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Abstract

Sampling is used to estimate population parameters, as it is usually impossible to study a

whole population, due to time and budget restrictions. There are various sampling designs

to address this issue and this thesis is related with a particular probability sampling design,

known as systematic sampling.

Systematic sampling is operationally convenient and efficient and hence is used exten-

sively in most practical situations. The shortcomings associated with systematic sampling

include: (i) it is impossible to obtain an unbiased estimate of the sampling variance when

conducting systematic sampling with a single random start; (iii) if the population size is

not a multiple of the sample size, then conducting conventional systematic sampling, also

known as linear systematic sampling, may result in variable sample sizes. In this thesis, I

would like to provide some contribution to the current body of knowledge, by proposing

modifications to the systematic sampling design, so as to address these shortcomings.

Firstly, a discussion on the measures used to compare the various probability sampling

designs is provided, before reviewing the general theory of systematic sampling. The per-

formance of systematic sampling is dependent on the population structure. Hence, this

thesis concentrates on a specific and common population structure, namely, linear trend.

A discussion on the performance of linear systematic sampling and all relative modifica-

tions, including a new proposed modification, is then presented under the assumption of

linear trend among the population units. For each of the above-mentioned problems, a

brief review of all the associated sampling designs from existing literature, along with my

proposed modified design, will then be explored. Thereafter, I will introduce a modified

sampling design that addresses the above-mentioned problems in tandem, before providing

a comprehensive report on the thesis. The aim of this thesis is to provide solutions to

the above-mentioned disadvantages, by proposing modified systematic sampling designs

and/or estimators that are favourable over its existing literature counterparts.

Keywords: systematic sampling; super-population model; Horvitz-Thompson estimator;

Yates’ end corrections method; balanced modified systematic sampling; multiple-start

balanced modified systematic sampling; remainder modified systematic sampling; balanced

centered random sampling.
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Chapter 1

INTRODUCTION

1.1 Overview of Sampling

Statistics entails the collection, organization, analysis, interpretation, explanation and

presentation of data. Governments, clients, medical companies, institutions and organiza-

tions, frequently use statistics to effect decision-making, e.g. choosing between different

options, executing new policies, assessing current policy situations, etc.

When a problem is identified and/or presented to a statistician, he/she must then

create a workable objective before planning the research approach. Collection of suitable

data is then proceeded by the relevant analysis of the corresponding data and finally

the results are presented thereon. These phases of the research cycle are related and

interconnected. Failure to impose a solid research design leads to inefficient data collection

methods, which in turn contributes to inaccurate data analysis and finally results in a

flawed research report. Clearly each stage of this research cycle is crucial. We now take a

more focused look at the data collection stage.

There are three basic types of statistical studies, namely, surveys, experiments and

observational studies. Each of these are associated with different data collection methods,

e.g. questionnaires, case studies, behaviour observation checklists, performance tests, etc.

More often than not, collecting data from the whole population is difficult, due to time and

money restrictions, as well as the regular problem of not being able to reach the whole pop-

ulation at any given point in time. As a result, we commonly opt to select a sample/subset

from the population. Generally, the population and sample sizes are respectively denoted

as N and n, where N > n. Generalizations about a population, based on results from the

sample, are made by ensuring that the characteristics of the sample accurately mirrors
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the corresponding characteristics of the population, i.e. we need to select a representative

sample. Two fundamental conditions for selecting a representative sample are that (i) the

sample must be sufficiently large, such that all aspects of the population are captured, and

(ii) should be selected in a way that minimizes bias, which is given by definition as the

misrepresentation of sample characteristics from the relative population characteristics.

Condition (i) is commonly related to a trade-off between sampling error and cost, i.e.

larger sample sizes are subject to greater costs, while more often than not reducing the

associated sampling error. Condition (ii) is related to the method of selecting a sample

from the population.

A specific sampling design is generally implemented to select a sample which pro-

duces an estimate of the population parameter. This estimator is also known as a sample

statistic. A single numerical value, used to estimate a specific population parameter, is

computed from the sample and is defined as a point estimator.

A point estimator is said to be unbiased if the expected value of this estimator is

equivalent to the population parameter being estimated, otherwise it is known to be bi-

ased. When referring to a biased point estimator, the degree of bias is calculated as the

difference between the expectation of the point estimator and the real value of the pop-

ulation parameter. Accuracy is related to bias, where unbiased estimators are generally

expected to be equivalent to the corresponding population parameter and are therefore

regarded as perfectly accurate estimates of the associated population parameter.

A point estimator differs from sample to sample and is thus a random variable which

has a distribution. The variance of this estimator, which is a measure of precision, is known

as the sampling variance and reflects the extent by which the point estimator differs from

sample to sample. There exists many estimators of a specific population parameter and the

estimator which is related to the smallest sampling variance, is known as the most precise

estimator. Therefore, the most preferred point estimator(s) will be unbiased and display

minimum variance. Under these circumstances, we obtain optimum sampling results, with

respect to obtaining maximum information about the population parameter.

Note that a biased estimator may offer more information about a population parameter

than that of an unbiased estimator, since the biased estimator, which corresponds to a low

degree of bias, may exhibit a much higher degree of precision than the unbiased estimator.

There is thus a trade-off between accuracy and precision and the appropriate measure

that represents this trade-off is the mean square error (MSE) of a point estimator. The
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MSE of a point estimator is calculated as the sum of the corresponding sampling variance

and the squared bias of the associated estimator, whereby the estimator which exhibits a

minimum MSE is considered to be the most desirable. Note that the MSE of an unbiased

estimator is equivalent to the variance of that estimator. Additionally, the relative MSE

between two point estimators is given as the ratio of their MSEs (expressed in percentage

terms), i.e. the relative MSE of point estimator a, with respect to point estimator b, is

given as the MSE of estimator b divided by the MSE of estimator a and then multiplied

by 100%. If this percentage is less than 100%, then we conclude that estimator b is to be

preferred over estimator a, while a percentage that is greater than 100% would suggest

that estimator a is to be preferred over estimator b.

When aiming to provide an estimate of a population parameter, it is thus of the

utmost importance that one explores the ramifications of the different sampling designs

on the simplicity of implementation, degree of bias, variance and MSE of the corresponding

point estimators, in addition to their capability to generate an unbiased estimate of the

associated sampling variance. We next focus our attention on some well-known probability

sampling designs which can be implemented to estimate population parameters.

There are several probability sampling designs that can be employed to select a repre-

sentative sample, e.g. simple random sampling, stratified random sampling (STR), cluster

sampling, systematic sampling etc. Simple random sampling entails a random selection of

each sampling unit from the population, where the probability of selection of each possible

unit is equivalent within each of the n phases of the random selection. If simple random

sampling with replacement is to be achieved, then each unit is replaced into the population

after being selected for the sample and is thus eligible for each of the following phases of

the random selection. We therefore have a possibility of duplicate sampling units, since

the units which are randomly selected for the sample are replaced into the population,

thus having a possibility of being chosen again in the next phases of the random selec-

tions. If simple random sampling without replacement (SRS) is to be achieved, then we

randomly select each sampling unit, but now we do not replace these units into the popu-

lation before the next phases of the random selections, thus ensuring a sample of distinct

sampling units. Hence, to avoid duplicate sampling units and improve results, preference

will be given to SRS over simple random sampling with replacement (Lohr 2010). Strat-

ified sampling entails dividing the whole population into subgroups (or strata) based on

some characteristic, before applying a specific random selection within each subgroup (or
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stratum), such that the selected units for each of the strata collectively represent the strat-

ified sample. Note that if SRS is applied within each stratum, then this sampling design

is referred to as STR and the selected units for each of the strata collectively represent a

stratified random sample. Cluster sampling involves dividing the whole population into

groups (or clusters), before randomly selecting entire clusters, such that the units within

each of the randomly selected clusters collectively represent a cluster sample. Systematic

sampling entails a random selection of a unit from the population and subsequent units

at equally spaced intervals thereafter, such that the selected units collectively represent a

systematic sample.

We next focus our study on systematic sampling, while making comparisons to the

other above-mentioned probability sampling designs.

1.2 Systematic Sampling

A detailed discussion on systematic sampling was originally given by Madow & Madow

(1944), Cochran (1946) and Yates (1948). Systematic sampling is frequently applied in

forestry, land use/cover area frame surveys, census, record sampling and for household

and establishment surveys (Murthy & Rao 1988). Applications on systematic sampling for

forestry are given by Hasel (1938), Finney (1948) and Zinger (1964), while applications on

systematic sampling for land use/cover area frames are provided by Osborne (1942), Dunn

& Harrison (1993) and D’Orazio (2003). Some examples of systematic sampling are given

in the areas of soil sampling (Mason 1994, Jacobsen 1998) and nature studies (McArthur

1987, Pawley 2006). Comprehensive reviews on systematic sampling are provided by

Murthy (1967), Cochran (1977), Iachan (1982), Bellhouse (1988) and Murthy & Rao

(1988).

The fundamental process of systematic sampling is given as follows: To select sample

of size n from a population of size N using systematic sampling, we randomly select a

unit from the first k = N/n population units and every subsequent kth unit, until the

required sample size is achieved. This design is referred to as linear systematic sampling

(LSS), provided that the sampling interval k is an integer (Cochran 1977). The random

start is given by i, where i ∈ {1, ...., k}. LSS is advantageous over SRS and STR, owing

to its convenience and operational simplicity when implemented.

Let us consider a finite population U = (U1, ..., UN ) of size N and let yq be the value
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of the study variable of the qth unit of population U , for q ∈ {1, ..., N}. All possible

values of the random start i, as well as the corresponding sample outcomes and sample

means, when conducting LSS, are presented in Table 1.1. Note that yij represents the

value of the study variable related to the jth unit of the ith linear systematic sample,

i.e. yij = yi+(j−1)k, for i ∈ {1, .., k} and j ∈ {1, ..., n}. From Table 1.1, we see that

the sample is automatically determined by the choice of the first sampling unit/random

start. Furthermore, the whole population of size N is divided into k groups, each of size

n. The methodology of LSS is therefore equivalent to the random selection of one of these

k groups. LSS is thus considered as special case of cluster sampling, since each individual

sample is regarded as a cluster and one cluster is then randomly selected.

Table 1.1: Samples and sample means for possible values of i using LSS

Possible values of i Sample Sample Mean (yLSS)

i = 1 S1={U1, U1+k, U1+2k, ..., U1+(n−1)k}
∑n

j=1 y1,1+(j−1)k/n
...

...
...

i = h Sh={Uh, Uh+k, Uh+2k, ..., Uh+(n−1)k}
∑n

j=1 yh,h+(j−1)k/n
...

...
...

i = k Sk={Uk, U2k, ..., Unk}
∑n

j=1 yk,jk/n

From Table 1.1, we can easily verify that the linear systematic sample mean, denoted

as yLSS, is an unbiased estimate of the population mean Y =
∑k

i=1

∑n
j=1 yij/nk = E(yLSS).

The corresponding sampling variance can be written in terms of the intra-class correlation

coefficient (ICC). The ICC between pairs of sampling units that are located within the

same linear systematic sample is denoted as

ρ = Cov(yij , yil)/σ
2, j, l = 1, ..., n, (j 6= l) and i = 1, ..., k, (1.1)

where

Cov(yij , yil) =
1

nk(n− 1)

k∑
i=1

n∑
j=1

n∑
l=1
l 6=j

(yij − Y )(yil − Y ); (1.2)

yij and yil denote random variables which represent two different units in the ith linear

systematic sample; and the population variance is given by definition as

σ2 ,
1

N

N∑
q=1

(
yq − Y

)2
=

1

nk

k∑
i=1

n∑
j=1

(yij − Y )2.
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Applying the above notation, the sampling variance is expressed as

V(yLSS) =
S2
Y

n

(
N − 1

N

)[
1 + (n− 1)ρ

]
, (1.3)

where

S2
Y ,

1

N − 1

N∑
q=1

(
yq − Y

)2
=

1

N − 1

k∑
i=1

n∑
j=1

(
yij − Y

)2
(1.4)

denotes the adjusted population variance (Cochran 1977). When referring to (1.3), we note

that the sampling variance is dependent on n and ρ, as S2
Y and N are fixed. We further

note that it is not guaranteed that a larger sample size will result in a smaller sampling

variance, unlike SRS and STR which exhibit an inversely proportional relationship between

the sample size and the associated sampling variance. Empirical results provided by

Madow (1946) indicate an inconsistent behaviour of the sampling variance in relation to

the sample size, when conducting LSS. Thus, the only component which is proportionately

related to the sampling variance is ρ, which is dependent on (i) the arrangement of the

population units, (ii) the degree of correlation between consecutive population units and

(iii) the sample size n (Murthy & Rao 1988).

When conducting SRS, the sample mean, denoted as ySRS, provides an unbiased esti-

mate of Y with an associated sampling variance written as

V(ySRS) =
S2
Y

n

(
N − n
N

)
(1.5)

(see Cochran (1977)). Comparing (1.3) to (1.5), we note that LSS is more efficient than

SRS when ρ < −1/(N−1). For large population sizes, we conclude through approximation

that LSS is more efficient than SRS, if and only if ρ < 0. By referring to (1.1) and (1.2),

this implies that the more heterogeneous the units which are located within the same

linear systematic sample, the more substantial the efficiency gains when favouring LSS

over SRS.

Consider STR, where each stratum is of size k and one unit is selected within each

stratum. The sample mean, denoted as ySTR, provides an unbiased estimate of Y with the

respective sampling variance written as

V(ySTR) =
S2
wst

n

(
N − n
N

)
, (1.6)

where the variance among units which are located within the same stratum is denoted as

S2
wst =

n∑
j=1

k∑
i=1

(
yij − y·j

)2
/n(k − 1); the value of the study variable related to the ith unit
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of the jth stratum is denoted as yij ; and the jth stratum mean is denoted as y·j =
k∑
i=1

yij/k,

for j ∈ {1, ..., n} (Cochran 1977). Now, LSS can be defined as the division of the N

population units into n strata of k units each, before randomly selecting one unit from

the first stratum and the unit selected from each of the other strata, is located in the

same position as the randomly selected unit in the first strata. The usual LSS design,

which was presented by Table 1.1, is therefore transposed and can now be compared to

the above-mentioned STR design. Accordingly, the first k population units are situated

in the first stratum, the next k population units are situated to the second stratum, and

so forth. The corresponding variance expression is given by

V (yLSS) =
S2
wst

n

(
N − n
N

)[
1 + (n− 1)ρwst

]
, (1.7)

where the ICC between pairs of units which are located within the same linear systematic

sample, with the deviations being calculated from their associated stratum means, is de-

noted as ρwst = 2
k∑
i=1

n∑
j=1

n∑
l>j

(
yij − y·j

)
(yil − y·l)/

[
n (n− 1) (k − 1)S2

wst

]
(Cochran 1977).

Comparing (1.6) to (1.7), we note that LSS is more efficient than STR, if and only if

ρwst < 0.

Thus, each different population structure will have an effect on ρ and ρwst, which will

then effect the efficiency of LSS. Consequently, for the remainder of this thesis, we narrow

the study to focus on a specific type of population structure, i.e. populations exhibiting

linear trend.

1.3 Disadvantages of Systematic Sampling

Now that we have a basic understanding of systematic sampling, we next consider the key

disadvantages, which are given as follows:

(i) An unbiased estimate of the sampling variance is unobtainable when conducting LSS

with a single random start, since it is impossible to select certain pairs of population

units for the sample. This disadvantage will be further explained in Chapter 3.

(ii) If the population size is not a multiple of the sample size, then conducting LSS

will either produce sample sizes that vary, or fixed sample sizes that are greater

than required. Consequently, biased estimates of the population parameters are

associated with the former situation, while the latter situation is undesirable since
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sample sizes are commonly fixed beforehand. These situations will be explored in

Chapter 4.

The fundamental objectives of this thesis are to provide solutions to these disad-

vantages by proposing modified systematic sampling designs and/or estimators that are

favourable over its existing literature counterparts. The theory presented thus far is a

reflection of the authors’ understanding of the existing literature, which can be found in

Naidoo (2013), as well as any traditional sample survey book, e.g. Kalton (1983), Lehtonen

& Pahkinen (2004), Lohr (2010), etc.

1.4 Scope of Thesis

This thesis is divided into six chapters. Chapter 2 entails a discussion of the perfor-

mance of systematic sampling under the assumption of linear trend among the population

units. All associated modified systematic sampling designs are explored, before providing

a discussion on optimality. Thereafter, a proposed modified systematic sampling design

is presented. Chapter 3 tackles the first disadvantage, i.e. estimation of the sampling

variance. An overview of the problem at hand is presented, before exploring all relative

modified systematic sampling designs. In the final section of this chapter, a modified sys-

tematic sampling design is suggested to tackle the corresponding shortcoming. Chapter

4 addresses the second disadvantage, i.e. if the population size is not a multiple of the

sample size. An outline of this drawback is discussed, before briefly examining each as-

sociated modified systematic sampling design found in literature. Afterwards, a modified

systematic sampling design is proposed to address the problem at hand. In Chapter 5,

both shortcomings are solved in tandem by introducing a final modified sampling design.

Finally, in Chapter 6, all the work from the previous chapters are integrated to provide

a comprehensive report on the thesis, as well as future recommendations/studies. Note

that Naidoo (2013) originally studied the proposed modified systematic sampling designs

in Chapters 2 and 3, where approximate percentages of that work carried forward within

this thesis are given as 90% and 40%, respectively.
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Chapter 2

Systematic Sampling in the

Presence of Linear Trend

Trend is described as the general path which is tracked by the yq’s, as q ∈ {1, ..., N}

sequentially increases and/or as time moves forward, if q represents points in time. If the

yq’s are inclined to increase as q increases, then the population is said to exhibit positive

trend. Conversely, if the yq’s are inclined to decrease as q increases, then the population

is said to exhibit negative trend. Trend is either described as linear, or non-linear, i.e.

parabolic, quadratic, exponential trend etc. The main focal point in this thesis is to only

consider linear trends.

In this chapter, we first discuss a linear trend model and the performance of LSS,

when compared to SRS and STR, under this model. Thereafter, we provide an overview

of the various modified LSS designs found in literature, which aim to provide optimal

results for populations exhibiting linear trend. We next consider some optimal sampling

strategies/conditions, before proposing an associated modified systematic sampling design.

2.1 Linear trend model

The efficiency of LSS in the presence of linear trend was originally studied in a mathe-

matical context by Madow & Madow (1944), and later discussed by Murthy (1967) and

Cochran (1977). Let us consider a population that exhibits linear trend, represented by

the model

yq = a+ bq + eq, q = 1, ..., N, (2.1)
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where a and b are constants and the eq’s denote the random errors which follow Cochran’s

(1946) super-population model, i.e.

E (eq) = 0, E
(
e2
q

)
= σ2, E (eqez) = 0 (q 6= z) ,

where the average of all potential finite populations that can be drawn from model (2.1)

is denoted by the function E . By referring to (2.1), we obtain

Y =
1

N

N∑
q=1

yq =
1

N

N∑
q=1

a+
b

N

N∑
q=1

q +
1

N

N∑
q=1

eq = a+
b (N + 1)

2
+ e,

where e =
∑N

q=1 eq/N denotes the average random error of the population. Thus, when

estimating Y , the expected MSEs of yLSS, ySRS, and ySTR, are respectively given by

MLSS = σ2
e +

b2
(
k2 − 1

)
12

, (2.2)

MSRS = σ2
e +

b2 (N + 1) (k − 1)

12
(2.3)

and

MSTR = σ2
e +

b2
(
k2 − 1

)
12n

, (2.4)

where σ2
e = σ2(1/n − 1/N) represents the minimum expected error variance component,

while the second terms on the right hand side represent the linear trend components (see

Bellhouse (1988)). Now, comparing (2.2) through to (2.4), results in

MSTR ≤MLSS ≤MSRS. (2.5)

Thus, for populations exhibiting linear trend, STR is more efficient than LSS, which in

turn is more efficient than SRS. Note that equivalence occurs when n = 1.

In the presence of linear trend, we obtain a high degree of variation between units that

are located within the same linear systematic sample. The cross products for these pairs,

with deviations calculated from the population mean, are thus inclined to be negative.

Hence, LSS is more efficient than SRS as a result of ρ being negative. Therefore, the

greater the amount of linear trend, the more substantial the efficiency gains when favouring

LSS over SRS.

Now, let us compare LSS to STR (as in Section 1.2) in the presence linear trend.

Strata are thus predominantly internally homogeneous, where a deviation between any

sampling unit and its corresponding stratum mean, is probable of having the same coef-

ficient as the deviation between another sampling unit from their corresponding stratum
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mean. Both deviations between their corresponding stratum means are thus expected

to be either positive, or negative, which in turn predominantly results in positive cross

products. Accordingly, STR is more efficient than LSS as a result of ρwst being positive.

Note that the greater the amount of linear trend, the more substantial the efficiency loss

when favouring LSS over STR.

2.2 Modified linear systematic sampling strategies

Many authors have addressed the above-mentioned scenario by suggesting modified LSS

strategies. Most of these solutions remove the linear trend component in (2.2) and thus

improve results. A review of such strategies, as well as their shortcomings, is presented

below.

2.2.1 Yates’ end corrections (Yates 1948)

This sampling design is equivalent to LSS; however, the sample mean (i.e. the Yates’ end

corrections (YEC) estimator) is corrected by employing appropriate weights on the first

and last sampling units, given by

yYEC = yLSS +
(2i− k − 1)

2 (n− 1) k

(
yi − yi+(n−1)k

)
.

Under the assumption of a perfect linear trend in the population (e.g. yq = a + bq, for

q = 1, ..., N), estimator yYEC is equivalent to the population mean. If we consider model

(2.1), then we can expect estimator yYEC to be a slightly biased estimate of the population

mean. Nevertheless, in the presence of a rough linear trend, estimator yYEC is usually

subject to less error than estimator yLSS (Murthy & Rao 1988).

An expression for the expected MSE of yYEC , when estimating Y under model (2.1), is

given by

MYEC = σ2
e +

σ2
(
k2 − 1

)
6(n− 1)2k2

(2.6)

(see Fountain & Pathak (1989)). The linear trend component is thus completely removed,

but the resulting effect is a greater error variance component, owing to the uneven weight-

ing of the sampling units.

2.2.2 Centered systematic sampling (Madow 1953)

Centered systematic sampling (CESS) adopts the usual LSS design; however, the centrally

located linear systematic sample is selected and thus no randomization is required. The
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corresponding sample mean is given as

yCESS =


n−1

n∑
j=1

y[(2j−1)k+1]/2, if k is odd

n−1
n∑
j=1

y(2j−1)k/2 or n−1
n∑
j=1

y[(2j−1)k+2]/2, if k is even

(Bellhouse & Rao 1975). If k is odd, then the sample is selected with a predetermined

start of i = (k+ 1)/2, while the predetermined start to select the sample is either i = k/2

or i = (k+2)/2, each with probability 1/2, when k is even (Bellhouse & Rao 1975). When

estimating Y under model (2.1), the expected MSE of yCESS is obtained as

MCESS =


σ2
e , if k is odd

σ2
e + b2/4, if k is even

(2.7)

(Fountain & Pathak 1989). Hence, the linear trend component in MCESS is only removed

when k is odd. Moreover, certain population units have a zero probability of being included

in the sample and thus yCESS is subject to bias (Murthy 1967). However, under the

assumption of a perfect linear trend in the population, estimator yCESS is equivalent to the

population mean when k is odd.

2.2.3 Balanced systematic sampling (Sethi 1965, Murthy 1967)

In relation to the population unit indices, an arrangement associated with balanced sys-

tematic sampling (BSS) is such that the sequence of each alternative set of k population

units is reversed. LSS is then conducted on this balanced arrangement, so as to select a

balanced systematic sample. Accordingly, the sample mean is given as

yBSS =


n−1

∑(n−2)/2
j=0 (yi+2jk + y2(j+1)k−i+1), if n is even

n−1
[∑(n−3)/2

j=0 (yi+2jk + y2(j+1)k−i+1) + yi+(n−1)k

]
, if n is odd.

This estimator is design-unbiased, owing to each population unit having an equal proba-

bility, 1/k, of selection. If we estimate Y under model (2.1), then the expected MSE of

yBSS is expressed as

MBSS =


σ2
e , if n is even

σ2
e + b2(k2 − 1)/12n2, if n is odd

(2.8)

(Fountain & Pathak 1989).
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2.2.4 Modified systematic sampling (Singh et al. 1968)

With respect to the population unit indices, an arrangement associated with modified

systematic sampling (MSS) is such that the sequence of a subset of units, which occur

at the end of the population, is reversed. If n is even, then the last N/2 units are se-

quentially reversed, i.e. the population is now re-arranged as U1, ..., UN/2, UN , ..., UN/2+1.

Alternatively, if n is odd, then the last (N − k)/2 units are sequentially reversed, i.e. the

population will be re-arranged as U1, ..., U(N+k)/2, UN , ..., U(N+k)/2+1. LSS is then con-

ducted on this modified arrangement so as to select a modified systematic sample. Note

that the resulting sample ensures an even spread over the population, except in the center.

Consequently, the sample mean is given as

yMSS =


n−1

∑(n−2)/2
j=0 (yi+jk + yN−jk−i+1), if n is even

n−1[
∑(n−3)/2

j=0 (yi+jk + yN−jk−i+1) + yi+(n−1)k/2], if n is odd.

Just as in the case of BSS, estimator yMSS is design-unbiased. The expected MSE of yMSS,

when estimating Y under model (2.1), is given as

MMSS =


σ2
e , if n is even

σ2
e + b2(k2 − 1)/12n2, if n is odd

(2.9)

(Fountain & Pathak 1989). When comparing (2.8) to (2.9), we see that MMSS = MBSS,

while further noting that the linear trend components are only eliminated when the sample

size n is even.

Good reviews pertaining to the modified LSS designs mentioned thus far, are given

by Bellhouse & Rao (1975), Cochran (1977), Fountain & Pathak (1989), Gupta & Kabe

(2011), etc.

2.2.5 Diagonal systematic sampling (Subramani 2000, 2009, 2010)

If we assume that n ≤ k, then diagonal systematic sampling (DSS) is conducted as follows:

(i) Arrange the population units according to matrix M, where

M =


U1 U2 . . . Uk

Uk+1 Uk+2 . . . U2k

...
...

...
...

U(n−1)k+1 U(n−1)k+2 . . . Unk


n×k

.
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(ii) Randomly select an integer between 1 and k, say i, where 1 ≤ i ≤ k.

(iii) The sample, Si, which is selected in a diagonal fashion from matrix M, is obtained

as follows:

(a) if i ≤ k − n+ 1, then Si = {Ui, U(k+1)+i, ..., U(n−1)(k+1)+i};

(b) otherwise,

Si = {Ui, U(k+1)+i, ..., Uγ(k+1)+i, U(γ+1)k+1, U(γ+2)k+2, ..., U(n−1)k+(n−γ−1)},

where γ = 0, ..., n− 2 for Sk, ...., Sk−n+2, respectively.

The sample mean, denoted as yDSS, is a design unbiased estimator of the population

mean. If we consider model (2.1), then the expected MSE of yDSS, when estimating Y , is

found as

MDSS = σ2
e +

b2(k − n)[n(k − n) + 2]

12n
. (2.10)

Clearly, the linear trend component is only removed when n = k. To remove the linear

trend component for all other cases, Subramani (2000) proposed a DSS with end correc-

tions (DSSEC) estimator, given by

yDSSEC = yDSS +
(2i− k + n− 2)

N − k + n− 1
(yi − y(n−1)(k+1)+i), if i ≤ k − n+ 1

= yDSS +
(k − n)(2k − 2i+ 2− n)

2n(N − 2k + n− 1)
(yi − y(n−1)k+(n−γ−1)), otherwise.

As is the case of the YEC estimator, if we assume a perfect linear trend in the population,

then estimator yDSSEC is equivalent to the population mean, while slightly biased under

model (2.1).

Note that DSS is only applicable when n ≤ k. Subramani (2009, 2010) later introduced

generalized DSS (GDSS), which is applicable for all cases of n and is given as follows:

(i) Apply steps (i) and (ii) from the DSS methodology above.

(ii) Select the ith population unit in the first row of M and from left to right, select all

downward elements in a diagonal fashion until reaching the last column of M.

(iii) Once the last column of M is reached, select the first population in the very next

row and repeat the diagonal selection process until a sample of size n is obtained.
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An unbiased estimator of the population mean is given by the sample mean, which is

denoted as yGDSS. If n > k, then the sample size can be expressed as n = ck + d, where

c and d are non-negative integers. Accordingly, the expected MSE of yGDSS under model

(2.1) is given by

MGDSS = σ2
e +

b2d(k − d)[d(k − d) + 2]

12n2
. (2.11)

If we compare (2.10) to (2.11), while assuming n = d (i.e. c = 0), then MDSS = MGDSS.

Thus, DSS is a particular case of GDSS. Note that if n = ck (i.e. if d = 0), then the linear

trend component for MGDSS is eliminated.

2.3 Optimality in the presence of linear trend

When estimating the population mean in the presence of linear trend, an estimator is

considered to provide optimal results if it exhibits minimum expected MSE, i.e. (i) if the

linear trend component in the expected MSE of the corresponding estimator is completely

removed and (ii) if the expected MSE of the associated estimator exhibits minimum

expected error variance. Condition (i) is satisfied for the YEC estimator, as well as for

CESS, BSS, MSS, DSS and GDSS, as shown by equations (2.6), (2.7) (if k is odd), (2.8)

(if n is even), (2.9) (if n is even), (2.10) (if n = k) and (2.11) (if d = 0), respectively.

Condition (ii) is satisfied if an equal weighting is applied to all the sampling units, as

seen for LSS, SRS, STR, CESS, BSS, MSS, DSS and GDSS, verified by equations (2.2)

to (2.4) and (2.7) to (2.11), respectively. Thus, the most attractive sampling strategies

in the presence of linear trend, are those that are related to estimators that satisfy both

conditions, i.e. CESS (k is odd), BSS (n is even), MSS (n is even), DSS (n = k) and

GDSS (d = 0). Moreover, a linear trend free sampling design will have the sampling unit

indices, for each and every possible sample, sum up to n(N + 1)/2, i.e. if S denotes a

sample selected when conducting any given sampling design, then this design is said to be

linear trend free, if and only if for all S

∑
Uq∈S

q =
1

2
n(N + 1)

(Mukerjee & Sengupta 1990). Using this definition, one can easily verify that CESS (if

k is odd), BSS (if n is even), MSS (if n is even), DSS (if n = k) and GDSS (if d = 0),

are all linear trend free sampling designs. Another way of viewing this definition is that
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linear trend free sampling designs may only exist if n(N + 1) = n(nk + 1) is even, i.e. if

n is even or if both n and k are odd. Thus, we cannot obtain a linear trend free sampling

design for the case when n is odd and k is even. Alternatively, one may then opt to use the

YEC estimator, as this estimator is usually subject to less error than all other estimators

for this scenario. This drawback has motivated the study in the next section, where a

modified LSS design, as well as a corresponding competitive end corrections estimator,

are proposed.

Note that there are further modified LSS designs given by Subramani (2012, 2013a,b,

2014). These modifications will not be considered, as they do not provide optimality

under any circumstance. One can refer to the modified LSS design discussed by Khan

et al. (2015). This design is a generalization of either LSS, DSS and/or GDSS, under

certain assumptions. Thus, this design will only exhibit optimum sampling results if the

design reduces to either DSS or GDSS, while satisfying the linear trend free sampling

conditions for DSS or GDSS, respectively.

2.4 Balanced modified systematic sampling

In this section, a modified LSS design, termed as balanced modified systematic sampling

(BMSS), is proposed. In Section 2.4.1, a discussion on the methodology of BMSS is pro-

vided. For Section 2.4.2, the expected MSE of the BMSS sample mean, is compared to

that of MLSS, MSRS, MSTR, MY EC , MCESS, MBSS and MMSS. As a result, BMSS is only op-

timal for the case when n/2 is an even integer. A BMSS with end corrections (BMSSEC)

estimator is thus constructed, so as to remove the linear trend component in the corre-

sponding expected MSE for the other cases of n. A numerical example on a hypothetical

population is then considered in Section 2.4.3, before carrying out a simulation study in

Section 2.4.4. Note that k is assumed to be an integer, i.e. assuming that N is an exact

multiple of n, so that sampling is conducted linearly.

