acquire multi-temporal data, due to their acquisition cost. The development and free 

availability of the Sentinel 2A MultiSpectral Instrument (MSI) provide much needed high 

quality and unique information for terrestrial monitoring over time (Immitzer et al., 2016; 

Shoko and Mutanga, 2017a). The sensor has emerged, overcoming the spectral, temporal and 

spatial limitations of the available multispectral systems, for better accurate and reliable 

characterization of C3 and C4 grass species. The five to nineteen-day revisit time and 13 

spectral bands, with unique red edge capture their phenological asynchronicity, whereas 

refined spatial resolution is bound to be an added advantage for mapping. The objective of 

this study was therefore to determine the most suitable period and influential bands to 

discriminate (C3) and (C4) grasses using multi-temporal Sentinel 2A images.  
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5.2. Methodological approach 

5.2.1. Field data collection 

Festuca costata (C3) and Themeda Triandra (C4) grasses were the target of the present 

study. These will be referred to as C3 and C4 grasses thereafter. The location of these grasses 

was captured in February 2016, by means of a Trimble GEO XH 6000 hand held Global 

Positioning System (GPS) at sub-metre accuracy. The GPS captures locational information 

more accurately, especially for the extraction of reflectance values from high spatial 

resolution data. The sampled points were collected based on randomly generated points in a 

GIS environment. A total of 120 points were collected for each grass species and then used to 

extract the corresponding grass spectral reflectance from the Sentinel 2 data, using the 

extraction tool in ARCGIS 10.2 environment, for further analysis. For each image, species 

reflectance was obtained by extracting the pixel (at 10 m spatial resolution) value that 

covered the point. 

 

5.2.2. Remote sensing data acquisition and pre-processing 

High resolution multispectral Sentinel 2A images are freely-available for download from the 

ESA website (https://scihub.copernicus.eu/) through the Sentinels Scientific Data Hub. Table 

5.1 provides detailed characteristics of Sentinel 2A Level 1C images that are available for 

download. For this study, a total of eight cloud-free images (Table 5.2), covering the entire 

study area were selected and downloaded. These images were delivered orthorectified and 

geometrically corrected in the Universal Transverse Mercator projection and World Geodetic 

System 84 ellipsoid. The images were acquired in top of atmosphere reflectance and then 

corrected for atmospheric effects. Atmospheric correction was performed, using the Sen2Cor 

prototype processing tool in Sentinels Application Platform (SNAP), based on the ATCOR 

algorithm (Clevers et al., 2017). Bands 1, 9 and 10, at 60 m spatial resolution were not 

included in this analysis. The spectral bands have been considered to be inapplicable in 

vegetation monitoring (Immitzer et al., 2016). All the 20 m spatial resolution spectral bands 

were also resampled to 10 m, using the nearest neighbour resampling tool in SNAP.  

 

 

 

 

 

 

https://scihub.copernicus.eu/
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Table 5.1: Sentinel 2 image data characterization 

Band name 

(-) 

Band  

# 

Central λ 

(nm) 

GSD 

(m) 

Blue 

Green 

Red 

NIR 

2 

3 

4 

8 

490 

560 

665 

842 

10 

RE 

RE 

RE 

RE 

SWIR 

SWIR 

5 

6 

7 

8a 

11 

12 

705 

740 

783 

865 

1610 

2190 

20 

Coastal aerosol 

Water vapour 

Cirrus 

1 

9 

10 

443 

945 

1380 

60 

*RE, NIR, and SWIR represent red edge, near infrared and short wave infrared spectral bands. GSD is Ground sampling 

distance. The row highlighted in grey indicates bands excluded in this study. 

 

Table 5.2: Sentinel 2 image acquisition and their characteristics 

Season Acquisition date Sun zenith angle (°) Sun azimuth angle (°) 

Summer 

 

07/02/2016 

05/03/2016 

03/11/2016 

03/12/2016 

41.57 

46.94 

24.59 

22.41 

44.02 

36.32 

60.95 

77.97 

Winter 

27/05/2016 

26/06/2016 

16/07/2016 

25/08/2016 

55.99 

58.34 

47.16 

36.49 

28.94 

29.29 

37.10 

43.65 

 

5.3. Statistical analysis 

To determine the optimal period to discriminate the two grasses, Discriminant Analysis (DA) 

model was used. The DA model discriminates between species using a linear transformation 

of remote sensing data. Its performance has been widely acknowledged in discriminating C3 

and C4 grass species (Foody and Dash, 2007; Price et al., 2002; Shoko and Mutanga, 2017a). 

Prior to analysis, the samples were randomly grouped into training (70%) and validation 

(30%). This is critical when classifying species, using machine learning models (Adelabu et 

al., 2013; Guerschman et al., 2003). The model produces confusion matrices and overall 

classification accuracies for each satellite imagery applied. Overall accuracies indicate the 

performance of each image or image acquisition period in classifying the two species. The 

derived overall accuracies were also transformed. The transformation was performed by 

centering the data, using ExcelStats transformation tool. Transformation was performed for 

comparison purposes and it provides a better understanding of how the derived overall 

accuracies varied over time. The most and least influential spectral bands for each satellite 

image were also identified, using variable scores derived from the DA model. Variables with 
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score value above the threshold (score > 1) contribute significantly (α = 0.05) to species 

discrimination, whereas those below the threshold, were considered less influential. 

 

5.3.1. Statistical test and classification accuracy assessment  

Overall classification accuracies derived using images acquired in both summer and winter 

were tested for significant differences (α = 0.05). Data was first tested for normality, using 

the Shapiro Wilk normality test (Shapiro and Wilk, 1965). Test results showed a deviation (α 

= 0.543) from the normal distribution, hence the Mann-Whitney non-parametric test (Mann 

and Whitney, 1947) was then applied. The test was also further done for the two species 

spectral reflectance data derived from the 10 Sentinel 2 bands applied in this study. The 

results are shown in Table 5.3. Accuracy assessment was determined at species level, for the 

two species, using errors of commission and omission. The two errors indicate the potential 

of each satellite image in correctly assigning the species to their respective classes, without 

misclassifications (Bork and Su, 2007; Zhou et al., 2014). Errors of commission and omission 

thus provide more details to the classification results at species level. 

 

5.4. Results 

5.4.1. Species spectral response over time 

Averaged spectral response for C3 and C4 grasses during summer (a-d) and winter (e-h) 

periods are illustrated in Figure 5.1 (a – h). Figures a-d correspond to February, March, 

November and December, whereas e-h correspond to May, June, July and August 2016. 

Overall, species spectral response varies over time. For example, in summer Sentinel 2 

satellite images showed a close similarity (overlap) between the two species, especially in the 

visible (e.g. blue, green and red) and the SWIR portions, when compared to winter results. 

Significant differences (α = 0.05) were only exhibited in the red edge and the NIR portions, 

where separable species spectral response were observed.  
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Figure 5.1: Species spectral response curves for summer: (a-d) and winter e-h. Red boxes 

show the bands with separable spectral response 

 

 

 

 

 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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Table 5.3: Test of significant difference results in spectral response between the two species 

Acquisition Date B G R RE RE RE NIR RE SWIR 1 SWIR 2 

07/02/2016 0.97* 0.40* 0.16* 0.31* 0.01 0.01 0.05 0.01 0.29* 0.01 

05/03/2016 0.79* 0.32* 0.55* 0.04 0.01 0.01 0.02 0.09 0.11* 0.01 

03/11/2016 0.34* 0.01 0.01 0.01 0.01 0.01 0.01 0.11* 0.44* 0.01 

03/12/2016 0.04 0.21* 0.04 0.01 0.01 0.48* 0.01 0.14* 0.04 0.08* 

27/05/2016 0.06* 0.39* 0.18* 0.02 0.02 0.01 0.74* 0.23* 0.01 0.01 

26/06/2016 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

16/07/2016 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 

25/08/2016 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

P-values with an asteric “*” indicate no significant differences (α = 0.05) in spectral response between the two species using 

that particular band. 

 

5.4.2. Multi-temporal classification accuracies 

Figures 5.2 (a) and (b) illustrate the untransformed and transformed overall classification 

accuracies derived from the classification of C3 and C4 grass species, using Sentinel 2 data, 

over time. Overall, higher classification accuracies were derived. However, the variability in 

classification over time was observable when results were transformed. These results indicate 

that the two grass species were better discriminated during the winter period, with end of 

June as the most suitable. On the other hand, summer period showed lower classification 

accuracies, with the lowest overall accuracy produced in November. Statistical test also 

confirmed that images acquired during summer months produced significantly different (α = 

0.05) overall accuracies, for the two species than winter data. 

 

Figure 5.2: Untransformed (a) and transformed (b) overall accuracies over time 

 

5.4.3. Influence of spectral bands on discriminating C3 and C4 grass species over time 

Figure 5.3 shows the influence of the Sentinel 2 spectral bands on discriminating C3 from 

C4, expressed as their frequency over time. Red edge 1 (705 nm) was found to be the most 

(a) (b) 
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influential band in discriminating between C3 and C4 grasses, with the highest frequency of 

7, followed by NIR, with 5 and SWIR 2 with 4, whereas RE 4 (865nm) did not significantly 

(α = 0.05) contribute to species discrimination, over time. 

 

Figure 5. 3: Spectral bands frequency in discriminating C3 and C4 over time  

 

5.4.4. Classification accuracy assessment results 

Figure 5.4 shows the errors encountered when classifying C3 and C4 using images acquired 

at different periods. Overall, when classifying C3 and C4, omission errors ranged from 2.9 to 

19.5% and commission errors from 2.5 to 22.2%. It was also found that images acquired in 

winter (i.e. May, June, July and August) classified the two grasses with lower omission errors 

(2.9 - 11.6%) and commission errors (2.5 - 14.3%). On the other hand, summer Sentinel 2 

data produced higher omission errors (5.4 - 19.5%) and commission errors (4.7 - 22.2%). 

November had the highest omission (19.5%) and commission (22.2%) errors, when 

classifying C3 and C4 grasses and the lowest omission (2.9%) and commission (2.5%) errors 

were observed using June data.  

 

Figure 5.4: Errors encountered in classifying the target grasses, using multi-temporal Sentinel 

2 data. Dotted lines show the trend of species classification errors, overtime 

 

(a) (b) 
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5.4.5. Spatial distribution of C3 and C4 grass species using different images 

A sample of the distribution of the two species derived using images acquired at different 

seasonal periods is presented in Figure 5.5. These maps were produced by classifying the 

Sentinel 2 data, using the maximum likelihood classifier algorithm in ENVI 4.3 and the most 

influential bands based on DA model. The GPS points were used as training samples to 

classify the images. Images with the highest and lowest classification accuracies for the two 

distinct seasonal periods were shown. It was found that image acquisition date influenced the 

spatial representation of the two grass species. However, noticeable agreement, especially 

within the central and eastern parts was derived from the four images. 

 

 
Figure 5.5: The spatial distribution of C3 and C4 grass species across the study area using 

images acquired at different seasonal periods in 2016 

 

Figure 5.6 further explores the derived areal coverage occupied by the two grass species in 

the study, using images acquired at different seasonal periods over time. Overall Festuca 

(C3) was also found to occupy the majority of the area studied, compared to Themeda (C4), 

except using an image acquired in November. The largest species areal coverage was also 

derived in March, whereas in August, a noticeable decrease for both species was observed. 

June August 

Nov March 



 86 

 
Figure 5.6: Species areal coverage derived using different image acquisition dates 
 

5.5. Discussion 

The findings of this study have demonstrated the winter period as the most favourable and 

optimal time for the classification C3 and C4 grass species. Sentinel 2 images acquired 

during the winter period had more potential to detect and correctly assign the grass species to 

their respective classes. This is an indication that during the winter period, the two grass 

species had distinct phenological, physiological and morphological contrasts, which 

enhanced their accurate discrimination by the sensor. In confirmation, it is well documented 

that C4 grass is a warm season grass, which is most active during the summer season, 

whereas in winter it becomes dormant (Dell'Acqua et al., 2013; Snyman et al., 2013). In 

contrast, C3 is typically active during the winter period, as well as thriving throughout the 

year (McGranahan et al., 2015).  

 

Although images acquired in summer produced higher overall accuracies, considerable 

misclassifications errors were encountered, for example, when using an image acquired in 

November, the beginning of summer. This was supported by high commission errors above 

20%, associated with summer images. Thus although higher overall classification were 

achieved, about 20% of the species samples were wrongly assigned to the respective classes. 

Possibly higher classification accuracy might be due to misclassifying species. Both species, 

as well as other surrounding grass species within the area become active in summer, despite 

the fact that C3 will be less active, due to unfavourable environmental conditions. This led to 

spectral confusion between the two grass species and other species (e.g. ephemeral weeds and 

forbs), which emerge during the onset of summer rains. This facilitates species spectral 

similarity, during this period, thereby compromising the classification accuracy. 

Nevertheless, considerable differences exist between C3 and C4 grasses, which enhance their 

spectral differences detectable during the summer period. For instance, the study by 
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(Adjorlolo et al., 2014; 2015), which determine quality variations of C3 and C4 grass species 

during the summer period have reported that the two species have significant different 

concentrations of nutrients. C4 grass was found to have higher content of nitrogen and crude 

proteins than C3. These variations in pigment concentrations have been reported to enhance 

C3 and C4 species discrimination (Peterson et al., 2002). Although the quality of these 

grasses was not performed in winter, when both species have reached their maturity and C4 

begins to become inactive. It is most likely that their pigments concentration will be more 

different, which might possibly contribute to the spectral variations. 

 

It was also revealed that the seasonal variations have an influence on the spectral response of 

C3 and C4 grass species. This was confirmed by the spectral response curves between the 

two species over time. Higher reflectance response from C4 in summer is mainly attributed to 

its growth. In summer C4 is very active with higher levels of pigments concentrations, which 

all contribute to higher reflectance. As the year progresses, C4 loses its vigour and within the 

Drakensberg Mountains, this is most observable during the winter fall, in August, and it 

continues to dry until the beginning of summer in November. As the grass loses its vigour, its 

reflectance lowers. On the other hand, C3 is an evergreen grass, and most active during the 

winter peak, which typically offers its most favourable conditions. However, although it 

remains green, the conditions are not favourable during the winter fall, hence it becomes less 

active. This confirms previous findings which have noted the changes in vegetation species 

spectral response to seasonal variations (Guerschman et al., 2003; Murakami et al., 2001; 

Schriever and Congalton, 1995). These researchers have emphasized the significance of 

seasonal variations, particularly in rainfall and temperature in determining vegetation status 

and spectral characteristics. They also highlighted that vegetation spectral response is quite 

variable over time and classification accuracies therefore vary. Using the red edge portions, 

which is one of the unique bands of the Sentinel 2, the curves showed separable species 

spectral responses over time. 

 

When considering the spatial representation of the two grasses across the study area, images 

acquired in summer identified more areas as being occupied by the target grasses, whereas 

those acquired in winter showed a decrease. In summer, vegetation across the study area are 

active, due to favourable climatic conditions (i.e. high rainfall and temperatures), which 

promote vegetation growth and productivity. In addition, at the beginning of summer (i.e. in 

November), as surrounding warm season grasses emerge; their spectral response will be 
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difficult to separate from that of the target grasses. This might result in misclassification, 

thereby over estimating their spatial distribution. In addition, as the target species reach their 

maturity, before they become dry or inactive, they become more distinct and separable using 

remotely-sensed data. This provides a better spatial representation of the grasses, for example 

in June. Although June is peak of winter, these effects on C4 within the study area are more 

observable at the end of winter, as temperatures begin to rise.  

 

At the end of winter (in August), the classification, especially of C4 is possibly confused with 

bare areas, as it becomes dry, as a result of dry conditions. This makes it difficult to 

distinguish it from other surrounding vegetation, especially other wilting grasses and bare 

surfaces. A similar finding was noted by Kaszta et al. (2016), using high spatial resolution 

Worldview 2 to separate different components of the African Savannah vegetation during the 

wet and dry seasons. The study found that wilting grasses were confused with bare soil. 

However, C3, which remains active in dry season exhibit distinct spectral response from dry 

grasses, improving its discrimination and mapping abilities. To improve the discrimination 

and spatial representation of C3 and C4 grass species, especially during the winter fall and 

early summer, future work might consider using Sentinel 2A derived vegetation indices or 

textural metrics.  

 

The use of Sentinel 2 multi-temporal images proves its potential in detecting the temporal 

eco-physiological variations between C3 and C4 grass species functional types, over time. 

This is in agreement with the study of Laurin et al. (2016), which tested the potential of 

Sentinel 2 in classifying species according to their functional types. The study noted that the 

sensor opens a new opportunity for vegetation monitoring, based on functional types. 

Similarly, the performance of the red edge bands in influencing species discrimination further 

confirms previous studies which have predicted that these bands are more valuable than the 

visible or NIR portions in distinguishing vegetation status over time (Immitzer et al., 2016; 

Kaszta et al., 2016; Shoko and Mutanga, 2017a). Red edge bands extract unique vegetation 

information beyond the reach of the visible or NIR bands, which have been primarily used in 

discriminating C3 and C4 grass species. Red-edge bands have the ability to capture and 

record variations pigment concentration between species, which enables their better 

discrimination. However, although they were not as good as the red edge, the visible green 

and red band were also good in discriminating between C3 and C4, especially during the 

winter fall, when C3 and C4 were more distinct. This indicates that the visible range has a 
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limited temporal window to discriminate between C3 and C4 grasses, as they can perform 

better when the difference between species is most observable or if there are clear 

distinctions.  

 

5.6. Conclusion 

The present study performed an analysis of multi-temporal Sentinel 2 images for optimal 

discrimination of C3 and C4 grass species in the montane grasslands of KwaZulu-Natal, 

South Africa. Overall, image acquisition period has been found to significantly influence the 

spectral distinction, classification accuracy and spatial representation of C3 and C4 grass 

species. Images acquired in winter, when both grasses have reached their maximum maturity 

stage of development were the most favourable to discriminate C3 and C4 grass species, 

compared to those acquired in summer. Summer images also show an over estimation and 

spatial representation of the target species and this was also supported by associated higher 

classification errors. Thus early summer and late winter present less suitable periods for 

discriminating and mapping C3 and C4 grasses. The discrimination of the target grasses was 

most attributed to the outstanding performance of the red edge, NIR and the SWIR portions 

which were consistent, over time, compared to the visible portion.  

