
Statistical Models to Analyse
a Baseline Survey on Rural

KwaZulu-Natal Adults’ HIV
Prevalence and Associated

Risk Factors

The financial assistance of the National Research Foundation (NRF) towards this research

is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the

author and not necessarily to be attributed to the NRF.

Kameshan Moodley

December, 2020



Statistical Models to Analyse a Baseline Survey
on Rural KwaZulu-Natal Adults’ HIV Prevalence

and Associated Risk Factors

by

Kameshan Moodley

A thesis submitted to the

University of KwaZulu-Natal

in fulfilment of the requirements for the degree

of

MASTER OF SCIENCE

in

STATISTICS

Thesis Supervisor: Professor T.T. Zewotir

Thesis Co-supervisor: Ms. D.J. Roberts

UNIVERSITY OF KWAZULU-NATAL

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

WESTVILLE CAMPUS, DURBAN, SOUTH AFRICA



Declaration - Plagiarism

I, Kameshan Moodley, declare that

1. The research reported in this thesis, except where otherwise indicated, is my
original research.

2. This thesis has not been submitted for any degree or examination at any other
university.

3. This thesis does not contain other persons’ data, pictures, graphs or other in-
formation, unless specifically acknowlegded as being sourced from other per-
sons.

4. This thesis does not contain other persons’ writing, unless specifically acknowl-
edged as being sourced from other researchers. Where other written sources
have been quoted, then

(a) their words have been re-written but the general information attributed
to them has been referenced, or

(b) where their exact words have been used, then their writing has been
placed in italics and referenced.

5. This thesis does not contain text, graphics or tables copied and pasted from
the internet, unless specifically acknowledged, and the source being detailed
in the thesis and in the reference sections.

Kameshan Moodley (Student) Date

Professor T.T. Zewotir (Supervisor) Date

Ms. D.J. Roberts (Co-supervisor) Date



Disclaimer

This document describes work undertaken as a Masters programme of study at the
University of KwaZulu-Natal (UKZN). All views and opinions expressed therein
remain the sole responsibility of the author, and do not necessarily represent those
of the institution.



Abstract

South Africa is at the global epicentre of the HIV-AIDS pandemic. Though there

has been an increase in prevention and control measures that has led to a signifi-

cant reduction in HIV-AIDS mortality rates globally, South Africa has experienced

a high share of the HIV burden. HIV-AIDS imposes a substantial economic burden

on both individuals and governments. It has had a considerable effect on poverty

by affecting potentially economically active citizens who would otherwise have en-

tered the workforce and contributed to the local and national economy. This has

hindered economic growth and development in South Africa. The 2016 UNAIDS

Gap Report estimates that in 2015 there were seven million people living with HIV

in South Africa and that this resulted in 180,000 AIDS related deaths in the same

year. The same year saw an unprecedented 380,000 new reported infections. The

prevalence of HIV-AIDS in South Africa remains high at 19.2% among the general

population. This study was an investigation into the determinants of HIV in adults

in the age group 15-49 years. The study used the HIV Incidence Provincial Surveil-

lance System (HIPSS) to collect data between June 2014 and June 2015. The final data

set comprised 9,804 observations and consisted of explanatory variables pertaining

to individuals’ socio-economic, socio-demographic and behavioural circumstances.

The response variable was binary indicating whether a participant tested positive or

negative for HIV. Incorporating survey weights into the data owing to the complex

sample design, necessitated the use multilevel regression procedures. To this end,

survey logistic regression and the generalised linear mixed models were employed.

The results emanating from these models revealed that factors encompassing socio-
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economic, demographic and selected behavioural characteristics were significantly

associated with HIV prevalence in the study location. In some instances, it is possi-

ble that households in close proximity exhibit some similarities with the inevitable

result of spatial autocorrelation requiring the use of geographically weighted re-

gression techniques able to account for spatial autocorrelation. The application of

a spatial multilevel model showed that the influence between households in close

proximity is greater than between those further away, a phenomenon that would be

ignored in conventional multilevel models.
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Chapter 1

Introduction

1.1 Background

Commencing in the early 1980s the world has been gripped by the unfolding AIDS

pandemic of which South Africa has borne the heaviest share. This makes South

Africa an epicentre; an all-important site to examine HIV over the individual’s lifes-

pan (Houle et al., 2018). According to Statistics South Africa (2020), approximately

13%, nearly eight million South Africans, were living with HIV-AIDS in 2019. Of

particular concern are individuals aged 15-49 years. Statistics South Africa (2020)

estimates that these individuals constitute 18.7% of the total population of people

living with HIV (PLWHIV) in South Africa. However, while they constitute the ma-

jority of HIV positive individuals, Rosenberg et al. (2017) found that advancing age

increases the risk of HIV infection. A further area of noticeable HIV infection and

incidence is among females in South Africa and sub-Saharan Africa at large; the

statistics are usually observed to be gendered as noted by Gregson & Garnett (2000),

Glynn et al. (2001) and MacPhail et al. (2002).

A prominent feature of early research into HIV-AIDS was that most research focused

on understanding the clinical aspects surrounding HIV-AIDS infection. While soci-

ety has benefited from the cornucopia of research produced in this regard, there

1



1.1. Background

has been a growing need to understand HIV-AIDS infection rates among popu-

lations from a socio-economic, socio-demographic and psycho-social perspective.

This is supported by evidence from a study conducted by Probst et al. (2016) which

shows that the HIV mortality rate among people living in low socio-economic con-

ditions exceeded the rate of people in higher socio-economic conditions by more

than half. This can in part be attributed to the high economic and financial bur-

dens placed on households by medical expenditures required for an HIV-AIDS-

symptomatic patient, which Steinberg et al. (2002) found accounts for more than

a third of monthly income. This gives impetus to the assertion by (Fenton, 2004, p. 2)

that ”reducing poverty will be at the core of a long term sustainable solution to HIV-AIDS.”

An intrinsic driver of socio-economic inequality is unequal access to education pri-

marily affecting those of lower socio-economic status. It thus stands to reason that

advancing academically is vital in maintaining a low risk of HIV infection which,

Bärnighausen et al. (2007) describes as a protective effect. This is evidenced by a

7% reduction in HIV incidence attributed to an additional year of formal education

in KwaZulu-Natal. This was a departure from the findings of Hargreaves & Glynn

(2002) in which the link between advanced academic attainment and HIV preven-

tion was acknowledged, although the study stopped short of agreeing that this was

a universal occurrence. The study appeared to agree with, though with qualifica-

tion, the findings of Pettifor et al. (2005) which, without deference to academic qual-

ifications concluded that this was true among young adults. Furthermore, while

Bärnighausen et al. (2007) acknowledges the role of educational attainment in re-

ducing the risk of HIV infection, there is little support for the sentiments of Fenton

(2004) regarding poverty reduction and its link with HIV incidence reduction.

Socio-economic status, while still a main driver of HIV infection, does not contribute

independently to the risk of HIV infection. Studies sometimes theorise that be-

havioural and cognitive factors are deterministic in HIV infection. These factors

2



1.1. Background

extend, but are not limited to perception of HIV infection, the use of contraceptions

to prevent HIV infection, knowledge of HIV transmission and prevention, and es-

pousal of HIV stigma. Simbayi et al. (2019) found no gender disparity in knowledge

about HIV transmission but recognise that younger individuals are more cognisant

of HIV transmission than their older counterparts. In addition, among individuals

surveyed there was almost unanimous rejection of HIV stigma harboured against

HIV positive persons. Furthermore, although there is evidence of an upscale in

knowledge acquisition among high-risk groups, Simbayi et al. (2019) note that this

was not commensurate with the level of accurate knowledge that people should pos-

sess.

What is striking though unsurprising, is that like socio-economic status, behavioural

and cognitive factors are seemingly not seen to exist independently. Booysen (2004)

concludes that risky sexual behaviour is gendered but with a dual caveat. The study

observed that females in the higher socio-economic echelons usually reject the use of

condoms while women who in lower socio-economic conditions also reject the use

of condoms but because of a lack of knowledge. This shows the clear link in the ex-

tremities between socio-economic status, lack of education, risky sexual behaviour,

and their significance in predicting HIV infection. Sexually transmitted infections

can in some ways be a consequence of risky sexual behaviour. Sexually transmitted

infections and HIV incidence share a complex and bi-directional relationship accord-

ing to Kharsany et al. (2020) in which the high association between an STI diagnosis

and HIV prevalence is delineated. The intense burden that this clinical diagnosis

places on a public healthcare system leads the authors to advocate the stated goals

of the United Nations Programme on HIV/AIDS (2017) that HIV prevention pro-

gramms incorporate early diagnosis and treatment of STIs in an effort to subvert the

spread of HIV. These sentiments were also mooted by (Galvani et al., 2018).

Perceived susceptibility to HIV infection attempts to gauge respondents on how

much at risk of infection they believe themselves to be. The perception of HIV risk

3



1.2. HIV Incidence Provincial Surveillance System (HIPSS)

often determines an individual’s conduct in relation to HIV prevention. Manjengwa

et al. (2019) found that, inter alia, a low perceived susceptibility leads to eschewing

contraception; a finding that is in accord with the results of Muchiri et al. (2017). In

addition, Manjengwa et al. (2019) found that eschewing contraception as a result of a

low perception to the risk of HIV infection could largely be attributed to individuals

who seek to avoid the stigma attached to HIV infection.

1.2 HIV Incidence Provincial Surveillance System (HIPSS)

The results presented herein arise from an analysis of the data from the HIV Inci-

dence Provincial Surveillance System (HIPSS) investigation. An HIPSS study was

conducted in two sub-districts of Vulindlela and Greater Edendale in the uMgun-

gundlovu municipality of the KwaZulu-Natal Province in South Africa.

The stated purpose of the HIPSS study was to initiate population-level HIV inci-

dence in cohorts in these two sub-districts to examine HIV incidence in conjunction

with the upscaling of prevention efforts implemented in a ”real-world”, non-trial

setting. Two sequential cross-sectional surveys, conducted one year apart and com-

prising approximately 10,000 participants, consisting of both male and female par-

ticipants, were selected at random in the age group 15-49 years.

This study focuses on the baseline data of the HIPSS study in which participants

were surveyed between June 11, 2014 and June 22, 2015. Measurements that inform

the baseline survey were collected by means of structured questionnaires and bio-

logical specimens. In addition 6,400 HIV uninfected participants in the 15-35 year

age bracket were selected from a representative sample of households for a longitu-

dinal follow-up study conducted twelve months after the first assessment for HIV

infection. This was done to measure HIV incidence at the population level. The

HIPSS study made further provision for the evaluation of laboratory tests of recent

infections (TRIs) using a recent infection testing algorithm (RITA).

4



1.3. The Study Setting

1.3 The Study Setting

The uMgungundlovu District Municipality is a conurbation located in the central

region of the KwaZulu-Natal (KZN) Province of the Republic of South Africa (Fig-

ure 1.1). The Municipality comprises a mixture of urban and rural areas, from

small towns such as Mooi River, Richmond and Impendle to much larger urban

metropolises such as Howick and Pietermaritzburg. The latter serves as the provin-

cial capital. The uMgungundlovu District Municipality encompasses a diverse range

of human settlements ranging from traditional homesteads and farmlands to infor-

mal settlements coupled with a mix of urban and rural dwellings (Kharsany et al.,

2015).

The uMgungundlovu Health District was selected as pilot district for the National

Health Insurance (NHI) and consists of forty-six fixed clinics, seventeen mobile clin-

ics, and one state-aided clinic. These healthcare facilities cater to 1,052,730 residents

which is approximately 10% of the population of KwaZulu-Natal. A strengthened

healthcare system is considered vital in uMgungundlovu where in 2016, a fifth of

the population were HIV positive (uMgungundlovu District Municipality, 2020).

Along with the eThekwini Metropolitan Municipality where the HIV prevalence was

16.8%, these two districts were among those with the highest prevalence in South

Africa (George et al., 2020).

The uMgungundlovu District Municipality endures extreme climatic conditions where

flooding, storms, droughts, heatwaves and land fires are common occurrences. These

climatic extremities are attributed to the impact of climate change in the area and dis-

proportionately affects the destitute and vulnerable population. In recent years these

conditions have shown no sign of subsiding as the Municipality, which lies inland in

KZN, has seen a rise in temperatures which has delayed summer rains thus result-

ing in flash flooding. Dry weather conditions also have an adverse effect on local

agriculture thus impacting on local farmers (uMgungundlovu District Municipality,

2020).
5



1.3. The Study Setting

An HIV Incidence Provincial Surveillance System (HIPSS), as already mentioned,

was established in two sub-districts of the uMgungundlovu District Municipality,

namely the Vulindlela and Greater Edendale sub-districts. Vulindlela is a chiefly

rural area situated within the uMsunduzi and uMgeni municipal boundaries. The

majority of the land is tribal, held in trust by traditional authorities, and ruled by lo-

cal chieftains while the remaining land is governed by directly elected local councils.

The population of Vulindlela exceeds 150,000 residents who communicate primarily

in isiZulu.

The second sub-district under study is the Greater Edendale area which is the centre

of economic activity in the uMgungundlovu municipality and is situated south-west

of the uMsunduzi city centre. A dual carriage-way, which links the uMsunduzi mu-

nicipality with Greater Edendale and other areas, facilitates the movement of goods

and services - providing a channel for investment and growth in the area. Similarly,

the Greater Edendale location consists of two constituent areas which are in part

traditionally-owned land and partly administered by the KZN provincial govern-

ment and the South African government. The Greater Edendale area has a popu-

lation of 210,000 which is roughly 36% of the city’s population residing in densely

developed areas which comprise both formal and informal housing.