2.4.1 Methodology

A modified arrangement used for BMSS is defined as follows: (a) if n is even, then the

order of every alternative set of k population units is reversed, before reversing the order

of the first/last n/2 sets of k population units; and (b) if n is odd, then the order of every

alternative set of k population units is reversed, before reversing the order of the last
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(n − 1)/2 sets of k population units. LSS is then applied to this modified arrangement,

so as to select the required sample. Note that different arrangements, before applying

LSS, will result in different compositions of samples and this paper deals with a specific

arrangement, as explained above. By reversing the order of n/2 (or (n − 1)/2) sets of k

population units, a balancing effect is obtained which is optimal for populations exhibiting

linear trend. Note that MSS reverses the order of the last n/2 (or (n − 1)/2) sets of k

population units, without alternating the order of each set, while BSS alternates the order

of each set, without reversing the order of the last n/2 (or (n− 1)/2) sets of k population

units. Thus, the ordering of BMSS is a mixture of both, the MSS and BSS orderings.

Moreover, BMSS reduces to LSS when n = 2 and we will thus assume that n > 2.

The above-mentioned design is equivalent to selecting sampling units according to the

following indices:

(A) if n/2 is an even integer, then

i+ 2jk, 2(j + 1)k − i+ 1, for j = 0, ..., (n− 4)/4

and

N + i− k − 2jk, N − i− k − 2jk + 1, for j = 0, ..., (n− 4)/4;

(B) if n/2 is an odd integer, then

i+ 2jk, N + i− k − 2jk, for j = 0, ..., (n− 2)/4

and

2(j + 1)k − i+ 1, N − i− k − 2jk + 1, for j = 0, ..., (n− 6)/4;

(C) if n = 3, then

i, 2k − i+ 1 and N − i+ 1;

(D) if n 6= 3 and (n+ 1)/2 is an even integer, then

i+ 2jk, 2(j + 1)k − i+ 1, N − i− 2jk + 1, for j = 0, ..., (n− 3)/4

and

N + i− 2(j + 1)k, for j = 0, ..., (n− 7)/4;
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(E) if (n+ 1)/2 is an odd integer, then

i+ 2jk, 2(j + 1)k − i+ 1, N − i− 2jk + 1, N + i− 2(j + 1)k,

for j = 0, ..., (n− 5)/4 and i+ (n− 1)k/2.

Note that Cases (A) and (B) are sub-cases of n being even, while Cases (C) to (E) are

sub-cases of n > 1 being odd.

The ith (i ∈ {1, ..., k}) sample mean, denoted by yBMSS, is obtained by using the above

sampling unit indices for the respective cases, e.g. if we consider Case (A), then the sample

mean is given as

yBMSS =
1

n

(n−4)/4∑
j=0

(yi+2jk + y2(j+1)k−i+1 + yN+i−k−2jk + yN−i−k−2jk+1).

Note that yBMSS is design-unbiased, since BMSS is viewed as an arrangement of units

before applying LSS.

2.4.2 Expected Mean Square Error Comparisons

To compare the expected MSE of the BMSS estimator, to that of MLSS, MSRS, MSTR,

MY EC , MCESS, MBSS and MMSS, we first need to consider the following theorem.

Theorem 1: If we suppose model B, which is related to model A, i.e. model (2.1), given

by

yq = a+ bq, q = 1, ..., N (2.12)

such that

YB =
1

N

N∑
q=1

yq =
1

N
[(a+ b) + ...+ (a+Nb)] = a+

b (N + 1)

2
,

then by assuming equal weights (1/n) applied to all the sampling units, the expected MSE

of any sample mean, when estimating Y , is given by

MA = EMSE (yA)
∆
= E

{
E
[(
yA − Y

)2]}
= σ2

e + Var (yB) , (2.13)

where yB denotes a linear unbiased estimator of YB, using the sampling design associated

with yA.

Proof : By using (2.1) and (2.12), we obtain Y = YB+e and yA = yB+ei, where ei =
∑
ei/n
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denotes the mean random error of the sample and
∑

denotes the sum over the sample.

Using these expressions, it follows that

MA

∆
= E

{
E
[(
yA − Y

)2]}
= E

{
E
[(
yB − YB

)2
+
(
ei − e

)2]}
= EVar (yB) + EVar (ei) = Var (yB) + σ2

e .

If we let P = 2i− k − 1, then applying (2.12) to yBMSS results in

yBMSS = a+ b(N + 1)/2, for Case (A)

= a+ b [N + 1 + 2P/n] /2, for Case (B)

= a+ b [N + 1− P/n] /2, for Cases (C) to (E).

Hence, the corresponding variance expression, when using yBMSS to estimate YB, is given

by

Var (yBMSS) = 0, for Case (A)

= b2(k2 − 1)/3n2, for Case (B)

= b2(k2 − 1)/12n2, for Cases (C) to (E), (2.14)

which follows since

E
(
P 2
)

=
1

k

k∑
i=1

P 2 =

(
k2 − 1

)
3

.

Thus, if we assume model (2.1), then by substituting (2.14) into (2.13), we obtain

MBMSS = σ2
e , for Case (A)

= σ2
e + b2(k2 − 1)/3n2, for Case (B)

= σ2
e + b2(k2 − 1)/12n2, for Cases (C) to (E). (2.15)

By comparing (2.15) and (2.4), we note that MBMSS < MSTR for all the cases. Thus,

by using (2.5), we conclude that BMSS is more efficient than LSS, SRS and STR. Also,

by comparing (2.15) and (2.6), we see that MBMSS < MY EC , for (i) Case (A); (ii) Case

(B) (if and only if σ2 > 2b2(n − 1)2k2/n2); and (iii) Cases (C) to (E) (if and only if

σ2 > b2(n− 1)2k2/2n2). In addition, the comparison of (2.15) and (2.7) results in:

(i) MBMSS = MCESS for Case (A) and if k is odd;

(ii) MBMSS < MCESS for Case (A) and if k is even;

(iii) MBMSS > MCESS for Cases (B) to (E) and if k is odd;
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(iv) MBMSS < MCESS for Case (B), if k is even and 4k2 − 4 < 3n2;

(v) MBMSS < MCESS for Cases (C) to (E), if k is even and k2 − 1 < 3n2.

Finally, by comparing (2.15) and (2.8), we see that MBMSS > MBSS = MMSS for Case (B),

while all other cases result in MBMSS = MBSS = MMSS.

Clearly, we only obtain a complete removal of the linear trend component in (2.15)

for Case (A). To remove the linear trend component for the other cases, we next consider

the application of weights to the first and last sampling units. Accordingly, the resulting

estimator and the corresponding expected MSE are respectively given in the next two

theorems.

Theorem 2: The BMSSEC estimator of Y with random start i, for i ∈ {1, ..., k}, is given

as

yBMSSEC = yBMSS + P (yi − yN+i−k)/[n(N − k)], for Case (B)

= yBMSS − P (yi − yN−i+1)/[2n(N − 2i+ 1)], for Cases (C) and (D)

= yBMSS + P (yi − yN−i+1)/[2n(N − 2i+ 1)], for Case (E).

Proof: See Appendix.

Theorem 3: Under model A, the expected MSE of yBMSSEC is given as

MBMSSEC = σ2
e + 2σ2(k2 − 1)/3n2(N − k)2, for Case (B)

= σ2
e +

k∑
i=1

{
P 2σ2/[2(N − 2i+ 1)2n2k]

}
, for Cases (C) to (E).

Proof: See Appendix.

If we compare MBMSSEC to all previous expected MSE expressions, then we note that

simple theoretical comparisons are difficult to obtain and we will thus resort to some

numerical comparisons in the next two sections. However, one can easily verify that

MBSS = MMSS < MBMSSEC < MY EC for Case (B), while MCESS < MBMSSEC if k is odd.

Furthermore, just as in the case of the YEC estimator being slightly biased under the

assumption of a rough linear trend, owing to the uneven weighting of the sampling units

(Murthy, 1967), we obtain the same result for estimator yBMSSEC .
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2.4.3 Numerical Example

Consider the hypothetical linear trend population given by Murthy and Rao (1988, p.

161), which is presented in Table 2.1. All the possible samples for various values of n

when conducting BMSS, which are obtained by using the sampling unit indices in Section

2.4.1 for the corresponding cases, are presented in Table 2.2. The associated MSEs for

the various sampling designs mentioned in this paper are given in Table 2.3. The results

suggest that BMSS offers a strict improvement over LSS, SRS and STR, regardless of the

sample size. Moreover, if n/2 is not a even integer, then we obtain a reduction in estimation

error by using the BMSSEC estimator, as opposed to the BMSS estimator. Comparisons

amongst the modified LSS designs to either BMSS or the BMSSEC estimator requires

further analysis, since we are only considering a single finite population, whereas our

theoretical results obtained earlier are based on an infinite super-population. However, we

note that in most cases, there is a significant reduction in error when applying any one of

the modified LSS designs, as opposed to LSS, SRS and STR.

Table 2.1: A population of 40 units exhibiting a steady linear trend in the value of a variable

y.

Uq yq Uq yq Uq yq Uq yq

U1 0 U11 10 U21 23 U31 41

U2 1 U12 11 U22 25 U32 43

U3 2 U13 12 U23 29 U33 46

U4 3 U14 12 U24 30 U34 50

U5 4 U15 13 U25 32 U35 52

U6 5 U16 14 U26 33 U36 53

U7 7 U17 15 U27 35 U37 57

U8 7 U18 17 U28 38 U38 59

U9 8 U19 20 U29 39 U39 62

U10 9 U20 22 U30 40 U40 63

2.4.4 Empirical Comparisons

Three independent simulation studies will be carried out to further evaluate estimator

yBMSSEC . Monte Carlo simulations are used with the statistical software package R, where
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Table 2.2: For various values of n, the k possible samples (for i ∈ {1, ..., k}) using BMSS.

Case n k Possible Samples

A 4 10 Si = {Ui, U21−i, U31−i, U30+i}

E 5 8 Si = {Ui, U17−i, U41−i, U24+i} ∪ {U16+i}

A 8 5 Si = {Ui, U11−i, U36−i, U35+i, U10+i, U21−i, U25+i, U26−i}

B 10 4 Si = {Ui, U36+i, U8+i, U28+i, U16+i, U20+i, U9−i, U37−i, U17−i, U29−i}

A 20 2 Si = {Ui, U5−i, U38+i, U39−i, U4+i, U9−i, U34+i, U35−i, U8+i, U13−i, U30+i}

∪{U31−i, U12+i, U17−i, U26+i, U27−i, U16+i, U21−i, U22+i, U23−i}

Table 2.3: Mean square errors for a hypothetical population exhibiting a linear trend.

n

4 5 8 10 20

LSS 23.1600 13.6475 6.3288 3.3825 0.4900

SRS 83.2264 64.7316 36.9895 27.7421 9.2474

STR 6.6350 3.1700 0.9625 0.4063 0.0350

YEC 0.4116 0.1887 0.1140 0.0240 0.0134

CESS 0.6400 0.4225 0.0400 0.9025 0.4900

BSS 0.4350 2.2475 0.0288 0.0275 0.0025

MSS 2.4725 0.0575 0.7538 0.2025 0.0400

BMSS 0.1475 0.5775 0.1788 0.2275 0.0025

BMSSEC N/A 0.0730 N/A 0.0187 N/A

10 000 finite populations are simulated. The expected MSE of each estimator is obtained

by averaging the MSEs over the 10 000 populations. The relative expected MSEs of

each comparative estimator, with respect to that of estimator yBMSSEC , is denoted by

Rα = 100×MBMSSEC/Mα(%), where α ∈ {LSS, SRS, STR,YEC,CESS,BSS,MSS,BMSS}.

Without loss of generality, we suppose that the eq’s are iid N(0, 1) random variables and

let a = 5.

In the first simulation study, Case (B) is examined and arbitrary values of b = 0.5, 1, 2

and 4, are assigned while varying n and k. The associated relative expected MSEs are

presented in Tables 2.4 to 2.7. From Tables 2.4 to 2.7, we note that only estimators yBSS

and yMSS, are marginally subjected to less error than that of estimator yBMSSEC . Also,
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estimator yBMSSEC is always favourable over estimators yLSS, ySRS and yCESS, with greater

discrepancies as n, k and/or b increases. Similarly, we see that estimator yBMSSEC is

always preferred over estimator ySTR, with greater discrepancies as k and/or b increases,

while results remain constant as n varies. Finally, we note that estimator yBMSSEC always

performs better than estimator yBMSS, with greater discrepancies as k and/or b increases

and smaller discrepancies as n increases. Thus, MBMSS → MBMSSEC as n → ∞, provided

that k and b are relatively small.

Table 2.4: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 0.5).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 6 57.85 23.99 90.73 57.85 101.51 102.63 92.40

2 34 19.08 01.02 89.47 19.08 101.07 100.29 98.49

2 130 05.76 00.07 88.25 05.76 102.61 102.51 99.52

2 258 02.99 00.02 88.24 02.99 99.16 99.05 99.87

4 6 28.87 07.50 71.57 66.63 100.70 101.63 79.28

4 34 06.60 00.26 70.74 26.17 100.42 100.33 94.84

4 130 01.82 00.02 70.87 08.53 102.52 99.01 98.84

4 258 00.92 < 00.01 70.81 04.45 100.31 99.04 99.18

8 6 10.06 02.01 40.24 70.84 100.66 100.10 50.14

8 34 01.93 00.06 40.08 29.27 99.81 99.85 85.14

8 130 00.51 < 00.01 40.10 09.79 100.46 100.15 95.62

8 258 00.26 < 00.01 39.82 05.15 100.27 100.55 97.43

For the second simulation study, Cases (C) to (E) (i.e. n is odd) are considered

and arbitrary values of b = 0.5, 1, 2 and 4, are assigned while varying n and k. The

corresponding relative expected MSEs are presented in Tables 2.8 to 2.11. From Tables 2.8

to 2.11, we note that estimator yBMSSEC performs better than all the estimators considered

in this study. In this simulation study, we obtain similar results as those obtained in the

previous study. However, estimator yBMSSEC now performs better than estimators yBSS

and yMSS. Moreover, we see that estimators yBSS, yMSS and yBMSS, are relatively subject

to the same amount of error. Thus, MBSS,MMSS and MBMSS → MBMSSEC as n → ∞,

provided that k and b are relatively small.
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Table 2.5: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 1).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 6 24.95 07.16 66.55 24.95 99.00 99.53 75.38

2 34 05.59 00.25 66.74 05.59 100.84 100.51 94.65

2 130 01.54 00.02 67.78 01.54 100.91 102.35 98.60

2 258 00.80 < 00.01 69.26 00.80 105.18 105.60 99.44

4 6 09.25 01.99 38.14 33.49 100.93 101.08 48.34

4 34 01.72 00.06 37.23 08.08 98.99 99.99 83.69

4 130 00.46 < 00.01 37.46 02.25 99.82 101.26 95.29

4 258 00.23 < 00.01 37.49 01.15 100.23 101.06 97.11

8 6 02.70 00.51 14.28 36.91 100.38 100.58 19.93

8 34 00.49 00.02 14.26 09.31 100.27 100.73 58.78

8 130 00.13 < 00.01 14.16 02.61 99.12 99.41 84.22

8 258 00.06 < 00.01 14.18 01.33 102.09 100.64 91.56

Table 2.6: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 2).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 6 07.68 01.90 33.33 07.68 99.73 101.68 42.20

2 34 01.44 00.06 32.99 01.44 99.04 99.59 80.93

2 130 00.38 < 00.01 33.50 00.38 99.90 101.72 94.94

2 258 00.19 < 00.01 33.54 00.19 101.66 101.58 96.97

4 6 02.43 00.50 13.03 11.09 100.52 99.60 18.31

4 34 00.44 00.02 13.21 02.18 100.84 99.90 56.22

4 130 00.11 < 00.01 12.95 00.57 101.01 99.83 83.06

4 258 00.06 < 00.01 13.07 00.29 99.54 99.92 90.80

8 6 00.68 00.13 03.99 12.77 99.65 99.86 05.86

8 34 00.12 < 00.01 04.00 02.51 100.08 100.40 25.97

8 130 00.03 < 00.01 04.01 00.67 99.76 99.37 57.89

8 258 00.02 < 00.01 03.99 00.34 99.41 99.41 72.91
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Table 2.7: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 4).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 6 02.08 00.49 11.30 02.08 103.38 102.87 16.23

2 34 00.36 00.02 11.05 00.36 102.27 99.00 51.55

2 130 00.10 < 00.01 11.16 00.10 101.55 99.06 80.80

2 258 00.05 < 00.01 10.83 00.05 99.02 100.08 88.48

4 6 00.62 00.12 03.60 03.02 100.68 99.61 05.31

4 34 00.11 < 00.01 03.59 00.54 99.15 99.43 23.98

4 130 00.03 < 00.01 03.61 00.14 98.94 99.51 55.27

4 258 00.01 < 00.01 03.59 00.07 99.13 100.16 70.01

8 6 00.17 00.03 01.03 03.54 100.02 100.92 01.54

8 34 00.03 < 00.01 01.04 00.65 100.75 100.82 08.21

8 130 00.01 < 00.01 01.03 00.17 100.02 100.40 25.13

8 258 < 00.01 < 00.01 01.03 00.08 100.62 99.91 40.06

Comparisons between estimators yBMSSEC and yY EC are evaluated in the third sim-

ulation study. Because there are no trend components in the expected MSEs of both

estimators, an arbitrary value of b = 4 is assigned while varying n and k. Also, only Cases

(C) to (E) are explored, as it was theoretically shown previously that MBMSSEC < MY EC

for Case (B). The simulated relative expected MSEs are presented in Table 2.12. The re-

sults suggest that estimator yBMSSEC is only preferred when n and k are small. Otherwise,

there are marginal gains when choosing estimator yBMSSEC over estimator yY EC .

2.4.5 Concluding Remarks

A modified LSS design (i.e. BMSS) that depends on an arrangement of population

units before applying LSS, which results in the corresponding sample mean being design-

unbiased, has been proposed. Results from Sections 2.4.2 to 2.4.4 indicate that BMSS

is more efficient than LSS, SRS and STR, in the presence of linear trend. The optimal

case of BMSS is when n/2 is an even integer, which results in linear trend free sampling

and minimum expected MSE of the corresponding sample mean. For the other cases of

BMSS, a modified end corrections estimator, i.e. estimator yBMSSEC , has been constructed.
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Table 2.8: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b = 0.5).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 3 70.39 53.54 88.52 70.39 98.00 98.41 98.72

2 35 18.35 00.94 87.75 18.35 98.16 98.51 99.57

2 125 05.92 00.08 88.00 05.92 99.01 99.66 99.88

2 255 03.08 00.02 89.77 03.08 99.89 99.99 99.96

4 3 45.40 24.17 72.16 81.30 91.01 89.63 89.99

4 35 06.41 00.24 70.49 25.65 98.96 98.54 98.78

4 125 01.89 00.02 70.82 08.74 99.29 99.36 99.59

4 255 00.93 < 00.01 70.67 04.50 99.84 99.99 99.84

8 3 18.50 07.55 40.69 83.34 68.31 67.80 68.28

8 35 01.86 00.06 39.89 28.77 95.34 96.24 95.97

8 125 00.54 < 00.01 40.36 10.25 98.78 99.47 98.78

8 255 00.26 < 00.01 40.13 05.26 99.40 99.88 99.32

Table 2.9: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b = 1).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 3 42.66 23.21 70.25 42.66 88.72 88.20 88.28

2 35 05.39 00.24 66.54 05.39 98.63 98.12 98.60

2 125 01.57 00.02 66.46 01.57 98.30 98.48 98.60

2 255 00.78 < 00.01 66.48 00.78 99.51 99.97 99.79

4 3 17.03 07.28 38.28 50.89 65.39 66.23 65.88

4 35 01.68 00.06 37.29 07.88 94.72 94.44 95.06

4 125 00.48 < 00.01 37.58 02.36 98.88 98.33 98.82

4 255 00.24 < 00.01 38.00 01.18 99.99 98.97 99.51

8 3 05.42 02.02 14.71 54.98 34.36 34.26 34.36

8 35 00.48 00.02 14.39 09.24 85.56 85.21 85.64

8 125 00.13 < 00.01 14.25 02.71 95.45 96.21 95.36

8 255 00.07 < 00.01 14.37 01.36 96.95 97.72 97.57
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Table 2.10: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b = 2).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 3 14.66 06.79 34.26 14.66 61.90 62.10 61.82

2 35 01.38 00.06 32.71 01.38 95.03 94.90 94.55

2 125 00.39 < 00.01 32.60 00.39 98.22 98.37 98.43

2 255 00.19 < 00.01 33.09 00.19 98.94 99.75 99.25

4 3 04.88 01.92 13.36 20.68 31.62 31.83 31.91

4 35 00.42 00.02 12.99 02.08 84.01 83.59 84.05

4 125 00.12 < 00.01 12.98 00.59 94.68 93.93 94.98

4 255 00.06 < 00.01 13.05 00.29 98.13 97.76 97.46

8 3 01.40 00.51 04.09 22.99 11.37 11.35 11.34

8 35 00.12 < 00.01 03.98 02.43 59.25 59.13 59.01

8 125 00.03 < 00.01 03.99 00.69 83.52 83.49 83.69

8 255 00.02 < 00.01 04.03 00.34 91.83 90.98 91.54

Table 2.11: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b = 4).

k n RLSS RSRS RSTR RCESS RBSS RMSS RBMSS

2 3 04.06 01.78 11.28 04.06 27.59 27.81 27.72

2 35 00.35 00.02 11.05 00.35 81.58 81.06 81.51

2 125 00.10 < 00.01 11.16 00.10 92.83 93.56 93.80

2 255 00.05 < 00.01 11.13 00.05 96.56 97.40 97.06

4 3 01.27 00.49 03.71 06.02 10.41 10.31 10.38

4 35 00.11 < 00.01 03.62 00.53 56.26 56.53 56.25

4 125 00.03 < 00.01 03.63 00.15 82.43 82.85 82.33

4 255 00.01 < 00.01 03.64 00.07 90.81 90.58 90.72

8 3 00.36 00.13 01.06 07.02 03.12 03.11 03.11

8 35 00.03 < 00.01 01.04 00.62 26.93 26.93 26.89

8 125 00.01 < 00.01 01.03 00.17 56.48 57.07 56.55

8 255 < 00.01 < 00.01 01.03 00.09 73.05 73.11 72.63
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Table 2.12: Simulated relative expected mean square errors of the YEC sample mean, with

respect to that of the MBMSSEC sample mean, for populations exhibiting linear trend under

Cases C to E.

n

3 5 7 13 15 29 63 125 255

k = 2 86.56 92.63 95.53 97.49 97.83 98.82 99.02 99.59 99.17

k = 4 89.23 94.03 96.13 97.69 98.48 98.97 99.41 99.59 99.82

k = 8 90.04 94.64 96.38 97.90 98.53 99.16 99.65 99.92 99.95

Populations exhibiting a rough linear trend result in estimator yBMSSEC being a slightly

biased estimate of Y as well as exhibiting an inflated error variance component in the

corresponding expected MSE, owing to the uneven weighting of the sampling units.

If n/2 is an odd integer, then estimator yBMSSEC is subject to less error than estima-

tors yLSS, ySRS, ySTR, yY EC and yBMSS, while marginally susceptible to more error than

estimators yBSS and yMSS, as shown in Sections 2.4.2 and 2.4.4. In addition, if n is odd,

then estimator yBMSSEC is subject to less error than all of the above-mentioned estimators.

The simulation study in Section 2.4.4 indicates that estimator yBMSSEC performs better

than estimator yY EC if n is odd, provided that n and k are small. Otherwise, there are

marginal gains when opting to use estimator yBMSSEC over estimator yY EC . Under this

circumstance, one may opt to use estimator yY EC , owing to simplicity.

Finally, we note that estimator yBMSSEC performs better than estimator yCESS, provided

that k is even, as seen in the simulation study from Section 2.4.4. However, if k is odd,

then the theoretical results in Section 2.4.2 suggest that estimator yCESS is to be the

preferred, as CESS is an optimal sampling design for this scenario. Nevertheless, we can

expect marginal gains when opting to use estimator yCESS over estimator yBMSSEC when

k is odd.

Recommendations for the most appropriate design(s) under various conditions are pro-

vided in Table 2.13. Note that the third column represents a trade-off between estimators

yY EC and yBMSSEC , where preference is either given to minimum MSE or simplicity.
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Table 2.13: Recommended designs for populations exhibiting linear trend.

Case(s) Condition Preference Recommended Design(s)

A k is even N/A BSS, MSS or BMSS

A k is odd N/A CESS, BSS, MSS or BMSS

B k is even N/A BSS or MSS

B k is odd N/A CESS, BSS or MSS

C to E k is even; n and k are small Minimum MSE BMSSEC

C to E k is even; n and k are small Simplicity YEC

C to E k is even; n and/or k are not small Minimum MSE YEC or BMSSEC

C to E k is even; n and/or k are not small Simplicity YEC

C to E k is odd N/A CESS

In this chapter, we have discussed systematic sampling, modifications of the usual

systematic sampling design found in literature as well as a suggested modified systematic

sampling design, all under the assumption of linear trend among the population units.

We also included a section on conditions regarding the optimality of systematic sampling

designs and modifications in the presence of linear trend. The results from this chapter

suggest that values of the sample size and sampling interval needs to be considered, before

selecting an appropriate modified systematic sampling design in the presence of linear

trend, where Table 2.13 provides us with the most suitable modified systematic sampling

design under various scenarios of n and k. In the next chapter, we will investigate the

first of the two shortcomings of systematic sampling, i.e. the impossibility of obtaining an

unbiased estimate of the sampling variance when conducting systematic sampling with a

single random start, under the assumption of linear trend among the population units.
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Chapter 3

Estimation of the Sampling

Variance

Remembering that S1, ..., Sk are the k possible linear systematic samples that can be

randomly selected (refer to Table 1.1), the first-order inclusion probability of the unit Uq

under LSS, is given by πq = P(Uq ∈ Si) = 1/k, for all i ∈ {1, ..., k} and q ∈ {1, ..., N}.

This indicates that each population unit has an equal probability of inclusion for the

linear systematic sample and the relative sample mean yLSS is an unbiased estimator

of the population mean, since πq > 0 for all q ∈ {1, ..., N}. In addition, if for some

q, z ∈ {1, ...., N} (q 6= z), the second-order inclusion probability is denoted as πqz =

P(Uq and Uz ∈ Si), then for all i ∈ {1, ..., k} and q, z ∈ {1, ...., N} (q 6= z), the second-

order inclusion probabilities for the pair of units {Uq, Uz} are given by

πqz =


1/k, if Uq and Uz ∈ Si

0, otherwise.

This indicates that some pairs of population units have a zero probability of inclusion for

the linear systematic sample.

Now, an unbiased estimate of V(yLSS) = E(y2
LSS) − Y

2
is given as y2

LSS − Est(Y
2
),

where an unbiased estimate of Y
2

=
∑N

q=1 y
2
q/N

2 +
∑N

q=1

∑N
z 6=q yqyz/N

2 is denoted as

Est(Y
2
) (Murthy 1967). One can easily verify that an unbiased estimate of

∑N
q=1 y

2
q/N

2

is given by
∑n

j=1 y
2
i+(j−1)k/n

2k, owing to each population unit having an equal probability

of inclusion for the linear systematic sample. However, if we apply LSS with a single start,

then it is impossible to obtain an unbiased estimate of
∑N

q=1

∑N
z 6=q yqyz/N

2, since some

pairs of population units have a zero probability of inclusion for the linear systematic
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sample. Thus, it is impossible to obtain an unbiased estimate of Y
2

when conducting

LSS with a single random start, which in turn results in it being impossible to obtain an

unbiased estimate of V(yLSS). In light of this result, Wolter (1984, 2007) constructed a class

of variance estimators and evaluated their performance under the assumption of various

population structures. In the presence of linear trend, he found that two of these estimators

provide a least biased estimate of V(yLSS). In practice, samplers usually apply the LSS

design and use an estimate of V(ySRS) to estimate V(yLSS). Under this circumstance, the

estimator provides an overestimate of V(yLSS) in the presence of linear trend. To overcome

this shortcoming, such that unbiased estimates of the associated sampling variance are

obtained, we next consider all relative modified LSS designs found in literature, before

suggesting a corresponding modified LSS design.

3.1 Modified linear systematic sampling designs

3.1.1 Multiple-Start linear systematic sampling (Deming 1960, Gautschi

1957, Shiue 1960, Tornqvist 1963)

The theory of replicated sampling was originally suggested by Mahalanobis (1946) and

Tukey (1950), and later as a variation of LSS by Deming (1960), Gautschi (1957), Shiue

(1960) and Tornqvist (1963). Multiple-Start LSS (MLSS) entails conducting LSS with

multiple random starts. If the required sample size is now nm (i.e. we are assuming

that the required sample size is a non-prime integer), where m ∈ {2, ..., k − 1}, then the

methodology of MLSS is given as follows:

(i) Select m integers (i1, ..., im) from the first k integers using SRS.

(ii) The sampling unit indices are then given as

ih+ (j − 1)k, h = 1, ...,m and j = 1, ..., n.

From Table 1.1, we note that the above methodology suggests that we are merely selecting

m samples of size n from the k possible linear systematic samples, using SRS. Thus, MLSS

is a form of cluster sampling. Tornqvist (1963) proposed the use of simple random sampling

with replacement for step (i). To avoid duplicate samples and obtain better estimation

results, we will not consider this scenario. The usual case of obtaining more efficient results

when favouring SRS over simple random sampling with replacement applies here, and we
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can thus expect better results when applying the above-mentioned procedure, as opposed

to that which is considered by Tornqvist (1963).

The sample mean, denoted as yMLSS, is an unbiased estimate of the population mean

and is given by

yMLSS =
1

m

m∑
h=1

yih =
1

nm

m∑
h=1

n∑
j=1

yih+(j−1)k,

where yih denotes the LSS sample mean with random start ih. For this scenario, each

sample mean is treated as a population unit, where we apply SRS to select m sample

means from a total of k possible sample means. Thus, the adjusted population variance

is obtained by respectively substituting yi and N in (1.4), for yLSS and k, i.e.

S2
y =

1

k − 1

k∑
i=1

(yLSS − Y )2,

where Y =
∑N

q=1 yi/N =
∑k

i=1 yLSS/k. Using this expression, the variance of yMLSS is then

obtained by respectively substituting S2
Y , N and n in (1.5), for S2

y , k and m, i.e.

V (yMLSS) =

(
k −m
mk

)
1

k − 1

k∑
i=1

(
yLSS − Y

)2
=

(
k −m
k − 1

)
V (yLSS)

m
.

An unbiased estimate of V (yMLSS) is then given by

V̂ (yMLSS) =

(
k −m
mk

)
1

m− 1

m∑
h=1

(yih − yMLSS)2.

For random startsm = 2, Sampath (2009) provides a study that compares the efficiency

of estimator V̂ (yMLSS) to that of an unbiased estimate of V(ySRS), under various population

structures. The results suggest that estimator V̂ (yMLSS) is favourable for all the population

structures considered.

If we select a sample of size nm from a population of size N = nk = nml, using either

LSS, SRS, STR, or MLSS, then the expected MSEs of the corresponding sample means

(i.e. yLSS, ySRS, ySTR and yMLSS), when estimating Y under model (2.1), are given as

MLSS = σ2
l +

b2(l − 1)(l + 1)

12
, (3.1)

MSRS = σ2
l +

b2(l − 1)(N + 1)

12
, (3.2)

MSTR = σ2
l +

b2(l − 1)(l + 1)

12nm
(3.3)
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and

MMLSS = σ2
l +

b2(l − 1)(lm+ 1)

12
, (3.4)

where σ2
l = σ2(l − 1)/N denotes the minimum expected error variance component (see

Gautschi (1957)). Assuming that n > 1, the comparisons among equations (3.1) through

to (3.4), results in

MSTR < MLSS < MMLSS < MSRS.