 
This study has provided the optimal period for classifying and mapping C3 and C4 species, 

thereby providing a better spatial representation of their distribution. This is a fundamental 

basis for appropriate accounting of their productivity. Although the new generation sensors 

have shown potential in mapping the target species, their ability to characterize spatial 

variations in species AGB remains uncertain. In addition, the lack of sensors for 

characterizing species AGB was one of the key challenges identified in the remote sensing of 

C3 and C4 AGB. In this regard, the succeeding chapter sought to explore how these sensors 

estimate and spatially represent species AGB. 
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CHAPTERS SIX AND SEVEN  
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C3 AND C4 GRASSES ABOVEGROUND BIOMASS 

CHARACTERIZATION
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6. Determining optimal new generation satellite for accurate C3 

and C4 grass species aboveground biomass estimation  

 

 

(Source: https://www.oneonta.edu/faculty/baumanpr/geosat2/RS%20History%20II/RS-

History-Part-2.html) 

 

 

 

 

 

 

This chapter is based on: 

Shoko C, Mutanga O and Dube T. Determining optimal new generation satellite for accurate C3 and 

C4 grass species aboveground biomass estimation. Remote Sensing, 2018 (10)4: 564 
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Abstract 

While satellite data has proved to be a powerful tool in estimating C3 and C4 grass species 

aboveground biomass (AGB), finding an appropriate sensor that can accurately characterize 

the inherent variations remains a challenge. This limitation has hampered the remote sensing 

community from continuously and precisely monitoring their productivity. This study 

assessed the potential of Sentinel 2 MultiSpectral Instrument, Landsat 8 Operational Land 

Imager and Worldview 2 sensors, with improved earth imaging characteristics, in estimating 

C3 and C4 grasses AGB in the Cathedral Peak, South Africa. Overall, all sensors have shown 

considerable potential in estimating species AGB; with the use of different combinations of 

the derived spectral bands and vegetation indices produced better accuracies. However, 

Worldview 2 derived variables yielded better predictive accuracies, (R
2
 ranging between 0.71 

and 0.83; RMSE values between 6.92 and 9.84%), followed by Sentinel 2, with R
2
 between 

0.60 - 0.79; and RMSE between 7.66% and 14.66%. Comparatively, Landsat 8 yielded 

weaker estimates, with R
2
 ranging between 0.52 and 0.71 and high RMSE values, ranging 

between 9.07 and 19.88%. In addition, spectral bands located within the red edge (e.g. 

centred at 0.705 and 0.745µm for Sentinel 2), SWIR and NIR, as well as derived indices were 

found to be very important in predicting C3 and C4 AGB from the three sensors. The 

competence of these bands, especially of the free-available Landsat 8 and Sentinel 2 dataset 

was also confirmed from the fusion of the variables. Most importantly, the three sensors 

managed to capture and show the spatial variations in AGB for the target C3 and C4 

grassland area. This work therefore provides a new horizon and a fundamental step towards 

C3 and C4 grass productivity monitoring for carbon accounting, forage mapping and 

modelling the influence of environmental changes on their productivity. 

 

Keywords: forage, carbon pool, climate change, new generation sensors, grass productivity  
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6.1. Introduction 

C3 and C4 grass species Aboveground Biomass (AGB) indicate the productivity of grasses 

with common phenological, physiological and morphological characteristics (Jin et al., 2013; 

Tieszen et al., 1997). The accumulation and availability of C3 and C4 grasses AGB offers a 

wide range of ecosystem goods and services, as well as influence varying environmental 

processes. For instance, they are forage sources for a vast of wildlife and livestock 

populations (Polley et al., 2014), provide fuel load (Everson and Everson, 2016), maintain 

biodiversity and are potential carbon pools (Adair and Burke, 2010). C3 and C4 grass species 

are however, facing considerable threats from environmental changes and these are 

anticipated to vary significantly, according to species functional types (Adjorlolo et al., 

2012b; Bremond et al., 2012). Most importantly, as they have different environmental 

tolerances and requirements, C3 and C4 AGB will respond differently to environmental 

changes, anthropogenic pressure, management practices and invasion. Similarly, considerable 

uncertainties about the productivity of C3 and C4 grass species also exist under a carbon 

dioxide-enriched, warmer environment and the influence of local conditions 

(Chamaillé‐Jammes and Bond, 2010). Consequently, there is need to identify robust methods, 

which have the ability to spatially and temporarily characterize these grasses AGB, with 

better and reliable accuracies. This is critical to improve the monitoring of C3 and C4 grasses 

productivity, and associated response to environmental and anthropogenic pressure. 

 

Field measurements and experimental surveys have, so far, been the prominent approaches 

used to determine C3 and C4 grasses AGB for various applications (Everson and Everson, 

2016; White et al., 2012; Winslow et al., 2003). However, these approaches are labour-

intensive and very expensive, which has limited their full application, especially in the 

developing world. In addition, they lack spatial representation (Chen et al., 2009; Gao et al., 

2012; Wand et al., 1999), which is insufficient for spatial and temporal monitoring. The use 

of remotely sensed data remains the feasible method to estimate and spatially characterize C3 

and C4 grass species AGB, for large areas, in a cost effective manner (An et al., 2013; Chen 

et al., 2009). The review by Shoko et al. (2016a) has provided the much needed overview on 

the progress of remote sensing of C3 and C4 grass species AGB. The review identified 

detailed findings on the availability of sensors, their potential and limitations, as well as 

challenges and prospects for C3 and C4 grass species AGB monitoring. In summary, it was 

found that finding a cost-effective sensor, with sufficient spatial resolution, more and unique 

spectral bands, at large geographical coverage for estimating C3 and C4 grass species AGB is 
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a major challenge that has discouraged the remote sensing community to continuously 

monitor these ecosystems. For examples, previously-used sensors, such as AVHRR had a 

very limited number of bands, which limits their spectral potential in differentiating C3 and 

C4 species characteristics, whereas their coarse spatial resolution  misrepresent spatial 

variations in AGB. 

 

It was also identified that new generation sensors, such as Landsat 8, RapidEye, Worldview 2 

and Sentinel 2, with improved and unique characteristics provide an invaluable opportunity to 

detect and quantify variations in AGB across grassland composition of different 

photosynthetic types (Shoko et al., 2016a). These sensors present more advanced remotely-

sensed data to the remote sensing community, which has been caught in between image 

acquisition cost, spatial coverage (which include spatial resolution and swath width), spectral 

capabilities and accuracy, in predicting species AGB. More spectral bands constituted by 

these sensors (e.g. 13 from Sentinel 2) provide wide spectral windows to capture C3 and C4 

AGB variations. Similarly, more spectral bands with different capabilities, increases the 

sensitivity of the sensor to species phenological, physiological and morphological 

characteristics, which influence AGB. The unique red edge have been acknowledged in 

species AGB estimation, due to their sensitivity and ability in providing additional relevant 

species information (Clevers and Gitelson, 2013; Mutanga and Skidmore, 2004b). This is 

very important, especially considering the different physiological, morphological and 

phenological properties of C3 and C4 grasses and associated influence in AGB variations. 

For example, the phenological contrast between C3 and C4 has been documented. C3 grasses 

are typically cool season, most active under cool conditions and remain active throughout the 

year. C4 are warm season grasses mostly active during summer conditions and become 

dormant during winter. Similarly, the review by Adjorlolo et al. (2012b) has highlighted the 

morphological differences in leaf anatomy between C3 and C4 grasses, which influences 

their ability to scatter, reflect or transmit incoming radiation. Slaton et al. (2001), also noted 

that typically, C4 grass leaves are significantly thinner, with long palisade cells, which reflect 

more of radiation in the near infrared portion, compared to C3. On the other hand, C3 grass 

have thick walls, which are normally associated with short, cylindrical mesophyll cells. The 

review by Shoko et al. (2016a) have also reviewed the influence of these contrasts in 

estimating C3 and C4 grass species AGB. These contrasts in leaf anatomy require remote 

sensing variables which have the ability to differentiate for optimal AGB estimation. So far, 

the readily-available Sentinel 2 provides easy access of high resolution red edge bands, which 
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are currently available in commercial satellites (Shoko and Mutanga, 2017a; 2017b). These 

bands have the ability to extract subtle differences between species; their inclusion will 

enhance AGB estimation accuracy. 

 

The spatial properties of available sensors (e.g. 1 km
2
 pixel resolution of AVHRR and 

MODIS), which have been the primary data sources for estimating C3 and C4 AGB have also 

been limiting the accurate quantification and mapping of these grasses AGB. The spatial 

resolutions of the Sentinel 2 (10m) and Landsat 8 (30m) are far much better for 

characterizing C3 and C4 grass species AGB. These pixel resolutions enable better spatial 

representation of species AGB, which might be under- or over-estimated at a 1 km pixel 

resolution. Also, considering the co-existence of C3 and C4 grass species, sensor spatial 

resolution becomes a critical concern to capture AGB variations from these grasslands. In 

addition, large swath width (e.g. 185 km for Landsat 8 and 290 km for Sentinel 2) allows 

monitoring at large geographical coverage, whereas the associated high spatial resolution for 

S-2 is indispensable; hence these sensors hold much appeal for C3 and C4 grass species AGB 

estimation. This study therefore assessed the performance of new generation sensors, with 

refined earth imaging properties in estimating and mapping C3 and C4 grasses AGB 

variations in the temperate region of KwaZulu-Natal, South Africa.  

 

6.2. Methodological Approach 

6.2.1. Grass species AGB data collection 

The collection of AGB for Festuca, C3 and Themeda C4 grass species was conducted in 

February 2016, using 80 randomly generated points for each species. At each point, three 

quadrats measuring 50cm*50cm were randomly thrown within a 10 by 10 m plot. This 

quadrat has been regarded as providing representative samples for AGB prediction, especially 

in predominantly grassland areas (Price et al., 2002; Ramoelo et al., 2015c; Ren et al., 2011). 

In each quadrat, standing grass was harvested and its weight was determined in situ. The 

grass AGB samples were then transported and oven dried in grassland facilities, at the 

University of KwaZulu-Natal, to determine dry AGB which was then converted to kilograms 

per square metre (kg/m
2
). A total of 240 AGB samples for each species were used for 

analysis. AGB sample x and y locations were also captured and recorded, using a handheld 

global position system (GPS), at sub-meter accuracy.  
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6.2.2. Remote sensing data characteristics and processing for AGB estimation 

Three images were acquired each for Landsat 8, Sentinel 2 and Worldview 2 multispectral 

sensors. Landsat 8 images are delivered as raw digital numbers in Universal Transverse 

Mercator (UTM) system. The sensor acquires 12-bit images at a 16-day revisit time, using the 

visible range, NIR, SWIR and TIR, at a spatial resolution of 30m. The calibration of Landsat 

8 images was performed as highlighted at the website (http://landsat.usgs.gov/). The image 

was also corrected for atmospheric effects to derive surface reflectance, using the Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH) model in ENVI 

environment. Seven bands, from the Landsat 8 were used in AGB estimations and these 

correspond to coastal blue (0.435-0.451µm), blue (0.452-0.512µm), green (0.533-0.590µm), 

red (0.636-0.673µm), NIR (0.851-0.879µm) and the two SWIR (1.566-1.6512, 107-2294µm), 

which have been considered by previous studies, not only in monitoring C3 and C4 

grasslands (Price et al., 2002; Shoko and Mutanga, 2017b), but in grassland areas (Sibanda et 

al., 2015a; 2016). 

 

Sentinel 2 is an open and freely-accessible multispectral data source, acquiring 12-bit images, 

every 5-19 days, at 10 m, 20 m and 60 m spatial resolution, in 13 spectral bands. Four bands 

delivered at 10 m spatial resolution are centred at 0.49; 0.56, 0.665 and 0.842µm. The 20 m 

spatial resolution six bands are centred at 0.705; 0.74; 0.783; 0.865; 1.375 and 2.190µm, 

whereas three bands at 60 m resolution are centred at 0.443; 0.945; and 1.375µm. The 

Sentinel 2 image was provided in orthorectified top of atmosphere reflectance, with UTM 

system, associated with the World Geodetic ellipsoid 84. The atmospheric correction of the 

image was also performed using the Sen2Cor atmospheric correction toolbox, which is an 

inbuilt algorithm within the Sentinel Application Platform (SNAP) tool. The tool was 

developed primarily to work with Sentinel images. The three bands acquired at 60 m spatial 

resolution were excluded from the analysis, as they are primarily designated for atmospheric 

monitoring purposes (Drusch et al., 2012), whereas the 20 m spatial resolution bands were 

resampled to 10 m of the rest of the bands. The resampling was performed in SNAP using 

nearest neighbour resampling tool. Worldview 2 commercial image was purchased and it was 

delivered, after all the necessary corrections were performed by the supplier. The image was 

acquired at 2 m spatial resolution in 8 spectral range corresponding to coastal blue (0.4–

0.45µm), blue (0.45–0.51µm), green (0.51–0.581µm), yellow (0.585–0.625µm), red (0.63–

0.69µm), red edge (0.705–0.745µm), NIR (0.77–0.895µm) and NIR 2 (0.86–1.04µm) 

(Adjorlolo et al., 2014).  

http://landsat.usgs.gov/
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Detailed information on the remote sensing image acquisition dates and the field data 

collection of species AGB are tabulated in Table 6.1. It remains challenging to obtain three 

different remote sensing datasets, with the same acquisition date, due to their varying revisit 

time. For example, within a month, only two images are available from the Landsat 8, with a 

16-day revisit time. However, for Sentinel 2, there are high possibilities of obtaining more 

images within a month, with its high revisit frequency of 5 days. In addition, the influence of 

cloud cover also hinders the acquisition of corresponding images, especially during the 

summer period. However, although the images had different acquisition dates, they were all 

collected within the same week and seasonal period, during summer. Although more images 

are required for better vegetation classification, the intention of the study was to compare the 

performance of newly-launched Sentinel 2 and Landsat 8. In addition, different studies 

elsewhere have yielded reasonable results in assessing the performance of different sensors, 

using a single image dataset, acquired within the same season. Secondly, it remains a 

challenge to acquire more images for Worldview 2 commercial data, due to its acquisition 

cost.  

 

Table 6.1: Summary of remote sensing datasets acquired and used in this study 

Remote sensing dataset Acquisition date 

(dd/mm/yy) 

Supplier/Source 

Landsat 8 16/02/2016 
USGS GloVis 

https://glovis.usgs.gov/ 

Sentinel 2 12/02/2016 
Sentinels Scientific Data Hub archive 

https://scihub.copernicus.eu/ 

Worldview 2 16/02/2016 
Purchased from Digital Globe, Longmont, Colorado, 

USA 

 

To derive AGB maps for the target species, without other land cover or grass classes, image 

classification was performed. The classification was done using the species GPS points 

collected as training samples, whereas other land cover classes within the study area were 

masked out to show AGB variations for the target grass species only. In a separate study 

(Shoko and Mutanga, 2017a), the potential of Landsat 8, Sentinel 2 and Worldview 2 in 

discriminating the target species was done, using images acquired in summer, which were 

used to estimate AGB in this study. The detailed information for the classification procedure, 

associated variables and accuracy results are provided by Shoko and Mutanga (2017a). The 

https://glovis.usgs.gov/
https://scihub.copernicus.eu/
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final output map for the two grass species was derived using the standard NDVI, which 

showed great performance, when compared to other indices that were considered in the study. 

 

6.2.3. Regression algorithm for predicting grass species AGB 

This study used the Sparse Partial Least Square Regression (SPLSR)(Chun and Keleş, 2010) 

to predict AGB variations using Landsat 8, Sentinel 2 and Worldview 2 multispectral 

datasets. SPLSR is a robust and powerful algorithm for estimating vegetation biophysical 

properties using remote sensing data. So far, its high performance in predicting grass AGB 

across different environments has been reported (Abdel-Rahman et al., 2014; Sibanda et al., 

2017; 2015b). The model builds estimation functions and associated variables using remote 

sensing datasets. The model achieves this through transformation of the remote sensing 

variables to a set of components and variables, which show their ability in estimating AGB 

(Sibanda et al., 2015a). To determine the number of components for optimal results in 

estimating species AGB, the leave-one-out cross-validation (LOOCV) approach was used. 

The cross validation was done using 30% of the AGB data collected from the field. The 

optimum number of components searched for each variable set were between 1 and 10, as 

recommended by Chun and Keleş (2010). The approach produced estimation errors, using 

Root Mean Square Error of Prediction (RMSEP) associated with a certain number of 

components. The component and associated variables with the lowest estimation errors was 

then considered for further analysis and AGB estimation. The same approach was used 

successfully for example, by Sibanda et al. (2015a), Abdel-Rahman et al. (2014) and Kiala et 

al. (2017).  

 

The SPLSR was run using single species datasets separately and combined species dataset. 

The single species dataset comprised individual species AGB for Festuca and Themeda 

grasses, separately. Secondly, the model was run using pooled data, where Festuca and 

Themeda species dataset was combined. This was performed to produce integrated species 

AGB models for mapping. Before the model was run, the field-based AGB data samples were 

split into 70%, which was used to train the model, whereas the remaining 30% was used for 

validation. All the computations of the SPLSR model were run using R software. The model 

also provided the most optimal variables for estimating AGB, by means of variable scores, 

where variables with scores above 1 were regarded as the most important, while those below 

1 were less important. The SPLSR output include a model that is used for AGB calculation 

with remote sensing images within a Geographic Information System environment. In this 
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study, the AGB maps were produced using ARCGIS raster calculator function based on the 

based model derived using SPLSR. 

 

6.2.4. Remote sensing variables for estimating grass species AGB 

Three sets of variables derived from Landsat 8, Sentinel 2 and Worldview 2 sensors (Table 

6.2) were used to predict AGB, using the SPLSR model. Vegetation indices that were used to 

predict AGB for the target grasses were chosen based on their performance in estimating 

AGB for C3 and C4 grass species compositions (Rigge et al., 2013; Tieszen et al., 1997; Xie 

et al., 2009). In addition, red edge-based simple ratio and NDVI, which were previously 

reported (Ramoelo et al., 2015c) to perform well across grassland ecosystems in general were 

adopted to predict AGB variations for C3 and C4 grass species. This provides more insight 

about the potential of the unique bands in deriving different indices, which have been 

primarily developed, using the visible portion of broad-band multispectral datasets. Sensors 

data fusion was also done, where all the variables from each sensor were combined and used 

in the model. This provides a more comprehensive insight of the competence of each sensor’s 

variables across multispectral sensors in estimating C3 and C4 grass species AGB, than when 

the sensor variables are used in isolation.  