In the Vulindlela and Greater Edendale sub-districts there are seven and nine pri-

mary healthcare facilities (PHF) respectively. In these PHFs trained healthcare pro-

fessionals provide a wide array of primary health care services such as family plan-

ning, voluntary HIV counselling and testing, treatment of sexually transmitted dis-

eases, antenatal care, treatment of opportunistic infections, and other minor ail-

ments. First responders are employed to link these PHFs with regional referral hos-

pitals which provide tertiary care to patients. Grey’s and Edendale hospitals are the

primary referral hospitals for these PHFs as they are able to provide more compre-

hensive care.
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1.4. Sampling Procedure and Data Collection Methods

Figure 1.1: Map of the uMgungundlovu District in the KwaZulu-Natal Province of The Re-
public of South Africa (uMgungundlovu District Municipality, 2020)

1.4 Sampling Procedure and Data Collection Methods

The two sub-districts, Vulindlela and Greater Edendale, served as the strata while

the enumeration area (EA) was the primary sampling unit. The secondary and ter-

tiary sampling units were the household and the eligible individual respectively.

The Vulindlela and Greater Edendale areas comprise a total of 591 enumeration ar-

eas of which 221 were selected. Using systematic sampling and following a serpen-

tine pattern, 50 households were selected in each enumeration area.

Once a household was selected, the study staff, using a global positioning system

(GPS) receiver, recorded the geographical coordinates of the household. This pro-
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1.4. Sampling Procedure and Data Collection Methods

cedure continued until the stopping criteria of the requisite number of households

were selected such that approximately 10,000 individuals were selected. For a house-

hold that could not be selected owing to residents being absent for a protracted time,

or refusal to participate or the household was abandoned, the household to the right

of the main entrance was selected. In each selected household, one individual was

selected provided they fulfilled the age eligibility criterion.

1.4.1 Data Collection

In a selected household, the household head or a resident designated as such, was

identified and presented with relevant information pertaining to the study after

which verbal consent was sought. On completion of all the household procedures

and enumeration of household members, a personal digital assistant (PDA) ran-

domly selected a household resident in the 15-49 year age group irrespective of gen-

der. Informed consent was sought from the participants who were selected and who

were 18 years and older while participants aged 15 - <18 were required to provide

assent plus parental consent. In the absence of a parent, consent was sought from an

in loco parentis as per the Children’s Amendment Act of South Africa (2007). Within

the household, two questionnaires were administered; a household questionnaire

and an individual questionnaire. The information collected in each questionnaire is

detailed below.

1.4.2 Household Questionnaire

Field workers administered a structured questionnaire to the head or designated

head of the household. These questionnaires collected information pertaining to the

household socio-economic circumstance, access to reliable water supply, electricity

and sanitation facilities. In addition, the household head was questioned about the

household income, household food security and residential access to health service.

In addition, socio-demographic information such as age, gender, highest level of

education, employment status and access to social support grants was obtained from

each household member.
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1.4.3 Individual Questionnaire

For information pertaining to the individual, confidentiality was strictly maintained

and no personal information was made known. Each participant was assigned a

unique number which linked their questionnaires and biological samples. The ques-

tionnaire administered obtained a range of socio-demographic and clinical informa-

tion such as age, sex, marital status, employment and educational status; psycho-

social information including knowledge of HIV transmission and infection and mo-

tivational issues, social norms related to sexual risk behaviours; behavioural infor-

mation including number of sex partners, condom use, knowledge of HIV status of

own and sex partner(s), questions about HIV testing history including date of last

HIV test, HIV results, current HIV treatment and medical male circumcision (MMC)

status.

1.5 Ethical Considerations

The study protocol, informed consent and data collection forms were reviewed and

approved by the University of KwaZulu-Natal (UKZN) Biomedical Research Ethics

Committee (BF269/13), the Associate Director of Science of the Center for Global

Health (CGH) at the United States Centers for Disease Control and Prevention (CDC)

in Atlanta, and the Department of Health in the Province of KwaZulu-Natal (HRKM

08/14).

1.6 Thesis Objectives

This study aimed at producing a concise set of statistical models to effect under-

standing of HIV prevalence, particularly in a high risk area of KwaZulu-Natal (KZN).

The specific objectives of this dissertation were to:

• investigate the prevalence of HIV in adults in a high risk area of the KwaZulu-

Natal Province, and
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• investigate the associated risk factors of HIV in adults in a high risk area of the

KwaZulu-Natal Province.

1.7 Thesis Structure

Chapter 1 provides an introduction to the thesis and describes the preliminary con-

siderations and ethical procedures governing the collection of data. Chapter 2 details

the variables of interest and conducts data explorations to infer the intricate relation-

ships of and between the variables under study.

This is followed by a process of statistical analysis in Chapter 3 to model the par-

ticipants’ HIV status. The method employed is a survey logistic regression model,

which accommodates a binary response variable in the presence of sampling weights

implemented as a consequence of multistage sampling. Chapter 4 offers a gener-

alised linear mixed model to explore the addition of a random component based on

a partition of the data set according to clusters, arguing that households within the

same cluster exhibit similarities.

In Chapter 5 a spatially weighted generalised linear mixed model is applied to ac-

count for spatial autocorrelation. An a priori consideration is to detect the presence

of spatial autocorrelation before accounting for the covariance structure in the gen-

eralised linear mixed model. Chapter 6, concludes the thesis by reflecting on the

results obtained and makes recommendations for future studies.
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Chapter 2

Weighted Exploratory Data

Analysis

The importance of exploratory data analysis cannot be underestimated in the realm

of statistical analysis. Exploratory data analysis is a well-established statistical tradi-

tion that provides valuable insight using computational tools allowing researchers

to discover patterns which aid hypothesis development and refinement (Behrens,

1997). The development of efficient, widely available and user-friendly statistical

software has increased the visibility of exploratory data analysis thus complement-

ing confirmatory data analysis.

Jean-Paul Benzécri, a French statistician and linguist whose work in correspondence

analysis is discussed in this chapter, was a noted scholar in one of two schools that

Husson et al. (2016) call the French school of thought, the other being the Dutch

school. Benzécri, according to (Husson et al., 2016, p. 1) advocated ”letting the data speak

for itself” and promulgated the idea of exploratory data analysis:

”The model must follow the data, not the other way around . . . What we need is

a rigorous method which extracts structures from the data.”

A popular way of collecting data in the field of public healthcare is via public health
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2.1. Variables of Interest

surveillance systems. The Centers for Disease Control & Prevention (2014) define a

public health surveillance system as an ongoing and systematic collection, analysis

and interpretation of health related data essential to planning, implementation and

evaluation of public health practice. A prominent application of surveillance sys-

tems is in the field of HIV research. Buthelezi et al. (2016) state that HIV surveillance

systems is a public health initiative that allows for the understanding of transmis-

sion patterns, gives proper direction of financial resources to vulnerable geospatial

locations, and can predict and identify future infection rates.

Thus, one cannot detract from the important role that accurate and reliable infor-

mation disseminated from survey data can play in the implementation of targeted

intervention programmes. Exploratory data analysis assists in inferring the intricate

relationships that exist in a large population from those observed in a small sample;

a useful precursor to statistical modeling.

This chapter presents an overview of the variables of interest as well as how some

of the variables were created using the available data. In addition, the results of the

exploratory data analysis and correspondence analysis are presented. The variables

used in the exploratory data analysis was weighted to account for the sampling de-

sign in which a multistage sampling technique was used to obtain the data, resulting

in an unequal probability of selection.

2.1 Variables of Interest

The response variable is binary indicating whether or not a participant aged between

15-49 years tested positive or negative for HIV. The explanatory variables comprise

a range of socio-economic, socio-demographic, behavioural and cognitive variables,

as shown below:

1. Household deprivation
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2.2. Baseline Household Deprivation Formation

2. Gender

3. Highest level of education

4. Marital status

5. Knowledge of prevention

6. Perceived risk of HIV

7. Engaged in sexual intercourse

8. HIV stigma

9. Used contraception

10. HIV Information acquisition

11. Diagnosed with STI

2.2 Baseline Household Deprivation Formation

The household index of multiple deprivation (IoMD) is a measure of relative depri-

vation that encompasses a range of an individual’s living standards. Poverty and

deprivation are sometimes conflated; however, there is a distinct difference between

these two concepts. People are considered to be living in poverty if they lack the

financial resources to meet their needs whereas deprivation is considered the lack of

any resource, not only income. Indices of multiple deprivation can be used to gauge

the distribution of deprivation within the study location thereby providing a relative

measure of the socio-economic standing of the study participants.

A household’s basic requirements will grow with increasing household composi-

tion. However, owing to economies of scale, such growth is not always proportional

(OECD, 1998). In this respect, the use of equivalence scales have become common-

place in assessing a household’s needs alongside changing household size. Whilst
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2.2. Baseline Household Deprivation Formation

a wide variety of equivalence scales have been in use, EUROSTAT, the statistics au-

thority of the European Union (EU) has adopted the Organisation for Economic Co-

operation and Development’s (OECD) modified equivalence scale first proposed by

Hagenaars et al. (1994).

In conjunction with the OECD modified equivalence scale, the indices of multiple

deprivation as discussed in Noble et al. (2006) is adapted in this study to inform

the baseline household exploratory data analysis. These indices, which form part of

larger domains, are considered to be important in identifying areas of deprivation

in a location specific manner. In this respect, the Guttmann scale, a method of cu-

mulative scoring proposed by Guttman (1944), is employed in which responses are

coded as one (”1”) for an affirmative response and zero (”0”) for a non-affirmative

response. The formation of these indices are detailed below, and Table 2.1 shows the

method of scoring used to assess the scale of deprivation.

2.2.1 Formation of the Domain and Indices

Income and Material Deprivation

The OECD modified equivalence scale is determined by the household member’s

age and overall household composition. The OECD equivalence scale assigns a

value of one to the head of the household and a value of 0.5 to each adult mem-

ber. A value of 0.3 is assigned to each member younger than fourteen years of age in

the household. Once each member is designated their appropriate value, the sum of

the scores is multiplied against the total household income adjusted for inflation to

obtain the OECD modified level of income which reflects what the total household

income ought to be in relation to household size.

Adjusting household income for inflation accounts for the prevailing economic trends

since the engagement of the respondent. The process of adjusting for inflation in-

volved multiplying household income by an inflation factor which was the ratio of
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2.2. Baseline Household Deprivation Formation

the average rural consumer price index (CPI) for the period June 2014 to July 2015 to

the average CPI for January 2020 to June 2020. The equation to adjust for inflation, as

adapted from the United States Census Bureau (2020), can be presented as follows:

Adjusted Income = Income2014/2015 ×
CPI2019/2020

CPI2014/2015

(2.1)

A household was deemed to be income deprived if the OECD modified income level

was less than the average household income of all households in the study loca-

tion. Furthermore, in accordance with the income and material deprivation domain,

household ownership of a radio, television, fridge or freezer, and a functional motor

vehicle for private use was considered.

Living Standards Deprivation

The focal point in the formation of the living standards domain was the standard of

household infrastructure. Individuals residing in an environment lacking access to

a reliable water supply or sanitation facility, or being reliant on a primitive energy

source, were considered to reside in households deprived of adequate infrastruc-

tures for human habitation. Overcrowded households also contribute to the gradual

decline of overall household infrastructure. In this respect, households were classi-

fied as overcrowded if the household size exceeded the national average household

size of 3.3 members. Furthermore, cellular communication is deemed to contribute

to an enhanced standard of living, thus household access to a mobile cellular device

was also investigated.

Nutritional Deprivation

The Food and Agriculture Organization (1996) states that food security exists when

all people, at all times, have physical and economic access to sufficient, safe and nu-

tritious food that meets their dietary needs and preferences for an active life. Food

security rests on four pillars, namely food availability, food access, food use, and

food stability. When one of these pillars are rendered unstable or non-existent, peo-

ple may live in a state of food insecurity.
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2.2. Baseline Household Deprivation Formation

A nutritional deprivation domain was constructed to investigate the level of food

security in each household. It was investigated whether the household ever cuts the

size of meals owing to food shortage, if the household skips meals owing to food

shortage in the past year, and/or if the household eats a smaller variety of food be-

cause there is not an adequate food supply. In addition, it was investigated whether

the household engaged in subsistence farming and if the household was considered

to be below the food poverty line by comparing the bench mark household per capita

income against the food poverty line of ZAR 547.00 for the year June 2014 to June

2015 as determined by (Statistics South Africa, 2018a).

Household Financial Security

Access to financial services are vital in attaining economic sustenance. Klasen (2000)

argues that poor access to financial services limit a household’s ability to sustain

varying income streams resulting in financial risk and uncertainty. In addition, a

household will often turn to financial institutions to seek assistance in times of fi-

nancial strain and often default on the repayments. This study investigates whether

the household is indebted to a financial institution by ascertaining if the amount

owed to financial institutions exceeds the total household income. The study also

seeks to investigate whether the household had been bankrupt during the preced-

ing twelve months, if the household had savings in a financial institution, and if any

household member attended any courses on financial education.