We are thus presented with a trade-off when conducting MLSS, where obtaining an unbi-

ased estimate of the sampling variance comes at a cost of reduced precision in estimating

Y . Note that it is impossible to obtain an unbiased estimate of the sampling variance when

conducting STR with one unit selected per stratum, since certain pairs of units have a zero

probability of inclusion for the sample. Moreover, when referring to (3.4), we see greater

reductions in precision when estimating Y , as m increases. However, it is well-known that

m should be of sufficient size, so as to obtain a reasonably precise estimate of V (yMLSS).

This trade-off was studied by Kouijn (1973), where he introduced two modified MLSS

designs to provide reasonable solutions. These designs will not be reviewed, as obtaining

an efficient estimate of the sampling variance is not one of the key areas of concern in this

thesis.

3.1.2 Balanced random sampling (Singh & Garg 1979)

So far we have assumed that the population size is a multiple of the sample size, i.e.

N = nk. Under this assumption there exists three possible cases of balanced random

sampling (BRS), namely, (A) N and n are both even; (B) N is even and n is odd; (C) N

and n are both odd. The methodologies for these cases are given as follows:

Case (A): (i) Select a sample of size n/2 from the first N/2 population units using SRS,

where the sampling unit indices are denoted as fg, for g = 1, ..., n/2.

(ii) The balanced random sample is then given as the sample in (i), as well

as those population units with indices N + 1− fg, for g = 1, ..., n/2.

Case (B): (i) Select a sample of size n − 1 from the N population units, using the

procedure in Case (A).
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(ii) The balanced random sample is then given as the sample in (i), as well

as a randomly selected unit from the remaining N − n + 1 population

units.

Case (C): (i) Randomly select a unit from the N population units.

(ii) The balanced random sample is then given as the randomly selected unit

in (i), as well as a further (n − 1) units, which are selected from the

remaining (N − 1) units using the procedure in Case (A).

Note that in the presence of linear trend, only Case (A) provides linear trend free sampling

results, i.e.
∑

Uq∈S q = n(N + 1)/2, for all S (refer to Section 2.3). This is also validated

by Singh & Garg (1979), where a sampling variance expression is computed under the

assumption of model (2.12). For Case (B), (n − 1) units are paired optimally using the

usual pairing procedure, while the other sampling unit is selected using SRS, which will

thus contribute to a linear trend component in the expected MSE of the associated sample

mean. Finally, under Case (C), some pairs of sampling units may not be optimally paired,

as SRS is first applied before applying the usual pairing procedure.

3.1.3 Partially systematic sampling (Zinger 1963, 1964, 1980, Wu 1984)

Partially systematic sampling involves the supplementation of a linear systematic sample

of size n1 with a random sample of size n2, where n = n1 + n2. The corresponding

methodology is given as follows:

(i) Let k′ = N/n1 be an integer, such that LSS is applied to select n1 sampling units.

(ii) The partially systematic sample is then given as the sample in (i), as well as n2 units

selected from the remaining N − n1 population units, using SRS.

Let ys and yr denote the sample means corresponding to steps (i) and (ii), respectively.

An unbiased estimate of the population mean, which is a weighted average of these sample

means, as well as the variance of this estimator, are respectively given by

y(β) = (1− β)ys + βyr, 0 ≤ β ≤ 1 (3.5)

and

Var(y(β)) = α1(β)S2
Y + α2(β)Var(ys), (3.6)
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where

α1(β) =
β2(N − 1)(N − n1 − n2)

n2N(N − n1 − 1)
,

α2(β) =

[
1− βk

(k − 1)

]2

− β2(N − n1 − n2)

n2(k − 1)2(N − n1 − 1)
,

Var(ys) =
S2
Y

n1

(
N − 1

N

)
[1 + (n1 − 1)ρ′]

and ρ′ is found by replacing n and k in (1.1) with n1 and k′, respectively.

To obtain an unbiased estimate of Var(y(β)), which we will denote as v(y(β)), Zinger

(1980) independently derived unbiased estimates of S2
Y and Var(ys). He then showed

that a value of β which minimizes (3.6), as well as a natural weighted average, given by

β = n2/(n1 + n2), may result in v(y(β)) assuming negative values. If we let β = 1/2,

then v(y(β)) will always assume non-negative values. Zinger (1980) studied this case

and stated that β = 1/2 is optimal when minimizing (3.6), provided that k′ is large and

n2 = n1/(1 + (n1 − 1)ρ′). This scenario is generally unrealistic, as ρ′ is usually unknown

before sampling.

By letting Qs =
∑

(yi − ys)2 , Qr =
∑

(yi − yr)2 and Qb =
∑

(ys − yr)2, Wu (1984)

proposed an unbiased estimate of (3.6), given as

v′(y(β)) = C(Qs + λQr) +DQb,

where

C =
d2α1(β)− d1α2(β)

d2(n1 + λc1) + d1(n1 + λc2)
, D =

α1(β)[n1 + λc2] + α2(β)[n1 + λc1]

d2(n1 + λc1) + d1(n1 + λc2)
,

c1 =
(n2 − 1)(N − n1)

(N − n1 − 1)
, c2 =

n2
1(n2 − 1)

(N − n1)(N − n1 − 1)
,

d1 =
(N − n1 − n2)

n2(N − n1 − 1)
, d2 =

(n2N
2 − n2N − n2

1 − n1n2)

n2(N − n1)(N − n1 − 1)
.

As noted by Wu (1984), v′(y(β)) will always assume non-negative values if and only if

(a) λ ≥ 0 and (b) β ≥ (k − 1)/2k. (3.7)

In practice, we can usually assume that k is large and n1 > n2, since if n1 ≤ n2, then

it would be more sensible to conduct MLSS (Wu 1984). Consequently, the value of β that
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minimizes (3.6), which we denote as βopt, is often less than (k−1)/2k ≈ 1/2 (Wolter 2007).

By referring to (3.7), we are therefore presented with a trade-off when selecting a suitable

value of β, where we can either obtain the an efficient estimate the population mean or an

unbiased estimate of Var(y(β)) that always produces non-negative values. Accordingly,

Wu (1984) suggested the following strategy to overcome this difficulty:

(i) Use y (βopt) and v′ (y (βopt)) when βopt > (k − 1)/2k;

(ii) Use either y((k − 1)/2k) and v′(y((k − 1)/2k)), or y(1/2) and v′(y(1/2)), when

0.2 ≤ βopt ≤ (k − 1)/2k;

(iii) Otherwise, use y(βopt) and v′+(y(βopt)) = max{y(βopt), 0}.

This strategy seems sensible, except for case (iii), where the variance estimate, which may

equal to zero, is just as undesirable as one that assumes negative values (Wolter 2007).

Rana & Singh (1989) suggested that β = (k − 1)/k and substituted this value into

(3.5), before obtaining expressions for the variance of y(β = (k − 1)/k) and an unbiased

estimate of this variance. Rana & Singh (1989) noted that this value of β is optimal,

since the associated variance is minimized, provided that n1 and n2 are not too small.

Furthermore, the corresponding variance estimate will always assume non-negative values.

Ruiz Espejo (1997) discussed a generalization of Zinger’s (1980) approach by considering

the above-mentioned case of β = (k − 1)/k.

3.1.4 Markov systematic sampling (Sampath & Uthayakumaran 1998)

Markov systematic sampling is a design that exhibits Markovian behaviour and is only

applicable when n is even. The associated methodology proceeds as follows:

(i) Divide the population into n/2 groups, each of size 2k, where the gth group is given

by Gg = {Up+δ|δ = 1, ..., 2k}, with p = 2(g − 1)k and g = 1, ..., n/2.

(ii) For each Gg, assign a stochastic matrix Ag with state space {p+ δ, δ = 1, ..., 2k} and

zero diagonal elements, i.e.

Ag =


0 ap+1,p+2 ap+1,p+3 . . . ap+1,2gk

ap+2,p+1 0 ap+2,p+3 . . . ap+2,2gk

...
...

...
...

...

a2gk,p+1 a2gk,p+2 a2gk,p+3 . . . 0


2k×2k

, g = 1, ..., n/2,

where ap+δ,κ = P(Uκ is selected|Up+δ is selected) (p+δ 6= κ) and κ = p+1, ...., p+2k.
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(iii) In a systematic fashion, select n/2 units from the n/2 groups, i.e. randomly select

integer i from 1 to 2k and define the sample as Si = {Ui, Ui+2k, ..., Ui+(n/2−1)2k}.

Thus, the location of the selected unit from each group Gg is the same.

(iv) The markov systematic sample is then given as the sample in step (iii), as well as an

additional sample of size n/2, which is obtained by randomly selecting a unit from

each group independently using the conditional probabilities in Ag.

Note that each sample will contain distinct sampling units, owing to the zero diagonal

elements in matrix Ag.

An unbiased estimate of the population mean is given by the Horvitz-Thompson esti-

mator (Horvitz & Thompson 1952), while an expression for the variance of this estimate,

as well as an estimate of the variance, can take the form of that proposed by Sen (1953)

and Yates & Grundy (1953). The associated inclusion probabilities, derived by Sampath

& Uthayakumaran (1998), can then be substituted into these expressions, so as to find

simplified formulae. Note that the corresponding variance estimator may assume negative

values.

3.1.5 Modified multiple-start linear systematic sampling strategies

We now consider analogues of the single-start strategies in Sections 2.2.1, 2.2.3, 2.2.4 and

2.2.5, which adopt the multiple-start approach, as in Section 3.1.1. Sampath & Ammani

(2010) assumed that n is even and the random errors in (2.1) follow a generalized super-

population model. Thus, to provide completeness and consistency within this thesis, we

will derive relative expressions.

Multiple-Start Yates’ end corrections (Sampath & Ammani 2010)

By selecting m linear systematic samples of size n, using SRS, before applying appropriate

weights to the first and last sampling units of each selected sample, we can then remove

the linear trend component given in (3.4). The corresponding estimate of the population

mean is known as the multiple-start YEC (MYEC) estimator and is denoted as yMYEC.

Accordingly, expressions for estimator yMYEC and the expected MSE of this estimator

under (2.1), are respectively derived in the next two theorems.

Theorem 4: If we let V = 2
∑m

h=1 ih −mk −m, then the MYEC estimator of Y with
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random starts ih, for h = 1, ...,m and ih ∈ {1, ..., k}, is given by

yMYEC = yMLSS +
V

2m2(n− 1)k

[
m∑
h=1

(yih − yih+(n−1)k)

]
. (3.8)

Proof : See Appendix.

Theorem 5: Under (2.1), the expected MSE of yMYEC is given as

MMYEC = σ2
l +

σ2(l − 1)(lm+ 1)

6m3(n− 1)2l2
. (3.9)

Proof : See Appendix.

When comparing (3.4) to (3.9), we note that the removal of the linear trend component

results in a larger error variance component in MMYEC, owing to the uneven weighting of

the sampling units. Moreover, in the presence of a rough linear trend, the usual YEC

estimator is a slightly biased estimate of the population mean (Murthy 1967) and we thus

conclude that yMYEC is a slightly biased estimate of Y under model (2.1).

Multiple-Start balanced systematic sampling and multiple-start modified sys-

tematic sampling (Sampath & Ammani 2010)

For multiple-start BSS (MBSS) and multiple-start MSS (MMSS), we respectively use the

arrangements in Sections 2.2.3 and 2.2.4, before selecting m samples of size n using the

multiple-start approach in Section 3.1.1. As such, the MBSS and MMSS sample means

are respectively given by

yMBSS =
1

nm

m∑
h=1

(n−2)/2∑
j=0

(
yih+2jk + y2(j+1)k−ih+1

)
, if n is even

=
1

nm

m∑
h=1

(n−3)/2∑
j=0

(
yih+2jk + y2(j+1)k−ih+1

)
+ yih+(n−1)k

 , if n is odd

and

yMMSS =
1

nm

m∑
h=1

(n−2)/2∑
j=0

(yih+jk + yN−jk−ih+1) , if n is even

=
1

nm

m∑
h=1

(n−3)/2∑
j=0

(yih+jk + yN−jk−ih+1) + yih+(n−1)k/2

 , if n is odd.

Theorem 6: The MBSS sample mean yMBSS and the MMSS sample mean yMMSS are

unbiased estimators of Y .

Proof : See Appendix.
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Theorem 7: The variances of the MBSS sample mean yMBSS and the MMSS sample mean

yMMSS, along with unbiased estimates of these variances, are respectively given as

V(yMBSS) =
S2
BSS

m

(
k −m
k

)
, (3.10)

V(yMMSS) =
S2
MSS

m

(
k −m
k

)
, (3.11)

V̂(yMBSS) =

(
k −m
mk

)
1

n2(m− 1)

m∑
h=1

(
BSSTih −BSST

)2
(3.12)

and

V̂(yMMSS) =

(
k −m
mk

)
1

n2(m− 1)

m∑
h=1

(
MSSTih −MSST

)2
, (3.13)

where S2
BSS =

∑k
i=1(BSSTi/n− Y )2/(k − 1), S2

MSS =
∑k

i=1(MSSTi/n− Y )2/(k − 1),

BSSTi =


∑(n−2)/2

j=0 (yi+2jk + y2(j+1)k−i+1), if n is even∑(n−3)/2
j=0 (yi+2jk + y2(j+1)k−i+1) + yi+(n−1)k, if n is odd,

MSSTi =


∑(n−2)/2

j=0 (yi+jk + yN−jk−i+1), if n is even∑(n−3)/2
j=0 (yi+jk + yN−jk−i+1) + yi+(n−1)k/2, if n is odd,

BSST =
∑m

h=1BSSTih/m = nyMBSS and MSST =
∑m

h=1MSSTih/m = nyMMSS.

Proof : See Appendix.

Sampath & Ammani (2012) compared the performance of estimators V̂(yMLSS), V̂(yMBSS)

and V̂(yMMSS), amongst each other. From their numerical study, they concluded that

V̂(yMLSS) is the preferred estimator, while the best choice for the number of random starts

was m = 2.

Theorem 8: Under (2.1), the expected MSEs of estimators yMBSS and yMMSS, are given

as

MMBSS = MMMSS =


σ2
l , if n is even

σ2
l + b2(l − 1)(lm+ 1)/(12n2), if n is odd.

(3.14)

Proof : See Appendix.

If we compare (3.4) to (3.14), then we note that MMBSS = MMMSS < MMLSS, regardless

of whether n is even or odd. By referring to (3.14), we clearly see that optimal results are

obtained for MBSS and MMSS, when n = N/ml is even. Thus, a multiple-start approach

that improves results, for the case when n is odd, is the motivation for the study presented

in Section 3.2.
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Multiple-Start diagonal systematic sampling (Subramani & Singh 2014)

Multiple-Start diagonal systematic sampling (MDSS) is similar to the previous multiple-

start designs, where we use the arrangement of matrix M, before selecting m samples of

size n using the multiple-start approach in Section 3.1.1. If we denote the corresponding

sample mean as yMDSS, then under (2.1), the expected MSE of yMDSS is given as

MMDSS = σ2
l +

b2(l − 1)(lm− n)[n(lm− n) + 2]

12n(lm− 1)
.

It is difficult to obtain a simple theoretical comparison between MMDSS and MMLSS, while

Subramani & Singh (2014) notes that MDSS < MMDSS. Moreover, if n = lm, then this is

a special case of optimality for MDSS, i.e. MMDSS = σ2
l .

3.2 Multiple-start balanced modified systematic sampling

In this section, we propose a modified multiple-start LSS design termed as multiple-start

balanced modified systematic sampling (MBMSS). In Section 3.2.1, we discuss the method-

ology of MBMSS and obtain expressions for the corresponding sample mean, the variance

of the sample mean and an unbiased estimate of the variance. For Section 3.2.2, we com-

pare the expected MSE of the MBMSS sample mean, to that of LSS, SRS, STR, MLSS,

MBSS, MMSS and the MYEC estimator, under the assumption of a linear trend model

averaged over a super-population model. As a result, MBMSS is only optimal for one of

the five possible cases of the design and we will thus introduce a linear trend free estimator

for the other cases, i.e. MBMSS with end corrections (MBMSSEC) estimator. Finally, we

provide some empirical results in Section 3.2.3. Throughout this section we will assume

that the required sample size is nm, where integer m denotes the number of random starts.

Moreover, we will assume that the sampling intervals k = N/n and l = N/nm are integers,

i.e. assuming that N is an exact multiple of both n or nm, so that we will be conducting

sampling linearly.

3.2.1 Methodology

The five cases of MBMSS are given as follows:

(A) n/2 is an even integer;

(B) n/2 is an odd integer;
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(C) n = 3;

(D) n 6= 3 and (n+ 1)/2 is an even integer;

(E) n 6= 1 and (n+ 1)/2 is an odd integer.

Note that Cases (A) and (B) correspond to all cases of n being even, while Cases (C) to

(E) are associated with all cases of n > 1 being odd. The method to select a sample of

size nm from a population of size N , using MBMSS, consists of the following steps:

(i) Randomly select m integers (i1, ..., im) from the first k integers, using SRS, where

2 ≤ m < k.

(ii) For h = 1, ...,m, the sample units chosen for the respective cases will be those

elements with indices given by

Case (A): A1 = ih+ 2jk, A2 = 2(j + 1)k − ih+ 1, A3 = N + ih− k − 2jk,

A4 = N − ih− k − 2jk + 1, for j = 0, ..., (n− 4)/4;

Case (B): B1 = ih+ 2jk, B2 = N + ih− k − 2jk, for j = 0, ..., (n− 2)/4,

B3 = 2(j + 1)k − ih+ 1, B4 = N − ih− k − 2jk + 1,

for j = 0, ..., (n− 6)/4;

Case (C): C1 = ih, C2 = 2k − ih+ 1, C3 = N − ih+ 1;

Case (D): D1 = ih+ 2jk, D2 = 2(j + 1)k − ih+ 1, D3 = N − ih− 2jk + 1,

for j = 0, ..., (n− 3)/4,

D4 = N + ih− 2(j + 1)k, for j = 0, ..., (n− 7)/4;

Case (E): E1 = ih+ 2jk, E2 = 2(j + 1)k − ih+ 1, E3 = N − ih− 2jk + 1,

E4 = N + ih− 2(j + 1)k, for j = 0, ..., (n− 5)/4,

E5 = ih+ (n− 1)k/2.

If n = 2, then single-start balanced modified systematic sampling is equivalent to LSS and

hence MBMSS is equivalent to MLSS, i.e. the sample units for case (B) reduce to ih and

ih+ k, for h = 1, ...,m. We will thus assume that n > 2 for the remainder of this section.
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Using the above cases, the MBMSS sample mean is denoted as

yMBMSS =
1

nm

m∑
h=1

(n−4)/4∑
j=0

(yA1 + yA2 + yA3 + yA4), for Case (A)

=
1

nm

m∑
h=1

(n−2)/4∑
j=0

(yB1 + yB2) +

(n−6)/4∑
j=0

(yB3 + yB4)

 , for Case (B)

=
1

3m

m∑
h=1

(yC1 + yC2 + yC3), for Case (C)

=
1

nm

m∑
h=1

(n−3)/4∑
j=0

(yD1 + yD2 + yD3) +

(n−7)/4∑
j=0

yD4

 , for Case (D)

=
1

nm

m∑
h=1

(n−5)/4∑
j=0

(yE1 + yE2 + yE3 + yE4) + yE5

 , for Case (E).

Theorem 9: The MBMSS sample mean yMBMSS is an unbiased estimator of Y .

Proof : For the respective cases of MBMSS, we denote the ith (i ∈ {1, ..., k}) balanced

modified systematic sample totals by

TAi =

(n−4)/4∑
j=0

(yi+2jk + y2(j+1)k−i+1 + yN+i−k−2jk + yN−i−k−2jk+1),

TBi =

(n−2)/4∑
j=0

(yi+2jk + yN+i−k−2jk) +

(n−6)/4∑
j=0

(y2(j+1)k−i+1 + yN−i−k−2jk+1),

TCi = yi + y2k−i+1 + yN−i+1,

TDi =

(n−3)/4∑
j=0

(yi+2jk + y2(j+1)k−i+1 + yN−i−2jk+1) +

(n−7)/4∑
j=0

yN+i−2(j+1)k,

and

TEi =

(n−5)/4∑
j=0

(yi+2jk + y2(j+1)k−i+1 + yN−i−2jk+1 + yN+i−2(j+1)k) + yi+(n−1)k/2.

Let us assume an indicator variable, given by

Ii =


1, if unit yih is in the sample;

0, otherwise.

For j = A, ..., E, if we assume that the Tji’s are fixed but unknown constants, then

E(yMBMSS) = E

[
1

nm

k∑
i=1

Ii(Tji)

]

=
1

nm

k∑
i=1

E(Ii)Tji =
1

nm

k∑
i=1

(m
k

)
Tji =

m

nmk

k∑
i=1

Tji =
Y·
nk

= Y ,
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since we are selecting m samples from the k possible samples, using SRS.

The single-start sample means (Tji/n, for j ∈ {A, ..., E} and i = 1, ..., k) can now be

viewed as population units. Remembering that SRS involves the random selection of n

sampling units from N possible sampling units, the variance of the sample mean ySRS is

given by (1.5). Thus, by replacing yq, N and n in (1.5) by Tji/n, k and m respectively,

we obtain the variance of yMBMSS, which is written as

V(yMBMSS) =
S2
T

m

(
k −m
k

)
, (3.15)

where S2
T =

∑k
i=1(Tji/n − Y )2/(k − 1), such that the replacement of yq and N in Y =∑N

q=1 yq/N , by Tji/n and k respectively, results in
∑k

i=1 Tji/nk = Y .

Theorem 10: An unbiased estimator of (3.15) is given by

V̂(yMBMSS) =

(
k −m
mk

)
1

n2(m− 1)

m∑
h=1

(
Tjih − T

)2
, (3.16)

where Tjih ∈ {Tj1, ..., T jk} and T =
∑m

h=1 Tjih/m = nyMBMSS denotes the average of all

the balanced modified systematic sample totals selected.

Proof : See Appendix.

3.2.2 Expected Mean Square Error Comparisons

If we consider case (A) of MBMSS, such that

eA =

(n−4)/4∑
j=0

(ei+2jk + e2(j+1)k−i+1 + eN+i−k−2jk + eN−i−k−2jk+1)

denotes the random error associated with ith (i ∈ {1, ..., k}) balanced modified systematic

sample, then substituting (2.1) into TAi results in

TAi =

(n−4)/4∑
j=0

[4a+ b(2N + 2)] + eA = an+ bn

(
N + 1

2

)
+ eA.

An expression for the expected MSE of yMBMSS is obtained by taking the expectation of

(3.15) and then substituting TAi and Y into that expression, given by

MMBMSS =
(k −m)

mk(k − 1)

k∑
i=1

E
(
TAi
n
− Y

)2

=
(k −m)

mk (k − 1)

k∑
i=1

E
[
a+ b

(
N + 1

2

)
+
eA
n
−
(
a+

b (N + 1)

2
+ e

)]2

=
(k −m)

mk(k − 1)

k∑
i=1

E
(
e2
A

n2
− 2eAe

n
+ e

2
)
. (3.17)



44

Now, since there are n terms in eA and N terms in e, it follows that

E
(
e2
A

)
= nσ2, E

(
eAe
)

=
1

N
E [eA(e1 + ...+ eN )] =

nσ2

N
,

E
(
e

2
)

=
1

N2

 N∑
q=1

E
(
e2
q

)
+

N∑
z=1

N∑
q 6=z
E (eqez)

 =
σ2

N
.

Remembering that k = lm, we then substitute these expressions into (3.17) to obtain

MMBMSS =
(k −m)

mk(k − 1)

k∑
i=1

(
σ2

n
− 2σ2

N
+
σ2

N

)
=

(k −m)σ2

mN
=

(l − 1)σ2

N
= σ2

l .

Similarly, we can use the above method for the other cases, such that

MMBMSS =


σ2
l , for Case (A)

σ2
l + b2(l − 1)(lm+ 1)/(3n2), for Case (B)

σ2
l + b2(l − 1)(lm+ 1)/(12n2), for Cases (C) to (E).

(3.18)

By comparing (3.18) to (3.1), (3.2), (3.3) and (3.9) for Case (A), it follows that MMBMSS

is less than MLSS, MSRS, MSTR and MMY EC , while simple theoretical comparisons are

unobtainable for the other cases. Moreover, if we compare (3.18) to (3.4), then we note

that MMBMSS < MMLSS for all cases. Finally, the comparison of (3.18) to (3.14) results in

MMBMSS = MMBSS = MMMSS for cases (A), (C), (D) and (E), while MMBMSS > MMBSS =

MMMSS for case (B).

Clearly the linear trend component is only removed for case (A) in (3.18). To remove

the linear trend component for the other cases, we can apply weights to the first and last

sampling units of each of the m selected samples of size n. Accordingly, the resulting

estimator and the corresponding expected MSE are respectively given in the next two

theorems.

Theorem 11: The MBMSSEC estimator of Y with random starts ih, for h = 1, ...,m

and ih ∈ {1, ..., k}, is given by

yMBMSSEC = yMBMSS +W

where

W =
V
∑m

h=1 (yih − yN+ih−k)

nm2(N − k)
, for Case (B)

=
−V

∑m
h=1 (yih − yN−ih+1)

2nm
∑m

h=1 (N − 2ih+ 1)
, for Cases (C) and (D)

=
V
∑m

h=1 (yih − yN−ih+1)

2nm
∑m

h=1 (N − 2ih+ 1)
, for Case (E).
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Proof : See Appendix.

Theorem 12: Under (2.1), the expected MSE of yMBMSSEC is given as

MMBMSSEC = σ2
l +

2σ2(l − 1)(lm+ 1)

3m3n2(n− 1)2l2
, for Case (B)

= σ2
l + E

{
σ2V 2

2n2m [
∑m

h=1(N − 2ih+ 1)]2

}
, for Cases (C) to (E).

Proof : Similar to Theorem 5.

Again, by comparing MMBMSSEC to all the previous expected MSEs, we note that

simple theoretical comparisons are difficult to obtain and we will thus resort to some nu-

merical results in the next section. However, it is easily deduced that MMBSS = MMMSS <

MMBMSSEC < MMY EC for Case (B). Moreover, just as in the case of the MYEC estimator,

we note that yMBMSSEC is a slightly biased estimator of Y in the presence of a rough linear

trend.

3.2.3 Empirical Comparisons

An evaluation of the performance of estimator yMBMSSEC will now be carried out by means

of three simulation studies. To obtain the expected MSE of each estimator, Monte Carlo

simulations are applied by using the statistical software package R, where 10 000 finite

populations are simulated, before averaging the MSEs over the 10 000 populations. The

relative expected MSE of each comparative estimator, with respect to that of yMBMSSEC ,

is denoted by Rα = 100×MMBMSSEC/Mα(%), where α = LSS, SRS, STR, MLSS, MYEC,

MBSS, MMSS and MBMSS. Without loss of generality, we assume that the eq’s are iid

N(0, 1) random variables and let a = 5, as all expected MSE expressions previously derived

are shown to be independent of a.

For the first simulation study, we consider Case (B) and assign arbitrary values of

b = 0.5, 1, 2 and 4, while varying n, m and l. The corresponding relative expected MSEs

are presented in Tables 3.1 to 3.4. From Tables 3.1 to 3.4, we note that only estimators

yMBSS and yMMSS are marginally subject to less error than that of yMBMSSEC . If we choose

estimator yMBMSSEC over estimator yLSS, ySRS or yMLSS, then we obtain more favourable

results as n, m, l and/or b increases. Likewise, if we choose estimator yMBMSSEC over

estimator ySTR, then we see that the relative results are improved as l and/or b increases,
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while results seem to remain constant as n or m varies. Finally, by selecting estimator

yMBMSSEC over estimator yMBMSS, we note that relative results are better as m, l and/or b

increase, while results deteriorate as n increases. Thus, MMBMSS →MMBMSSEC as n→∞,

provided that m, l and b are relatively small.

Table 3.1: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=0.5).

l = 2 l = 4

m n = 6 n = 34 n = 130 n = 258 n = 6 n = 34 n = 130 n = 258

RLSS 40.16 10.53 02.97 01.54 16.67 03.34 00.92 00.47

RSRS 07.50 00.26 00.02 < 00.01 02.00 00.06 < 00.01 < 00.01

RSTR 89.64 88.89 88.76 89.32 70.77 70.98 70.72 70.93

2 RMLSS 28.85 06.60 01.81 00.93 10.06 01.93 00.51 00.26

RMBSS 100.99 101.13 100.10 100.18 100.25 101.43 100.14 99.78

RMMSS 99.66 99.90 99.66 99.90 99.50 101.45 99.82 99.52

RMBMSS 78.47 95.32 98.50 99.41 50.37 85.21 95.62 97.73

RLSS 31.29 07.33 01.99 01.02 11.92 02.29 00.62 00.31

RSRS 03.49 00.11 00.01 < 00.01 00.91 00.03 < 00.01 < 00.01

RSTR 89.26 88.73 88.29 89.03 71.66 70.52 72.10 71.72

3 RMLSS 16.09 03.24 00.87 00.44 04.93 00.89 00.24 00.12

RMBSS 100.53 99.61 99.70 100.09 100.72 101.07 101.46 101.87

RMMSS 99.55 100.03 99.48 100.61 101.29 101.20 101.60 100.44

RMBMSS 63.65 90.94 97.42 98.67 31.40 72.13 91.32 94.82

In the second simulation study, we consider odd values of n (i.e. Cases (C) to (E)) and

assign arbitrary values of b = 0.5, 1, 2 and 4, while varying n, m and l. The corresponding

relative expected MSEs are presented in Tables 3.5 to 3.8. From Tables 3.5 to 3.8, we

can easily see that yMBMSSEC is preferred over all other estimators in the study. As

in the first simulation study, we obtain similar results. However, estimator yMBMSSEC

is now favourable over estimators yMBSS and yMMSS. Furthermore, the performance of

estimators yMBSS, yMMSS and yMBMSS are relatively similar. Hence, MMBSS, MMMSS and

MMBMSS →MMBMSSEC as n→∞, provided that m, l and b are relatively small.

In the final simulation study, we compare estimators yMBMSSEC and yMY EC . Since the
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Table 3.2: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=1).

l = 2 l = 4

m n = 6 n = 34 n = 130 n = 258 n = 6 n = 34 n = 130 n = 258

RLSS 14.64 02.89 00.74 00.39 04.73 00.85 00.23 00.12

RSRS 01.97 00.07 < 00.01 < 00.01 00.50 00.02 < 00.01 < 00.01

RSTR 67.00 67.47 64.46 68.12 37.26 36.54 37.72 37.78

2 RMLSS 09.15 01.77 00.44 00.24 02.68 00.47 00.13 00.07

RMBSS 102.81 101.02 102.04 103.64 102.13 99.66 101.46 100.95

RMMSS 101.07 102.60 101.24 100.65 100.25 100.59 102.17 100.35

RMBMSS 48.25 85.63 95.07 98.06 20.10 58.55 84.57 91.46

RLSS 09.61 01.90 00.51 00.27 03.27 00.59 00.15 00.08

RSRS 00.90 00.03 < 00.01 < 00.01 00.23 00.01 < 00.01 < 00.01

RSTR 66.21 66.31 66.56 68.79 37.99 37.93 36.36 37.47

3 RMLSS 04.52 00.84 00.22 00.11 01.28 00.23 00.06 00.03

RMBSS 99.31 102.63 100.36 101.19 99.83 99.08 104.33 99.50

RMMSS 103.60 102.37 101.03 99.95 99.52 103.29 106.36 100.51

RMBMSS 30.06 70.66 89.80 94.07 10.52 40.08 70.59 82.68

expected MSEs of both estimators are trend free, we assign an arbitrary value of b = 4,

while varying n, m and l. In addition, we will only consider Cases (C) to (E), as it can be

theoretically shown that MMBMSSEC < MMY EC for Case (B). The corresponding relative

expected MSEs are presented in Table 3.9. From the results, we conclude that estimator

yMBMSSEC is only preferred when m, n and l are small, otherwise there is a very small

reduction in estimation error when choosing estimator yMBMSSEC over estimator yMY EC .

