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Abstract
Sampling is used to estimate population parameters, as it is usually impossible to study a
whole population, due to time and budget restrictions. There are various sampling designs
to address this issue and this thesis is related with a particular probability sampling design,
known as systematic sampling.

Systematic sampling is operationally convenient and efficient and hence is used exten-
sively in most practical situations. The shortcomings associated with systematic sampling
include: (7) it is impossible to obtain an unbiased estimate of the sampling variance when
conducting systematic sampling with a single random start; (¢i¢) if the population size is
not a multiple of the sample size, then conducting conventional systematic sampling, also
known as linear systematic sampling, may result in variable sample sizes. In this thesis, I
would like to provide some contribution to the current body of knowledge, by proposing
modifications to the systematic sampling design, so as to address these shortcomings.

Firstly, a discussion on the measures used to compare the various probability sampling
designs is provided, before reviewing the general theory of systematic sampling. The per-
formance of systematic sampling is dependent on the population structure. Hence, this
thesis concentrates on a specific and common population structure, namely, linear trend.
A discussion on the performance of linear systematic sampling and all relative modifica-
tions, including a new proposed modification, is then presented under the assumption of
linear trend among the population units. For each of the above-mentioned problems, a
brief review of all the associated sampling designs from existing literature, along with my
proposed modified design, will then be explored. Thereafter, I will introduce a modified
sampling design that addresses the above-mentioned problems in tandem, before providing
a comprehensive report on the thesis. The aim of this thesis is to provide solutions to
the above-mentioned disadvantages, by proposing modified systematic sampling designs

and/or estimators that are favourable over its existing literature counterparts.

Keywords: systematic sampling; super-population model; Horvitz-Thompson estimator;
Yates’ end corrections method; balanced modified systematic sampling; multiple-start
balanced modified systematic sampling; remainder modified systematic sampling; balanced

centered random sampling.
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Chapter 1

INTRODUCTION

1.1 Overview of Sampling

Statistics entails the collection, organization, analysis, interpretation, explanation and
presentation of data. Governments, clients, medical companies, institutions and organiza-
tions, frequently use statistics to effect decision-making, e.g. choosing between different
options, executing new policies, assessing current policy situations, etc.

When a problem is identified and/or presented to a statistician, he/she must then
create a workable objective before planning the research approach. Collection of suitable
data is then proceeded by the relevant analysis of the corresponding data and finally
the results are presented thereon. These phases of the research cycle are related and
interconnected. Failure to impose a solid research design leads to inefficient data collection
methods, which in turn contributes to inaccurate data analysis and finally results in a
flawed research report. Clearly each stage of this research cycle is crucial. We now take a
more focused look at the data collection stage.

There are three basic types of statistical studies, namely, surveys, experiments and
observational studies. Each of these are associated with different data collection methods,
e.g. questionnaires, case studies, behaviour observation checklists, performance tests, etc.
More often than not, collecting data from the whole population is difficult, due to time and
money restrictions, as well as the regular problem of not being able to reach the whole pop-
ulation at any given point in time. As a result, we commonly opt to select a sample/subset
from the population. Generally, the population and sample sizes are respectively denoted
as NV and n, where N > n. Generalizations about a population, based on results from the

sample, are made by ensuring that the characteristics of the sample accurately mirrors



the corresponding characteristics of the population, i.e. we need to select a representative
sample. Two fundamental conditions for selecting a representative sample are that (i) the
sample must be sufficiently large, such that all aspects of the population are captured, and
(77) should be selected in a way that minimizes bias, which is given by definition as the
misrepresentation of sample characteristics from the relative population characteristics.
Condition (¢) is commonly related to a trade-off between sampling error and cost, i.e.
larger sample sizes are subject to greater costs, while more often than not reducing the
associated sampling error. Condition (i7) is related to the method of selecting a sample
from the population.

A specific sampling design is generally implemented to select a sample which pro-
duces an estimate of the population parameter. This estimator is also known as a sample
statistic. A single numerical value, used to estimate a specific population parameter, is
computed from the sample and is defined as a point estimator.

A point estimator is said to be unbiased if the expected value of this estimator is
equivalent to the population parameter being estimated, otherwise it is known to be bi-
ased. When referring to a biased point estimator, the degree of bias is calculated as the
difference between the expectation of the point estimator and the real value of the pop-
ulation parameter. Accuracy is related to bias, where unbiased estimators are generally
expected to be equivalent to the corresponding population parameter and are therefore
regarded as perfectly accurate estimates of the associated population parameter.

A point estimator differs from sample to sample and is thus a random variable which
has a distribution. The variance of this estimator, which is a measure of precision, is known
as the sampling variance and reflects the extent by which the point estimator differs from
sample to sample. There exists many estimators of a specific population parameter and the
estimator which is related to the smallest sampling variance, is known as the most precise
estimator. Therefore, the most preferred point estimator(s) will be unbiased and display
minimum variance. Under these circumstances, we obtain optimum sampling results, with
respect to obtaining maximum information about the population parameter.

Note that a biased estimator may offer more information about a population parameter
than that of an unbiased estimator, since the biased estimator, which corresponds to a low
degree of bias, may exhibit a much higher degree of precision than the unbiased estimator.
There is thus a trade-off between accuracy and precision and the appropriate measure

that represents this trade-off is the mean square error (MSE) of a point estimator. The



MSE of a point estimator is calculated as the sum of the corresponding sampling variance
and the squared bias of the associated estimator, whereby the estimator which exhibits a
minimum MSE is considered to be the most desirable. Note that the MSE of an unbiased
estimator is equivalent to the variance of that estimator. Additionally, the relative MSE
between two point estimators is given as the ratio of their MSEs (expressed in percentage
terms), i.e. the relative MSE of point estimator a, with respect to point estimator b, is
given as the MSE of estimator b divided by the MSE of estimator a and then multiplied
by 100%. If this percentage is less than 100%, then we conclude that estimator b is to be
preferred over estimator a, while a percentage that is greater than 100% would suggest
that estimator a is to be preferred over estimator b.

When aiming to provide an estimate of a population parameter, it is thus of the
utmost importance that one explores the ramifications of the different sampling designs
on the simplicity of implementation, degree of bias, variance and MSE of the corresponding
point estimators, in addition to their capability to generate an unbiased estimate of the
associated sampling variance. We next focus our attention on some well-known probability
sampling designs which can be implemented to estimate population parameters.

There are several probability sampling designs that can be employed to select a repre-
sentative sample, e.g. simple random sampling, stratified random sampling (STR), cluster
sampling, systematic sampling etc. Simple random sampling entails a random selection of
each sampling unit from the population, where the probability of selection of each possible
unit is equivalent within each of the n phases of the random selection. If simple random
sampling with replacement is to be achieved, then each unit is replaced into the population
after being selected for the sample and is thus eligible for each of the following phases of
the random selection. We therefore have a possibility of duplicate sampling units, since
the units which are randomly selected for the sample are replaced into the population,
thus having a possibility of being chosen again in the next phases of the random selec-
tions. If simple random sampling without replacement (SRS) is to be achieved, then we
randomly select each sampling unit, but now we do not replace these units into the popu-
lation before the next phases of the random selections, thus ensuring a sample of distinct
sampling units. Hence, to avoid duplicate sampling units and improve results, preference
will be given to SRS over simple random sampling with replacement (Lohr 2010). Strat-
ified sampling entails dividing the whole population into subgroups (or strata) based on

some characteristic, before applying a specific random selection within each subgroup (or



stratum), such that the selected units for each of the strata collectively represent the strat-
ified sample. Note that if SRS is applied within each stratum, then this sampling design
is referred to as STR and the selected units for each of the strata collectively represent a
stratified random sample. Cluster sampling involves dividing the whole population into
groups (or clusters), before randomly selecting entire clusters, such that the units within
each of the randomly selected clusters collectively represent a cluster sample. Systematic
sampling entails a random selection of a unit from the population and subsequent units
at equally spaced intervals thereafter, such that the selected units collectively represent a
systematic sample.

We next focus our study on systematic sampling, while making comparisons to the

other above-mentioned probability sampling designs.

1.2 Systematic Sampling

A detailed discussion on systematic sampling was originally given by Madow & Madow
(1944), Cochran (1946) and Yates (1948). Systematic sampling is frequently applied in
forestry, land use/cover area frame surveys, census, record sampling and for household
and establishment surveys (Murthy & Rao 1988). Applications on systematic sampling for
forestry are given by Hasel (1938), Finney (1948) and Zinger (1964), while applications on
systematic sampling for land use/cover area frames are provided by Osborne (1942), Dunn
& Harrison (1993) and D’Orazio (2003). Some examples of systematic sampling are given
in the areas of soil sampling (Mason 1994, Jacobsen 1998) and nature studies (McArthur
1987, Pawley 2006). Comprehensive reviews on systematic sampling are provided by
Murthy (1967), Cochran (1977), Iachan (1982), Bellhouse (1988) and Murthy & Rao
(1988).

The fundamental process of systematic sampling is given as follows: To select sample
of size n from a population of size N using systematic sampling, we randomly select a
unit from the first & = N/n population units and every subsequent kth unit, until the
required sample size is achieved. This design is referred to as linear systematic sampling
(LSS), provided that the sampling interval k is an integer (Cochran 1977). The random
start is given by 4, where ¢ € {1,....,k}. LSS is advantageous over SRS and STR, owing
to its convenience and operational simplicity when implemented.

Let us consider a finite population U = (Uy, ...,Un) of size N and let y, be the value



of the study variable of the gth unit of population U, for ¢ € {1,...,N}. All possible
values of the random start ¢, as well as the corresponding sample outcomes and sample
means, when conducting LSS, are presented in Table 1.1. Note that y;; represents the
value of the study variable related to the jth unit of the ith linear systematic sample,
ie. Yij = Yiy(j—1)k for i € {1,.,k} and j € {1,...,n}. From Table 1.1, we see that
the sample is automatically determined by the choice of the first sampling unit/random
start. Furthermore, the whole population of size IV is divided into k groups, each of size
n. The methodology of LSS is therefore equivalent to the random selection of one of these
k groups. LSS is thus considered as special case of cluster sampling, since each individual

sample is regarded as a cluster and one cluster is then randomly selected.

Table 1.1: Samples and sample means for possible values of ¢ using LSS

Possible values of % Sample Sample Mean (7, ¢5)
1=1 S1={U1, Ur 1k, U2k, s Urpn—1)k} Z?:l Y114(G—1)k/ T
i=h Sh={Un, Un+k, Un+2ks s Unt(n1)k} Do jm1 Ynht (i—1)k/T
i=k Sp={Uk, Uag;, ..., Unr.} 2 =1 Yk jk/m

From Table 1.1, we can easily verify that the linear systematic sample mean, denoted
as T, ¢4, is an unbiased estimate of the population mean Y = Zle > j=1Yii/nk = E(F,ss)-
The corresponding sampling variance can be written in terms of the intra-class correlation
coefficient (ICC). The ICC between pairs of sampling units that are located within the

same linear systematic sample is denoted as

p = Cov(yij, ya) /o, g l=1,..,n,(j#)andi=1,..,k, (1.1)

where
k n
Cov(yij, ya) = nk(nl—l) D3 i —Vya —Y); (1.2)

y;; and y; denote random variables which represent two different units in the ith linear

systematic sample; and the population variance is given by definition as

LT NI EES » SN o
_qul Ya - nk Yig .

i=1 j=1



Applying the above notation, the sampling variance is expressed as

V(?Lss) = 55/ (-]\7]\71) [1 + (n - 1)47 (1.3)

where

N k n
e S (V) = e D (- V) (1.4)
q=1

i=1 j=1

denotes the adjusted population variance (Cochran 1977). When referring to (1.3), we note
that the sampling variance is dependent on n and p, as 552, and N are fixed. We further
note that it is not guaranteed that a larger sample size will result in a smaller sampling
variance, unlike SRS and STR which exhibit an inversely proportional relationship between
the sample size and the associated sampling variance. Empirical results provided by
Madow (1946) indicate an inconsistent behaviour of the sampling variance in relation to
the sample size, when conducting LSS. Thus, the only component which is proportionately
related to the sampling variance is p, which is dependent on (i) the arrangement of the
population units, (ii) the degree of correlation between consecutive population units and
(7i7) the sample size n (Murthy & Rao 1988).

When conducting SRS, the sample mean, denoted as ¥4, provides an unbiased esti-
mate of Y with an associated sampling variance written as

Vi) = 2 (21 (15)

(see Cochran (1977)). Comparing (1.3) to (1.5), we note that LSS is more efficient than
SRS when p < —1/(N—1). For large population sizes, we conclude through approximation
that LSS is more efficient than SRS, if and only if p < 0. By referring to (1.1) and (1.2),
this implies that the more heterogeneous the units which are located within the same
linear systematic sample, the more substantial the efficiency gains when favouring LSS
over SRS.

Consider STR, where each stratum is of size k and one unit is selected within each
stratum. The sample mean, denoted as ¥, , provides an unbiased estimate of Y with the

respective sampling variance written as

Vi) = 2 (221, (16)

n

where the variance among units which are located within the same stratum is denoted as

n k
Sae =2 > (v — @,j)2/n(k‘ — 1); the value of the study variable related to the ith unit
=1i=1

Jj=1li=



of the jth stratum is denoted as y;;; and the jth stratum mean is denoted as y.; = zk: Yij [k,
for j € {1,...,n} (Cochran 1977). Now, LSS can be defined as the division (z)?lthe N
population units into n strata of k units each, before randomly selecting one unit from
the first stratum and the unit selected from each of the other strata, is located in the
same position as the randomly selected unit in the first strata. The usual LSS design,
which was presented by Table 1.1, is therefore transposed and can now be compared to
the above-mentioned STR design. Accordingly, the first k& population units are situated
in the first stratum, the next k population units are situated to the second stratum, and

so forth. The corresponding variance expression is given by

2 —-n
V@LSS)ZS;‘;“ <NN ) (14 (n = 1)pust] s (1.7)

where the ICC between pairs of units which are located within the same linear systematic

sample, with the deviations being calculated from their associated stratum means, is de-

noted as pyst = 2 i i i (yij — y,j) (ya — 1)/ [n(n—1) (k—1)52] (Cochran 1977).
Comparing (1.6) gc_) 1(]1_.'17;,>JW6 note that LSS is more efficient than STR, if and only if
Pwst < 0.

Thus, each different population structure will have an effect on p and pys¢, which will
then effect the efficiency of LLSS. Consequently, for the remainder of this thesis, we narrow

the study to focus on a specific type of population structure, i.e. populations exhibiting

linear trend.

1.3 Disadvantages of Systematic Sampling

Now that we have a basic understanding of systematic sampling, we next consider the key

disadvantages, which are given as follows:

(i) An unbiased estimate of the sampling variance is unobtainable when conducting LSS
with a single random start, since it is impossible to select certain pairs of population

units for the sample. This disadvantage will be further explained in Chapter 3.

(ii) If the population size is not a multiple of the sample size, then conducting LSS
will either produce sample sizes that vary, or fixed sample sizes that are greater
than required. Consequently, biased estimates of the population parameters are

associated with the former situation, while the latter situation is undesirable since



sample sizes are commonly fixed beforehand. These situations will be explored in

Chapter 4.

The fundamental objectives of this thesis are to provide solutions to these disad-
vantages by proposing modified systematic sampling designs and/or estimators that are
favourable over its existing literature counterparts. The theory presented thus far is a
reflection of the authors’ understanding of the existing literature, which can be found in
Naidoo (2013), as well as any traditional sample survey book, e.g. Kalton (1983), Lehtonen
& Pahkinen (2004), Lohr (2010), etc.

1.4 Scope of Thesis

This thesis is divided into six chapters. Chapter 2 entails a discussion of the perfor-
mance of systematic sampling under the assumption of linear trend among the population
units. All associated modified systematic sampling designs are explored, before providing
a discussion on optimality. Thereafter, a proposed modified systematic sampling design
is presented. Chapter 3 tackles the first disadvantage, i.e. estimation of the sampling
variance. An overview of the problem at hand is presented, before exploring all relative
modified systematic sampling designs. In the final section of this chapter, a modified sys-
tematic sampling design is suggested to tackle the corresponding shortcoming. Chapter
4 addresses the second disadvantage, i.e. if the population size is not a multiple of the
sample size. An outline of this drawback is discussed, before briefly examining each as-
sociated modified systematic sampling design found in literature. Afterwards, a modified
systematic sampling design is proposed to address the problem at hand. In Chapter 5,
both shortcomings are solved in tandem by introducing a final modified sampling design.
Finally, in Chapter 6, all the work from the previous chapters are integrated to provide
a comprehensive report on the thesis, as well as future recommendations/studies. Note
that Naidoo (2013) originally studied the proposed modified systematic sampling designs
in Chapters 2 and 3, where approximate percentages of that work carried forward within

this thesis are given as 90% and 40%, respectively.



Chapter 2

Systematic Sampling in the

Presence of Linear Trend

Trend is described as the general path which is tracked by the y,’s, as ¢ € {1,..., N}
sequentially increases and/or as time moves forward, if ¢ represents points in time. If the
Yq's are inclined to increase as ¢ increases, then the population is said to exhibit positive
trend. Conversely, if the y,’s are inclined to decrease as ¢ increases, then the population
is said to exhibit negative trend. Trend is either described as linear, or non-linear, i.e.
parabolic, quadratic, exponential trend etc. The main focal point in this thesis is to only
consider linear trends.

In this chapter, we first discuss a linear trend model and the performance of LSS,
when compared to SRS and STR, under this model. Thereafter, we provide an overview
of the various modified LSS designs found in literature, which aim to provide optimal
results for populations exhibiting linear trend. We next consider some optimal sampling

strategies/conditions, before proposing an associated modified systematic sampling design.

2.1 Linear trend model

The efficiency of LSS in the presence of linear trend was originally studied in a mathe-
matical context by Madow & Madow (1944), and later discussed by Murthy (1967) and
Cochran (1977). Let us consider a population that exhibits linear trend, represented by
the model

Yqg = a+bq+eq, g=1,...,N, (2.1)
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where a and b are constants and the e;’s denote the random errors which follow Cochran’s

(1946) super-population model, i.e.
€ (eq) =0, £ (e) =0, € (eqez) = 0(q # 2),

where the average of all potential finite populations that can be drawn from model (2.1)

is denoted by the function £. By referring to (2.1), we obtain
N N N N
— 1 1 b 1 b(N+1) -
U PR DILES DML P

where € = Z]qul eq/N denotes the average random error of the population. Thus, when

estimating Y, the expected MSEs of ¥, s, Ysps, and Ys,p, are respectively given by

b (k* —1
MLSS = O‘g "‘ M, (22)
12
(N +1)(k—1
Mons = 02 + ( ) (k—1) (23)
12
and
b (k* — 1
Mgy = o7 + (1271)’ (24)
where 02 = 02(1/n — 1/N) represents the minimum expected error variance component,

while the second terms on the right hand side represent the linear trend components (see

Bellhouse (1988)). Now, comparing (2.2) through to (2.4), results in

Msrr < Myss < Msgs. (2-5)

Thus, for populations exhibiting linear trend, STR is more efficient than LSS, which in
turn is more efficient than SRS. Note that equivalence occurs when n = 1.

In the presence of linear trend, we obtain a high degree of variation between units that
are located within the same linear systematic sample. The cross products for these pairs,
with deviations calculated from the population mean, are thus inclined to be negative.
Hence, LSS is more efficient than SRS as a result of p being negative. Therefore, the
greater the amount of linear trend, the more substantial the efficiency gains when favouring
LSS over SRS.

Now, let us compare LSS to STR (as in Section 1.2) in the presence linear trend.
Strata are thus predominantly internally homogeneous, where a deviation between any
sampling unit and its corresponding stratum mean, is probable of having the same coef-

ficient as the deviation between another sampling unit from their corresponding stratum
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mean. Both deviations between their corresponding stratum means are thus expected
to be either positive, or negative, which in turn predominantly results in positive cross
products. Accordingly, STR is more efficient than LSS as a result of p,s being positive.
Note that the greater the amount of linear trend, the more substantial the efficiency loss

when favouring LSS over STR.

2.2 Modified linear systematic sampling strategies

Many authors have addressed the above-mentioned scenario by suggesting modified LSS
strategies. Most of these solutions remove the linear trend component in (2.2) and thus
improve results. A review of such strategies, as well as their shortcomings, is presented

below.

2.2.1 Yates’ end corrections (Yates 1948)

This sampling design is equivalent to LSS; however, the sample mean (i.e. the Yates’ end
corrections (YEC) estimator) is corrected by employing appropriate weights on the first

and last sampling units, given by

_ _ (26 —k—1)
Yyee = Yrss T m (yz - yiJr(nfl)k) .

Under the assumption of a perfect linear trend in the population (e.g. y, = a + bg, for
qg=1,...,N), estimator 3, is equivalent to the population mean. If we consider model
(2.1), then we can expect estimator 7, to be a slightly biased estimate of the population
mean. Nevertheless, in the presence of a rough linear trend, estimator %, is usually
subject to less error than estimator y, o (Murthy & Rao 1988).

An expression for the expected MSE of ., when estimating Y under model (2.1), is

given by

o? (k* - 1)
6(n —1)%k2
(see Fountain & Pathak (1989)). The linear trend component is thus completely removed,

Mype = 02 + (2.6)

but the resulting effect is a greater error variance component, owing to the uneven weight-
ing of the sampling units.
2.2.2 Centered systematic sampling (Madow 1953)

Centered systematic sampling (CESS) adopts the usual LSS design; however, the centrally

located linear systematic sample is selected and thus no randomization is required. The



12

corresponding sample mean is given as

n

n! Zl Yl(25—1)k+1]/25 if £ is odd
Yopss = ]5

nt Zl Y(2j—1)kj2 Or N Zl Yi(2j—1)k+2)/2, i ks even
]:

j=
(Bellhouse & Rao 1975). If k is odd, then the sample is selected with a predetermined
start of ¢ = (k + 1)/2, while the predetermined start to select the sample is either i = k/2
or i = (k+2)/2, each with probability 1/2, when k is even (Bellhouse & Rao 1975). When
estimating Y under model (2.1), the expected MSE of 7, is obtained as

o2, if k£ is odd

e

Mepss = (2.7)

02 +b2/4, if k is even
(Fountain & Pathak 1989). Hence, the linear trend component in Myggs is only removed
when k is odd. Moreover, certain population units have a zero probability of being included
in the sample and thus 7.,¢s is subject to bias (Murthy 1967). However, under the
assumption of a perfect linear trend in the population, estimator 4,4 is equivalent to the

population mean when k£ is odd.

2.2.3 Balanced systematic sampling (Sethi 1965, Murthy 1967)

In relation to the population unit indices, an arrangement associated with balanced sys-
tematic sampling (BSS) is such that the sequence of each alternative set of k population
units is reversed. LSS is then conducted on this balanced arrangement, so as to select a
balanced systematic sample. Accordingly, the sample mean is given as

- —2)/2 ifni
-1 Zgio )/ (v + Yo(t1)hit1)s if n is even

Ypss = (n—3)/2
n~! [Zj:() (Yit2jk + Y20+ Dk—iv1) T yi—i—(n—l)k} , if n is odd.

This estimator is design-unbiased, owing to each population unit having an equal proba-

bility, 1/k, of selection. If we estimate Y under model (2.1), then the expected MSE of

Upgs 1S expressed as

a2, if n is even

MBSS — (28)
02 +b%(k? —1)/12n%, if n is odd

(Fountain & Pathak 1989).
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2.2.4 Modified systematic sampling (Singh et al. 1968)

With respect to the population unit indices, an arrangement associated with modified
systematic sampling (MSS) is such that the sequence of a subset of units, which occur
at the end of the population, is reversed. If n is even, then the last N/2 units are se-
quentially reversed, i.e. the population is now re-arranged as Uy, ...,Un/2, UN, ..., Unj241-
Alternatively, if n is odd, then the last (N — k)/2 units are sequentially reversed, i.e. the
population will be re-arranged as Uy, ...,Unyr)/2, UNy -, Unyr) 241 LSS is then con-
ducted on this modified arrangement so as to select a modified systematic sample. Note
that the resulting sample ensures an even spread over the population, except in the center.
Consequently, the sample mean is given as
nt ZgZBQ)/Z(ijk + YN jh—it1)s if n is even

Yniss =

- ~3)/2 e
n 1[25'10 (i i+ Yn—jhi) + Yit(n—1)k/2), if n is odd.
Just as in the case of BSS, estimator 7,44 is design-unbiased. The expected MSE of 7,44,

when estimating Y under model (2.1), is given as

a2, if n is even

Myss = (2.9)
o2 + b2 (k? —1)/12n2, if nis odd
(Fountain & Pathak 1989). When comparing (2.8) to (2.9), we see that My ss = Mzss,
while further noting that the linear trend components are only eliminated when the sample
size n is even.
Good reviews pertaining to the modified LSS designs mentioned thus far, are given
by Bellhouse & Rao (1975), Cochran (1977), Fountain & Pathak (1989), Gupta & Kabe
(2011), etc.

2.2.5 Diagonal systematic sampling (Subramani 2000, 2009, 2010)
If we assume that n < k, then diagonal systematic sampling (DSS) is conducted as follows:

(i) Arrange the population units according to matrix M, where

U U, ... U]
M — Uk41 Uk12 oo U
_U(nfl)kJrl U(nfl)kJrQ e Unk_ nxk
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(i) Randomly select an integer between 1 and k, say i, where 1 <14 < k.

(iii) The sample, S;, which is selected in a diagonal fashion from matrix M, is obtained

as follows:

(a) if i <k —n+1, then S; = {U;, U(k+1)+i, ey U(n—l)(k+1)+z’}§

(b) otherwise,

S; = {Ula U(k+l)+i7 EX) Uv(k+1)+i7 U(’y+1)k’+17 U('y+2)k+27 X U(nfl)k:Jr(nf'yfl)}v
where v =0, ...,n — 2 for Sk, ...., Sx_n+2, respectively.

The sample mean, denoted as ¥, 44, is a design unbiased estimator of the population
mean. If we consider model (2.1), then the expected MSE of 7,4, when estimating Y, is

found as

Mpss = a2 + Bk — ) [112(7]:/ —n)+2 (2.10)

Clearly, the linear trend component is only removed when n = k. To remove the linear
trend component for all other cases, Subramani (2000) proposed a DSS with end correc-

tions (DSSEC) estimator, given by
_ _ (2i —k+n-—2) o
Ypssec = Ypss T N_—ktn_1 (yi — y(nfl)(k+l)+i)7 ifi<k-n+1
(k—n)(2k —2i+2—n)

on(N —2k+n—1)

= Upss T (Yi = Y(n—1)k+(n—y—1));  otherwise.

As is the case of the YEC estimator, if we assume a perfect linear trend in the population,
then estimator ¥, ¢z 18 equivalent to the population mean, while slightly biased under
model (2.1).

Note that DSS is only applicable when n < k. Subramani (2009, 2010) later introduced

generalized DSS (GDSS), which is applicable for all cases of n and is given as follows:
(i) Apply steps (i) and (ii) from the DSS methodology above.

(ii) Select the ith population unit in the first row of M and from left to right, select all

downward elements in a diagonal fashion until reaching the last column of M.

(iii) Once the last column of M is reached, select the first population in the very next

row and repeat the diagonal selection process until a sample of size n is obtained.
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An unbiased estimator of the population mean is given by the sample mean, which is
denoted as Y;sg- If 7 > k, then the sample size can be expressed as n = ck + d, where
c and d are non-negative integers. Accordingly, the expected MSE of 7, ,¢s under model
(2.1) is given by

bd(k — d)[d(k — d) + 2]
12n2

Mepss = 062 + . (2.11)

If we compare (2.10) to (2.11), while assuming n = d (i.e. ¢ = 0), then Mpss = Mgpss.
Thus, DSS is a particular case of GDSS. Note that if n = ck (i.e. if d = 0), then the linear

trend component for M;pgs is eliminated.

2.3 Optimality in the presence of linear trend

When estimating the population mean in the presence of linear trend, an estimator is
considered to provide optimal results if it exhibits minimum expected MSE, i.e. (i) if the
linear trend component in the expected MSE of the corresponding estimator is completely
removed and (i) if the expected MSE of the associated estimator exhibits minimum
expected error variance. Condition () is satisfied for the YEC estimator, as well as for
CESS, BSS, MSS, DSS and GDSS, as shown by equations (2.6), (2.7) (if k£ is odd), (2.8)
(if n is even), (2.9) (if n is even), (2.10) (if n = k) and (2.11) (if d = 0), respectively.
Condition (i7) is satisfied if an equal weighting is applied to all the sampling units, as
seen for LSS, SRS, STR, CESS, BSS, MSS, DSS and GDSS, verified by equations (2.2)
to (2.4) and (2.7) to (2.11), respectively. Thus, the most attractive sampling strategies
in the presence of linear trend, are those that are related to estimators that satisfy both
conditions, i.e. CESS (k is odd), BSS (n is even), MSS (n is even), DSS (n = k) and
GDSS (d = 0). Moreover, a linear trend free sampling design will have the sampling unit
indices, for each and every possible sample, sum up to n(N + 1)/2, i.e. if S denotes a
sample selected when conducting any given sampling design, then this design is said to be
linear trend free, if and only if for all .S
Z q= %n(N +1)
U S

(Mukerjee & Sengupta 1990). Using this definition, one can easily verify that CESS (if
k is odd), BSS (if n is even), MSS (if n is even), DSS (if n = k) and GDSS (if d = 0),

are all linear trend free sampling designs. Another way of viewing this definition is that
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linear trend free sampling designs may only exist if n(N + 1) = n(nk + 1) is even, i.e. if
n is even or if both n and k are odd. Thus, we cannot obtain a linear trend free sampling
design for the case when n is odd and k is even. Alternatively, one may then opt to use the
YEC estimator, as this estimator is usually subject to less error than all other estimators
for this scenario. This drawback has motivated the study in the next section, where a
modified LSS design, as well as a corresponding competitive end corrections estimator,
are proposed.