Constructing the Deciles of Multiple Deprivation

Following the formation of the indices of multiple deprivation, a scoring method

was again applied, according to the postulates of Guttman (1944). This involved

assigning a value of either one or nil depending on the nature of the responses from

the head of the household. Once a score was allocated to each index per domain,

the scores were summed and ranked according to their deciles which in turn was

used to determine the overall scale of household deprivation. The method used to

allocate a score to the indices of the relevant household are detailed in Table 2.1.
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2.3. Baseline Household Deprivation Analysis

2.3 Baseline Household Deprivation Analysis

The HIPSS baseline study was conducted in 224 enumeration areas in the study lo-

cation enrolling 11,289 households from which one eligible resident per household

was enrolled for the study. Owing to participants refusing to participate, statisti-

cal sampling errors, and laboratory error, this number was revised down to an en-

rolled 9,812 households. As a consequence of missing data, eight observations were

deleted and analysis was conducted on 9,804 households.

Figure 2.1 shows the distribution of households within each decile of deprivation.

The majority of households in the study location are observed as either minorly or

significantly deprived; these categories comprised more than 18% of the dwellings.

There were no households observed to be moderately or majorly deprived. There

were approximately 9% of households in the study area that were observed to be

within the 10% of extremely deprived households.

Figure 2.1: Distribution of households according to their intensity of deprivation
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2.3. Baseline Household Deprivation Analysis

Focusing on each domain individually, it can be observed from Figure 2.2 that as

per the indices of multiple deprivation, the overall socio-economic conditions in the

study area may not be characterised as dire since most households across each do-

main experience low levels of household deprivation.

Figure 2.2: The proportional intensity of household deprivation within each domain

However, one cannot ignore the fact that approximately 10% of households were

reported to experience extreme levels of income and material deprivation and that

one-fifth of households within this domain were categorised as intensely deprived.

An investigation into the standard of household infrastructure and access to reliable

mobile telephone services revealed that 59.6% of households had habitable infras-

tructures capable of human habitation together with relative ease of access to reli-

able cellular communications. However, scarce cases of extreme deprivation were

also noted in this domain.
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2.3. Baseline Household Deprivation Analysis

Assessing household food security and household financial position in the nutri-

tional and financial deprivation domains, a majority of households, 53.2% and 81.4%

respectively, were observed to be within the 20% of least deprived households. Fur-

thermore, it was noticed that slightly more than 17% of households within these

domains were considered to be within the 20% of most deprived households. As

previously stated, the relative deprivation of a household is not solely determined

by the breadwinner’s earning capacity. If one is to examine the per capita income of

households prior to and post adjustment for inflation, the widening wealth gap in

the study setting becomes evident. Between July 2014 and June 2015, the average of

the poverty line threshold was ZAR 547.00 and between January 2019 and June 2020,

the average poverty line threshold was ZAR 810.00 (Statistics South Africa, 2018b).

Adjusting the per capita income for inflation as per Equation 2.1 to obtain present

day currency values and bench marking these against the poverty threshold, shows

increasing income inequality. Figure 2.4 illustrates the projected widening of the

wealth gap of households in the study location.

Figure 2.4: Illustration the projected widening of the household wealth gap.
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2.4. Baseline Individual Exploratory Data Analysis

In the year spanning June 2014 to June 2015, 5,821 or 59% of households were below

the poverty line. This is projected to increase to 7,081 which will account for 72%

of households in the year June 2019 to June 2020. Furthermore, 3,983 or 41% of

households were above the poverty line in the year June 2014 to June 2015 which

is projected to decrease in the June 2019 to June 2020 financial year to 2,723 which

constitutes 28% of households in the study location. It can thus be expected that

over a protracted period of time, the poverty level in the study area will increase. The

inevitable result of this situation is that households will become financially destitute,

and basic household commodities will be rendered unaffordable.

2.4 Baseline Individual Exploratory Data Analysis

The HIPSS baseline study comprised a total of 11,289 households subsequently en-

rolling 9,812 respondents between the ages of fifteen and forty nine years. Owing

to missing data and other statistical anomalies, eight observations were discarded

from the data. The data set used in the analysis thus comprised a total of 9,804 ob-

servations.

Figure 2.5: Observed prevalence of HIV among the study participants
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2.4. Baseline Individual Exploratory Data Analysis

Figure 2.5 above represents the observed prevalence of HIV among the study par-

ticipants. A little more than 40% of the participants were HIV positive while ap-

proximately 60% of participants were HIV negative. Table 2.3 displays the weighted

distribution of the sample variables at individual level. In respect of age demograph-

ics, more than one-fifth of the respondents were in the 20-24 year age group while

participants at or approaching midlife (40-44 and 45-49 years) accounted for a tenth

of all the respondents.

The final gender composition of the survey was 3,544 males and 6,260 females, rep-

resenting 36.1% and 63.9% of the data set respectively. Examining the highest level

of academic qualification in individuals, it was found that 43.1% of the participants

had advanced beyond primary level education but had not completed secondary

school compared with approximately 41% of the participants who graduated from

secondary school. Tertiary graduates accounted for 5.6% of all the participants.

A further consideration in this study centered around examining the participants’

knowledge of HIV prevention and acquisition of HIV information. In this respect the

participants were gauged on nine relatively well-known, self-implementing mea-

sures to contain the spread of HIV and thereby reduce incidences of HIV infection.

The participants’ prowess at obtaining clinical and preventative HIV information

from a variety of sources was also examined. We hypothesise that the more variation

there is in the source of information, the more adequately informed the participants

are of vital information pertaining to HIV.

Emphasis was also placed on investigating the prevailing social attitudes in the

study area. To this end the level of HIV stigmatisation was measured by asking re-

spondents about their perceptions of individuals living with HIV. They were, inter alia,

asked if they would maintain a friendship with an HIV positive individual, whether

HIV positive individuals ought to be ashamed of themselves, and whether they were

deserving of their predicament.
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2.4. Baseline Individual Exploratory Data Analysis

Table 2.2: Score classification of behavioural characteristics

Domain Score

Interval

Classification

Knowledge of HIV Prevention

0 - 3 Lacking Knowledge

4 - 6
Moderately

Knowledgeable

7 - 9 Highly Knowledgeable

HIV Information Acquisition

0 - 4 Lacking Information

5 - 9
Moderately Well

Informed

10 - 16 Well Informed

HIV Stigmatisation

0 No Stigma

1 Moderate Stigma

2 Mild Stigma

3 Severe Stigma

For the purpose of this study, the Guttmann scale, as detailed in Section 2.2 was em-

ployed to inform our findings. A response in the affirmative was recorded as one,

a non-affirmative response was recorded as zero, and the sum of the scores were

calculated. The scores were then classified as detailed in Table 2.2. On scoring the

qualitative data detailed in Table 2.2, it was observed that the sum of preventative

knowledge among participants was a cause for concern. It was found that there

was a large degree of dis-proportionality in this respect as a combined percentage of

50.2% of participants were deemed moderately knowledgeable and highly knowl-

edgeable of HIV preventative measures.
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This closely matched the 49.9% of participants who lacked sufficient preventative

knowledge, and further emphasised the need for knowledge and preventative in-

formation to form an integral component of targeted intervention measures. The

disproportionality observed in the knowledge domain is commensurate with that of

the participants’ prowess in obtaining HIV preventative information in that a little

more than 68% of the participants lacked adequate information pertaining to HIV

prevention whilst a negligible proportion of participants were characterised as well

informed. An overwhelming majority of participants, 81%, reported that they do

not stigmatise an HIV positive person.

The vast majority of the participants were single, having never married and never

cohabited. The HIV negative participants were observed to be largely risk averse

when questioned about their perceived risks of HIV infection. While a considerable

percentage of respondents, 84.6%, attested to having engaged in sexual intercourse

prior to participating in the study, a clear majority, though less stark, attested to

using contraceptions. In addition, 94.4% claimed not to have been diagnosed with a

sexually transmitted infection.
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Table 2.3: Distribution of the sample variables at individual level

Variable Distribution (%)

Gender

Male 36.1

Female 63.9

Age Group

15-19 16.5

20-24 21.2

25-29 17.2

30-34 13.2

35-39 11.9

40-44 10.0

45-49 10.1

Highest Level of Education

No Schooling 4.3

Primary 6.2

Incomplete Secondary 43.1

Completed Secondary 40.9

Tertiary 5.6

Knowledge of Prevention

Lacking Knowledge 49.9

Moderately Knowledgeable 30.9

Highly Knowledgeable 19.2

HIV Information Acquisition

Lacking Adequate Information 68.2

Moderately Well Informed 31.6

Well Informed 0.2

Marital status

Legally Married 8.8

Separated - Legally Married 0.2

Cohabiting 2.4

Single - Never Married or Cohabited 83.8

Divorced 0.2

Single - Live in Partner 3.8

Widowed 0.8

Continued on next page
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Continued from previous page

Variables Distribution (%)

Perceived Risk of HIV

Assured Infection 4.2

Probable Infection 21.0

Probable Non-Infection 37.0

Assured Non-Infection 15.3

Already HIV Positive 22.5

HIV Stigma

No Stigma 81.0

Mild Stigma 15.4

Moderate Stigma 3.0

Severe Stigma 0.6

Engaged in Sexual Intercourse

No 15.4

Yes 84.6

Diagnosed with an STI

No 94.4

Yes 5.6

Used Contraception

No 59.3

Yes 40.7

2.5 Exploring the Observed Prevalence of HIV

On investigating the observed prevalence of HIV across the socio-economic, socio-

demographic and behavioural factors, an accord was observed between the results

of the exploratory analyses and that of the regression analyses. Figure 2.6 depicts

the scale of HIV prevalence in participants residing in households across varying

intensities of household deprivation. One may discern from Figure 2.6 that the scale

of deprivation is not a proximate cause of HIV incidence. The reason for this obser-
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vation is that the prevalence of HIV among residents in households of deepening

deprivation is largely the same. While households that experience no form of de-

privation have relatively fewer residents who are HIV positive, the prevalence of

HIV remains largely the same as the scale of deprivation becomes more intense. Ad-

ditionally, no participants resided in households that were moderately or majorly

deprived as no households were observed to fall within these deciles. Households

characterised as extremely deprived housed the most HIV positive participants.

Figure 2.6: Observed prevalence of HIV of participants resident in household of varying
deprivation levels

An infection rate of 47.2% among female participants was observed to be approx-

imately twice that of male participants of whom 28.6% were HIV positive. As per

Figure 2.8, participants considered to be in early to middle adulthood (25-44 years

old) displayed the highest prevalence of HIV infection in their respective age groups

accounting for more than 60% in some instances.
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Figure 2.7: Observed prevalence of HIV with respect to gender.

Figure 2.8: Distribution of HIV prevalence with respect to age category.

Participants who advanced beyond primary levels of education but did not complete

secondary levels of education were observed to have the highest prevalence of HIV

at 42.6%, which reduced to 38% for participants who completed secondary school.
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Tertiary graduates were the least infected group with an observed HIV prevalence

of 26.4% as per Figure 2.9. There appeared to be no noticeable outliers in terms of

HIV prevalence when measured against a participant’s marital status as can be seen

in Figure 2.10.

Figure 2.9: Distribution of HIV prevalence with respect to highest level of education.

A majority of participants who were single (with a live-in partner), widowed, sepa-

rated but remained married, and participants who were cohabiting, were HIV pos-

itive. The observed prevalence within these respective groups exceeded 50% while

approximately 40% of participants who were HIV positive were legally married or

were single, having never married or cohabited.

Figure 2.11 depicts the observed prevalence of HIV with respect to selected behav-

ioral characteristics. The observed prevalence of HIV according to an individual’s

knowledge of HIV prevention appeared equal irrespective of the category they fall

into as per Table 2.2.
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Figure 2.10: Distribution of HIV prevalence with respect to marital status

There appeared to be no discernible decrease, only a negligible increase, in the ob-

served prevalence for individuals who were higher in terms of their knowledge

rank. In this respect, the observed prevalence across the knowledge scale stood at

approximately 40%.

In addition, the prevalence of HIV according to the participants’ espousal of HIV

stigmastisation prevalent in the study area also appeared to show no noticeable fluc-

tuations in respect of HIV prevalence according to Figure 2.12. Among participants

who did not exhibit any form of stigmatisation, the HIV prevalence was approxi-

mately 42% while the prevalence among those who had displayed severe forms of

HIV stigmatisation was 38.3%.

Likewise, when measuring the scale of information possessed by respondents, it

was noticed that the observed prevalence among those who were lacking adequate

information or were in possession of moderate levels of information was inordi-

nately high. This is in contrast to those who were well informed having been in
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possession of vast amounts of information supplementing their knowledge on HIV

transmission and infection.

Figure 2.11: Distribution of HIV prevalence with respect to selected behavioural character-
istics.

Assessing participant sexual behavioural characteristics, more than 45% of HIV pos-

itive respondents affirmed that they had engaged in sexual intercourse prior to par-

ticipating in the study while more than half of the individuals diagnosed with a

sexually transmitted infection, were HIV positive. Furthermore, a little over 47% of

individuals who attested to using a condom at their sexual debut were observed to

be HIV positive.
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Figure 2.12: Distribution of HIV prevalence with respect to selected sexual behavioural char-
acteristics.