3.2.4 Concluding Remarks

We have proposed a modified multiple-start sampling design (MBMSS), which depends on

five cases and provides an unbiased estimator of the sampling variance. For Case (A), the-

oretical expected MSE comparisons in Section 3.2.2 suggest that MBMSS is more efficient

than LSS, SRS, STR, MLSS and MYEC, while equally efficient to MBSS and MMSS, i.e.
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Table 3.3: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=2).

l = 2 l = 4

m n = 6 n = 34 n = 130 n = 258 n = 6 n = 34 n = 130 n = 258

RLSS 03.88 00.75 00.20 00.10 01.24 00.22 00.06 00.03

RSRS 00.47 00.02 < 00.01 < 00.01 00.13 < 00.01 < 00.01 < 00.01

RSTR 32.33 34.11 34.11 33.31 13.13 13.06 13.07 12.88

2 RMLSS 02.33 00.45 00.12 00.06 00.69 00.12 00.03 00.02

RMBSS 99.25 100.23 103.15 99.11 100.26 100.30 102.68 101.92

RMMSS 99.96 102.67 103.15 99.11 100.26 100.30 102.68 101.92

RMBMSS 17.94 55.77 82.72 90.47 05.91 26.44 57.62 72.02

RLSS 02.67 00.49 00.13 00.06 00.82 00.15 00.04 00.02

RSRS 00.22 00.01 < 00.01 < 00.01 00.06 < 00.01 < 00.01 < 00.01

RSTR 32.85 33.42 34.21 33.04 12.93 13.05 13.22 13.19

3 RMLSS 01.16 00.21 00.06 00.03 00.32 00.06 00.01 00.01

RMBSS 103.19 103.70 104.64 99.41 100.74 102.61 101.63 101.09

RMMSS 100.69 104.15 102.99 100.92 100.52 99.30 101.51 99.07

RMBMSS 09.70 37.70 70.21 81.90 02.78 14.06 39.11 56.17

we obtain a complete removal of the linear trend component in the corresponding expected

MSEs resulting in MBMSS, MBSS and MMSS being optimal.

To remove the linear trend component for the other cases, we proposed an estimator

(MBMSSEC) which applies weights to the first and last sampling units of each selected

single-start balanced modified systematic sample. The MBMSSEC estimator provides

a slightly biased estimate of the population mean, as well as an inflated error variance

component in the corresponding expected MSE, owing to the uneven weighting of the

sampling units.

For Case (B), the comparisons in Sections 3.2.2 and 3.2.3 indicate that the MBMSSEC

estimator is subject to less error when compared to that of LSS, SRS, STR, MLSS and

MBMSS, while marginally subject to more error than that of MBSS and MMSS, i.e. for

Case (B), MBSS and MMSS are linear trend free sampling designs that exhibit a minimum

expected error variance component for the corresponding expected MSEs. Furthermore,
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Table 3.4: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=4).

l = 2 l = 4

m n = 6 n = 34 n = 130 n = 258 n = 6 n = 34 n = 130 n = 258

RLSS 01.05 00.19 00.05 00.02 00.31 00.06 00.01 00.01

RSRS 00.13 < 00.01 < 00.01 < 00.01 00.03 < 00.01 < 00.01 < 00.01

RSTR 11.31 11.22 11.63 11.14 03.58 03.68 03.58 03.60

2 RMLSS 00.64 00.11 00.03 00.01 00.17 00.03 00.01 < 00.01

RMBSS 101.97 100.53 106.96 105.08 100.30 101.41 100.56 101.02

RMMSS 105.20 99.96 104.45 103.33 100.44 100.01 101.53 100.37

RMBMSS 05.47 24.85 55.71 71.91 01.52 08.27 24.93 40.26

RLSS 00.69 00.12 00.03 00.02 00.21 00.04 00.01 00.01

RSRS 00.06 < 00.01 < 00.01 < 00.01 00.01 < 00.01 < 00.01 < 00.01

RSTR 11.08 10.97 10.65 11.29 03.58 03.60 03.66 03.61

3 RMLSS 00.30 00.05 00.01 < 00.01 00.08 00.01 < 00.01 < 00.01

RMBSS 102.75 104.57 101.14 100.46 100.23 101.03 100.61 104.98

RMMSS 102.62 104.68 100.02 100.88 101.13 100.65 100.04 103.94

RMBMSS 02.59 12.98 35.58 54.64 00.70 03.91 13.57 13.57

for Cases (C) to (E), the MBMSSEC estimator is subject to less error when compared

to all the other estimators, apart from the MYEC estimator. The simulation study in

Section 3.2.3 suggests that the expected MSE of the MBMSSEC estimator is smaller than

that of the MYEC estimator, for Cases (C) to (E), provided that n, m and l are small.

Otherwise, both estimators are shown to be approximately subject to the same amount of

error and one may opt to use the MYEC estimator, owing to its simplicity. A summary

of the suggested designs under various conditions is given in Table 3.10. Note that the

third column in Table 3.10 represents a trade-off between the MBMSSEC and the MYEC

estimators, where preference is either given to obtaining minimum expected MSE of the

sample mean, or using a sample mean that is simpler to construct.

In this chapter, we have discussed the the first of two disadvantages of systematic

sampling, i.e. the problem of estimating the sampling variance when conducting systematic

sampling with a single random start. Also, we reviewed relevant modifications of the usual
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Table 3.5: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=0.5).

l = 2 l = 4

m n = 3 n = 35 n = 125 n = 255 n = 3 n = 35 n = 125 n = 255

RLSS 52.84 10.13 03.08 01.50 27.57 03.34 00.96 00.47

RSRS 22.23 00.24 00.02 < 00.01 07.48 00.06 < 00.01 < 00.01

RSTR 85.45 86.67 88.52 86.33 70.08 70.72 71.09 70.21

2 RMLSS 39.36 06.33 01.88 00.90 18.07 01.87 00.53 00.26

RMBSS 81.96 98.40 99.99 99.49 66.45 95.53 97.54 97.35

RMMSS 81.92 99.43 99.05 97.76 66.60 94.78 98.15 97.37

RMBMSS 88.19 99.09 99.72 99.87 67.89 96.31 98.90 99.46

RLSS 49.17 07.30 02.09 01.03 21.78 02.26 00.63 00.31

RSRS 12.42 00.11 00.01 < 00.01 03.38 00.03 < 00.01 < 00.01

RSTR 91.51 90.71 88.34 88.66 71.03 71.65 70.39 71.06

3 RMLSS 27.24 03.22 00.90 00.44 09.43 00.89 00.25 00.12

RMBSS 79.87 96.84 99.55 98.12 47.59 92.91 97.64 96.96

RMMSS 78.64 99.91 98.71 97.55 48.26 90.62 97.22 98.32

RMBMSS 76.38 97.84 99.29 99.99 49.03 90.29 97.44 99.13
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Table 3.6: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=1).

l = 2 l = 4

m n = 3 n = 35 n = 125 n = 255 n = 3 n = 35 n = 125 n = 255

RLSS 24.90 02.66 00.78 00.37 08.85 00.86 00.24 00.19

RSRS 07.18 00.06 < 00.01 < 00.01 01.96 00.02 < 00.01 < 00.01

RSTR 67.59 64.08 65.80 63.59 36.75 37.78 37.41 37.89

2 RMLSS 16.87 01.63 00.47 00.22 05.19 00.48 00.13 00.07

RMBSS 66.24 92.74 97.32 96.91 32.88 85.25 94.24 96.91

RMMSS 65.40 95.21 96.46 98.69 32.77 86.89 92.76 96.39

RMBMSS 63.64 94.62 98.26 99.68 33.34 84.56 95.36 97.66

RLSS 18.73 01.93 00.53 00.26 06.28 00.57 00.16 00.07

RSRS 03.51 00.03 < 00.01 < 00.01 00.90 00.01 < 00.01 < 00.01

RSTR 69.09 68.25 67.10 65.61 37.85 37.69 37.76 37.56

3 RMLSS 08.99 00.83 00.23 00.11 02.52 00.22 00.06 00.03

RMBSS 49.30 89.36 96.29 97.70 18.91 72.61 91.63 97.49

RMMSS 46.18 90.41 96.88 96.75 18.86 73.35 91.06 96.09

RMBMSS 47.15 90.60 97.38 98.20 18.90 73.56 91.15 95.79

systematic sampling design found in literature as well as a suggested modified systematic

sampling design that address this problem, all under the assumption of linear trend among

the population units. The results from this chapter suggest that values of the sample size,

sampling interval and/or the number of random starts (if a multiple start sampling design

is applied) needs to be considered, before selecting an appropriate modified systematic

sampling design in the presence of linear trend to address the problem at hand, where

Table 3.10 provides us with the most suitable modified systematic sampling design under

various scenarios of m, n and l. In the next chapter, we will investigate the second of the

two shortcomings of systematic sampling, i.e. if the population size is not a multiple of

the sample size, resulting in sample sizes that vary, or fixed sample sizes that are greater

than required when conducting LSS.
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Table 3.7: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=2).

l = 2 l = 4

m n = 3 n = 35 n = 125 n = 255 n = 3 n = 35 n = 125 n = 255

RLSS 07.72 00.71 00.20 00.10 02.44 00.21 00.06 00.03

RSRS 01.93 00.02 < 00.01 < 00.01 00.50 < 00.01 < 00.01 < 00.01

RSTR 33.45 33.42 33.58 32.49 13.06 12.90 12.77 12.95

2 RMLSS 04.85 00.43 00.12 00.06 01.38 00.12 00.03 00.02

RMBSS 31.15 83.42 95.23 97.32 11.21 59.32 81.74 88.91

RMMSS 31.57 82.94 95.81 96.63 11.32 59.12 82.97 92.55

RMBMSS 32.06 83.52 94.61 98.22 11.03 58.29 83.03 91.21

RLSS 05.23 00.47 00.13 00.06 01.67 00.14 00.04 00.02

RSRS 00.87 00.01 < 00.01 < 00.01 00.23 < 00.01 < 00.01 < 00.01

RSTR 33.22 33.19 32.54 32.36 13.29 12.80 13.02 13.36

3 RMLSS 02.32 00.20 00.06 00.03 00.65 00.05 00.02 00.01

RMBSS 17.55 72.04 89.76 92.40 05.53 39.87 69.63 86.17

RMMSS 17.67 71.35 87.14 92.08 05.57 39.76 70.56 84.78

RMBMSS 17.55 71.09 89.60 95.60 05.52 39.24 71.04 84.47
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Table 3.8: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=4).

l = 2 l = 4

m n = 3 n = 35 n = 125 n = 255 n = 3 n = 35 n = 125 n = 255

RLSS 02.11 00.18 00.05 00.02 00.62 00.05 00.15 00.01

RSRS 00.50 < 00.01 < 00.01 < 00.01 00.12 < 00.01 < 00.01 < 00.01

RSTR 11.52 11.25 10.89 11.21 03.62 03.55 03.68 03.58

2 RMLSS 01.28 00.11 00.03 00.01 00.35 00.03 00.01 < 00.01

RMBSS 10.25 56.32 81.60 90.40 03.05 26.18 57.09 73.16

RMMSS 10.36 56.60 81.24 90.43 03.02 26.52 56.12 72.04

RMBMSS 10.70 57.08 82.16 90.47 03.03 26.84 56.02 73.47

RLSS 01.34 00.12 00.03 00.02 00.42 00.04 00.01 < 00.01

RSRS 00.21 < 00.01 < 00.01 < 00.01 00.06 < 00.01 < 00.01 < 00.01

RSTR 10.88 11.19 11.43 11.33 03.63 03.66 03.66 03.60

3 RMLSS 00.58 00.05 00.01 00.01 00.16 00.01 < 00.01 < 00.01

RMBSS 04.95 38.08 72.24 83.07 01.42 14.40 37.80 54.83

RMMSS 04.96 37.98 71.63 81.86 01.42 14.57 37.76 55.54

RMBMSS 04.96 38.59 69.58 82.08 01.42 14.50 37.72 54.74
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Table 3.9: Simulated relative expected mean square errors of the MYEC sample mean, with

respect to that of the MBMSSEC sample mean, for populations exhibiting linear trend under

Cases C to E.

m = 2 m = 3

n l = 2 l = 4 l = 8 l = 2 l = 4 l = 8

3 94.24 94.38 94.71 95.94 96.26 96.41

5 96.97 97.27 97.42 98.10 98.23 98.30

7 98.06 98.25 98.34 98.78 98.87 98.91

13 99.07 99.17 99.21 99.42 99.46 99.48

15 99.21 99.29 99.33 99.51 99.54 99.55

29 99.62 99.65 99.67 99.76 99.78 99.79

63 99.83 99.85 99.86 99.89 99.90 99.91

125 99.92 99.92 99.93 99.95 99.95 99.96

255 99.96 99.96 99.97 99.97 99.98 99.98

Table 3.10: Recommended designs for populations exhibiting linear trend.

Case(s) Condition Preference Recommended Design(s)

A N/A N/A MBSS, MMSS or MBMSS

B N/A N/A MBSS or MMSS

C to E m, n and l are small Minimum MSE MBMSSEC

C to E m, n and l are small Simplicity MYEC

C to E m, n or l are not small Minimum MSE MBMSSEC or MYEC

C to E m, n or l are not small Simplicity MYEC
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Chapter 4

Population Size is not a Multiple

of the Sample Size

If the population size is not a multiple of the sample size, then this situation may be

represented as N = nk + r, where r ∈ {1, ..., n − 1} and k = INT(N/n), i.e. INT(a)

denotes the first integer before a. Now, if r/k is an integer, then we obtain fixed sample

sizes of n + r/k when conducting LSS. The usual LSS design is now modified, such that

we are selecting n+r/k units with a sampling interval of k, as shown in the next example.

Example 4.1: If N = 27 and n = 7, then k = 3 and r = 6, which satisfies N = nk + r

and r ∈ {1, ..., n− 1}. Each possible linear systematic sample is then given as:

(i) S1 = {U1, U4, U7, U10, U13, U16, U19, U22, U25}, for i = 1;

(ii) S2 = {U2, U5, U8, U11, U14, U17, U20, U23, U26}, for i = 2;

(iii) S3 = {U3, U6, U9, U12, U15, U18, U21, U24, U27}, for i = 3.

Clearly all possible samples are of fixed size n+ r/k = 7 + 6/3 = 9, which is greater than

the required size n. This situation is undesirable, as sample sizes are commonly fixed

beforehand, owing to budget restrictions. Now, if r/k is not an integer, then we obtain

variable sample sizes of either n+INT(r/k) or n+INT(r/k)+1, when conducting LSS, as

shown in the following example.

Example 4.2: If N = 19 and n = 5, then k = 3 and r = 4, which satisfies N = nk + r
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and r ∈ {1, ..., n− 1}. Each possible linear systematic sample is then given as:

(i) S1 = {U1, U4, U7, U10, U13, U16, U19}, for i = 1;

(ii) S2 = {U2, U5, U8, U11, U14, U17}, for i = 2;

(iii) S3 = {U3, U6, U9, U12, U15, U18}, for i = 3.

Clearly we obtain samples of size n+ INT(r/k) = 6 or n+ INT(r/k) + 1 = 7. As a result,

these samples of variable size may over-represent or under-represent the population, which

in turn results in biased estimates of population parameters (Naidoo 2013). Consequently,

many authors have proposed modified systematic sampling designs that generate fixed

samples of size n, when the population size is not a multiple of the sample size. Reviews

of each of these designs are given in the following section.

4.1 Modified systematic sampling designs

4.1.1 Circular systematic sampling (Lahiri 1951)

The ordering of population units associated with circular systematic sampling (CSS) is

such that the units are arranged in a circular fashion, i.e. UN+i = Ui. For this design, the

sampling interval k is now given as the closest integer to N/n, which ensures a more evenly

spread sample over the population (Murthy 1967). Now, to select a sample of size n from a

population of size N using CSS, we randomly select unit from the first N population units

and every subsequent kth unit, until the required sample size is achieved. The random

start is given by q, where q ∈ {1, ...., N}.

If N is a multiple of k, then sampling units will coincide when N/n is rounded up

(Sudhakar 1978). Consequently, Sudhakar (1978) proposed that n distinct sampling units

are obtainable if and only if the sampling interval k is selected in advanced, were N and

k are co-prime, i.e. N 6= (n − 1)k. This approach, which assumes that n is not fixed in

advance, is undesirable as sample sizes are commonly predetermined and fixed, owing to

budget restrictions. Bellhouse (1984) tackled this drawback by suggesting an alternative

sampling interval, defined as

k∗ =


INT(N/n), if N = (n− 1)k

INT(N/n+ 1/2), if N 6= (n− 1)k.

(4.1)

Sengupta & Chattopadhyay (1987) claimed that sampling units may still coincide when

N/n is rounded up in (4.1). The authors then provided a theorem that states that n
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distinct sampling units are obtainable, if and only if lcm(N, k) ≥ nk or, equivalently, if

and only if gcd(N, k) ≤ N/n, where lcm(a, b) denotes the lowest common multiple and

gcd(a, b) denotes the greatest common divisor, for constants a and b. This theorem does

not contradict Sudhakar’s (1978) results and may be applied as a supplement to Bellhouse’s

(1984) approach. It is common practice to apply a sampling interval of k = INT(N/n), so

as to ensure a sample of n distinct sampling units. However, this sampling interval does

not ensure an even spread of the sample over the population when N/n is closer to integer

INT(N/n) + 1. Subramani & Singh (2014) present an empirical study on the optimal

choice of k, by assuming a perfect linear trend in the population and considering all the

prime numbers from 7 to 37 as population sizes. Consequently, the authors suggested the

following conjecture.

Conjecture 1: The optimum choice for the sampling interval k for selecting a circular

systematic sample of size n from the population of size N is attained if and only if kn

mod N = ±1, where kn mod N = −1 represents kn mod N = N − 1.

Proof : Refer to Subramani et al. (2014).

Note that the proof of Conjecture 1 assumes that N and n are relatively prime numbers.

Also, by choosing k such that kn mod N = ±1, then one ensures that N and k are also

relatively prime numbers. Conjecture 1 will always result in n distinct sampling units.

Theorem 13: Using Conjecture 1 under (2.1), the circular systematic sample mean yCSS

and the expected MSE of yCSS, when estimating the population mean, are respectively given

as

yCSS = a+
b

n

[
q +

(n− 1)(N + 1)

2

]
, q ∈ {1, ..., N}

and

MCSS = σ2
e +

b2(N2 − 1)

12n2
. (4.2)

Proof : Refer to Subramani et al. (2014).

By comparing (2.3) to (4.2), we see that MCSS < MSRS. A comparison between CSS and

STR is unobtainable, as STR comparisons are only applicable when N = nk. If either N

and n are not relatively prime numbers or N and k are not relatively prime numbers, then

under model (2.1), an exact expression for the expected MSE of the sample mean when

conducting CSS is difficult to obtain, owing to the circular nature of selecting the sample.

To remove the linear trend component in (4.2), Subramani et al. (2014) proposed an
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end corrections estimator, given by

y∗CSS = yCSS +
(N + 1− 2i)

2n(k ∓ 1)

(
yq − yq+(n−1)k

)
, q ∈ {1, ..., N}.

4.1.2 Fractional interval method (Kish 1965, Murthy 1967)

The fractional interval method (FIM) is equivalent to the LSS design, where the sampling

interval k = N/n now takes on a fractional value. The random start is given as i, which

is a randomly selected real number from a uniform distribution with interval (0, k]. The

indices for the sampling units are given by α, where

α− 1 < i+ (j − 1)k ≤ α, j = 1, ..., n. (4.3)

Example 4.3: Suppose that we want to select a sample of size 3 from a population of size

14, using the FIM. For this scenario, the sampling interval takes on the fractional value

given by k = 14/3. Now, suppose that the random start is i = 1/5, which is a randomly

selected real number from the uniform distribution with interval (0, 14/3]. Using (4.3), we

obtain α = 1, 5, 10. The sample is then given as Si = {U1, U5, U10}.

Naidoo (2013) shows that the FIM is equivalent to CSS, if and only if 2N/n is not

an integer and lcm(N, k) ≥ nk (or gcd(N, k) ≤ N/n). Under these circumstances, the

formulae obtained in Theorem 6 may then apply, which assumes thatN and n are relatively

prime numbers as well as N and k being relatively prime numbers. As a result, if we

estimate the population mean under (2.1), then the sample mean and the expected MSE

of the sample mean, associated with the FIM, are respectively given by yCSS and MCSS, if

and only if 2N/n is not an integer, lcm(N, k) ≥ nk (or gcd(N, k) ≤ N/n), N and n are

relatively prime numbers as well as N and k being relatively prime numbers.

4.1.3 New systematic sampling (Singh & Singh 1977)

Remembering that UN+q = Uq, for q ∈ {1, ..., N}, new systematic sampling (NSS) is

conducted as follows:

(i) Select a random integer q on the interval [1, N ] and suppose that l ≤ n is an integer,

such that l consecutive units are selected starting with Uq, i.e. {Uq, ..., Uq+l−1}.

(ii) Suppose a sampling interval of k′′ = INT[(N − l)/(n− l)], such that the unit indices

of the remaining n− l sampling units are given by q+ l− 1 + jk′′, for j = 1, ..., n− l.
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A sufficient and necessary requirement to obtain distinct sampling units is given by

(n−l)k′′ ≤ N−l. Furthermore, if k′′ ≤ l and l+(n−l)k′′ ≥ N/2+1, then the second-order

inclusion probabilities for each possible pair of units will be non-zero, which will result in

an unbiased estimate of the associated sampling variance. The proofs of these results are

given by Naidoo (2013). Singh & Singh (1977) then showed that there is a restriction on

the required sample size when non-zero second-order inclusion probabilities are obtained,

i.e. n ≥
√

(2N + 4)− 1. In the presence of linear trend, the variance of the sample mean,

when conducting NSS, is complex. Singh & Singh (1977) thus provided an empirical study

for populations exhibiting linear trend, which shows that NSS is less efficient than LSS

and more efficient than SRS.

4.1.4 Balanced random sampling (Singh & Garg 1979)

In addition to the cases discussed for BRS in Section 3.1.2, we obtain a further case when

population size is not a multiple of the sample size, i.e. Case (D) is when N is odd and n

is even. The corresponding methodology is given as follows:

(i) Randomly select one unit from the population, before selecting a sample of size

(n − 2) from the remaining (N − 1) population units, using the procedure in Case

(A).

(ii) The balanced random sample is then given as the sampling units in (i), as well as a

randomly selected unit from the remaining (N − n+ 1) population units.

Note that some pairs of sampling units may not be optimally paired, as SRS is first

applied before applying the usual pairing procedure, thus contributing to a linear trend

component in the expected MSE of the associated sample mean.

4.1.5 New partially systematic sampling (Leu & Tsui 1996)

New partially systematic sampling (NPSS) is a modified NSS design, where the respective

sampling procedure is given as follows:

(i) Select a random integer q on the interval [1, N ].

(ii) Let k be the nearest integer to N/(n − 1) and define u as an integer, such that

2 ≤ u ≤ INT(n/2) + 1. Also, let s = N − (n− u)k.

(iii) Select u units from the sample space S = {Uq, Uq+1, ..., Uq+s−1}, using SRS.
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(iv) The new partially systematic sample is then given as the sampling units obtained

in (iii), as well as n− u sampling units selected thereafter in a circular fashion, i.e.

units Uq+s−1+ik, for i = 1, ...., n− u, where UN+q = Uq.

By letting s = N − (n− u)k, Leu & Tsui (1996) ensures a sample of n distinct sampling

units, as there is only one circular transversal of unit indices. Moreover, all second-order

inclusion probabilities are non-zero if (a) u ≥ 2 and (b) s ≥ k. Leu & Tsui (1996) then

provided some recommendations on the choices of u and k, so as to ensure an even spread

of the sample over the population, while still ensuring a sample of n distinct sampling

units. These recommendations are based on the theory presented by Sudhakar (1978),

Bellhouse (1984) and Sengupta & Chattopadhyay (1987), as reviewed in Section 4.1.1.

Note that NPSS is equivalent to NSS if s = u. Otherwise, NPSS may be regarded as

the superior sampling design, as it depends on less stringent restrictions than that of NSS.

Since there are no optimal pairing of units for NPSS, we can expect the MSE of the

associated sample mean to contain a linear trend component, owing to NPSS being a

hybrid sampling design which combines SRS and CSS, where both SRS and CSS are not

linear trend free sampling designs.

4.1.6 Modified circular systematic sampling designs (Uthayakumaran

1998, Leu & Kao 2006, Sampath & Varalakshmi 2009)

We now consider analogues of the linear trend free modified LSS designs in Sections 2.2.2,

2.2.3, 2.2.4 and 2.2.5, which adopt the CSS approach, as in Section 4.1.1.

Balanced and centered circular systematic sampling (Uthayakumaran 1998)

Let the sampling interval be defined as k = INT(N/n). Now, if we assume that N and n

are even, then the qth (for q ∈ {1, ..., N}) sample for balanced circular systematic sampling

(BCSS) is given as

SBCSS =



Uq+2(j−1)k|j = 1, ..., n/2, if 1 ≤ q + 2(j − 1)k ≤ N

Uq+2(j−1)k−N |j = 1, ..., n/2, if q + 2(j − 1)k > N

U2jk−q+1+N |j = 1, ..., n/2, if 2jk − q + 1 < 1

U2jk−q+1|j = 1, ..., n/2, if 1 ≤ 2jk − q + 1 ≤ N.

Centered circular systematic sampling (CCSS) adopts the usual CSS design; however,

the centrally located circular systematic sample is selected and thus no randomization is
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required. The sample for CCSS is thus given as

SCCSS =



U(N+1)/2+(j−1)k|j = 1, ..., n, if 1 ≤ (j − 1)k ≤ (N − 1)/2 and N is odd

U(1−N)/2+(j−1)k|j = 1, ..., n, if (j − 1)k > (N − 1)/2 and N is odd

UN/2+(j−1)k|j = 1, ..., n, if 1 ≤ (j − 1)k ≤ N/2 and N is even

U(j−1)k−N/2|j = 1, ..., n, if (j − 1)k > N/2 and N is even.

Let x1, ..., xn denote the indices of the sampling units, which are arranged in ascending

order. Also, denote yBCSS and yCCSS as the sample means, which are unbiased estimates of

the population mean, corresponding to BCSS and CCSS, respectively. Using this notation,

the end corrections estimators associated with BCSS and CCSS, are respectively given as

yBCSSEC = yBCSS +
[(xn + x1)−K]

n(xn − x1)
(yx1 − yxn)

and

yCCSSEC = yCCSS +
[(xn + x1)−K]

n(xn − x1)
(yx1 − yxn) ,

where K = n(N + 1)/2−
∑n−1

j=2 xj . Under model (2.1), the expected MSEs of estimators

yBCSSEC and yCCSSEC , are given as

M∗ =
1

N

N∑
i=1

σ2

n2

W 2
1 x1 +

n−1∑
j=2

xj +W 2
2 xn

+
σ2

N
− 2σ2

Nn

W1x1 +

n−1∑
j=2

xj +W2xn

 ,

where W1 = (K−2xn)/(x1−xn) and W2 = (2x1−K)/(x1−xn). Clearly we do not obtain

optimality under any circumstance. Thus, Leu & Kao (2006) introduced modifications to

the above designs to tackle this problem, as shown in the next section.

Modified balanced circular systematic sampling and modified centered circular

systematic sampling (Leu & Kao 2006)

Let the sampling interval be defined as k = INT(N/n). Now, if we assume that n is even,

then the qth (for q ∈ {1, ..., N}) sample for modified BCSS (MBCSS) is given as

SMBCSS =



Uq+2(j−1)k|j = 1, ..., n/2, if 1 ≤ q + 2(j − 1)k ≤ N

Uq+2(j−1)k−N |j = 1, ..., n/2, if q + 2(j − 1)k > N

UN−q−2(j−1)k+1|j = 1, ..., n/2, if 1 ≤ q + 2(j − 1)k − 1 < N

U2N−q−2(j−1)k+1|j = 1, ..., n/2, if q + 2(j − 1)k − 1 ≥ N.
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Also, if we assume that n is odd, then the qth sample for MBCSS consists of (n− 1) units

given by

SMBCSS =



Uq+2(j−1)k|j = 1, ..., (n− 1)/2, if 1 ≤ q + 2(j − 1)k ≤ N

Uq+2(j−1)k−N |j = 1, ..., (n− 1)/2, if q + 2(j − 1)k > N

UN−q−2(j−1)k+1|j = 1, ..., n/2, if 1 ≤ q + 2(j − 1)k − 1 < N

U2N−q−2(j−1)k+1|j = 1, ..., n/2, if q + 2(j − 1)k − 1 ≥ N,

as well as an nth sampling unit given as U(N+1)/2 if N is odd, or UN/2 if N is even. The

sample for modified CCSS (MCCSS) is obtained by selecting the centrally located sample

for MBCSS. If we assume that n is even, then the sample for MCCSS contains (n − 1)

units given by

SMCCSS =


U(N+1)/2+(j−1)k, U(N+1)/2−(j−1)k|j = 1, ..., n/2, if N is odd

UN/2+(j−1)k, UN/2−(j−1)k|j = 1, ..., n/2, if N is even,

as well as an nth sampling unit given as U(N+1+nk)/2 if N is odd, or U(N+nk)/2 if N is

even. Also, if we assume that n is odd, then the sample for MCCSS is given as

SMCCSS =


U(N+1)/2+(j−1)k, U(N+1)/2−(j−1)k|j = 1, ..., (n+ 1)/2, if N is odd

UN/2+(j−1)k, UN/2−(j−1)k|j = 1, ..., (n+ 1)/2, if N is even.

Let yMBCSS and yMCCSS denote the sample means, which are unbiased estimates of the

population mean, corresponding to MBCSS and MCCSS, respectively. Using this notation,

the end corrections estimators corresponding to MBCSS and MCCSS, are respectively

given as

yMBCSSEC = yMBCSS +
[(xn + x1)−K]

n(xn − x1)
(yx1 − yxn)

and

yMCCSSEC = yMCCSS +
[(xn + x1)−K]

n(xn − x1)
(yx1 − yxn) .

Under model (2.1), the expected MSEs of estimators yMBCSS and yMCCSS are given as

MMBCSS = σ2
e (if N is odd or n is even) and MMCCSS = σ2

e (if both N and n are odd),

respectively. For the other possible cases, the end corrections estimators are applied, i.e.

the expected MSEs of estimators yMBCSSEC and yMCCSSEC are given as MMBCSSEC = M∗

(if N is even and n is odd) and MMCCSSEC = M∗ (if N is even or n is even), respectively.

Thus, we only obtain optimality for MBCSS when N is odd or n is even, as well as for

MCCSS when both N and n are odd.
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Diagonal circular systematic sampling (Sampath & Varalakshmi 2009)

Define k as the nearest integer to N/n. If q + (j − 1)(k + 1) ≤ N , for all j = 1, ..., n and

q ∈ {1, ..., N}, then the qth sample for diagonal circular systematic sampling (DCSS) is

given as SDCSS = {Uq+(j−1)(k+1)|j = 1, ..., n}. Now, if q + (j − 1)(k + 1) > N for some

j = 1, ..., n, then the qth sample for DCSS is given as

SDCSS =


Uq+(j−1)(k+1)|j = 1, 2, ..., n(q)

Uq+(j−1)(k+1)−N |j = n(q) + 1, ..., n,

where n(q) is the number of items in the state space {q + (j − 1)(k + 1) ≤ N |j = 1, ..., n}

for a given q.

The corresponding sample mean, denoted as yDCSS, is an unbiased estimate of the

population mean. Note that DCSS is not a linear trend free sampling design. If we obtain

q+ (j− 1)(k+ 1) ≤ N , for all j = 1, ..., n, then the DCSS with end corrections (DCSSEC)

estimator is given as

yDCSSEC =
N

n

ψ1yq +
n−1∑
j=2

yq+(j−1)(k+1) + ψ2yq+(n−1)(k+1)

 ,
where

ψ1 =
2nq + (k + 1)(n− 1)(n+ 2)− n(N + 1)

2(n− 1)(k + 1)

and

ψ2 =
n(N + 1)− 2nq − (k + 1)(n− 1)(n− 2)

2(n− 1)(k + 1)
.