 

Table 6.2: Remote sensing variables used to predict species AGB  

Data type Details Analysis set 

Landsat 8 

Sentinel 2 

Worldview 2 

Seven spectral bands (CB, B, G, R, NIR, SWIR1, SWIR2)  

Ten spectral bands (B, G, R, RE1-3, NIR, RE4, SWIR1, SWIR2) 

Eight spectral bands (CB, B, G, Y, R, RE, NIR1, NIR 2) 

i 

Vegetation Indices (VIs) 

EVI, SAVI, StNDVI, RDVI, SR, MSR (common to all sensors), 

NDVIRE1-4, SRRE1-4 (using Sentinel 2 red edge bands), 

NDVI2 and SR2, (using Worldview 2 NIR2 and R) 

NDVIRE1, SRRE1 (using Worldview 2 NIR1 and RE) 

NDVIRE2, SRRE2 (using Worldview 2 NIR2 and RE) 

ii 

Image spectral data + VIs Combined image spectral bands and vegetation indices iii 

EVI: Enhanced vegetation index (Huete et al., 1997), SAVI: Soil adjusted vegetation index (Huete, 1988), StNDVI: standard 

NDVI (Tucker, 1979), RDVI: renormalized difference vegetation index (Roujean and Breon, 1995), SR: simple ratio 

(Jordan, 1969). 
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6.2.5. Species AGB estimation accuracy assessment 

Statistical measures of AGB estimation accuracy using the different sensors and associated 

variables were determined, as well as the model performance in estimating species AGB. 

These measures included the coefficient of determination (R
2
), root mean square error 

(RMSE) and RMSE%. The RMSE is a measure of the difference between the actual 

measured AGB values in the field and the estimated values. These are frequently used in 

prediction accuracy assessment using remote sensing data. The RMSE was calculated using 

the formula: 
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Where: Xmeasured is the measured AGB, Xpredicted is the predicted AGB and i is the predictor 

variable included (Dube and Mutanga 2015). The RMSE% was also calculated as: 
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Where n is the number of measured values; yi is the measured value; 
iy

^

 is the estimated 

values and 

y  is the mean of the measured AGB (Dube and Mutanga 2015). 

 

A better model using the different metrics was selected from each sensor based on the highest 

R
2
 and lowest RMSE. The selected model and associated variable with the highest VIP score 

for each sensor was then used to produce AGB maps for the study area in ARCGIS 10.2. 

Significant difference tests were also performed to determine if the performances of the three 

sensors in estimating C3 and C4 grass species AGB were significantly different. In addition, 

it was also tested whether the estimation accuracies of Festuca was significantly different 

from that of Themeda, using the three sensors.  

 

6.3. Results 

6.3.1. Species AGB variations measured 

Table 6.3 shows the descriptive statistics of measured Festuca and Themeda grass species 

AGB. It was found that in early February, Themeda C4 grass had higher AGB variations, 

when compared to Festuca. Measured AGB of Themeda varied from 0.6kg/m
2
 to as high as 

1.276kg/m
2
, whereas for Festuca, it varied between 0.52kg/m

2
 to 1.16kg/m

2
. 
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Table 6.3: Descriptive statistics of the measured species AGB 

Species 
 Minimum 

(kg/m
2
) 

 Maximum 

(kg/m
2
) 

Average 

(kg/m
2
) 

 Stdev. 

(kg/m
2
) 

Festuca  0.524  1.160 0.709  0.115 

Themeda  0.600  1.276 0.884  0.125 

Combined species  0.524  1.276 0.797  0.148 

*N is the number of sampled plots 

 

6.3.2. The performance of sensors’ variables in predicting species AGB 

The results in Table 6.4 provide the performance of the variables derived from the three 

sensors in estimating species AGB. Overall, all the variables showed considerable potential in 

predicting species AGB. However, Worldview 2 sensor produced the best prediction 

accuracies, with the least estimation errors (between 6.92 and 9.84%), followed by Sentinel 2 

estimates, far much better than those obtained using the Landsat 8 sensor. Spectral bands 

from all the sensors also estimated species AGB with the lowest accuracies, when compared 

to the use of indices and combined variables. There were noticeable improvements in 

estimation accuracy, from using spectral bands, to the use of combined variables, for both 

individual species and combined species datasets. This was most evident for Landsat 8 and 

Sentinel 2. For instance, Landsat 8 derived spectral bands produced an R
2
 of 0.55 (RMSE = 

17.55% of the mean) when estimating Festuca AGB. When estimating for Themeda, an R
2
 of 

0.52 was produced, with an RMSE of 19.88%. Landsat 8 bands also estimated combined 

species with an R
2
 of 0.52 and an RMSE of 18.19%. When using indices, R

2
 improved to 

0.68 for Festuca, 0.63 for Themeda and 0.65 for combined species, whereas the errors of 

estimation were reduced to 11.48%, 12.53% and 13.5% for Festuca, Themeda and combined 

species dataset, respectively.  

 

Tests of significance according to the t-test also revealed that the three sensors had significant 

differences in estimation accuracies using the different variables. Significant differences (α < 

0.05) were only observed between sensors, as well as between the variables used. However, 

although slight differences between the two species were observed, the differences were not 

significant (α < 0.05).  
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Table 6.4: Sensor AGB predictive accuracies for Festuca, Themeda and combined species 

Remote sensing 

datasets 

Festuca Themeda Combined species 

R2 RMSE 

(g/m2) 

RMSE 

(%) 

R2 RMSE 

(g/m2) 

RMSE 

(%) 

R2 RMSE 

(g/m2) 

RMSE 

(%) 

Bands 

L-8 

S-2 

WV-2 

 

0.55 

0.61 

0.73 

 

164.42 

145.85 

93.59 

 

17.55 

13.11 

  8.97 

 

0.52 

0.60 

0.71 

 

175.73 

129.59 

  97.50 

 

19.88 

14.66 

  9.22 

 

0.52 

0.61 

0.72 

 

150.63 

122.74 

  78.42 

 

18.91 

15.04 

  9.84 

Indices 

L-8 

S-2 

WV-2 

 

0.68 

0.76 

0.79 

 

101.39 

91.19 

55.44 

 

13.48 

  10.49 

  7.82 

 

0.63 

0.74 

0.77 

 

110.76 

  93.62 

  64.17 

 

12.53 

  9.46 

  7.26 

 

0.65 

0.71 

0.75 

 

107.59 

  84.80 

  64.47 

 

13.51 

10.64 

  8.09 

Combined variables 

L-8 

S-2 

WV-2 

 

0.71 

0.79 

0.83 

 

94.30 

64.16 

52.39 

 

9.07 

7.64 

7.39 

 

0.69 

0.77 

  0.8 

 

91.14 

66.83 

61.17 

 

10.31 

  7.56 

  6.92 

 

0.71 

0.74 

0.82 

 

97.63 

81.85 

64.23 

 

12.25 

10.27 

  8.06 

*These results were based on the 70% sample set 

 

Figure 6.1 shows the predictive accuracies of species AGB using optimal variables from the 

three sensors. These graphs illustrate the relationships between measured and estimated 

AGB, using combined variables, which were found to have better estimation accuracies, 

when compared to the use of spectral bands or indices. The optimal variables include Landsat 

8 NDVI, NIR and SWIR; Sentinel 2 red edge bands (centred at 0.705, 0.74 and 0.783µm) 

with derived indices, NIR and SWIR, whereas for the Worldview 2 it was NIR, red and red 

edge bands and derived indices.  

 

 

 
Figure 6.1: The relationship between measured and estimated AGB using the optimal variables of the three 

remote sensing datasets. a, b and c represent Festuca, Themeda and combined species datasets, respectively. i, ii 

and iii represent Landsat 8, Sentinel 2 and Worldview 2 datasets, respectively 

a (i) 
 a (i) 

 

a (ii) 
a (iii) 

b (i) b (ii) 
b (iii) 

c (i) c (ii) 
c (iii) 
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6.3.3. Model validation results 

Figure 6.2 provides the performance of the model in estimating species AGB using the 

independent 30% validation set. Overall the SPLSR performed well in estimating species 

AGB and the results were comparable to those produced using the 70% set. Therefore, only 

validation results for optimal variables for species pooled data was shown. 

 

Figure 6.2: Model performance in estimating species AGB. a, b and c represents Landsat 8, 

Sentinel 2 and Worldview 2 remote sensing datasets 

 

6.3.4. Sensors data fusion results in predicting C3 and C4 grass species AGB 

When all the bands and indices from the three sensors were used separately for individual 

species dataset, the maximum numbers of components were 2. Therefore a report for the 

component with the lowest RMSEP and associated variables was provided. Figure 6.3 

provides the most variables selected after fusing the three datasets, at individual species level 

and using species pooled data. Overall results indicated that the NIR, red edge and SWIR 

bands were the most important bands across sensors. When indices were used, the standard 

NDVI from Landsat 8 was found among Sentinel 2 and Worldview 2 most important indices, 

which included red edge-based indices. At individual species level, more variables were 

selected as important for estimating Festuca AGB, whereas for Themeda and pooled species 

dataset, a few variables were selected.  

 

 

 

 

 

 

(a) (b) (c) 
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Figure 6.3: The most important (a) bands and (b) indices for estimating (i) Festuca, (ii) 

Themeda and (iii) combined species across sensors  

 

6.3.5. The potential of the sensors in predicting and mapping C3 and C4 grasses AGB  

Figure 6.4 shows the spatial variations of species AGB, estimated using optimal variables of 

the three multispectral sensors and species combined dataset. The combined species dataset 

has shown that NDVI was the most influential in estimating AGB. However, the index was 

derived using different sensors’ spectral bands. For the Landsat 8, the AGB map was derived, 

using the standard NDVI, whereas for Sentinel 2, NDVI derived using red edge centred at 

0.705µm was used and the NDVI using the red edge (centred between 0.705–0.745µm) was 

also used for Worldview 2. Thus NDVI derived using different spectral bands from the three 

datasets was used for species AGB mapping across the study area. 

 

 

 

 

 

 

 

 

a (i) a (ii) a (iii) 

b (i) b (ii) b (iii) 
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Figure 6.4: AGB variations in February 2016, derived using different remote sensing datasets  

 

6.4. Discussion 

Remote sensing of C3 and C4 grass AGB has remained a challenge, due to the lack of data 

sources, which have the capabilities to spatially characterize such subtle variations. The 

different physiological, morphological and phenological properties of C3 and C4 grasses 

influence AGB variations. Previous reviews (for example, Adjorlolo et al., 2012b; Shoko et 

al., 2016a) have noted the differences in leaf anatomy between C3 and C4 grasses, which 

influence their ability to scatter, reflect or transmit incoming radiation. Although these 

variations have been documented, not all sensors have the ability to discern such variations 

and estimate species AGB with optimal accuracy. This has resulted in lack of continuous 

monitoring of their productivity. It is therefore of much importance to identify remote sensing 

datasets to quantify and map the productivity of C3 and C4 dominated grasslands across vast 

scales. Current developments in remote sensing offer new perspectives for C3 and C4 AGB 

monitoring and modelling. It is also the focus of the remote sensing community to shift 

towards the use of freely-available new generation sensors, which have emerged with better 

capabilities for improved AGB estimation and monitoring. Similarly, the continuous 

monitoring of grassland areas is also a cause for research, especially in the light of climate 

change and its effects on food security, carbon cycle and biodiversity.  

 

Landsat 8 Sentinel 2 

Worldview 2 
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6.4.1. The performance of Landsat 8, Sentinel 2 and Worldview 2 variables in 

predicting species AGB 

It can be observed that all sensors constitute variables which have the potential to estimate C3 

and C4 grass species AGB. The availability of more bands from Sentinel 2 provides more 

spectral windows which are influential, as well as enabling the computation of different 

indices which have the potential to predict C3 and C4 grasses AGB. This has been reported 

by the findings of Addabbo et al. (2016) which highlighted that the novel spectral bands of 

the Sentinel 2 allows the computation of new indices, which offer additional information for 

vegetation analysis. The lower number of bands of the Landsat 8 sensor limits the number of 

variables with potential to estimate AGB. Among the most important variables for predicting 

C3 and C4 grasses AGB were spectral bands. For example, the Landsat 8 NIR and SWIR, as 

well as the red edge of Sentinel 2 and Worldview 2 contributed to species AGB estimation. 

Thus spectral bands of the new generation sensors have the capability to contribute to the 

estimation of C3 and C4 grasses AGB. 

 

In addition, the important variables across the three sensors were mostly located within the 

NIR, red edge and the SWIR portions, as well as the corresponding indices. This was shown 

when individual sensors were tested, as well as from the fusion of the three datasets. 

However, for Landsat 8, only the NIR and derived indices and SWIR bands were competitive 

enough among Sentinel 2 and Worldview 2 variables. The potential of spectral bands of 

previously-used sensors have not been reported, as researchers were biased towards the use of 

derived indices, due to the broad spectral channels, which were perceived to be insensitive to 

species biophysical properties. However, a few studies reported the influence of NIR band in 

C3 and C4 grass species monitoring using previous Landsat data series, like the Thematic 

mapper 5 (Peterson et al., 2002). The study has highlighted significant differences in the NIR 

reflectance between C3 and C4 grass species using TM 5. In a different study, Lu et al. 

(2009) also reported the importance of NIR in estimating C3 and C4 grass species AGB using 

AISA Eagle hyperspectral imagery in Japan. The contribution of the SWIR portions in AGB 

predictions has been reported in grasslands ecosystems. The study by Chen et al. (2011) have 

reported the significance of SWIR bands in predicting AGB in the semi-arid rangelands of 

Idaho. This might also encourage future work to consider the use of SWIR-based indices, 

especially when using Sentinel 2 and Landsat 8 sensors.  
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Similarly, red edge bands and derived indices have been found to be sensitive to species 

biophysical properties, hence they boost the prediction of species AGB, when compared with 

the visible channels (Mutanga and Skidmore, 2004b; Sibanda et al., 2015a; Sibanda et al., 

2017). The contribution of NIR, SWIR and red edge in this study might be attributed to the 

varying concentration of leaf pigments (e.g. chlorophyll and water) between C3 and C4. For 

example, NIR and red edge are closely related to chlorophyll (Delegido et al., 2011; Ramoelo 

et al., 2013), whereas SWIR to water content (Laurin et al., 2016). These bands have also 

been reported to be closely related to species AGB variations (Sibanda et al., 2015b), hence 

their important contribution in AGB estimation was observed in this study. This possibly 

indicates the variability in chlorophyll or water content between C3 and C4 species during the 

summer period, as indicated by a different study.  

 

Spectral bands have low AGB predictive accuracy, when compared to the use of derived 

indices and a combination of variables. Improved prediction accuracies using indices have 

been acknowledged in estimating species AGB by previous studies (Lu et al., 2009; Schino et 

al., 2003; Sibanda et al., 2017). These variables have been perceived to be more sensitive to 

species characteristics, which improve their predictive accuracy, than individual bands. 

However, it should be noted that the performance of Landsat 8 spectral bands was weak, 

when compared to that of Sentinel 2 and Worldview 2. The slightly weaker performance of 

Landsat 8 bands in this study indicates the weaker performance of traditional bands in C3 and 

C4 dominated grasslands. In addition, Landsat 8 spectral settings lack unique bands like red 

edge, which weakens its potential to predict species AGB. On the other hand, the Sentinel 2 

and Worldview 2 sensors constitute unique and important bands, which have the ability to 

extract the varying bio-physical characteristics of C3 and C4 species, which influence AGB. 

It should also be highlighted that the performance of traditional indices based on the 

traditional bands, such as visible or NIR were less important, when compared to those indices 

that were derived using additional unique bands, such as red edge and NIR. Substantial 

studies (that include Addabbo et al., 2016; Sharma et al., 2015) have studied the competence 

of indices derived from red edge or additional NIR, with those derived from traditional bands 

in characterizing species biophysical properties. For example, the study by Addabbo et al. 

(2016) which compared Landsat 8-based NDVI (using the red and NIR) with Sentinel 2 red 

edge NDVI for characterizing different vegetation.  
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Most interestingly, the improved performance using vegetation indices and combined 

variables was most apparent for Landsat 8, than Sentinel 2 or Worldview 2. This may be 

explained by the fact that Landsat 8 constitute broad traditional bands, which are not detailed 

enough to predict AGB, hence the inclusion of more than individual bands increases its 

prediction accuracy. In confirmation, vegetation indices have been the primary variables 

which have been preferred, over the use of individual bands, to estimate AGB variations 

between C3 and C4 grasses using broadband multispectral sensors (Grant et al., 2013; Guan 

et al., 2012; Pau and Still, 2014; Peterson et al., 2002). Broadband indices have been 

identified to be more sensitive to species AGB, which cannot be sensed by individual bands, 

thereby improving the model predictive accuracy. So far, the application of Landsat data 

series in estimating C3 and C4 grasses AGB has been very limited, except for a few studies 

which reported the derived indices. For example, the study by Davidson and Csillag (2001) in 

Canada reported the potential of the standard NDVI (R
2
 = 0.64) from Landsat 5 TM-based 

Exotech Model radiometer, when compared to other indices. In a different study, in Kansas 

state of United States of America, Peterson et al. (2002) reported that although NDVI was 

influential in estimating C3 and C4 grass species AGB, the index failed to significantly 

differentiate variations in AGB between the two grass species. In this regard, mixed findings 

have been reported from previously-used Landsat datasets. 

 

6.4.2. The potential of three sensors to predict and map C3 and C4 grassland AGB 

One of the challenges faced by researchers in monitoring C3 and C4 AGB has been the 

ability of available sensors to map subtle AGB variations. This has been shown by the 

scarcity of the distributional maps of C3 and C4 AGB variations. Previously-used sensors 

were inadequate; they provided unsatisfactory predictions, because of their coarse spatial 

resolution and broad spectral channels. For example, the studies by Tieszen et al. (1997) and 

An et al. (2013) predicted C3 and C4 AGB with coefficient of determinations of 0.58 and 

0.54 using AVHRR NDVI, whereas Rigge et al. (2013) reported AGB overlaps, using 

MODIS NDVI in the Prairies of the America. Findings from this study have shown improved 

estimations using the recently emerged multispectral sensors, than has been previously 

reported. 

 

To the best of our knowledge, AGB maps for C3 and C4 grass species are rarely available. So 

far, few studies attempted to map C3 and C4 grasslands AGB using hyperspectral (Lu et al., 

2009) and climatic variables (Epstein et al., 1997). However, the use of hyperspectral images, 
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which are associated with high acquisition cost and climatic data proved unsuccessful and did 

not receive enough attention to understand the spatial variations of C3 and C4 AGB over 

large areas, especially in Africa, where climatic observation networks are very poor and 

financial resources are limited. This has limited the availability of AGB maps for C3 and C4 

grasses. This study has therefore revealed a new opportunity for estimating and mapping 

AGB in C3 and C4 dominated grasslands over large areas in a cost effective manner, 

especially for the developing world, where the acquisition of commercial satellites is 

difficult. All three sensors showed great potential in mapping the spatial variations of species 

AGB. Researchers now have opportunities to use free-available Sentinel 2 and Landsat 8 or a 

combination of these datasets in monitoring the productivity of C3 and C4 grass species for a 

variety of applications. 