2.6 Exploring Gender Based Characteristics

To determine if there was any gender disparity with respect to HIV prevalence, an

investigation was conducted on selected socio-demographic and behavioural char-

acteristics. The selected characteristics were participants’ age, highest level of edu-

cation, sexual behaviour and clinical characteristics. An almost symmetrical pattern

of HIV prevalence was noted; female participants displayed a higher prevalence

of HIV in young adulthood and males displayed a higher prevalence from middle

adulthood onward. Furthermore, HIV was not seemingly prevalent in adolescence

with both male and female participants displaying an observed prevalence not ex-

ceeding 5% whereas participants in the 30-34 year age band accounted for most cases

of HIV at baseline. In this age group male and female participants had an observed

prevalence of 21.2% and 19% respectively.
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Figure 2.13: Distribution of HIV prevalence by gender and age category.

An inordinately high prevalence of HIV was noted in both male and female individ-

uals who had advanced beyond primary school. However, for both male and female

participants the prevalence was higher among those who had not completed sec-

ondary school compared with participants who had not. On inspection, one would

note the level of extremity in terms of academic qualification. This is in contrast with

participants who had no formal schooling or who had not sought any further edu-

cation beyond primary school.

Furthermore, one may discern from Figure 2.14 that male and female participants

who had no formal schooling, together with tertiary graduates are among the least

infected group with respect to academic attainment with an observed prevalence

under 5%.
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Figure 2.14: Distribution of HIV prevalence by gender and highest level of education.

Males who made use of contraception were observed to have a lower prevalence of

HIV than those who did not. Male participants recorded a prevalence of more than

70% for those who eschewed the use of contraception during their first sexual en-

counter, and the prevalence decreased by more than half to 29.8% for those who did

not eschew the use of a condom. This is in contrast to female participants among

whom the prevalence increased from 46.3% for those who did not use contraception

to more than 50% for those who used contraception.

Moreover, the clinical diagnosis of sexually transmitted infection does not appear

to be linked with HIV positive diagnosis as can be seen in Figure 2.15, showing an

inordinately high prevalence among male and female participants who were not

diagnosed with HIV. Conversely, engaging in sexual intercourse appeared to be as-

sociated with HIV infection owing to the disproportionately high prevalence of HIV

in both male and female participants.
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Figure 2.15: Distribution of the prevalence of HIV by gender and sexual behaviour.

Another common method employed in the area of exploratory data analysis is that of

correspondence analysis, particularly multiple correspondence analysis. This tech-

nique allows one to explore the intricate relationships that exist between different

categorical variables under consideration. A vital factor that motivates the use of

multiple correspondence analysis is that it is able to simplify complex data into a

user- friendly contingency table while still retaining valuable information within the

data set. The following section details the theoretical considerations of correspon-

dence analysis and thereafter multiple correspondence analysis since the former is

vital in facilitating our understanding of the latter.
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2.7 Introduction to Correspondence Analysis

The foundations of correspondence analysis can be traced as far back as the early

twentieth century. De Leeuw (1983) partially credits Karl Pearson, in Pearson (1906),

for laying the foundation of correspondence analysis. De Leeuw (1983) qualifies this

by noting that Pearson (1906) did not make the link between presenting data in a

contingency table and singular value decomposition, despite Beltrami (1873), Sylvester

(1889) and Jordan (1874) studying singular value decomposition earlier than Pear-

son. Instead Pearson developed a correlation coefficient for a two-way contingency

table by employing linear regression. The origins of correspondence analysis are

thus rooted in techniques that were algebraic rather than geometric; the approach

which was subsequently taken.

Research into correspondence analysis took a quantum leap forward from the 1960s

when the geometric approach was given meaning by Jean-Paul Benzécri, a French

statistician leading a team of mathematical statisticians at the Collége de France,

who coined the French term for correspondence analysis as l’analyse des correspondence

in the spring of 1963. Later, Benzécri would go on to conceptualise the technique

of correspondence analysis further by developing aids to the interpretation and

the deployment of correspondence analysis in software programmes in his labo-

ratory at the Université Pierre-et-Marie-Curie in Paris during the last three decades

of the twentieth century. This culminated in the publication of Benzécri’s journal

Les Cahiers de l’Analyse des Données (Journal of Data Analysis) the central focus of

which was the repositioning of statistical thought in the light of computer based

statistics becoming increasingly dominant - perhaps marking the beginning of su-

pervised machine learning in mainstream statistical analysis.

Further development of correspondence analysis was carried out by a student of

Jean-Paul Benzécri, Michael Greenacre, a South African statistician who gave further

impetus to correspondence analysis resulting in its rapid expansion and use. In his
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work, Greenacre (1984) sought to transcribe the French text of Benzécri’s work mak-

ing it more accessible to English speakers hence the enduring influence of Benzécri’s

style and methodology in correspondence analysis to the present day.

The development and conceptualization of correspondence analysis has since, over

many years, contributed in leaps and bounds to societal understanding of a range

of fields encompassing medicine, economics, psychometric analysis, linguistics and

biometry to name a few; testifying to the versatility of correspondence analysis. This

is encapsulated by (Kendall, 1972, p. 194) who states:

”It is hard to think of any subject which has not made some kind of contribution

to statistical theory - agriculture, astronomy, biology and chemistry and so on

through the alphabet. The remarkable thing, perhaps, is that these lines of de-

velopment remained relatively independent for so long and only in the present

century have been seen to have a common conceptual content.”

2.8 Classical Correspondence Analysis

In this section we develop, in detail, the theoretical considerations of classical corre-

spondence analysis proposed chiefly by Greenacre (1984). Classical correspondence

analysis is sometimes termed simple correspondence analysis. However, this must

not be misconstrued as being easy to understand and implement. It simply implies

that the theory developed for it is centered around the simplest form of representing

a data set; a two-way contingency table.

The theoretical considerations of classical correspondence analysis presented in this

section precedes that of multiple correspondence analysis. Multiple correspondence

analysis extends the application of simple correspondence analysis from two-way

contingency tables to multi-way contingency tables.
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2.8.1 The Data Structure

Suppose an I × J two-way contingency table, N, wherein the (i, j)th element is de-

noted by nij for i ∈ (1, 2, ...., I) and j ∈ (1, 2, ...., J). Define the grand total of N as n

and P as the probability or correspondence matrix wherein the (i, j)th element is given

by pij =
nij
n where, as expected, the following result holds true

I∑
i=1

J∑
j=1

pij = 1 (2.2)

Define the ith row and jth column marginal or conditional probabilities respectively

as

pi· =

J∑
j=1

pij and p·j =

I∑
i=1

pij (2.3)

It thus follows that

J∑
i=1

pi· =
I∑
j=1

p·j = 1 (2.4)

These marginal values are collectively called masses where the row marginal prob-

abilities are referred to as row masses and the column marginal probabilities are re-

ferred to as column weights. Furthermore,Di andDj are defined as diagonal matrices

in which the elements are the row and column masses respectively.

2.8.2 Profiles

Suppose one wishes to measure the degree of association between two row cate-

gories, i and i′. In the event that a particular cell value has a large number of ob-

servations, then it would have a large cell probability. As such, within the realm

of correspondence analysis, one does not effect cell probabilities to measure the de-

gree of comparison. Instead, one divides each row element by its respective row

marginal value. This produces the row profile of the contingency table. Likewise, the
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construction of the column profile follows analogously. Thus, the row profile, ri·, and

the column profile, r·j, of the contingency table is given respectively as

ri· =
pij
pi·

for j ∈ (1, 2, ..., J) (2.5)

and

r·j =
pij
p·j

for i ∈ (1, 2, ..., I) (2.6)

2.8.3 Total Inertia

According to De Leeuw & Mair (2009) the concept of inertia and the implementa-

tion thereof in correspondence analysis is rooted in its conceptualisation in the field

of mechanics. The term moment of inertia, from which the term inertia is derived, is

rooted in Newtonian laws of motion where an object with a mass m and distance d

has a center of gravity relative to a certain position in space.

Despite the widespread use of the χ2 test as a measure variation from complete inde-

pendence of the contingency table, it suffers a drawback in the case of proportional-

ity. If the grand total, n, is doubled (or artificially inflated), there is a commensurate

change to the χ2 test. However, there is no change in variation between the rows

and columns. As such, correspondence analysis corrects for this anomaly by using
χ2

n as a measure of variation rather than χ2.

This ratio represents the total inertia whose constituent components comprise the

contribution of each of the axes referred to as the principle inertia. Thus, correspon-

dence analysis is deemed to produce an analysis concerned primarily with the cor-

respondence matrix P than that of the primitive matrix N. It can be shown, via an

amalgamation of the row profile and column profile, that the total inertia of the con-

tingency table is given by
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Total Inertia =
I∑
i=1

J∑
j=1

(rij − rjcj)2

rjcj
(2.7)

where cj and rj are the column and row masses respectively and are defined as

rj =
ni·
n

and cj =
n·j
n

(2.8)

2.8.4 Singular Value Decomposition

The aim of correspondence analysis is to measure the strength of association be-

tween two categories. As with many multivariate techniques, a score serves as an

indicator of this measure of association or disassociation between two categories in

the rows or columns of the contingency table. In this endeavour, one may also wish

to measure the association between rows and columns.

Correspondence analysis can be applied in such instances to a contingency table by

using the property of complete independence between the rows and columns

pij = pi·p·j for i ∈ (1, 2, ...., I) and j ∈ (1, 2, ...., J) (2.9)

Now, the condition of strict independence is not always satisfied and in order to

account for this departure from the expected norm, a generic multiplicative measure

is required in Equation 2.9, and denoted by

pij = αijpi·p·j (2.10)

where in the case of complete independence, αij = 1. Furthermore, as it is already

acknowledged that complete independence between the rows and columns cannot

always exist, one may determine instances where it does not exist by ascertaining

when αij 6= 1. This can be done by rearranging pij , which is called the Pearson ratios,

as such

αij =
pij
pi·p·j

(2.11)
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The process now proceeds to determining the scores of the rows and columns that

will ultimately act as an indicator of the strength of association between the rows

and columns. This is achieved by partitioning the Pearson ratios by a method of

singular value decomposition such that

αij =
M∗∑
m=0

aimλmbjm (2.12)

where

I∑
i=1

pi·aimaim′ =


1 m = m′,

0 m 6= m′.

(2.13)

and

J∑
j=1

p·jbjmbjm′ =


1 m = m′,

0 m 6= m′.

(2.14)

and M∗ = min(I, J)− 1

Consider the RHS of Equation 2.12, if {aiu, i = 1, 2, ...., I} is defined as the uth

left generalised vector associated with the row categories and similarly, {bjv, j = 1, 2, ...., J}

as the vth right generalised vector associated with the column categories then the gen-

eralised basic vectors may be referred to as singular vectors.

The elements of λm are real and positive and are the first M∗ singular values arranged

in descending order as

1 = λ0 ≥ λ1 ≥ ... ≥ λ∗m ≥ 0 (2.15)

and which may be calculated as

λm =
I∑
i=1

J∑
j=1

aimbjmpij (2.16)
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A consequence of the ordinal nature of the singular values is that the first value is

trivial and they have a minimum value of zero. If A and B are defined as singular

vectors with trivial solutions for the set of values {ai0} and {bj0} equal to one, then

in matrix notation, the correspondence analysis is defined as

D−1
I PD

−1
J = ADλB

′ (2.17)

where

A′DIA = I (2.18)

B′DJB = I (2.19)

where I is the identity matrix and DI and DJ are the diagonal matrices whose el-

ements comprise the row and column masses respectively. The matrix A, the left

generalised basic vector, has dimension I ×M∗ and contains the first M∗ set of row

scores while B, the right generalised basic vector, with dimension J ×M∗ contains

the first set M∗ column scores. The matrix of singular values is the diagonal matrix,

Dλ.

An alternative decomposition method is to use orthogonal polynomials instead of

singular vectors of {aim} and {bjm}. To extract the triviality referred to earlier, Equa-

tion 2.12 is rewritten as

αij = 1 +
M∗∑
m=1

aimλmbjm (2.20)

Now, using αij − 1, the Pearson contingencies, under the usual limits for i and j, and

applying a simple mathematical manipulation, Equation 2.11 becomes,

pij − pi·p·j
pi·p·j

= 1 +
M∗∑
m=1

aimλmbjm (2.21)
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2.9 The Correspondence Plot

As previously stipulated, correspondence analysis is a graphical statistical proce-

dure that is applied to contingency tables. It is thus able to visualise the association

between the rows and columns which respectively represent a particular attribute

or characteristic. There are two methods of determining the coordinates that will

be plotted to form the correspondence plot. Greenacre (1984) calls the first system

the standard coordinate, which the singular vector system as detailed in Subsection

2.8.4, and the second the classical coordinate system. The difference between these

two methods lie in their characterisation of the contribution of the principal inertia

to the total inertia. These are explained in detail below.

2.9.1 Standard Profile Coordinates

To visualise the associations between the row categories or column categories, the

singular vectors, {aim} and {bjm} are projected onto a correspondence plot. For M∗

number of dimensions, the correspondence plot is called an optimal plot where the

total inertia may be expressed in terms of the singular vector as

χ2

n
=

I∑
i=1

J∑
j=1

(pij − pi·p·j)2

pi·p·j

Squaring the binomial and extracting pi·p·j as a common factor, the following ex-

pression is derived

=

I∑
i=1

J∑
j=1

(pi·p·j)
2

(
pij
pi·p·j

− 1

)2

pı·p·j

Now, from Equation 2.21

=

I∑
i=1

J∑
j=1

pi·p·j

(
M∑
m=1

aimλmbjm

)2

=
M∑
m=1

λ2
m

(
I∑
i=1

pi·a
2
im

) J∑
j=1

p·jb
2
jm
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which simplifies, as per Equation 2.13 and Equation 2.14, to

χ2

n
=

M∗∑
m=1

λ2
m (2.22)

Hence, it follows that the total variation in the contingency table may be partitioned

into M∗ components; the principle inertia values. Furthermore, these principle iner-

tia values may be decomposed further to illustrate how a particular row or column

contributes to the principle axis.