Now, if q+ (j− 1)(k+ 1) > N for some j ∈ {1, ..., n}, then the DCSS with end corrections

(DCSSEC) estimator is given as

yDCSSEC =
N

n

ψ′1yq +

n(q)∑
j=2

yq+(j−1)(k+1) +

n−1∑
j=n(q)+1

yq+(j−1)(k+1)−N + ψ
′
2yq+(n−1)(k+1)−N

 ,
where

ψ
′
1 =

2 [q + (n− 1)(k + 1)−N ]− η
(n− 1)(k + 1)−N

,

ψ
′
2 =

η − 2q

(n− 1)(k + 1)−N
and

η =
n(N + 1)

2
− (n− 2)q − (k + 1)(n− 2)(n− 1)

2
+N [(n− 1)− n(q)] .
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If we suppose that J1 and J2 are two subsets of S = {1, ..., N}, such that J2 = S− J1 and

J1 = {q|q+ (j − 1)(k+ 1) ≤ N, for all j = 1, ..., n}, then under model (2.1), the expected

MSE of estimator yDCSSEC is given as

MDCSSEC = σ2

Nn2

∑
q∈J1

{
ψ2

1 + (n− 2) + ψ2
2

}
+
N

n2

∑
q∈J2

{
ψ
′2
1 + (n− 2) + ψ

′2
2

}

+
2

n

∑
q∈J1

{ψ1 + (n− 2) + ψ2}+
∑
q∈J2

{
ψ
′
1 + (n− 2) + ψ

′
2

}+N

.
Sampath & Varalakshmi (2009) then provides some numerical comparisons which indicate

that an end corrections estimator associated with CSS, i.e. y∗CSS, is preferred over estimator

yDCSSEC .

Khan et al. (2014) noted that coincidence of sampling units are possible for certain cases

of DCSS when N/n is rounded up, just as in the case for CSS. The authors then solved this

problem by adopting an approach which is similar to that of Sengupta & Chattopadhyay

(1987), i.e. n distinct sampling units are always obtainable under DCSS, if and only if

lcm(N, (k + 1)) ≥ n(k + 1) or, equivalently, if and only if gcd(N, (k + 1)) ≤ N/n.

4.1.7 Remainder linear systematic sampling (Chang & Huang 2000)

Define the sampling interval as k = INT(N/n), such that the population size is represented

as N = nk+r = (n−r)k+r(k+1), where r ∈ {1, ..., n−1}. The methodology of remainder

linear systematic sampling (RLSS) is then given as follows:

(i) Divide the population into two strata, where the first stratum, ST1, contains the

first (n− r)k population units and the second stratum, ST2, contains the remaining

r(k + 1) units.

(ii) Select two random starts k1 and k2, where k1 ∈ {1, ..., k} and k2 ∈ {1, ..., k + 1}.

(iii) The samples selected from ST1 and ST2 are respectively given as

Sk1 = {Uk1+(j−1)k|j = 1, ..., (n− r)}

and

Sk2 = {U(n−r)k+k2+(j−1)(k+1)|j = 1, ..., r}.

(iv) The final sample of size n is then given as S = Sk1 ∪ Sk2.
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If we denote the sample means from ST1 and ST2 as yk1 and yk2, respectively, then

the RLSS sample mean, which is an unbiased estimate of the population mean, is given

as yRLSS = [(n− r)kyk1 + r(k + 1)yk2] /N . Now, under model (2.1), the expected MSE of

yRLSS is given by

MRLSS = σ2
r +

b2k

12N2

[
(n− r)2k(k2 − 1) + r2(k + 1)2(k + 2)

]
, (4.4)

where σ2
r = kσ2 (N − n+ r) /N2 represents the minimum expected error variance when

independently sampling from ST1 and ST2. Clearly there is a linear trend component

in MRLSS. To remove this component and improve estimation results, Chang & Huang

(2000) suggested an end corrections estimator, i.e. RLSS with end corrections (RLSSEC)

estimator, given by

yRLSSEC = yRLSS + Z(yk1 − yk1+(n−r−1)k), (4.5)

where

Z =
2 [(k1)(n− r)k + (k2)r(k + 1)]− (N − r)(k + 1)

2(n− r − 1)Nk
.

4.1.8 Mixed random systematic sampling (Huang 2004)

Represent the population size as N = nk+ r = (n− r)k+ r(k+ 1), where k = INT(N/n)

and r ∈ {1, ..., n − 1}. The methodology of mixed random systematic sampling (MRSS)

is then given as follows:

(i) Select a random integer q on the interval [1, N ].

(ii) Remembering that UN+q = Uq, divide the population into two strata, where the

first stratum, ST ′1, contains (n− r)k units given by {Uq, Uq+1, Uq+(n−r)k−1} and the

second stratum, ST ′2, contains the remaining r(k + 1) units.

(iii) Randomly select (n − r) sampling units from ST ′1 using SRS and represent this

sample as Sq1.

(iv) The sample selected from ST ′2 is given as Sq2 = {Uq+(n−r)k+j(k+1)−1|j = 1, ..., r}.

(v) The final sample of size n is then given as Sq = Sq1 ∪ Sq2.

The associated sample mean is given by the Horvitz & Thompson (1952) estimator,

i.e. ŶHT = (1/N)
∑

Uq∈Sq
(yq/πq), where πq = n/N , for all q = 1, ..., N . Note that

estimator ŶHT is an unbiased estimate of the population mean. Under model (2.1), an



66

exact expression for the expected MSE of estimator ŶHT is difficult to obtain, owing to the

circular nature of selecting the sample. However, Huang (2004) provides some numerical

comparisons under the assumption of model yq = a + bq, for q = 1, ..., N . The results

indicate that the sample mean corresponding to MRSS is subject to more error than that

which is associated with CSS.

4.1.9 Remainder Markov systematic sampling (Kao et al. 2011a)

Represent the population size as N = nk+ r = (n− r)k+ r(k+ 1), where k = INT(N/n)

and r ∈ {1, ..., n−1}. The methodology of remainder Markov systematic sampling is then

given as follows:

(i) Divide the population into two strata, as in step (i) of RLSS.

(ii) Apply Markov systematic sampling, as in Section 3.1.4, within each of these strata.

If the units sampled are even then the stratification related to Markov systematic

sampling within these strata are straightforward. On the other hand, if the units

sampled are odd, then SRS is applied to select a unit from the remaining units

after stratification. The first stratum corresponds to stochastic matrix A which is a

2k×2k matrix, while the second stratum corresponds to stochastic matrix B which is

a 2(k+1)×2(k+1) matrix. Note that both matrices A and B are doubly stochastic

matrices, with zero diagonal elements, so as to ensure distinct sampling units.

(iii) Remainder Markov systematic sampling is now classified into four cases, which are

given as follows:

Case (A): If n and r are both even, then:

1. divide the units in the first stratum into (n − r)/2 groups, each containing

2k units, before applying Markov systematic sampling to select (n− r) units

using matrix A;

2. divide the units in the second stratum into r/2 groups, of 2(k+1) units each,

before applying Markov systematic sampling to select r units using matrix

B.

Case (B): If n is even and r is odd, then:

1. divide the first (n−r−1)k units in the first stratum into (n−r−1)/2 groups,

each containing 2k units, before applying Markov systematic sampling to
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select (n− r) units using matrix A;

2. divide the last (r−1)(k+1) units in the second stratum into (r−1)/2 groups,

each containing 2(k + 1) units, before applying Markov systematic sampling

to select (r − 1) units using matrix B;

3. select two units from ST3 = {U(n−r−1)k+1, ..., U(n−r)k+(k+1)} using SRS.

Case (C): If n is odd and r is even, then:

1. divide the first (n−r−1)k units in the first stratum into (n−r−1)/2 groups,

each containing 2k units, before applying Markov systematic sampling to

select (n− r) units using matrix A;

2. randomly select a unit from ST3 = {U(n−r−1)k+1, ..., U(n−r)k};

3. divide the units in the second stratum into r/2 groups, of 2(k+1) units each,

before applying Markov systematic sampling to select r units using matrix

B.

Case (D): If n and r are both odd:

1. divide the units in the first stratum into (n − r)/2 groups, each containing

2k units, before applying Markov systematic sampling to select (n− r) units

using matrix A;

2. randomly select a unit from ST3 = {U(n−r)k+1, ..., U(n−r)k+(k+1)};

3. divide the last (r−1)(k+1) units in the second stratum into (r−1)/2 groups,

each containing 2(k + 1) units, before applying Markov systematic sampling

to select (r − 1) units using matrix B.

Next, three types of stochastic matrices were considered and given as follows:

(i) To conduct remainder stratified systematic sampling (RSSS), the stochastic matrices

corresponding to the first and second strata are respectively given as

H1 =



0 1
2k−1 0 1

2k−1
1

2k−1

1
2k−1 0 . . . 1

2k−1
1

2k−1
...

...
...

...
...

1
2k−1

1
2k−1 . . . 0 1

2k−1

1
2k−1

1
2k−1 . . . 1

2k−1 0


2k×2k
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and

H2 =



0 1
2k+1 0 1

2k+1
1

2k+1

1
2k+1 0 . . . 1

2k+1
1

2k+1
...

...
...

...
...

1
2k+1

1
2k+1 . . . 0 1

2k+1

1
2k+1

1
2k+1 . . . 1

2k+1 0


2(k+1)×2(k+1)

.

(ii) To conduct remainder balanced systematic sampling (RBSS), the stochastic matrices

corresponding to the first and second strata are respectively given as

J1 =



0 0 . . . 0 1

0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0

1 0 . . . 0 0


2k×2k

and

J2 =



0 0 . . . 0 1

0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0

1 0 . . . 0 0


2(k+1)×2(k+1)

.

(ii) To conduct remainder balanced systematic-like sampling (RBSLS), the stochastic

matrices corresponding to the first and second strata are respectively given as

A =

A11 A12

A21 A22


2k×2k

and

B =

B11 B12

B21 B22


2(k+1)×2(k+1)

,
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where

A11 = A22 = 0k×k, B11 = B22 = 0(k+1)×(k+1),

A12 =



0 0 . . . 0 p1 1− p1

0 0 . . . p1 1− p1 0
...

...
...

...
...

...

p1 1− p1 . . . 0 0 0

1− p1 0 . . . 0 0 p1


k×k

,

A21 =



p1 0 0 . . . 0 1− p1

0 0 0 . . . 1− p1 p1

...
...

...
...

...
...

0 1− p1 p1 . . . 0 0

1− p1 p1 0 . . . 0 0


k×k

,

B12 =



0 0 . . . 0 p2 1− p2

0 0 . . . p2 1− p2 0
...

...
...

...
...

...

p2 1− p2 . . . 0 0 0

1− p2 0 . . . 0 0 p2


(k+1)×(k+1)

,

B21 =



p2 0 0 . . . 0 1− p2

0 0 0 . . . 1− p2 p2

...
...

...
...

...
...

0 1− p2 p2 . . . 0 0

1− p2 p2 0 . . . 0 0


(k+1)×(k+1)

,

0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1.
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The associated sample mean is given by the Horvitz & Thompson (1952) estimator,

ŶHT =



[(n− r)ky1 + r(k + 1)y2] /N, for Case (A)

[(n− r − 1)ky1 + (r − 1)(k + 1)y2 + (2k + 1)y3] /N, for Case (B)

[(n− r − 1)ky1 + r(k + 1)y2 + ky3] /N, for Case (C)

[(n− r)ky1 + (r − 1)(k + 1)y2 + (k + 1)y3] /N, for Case (D),

where y1, y2 and y3, are the sample means from ST1, ST2 and ST3, respectively, and y3

is the observed value from ST3. Note that estimator ŶHT is an unbiased estimate of the

population mean. Kao et al. (2011a) then obtains values for the second-order inclusion

probabilities, before claiming that is it possible to obtain an unbiased estimate of the

variance of ŶHT , when adopting their design. However, by further inspection, we see that

this claim is only correct for the stochastic matrices associated with the RSSS design.

Under model (2.1), if we apply remainder Markov systematic sampling for Cases (A),

(C) and (D), then the expected MSE of ŶHT is given by

MRM = σ2
r +

b2

N2

{
(n−r)k∑
i=1

(n−r)k∑
j>i

(i− j)2(1− k2πij)

+
N∑

i=(n−r)k+1

N∑
j>i

(i− j)2
[
1− (k + 1)2πij

]}
.

Similarly, if we consider Case (B), then the expected MSE of ŶHT is given by

MRM =σ2
r −

(2k + 1)σ2

2N2
+

b2

N2

{
(n−r−1)k∑

i=1

(n−r−1)k∑
j>i

(i− j)2(1− k2πij)

+

(n−r+1)k+1∑
i=(n−r−1)k+1

(n−r+1)k+1∑
j>i

(i− j)2

[
1−

(
2k + 1

2

)2

πij

]

+

N∑
i=(n−r+1)k+2

N∑
j>i

(i− j)2
[
1− (k + 1)2πij

]}
.

Finally, we note that MRM is only minimized when applying the stochastic matrices asso-

ciated with RBSS for Case (A), i.e. all other scenarios result in a linear trend component

in MRM .

4.1.10 Remainder systematic Markov chain design (Kao et al. 2011b)

This approach is similar to the previous design, where the methodology is given as follows:
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(i) Apply step (i) of the methodology of remainder Markov systematic sampling.

(ii) Apply Markov systematic sampling, as in Section 3.1.4, within each stratum. The

first stratum corresponds to stochastic matrix A which is a k × k matrix, while the

second stratum corresponds to stochastic matrix B which is a (k + 1) × (k + 1)

matrix. Note that both matrices A and B are doubly stochastic matrices, with zero

diagonal elements so as to ensure distinct sampling units.

(iii) In the first stratum, the two cases for selecting the (n− r) sampling units are given

as follows:

1. If (n− r) is even, then divide the units in the first stratum into (n− r)/2 groups,

of 2k units each, according to their unit indices. Randomly select a unit from

the first k units in the first group and every 2kth units thereafter, until (n− r)/2

units are obtained, i.e. the unit selected from each group is located in the same

position. Now, select units from the (k+1)th to the 2kth unit of each group using

the Markov chain design, such that the remaining (n− r)/2 units are obtained.

2. If (n − r) is odd, then divide the units in the first stratum into (n − r − 1)/2

groups, of 2k units each, and one group of k units according to their unit indices.

Randomly select a unit from the first k units in the first group and every 2kth

units thereafter, until (n− r+ 1)/2 units are obtained. Now, select units from the

(k + 1)th to the 2kth unit of each group (i.e. excluding the group containing k

units) using the Markov chain design, such that the remaining (n− r− 1)/2 units

are obtained.

(iv) In the second stratum, the two cases for selecting the r sampling units are given as

follows:

1. If r is even, then divide the units in the second stratum into r/2 groups, of 2(k+1)

units each, according to their unit indices. Randomly select a unit from the first

(k + 1) units in the first group and every 2(k + 1)th units thereafter, until r/2

units are obtained, i.e. the unit selected from each group is located in the same

position. Now, select units from the (k+ 2)th to the 2(k+ 1)th unit of each group

using the Markov chain design, such that the remaining r/2 units are obtained.

2. If r is odd, then divide the units in the first stratum into (r − 1)/2 groups, of

2(k+ 1) units each, and one group of (k+ 1) units according to their unit indices.
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Randomly select a unit from the first (k + 1) units in the first group and every

2(k + 1)th units thereafter, until (r + 1)/2 units are obtained. Now, select units

from the (k + 2)th to the 2(k + 1)th unit of each group (i.e. excluding the group

containing (k + 1) units) using the Markov chain design, such that the remaining

(r − 1)/2 units are obtained.

Next, four types of stochastic matrices, the first three of which were considered by

Breidt (1995), are given as follows:

(i) To conduct remainder stratified systematic sampling (RSSS), the stochastic matrices

corresponding to the first and second strata are respectively given as

H1 =

[
1

k

]
k×k

and

H2 =

[
1

k + 1

]
(k+1)×(k+1)

.

(ii) To conduct RLSS, the stochastic matrices corresponding to the first and second

strata are given by identity matrices with dimensions k × k and (k + 1) × (k + 1),

respectively.

(iii) To conduct RBSS, the stochastic matrices corresponding to the first and second

strata are respectively given as

J1 =



0 0 . . . 0 1

0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0

1 0 . . . 0 0


k×k

and

J2 =



0 0 . . . 0 1

0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0

1 0 . . . 0 0


(k+1)×(k+1)

.
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(iv) To conduct RBSLS, the stochastic matrices corresponding to the first and second

strata are respectively given as

P1 =



p1 1− p1 0 . . . 0 0

0 p1 1− p1 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . p1 1− p1

1− p1 0 0 . . . 0 p1


k×k

and

P2 =



p2 1− p2 0 . . . 0 0

0 p2 1− p2 . . . 0 0
...

...
...

...
...

...

0 0 0 . . . p2 1− p2

1− p2 0 0 . . . 0 p2


(k+1)×(k+1)

,

where 0 ≤ p1 ≤ 1 and 0 ≤ p2 ≤ 1.

Now, the corresponding sample mean, which is an unbiased estimate of the pop-

ulation mean, is given by the Horvitz & Thompson (1952) estimator, i.e. estimator

ŶHT = [(n− r)ky1 + r(k + 1)y2] /N , where y1 and y2 are the sample means from the

first and second stratum, respectively. Kao et al. (2011b) then provides values for the

second-order inclusion probabilities, which indicate that it is impossible to obtain an un-

biased estimate of the variance of ŶHT when adopting their design.

If we apply the remainder systematic Markov chain design under model (2.1), then the

expected MSE of ŶHT is given by

MRSMCD = σ2
r +

b2

N2

{
(n−r)k∑
i=1

(n−r)k∑
j>i

(i− j)2(1− k2πij)

+
N∑

i=(n−r)k+1

N∑
j>i

(i− j)2
[
1− (k + 1)2πij

]}
.

By substituting the relevant values of πij , which are obtained by applying the correspond-

ing stochastic matrices, we note that MRSMCD is only minimized for RBSS when (n − r)

and r are both even, i.e. all other scenarios result in a linear trend component in MRSMCD.
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4.1.11 Modified systematic sampling (Khan et al. 2013)

Modified systematic sampling (MSYS) is a variation of circular systematic sampling and

is given by the following methodology:

(i) Let L = lcm(N,n), such that v = L/N , k∗ = L/n, w = N/k∗ and k = k∗/v, or k

is taken as the closest integer to (N/n). Thus, the required sample size is n = vw,

which results in the selection of v sets of size w.

(ii) Assume the population is arranged in a circular fashion.

(iii) Randomly select a unit from the first k∗ units in the population, say Ui, where

i ∈ {1, ..., k∗}.

(iv) The first unit in each of the v sets is given by unit Ui+(j−1)k, for j = 1, ..., v. The

remaining (w − 1) units for each set, are obtained by selecting every k∗th unit

thereafter in a circular fashion. Thus, the sampling units obtained for the jth set is

given by Sij = {Ui+jk, Ui+jk+k∗ , ..., Ui+jk+(w−1)k∗}.

Note that under MSYS, a necessary and sufficient condition for obtaining a sample of

distinct sampling units is that lcm(k∗, k)/k ≥ v or, equivalently, if (j − 1)k 6= k∗, where

j ≤ v− 1. Thus, the design is susceptible to coincidence of sampling units. However, it is

rarer for sampling units to coincide when conducting MSYS, as opposed to CSS.

The corresponding sample mean is an unbiased estimate of the population mean, while

under (2.1), an exact expression for the expected MSE of this sample mean is difficult

to obtain, owing to the circular nature of selection. Nevertheless, we can expect this

expression to contain a linear trend component, as MSYS is merely a modification of CSS,

with no optimum pairing of sampling units.

4.1.12 Generalized modified linear systematic sampling (Subramani &

Gupta 2014)

Represent the population size as N = n1k1 +n2k2, where n = n1 +n2 and k̂ = k1 +k2, such

that n1, n2, k1 and k2, are all positive integers and n1 > n2. The procedure of generalized

modified linear systematic sampling (GMLSS) is then given as follows:

(i) Divide and arrange the N population unit indices according to two matrices K1 and
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K2, where

K1 =



1 . . . i . . . k1

k̂ + 1 . . . k̂ + i . . . k̂ + k1

2k̂ + 1 . . . 2k̂ + i . . . 2k̂ + k1

...
...

...
...

...

n2k̂ + 1 . . . n2k̂ + i . . . n2k̂ + k1

n2k̂ + k1 + 1 . . . n2k̂ + k1 + i . . . n2k̂ + 2k1

...
...

...
...

...

n2k2 + (n1 − 1)k1 + 1 . . . n2k2 + (n1 − 1)k1 + i . . . n2k2 + n1k1


n1×k1

and

K2 =


k1 + 1 . . . k1 + j . . . k̂

k̂ + k1 + 1 . . . k̂ + k1 + j . . . 2k̂
...

...
...

...
...

(n2 − 1)k̂ + k1 + 1 . . . (n2 − 1)k̂ + k1 + j . . . n2k̂


n2×k2

.

(ii) The indices corresponding to the sampling units are then given by a randomly se-

lected column in matrix K1, say the ith column, as well as a randomly selected

column in matrix K2, say the jth column.

The first-order inclusion probabilities for the unit Uq is given as

πq =


1/k1, if q ∈ K1

1/k2, if q ∈ K2.

Subramani & Gupta (2014) then claimed that the sample mean, denoted as yGMLSS, is not

an unbiased estimate of the population mean, as the first-order inclusion probabilities are

unequal. Note that if sampling is achieved without replacement, then the only condition for

obtaining an unbiased estimate of the population mean is that πq > 0, for all q ∈ {1, ..., N}.

We thus conclude that estimator yGMLSS is an unbiased estimate of the population mean.

If k1 = k2, then GMLSS reduces to the designs discussed by Subramani (2013b,a).

Moreover, if n2 = 0, then GMLSS reduces to LSS. When comparing GMLSS to RLSS,

one can easily verify that GMLSS reduces to RLSS for any population exhibiting a perfect

linear trend, provided that n1 = n − r, n2 = r, k1 = k and k2 = k + 1. However, the

ordering of units in ST1 and ST2 are not equivalent to that in K1 and K2, respectively.

Thus, GMLSS will not reduce to RLSS when other population structures are considered.
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Under the assumption of model (2.12), the MSE of estimator yGMLSS is given as

MGMLSS =
b2

12n2

{
n2

1(k2
1 − 1)− n2

2(k2
2 − 1) + 3n2

2 [n1 − (n2 + 1)]2 (k1 − k2)2
}
.

Obtaining comparisons between GMLSS and either SRS, CSS or RLSS, is difficult, as

MGMLSS depends on many variables. Subramani & Gupta (2014) thus provides a numeri-

cal study which shows that in the presence of linear trend, GMLSS always performs better

than SRS and CSS, while in most cases GMLSS is preferred over RLSS. Note that GMLSS

is not a linear trend free sampling design. Thus, to improve results for populations ex-

hibiting linear trend, Subramani & Gupta (2014) derived some end corrections estimators,

given by

y∗GMLSS = yGMLSS + ζ1(y1 − yn),

y∗∗GMLSS = yGMLSS + ζ2(yt − yt+1),

y∗∗∗GMLSS = yGMLSS + ζ3(yt′ − yt′+1),

y∗∗∗∗GMLSS = yGMLSS + ζ4(y1 − yn1)

and

y∗∗∗∗∗GMLSS = yGMLSS + ζ5(yn1+1 − yn),

where

ζ1 =
(n1 − n2) [k1(n2 + 1)− k2n2] + 2 [k2n2 − n1(i+ 1)− n2(j + 1)]

2n
{

(i− j)−
[
k1 − k̂(n2 − 1)

]} ,

ζ2 =
(n1 − n2) [k1(n2 + 1)− k2n2] + 2 [k2n2 − n1(i+ 1)− n2(j + 1)]

2nk̂
,

ζ3 =
(n1 − n2) [k1(n2 + 1)− k2n2] + 2 [k2n2 − n1(i+ 1)− n2(j + 1)]

2nk1
,

ζ4 =
(n1 − n2) [k1(n2 + 1)− k2n2] + 2 [k2n2 − n1(i+ 1)− n2(j + 1)]

2n [n2k2 + (n1 − 1)k1]
,

and

ζ5 =
2(n1i+ n2j)−N + n+ n1n2(k2 − k1)

2nk̂(n2 − 1)
.
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Note that corrections are applied to: (i) the first and last sampling units, so as to ob-

tain estimator y∗GMLSS; (ii) two successive sampling units from either K1 or K2, so as

to construct y∗∗GMLSS; (iii) the first two sampling units derived from each matrix, or two

successive sampling units between the (n2 +1)th and the n1th sampling unit, derived from

matrix K1, such that estimator y∗∗∗GMLSS is obtained; (iv) the first and last sampling units

derived from matrix K1, where estimator y∗∗∗∗GMLSS is then constructed; (v) the first and

last sampling units derived from matrix K2, such that estimator y∗∗∗∗∗GMLSS is obtained. Just

as in the case of all previous end corrections estimators mentioned thus far, estimators

y∗GMLSS, y∗∗GMLSS, y∗∗∗GMLSS, y∗∗∗∗GMLSS and y∗∗∗∗∗GMLSS, are all equivalent to the population mean

when there is a perfect linear trend in the population.

4.1.13 Remainder linear systematic sampling with multiple random starts

(Mostafa & Ahmad 2016)

This modified systematic sampling design uses multiple random starts, as in the previous

chapter, on the RLSS design in Section 4.1.7. The methodology of remainder linear

systematic sampling with multiple random starts (RLSSM) is given as follows:

(i) Divide the population into two strata, where the first stratum, ST1, contains the

first (n− r)k population units and the second stratum, ST2, contains the remaining

r(k + 1) units.

(ii) For ST1, select 1 ≤ t1 ≤ (n − r) distinct integers from the first t1k population

units, where (n − r)/t1 is an integer. Label these integers using the indices in

C = {c1, c2, ..., ct1}, where 1 ≤ ci ≤ t1k for i = 1, 2, ..., t1. The (n − r) randomly

selected units from ST1 are then given as

Sc = {ci + (l′ − 1)t1k|i = 1, ..., t1 and l′ = 1, 2, ..., (n− r)/t1}.

(iii) For ST2, select 1 ≤ t2 ≤ r distinct integers from the set {(n − r)k + 1, ..., (n −

r)k + t2(k + 1)}, where r/t2 is an integer. Label these integers using the indices in

D = {d1, d2, ..., dt2}. The r randomly selected units from ST2 are then given as

Sd = {dj + (l′′ − 1)t2(k + 1)|j = 1, ..., t2 and l′′ = 1, 2, ..., r/t2}.

(iv) The final sample of size n is then given as S = Sc ∪ Sd.

If we denote the sample means from ST1 and ST2 as yc and yd, respectively, then

the RLSSM sample mean, which is a design-unbiased estimate of the population mean, is
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given as yRLSSM = [(n− r)kyc + r(k + 1)yd] /N . Mostafa & Ahmad (2016) then showed

that estimator yRLSSM is a linear combination of Horvitz and Thompson (1952) estimators,

i.e.

yRLSSM = N−1
∑
i∈Sc

yi
πi

+N−1
∑
j∈Sd

yj
πj
.

Using this expression, Mostafa & Ahmad (2016) computed expressions for the variance of

estimator yRLSSM and an unbiased estimator of the corresponding variance. Now, under

model (2.1), the expected MSE of yRLSSM is given by

MRLSSM = σ2
r +

b2k

12N2
{(n− r)2k(k − 1)(t1k + 1) + r2(k + 1)2 [t2(k + 1) + 1]},

Mostafa & Ahmad (2016) then presented an empirical study which shows that both RLSS

and GMLSS are more efficient than RLSSM in the presence of linear trend.

Now that we have reviewed all the modified systematic sampling designs that tackle the

problem of N not being a multiple of n, we note that the only linear trend free sampling

designs and/or estimators, are those given in Sections 4.1.4 (i.e. Case (A)), 4.1.6, 4.1.7,

4.1.9 (i.e. Case (A) for RBSS), 4.1.10 (i.e. Case (A) for RBSS) and 4.1.12. Moreover,

we obtain minimum expected MSE of the associated sample means in Sections 4.1.4 (i.e.

Case (A)), 4.1.6 (i.e. MBCSS if N is odd or n is even, and MCCSS if both N and n

are odd), 4.1.9 (i.e. Case (A) for RBSS) and 4.1.10 (i.e. Case (A) for RBSS). This has

motivated the study in the next section, where a linear trend free sampling design and/or

estimator is proposed for the scenario when N is not a multiple of n. Under certain

cases, the proposed design is a linear trend free sampling design, while an appropriate end

corrections estimator is proposed for the other cases.

4.2 Remainder modified systematic sampling

For this section, a modified systematic sampling design, termed as remainder modified sys-

tematic sampling (RMSS), is proposed. The proposed design extends Chang and Huangs’

(2000) RLSS design, such that sampling units are selected according to a mixture of MSS

and CESS. Section 4.2.1 contains a discussion of the methodology of RMSS. Under the

assumption of a linear trend model, RMSS is compared SRS, RLSS and CSS, in Section

4.2.2. The results suggest that RMSS is a linear trend free sampling design for three of
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the seven cases of the design. For the other cases, a modified estimator, i.e. RMSS with

end corrections (RMSSEC) estimator, is thus constructed in Section 4.2.3.

4.2.1 Methodology

The seven cases of RMSS are given in Table 4.1. As is the case with RLSS, we first divide

the population into two strata, where the first stratum, ST1, contains the first (n − r)k

units and the second stratum, ST2, contains the remaining r(k + 1) units. We next need

to select (n − r) sampling units from ST1 (note that RLSS applies LSS to select (n − r)

sampling units using the sampling interval k in ST1) and r sampling units from ST2 (note

that RLSS applies LSS to select r sampling units using the sampling interval (k + 1) in

ST2).

Table 4.1: Possible cases of RMSS.

n k r (n− r) Case

even even even even A

even odd even even A

odd even odd even B

odd odd even odd C

odd odd odd even D

odd even even odd E

even even odd odd F

even odd odd odd G

We know that MSS is a linear trend free sampling design if the sample size is even.

Likewise, CESS is a linear trend free sampling design if the sampling interval is odd.

Thus, if we consider Table 4.1, we can easily deduct that MSS should be applied in ST1

for Cases A, B and D, as (n− r) is even, as well as in ST2 for Cases A, C and E, as r is

even. Similarly, CESS should be applied in ST1 for Cases C and G, as k is odd, as well

as in ST2 for Cases B and F, as (k + 1) is odd. Note that if both MSS and CESS offer

linear trend free sampling, then MSS is preferred since MSS is a randomized design, unlike

CESS which requires no randomization. Thus, we are left with Cases E and F for ST1 and

Cases D and G for ST2, of which we will apply MSS. Hence, we can expect RMSS to be

a linear trend free sampling design for Cases A, B and C. Note that each case of RMSS
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entails some form of randomized sampling. Selecting a sample of size n from a population

of size N = nk + r using RMSS, consists of the following steps:

(i) Select two random starts k1 and k2 from 1 to k and 1 to k + 1, respectively.

(ii) The sample chosen from ST1 is given by

sk1 = {Uk1+jk, U(n−r)k−jk−k1+1|j = 0, ..., (n− r − 2)/2}, for A, B and D

= {U[(2j−1)k+1]/2|j = 1, ..., n− r}, for C and G

= {Uk1+(n−r−1)k/2}

∪ {Uk1+jk, U(n−r)k−jk−k1+1|j = 0, ..., (n− r − 3)/2}, for E and F.

(iii) The sample chosen from ST2 is given by

sk2 = {Uk2+j(k+1)+(n−r)k, UN−j(k+1)−k2+1|j = 0, ..., (r − 2)/2}, for A, C and E

= {Uj+k(j+n−r−1/2)|j = 1, ..., r}, for B and F

= {Uk2+N−(r+1)(k+1)/2}

∪ {Uk2+j(k+1)+(n−r)k, UN−j(k+1)−k2+1|j = 0, ..., (r − 3)/2}, for D and G.

(iv) The final sample of size n is given by s = sk1 ∪ sk2.

If n − r = 1, then the sampling unit for Cases E and F in ST1, is obtained by randomly

selecting a unit from the first k units. Similarly, if r = 1, then the sampling unit for Cases

D and G in ST2, is obtained by randomly selecting a unit from the last k + 1 units.

For RMSS, the first-order inclusion probability for unit Uq is given by

πq = 1/k, if q ∈ {1, ..., (n− k)r} for A, B, D, E and F

= 1/(k + 1), if q ∈ {(n− k)r + 1, ..., N} for A, C, D, E and G

= 1, if q ∈ {[(2j − 1)k + 1]/2|j = 1, ..., n− r} for C and G

= 1, if q ∈ {j + k(j + n− r − 1/2)|j = 1, ..., r} for B and F

= 0, otherwise.