 

Findings from this study also reveal the anticipated performance and potential of new 

generation sensors in mapping the AGB variations of C3 and C4 grassland areas (Shoko et 

al., 2016a). The sensors thus contain important abilities to monitor these grassland 

ecosystems, which was becoming almost impossible. Although it was not as good as the 

Worldview 2, Sentinel 2 was better than and Landsat 8. For example, Sentinel 2 predicted 

species AGB with better accuracy and showed better spatial variations, compared to Landsat 

8. Recently, the study by Addabbo et al. (2016)  reported the improved efficiency of the 

Sentinel 2, over that of Landsat 8. The study found statistical significance differences 

between the performances of the two sensors, using derived NDVI. They also reported that 

within a particular area, Sentinel 2 sampled 3015 pixels, when compared to 345 pixels from 

the Landsat 8. This confirms the magnitude of the Sentinel 2 10m spatial resolution, in 

representing spatial variability.  

 

The Worldview 2 was also confirmed to remain critical in predicting more accurately and 

mapping C3 and C4 species AGB, than Sentinel 2 and Landsat 8. Within the same area, the 

potential application of Worldview 2 in estimating and mapping C3 and C4 grass species 

canopy nitrogen, with satisfactory accuracy has also been shown (Adjorlolo et al., 2014). The 

high spatial resolution and associated unique spectral bands thus enable the sensor to capture 

the spatial variability in canopy characteristics, such as leaf area index and pigment 

concentrations, which are related to species AGB variations; this improved its prediction 

accuracy. However, the operational application of the Worldview 2 might be hindered by its 
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acquisition cost, this places Sentinel 2 and Landsat 8 as promising datasets for monitoring of 

C3 and C4 grasses AGB, especially in data scarce environments.  

 

Although reasonable predictive results were produced from this study, especially in relation 

to those accuracies reported using broad-band multispectral datasets, the performance of the 

model in predicting C3 and C4 species AGB cannot be ignored. Overall, the SPLSR 

produced good predictive results for all the sensors, using different variables. However, 

results from this study might be considered inconclusive, since these sensors have been tested 

at a specific period. Snapshot AGB maps for C3 and C4 dominated grassland are inadequate; 

because AGB for these grasses vary over time, due to the influence of species phenology and 

more importantly changing climatic conditions. Decision making and implementation of 

policies require more details of species AGB variations. In relation with the performance of 

the sensors, the ability of the sensor to predict and spatially represent species AGB might also 

be influenced by the period considered. There is therefore the need to show how these sensors 

(particularly the free-available Sentinel 2 and Landsat 8 datasets) and the SPLSR model 

perform in predicting C3 and C4 grasses AGB, as well as their consistency over time.  

 

6.5. Conclusion 

The present study has shown the feasibility of using the new generation sensors to estimate 

and determine the subtle spatial variations of C3 and C4 grasses AGB in the temperate 

regions of South Africa. The most important finding from this study was the performance of 

the freely-available Sentinel 2 and Landsat 8 sensors in predicting and mapping species AGB. 

The sensors predicted species AGB with reasonable accuracy, which might be very useful in 

monitoring the productivity of C3 and C4 grasslands, for various applications. The sensors 

provide significant data sources to enable the monitoring of C3 and C4 grass species 

productivity, across different ecosystems. 

 

For decades, the lack of appropriate remote sensing data sources compromised C3 and C4 

grasses AGB estimation, over space and time, especially for the developing world, where the 

acquisition of commercial datasets is a major limitation. Results obtained from this chapter 

showed a new horizon for characterizing C3 and C4 grass species AGB using new 

generation sensors. This is encouraging for continuous monitoring of their productivity at 

large geographical coverage. Although Sentinel 2 produced lower accuracies, when 

compared to Worldview 2, its free availability becomes invaluable for characterizing C3 and 
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C4 grasses AGB over time. The sensor also showed better performance in relation to the 

freely-available Landsat 8, hence can optimally characterize AGB over time. Therefore, the 

next chapter used Sentinel 2 to characterize the seasonal spatial variations of C3 and C4 

grasses AGB. 
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CHAPTER SEVEN 
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7. Characterizing the spatio-temporal variations of C3 and C4 

dominated grasslands aboveground biomass in the Drakensberg, 

South Africa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter is based on: 

Shoko. C, Mutanga. O, Dube. T and Slotow. R. Characterizing the spatio-temporal variations 

of C3 and C4 dominated grasslands aboveground biomass in the Drakensberg, South Africa. 
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Abstract 

C3 and C4 grass species composition, with different physiological, morphological and most 

importantly phenological characteristics, influence Aboveground Biomass (AGB) and their 

ability to provide ecosystem goods and services, over space and time. For decades, the lack of 

appropriate remote sensing data sources compromised C3 and C4 grasses AGB estimation, 

over space and time. This resulted in uncertainties in understanding their potential and 

contribution to the provision of services. This study therefore examined the utility of the new 

multi-temporal Sentinel 2 to estimate and map C3 and C4 grasses AGB over time, using the 

advanced Sparse Partial Least Squares Regression (SPLSR) model. Overall results have 

shown the variability in AGB between C3 and C4 grasses, estimation accuracies and the 

performance of the SPLSR model, over time. Spectral bands information predicted species 

AGB with lowest accuracies and an improvement was observed when both spectral bands 

and vegetation indices were applied. For instance, in the month of May, spectral bands 

predicted species AGB with lowest accuracies for Festuca (R
2
 = 0.57; 31.70% of the mean), 

Themeda (R
2
 = 0.59; 24.02% of the mean) and combined species (R

2
 = 0.61; 15.64% of the 

mean); the use of spectral bands and vegetation indices yielded 0.77; (18.64%), 0.75 

(14.27%) and 0.73 (16.47%), for Festuca, Themeda and combined species, respectively. 

These results were comparable to those produced using 30% training dataset, with slight 

differences (+/- 5%), which indicated the potential of the model in estimating C3 and C4 

grasses AGB over time. There were also noticeable variations in AGB between C3 and C4 

grasses, where Themeda produced higher AGB from February to April, whereas from May to 

September, Festuca produced higher AGB. Both species also showed a decrease in AGB in 

August and September, although this was most apparent for Themeda than its counterpart. 

The red edge (at 0.705 and 0.74µm) and derived indices, NIR and SWIR 2 (2.19µm) were 

found to contribute more to grass species AGB estimation, over time. The AGB spatial 

variability maps produced in this study can be used to quantify C3 and C4 forage availability 

or accumulating fuel, over time, as well as for developing operational management strategies. 

 

Keywords 

Environmental changes, forage availability, red edge, seasonal variations, species functional 

types,  
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7.1. Introduction 

C3 and C4 grass species Aboveground Biomass (AGB) represent a fundamental indicator of 

their productivity, which directly influences the ability of these ecosystems to provide 

ecosystem goods and services. Grass species productivity provides a wide range of 

ecological, economic and environmental services. For instance, these grasses are an important 

source of forage for livestock and wildlife populations (Diouf et al., 2015; Mansour et al., 

2013), as well as a source of fuel load for fire occurrences, which is an important mechanism 

in their maintenance (Everson and Everson, 2016). Within the global carbon cycle, C4 

grasses also store a substantial amount of carbon, compared to C3 grasses (Adair and Burke, 

2010). Besides, the Intergovernmental Panel on Climate Change (IPCC) identified species 

AGB as one of the principal carbon pools of terrestrial ecosystems (Eggleston et al., 2006; 

Kumar and Mutanga, 2017; Vashum and Jayakumar, 2012). Most importantly, the 

phenological differences between C3 and C4 grass species, as determined by seasonal 

variations in climatic conditions influence their AGB over time. However, although a lot of 

studies have reported the phenological differences between C3 and C4, from a local scale, 

they tend to be more variable, due to the influence of local environmental conditions, such as 

topography. Consequently, the potential of these grasses to provide services is different and 

this may be more variable over space and time. 

 

The current and projected environmental changes also threaten the spatial and temporal 

productivity of C3 and C4 grass species, with implications on AGB timing, accumulation and 

variations (Adjorlolo et al., 2012b; Bremond et al., 2012; Joubert et al., 2017; Morris, 2017). 

Compelling evidence have also reported substantial response of C3 and C4 grasses AGB to 

carbon dioxide (CO2) fluctuations (Lee, 2011; Polley et al., 2014; White et al., 2012), water 

availability (Niu et al., 2008) and temperature changes (Auerswald et al., 2012; Still et al., 

2014). Considerable uncertainties about the response of C3 and C4 grass species also exist 

under a CO2-enriched, warmer environment and the influence of local conditions 

(Chamaillé‐Jammes and Bond, 2010). Nevertheless, environmental changes compromise 

the integrity of C3 and C4 grasses functional types and subsequently the provision of a range 

of services, such as forage and carbon storage. In this regard, the estimation of C3 and C4 

grass species AGB over time provides detailed understanding of their productivity and 

response to environmental variability over time. This becomes a fundamental step to identify 

areas of low or high productivity, for example, in the case of forage availability, or 
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determines vulnerable areas to environmental changes. This is required for developing proper 

management strategies to ensure sustainable provision of ecosystem goods and services. 

 

Remote sensing remains a realistic and practical data source, for spatially explicit 

characterization of C3 and C4 grasses AGB over time and space. So far, AGB estimation for 

C3 and C4 grasses has been conducted or reported on specific seasonal period, using 

broadband multi-spectral datasets (Grant et al., 2013; Lu et al., 2009; Pau and Still, 2014). In 

a different study, Shoko et al. (2016a) conducted a detailed review on the progress of C3 and 

C4 grass species AGB estimation using remote sensing. The review found that the majority 

of studies which estimated C3 and C4 AGB were done using Moderate Resolution Imaging 

Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR), 

MEdium Resolution Imaging Spectrometer (MERIS) and Landsat multi-spectral datasets in 

the Prairies or Great Plains of the United States and in the temperate region of China. The 

challenges associated with using these datasets were also noted, which included lower 

estimation accuracies and spatial representation of AGB. This has been primarily attributed to 

mixed-pixel problem, due to their coarse spatial resolutions. These datasets also constitute 

limited number and strategically-positioned bands (e.g. red edge), which limit their spectral 

potential in differentiating C3 and C4 species characteristics associated with AGB variations. 

Their coarse spatial resolution (e.g. 1 km for MODIS and AVHRR) also misrepresent AGB 

spatial variations. With these challenges, other researchers (e.g. Lu et al., 2009) attempted to 

use hyperspectral datasets, with high spatial resolution and narrow spectral bands. These 

datasets have been reported to yield high predictive accuracies, compared to multispectral. 

However, their application did not receive enough attention from the research community, 

especially for AGB estimation at large geographical coverage over time. This has been due to 

their high acquisition cost; hence their application has been limited to small geographical 

coverage, especially in resource-constrained regions like Africa. The use of hyperspectral 

data sources becomes insufficient for the development of appropriate management strategies, 

especially considering the influence of climatic variations on C3 and C4 AGB over time. In 

this regard, AGB spatial and temporal variations for C3 and C4 grasses remains poorly 

documented. However, future prospects in understanding the productivity between C3 and 

C4 depend on the use of new generation freely-available sensors, such as the Sentinel 2.  

 

Currently, the readily-available Sentinel 2 is perceived to provide a major key data source for 

estimating C3 and C4 grasses AGB over time, in a cost effective manner, at large 
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geographical coverage. Although Sentinel 2 earth imaging characteristics are not as advanced 

as hyperspectral data (e.g. in terms of spatial resolution), the sensor might be considered as an 

intermediate dataset between the freely available broadband multispectral sensors and more 

advanced and commercialized hyperspectral sensors. The characteristics of Sentinel 2 

overcome the major challenges associated with the operational application of broadband and 

medium resolution satellites, such as MODIS, AVHRR, MERIS and Landsat data series, 

which have been the primary data sources for AGB estimation, across C3 and C4 grasslands. 

The sensor is equipped with state-of-the-art instrumentation, which offers high resolution 

optical images, when compared to freely-available satellites on board optical or multispectral 

sensors, such as Landsat 8 or ETM 7 (Addabbo et al., 2016). Increased and unique spectral 

bands (13) at different and refined portions of the electromagnetic spectrum of Sentinel 2 free 

of charge provide more spectral windows sensitive to species morphological, physiological 

and phenological characteristics, which influence the production of AGB. This may improve 

the estimation accuracy of C3 and C4 grass species over space and time. In addition, these 

bands are only available in commercial datasets, such as hyperspectral, hence Sentinel 2 

provide free access to the unique bands. The high revisit frequency (5-19 days), most 

importantly, captures the phenological variations of C3 and C4 grass, which influence AGB 

variations over time, as well as enabling the acquisition of cloud-free images. The 290 km 

swath-width also allows large geographic coverage, which is one of the major limitations of 

using hyperspectral data, whereas the 10 m spatial resolution captures AGB spatial variations 

at a finer scale, appropriate for mapping, especially considering the co-existence of C3 and 

C4 grass species, with varying characteristics.  

 

Sentinel 2 sensor has so far proved a great potential in estimating and mapping crop quality 

(Clevers et al., 2017; Immitzer et al., 2016), vegetation health (Addabbo et al., 2016), wood 

cover mapping (Munyati, 2017), as well as C3 and C4 grass species discrimination and 

mapping (Shoko and Mutanga, 2017a). However, its applicability in C3 and C4 grass AGB 

estimation over time is still rudimentary despite the immediate need of information on 

rangeland productivity, in the face of the changing climate. This study therefore used time-

series Sentinel 2 data to estimate and map C3 and C4 dominated grasslands AGB, in the 

Drakensberg, KwaZulu-Natal, over time. The study also aimed at determining the 

consistency of Sentinel 2 derivatives in estimating species AGB, over space and time. 

 



 119 

7.2. Materials and methods 

7.2.1. Data collection 

The AGB data was collected for Festuca, C3 and Themeda C4 grass species. The collection 

of AGB for these species was conducted in early February, May, August and November 

2016, using randomly generated points. At each point, three quadrats, measuring 50 cm by 50 

cm were used to collect grasses AGB samples within a 10 by 10 m plot. In each quadrant, 

standing grass AGB was harvested and its weight was determined in situ. The grass AGB 

samples were then transported and oven dried at the University of KwaZulu-Natal grassland 

facilities, to determine dry AGB. The dry AGB was weighed and this was converted to 

kilograms per square metre (kg/m
2
). A total of 80 plots, measured 10 by 10 m were used for 

each species, with three samples per plot. This resulted in a total of 240 AGB samples for 

each species, which were used for analysis during each acquisition period. AGB sample 

locations were also captured and recorded using a handheld global position system (GPS), 

with sub-meter accuracy. 

 

7.2.2. Remote sensing data acquisition and processing 

Sentinel 2A images are freely-available for download from the European Space Agency 

(ESA) website (https://scihub.copernicus.eu/), through the Sentinels Scientific Data Hub 

archive. Eight cloud-free Sentinel 2 MSI images (Table 7.1), covering the entire study area 

were selected and downloaded for AGB estimation over time. Sentinel 2 sensor acquires 

images using 13 spectral bands, four bands at 10m spatial resolution, featuring blue 

(0.49µm), green (0.56µm), red (0.665µm) and near-infrared (0.842µm), six bands at 20m, 

with four narrow bands in the vegetation red-edge spectral domain (0.705, 0.74, 0.783 and 

0.865µm) and two SWIR, at 1.61 and 2.19µm. Sentinel 2 spectral range also offers cirrus 

(0.443µm), water vapour (0.945µm) and aerosol (1.38µm) bands, at 60m spatial resolution, 

which have been dedicated to atmospheric monitoring. For this study, ten bands were 

therefore used, with the exception of cirrus, water vapour and aerosol bands, and all bands at 

20 m were resampled to 10 m spatial resolution using nearest neighbour resampling in 

Sentinels Application Platform (SNAP) environment. Sentinel 2 images are delivered 

orthorectified and geometrically corrected top of atmosphere reflectance in Universal 

Transverse Mercator projection and World Geodetic System (WGS) 84 ellipsoid. The images 

were therefore corrected for atmospheric effects using the Sen2Cor prototype processing tool 

in SNAP.  

 

https://scihub.copernicus.eu/
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Table 7.1: Sentinel 2 image acquisition characteristics  

Season Acquisition period Sun zenith angle (°) Sun azimuth angle (°) 

Summer 

 

07/02/2016 

05/03/2016 

03/11/2016 

03/12/2016 

41.57 

46.94 

24.59 

22.41 

44.02 

36.32 

60.95 

77.97 

Winter 

14/05/2016 

26/06/2016 

25/08/2016 

29/09/2016 

55.99 

58.34 

47.16 

36.49 

28.94 

29.29 

37.10 

43.65 

*Bolded acquisition periods are those months in which ground measurements of species AGB were collected, whereas those 

in regular format were the images that were used to predict using models developed from ground-based measurements  

 

7.2.3. Regression algorithm for predicting grass species AGB 

This study used the Sparse Partial Least Square Regression (SPLSR) to predict AGB 

variations between C3 and C4 grass species. SPLSR is one of the robust and powerful non-

parametric model with reported potential in predicting vegetation biophysical properties 

using remote sensing data (Verrelst et al., 2012). It is the more advanced version of the 

normal PLSR and the study by Abdel-Rahman et al. (2014) revealed detailed differences 

between them. Compared to its predecessor, the SPLSR performs dimensionality reduction 

and variable selection simultaneously and when it transforms the data, the SPLSR enforces 

sparsity and picks out the most suitable remote sensing variables for estimation. This enabled 

the recent studies in grass AGB estimation to shift towards its adoption. For example, SPLSR 

has been reported to perform well in predicting AGB for grasses under different management 

practices (Sibanda et al., 2017; 2015b), with reliable accuracy, using different remote sensing 

datasets, including hyperspectral and multispectral imagery. SPLSR predicts AGB using the 

remote sensing variables and ground-based measurements. The model also provides the most 

optimal variables for predicting AGB, using the variable importance projection (VIP) scores, 

which are allocated to each variable. Variables with values above the VIP threshold of the 

SPLSR (i.e. VIP > 1) are regarded as significantly important, whereas those below the 

threshold are less important in estimating AGB. The VIP scores were therefore used to 

determine the frequency of each variable. Frequency in this regard was the number of 

occurrences of each important variable, when its value was above the threshold, in estimating 

species AGB over the period of study. The model was run four times, using ground measured 

AGB values collected in February, May, August and November with three sets of variables. 

This resulted in a total of 12 runs and variable frequency was reported when using (i) spectral 

bands only, (ii) vegetation indices only and (iii) spectral bands + vegetation indices. Before 

the model was run, the field-based AGB data samples were randomly split into 70%, which 
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was used to train the model, whereas the remaining 30% was used for validation. 

Consequently, for each species 56 plots (i.e. 168 samples) were used for training, whereas 24 

(i.e. 72 samples) were used for validation. This also resulted in 336 samples for training and 

144 samples for validation, for species pooled dataset. 