An M -dimensional correspondence plot comprises M principle axes for M < M∗.

The x-axis is called the first principle axis while the y-axis is called the second principle

axis. These components come together to produce the correspondence plot where

the row profile {aim} is the coordinate of the Ith row category and {bjm} is the co-

ordinate of the J th column category, both of which are plotted on the mth principle

axis. This, however, does not take into consideration the strength of the contribution

of the rows and the columns as these respective axes have a unit inertia associated

with them.

2.9.2 Classic Profile Coordinates

Eschewing the use of singular vectors, define the row and column coordinates as:

fim = aimλm (2.23a)

gjm = bjmλm (2.23b)

Thus, 2.13 becomes

I∑
i=1

pi·

(
fim
λm

)(
fim′

λm′

)
=


1 m = m′,

0 m 6= m′.

(2.24)
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which by a simple algebraic manipulation may be expressed as



I∑
i=1

pi·f
2
im = λ2

m if m = m′

I∑
i=1

pi·fimf
′
im = 0 if m 6= m′

(2.25)

Similarly, 2.14 becomes,

I∑
i=1

p·j

(
gjm
λm

)(
fjm′

λm′

)
=


1 m = m′,

0 m 6= m′.

(2.26)

which, again, by a rudimentary mathematical manipulation becomes



J∑
j=1

p·jg
2
jm = λ2

m if m = m′

J∑
i=1

pi·gjmg
′
im = 0 if m 6= m′

(2.27)

Now, the system of coordinates in Equation 2.23 makes use of the singular value

method detailed in Section 2.8.4. As per Equation 2.25 and Equation 2.27 the rows

and columns have an associated unit inertia, λ2
m, associated with them. Thus, the

first principle axis with inertia of λ2
1 is considered the most important axis as λ1 is

the largest singular value.

Hence, in classical correspondence analysis, a correspondence plot containing more

than two dimensions will see the first two principle axis being more descriptive than

any other axes included. Consider the row profile and column profile coordinates

given by {fim} and {gjm} respectively. From their respective relationships to the

principle inertia, as outlined in Equation 2.25 and Equation 2.26, their contributions

to the mth principle inertia is, respectively
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λ2
m(i) = pi·f

2
im (2.28)

so that

λ2
m =

I∑
i=1

λ2
m(i) (2.29)

And, similarly for the column profile

λ2
m(j) = p·jg

2
jm (2.30)

so that

λ2
m =

J∑
j=1

λ2
m(j) (2.31)

Now, from Equation 2.22, Equation 2.29 and Equation 2.31, it follows for the row

profile that

χ2

n
=

I∑
i=1

M∑
m=1

pi·f
2
im (2.32)

and for the column profiles

χ2

n
=

J∑
j=1

M∗∑
m=1

p·jg
2
jm (2.33)

From Equation 2.32 and Equation 2.33 it can be seen that the points (or profile coor-

dinates) close to the origin are not contributory to the variation of the data. Profile

coordinates further from the origin, however, are contributory to any variation in

the data.

Alternatively, using the property of orthogonality and multiplying Equation 2.21 by

p·jbjm, the row profile and column coordinates may be respectively expressed as

fim =

J∑
j=1

pij
pi·
bjm (2.34)
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and

gjm =

I∑
i=1

pij
p·j
aim (2.35)

where Equation 2.34 and Equation 2.35 are the weighted sum of the ith row profile

and jth column profile respectively.

2.10 Distance

2.10.1 Centering of Profile Coordinates

It can be shown that the row and column profile coordinates, centered about the

centroid (origin) of the correspondence plot, is where the expected values {pi·p·j} lie.

In this, we show that

I∑
i=1

pi·fim = 0 ∀m ∈ (1, 2, ....,M∗) (2.36)

In order to prove this, consider the expression for the row profile coordinate as per

2.23a

I∑
i=1

pi·fim =
I∑
i=1

pi·aimλm

= λm

I∑
i=1

pi·aim (2.37)

= 0 (2.38)

as per Equation 2.13

Using the same deductive reasoning, it can be shown that the column profile is cen-

tered about the origin, where ∀m ∈ (1, 2, ....,M∗) the following holds true;

J∑
j=1

p·jgjm = 0 (2.39)
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2.10.2 Distance from the Origin

The distance of the ith row profile from the origin in an M∗ dimensional correspon-

dence plot is commensurate with the variation between the profile of the ith row and

the average column profile. This is illustrated below using the row profile.

The same conclusion can be drawn using the squared distance of column profile

coordinates from the origin. From the origin, the squared Euclidean distance of the

ith row profile is

dI(i, 0)2 =

J∑
j=1

1

p·j

(
pij
pi
· − p·j

)2

By the Pearson ratio in Equation 2.20

=
J∑
j=1

p·j(αij − 1)2

=
J∑
j=1

p·j

(
M∑
m=1

aimλimbim

)2

=
M∗∑
m=1

 J∑
j=1

p·jb
2
jm

 a2
imλ

2
m

This then simplifies to

d2
I(I, 0) =

M∗∑
m=1

fim (2.40)

Thus, Equation 2.32 may be expressed as

χ2

n
=

M∗∑
i=1

pi·d
2
I(I, 0) (2.41)

Hence, points further from the origin are indicative of increased deviation from the

expectation under complete independence. Points centered about the origin are not

indicative of a deviation from the hypothesis of complete independence.
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2.10.3 Within Variable Distances

In addition to computing the distance from the origin, a correspondence plot is able

to graphically represent the association between two profiles of the same variables.

Using the row profile argument, it is illustrated below that when two categorical

profiles (row or column profiles) are in close proximity in a correspondence plot,

they are deemed to be similar to those positioned at a distance. This is illustrated

below using the row profile argument.

The squared distance (Euclidean distance) between two row profiles, i and i′ in a

correspondence plot is given by

d2
I(i, i

′) =
J∑
j=1

1

p·j

(
pij
pi·
−
pi′j
pi′·

)2

(2.42)

In order to show that row categories at a distance are dissimilar, we aim to show that

the distance between two row profiles can be expressed in terms of the row profile

coordinates, fim and fi′m′ along the mth principle axis.

d2
I(i, i

′) =
J∑
j=1

1

p·j

(
pij
pi·
−
pi′j
pi′·

)2

=

J∑
j=1

p·j

(
pij
pi·
−

pi′j
pi′·p·j

)2

Now, from Equation 2.20 and Equation 2.21

=

J∑
j=1

p·j

[
M∗∑
m=0

aimλmbjm − ai′mλmbjm

]2

=
J∑
j=1

p·j

[
M∗∑
m=0

λmbjm(aim − ai′m)

]2

=

J∑
j=1

M∗∑
m=0

p·jλ
2
mb

2
jm

(
aim − ai′m

)2

=

M∗∑
m=0

 J∑
j=1

p·jb
2
jm

(λmaim − λmai′m)2
(2.43)
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For m=0, the distance between two row profiles is given by

d2
I(i, i

′) =

M∗∑
m=1

(
fim − fi′m

)2
(2.44)

Thus, the proximity between two row profiles along the mth principal axis is the

Euclidean distance given by

d2
I(m)(i, i

′) =
M∗∑
m=1

(
fim − fi′m

)2
(2.45)

Using this logic, the proximity between two column profiles as a measure of their

association, is given by

d2
J =

I∑
i=1

1

p·

(
pij
p·j
−
p′ij
p·j′

)2

=
M∗∑
m=1

(
gjm − gj′m

)2
(2.46)

Hence, it follows that researchers may use correspondence analysis to discern how

profiles within a variable relate, or more aptly, correspond to one another.

2.10.4 Interpretation of the Correspondence Plot

Inferring a correspondence plot by gauging the distance between the row and col-

umn points is considered controversial according to Roberts Jr (2000). However, it is

a generally accepted principle that a measure of similarity between categorical pro-

files is indicated by a chi-squared distance between these two points. Hence, if two

points in a correspondence plot are in close proximity they are considered to have

similar profiles, and points that are at precisely the same location have the same pro-

file. This is called the principle of distributional equivalence. Thus, if two rows have

similar profiles, their distribution is similar across columns.
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2.10. Distance

Within the scope of correspondence analysis, the rows and columns play a sym-

metric role as there is usually equal variation among their factors. Consequently,

this allows for the row factors to be derived from the column factors and vice-versa.

However, the proximity between the row points and column points, as a measure

of their association, is more complex but owing to the barycentric principle, interpre-

tation can be effected. The barycentric principle is encapsulated by (Husson et al.,

2016, p. 4), as

”A column category point is, apart from scaling factors, the centroid of obser-

vations belonging to that category and a row point is also, apart from scaling

factors, at the barycenter of the categories it belongs to.”

A barycenter refers to the average profile, and points in close proximity to the barycen-

ter are similar to their average profile, while points located away from the barycen-

ter are distinctly different from their average profile. Other terms used to describe a

barycenter are centre of gravity, centre of mass, mean vector, centroid or origin. Nishisato

(1980) argues that the barycentric principle is another way of introducing multiple

correspondence analysis known as dual scaling. The method of multiple correspon-

dence analysis is further discussed in Section 2.11.

It is therefore fairly evident to the researcher that simultaneous representation of

the row and column profile in correspondence analysis is crucial. This is because it

allows for effective comparison between the categories of qualitative variables repre-

sented in the rows and columns. In this respect, direct comparison between the row

and column profile is subject to the conclusion drawn from the transition formulae.

The transition formulae, according to Hill (1973), are equations that allow for the

computation of profile coordinates where one set of coordinates may be calculated

from the coordinates of the remaining variable.
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2.10.5 Between Variable Distance

Consider the correspondence analysis problem in Equation 2.17 with the usual con-

straints as per Equation 2.18 on the singular vectors. As a way of linking the cor-

respondence plot with the Pearson chi-squared statistics, the scores are re-scaled as

per Equation 2.23. Using Equation 2.34 and Equation 2.23b:

fimλm =

J∑
j=1

pij
pi·
bjmλm (2.47)

=
J∑
j=1

pij
pi·
gjm (2.48)

Thus, when the column profile coordinates are known, the row profile may be ob-

tained as:

fim =
1

λm

J∑
j=1

pij
pi·
gjm (2.49)

and, vice-versa, the column profile coordinates on knowing the row profile

gjm =
1

λm

I∑
i=1

pij
p·j

fim (2.50)

Thus, Equation 2.49 and Equation 2.50 are transition formulae and demonstrate how

one profile is obtained from the other. The transition formulae may be expressed in

vector form as

FDλ = DIPG (2.51)

GDλ = DJP
TF (2.52)

A consequence of a particular categorical profile being a scaled function of the other,

however, is that for a relatively large pij the column profile, gim is heavily weighted,
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2.10. Distance

directly influencing the row profile fim. For a direct comparison between each cat-

egorical profile, consider the result of Goodman (1986) in which it was proved that

instead of using the row and column profile as previously defined, it is more advan-

tageous to use

f̃im = λγmaim =
fim

λδm
g̃jm = λδmbjm =

gjm
λγm

(2.53)

for

γ + δ = 1 (2.54)

should one wish to effect a comparison between both the row and column profiles

projected onto the same correspondence plot.

There are two scenarios in which Equation 2.54 is satisfied, namely when γ = 1 and

δ = 0, in which case the row profile coordinates are as Equation 2.23a, and the col-

umn profile are projected onto the correspondence plot using their standard profiles.

In the same manner, when γ = 0 and δ = 1, the column profile is as per Equation

2.23b where the rows are plotted using their standard profiles.

Now, for a direct comparison between the ith row profile and the jth column profile:

the result of Goodman (1986) expressed in Equation 2.53 shows that from Equation

2.34 and Equation 2.35 a re-parameterised version of the row and column profiles in

Equation 2.49 and Equation 2.50 become

f̃im =
1

λm2δ

J∑
j=1

pij
pi·
g̃jm (2.55a)

g̃jm =
1

λm2γ

I∑
i=1

pij
p·j
f̃im (2.55b)

For the special case when γ = δ = 1
2 , then Equation 2.55a is Equation 2.34 and
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Equation 2.55b is Equation 2.35. The transition formulae in Equation 2.55 shows the

relationship between the row and column, due to their shared entry within a con-

tingency table, and subsequently projected onto a correspondence plot. Thus, one

infers the comparison between the row and column profile via the transition formu-

lae.

A comparison between the row and column profile for a large cell entry shared by

a column and row implies that these categorical variables will be closer to one an-

other, while the converse is true for a relatively small cell entry. In Section 2.11 we

examine a multiple correspondence analysis which is able to accommodate several

categorical variables in a higher order contingency table; in essence, multiple corre-

spondence analysis is an extension of correspondence analysis.