Note that πq = 0 or 1, for Cases C and G in ST1 and B and F in ST2, as CESS is applied

in these instances. Now, let us denote the k1th sample mean from ST1 as yk1 and the k2th

sample mean from ST2 as yk2, which are estimates of the stratum means from ST1 and

ST2 (denoted by Y 1 and Y 2), respectively. Thus, the sample mean for RMSS is obtained
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by using the first-order inclusion probabilities on the Horvitz-Thompson (1952) estimator,

i.e.

ŶHT =
(n− r)kyk1 + r(k + 1)yk2

N
= yRMSS. (4.6)

Note that estimator yRMSS is an unbiased estimator of the population mean for Cases A,

D and E, since πq 6= 0 for all q, i.e. MSS is applied in both ST1 and ST2 for Cases A,

D and E. Likewise, estimator yRMSS is biased for Cases B, C, F and G, since πq = 0 for

some q, i.e. CESS is applied in either ST1 or ST2 for Cases B, C, F and G. However, if

we consider Cases B, C, F and G, we can easily verify that under the assumption of a

perfect linear trend in the population, estimator yRMSS is unbiased for Cases B and C, as

yk1 = Y 1 and yk2 = Y 2, i.e. for Case B, MSS is applied in ST1 where (n− r) is even and

CESS is applied in ST2 where (k + 1) is odd. Likewise, for Case C, CESS is applied in

ST1 where k is odd and MSS is applied in ST2 where r is even. Thus, in each case, both

designs offer linear trend free sampling and hence RMSS is a linear trend free sampling

design.

Let,

sa = {k1 + jk, (n− r)k − jk − k1 + 1|j = 0, ..., (n− r − 2)/2},

sb = {[(2j − 1)k + 1]/2|j = 1, ..., n− r},

sc = {k1 + (n− r − 1)k/2}

∪ {k1 + jk, (n− r)k − jk − k1 + 1|j = 0, ..., (n− r − 3)/2},

sd = {k2 + j(k + 1) + (n− r)k,N − j(k + 1)− k2 + 1|j = 0, ..., (r − 2)/2},

se = {j + k(j + n− r − 1/2)|j = 1, ..., r},

sf = {k2 +N − (r + 1)(k + 1)/2}

∪ {k2 + j(k + 1) + (n− r)k,N − j(k + 1)− k2 + 1|j = 0, ..., (r − 3)/2}.

Thus, the second-order inclusion probabilities, πqz, for the pair of units (Uq, Uz), q, z ∈
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{1, ..., N}(q 6= z), are given as follows:

Case A: πqz = 1/k, if q and z ∈ sa

= 1/k(k + 1), if q ∈ sa and z ∈ sd, or q ∈ sd and z ∈ sa

= 1/(k + 1), if q and z ∈ sd

= 0, otherwise.

Case B: πqz = 1/k, if q and z ∈ sa

= 1/k, if q ∈ sa and z ∈ se, or q ∈ se and z ∈ sa

= 1, if q and z ∈ se

= 0, otherwise.

Case C: πqz = 1/(k + 1), if q and z ∈ sd

= 1/(k + 1), if q ∈ sb and z ∈ sd, or q ∈ sd and z ∈ sb

= 1, if q and z ∈ sb

= 0, otherwise.

Case D: πqz = 1/k, if q and z ∈ sa

= 1/k(k + 1), if q ∈ sa and z ∈ sf , or q ∈ sf and z ∈ sa

= 1/(k + 1), if q and z ∈ sf

= 0, otherwise.
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Case E: πqz = 1/k, if q and z ∈ sc

= 1/k(k + 1), if q ∈ sc and z ∈ sd, or q ∈ sd and z ∈ sc

= 1/(k + 1), if q and z ∈ sd

= 0, otherwise.

Case F: πqz = 1/k, if q and z ∈ sc

= 1/k, if q ∈ sc and z ∈ se, or q ∈ se and z ∈ sc

= 1, if q and z ∈ se

= 0, otherwise.

Case G: πqz = 1/(k + 1), if q and z ∈ sf

= 1/(k + 1), if q ∈ sb and z ∈ sf , or q ∈ sf and z ∈ sb

= 1, if q and z ∈ sb

= 0, otherwise.

Hence, it is impossible to obtain an unbiased estimate of the variance of estimator yRMSS,

as certain second-order inclusion probabilities, πqz, will be zero for each Case. Also, note

that the variance of the sample mean is unobtainable when conducting CESS, as there is

only one possible sample selected, thus the variance of estimator yRMSS is undefined for

Cases B, C, F and G.

4.2.2 Expected Mean Square Error Comparisons

Under model (2.1), the population mean and stratum means are given by

Y =
1

N

N∑
q=1

yq = a+
b (N + 1)

2
+ e,

Y 1 =
1

(n− r)k

(n−r)k∑
q=1

yq = a+
b[(n− r)k + 1]

2
+ e1

and

Y 2 =
1

r(k + 1)

N∑
q=(n−r)k+1

yq = a+
b[(n− r)k +N + 1]

2
+ e2,
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where

e =
N∑
q=1

eq/N, e1 =

(n−r)k∑
q=1

eq/[(n− r)k]

and

e2 =
N∑

q=(n−r)k+1

eq/[(r(k + 1)],

represent the mean random errors of the population, ST1 and ST2, respectively.

Now, if we consider Case A of RMSS, then by using (2.1) on sk1 and sk2, we obtain

yk1 =
1

n− r

(n−r−2)/2∑
j=0

(yk1+jk + y(n−r)k−jk−k1+1)

= a+
b[(n− r)k + 1]

2
+ ek1

and

yk2 =
1

r

(r−2)/2∑
j=0

(yk2+j(k+1)+(n−r)k + yN−j(k+1)−k2+1)

= a+
b[(n− r)k +N + 1]

2
+ ek2,

where ek1 =
∑(n−r−2)/2

j=0 (ek1+jk + e(n−r)k−jk−k1+1)/[(n − r)] denotes the mean random

error from sk1 and ek2 =
∑(r−2)/2

j=0 (ek2+j(k+1)+(n−r)k + eN−j(k+1)−k2+1)/r represents the

mean random error from sk2. Thus, the expected MSEs of yk1 and yk2 are given by

Mk1 = E
{

E
[
(yk1 − Y 1)2

]}
= E

{
E
[
(ek1 − e1)2

]}
= E

[
E
(
e2
k1

)
+ E

(
e2

1

)
− 2E (ek1e1)

]
=

σ2

n− r
+

σ2

(n− r)k
− 2σ2

(n− r)k
=
σ2(k − 1)

(n− r)k

and

Mk2 = E
{

E
[
(yk2 − Y 2)2

]}
= E

{
E
[
(ek2 − e2)2

]}
= E

[
E
(
e2
k2

)
+ E

(
e2

2

)
− 2E (ek2e2)

]
=
σ2

r
+

σ2

r(k + 1)
− 2σ2

r(k + 1)
=

σ2k

r(k + 1)
,
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respectively. Finally, by using Mk1 and Mk2 as weighted components, the expected MSE

of yRMSS can be written as

MRMSS =
1

N2

[
(n− r)2k2Mk1 + r2(k + 1)2Mk2

]
=

σ2

N2
[(n− r)k(k − 1) + r(k + 1)k] =

σ2k (N − n+ r)

N2
= σ2

r ,

where σ2
r denotes the minimum expected error variance when independently sampling from

ST1 and ST2. Similarly, we can find MRMSS for the other cases of the design, such that

MRMSS = σ2
r , for Cases A, B and C

= σ2
r +

b2k(k + 2)(k + 1)2

12N2
, for Cases D and G

= σ2
r +

b2k2(k2 − 1)

12N2
, for Cases E and F. (4.7)

If we compare equations (4.4) to (4.7), it can be shown that MRMSS < MRLSS, while

simple theoretical comparisons between equations (2.3) and (4.7) are difficult to obtain.

Also, the expected MSE of the sample mean when conducting CSS is difficult to obtain,

owing to the circular selection procedure. Thus, we will resort to some empirical results

below.

Without loss of generality, we consider the ei’s in (2.1) to be iid N(0, 1) random vari-

ables and set a = 5, as expected MSE expressions have been shown to be independent of a.

Monte Carlo simulations are then employed by means of the statistical software package R,

whereby 10 000 finite linear trend populations are simulated. The expected MSE of each

estimator is obtained as the mean of the MSEs over the 10 000 populations. The relative

expected MSEs of each comparative estimator, with respect to that of estimator yRMSS, is

denoted by Rα = 100 ×MRMSS/Mα(%), where α = SRS, RLSS, or CSS. The results are

presented in Tables 4.2 to 4.8, where we note that estimator yRMSS is always subject to

less error than estimators ySRS, yRLSS and yCSS. Moreover, as N and/or b increases, we see

further improvements when choosing RMSS over the other sampling designs.

4.2.3 Remainder modified systematic sampling with end corrections

To improve results for Cases D to G, an end corrections estimator is constructed to remove

the linear trend components in (4.7). The corresponding estimator is given in the next

theorem.
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Table 4.2: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case A of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 10 4 2 2 70.71 32.97 48.13

0.5 28 8 3 4 40.74 05.70 13.98

0.5 38 16 2 6 41.81 03.39 04.44

0.5 104 32 3 8 16.92 00.45 01.44

1 10 4 2 2 36.73 10.57 17.84

1 28 8 3 4 14.73 01.50 03.93

1 38 16 2 6 14.96 00.86 01.13

1 104 32 3 8 04.80 00.11 00.36

2 10 4 2 2 12.52 02.84 05.09

2 28 8 3 4 04.13 00.38 01.01

2 38 16 2 6 04.22 00.22 00.28

2 104 32 3 8 01.25 00.03 00.09

4 10 4 2 2 03.47 00.73 01.32

4 28 8 3 4 01.07 00.09 00.25

4 38 16 2 6 01.09 00.05 00.07

4 104 32 3 8 00.31 00.01 00.02

Theorem 14: The RMSSEC estimator of Y with random starts k1 and k2, where k1 ∈

{1, ..., k} and k2 ∈ {1, ..., k + 1}, is given by

yRMSSEC = yRMSS + Z1

(
yk2+(n−r)k − yN−k2+1

)
, for Cases D and G (r > 1),

= yRMSS + Z2

(
yk1 − y(n−r)k−k1+1

)
, for Cases E and F (n− r > 1),

where

Z1 =
(k + 1)(2k2− k − 2)

N [2N − 4k2 + 2− 2(n− r)k]
and Z2 =

k(2k1− k − 1)

N [2(n− r)k − 4k1 + 2]
.

Proof : See Appendix.

One can easily verify that yRMSSEC = Y , under the assumption of a perfect linear trend

in the population. However, in the presence of a rough linear trend, estimator yRMSSEC

is biased, owing to the uneven weighting of the sampling units. Under model (2.1), an
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Table 4.3: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 11 5 2 1 73.41 28.67 55.84

0.5 39 9 4 3 30.61 02.99 13.35

0.5 39 17 2 5 42.05 03.15 05.47

0.5 139 33 4 7 10.06 00.25 01.66

1 11 5 2 1 38.09 08.65 22.38

1 39 9 4 3 10.04 00.77 03.72

1 39 17 2 5 15.29 00.81 01.42

1 139 33 4 7 02.75 00.06 00.42

2 11 5 2 1 13.70 02.34 06.71

2 39 9 4 3 02.73 00.19 00.96

2 39 17 2 5 04.46 00.21 00.37

2 139 33 4 7 00.70 00.02 00.11

4 11 5 2 1 03.76 00.59 01.75

4 39 9 4 3 00.70 00.05 00.24

4 39 17 2 5 01.14 00.05 00.09

4 139 33 4 7 00.18 < 00.01 00.03

expression for the expected MSE of estimator yRMSSEC (i.e. MRMSSEC) is complex. We

will thus consider a simulation study to evaluate the performance of estimator yRMSSEC .

We next consider a similar simulation study, as in the previous section. The relative

expected MSEs of estimators yRMSS and yRLSSEC , with respect to that of yRMSSEC , is de-

noted by R′β = 100 ×MRMSSEC/Mβ(%), where β = RMSS or RLSSEC. The simulation

results are presented in Tables 4.9 and 4.10, where we see the superiority of estimator

yRMSSEC over yRMSS, with greater discrepancies as b increases. Furthermore, we note that

estimator yRMSSEC is preferred over estimator yRLSSEC , with smaller discrepancies as the

population size increases, i.e. there are marginal gains when selecting estimator yRMSSEC

over estimator yRLSSEC , for large scale sampling.
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Table 4.4: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case C of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 11 3 3 2 57.83 27.21 43.24

0.5 39 7 5 4 25.29 03.02 11.08

0.5 51 15 3 6 29.38 01.83 04.76

0.5 163 31 5 8 07.91 00.18 01.40

1 11 3 3 2 25.74 08.46 15.55

1 39 7 5 4 07.71 00.76 02.98

1 51 15 3 6 09.39 00.46 01.23

1 163 31 5 8 02.07 00.05 00.35

2 11 3 3 2 08.02 02.26 04.42

2 39 7 5 4 02.05 00.19 00.76

2 51 15 3 6 02.57 00.12 00.32

2 163 31 5 8 00.53 00.01 00.09

4 11 3 3 2 02.14 00.58 01.15

4 39 7 5 4 00.52 00.05 00.19

4 51 15 3 6 00.65 00.03 00.08

4 163 31 5 8 00.13 < 00.01 00.02

4.2.4 Concluding Remarks

A sampling design, namely RMSS, has been proposed by extending the RLSS design and

selecting units according to a mixture of MSS and CESS. Thus, RMSS is applicable when

the population size is not a multiple of the sample size and is appropriate for populations

exhibiting linear trend. In the presence of linear trend, the RMSS sample mean is subject

to less error than that of those provided by SRS, CSS and RLSS, as seen in Section

4.2.2. However, linear trend free sampling results are only obtained for three out of the

seven cases of RMSS. In Section 4.2.3, an end corrections estimator is thus constructed

for the other four cases. The simulation study conducted in Section 4.2.3, illustrates the

superiority of this end corrections estimator over the RMSS sample mean. Further results

from this study indicate that the proposed end corrections estimator is susceptible to

less error than an end corrections estimator associated with RLSS. However, the expected
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Table 4.5: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case D of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 18 5 3 3 53.50 13.90 28.48

0.5 32 9 3 5 38.12 04.70 10.29

0.5 82 15 5 7 16.04 00.76 03.51

0.5 226 31 7 9 04.72 00.10 01.06

1 18 5 3 3 27.02 04.94 11.32

1 32 9 3 5 15.15 01.42 03.24

1 82 15 5 7 05.46 00.23 01.09

1 226 31 7 9 01.43 00.03 00.31

2 18 5 3 3 14.73 02.37 05.60

2 32 9 3 5 06.66 00.57 01.31

2 82 15 5 7 02.33 00.09 00.45

2 226 31 7 9 00.57 00.01 00.12

4 18 5 3 3 11.13 01.37 04.12

4 32 9 3 5 04.18 00.35 00.81

4 82 15 5 7 01.53 00.06 00.29

4 226 31 7 9 00.35 00.01 00.07

MSEs of both end corrections estimators tend to converge as the population size increases.

Thus, one can use either end corrections estimator for large-scale sampling applications.

For this scenario, one may opt to use the end corrections estimator associated with RLSS,

owing to its simplicity.

In this chapter, we have discussed the the second of two shortcomings of systematic

sampling, i.e. if the population size is not a multiple of the sample size, resulting in sample

sizes that vary, or fixed sample sizes that are greater than required when conducting LSS.

Also, we reviewed relevant modifications of the usual systematic sampling design found

in literature as well as a suggested modified systematic sampling design that address

this problem, all under the assumption of linear trend among the population units. The

results from this chapter suggest that values of the population size, sample size and/or the

remainder needs to be considered for the relevant shortcoming at hand, before selecting
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Table 4.6: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case E of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 12 5 2 2 68.99 25.39 41.73

0.5 42 9 4 6 24.77 02.71 07.25

0.5 98 15 6 8 11.54 00.52 02.64

0.5 258 31 8 10 03.79 00.08 00.84

1 12 5 2 2 37.12 08.08 15.79

1 42 9 4 6 08.26 00.75 02.08

1 98 15 6 8 03.57 00.15 00.77

1 258 31 8 10 01.10 00.02 00.24

2 12 5 2 2 14.77 02.49 05.15

2 42 9 4 6 02.95 00.26 00.71

2 98 15 6 8 01.36 00.06 00.29

2 258 31 8 10 00.40 00.01 00.09

4 12 5 2 2 06.30 00.98 02.07

4 42 9 4 6 01.50 00.13 00.36

4 98 15 6 8 00.78 00.03 00.16

4 258 31 8 10 00.22 < 00.01 00.05

an appropriate modified systematic sampling design in the presence of linear trend. The

sampling designs in Sections 4.1.3, 4.1.4 (i.e. BRS), 4.1.5, 4.1.8, 4.1.9 (i.e. RSSS), 4.1.10

(i.e. RSSS) and 4.1.13, also solve the problem of unbiased variance estimation, as discussed

in the previous chapter. However, most of these designs do not offer favourable results

in the presence of linear trend and are not simple to apply in real life situations. If we

consider all the designs discussed in this chapter, then we note that BRS (for Case (A)) is

the only design that allows us to obtain an unbiased estimate of the associated sampling

variance, while providing linear trend free sampling results as well as offering simplicity in

it’s application. This has motivated the study in Chapter 5, where a modification to the

BRS design is proposed, which addresses all the shortcomings of systematic sampling, while

proving to be, suitable for populations exhibiting linear trend and simple to implement.
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Table 4.7: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case F of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 9 4 2 1 78.03 37.66 61.65

0.5 35 8 4 3 35.30 03.92 15.66

0.5 101 16 6 5 11.38 00.49 03.99

0.5 263 32 8 7 03.22 00.07 01.17

1 9 4 2 1 49.31 13.82 29.38

1 35 8 4 3 13.09 01.12 04.88

1 101 16 6 5 03.55 00.14 01.18

1 263 32 8 7 00.94 00.02 00.33

2 9 4 2 1 22.44 04.61 10.97

2 35 8 4 3 05.11 00.40 01.80

2 101 16 6 5 01.35 00.05 00.44

2 263 32 8 7 00.34 00.01 00.12

4 9 4 2 1 11.20 02.08 05.12

4 35 8 4 3 02.87 00.22 00.99

4 101 16 6 5 00.79 00.03 00.26

4 263 32 8 7 00.19 < 00.01 00.07
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Table 4.8: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case G of RMSS.

b N n k r RRLSS RSRS RCSS

0.5 15 4 3 3 52.83 18.78 32.67

0.5 43 8 5 3 29.71 02.87 13.59

0.5 117 16 7 5 09.31 00.38 03.57

0.5 295 32 9 7 02.74 00.06 01.09

1 15 4 3 3 27.44 07.16 14.01

1 43 8 5 3 12.53 01.00 05.11

1 117 16 7 5 03.28 00.13 01.21

1 295 32 9 7 00.86 00.02 00.34

2 15 4 3 3 15.75 03.71 07.49

2 43 8 5 3 06.80 00.51 02.67

2 117 16 7 5 01.62 00.06 00.59

2 295 32 9 7 00.38 00.01 00.15

4 15 4 3 3 12.02 02.74 05.59

4 43 8 5 3 05.23 00.39 02.06

4 117 16 7 5 01.19 00.04 00.43

4 295 32 9 7 00.19 < 00.01 00.07
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Table 4.9: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Cases D and G of RMSS.

b N n k r R′RMSS R′RLSSEC

0.5 18 5 3 3 91.90 53.01

0.5 43 8 5 3 88.85 95.56

0.5 82 15 5 7 93.53 96.90

0.5 295 32 9 7 92.33 99.35

1 18 5 3 3 71.88 52.65

1 43 8 5 3 64.47 94.52

1 82 15 5 7 77.88 96.24

1 295 32 9 7 74.57 99.46

2 18 5 3 3 37.97 51.82

2 43 8 5 3 31.42 95.40

2 82 15 5 7 46.88 96.37

2 295 32 9 7 42.38 99.02

4 18 5 3 3 13.35 52.67

4 43 8 5 3 10.23 95.47

4 82 15 5 7 18.03 96.36

4 295 32 9 7 15.55 99.19
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Table 4.10: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend

under Cases E and F of RMSS.

b N n k r R′RMSS R′RLSSEC

0.5 12 5 2 2 99.28 82.88

0.5 35 8 4 3 96.15 94.76

0.5 98 15 6 8 95.48 95.00

0.5 263 32 8 7 95.73 99.45

1 12 5 2 2 95.68 82.82

1 35 8 4 3 86.23 95.43

1 98 15 6 8 83.81 95.55

1 263 32 8 7 84.78 99.47

2 12 5 2 2 82.30 82.69

2 35 8 4 3 60.06 94.15

2 98 15 6 8 56.61 95.39

2 263 32 8 7 58.78 99.36

4 12 5 2 2 53.35 82.29

4 35 8 4 3 27.06 93.96

4 98 15 6 8 24.57 95.15

4 263 32 8 7 26.22 99.48



95

Chapter 5

Balanced Centered Random

Sampling

In this chapter, a modification of BRS, termed as balanced centered random sampling

(BCRS), is proposed. The methodologies for the various cases of the proposed design are

explained in Section 5.1. For Section 5.2, a simulation study is carried out to compare the

efficiency of BCRS, to that of SRS, LSS, CSS, STR, RLSS, RMSS, BRS, MBCSS, MCCSS,

as well as the multiple-start modified LSS designs/estimators discussed in Sections 3.1.5

and 3.2 and end corrections estimators RLSSEC, RMSSEC, MBCSSEC and MCCSSEC.

Finally, we provide a summary in Section 5.3.

5.1 Methodology

BCRS is an extension to Singh and Garg’s (1979) BRS, which is divided into four cases.

The sampling procedure for the respective cases is given as follows:

(A) if N and n > 6 are both even and N > n+ 2, then:

(i) use SRS to select (n − 4)/2 sampling units from the first N/2 − 3 population

units, with unit indices fi, for i = 1, ..., (n− 4)/2;

(ii) select two sampling units from the sample space {UN/2−2, UN/2−1, UN/2} using

SRS and label these indices as f(n−2)/2 and fn/2;

(iii) the unit indices for the remaining n/2 sampling units are then given asN−fi+1,

for i = 1, ..., n/2;
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(B) if N is even, n > 5 is odd and N > n+ 1, then:

(i) use SRS to select (n− 3)/2 sampling units from the first (N − 4)/2 population

units, with unit indices fi, for i = 1, ..., (n− 3)/2;

(ii) the unit indices for the next (n− 3)/2 sampling units are given as N − fi + 1,

for i = 1, ..., (n− 3)/2;

(iii) use SRS to select the remaining three sampling units from the sample space

{UN/2−1, UN/2, UN/2+1, UN/2+2};

(C) if N > 9 and n > 5 are both odd and N > n+ 3, then:

(i) use SRS to select (n− 3)/2 sampling units from the first (N − 5)/2 population

units, with unit indices fi, for i = 1, ..., (n− 3)/2;

(ii) the unit indices for the next (n− 3)/2 sampling units are given as N − fi + 1,

for i = 1, ..., (n− 3)/2;

(iii) use SRS to select the remaining three sampling units from the sample space

{U(N−3)/2, U(N−1)/2, U(N+1)/2, U(N+3)/2, U(N+5)/2};

(D) if N is odd, n > 4 is even and N > n+ 1, then:

(i) use SRS to select (n− 2)/2 sampling units from the first (N − 3)/2 population

units, with unit indices fi, for i = 1, ..., (n− 2)/2;

(ii) the unit indices for the next (n− 2)/2 sampling units are given as N − fi + 1,

for i = 1, ..., (n− 2)/2;

(iii) use SRS to select the remaining two sampling units from the sample space

{U(N−1)/2, U(N+1)/2, U(N+3)/2}.

Note that only cases (A) to (C) are applicable when the population size is a multiple of the

sample size, while all cases may be applicable when the population size is not a multiple

of the sample size.

Theorem 15: For the respective cases of BCRS, the first-order inclusion probabilities

πq for the unit Uq and the second-order inclusion probabilities πqz for the pair of units

{Uq, Uz}, q, z ∈ {1, ..., N}(q 6= z), are given as follows:

(A) if N and n > 6 are both even, where N > n+2 and A = {N/2−2, N/2−1, ..., N/2+
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3}, then:

πq = 4/6, if q ∈ A

= (n− 4)/(N − 6), otherwise

and

πqz = (n− 4)/(N − 6), if q + z = N + 1 and q, z /∈ A

= (n− 4)(n− 6)/(N − 6)(N − 8), if q + z 6= N + 1 and q, z /∈ A

= 4/6, if q + z = N + 1 and q, z ∈ A

= 1/3, if q + z 6= N + 1 and q, z ∈ A

= 4(n− 4)/6(N − 6), otherwise;

(B) if N is even and n > 5 is odd, where N > n + 1 and B = {N/2 − 1, ..., N/2 + 2},

then:

πq = 3/4, if q ∈ B

= (n− 3)/(N − 4), otherwise

and

πqz = (n− 3)/(N − 4), if q + z = N + 1 and q, z /∈ B

= (n− 3)(n− 5)/(N − 4)(N − 6), if q + z 6= N + 1 and q, z /∈ B

= 1/2, if q, z ∈ B

= 3(n− 3)/4(N − 4), otherwise;

(C) if N > 9 and n > 5 is odd, where N > n + 3 and C = {(N − 3)/2, ..., (N + 5)/2},

then:

πq = 3/5, if q ∈ C

= (n− 3)/(N − 5), otherwise

and

πqz = (n− 3)/(N − 5), if q + z = N + 1 and q, z /∈ C

= (n− 3)(n− 5)/(N − 5)(N − 7), if q + z 6= N + 1 and q, z /∈ C

= 3/10, if q, z ∈ C

= 3(n− 3)/5(N − 5), otherwise;
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(D) if N is odd and n > 4 is even, where N > n+1 and D = {(N−1)/2, (N+1)/2, (N+

3)/2}, then:

πq = 2/3, if q ∈ D

= (n− 2)/(N − 3), otherwise

and

πqz = (n− 2)/(N − 3), if q + z = N + 1 and q, z /∈ D

= (n− 2)(n− 4)/(N − 3)(N − 5), if q + z 6= N + 1 and q, z /∈ D

= 1/3, if q, z ∈ D

= 2(n− 2)/3(N − 3), otherwise.

Proof : One can easily prove the above theorem by using the basic derivation of the

inclusion probabilities under SRS and first principles.

Using the above inclusion probabilities, the Horvitz-Thompson (1952) estimate of the

population mean is given as

yBCRS = ŶHT =
1

n

∑
Uq∈s

yq
πq
,

the BCRS sample mean with a Yates-Grundy (1953) form variance

V (yBCRS) =
1

N2

N∑
q=1

N∑
z>q

(
1− N2

n2
πqz

)
(yq − yz)2 , (5.1)

which is estimated by

V̂ (yBCRS) =
1

2N2

∑
Uq∈s

∑
Uz∈s
z 6=q

(
1

πqz
− N2

n2

)
(yq − yz)2 ,

where s is the sample selected.

Now, expression (5.1) can be written as

V (yBCRS) =
1

N2

N∑
q=1

N∑
z>q

[
1− πqz

π2
q

]
(yq − yz)2 (5.2)

Note that it is difficult to simplify (5.2) further, owing to the complex structure of the

second-order inclusion probabilities for the proposed design, i.e. simple theoretical ex-

pected MSE comparisons between estimator yBCRS and other comparative estimators are

difficult to obtain. Thus, we will resort to a simulation study in the next section.
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5.2 Empirical Comparisons

Without loss of generality, we consider the ei’s in (2.1) to be iid N(0, 1) random variables

and set a = 5. Monte Carlo simulations are then employed by means of the statistical

software package R, whereby 10 000 finite linear trend populations are simulated. The

expected MSE of each estimator is obtained as the mean of the MSEs over the 10 000

populations. The relative expected MSEs of each comparative estimator, with respect to

that of estimator yBCRS, is denoted by Rα = 100×MBCRS/Mα(%), where MBCRS denotes

the expected MSE of the BCRS sample mean under model (2.1) and α = SRS, LSS, STR,

CSS, MLSS, MYEC, MBSS, MMSS, MBMSS, MBMSSEC, RLSS, RMSS, RMSSEC, BRS,

MBCSS, MBCSSEC, MCCSS and MCCSSEC. The results are presented in Tables 5.1 to

5.12. To compare BCRS to the multiple-start designs we let n = n′m and k = l, i.e. we

are selecting m samples of size n′ from the k = l possible samples. While we attempted

for four variations of variables for each of the four Cases (for both N = nk and N 6= nk

scenarios), we note that larger values of N and n were not possible for Cases B and C

with the scenario of N = nk, as seen in Tables 5.5 and 5.8, respectively. This is due to

the memory limitations when executing the relative R code on the computer.

From Tables 5.1 to 5.12, we note that BCRS is more efficient than SRS for all cases

and more efficient than BRS for Cases B, C and D, while being equally efficient to BRS

for Case A. Also, if we consider Tables 5.1, 5.2, 5.5 and 5.8, we see that BCRS is more

efficient than LSS, STR and MLSS. By analysing the results in Tables 5.3, 5.4, 5.6, 5.7,

5.9, 5.10, 5.11 and 5.12, we note that BCRS is more efficient than CSS and RLSS. By

choosing BCRS over LSS, SRS, STR (Cases B and C), MLSS, BRS (Cases B to D) and

RLSS (Cases B to D), we see that there are more efficiency gains as b and/or N and/or

n increases. Also, if we opt for BCRS over STR (Case A), CSS and RLSS (Case A), we

note that relative results are improved as b increases.

Now, let us compare BCRS to BMSS and the BMSSEC estimator. In Tables 5.1 and

5.2 (i.e. Case A) we note that n = 8 and 12 are related to Case A of BMSS and n = 10

and 14 are related to Case B of BMSS. Hence, the BMSSEC estimator is not applicable

for n = 8 and 12. Clearly BCRS is equally efficient to BMSS for Case A of BMSS for

low values of b, while more efficient than BMSS as b and/or n increases. For Case B

of BMSS, we see that BCRS is more efficient that BMSS. Also, BCRS is approximately

equally efficient to BMSSEC for Case B of BMSS. If we consider Tables 5.5 and 5.8 (i.e.
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Cases B and C), we note that n = 9 is related to Case E of BMSS and n = 15 is related to

Case D of BMSS. For these scenarios, both BMSS and the BMMSSEC estimator are more

efficient than BCRS with greater efficiency gains when selecting BMSS and the BMSSEC

estimator over BCRS as b increases.

Next, consider the comparisons of BCRS to the modified multiple-start designs, i.e.

MBSS, MMSS, MYEC, MBMSS, and the MBMSSEC estimator. In Tables 5.1 and 5.2

we note that n′ = 4, 5, 6 and 7 relate to Cases A, E, B and D of MBMSS, respectively.

Thus, the MBMSSEC estimator is not applicable when n′ = 4. The results are expected,

as BCRS, which is a trend free sampling design for Case A, is equally efficient to MBSS

(n′ is even), MMSS (n′ is even), MBMSS (n′ = 4 or Case A of MBMSS) and the MBSSEC

estimator. Furthermore, BCRS is more efficient than MBSS (n′ is odd), MMSS (n′ is

odd), MYEC and MBMSS (n′ = 5, 6 and 7 or Cases E, B and D of MBMSS). If we

examine Tables 5.5 and 5.8 we note that n′ = 3 and 5 relate to Cases C and E of MBMSS,

respectively. Again, the results are expected, as BCRS is more efficient than MBSS,

MMSS and MBMSS, since all these multiple-start designs are equally efficient when n′ is

odd. Note that there are grater efficiency gains when choosing BCRS over MBSS, MMSS

or MBMSS as b increases. Moreover, BCRS is less efficient than estimators MYEC and

MBMSSEC with greater efficiency gains when selecting estimators MYEC and MBMSSEC

over BCRS as b increases.

Next, let us compare BCRS to estimators RLSSEC and RMSSEC as well as RMSS.