Note that there are further modified LSS designs given by Subramani (2012, 2013a,b,
2014). These modifications will not be considered, as they do not provide optimality
under any circumstance. One can refer to the modified LSS design discussed by Khan
et al. (2015). This design is a generalization of either LSS, DSS and/or GDSS, under
certain assumptions. Thus, this design will only exhibit optimum sampling results if the
design reduces to either DSS or GDSS, while satisfying the linear trend free sampling
conditions for DSS or GDSS, respectively.

2.4 Balanced modified systematic sampling

In this section, a modified LSS design, termed as balanced modified systematic sampling
(BMSS), is proposed. In Section 2.4.1, a discussion on the methodology of BMSS is pro-
vided. For Section 2.4.2, the expected MSE of the BMSS sample mean, is compared to
that of My sg, Msrs, Msrry, My ge, Megss, Mpss and My, ss. As a result, BMSS is only op-
timal for the case when n/2 is an even integer. A BMSS with end corrections (BMSSEC)
estimator is thus constructed, so as to remove the linear trend component in the corre-
sponding expected MSE for the other cases of n. A numerical example on a hypothetical
population is then considered in Section 2.4.3, before carrying out a simulation study in
Section 2.4.4. Note that k is assumed to be an integer, i.e. assuming that NV is an exact

multiple of n, so that sampling is conducted linearly.

2.4.1 Methodology

A modified arrangement used for BMSS is defined as follows: (a) if n is even, then the
order of every alternative set of k£ population units is reversed, before reversing the order
of the first/last n/2 sets of k population units; and (b) if n is odd, then the order of every

alternative set of k population units is reversed, before reversing the order of the last
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(n — 1)/2 sets of k population units. LSS is then applied to this modified arrangement,
so as to select the required sample. Note that different arrangements, before applying
LSS, will result in different compositions of samples and this paper deals with a specific
arrangement, as explained above. By reversing the order of n/2 (or (n — 1)/2) sets of k
population units, a balancing effect is obtained which is optimal for populations exhibiting
linear trend. Note that MSS reverses the order of the last n/2 (or (n — 1)/2) sets of k
population units, without alternating the order of each set, while BSS alternates the order
of each set, without reversing the order of the last n/2 (or (n —1)/2) sets of k population
units. Thus, the ordering of BMSS is a mixture of both, the MSS and BSS orderings.
Moreover, BMSS reduces to LSS when n = 2 and we will thus assume that n > 2.

The above-mentioned design is equivalent to selecting sampling units according to the

following indices:

(A) if n/2 is an even integer, then
i+ 24k, 2+ Dk —i+1, forj=0,..,(n—4)/4
and
N 4i—k— 2jk, N—i—k—2k+1, forj=0,..(n—4)/4
(B) if n/2 is an odd integer, then
i+ 235k, N +i—k—2jk, forj=0,...,(n—2)/4
and
2+ Dk —i+1, N—i—k—2jk+1, forj=0,...,(n—6)/4;
(C) if n = 3, then
i, % —i+1 and N—i+1;
(D) if n# 3 and (n+ 1)/2 is an even integer, then
i+2jk, 2+ Dk—i+1, N—i—2jk+1, for j = 0,...,(n — 3)/4
and

N+i—2(j+ 1)k, forj=0,...,(n—7)/4;
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(E) if (n+1)/2 is an odd integer, then

i+2k,  20+Dk—i+1, N—i—2jk+1, N+i—2(+1)k,

for j=0,..,(n—5)/4 and i+ (n—1)k/2.

Note that Cases (A) and (B) are sub-cases of n being even, while Cases (C) to (E) are
sub-cases of n > 1 being odd.

The ith (i € {1, ..., k}) sample mean, denoted by ¥y,,ss, is obtained by using the above
sampling unit indices for the respective cases, e.g. if we consider Case (A), then the sample
mean is given as

(n—4)/4

Ysmss = (Yir2jk + Y2(j+ 1) k—it1 T YN+i—k—2jk + YN —i—k—2jk+1)-

[e=]

j=
Note that ¥,,ss is design-unbiased, since BMSS is viewed as an arrangement of units

before applying LSS.

2.4.2 Expected Mean Square Error Comparisons

To compare the expected MSE of the BMSS estimator, to that of M;ss, Msrs, Msrr,
My ge, Mopss, Mgss and My, ss, we first need to consider the following theorem.

Theorem 1: If we suppose model B, which is related to model A, i.e. model (2.1), given

by
Yq = a+ bq, g=1,...N (2.12)

such that

b(N +1)

N
— 12 1
YB:Nq:lyq:N[(a+b)+--~+(a+Nb)]:a+ 5 ’

then by assuming equal weights (1/n) applied to all the sampling units, the expected MSE

of any sample mean, when estimating Y , is given by

M, = EMSE (7, 2 ¢ {E [(yA _ ?)2} } — o2+ Var (3,) (2.13)

where T, denotes a linear unbiased estimator of Yy, using the sampling design associated
with Y, .
Proof: By using (2.1) and (2.12), we obtain Y = Yz+¢€ and §, = y,+€;, where€; = >_e;/n
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denotes the mean random error of the sample and ) denotes the sum over the sample.

Using these expressions, it follows that
e (o[l
=£ {E [(yB — ?3)2 + (& — 5)2} } = EVar (§,) 4+ EVar (¢;) = Var (7,) + 02.

If we let P = 2i — k — 1, then applying (2.12) to ¥g,,5¢ results in

Usmss = a+b(N +1)/2, for Case (A)
=a+b[N+1+2P/n]/2, for Case (B)
=a+b[N+1—-P/n]/2, for Cases (C) to (E).

Hence, the corresponding variance expression, when using ¥y,,4s t0 estimate Y, is given

by

Var (Us,,55) = 0, for Case (A)
= b%(k* —1)/3n?, for Case (B)
= b (k* — 1)/12n2, for Cases (C) to (E), (2.14)

which follows since

E (P?) Z;Zﬂ:(kz;l).

Thus, if we assume model (2.1), then by substituting (2.14) into (2.13), we obtain

Mgrss = Uz; for Case (A)
=02 + b (k* —1)/3n?, for Case (B)
= 02 + 1)2(k72 — 1)/12n2, for Cases (C) to (E). (2.15)

By comparing (2.15) and (2.4), we note that Mgy 55 < Mg for all the cases. Thus,
by using (2.5), we conclude that BMSS is more efficient than LSS, SRS and STR. Also,
by comparing (2.15) and (2.6), we see that Mgy ss < Mype, for (i) Case (A); (ii) Case
(B) (if and only if 0 > 2b%(n — 1)2k%/n?); and (iii) Cases (C) to (E) (if and only if
o? > b%(n — 1)%k?/2n?). In addition, the comparison of (2.15) and (2.7) results in:

(i) Mpyss = Mepss for Case (A) and if k is odd,;
(il) Mpuss < Mepss for Case (A) and if k is even;

(iil) Mpuss > Mogss for Cases (B) to (E) and if k is odd;
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(iv) Mgyss < Mopss for Case (B), if k is even and 4k% — 4 < 3n?;
(V) Mgyss < Mppss for Cases (C) to (E), if k is even and k% — 1 < 3n2.

Finally, by comparing (2.15) and (2.8), we see that Mg, 55 > Mpgs = M55 for Case (B),
while all other cases result in Mgy55 = Mgss = Miss-

Clearly, we only obtain a complete removal of the linear trend component in (2.15)
for Case (A). To remove the linear trend component for the other cases, we next consider
the application of weights to the first and last sampling units. Accordingly, the resulting
estimator and the corresponding expected MSE are respectively given in the next two
theorems.

Theorem 2: The BMSSEC estimator of Y with random start i, fori € {1,...,k}, is given

as

Ypmssepc = Ypmss T+ P(yi - yN—H'—k)/[n(N - k)], for Case (B)
= Upmss — P(Wi —yn—it1)/[2n(N — 20 + 1)], for Cases (C) and (D)

= Ypmss T Py —yn—iy1)/[2n(N = 2i + 1)],  for Case (E).

Proof: See Appendix.
Theorem 3: Under model A, the expected MSE of Yy, 5550 1S given as

MBJ\/ISSEC = 0’3 + 202(k2 - 1)/3n2(N - k)2, fOI“ Case (B)
k
= o; + Z {P*c?/12(N — 2i + 1)*n?k]}, for Cases (C) to (E).
i=1

Proof: See Appendix.

If we compare Mg,;ss5c to all previous expected MSE expressions, then we note that
simple theoretical comparisons are difficult to obtain and we will thus resort to some
numerical comparisons in the next two sections. However, one can easily verify that
Mgss = Myss < Mpysspe < My pe for Case (B), while Mppss < Mpyssee if k is odd.
Furthermore, just as in the case of the YEC estimator being slightly biased under the
assumption of a rough linear trend, owing to the uneven weighting of the sampling units

(Murthy, 1967), we obtain the same result for estimator g ;55 pc-
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2.4.3 Numerical Example

Consider the hypothetical linear trend population given by Murthy and Rao (1988, p.
161), which is presented in Table 2.1. All the possible samples for various values of n
when conducting BMSS, which are obtained by using the sampling unit indices in Section
2.4.1 for the corresponding cases, are presented in Table 2.2. The associated MSEs for
the various sampling designs mentioned in this paper are given in Table 2.3. The results
suggest that BMSS offers a strict improvement over LSS, SRS and STR, regardless of the
sample size. Moreover, if n/2 is not a even integer, then we obtain a reduction in estimation
error by using the BMSSEC estimator, as opposed to the BMSS estimator. Comparisons
amongst the modified LSS designs to either BMSS or the BMSSEC estimator requires
further analysis, since we are only considering a single finite population, whereas our
theoretical results obtained earlier are based on an infinite super-population. However, we
note that in most cases, there is a significant reduction in error when applying any one of

the modified LSS designs, as opposed to LSS, SRS and STR.

Table 2.1: A population of 40 units exhibiting a steady linear trend in the value of a variable

Y.

Ug  Yq Ug  Yq Ug  Yq Ug  Yq
Uy 0 U1 10 Uy 23 Us; 41
Us 1 U 11 Uy 25 Uss 43

Us 2 Uiz 12 Uas 29 Uss 46
Us 3 Upg 12 Uas 30 Usy 50
Us 4 Ups 13 Uys 32 Uss 52
Us 5 Ue 14 Uy 33 Usg 53
u, 7 Uiz 15 Uar 35 Us; b7
Ug 7 U 17 U 38 Uss 59
Uy 8 Upg 20 Uy 39 Usg 62
Uo 9 Uo 22 Usgp 40 Uy 63

2.4.4 Empirical Comparisons

Three independent simulation studies will be carried out to further evaluate estimator

Usmssece- Monte Carlo simulations are used with the statistical software package R, where
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Table 2.2: For various values of n, the k possible samples (for i € {1, ..., k}) using BMSS.

Case n k Possible Samples
A 4 10 Si = {Us, Ua1—i, Us1—, Uspyi }
E 5 38 Si = {Ui, Ur7—i, Us1—i, Usayi} U {Ur6+4}
A 8 5 Si = {Ui, Ur1-i, Us6—i, Uss+i, Uro+i, U21—i, Uzs i, Ung—i }
B 10 4 Si = {Ui, Use i, Us+i, Uas+i, U6+, U204, Ug—is Usr—i, Urr—i, Uzg—i }
A 20 2 S ={Ui,Us—i,Ussti, Usg—i, Usyi, Ug—i, Usayi, Uss—i, Usyi, Urs—i, Usoti}

U{U31-i, Ur2+i, Urr—i, Useyi, Uar—i, Urei, U21—i, Uaati, Uas—i}

Table 2.3: Mean square errors for a hypothetical population exhibiting a linear trend.

n

4 5 8 10 20
LSS 23.1600 13.6475 6.3288  3.3825  0.4900
SRS  83.2264 64.7316 36.9895 27.7421 9.2474
STR  6.6350 3.1700 0.9625 0.4063 0.0350
YEC 04116 0.1887 0.1140  0.0240 0.0134
CESS  0.6400 0.4225 0.0400  0.9025 0.4900
BSS 04350 22475  0.0288  0.0275 0.0025
MSS 24725  0.0575 0.7538  0.2025 0.0400
BMSS  0.1475 0.5775 0.1788  0.2275 0.0025
BMSSEC N/A 00730 N/A 00187 N/A

10 000 finite populations are simulated. The expected MSE of each estimator is obtained

by averaging the MSEs over the 10 000 populations.

The relative expected MSEs of

each comparative estimator, with respect to that of estimator ¥Ys,,;q5pc, 1S denoted by

Ro = 100% Myrrsspe/Ma (%), where o € {LSS, SRS, STR, YEC, CESS, BSS, MSS, BMSS}.

Without loss of generality, we suppose that the e,’s are iid N(0,1) random variables and

let a = 5.

In the first simulation study, Case (B) is examined and arbitrary values of b = 0.5,1,2

and 4, are assigned while varying n and k. The associated relative expected MSEs are

presented in Tables 2.4 to 2.7. From Tables 2.4 to 2.7, we note that only estimators ¥4

and 7,,¢4, are marginally subjected to less error than that of estimator Uy, ,qspc. Also,
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estimator U ,,s55c 1S always favourable over estimators U, ¢q, Usrg and Yy pgg, With greater
discrepancies as n, k and/or b increases. Similarly, we see that estimator ¥y, s5pc 1S
always preferred over estimator 7y, ,, with greater discrepancies as k and/or b increases,
while results remain constant as n varies. Finally, we note that estimator ¥y,,555c always
performs better than estimator ¥,,,4, with greater discrepancies as k and/or b increases
and smaller discrepancies as n increases. Thus, Mgyss = Mpussec as n — oo, provided

that k£ and b are relatively small.

Table 2.4: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 0.5).

n  Rpss Rsrs Rsrr Repss  Rasss Ryss  Rpuss
6 57.85 2399 90.73 57.85 101.51 102.63 92.40
34 19.08 01.02 89.47 19.08 101.07 100.29 98.49

130 05.76  00.07  88.25 05.76 102.61 102.51 99.52
258 02,99 00.02 8824 0299 99.16 99.06 99.87
6 2887 0750 71.57 66.63 100.70 101.63 79.28
34 06.60 00.26 70.74 26.17 100.42 100.33 94.84
130 01.82 00.02 70.87 0853 102.52 99.01 98.84
258 00.92 <00.01 70.81 0445 100.31 99.04 99.18
6 10.06 02.01 40.24 70.84 100.66 100.10 50.14
34 01.93 00.06 40.08 29.27 99.81 99.85 85.14
130 00.51 < 00.01 40.10 09.79 100.46 100.15 95.62
258 00.26 < 00.01 39.82 05.15 100.27 100.55 97.43

o 0 00 0O ke e e NN NN NS

For the second simulation study, Cases (C) to (E) (i.e. n is odd) are considered
and arbitrary values of b = 0.5,1,2 and 4, are assigned while varying n and k. The
corresponding relative expected MSEs are presented in Tables 2.8 to 2.11. From Tables 2.8
to 2.11, we note that estimator ¥y,, 555 pPerforms better than all the estimators considered
in this study. In this simulation study, we obtain similar results as those obtained in the
previous study. However, estimator ¥g,,s55c nOW performs better than estimators 7,
and ¥,,s5. Moreover, we see that estimators ¥pqq, Y55 a0d Yg,,64, are relatively subject
to the same amount of error. Thus, Mggs, Myss and Mgrss — Mgpuysspe 88 o — 00,

provided that k and b are relatively small.



24

Table 2.5: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b=1).

k- n  Ryss  Rsgs  Rsrr Repss  Rpss  Russ  Bpuss
2 6 2495 0716 66.55 2495 99.00 99.53 75.38
2 34 0559 0025 66.74 05.59 100.84 100.51 94.65
2 130 01.54 00.02 67.78 01.54 100.91 102.35 98.60
2 258 00.80 <0001 69.26 00.80 105.18 105.60 99.44
4 6 0925 01.99 38.14 33.49 100.93 101.08 48.34
4 34 0172 00.06 3723 08.08 9899 99.99 83.69
4 130 0046 <00.01 37.46 0225 99.82 101.26 95.29
4 258 00.23 < 00.01 3749 01.15 100.23 101.06 97.11
8§ 6 0270 0051 14.28 36.91 100.38 100.58 19.93
8§ 34 0049 00.02 14.26 09.31 100.27 100.73 58.78
8 130 00.13 < 00.01 14.16 02.61 99.12 99.41  84.22
8 258 00.06 < 00.01 14.18 01.33 102.09 100.64 91.56

Table 2.6: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 2).

k- n  Rss  Rsgs  Rsrr Repss  Rpss  Russ  puss
2 6 0768 0190 33.33 07.68 99.73 101.68 42.20
2 34 0144 00.06 3299 0144 99.04 99.59 80.93
2 130 00.38 < 00.01 33.50 0038 99.90 101.72 94.94
2 258 00.19 <0001 3354 0019 101.66 101.58 96.97
4 6 0243 00.50 13.03 11.09 100.52 99.60 18.31
4 34 0044 00.02 13.21 02.18 100.84 99.90 56.22
4 130 00.11 <00.01 1295 00.57 101.01 99.83 83.06
4 258 00.06 <00.01 13.07 00.29 99.54 99.92 90.80
8 6 0068 00.13 0399 1277 99.65 99.86 05.86
8§ 34 00.12 <0001 04.00 0251 100.08 100.40 25.97
8 130 00.03 < 00.01 04.01 00.67 99.76 99.37 57.89
8 258 00.02 <0001 0399 0034 99.41 9941 7291
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Table 2.7: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case (B) (b = 4).

n R ss Rsrs Rsrr  Repss Rgss Ryss Rprss
6 02.08 00.49 11.30 02.08 103.38 102.87 16.23
34 00.36 00.02 11.05 00.36 102.27 99.00 51.55

130 00.10 < 00.01 11.16 00.10 101.55 99.06 80.80
258 00.05 < 00.01 10.83 00.05 99.02 100.08 88.48
6 00.62 00.12 03.60 03.02 100.68 99.61 05.31
34 00.11 < 00.01 03.59 0054 99.15 99.43 23.98
130  00.03 < 00.01 03.61 0014 9894 99.51 55.27
258 00.01 < 00.01 0359 00.07 99.13 100.16 70.01
6 00.17 00.03 01.03 03.54 100.02 100.92 01.54
34 00.03 < 00.01 01.04 00.65 100.75 100.82 08.21
130 00.01 < 00.01 01.03 00.17 100.02 100.40 25.13

o 0 0 0 = b e e NN NN N

258 < 00.01 < 00.01 01.03 00.08 100.62 99.91  40.06

Comparisons between estimators Uy, ,ssxc and %, - are evaluated in the third sim-
ulation study. Because there are no trend components in the expected MSEs of both
estimators, an arbitrary value of b = 4 is assigned while varying n and k. Also, only Cases
(C) to (E) are explored, as it was theoretically shown previously that Mgy sspe < My ge
for Case (B). The simulated relative expected MSEs are presented in Table 2.12. The re-
sults suggest that estimator ¥g,,555c is only preferred when n and k are small. Otherwise,

there are marginal gains when choosing estimator ¥y,,555c Over estimator %, ...

2.4.5 Concluding Remarks

A modified LSS design (i.e. BMSS) that depends on an arrangement of population
units before applying LSS, which results in the corresponding sample mean being design-
unbiased, has been proposed. Results from Sections 2.4.2 to 2.4.4 indicate that BMSS
is more efficient than LSS, SRS and STR, in the presence of linear trend. The optimal
case of BMSS is when n/2 is an even integer, which results in linear trend free sampling
and minimum expected MSE of the corresponding sample mean. For the other cases of

BMSS, a modified end corrections estimator, i.e. estimator ¥y,,s55c, has been constructed.
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Table 2.8: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b =0.5).

k- n  Ryss  Rsrs  Rsrr Ropss Rpss  Russ  Rpuss
2 3 7039 5354 8852 70.39 98.00 9841 98.72
2 35 1835 0094 8775 1835 98.16 98.51 99.57
2 125 0592 00.08 88.00 0592 99.01 99.66 99.88
2 255 03.08 00.02 89.77 03.08 99.89 99.99 99.96
4 3 4540 2417 7216 81.30 91.01 89.63 89.99
4 35 0641 0024 70.49 25.65 9896 9854 98.78
4 125 01.89 00.02 70.82 08.74 99.29 99.36 99.59
4 255 0093 <00.01 70.67 0450 99.84 99.99 99.84
8§ 3 1850 0v.55 40.69 83.34 6831 67.80 68.28
8 35 01.86 00.06 39.89 28.77 95.34 96.24 95.97
8§ 125 00.54 < 00.01 40.36 10.25 98.78 99.47 98.78
8 255 00.26 < 00.01 40.13 05.26 99.40 99.88 99.32

Table 2.9:

Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b=1).

k- n  Ryss  Rsrs  Rsrr Ropss Rpss  Russ Rpuss
2 3 4266 2321 70.25 42.66 88.72 88.20 88.28
2 35 0539 0024 66.54 0539 98.63 98.12 98.60
2 125 01.57 00.02 66.46 01.57 98.30 98.48 98.60
2 255 00.78 < 00.01 66.48 00.78 99.51 99.97 99.79
4 3 1703 07.28 38.28 50.89 65.39 66.23 65.88
4 35 01.68 00.06 3729 07.88 94.72 9444 95.06
4 125 0048 < 00.01 3758 0236 98.88 9833 98.82
4 255 00.24 <00.01 38.00 01.18 99.99 98.97 99.51
8§ 3 0542 02.02 14.71 5498 3436 34.26 34.36
8§ 35 0048 00.02 14.39 09.24 85.56 85.21 85.64
8 125 00.13 < 00.01 14.25 0271 9545 96.21 95.36
8 255 00.07 <0001 1437 01.36 96.95 97.72 97.57
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Table 2.10: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b = 2).

k- n  Ryss  Rsrs  Rsrr Ropss Rpss  Russ  Rpuss
2 3 1466 06.79 34.26 14.66 61.90 62.10 61.82
2 35 01.38 00.06 3271 01.38 95.03 94.90 94.55
2 125 00.39 < 00.01 3260 0039 9822 9837 9843
2 255 00.19 <00.01 33.09 0019 9894 99.75 99.25
4 3 0488 01.92 1336 20.68 31.62 31.83 3191
4 35 0042 00.02 1299 02.08 84.01 8359 84.05
4 125 00.12 <00.01 1298 00.59 94.68 93.93 94.98
4 255 00.06 <00.01 13.06 00.29 9813 97.76 97.46
8§ 3 0140 0051 04.09 2299 1137 11.35 11.34
8 35 00.12 <0001 0398 0243 59.25 59.13 59.01
8 125 00.03 < 00.01 03.99 00.69 83.52 &83.49 83.69
8 255 00.02 <0001 04.03 0034 91.83 90.98 91.54

Table 2.11: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases (C) to (E) (b =4).

ko n  Rpss Rsrs  Rsrr Ropss  Rpss  Russ  Rpuss
2 3 04.06 01.78 11.28 04.06 27.59 27.81 27.72
2 35 00.35 00.02 11.05 00.35 81.58 81.06 81.51
2 125 00.10 <00.01 11.16 00.10 92.83 93.56 93.80
2 255 00.06 <00.01 11.13 00.05 96.56 97.40 97.06
4 3 01.27 0049 03.71 06.02 10.41 10.31 10.38
4 35 00.11 < 00.01 03.62 00.53 56.26 56.53 56.25
4 125 00.03 < 00.01 03.63 00.15 8243 82.85 82.33
4 255 00.01 <00.01 03.64 00.07 90.81 90.58 90.72
8 3 00.36 00.13 01.06 07v.02 03.12 03.11 03.11
8 35 00.03 < 00.01 01.04 00.62 26.93 2693 26.89
8 125 00.01 <00.01 01.03 00.17 56.48 57.07 56.55
8§ 255 < 00.01 <00.01 01.03 00.09 73.05 73.11 72.63
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Table 2.12: Simulated relative expected mean square errors of the YEC sample mean, with

respect to that of the MBMSSEC sample mean, for populations exhibiting linear trend under

Cases C to E.
n
3 5 7 13 15 29 63 125 255

k=2 86.56 92.63 9553 9749 97.83 98.82 99.02 99.59 99.17
k=4 8923 94.03 96.13 97.69 98.48 9897 99.41 99.59 99.82
k=8 90.04 94.64 96.38 9790 98.53 99.16 99.65 99.92 99.95

Populations exhibiting a rough linear trend result in estimator yy,,;ss5- being a slightly
biased estimate of Y as well as exhibiting an inflated error variance component in the
corresponding expected MSE, owing to the uneven weighting of the sampling units.

If n/2 is an odd integer, then estimator ¥g,,555c 1S sSubject to less error than estima-
tors Y, s> Usns> Ystrs Yype ad Ygh,ss, While marginally susceptible to more error than
estimators ¥, 4s and ¥,,55, as shown in Sections 2.4.2 and 2.4.4. In addition, if n is odd,
then estimator ¥y ,,¢5pc is subject to less error than all of the above-mentioned estimators.
The simulation study in Section 2.4.4 indicates that estimator ¥g,,¢5c performs better
than estimator %, . if n is odd, provided that n and k are small. Otherwise, there are
marginal gains when opting to use estimator ¥z, 55z Over estimator %, ... Under this
circumstance, one may opt to use estimator ¥, ., owing to simplicity.

Finally, we note that estimator ¥y ,,s¢5- Performs better than estimator g, ¢, provided
that k is even, as seen in the simulation study from Section 2.4.4. However, if k is odd,
then the theoretical results in Section 2.4.2 suggest that estimator 7,,¢q is to be the
preferred, as CESS is an optimal sampling design for this scenario. Nevertheless, we can
expect marginal gains when opting to use estimator ¥, .ss over estimator Ys,,q5zc When
k is odd.

Recommendations for the most appropriate design(s) under various conditions are pro-
vided in Table 2.13. Note that the third column represents a trade-off between estimators

Yy po and Yg,espes Where preference is either given to minimum MSE or simplicity.
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Table 2.13: Recommended designs for populations exhibiting linear trend.

Case(s) Condition Preference Recommended Design(s)
A k is even N/A BSS, MSS or BMSS
A k is odd N/A CESS, BSS, MSS or BMSS
B k is even N/A BSS or MSS
B k is odd N/A CESS, BSS or MSS
CtoE k is even; n and k are small Minimum MSE BMSSEC
CtoE k is even; n and k are small Simplicity YEC
Cto E Fkiseven; n and/or k are not small Minimum MSE YEC or BMSSEC
Cto E kiseven; n and/or k are not small Simplicity YEC
CtoE k is odd N/A CESS

In this chapter, we have discussed systematic sampling, modifications of the usual
systematic sampling design found in literature as well as a suggested modified systematic
sampling design, all under the assumption of linear trend among the population units.
We also included a section on conditions regarding the optimality of systematic sampling
designs and modifications in the presence of linear trend. The results from this chapter
suggest that values of the sample size and sampling interval needs to be considered, before
selecting an appropriate modified systematic sampling design in the presence of linear
trend, where Table 2.13 provides us with the most suitable modified systematic sampling
design under various scenarios of n and k. In the next chapter, we will investigate the
first of the two shortcomings of systematic sampling, i.e. the impossibility of obtaining an
unbiased estimate of the sampling variance when conducting systematic sampling with a

single random start, under the assumption of linear trend among the population units.
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Chapter 3

Estimation of the Sampling

Variance

Remembering that Si, ..., Si are the k possible linear systematic samples that can be
randomly selected (refer to Table 1.1), the first-order inclusion probability of the unit Uy
under LSS, is given by m7y, = P(U; € S;) = 1/k, for all i € {1,...,k} and ¢ € {1,..., N}.
This indicates that each population unit has an equal probability of inclusion for the
linear systematic sample and the relative sample mean %, ., is an unbiased estimator
of the population mean, since 7, > 0 for all ¢ € {1,...,N}. In addition, if for some
¢,z € {1,...,N} (¢ # %), the second-order inclusion probability is denoted as m,, =
P(U, and U, € S;), then for all i € {1,...,k} and ¢,z € {1,...., N} (¢ # z), the second-
order inclusion probabilities for the pair of units {U,, U, } are given by

1/k, ifUjand U, € S;

gz =
0, otherwise.
This indicates that some pairs of population units have a zero probability of inclusion for
the linear systematic sample.
Now, an unbiased estimate of V(7,45) = E(J2ss) — Y is given as Jlgg — Est(?Q),

J/N? + Zévzl Zi\;éq Yqy-/N? is denoted as

. . 2 N
where an unbiased estimate of ¥~ = Zq:l Yg

Est(?Q) (Murthy 1967). One can easily verify that an unbiased estimate of Z(];[: 1 yg /N?
is given by Z;‘Zl yf =1k /n%k, owing to each population unit having an equal probability
of inclusion for the linear systematic sample. However, if we apply LSS with a single start,
then it is impossible to obtain an unbiased estimate of ZC]]V: 1 Ziv 2q YgV2 /N2, since some

pairs of population units have a zero probability of inclusion for the linear systematic
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sample. Thus, it is impossible to obtain an unbiased estimate of Y when conducting
LSS with a single random start, which in turn results in it being impossible to obtain an
unbiased estimate of V(7 ¢¢). In light of this result, Wolter (1984, 2007) constructed a class
of variance estimators and evaluated their performance under the assumption of various
population structures. In the presence of linear trend, he found that two of these estimators
provide a least biased estimate of V(7,¢¢). In practice, samplers usually apply the LSS
design and use an estimate of V(¥srg) to estimate V(7,45). Under this circumstance, the
estimator provides an overestimate of V(¥ 45) in the presence of linear trend. To overcome
this shortcoming, such that unbiased estimates of the associated sampling variance are
obtained, we next consider all relative modified LSS designs found in literature, before

suggesting a corresponding modified LSS design.