 

7.2.4. Sentinel 2 variables used to predict grass species AGB 

Three sets of variables from the Sentinel 2 images were used to predict AGB using the 

SPLSR and these include: (i) image data (ii) derived vegetation indices (VIs) and (iii) a 

combination of indices and image data. All the Sentinel 2 derived variables that were used to 

predict AGB are provided in Table 7.2. VIs were chosen based on their performance in C3 

and C4 grass species compositions AGB (Rigge et al., 2013; Tieszen et al., 1997). The 

indices chosen have been frequently used since the potential of remote sensing in C3 and C4 

AGB estimation has been recognized and had shown great potential using different datasets. 

In addition, red edge-based simple ratio (SR) and normalized difference vegetation index 

(NDVI), which were previously reported (Ramoelo et al., 2015c) to perform well across 

grasslands ecosystems in general were adopted to predict AGB variations for C3 and C4 

grass species. Red-edge based indices have not yet been fully utilised in estimating C3 and 

C4 grass species AGB. Previously used sensors for estimating C3 and C4 grasses AGB does 

not constitute red edge bands, the majority of studies have used red and NIR-based NDVI and 

SR. The inclusion of red edge-based indices in this study therefore provides more insight on 

the performance of these indices derived using different spectral bands and enlightens 

prospects for future AGB monitoring of these grasses. The indices were named based on the 

red edge band used; for example, NDVIRE1 and SRRE1 indices were derived using red edge 

band 1. A total of 24 variables were used in this analysis, with 12 analyses using each 

variable set (i.e. spectral bands, indices and bands + indices), for the whole study period. 
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Table 7.2: Sentinel 2 variables that were used to predict species AGB over time 

Data type Details Analysis set 

Original image data 

Ten spectral bands 

Bands 2-8A (Blue, Green, Red, Red edge1-3, NIR, Red edge4) 

Bands 11 and 12 (Shortwave infrared bands) 

i 

Derived Vegetation 

Indices (VIs) 

EVI, SAVI, NDVI, RDVI, SR, MSR,  

red edge-based NDVI (using red edge bands 1-4), 

red edge-based SR (using red edge bands 1-4), 

ii 

Image spectral data + VIs Combined image spectral bands and vegetation indices iii 

EVI: Enhanced vegetation index (Huete et al., 1997), SAVI: Soil adjusted vegetation index (Huete, 1988), NDVI: 

normalized difference vegetation index (Tucker, 1979), RDVI: renormalized difference vegetation index (Roujean and 

Breon, 1995), SR: simple ratio (Jordan, 1969).  

 

7.2.5. Species AGB accuracy assessment 

Statistical measures of the estimation accuracy over time, using the different variables were 

determined. These measures were the coefficient of determination (R
2
) and root mean square 

error (RMSE) and %RMSE. The RMSE is a measure of the difference between the actual 

measured AGB values in the field and the estimated values by the model, whereas %RMSE is 

its deviation from the measured values expressed as a percentage. By expressing the RMSE 

as a % (within a scale between 0 and 100%) more insight is provided on the magnitude of 

deviation of AGB estimates using the different Sentinel 2 variables. These accuracy measures 

are frequently used in prediction accuracy assessment, using remote sensing data, for 

example by Dube and Mutanga (2015a) and Adam et al. (2014). From each analysis using the 

field-based measurement, a better model was identified, and the selected model and 

associated variables was then used to produce AGB map for the study area.  

 

7.2.6. Species AGB spatial predictions over time 

Four AGB models were developed (two for summer and two for winter), which correspond 

with the field measured data. These models were used to produce AGB maps for the study 

area during the field data acquisition period, as well as for the subsequent months in which 

AGB measurements were not available. For instance, the model developed and associated 

VIP variable using AGB measurements collected in February 2016 was used to estimate 

AGB variations for March 2016. In addition, the predicted AGB maps were also used to 

extract species AGB, using the GPS points. The extracted AGB values were then used to 

derive descriptive statistics of the target grass species, over time.  
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7.3. Results 

7.3.1. Measured species AGB over time 

Figure 7.1 shows summary statistics, which include the maximum, minimum and average of 

the measured dry AGB for the two species, in kg/m
2
, over time. The measured AGB shows 

temporal variations between the two grasses. For Festuca grass, the highest AGB was 

recorded in May, whereas for Themeda, the highest AGB was measured in November 

 

Figure 7.1: Maximum, minimum and average species AGB, based on field dataset 

 

7.3.2. Performance of Sentinel 2 derived variables in predicting grasses AGB over time 

Table 7.3 provides the statistical measures of accuracies for estimating Festuca, Themeda and 

combined species dataset AGB, using spectral bands, indices and spectral bands plus indices 

in February, May, August and November 2016. Overall, Sentinel 2 derived variables yielded 

reasonable accuracies and this was quite variable over time. Spectral bands predicted species 

AGB with lower accuracies and this increase when indices and a combination of spectral 

bands were used. For instance, in May, spectral bands predicted species AGB with lower 

accuracies for Festuca (R
2
 = 0.57; 31.70% of the mean), Themeda (R

2
 = 0.59; 24.02% of the 

mean) and combined species (R
2
 = 0.61; 15.64% of the mean). Indices improved the 

prediction accuracies for Festuca (R
2
 = 0.70; 22.05% of the mean), Themeda (R

2
 = 0.69; 

16.51% of the mean) and combined species (R
2
 = 0.70; 23.15% of the mean). Comparably, 

spectral bands + indices yielded the highest accuracies for Festuca (R
2
 = 0.77; 18.64% of the 

mean), Themeda (R
2
 = 0.75; 14.27% of the mean) and combined species (R

2
 = 0.73; 16.47% 
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of the mean). Similar pattern in the improvement of prediction accuracies from using spectral 

bands to the combination of bands and indices was found in February, August and November.   

 

Results also clearly show that the performance of predictive variables varied with seasonal 

period. For instance, lowest prediction accuracies were found in May using spectral bands for 

Festuca (R
2
 = 0.57; 31.70% of the mean), Themeda (R

2
 = 0.59; 24.08% of the mean) and 

combined species (R
2
 = 0.57; 28.11% of the mean). The highest predictive accuracies were 

found in August, for Festuca (R
2
 = 0.85; 7.64% of the mean), Themeda (R

2
 = 0.86; 7.56% of 

the mean) and combined species (R
2
 = 0.84; 9.27% of the mean).  

 

Table 7.3: Predictive accuracies using Sentinel 2 variables for estimating species AGB, over 

time 

Variables/Period Festuca Themeda Combined species 

R
2
 RMSE 

(g/m
2
) 

RMSE 

(%) 

R
2
 RMSE 

(g/m
2
) 

RMSE 

(%) 

R
2
 RMSE 

(g/m
2
) 

RMSE 

(%) 

Bands 

February 

May 

August 

November 

 

0.61 

0.57 

0.66 

0.62 

 

145.85 

346.68 

132.80 

225.27 

 

13.11 

31.70 

12.29 

21.80   

 

0.60 

0.59 

0.67 

0.62 

 

129.59 

352.13  

102.11 

251.62   

 

14.66 

24.08 

20.75  

20.29  

 

0.61 

0.57 

0.69 

0.63 

 

100.74 

320.62  

231.66 

364.39 

 

15.64 

28.11 

23.42 

26.26 

Indices 

February 

May 

August 

November 

 

0.76 

0.70 

0.78 

0.73 

 

  91.19 

299.95 

108.53 

185.98 

 

10.49 

22.05 

11.89 

18.99 

 

0.74 

0.69 

0.78 

0.76 

 

  99.62 

246.95 

  96.36 

223.60 

 

15.11 

16.51 

15.86 

15.35 

 

0.73 

0.70 

0.77 

0.71 

 

96.80 

267.71 

192.23 

313.72 

 

10.64 

23.15 

15.78 

19.63 

Bands + Indices 

February 

May 

August 

November 

 

0.82 

0.77 

0.85 

0.79 

 

  74.16 

244.38 

  99.98 

166.14 

 

  9.84 

18.64 

  7.64 

16.07 

 

0.78 

0.75 

0.86 

0.81 

 

  66.83 

178.86 

  89.10 

201.36 

 

  9.46 

14.27 

  7.56 

12.89 

 

0.74 

0.73 

0.84 

0.76 

 

  81.85 

221.05 

135.20 

247.83 

 

10.59 

16.47 

  9.27 

12.06 

 

Table 7.4 highlights the model performance using the 30% independent set, for individual 

species and pooled species dataset, based on variables, which only produced the best AGB 

estimation accuracies over time. Overall results indicate the potential of the SPLSR model in 

estimation accuracy, explaining above 70% of C3 and C4 species AGB variations over time. 

The model also produced highest estimation errors in May, compared to other periods. The 

results were also comparable to those produced using the 70% training dataset, with slight 

differences (+/- 5%) between them. For example, in February according to the 70% dataset, 

Festuca AGB was estimated with R
2
 of 0.82 (9.84% of the mean); this was 0.79, with a 

RMSE of 13.32%. The performance of the model also varied over time using species 

individual species dataset, as well as for pooled data. For example, using AGB data acquired 
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in May, which had the highest measured values, the model showed lower estimation 

accuracies, compared to other periods. In May, Festuca AGB was estimated with an R
2
 of 

0.71, which was 20.22% deviation, whereas for Themeda, it was 0.70 with a RMSE of 

21.02%. On the other hand, in February, Festuca AGB was estimated with an R
2
 of 0.82 

(9.84% of the mean), whereas Themeda was estimated with 0.78 (9.46% of the mean).  

 

Table 7.4: Model validation results, using combined Sentinel 2 derivatives 

Period Festuca Themeda Combined species 

R
2
 RMSE 

(g/m
2
) 

RMSE 

(%) 

R
2
 RMSE 

(g/m
2
) 

RMSE 

(%) 

R
2
 RMSE 

(g/m
2
) 

RMSE 

(%) 

February 

May 

August 

November 

0.79 

0.71 

0.80 

0.74 

81.21 

255.25 

105.61 

176.11 

13.32 

20.22 

11.64 

19.07 

0.76 

0.70 

0.79 

0.77 

73.22 

186.43 

97.76 

211.69 

11.01 

21.02 

9.81 

15.06 

0.73 

0.70 

0.77 

0.71 

86.15 

226.44 

144.31 

255.66 

13.59 

18.47 

11.27 

15.73 

 

7.3.3. The importance of Sentinel 2 variables in species AGB estimation over time 

The importance of Sentinel 2 variables in estimating species AGB, over time is graphically 

presented in Figure 7.2. The Figure shows the frequencies of each variable, using each 

variable set, for all the species dataset, over time. The use of spectral bands has shown that 

NIR (0.842µm) had the highest frequency, followed by RE 2 (0.74µm), whereas the visible 

blue had the lowest frequency. NDVIRE1 showed the highest frequency, followed by the 

standard NDVI, whereas RE4-derived NDVI had the lowest frequency, when indices were 

used. The combined use of bands + indices showed that RE 1 (0.705µm), RE 2 and the NIR 

had significantly the highest frequencies in their contribution in estimating AGB over time, 

whereas the simple ration derived using red edge 3 had the lowest frequency.  
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Figure 7.2: The frequency of Sentinel 2 variables in estimating species AGB, over time. Error 

bars show significant differences in variable frequency 

 

7.3.4. Temporal variations in AGB using Sentinel 2 data 

Figure 7.3 shows the derived AGB variations between the two species over time. The 

presented results are averaged AGB values, extracted using species GPS points. Overall, the 

two grass species showed variations in AGB over time. During the summer months of 

February, March, November and December 2016, higher AGB estimates were found for 

Themeda (C4), than Festuca (C3). There was however a shift in AGB variations between the 

two species, where higher estimates were found for Festuca, than Themeda, from May to 

September. Both species also showed a marked decrease in AGB, especially in August and 

September.  

 
Figure 7.3: Average species AGB variations over time (2016) 

 

7.3.5. The variability in AGB over time 

Figure 7.4 illustrates the estimated variability in AGB over time for the study area during 

2016, using Sentinel 2. Overall, AGB variations within the area exhibited temporal and 

spatial fluctuations and the sensor managed to capture these variations. Higher AGB were 

estimated in February, March, May, November and December, whereas during the midyear, 

low AGB estimates were produced. The beginning of winter (May) had the highest AGB, 

compared to other months, whereas lowest estimates were after the winter fall (September). 
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Figure 7.4: The spatial and temporal variability of C3 and C4 grass species AGB over time  
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7.4. Discussion 

7.4.1. The frequency of Sentinel 2 variables in estimating species AGB over time 

Sentinel 2 variables have shown great potential in predicting C3 and C4 grasses AGB 

variations, over time. Among the most important variables in estimating species AGB were 

the red edge centred at 705 and 740 nm, derived indices, the NIR and SWIR spectral bands. 

For instance, the NIR band showed the highest frequency in its importance in estimating 

AGB and was also competitive among indices, when indices + bands were used. In 

accordance with results from this study, compelling studies (Mutanga and Skidmore, 2004b; 

Ramoelo and Cho, 2014; Sharma et al., 2015) have reported the importance of red edge bands 

and derived indices in estimating AGB. It has been established that red edge variables are 

sensitive to species canopy AGB and chlorophyll concentration, when compared to other 

portions of the electromagnetic spectrum (Mutanga and Skidmore, 2004b). This improves the 

competence of red edge bands and derived indices in estimating species AGB, over time. 

However, not all the Sentinel 2 red edge and derived indices were found to be important in 

species AGB prediction in this study. For example, red edge centred at 865nm (band 8A) and 

derived indices have shown consistently poor importance in estimating species AGB, over 

time, with lower frequencies. The contribution of the SWIR may be attributed to its 

sensitivity to species water content, and this is variable between the two species, especially 

when Themeda (C4) becomes dormant, particularly in August. In consistence, Numata et al. 

(2008) revealed a significant correlation between grass AGB and water content, and 

suggested that the use of water related wavelength, improve AGB estimation accuracy. The 

study by Chen et al. (2011) also reported the importance of SWIR bands in estimating species 

AGB in the semi-arid rangelands of Idaho, using SPOT 5. In this regard, researchers might 

advocate for the development and use of Sentinel 2 SWIR-based indices in estimating C3 and 

C4 grass species AGB over time. The importance of NIR, as indicated by the highest 

frequency highlights its consistent, as well as its competence among indices in AGB 

estimation, over time. Previous studies (Lu et al., 2009; Price et al., 2002) also found NIR to 

be a very important spectral portion in C3 and C4 grasslands monitoring. 

 

On the other hand, the visible portion had the lowest frequencies in estimating species AGB 

over time. This shows that the visible bands are inconsistent and have limited potential in 

estimating C3 and C4 grass species AGB over time. The limited potential of visible bands in 

estimating AGB has been previously attributed to their sensitivity, for example, the review by 
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(Lu, 2006). These bands were reported to be less sensitive to species biophysical 

characteristics and AGB variations; hence they become insignificant and less competitive.  

 

7.4.2. Species AGB prediction accuracies 

The use of indices showed a marked increase in species AGB prediction accuracy over time, 

when compared to the use of individual bands. Indices have been reported to have better 

AGB prediction accuracies, when compared to the use of spectral bands (Sibanda et al., 

2015a; 2017). This is due to the combination of different bands which improve their 

sensitivity, thereby boosting AGB prediction accuracy, when compared to individual bands 

which have limited sensitivity capacity. In confirmation, across C3 and C4 grasslands, studies 

which estimated AGB used vegetation indices, particularly NDVI (An et al., 2013; Rigge et 

al., 2013; Tieszen et al., 1997). The broadband nature of the used sensors discouraged the use 

of spectral bands, which have been perceived to be insensitive to species biophysical 

properties, hence have low ability in estimating AGB. Thus Sentinel 2 extends the 

availability of variables for estimating C3 and C4 grasses AGB, which were previously 

limited to traditional indices.  

 

Species AGB prediction accuracies was quite variable over time. For example, species AGB 

was predicted with relatively lower accuracies in May and November, than in February and 

August. This is a clear indication of the influence of seasonality on species AGB estimation 

accuracies, which might be associated with the amount of AGB available. In this study, lower 

AGB prediction accuracies in May are likely attributed to species phenology. Species 

phenology determines the accumulation of AGB and the subsequent estimation accuracy, 

using remote sensing data. This was also confirmed by the validation dataset, where the 

model showed lowest estimation accuracies in May. In May, Themeda had reached its peak, 

whereas Festuca was at its peak stage of growth, both species therefore had high density 

AGB. Field-based AGB measurements also confirmed that May had the highest AGB for 

both species. High AGB during peak stage of species phenology causes saturation problem 

and this might have challenged the estimation accuracy. Saturation due to high AGB at 

maximum productivity is one of the major problems associated with multispectral sensors in 

estimating species AGB. However, in February and November, although both species were 

active, they have not yet reached their peak, which implies limited saturation problem and 

therefore better accuracies, than in May. The influence of phenology and AGB variations on 

estimation accuracy was also noted by Ramoelo and Cho (2014) in north east South Africa, 
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using Worldview 2 dataset. The study reported slightly higher prediction accuracies in July, 

which was characterized by lower AGB, when compared to March, which had higher species 

AGB. Similarly, the influence of high density AGB lowering estimation accuracy was also 

explored by Mutanga et al. (2012), using Worldview 2 dataset and random forest model. 

 

Although the use of Sentinel 2 derived indices provided better estimation accuracies using 

data acquired during the study period, this study urges caution when estimating Themeda 

AGB during the winter fall, as the species and other C4 species starts to lose their vigour. 

Some of the indices used like NDVI are related to vegetation greenness and have been 

reported to have limited potential during low vegetation cover (for example, Butterfield and 

Malmström, 2009). In this regard, during February, May and November 2016, when both 

species were active, indices related to greenness remained applicable, despite saturation 

problems in May. However, in August, when C4 becomes less active, loses its greenness and 

there is less vegetation cover, soil reflectance interferes with species signal in Themeda 

dominated areas. Possibly, the use of other indices besides NDVI or the use of SWIR-based 

indices in estimating C4 AGB during low productivity stages is recommended.  

 

7.4.3. Spatial variations in AGB over time 

This study managed to depict the spatial variations of C3 and C4 dominated grassland AGB 

in KwaZulu-Natal, using Sentinel 2 multi-temporal dataset. The study confirms the potential 

of the Sentinel 2 sensor in estimating and mapping C3 and C4 AGB over time. This 

performance is the combined contribution of its spectral range, which constitute more and 

unique bands, as well as its 10 m spatial resolution. These characteristics are sensitive to C3 

and C4 species physiological, morphological and phenological properties which improve the 

AGB prediction and variations. At a finer spatial resolution, subtle differences in AGB for 

different species are also better captured, with limited mixed pixel problem (Lu, 2006).  