2.11 Multiple Correspondence Analysis

The majority of early research conducted in the area of correspondence analysis fo-

cused on classical correspondence analysis applied to two-way contingency tables

without much consideration given to higher order contingency tables. However,

beginning in the early 1940s Louis Guttmann, a mathematician and sociologist, ini-

tiated discussion in this respect by exploring the field of dual scaling, more promi-

nently referred to as optimal scaling postulating his findings in Guttman (1941). This

would later become known as multiple correspondence analysis. Henceforth, the appli-

cation of multiple correspondence analysis is conducted by transforming a contin-

gency table into an indicator matrix or a Burt matrix. The latter is applied in Section

2.14.

This section commences by detailing the initial considerations for a three-way con-

tingency table. Multiple correspondence analysis may be applied to any multi-way

contingency table. However, to avoid any unwarranted complexities, the three-way
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2.12. Multiple Correspondence Analysis - The Burt Matrix

contingency table is considered. There are brief deliberations on the application of

generalised singular value decomposition to two-way contingency tables as another

method of conducting multiple correspondence analysis. We also briefly discuss,

without mathematical rigour, the Tucker3 model by Tucker (1966), the PARAFAC

model by Harshman (1970) and the CANDECOMP model by Caroll & Chang (1970).

2.11.1 The Data Structure

For a three-way contingency table, N , which is comprised of I rows, J columns and

K tubes as per Kroonenberg (1989) or layers according to Kendall & Stuart (1979),

the total number of observations with respect to these three variables is n. WithinN ,

the (i, j, k)th entry is nijk ∀ i ∈ (1, 2, ..., I), j ∈ (1, 2, ...., J) and k ∈ (1, 2, ...,K).

Let the probability associated with the (i, j, k)th cell be defined as

pijk =
pijk
n

(2.56)

such that
I∑
i=1

J∑
j=1

K∑
k=1

pijk = 1

Furthermore, let pi·· be the marginal probability for the ith row with
I∑
i=1

pi·· = 1. In a

similar manner, let p·j· be the marginal probability of the jth column with
J∑
j=1

p·j· = 1

and p··k be the marginal probability of the kth layer where
K∑
k=1

p··k = 1.

2.12 Multiple Correspondence Analysis - The Burt Matrix

A contingency table may be represented in the form of an indicator matrix in which

the elements, nijk, are either 1 or 0. In these types of matrices, the rows represent in-

dividuals who have been categorised into the primitive contingency table while the

columns are the categorical responses into which the individual was classified. To

illustrate this point, consider the arbitrary 2× 3 contingency table below which rep-
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Table 2.4: Arbitrary two-way contingency table

Individual Column 1 Column 2 Column 3 Total

Row 1 2 2 3 7

Row 2 1 1 2 4

Total 3 3 5 11

resent the frequency of individuals classified according to arbitrary attributes repre-

sented by the rows and columns.

The corresponding indicator matrix for Table 2.4, Z, is presented in Table 2.5 and

consists of eleven rows, as there are eleven individuals and five columns; one for

each row and column.

Table 2.5: Indicator matrix of Table 2.4

Individual Row 1 Row 2 Column 1 Column 2 Column 3

1 1 0 1 0 0

2 1 0 0 0 1

3 1 0 0 1 0

4 1 0 1 0 0

5 1 0 0 0 1

6 1 0 0 1 0

7 1 0 1 0 0

8 0 1 0 0 1

9 0 1 0 0 1

10 0 1 0 0 1

11 0 1 0 1 0

Examining Table 2.5, each row in the indicator matrix has two ones and three zeros

as an indicator matrix of a multi-way (m-way) contingency table which consists of

m 1
′
s and the remaining entries are 0

′
s. Once the indicator matrix is constructed,
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2.12. Multiple Correspondence Analysis - The Burt Matrix

correspondence analysis is carried out on the two-way contingency table, N , using

the indicator matrix Z.

However, Burt (1950) states that a correspondence plot can be produced by directly

analysing the actual results obtained, by way of a contingency table in lieu of the

identity matrix. In this method of correspondence analysis, the Burt matrix, which is

a product-sum matrix, Bt is analysed. The Burt-matrix has the following form.

Bt = Z ′Z (2.57)

The product-sum matrix, according to Burt (1950) is similar to the matrix of covari-

ances between the categorical profiles, bar the fact that cell entries in Z are not stan-

dardised. For the analysis of the two-way contingency table, Equation 2.57 may be

represented by

Bt = Z ′Z

 Z ′1Z1 Z ′1Z2

Z ′2Z1 Z ′2Z2

 (2.58)

An alternative form of the Burt matrix, for a two-way contingency table is

Bt = Z ′Z

 nDI N

N ′ nDJ

 (2.59)

The elements of the off-diagonal in Equation 2.59 are sub-matrices, Z Tq and Zq, where

q 6= q′. The product of the off-diagonal, Z Tq Zq, is a two-way contingency table which

summarises the association attributes q and q′ for the n individuals.

The corresponding Burt matrix for the arbitrary data presented in Table 2.4 is, as per

Equation 2.59, given in Table 2.6. On closer examination of the Burt matrix above,

and in accordance with Greenacre (2007), it is observed that the sub-tables have the

same row margins in each set of horizontal tables and the same column margins in

each set of vertical tables.
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Table 2.6: Burt matrix for the arbitrary contingency Table in 2.4

Individual Row 1 Row 2 Column 1 Column 2 Column 3

Row 1 7 0 2 2 3

Row 2 0 4 1 1 2

Column 1 2 1 3 0 0

Column 2 2 1 0 3 0

Column 3 3 2 0 0 5

2.12.1 Total Inertia

Multiple correspondence analysis using an indicator matrix creates several binary

columns for each variable by partitioning the indicator matrix with the provision

that only one column contains the 1 values. This method of coding leads to artificial

inflation of the dimensions as one categorical variable is coded with several columns,

the direct result of which is inflation of the inertia. This in turn, deflates the principle

inertia of the first dimension, thus underestimating it.

To mitigate this two corrections are used, the first proposed by Benzécri (1979) and

the second by Greenacre (1993). The corrections proposed account for the eigenval-

ues (squared singular) that are less than 1
m , which is a consequence of the coding

that led to the aforementioned additional dimensions. The first correction is known

as Benzécri’s correction and is detailed below. If λIl is the eigenvalue of the indicator

matrix, then the corrected eigenvalues, cλIl are obtained as

λIl =



[(
m

m− 1

)(
λIl −

1
m

)]2

if λIl >
1

m

0 if λIl >
1

m

(2.60)

59



2.12. Multiple Correspondence Analysis - The Burt Matrix

Using this formula provides a better estimate for the inertia extracted by each eigen-

value. A further correction, called Greenacre’s correction, proposed by Greenacre

(1993), involves evaluating the percentage of inertia with respect to the average in-

ertia of the off-diagonal of the Burt matrix Bt.

Now, Greenacre (1984) showed that there is a link between themth singular values of

the Burt matrix and the indicator matrix, λBm and λZm respectively. Greenacre (1994)

notes that the Benzécri’s correction is quite liberal when adjusting for the quality of

fit and proposes the following relationship

λBm =
(
λZm

)2
(2.61)

There are I responses for the row categories and J responses for the column cate-

gories. If Q is defined as the total number of categories, then Q = I + J . Hence, for

Q categories, the total inertia for the diagonal sub-matrices in Table 2.6 as defined by

Greenacre (1988) is

IBt =
Q−m
m2 (2.62)

Using Greenacre’s correction and denoting the average inertia by Ī, Greenacre’s cor-

rection is

ĪBt =
m

m− 1
×

(∑
l

λ2
l −

Q−m
m2

)
(2.63)

The contribution to the percentage of inertia is obtained by the following ratio

τc =
cλ

Ī
(2.64)

where cλ are the corrected eigenvalues.
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2.12.2 Singular Value Decomposition

Previously, we discussed correspondence analysis by means of a two-way contin-

gency table and applying singular value decomposition. There are many approaches

to conducting correspondence analysis of multiple categorical data, and in this sec-

tion a generalised form of the singular value decomposition in presented.

Consider the correspondence matrix from a three-way contingency table devoid of

independence:

pijk = pi··p·j·p··k (2.65)

As with correspondence analysis, complete independence is not always guaran-

teed. Thus, as per Equation 2.11, a degree of deviation from complete independence,

called Pearson’s three-way ratio, is introduced in Equation 2.65 as follows

pijk = αijkpi··p·j·p··k (2.66)

Insofar as the restrictions on the rows, columns and layers as per Section 2.11 is up-

held, complete independence is achieved when αijk = 1.

Furthermore, this degree of deviation is quantified by

αijk =
pijk

pi··p·j ·p··k
(2.67)

It should be stated that singular value decomposition as established under two-way

contingency tables is not possible under three-way or multi-way contingency tables.

However, strides have been made in the area of generalised singular value decom-

position (GSVD) which seeks to extend two-way singular value decomposition to

accommodate three-way and multi-way contingency tables.
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To this end, Darroch (1974) proposes an additive, three-way interaction model

pijk
pi··p·j·p··k

= αij + βik + γjk (2.68)

for some {αij}, {βik}, {γjk} which measure the departure from complete indepen-

dence from a two variable independence for three variables.

There have been many attempts at conducting multiple correspondence analysis

through GSVD of a multi-way contingency table that may be employed. The first

such attempt was by Ledyard R.Tucker (1966) a psychometrician, which with or-

thogonal factors, is a three-way principal component analysis that allows for the

extraction of a different number of factors in each mode.

Other strides into the field of GSVD saw the development of the PARAFAC (PARAllel

FACtor analysis) model proposed by Harshman (1970) and Harshman & Lundy

(1984). This model is a generalisation of principle component analysis to higher

order arrays originating in psychometric analysis. The CANDECOMP (CANonical

DECOMPosition) model was another such attempt at GSVD of multi-way contin-

gency tables; it is similar to the PARAFAC model and was proposed independently

by Caroll & Chang (1970), and is applied in the area of multidimensional scaling.

2.13 Interpretation of Multiple Correspondence Analysis

Interpretation of a multiple correspondence analysis plot, as with that of correspon-

dence analysis, is contentiously based on the proximity between two points on the

correspondence plot. Further similarity is noted in the interpretation of correspon-

dence analysis and multiple correspondence analysis in that interpretation only be-

comes meaningful for points of the same set (comparison between rows with rows

and columns with columns). The complexity lies in the comparison between vari-

ables wherein two scenarios need to be taken into consideration:
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1. The proximity between the levels of different nominal variables implies that

such levels appear closer together in observations.

2. Levels of the same nominal variable do not usually occur together, hence the

proximity between levels indicate that groups of observations that share these

characteristics are similar.

As such, interpretation of the multiple correspondence analysis plot is based on

points found in the same direction from the centroid and in the same location of the

Euclidean space. However, as Greenacre (1988) and Greenacre & Hastie (1987) note,

distance as a measure of association is not a universally accepted principle in mul-

tiple correspondence analysis. The geometry of multiple correspondence analysis is

therefore not a generalisation of the geometric principles governing correspondence

analysis.

2.14 Application of Multiple Correspondence Analysis

The procedure PROC CORRESPwith the MCA option invokes the multiple correspon-

dence analysis procedure in SAS Version 9.4. Listing the variables using the TABLES

statement without delimiting each variable with a comma produces a symmetric

Burt table which is displayed in the output using the OBSERVED option. The OUTC

option creates an output coordinate data set. The inertiae are adjusted according to

Greenacre (1988) using the GREENACRE option resulting in a more realistic percent-

age of the inertia explained along each axis.

The inertia of component describes the amount of variation explained by that com-

ponent. The inertia of a column describes how much the values for a specific cat-

egory differs from the expected value on the assumption that there is no multi-

collinearity. The Greenacre adjusted inertia decomposed into fourteen components

is presented in Table 2.7. The total inertia explained by the fourteen components is

73.59%. An interesting point to note is that the total inertia of the fourteen compo-
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nents is not 1 or 100%. This is ascribed to the adjustment for inertia using Greenacre’s

correction detailed in Section 2.12.1.

Multiple correspondence analysis using the Burt matrix with an adjustment for iner-

tia is able to explain at least 62.91% of the total inertia for the fourteen components.

This may not be sufficient thus necessitating the addition of two more components;

the third and fourth components increasing the cumulative proportion of inertia to

70.70%. The interpretations effected herein are based on points that are found in the

same direction from the barycenter and in the same region of the Euclidean space.

A multiple correspondence plot projects all categories onto a Euclidean space with

the first two dimensions plotted to assess the association among categories. The first

dimension accounts for 7.668% of the variation in the data while the second dimen-

sion accounts for 5.596% of the variation. These inertiae appear low and indicate

possible instability in the individual axes. From Figure 2.16 we observe that an HIV

negative status in the lower hemisphere, is mostly associated with younger adult

participants enrolled in the study. These individuals are also observed to be less op-

timistic regarding their perceived risk of infection as most of these individuals do

not foresee themselves at an imminent risk of infection. These individuals have, in

most circumstances, attained a higher education qualification from a tertiary insti-

tution placing them in a relatively unique position to be well informed and more

knowledgeable about HIV preventative measures than most of their study counter-

parts. Furthermore, they are not observed as being involved in marital relations of

any kind and do not advocate any HIV stigma that may be perpetuated by others

within the study location. The converse is true to an extent for HIV positive individ-

uals who are observed as being associated with older participants who are involved

in marital relations, whether separated or legally married. In this respect, these in-

dividuals have a lower level of education and are associated with lacking adequate

preventative HIV information.
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2.14. Application of Multiple Correspondence Analysis

Furthermore, participants who are deemed to lack knowledge of HIV prevention are

associated with male adolescents who have not completed a secondary education.