If we consider Tables 5.3 and 5.4 (i.e. Case A), then we note that Case A of RMSS is

related. For this scenario, BCRS is more efficient than RMSS with greater efficiency gains

as b increases. Next, let us examine Tables 5.6 and 5.7 (i.e. Case B), where N = 16 and 20

represent Case E of RMSS, while N = 24 and 30 represent Case D of RMSS. Here, BCRS

is more efficient than the RLSSEC estimator if b = 0.5, while less efficient if b = 1, 2 and

4. Similarly, BCRS is approximately equally efficient to the RMSSEC if b = 0.5, while

less efficient if b = 1, 2 and 4. We see greater efficiency gains when selecting either the

RLSSEC or RMSSEC estimator, over BCRS as b increases. For Case E of RMSS, BCRS is

approximately equally efficient to RMSS when b = 0.5, while less efficient if b = 1, 2 and 4.

We note greater efficiency gains when opting for RMSS over BCRS as b increases. For Case

D of RMSS, BCRS is more efficient than RMSS with greater efficiency gains as b increases.

Now, let us analyse Tables 5.9 and 5.10 (i.e. Case C), where N = 17 and 21 relate to

Case B of RMSS, while N = 23 and 29 relate to Case C of RMSS. Clearly RMSS is more
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Table 5.1: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case A of BCRS (N = nk and b = 0.5, 1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 16 20 24 28 16 20 24 28

n, n′ 8, 4 10, 5 12, 6 14, 7 8, 4 10, 5 12, 6 14, 7

k = l 2 2 2 2 2 2 2 2

m 2 2 2 2 2 2 2 2

RLSS 48.86 44.27 40.04 35.53 19.74 16.41 14.26 12.53

RSRS 14.95 10.28 07.39 05.56 04.22 02.76 01.97 01.45

RSTR 88.38 88.57 88.66 88.52 66.44 66.10 66.61 66.82

RBMSS 100.93 92.97 100.21 96.49 101.44 84.81 100.77 86.98

RBMSSEC N/A 97.54 N/A 100.23 N/A 102.50 N/A 99.91

RMLSS 37.09 32.25 28.61 25.38 13.01 10.67 09.10 07.91

RMBSS 101.22 91.57 100.14 94.06 99.24 74.07 99.69 81.94

RMMSS 99.20 90.90 98.69 94.41 100.64 74.38 100.31 81.72

RMY EC 95.07 96.25 98.43 98.17 95.46 97.06 97.70 98.79

RMBMSS 99.22 91.84 77.65 94.87 99.25 74.70 47.82 81.59

RMBMSSEC N/A 99.49 98.75 100.46 N/A 99.93 100.17 100.42

RBRS 99.99 99.94 99.94 99.98 100.04 100.09 100.08 99.95

efficient than BCRS with greater efficiency gains as b increases. For the final scenario,

we will evaluate Tables 5.11 and 5.12 (i.e. Case D), where N = 15 and 19 associate with

Case F of RMSS, while N = 21 and 27 associate with Case G of RMSS. Here, BCRS is

more often than not, more efficient than the RLSSEC estimator when b = 0.5 and 1, while

BCRS is less efficient than the RLSSEC estimator if b = 2 and 4. Likewise, BCRS is more

often than not, slightly more efficient than the RMSSEC estimator when b = 0.5, while

BCRS is less efficient than the RMSSEC estimator if b = 1, 2 and 4. Note that there are

greater efficiency gains when selecting either the RLSSEC or RMSSEC estimator, over

BCRS as b increases. For Case F of RMSS, BCRS is more efficient than RMSS when

b = 0.5, while less efficient if b = 1, 2 and 4. Note that there are greater efficiency gains

when opting for BCRS over RMSS, as b increases. Conversely, BCRS is more efficient

than RMSS for Case G of RMSS, with greater efficiency gains as b increases.
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Table 5.2: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case A of BCRS (N = nk and b = 2, 4).

b 2 2 2 2 4 4 4 4

N 16 20 24 28 16 20 24 28

n, n′ 8, 4 10, 5 12, 6 14, 7 8, 4 10, 5 12, 6 14, 7

k = l 2 2 2 2 2 2 2 2

m 2 2 2 2 2 2 2 2

RLSS 05.93 04.72 04.00 03.45 01.55 01.23 01.02 00.89

RSRS 01.09 00.71 00.49 00.37 00.28 00.18 00.12 00.09

RSTR 33.60 33.03 33.30 33.39 11.22 11.05 11.01 11.14

RBMSS 99.50 54.23 96.81 64.20 102.13 23.83 95.89 30.63

RBMSSEC N/A 97.75 N/A 102.03 N/A 99.46 N/A 102.29

RMLSS 03.63 02.90 02.43 02.10 00.94 00.74 00.62 00.53

RMBSS 100.31 43.09 100.75 51.57 99.35 15.61 101.11 20.85

RMMSS 99.69 42.98 100.80 50.95 100.76 15.73 99.75 20.83

RMY EC 95.59 97.00 97.65 99.54 95.05 94.94 96.51 98.65

RMBMSS 101.58 42.74 18.36 51.03 100.41 15.70 05.26 20.90

RMBMSSEC N/A 100.48 100.08 101.10 N/A 100.60 98.60 99.25

RBRS 100.17 100.09 99.96 100.04 100.12 100.04 99.99 100.11

Finally, we will compare BCRS to MBCSS, MCCSS as well as estimators MBCSSEC

and MCCSSEC. If we examine Tables 5.3 and 5.4, we note that BCRS is equally efficient

to MBCSS, while more efficient than MCCSS and estimator MCCSSEC. Note that there

are greater efficiency gains when selecting BCRS over estimator MCCSSEC, as b and/or

N increases. Next, consider Tables 5.6 and 5.7, where BCRS is more efficient than MBCSS

and estimator MBCSSEC when b is small and less efficient when b is not small, i.e. there are

greater efficiency losses when choosing BCRS over MBCSS (or estimator MBCSSEC) as b

and/or N increases. We also note that BCRS is less efficient than estimator MCCSSEC,

with greater efficiency losses as b increases. Moreover, BCRS is more efficient than MCCSS,

with greater efficiency gains as b increases. Now, let us evaluate Tables 5.9 and 5.10. Here,

BCRS is more efficient than MBCSS when b is small and less efficient when b is not small,

i.e. there are greater efficiency losses when choosing BCRS over MBCSS as b increases.
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Also, BCRS is less efficient than MCCSS with greater efficiency losses when choosing

BCRS over MBCSS as b increases. Finally, we will examine Tables 5.11 and 5.12. We

note that BCRS is more efficient than MCCSS, where we see greater gains in efficiency

when selecting BCRS over MCCSS as b and/or N increases. Lastly for this scenario,

we note that BCRS is more efficient than MBCSS and estimator MCCSSEC when b is

small and less efficient when b is not small, where there are greater efficiency losses when

selecting BCRS over MBCSS (or estimator MCCSSEC) as b increases.

Table 5.3: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case A of BCRS (N 6= nk and b = 0.5, 1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 18 26 28 38 18 26 28 38

n 8 12 8 12 8 12 8 12

k 2 2 3 3 2 2 3 3

r 2 2 4 4 2 2 4 4

RCSS 29.53 21.87 13.73 17.39 09.31 06.57 03.80 04.99

RSRS 12.33 06.38 05.60 03.14 03.36 01.67 01.45 00.80

RBRS 99.93 99.95 100.11 100.11 100.01 99.92 99.71 99.92

RRLSS 02.48 02.10 02.79 03.01 00.96 00.73 01.03 00.95

RRMSS 02.52 02.14 02.91 03.20 00.98 00.75 01.10 01.04

RMBCSS 100.67 100.00 100.38 100.57 99.52 99.37 99.90 100.10

RMCCSS 53.14 41.46 26.58 18.54 21.47 15.34 08.20 05.40

RMCCSSEC 93.88 98.78 95.19 96.86 94.29 96.85 98.16 99.08

In this chapter, we suggested a modification to the BRS design, which addresses all

the shortcomings of systematic sampling, while proving to be, suitable for populations

exhibiting linear trend and simple to implement. The results from this chapter suggest

that values of the population size, sample size and/or the degree of trend, needs to be

considered, before determining if the proposed modified systematic sampling design is

the most appropriate choice, when compared to alternative modified systematic sampling

designs. Now that we have examined all modifications of LSS under the assumption of

linear trend among the population units, we will next provide a comprehensive report on

the thesis, which will include suggested designs and/or estimators under various scenarios,
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Table 5.4: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case A of BCRS (N 6= nk and b = 2, 4).

b 2 2 2 2 4 4 4 4

N 18 26 28 38 18 26 28 38

n 8 12 8 12 8 12 8 12

k 2 2 3 3 2 2 3 3

r 2 2 4 4 2 2 4 4

RCSS 02.55 01.72 00.98 01.31 00.65 00.44 00.25 00.33

RSRS 00.87 00.42 00.37 00.20 00.22 00.11 00.09 00.05

RBRS 99.99 99.92 100.15 100.21 99.97 100.02 99.94 100.17

RRLSS 00.31 00.22 00.33 00.27 00.09 00.06 00.09 00.07

RRMSS 00.33 00.23 00.35 00.30 00.09 00.06 00.10 00.08

RMBCSS 99.59 100.52 99.39 99.82 100.39 100.80 99.87 99.60

RMCCSS 06.47 04.32 02.12 01.40 01.69 01.10 00.56 00.36

RMCCSSEC 96.62 97.90 93.45 96.68 95.29 96.19 94.70 97.79

limitations of the current research as well as future recommendations/studies.
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Table 5.5: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of BCRS (N = nk).

b 0.5 0.5 1 1 2 2 4 4

N 18 30 18 30 18 30 18 30

n, n′ 9, 3 15, 5 9, 3 15, 5 9, 3 15, 5 9, 3 15, 5

k = l 2 2 2 2 2 2 2 2

m 3 3 3 3 3 3 3 3

RLSS 49.78 36.62 23.01 13.86 11.11 05.39 07.46 03.03

RSRS 13.15 05.13 04.32 01.49 01.83 00.54 01.19 00.30

RSTR 95.01 92.92 84.77 78.03 70.42 55.63 60.57 40.74

RBMSS 106.52 101.48 119.44 114.50 173.88 143.67 288.64 242.83

RBMSSEC 108.21 102.17 125.67 118.32 211.90 162.72 550.19 370.12

RMLSS 29.44 19.41 11.09 06.33 04.88 02.35 03.21 01.31

RMBSS 83.32 88.98 58.94 68.54 37.14 43.95 27.51 30.02

RMMSS 82.40 88.22 59.32 68.33 37.07 43.83 27.63 30.03

RMY EC 101.71 102.49 121.97 113.73 201.50 163.95 519.35 366.10

RMBMSS 83.09 88.81 58.62 68.80 36.96 43.91 27.71 29.93

RMBMSSEC 106.57 104.16 126.63 116.64 208.79 166.59 542.82 369.50

RBRS 42.85 29.87 18.27 10.64 08.42 04.07 05.61 02.28
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Table 5.6: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of BCRS (N 6= nk and b = 0.5, 1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 16 20 24 30 16 20 24 30

n 7 9 7 9 7 9 7 9

k 2 2 3 3 2 2 3 3

r 2 2 3 3 2 2 3 3

RCSS 34.73 28.85 21.19 17.30 13.93 10.73 07.29 05.62

RSRS 16.14 10.94 07.89 05.15 05.57 03.50 02.49 01.53

RBRS 45.83 39.77 31.19 26.42 20.61 16.31 11.72 09.30

RRLSS 64.92 58.37 48.30 43.15 38.12 31.15 21.54 18.02

RRLSSEC 94.54 96.01 93.23 97.21 115.25 114.45 109.29 111.63

RRMSS 101.21 100.80 95.79 94.83 117.39 113.74 91.16 90.61

RRMSSEC 102.10 101.69 102.32 100.50 122.36 118.32 120.30 114.41

RMBCSS 89.52 90.65 94.67 95.56 104.72 102.39 109.19 107.62

RMBCSSEC 90.53 92.12 95.74 96.42 110.28 108.19 114.34 109.93

RMCCSS 60.26 53.17 65.42 58.81 32.50 24.61 36.14 28.56

RMCCSSEC 103.08 100.78 104.72 105.38 126.14 121.59 124.49 118.20



107

Table 5.7: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of BCRS (N 6= nk and b = 2, 4).

b 2 2 2 2 4 4 4 4

N 16 20 24 30 16 20 24 30

n 7 9 7 9 7 9 7 9

k 2 2 3 3 2 2 3 3

r 2 2 3 3 2 2 3 3

RCSS 06.53 04.58 03.08 02.17 04.47 02.91 01.94 01.28

RSRS 02.47 01.43 01.00 00.58 01.67 00.90 00.63 00.34

RBRS 10.04 07.24 05.08 03.68 06.96 04.65 03.24 02.19

RRLSS 21.43 15.50 10.07 07.57 15.55 10.30 06.55 04.58

RRLSSEC 196.77 181.57 175.43 166.47 532.19 457.23 439.03 390.52

RRMSS 177.91 161.19 84.25 82.03 323.11 294.51 77.23 74.47

RRMSSEC 208.95 184.60 193.39 171.35 562.71 468.22 483.16 398.99

RMBCSS 156.14 146.13 153.96 145.43 274.77 253.26 262.06 243.47

RMBCSSEC 190.16 172.38 182.81 164.32 516.23 436.18 460.14 383.67

RMCCSS 16.90 11.63 18.45 13.09 11.92 07.60 12.45 07.97

RMCCSSEC 217.99 193.51 198.79 176.06 579.41 487.04 498.99 411.68
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Table 5.8: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case C of BCRS (N = nk).

b 0.5 0.5 1 1 2 2 4 4

N 27 45 27 45 27 45 27 45

n, n′ 9, 3 15, 5 9, 3 15, 5 9, 3 15, 5 9, 3 15, 5

k = l 3 3 3 3 3 3 3 3

m 3 3 3 3 3 3 3 3

RLSS 34.85 21.94 14.93 08.02 08.14 03.53 06.20 02.40

RSRS 06.69 02.40 02.34 00.75 01.19 00.32 00.89 00.21

RSTR 90.31 85.27 75.01 65.07 60.22 43.24 52.92 34.06

RBMSS 108.71 106.28 135.12 122.99 206.31 174.03 327.29 279.53

RBMSSEC 111.40 109.23 149.72 130.11 299.54 223.21 904.20 576.51

RMLSS 16.94 10.14 16.37 03.38 03.30 01.44 02.49 00.96

RMBSS 69.36 78.71 43.03 52.51 27.25 31.25 21.95 23.22

RMMSS 69.79 78.60 42.79 52.63 27.25 31.14 21.95 23.08

RMY EC 107.69 106.31 144.21 127.13 283.81 216.99 868.42 559.17

RMBMSS 69.38 79.70 42.73 52.63 27.27 31.06 21.95 23.12

RMBMSSEC 111.85 109.16 149.50 132.58 296.72 218.62 903.46 562.88

RBRS 50.32 35.63 25.31 14.63 14.51 06.67 11.26 04.53
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Table 5.9: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case C of BCRS (N 6= nk and b = 0.5, 1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 17 21 23 29 17 21 23 29

n 7 9 7 9 7 9 7 9

k 2 2 3 3 2 2 3 3

r 3 3 2 2 3 3 2 2

RCSS 26.77 21.13 29.73 24.41 11.85 08.56 12.98 09.57

RSRS 16.03 10.73 09.27 05.87 06.52 04.01 03.45 02.02

RBRS 74.56 68.67 52.30 45.68 51.41 43.38 27.67 21.74

RRLSS 65.73 60.16 53.99 45.49 43.93 37.13 29.90 21.72

RRMSS 108.79 107.24 112.18 109.20 161.07 149.65 155.09 146.37

RMBCSS 82.96 78.97 90.57 88.30 121.73 109.03 127.66 117.33

RMCCSS 121.56 114.60 115.33 111.54 175.18 158.96 163.55 148.93

Table 5.10: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend

under Case C of BCRS (N 6= nk and b = 2, 4).

b 2 2 2 2 4 4 4 4

N 17 21 23 29 17 21 23 29

n 7 9 7 9 7 9 7 9

k 2 2 3 3 2 2 3 3

r 3 3 2 2 3 3 2 2

RCSS 07.08 04.70 07.38 04.99 05.79 03.67 05.87 03.75

RSRS 03.81 02.15 01.87 01.01 03.09 01.67 01.47 00.75

RBRS 37.61 28.77 16.97 12.10 32.68 23.81 13.80 09.27

RRLSS 31.24 24.00 18.70 12.15 26.83 19.64 15.30 09.31

RRMSS 361.75 313.19 335.08 286.74 1191.79 954.76 1071.17 859.97

RMBCSS 276.35 232.60 273.70 232.65 888.61 712.96 851.24 687.06

RMCCSS 398.23 331.05 352.49 297.27 1248.78 1019.49 1070.99 869.78
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Table 5.11: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend

under Case D of BCRS (N 6= nk and b = 0.5, 1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 15 19 21 27 15 19 21 27

n 6 8 6 8 6 8 6 8

k 2 2 3 3 2 2 3 3

r 3 3 3 3 3 3 3 3

RCSS 26.68 21.38 22.91 18.41 09.29 06.91 07.69 05.80

RSRS 17.45 11.74 09.73 06.12 05.59 03.49 02.91 01.74

RBRS 36.89 32.29 23.78 19.93 14.06 11.47 07.98 06.35

RRLSS 59.32 57.57 48.36 44.12 30.14 28.04 20.99 18.01

RRLSSEC 73.65 89.75 81.21 92.87 82.95 98.57 90.70 102.03

RRMSS 97.37 97.15 92.04 92.13 106.28 104.08 81.38 82.74

RRMSSEC 97.99 97.93 99.90 97.84 109.93 107.51 109.42 106.89

RMBCSS 79.04 75.41 86.99 85.12 89.51 83.86 96.29 92.70

RMCCSS 29.39 23.13 18.19 14.06 10.73 07.71 05.81 04.27

RMCCSSEC 88.72 92.18 88.04 94.44 97.01 100.05 97.87 102.00
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Table 5.12: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend

under Case D of BCRS (N 6= nk and b = 2, 4).

b 2 2 2 2 4 4 4 4

N 15 19 21 27 15 19 21 27

n 6 8 6 8 6 8 6 8

k 2 2 3 3 2 2 3 3

r 3 3 3 3 3 3 3 3

RCSS 03.67 02.50 02.83 01.98 02.11 01.33 01.55 00.99

RSRS 02.16 01.24 01.04 00.58 01.23 00.65 00.57 00.29

RBRS 05.74 04.29 02.96 02.18 03.33 02.30 01.62 01.09

RRLSS 14.27 12.01 08.55 06.78 08.63 06.71 04.82 03.48

RRLSSEC 123.10 135.34 125.95 133.08 276.19 287.50 273.09 262.09

RRMSS 140.18 128.85 63.07 64.04 220.13 196.55 48.88 48.35

RRMSSEC 162.12 147.34 153.67 140.14 363.40 307.07 332.58 275.41

RMBCSS 130.79 114.84 134.75 121.03 298.42 241.80 289.61 241.31

RMCCSS 04.23 02.81 02.11 01.43 02.47 01.49 01.15 00.71

RMCCSSEC 141.34 139.19 138.08 131.98 318.73 286.99 292.42 266.86
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Chapter 6

Summary

Conventional systematic sampling, also referred to as LSS, is commonly applied in practical

survey sampling, owing to its simplicity and operational convenience when implemented.

However, there exists two key disadvantages when conducting LSS, which are given as

follows:

(i) It is impossible to obtain an unbiased estimate of the sampling variance when con-

ducting LSS with a single random start.

(ii) If the population size is not a multiple of the sample size, then conducting LSS will

either result in sample sizes that vary, or fixed sample sizes that are greater than the

required sample size. The former situation leads to biased estimates of population

parameters, while the latter scenario is undesirable, as sample sizes are usually fixed

beforehand often owing to budget constraints.

In this study, we aim to solve both disadvantages independently and in tandem while

assuming the linear trend population structure.

6.1 Conclusions

The results from this thesis are summarized as follows:

(i) In the presence of linear trend, LSS is more efficient than CSS, but less efficient

than STR. Accordingly, many authors have suggested modified LSS designs and/or

estimators, as seen in Chapter 2, which are briefly summarized as follows:

1: Yates (1948) proposed an end corrections estimator (i.e the YEC estimator)

which corrects the usual LSS estimator by applying appropriate weights to
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the first and last sampling units, thus removing the linear trend component

in the associated expected MSE of the sample mean. The uneven weighting of

sampling units result in a larger error variance component in the expected MSE

of the corresponding sample mean. Regardless, we can expect this estimator to

be more efficient than that which is related to LSS, in the presence of a rough

linear trend.

2: Madow (1953) suggested that the centrally located systematic sample be se-

lected, thus requiring no randomization. As a result, certain population units

have a zero probability of being selected for the sample, which results in the

sample mean being biased. Nevertheless, the associated sample mean is equiv-

alent to the population mean in the presence of a perfect linear trend in the

population when k is odd. Moreover, the expected MSE of the sample mean is

minimized when k is odd under the realistic linear trend model, given in (2.1).

3: Sethi (1965) and Murthy (1967) proposed a sampling design which reverses the

order of every alternative set of k population units, before applying LSS. As

such, the corresponding sample mean is design-unbiased. Under model (2.1),

the expected MSE of the sample mean is minimized when n is even.

4: Singh et al. (1968) suggested an arrangement which reverses the order of a

subset of population units which occurs at the end of the population. If n is

even, then the last N/2 population units are reversed, while the case of n is

odd results in the last (N − k)/2 population units being reversed. LSS is then

applied to this modified arrangement, such that the sample mean is design-

unbiased. The expected MSE of the sample mean is equivalent to that of BSS

for model (2.1), where optimal results are obtained when n is even.

5: Subramani (2000) proposed a sampling scheme, DSS, which arranges the pop-

ulation in a matrix, before selecting units in a diagonal fashion. This design is

only applicable when n ≤ k. The sample mean is a design-unbiased estimator of

the population mean and the expected MSE of this sample mean, under model

(2.1), is minimized when n = k. Consequently, an end corrections estimator is

suggested to remove the linear trend component in the expected MSE of the

sample mean. As with the YEC estimator, this adjusted estimator is equivalent

to the population mean in the presence of a perfect linear trend, while being

slightly biased under model (2.1). Subramani (2009, 2010) later introduced a
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generalization of Subramani’s (2000) DSS which is applicable for all cases of n

and reduces to DSS under a certain condition on the sample size. Under model

(2.1), the expected MSE of the associated sample mean is minimized if n is a

multiple of k.

(ii) Optimal sampling results in the presence of linear trend are unobtainable for the

case of n is odd and k is even. A modified design is then suggested in Section 2.4,

which is a mixture of BSS and MSS and is termed as BMSS. There are five cases

of the design and one of the cases (i.e. n/2 is an even integer) results in optimum

sampling results under model (2.1). For the other cases, an end corrections estimator

was constructed, i.e. the BMSSEC estimator. Under model (2.1), BMSS is equally

efficient to BSS and MSS for four of the five cases, while less efficient for one of the

cases (i.e. n/2 is an odd integer). The results from this thesis suggest that BMSS,

BSS or MSS is to be preferred for the case of n/2 being an even integer, while BSS

or MSS is to be preferred when n/2 is an odd integer. For all other cases (i.e. n

is odd), CESS is to be preferred if k is odd. The final scenario of n is odd and k

is even, results in the BMSSEC estimator being preferred over the YEC estimator

if n and k are small and preference is given to minimum MSE. Otherwise, one may

opt to use the YEC estimator, owing to its simplistic preference over the BMSSEC

estimator.

(iii) To solve the shortcoming of being unable to estimate the sample variance when

conducting LSS with a single random start, various modified systematic sampling

designs have been proposed, as seen in Section 3.1. Gautschi (1957) proposed that

the usual LSS design be applied with multiple random starts. Thus, the second-order

inclusion probabilities for every pair of population units are non-zero, ensuring that

an unbiased estimate of the sampling variance is obtainable. The multiple-start

approach assumes that the sample size is a non-prime integer. Sampath & Ammani

(2010) applied this multiple-start approach to the YEC estimator as well as BSS

and MSS, while Subramani & Singh (2014) applied the multiple-start approach to

DSS. If we denote the required sample size as n = n′m and let N = n′mk, where

m is the number of random starts, such that m samples of size n′ are selected from

the k possible samples using SRS, then for model (2.1) we obtain optimal sampling

results for MBSS and MMSS when n′ is even as well as for MDSS when n′ = mk.
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Another important modified design worth mentioning is BRS, proposed by Singh &

Garg (1979), which offers linear trend free sampling if N and n are both even.

(iv) A modified design, MBMSS, which adopts the multiple-start approach on BMSS,

was then proposed in Section 3.2. The results are similar to that in Section 2.4,

where BMSS was suggested. There are five cases of the design and one of the cases

(i.e. n′/2 is an even integer) results in optimum sampling results under model (2.1).

For the other cases, an associated end corrections estimator was derived, i.e. the

MBMSSEC estimator. Under model (2.1), MBMSS is equally efficient to MBSS and

MMSS for four of the five cases, while less efficient for one of the cases (i.e. n′/2 is

an odd integer). The results from this thesis suggest that MBMSS, MBSS or MMSS

is to be preferred for the case of n′/2 being an even integer, while MBSS or MMSS

is to be preferred when n′/2 is an odd integer. All other cases (i.e. n′ is odd), result

in the MBMSSEC estimator being preferred over the MYEC estimator if n′, m and

k are small and preference is given to minimum MSE. Otherwise, one may opt to

use the MYEC estimator over the MBMSSEC estimator, when simplicity is to be

preferred.

(v) To tackle to problem of the population size not being a multiple of the sample size,

many modified designs have been presented in literature and summarized in Section

4.1. Lahiri (1951) considered CSS, whereby the population is arranged in a circular

fashion and sampling units are selected systematically with respect to a sampling

interval. BRS, which solves the problem of being unable to obtain an unbiased

estimate of the sampling variance, also tackles the above-mentioned shortcoming.

Uthayakumaran (1998) then adopted the CSS approach on BSS and CESS, which

was later modified by Leu & Kao (2006) and known as MBCSS and MCCSS, re-

spectively. Under model (2.1), optimum sampling results are obtained for MBCSS

if N is odd or n is even, while MCCSS offers optimum sampling results when N

and n are both odd. In addition, Sampath & Varalakshmi (2009) combined DSS

and CSS, known as DCSS. DCSS is not a linear trend free sampling design and thus

an associated end corrections estimator was constructed. Chang & Huang (2000)

introduced RLSS, which divides the population into two strata before independently

applying LSS within each strata, such the the selected sampling units from each

strata collectively represent the sample. RLSS is not a linear trend free sampling
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design and hence a corresponding end corrections estimator, termed as the RLSSEC

estimator, was derived by Chang & Huang (2000). Finally, we note that Mostafa

& Ahmad (2016) adopted the multiple-start approach on RLSS, so as to solve both

LSS shortcomings in tandem. This design is not a linear trend free sampling design.

Also, the design requires that (n − r) and r are non-prime integers, which is often

not the case.

(vi) A modified design, known as RMSS, which is a mixture of RLSS, MSS and CESS,

was then proposed in Section 4.2, i.e. the population is divided into two strata, where

either MSS or CESS is applied within each strata, such that the selected sampling

units from each strata collectively represent the sample. There are seven cases of the

design and three of these seven cases result in linear trend free sampling. For the

other four cases, an ends corrections estimator, termed as the RLSSEC estimator,

was derived. The results in this thesis indicate that RMSS is more efficient than

SRS, CSS and RLSS, with greater efficiency gains as N and/or b increases. Also, we

showed that the RMSSEC estimator is to be preferred over the RLSSEC estimator

if we are not tackling a large-scale sampling scenario. For large-scale sampling, both

estimators are approximately equally efficient, thus one may opt to use the MYEC

estimator over the MBMSSEC estimator, owing to simplicity.

(vii) As noted previously, BRS is the only modified sampling design that tackles both LSS

disadvantages in tandem without any loss of simplicity, while providing favourable

results in the presence of linear trend. Therefore, a modification to the BRS design,

termed as BCRS, was proposed in Chapter 5. BCRS is a mixture of BRS and

SRS, which is applied on a centered subset of the population. Thus, we are able to

maintain simplicity. Under model (2.1), BCRS is equally efficient to BRS for one of

the four cases (i.e. if N and n > 6 are both even, where N > n + 2), while more

efficient than BRS for the other three cases, with greater efficiency gains as N , n

and/or b increases. Various efficiency comparisons between BCRS and other modified

sampling designs have been considered in Chapter 5. Earlier in this thesis, we noted

that the most desirable sampling design(s) and/or estimator(s) are those that: (1)

exhibit minimum MSE of the associated sample mean, (2) are simple to apply in

practical situations and (3) offer the possibility of obtaining an unbiased estimate

of the corresponding sampling variance. Using this notion, recommendations of
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sampling designs for various scenarios under model (2.1), which use the results from

this thesis, have been presented in Tables 6.1 and 6.2. In Table 6.1, the first column

represents the condition if the sample size is a prime integer or not. The second

column represents the various cases of BCRS, while the third column represents

two cases of MBMSS, i.e. if n′/2 is an even integer or not. Columns four to six

indicate the three preferences when selecting a design, i.e. preference 1 is given more

preference over preference 2, which in turn is given more preference over preference

3. In Table 6.2, the first column represents the various cases of BCRS, while columns

three to five represent the various preferences, as in Table 6.1. From Tables 6.1 and

6.2, we note that the proposed designs and/or estimators are preferred for fourteen

of the twenty possible scenarios and are unmatched for ten of the twenty possible

cases.

Table 6.1: Recommended designs and/or estimators for populations exhibiting linear trend

(N = nk).

Cond 1 Cond 2 Cond 3 Pref 1 Pref 2 Pref 3 Recommended

n non-prime A n′/2 even N/A N/A N/A MBSS, MMSS,

MBMSS, BRS

or BCRS

n non-prime A n′/2 odd N/A N/A N/A MBSS, MMSS,

BRS or BCRS

n non-prime B/C N/A Unbiased Simplicity Minimum BCRS

Sampling MSE

Variance

n non-prime B/C N/A Simplicity Minimum N/A MYEC

MSE

n non-prime B/C N/A Minimum Simplicity N/A MBMSSEC

MSE

n is prime A N/A N/A N/A N/A BRS or BCRS

n is prime B/C N/A N/A N/A N/A BCRS
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Table 6.2: Recommended designs and/or estimators for populations exhibiting linear trend

(N 6= nk).

Cond 1 Cond 2 Pref 1 Pref 2 Pref 3 Recommended

A N/A N/A N/A N/A BRS or BCRS

B b small Unbiased Sampling Simplicity Minimum BCRS

Variance MSE

B b small Minimum Simplicity N/A MCCSSEC

MSE

B b small Simplicity Minimum N/A RMSSEC

MSE

B b ≥ 1 Unbiased Sampling Simplicity Minimum BCRS

Variance MSE

B b ≥ 1 Simplicity Minimum N/A RLSSEC

MSE

B b ≥ 1 Minimum Simplicity N/A MCCSSEC

MSE

C N/A Unbiased Sampling Simplicity Minimum BCRS

Variance MSE

C N/A Minimum Simplicity N/A MCCSS

MSE

D b small N/A N/A N/A BCRS

D b ≥ 1 Unbiased Sampling Simplicity Minimum BCRS

Variance MSE

D b ≥ 1 Simplicity Minimum N/A RLSSEC

MSE

D b ≥ 1 Minimum Simplicity N/A RMSSEC

MSE

6.2 Limitations

To conclude this thesis, we note that all the designs and estimators presented in this

study are under the assumption of a linear trend among the population units. More often

than not, one does not know the population structure prior to sampling. Applying the
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designs and/or estimators when the population does not exhibit linear trend may provide

poor results, as the designs and estimators presented in this thesis are most suitable

for the linear trend population structure. Prior to sampling, the onus thus lies on the

statistician to acquire as much information as possible regarding the population, so as to

estimate if the population exhibits linear trend. Alternatively, the sampler may arrange

the population prior to sampling. Consequently, one may choose to arrange the population

in increasing/decreasing order in accordance with an auxiliary variable (a variable that

is correlated with the study variable, such that it is easier to acquire the values of this

new variable, when compared to those of the study variable). As a result, we obtain an

approximate trend in the population, where the higher the degree of correlation between

the two variables, the greater the degree of linear trend in the rearranged population.