 

It was found that AGB across the study area exhibited spatial and temporal variations. This 

shows the influence of various factors governing AGB variations for C3 and C4 grass species 

across the area. The source of differences in AGB over time is contributed by the variations 

in species composition, growth, as well as climatic influence. For instance, reflecting on the 

distributional pattern of the grass species under study, the AGB variation maps are closely 

associated with the recognized distribution pattern of the target grass species (Figure 7.1) or 

species composition and associated biophysical properties over time. In the present study 
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area, Themeda is predominantly within the central, north east and eastern parts of the study 

area, which showed higher AGB during the summer months, when the species is most active 

and productive. In winter Themeda dries, due to harsh unfavourable conditions. This was also 

noticed especially in August, during field data collection. Festuca on the other hand has been 

reported to be active for most parts of the year, which promotes AGB availability, and during 

the field data collection the grass remained active, although it will not be as active as during 

early winter. In agreement, the study by Rigge et al. (2013) reported the effect of grass 

composition within a landscape on the spatio and temporal patterns of AGB. 

 

The spatial distribution of AGB also coincided with the characteristics of the study area. For 

example, the far north east and eastern parts include communal areas, characterized by 

livestock grazing, as well as human disturbances, whereas the majority of the area is under 

conservation. Similarly, the communal area has more of Themeda, a high palatable grass that 

is favourable to livestock (Coughenour et al., 1985; Danckwerts et al., 1983), when compared 

to Festuca. Themeda is also recognized as an important source of fodder, fibre for paper, 

thatching and basketry. Consequently, this contributes to the loss of Themeda within the 

communal area, thereby lowering its AGB. The area under conservation showed consistently 

higher AGB during most time of the year. This is due to limited grazing and human 

disturbances, as well as the predominance of Festuca grass, which has been reported to be 

green for most part of the year. Festuca has also been identified as unpalatable and therefore 

unfavourable to grazers, compared to Themeda. This reduces grazing pressure in Festuca 

dominated landscapes. However, although it is not comparable to communal area, the 

conserved area also provide forage to a few small ungulate wildlife grazers (Joubert et al., 

2017).  

 

AGB variations also highlighted inter and intra-annual variability in climatic conditions, such 

as the reported seasonal rainfall and temperature, influencing species the timing and amount 

of AGB accumulation. Although it was quiet variable across the study area, higher AGB was 

estimated during the summer months, whereas lower AGB was observed during winter 

months, particularly winter fall (August and September). Higher AGB may be primarily 

caused by the prevailing of favourable climatic factors, which boost species AGB production 

and accumulation. For instance, Morris et al. (2016) and Nel (2009) reported that the area 

receives summer rainfall, from November to March. This facilitates species growth and AGB 
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production, during this period. This is most apparent for Themeda, which is most active in 

summer. In contrast, August and September showed a marked decrease in AGB across the 

area under study. This period is typically end of winter, associated with no rainfall (Everson 

et al., 1988), which limit plant growth, thereby lowering AGB production and accumulation 

for most parts of the area. This also indicates that the winter fall, present unfavourable 

conditions for AGB accumulation across the study area. A very limited number of studies 

have reported the AGB variations of C3 and C4 grass species within the area (Everson and 

Everson, 2016; Everson et al., 1985; 1988). These studies have reported high AGB during the 

summer months, compared to winter, using ground measurements. The influence of climate 

variability on C3 and C4 grasses AGB has been reported, for example, by the study done by 

Winslow et al. (2003) which reported significant response of C3 and C4 grass species AGB 

to water variability.  

 

7.5. Conclusion 

Findings presented in this study demonstrated the spatial productivity of C3 and C4 grass 

species over time. This is crucial in determining the potential of C3 and C4 dominated 

grasslands as forage sources, their carrying capacity and in predicting the effects of global 

change on their productivity. The study also demonstrated the potential and strength of using 

the readily available Sentinel 2 data as an invaluable source of C3 and C4 grasses AGB 

information, for the proper and well-informed management at large areas. This is critical, 

especially in sub-Saharan Africa, where high-resolution remote sensing data availability 

remains a challenge for monitoring vegetation productivity and its response to environmental 

changes, over time. Results also demonstrated that SPLSR is a useful and a robust model for 

estimating C3 and C4 grass species AGB over time.  

 

The results from this chapter have highlighted the spatial and temporal variations of C3 and 

C3 grasses AGB, using Sentinel 2 dataset. These results are valuable in determining the 

contribution of these species as forage sources, fuel load and potential carbon pools over 

time. With anticipated climate change effects on the productivity of species functional types, 

it becomes critical to identify the environmental conditions that influence the productivity of 

these grass species, as well as how these species AGB respond over time. Environmental 

conditions control species biophysical processes and consequently determine their growth 

rates and productivity. Furthermore, the availability of multi-temporal Sentinel 2 and its 

potential in estimating C3 and C4 AGB allow the ability to examine the variability in species 
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AGB. Therefore, the succeeding chapter explored the response of C3 and C4 grass species 

AGB to seasonal climate and topography. 
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8. Remotely-sensed C3 and C4 grass species aboveground biomass 

variability in response to seasonal climate and topography 

 

A view of the study area (Photographed by Terence Mushore; November 2016) 
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Abstract 

Environmental conditions influence the productivity of C3 and C4 grass species. These 

conditions regulate biophysical processes, which determine plant growth and aboveground 

biomass (AGB). However, the anticipated climate change effects on species functional type 

are threatening the productivity of C3 and C4 grasses AGB. This emphasized the need to 

monitor the AGB for well-informed management strategies. Emerging new generation 

sensors present an opportunity to characterize C3 and C4 AGB variations over time. Their 

improved spatial, temporal and spectral capabilities enable multi-temporal analyses of 

dynamic phenomena in a spatially explicit manner. This has been difficult to achieve using 

conventional methods and available sensors. The present study therefore investigated the 

response of remotely-sensed derived C3 and C4 grasses AGB to seasonal climate and 

topography. Overall, the influence of seasonal climate and topography on species AGB was 

quite variable. For example, a marked increase in C4 AGB (e.g. in February and March) was 

associated with an increase in rainfall, whereas dry months were associated with a decrease in 

AGB. This was also supported by the highest significant positive relationship (R
2 

= 0.82, P < 

0.005) found between C4 AGB and rainfall. Spatial and temporal response of AGB variations 

were also evidenced across the study area. However, some areas showed unstable responses, 

whereas others showed stability, despite climatic changes over time. During the winter fall in 

August, AGB significantly responded to climatic conditions for most parts of the study area. 

For example, AGB significantly decreased from averages of 2.592 kg/m
2
 and 1.101 kg/m

2
 in 

May, to 0.718 kg/m
2
 and 0.469 kg/m

2
 in August, for C3 and C4 grasses, respectively. August 

and September produced the lowest AGB across the study area. This coincided with lowest 

rainfall, rise in temperatures and radiation. Elevation was the most influential topographic 

variable to determine species AGB, with the highest significant positive relationship (R
2 

= 

0.84) with C3 and highest negative (R
2
 = -0.77) with C4. Findings from this study thus 

provide a key step in identifying vulnerable areas in C3 and C4 dominated ecosystems, for 

management purposes in light of climate changes. The results further demonstrated the 

potential of using multi-temporal Sentinel 2 for time series analyses of C3 and C4 AGB and 

their response to seasonal climate. 

Key words: climatic effect, radiation, productivity, rainfall, temporal variability,  
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8.1. Introduction 

C3 and C4 grass species aboveground biomass (AGB) directly reflects their level of 

productivity, structure and functioning. Globally, C4 grasses have been identified to account 

for 20 – 25% overall terrestrial productivity (Still et al., 2014) and covers large areas in 

Africa and Australia, when compared to C3. These grasslands also operate as agro-

ecosystems, providing forage for variable populations of livestock (Woodward et al., 2004), 

which support millions of people, especially in Africa. C4 grasses have also been reported to 

have better palatability, highly suitable for animal production (Snyman et al., 2013), 

compared to C3. C3 and C4 also facilitate nutrient cycling and carbon sequestration. For 

example, C4 grasses store a substantial amount of carbon, than C3 grasses (Adair and Burke, 

2010) and the Intergovernmental Panel on Climate Change (IPCC) has emphasized species 

AGB as one of the principal carbon pools of terrestrial ecosystems (Eggleston et al., 2006; 

Vashum and Jayakumar, 2012). C3 and C4 AGB also determines the occurrence and intensity 

of fire regimes (Everson et al., 1985) in the management of grassland ecosystems. Most 

importantly, the seasonal variations in climatic conditions influence C3 and C4 grasses AGB 

over time, thereby influencing their ability to provide ecosystem goods and services. 

 

Climate and topography influence the spatial and temporal variability in C3 and C4 grasses 

AGB (Auerswald et al., 2012; Lee, 2011). These factors have been identified to regulate 

species biophysical processes and phenological response (Epstein et al., 1997; Ricotta et al., 

2003; Saleem et al., 2009). At different phenological phases, these grasses exhibit variations 

in their exchange of energy, water and carbon fluxes, as well as in nutrient uptake, storage 

and release, throughout the growing season, influencing the productivity of AGB (Adair and 

Burke, 2010; Jin et al., 2013). The variability in AGB is therefore sensitive to any alterations 

of the phenological profiles of these grasses to climatic changes over time. The projected 

effects of climate change have also been anticipated to influence the productivity of C3 and 

C4 grass species, with significant implications on their AGB variability. For example, an 

increase in warming has been predicted to favour C4 grasses, such that they will improve in 

productivity, compared to C3 (Bremond et al., 2012). Climatic changes will therefore, cause 

significant challenges to the provision of ecosystem goods and services by C3 and C4 

grasses. For example, declines in grazing capacity, with significant implications on livestock 

production and human livelihoods. This emphasized the need to monitor C3 and C4 AGB, to 

have a better understanding of their state and functioning over time. 
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Conventional methods have so far been the main sources of characterizing C3 and C4 grass 

species AGB (Auerswald et al., 2012; Epstein et al., 1997; Polley et al., 2014; Taylor et al., 

2014). However, these studies were conducted at small geographical coverage (i.e. plot 

level), at a limited temporal scale. This has been mainly attributed to the high costs, time and 

labour associated with the use of these methods. Consequently, results obtained lack spatial 

and temporal aspects of species AGB; hence are insufficient for monitoring or understanding 

the dynamics of C3 and C4 AGB. This resulted in uncertainties in understanding the 

contribution of these species and the effects of climate change. This approach also hinders 

any prospects to predict the future of C3 and C4 grasses productivity, as well as formulating 

conclusive management strategies in a spatially explicit context. 

 

Remote sensing provides critical data source for estimating, mapping and monitoring of grass 

species AGB (Lu, 2005; Zhao et al., 2014). The intrinsic spatial nature of remotely-sensed 

data allows spatial representation of species AGB, which could not be achieved using 

conventional methods. In addition, the spectral capability of remote sensing technology is 

also crucial in extracting species morphological and phenological characteristics, which 

influence their AGB variations. Most importantly, emerging sensors offer outstanding 

opportunities to monitor C3 and C4 grasses AGB (Shoko et al., 2016). For example, the high 

temporal resolution of emerging sensors (e.g. Sentinel 2 at 5 days) allows multi-temporal 

analysis of dynamic phenomena like species AGB in a spatially explicit manner. Its large 

geographical coverage, with a swath-width of 195 km at a refined spatial resolution (e.g. 10 

m) offers data for large scale monitoring of AGB variations, at a finer spatial resolution. This 

is also suitable to identify areas in C3 and C4 grasslands, which are most vulnerable to 

climatic anomalies, under different climate change scenarios. Sentinel 2 is also the first 

optical sensor of its kind to provide more bands within the red edge domain, noted for 

extracting key information on vegetation biophysical characteristics (Bruzzone et al., 2017). 

This represents a substantial improvement, especially with respect to the past, thereby 

opening a wide range of innovative possibilities of multi-temporal analysis. The present study 

thus aimed at characterizing remotely sensed derived C3 and C4 grasses AGB. Specifically, 

the study intended to explore the response of C3 and C4 AGB to seasonal climate and 

topography. 
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8.2. Materials and Methods 

8.2.1 Grass species AGB data 

The present study assessed the response of C3 and C4 grass species. AGB samples were 

collected at different seasonal periods, which included summer and winter distinctive 

seasons. The summer period was represented by data collected in early February and early 

November, whereas for the winter period, it was early May and end of August 2016. AGB 

data was collected based on randomly generated points. During each AGB data collection, 

three quadrats, measuring 50 cm by 50 cm at each random point were used to collect samples, 

and these quadrats were demarcated within 100 m
2
 (i.e. 10 * 10 m) plot. The standing green 

grass was clipped and weighed in situ; using a weighing scale and this was recorded as fresh 

AGB in kg/m
2
. The collected AGB samples were also oven dried at the University of 

KwaZulu-Natal grassland facilities, to derive dry AGB and this was expressed as kg/m
2
. A 

total of 240 AGB samples for each species were used for analysis during each field visit. 

AGB sampled locations were also captured using a Trimble GEO XH 6000 hand held global 

position system (GPS). 

 

8.2.2. Climatic and Topographic variables 

The climatic and topographic variables that were used in this study are provided in Table 8.1. 

For climatic variability over time, rainfall, temperature and radiation were used. Rainfall data 

was delivered as daily point values recorded at eight stations, sufficient for the Cathedral 

Peak catchment. For analysis purposes, the daily rainfall was aggregated to monthly totals 

and was also interpolated to obtain its spatial variability across the study area. This was 

performed using ordinary Kriging interpolation method in ArcGIS 10.2. Temperature 

recordings were available from a station within the study area and this data was insufficient 

for analysis; however, the data was used to show the general pattern of temperature variations 

within the study area. A digital elevation model (DEM) from the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) at a spatial resolution of 30 m was 

also used to derive topographical variables for the study area. The DEM was pre-processed to 

remove imperfections associated with the product and have a better spatial representation of 

topography. This was done in ARCGIS using the spatial analysist extension tool. The 

topographical derivatives used included elevation, aspect, slope and total wetness index 

(TWI). Elevation, aspect and slope indicate the surface terrain and these were derived using 

the surface extension spatial analyst tool. The TWI is a hydrological index that determines 

the variability in soil water conditions and was derived using the hydrological spatial analyst 
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tool in ArcGIS 10.2. Solar radiation recordings were also not available; due to lack of routine 

observations, hence it was modelled from DEM using radiation modelling tool in ArcGIS 

10.2. The use of radiation modelled from DEM has been widely accepted as a reliable data 

source in ecological modelling (Dube and Mutanga, 2016; Kumar et al., 1997; Ruiz‐Arias et 

al., 2009). All derived maps were also standardized to the same resolution using nearest 

neighbour resampling technique in a GIS environment, to ensure their compatibility and 

consistency.  

 

Table 8.1: Climatic and topographical variables that were used in this study 

Variable Definition Source 

Aspect Slope direction measured in degrees (°) or compass direction clockwise 

from North (0) to North (360) 

ASTER DEM 

Elevation Height above sea level, in meters (m) ASTER DEM 

Radiation Insolation received from the sun, in Watts Hours per square meter (WH/m
2
) ASTER DEM 

Rainfall Monthly total, in millimeters (mm). SAEON, SAWS 

Slope Elevation steepness, in degrees (°) from 0 (flat) to 90 (steep) ASTER DEM 

Temperature Maximum, minimum and average, in degrees Celsius (°C). SAEON, SAWS 

TWI Wetness condition, which determines the spatial variability of soil water (-) ASTER DEM 

*DEM: digital elevation model, SAEON: South African Earth Observation Network, SAWS: South African Weather Services, TWI: total 
wetness index, ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer 

 

8.2.3. Remotely sensed derived AGB over space and time 

Remotely-sensed estimates of C3 and C4 grasses AGB over time were derived using the 

recently available Sentinel 2 multi-temporal images in a different study. This was achieved 

using derived variables, which were identified to optimally estimate species AGB, using the 

Sparse Partial Least Squares regression (SPLSR) model and ground-based measurements. 

The model is one of the robust and powerful with reported potential in estimating species 

AGB, using remote sensing variables (Abdel-Rahman et al., 2014; Sibanda et al., 2017). 

SPLSR predicts AGB and provides variable importance projection (VIP) scores, which 

indicates the potential of each variable in AGB estimation. Variables with the highest scores 

were then used to produce AGB maps for the study area. 

 

8.2.4. Statistical Analysis 

SPLSR was further used to relate seasonal climatic and topographic variables to C3 and C4 

AGB using ground-based measurements collected in February, May, August and November 

2016. Statistical tests were also performed to determine the significance of the derived 
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relationships between ground-based AGB and the seasonal climatic and topographic 

variables. The tests were done using one-way Analysis of Variance (ANOVA) at 95% 

confidence interval.  