3.1 Modified linear systematic sampling designs

3.1.1 Multiple-Start linear systematic sampling (Deming 1960, Gautschi
1957, Shiue 1960, Torngvist 1963)

The theory of replicated sampling was originally suggested by Mahalanobis (1946) and
Tukey (1950), and later as a variation of LSS by Deming (1960), Gautschi (1957), Shiue
(1960) and Tornqvist (1963). Multiple-Start LSS (MLSS) entails conducting LSS with
multiple random starts. If the required sample size is now nm (i.e. we are assuming
that the required sample size is a non-prime integer), where m € {2,...,k — 1}, then the

methodology of MLSS is given as follows:
(i) Select m integers (i1, ...,4m) from the first k integers using SRS.

(ii) The sampling unit indices are then given as

ih+ (7 — 1)k, h=1,..,mand j=1,..,n.

From Table 1.1, we note that the above methodology suggests that we are merely selecting
m samples of size n from the k possible linear systematic samples, using SRS. Thus, MLSS
is a form of cluster sampling. Tornqvist (1963) proposed the use of simple random sampling
with replacement for step (i). To avoid duplicate samples and obtain better estimation
results, we will not consider this scenario. The usual case of obtaining more efficient results

when favouring SRS over simple random sampling with replacement applies here, and we



32

can thus expect better results when applying the above-mentioned procedure, as opposed
to that which is considered by Tornqvist (1963).

The sample mean, denoted as 7,,, 55, is an unbiased estimate of the population mean
and is given by

1 — ] o
Yurss = m 11231 Yin = . hZ:l ; Yih+(j—1)k>

where ¥,;;, denotes the LSS sample mean with random start ¢h. For this scenario, each
sample mean is treated as a population unit, where we apply SRS to select m sample
means from a total of k£ possible sample means. Thus, the adjusted population variance

is obtained by respectively substituting y; and N in (1.4), for 7, .5 and k, i.e.
1k
S% = r_1 Z(yLSS - Y)27
i=1

where Y = Zévzl yi/N =S¥ 7, <o/k. Using this expression, the variance of 7, ¢ is then

obtained by respectively substituting S2, N and n in (1.5), for Sg, k and m, i.e.

\Mwmyz<k_m>kilfxﬁw—yf:<Z:T>Vmﬁx

mk , m
=1

An unbiased estimate of V (7,,, 4¢) is then given by

- k—m 1 K,
V(yMLss) = <mk> m_1 (yih - yMLSS)2‘
h=1

For random starts m = 2, Sampath (2009) provides a study that compares the efficiency
of estimator V (7, <5 ) to that of an unbiased estimate of V(% ), under various population
structures. The results suggest that estimator V (Yaiss) is favourable for all the population
structures considered.

If we select a sample of size nm from a population of size N = nk = nml, using either
LSS, SRS, STR, or MLSS, then the expected MSEs of the corresponding sample means

(i-e. Upsss Usnss Ysrr a0d Ty eq), When estimating Y under model (2.1), are given as

o V(I-1)(+1)

MLSS = Ul —|— 12 5 (31)
b2(1 —1)(N + 1

My = o? + ¢ 1>2( ) (3.2)
21— 1)(1+1

Msrr = of + re-ni+y (3.3)

12nm
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and

2(l— (Im+1
MMLSS:UZQ+ ( i; )a

(3.4)

where 07 = 02(l — 1)/N denotes the minimum expected error variance component (see
Gautschi (1957)). Assuming that n > 1, the comparisons among equations (3.1) through

to (3.4), results in
Msrr < Myss < Myrss < Mggs.

We are thus presented with a trade-off when conducting MLSS, where obtaining an unbi-
ased estimate of the sampling variance comes at a cost of reduced precision in estimating
Y. Note that it is impossible to obtain an unbiased estimate of the sampling variance when
conducting STR with one unit selected per stratum, since certain pairs of units have a zero
probability of inclusion for the sample. Moreover, when referring to (3.4), we see greater
reductions in precision when estimating Y, as m increases. However, it is well-known that
m should be of sufficient size, so as to obtain a reasonably precise estimate of V (¥y,;¢5)-
This trade-off was studied by Kouijn (1973), where he introduced two modified MLSS
designs to provide reasonable solutions. These designs will not be reviewed, as obtaining
an efficient estimate of the sampling variance is not one of the key areas of concern in this

thesis.

3.1.2 Balanced random sampling (Singh & Garg 1979)

So far we have assumed that the population size is a multiple of the sample size, i.e.
N = nk. Under this assumption there exists three possible cases of balanced random
sampling (BRS), namely, (A) N and n are both even; (B) N is even and n is odd; (C) N

and n are both odd. The methodologies for these cases are given as follows:
Case (A): (i) Select a sample of size n/2 from the first N/2 population units using SRS,
where the sampling unit indices are denoted as fg, for g =1,...,n/2.
(ii) The balanced random sample is then given as the sample in (i), as well

as those population units with indices N +1 — f,, for g =1,...,n/2.

Case (B): (i) Select a sample of size n — 1 from the N population units, using the

procedure in Case (A).
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(ii) The balanced random sample is then given as the sample in (i), as well
as a randomly selected unit from the remaining N — n + 1 population

units.

Case (C): (i) Randomly select a unit from the N population units.

(ii) The balanced random sample is then given as the randomly selected unit
in (i), as well as a further (n — 1) units, which are selected from the

remaining (N — 1) units using the procedure in Case (A).

Note that in the presence of linear trend, only Case (A) provides linear trend free sampling
results, i.e. Yo cgq =n(N +1)/2, for all S (refer to Section 2.3). This is also validated
by Singh & Garg (1979), where a sampling variance expression is computed under the
assumption of model (2.12). For Case (B), (n — 1) units are paired optimally using the
usual pairing procedure, while the other sampling unit is selected using SRS, which will
thus contribute to a linear trend component in the expected MSE of the associated sample
mean. Finally, under Case (C), some pairs of sampling units may not be optimally paired,

as SRS is first applied before applying the usual pairing procedure.

3.1.3 Partially systematic sampling (Zinger 1963, 1964, 1980, Wu 1984)

Partially systematic sampling involves the supplementation of a linear systematic sample
of size n; with a random sample of size ns, where n = nj; + no. The corresponding

methodology is given as follows:
(i) Let ¥ = N/nj be an integer, such that LSS is applied to select ny sampling units.

(ii) The partially systematic sample is then given as the sample in (i), as well as ny units

selected from the remaining N — n; population units, using SRS.

Let y, and 7, denote the sample means corresponding to steps (i) and (ii), respectively.
An unbiased estimate of the population mean, which is a weighted average of these sample

means, as well as the variance of this estimator, are respectively given by

and

Var(y(8)) = a1(8)SY + az(B)Var(y,), (3.6)
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where
B3N = 1)(N — nyg — ng)

041(6): TLQN(N—nl—l) )

- Bk 1* BN —ni—ny)
a2 (B) = |:1 - (k — 1):| B no(k — I)Q(Nl— Tl12— 1)’

2 _
Var(g,) = 2% (Y70 ) [+ (- 1))

and p' is found by replacing n and k in (1.1) with ny and &, respectively.

To obtain an unbiased estimate of Var(g(/3)), which we will denote as v(7(f)), Zinger
(1980) independently derived unbiased estimates of SZ and Var(y,). He then showed
that a value of § which minimizes (3.6), as well as a natural weighted average, given by
B = na2/(n1 + n2), may result in v(7(5)) assuming negative values. If we let § = 1/2,
then v(y(B)) will always assume non-negative values. Zinger (1980) studied this case
and stated that S = 1/2 is optimal when minimizing (3.6), provided that &’ is large and
n2 = n1/(14 (ny — 1)p’). This scenario is generally unrealistic, as p’ is usually unknown
before sampling.

By letting Qs = > (vi — ¥,)? , Qr = > (vi — ¥,)? and Qp = > (Y, — 7,)%, Wu (1984)

proposed an unbiased estimate of (3.6), given as

V'([G(8) = C(Qs + AQy) + DQy,

where
C = dQCkl(ﬁ) — d10¢2(5) D= al(ﬁ) [n1 + )\CQ] + OéQ(,B)[TLl + )\Cl]
N dg(nl + )\61) + dl(nl + )\CQ)’ N dQ(nl + )\Cl) + dl(nl + /\02) ’
o = (12 = DIV = 1) o n2(ny — 1)
TN 1) T (N—n)(N=ny —1)’
&= (N —ni —no) & — (naN? — naN — n? — niny)
YT (N —ng— 1) 7 Tna(N=n)(N—ny—1)

As noted by Wu (1984), v'(7(8)) will always assume non-negative values if and only if
(a) A >0 and (b) B> (k—1)/2k. (3.7)

In practice, we can usually assume that k is large and nqy > ns, since if n; < no, then

it would be more sensible to conduct MLSS (Wu 1984). Consequently, the value of 3 that



36

minimizes (3.6), which we denote as Sopt, is often less than (k—1)/2k ~ 1/2 (Wolter 2007).
By referring to (3.7), we are therefore presented with a trade-off when selecting a suitable
value of 3, where we can either obtain the an efficient estimate the population mean or an
unbiased estimate of Var(7(5)) that always produces non-negative values. Accordingly,

Wu (1984) suggested the following strategy to overcome this difficulty:
(i) Use ¥ (Bopt) and v’ (¥ (Bopt)) when Bopr > (k —1)/2k;

(ii) Use either y((k — 1)/2k) and o'(y((k — 1)/2k)), or F(1/2) and v'(y(1/2)), when
0.2 < Bopt < (k — 1)/2k;

(ili) Otherwise, use F(Bop) and v/, (G(Bopt)) = max{y(Lopt), 0}

This strategy seems sensible, except for case (iii), where the variance estimate, which may
equal to zero, is just as undesirable as one that assumes negative values (Wolter 2007).

Rana & Singh (1989) suggested that § = (k — 1)/k and substituted this value into
(3.5), before obtaining expressions for the variance of 5(8 = (k — 1)/k) and an unbiased
estimate of this variance. Rana & Singh (1989) noted that this value of 3 is optimal,
since the associated variance is minimized, provided that n; and no are not too small.
Furthermore, the corresponding variance estimate will always assume non-negative values.
Ruiz Espejo (1997) discussed a generalization of Zinger’s (1980) approach by considering
the above-mentioned case of 5 = (k —1)/k.

3.1.4 Markov systematic sampling (Sampath & Uthayakumaran 1998)

Markov systematic sampling is a design that exhibits Markovian behaviour and is only

applicable when n is even. The associated methodology proceeds as follows:

(i) Divide the population into n/2 groups, each of size 2k, where the gth group is given
by Gy = {Up4s5l6 =1,...,2k}, withp=2(g — 1)k and g = 1,...,n/2.

(ii) For each Gy, assign a stochastic matrix A, with state space {p+6,0 =1, ...,2k} and

zero diagonal elements, i.e.

0 Ap1p+2  Aptip+3 -  Opi1.2gk
) Ap+2.p+1 0 p+2,p+3 - Gpt2,2gk
g = i ) i . . o 9=1un/2,
a a Qa oo O
| @29k, p+1 2gk,p+2 2gk,p+3 4ok x oK

where ap5, = P(Uy is selected|Up,s is selected) (p+6 # k) and k = p+1, ..., p+2k.
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(iii) In a systematic fashion, select n/2 units from the n/2 groups, i.e. randomly select
integer i from 1 to 2k and define the sample as S; = {U;, Ui ok, -, Ui (nj2—1)2k -

Thus, the location of the selected unit from each group G is the same.

(iv) The markov systematic sample is then given as the sample in step (iii), as well as an
additional sample of size n/2, which is obtained by randomly selecting a unit from

each group independently using the conditional probabilities in A,.

Note that each sample will contain distinct sampling units, owing to the zero diagonal
elements in matrix A,.

An unbiased estimate of the population mean is given by the Horvitz-Thompson esti-
mator (Horvitz & Thompson 1952), while an expression for the variance of this estimate,
as well as an estimate of the variance, can take the form of that proposed by Sen (1953)
and Yates & Grundy (1953). The associated inclusion probabilities, derived by Sampath
& Uthayakumaran (1998), can then be substituted into these expressions, so as to find
simplified formulae. Note that the corresponding variance estimator may assume negative

values.

3.1.5 Modified multiple-start linear systematic sampling strategies

We now consider analogues of the single-start strategies in Sections 2.2.1, 2.2.3, 2.2.4 and
2.2.5, which adopt the multiple-start approach, as in Section 3.1.1. Sampath & Ammani
(2010) assumed that n is even and the random errors in (2.1) follow a generalized super-
population model. Thus, to provide completeness and consistency within this thesis, we

will derive relative expressions.

Multiple-Start Yates’ end corrections (Sampath & Ammani 2010)

By selecting m linear systematic samples of size n, using SRS, before applying appropriate
weights to the first and last sampling units of each selected sample, we can then remove
the linear trend component given in (3.4). The corresponding estimate of the population
mean is known as the multiple-start YEC (MYEC) estimator and is denoted as ¥;ypc-
Accordingly, expressions for estimator 7,y and the expected MSE of this estimator
under (2.1), are respectively derived in the next two theorems.

Theorem 4: If we let V = 2>} ih — mk —m, then the MYEC estimator of Y with
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random starts ih, for h =1,....m and ih € {1,...,k}, is given by

_ _ 1% G
Ysryec = Yurss + 2m2(n "1k ;(yzh - yz‘h+(n—1)k) . (3.8)

Proof: See Appendix.
Theorem 5: Under (2.1), the expected MSE of U,y S given as

2
,  o(l=1)(Im+1)
Meyse = oi + 6m3(n — 1)212

(3.9)

Proof: See Appendix.

When comparing (3.4) to (3.9), we note that the removal of the linear trend component
results in a larger error variance component in M;;ygc, owing to the uneven weighting of
the sampling units. Moreover, in the presence of a rough linear trend, the usual YEC
estimator is a slightly biased estimate of the population mean (Murthy 1967) and we thus
conclude that 7,y is a slightly biased estimate of Y under model (2.1).

Multiple-Start balanced systematic sampling and multiple-start modified sys-

tematic sampling (Sampath & Ammani 2010)

For multiple-start BSS (MBSS) and multiple-start MSS (MMSS), we respectively use the
arrangements in Sections 2.2.3 and 2.2.4, before selecting m samples of size n using the
multiple-start approach in Section 3.1.1. As such, the MBSS and MMSS sample means

are respectively given by

(n-2)/2

Yyl 1 . . .
Ynpss = Z (Yintajn + y2(j+1)k—ih+1) ) if n is even
h=1 j=0
L [
~om Z Z (Yin+2ik + Yo(j+1)k—in+1) + Yint(n-D)k | » if n is odd
h=1 | =0
and
| (=2
Yunss = oy, Z (Yingjk + YUN—jh—ih+1) 5 if n is even
h=1 j=0
L [
= om Z Z (Yih+jk + YN—jk—ih+1) + Yiht(n—1)k/2 | - if n is odd.
h=1 | =0

Theorem 6: The MBSS sample mean 9,555 and the MMSS sample mean ¥,,,,ss are
unbiased estimators of Y.

Proof: See Appendix.
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Theorem 7: The variances of the MBSS sample mean 4,555 and the MMSS sample mean

Ynrsss along with unbiased estimates of these variances, are respectively given as

_ S? k—m
V(Uupss) = f;:js (k‘) ) (3.10)
_ S?2 k—m
V(yMMss) = ];4;3 <k) ) (3.11)
=S k’ —m 1 n —)
V(Uhpss) = < — ) o p— > (BSSTy, — BSST) (3.12)
h=1
and
S k —m 1 Ui )
V(Urnrss) = ( mk ) n2(m — 1) Z (MSSTih - MSST) , (3.13)
h=1

where Sgss = Zf:l (BSST;/n — ?)Z/Uf -1), SAQISS = E?:l(MSSTi/n - ?)2/(k —-1),

n—2)/2 . .
BSST, — Z( 2 (yisoi + Y2(j+1)k—i+1); if n is even
Z(n 3)/2(yi+2jk + Yo(j+1)k—it1) T Yit(n—1)k»  of 1 is odd,

(n— )2 o ) .
MSST — Z (Yitjk + YN—jr—it1), if n is even

Z(n /2 (yz—i-jk + YN—jk— it1) + Yit(n—1)k/25 if n 1s odd,

BSST ="' | BSSTy/m = nYy s and MSST = > "1 MSST;n/m = n¥, s
Proof: See Appendix.

Sampath & Ammani (2012) compared the performance of estimators \A/'@ML 55)s \A/'@MB ss)
and \Af(yMM ss), amongst each other. From their numerical study, they concluded that
{/(QML ¢g) s the preferred estimator, while the best choice for the number of random starts
was m = 2.

Theorem 8: Under (2.1), the expected MSEs of estimators Uy 65 and Yyprsg, A€ given

as

o, if n is even

Mysss = Mynss = (3-14)
o? + 621 —1)(Im +1)/(12n?), if n is odd.

Proof: See Appendix.

If we compare (3.4) to (3.14), then we note that Mypss = Mynss < Mywss, regardless
of whether n is even or odd. By referring to (3.14), we clearly see that optimal results are
obtained for MBSS and MMSS, when n = N/ml is even. Thus, a multiple-start approach
that improves results, for the case when n is odd, is the motivation for the study presented

in Section 3.2.
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Multiple-Start diagonal systematic sampling (Subramani & Singh 2014)

Multiple-Start diagonal systematic sampling (MDSS) is similar to the previous multiple-
start designs, where we use the arrangement of matrix M, before selecting m samples of
size n using the multiple-start approach in Section 3.1.1. If we denote the corresponding

sample mean as ¥, ¢5, then under (2.1), the expected MSE of 7,45 is given as

B b2(1 — 1)(Im — n)[n(lm —n) + 2
Mupss = o1 + 12n(lm — 1) '

It is difficult to obtain a simple theoretical comparison between M,;pss and M, g, while
Subramani & Singh (2014) notes that Mpss < Mypss. Moreover, if n = Im, then this is

a special case of optimality for MDSS, i.e. Mypss = 012.

3.2 Multiple-start balanced modified systematic sampling

In this section, we propose a modified multiple-start LSS design termed as multiple-start
balanced modified systematic sampling (MBMSS). In Section 3.2.1, we discuss the method-
ology of MBMSS and obtain expressions for the corresponding sample mean, the variance
of the sample mean and an unbiased estimate of the variance. For Section 3.2.2, we com-
pare the expected MSE of the MBMSS sample mean, to that of LSS, SRS, STR, MLSS,
MBSS, MMSS and the MYEC estimator, under the assumption of a linear trend model
averaged over a super-population model. As a result, MBMSS is only optimal for one of
the five possible cases of the design and we will thus introduce a linear trend free estimator
for the other cases, i.e. MBMSS with end corrections (MBMSSEC) estimator. Finally, we
provide some empirical results in Section 3.2.3. Throughout this section we will assume
that the required sample size is nm, where integer m denotes the number of random starts.
Moreover, we will assume that the sampling intervals k = N/n and | = N/nm are integers,
i.e. assuming that N is an exact multiple of both n or nm, so that we will be conducting

sampling linearly.

3.2.1 Methodology

The five cases of MBMSS are given as follows:
(A) n/2 is an even integer;

(B) n/2 is an odd integer;
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(D) n# 3 and (n+ 1)/2 is an even integer;
(E) n# 1 and (n+1)/2 is an odd integer.

Note that Cases (A) and (B) correspond to all cases of n being even, while Cases (C) to
(E) are associated with all cases of n > 1 being odd. The method to select a sample of

size nm from a population of size N, using MBMSS, consists of the following steps:

(i) Randomly select m integers (i1, ...,4m) from the first k integers, using SRS, where

2<m<k.

(ii) For h = 1,...,m, the sample units chosen for the respective cases will be those

elements with indices given by

Case (A): Al =ih+2jk, A2=2(j+1)k—ih+1, A3 =N +ih—k—2jk,
A4 =N —ih -k —2jk+1, forj=0,...,(n—4)/4;

Case (B): Bl =1ih+2jk, B2= N +ih—k—2jk, forj=0,..,(n—2)/4,
B3=2(j+1)k—ih+1, B4=N —ih—k—2jk+1,
for j =0,...,(n—6)/4;

Case (C): C1=1ih, C2=2k—ih+1, C3=N—ih+1;

Case (D): D1 =ih+2jk, D2=2(j+1)k—ih+1, D3 =N —ih—2jk+1,
for j =0,...,(n —3)/4,
D4 = N +ih—2(j + 1)k, forj=0,...,(n—17)/4;

Case (E): F1=1ih+2jk, E2=2(j+1)k—ih+1, E3=N —ih—2jk+1,
E4=N+ih—2(j+ 1)k, for j =0,...,(n —5)/4,
E5 =ih+ (n—1)k/2.

If n = 2, then single-start balanced modified systematic sampling is equivalent to LSS and

hence MBMSS is equivalent to MLSS, i.e. the sample units for case (B) reduce to ih and

th+k, for h =1,...,m. We will thus assume that n > 2 for the remainder of this section.
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Using the above cases, the MBMSS sample mean is denoted as

4)/4
1 e
Yupuss = o Z Z (ya1 +ya2 +ya3 +yaa), for Case (A)
h=1 j=
1 (n—2)/4 (n—6)/4
~om Z (yB1 +yB2) + Z (YB3 +yB4a) | for Case (B)
h=1 7=0 j=0
1 m
~ 3m Z(yol +yo2 +ycs), for Case (C)
h=1
TR [(n—3)/4 (n—T7)/4
" am Z Z (YD1 +yp2 +yp3) Z YD4 | » for Case (D)
h=1| j=0
T [(n—5)/4
- nm Z (ye1 + ye2 + YB3 + YB4) + YES | S for Case (E).
h=1 | j=0

Theorem 9: The MBMSS sample mean 4,5, S an unbiased estimator of Y .
Proof: For the respective cases of MBMSS, we denote the ith (i € {1,...,k}) balanced
modified systematic sample totals by
(n—4)/4
TA; = Z (Yit2jk + Y2(j+1)k—it1 T YN+i—k—2jk + YN—i—k—2jk+1),

(n—2)/4 (n—6)/4
T'B; = Z (Yitajk + YN+i—k—2jk) + Z (Y2 +1)k—it1 T YN—i—k—2jk+1),
=0 =0

TC; = Yi + Yok—it1 + YN—i+1,

(n—3)/4 (n—7)/4
TD; = Z (Yir2jk + Y2(j+1)k—it1 T YN—i—2jk+1) + Z YN+i—2(j+1)k>
j=0 Jj=0
and
(n—5)/4
TE; = (Yir2jk + Y2(j+ 1) k—itl T YN—i—2jk+1 T YNti—2(j+1)k) + Yit(n—1)k/2-
§=0

Let us assume an indicator variable, given by
1, if unit y;;, is in the sample;
0, otherwise.

For j = A, ..., E, if we assume that the T'j;’s are fixed but unknown constants, then

Lk
— Zfi(sz‘)
K k

1 1 Y o

=1 =1 =

E(y]\lB]MSS) =E
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since we are selecting m samples from the k possible samples, using SRS.

The single-start sample means (7j;/n, for j € {A,..., E} and ¢ = 1,...,k) can now be
viewed as population units. Remembering that SRS involves the random selection of n
sampling units from N possible sampling units, the variance of the sample mean 7,4 is
given by (1.5). Thus, by replacing y,, N and n in (1.5) by T'j;/n, k and m respectively,

we obtain the variance of 4, 5,55, Which is written as

_ S2 (k—m
V(yIMB]\/ISS) = ET (k) ) (3'15)

where 5% = Zle(Tji/n —Y)?/(k — 1), such that the replacement of y, and N in Y =
Zé\le yq/N, by T'ji/n and k respectively, results in Zle Tji/nk =Y.
Theorem 10: An unbiased estimator of (3.15) is given by

k—m -

v(yMBMss) = < mk ) HQ(Tnl— 1) it (T.jih - T)Q ) (3.16)

where Tji, € {Tj1,.... Tjr} and T =31 Tjin/m = Ny, prss denotes the average of all
the balanced modified systematic sample totals selected.

Proof: See Appendix.

3.2.2 Expected Mean Square Error Comparisons

If we consider case (A) of MBMSS, such that
(n—4)/4
eyn = Z (€iv2jk + €2(j41)k—it1 T EN+i—k—2jk T EN—i—k—2jk+1)
j=0
denotes the random error associated with ith (i € {1, ..., k}) balanced modified systematic

sample, then substituting (2.1) into T'A; results in
(n—4)/4
N+1
TA; = Z [4a + b(2N +2)] + ey = an + bn <;_> + é4.
j=0
An expression for the expected MSE of 7,,,,,s¢ 1S obtained by taking the expectation of

(3.15) and then substituting T'4; and Y into that expression, given by
k 2
(k—m) Z TA, <
-MBMSS mk(k - 1) — n

:m(/f(y—n)l);k;g[a+b(]\7;1> +%“— (a+b(N;1)+e)r

(k=m) §~p (& 2ee o
k(-1 2= \n2 " T TC) (3.17)

(2
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Now, since there are n terms in e, and N terms in e, it follows that

— 1
5 (ej) - n02, 5 (eAé) = NE[GA(el + ...+ GN)] = n%’
o 1 | X N N o2
c‘:(é):W ;5(62)4—21;5(6(162) =N
= z=1 q#z

Remembering that k& = Im, we then substitute these expressions into (3.17) to obtain

(k—m) Mo 202 o2 (k—m)o? (I—1)o?
MMBMSS:mZ ( + > = = :012'

n N N

P mN N

Similarly, we can use the above method for the other cases, such that

o, for Case (A)
Mpuss = § o7 +b2(1 — 1)(Im +1)/(3n?),  for Case (B) (3.18)
o? +b*(1 —1)(Im +1)/(12n?), for Cases (C) to (E).

By comparing (3.18) to (3.1), (3.2), (3.3) and (3.9) for Case (A), it follows that My pss
is less than M;gg, Msrs, Msrr and M,y e, while simple theoretical comparisons are
unobtainable for the other cases. Moreover, if we compare (3.18) to (3.4), then we note
that Mygass < Myss for all cases. Finally, the comparison of (3.18) to (3.14) results in
Mypuss = Mypss = Myss for cases (A), (C), (D) and (E), while My pryss > Mypss =
My s for case (B).

Clearly the linear trend component is only removed for case (A) in (3.18). To remove
the linear trend component for the other cases, we can apply weights to the first and last
sampling units of each of the m selected samples of size n. Accordingly, the resulting
estimator and the corresponding expected MSE are respectively given in the next two
theorems.

Theorem 11: The MBMSSEC estimator of Y with random starts ih, for h = 1,...,m
and ih € {1,...,k}, is given by

Yubmssec = Yubmss + W

where

W= Vst (Yih — YNvin—k)
nm?(N — k) '
_ -V Z?:l (yih - yN—z'h+1)
2nm Y 4 (N —2ih+ 1)’
_ V3 ht Wi — yn—int1)
2nm Y (N —2ih 4+ 1)’

for Case (B)

for Cases (C) and (D)

for Case (E).
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Proof: See Appendix.
Theorem 12: Under (2.1), the expected MSE of Gy, p155c 1S given as
5 20%(1—1)(Im +1)

Mypvssec = 0y 3m3n2 (n— 1)2l2 ’
2772
%4
= 0'[2 =+ E m g . 2
2n2m [Zh:l (N - 2Zh + 1)]

for Case (B)

} , for Cases (C) to (E).

Proof: Similar to Theorem 5.

Again, by comparing M, zussec to all the previous expected MSEs, we note that
simple theoretical comparisons are difficult to obtain and we will thus resort to some nu-
merical results in the next section. However, it is easily deduced that My;zss = Myss <
Mygyusspe < Myyge for Case (B). Moreover, just as in the case of the MYEC estimator,
we note that 7,5, 5sm0 18 a slightly biased estimator of Y in the presence of a rough linear

trend.

3.2.3 Empirical Comparisons

An evaluation of the performance of estimator ¥, 5,55z Will now be carried out by means
of three simulation studies. To obtain the expected MSE of each estimator, Monte Carlo
simulations are applied by using the statistical software package R, where 10 000 finite
populations are simulated, before averaging the MSEs over the 10 000 populations. The
relative expected MSE of each comparative estimator, with respect to that of ¥, 5155505
is denoted by R, = 100 X My, pyssec/Ma(%), where a = LSS, SRS, STR, MLSS, MYEC,
MBSS, MMSS and MBMSS. Without loss of generality, we assume that the e,’s are iid
N(0,1) random variables and let a = 5, as all expected MSE expressions previously derived
are shown to be independent of a.

For the first simulation study, we consider Case (B) and assign arbitrary values of
b =0.5,1,2 and 4, while varying n, m and [. The corresponding relative expected MSEs
are presented in Tables 3.1 to 3.4. From Tables 3.1 to 3.4, we note that only estimators
Uvnss ald Uy, s are marginally subject to less error than that of ,,5,,5550- 1f We choose
estimator ¥, 51,55mc OVer estimator ¥, ¢, Ysps O Uy rsg, then we obtain more favourable
results as n, m, [ and/or b increases. Likewise, if we choose estimator ¥, ,,,55pc OVer

estimator ¥, ,, then we see that the relative results are improved as [ and/or b increases,
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while results seem to remain constant as n or m varies. Finally, by selecting estimator
U pmsspo OVer estimator ¥, 5,65, We note that relative results are better as m, [ and/or b
increase, while results deteriorate as n increases. Thus, My, snmss — Myupsumssec as n — 00,

provided that m, [ and b are relatively small.