These participants are associated with moderate levels of stigmatisation. Highly

knowledgeable individuals are observed to be associated with adults in their mid-

to late- twenties, who appear pessimistic about their risk of infection, and possess

moderate levels of HIV preventative information.

Figure 2.16: Multiple correspondence analysis for dimensions one and two
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2.15 Summary and Discussion

This chapter investigated the patterns inherent in the data. Through exploratory

data analysis, we attempted to provide an insightful view into the data and to give

meaning to the sentiment expressed by (Tukey, 1977, p. vi):

”The greatest value of a picture is when it forces us to notice what we never

expected to see.”

Applying the Guttmann scale which uses quantitative scaling, a score was con-

structed for each household to measure its socio-economic status. The rationale for

applying the Guttmann scale was that there were a large number of variables per-

taining to the socio-economic status of the household. Applying the Guttmann scale

using Noble et al. (2006) provided a quantitative approach method to qualitative

data, and the PIMD provided a method that makes use of the most salient house-

hold variables. In this endeavour, we were able to obtain a clear depiction of the

socio-economic conditions in the study area. While the overall level of deprivation

in the study area was not observed to be dire, approximately 9% of households were

found to be within the 10% of severely deprived households. There were however,

pockets of extreme deprivation noted in specific domains that constituted an index

of multiple deprivation.

At the individual level there was serious disparity in terms of HIV prevalence noted

with respect to gender, though not with respect to age. The overwhelming ma-

jority of participants attained only a basic education and a higher education was

not sought by many study participants. In this regard, a further investigation into

whether this is linked with certain socio-economic factors could be conducted.

On an inquiry into the behavioural and cognitive characteristics inherent in the pop-

ulation, it can be concluded that the importance of being well informed about HIV

prevention measures cannot be understated. This is ascribed to the skewed preva-
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lence of HIV between well informed individuals compared to those lacking adequate

information or those moderately well informed. The prevalence of HIV among indi-

viduals who failed to practice safe sexual intercourse was higher than those who did.

With a keen focus on the individual level, further investigation was conducted to

ascertain where the disparity in gender with respect to HIV prevalence lay. The

socio-demographic characteristics related to gender revealed older males display-

ing higher prevalence with the same holding true for younger females. There was

a negligible difference in HIV prevalence with respect to education which saw male

tertiary graduates reporting the lowest prevalence while males who did not com-

plete high school reported the highest HIV prevalence.

Multiple correspondence analysis proved to be a versatile, exploratory statistical

technique for visualising contingency tables. From the application of multiple corre-

spondence analysis, we inferred that HIV infection was closely associated with older

participants who were not as highly educated as HIV negative individuals. These

individuals were mostly involved in marital relations but lacked HIV preventative

knowledge and adequate HIV preventative information. Individuals who were HIV

negative were younger, better educated with exceptional knowledge and informa-

tion gathering skills on HIV prevention.

The following three chapters give an overview of the statistical models that were

applied to the HIPSS baseline data as well as a presentation of the results of each

model.
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Chapter 3

The Survey Logistic Regression

Model

3.1 Introduction

Multistage sampling is a technique often employed in survey designs for reasons

largely attributed to administrative purposes and cost effectiveness. Multistage sam-

pling is a tiered sampling technique that involves, first, selecting an initial sample,

called a primary sampling unit (PSU). Suppose a population is aggregated, then the

PSU involves selecting such aggregates with a view to selecting individual units

within the PSU. Once the individual elements are sampled from within these aggre-

gations, it results in a secondary stage sampling unit (SSU). Repetitive sampling in

this manner is termed multistage sampling.

An unavoidable and inevitable consequence of multistage sampling is the unequal

probability of selection of sampling units at all or at some stage in the sampling pro-

cess resulting in sampling bias (Pffeferman et al., 1998). As such, sampling weights,

which may be thought of as a number of observations represented by a unit in a

population, are introduced in order to compensate for the bias associated with un-

equal probability selection (Wang, 2013).
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The role of sampling weights is a topic of contention among researchers since there

are numerous complexities associated with their introduction into a regression model.

Estimating what may be considered rudimentary concepts in the absence of sam-

pling weights, such as sample mean and standard error may prove complex when

sampling weights are involved. Furthermore, there is much deliberation among re-

searchers as to what actually constitutes a sampling weight. It is a generally accepted

principle that a sample weight is the reciprocal of the probability of selection. This,

however, is not a view shared by everybody. Establishing sample weights is subject

to adjusting for non-responses, post-stratification or other ancillary adjustments by

perusing supplemental data information.

Under linear regression and binary logistic regression, maximum likelihood estima-

tion is usually applied to estimate the regression coefficients. This method, however,

is well suited to predictors that follow the assumption of normality which is not al-

ways the case. Furthermore, according to Skinner et al. (1989), a sampling design

that involves cluster sampling may induce correlation among observations, and ig-

noring these may result in inconsistent statistical tests and consequently, superfluous

results.

To develop a survey logistic regression model, a weighted maximum likelihood

function is employed to provide estimates for the regression coefficients. An a priori

consideration however is that sampling weights have to be adjusted to compensate

for non-responses and other pre and post data collection discrepancies with respect

to the population. The process does not terminate at the construction of a predictive

model; the ultimate aim of any modelling process. Assessing the model’s validity

by testing the model’s goodness-of-fit allows one to gauge the predictive accuracy

of the model.
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3.2 Probability Sampling Weights

Sampling weights or survey weights are positive values that are linked to individual

observational units within a sample. As previously stated, the justification of a sam-

pling weight is rooted in the unequal chance of selection of a sampling unit. When

constructing an individual weight, it must be borne in mind that a sample weight

ought to represent the frequency which that particular sampling unit represents in

the population from which it is drawn. It thus stands to reason that the sum of the

sample weights should provide an estimate of the population size N.

Sampling weights are usually considered to be the reciprocal of the probability of

selection of a particular observation. If the ith unit in a population has a probability

pi of selection into a sample, then the weight, wi, associated with the ith unit is,

according to Kish (1965), given by:

wi =
1

pi
(3.1)

However, drawing a sample using simple random sampling ensures that there is

an equal likelihood of selection for each sampling unit and Equation 3.1 holds true.

It is thus less complex to estimate population means, population proportions, and

population totals. However, other sampling techniques could be used resulting in an

arbitrary probability of selection for each sampling unit. As such, Horvitz & Thomp-

son (1952), propose an unbiased estimator of the population total and by extension,

the population mean detailed below. This is referred to as the Horvitz-Thompson

estimator.

Let T represent the population total and T̂ , the associated unbiased estimator of T .

Furthermore, let (x1, x2, ...., xn) be a sample drawn from a finite population of size

N . The Horvitz-Thompson estimator for the population total is thus given by

T̂ =

n∑
i=1

wixi (3.2)
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Hence, it follows from Equation 3.2 that an estimator for the population mean, x̄,

will be given by

T̂

N
=

n∑
i=1

wixi

N
= x̄ (3.3)

However, the sum of the individual weights is the population size N . Hence, the

Horvitz-Thompson estimator for the population mean, x̄ will be given by

x̄ =

n∑
i=1

wixi

n∑
i=1

wi

(3.4)

Whereas no formal procedural protocol exists for computing the sample weights,

the statistical justification is quite evident. However, this process can be quantified

in three stages and are listed below as per the Global Adult Tobacco Survey Collab-

orative Group (2010).

• The first stage is to obtain the design weights or sampling weights such that

the sum of these weights correspond to the population size.

• Thereafter, as non-responses are inevitable in survey data, adjusting these weights

is fundamental to compensate for the loss in data due to non-responses and

other both pre- and post- data collection inconsistencies.

• The final stage is referred to as calibration wherein design weights (and those

adjusted for non-responses) are adjusted to match the population totals from

which the sample is drawn. Thus, distinct homogeneous groups within the

sample may match their respective population totals. This is also referred to

as post-stratification, a special case of calibration.
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3.3 Adjusted Weights

Evident from the weighting process listed above, adjusting sample weights to ac-

count for non-responses and other sampling inconsistencies, is imperative in the

weighting process. These adjusted weights will be denoted by w∗i . However, prior

to detailing the estimation of population parameters under adjusted weights, the

rationale of a super-population is first introduced. Cassel et al. (1977) argue that in-

ferential statistics based on a super-population is vital to effect understanding of the

process under investigation.

The concept of a super-population was first proposed by Deming & Stephan (1941),

describing it as an infinite population from which the finite population is drawn and

is in itself a sample (Graubard & Korn, 2002). It is usually the case that the target of

inferential statistics is the super-population based on results emanating from the

finite population. Hence, weighting in the context of survey sampling is crucial if

inferences are to be projected to a population accurately. (Pfeffermann et al., 1998,

p. 1087) regard the super-population as an intrinsic factor in the collection of survey

data stating:

”Survey data may be viewed as the outcome of two random processes: The pro-

cess of generating the values in the finite population, often referred to as the

super-population model, and the process of selecting the sample data from the

finite population values, known as the sample selection mechanism.”

The process surrounding the generation of population data (the super-population

model) and the process employed to select the sample from the population are thus

co-requisites for any realistic statistical model arising from sample survey data.

Having defined the rationale behind the super-population, we derive the estimators

of the mean and variance of the super-population as delineated by Potthoff et al.

(1992).
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Let yi denote the response of the ith sampling unit of the super-population. For a

super-population model, the responses per sampling unit are assumed to be inde-

pendent random variables. The following expressions are pre-defined for the mean,

m and variance, v, for the ith sampling unit

mi = E(yi) vi = var(yi) for i ∈ [1, n] (3.5)

where n is the sample size.

Within a super-population, there are two sources of stochasticity. These arise from

the randomisation of survey processes and the parameters which change over time,

hence mi and vi are interpreted instantaneously. Within the finite population model,

sampling all the units in the population would yield a variability of zero thus violat-

ing the stochastic assumption that vi > 0.

Define the mean, m, and variance, v respectively for the super-population as follows

m =

n∑
i=1

wimi

n∑
i=1

wi

, v =

n∑
i=1

w2
i vi

n∑
i=1

w2
i

(3.6)

If yi is used as an unbiased estimator for mi then an unbiased estimator for m, de-

noted by m̂ as a function of yi is given by

m̂ =


n∑
i=1

wiyi

n∑
i=1

wi

 (3.7)

where yi is the realized value and is the normalization factor such that m̂ is an unbi-

ased estimator of m.
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As such, from Equation 3.7 it is deduced that

var(m̂) = var


n∑
i=1

wiyi

n∑
i=1

wi

 =


n∑
i=1

w2
i(

n∑
i=1

wi

)2

 vi (3.8)

Now, consider a new set of weights defined by

w∗i =

 n̂wi
n∑
i=1

wi

 (3.9)

where n̂ is the effective sample size and is defined as the estimated sample size to

effect the same precision if simple random sampling were to be used. The effective

sample size, n̂, as proposed by Kish (1965) is

n̂ =


n∑
i=1

wi

n∑
i=1

w2
i

 (3.10)

Through an elementary algebraic manipulation applied simultaneously on Equation

3.9 and Equation 3.10 it can be shown that n̂ has the following property

n̂ =
n∑
i=1

wi =
n∑
i=1

w2
i (3.11)

Using the relationship in Equation 3.11, Equation 3.6 together with Equation 3.7 and

Equation 3.8 may be expressed respectively as

m =

n∑
i=1

w∗imi

n̂
, m̂ =

n∑
i=1

w∗i yi

n̂
, v =

n∑
i=1

(w∗i )
2vi

n̂
, var(m̂) =

v

n̂
(3.12)
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3.4 The Survey Logistic Regression Model

Categorical outcomes, commonplace in surveys, are modelled using binary logis-

tic regression. This provides a probability that relates to the likelihood of an event

subject to a set of covariates. However, not all surveys select sampling units using

simple random sampling. Multistage sampling, often employed in a hierarchical

manner, introduces varying sampling techniques at each sampling stage.

The possibility of correlation among observations is often highly likely owing to the

peculiarities of such varying sampling techniques. In this instance, analysis using

the ordinary logistic regression becomes redundant; suitably adjusting the ordinary

logistic model for the cluster effect is thus necessary (Wilson & Lorenz, 2015) and

(Perera et al., 2014).

Furthermore, Rao & Scott (1984) state that employing complex survey designs with

post-stratification, adjustments for non-responses, clustering and/or unequal weight-

ing, produces inconsistent estimates unless specialised techniques are used. These

techniques are examined below in the context of the survey logistic regression model

for complex survey designs as documented by Hosmer et al. (2013) and Roberts et al.

(1987).

Suppose that a population is divided into k = 1, 2, ...,K strata within which there are

j = 1, 2, ....,Mk primary sampling units (PSU). If we assume that the observed data

comprises nkj elements from mk PSUs drawn from the kth stratum, then the total

sample size is given by n =
K∑
k=1

mk∑
j=1

nkj . The sample weight for the kjith observation

will be denoted by wkji. Let πkji be the probability of selection of the i th sampling

unit from the j th PSU located in the k th strata. Thus, the dichotomous outcome, ykji

is related to the vector of covariates, x′kji by the survey logistic regression model

stated below.

ln

(
πkji

1− πkji

)
= x′kjiβ, y ∈ [0, 1] (3.13)
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where

πkji =
exp(x′kjiβ)

1 + exp(x′kjiβ)
(3.14)

and β = (β0, β1, β2, ..., βt+1)′(t+1)×1 is a column vector of regression coefficients.