 

8.3. Results 

8.3.1. Descriptive statistics of data collected 

Table 8.2 provides the descriptive statistics of AGB, climatic and topographic variations 

between C3 and C4 grasses. It was found that species AGB varied from a minimum of 0.244 

in August (for Themeda, C4), to a maximum of 3.912 kg/m
2
 in May (for Festuca, C3). The 

climatic conditions and topography associated with AGB collected also varied.  
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Table 8.2: Descriptive statistics of the data collected and extracted 

Acquisition 

Month 
Variables Species Min Max Avg. Stdev 

February 

AGB 
C3 

C4 

0.524 

0.600 

1.160 

1.276 

0.709 

0.984 

0.115 

0.125 

Aspect 
C3 

C4 

0.0 (N) 

0.0 (N) 

358.0 (N) 

359.1 (N) 

194.78 (S) 

267.7 (W) 

137.9  

99.2 

Elevation 
C3 

C4 

1375.0 

1296.0 

1462.0 

1428.0 

1397.5 

1302.8 

49.1 

21.7 

Radiation 
C3 

C4 

282.20 

289.80 

303.18 

304.35 

297.95 

298.80 

37.6 

37.3 

Rainfall 
C3 

C4 

122.5 

121.0 

129.5 

131.4 

124.3 

125.3 

2.2 

3.7 

Slope 
C3 

C4 

2.4 

0.8 

29.7 

20.9 

17.2 

8.7 

10.6 

4.8 

Temperature - 12.8 23.5 18.5 - 

TWI 
C3 

C4 

4.47 

4.26 

12.99 

9.39 

7.69 

6.38 

2.92 

1.29 

May 

AGB 
C3 

C4 

0.460 

0.412 

3.912 

2.592 

1.253 

1.101 

0.719 

0.418 

Aspect 
C3 

C4 

0.0 (N)  

0.0 (N) 

358.0 (N) 

359.1 (N) 

194.78 (S) 

267.7 (W) 

 136.4 

102.9 

Elevation 
C3 

C4 

1375.0 

1328.0 

1462.0 

1440.0 

1398.7 

1302.1 

50.5 

19.0 

Radiation 
C3 

C4 

114.83 

116.57 

172.25 

165.41 

143.86 

140.72 

13.65 

13.63 

Rainfall 
C3 

C4 

14.1 

13.5 

17.2 

16.0 

16.1 

15.0 

1.0 

0.9 

Slope 
C3 

C4 

2.4 

0.8 

29.7 

21.9 

15.3 

8.9 

9.6 

4.9 

Temperature - 10.1 20.3 12.6 - 

TWI 
C3 

C4 

4.47 

4.26 

12.99 

9.39 

7.69 

6.38 

2.92 

1.29 

August 

AGB 
C3 

C4 

0.376 

0.244 

1.072 

0.668 

0.718 

0.469 

0.306 

0.182 

Aspect 
C3 

C4 

0.0 (N) 

0.0 (N) 

358.0 (N) 

359.1 (N) 

194.78 (S) 

267.7 (W) 

136.4  

102.9 

Elevation 
C3 

C4 

1375 

1328.0 

1462.0 

1440 

1398.7 

1302.1 

50.5 

19.0 

Radiation 
C3 

C4 

122.83 

124.60 

179.85 

173.33 

152.03 

148.91 

13.65 

13.64 

Rainfall 
C3 

C4 

55.8 

58.8 

71.8 

71.4 

61.0 

65.9 

5.2 

5.9 

Slope 
C3 

C4 

2.4 

0.8 

29.7 

20.9 

18.6 

8.9 

9.6 

4.9 

Temperature - 8.5 20.3 12.9 - 

TWI 
C3 

C4 

4.47 

4.26 

12.99 

9.39 

7.69 

6.38 

2.92 

1.29 

November 

AGB 
C3 

C4 

0.226 

0.352 

1.784 

3.208 

0.855 

1.163 

0.355 

0.607 

Aspect 
C3 

C4 

0.0 (N) 

0.0 (N) 

358.0 (N) 

359.1 (N) 

194.78 (S) 

267.7 (W) 

136.4  

102.9 

Elevation 
C3 

C4 

1375.0 

1328.0 

1462.0 

1440.0 

1398.7 

1302.1 

50.5 

18.9 

Radiation 
C3 

C4 

273.58 

284.31 

298.57 

299.50 

293.84 

294.65 

3.63 

3.40 

Rainfall 
C3 

C4 

71.5 

70.6 

86.0 

78.9 

75.4 

74.6 

10.3 

3.3 

Slope 
C3 

C4 

2.4 

0.9 

29.7 

20.9 

21.3 

8.9 

10.1 

4.9 

Temperature - 9.7 24 16 - 

TWI 
C3 

C4 

4.47 

4.26 

12.99 

9.39 

7.69 

6.38 

2.92 

1.29 
*Max: maximum, Min: minimum, Avg: average and Stdev: standard deviation. TWI: total wetness index. Aspect is also indicated in terms 
of directions, which are represented by N: North; W: West and S: South facing slopes.  
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8.3.2. Remotely sensed AGB variability over space and time 

Figure 8.1 illustrates the estimated variability in AGB for the study area, using Sentinel 2 

remote sensing dataset. Overall, the area produced noticeable spatial variations in C3 and C4 

grass species AGB over time. However, much of AGB was produced during the summer 

months, where the majority of the area showed high AGB. Lower AGB variations were also 

noted, especially during the winter fall in August and September, where most of the study 

area showed a decrease in AGB. It was also found that May had the highest AGB 

accumulation across the area, whereas the lowest was produced in September. AGB changes 

across the study area were also found to be variable, where some areas experienced notable 

changes over time, while others remained almost stable, despite seasonal changes. For 

example, the central and eastern parts show notable changes in AGB over time, when 

compared to the southern tip and the south-western most parts of the study area.  
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Figure 8.1: The variability in AGB over time. Areas bounded in red were unstable in AGB, 

whereas those in black remain stable 

 

8.3.3. Climatic factors variability over time 

Figure 8.2 shows the temporal variability in monthly rainfall, temperature and solar radiation 

descriptive statistics of the study area in 2016. The graphs illustrate the general pattern in 

February March 

May June 

August September 

November December 
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climatic conditions under which AGB estimations for C3 and C4 grass species were derived 

using Sentinel 2. The variables include monthly total rainfall, maximum, minimum and 

average temperature, as well as monthly averaged solar radiation. Overall, climatic conditions 

across the study area showed a temporal variability. Lowest total rainfall (6.8mm) was 

recorded in July, whereas January received the highest amount (263.9mm). It was also found 

that maximum temperature (26°C) was recorded in December, whereas July experienced the 

lowest (6°C). In terms of solar radiation, the highest (185 KwH/m
2
) was received in January, 

whereas the lowest (32.6 KwH/m
2
) was received in June.  

 

 
Figure 8.2: The general (a) rainfall, (b) temperature and (c) radiation variability of the study 

area, over time  

 

Figure 8.3 (a and b) further displays the spatial variability in the modelled solar radiation and 

rainfall received across the study area in 2016. It was found that high rainfall (a) was received 

at the southern tip, compared to most parts of the area. The southern, western and eastern 

parts also received more radiation, compared to the central and north eastern parts. 

(a) (b)  

(c)  
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Figure 8.3: Spatial variability in annual average radiation and total rainfall received in 2016 

 

8.3.4. Spatial variability of topography 

Figure 8.4 shows the derived spatial variability of topography in terms of elevation, slope, 

aspect and TWI, within which C3 and C4 grass species AGB was explored. The elevation of 

the area (Figure 5a) was found to be quite variable, ranging between 1225, in the central and 

north eastern parts and 3034 m above sea level, in the western and southern parts. Similarly, 

slope (Figure 5b) varies from 0 to 70.4°, with high slopes for most parts of the area, except 

for the central and north eastern parts. The aspect (Figure 5c) of the area was found to be 

heterogeneous, constituting slopes facing different directions, whereas the TWI (Figure 5d) 

indicate that the majority of the area has low soil water potential, except for the central and 

north eastern parts. 

 

 
Figure 8.4: Topographical variability showing (a) elevation, (b) slope, (c) aspect and (d) TWI 

 

(a) (b) 

(d) 

(a) (b) 

(c) 
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8.3.5. The response of remotely sensed species AGB to climate variability over time 

Figure 8.5 shows the response of estimated C3 and C4 grass species AGB to monthly (a) total 

rainfall, (b) average temperature and (c) average radiation, over time. The findings revealed 

that seasonal climatic factors had a significant influence on C3 and C4 AGB over time. For 

example, a marked increase in AGB (e.g. in February and March) was noted with an increase 

in total rainfall (Figure 6 (a)), whereas dry months were associated with a decrease in AGB. It 

was also found that during the summer months (February, March, November and December), 

species AGB showed a gradual increase with an increase in radiation. Between April and 

June, peak species AGB was reached; however, this period indicated a sharp decrease in 

radiation. 

 

Figure 8.5: The response of individual species AGB to (a) rainfall, (b) temperature and (c) 

radiation over time 

 

Figure 8.6 also zoomed in to highlighted areas (indicated in Figure 8.1) which show the 

spatial variations of AGB over time. These results were derived to show how the estimated 

AGB responded to rainfall and radiation variations over time. Generally, the unstable areas 

were mostly dominated by C4 (Themeda), whereas the stable tip was dominated by C3 

(Festuca), although species co-existence occurs. In C3-dominated area, it was found that high 

radiation was associated with lower species AGB, for example in March (Figure 8.6 a (i)). 

High fluctuations in AGB were also observed for C3, despite rainfall and radiation changes 

(a) (b) 

(c) 
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over time. On the other hand, C4 (Figure 8.6 (b) showed sharp or immediate response (either 

decreasing or increasing) to rainfall (ii) and radiation (i) variations, especially in November 

and December. 

 

 
Figure 8.6: The response of (a) Festuca and (b) Themeda AGB to (i) radiation and (ii) rainfall 

variations over time  

 

Tables 8.3 and 8.4 also illustrate the correlation between species AGB with climatic and 

topographical variables. Overall, C4 AGB showed better positive correlations with rainfall 

and radiation, than C3 AGB. C4 AGB also had the highest significant positive association 

with rainfall (R
2
 = 0.82; P < 0.05). However, C3 AGB showed the highest significant positive 

correlation with elevation (R
2
 = 0.84; P < 0.05). Positive correlations between C3 AGB and 

topographical variables were also shown, whereas for C4 AGB, mixed findings were found. 

For example, C4 was negatively correlated with elevation and slope, while responded 

positively to aspect and TWI. It was also found that elevation had the highest positive 

correlation with C3 AGB and highest negative correlation with C4.  

 

 

 

 

 

 

b(i) b(ii) 

a(ii) a(i) 
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Table 8.3: Correlation between species AGB and climatic factors over time  

 Festuca (C3) AGB Themeda (C4) AGB 

Climatic Variables Feb May Aug Nov Feb May Aug Nov 

Radiation 0.44 0.49 0.42 0.54 0.63 0.54 0.46 0.79 

Rainfall 0.57 0.52 0.31 0.59 0.79 0.61 0.70 0.82 

 

Table 8.4: Correlation between C3 and C4 AGB and topography 

Topographical Variables Festuca (C3) AGB Themeda (C4) AGB 

Aspect 0.55 0.64 

Elevation 0.84 -0.80 

Slope 0.78 -0.77 

TWI 0.74 0.69 

*TWI: total wetness index 

 

8.4. Discussion 

Results from this study have revealed the spatial and temporal AGB variations as derived 

using multi-temporal Sentinel 2 remote sensing images. These findings indicate the potential 

of using freely-available emerging sensors for monitoring the dynamics of C3 and C4 AGB 

over time. This has been a limitation in monitoring C3 and C4 grass species, especially 

considering the anticipated climate change effects on their productivity. The spatial 

representation of AGB over time has shown that AGB distribution across the study area was 

varied. For example, summer months produced high AGB for most parts of the study area 

until May, whereas a decrease in AGB was noted from June until September, which showed 

the lowest AGB variations. The spatial and temporal variations observed in this study 

indicated not only the influence of seasonal climatic, but also that of spatial heterogeneity in 

terms of topography. Topographical derivative maps have shown that the area is 

predominantly high elevated, with steep slopes of varying aspects, facing all the different 

campus directions. These variations influence, for example, the intensity of radiation 

received, soil moisture and temperature. These topographical influence on species growth and 

AGB productivity have also been identified, for example by Måren et al. (2015). 

 

Although significant spatial changes in AGB were observed, over time, it was noted that 

those changes were not uniform across the study area. Instead, some areas experienced rapid 

changes, whereas others remained almost stable, despite changes in climatic conditions. This 

possibly occurred because of the climatic and topographical heterogeneity of the area, which 

exert difference influence on C3 and C4 grasses AGB over time. However, in August and 

September, the majority of the study area showed a marked decrease in AGB. This is an 
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indication that the period, which is winter fall, did not offer favourable conditions for both 

species AGB. For example, C3 grasses are active under cooler climatic conditions, 

particularly during winter. Possibly, during winter fall, rise in temperatures expectedly 

impacted negatively to C3 AGB. Studies (Adjorlolo et al., 2012; Auerswald et al., 2012) have 

also indicated that C3 grasses require higher moisture content, and this is not sufficient 

during the dry period of August and September, hence they become less active. Similarly, it 

is expected that rise in temperatures associated with dry conditions reduces the rate of activity 

of C4 negatively, impacting its AGB. C4 grasses prefer warm environments, with sufficient 

rainfall, hence as conditions becomes dry in August and September, their productivity is 

constrained and AGB is decreased. Possibly, the activity of C3 and C4 grasses and AGB 

production significantly decreases if the conditions are above their optimal or below their 

optimal requirements. For instance, August and September marked the end of winter, which 

is preferred by C3 and it does not fall within the summer period, which is favourable to C4.  

 

It was also found that climatic factors considered in this study (i.e. rainfall, temperature and 

radiation) influence species AGB over time. This was also confirmed, for example, by 

positive correlation between rainfall and ground-based species AGB. C4 AGB had the 

highest correlation with rainfall, where high AGB values were observed with an increase in 

rainfall during the summer months. The same trend was also observed during dry winter 

months associated with lowest rainfall, where C4 AGB showed a sharp decrease. These 

trends can be considered intuitively sound. Rainfall within the study area is received during 

the summer period which coincided with the growth of summer or warm season C4 grasses, 

thereby influencing their AGB variations. In addition, the response of selected areas, 

predominated by C4 grass has indicated a close association between AGB and rainfall pattern 

over time. In agreement, it has been long established that summer rainfall typically benefits 

the growth of C4 grasses, thereby increasing their relative contribution to AGB accumulation 

(Carmel and Kadmon, 1999). This observation also concurs with previous studies (Epstein et 

al., 1997; Måren et al., 2015; Polley et al., 2014) which have indicated that rainfall boost the 

growth and AGB accumulation of C4 grasses. For example, the studies done during the 

summer period in United States by Epstein et al. (1997) found that mean annual rainfall 

explained 81% of C4 AGB in the great plains, whereas Polley et al. (2014) reported that C4 

AGB increased significantly with an increase in rainfall in Texas. For C3 grass species, 

although a positive correlation was found with rainfall, its AGB remained high in winter, 

despite a noted decrease in rainfall. Similarly, the selected area predominated by C3, that 
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showed almost stable response in AGB over time has indicated the same trend. It is likely 

that C3 AGB remained high in winter due to cool conditions, associated with winter period. 

In agreement with this notion, the results highlighted that June had the lowest average 

temperature and this corresponded with the highest estimated C3 AGB. As temperatures 

drop, cool conditions occur, which favour C3 grasses; hence their AGB remained stable 

despite a decrease in rainfall. 

 

The influence of solar radiation was also detected on C3 and C4 AGB over time. C4 AGB 

responded positively with radiation variations over time; this was most apparent during the 

summer months, like February, March, November and December. C4 grass species have been 

identified to require high solar radiation (Adjorlolo et al., 2012), a condition that promotes 

their AGB production. Solar radiation is the primary source of energy that regulates physical, 

chemical and biological processes (e.g. photosynthesis and evapotranspiration) of terrestrial 

ecosystems (Dubayah and Rich, 1995; Ruiz‐Arias et al., 2009). Consequently, it determines 

species growth rate and productivity of AGB. For C3 AGB, highest AGB was associated with 

low radiation, for instance, in winter (May and June). This is because C3 grass species prefer 

low radiation (Adjorlolo et al., 2012), which is received during the winter period. 

 

Topography also influenced species AGB; however, this was variable between C3 and C4 

species in this study. For instance, elevation had the highest positive correlation with C3 

AGB. C3 AGB production favours conditions at high elevated and steep slopes, as well as 

with high potential of soil moisture. The influence of elevation on C3 AGB might be 

attributed to the fact that the study area forms part of the Drakensburg mountain range, which 

promote cool conditions favourable to the growth and AGB accumulation of C3, hence 

changes in elevation significantly result in AGB changes. In agreement, it is well accepted 

that high elevated areas are typically cool and C3 species generally favour cool conditions 

(Adjorlolo et al., 2012; Yan and de Beurs, 2016). Yan and de Beurs (2016) found the 

importance of elevation in the distribution and abundance of C3 grasses at three varying 

temporal scale, using random forest algorithm. For C4 species, high elevated and steep areas 

promote cool conditions, which do not favour their growth and AGB production. This 

explained why C4 AGB was negatively correlated with elevation and slope in this study. 

TWI was positively correlated with both C3 and C4 AGB. The index determines the spatial 

variability in soil moisture conditions (Wilson et al., 2016), which boost vegetation cover, 

growth and productivity; this possibly explains it had a positive association with species 
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AGB in this study. In this study, C3 AGB was positively associated with TWI most likely at 

low elevation areas. At low elevated areas, AGB for C3 will be enhanced by soil moisture, 

which has been identified as one of the favourable conditions for C3 grass species (Adjorlolo 

et al., 2012). For C4 grass species, wetness has been found to be very important under 

favourable warming and radiation conditions (Sage and Kubien, 2003). 

 

Aspect was also found to positively influence C3 and C4 AGB in this study. Aspect 

determines radiation or light received at a particular location. North oriented slopes generally 

receives maximum radiation, followed by northeast and northwest slopes, whereas south 

facing slopes receives the lowest radiation, followed by southeast and southwest slopes. In 

association with this notion, the general variations in aspect and radiation has been detailed 

by Kumar et al. (1997). They indicated that in the southern hemisphere including South 

Africa, north facing slopes typically receives more radiation, whereas south facing receives 

the lowest radiation and they are typically cool and in shadow. In this regard, the positive 

association of aspect with C4 AGB was found on north oriented slopes, which receives more 

radiation. On the other hand, the association of aspect with C3 AGB is most likely on 

southwest slopes. Possibly, although C3 grasses prefer cool conditions with low radiation, 

few exceptions may exist, where their AGB is associated with high aspect. This might be the 

availability or contribution of other variables (e.g. moisture and elevation), which might be 

considered as most important for the productivity of these grasses. Although the study 

showed the influence of climatic variables and topography on the productivity of C3 and C4 

grass species, the influence of CO2 should not be ignored, future studies might consider 

exploring its influence. 

 

8.5. Conclusion 

This study examined the response of C3 and C4 grass species AGB to seasonal climate over 

time and topography, within the montane grasslands of South Africa. From the findings, it 

can be concluded that topographical and climatic variations exert considerable influence on 

C3 and C4 grasses AGB. C3 AGB variations were significantly influenced by elevation, 

whereas for C4, it was mainly rainfall variability. It was also noted that the changes in AGB 

over time were not uniform across the study area. Some areas experienced rapid changes, 

whereas others remained almost stable, despite changes in climatic conditions over time. This 

indicates the spatial and temporal heterogeneity of C3 and C4 dominated areas, which exert 
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varying changes to AGB and ecosystem goods and services over time. However, additional 

research is required to quantify how AGB varies at different temperature variations at a finer 

scale. The study area lacked enough temperature data (i.e. it lacked spatial representation) for 

modelling in this study, which has been identified as one of the key climatic variables that 

influence the distribution of C3 and C4 grasses, hence it plays considerable role in their AGB 

response over time. 
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9. Synthesis 
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9.1. Introduction 

C3 and C4 grass species offer a wide range of ecosystem services and goods, as well as 

influencing the functioning of these ecosystems at large. The co-existence of C3 and C4 grass 

species, due to local climate and topograpny also plays a considerable role in governing their 

biophysical processes, growth and productivity. This further implicates their ability to 

provide goods and services over space and time. The discrimination of these grass species 

therefore offer valuable information to understand their distribution and model their possible 

shift in the face of climate change effects. Their AGB is also an indicator of their 

productivity; hence characterizing it helps to understand their contribution to forage 

availability, veld fires and as potential carbon pools. 