Table 3.1: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b6=0.5).

m n=6 n=34 n=130 n=28| n=6 n=34 n=130 n =258

Rpss 40.16  10.53 02.97 01.54 16.67  03.34 00.92 00.47

Rsgs 07.50  00.26 00.02 < 00.01 | 02.00 00.06 <00.01 <00.01
Rsrr 89.64  88.89 88.76 89.32 70.77  70.98 70.72 70.93
2 Ryrss 2885  06.60 01.81 00.93 10.06  01.93 00.51 00.26
Rypss 10099 101.13  100.10  100.18 | 100.25 101.43 100.14 99.78
Rymss  99.66  99.90 99.66 99.90 99.50 101.45  99.82 99.52
Ryvpuss  78.47  95.32 98.50 99.41 50.37  85.21 95.62 97.73

Riss 31.29  07.33 01.99 01.02 11.92  02.29 00.62 00.31
Rsrs 03.49  00.11 00.01 < 00.01 | 0091 00.03 <00.01 <00.01

Rsrg 89.26  88.73 88.29 89.03 71.66  70.52 72.10 71.72

3 Ryrss 16.09  03.24 00.87 00.44 04.93  00.89 00.24 00.12
Ryvpss  100.53  99.61 99.70 100.09 | 100.72 101.07  101.46 101.87
Rywss  99.55  100.03  99.48 100.61 | 101.29 101.20 101.60 100.44
Rysuss  63.60  90.94 97.42 98.67 31.40  72.13 91.32 94.82

In the second simulation study, we consider odd values of n (i.e. Cases (C) to (E)) and
assign arbitrary values of b = 0.5,1,2 and 4, while varying n, m and [. The corresponding
relative expected MSEs are presented in Tables 3.5 to 3.8. From Tables 3.5 to 3.8, we
can easily see that ¥,,5,,5smc 1S preferred over all other estimators in the study. As
in the first simulation study, we obtain similar results. However, estimator ¥,z 5550
is now favourable over estimators ¥,,55s and ¥,,,,s5- Furthermore, the performance of
estimators Uy, pss, Yarss A Yy pargs are relatively similar. Hence, My pss, Myvss and
Mysyss = Mysaussse as n — 0o, provided that m, [ and b are relatively small.

In the final simulation study, we compare estimators U, z1,s55¢ a0d Uyy o Since the
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Table 3.2: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=1).

=2 =14
m n=6 n=34 n=130 n=28 | n=6 n=34 n=130 n =258
Riss 14.64  02.89 00.74 00.39 04.73  00.85 00.23 00.12
Rsrs 01.97 00.07 <00.01 <00.01 ]| 0050 00.02 <00.01 <00.01
Rsrr 67.00  67.47 64.46 68.12 37.26  36.54 37.72 37.78
2 Ryrss 09.15  01.77 00.44 00.24 02.68  00.47 00.13 00.07
Rypss 102.81 101.02 102.04  103.64 | 102.13 99.66  101.46  100.95
Rumss 101.07  102.60  101.24  100.65 | 100.25 100.59  102.17  100.35
Rysuss  48.25  85.63 95.07 98.06 20.10  58.55 84.57 91.46
Rpss 09.61  01.90 00.51 00.27 03.27  00.59 00.15 00.08
Rsrs 00.90  00.03 < 00.01 <00.01 | 00.23 00.01 <00.01 <00.01
Rsrr 66.21  66.31 66.56 68.79 37.99  37.93 36.36 37.47
3  Ruyrss 0452 00.84 00.22 00.11 01.28  00.23 00.06 00.03
Rypss  99.31  102.63 100.36  101.19 | 99.83  99.08  104.33 99.50
Rywss  103.60  102.37  101.03 99.95 99.52 103.29 106.36  100.51
Rypuss  30.06  70.66 89.80 94.07 10.52  40.08 70.59 82.68

expected MSEs of both estimators are trend free, we assign an arbitrary value of b = 4,
while varying n, m and [. In addition, we will only consider Cases (C) to (E), as it can be
theoretically shown that My gyssee < Myyre for Case (B). The corresponding relative
expected MSEs are presented in Table 3.9. From the results, we conclude that estimator
Uvpusseo 1s only preferred when m, n and [ are small, otherwise there is a very small

reduction in estimation error when choosing estimator ¥, 5,,5550 OVer estimator ¥,y o

3.2.4 Concluding Remarks

We have proposed a modified multiple-start sampling design (MBMSS), which depends on
five cases and provides an unbiased estimator of the sampling variance. For Case (A), the-
oretical expected MSE comparisons in Section 3.2.2 suggest that MBMSS is more efficient
than LSS, SRS, STR, MLSS and MYEC, while equally efficient to MBSS and MMSS, i.e.
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Table 3.3: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=2).

=2 =4

m n=6 n=34 n=130 n=28| n=6 n=34 n=130 n =258

Riss 03.88  00.75 00.20 00.10 01.24 00.22 00.06 00.03

Rsrs 00.47  00.02 <00.01 <00.01 | 00.13 <0001 <0001 <00.01

Rsrg 3233 34.11 34.11 33.31 13.13 13.06 13.07 12.88

2 Ryrss 0233 00.45 00.12 00.06 00.69 00.12 00.03 00.02
Rypss  99.25  100.23  103.15 99.11 | 100.26 100.30  102.68 101.92
Rumss  99.96  102.67  103.15 99.11 | 100.26 100.30  102.68 101.92
Rysuss  17.94 5577 82.72 90.47 05.91 26.44 57.62 72.02

Rpss 02.67  00.49 00.13 00.06 00.82 00.15 00.04 00.02

Rsrs 00.22 00.01 <00.01 <00.01 | 00.06 <0001 <0001 <00.01

Rsrr 32.85  33.42 34.21 33.04 12.93 13.05 13.22 13.19

3 Ryrss 01.16  00.21 00.06 00.03 00.32 00.06 00.01 00.01
Rypss  103.19  103.70  104.64 99.41 | 100.74 102.61 101.63 101.09
Rywss  100.69  104.15  102.99 100.92 | 100.52  99.30 101.51 99.07
Rypuss  09.70  37.70 70.21 81.90 02.78 14.06 39.11 56.17

we obtain a complete removal of the linear trend component in the corresponding expected
MSEs resulting in MBMSS, MBSS and MMSS being optimal.

To remove the linear trend component for the other cases, we proposed an estimator
(MBMSSEC) which applies weights to the first and last sampling units of each selected
single-start balanced modified systematic sample. The MBMSSEC estimator provides
a slightly biased estimate of the population mean, as well as an inflated error variance
component in the corresponding expected MSE, owing to the uneven weighting of the
sampling units.

For Case (B), the comparisons in Sections 3.2.2 and 3.2.3 indicate that the MBMSSEC
estimator is subject to less error when compared to that of LSS, SRS, STR, MLSS and
MBMSS, while marginally subject to more error than that of MBSS and MMSS, i.e. for
Case (B), MBSS and MMSS are linear trend free sampling designs that exhibit a minimum

expected error variance component for the corresponding expected MSEs. Furthermore,
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Table 3.4: Simulated relative expected mean square errors for populations exhibiting linear

trend under Case B (b=4).

=2 =4

m n=6 n=34 n=130 n=28| n=6 n=34 n=130 n =258

Riss 01.05 00.19 00.05 00.02 00.31 00.06 00.01 00.01

Rsrs 00.13 <« 00.01 <00.01 <00.01 | 00.03 <00.01 <00.01 <00.01

Rsrg 11.31 11.22 11.63 11.14 03.58 03.68 03.58 03.60

2 Ryrss 00.64 00.11 00.03 00.01 00.17 00.03 00.01 < 00.01

Rypss 10197 100.53  106.96 105.08 | 100.30  101.41 100.56 101.02
Ryss  105.20  99.96 104.45 103.33 | 100.44 100.01 101.53 100.37

Rypuss  05.47 24.85 55.71 71.91 01.52 08.27 24.93 40.26

Rpss 00.69 00.12 00.03 00.02 00.21 00.04 00.01 00.01

Rsrs 00.06 < 00.01 <00.01 <00.01 | 00.01 <00.01 <00.01 <00.01

Rsrr 11.08 10.97 10.65 11.29 03.58 03.60 03.66 03.61

3 Ruyrss 00.30 00.05 00.01 < 00.01 | 00.08 00.01 < 00.01 < 00.01
Rypss  102.75  104.57  101.14 100.46 | 100.23 101.03 100.61 104.98

Ryss  102.62 104.68 100.02 100.88 | 101.13 100.65 100.04 103.94

Rypuss  02.59 12.98 35.58 54.64 00.70 03.91 13.57 13.57

for Cases (C) to (E), the MBMSSEC estimator is subject to less error when compared
to all the other estimators, apart from the MYEC estimator. The simulation study in
Section 3.2.3 suggests that the expected MSE of the MBMSSEC estimator is smaller than
that of the MYEC estimator, for Cases (C) to (E), provided that n, m and [ are small.
Otherwise, both estimators are shown to be approximately subject to the same amount of
error and one may opt to use the MYEC estimator, owing to its simplicity. A summary
of the suggested designs under various conditions is given in Table 3.10. Note that the
third column in Table 3.10 represents a trade-off between the MBMSSEC and the MYEC
estimators, where preference is either given to obtaining minimum expected MSE of the
sample mean, or using a sample mean that is simpler to construct.

In this chapter, we have discussed the the first of two disadvantages of systematic
sampling, i.e. the problem of estimating the sampling variance when conducting systematic

sampling with a single random start. Also, we reviewed relevant modifications of the usual
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Table 3.5: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=0.5).

=2 =4

m n=3 n=35 n=125 n=255|n=3 n=35 n=125 n =255
Rpss 52.84 10.13 03.08 01.50 | 27.57 03.34 00.96 00.47

Rsrs 22.23  00.24 00.02 < 00.01 | 0748 00.06 < 00.01 <00.01
Rsrr 85.45  86.67 88.52 86.33 | 70.08 70.72 71.09 70.21
2 Ryrss 3936 06.33 01.88 00.90 | 18.07v 01.87 00.53 00.26
Rypss  81.96  98.40 99.99 99.49 | 66.45 95.53 97.54 97.35
Rywss 8192 99.43 99.05 97.76 | 66.60 94.78 98.15 97.37
Ryvpuss  88.19  99.09 99.72 99.87 | 67.89 96.31 98.90 99.46
Riss 49.17  07.30 02.09 01.03 | 21.78 02.26 00.63 00.31

Rsrs 12.42  00.11 00.01 < 00.01 | 03.38 00.03 < 00.01 <00.01
Rsrr 91.51 90.71 88.34 88.66 | 71.03  T71.65 70.39 71.06
3 Ryrss 2724 03.22 00.90 00.44 | 09.43 00.89 00.25 00.12
Rypss  79.87  96.84 99.55 98.12 | 47.59 9291 97.64 96.96
Rywss  78.64  99.91 98.71 97.55 | 48.26  90.62 97.22 98.32
Rypuss  76.38 97.84 99.29 99.99 | 49.03 90.29 97.44 99.13
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Table 3.6: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=1).

=2 =14

m n=3 n=35 n=125 n=235|n=3 n=35 n=125 n=255
Riss 24.90 02.66 00.78 00.37 | 08.85  00.86 00.24 00.19

Rsrs 07.18 00.06 < 00.01 <00.01]| 0196 00.02 <00.01 <00.01
Rsrr 67.59  64.08 65.80 63.59 | 36.75  37.78 37.41 37.89
2 Ryrss 16.87  01.63 00.47 00.22 | 05.19 00.48 00.13 00.07
Rypss 66.24  92.74 97.32 96.91 | 32.88 85.25 94.24 96.91
Ryvss 6540 95.21 96.46 98.69 | 32.77  86.89 92.76 96.39
Rypuss  63.64  94.62 98.26 99.68 | 33.34  84.56 95.36 97.66
Rpss 18.73  01.93 00.53 00.26 | 06.28  00.57 00.16 00.07

Rsrs 03.51 00.03 < 00.01 <00.01 | 00.90 00.01 <0001 <00.01
Rsrr 69.09  68.25 67.10 65.61 | 37.85  37.69 37.76 37.56
3 Ruyrss 0899  00.83 00.23 00.11 | 02.52 00.22 00.06 00.03
Rypss  49.30 89.36 96.29 97.70 | 1891 72.61 91.63 97.49
Rywss  46.18 9041 96.88 96.75 18.86  73.35 91.06 96.09
Rypuss 4715 90.60 97.38 98.20 | 1890 73.56 91.15 95.79

systematic sampling design found in literature as well as a suggested modified systematic

sampling design that address this problem, all under the assumption of linear trend among

the population units. The results from this chapter suggest that values of the sample size,

sampling interval and/or the number of random starts (if a multiple start sampling design

is applied) needs to be considered, before selecting an appropriate modified systematic

sampling design in the presence of linear trend to address the problem at hand, where

Table 3.10 provides us with the most suitable modified systematic sampling design under

various scenarios of m, n and [. In the next chapter, we will investigate the second of the

two shortcomings of systematic sampling, i.e. if the population size is not a multiple of

the sample size, resulting in sample sizes that vary, or fixed sample sizes that are greater

than required when conducting LSS.



52

Table 3.7: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=2).

=2 =4

m n=3 n=3 n=125 n=255|n=3 n=35 n=125 n =255
Rpss 07.72  00.71 00.20 00.10 | 02.44  00.21 00.06 00.03

Rsrs 01.93 00.02 < 00.01 <00.01 | 00.50 <00.01 <00.01 <00.01
Rsrr 33.45  33.42 33.58 3249 | 13.06  12.90 12.77 12.95
2 Rurss 0485 00.43 00.12 00.06 | 01.38  00.12 00.03 00.02
Rypss 31.15  83.42 95.23 97.32 11.21  59.32 81.74 88.91
Rywss 3157 82,94 95.81 96.63 | 11.32  59.12 82.97 92.55
Ryvpuss  32.06 83.52 94.61 98.22 11.03  58.29 83.03 91.21
Riss 05.23 0047 00.13 00.06 | 01.67  00.14 00.04 00.02

Rsrs 00.87 00.01 <00.01 <00.01 ]| 00.23 <00.01 <00.01 <00.01
Rsrr 33.22  33.19 32.54 3236 | 13.29  12.80 13.02 13.36
3 Ryrss 0232 00.20 00.06 00.03 | 00.65  00.05 00.02 00.01
Rypss 17505 72.04 89.76 92.40 | 05.53  39.87 69.63 86.17
Ryyss  17.67  71.35 87.14 92.08 | 05.57  39.76 70.56 84.78
Rysuss  17.55  71.09 89.60 95.60 | 05.52  39.24 71.04 84.47
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Table 3.8: Simulated relative expected mean square errors for populations exhibiting linear

trend under Cases C to E (b=4).

=2 =4

m n = n=30 n=125 n=235|n=3 n=35 n=125 n =255
Ryss 02.11  00.18 00.05 00.02 00.62  00.05 00.15 00.01

Rsrs 00.50 < 00.01 <00.01 <00.01] 00.12 <00.01 <00.01 <00.01
Rsrr 11.52 11.25 10.89 11.21 03.62  03.55 03.68 03.58

2 Rurss 01.28  00.11 00.03 00.01 00.35  00.03 00.01 < 00.01
Rypss  10.25  56.32 81.60 90.40 | 03.05  26.18 57.09 73.16
Ryvss 1036 56.60 81.24 90.43 | 03.02  26.52 56.12 72.04
Rysuss 1070 57.08 82.16 90.47 | 03.03  26.84 56.02 73.47

Ry ss 01.34  00.12 00.03 00.02 00.42  00.04 00.01 < 00.01

Rsrs 00.21 < 00.01 < 00.01 <00.01 | 00.06 <00.01 <00.01 <00.01
Rsrr 10.88 11.19 11.43 11.33 | 03.63  03.66 03.66 03.60

3  Ruyrss 0058  00.05 00.01 00.01 00.16  00.01 < 00.01 < 00.01
Rygss 0495  38.08 72.24 83.07 | 01.42  14.40 37.80 54.83
Ryvss 0496 37.98 71.63 81.86 | 01.42  14.57 37.76 55.54
Rypuss 0496 38.59 69.58 82.08 | 01.42  14.50 37.72 54.74
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Table 3.9: Simulated relative expected mean square errors of the MYEC sample mean, with

respect to that of the MBMSSEC sample mean, for populations exhibiting linear trend under

Table 3.10: Recommended designs for populations exhibiting linear trend.

Cases C to E.
m =2 m =3

n 1=2 =4 I|= l= l= [ =

3 9424 9438 94.71 | 95.94 96.26 96.41
5 9697 97.27 9742 | 98.10 98.23 98.30
7 98.06 9825 98.34 | 98.78 98.87 9891
13 99.07 99.17 99.21 | 99.42 99.46 99.48
15 99.21 99.29 99.33 | 99.51 99.54 99.55
29 99.62 99.65 99.67 | 99.76 99.78 99.79
63 99.83 99.85 99.86 | 99.89 99.90 99.91
125 99.92 99.92 99.93 | 99.95 99.95 99.96
255 99.96 99.96 99.97 | 99.97 99.98 99.98

Case(s) Condition Preference Recommended Design(s)
A N/A N/A MBSS, MMSS or MBMSS
B N/A N/A MBSS or MMSS

Cto E m, n and [ are small ~ Minimum MSE MBMSSEC

CtoE m, n and [ are small Simplicity MYEC

CtoE m, norl arenot small Minimum MSE MBMSSEC or MYEC

CtoE m, n or! are not small Simplicity MYEC
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Chapter 4

Population Size is not a Multiple

of the Sample Size

If the population size is not a multiple of the sample size, then this situation may be
represented as N = nk + r, where r € {1,...,n — 1} and k = INT(N/n), i.e. INT(a)
denotes the first integer before a. Now, if r/k is an integer, then we obtain fixed sample
sizes of n + r/k when conducting LSS. The usual LSS design is now modified, such that
we are selecting n+7/k units with a sampling interval of k, as shown in the next example.
Example 4.1: If N = 27 and n = 7, then k = 3 and r = 6, which satisfies N = nk +r

and r € {1,...,n — 1}. Each possible linear systematic sample is then given as:

(i) S1={U1,U4,Uzr,Us0,Us3,Uss, Urg, Una, Uas }, for i = 1;
(i) Se = {Uz,Us,Us,Ui1,Uia, Ui7,Usg, Uag, Usg }, for i = 2;

(iii) Sg = {Us, Us, Uy, Ui, Uis, Uig, Ua1, Uaa, Uar }, for i = 3.

Clearly all possible samples are of fixed size n +r/k =7+ 6/3 = 9, which is greater than
the required size n. This situation is undesirable, as sample sizes are commonly fixed
beforehand, owing to budget restrictions. Now, if r/k is not an integer, then we obtain
variable sample sizes of either n+INT(r/k) or n+INT(r/k)+1, when conducting LSS, as
shown in the following example.

Example 4.2: If N =19 and n = 5, then k£ = 3 and r = 4, which satisfies N = nk +r
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and r € {1,...,n — 1}. Each possible linear systematic sample is then given as:

(i) S1={U1,Us,Uyz, U, U3, Usg, Urg}, fori=1;
(i) S2 = {U2,Us,Us, Ur1,Ura, Ur7}, fori=2;

(iii) S3 = {U3, Us, Uy, Uy, Urs, Ulg}, for 1 = 3.

Clearly we obtain samples of size n +INT(r/k) = 6 or n+INT(r/k)+1 = 7. As a result,
these samples of variable size may over-represent or under-represent the population, which
in turn results in biased estimates of population parameters (Naidoo 2013). Consequently,
many authors have proposed modified systematic sampling designs that generate fixed
samples of size n, when the population size is not a multiple of the sample size. Reviews

of each of these designs are given in the following section.

4.1 Modified systematic sampling designs

4.1.1 Circular systematic sampling (Lahiri 1951)

The ordering of population units associated with circular systematic sampling (CSS) is
such that the units are arranged in a circular fashion, i.e. Uyny; = U;. For this design, the
sampling interval k is now given as the closest integer to N/n, which ensures a more evenly
spread sample over the population (Murthy 1967). Now, to select a sample of size n from a
population of size N using CSS, we randomly select unit from the first N population units
and every subsequent kth unit, until the required sample size is achieved. The random
start is given by ¢, where ¢ € {1,...., N}.

If N is a multiple of k, then sampling units will coincide when N/n is rounded up
(Sudhakar 1978). Consequently, Sudhakar (1978) proposed that n distinct sampling units
are obtainable if and only if the sampling interval k is selected in advanced, were N and
k are co-prime, i.e. N # (n — 1)k. This approach, which assumes that n is not fixed in
advance, is undesirable as sample sizes are commonly predetermined and fixed, owing to
budget restrictions. Bellhouse (1984) tackled this drawback by suggesting an alternative

sampling interval, defined as

INT(N/n), if N =(n— 1k
k* = (4.1)
INT(N/n+1/2), if N # (n— 1)k.
Sengupta & Chattopadhyay (1987) claimed that sampling units may still coincide when

N/n is rounded up in (4.1). The authors then provided a theorem that states that n
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distinct sampling units are obtainable, if and only if lem(N, k) > nk or, equivalently, if
and only if gcd(N, k) < N/n, where lem(a,b) denotes the lowest common multiple and
ged(a, b) denotes the greatest common divisor, for constants a and b. This theorem does
not contradict Sudhakar’s (1978) results and may be applied as a supplement to Bellhouse’s
(1984) approach. It is common practice to apply a sampling interval of k = INT(N/n), so
as to ensure a sample of n distinct sampling units. However, this sampling interval does
not ensure an even spread of the sample over the population when N/n is closer to integer
INT(N/n) + 1. Subramani & Singh (2014) present an empirical study on the optimal
choice of k, by assuming a perfect linear trend in the population and considering all the
prime numbers from 7 to 37 as population sizes. Consequently, the authors suggested the
following conjecture.

Conjecture 1: The optimum choice for the sampling interval k for selecting a circular
systematic sample of size n from the population of size N is attained if and only if kn
mod N = +1, where kn mod N = —1 represents kn mod N = N — 1.

Proof: Refer to Subramani et al. (2014).

Note that the proof of Conjecture 1 assumes that N and n are relatively prime numbers.
Also, by choosing k such that kn mod N = %1, then one ensures that N and k are also
relatively prime numbers. Conjecture 1 will always result in n distinct sampling units.
Theorem 13: Using Conjecture 1 under (2.1), the circular systematic sample mean Y qq

and the expected MSE of 4., when estimating the population mean, are respectively given

as
_ b n—1)(N+1
Yoss =0+ — Q+( 7)( ) ) qge{l,..,N}
n 2
and
b2(N? —1)
_ 2
Mess = o + o2 (4.2)

Proof: Refer to Subramani et al. (2014).

By comparing (2.3) to (4.2), we see that Myss < Msgs. A comparison between CSS and
STR is unobtainable, as STR comparisons are only applicable when N = nk. If either NV
and n are not relatively prime numbers or N and k are not relatively prime numbers, then
under model (2.1), an exact expression for the expected MSE of the sample mean when
conducting CSS is difficult to obtain, owing to the circular nature of selecting the sample.

To remove the linear trend component in (4.2), Subramani et al. (2014) proposed an
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end corrections estimator, given by

. _ (N +1-2i)
Yoss = Yoss + W (yq - yq-l—(n—l)k) ) ge{l,..,N}.

4.1.2 Fractional interval method (Kish 1965, Murthy 1967)

The fractional interval method (FIM) is equivalent to the LSS design, where the sampling
interval £ = N/n now takes on a fractional value. The random start is given as i, which
is a randomly selected real number from a uniform distribution with interval (0, %]. The

indices for the sampling units are given by «a, where
a—1<i+(j—1k<q, j=1,..,n. (4.3)

Example 4.3: Suppose that we want to select a sample of size 3 from a population of size
14, using the FIM. For this scenario, the sampling interval takes on the fractional value
given by k = 14/3. Now, suppose that the random start is ¢ = 1/5, which is a randomly
selected real number from the uniform distribution with interval (0, 14/3]. Using (4.3), we
obtain @ = 1,5,10. The sample is then given as S; = {U1, Us, Uyp}.

Naidoo (2013) shows that the FIM is equivalent to CSS, if and only if 2N/n is not
an integer and lem(N, k) > nk (or ged(N,k) < N/n). Under these circumstances, the
formulae obtained in Theorem 6 may then apply, which assumes that N and n are relatively
prime numbers as well as N and k being relatively prime numbers. As a result, if we
estimate the population mean under (2.1), then the sample mean and the expected MSE
of the sample mean, associated with the FIM, are respectively given by 4,¢¢ and Mgss, if
and only if 2N/n is not an integer, lem(N, k) > nk (or gcd(N,k) < N/n), N and n are

relatively prime numbers as well as N and k being relatively prime numbers.

4.1.3 New systematic sampling (Singh & Singh 1977)

Remembering that Uyy, = Uy, for ¢ € {1,..., N}, new systematic sampling (NSS) is

conducted as follows:

(i) Select a random integer ¢ on the interval [1, N] and suppose that | < n is an integer,

such that [ consecutive units are selected starting with Uy, i.e. {Ug,...,Ugsi—1}.

(ii) Suppose a sampling interval of £ = INT[(N —1)/(n —1)], such that the unit indices

of the remaining n — [ sampling units are given by g+1—1+jk”, for j=1,...n—1L.
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A sufficient and necessary requirement to obtain distinct sampling units is given by
(n—0)k" < N—1. Furthermore, if k¥ <l and {4 (n—1)k” > N/2+1, then the second-order
inclusion probabilities for each possible pair of units will be non-zero, which will result in
an unbiased estimate of the associated sampling variance. The proofs of these results are
given by Naidoo (2013). Singh & Singh (1977) then showed that there is a restriction on
the required sample size when non-zero second-order inclusion probabilities are obtained,
ie. n> \/m — 1. In the presence of linear trend, the variance of the sample mean,
when conducting NSS, is complex. Singh & Singh (1977) thus provided an empirical study
for populations exhibiting linear trend, which shows that NSS is less efficient than LSS
and more efficient than SRS.

4.1.4 Balanced random sampling (Singh & Garg 1979)

In addition to the cases discussed for BRS in Section 3.1.2, we obtain a further case when
population size is not a multiple of the sample size, i.e. Case (D) is when N is odd and n

is even. The corresponding methodology is given as follows:

(i) Randomly select one unit from the population, before selecting a sample of size

(n — 2) from the remaining (/N — 1) population units, using the procedure in Case
(A).

(ii) The balanced random sample is then given as the sampling units in (i), as well as a

randomly selected unit from the remaining (N — n + 1) population units.

Note that some pairs of sampling units may not be optimally paired, as SRS is first
applied before applying the usual pairing procedure, thus contributing to a linear trend
component in the expected MSE of the associated sample mean.

4.1.5 New partially systematic sampling (Leu & Tsui 1996)

New partially systematic sampling (NPSS) is a modified NSS design, where the respective

sampling procedure is given as follows:
(i) Select a random integer ¢ on the interval [1, N].

(ii) Let k& be the nearest integer to N/(n — 1) and define u as an integer, such that
2 <u <INT(n/2) + 1. Also, let s = N — (n — u)k.

(iii) Select w units from the sample space S = {Uy, Ug41, ..., Ug+s—1}, using SRS.



60

(iv) The new partially systematic sample is then given as the sampling units obtained
in (iii), as well as n — u sampling units selected thereafter in a circular fashion, i.e.

units Ugqs—144k, for ¢ = 1,....,n — u, where Uyyq = Uy.

By letting s = N — (n — u)k, Leu & Tsui (1996) ensures a sample of n distinct sampling
units, as there is only one circular transversal of unit indices. Moreover, all second-order
inclusion probabilities are non-zero if (a) u > 2 and (b) s > k. Leu & Tsui (1996) then
provided some recommendations on the choices of u and k, so as to ensure an even spread
of the sample over the population, while still ensuring a sample of n distinct sampling
units. These recommendations are based on the theory presented by Sudhakar (1978),
Bellhouse (1984) and Sengupta & Chattopadhyay (1987), as reviewed in Section 4.1.1.
Note that NPSS is equivalent to NSS if s = u. Otherwise, NPSS may be regarded as
the superior sampling design, as it depends on less stringent restrictions than that of NSS.
Since there are no optimal pairing of units for NPSS, we can expect the MSE of the
associated sample mean to contain a linear trend component, owing to NPSS being a
hybrid sampling design which combines SRS and CSS, where both SRS and CSS are not

linear trend free sampling designs.

4.1.6 Modified circular systematic sampling designs (Uthayakumaran

1998, Leu & Kao 2006, Sampath & Varalakshmi 2009)

We now consider analogues of the linear trend free modified LSS designs in Sections 2.2.2,

2.2.3, 2.2.4 and 2.2.5, which adopt the CSS approach, as in Section 4.1.1.

Balanced and centered circular systematic sampling (Uthayakumaran 1998)

Let the sampling interval be defined as k = INT(/N/n). Now, if we assume that N and n
are even, then the gth (for ¢ € {1, ..., N}) sample for balanced circular systematic sampling

(BCSS) is given as

Ugro(j—vye-nli = 1,..,n/2, ifq+2(j — 1)k >N
SBCSS =
Uij‘—q—}—l-i—NU = 17 "'7n/27 if 2]k —q+ 1<1

Ugjk_q+1‘j:1,...,n/2, 1f1§2]k—q+1§N
\
Centered circular systematic sampling (CCSS) adopts the usual CSS design; however,

the centrally located circular systematic sample is selected and thus no randomization is
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required. The sample for CCSS is thus given as
4

U(N+1)/2+(j—1)k|j = 1, ey N if 1 S (] — 1)k‘ S (N — 1)/2 and N is odd

U(lfN)/2+(j71)k’j =1,..,n, if (] — 1)/€ > (N — 1)/2 and N is odd
Scess =

Unjos(—kli = 1,5m, if 1 <(j—1)k < N/2and N is even

UG—tyk—ny2li = 1,...,m, if (j — 1)k > N/2 and N is even.