Under these circumstances, the theory and results presented in this thesis may then apply.

6.3 Future Studies

To expand on the work carried out within this thesis, we will compare the proposed

designs for various other population structures. Also, we only considered one-dimensional

sampling. Systematic sampling is commonly used in spatial sampling scenarios. We will

then look to extend the theory presented in this thesis to two-dimensional situations.

Additionally, adaptive sampling was proposed by Thompson (1990) and Thompson &

Seber (1996) and is used for spatial sampling. Sampling units could be selected using

a systematic approach when applying adaptive sampling. Thus, as a topic for future

studies, we will consider adopting the modified systematic sampling designs proposed in

this thesis in conjunction with adaptive sampling. The use of the suggested designs will

also be examined when sampling with unequal probabilities, e.g. if there exists a variable

of size then we may adopt the proposed designs to sample with probabilities proportionate

to size (pps).
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Appendix

Proof of Theorem 2: An estimate of Y with random start i, for i ∈ {1, ..., k}, can be

written as

yBMSSEC =
1

n

ψ1yx1 +

(n−1)∑
j=2

yxj + ψ2yxn

 , (1)

where ψ1 and ψ2 are the weights applied to the first and the last sampling units respectively

and x1, ..., xn are the sampling unit indices, which are arranged in ascending order. By

substituting (2.12) into (1) and then equating this result to YB, we obtain

yBMSSEC =
1

n

ψ1 (a+ bx1) +

(n−1)∑
j=2

(a+ bxj) + ψ2 (a+ bxn)

 = a+
b(N + 1)

2
. (2)

By equating the coefficients of a in (2), it follows that

ψ1 = 2− ψ2. (3)

Similarly, by equating the coefficients of b in (2), we obtain

1

n

ψ1x1 +

(n−1)∑
j=2

xj + ψ2xn

 =
N + 1

2
. (4)

Substituting (3) into (4) results in

2

2x1 − ψ2x1 +

(n−1)∑
j=2

xj + ψ2xn

 = n (N + 1) ,

which simplifies to

ψ2 =
K − 2x1

xn − x1
, (5)

where K = n(N + 1)/2−
∑n−1

j=2 xj . The weight applied to the first sampling unit is thus

obtained by substituting (5) into (3), i.e.

ψ1 =
2xn −K
xn − x1

.

Substituting ψ1 and ψ2 into (1) results in

yBMSSEC =
1

n

(2xn −K)

(xn − x1)
yx1 +

n−1∑
j=2

yxj +
(K − 2x1)

(xn − x1)
yxn


= yBMSS +

1

n

[
(2xn −K)

(xn − x1)
yx1 +

(K − 2x1)

(xn − x1)
yxn − yx1 − yxn

]
= yBMSS +

[(xn + x1)−K]

n (xn − x1)
(yx1 − yxn) . (6)
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Now, if we consider Case (B), then x1 = i, xn = N + i− k and

K =
n(N + 1)

2
−
n−1∑
j=2

xj

=
n(N + 1)

2
−

(n−2)/4∑
j=1

(2i+N − k) +

(n−6)/4∑
j=0

(k − 2i+ 2 +N)


=
n(N + 1)

2
−

(n−2)/4∑
j=1

(2i+N − k + k − 2i+ 2 +N) =
(N + 1)[n− (n− 2)]

2
= N + 1

(refer to the sampling unit indices of Case (B) in Section 2.4.1). On substituting these

values into (6), we obtain

yBMSSEC = yBMSS +
P

n(N − k)
(yi − yN+i−k) . (7)

We then conclude the proof by finding the values of x1, xn and K for the other cases, as

shown above, and then substituting these values into (6).

Proof of Theorem 3: The expected MSE of yBMSSEC can be written as

MBMSSEC

∆
= E

[
E
({
yBMSSEC − Y

}2
)]

= E
{
E
[(
yBMSSEC − Y

)2]}
=

1

k

k∑
i=1

E
[
yBMSSEC − Y

]2
. (8)

If we consider Case (B) for (2.1), then

yBMSS − Y = a+
b

2

[
N + 1 +

2P

n

]
+ ei −

[
a+

b(N + 1)

2
+ e

]
=
bP

n
+ ei − e. (9)

Moreover,

yi − yN+i−k = a+ bi+ ei − [a+ b(N + i− k) + eN+i−k]

= −b[N − k] + ei − eN+i−k. (10)

Using (7), (9) and (10), we obtain

E
[
(yBMSSEC − Y )2

]
= E

[(
bP

n
+ ei − e+

P [−b(N − k) + ei − eN+i−k]

n(N − k)

)2
]

= E

[(
ei − e+

P [ei − eN+i−k]

n(N − k)

)2
]
. (11)
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Applying Cochran’s (1946) super-population model assumptions, results in

E
(
e2
i

)
=

1

n2

∑ E
(
e2
i

)
+
∑∑

j 6=i
E (eiej)

 =
σ2

n
, (12)

E
(
e

2
)

=
1

N2

 N∑
j=1

E
(
e2
j

)
+

N∑
i=1

N∑
j 6=i
E (eiej)

 =
σ2

N
, (13)

E
(
eie
)

=
1

nN

∑ N∑
j=1

E (eiej) =
nσ2

nN
=
σ2

N
, (14)

E
[
ei
(
ei − ei+(n−1)k

)]
= E

 1

n

n∑
j=1

e{i+(j−1)k}

(ei − ei+(n−1)k

) = 0, (15)

E
[
e
(
ei − ei+(n−1)k

)]
= E

 1

N

N∑
j=1

ej

(ei − ei+(n−1)k

) = 0 (16)

and

E
[(
ei − ei+(n−1)k

)2]
= E

[
e2
i − 2eiei+(n−1)k + e2

i+(n−1)k

]
= 2σ2. (17)

Expanding (11) and then substituting (12) through to (17) into this expression, results in

E
[
(yBMSSEC − Y )2

]
= σ2

e +
2σ2P 2

n2(N − k)2
. (18)

Finally, by substituting (18) into (8), we obtain

MBMSSEC = σ2
e +

2σ2

n2k(N − k)2

k∑
i=1

P 2 = σ2
e +

2σ2(k2 − 1)

3n2(N − k)2
.

Similarly, we can obtain E
[
(yBMSSEC − Y )2

]
for Cases (C) to (E) and then substitute these

expressions into (8).

Proof of Theorem 4: An estimate of Y with random starts ih, for h = 1, ...,m and

ih ∈ {1, ..., k}, can be written as

yMY EC =
1

nm

λ1

m∑
h=1

yih +

m∑
h=1

(n−2)∑
j=1

yih+jk + λ2

m∑
h=1

yih+(n−1)k

 , (19)
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where λ1 and λ2 are the weights applied to the first and last sampling units of each sample,

respectively. If we assume model (2.12), then Y = a+ b(N + 1)/2. Thus, by substituting

this model into (19) and then equating this expression to Y , we obtain

yMY EC =
1

nm

λ1

m∑
h=1

(a+ bih) +
m∑
h=1

(n−2)∑
j=1

[a+ b(ih+ jk)] + λ2

m∑
h=1

[a+ b(ih+ nk − k)]


= nma+

nmb(N + 1)

2
. (20)

On equating the coefficients of a in (20), it follows that

λ1 = 2− λ2. (21)

Similarly, by equating the coefficients of b in (20) we obtain

(λ1 + n− 2 + λ2)
m∑
h=1

ih+
mk(n− 1)(n− 2)

2
+ λ2m(n− 1)k =

mn(N + 1)

2
.

Substituting (21) into this expression results in

2n
m∑
h=1

ih+mk(n− 1)(n− 2) + 2λ2m(n− 1)k = mn(N + 1),

which simplifies to

λ2 = 1− nV

2m(n− 1)k
. (22)

Hence, by substituting (4) into (3) we obtain

λ1 = 1 +
nV

2m(n− 1)k
.

We then conclude the proof by substituting these weights into (19), i.e.

yMY EC =
1

nm


[
1 +

nV

2m(n− 1)k

] m∑
h=1

yih +
m∑
h=1

(n−2)∑
j=1

yih+jk

+

[
1− nV

2m(n− 1)k

] m∑
h=1

yih+(n−1)k

}

= yMLSS +
V

2m2(n− 1)k

[
m∑
h=1

(yih − yih+(n−1)k)

]
,

where

yMLSS =
1

nm

m∑
h=1

n−1∑
j=0

yih+jk =
1

nm

 m∑
h=1

yih +

m∑
h=1

n−2∑
j=1

yih+jk +

m∑
h=1

yih+nk−k

 . (23)
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Proof of Theorem 5: By using (2.1) and (23) we obtain

yMLSS − Y =
1

nm

m∑
h=1

(n−1)∑
j=0

yih+jk − a−
b(N + 1)

2
− e

=
b

m

m∑
h=1

ih+
bk(n− 1)

2
+ eMLSS −

b(N + 1)

2
− e

=
b

m

[
m∑
h=1

ih− m(k + 1)

2

]
+ eMLSS − e =

bV

2m
+ eMLSS − e, (24)

where eMLSS =
∑m

h=1

∑(n−1)
j=0 eih+jk/nm. In addition,

m∑
h=1

(yih − yih+(n−1)k) = −bm(n− 1)k +
m∑
h=1

(eih − eih+(n−1)k). (25)

If we use (19), (24) and (25), then

E
[(
yMY EC − Y

)2]
= E

{[
yMLSS − Y +

V
∑m

h=1(yih − yih+(n−1)k)

2m2(n− 1)k

]2
}

= E

{[
eMLSS − e+

V
∑m

h=1(eih − eih+(n−1)k)

2m2(n− 1)k

]2
}
. (26)

Using the conditions of Cochran’s (1946) super-population model, we obtain

E
(
e2
MLSS

)
=

1

n2m2

 m∑
h=1

(n−1)∑
j=0

E
(
e2
ih+jk

)
+

m∑
h=1

(n−1)∑
j=0

∑
p 6=j
E (eih+jkeih+pk)


=

σ2

nm
,

E
(
e

2
)

=
1

N2

 N∑
q=1

E
(
e2
q

)
+

N∑
z=1

N∑
q 6=z
E (eqez)

 =
σ2

N
,

E
(
eMLSSe

)
=

1

nmN

 m∑
h=1

(n−1)∑
j=0

N∑
q=1

E (eih+jkeq)

 =
σ2

N
,

E

[
eMLSS

m∑
h=1

(
eih − eih+(n−1)k

)]
=

1

nm

m∑
h=1

n−1∑
j=0

E [eiheih+jk − eih+jkeih+nk−k]

=
mσ2 −mσ2

nm
= 0,

E

[
e
m∑
h=1

(
eih − eih+(n−1)k

)]
=

1

N

N∑
q=1

m∑
h=1

E [eqeih − eqeih+nk−k]

=
mσ2 −mσ2

N
= 0
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and

E

[
m∑
h=1

(
eih − eih+(n−1)k

)2]
=

m∑
h=1

E
(
e2
ih − 2eiheih+nk−k + e2

ih+nk−k
)

= 2mσ2.

Expanding (26) and then substituting these expressions results in

E
[(
yMY EC − Y

)2]
=

σ2

nm
+
σ2

N
− 2σ2

N
+

2mσ2V 2

4m4(n− 1)2k2
= σ2

l +
σ2V 2

2m5(n− 1)2l2
.

An expression for the expected MSE of yMY EC is thus given as

MMY EC

∆
= E

{
E
[(
yMY EC − Y

)2]}
= E

{
E
[(
yMY EC − Y

)2]}
= σ2

l +
σ2E

(
V 2
)

2m5(n− 1)2l2
.

We then conclude the proof since E
(
V 2
)

reduces to m2(l − 1)(lm+ 1)/3.

Proof of Theorem 6: For MBSS and MMSS we respectively denote the ith (i ∈

{1, ..., k}) sample totals by

BSSTi =


∑(n−2)/2

j=0 (yi+2jk + y2(j+1)k−i+1), if n is even∑(n−3)/2
j=0 (yi+2jk + y2(j+1)k−i+1) + yi+(n−1)k, if n is odd,

and

MSSTi =


∑(n−2)/2

j=0 (yi+jk + yN−jk−i+1), if n is even∑(n−3)/2
j=0 (yi+jk + yN−jk−i+1) + yi+(n−1)k/2, if n is odd,

Let us assume an indicator variable, given by

Ii =


1, if unit yih is in the sample;

0, otherwise.

If we assume that the BSSTi and MSSTi are fixed but unknown constants, then

E(yMBSS) = E

[
1

nm

k∑
i=1

Ii(BSSTi)

]

=
1

nm

k∑
i=1

E(Ii)BSSTi

=
1

nm

k∑
i=1

(m
k

)
BSSTi =

m

nmk

k∑
i=1

BSSTi =
Y·
nk

= Y
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and

E(yMMSS) = E

[
1

nm

k∑
i=1

Ii(MSSTi)

]

=
1

nm

k∑
i=1

E(Ii)MSSTi

=
1

nm

k∑
i=1

(m
k

)
MSSTi =

m

nmk

k∑
i=1

MSSTi =
Y·
nk

= Y ,

since we are selecting m samples from the k possible samples, using SRS.

Proof of Theorem 7: The single-start sample means (BSSTi/n and MSSTi/n, for

i = 1, ..., k) can now be viewed as population units. Remembering that SRS involves the

random selection of n sampling units from N possible sampling units, the variance of the

sample mean ySRS is given by (1.5). Thus, by replacing yq, N and n in (1.5) by BSSTi/n

(or MSSTi/n), k and m respectively, we obtain the variances of yMBSS and yMMSS, which

are respectively written as

V(yMBSS) =
S2
BSS

m

(
k −m
k

)
, (27)

and

V(yMMSS) =
S2
MSS

m

(
k −m
k

)
, (28)

where S2
BSS =

∑k
i=1(BSSTi/n− Y )2/(k − 1) and S2

MSS =
∑k

i=1(MSSTi/n− Y )2/(k − 1),

such that the replacement of yq and N in Y =
∑N

q=1 yq/N , by BSSTi/n (or MSSTi/n)

and k respectively, results in
∑k

i=1BSSTi/nk =
∑k

i=1MSSTi/nk = Y .

Now, if we compare V(yMBSS) and V(yMMSS) to V̂(yMBSS) and V̂(yMMSS), respectively,

then it is clear that we need to show that
∑m

h=1(BSSTih − BSST )2/
[
n2(m− 1)

]
and∑m

h=1(MSSTih−MSST )2/
[
n2(m− 1)

]
are unbiased estimates of S2

BSS and S2
MSS, respec-



127

tively. Using (27) and (28) as well as the property that E(Ii) = m/k, we thus obtain

E

[∑m
h=1

(
BSSTih −BSST

)2
n2(m− 1)

]
=

1

m− 1
E

[
m∑
h=1

(
BSSTih

n
− yMBSS

)2
]

=
1

m− 1
E

[
m∑
h=1

(
BSSTih

n
− Y

)2

−m
(
yMBSS − Y

)2]

=
1

m− 1

{
E

[
k∑
i=1

Ii

(
BSSTi
n

− Y
)2
]
−mV (yMBSS)

}

=
1

m− 1

[
m(k − 1)S2

BSS

k
− (k −m)S2

BSS

k

]
= S2

BSS.

and

E

[∑m
h=1

(
MSSTih −MSST

)2
n2(m− 1)

]
=

1

m− 1
E

[
m∑
h=1

(
MSSTih

n
− yMMSS

)2
]

=
1

m− 1
E

[
m∑
h=1

(
MSSTih

n
− Y

)2

−m
(
yMMSS − Y

)2]

=
1

m− 1

{
E

[
k∑
i=1

Ii

(
MSSTi

n
− Y

)2
]
−mV (yMMSS)

}

=
1

m− 1

[
m(k − 1)S2

MSS

k
− (k −m)S2

MSS

k

]
= S2

MSS.

Proof of Theorem 8: If we consider the case of n is even for MBSS and MMSS, such

that eMBSS =
∑(n−2)/2

j=0 (ei+2jk + e2(j+1)k−i+1) and eMMSS =
∑(n−2)/2

j=0 (ei+jk + eN−jk−i+1)

respectively denote the random errors associated with ith (i ∈ {1, ..., k}) balanced sys-

tematic sample and modified systematic sample, then substituting (2.1) into BSSTi and

MSSTi results in

BSSTi =

(n−2)/2∑
j=0

[2a+ b(4jk + 2k + 1)] + eMBSS = an+ bn

(
N + 1

2

)
+ eMBSS

and

MSSTi =

(n−2)/2∑
j=0

[2a+ b(N + 1)] + eMMSS = an+ bn

(
N + 1

2

)
+ eMMSS.

Expressions for the expected MSEs of yMBSS and yMMSS are obtained by taking the ex-

pectation of (27) and (28), before substituting BSSTi, MSSTi and Y into the relevant
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expressions, given by

MMBSS =
(k −m)

mk(k − 1)

k∑
i=1

E
(
BSSTi
n

− Y
)2

=
(k −m)

mk (k − 1)

k∑
i=1

E
[
a+ b

(
N + 1

2

)
+
eMBSS

n
−
(
a+

b (N + 1)

2
+ e

)]2

=
(k −m)

mk(k − 1)

k∑
i=1

E
(
e2
MBSS

n2
− 2eMBSSe

n
+ e

2
)

(29)

and

MMMSS =
(k −m)

mk(k − 1)

k∑
i=1

E
(
MSSTi

n
− Y

)2

=
(k −m)

mk (k − 1)

k∑
i=1

E
[
a+ b

(
N + 1

2

)
+
eMMSS

n
−
(
a+

b (N + 1)

2
+ e

)]2

=
(k −m)

mk(k − 1)

k∑
i=1

E
(
e2
MMSS

n2
− 2eMMSSe

n
+ e

2
)
. (30)

Now, since there are n terms in eMBSS and eMMSS as well as N terms in e, it follows that

E
(
e2
MBSS

)
= nσ2, E

(
eMBSSe

)
=

1

N
E [eMBSS(e1 + ...+ eN )] =

nσ2

N
,

E
(
e2
MMSS

)
= nσ2, E

(
eMMSSe

)
=

1

N
E [eMMSS(e1 + ...+ eN )] =

nσ2

N
,

E
(
e

2
)

=
1

N2

 N∑
q=1

E
(
e2
q

)
+

N∑
z=1

N∑
q 6=z
E (eqez)

 =
σ2

N
.

Remembering that k = lm, we then substitute these relevant expressions into (29) and

(30) to obtain

MMBSS =
(k −m)

mk(k − 1)

k∑
i=1

(
σ2

n
− 2σ2

N
+
σ2

N

)
=

(k −m)σ2

mN
=

(l − 1)σ2

N
= σ2

l

and

MMMSS =
(k −m)

mk(k − 1)

k∑
i=1

(
σ2

n
− 2σ2

N
+
σ2

N

)
=

(k −m)σ2

mN
=

(l − 1)σ2

N
= σ2

l .

Similarly, we can use the above method for the case of n being odd and thus conclude the

proof.

Proof of Theorem 10: If we compare (3.15) to (3.16), then it is clear that we need to

show that
∑m

h=1

(
Tjih − T

)2
/[n2(m− 1)] is an unbiased estimate of S2

T , in order to prove
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the theorem. Using (3.15) and the property that E(Ii) = m/k, we thus obtain

E

[∑m
h=1

(
Tjih − T

)2
n2(m− 1)

]
=

1

m− 1
E

[
m∑
h=1

(
Tjih
n
− yMBMSS

)2
]

=
1

m− 1
E

[
m∑
h=1

(
Tjih
n
− Y

)2

−m
(
yMBMSS − Y

)2]

=
1

m− 1

{
E

[
k∑
i=1

Ii

(
Tji
n
− Y

)2
]
−mV (yMBMSS)

}

=
1

m− 1

[
m(k − 1)S2

T

k
−

(k −m)S2
T

k

]
= S2

T .

Proof of Theorem 11: An estimate of Y with random starts ih, for h = 1, ...,m and

ih ∈ {1, ..., k}, can be written as

yMBMSSEC =
1

nm

(
λ1

m∑
h=1

yx1h +

m∑
h=1

n−1∑
i=2

yxih + λ2

m∑
h=1

yxnh

)
, (31)

where λ1 and λ2 are the respective weights applied to the first and last sampling units of

each selected sample and x1h, ..., xnh are the indices belonging to the selected balanced

modified systematic samples, which is arranged in ascending order. Substituting model

(2.12) into (31) and then equating this expression to Y B = a+ b(N + 1)/2 results in

yMBMSSEC =
1

nm

[
λ1

m∑
h=1

(a+ bx1h) +

m∑
h=1

n−1∑
i=2

(a+ bxih) + λ2

m∑
h=1

(a+ bxnh)

]

= a+
b(N + 1)

2
. (32)

By equating the coefficients of a in (32), it follows that

λ1 = 2− λ2. (33)

Similarly, by equating the coefficients of b in (32), we obtain

2λ1

m∑
h=1

x1h+ 2

m∑
h=1

n−1∑
i=2

xih+ 2λ2

m∑
h=1

xnh = nm(N + 1). (34)

Substituting (33) into (34) results in

4
m∑
h=1

x1h− 2λ2

m∑
h=1

x1h+ 2
m∑
h=1

n−1∑
i=2

xih+ 2λ2

m∑
h=1

xnh = nm(N + 1),
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which simplifies to

λ2 =
Q− 2

∑m
h=1 x1h∑m

h=1(xnh− x1h)
, (35)

where Q = nm(N + 1)/2 −
∑m

h=1

∑(n−2)
i=2 xih. The weight applied to the first sampling

units is thus obtained by substituting (35) into (33), such that

λ2 =
2
∑m

h=1 xnh−Q∑m
h=1(xnh− x1h)

. (36)

On substituting (35) and (36) into (31) we obtain

yMBMSSEC =
1

nm

[
(2
∑m

h=1 xnh−Q)
∑m

h=1 yx1h∑m
h=1(xnh− x1h)

+

m∑
h=1

(n−1)∑
i=2

yxih

+
(Q− 2

∑m
h=1 x1h)

∑m
h=1 yxnh∑m

h=1(xnh− x1h)

]

= yMBMSS +
[
∑m

h=1(xnh− x1h)−Q]

nm
∑m

h=1(xnh− x1h)

m∑
h=1

(yx1h − yxnh), (37)

where nmyMBMSS =
∑m

h=1 yx1h+
∑m

h=1

∑(n−1)
i=2 yxih+

∑m
h=1 yxnh. Now, if we consider Case

(B), then x1h = ih, xnh = N + ih− k and

Q =
nm(N + 1)

2
−

m∑
h=1

n−1∑
i=2

xih

=
nm(N + 1)

2
−

m∑
h=1

(n−2)/4∑
j=1

(N + 2ih− k) +

(n−6)/4∑
j=0

(N + k − 2ih+ 2)


=
nm(N + 1)

2
−

m∑
h=1

2(N + 1)(n− 2)

4
= m(N + 1).

Substituting these values into (37) results in

yMBMSSEC = yMBMSS +
[
∑m

h=1(N − k + 2ih)−m(N + 1)]

nm
∑m

h=1(N − k)

m∑
h=1

(yx1h − yxnh)

= yMBMSS +
V
∑m

h=1 (yih − yN+ih−k)

nm2(N − k)
.

Similarly, we can find values of x1h, xnh and Q for Cases (C) to (E) and then substitute

these values into (37), so as to conclude the proof.

Proof of Theorem 14: If we consider Cases E and F, then an estimate of Y 1 with
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random start k1, where k1 ∈ {1, ..., k}, can be written as

y′k1 =
1

n− r

[
φ1yk1 + yk1+(n−r−1)k/2

+

(n−r−3)/2∑
j=1

(
yk1+jk + y(n−r)k−jk−k1+1

)
+ φ2y(n−r)k−k1+1

]
, (38)

where φ1 and φ2 are the weights applied to the first and last sampling units of sk1,

respectively. If we consider model (2.12), then

Y 1 =
1

(n− r)k

(n−r)k∑
q=1

yq = a+
b[(n− r)k + 1]

2

and

Y 2 =
1

r(k + 1)

N∑
q=(n−r)k+1

yq = a+
b[(n− r)k +N + 1]

2
.

By substituting model (2.12) into (38) and equating this result to Y 1, we obtain

φ1(a+ bk1) +

(n−r−3)/2∑
j=1

{2a+ b [(n− r)k + 1]}+ a+ b

[
k1 +

(n− r − 1)k

2

]
+ φ2 {a+ b [(n− r)k − k1 + 1]} = (n− r)a+

b(n− r)[(n− r)k + 1]

2
. (39)

If we equate the coefficients of a in (39), then

φ1 = 2− φ2. (40)

Similarly, by equating the coefficients of b in (39), we obtain

2φ1k1− 2(n− r)k − 3 + 2k1− k + 2φ2[(n− r)k − k1 + 1] = 0. (41)

Substituting (40) into (41) results in

φ2 = 1− (2k1− k − 1)

[2(n− r)k − 4k1 + 2]
. (42)

The weight applied to the first sampling unit is thus obtained by substituting (42) into

(40), i.e.

φ1 = 1 +
(2k1− k − 1)

[2(n− r)k − 4k1 + 2]
. (43)

Now, by substituting (42) and (43) into (38), we get

y′k1 =
1

n− r

[
yk1 +

(n−r−3)/2∑
j=1

(
yk1+jk + y(n−r)k−jk−k1+1

)
+ yk1+(n−r−1)k/2

+
(2k1− k − 1)

[2(n− r)k − 4k1 + 2]

(
yk1 − y(n−r)k−k1+1

) ]

= yk1 +
(2k1− k − 1)

(n− r)[2(n− r)k − 4k1 + 2]

(
yk1 − y(n−r)k−k1+1

)
.
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Finally, we replace this expression for yk1 in (4.6), such that

yRMSSEC = yRMSS +
k(2k1− k − 1)

N [2(n− r)k − 4k1 + 2]

(
yk1 − y(n−r)k−k1+1

)
.

Note that estimator yk2 need not be adjusted, since yk2 = Y 2 for Cases E and F. Similarly,

we can use the above method for Cases D and G to conclude the proof, where the only

adjusted estimator will be denoted by y′k2.
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The Indian Journal of Statistics, Series B, 62(2), 249–256.

Cochran, W. G. (1946), ‘Relative accuracy of systematic and stratified random samples

for a certain class of populations’, The Annals of Mathematical Statistics 17, 164–177.

Cochran, W. G. (1977), Sampling Techniques, 3rd edn, John Wiley and Sons, Inc., New

York.

Deming, W. E. (1960), Sample Design in Business Research, Wiley, New York.

D’Orazio, M. (2003), ‘Estimating the variance of the sample mean in two-dimensional

systematic sampling’, Journal of Agricultural, Biological, and Environmental Statistics

8(3), 280–295.

Dunn, R. & Harrison, A. R. (1993), ‘Two-dimensional systematic sampling of land use’,

Journal of the Royal Statistical Society, Series C (Applied Statistics), 42(4), 585–601.

Finney, D. J. (1948), ‘Random and systematic sampling in timber surveys’, Forestry

22, 64–99.



134

Fountain, R. L. & Pathak, P. K. (1989), ‘Systematic and nonrandom sampling in the pres-

ence of linear trends’, Communications in Statistics - Theory and Methods 18(7), 2511–

2526.

Gautschi, W. (1957), ‘Some remarks on systematic sampling’, The Annals of Mathematical

Statistics 28(2), 385–394.

Gupta, A. K. & Kabe, D. G. (2011), Theory of Sample Surveys, World Scientific Publishing

Company.

Hasel, A. A. (1938), ‘Sampling error in timber surveys’, Journal of Agricultural Research

57(10), 713–736.

Horvitz, D. G. & Thompson, D. J. (1952), ‘A generalization of sampling without re-

placement from a finite universe’, Journal of the American Statistical Association

47(260), 663–685.

Huang, K. C. (2004), ‘Mixed random systematic sampling designs’, Metrika 59(1), 1–11.

Iachan, R. (1982), ‘Systematic sampling: a critical review’, International Statistical Review

50(3), 293–303.

Jacobsen, J. S. (1998), Soil sampling, Technical report, Montana State University Exten-

sion Publications.

Kalton, G. (1983), Introduction to Survey Sampling, SAGE Publications, Beverly Hills.

Kao, F. F., Leu, C. H. & Ko, C. H. (2011a), ‘Remainder markov systematic sampling’,

Journal of Statistical Planning and Inference 141(11), 3595–3604.

Kao, F. F., Leu, C. H. & Ko, C. H. (2011b), ‘Remainder systematic markov chain design’,

International Journal of Information and Management Sciences 22(4), 327–341.

Khan, Z., Gupta, S. N. & Shabbir, J. (2014), ‘A note on diagonal circular systematic

sampling’, Journal of Statistical Theory and Practice 8(3), 439–443.

Khan, Z., Shabbir, J. & Gupta, S. N. (2013), ‘A new sampling design for systematic

sampling’, Communications in Statistics - Theory and Methods 42(18), 3359–3370.

Khan, Z., Shabbir, J. & Gupta, S. N. (2015), ‘Generalized systematic sampling’, Commu-

nications in Statistics - Simulation and Computation 44(9), 2240–2250.



135

Kish, L. (1965), Survey sampling, John Wiley and Sons, Inc., New York.

Kouijn, H. S. (1973), ‘On modified schemes of systematic sampling with several random

starts’, Communications in Statistics 1(2), 133–148.

Lahiri, D. B. (1951), ‘A method of sample selection providing unbiased ratio estimates’,

Bulletin of the International Statistical Institute 33(2), 133–140.

Lehtonen, R. & Pahkinen, E. (2004), Basic sampling techniques, 2nd edn, John Wiley and

Sons, Ltd, Chichester, pp. 9–58.

Leu, C. H. & Kao, F. F. (2006), ‘Modified balanced circular systematic sampling’, Statistics

& Probability Letters 76, 373–383.

Leu, C. H. & Tsui, K. W. (1996), ‘New partially systematic sampling’, Statistica Sinica

6, 616–630.

Lohr, S. L. (2010), Sampling: Design and Analysis, 2nd edn, Brooks/Cole, Boston.

Madow, L. H. (1946), ‘Systematic sampling and its relation to other sampling designs’,

Journal of the American Statistical Association 41(234), 204–217.

Madow, W. G. (1953), ‘On the theory of systematic sampling, iii. comparison of cen-

tered and random start systematic sampling’, The Annals of Mathematical Statistics

24(1), 101–106.

Madow, W. G. & Madow, L. H. (1944), ‘On the theory of systematic sampling, i’, The

Annals of Mathematical Statistics 15, 1–24.

Mahalanobis, P. C. (1946), ‘Recent experiments in statistical sampling in the indian sta-

tistical institute’, Journal of the Royal Statistical Society 109(4), 325–370.

Mason, B. J. (1994), ‘Preparation of soil sampling protocols: sampling techniques and

strategies’, Houston Geological Society Bulletin 36(10), 22–23 and 33.

McArthur, R. D. (1987), ‘An evaluation of sample designs for estimating a locally concen-

trated pollutant’, Communications in Statistics - Simulation and Computation 16, 735–

759.

Mostafa, S. A. & Ahmad, I. A. (2016), ‘Remainder linear systematic sampling with mul-

tiple random starts’, Journal of Statistical Theory and Practice 10(4), 824–851.



136

Mukerjee, R. & Sengupta, S. (1990), ‘Optimal estimation of a finite population mean in

the presence of linear trend’, Biometrika 77(3), 625–630.

Murthy, M. N. (1967), Sampling: Theory and Methods, Statistical Publishing Society,

Calcutta.

Murthy, M. N. & Rao, T. J. (1988), Systematic sampling with illustrative examples, Vol. 6,

Elsevier, Amsterdam, chapter 7, pp. 147–185.

Naidoo, L. R. (2013), Systematic Sampling from Finite Populations, Master’s thesis, Uni-

versity of KwaZulu-Natal, South Africa.

Osborne, J. G. (1942), ‘Sampling errors of systematic and random surveys of cover-type

areas’, Journal of the American Statistical Association 37(218), 256–264.

Pawley, M. D. M. (2006), Systematic sampling in ecology, PhD thesis, The University of

Auckland.

Rana, R. S. & Singh, R. (1989), ‘Note on systematic sampling with supplementary obser-
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