 

The use of ground-based methods offer the most accurate and reliable data source for 

characterizing C3 and C4 grass species and therefore remains the most applicable in 

understanding their distribution and AGB variations. However, this approach is spatially 

limited, strenuous and costly; consequently, its application becomes difficult for continuous 

monitoring over large geographical extent. Furthermore, it becomes difficult to apply the 

approach on a seasonal basis, due to challenges associated with its application. Remote 

sensing therefore offers an opportunity for the discrimination and AGB characterization of 

C3 and C4 grass species in a spatially explicit manner. Remote sensing overcomes the 

challenges associated with the use of ground-based methods.  

 

Previous studies which attempted to discriminate or estimate C3 and C4 grass species AGB 

relied on broadband sensors. However, although these datasets were used, they were 

associated with poor results and uncertainties. This has been primarily attributed to their 

coarse spatial resolution and broadband spectral nature, with limited number of bands. Their 

operational use therefore became limited, especially in co-existing C3 and C4 dominated 

grasslands. Other researchers also attempted to use hyperspectral datasets, which were 

reported to produce high accuracies in C3 and C4 grass species discrimination and AGB 

estimation. However, high cost associated with the use of these datasets hinders their 

application, especially for large geographical coverage and time series analyses. In addition, 

high dimensionality problems associated with hyperspectral data also limits its wide 

application. Consequently, although remote sensing offers an invaluable means to 

discriminate and estimate AGB variations of these species, finding appropriate sensors, 

which have the potential to spectrally distinguish and spatially characterize these grasses, was 



 158 

the major challenge. This further hinders the possibility of time series analyses or continuous 

monitoring of these grass species, thereby resulting in uncertainties in their contribution to 

the provision of ecosystem goods and services, as well as their response to climate change.  

 

The rise of new generation of multispectral sensors offers an indispenasble opportunity for 

the characterization of C3 and C4 grass species. These sensors have improved earth imaging 

characteristics, compared to the broadband sensors. The provision of data by these sensors at 

large geographical coverage, refined spatial resolution, more and unique spectral bands at 

high temporal frequency is considered a great improvement for the remote sensing of C3 and 

C4 grass species. These sensors overcome challenges associted with previously-used sensors; 

hence provide hope for monitoring of C3 and C4 grass species. In this regard, this study 

focused on the seasonal discrimination and characterization of AGB for C3 and C4 grass 

species, using new generation sensors. To achieve this task, the following objectives were 

considered:  

 

1. Evaluate the prospects of the varying spectral configurations of the new generation 

sensors for the seasonal discrimination of C3 and C4 grasses functional types, 

2. Examine the strength of the newly-launched Sentinel 2 MSI sensor in detecting and 

discriminating subtle differences between C3 and C4 grass, 

3. Determine the optimal season for discriminating the eco-physiological distinction 

between C3 and C4 grass functional types using multi-date Sentinel 2 data, 

4. Determine optimal new generation satellite derived metrics for accurate C3 and C4 

grass species aboveground biomass estimation in a protected temperate eco-region, 

5. Characterize the spatio-temporal variations of C3 and C4 dominated grasslands 

aboveground biomass in the Drakensberg, South Africa, and 

6. To determine remotely-sensed C3 and C4 grass species AGB variability response to 

climatic factors and topography. 

 

9.2. Seasonal discrimination of C3 and C4 grasses functional types: An evaluation of the 

prospects of the varying spectral configurations of the new generation sensors 

Sensors spectral settings influnce their ability to detect or characterize the physiological, 

morphological and phenological characteristics of C3 and C4 species. This is very critical in 

mapping the spatial distribution of C3 and C4 grass species and their biophysical properties. 

One of the major limitation of the previously used sensors in discriminating C3 and C4 grass 
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species was their limited number of bands and their broad-band settings. This resulted in 

lower classification accuracies, associated with over and under-representation of species, 

thereby limiting their application for species discrimination. Thefore, it was apparent to test 

the spectral prospects offered by the new generation sensors. This was achieved by 

conducting an experimental survey, using in situ hyperspectral measurements, which collect 

species spectra, using narrow band spectral settings that have the ability to extract and 

discriminate the finest details between species. The data used was collected in February 

(summer) and August (end of winter) 2016 and resampled to the spectral configurations of 

Landsat 8, Sentinel 2 and Worldview 2 sensors. The resampled data was also used to derive 

indices, that were tested for C3 and C4 grass species discrimination.  

 

Overall results have shown the utility of hyperspectral data in exploring the applicability of 

different sensors’ spectral settings for extracting species bio-physical properties. The spectral 

settings of new generation sensors were found to offer a potential for spectral discrimination 

of C3 and C4 grass species at selected different seasonal periods. High overall classification 

accuracies were produced during both periods. Data collected in February produced better 

discrimination than August data. Simulated Sentinel 2 spectral settings were also competent, 

especially when compared to Landsat 8. The G Chl index, EVI and the standard NDVI were 

the most influential indices in discriminating between the two species, with the standard 

NDVI identified as the most influential variable. This indicated the relevance and reliability 

of the long-serving NDVI in discriminating C3 and C4 grass species. However, although 

hyperspectral produced high overall accuracies, the applicability of the data is limited to plot 

level; it lacks the spatial aspect for C3 and C4 species mapping. Moreover, although February 

seems to provide the optimal discrimination window period, this data lacked the temporal 

variability. There is therefore a likelihood of inconclusive findings regarding the most 

suitable period for mapping the two species. There is a need to test the same objective using 

data collected across a couple of months per season (i.e. at most four months) to validate the 

above observation. 

 

9.3. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting 

and discriminating subtle differences between C3 and C4 grass 

The significance of this study was to evaluate the performance of Sentinel 2, its spectral 

bands, derived indices and a combination of variables in discriminating and mapping C3 and 

C4 grasses. The new sensor has emerged with improved spatial resolution, more and unique 
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spectral bands at large geographical coverage, compared to the previously-used sensors; this 

marks a great improvement for a better spatial representation of C3 and C4 grass species. 

Results obtained from using Sentinel 2 were therefore compared with those derived from the 

Worldview 2 commercial sensor and the Landsat 8. Sentinel 2-based results were comparable 

to Worldview 2, which produced slightly higher accuracies and far much better than those 

associated with Landsat 8. The classification accuracies using Sentinel 2 did not differ 

significantly (z = 1.34) from Worldview 2, when using standard bands; however, it was 

significantly (z > 1.96) different using indices and combined variables. When compared to 

Landsat 8, Sentinel 2 accuracies were significantly different (z > 1.96) using all variables. 

This paved a way for the applicability of Sentinel 2 in C3 and C4 grass species discrimination 

and mapping. 

 

9.4. Determining the optimal season for discriminating the eco-physiological distinction 

between C3 and C4 grass functional types using multi-date Sentinel 2 data 

Although Sentinel 2 provided the most appropriate data source for C3 and C4 grass species 

discrimination and mapping, the performance of the sensor is determined by image 

acquisition period. This is attributed to seasonal variations, which influence species 

phenological, physiological and morphological characteristics. Consequently, the use of 

single images acquired within a specific period (e.g. summer) becomes inconclusive. In this 

regard, this study was intended to optimise the discrimination of C3 and C4 grass species 

using Sentinel 2 multi-temporal images.  

 

The results have revealed that the winter period presents a better temporal window for 

discriminating and mapping C3 and C4 target grass species, with higher overall classification 

accuracies, than summer. Lower classification errors (between 2.5 and 14.2%) were also 

observed, when discriminating using winter images. During the winter period, particularly in 

May and June, both species had reached their peak, with maximum productivity. Therefore, 

they become more distinct in morphology and biophysical characteristics, which facilitated 

their discrimination using remote sensing. Although high overall classification accuracies 

were produced in summer, these results were associated with high errors (between 4.7 and 

22.2%). The winter fall, particularly in August was the least period to discriminate and map 

species. During this period, there is less biochemical activity with less AGB coverage. This 

resulted in soil background interference, thereby compromising the discrimination, especially 

of Themeda C4 grass. This study also managed to show that the majority of the area studied 
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was occupied by Festuca (C3), when compared to Themeda (C4). Sentinel 2 derived species 

spectral curves have also revealed variations in the separability potential among the different 

spectral portions. For example, a close similarity (overlap) between the two species in the 

visible (e.g. blue, green and red) portion was observed, whereas the NIR and red edge 

portions showed separable spectral response. However, during early winter, separable species 

spectral curves were derived. 

 

It is however, important to note that unlike the resampled hyperspectral data collected in 

February (summer) and August (end of winter), the use of multi-temporal Sentinel 2 images 

in winter (May, June, July and August) and summer (November, December, February and 

March) showed that May was the most suitable period for discriminating the two grass 

species and August remained the least period for species discrimination. It can be concluded 

that the use of hyperspectral data collected for two months was not enough for species 

discrimination as it does not capture the most possible variations in species physiological and 

morphological characteristics (Section 9.2). This was achieved by using Sentinel 2 images 

acquired at different months. 

 

9.5. Determining optimal new generation satellite for accurate C3 and C4 grass species 

aboveground biomass estimation  

The characteristics of new generation sensors are promising for monitoring of C3 and C4 

grass species AGB. For example, these sensors have better spatial resolution (e.g. 30m for 

Landsat 8 and 10 m for Sentinel 2), which provide the spatial variability in species AGB at a 

much finer resolution than previously offered by sensors like MODIS, AVHRR and MERIS. 

These sensors, particularly MODIS and AVHRR offer remotely-sensed data at 1 km spatial 

resolution and have been the primary data sources for C3 and C4 grass species 

characterization. This study therefore tested the competence of Sentinel 2, against the freely 

available Landsat 8 and Worldview 2 commercial sensor. The potential of these sensors’ 

variables were performed as isolated datasets in estimating C3 and C4 grass species AGB. 

Sensors data fusion was also done, where all the variables from each sensor were combined 

and used in the model to predict species AGB. Data fusion from the three sensors showed the 

most important bands or indices across multispectral sensors. It also showed a more 

comprehensive insight of the competence of each sensor’s variables in estimating C3 and C4 

grass species AGB, than when the sensor variables are used in isolation.  
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Findings from this study have indicated that Landsat 8, Sentinel 2 and Worldview 2 sensors 

can estimate and map the spatial variability of C3 and C4 AGB. Although the sensors show 

variations in spatial representation of AGB across the study area, some agreements were 

observed. In addition, their variables managed to estimate C3 and C4 grass species AGB with 

high accuracy especially in relation to those reported using broadband multi-spectral sensors. 

Specifically, the availability of more bands from Sentinel 2 offer additional information for 

vegetation analysis. More bands allowed the computation of new indices, which have the 

potential to predict C3 and C4 grasses AGB. On the other hand, the lower number of Landsat 

8 bands limited the number of variables with potential to estimate species AGB. Overall, 

among the most important variables for predicting C3 and C4 grasses AGB were the Landsat 

8 NIR and SWIR, the red edge of Sentinel 2 and Worldview 2.  

 

9.6. Characterizing the spatio-temporal variations of C3 and C4 dominated grasslands 

aboveground biomass in the Drakensberg, South Africa 

C3 and C4 grass species AGB indicate their productivity and ability to provide a wide range 

of ecosystem goods and services. The productivity of C3 and C4 grass species is variable 

over space and time. This is primarily due to the influence of climate, which regulates their 

phenology and AGB production. Although Landsat 8 variables, particularly NIR and SWIR 

were competitive against Sentinel 2, its 30 m spatial resolution, limits its operation for spatial 

representation of species AGB. In addition, its lower temporal frequency is also a challenge 

under the influence of cloud cover especially during summer. This limits its potential for 

temporal characterization of species AGB. Sentinel 2 therefore provides a key data source to 

determine C3 and C4 grass species AGB over time. This study therefore used the new multi-

temporal Sentinel 2 to estimate and map C3 and C4 grasses AGB over time. 

 

Findings have indicated the spatial variability in C3 and C4 species AGB, over time. Overall, 

high AGB across the area was noted during the summer months of February, March, 

November and December. This period coincided with the photosynthetically active stage of 

Themeda (C4), thereby facilitating AGB accumulation. This also explains why C4 produced 

higher AGB than Festuca (C3) during the summer months. On the other hand, C3 produced 

higher AGB from May to September. C3 prefers cool conditions and these occur in winter, 

which extends from May to August in the study site. This promoted C3 biological activity 

and AGB accumulation. May had the highest AGB; this period coincided with the peak stage 

of C3, whereas for C4, it had reached its maximum. This contributed to high AGB for most 
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parts of the study area. The lowest AGB was also estimated during the winter fall in August 

and September, where most parts of the area showed a decrease in AGB. In addition, both 

species showed a decrease in AGB during this period although this was most apparent for C4 

than its counterpart. This period coincided with the senescence stage of C4 grass, which is 

characterized by photosynthetic or biological inactivity. For Festuca, although it remained 

active, the conditions during the winter fall were not conducive enough for maximum AGB; 

this contributed to lower AGB across the area.  

 

Considering the performance of Sentinel 2 variables over time, spectral bands predicted 

species AGB with lowest accuracies and an improvement was observed when both spectral 

bands and vegetation indices were applied. For instance, in May, spectral bands predicted 

species AGB with lowest accuracies for Festuca (R
2
 = 0.57; 31.70% of the mean), Themeda 

(R
2
 = 0.59; 24.02% of the mean) and combined species (R

2
 = 0.61; 15.64% of the mean). The 

use of spectral bands and vegetation indices improved the prediction accuracies for Festuca 

(0.77; 18.64%), Themeda (0.75; 14.27%) and combined species dataset (0.73; 16.47%).  

Similarly, the estimation accuracy was variable over time. However, it was noticed that 

during the period of maximum AGB productivity in May, estimation accuracies were lower 

as compared to, for example, February, when species AGB was slightly lower. This indicated 

the influence of species phenology on estimation accuracy using remote sensing data. The red 

edge (at 0.705 and 0.74µm) and derived indices, NIR and SWIR 2 (2.19µm) of the Sentinel 2 

contributed more to grass species AGB estimation, over time. 

 

9.7. Remotely-sensed C3 and C4 grass species AGB variability in response to seasonal 

climate and topography 

Climate and topography influence the productivity of C3 and C4 grass species. These 

conditions regulate biophysical processes, which determine species growth and the 

production of AGB. This study therefore explored the response of C3 and C4 grass species to 

seasonal climate and topography. 

 

Spatial and temporal response of AGB variations were observed across the study area. For 

instance, AGB decreased from averages of 2.592 and 1.101 kg/m
2
 in May, to 0.718 and 0.469 

kg/m
2
 in August, for C3 and C4 grasses, respectively. In addition, most parts of the study area 

also showed high AGB in May, whereas a significant decrease was noted in August and 

September. Although spatial and temporal changes occurred, the responses of species AGB 
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over time were not uniform across the study area; some areas showed unstable response, 

whereas others showed stability in AGB, despite climatic changes over time. The observed 

changes in AGB was found to be influnced by rainfall, radiation and temperature. For 

example, a marked increase in C4 AGB (e.g. during summer months) was associated with an 

increase in rainfall, whereas low AGB (e.g. in August and September) were associated with 

dry months. Elevation was also the most influential topographical variable, with highest 

significant positive correlation (R
2
 = 0.84) with C3 and highest negative (R

2
 = -0.77) with C4 

AGB. 

 

9.8. Conclusion 

C3 and C4 are an important component of grass species functional types, which influences 

their distribution, productivity, as well as their functioning within an ecosystem. The present 

study was therefore conducted to discriminate C3 and C4 grass species and characterize their 

AGB over time using remote sensing data. The study was also intended to optimise the 

discrimination and AGB characterization of C3 and C4 dominated grasslands. This has been 

stimulated by the need for information, which is increasingly becoming more relevant 

considering their roles in carbon accounting, forage supply and fire regimes, especially with 

the anticipated influence of climate change. Similarly, the emergency of new generation 

sensors, with improved earth imaging characteristics than previous-used sensors provides 

prospects for monitoring grass species according to functional types. Based on findings from 

this study, it can be concluded that: 

 Sentinel 2 provides a key data source for landscape scale monitoring of co-existing 

C3 and C4 grass species functional types, 

 The discrimination of C3 and C4 grass species was found to be most optimum in May 

and June, when both species reach their peak, 

 When C3 and C4 grass species are at their early stages or inactive stages, their 

discrimination and mapping using remote sensing is compromised by surrounding 

vegetation and soil background reflectance, 

 The winter fall, particularly in August was found to provide unfavourable climatic 

conditions for the productivity of C3 and C4 grass species, similarly, the same period 

was found to be least optimal for their discrimination, 
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 Seasonal climate and topography were also found to significantly influence C3 and 

C4 grass species AGB over time and space; however this was not uniform across the 

study site, and 

 The advanced SPLSR and the DA algorithms have shown promising results for C3 

and C4 grass species discrimination and AGB estimation, using different datasets and 

over time. 

Overall results obtained from this study have demonstrated a new opportunity to monitor the 

spatial distribution and AGB variations of C3 and C4 grass species functional types, using the 

new Copernicus Sentinel 2 dataset. Most importantly, the study covered the seasonal aspect 

in discrimination and AGB estimation of these species; which was previously difficult to 

achieve. This study therefore marks a great improvement in discriminating, mapping and 

determining the productivity of C3 and C4 grass species functional types, over space and 

time. The findings provide new knowledge for optimal mapping of C3 and C4 grasses 

functional types and the basis for monitoring their potential shift in distribution and 

productivity. Furthermore, the seasonal characterization of C3 and C4 AGB allows for 

inferences on their contribution to forage availability and fire regimes over time; this thus 

contributes to the development of well-informed conservation strategies, which can lead to 

sustainable utilization of rangelands, especially in relation to the changing climate. 

9.9. Recommendations 

Overall, the present study provides valuable insight for the conservation, as well as optimal 

and sustainable utilization of rangelands according to species functional types. The study also 

demonstrated the potential of Sentinel 2 dataset in the discrimination and AGB estimation of 

C3 and C4 grass species over space and time. However, future studies need to take the 

following into consideration: 

 It would be relevant for future work to consider the different Sentinel 2 derivatives in 

discriminating and AGB estimation of C3 and C4 grass species during winter fall, 

which has been characterized by the lowest AGB and least temporal window for the 

discrimination of C3 and C4 grasses,  

 The study utilized climate data collected during the period under study (i.e. 2016); it 

also remains to be evaluated whether this was the typical climatic conditions, which 

influenced species AGB or there was a deviation. This will help in establishing the 

magnitude of extreme events (e.g. drought or floods) on C3 and C4 species 

productivity. 
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