Let x4, ..., x,, denote the indices of the sampling units, which are arranged in ascending
order. Also, denote ¥, ss and 7, g as the sample means, which are unbiased estimates of
the population mean, corresponding to BCSS and CCSS, respectively. Using this notation,

the end corrections estimators associated with BCSS and CCSS, are respectively given as

_ - [($n+$1)_K]

Yscssee = Ypcss T n(zn — 1) (Y1 — Yan)
and

_ e [(mn+$1)_K]

Yocssee = Yocss T n(zn — 1) Yy — Yan) >

where K =n(N +1)/2 — Z?:_; zj. Under model (2.1), the expected MSEs of estimators

Ypossee A Yoosspes are given as

Moo= 08— |Whon+ ) aj+ Wian | + 5 — 3o | Waw + )y + Wazn| ¢
i=1 j=2 j=2

where Wy = (K —2xy,)/(x1 —xy) and Wa = (221 — K) /(21 —x,,). Clearly we do not obtain
optimality under any circumstance. Thus, Leu & Kao (2006) introduced modifications to

the above designs to tackle this problem, as shown in the next section.

Modified balanced circular systematic sampling and modified centered circular

systematic sampling (Leu & Kao 2006)

Let the sampling interval be defined as k = INT(N/n). Now, if we assume that n is even,
then the gth (for ¢ € {1, ..., N}) sample for modified BCSS (MBCSS) is given as

UproG-kld = 1, /2, f1<q+2(—1k<N

Uq+2(j—1)k—N’j = 1, ...,n/2, if q+ 2(] - 1)l{5 >N
Suscss =

Un—goG-typrili =1,n/2, #1<q+2(j-Dk—1<N

\UQN—q—Q(j—l)k-‘rlU = 1a "'7”/2a if q+ 2(.] - 1)k —-1>N.



62

Also, if we assume that n is odd, then the gth sample for MBCSS consists of (n — 1) units
given by
Ugraii-1k-n1Jj =1,..,(n = 1)/2, if g+2(j — 1)k >N

SMBCSS =

UN,q,Q(jfl)k+1|j =1, ...,n/2, itl1<qg+ 2(] — ].)k —1<N

Usn—g—2(j—1)k1l7 = 1, ...,n/2, ifq+2(j—1)k—1> N,

as well as an nth sampling unit given as Uy1)/2 if N is odd, or Upnyo if N is even. The
sample for modified CCSS (MCCSS) is obtained by selecting the centrally located sample
for MBCSS. If we assume that n is even, then the sample for MCCSS contains (n — 1)
units given by

Un+1)/2+G-1)k UN+1) /2 (Gi—1)kld = 1, ..sn/2, if N is odd

SMCCSS =

UN/Q—{-(j—l)ka UN/2—(j—1)k|j = 1, ceey n/2, if N is even,

as well as an nth sampling unit given as U(nyi4nk)/2 if NV is odd, or Uy pp) e if N is
even. Also, if we assume that n is odd, then the sample for MCCSS is given as

Unyny2+G-0k Uns1)2-G-nkld = 1o, (n+ 1) /2, if N is odd

Succss =
UN/2+(jfl)k7 UN/Q,(j,l)kU =1,..,(n+1)/2, if N is even.
Let Yypess and Yy ocss denote the sample means, which are unbiased estimates of the

population mean, corresponding to MBCSS and MCCSS, respectively. Using this notation,

the end corrections estimators corresponding to MBCSS and MCCSS, are respectively

given as

- _ [(zn + 21) — K]

Yupossec = Yupcss + ;Z(xn — 1) (Y21 — Yz )
and

_ s [(zn, + x1) — K]

Ynvccsspe = Yucoss + n(zn — 1) (Yor = Ya,) -

Under model (2.1), the expected MSEs of estimators 7,506 and Tyoogs are given as
Mypcss = 02 (if N is odd or n is even) and Myccss = o2 (if both N and n are odd),
respectively. For the other possible cases, the end corrections estimators are applied, i.e.
the expected MSEs of estimators ¥yzcss5c a0d Yycosspe are given as Myposspe = M
(if N is even and n is odd) and Myccsspe = M, (if N is even or n is even), respectively.
Thus, we only obtain optimality for MBCSS when N is odd or n is even, as well as for

MCCSS when both N and n are odd.
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Diagonal circular systematic sampling (Sampath & Varalakshmi 2009)

Define k as the nearest integer to N/n. If ¢+ (j —1)(k+ 1) < N, for all j =1,...,n and
q € {1,..., N}, then the gth sample for diagonal circular systematic sampling (DCSS) is
given as Spcss = {Ugp(j—1)(kt)ld = 1,-.,n}. Now, if ¢ + (j — 1)(k + 1) > N for some
j =1,...,n, then the gth sample for DCSS is given as

Uyt -1yl = 1,2, ..., n(q)

SDCSS =

Ut (i—1) (k1) —-N 17 = n(q) + 1, ..., m,

where n(q) is the number of items in the state space {¢+ (j —1)(k+1) < N|j =1,....,n}
for a given q.

The corresponding sample mean, denoted as ¥,.¢, i an unbiased estimate of the
population mean. Note that DCSS is not a linear trend free sampling design. If we obtain
g+ (—1)(k+1) < N, forall j =1,...,n, then the DCSS with end corrections (DCSSEC)

estimator is given as

n—1
_ N
Uncssee = V1yq + Z Ygr(G—1)(k+1) T V2Yqr(n—1)(k+1) | >
j=2
where
2ng+ (k+1)(n—1)(n+2) —n(N +1)
Py =
2(n —1)(k+1)
and
" n(N+1)—2ng—(k+1)(n—1)(n—2)
2 p— .

2(n—1)(k+1)
Now, if ¢+ (7 —1)(k+1) > N for some j € {1,...,n}, then the DCSS with end corrections
(DCSSEC) estimator is given as

n(q) n—1
— N / ’
YUncssee = U1yq + qum’q)(ml) + Z Ygr (-1 (k+1)—N + V2Ygt(n—1)(k+1)-N | >
J=2 j=n(g)+1
where
r_2[g+(n-1)(k+1)—N]—n
wl = 9
(n—1)(k+1)—N
v = n—2q
27" n=1)(k+1) =N
and

~ n(N+1) (k+1)(n—-2)(n—-1)
="

2

—(n—=2)q - +N[(n—1) =n(g)].
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If we suppose that J; and Jy are two subsets of S = {1,..., N}, such that Jo = S — J; and
Ji={ql¢g+(—1)(k+1) <N, for all j =1,...,n}, then under model (2.1), the expected

MSE of estimator ¥, g5z 1S given as

N N / /
Mpcsspe = o’ 2 Z {@Z}% +(n—2) +¢}%} + nZ Z {11112 +(n—2) +¢22}

g1 q€J2

2 S it -2+ + 3 (¥ + -2} + N

g€ q€J2

Sampath & Varalakshmi (2009) then provides some numerical comparisons which indicate

that an end corrections estimator associated with CSS, i.e. 45, is preferred over estimator

Ypcssec:

Khan et al. (2014) noted that coincidence of sampling units are possible for certain cases
of DCSS when N/n is rounded up, just as in the case for CSS. The authors then solved this
problem by adopting an approach which is similar to that of Sengupta & Chattopadhyay
(1987), i.e. n distinct sampling units are always obtainable under DCSS, if and only if
lem(N, (k+ 1)) > n(k + 1) or, equivalently, if and only if ged(N, (k+ 1)) < N/n.

4.1.7 Remainder linear systematic sampling (Chang & Huang 2000)

Define the sampling interval as k = INT(N/n), such that the population size is represented
as N =nk+r = (n—r)k+r(k+1), where r € {1,...,n—1}. The methodology of remainder

linear systematic sampling (RLSS) is then given as follows:

(i) Divide the population into two strata, where the first stratum, ST, contains the
first (n — )k population units and the second stratum, ST5, contains the remaining

r(k + 1) units.
(ii) Select two random starts k1 and k2, where k1 € {1,...,k} and k2 € {1,...,k + 1}.

(iii) The samples selected from ST and ST, are respectively given as

Sk = {Uk1+(j—1)k’j =1,.., (TL - T)}

and

Sk2 = {Um-rk+k2+G-1k+n)ld = 1, -}

(iv) The final sample of size n is then given as S = Si1 U Ska.
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If we denote the sample means from ST and ST3 as Ty, and e, respectively, then
the RLSS sample mean, which is an unbiased estimate of the population mean, is given
as Yprss = [(n — 1)kyy, + 7(k + 1)¥ye) /N. Now, under model (2.1), the expected MSE of
Unrss 15 given by

b’k
12N?

Mprss = 02 + [(n = 7)2k(k* = 1) + 7 (k + 1)%(k + 2)] , (4.4)

where 02 = ko? (N —n + ) /N? represents the minimum expected error variance when
independently sampling from S7; and ST5. Clearly there is a linear trend component
in Mpss- To remove this component and improve estimation results, Chang & Huang
(2000) suggested an end corrections estimator, i.e. RLSS with end corrections (RLSSEC)

estimator, given by
Unrsspe = Unrss T 2 (Yk1 — ykl—&-(n—r—l)k)a (4.5)
where

2[(k1)(n —r)k+ (k2)r(k+1)] — (N —r)(k + 1)'

7 =
2(n—r—1)Nk

4.1.8 Mixed random systematic sampling (Huang 2004)

Represent the population size as N = nk +r = (n —r)k +r(k + 1), where k = INT(N/n)
and r € {1,...,n — 1}. The methodology of mixed random systematic sampling (MRSS)

is then given as follows:
(i) Select a random integer ¢ on the interval [1, N].

(ii) Remembering that Uy, = Uy, divide the population into two strata, where the
first stratum, ST, contains (n — )k units given by {Uy, Ugs1, Ugs(n—rye—1} and the

second stratum, ST4, contains the remaining r(k + 1) units.

(iii) Randomly select (n — r) sampling units from S7T] using SRS and represent this

sample as Sq1.
(iv) The sample selected from STy is given as Sy2 = {Uyt(n—r)btjkt1)-117 = 1, ..., 7}
(v) The final sample of size n is then given as Sq = Sq1 U Sgo.

The associated sample mean is given by the Horvitz & Thompson (1952) estimator,
ie. ?HT = (1/N) > y,es,(Ya/mq), where mg = n/N, for all ¢ = 1,..,N. Note that

estimator Ygr is an unbiased estimate of the population mean. Under model (2.1), an
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exact expression for the expected MSE of estimator ?HT is difficult to obtain, owing to the
circular nature of selecting the sample. However, Huang (2004) provides some numerical
comparisons under the assumption of model y, = a + bq, for ¢ = 1,..., N. The results
indicate that the sample mean corresponding to MRSS is subject to more error than that

which is associated with CSS.

4.1.9 Remainder Markov systematic sampling (Kao et al. 2011a)

Represent the population size as N = nk +r = (n —r)k +r(k + 1), where k = INT(N/n)
and r € {1,...,n—1}. The methodology of remainder Markov systematic sampling is then

given as follows:
(i) Divide the population into two strata, as in step (i) of RLSS.

(ii) Apply Markov systematic sampling, as in Section 3.1.4, within each of these strata.
If the units sampled are even then the stratification related to Markov systematic
sampling within these strata are straightforward. On the other hand, if the units
sampled are odd, then SRS is applied to select a unit from the remaining units
after stratification. The first stratum corresponds to stochastic matrix A which is a
2k x 2k matrix, while the second stratum corresponds to stochastic matrix B which is
a2(k+1)x2(k+1) matrix. Note that both matrices A and B are doubly stochastic

matrices, with zero diagonal elements, so as to ensure distinct sampling units.

(iii) Remainder Markov systematic sampling is now classified into four cases, which are

given as follows:

Case (A): If n and r are both even, then:
1. divide the units in the first stratum into (n — r)/2 groups, each containing
2k units, before applying Markov systematic sampling to select (n — r) units
using matrix A;
2. divide the units in the second stratum into r/2 groups, of 2(k + 1) units each,
before applying Markov systematic sampling to select r units using matrix
B.

Case (B): If n is even and r is odd, then:

1. divide the first (n—r—1)k units in the first stratum into (n—r—1)/2 groups,

each containing 2k units, before applying Markov systematic sampling to



Case (C):

Case (D):
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select (n — r) units using matrix A;
divide the last (r—1)(k+1) units in the second stratum into (r—1)/2 groups,
each containing 2(k + 1) units, before applying Markov systematic sampling

to select (r — 1) units using matrix B;

select two units from ST3 = {U(—r—1)k+15 -+ Un—r)kt(k+1) ) using SRS.

If n is odd and r is even, then:

1.

divide the first (n —r— 1)k units in the first stratum into (n—r—1)/2 groups,
each containing 2k units, before applying Markov systematic sampling to

select (n — r) units using matrix A;

. randomly select a unit from ST3 = {U—r—1)p+415 - Un—r)i 3

divide the units in the second stratum into /2 groups, of 2(k+ 1) units each,

before applying Markov systematic sampling to select r units using matrix

B.

If n and r are both odd:

1.

divide the units in the first stratum into (n — r)/2 groups, each containing
2k units, before applying Markov systematic sampling to select (n — r) units
using matrix A;

randomly select a unit from ST5 = {U(n,T)kH, . U(n,r)kﬂkﬂ)};

divide the last (r—1)(k+1) units in the second stratum into (r—1)/2 groups,
each containing 2(k + 1) units, before applying Markov systematic sampling

to select (r — 1) units using matrix B.

Next, three types of stochastic matrices were considered and given as follows:

(i) To conduct remainder stratified systematic sampling (RSSS), the stochastic matrices

corresponding to the first and second strata are respectively given as

[ 1 1 1]
0 i1 0 51 2%1
_1 0 1 1
2k—1 ctt 2k—1 2k—1
H, =
11 0 1
2k—1 2k—1 2k—1
11 1
L2k—1 2k—1 ‘°° 2k—1 1ok vk
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and
M 1 1 1]
0 s 0 s ok
1 0 1 _1
2k+1 2k+1  2k+1
Hy = | : : '
1 1 0 _1
2k+1  2k+1 2k+1
1 1 1 0
L2k+1 2k+1 2k+1 = 2(k4+1)x2(k+1)

(ii) To conduct remainder balanced systematic sampling (RBSS), the stochastic matrices

corresponding to the first and second strata are respectively given as

00 ... 0 1]

00 .. 10
Jy =

01 0 0

10 ... 00

and

(0 0 0 1]

0 0 10
Jp =

01 0 0

100 0], e

(ii) To conduct remainder balanced systematic-like sampling (RBSLS), the stochastic

matrices corresponding to the first and second strata are respectively given as

A A An
[A21 Az 2% x 2k
and
B_ Bi1 Bia ’
| Bar Baa 2(k+1)x2(k+1)



where

A = Az = Ogxr, Bi1 = B2z = O(k11)x (k-+1)
[0 0 ... 0 p  1-p
0 0 ... pp 1—pm 0
A = )
o 1—pm 0 0 0
1-p 0 O
[ 1 0 0 ... 0 1- pl-
0 0 0 I-p1 m
A9y = ;
0 1—p1 p1 ... 0 0
1—m 1 0o ... 0 0 |
[0 0 0 p  l-ps
0 0 oo P2 1—po 0
Bys =
P2 1—p ... 0 0 0
|1 —p2 0 ... 0 0 P2 | (b4 1) x (k1)
[ D2 0 0o ... 0 1-— pg_
0 0 0 IL—p2  p2
Boy =
0 1—pa po 0 0
1—ps po O ... 0 U P

0<p1<land 0<py <1



70

The associated sample mean is given by the Horvitz & Thompson (1952) estimator,

,

[(n —7r)ky, +7r(k + 1)ys] /N, for Case (A)
. [(n—r—1)ky, + (r—1)(k+ 1)y, + (2k + 1)y5] /N, for Case (B)
Yur =

[(n—7r—1)ky, +r(k+ 1)y, + kys] /N, for Case (C)

[(n = r)ky, + (r = 1)(k+ 1)y + (k + 1)ys] /N, for Case (D),

where 7, ¥, and Y3, are the sample means from ST7, ST5 and ST3, respectively, and ys3
is the observed value from S7T5. Note that estimator ?HT is an unbiased estimate of the
population mean. Kao et al. (2011a) then obtains values for the second-order inclusion
probabilities, before claiming that is it possible to obtain an unbiased estimate of the
variance of ?HT, when adopting their design. However, by further inspection, we see that
this claim is only correct for the stochastic matrices associated with the RSSS design.
Under model (2.1), if we apply remainder Markov systematic sampling for Cases (A),

(C) and (D), then the expected MSE of ?HT is given by

T'

=1 7>1

+ Z Zz—j 1—k+1)mj]}.

i=(n—r)k+1 j>1i

Similarly, if we consider Case (B), then the expected MSE of ?HT is given by

(2k+1) (n—r—1)k (n—r—1)k
oot - 2 LSS -y
7>t

(n—r4+1)k+1 (n—r+1)k+1

+ > > i—4)?

i:(n—r—l)kz—l—l >

+ Z Zz—] 1—l<:—|—)7rzj]}.

t=(n—r+1)k+2 j>1i

Finally, we note that Mz,, is only minimized when applying the stochastic matrices asso-
ciated with RBSS for Case (A), i.e. all other scenarios result in a linear trend component

4.1.10 Remainder systematic Markov chain design (Kao et al. 2011b)

This approach is similar to the previous design, where the methodology is given as follows:
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(i) Apply step (i) of the methodology of remainder Markov systematic sampling.

(ii) Apply Markov systematic sampling, as in Section 3.1.4, within each stratum. The
first stratum corresponds to stochastic matrix A which is a k& X k matrix, while the
second stratum corresponds to stochastic matrix B which is a (k + 1) x (k + 1)
matrix. Note that both matrices A and B are doubly stochastic matrices, with zero

diagonal elements so as to ensure distinct sampling units.

(iii) In the first stratum, the two cases for selecting the (n — r) sampling units are given

as follows:

1. If (n — ) is even, then divide the units in the first stratum into (n —r)/2 groups,
of 2k units each, according to their unit indices. Randomly select a unit from
the first k£ units in the first group and every 2kth units thereafter, until (n — r)/2
units are obtained, i.e. the unit selected from each group is located in the same
position. Now, select units from the (k+ 1)th to the 2kth unit of each group using

the Markov chain design, such that the remaining (n — r)/2 units are obtained.

2. If (n — r) is odd, then divide the units in the first stratum into (n —r — 1)/2
groups, of 2k units each, and one group of k£ units according to their unit indices.
Randomly select a unit from the first k£ units in the first group and every 2kth
units thereafter, until (n —r +1)/2 units are obtained. Now, select units from the
(k + 1)th to the 2kth unit of each group (i.e. excluding the group containing k
units) using the Markov chain design, such that the remaining (n —r — 1)/2 units

are obtained.

(iv) In the second stratum, the two cases for selecting the r sampling units are given as

follows:

1. If r is even, then divide the units in the second stratum into r/2 groups, of 2(k+1)
units each, according to their unit indices. Randomly select a unit from the first
(k 4+ 1) units in the first group and every 2(k + 1)th units thereafter, until r/2
units are obtained, i.e. the unit selected from each group is located in the same
position. Now, select units from the (k+ 2)th to the 2(k 4+ 1)th unit of each group

using the Markov chain design, such that the remaining r/2 units are obtained.

2. If r is odd, then divide the units in the first stratum into (r — 1)/2 groups, of

2(k + 1) units each, and one group of (k + 1) units according to their unit indices.
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Randomly select a unit from the first (£ + 1) units in the first group and every
2(k + 1)th units thereafter, until (r + 1)/2 units are obtained. Now, select units
from the (k + 2)th to the 2(k + 1)th unit of each group (i.e. excluding the group
containing (k + 1) units) using the Markov chain design, such that the remaining

(r —1)/2 units are obtained.

Next, four types of stochastic matrices, the first three of which were considered by

Breidt (1995), are given as follows:

(i) To conduct remainder stratified systematic sampling (RSSS), the stochastic matrices
corresponding to the first and second strata are respectively given as

1
H, — }
k kxk

and

[ 1
H,; = ] .
LR+ 1] () x (k1)

(ii) To conduct RLSS, the stochastic matrices corresponding to the first and second
strata are given by identity matrices with dimensions k x k and (k + 1) x (k + 1),

respectively.

(iii) To conduct RBSS, the stochastic matrices corresponding to the first and second

strata are respectively given as

0 0 0 1

0 0 10
Ji =

0 1 0 0

1o ... 00

and

[0 0 0 1]

0 0 10
Jy =

0 1 0 0

10 0

L o 4 k1) x (k+1)
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(iv) To conduct RBSLS, the stochastic matrices corresponding to the first and second

strata are respectively given as

p1 1—pm 0 ... 0 0
0 P1 1—p ... 0 0
P =
0 0 0 po1—p
[1—-p1 0 0 ... 0 Pl
and
[ P2 1—po 0 ... 0 0 |
0 D2 1—po 0 0
Py = ;
0 0 0 P2 1—p2
1= 0 0 o 0 d (k1 1)x(k+1)

where 0 <p; <1and 0 <py <1.

Now, the corresponding sample mean, which is an unbiased estimate of the pop-
ulation mean, is given by the Horvitz & Thompson (1952) estimator, i.e. estimator
?HT = [(n—r)ky, +r(k+1)yy] /N, where y; and y, are the sample means from the
first and second stratum, respectively. Kao et al. (2011b) then provides values for the
second-order inclusion probabilities, which indicate that it is impossible to obtain an un-
biased estimate of the variance of ?HT when adopting their design.

If we apply the remainder systematic Markov chain design under model (2.1), then the

expected MSE of ?HT is given by

(n—r)k (n—r)k
) B {

i=1  j>i
N N
F Y S e |
i=(n—r)k+1 j>i
By substituting the relevant values of 7;;, which are obtained by applying the correspond-
ing stochastic matrices, we note that Mggyep is only minimized for RBSS when (n — r)

and r are both even, i.e. all other scenarios result in a linear trend component in Mgy cp.
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4.1.11 Modified systematic sampling (Khan et al. 2013)

Modified systematic sampling (MSYS) is a variation of circular systematic sampling and

is given by the following methodology:

(i) Let L = lem(N,n), such that v = L/N, k* = L/n, w = N/k* and k = k* /v, or k
is taken as the closest integer to (N/n). Thus, the required sample size is n = vw,

which results in the selection of v sets of size w.
(ii) Assume the population is arranged in a circular fashion.

iii) Randomly select a unit from the firs units in the population, say U;, where
iii) Randomly select it f the first £* units in th lati U;, wh

ie{l,...,k*}.

(iv) The first unit in each of the v sets is given by unit U (j_1), for j = 1,...,v. The
remaining (w — 1) units for each set, are obtained by selecting every k*th unit

thereafter in a circular fashion. Thus, the sampling units obtained for the jth set is

given by Sij = {Uitjk, Usgjktkss s Uikt (w—1)k* }-

Note that under MSYS, a necessary and sufficient condition for obtaining a sample of
distinct sampling units is that lem(k*, k)/k > v or, equivalently, if (7 — 1)k # k*, where
j <w—1. Thus, the design is susceptible to coincidence of sampling units. However, it is
rarer for sampling units to coincide when conducting MSYS, as opposed to CSS.

The corresponding sample mean is an unbiased estimate of the population mean, while
under (2.1), an exact expression for the expected MSE of this sample mean is difficult
to obtain, owing to the circular nature of selection. Nevertheless, we can expect this
expression to contain a linear trend component, as MSYS is merely a modification of CSS,

with no optimum pairing of sampling units.
4.1.12 Generalized modified linear systematic sampling (Subramani &
Gupta 2014)

Represent the population size as N = niki +nsks, where n = ny;+ns and k= k1+ko, such
that ny, na, k1 and ks, are all positive integers and ny > ns. The procedure of generalized

modified linear systematic sampling (GMLSS) is then given as follows:

(i) Divide and arrange the N population unit indices according to two matrices Ky and
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K2, where
1 7 k1
k+1 k+i ookt
2k +1 2k + i o 2k+
K= A . A
nok + 1 nok + 14 nok + k1
nok + k1 + 1 nok + ki +1i oo nok 42k
noks + (np — k1 +1 ... noko+(n1— Dk +1 ... ngky+niky k
L 4 nixks
and
ki+1 ki+j ]2:
k+k+1 k+ki+j 2%
K =
(nz—l)];}—l-kl—l-l (ng—l)]%-i-kl-i-j TLQI% “h
L ~ ngxky

(ii) The indices corresponding to the sampling units are then given by a randomly se-
lected column in matrix Kj, say the ith column, as well as a randomly selected

column in matrix Ka, say the jth column.

The first-order inclusion probabilities for the unit U, is given as

1/]{21, ifq c K;q
7Tq:

1/ky, if ¢ € Ka.

Subramani & Gupta (2014) then claimed that the sample mean, denoted as ¥, 55, 1S DOt
an unbiased estimate of the population mean, as the first-order inclusion probabilities are
unequal. Note that if sampling is achieved without replacement, then the only condition for
obtaining an unbiased estimate of the population mean is that 7, > 0, forall ¢ € {1, ..., N}.
We thus conclude that estimator 7,,,, 5 1S an unbiased estimate of the population mean.

If k1 = ko, then GMLSS reduces to the designs discussed by Subramani (2013b,a).
Moreover, if ng = 0, then GMLSS reduces to LSS. When comparing GMLSS to RLSS,
one can easily verify that GMLSS reduces to RLSS for any population exhibiting a perfect
linear trend, provided that ny = n —1r, ng = r, ki = k and ks = k + 1. However, the
ordering of units in S77 and ST» are not equivalent to that in Ky and Ka, respectively.

Thus, GMLSS will not reduce to RLSS when other population structures are considered.
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Under the assumption of model (2.12), the MSE of estimator 7,,,, s 1S given as

b2

]\/[GMLSS = W

{30kt = 1) = n3(k3 = 1) + 303 1 — (ma + D (ks — k2)? ).

Obtaining comparisons between GMLSS and either SRS, CSS or RLSS, is difficult, as
Mg ss depends on many variables. Subramani & Gupta (2014) thus provides a numeri-
cal study which shows that in the presence of linear trend, GMLSS always performs better
than SRS and CSS, while in most cases GMLSS is preferred over RLSS. Note that GMLSS
is not a linear trend free sampling design. Thus, to improve results for populations ex-

hibiting linear trend, Subramani & Gupta (2014) derived some end corrections estimators,

given by
Teninss = Yomnss T CL{Y1 — Yn),
yé}kmss = Yomrss T G2 (yt — Ytr1),
yt*}}k;LSS = Yomrss T C3 (yt’ - yt'+1)7
yc*:;;zss = Yorrrss T Ca(y1 — Yny)
and
?ZX?ZZS = Yomrss T C5 (yn1+l - yn)a
where
Cl _ (TLl — ng) [kl(ng + 1) — kgng] + 2 [kgng — nl(i + 1) — ng(] + 1)]
Qn{(i ) - [k;l ~ k(ng — 1)} }
<2 _ (m — ng) [k1<n2 + 1) — kgng] + 2 [k2n2 — nl(i + 1) — 712(] + 1)]
onk ’
G = (n1 —n2) [k1(n2 + 1) — kang] + 2 [kang — ni(i + 1) — na(j + 1)]
3 271]{71 ’
C _ (m — ng) [k)1<n2 + 1) — kgng] +2 [k2n2 — nl(i + 1) — 712(] + 1)]
4 2n [ngk‘g + (m — 1)/€1] ’
and
G = 2(n1i +n2j) — N +n+ nina(ky — k1)

2nk(ng — 1)
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Note that corrections are applied to: (i) the first and last sampling units, so as to ob-
tain estimator 3%, ¢¢; (ii) two successive sampling units from either K; or Ka, so as
to construct 7y, ¢o; (iii) the first two sampling units derived from each matrix, or two
successive sampling units between the (ng 4 1)th and the njth sampling unit, derived from

Skckok

matrix Ky, such that estimator y}ir, o¢ is obtained; (iv) the first and last sampling units

derived from matrix Kj, where estimator gt ¥ . is then constructed; (v) the first and

last sampling units derived from matrix Ka, such that estimator 3%}/ 5 is obtained. Just
as in the case of all previous end corrections estimators mentioned thus far, estimators
akkx akkkk akkkkok

=% k% . .
Unarrsss Yonirsss Yominss: Yonirss and giiircs, are all equivalent to the population mean

when there is a perfect linear trend in the population.

4.1.13 Remainder linear systematic sampling with multiple random starts

(Mostafa & Ahmad 2016)

This modified systematic sampling design uses multiple random starts, as in the previous
chapter, on the RLSS design in Section 4.1.7. The methodology of remainder linear

systematic sampling with multiple random starts (RLSSM) is given as follows:

(i) Divide the population into two strata, where the first stratum, ST, contains the
first (n — r)k population units and the second stratum, S7T», contains the remaining

r(k + 1) units.

(ii) For STi, select 1 < t; < (n — r) distinct integers from the first ¢1k population
units, where (n — r)/t; is an integer. Label these integers using the indices in
C = {ci,co,...,ct, }, where 1 < ¢; < t1k for i = 1,2,...,t;. The (n — r) randomly

selected units from S7; are then given as
S. = {Ci + (l/ — l)tlk‘i =1,..,t7and ' =1,2,..., (n — T)/tl}.
(iii) For STy, select 1 < t9 < r distinct integers from the set {(n — r)k + 1,...,(n —

r)k + to(k + 1)}, where r/to is an integer. Label these integers using the indices in

D = {dy,da,...,ds, }. The r randomly selected units from ST5 are then given as

Se={dj+ " =1)ta(k+1)[j=1,....ts and I" =1,2,...,r/t2}.
(iv) The final sample of size n is then given as S = S, U Sy.

If we denote the sample means from S7; and ST, as y,. and ¥,, respectively, then

the RLSSM sample mean, which is a design-unbiased estimate of the population mean, is
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given as Up, o5y = (0 —1)ky. + r(k+ 1)y,] /N. Mostafa & Ahmad (2016) then showed
that estimator ¥, ¢4, 1S @ linear combination of Horvitz and Thompson (1952) estimators,
ie.
YrLssm =N~ Z yl,"‘Nil Z yfj
ies, jes,

Using this expression, Mostafa & Ahmad (2016) computed expressions for the variance of
estimator ¥, ¢5,, and an unbiased estimator of the corresponding variance. Now, under
model (2.1), the expected MSE of ¥y, ¢4, iS given by

b’k

DI (n—7)2%k(k —1)(t1k + 1) + r2(k + 1) [t2(k + 1) + 1]},

2
Mgrssu = o, +

Mostafa & Ahmad (2016) then presented an empirical study which shows that both RLSS
and GMLSS are more efficient than RLSSM in the presence of linear trend.

Now that we have reviewed all the modified systematic sampling designs that tackle the
problem of N not being a multiple of n, we note that the only linear trend free sampling
designs and/or estimators, are those given in Sections 4.1.4 (i.e. Case (A)), 4.1.6, 4.1.7,
4.1.9 (i.e. Case (A) for RBSS), 4.1.10 (i.e. Case (A) for RBSS) and 4.1.12. Moreover,
we obtain minimum expected MSE of the associated sample means in Sections 4.1.4 (i.e.
Case (A)), 4.1.6 (i.e. MBCSS if N is odd or n is even, and MCCSS if both N and n
are odd), 4.1.9 (i.e. Case (A) for RBSS) and 4.1.10 (i.e. Case (A) for RBSS). This has
motivated the study in the next section, where a linear trend free sampling design and/or
estimator is proposed for the scenario when N is not a multiple of n. Under certain
cases, the proposed design is a linear trend free sampling design, while an appropriate end

corrections estimator is proposed for the other cases.

4.2 Remainder modified systematic sampling

For this section, a modified systematic sampling design, termed as remainder modified sys-
tematic sampling (RMSS), is proposed. The proposed design extends Chang and Huangs’
(2000) RLSS design, such that sampling units are selected according to a mixture of MSS
and CESS. Section 4.2.1 contains a discussion of the methodology of RMSS. Under the
assumption of a linear trend model, RMSS is compared SRS, RLSS and CSS, in Section

4.2.2. The results suggest that RMSS is a linear trend free sampling design for three of
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the seven cases of the design. For the other cases, a modified estimator, i.e. RMSS with

end corrections (RMSSEC) estimator, is thus constructed in Section 4.2.3.

4.2.1 Methodology

The seven cases of RMSS are given in Table 4.1. As is the case with RLSS, we first divide
the population into two strata, where the first stratum, STj, contains the first (n — r)k
units and the second stratum, ST5, contains the remaining r(k + 1) units. We next need
to select (n — r) sampling units from ST (note that RLSS applies LSS to select (n — r)
sampling units using the sampling interval k in S7T7) and r sampling units from ST (note
that RLSS applies LSS to select r sampling units using the sampling interval (k 4 1) in
STy).

Table 4.1: Possible cases of RMSS.

n k r  (n—r) Case

even even even  even A
even odd even even
odd even odd even
odd odd even odd
odd odd odd even
odd even even odd
even even odd odd

even odd odd odd

Q 49 "H O Q%3 =

We know that MSS is a linear trend free sampling design if the sample size is even.
Likewise, CESS is a linear trend free sampling design if the sampling interval is odd.
Thus, if we consider Table 4.1, we can easily deduct that MSS should be applied in ST}
for Cases A, B and D, as (n — ) is even, as well as in ST; for Cases A, C and E, as r is
even. Similarly, CESS should be applied in S7; for Cases C and G, as k is odd, as well
as in STh for Cases B and F, as (k + 1) is odd. Note that if both MSS and CESS offer
linear trend free sampling, then MSS is preferred since MSS is a randomized design, unlike
CESS which requires no randomization. Thus, we are left with Cases E and F for ST} and
Cases D and G for ST5, of which we will apply MSS. Hence, we can expect RMSS to be

a linear trend free sampling design for Cases A, B and C. Note that each case of RMSS
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entails some form of randomized sampling. Selecting a sample of size n from a population

of size N = nk + r using RMSS, consists of the following steps:
(i) Select two random starts k1 and k2 from 1 to k and 1 to k + 1, respectively.

(ii) The sample chosen from ST is given by

Sp1 = {Uk1+jka U(n—r)k—jk—k1+1|j =0,...,(n—r—2)/2}, for A, B and D
= {U[(Zj—l)k+1]/2|j = 1, ey U — ’I”}, fOI' C and G

- {Uk1+(nfr71)k/2}
U{Uk1 5k Un—r)k—jk—k14117 = 0, ..., (n —r —3)/2},  for E and F.

(iii) The sample chosen from ST5 is given by

sk2 = {Uk24j(kt 1)+ (n—r)bs UN—j(hs 1) k24117 = 0, ..., (r — 2)/2}, for A, C and E
= {Ujsr(jen—r—1/2li =1, .07}, for B and F
= {Uk24-N=(r+1)(k+1)/2}

U{Uk24j (k4 1)+ (n—r)k> UN—j (ks 1)=k241]7 = 0, ..., (r = 3)/2},  for D and G.

(iv) The final sample of size n is given by s = sp1 U sga.

If n —r = 1, then the sampling unit for Cases E and F in §77, is obtained by randomly
selecting a unit from the first k units. Similarly, if » = 1, then the sampling unit for Cases
D and G in S7T3, is obtained by randomly selecting a unit from the last k& + 1 units.

For RMSS, the first-order inclusion probability for unit U, is given by

g =1/k, ifge{l,...,(n—k)r} for A, B, D, Eand F
=1/(k+1), ifge{(n—Fk)r+1,..,N} for A, C, D, E and G
=1, ifge{[(2j—1)k+1]/2]j=1,...n—1r} for C and G
=1, ifge{j+k(j+n—r—1/2)[j=1,..,r} for Band F
=0, otherwise.

Note that m; = 0 or 1, for Cases C and G in ST7 and B and F in ST5, as CESS is applied
in these instances. Now, let us denote the k1th sample mean from ST as ), and the k2th
sample mean from ST, as ¥9, which are estimates of the stratum means from S77 and

STy (denoted by Y1 and Y5), respectively. Thus, the sample mean for RMSS is obtained
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by using the first-order inclusion probabilities on the Horvitz-Thompson (1952) estimator,

i.e.

= n—r)kyp +r(k+1)y _
Vo — (77) yklN (k+ DYk _ Berrss- (4.6)

Note that estimator ¥y,,ss is an unbiased estimator of the population mean for Cases A,
D and E, since m; # 0 for all ¢, i.e. MSS is applied in both ST and ST5 for Cases A,
D and E. Likewise, estimator ¥y,,ss is biased for Cases B, C, I and G, since 7y, = 0 for
some ¢, i.e. CESS is applied in either ST7 or ST5 for Cases B, C, F and G. However, if
we consider Cases B, C, F and G, we can easily verify that under the assumption of a
perfect linear trend in the population, estimator ¥g,,s5 is unbiased for Cases B and C, as
Upp = Y1 and Yo = Yo, i.e. for Case B, MSS is applied in ST} where (n —r) is even and
CESS is applied in STy where (k + 1) is odd. Likewise, for Case C, CESS is applied in
STy where k is odd and MSS is applied in S75 where r is even. Thus, in each case, both
designs offer linear trend free sampling and hence RMSS is a linear trend free sampling
design.

Let,

sq = {k1+jk,(n — )k — jk —k1+1]j = 0,..., (n —r — 2)/2},
sy=1{[(2j = Dk+1)/2[j=1,...n— 1},
se={kl+(n—r—1)k/2}

U{kl+ jk,(n—r)k—jk—kl+1j=0,...,(n—r—3)/2},
sqg=1{k2+jk+1)+(n—r)k,N—jk+1) —k2+1]j=0,..,(r —2)/2},
se={j+k(+n—r—1/2))j=1,..,r},
sp={k2+ N —(r+1)(k+1)/2}

U{k2+jk+1)+(n—r)k,N—jlk+1)—k2+1j =0,...,(r — 3)/2}.

Thus, the second-order inclusion probabilities, 7., for the pair of units (Ug, U.), q,2 €



{1,..., N}(q # z), are given as follows:

Case A: my, = 1/k,
=1/k(k+1),
— 1k +1),
=0,

Case B: my, = 1/k,

—1/k,

Case C: mg, = 1/(k+ 1),

Case D: my, = 1/k,
=1/k(k+1),
— 1k +1),

:()7

if gand z € s,

if g€ s, and z € sq, 0r q € 54 and z € s,
if g and z € sq4

otherwise.

if gand z € s,

if g€ s,and z € s, or g€ s, and z € 54
if g and z € s,

otherwise.

if g and z € s4

if g€ syand z € sq, or g € sg and z € sy
if ¢ and z € sy

otherwise.

if gand z € s,
ifges,and z€ sy, 0r g€ spand z € s,
if gand z € s¢

otherwise.
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Case E: my, = 1/k,
=1/k(k+1),
— 1/(k+1)
=0,

Case F: 7y, = 1/k,

=1/k,

Case G: my, = 1/(k+ 1),

= 1/(k+1),

if g and z € s,

if g € scand z € sq, or ¢ € sq and z € s,
if g and z € s4

otherwise.

if g and z € s,

if g€ s.and z € s¢, or g € s and z € s,
if gand z € s,

otherwise.

if gand z € s¢
ifges,and z €sp,orgespand z €5,
if ¢ and z € sy

otherwise.
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Hence, it is impossible to obtain an unbiased estimate of the variance of estimator ¥y, s,

as certain second-order inclusion probabilities, 7., will be zero for each Case. Also, note

that the variance of the sample mean is unobtainable when conducting CESS, as there is

only one possible sample selected, thus the variance of estimator yg,,qs is undefined for

Cases B, C, F and G.

4.2.2 Expected Mean Square Error Comparisons

Under model (2.1), the population mean and stratum means are given by

- (n—r)k =

and

N

— 1
e, 2

g=(n—r)k+1

b(N+1)

5 1%

Z yq:a+b[(n—r)k+1] .

2

bi(n—r)k+N+1
P (ELLES LS I
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where
N (n—r)k
F=Y /N, m= Y aflin- A
q=1 q=1
and
N
2= Y e/llr(k+1),
g=(n—r)k+1

represent the mean random errors of the population, S77 and ST5, respectively.

Now, if we consider Case A of RMSS, then by using (2.1) on si; and si2, we obtain

(n—r—2)/2
> Wktask T Ynorh—jh—k1+1)
=0

b[(n —r)k + 1]

=at————— +n

1
n—r

Yp1 =

and

(r—2)/2
_ 1
k2 = Z (Yk2tj(k+1)+(n—r)k T YN—j(kt1)—k2+1)
5=0
b(n—r)k+N+1]  _

=a-+ 2 + €k,

(n—r—2)/2

where &1 = > (€144 + €(n—r)k—jk—k1+1)/[(n — )] denotes the mean random

_ —2)/2
error from si; and egy = Zg'r:o )/ (€k2+j(k+1)+(n—r)k T EN—j(k+1)—k2+1)/T Tepresents the

mean random error from sio. Thus, the expected MSEs of ¥,; and v, are given by

My = E{E (U — Y1)}
=E {5 [(ékl — 51)2] }
—E[€ (e},) + & (&}) — 28 (erien)]

o? N o2 202 o?(k —1)
n—r (n—-r)k (nm-rk (n—r)k

and

My = E{E [(Uo — Y2)?] }
=E{& [(er2 — 2] }
= E[€ (¢,) + & (€3) — 26 (eraen)]

_(ﬁ+ o2 - 202 B o2k
o rk+1D) rk+1) rk+1)
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respectively. Finally, by using M} and Mjs as weighted components, the expected MSE

of Yrargs can be written as

1
Mparss = ~ [(n = 7)2k* My + r?(k + 1) Mo

N
_ ;’; (= r)k(k = 1) + vk + k] = 28 (NN_Z” ) _ g2,

where 02 denotes the minimum expected error variance when independently sampling from

STy and STs. Similarly, we can find Mpg,, 55 for the other cases of the design, such that

Myrrss = 0'3, for Cases A, B and C
V2k(k +2)(k + 1)2
_ 2
=o. + ToN? , for Cases D and G
VR (k* — 1)
_ 2
=0+ ToONZ for Cases E and F. (4.7)

If we compare equations (4.4) to (4.7), it can be shown that Mgy ss < Mgrss, while
simple theoretical comparisons between equations (2.3) and (4.7) are difficult to obtain.
Also, the expected MSE of the sample mean when conducting CSS is difficult to obtain,
owing to the circular selection procedure. Thus, we will resort to some empirical results
below.

Without loss of generality, we consider the e;’s in (2.1) to be iid N(0,1) random vari-
ables and set a = 5, as expected MSE expressions have been shown to be independent of a.
Monte Carlo simulations are then employed by means of the statistical software package R,
whereby 10 000 finite linear trend populations are simulated. The expected MSE of each
estimator is obtained as the mean of the MSEs over the 10 000 populations. The relative
expected MSEs of each comparative estimator, with respect to that of estimator 7y,, s, is
denoted by R, = 100 X Mgpyss/Ma(%), where a = SRS, RLSS, or CSS. The results are
presented in Tables 4.2 to 4.8, where we note that estimator ¥,,q5 is always subject to
less error than estimators U pq, Unrgs and Yogq. Moreover, as N and/or b increases, we see

further improvements when choosing RMSS over the other sampling designs.

4.2.3 Remainder modified systematic sampling with end corrections

To improve results for Cases D to G, an end corrections estimator is constructed to remove
the linear trend components in (4.7). The corresponding estimator is given in the next

theorem.
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Table 4.2: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case A of RMSS.

b N n k1 Rprss Rsrs Foss
05 10 4 2 2 7071 3297 48.13
05 28 8 3 4 4074 0570 13.98
05 38 16 2 6 41.81 03.39 04.44
05 104 32 3 8 1692 0045 01.44

1 10 4 2 2 36.73 10.57 17.84

1 28 8 3 4 1473 01.50 03.93

1 38 16 2 6 1496 0086 01.13

1 104 32 3 8 04.80 00.11 00.36

2 10 4 2 2 1252 02.84 05.09

2 28 8 3 4 0413 00.38 01.01

2 38 16 2 6 04.22 00.22 00.28

2 104 32 3 8 01.25 00.03 00.09

4 10 4 2 2 0347 00.73 01.32

4 28 8 3 4 01.07 00.09 00.25

4 38 16 2 6 01.09 00.05 00.07

4 104 32 3 8 0031 00.01 00.02

Theorem 14: The RMSSEC estimator of Y with random starts k1 and k2, where k1 €
{1,...,k} and k2 € {1,...,k + 1}, is given by

Yrmssee = Yrmss T 41 (yk2+(n—r)k - yN—k2+1) ) for Cases D and G (r > 1),

= UYparss T 22 (ykl — y(n—r)k:—k1+1) , for Cases E and F (n —r > 1),

where

(k+1)(2k2 — k — 2)
Z — Z =
LS NBN @2 12— 2k 2

k(2k1 —k — 1)
N[2(n — r)k — 4k1+ 2]’

Proof: See Appendix.

One can easily verify that ,,,5ssc = Y, under the assumption of a perfect linear trend
in the population. However, in the presence of a rough linear trend, estimator ¥,,,sspc

is biased, owing to the uneven weighting of the sampling units. Under model (2.1), an
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Table 4.3: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of RMSS.

b N n k r Rgiss Rsrs  Ross
05 11 5 2 1 7341 28.67  55.84
05 39 9 4 3 30.61 02.99 13.35
0.5 39 17 2 5 4205 03.15  05.47
0.5 139 33 4 7 10.06 00.25  01.66

1 11 5 2 1 38.09 08.65  22.38

1 39 9 4 3 10.04 00.77  03.72

1 39 17 2 5 15.29 00.81 01.42

1 139 33 4 7 0275 00.06  00.42

2 11 5 2 1 13.70 0234 06.71

2 39 9 4 3 0273 00.19  00.96

2 39 17 2 5 04.46 00.21 00.37

2 139 33 4 7 00.70 00.02  00.11

4 11 5 2 1 03.76 00.59  01.75

4 39 9 4 3 00.70 00.06 00.24

4 39 17 2 5 01.14 00.05  00.09

4 139 33 4 7 00.18 < 00.01 00.03

expression for the expected MSE of estimator Uy,,s5mc (i-€. Mgassec) is complex. We

will thus consider a simulation study to evaluate the performance of estimator ¥y, s5pc-

We next consider a similar simulation study, as in the previous section. The relative

expected MSEs of estimators ¥,,s5 and Uy, ssme, With respect to that of ¥y, 65mc, is de-

noted by R/ﬁ = 100 X Mgaxssec/Mp(%), where § = RMSS or RLSSEC. The simulation

results are presented in Tables 4.9 and 4.10, where we see the superiority of estimator

Ynmsseo OVET Unargg, With greater discrepancies as b increases. Furthermore, we note that

estimator Un,,s55c 1S preferred over estimator ¥y, 455, With smaller discrepancies as the

population size increases, i.e. there are marginal gains when selecting estimator ¥,,;¢55c

over estimator ¥y, ¢spe, for large scale sampling.
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Table 4.4: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case C of RMSS.

b N n k r Rgiss Rsrs  Ross
05 11 3 3 2 5783 27.21 43.24
05 39 7 5 4 2529 03.02 11.08
05 51 15 3 6 29.38 01.83  04.76
05 163 31 5 8 0791 00.18  01.40

1 11 3 3 2 2574 0846 15.55

1 39 7 5 4 07.71 00.76  02.98

1 51 15 3 6 09.39 00.46  01.23

1 163 31 5 8 02.07 00.05 00.35

2 11 3 3 2 08.02 0226 04.42

2 39 7 5 4 0205 00.19  00.76

2 51 15 3 6 02.57 00.12  00.32

2 163 31 5 8 00.53 00.01 00.09

4 1 3 3 2 0214 00.58  01.15

4 39 7 5 4 00.52 00.05  00.19

4 51 15 3 6 00.65 00.03  00.08

4 163 31 5 8 00.13 <00.01 00.02

4.2.4 Concluding Remarks

A sampling design, namely RMSS, has been proposed by extending the RLSS design and
selecting units according to a mixture of MSS and CESS. Thus, RMSS is applicable when
the population size is not a multiple of the sample size and is appropriate for populations
exhibiting linear trend. In the presence of linear trend, the RMSS sample mean is subject
to less error than that of those provided by SRS, CSS and RLSS, as seen in Section
4.2.2. However, linear trend free sampling results are only obtained for three out of the
seven cases of RMSS. In Section 4.2.3, an end corrections estimator is thus constructed
for the other four cases. The simulation study conducted in Section 4.2.3, illustrates the
superiority of this end corrections estimator over the RMSS sample mean. Further results
from this study indicate that the proposed end corrections estimator is susceptible to

less error than an end corrections estimator associated with RLSS. However, the expected
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Table 4.5: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case D of RMSS.

b N n k r Rgriss Rsrs Ross
05 18 5 3 3 5350 13.90 28.48
05 32 9 3 5 3812 04.70 10.29
0.5 &8 15 5 7 16.04 00.76 03.51
05 226 31 7 9 04.72 00.10 01.06

1 18 5 3 3 27.02 0494 11.32

1 32 9 3 5 1515 01.42 03.24

1 82 15 5 7 0546 00.23 01.09

1 226 31 7 9 0143 00.03 00.31

2 18 5 3 3 1473 02.37 05.60

2 32 9 3 5 06.66 0057 01.31

2 8 15 5 7 0233 00.09 00.45

2 226 31 7 9 00.57 00.01 00.12

4 18 5 3 3 11.13 01.37 04.12

4 32 9 3 5 04.18 00.35 00.81

4 8 15 5 7 01.53 00.06 00.29

4 226 31 7 9 0035 00.01 00.07

MSEs of both end corrections estimators tend to converge as the population size increases.
Thus, one can use either end corrections estimator for large-scale sampling applications.
For this scenario, one may opt to use the end corrections estimator associated with RLSS,
owing to its simplicity.

In this chapter, we have discussed the the second of two shortcomings of systematic
sampling, i.e. if the population size is not a multiple of the sample size, resulting in sample
sizes that vary, or fixed sample sizes that are greater than required when conducting LSS.
Also, we reviewed relevant modifications of the usual systematic sampling design found
in literature as well as a suggested modified systematic sampling design that address
this problem, all under the assumption of linear trend among the population units. The
results from this chapter suggest that values of the population size, sample size and/or the

remainder needs to be considered for the relevant shortcoming at hand, before selecting
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Table 4.6: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case E of RMSS.

b N n k r Rpss Rsgs  Ress
05 12 5 2 2 6899 2539 41.73
05 42 9 4 6 2477 0271 07.25
05 98 15 6 8 11.54 00.52 02.64
0.5 258 31 8 10 03.79 00.08 00.84

1 12 5 2 2 3712 08.08 15.79

1 42 9 4 6 0826 00.75 02.08

1 98 15 6 8 0357 00.15 00.77

1 258 31 8 10 01.10 00.02 00.24

2 125 2 2 1477 0249 05.15

2 42 9 4 6 0295 0026 00.71

2 98 15 6 8 01.36 00.06 00.29

2 258 31 8 10 00.40 00.01 00.09

4 12 5 2 2 0630 0098  02.07

4 42 9 4 6 0150 00.13 00.36

4 98 15 6 8 0078 00.03 00.16

4 238 31 8 10 00.22 <00.01 00.05

an appropriate modified systematic sampling design in the presence of linear trend. The

sampling designs in Sections 4.1.3, 4.1.4 (i.e. BRS), 4.1.5, 4.1.8, 4.1.9 (i.e. RSSS), 4.1.10

(i.e. RSSS) and 4.1.13, also solve the problem of unbiased variance estimation, as discussed

in the previous chapter. However, most of these designs do not offer favourable results

in the presence of linear trend and are not simple to apply in real life situations. If we

consider all the designs discussed in this chapter, then we note that BRS (for Case (A)) is

the only design that allows us to obtain an unbiased estimate of the associated sampling

variance, while providing linear trend free sampling results as well as offering simplicity in

it’s application. This has motivated the study in Chapter 5, where a modification to the

BRS design is proposed, which addresses all the shortcomings of systematic sampling, while

proving to be, suitable for populations exhibiting linear trend and simple to implement.
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Table 4.7: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case F of RMSS.

b N n k r Rpss Rers  Ross
05 9 4 2 1 7803 3766 61.65
05 3 8 4 3 3530 0392 15.66
05 101 16 6 5 11.38 00.49 03.99
05 263 32 8 7 0322 00.07 O01.17

1 9 4 2 1 4931 13.82  29.38

1 3 8 4 3 13.09 01.12 04.88

1 101 16 6 5 0355 00.14 01.18

1 263 32 8 7 0094 00.02 00.33

2 9 4 2 1 2244 0461 1097

2 3 8 4 3 0511 00.40 01.80

2 101 16 6 5 01.35 00.05 00.44

2 263 32 8 7 0034 0001 00.12

4 9 4 2 1 11.20 02.08 05.12

4 3 8 4 3 0287 0022 00.99

4 101 16 6 5 0079 00.03 00.26

4 263 32 8 7 0019 <00.01 00.07
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Table 4.8: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case G of RMSS.

b N n k r Raiss Rsrs  Ross
05 15 4 3 3 52.83 18.78 32.67
05 43 8 5 3 29.71 02.87 13.59
0.5 117 16 7 5 09.31 00.38  03.57
05 295 32 9 7 02.74 00.06 01.09

1 15 4 3 3 2744 07.16 14.01

1 43 8 5 3 12.53 01.00  05.11

1 117 16 7 5 03.28 00.13 01.21

1 295 32 9 7 00.86 00.02 00.34

2 15 4 3 3 15.75 03.71 07.49

2 43 8 5 3 06.80 00.51 02.67

2 117 16 7 5 01.62 00.06 00.59

2 295 32 9 7 00.38 00.01 00.15

4 15 4 3 3 12.02 02.74 05.59

4 43 8 5 3 05.23 00.39 02.06

4 117 16 7 5 01.19 00.04 00.43

4 295 32 9 7 00.19 <00.01 00.07
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Table 4.9: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Cases D and G of RMSS.

b N n kv Ruyss FRpssee
05 18 5 3 3 9190 53.01
05 43 8 5 3 8885 95.56
05 82 15 5 7 93.53 96.90
05 295 32 9 7 9233 99.35

1 8 5 3 3 7188 52.65

1 43 8 5 3 6447 94.52

1 8 15 5 7 7788 96.24

1 295 32 9 7 7457 99.46

2 8 5 3 3 3797 51.82

2 43 8 5 3 3142 95.40

2 82 15 5 7 46.88 96.37

2 29 32 9 7 4238 99.02

4 18 5 3 3 13.35 92.67

4 43 8 5 3 10.23 95.47

4 82 15 5 7 18.03 96.36

4 295 32 9 7 1555 99.19




Table 4.10: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend

under Cases E and F of RMSS.

b N n kv Ruyss FRpssee
05 12 5 2 2 99.28 82.88
05 3 8 4 3 96.15 94.76
05 98 15 6 8 9548 95.00
05 263 32 8 7 95.73 99.45

1 125 2 2 9568 82.82

1 35 8 4 3 86.23 95.43

1 98 15 6 8 8381 95.55

1 263 32 8 7 84.78 99.47

2 125 2 2 8230 82.69

2 3 8 4 3 60.06 94.15

2 98 15 6 8 56.61 95.39

2 263 32 8 7 58.78 99.36

4 12 5 2 2 5335 82.29

4 3 8 4 3 27.06 93.96

4 98 15 6 8 24.57 95.15

4 263 32 8 7 2622 99.48

94
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Chapter 5

Balanced Centered Random

Sampling

In this chapter, a modification of BRS, termed as balanced centered random sampling
(BCRS), is proposed. The methodologies for the various cases of the proposed design are
explained in Section 5.1. For Section 5.2, a simulation study is carried out to compare the
efficiency of BCRS, to that of SRS, LSS, CSS, STR, RLSS, RMSS, BRS, MBCSS, MCCSS,
as well as the multiple-start modified LSS designs/estimators discussed in Sections 3.1.5
and 3.2 and end corrections estimators RLSSEC, RMSSEC, MBCSSEC and MCCSSEC.

Finally, we provide a summary in Section 5.3.

5.1 Methodology

BCRS is an extension to Singh and Garg’s (1979) BRS, which is divided into four cases.

The sampling procedure for the respective cases is given as follows:
(A) if N and n > 6 are both even and N > n + 2, then:
(i) use SRS to select (n — 4)/2 sampling units from the first N/2 — 3 population
units, with unit indices f;, for i = 1,..., (n — 4)/2;
(ii) select two sampling units from the sample space {Uy/2_2, Un/2—1,Un/2} using
SRS and label these indices as f(;,_2)/2 and f, 2;

(iii) the unit indices for the remaining n/2 sampling units are then given as N — f;+1,

fori=1,...,n/2;
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(B) if N is even, n > 5 is odd and N > n + 1, then:

(i) use SRS to select (n — 3)/2 sampling units from the first (N —4)/2 population

units, with unit indices f;, for i = 1,..., (n — 3)/2;

(ii) the unit indices for the next (n — 3)/2 sampling units are given as N — f; + 1,
fori=1,...,(n —3)/2;

(iii) use SRS to select the remaining three sampling units from the sample space
{Un/2-1,Uny2, Unja41, Unjasa

(C) if N > 9 and n > 5 are both odd and N > n + 3, then:

(i) use SRS to select (n — 3)/2 sampling units from the first (N —5)/2 population
units, with unit indices f;, for i = 1,..., (n — 3)/2;
(ii) the unit indices for the next (n — 3)/2 sampling units are given as N — f; + 1,
fori=1,...,(n—3)/2;
(iii) use SRS to select the remaining three sampling units from the sample space

{Un=3)/2: Un=1)/2 Un+1)2: Un43) 2, U5y /235
(D) if N is odd, n >4 is even and N > n + 1, then:

(i) use SRS to select (n —2)/2 sampling units from the first (N — 3)/2 population
units, with unit indices f;, for i = 1,..., (n — 2)/2;
(ii) the unit indices for the next (n — 2)/2 sampling units are given as N — f; + 1,
fori=1,...,(n —2)/2;
(iii) use SRS to select the remaining two sampling units from the sample space

{Uw=1)/2, U412, Un43) 23

Note that only cases (A) to (C) are applicable when the population size is a multiple of the
sample size, while all cases may be applicable when the population size is not a multiple
of the sample size.

Theorem 15: For the respective cases of BCRS, the first-order inclusion probabilities

mq for the unit U, and the second-order inclusion probabilities my, for the pair of units

{U,U.}, ¢,z € {1,...,N}(q # z2), are given as follows:

(A) if N and n > 6 are both even, where N > n+2 and A= {N/2—2,N/2—1,...,N/2+



3}, then:

and

Tqz

g =4/6,

= (n—4)/(N -6),

= (n—4)/(N - 6),
=(n—4)(n—6)/(N —6)(N —8),
= 4/6,

= 1/3,

— 4(n — 4)/6(N —6),
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ifqge A

otherwise

ifq+z=N+1andq,z¢ A
ifq+z#N+1andq,z¢ A
ifg+z=N+1andq,z€ A
ifqg+z#N+1and q,z€ A

otherwise;

(B) if N is even and n > 5 is odd, where N > n+1 and B = {N/2—1,...,N/2 4+ 2},

then:

and

Tz

g = 3/4,

=(n—=3)/(N —4),

=(n—3)/(N—4),
=(n—=3)(n-5)/(N—-4)(N —6),
=1/2,

= 3(n — 3)/4(N — 4),

ifqe B

otherwise

ifg+z=N+1andq,z¢ B
ifq+z#N+1andq,z¢ B
ifq,z € B

otherwise;

(C) if N >9 and n > 5 is odd, where N > n+3 and C = {(N —3)/2,....,(N +5)/2},

then:

and

Tz

g = 3/5,

=(n—=3)/(N-5),

= (n—3)/(N -5),
= (n—=3)(n—5)/(N =5)(N —1),
= 3/10,

= 3(n—3)/5(N — 5),

ifqeC

otherwise

ifq+z=N+1andq,z¢ C
ifq+z#N+1andq,z¢ C
ifq,zeC

otherwise;
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(D) if N is odd and n > 4 is even, where N >n+1 and D = {(N—1)/2,(N+1)/2,(N+

3)/2}, then:
T = 2/3, ifqe D
=(n—2)/(N - 3), otherwise
and
Tq: = (n—2)/(N = 3), ifg+z=N+1andq,z¢ D

=(n-2)(n—4)/(N —-3)(N —5), ifq+z#N+1andq,z ¢ D
=1/3, if g,z € D

=2(n—2)/3(N —3), otherwise.

Proof: One can easily prove the above theorem by using the basic derivation of the
inclusion probabilities under SRS and first principles.

Using the above inclusion probabilities, the Horvitz-Thompson (1952) estimate of the
population mean is given as

_ _ ? 1 Yq

Yscrs = YHT = — Z —

n g

Ugs€s

the BCRS sample mean with a Yates-Grundy (1953) form variance

N N 2
V(yBCRS) = % ZZ (1 - JT\;WQZ> (yq - y2)2 ) (5'1)

q=1 z>q

which is estimated by

where s is the sample selected.

Now, expression (5.1) can be written as

N N
_ 1 Tqz
Viohens) = 33 33 [1- 7 - 007 52
g=1 z>q q

Note that it is difficult to simplify (5.2) further, owing to the complex structure of the

second-order inclusion probabilities for the proposed design, i.e. simple theoretical ex-
pected MSE comparisons between estimator 7,5 and other comparative estimators are

difficult to obtain. Thus, we will resort to a simulation study in the next section.
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5.2 Empirical Comparisons

Without loss of generality, we consider the e;’s in (2.1) to be iid N(0, 1) random variables
and set a = 5. Monte Carlo simulations are then employed by means of the statistical
software package R, whereby 10 000 finite linear trend populations are simulated. The
expected MSE of each estimator is obtained as the mean of the MSEs over the 10 000
populations. The relative expected MSEs of each comparative estimator, with respect to
that of estimator ¥y, g, is denoted by Ry = 100 X Mpers/Ma (%), where Mpeprs denotes
the expected MSE of the BCRS sample mean under model (2.1) and « = SRS, LSS, STR,
CSS, MLSS, MYEC, MBSS, MMSS, MBMSS, MBMSSEC, RLSS, RMSS, RMSSEC, BRS,
MBCSS, MBCSSEC, MCCSS and MCCSSEC. The results are presented in Tables 5.1 to
5.12. To compare BCRS to the multiple-start designs we let n = n'm and k = [, i.e. we
are selecting m samples of size n/ from the k = [ possible samples. While we attempted
for four variations of variables for each of the four Cases (for both N = nk and N # nk
scenarios), we note that larger values of N and n were not possible for Cases B and C
with the scenario of N = nk, as seen in Tables 5.5 and 5.8, respectively. This is due to
the memory limitations when executing the relative R code on the computer.

From Tables 5.1 to 5.12, we note that BCRS is more efficient than SRS for all cases
and more efficient than BRS for Cases B, C and D, while being equally efficient to BRS
for Case A. Also, if we consider Tables 5.1, 5.2, 5.5 and 5.8, we see that BCRS is more
efficient than LSS, STR and MLSS. By analysing the results in Tables 5.3, 5.4, 5.6, 5.7,
5.9, 5.10, 5.11 and 5.12, we note that BCRS is more efficient than CSS and RLSS. By
choosing BCRS over LSS, SRS, STR (Cases B and C), MLSS, BRS (Cases B to D) and
RLSS (Cases B to D), we see that there are more efficiency gains as b and/or N and/or
n increases. Also, if we opt for BCRS over STR (Case A), CSS and RLSS (Case A), we
note that relative results are improved as b increases.

Now, let us compare BCRS to BMSS and the BMSSEC estimator. In Tables 5.1 and
5.2 (i.e. Case A) we note that n = 8 and 12 are related to Case A of BMSS and n = 10
and 14 are related to Case B of BMSS. Hence, the BMSSEC estimator is not applicable
for n = 8 and 12. Clearly BCRS is equally efficient to BMSS for Case A of BMSS for
low values of b, while more efficient than BMSS as b and/or n increases. For Case B
of BMSS, we see that BCRS is more efficient that BMSS. Also, BCRS is approximately
equally efficient to BMSSEC for Case B of BMSS. If we consider Tables 5.5 and 5.8 (i.e.
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Cases B and C), we note that n = 9 is related to Case E of BMSS and n = 15 is related to
Case D of BMSS. For these scenarios, both BMSS and the BMMSSEC estimator are more
efficient than BCRS with greater efficiency gains when selecting BMSS and the BMSSEC
estimator over BCRS as b increases.

Next, consider the comparisons of BCRS to the modified multiple-start designs, i.e.
MBSS, MMSS, MYEC, MBMSS, and the MBMSSEC estimator. In Tables 5.1 and 5.2
we note that n’ = 4,5,6 and 7 relate to Cases A, E, B and D of MBMSS, respectively.
Thus, the MBMSSEC estimator is not applicable when n’ = 4. The results are expected,
as BCRS, which is a trend free sampling design for Case A, is equally efficient to MBSS
(n' is even), MMSS (n' is even), MBMSS (n’ = 4 or Case A of MBMSS) and the MBSSEC
estimator. Furthermore, BCRS is more efficient than MBSS (n’ is odd), MMSS (n’ is
odd), MYEC and MBMSS (n’ = 5,6 and 7 or Cases E, B and D of MBMSS). If we
examine Tables 5.5 and 5.8 we note that n’ = 3 and 5 relate to Cases C and E of MBMSS,
respectively. Again, the results are expected, as BCRS is more efficient than MBSS,
MMSS and MBMSS, since all these multiple-start designs are equally efficient when n’ is
odd. Note that there are grater efficiency gains when choosing BCRS over MBSS, MMSS
or MBMSS as b increases. Moreover, BCRS is less efficient than estimators MYEC and
MBMSSEC with greater efficiency gains when selecting estimators MYEC and MBMSSEC
over BCRS as b increases.

Next, let us compare BCRS to estimators RLSSEC and RMSSEC as well as RMSS.
If we consider Tables 5.3 and 5.4 (i.e. Case A), then we note that Case A of RMSS is
related. For this scenario, BCRS is more efficient than RMSS with greater efficiency gains
as b increases. Next, let us examine Tables 5.6 and 5.7 (i.e. Case B), where N = 16 and 20
represent Case E of RMSS, while N = 24 and 30 represent Case D of RMSS. Here, BCRS
is more efficient than the RLSSEC estimator if b = 0.5, while less efficient if b = 1,2 and
4. Similarly, BCRS is approximately equally efficient to the RMSSEC if b = 0.5, while
less efficient if b = 1,2 and 4. We see greater efficiency gains when selecting either the
RLSSEC or RMSSEC estimator, over BCRS as b increases. For Case E of RMSS, BCRS is
approximately equally efficient to RMSS when b = 0.5, while less efficient if b = 1,2 and 4.
We note greater efficiency gains when opting for RMSS over BCRS as b increases. For Case
D of RMSS, BCRS is more efficient than RMSS with greater efficiency gains as b increases.
Now, let us analyse Tables 5.9 and 5.10 (i.e. Case C), where N = 17 and 21 relate to
Case B of RMSS, while N = 23 and 29 relate to Case C of RMSS. Clearly RMSS is more
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Table 5.1: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case A of BCRS (N =nk and b= 0.5,1).

b 0.5 0.5 0.5 0.5 1 1 1 1
N 16 20 24 28 16 20 24 28
n,n’ 8,4 10,5 12,6 14,7 8,4 10, 5 12, 6 14, 7
k= 2 2 2 2 2 2 2 2
m 2 2 2 2 2 2 2 2

Riss 48.86  44.27 40.04 35.53 19.74 1641 1426  12.53
Rsrs 1495 10.28 07.39 05.56 04.22 0276 0197 0145
Rsrr 88.38 88.57 88.66 88.52 66.44 66.10 66.61 66.82
Rgss 100.93 92.97 100.21 96.49 101.44 84.81 100.77 86.98
Rpyssec N/A 9754 N/A 10023 N/A 10250 N/A  99.91
Ryrss 37.09 3225 28.61 2538 13.01 10.67 09.10 07.91
Rypss 101.22 91.57 100.14 94.06 99.24 74.07 99.69 81.94
Ryuss 99.20 90.90 98.69 9441 100.64 74.38 100.31 81.72
Ryy e 95.07 96.25 9843 98.17 9546 97.06 97.70  98.79
Rysuss 99.22 91.84 T7.65 94.87 99.25 74.70 47.82  81.59
Rysussec | NJA 9949  98.75 10046 N/A  99.93 100.17 100.42
Rprs 99.99 99.94 99.94 99.98 100.04 100.09 100.08 99.95

efficient than BCRS with greater efficiency gains as b increases. For the final scenario,
we will evaluate Tables 5.11 and 5.12 (i.e. Case D), where N = 15 and 19 associate with
Case F of RMSS, while N = 21 and 27 associate with Case G of RMSS. Here, BCRS is
more often than not, more efficient than the RLSSEC estimator when b = 0.5 and 1, while
BCRS is less efficient than the RLSSEC estimator if b = 2 and 4. Likewise, BCRS is more
often than not, slightly more efficient than the RMSSEC estimator when b = 0.5, while
BCRS is less efficient than the RMSSEC estimator if b = 1,2 and 4. Note that there are
greater efficiency gains when selecting either the RLSSEC or RMSSEC estimator, over
BCRS as b increases. For Case F of RMSS, BCRS is more efficient than RMSS when
b = 0.5, while less efficient if b = 1,2 and 4. Note that there are greater efliciency gains
when opting for BCRS over RMSS, as b increases. Conversely, BCRS is more efficient
than RMSS for Case G of RMSS, with greater efficiency gains as b increases.
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Table 5.2: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case A of BCRS (N =nk and b = 2,4).

b 2 2 2 2 4 4 4 4

N 16 20 24 28 16 20 24 28
n,n 8,4 10, 5 12, 6 14, 7 8, 4 10, 5 12,6 14, 7

k= 2 2 2 2 2 2 2 2

m 2 2 2 2 2 2 2 2
Riss 0593 04.72 04.00 03.45 01.55 01.23 01.02 00.89
Rsrs 01.09 00.71  00.49 00.37 00.28 00.18 00.12 00.09
Rsrr 33.60 33.03 3330 33.39 11.22 11.05 11.01 11.14
Rpuss 99.50 54.23 96.81 64.20 102.13 23.83 95.89  30.63
Rpyssec N/A  97.75 N/A 102.03 N/A 9946 N/A 102.29
Ryrss 03.63 0290 0243 0210 0094 00.74 00.62 00.53
Rypss 100.31  43.09 100.75 51.57 99.35 15.61 101.11 20.85
Rass 99.69 4298 100.80 50.95 100.76 15.73  99.75  20.83
Ryyec 95.59 97.00 97.65 99.54 95.05 9494 96.51 98.65
Rypuss | 101.68 42,74 1836  51.03 100.41 15.70  05.26  20.90
Rypussec | N/JA 10048 100.08 101.10 N/A  100.60 98.60  99.25
Rprs 100.17 100.09 99.96 100.04 100.12 100.04 99.99 100.11

Finally, we will compare BCRS to MBCSS, MCCSS as well as estimators MBCSSEC

and MCCSSEC. If we examine Tables 5.3 and 5.4, we note that BCRS is equally efficient

to MBCSS, while more efficient than MCCSS and estimator MCCSSEC. Note that there

are greater efficiency gains when selecting BCRS over estimator MCCSSEC, as b and/or

N increases. Next, consider Tables 5.6 and 5.7, where BCRS is more efficient than MBCSS

and estimator MBCSSEC when b is small and less efficient when b is not small, i.e. there are

greater efficiency losses when choosing BCRS over MBCSS (or estimator MBCSSEC) as b

and/or N increases. We also note that BCRS is less efficient than estimator MCCSSEC,

with greater efficiency losses as b increases. Moreover, BCRS is more efficient than MCCSS,

with greater efficiency gains as b increases. Now, let us evaluate Tables 5.9 and 5.10. Here,

BCRS is more efficient than MBCSS when b is small and less efficient when b is not small,

i.e. there are greater efficiency losses when choosing BCRS over MBCSS as b increases.
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Also, BCRS is less efficient than MCCSS with greater efficiency losses when choosing
BCRS over MBCSS as b increases. Finally, we will examine Tables 5.11 and 5.12. We
note that BCRS is more efficient than MCCSS, where we see greater gains in efficiency
when selecting BCRS over MCCSS as b and/or N increases. Lastly for this scenario,
we note that BCRS is more efficient than MBCSS and estimator MCCSSEC when b is
small and less efficient when b is not small, where there are greater efficiency losses when

selecting BCRS over MBCSS (or estimator MCCSSEC) as b increases.

Table 5.3: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case A of BCRS (N # nk and b= 0.5,1).

b 0.5 0.5 0.5 0.5 1 1 1 1
N 18 26 28 38 18 26 28 38
n 8 12 8 12 8 12 8 12
k 2 2 3 3 2 2 3 3
T 2 2 4 4 2 2 4 4

Reoss 29.53 2187 13.73 1739 09.31 06.57 03.80 04.99
Rsrs 12.33  06.38 05.60 03.14 03.36 01.67 01.45 00.80
Rprs 99.93 99.95 100.11 100.11 100.01 99.92 99.71 99.92
Rriss 02.48 0210 02.79 03.01 00.96 00.73 01.03 00.95
Rrss 02,52 0214 0291 03.20 00.98 00.75 01.10 01.04
Ryupess | 100.67 100.00 100.38 100.57 99.52  99.37 99.90 100.10
Rycess 53.14 4146  26.58 18.54 2147 15.34 08.20 05.40
Ryecessee | 93.88 9878 9519  96.86 9429 96.85 98.16 99.08

In this chapter, we suggested a modification to the BRS design, which addresses all
the shortcomings of systematic sampling, while proving to be, suitable for populations
exhibiting linear trend and simple to implement. The results from this chapter suggest
that values of the population size, sample size and/or the degree of trend, needs to be
considered, before determining if the proposed modified systematic sampling design is
the most appropriate choice, when compared to alternative modified systematic sampling
designs. Now that we have examined all modifications of LSS under the assumption of
linear trend among the population units, we will next provide a comprehensive report on

the thesis, which will include suggested designs and/or estimators under various scenarios,
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Table 5.4: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case A of BCRS (NN # nk and b = 2,4).

b 2 2 2 2 4 4 4 4

N 18 26 28 38 18 26 28 38

n 8 12 8 12 8 12 8 12

k 2 2 3 3 2 2 3 3

T 2 2 4 4 2 2 4 4
Ress 02.55 01.72 00.98 01.31 00.65 00.44 00.25 00.33
Rsgs 00.87 00.42 00.37 00.20 00.22 00.11 00.09 00.05
Rgrs 99.99 99.92 100.15 100.21 99.97 100.02 99.94 100.17
Rgrss 00.31 00.22 00.33 00.27 00.09 00.06 00.09 00.07
Rruss 00.33 00.23 00.35 00.30 00.09 00.06 00.10 00.08
Rypess | 99.59 100.52  99.39  99.82 100.39 100.80 99.87 99.60
Rycoss | 0647 0432 02.12 0140 01.69 01.10 00.56 00.36
Ryeeossee | 9662 97.90 9345  96.68 9529 96.19 94.70 97.79

limitations of the current research as well as future recommendations/studies.
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Table 5.5: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case B of BCRS (N = nk).

b 05 0.5 1 1 2 2 4 4
N 18 30 18 30 18 30 18 30
n,n' 9,3 155 9,3 155 9,3 155 9,3 155
k=1 2 2 2 2 2 2 2 2
m 3 3 3 3 3 3 3 3

Riss 49.78  36.62 23.01 13.86 11.11 05.39 07.46 03.03
Rsrs 13.15  05.13 0432 01.49 01.83 0054 01.19 00.30
Rsrr 95.01 9292 84.7r 7803 7042 55.63 60.57 40.74
Rparss 106.52 101.48 119.44 114.50 173.88 143.67 288.64 242.83
Rpymssee | 108.21 10217  125.67 118.32 211.90 162.72 550.19 370.12
Ryss 29.44 1941 11.09 06.33 04.88 02.35 03.21 01.31
Rypss 83.32 8898 58.94 68.54 3714 4395 2751  30.02
Ryarss 82.40 8822 59.32 6833 37.07 43.83 27.63 30.03
Ryyec 101.71 102.49 121.97 113.73 201.50 163.95 519.35 366.10
Rypuss 83.09 8881 58.62 6880 36.96 43.91 2771 29.93
Rypussec | 106.57  104.16  126.63 116.64 208.79 166.59 542.82 369.50
Rgrs 42.85 29.87 1827 10.64 08.42 04.07 05.61 02.28
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Table 5.6: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of BCRS (N # nk and b= 0.5,1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 16 20 24 30 16 20 24 30

n 7 9 7 9 7 9 7 9

2 2 3 3 2 2 3 3

r 2 2 3 3 2 2 3 3
Ress 34.73 2885 21.19 1730 13.93 10.73 07.29  05.62
Rsps 16.14 1094 0789 05.15 0557 03.50 0249 01.53
Rprs 4583 39.77v  31.19 2642 20.61 1631 11.72  09.30
Rrrss 64.92 5837 4830 43.15 38.12 31.15 21.54 18.02
Rprssec 94.54 96.01 93.23 97.21 115.25 11445 109.29 111.63
Rrss 101.21 100.80 95.79  94.83 117.39 113.74 91.16 90.61
Rpyssee | 102.10  101.69 102.32 100.50 122.36 118.32 120.30 114.41
Rypess 89.52  90.65 94.67 9556 104.72 102.39 109.19 107.62
Rypessee | 9053 9212 95.74 9642 110.28 108.19 114.34 109.93
Ryicess 60.26  53.17 65.42 58.81 3250 24.61 36.14  28.56
Rycesspe | 103.08  100.78  104.72 105.38 126.14 121.59 124.49 118.20
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Table 5.7: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under

Case B of BCRS (IV # nk and b = 2, 4).

b 2 2 2 2 4 4 4 4

N 16 20 24 30 16 20 24 30

n 7 9 7 9 7 9 7 9

2 2 3 3 2 2 3 3

r 2 2 3 3 2 2 3 3
Ress 06.53 04.58 03.08 02.17 0447 0291 01.94 01.28
Rsrs 02.47 0143 01.00 00.58 01.67 00.90 00.63 00.34
Rprs 10.04 07.24 05.08 03.68 06.96 04.65 03.24 02.19
Rrrss 21.43 1550 10.07 07.57 15.55 10.30 06.55  04.58
Rprsspe | 196.77 181.57 17543 166.47 532.19 457.23 439.03 390.52
Rrass 17791 161.19 84.25 82.03 323.11 29451 77.23 7447
Rryvssee | 20895 184.60 193.39 171.35 562.71 468.22 483.16 398.99
Rypess | 156.14  146.13 153.96 14543 274.77 253.26 262.06 243.47
Rypessee | 190.16 17238 182.81 164.32 516.23 436.18 460.14 383.67
Rycoss 16.90 11.63 1845 13.09 1192 0v.60 1245 07.97
Rycossee | 217.99  193.51 19879 176.06 579.41 487.04 498.99 411.68
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Table 5.8: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case C of BCRS (N = nk).

b 0.5 0.5 1 1 2 2 4 4
N 27 45 27 45 27 45 27 45
n,n' 9,3 155 9,3 155 9,3 155 9,3 155
k=1 3 3 3 3 3 3 3 3

m 3 3 3 3 3 3 3 3

R ss 3485 2194 1493 08.02 08.14 03.53 06.20 02.40
Rsrs 06.69 0240 0234 00.75 01.19 00.32 00.89 00.21
Rsrr 90.31 85.27 75.01 65.07 60.22 43.24 52.92 34.06
Rparss 108.71 106.28 135.12 122.99 206.31 174.03 327.29 279.53
Rpyssee | 11140 109.23  149.72  130.11 299.54 223.21 904.20 576.51
Ryss 16.94 10.14 16.37 03.38 03.30 01.44 0249 00.96
Rypss 69.36  78.71  43.03 52,51  27.25 31.25 21.95 23.22
Rass 69.79 78.60 42.79  52.63 27.25 31.14 2195 23.08
Ryyec 107.69 106.31 144.21 127.13 283.81 216.99 868.42 559.17
Rypuss 69.38  79.70 42.73  52.63 27.27 31.06 2195 23.12
Rypusspe | 111.85  109.16  149.50 132.58 296.72 218.62 903.46 562.88
Rgrs 50.32  35.63 2531 14.63 1451 06.67 11.26  04.53
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Table 5.9: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend under
Case C of BCRS (N # nk and b =0.5,1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 17 21 23 29 17 21 23 29

n 7 9 7 9 7 9 7 9

k 2 2 3 3 2 2 3 3

r 3 3 2 2 3 3 2 2
Ress 26.77 2113  29.73 2441 11.85 0856 1298  09.57
Rsrs 16.03 10.73  09.27 05.87 06.52 04.01 03.45 02.02
Rgrs 74.56  68.67 52.30 45.68 51.41 43.38 27.67 21.74
Rrrss 65.73 60.16 53.99 4549 4393 37.13 2990 21.72
Rpvss | 108.79  107.24 11218 109.20 161.07 149.65 155.09 146.37
Ryposs | 82.96 7897  90.57 88.30 121.73 109.03 127.66 117.33
Rycess | 12156 114.60 11533 111.54 175.18 158.96 163.55 148.93

Table 5.10: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend

under Case C of BCRS (NN # nk and b = 2,4).

b 2 2 2 2 4 4 4 4

N 17 21 23 29 17 21 23 29

n 7 9 7 9 7 9 7 9

k 2 2 3 3 2 2 3 3

r 3 3 2 2 3 3 2 2
Ress 07.08 04.70 07.38  04.99 05.79 03.67 05.87 03.75
Rsrs 03.81 0215 01.87 01.01 03.09 01.67 01.47 00.75
Rgrs 37.61 2877  16.97 12.10 32.68 23.81 13.80 09.27
Rprss | 31.24 24.00 1870 12.15 26.83 19.64 15.30 09.31
Rryss | 361.75  313.19 335.08 286.74 1191.79 954.76 1071.17 859.97
Ryposs | 276.35  232.60 273.70 232.65 888.61 712.96 851.24 687.06
Ryeess | 398.23  331.05 35249 297.27 1248.78 1019.49 1070.99 869.78
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Table 5.11: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend
under Case D of BCRS (N # nk and b =0.5,1).

b 0.5 0.5 0.5 0.5 1 1 1 1

N 15 19 21 27 15 19 21 27

n 6 8 6 8 6 8 6 8

2 2 3 3 2 2 3 3

r 3 3 3 3 3 3 3 3
Ross 26.68 21.38 2291 1841 09.29 0691 07.69 05.80
Rsrs 1745 11.74 09.73 06.12 05.59 03.49 0291 01.74
Rggrs 36.89 32.29 23.78 19.93 14.06 1147 0798 06.35
Rrrss 59.32 57.57 4836 44.12 30.14 28.04 20.99 18.01
Rrrsspe | 73.65 89.75 81.21 92.87 8295 98.57 90.70 102.03
Rpuss 97.37 97.15 92.04 92.13 106.28 104.08 81.38 82.74
Rryssee | 9799 9793 9990 97.84 109.93 107.51 109.42 106.89
Rupcss | 79.04 7541 86.99 85.12 89.51 83.86 96.29 92.70
Rycess 12939 2313 18.19 14.06 10.73 07.71  05.81  04.27
Rycossee | 8872 9218 88.04 9444 97.01 100.05 97.87 102.00
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Table 5.12: Simulated Relative Expected MSEs for Populations Exhibiting Linear Trend
under Case D of BCRS (N # nk and b = 2,4).

b 2 2 2 2 4 4 4 4

N 15 19 21 27 15 19 21 27

n 6 8 6 8 6 8 6 8

2 2 3 3 2 2 3 3

T 3 3 3 3 3 3 3 3
Ress 03.67 0250 0283 01.98 0211 01.33 01.55 00.99
Rsrs 02.16 01.24 01.04 00.58 01.23 00.65 00.57 00.29
Rgrs 05.74 0429 0296 02.18 03.33 0230 01.62 01.09
Rriss 14.27 12.01 08.55 06.78 08.63 06.71 04.82 03.48
Rrrssee | 123.10  135.34 12595 133.08 276.19 287.50 273.09 262.09
Rruss 140.18 128.85 63.07 64.04 220.13 196.55 48.88  48.35
Rrysspo | 16212 147.34  153.67 140.14 363.40 307.07 332.58 275.41
Rypess | 130.79 114.84 134.75 121.03 298.42 241.80 289.61 241.31
Rycess 04.23 0281 02.11 01.43 0247 0149 01.15 00.71
Ryoesspe | 141.34 139.19 138.08 131.98 318.73 286.99 292.42 266.86
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Chapter 6

Summary

Conventional systematic sampling, also referred to as LSS, is commonly applied in practical
survey sampling, owing to its simplicity and operational convenience when implemented.
However, there exists two key disadvantages when conducting LSS, which are given as

follows:

(i) It is impossible to obtain an unbiased estimate of the sampling variance when con-

ducting LSS with a single random start.

(ii) If the population size is not a multiple of the sample size, then conducting LSS will
either result in sample sizes that vary, or fixed sample sizes that are greater than the
required sample size. The former situation leads to biased estimates of population
parameters, while the latter scenario is undesirable, as sample sizes are usually fixed

beforehand often owing to budget constraints.

In this study, we aim to solve both disadvantages independently and in tandem while

assuming the linear trend population structure.

6.1 Conclusions

The results from this thesis are summarized as follows:

(i) In the presence of linear trend, LSS is more efficient than CSS, but less efficient
than STR. Accordingly, many authors have suggested modified LSS designs and/or

estimators, as seen in Chapter 2, which are briefly summarized as follows:

1: Yates (1948) proposed an end corrections estimator (i.e the YEC estimator)

which corrects the usual LSS estimator by applying appropriate weights to
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the first and last sampling units, thus removing the linear trend component
in the associated expected MSE of the sample mean. The uneven weighting of
sampling units result in a larger error variance component in the expected MSE
of the corresponding sample mean. Regardless, we can expect this estimator to
be more efficient than that which is related to LSS, in the presence of a rough

linear trend.

: Madow (1953) suggested that the centrally located systematic sample be se-
lected, thus requiring no randomization. As a result, certain population units
have a zero probability of being selected for the sample, which results in the
sample mean being biased. Nevertheless, the associated sample mean is equiv-
alent to the population mean in the presence of a perfect linear trend in the
population when k is odd. Moreover, the expected MSE of the sample mean is

minimized when k is odd under the realistic linear trend model, given in (2.1).

: Sethi (1965) and Murthy (1967) proposed a sampling design which reverses the
order of every alternative set of k population units, before applying LSS. As
such, the corresponding sample mean is design-unbiased. Under model (2.1),

the expected MSE of the sample mean is minimized when n is even.

: Singh et al. (1968) suggested an arrangement which reverses the order of a
subset of population units which occurs at the end of the population. If n is
even, then the last N/2 population units are reversed, while the case of n is
odd results in the last (N — k)/2 population units being reversed. LSS is then
applied to this modified arrangement, such that the sample mean is design-
unbiased. The expected MSE of the sample mean is equivalent to that of BSS

for model (2.1), where optimal results are obtained when n is even.

: Subramani (2000) proposed a sampling scheme, DSS, which arranges the pop-
ulation in a matrix, before selecting units in a diagonal fashion. This design is
only applicable when n < k. The sample mean is a design-unbiased estimator of
the population mean and the expected MSE of this sample mean, under model
(2.1), is minimized when n = k. Consequently, an end corrections estimator is
suggested to remove the linear trend component in the expected MSE of the
sample mean. As with the YEC estimator, this adjusted estimator is equivalent
to the population mean in the presence of a perfect linear trend, while being

slightly biased under model (2.1). Subramani (2009, 2010) later introduced a
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generalization of Subramani’s (2000) DSS which is applicable for all cases of n
and reduces to DSS under a certain condition on the sample size. Under model
(2.1), the expected MSE of the associated sample mean is minimized if n is a

multiple of k.

Optimal sampling results in the presence of linear trend are unobtainable for the
case of n is odd and k is even. A modified design is then suggested in Section 2.4,
which is a mixture of BSS and MSS and is termed as BMSS. There are five cases
of the design and one of the cases (i.e. n/2 is an even integer) results in optimum
sampling results under model (2.1). For the other cases, an end corrections estimator
was constructed, i.e. the BMSSEC estimator. Under model (2.1), BMSS is equally
efficient to BSS and MSS for four of the five cases, while less efficient for one of the
cases (i.e. /2 is an odd integer). The results from this thesis suggest that BMSS,
BSS or MSS is to be preferred for the case of n/2 being an even integer, while BSS
or MSS is to be preferred when n/2 is an odd integer. For all other cases (i.e. n
is odd), CESS is to be preferred if k is odd. The final scenario of n is odd and k
is even, results in the BMSSEC estimator being preferred over the YEC estimator
if n and k are small and preference is given to minimum MSE. Otherwise, one may
opt to use the YEC estimator, owing to its simplistic preference over the BMSSEC

estimator.

To solve the shortcoming of being unable to estimate the sample variance when
conducting LSS with a single random start, various modified systematic sampling
designs have been proposed, as seen in Section 3.1. Gautschi (1957) proposed that
the usual LSS design be applied with multiple random starts. Thus, the second-order
inclusion probabilities for every pair of population units are non-zero, ensuring that
an unbiased estimate of the sampling variance is obtainable. The multiple-start
approach assumes that the sample size is a non-prime integer. Sampath & Ammani
(2010) applied this multiple-start approach to the YEC estimator as well as BSS
and MSS, while Subramani & Singh (2014) applied the multiple-start approach to
DSS. If we denote the required sample size as n = n'm and let N = n’mk, where
m is the number of random starts, such that m samples of size n’ are selected from
the k possible samples using SRS, then for model (2.1) we obtain optimal sampling
results for MBSS and MMSS when n’ is even as well as for MDSS when n' = mk.
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Another important modified design worth mentioning is BRS, proposed by Singh &

Garg (1979), which offers linear trend free sampling if N and n are both even.

A modified design, MBMSS, which adopts the multiple-start approach on BMSS,
was then proposed in Section 3.2. The results are similar to that in Section 2.4,
where BMSS was suggested. There are five cases of the design and one of the cases
(i.e. n’/2 is an even integer) results in optimum sampling results under model (2.1).
For the other cases, an associated end corrections estimator was derived, i.e. the
MBMSSEC estimator. Under model (2.1), MBMSS is equally efficient to MBSS and
MMSS for four of the five cases, while less efficient for one of the cases (i.e. n'/2 is
an odd integer). The results from this thesis suggest that MBMSS, MBSS or MMSS
is to be preferred for the case of n’/2 being an even integer, while MBSS or MMSS
is to be preferred when n'/2 is an odd integer. All other cases (i.e. n’ is odd), result
in the MBMSSEC estimator being preferred over the MYEC estimator if n’, m and
k are small and preference is given to minimum MSE. Otherwise, one may opt to
use the MYEC estimator over the MBMSSEC estimator, when simplicity is to be

preferred.

To tackle to problem of the population size not being a multiple of the sample size,
many modified designs have been presented in literature and summarized in Section
4.1. Lahiri (1951) considered CSS, whereby the population is arranged in a circular
fashion and sampling units are selected systematically with respect to a sampling
interval. BRS, which solves the problem of being unable to obtain an unbiased
estimate of the sampling variance, also tackles the above-mentioned shortcoming.
Uthayakumaran (1998) then adopted the CSS approach on BSS and CESS, which
was later modified by Leu & Kao (2006) and known as MBCSS and MCCSS, re-
spectively. Under model (2.1), optimum sampling results are obtained for MBCSS
if N is odd or n is even, while MCCSS offers optimum sampling results when N
and n are both odd. In addition, Sampath & Varalakshmi (2009) combined DSS
and CSS, known as DCSS. DCSS is not a linear trend free sampling design and thus
an associated end corrections estimator was constructed. Chang & Huang (2000)
introduced RLSS, which divides the population into two strata before independently
applying LSS within each strata, such the the selected sampling units from each

strata collectively represent the sample. RLSS is not a linear trend free sampling
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design and hence a corresponding end corrections estimator, termed as the RLSSEC
estimator, was derived by Chang & Huang (2000). Finally, we note that Mostafa
& Ahmad (2016) adopted the multiple-start approach on RLSS, so as to solve both
LSS shortcomings in tandem. This design is not a linear trend free sampling design.
Also, the design requires that (n — r) and r are non-prime integers, which is often

not the case.

A modified design, known as RMSS, which is a mixture of RLSS, MSS and CESS,
was then proposed in Section 4.2, i.e. the population is divided into two strata, where
either MSS or CESS is applied within each strata, such that the selected sampling
units from each strata collectively represent the sample. There are seven cases of the
design and three of these seven cases result in linear trend free sampling. For the
other four cases, an ends corrections estimator, termed as the RLSSEC estimator,
was derived. The results in this thesis indicate that RMSS is more efficient than
SRS, CSS and RLSS, with greater efficiency gains as N and/or b increases. Also, we
showed that the RMSSEC estimator is to be preferred over the RLSSEC estimator
if we are not tackling a large-scale sampling scenario. For large-scale sampling, both
estimators are approximately equally efficient, thus one may opt to use the MYEC

estimator over the MBMSSEC estimator, owing to simplicity.

As noted previously, BRS is the only modified sampling design that tackles both LSS
disadvantages in tandem without any loss of simplicity, while providing favourable
results in the presence of linear trend. Therefore, a modification to the BRS design,
termed as BCRS, was proposed in Chapter 5. BCRS is a mixture of BRS and
SRS, which is applied on a centered subset of the population. Thus, we are able to
maintain simplicity. Under model (2.1), BCRS is equally efficient to BRS for one of
the four cases (i.e. if N and n > 6 are both even, where N > n + 2), while more
efficient than BRS for the other three cases, with greater efficiency gains as N, n
and/or b increases. Various efficiency comparisons between BCRS and other modified
sampling designs have been considered in Chapter 5. Earlier in this thesis, we noted
that the most desirable sampling design(s) and/or estimator(s) are those that: (1)
exhibit minimum MSE of the associated sample mean, (2) are simple to apply in
practical situations and (3) offer the possibility of obtaining an unbiased estimate

of the corresponding sampling variance. Using this notion, recommendations of
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sampling designs for various scenarios under model (2.1), which use the results from
this thesis, have been presented in Tables 6.1 and 6.2. In Table 6.1, the first column
represents the condition if the sample size is a prime integer or not. The second
column represents the various cases of BCRS, while the third column represents
two cases of MBMSS, i.e. if n’/2 is an even integer or not. Columns four to six
indicate the three preferences when selecting a design, i.e. preference 1 is given more
preference over preference 2, which in turn is given more preference over preference
3. In Table 6.2, the first column represents the various cases of BCRS, while columns
three to five represent the various preferences, as in Table 6.1. From Tables 6.1 and
6.2, we note that the proposed designs and/or estimators are preferred for fourteen
of the twenty possible scenarios and are unmatched for ten of the twenty possible

cases.

Table 6.1: Recommended designs and/or estimators for populations exhibiting linear trend

(N = nk).
Cond 1 Cond 2 Cond 3 Pref 1 Pref 2 Pref 3 Recommended
n non-prime A n’/2 even N/A N/A N/A MBSS, MMSS,
MBMSS, BRS
or BCRS
n non-prime A n’/2 odd N/A N/A N/A MBSS, MMSS,
BRS or BCRS
n non-prime  B/C N/A Unbiased  Simplicity Minimum BCRS
Sampling MSE
Variance
n non-prime  B/C N/A Simplicity Minimum N/A MYEC
MSE
n non-prime  B/C N/A Minimum  Simplicity N/A MBMSSEC
MSE
n is prime A N/A N/A N/A N/A BRS or BCRS

n is prime B/C N/A N/A N/A N/A BCRS
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Table 6.2: Recommended designs and/or estimators for populations exhibiting linear trend

(N # nk).

Cond 1 Cond 2 Pref 1 Pref 2 Pret 3 Recommended
A N/A N/A N/A N/A BRS or BCRS
B b small Unbiased Sampling Simplicity Minimum BCRS

Variance MSE
B b small Minimum Simplicity N/A MCCSSEC
MSE
B b small Simplicity Minimum N/A RMSSEC
MSE
B b>1 Unbiased Sampling Simplicity Minimum BCRS
Variance MSE
B b>1 Simplicity Minimum N/A RLSSEC
MSE
B b>1 Minimum Simplicity N/A MCCSSEC
MSE
C N/A  Unbiased Sampling Simplicity Minimum BCRS
Variance MSE
C N/A Minimum Simplicity N/A MCCSS
MSE
D b small N/A N/A N/A BCRS
D b>1 Unbiased Sampling Simplicity Minimum BCRS
Variance MSE
D b>1 Simplicity Minimum N/A RLSSEC
MSE
D b>1 Minimum Simplicity N/A RMSSEC
MSE

6.2 Limitations

To conclude this thesis, we note that all the designs and estimators presented in this

study are under the assumption of a linear trend among the population units. More often

than not, one does not know the population structure prior to sampling. Applying the
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designs and/or estimators when the population does not exhibit linear trend may provide
poor results, as the designs and estimators presented in this thesis are most suitable
for the linear trend population structure. Prior to sampling, the onus thus lies on the
statistician to acquire as much information as possible regarding the population, so as to
estimate if the population exhibits linear trend. Alternatively, the sampler may arrange
the population prior to sampling. Consequently, one may choose to arrange the population
in increasing/decreasing order in accordance with an auxiliary variable (a variable that
is correlated with the study variable, such that it is easier to acquire the values of this
new variable, when compared to those of the study variable). As a result, we obtain an
approximate trend in the population, where the higher the degree of correlation between
the two variables, the greater the degree of linear trend in the rearranged population.

Under these circumstances, the theory and results presented in this thesis may then apply.

6.3 Future Studies

To expand on the work carried out within this thesis, we will compare the proposed
designs for various other population structures. Also, we only considered one-dimensional
sampling. Systematic sampling is commonly used in spatial sampling scenarios. We will
then look to extend the theory presented in this thesis to two-dimensional situations.
Additionally, adaptive sampling was proposed by Thompson (1990) and Thompson &
Seber (1996) and is used for spatial sampling. Sampling units could be selected using
a systematic approach when applying adaptive sampling. Thus, as a topic for future
studies, we will consider adopting the modified systematic sampling designs proposed in
this thesis in conjunction with adaptive sampling. The use of the suggested designs will
also be examined when sampling with unequal probabilities, e.g. if there exists a variable
of size then we may adopt the proposed designs to sample with probabilities proportionate

to size (pps).
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Appendix
Proof of Theorem 2: An estimate of Y with random start 4, for i € {1,...,k}, can be
written as
1 (n—1)
Ysmssec = n V1Yay + Z Yo; + VoY, | (1)
j=2

where 11 and 1o are the weights applied to the first and the last sampling units respectively
and x1,...,x, are the sampling unit indices, which are arranged in ascending order. By

substituting (2.12) into (1) and then equating this result to Y, we obtain

(n=1)

_ 1 b(N +1
Ysmssec = " Y1 (a+ bay) + Z (a+bzj) +2(a+br,)| =a+ (2) (2)
j=2
By equating the coefficients of a in (2), it follows that
1 =2 — 1. (3)
Similarly, by equating the coefficients of b in (2), we obtain
(n—1)
1 N +1
o 11 + Z xj + Yoy | = - (4)
7j=2
Substituting (3) into (4) results in
(n—1)
2 |2x1 — oz + Z fL’j—l-lﬁzxn :n(N+1),
j=2
which simplifies to
K -2z
Y=, (5)
Ty — 1

where K =n(N +1)/2 — Z;L;Ql xj. The weight applied to the first sampling unit is thus
obtained by substituting (5) into (3), i.e.

2, — K
Ty — X1

P =

Substituting ¢; and v into (1) results in

~1
_ 1| (22, — K) < (K — 211)
Ysmssec = (@ — 71) Yoy + ;y$]’ + (zn — 21) Yz

o n 1 [(2z, — K) (K —2z7)

= Ypuss n | (@n — 1) z1 (n — 1) Yz, = Yz1 = Yzn
@t a) - K]

= Ypmss T . (Y21 = Y ) - (6)

n(x, — 1)
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Now, if we consider Case (B), then 1 =1, z, = N +i — k and

n—1

" N—|—1 Z%

(n—2)/4 (n—6)/4
_”(N;l)_ Z (20 + N — k) + Z (k—2i+2+N)
=1 §=0
n(N +1) ey (N +1)fn — (n—2)
= — > (20+N-k+k-2i+2+N)= =N+1
2 =~ 2

(refer to the sampling unit indices of Case (B) in Section 2.4.1). On substituting these

values into (6), we obtain

Ysmssec = Ysmss T m (Yi — YN+i—k) - (7)

We then conclude the proof by finding the values of 1, x, and K for the other cases, as

shown above, and then substituting these values into (6).

Proof of Theorem 3: The expected MSE of ¥y,,s55- can be written as

Mprssec é & [E ({@BMSSEC B 7}2”

=E {E [(yBMSSEC - ?)2} } = % zk: & [yBJ\JSSEC - ?] 2' (8)

<.
Il
—

If we consider Case (B) for (2.1), then

3% b 2P b
Ypmss — Y =a+ 5 |:N+1+}+ei—[+(+e

Moreover,

Yi— YN+i-k =a+bi+e —[ja+bN+i—k)+enti—k]

= —b[N — k] + e — eNti—k- (10)

Using (7), (9) and (10), we obtain

€ [(gBJVISSEC - Y)Q] =£

?—i_ei_ n(N —k

:5[<—+W>] (1)

(bP oo PO k)t )— eNH-_,C])?]
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Applying Cochran’s (1946) super-population model assumptions, results in

(@) = % ZE (e2) + ZZE (eie) | = %, (12)

J#i
- R N N 2
5(e)zﬁ D)+ DD E )| = T (13)
j=1 i=1 j#i
- 1 N no? o2
1 n
e (ei — eipn-1k)] =€ o 2 G-k} (ei — €ix(mn-1)k) | =0, (15)
j=1
1 N
E[e(ei—emmnn)] =€ || e | (e —eisu-p) | =0 (16)
j=1
and
2 2 2 2
£ [(ei — €it(n-1)k) } =& [ei — 2€i€ 1 (n-1)k + 6¢+(n71)k} = 20" (17)

Expanding (11) and then substituting (12) through to (17) into this expression, results in

-~ — 202 P2
E [Wsusswe = Y)?] = 00 + W2(N —R)E (18)
Finally, by substituting (18) into (8), we obtain
o?(k* —1)
Mprrsspc = 3 N 7)? ZPQ 3 W

Similarly, we can obtain € [(Ysyss5c — ¥ )% for Cases (C) to (E) and then substitute these

expressions into (8).

Proof of Theorem 4: An estimate of Y with random starts ih, for h = 1,...,m and

ih € {1,...,k}, can be written as

_ 1 S
Yuvee = —— | M1 Z Yih + Z yzh-i-Jk + A2 Z Yiht+(n—1)k | » (19)
h=1 j=1
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where A1 and Ay are the weights applied to the first and last sampling units of each sample,
respectively. If we assume model (2.12), then Y = a + b(N + 1)/2. Thus, by substituting

this model into (19) and then equating this expression to Y, we obtain

m m (n—2) m
1
Tvpe = —— 4 M1 > (a+bih)+ >0 > la+b(ih+ k)] + X2 Y [a+b(ih + nk — k)]
h=1 h=1 j=1 h=1
= nma + nmb(]2\f+1) (20)

On equating the coefficients of a in (20), it follows that
A1 =2-— o (21)

Similarly, by equating the coefficients of b in (20) we obtain

m

()\1 +n— 2+>\2)Zih—|— mk(n_ 1)(71— 2) +)\2m(n— l)k = w
— 2 2

Substituting (21) into this expression results in

2n22’h +mk(n —1)(n —2) 4+ 2 am(n — 1)k = mn(N + 1),
h=1

which simplifies to

nV
=1-———. 22
2 2m(n — 1)k (22)
Hence, by substituting (4) into (3) we obtain
nV
M=14+—7"—".
! + 2m(n — 1)k

We then conclude the proof by substituting these weights into (19), i.e

(n—2)

m
Yuyee = % I:l + m(n — 1 ] Zyzh + Z Z Yih+ik

h=1 j=1

+[1— n—l }Zyzhﬂl }

_ V <
= Yurss t m [hz::l(yih - yih-i—(n—l)k)] )

where
n—1 m n—2

S
YnLss = % SN vingin = — Z Yin + > Y Yinsjk + Z Yintnk—k | - (23)

h=1 j=0 h=1j=1



124

Proof of Theorem 5: By using (2.1) and (23) we obtain
(n—1)

- 1 & b(N+1) -
YUninss — Y = % Z Yih+jk — @ — 72 — €
h=1 j=0
b e Dbk(n—1) _ b(N+1) _—
= mZZh+(2)+eJVILSS_<2)_e
h=1
b [Zm: . k+1)]| _ W _
= — Zh — —+ Eyrss — € = +e€ €rvrss — €, (24)
m | = 2 2m
where €yrss = Y _opey Zﬁ;l) €ihtjk/mm. In addition,
m m
> Wi = Yins(n-1yk) = —bm(n — 1k Z €ih — €iht(n—1)k)- (25)
h=1 h=1

If we use (19), (24) and (25), then

7 v - o VI i = Yinr (1)
& |:(y1WYEC - Y)Q] =¢£ { |:yMLSS -Y + h=117ih h+(n—1)k :|

2m2(n — 1)k
_ -V 22”21(% - ethr(nfl)k) ?
=¢£ { |:eMLSS — €+ 2m2(n— 1)k :| . (26)

Using the conditions of Cochran’s (1946) super-population model, we obtain

m (n—1) m (n—1)
£ (Ess) = ﬁ DD E(Eham) T > D€ (inripcintph)

h=1 j=0 h=1 j=0 p#j
0_2
nm’
N N N 9
5(6)—m Zg(eq)+zzg<eqez) —N,
q=1 z=1 q#z
m (n—1) N 2
& (éMLSSG = Z Z Zc‘: ezh_,_Jkeq = g ,
nmN N
h=1 j=0 ¢=1
m m n—1
_ 1
g [eMLSS > (ein — €insm-yn ] = SN Eleineintin — €intinCintni—t)
h=1 h=1 j=0
m02 — ma2
nm
m 1 N m
EZ €ih = Ciht(n-1)k) | = Z Z € leqin — €qCintnk—k]
h=1 q:l h=1
2 2
mo~ —mo
= =0
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and
m 2 m
£ [Z (eih - eih+(n—1)k) ] = Z & (ezzh — 2€;nCihtnk—k + €$h+nk_k) = 2mo?.
h=1 h=1

Expanding (26) and then substituting these expressions results in

< {(7 ?)2} o? . o2 202 N 2mo2V? 2, o2V?2
— -t -t =0 _—
Yuvso nm N N 4m*(n—1)2k? LT omd(n—1)22

An expression for the expected MSE of 7,,, .. is thus given as

MMYEC é & {E [(QMYEC - ?)2] }

= E{g |:(gMYEC _?)2]} = 012 + m

We then conclude the proof since E (V?) reduces to m?(I — 1)(Im + 1)/3.

Proof of Theorem 6: For MBSS and MMSS we respectively denote the ith (i €
{1,...,k}) sample totals by

(n=2)/2, ' ' o
BSST; = 2j=0 Wivash + Ya(r1h—ivn); if n is even
n—3)/2 . .
Z§:0 )/ (yi+2jk + y2(j+1)k—i+1) + yiJr(nil)k’ an is Odd,
and
(n—2)/2 . .
= Yitjk + YN—jh—i+1), if n is even
MSST; = 2ij=0" Wity jh—it1)
25_1—03)/2(yi+jk F YN—jh—it1) + Yir(n_1)k/2, if 1 is odd,

Let us assume an indicator variable, given by

1, if unit y;;, is in the sample;
0, otherwise.

If we assume that the BSST; and M SST; are fixed but unknown constants, then

k

_ 1
E(yMBSS) =E % z_; Ii(BSSTi)
1 &
= — Y E(I)BSST;
nm izl

1 i m m Y. _
‘;(k)BSSTi‘mZBSSTZ‘“Y

nm <
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and

1 k
— > L(MSST,)

nm «
=1

E(?I\/IMSS) =E

1 k
= Z E(I;)MSST;
=1

nm -

1 K m m K Y. —
:WZ;(k)MSSTi:W;MSSﬂ:nk:Y,

since we are selecting m samples from the k possible samples, using SRS.

Proof of Theorem T7: The single-start sample means (BSST;/n and MSST;/n, for
i =1,...,k) can now be viewed as population units. Remembering that SRS involves the
random selection of n sampling units from N possible sampling units, the variance of the
sample mean T, is given by (1.5). Thus, by replacing y,, N and n in (1.5) by BSST;/n
(or MSST;/n), k and m respectively, we obtain the variances of 9,555 and ¥y, ,,55, Which

are respectively written as

_ S2 k—m
V(Wupss) = f;s (k‘) ) (27)
and
_ S2 k—m
V(yMMss) = Z;S (k‘) ) (28)

where SZo = 1 (BSST;/n—Y)?/(k — 1) and S2 5 = 31 (MSSTi/n—Y)?/(k - 1),
such that the replacement of y, and N in Y = Zévzl yq/N, by BSST;/n (or MSST;/n)
and k respectively, results in Y% | BSST;/nk = Y.F | MSST;/nk =Y.

Now, if we compare V(Jpss) and V(Guss) t0 V(Typss) and V(Tyss), respectively,
then it is clear that we need to show that > ;' (BSSTy, — BSST)?/ [n*(m —1)] and
S (MSSTy, — MSST)?/ [n?(m — 1)] are unbiased estimates of Szgs and S, respec-
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tively. Using (27) and (28) as well as the property that E(I;) = m/k, we thus obtain

1 O (BSSTw
T — 1E LZ:l - yMBSS) ]

(7
(

o [ s (BSSTy — BSST)?
n?(m—1)

1 "\ (BSSTy, <\’ _ 2
= mE LZ:I - —Y> —m(yMBSS—Y)
k 2
1 BSST;, — _
T m—1 {E z;]i ( n_ Y> —mV (yMBss)}
_ 1 m(k —1)S3ss _ (k —m)Siss — g2
m—1 k k pes

and

S, (MSSTy, — MSST)?
n?(m —1)

" (MSSTy, 2
= E [Z ( i yMMSS) ]
h=

m 2
— e (Y (M) i e - T
h=1
k

MSST -\ 2
— {E ZI, ; Y)

_ mk:—l SI\Q/[SS_(k—m)SZ\Q/ISS - 52
A MSS*

—_

3

—mV (yMMss)}

3

Proof of Theorem 8: If we consider the case of n is even for MBSS and MMSS, such
that eypss = 25'162)/2(62‘4—2% + e2(j+1)kfi+1) and eynss = Z§162)/2(€i+jk + eN—jk—it1)
respectively denote the random errors associated with ith (i € {1,...,k}) balanced sys-
tematic sample and modified systematic sample, then substituting (2.1) into BSST; and

M SST; results in

(n—2)/2 Nl
BSST; = Z [2a + b(4jk + 2k + 1)] + eypss = an + bn <2> + ewnss
=0
and
(n—2)/2
N+1
MSST; = Z [2a + b(N + 1)] + exrss = an + bn (2> + ermss-

=0
Expressions for the expected MSEs of ¥,,,5s and ¥,,,,5s are obtained by taking the ex-
pectation of (27) and (28), before substituting BSST;, MSST; and Y into the relevant
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expressions, given by

BSST;  \°
MMBSS = Z 5( )

k
=1

.

25{ <N+1> +6MSSS - <a+b(N2+1) +e>r

k
=1

.

b e? 2e e
= Z £ MBss _ Z%uBss€ | 52 (29)
n

.
—

and
(k—m) <~ .(MSST, —\>
Myrarss = W;S( - —Y)

k 2

_ M N+1 erMMSS b(N+1) _

= mk (k- 1);5 atb{ )T, Gt te
k =

_ M €xrarss _ 2eyusse | =2

~ mk(k —1) D€ n2 n e (30)

=1

Now, since there are n terms in ey pss and ey g5 as well as IV terms in e, it follows that

_ 1 ”I”LO'Q
€ (61%1355) = ngza & (eMBssé) = —&leusss(er + ... +en)] = —,
N N
_ 1 ’I’LO’2
& (GI%HVISS) = ”‘727 & (eMMSSé) = —Eleymss(er + ... +en)] = —,
N N
=2 1 N o2
EF) = [ Y e | %
q=1 z=1 q#=z

Remembering that k& = Im, we then substitute these relevant expressions into (29) and

(30) to obtain

(k—m) <~ [(0® 202 o2\ (k—-m)o® (I—1)o?
MMBSS:Tnk(k—l)Z<_+>: = :Ulz

and

(k—m) <
MMMSS = m Z
i=1

Similarly, we can use the above method for the case of n being odd and thus conclude the

proof.

Proof of Theorem 10: If we compare (3.15) to (3.16), then it is clear that we need to

show that > | (Tjs, — T)Z /[n?(m —1)] is an unbiased estimate of SZ, in order to prove
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the theorem. Using (3.15) and the property that E(I;) = m/k, we thus obtain

m . 7\ 2 m . 2
>ohey (Tjin = T) 1 Tjin
E = = E _
n2(m — 1) m—1 hzl n Yvupuss
1 (T ) _ >\ 2
= HE Z ( n - Y) -—m (Z/MBMSS - Y)
h=1
k . 2
1 Tji < _
- m—1 {E Z I < n Y) —mV (yMBMSS)}
=1
_ 1 m(k —1)52 (k- m)S2, _ g2
m— 1 k k r

Proof of Theorem 11: An estimate of Y with random starts ik, for h = 1,...,m and

ih € {1,...,k}, can be written as

m n—1
?MBMSSEC = nm (Al Z Yz1h + Z Z Yaih + /\2 Z ya:nh) (31)

h=1 i=2
where A1 and A9 are the respective weights applied to the first and last sampling units of
each selected sample and x1h,...,xnh are the indices belonging to the selected balanced
modified systematic samples, which is arranged in ascending order. Substituting model

(2.12) into (31) and then equating this expression to Y g = a + b(IN + 1)/2 results in

m m n—1 m
1
YnipmssEC = m [)\1 g a+ bxlh) + E E a + bxih) + X\o E (a + bxnh)]
h=1 h=1 =2 h=1

=a+b@g“w. (32)

By equating the coefficients of a in (32), it follows that
AL =2 o (33)

Similarly, by equating the coefficients of b in (32), we obtain

m n—1

2)\12m1h+222mh+2/\22xnh—nm (N +1). (34)

h=1 =2
Substituting (33) into (34) results in

m n—1

4Zx1h 2A22$1h+222x1h+2/\22xnh—nm (N +1),

h=1 i=2
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which simplifies to
—25"0 xlh
o= D=2 mlh (35)
> neq(xnh — x1h)

where Q@ = nm(N +1)/2 ->", Z(n 2 zih. The weight applied to the first sampling

units is thus obtained by substituting (35) into (33), such that

2> anh —Q
Zzl:l(;nh —zlh)’ (36)

On substituting (35) and (36) into (31) we obtain

Ay =

(n—1)

Yxih

(2Zh 1 xnh — Q)Zh 1 Yz1h i

YuBrmssec = o ZhZI(xnh —zlh) + 2
(Q =23 42, x1h) 3730 | Yanh
Y opey(xnh — x1h)

_ 7 (znh — x1h) "
= Yypmss T [Zh_l(m Z Yxih — yacnh
nmy ;- (znh — x1h) —

1 =2

+

(37)

where Ny, parss = O peeq Ylh T 9 oneq Z(n b Yzih + D pq Yznh- Now, if we consider Case
(B), then x1h = ih, xnh = N + ih — k and

m n—1

N 1)
Q: + Zszh
h=1 1=2
m [ (n—=2)/4 (n—6)/4
- (NH = Z (N+2ih—k)+ S (N +k—2ih+2)
h=1 j=0
N +1) m2N 1)(
:(2+ +4 (N +1)
h=1

Substituting these values into (37) results in

_ s [ (N — k + 2ih) — m(N +1)]
Yupmssec = Yupuss T i 221:1 (N — k‘ hZ::l Yz1h — yamh

_3 n VYo, (Yin — YN+in—k)
IMBMSS nm2(N — k)

Similarly, we can find values of x1h,znh and @ for Cases (C) to (E) and then substitute

these values into (37), so as to conclude the proof.

Proof of Theorem 14: If we consider Cases E and F, then an estimate of Y| with
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random start k1, where k1 € {1, ..., k}, can be written as

L1
U = P1Yk1 + Ykl (n—r—1)k/2
(n—r—3)/2

+ Z (k145 + Yn—r)k—jh—k141) + P2Y(n—r)h—k141 | » (38)
=

where ¢ and ¢9 are the weights applied to the first and last sampling units of sgq,

respectively. If we consider model (2.12), then

(n—r)k
= 1 B b[(n —r)k + 1]
Yl_(n—r)k Zqzl Yo =t 2
and
N
— 1 b[(n —r)k+ N + 1]
Yy = E = .
2T rk+ 1) Ya = 2
g=(n—r)k+1

By substituting model (2.12) into (38) and equating this result to Y, we obtain
(n—r—3)/2

$r(a+bkl)+ DY {2a+b[(n—rk+1}+a+b|kl+
j=1

(n—r—1k
2

b(n—r)[(n—r)k+ 1]'

+¢a{a+b[(n—r)k—kl+1]} =(n—7r)a+ 5 (39)
If we equate the coefficients of a in (39), then
61 =2 — éo. (40)
Similarly, by equating the coefficients of b in (39), we obtain
201kl —2(n —r)k — 3+ 2kl — k + 2¢2[(n — )k — k1 4+ 1] = 0. (41)
Substituting (40) into (41) results in
by (2KL=k=1) (42)

2(n —r)k —4k1 + 2]
The weight applied to the first sampling unit is thus obtained by substituting (42) into

(40), i.c.
(2k1 — k — 1)
=1 .

pr=1+ [2(n — r)k — 4k1 + 2]

Now, by substituting (42) and (43) into (38), we get
1 (n—r—3)/2
U = o 01 + Z (yk1+jk: + y(n—r)k—jk—kl—l—l) + Ykl+(n—r—1)k/2
j=1

(43)

(2k1 —k—1)
2(n — )k — 4k1 + 2] (k1 = vn-rye—111)
(2k1 —k—1)

=Yg+ ( (ym - y(n—r)k—lc1+1) .

n—r)2(n—r)k— 4kl + 2]
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Finally, we replace this expression for 7, in (4.6), such that

_ _ k(2kl1 —k—1)
Yrmssec = Yrmss T N[2(n — 1)k — 4k1 + 2] (ykl - y(n—r)k’—kl-‘rl) .

Note that estimator 7 need not be adjusted, since 75 = Y2 for Cases E and F. Similarly,
we can use the above method for Cases D and G to conclude the proof, where the only

adjusted estimator will be denoted by 7,,.
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