3.5 Weighted Maximum Likelihood Estimation

Complex sample design often involves multistage cluster sampling which results in

differential sampling weights. Adjustments for non-responses and post-stratification

are among the reasons for differential sampling weights. As such, the method of

maximum likelihood estimation will not, in general, suffice and the method of pseudo-

maximum likelihood estimation is employed (Graubard et al., 1997) and (Skinner

et al., 1989).

The pseudo-likelihood function, Lp, is then constructed as per the product of the in-

dividual contributions to the likelihood function. Thus, the pseudo-likelihood func-

tion, as adapted from Archer et al. (2007) and Zhang et al. (2018), will be given by

Lp(β) =
K∏
k=1

mk∏
j=1

nkj∏
i=1

π
wkji×ykji
kji (1− πkji)wkji×(1−ykji) (3.15)

As with the method of maximum likelihood estimation, the partial derivative of the

pseudo log-likelihood function with respect to β is obtained to obtain β̂, an unbi-

ased estimator for β. The process in which the regression coefficients are obtained

is detailed below. The method is initiated by obtaining the pseudo log-likelihood

function which maximises Equation 3.15 to obtain the best linear unbiased estimate

of β

lnLp(β) =
K∑
k=1

mk∑
j=1

nkj∑
i=1

[wkji × ykji]× ln(πkji) + [wkji × ykji]× ln(1− πkji) (3.16)
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Obtaining the partial derivative with respect to β, and the unknown regression coef-

ficients in Equation 3.16, the following system of t+ 1 score equations are obtained.

∂lnLp(β)

∂β
=



fnew(β0) =
K∑
k=1

mk∑
j=1

nkj∑
i=1

Xkj1wkj1(ykj1 − πkj1) = 0

fnew(β1) =
K∑
k=1

mk∑
j=1

nkj∑
i=1

Xkj2wkj2(ykj2 − πkj2) = 0

.

.

.

fnew(βt+1) =
K∑
k=1

mk∑
j=1

nkj∑
i=1

Xkjiwkji(ykji − πkji) = 0



= X′W (Y − π) = 0

(3.17)

Employing the Newton-Raphson iterative method we obtain an estimate for β̂.

β̂(t+1) = β̂(t) −H−1q (3.18)

whereH = X′DX and q = X′D(Y − π(t)).

The resulting estimate for β is

β̂(t+1) = β̂(t) + (X′DX)−1X′D(Y − π)

= (X′DX)−1X′D(Xβ +D−1(Y − π)) (3.19)

Hence, by solving Equation 3.19, the following solution is deduced for β̂

β̂ = (X′DX)−1X′DU (3.20)

where U = Xβ +D−1(Y − π),D = WV (t) and;
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X =



X110 X111 · · · X11i

X210 X211 · · · X22i

...
...

. . .
...

Xkj0 Xkj1 · · · Xkji


n×(t+1)

,Y =



Y111

Y112

...

Ykji


n×1

Furthermore,

π(t) =



π111

π112

...

πkji


n×1

, β̂(t) =



β̂0(t)

β̂1(t)

β̂2(t)

...

β̂t+1(t)


(t+1)×1

and,

V (t) =



πkj1(1− πkj1)

πkj2(1− πkj2)

. . .

πkji(1− πkji)


n×n

The sample weight, wkji, is the weight associated with the kjith sample unit and is

expressed as the following diagonal array.

W =



Wkj1

Wkj2

. . .

Wkji


n×n
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Consequently, an appropriate estimate for the Var(β) is:

V̂ar(β̂) = (X′DX)−1S(X′DX)−1 (3.21)

3.6 Test for Model Goodness-of-Fit

The likelihood function, expressed in Equation 3.16, represents an approximation of

the true likelihood function. It therefore stands to reason that inferences about re-

gression parameters should be based on the univariable or multivariable Wald test

statistic (Hosmer et al., 2013). Conventional methods such as the Wald test used in

ordinary logistic regression tend to conflate the survey weights with actual observa-

tions and therefore do not correctly assess the model fit.

The use of an adjusted Wald test accounting for complex survey sample design by

Thomas & Rao (1987) and Korn & Graubard (1990) resulted in a test with improved

adherence to α level of significance compared to the standard Wald test. Hence,

complex sample surveys introduce a new dynamic in the execution of the Wald test,

necessitating the use of a modified Wald test.

Furthermore, under ordinary logistic regression, Hosmer & Lemeshow (1980) pro-

posed grouping cases in ascending order as per their predicted probability. There-

after, the observed and expected frequencies are computed and the Pearson chi

square test is applied. However, the pitfall of this test lies in the grouping as there

exist no theoretical guide in this respect. This was not apparent until conventional

statistical software allowed users to specify the number of groups rather than classi-

fying them into deciles by default (Allison, 2013).

Assessing the overall model fit is an important stage in statistical modelling and

assists in deciding whether a model is correctly specified. There are multiple tests
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in this respect. Conducting these tests is relatively simple in the context of ordinary

sampling procedures. Under a multistage sample design, certain modifications are

incorporated into tests for goodness-of-fit that improve overall suitability. Two such

modifications to existing goodness-of-fit tests are detailed below.

3.6.1 The Modified Wald Test

Archer et al. (2007) proposed an extension to the decile of risk test which incor-

porates a modified form of the Wald test to assess the model fit. This process is

described below as detailed by Hosmer et al. (2013).

1. Let s =
K∑
k=1

mk − K represent the total number of primary sampling units

per strata less the total number of strata. To conduct the modified Wald test,

construct at most g, for g = 1, 2, ..., 10, (s+ 2) groups such that the total sample

weight per group is approximately 10% of the total sample weight.

2. Calculate the weighted mean of the model’s residuals using the sample weights

in each of the groups formed in step one above.

M̂k =

K∑
k=1

mk∑
j=1

nkj∑
i=1

wkjirkji

K∑
k=1

mk∑
j=1

nkj∑
i=1

wkji

for k ∈ [1, s+ 2) (3.22)

The model’s residuals are estimated from r̂kji and is calculated as follows

r̂kji = (y − π̂kji) (3.23)

This is considered a crucial step in assessing the model fit; if the weighted

means of the residuals differ significantly from 0, the model is not a good fit of

the responses.

3. From Equation 3.22 a linearised estimator, as detailed by Archer (2001), of the

covariance matrix V̂ (M̂) is constructed from M̂k = (M1,M2, ...,Mk)
′.
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From this the modified Wald test statistic is formulated and given by

ŴM̂ = M̂
′
[V̂ (̂M)]−1M̂ (3.24)

4. Using Equation 3.24, the hypothesis

H0 : M1 = M2 = .... = Mk = 0

H1 : At least one Mk 6= 0 for k ∈ [1, s+ 2)

is tested as per the following test statistic

FM̂ =
s− g + 2

s× g
∼ F(g−1),(f−g+2) (3.25)

5. The rejection region, RR, given by RR = {F(g−1),(f−g+2) > FM̂}, is used to test

the hypothesis and draw it to an appropriate conclusion.

3.6.2 The Rao-Scott Correction to the Likelihood Ratio Test

It is inevitable that samples within the sample PSU, drawn under complex sur-

vey designs, will result in highly correlated observations. Adjustments to compen-

sate for non-responses and other sample anomalies can result in differing sample

weights, violating the assumption of independence and identical distribution among

the responses (Scott, 2007). Selecting a simple representation of the data and assess-

ing the viability of the model thus proves difficult for samples drawn under complex

sampling schemes.

This section examines the Rao-Scott first corrections to the chi-squared tests for con-

tingency tables wherein cell proportions are obtained by complex sampling proce-

dures adapted from the SAS Institute Inc. (2016).
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Testing the Global Null Hypothesis

Suppose we have the cumulative model whose parameters are expressed as θ =

(α′,β′)′ where α represent the model parameters and β, the regression coefficients.

Let r denote the number of restrictions imposed on θ, then β = (β1, β2, ....., βk)
′

where r = k.

The global null hypothesis refers to the null hypothesis that is investigated to deter-

mine the significance of all the explanatory variables. Testing this null hypothesis

determines if all explanatory variables may be excluded from the model and thus

contain only the intercept terms. The global null hypothesis tested will be given by

H0 : β = 0 (3.26)

Ha : β 6= 0 (3.27)

Denote V̂rr(θ̂) to represent the estimated covariance matrix of θ̂ of the sample design

and V̂ srs
rr (θ̂) to represent the estimated covariance matrix of θ̂ under simple random

sampling. As such the design effect matrix, E, is defined as

E = V̂rr(θ̂)
(
V̂ srs
rr (θ̂)

)−1
(3.28)

where

V̂rr(θ̂) =



var(θ̂1, θ̂1) cov(θ̂1, θ̂2) · · · cov(θ̂1, θ̂k)

cov(θ̂2, θ̂1) var(θ̂2, θ̂2) · · · cov(θ̂2, θ̂k)

...
...

. . .
...

cov(θ̂k, θ̂1) cov(θ̂k, θ̂2) · · · var(θ̂k, θ̂k)
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V̂ srs
rr (θ̂) =



var(θ̂1, θ̂1) cov(θ̂1, θ̂2) · · · cov(θ̂1, θ̂k)

cov(θ̂2, θ̂1) var(θ̂2, θ̂2) · · · cov(θ̂2, θ̂k)

...
...

. . .
...

cov(θ̂k, θ̂1) cov(θ̂k, θ̂2) · · · var(θ̂k, θ̂k)


SRS

Furthermore, the estimated covariance matrices partitioned by the r slope parame-

ters are given below. Let r∗ be the rank of E wherein the positive eigenvalues of E

are given by δk 3 δ1 ≥ δ2 ≥ ... ≥ δ∗r > 0. Now, the likelihood ratio test under the

ordinary logistic regression procedure is

Qχ2 = −2 log

[
L(θ̂)

L(θ̂H0)

]
= −2[logL(θ̂)− logL(θ̂H0)] ∼ F(r,∞) (3.29)

However, to account for the influence of clustering or stratification, Rao & Scott

(1984) and Rao & Scott (1987) propose adjustments to the likelihood ratio test. These

are discussed below.

The Rao-Scott First Order Design Correction

To address the influence of complex survey design on the likelihood ratio test, Rao

& Scott (1984) suggest the first-order correction to the chi-square statistic as

QRS1 =
Qχ2

δ̄
∼ χ2

r∗ (3.30)

where δ̄ is the first-order design correction and is the average of the positive eigen-

values of E, expressed as follows

δ̄ =
r∗∑
k=1

δk
r∗

(3.31)

The corresponding F test statistic is subsequently given by

FRS1 =
QRS1

r∗
∼ F(r∗,df×r∗) (3.32)
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The Rao-Scott Second Order Design Correction

Rao & Scott (1987) further suggest the second order Rao-Scott correction to the chi-

square statistic as follows

QRS2 =
QRS1

(1 + â2)
(3.33)

whereQRS1 is the first-order Rao-Scott chi-square statistic and the second order design

correction , â2, is given below, and is determined from the coefficient of variation of

the eigenvalues of the design matrix E as

â2 =
1

r∗ − 1

r∗∑
k=1

(δk − δ̄)
δ̄2

(3.34)

The corresponding F statistic is

FRS2 =
QRS2(1+â2)

r∗
∼ F(

r∗

1 + â2 ,
df × r∗

1 + â2

) (3.35)

in which df is the design degrees of freedom whose computation is guided as follows

df =


ñ−K if the design contains clusters,

n−K if the design does not contain clusters.

where ñ is the total number of clusters, if clustering is present in the survey design.

Furthermore, n is the total sample size and K is the number of strata if stratification

is present, else K = 1.

3.7 Survey Logistic Regression Applied to the HIPSS Base-

line Data

The analyses presented in this section were conducted using SAS Version 9.4. The

procedure PROC SURVEYLOGISTIC is employed in SAS to account for a multistage

sampling design. The PROC SURVEYLOGISTIC procedure makes provision for in-
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clusion of clusters strata and sampling weights to be specified using the CLUS −

TER, STRATA and WEIGHT commands respectively. The socio-economic and socio-

demographic variables explored in Chapter 2 formed the explanatory variables of

the model that was used to model an individual’s HIV status at baseline.

In order to construct the model, all fixed effect predictor variables were established

and included in the model together with selected two-way interactions, and conse-

quently selected higher order interactions were explored and included in the model.

Table 3.1 summarises the final survey logistic regression model.

In constructing a regression model, assessing the overall goodness-of-fit and the pre-

dictive accuracy of the model is a crucial stage in the modelling process. Akaike’s In-

formation Criterion (AIC) and Bayes Information Criterion (BIC) are two approaches

used in assessing the model’s relative goodness-of-fit (or lack thereof). Within the

context of weighted logistic regression, the Archer-Lemeshow test as detailed in Sec-

tion 3.6 is used to assess the model’s goodness-of-fit. This, as of late, has not been

incorporated into the PROC SURVEYLOGISTIC procedure in SAS Version 9.4.

Assessing the goodness-of-fit under a complex survey design thus is a slight devia-

tion from conventional assessments of the model fit in which the likelihood ratio test

is employed. To account for the influence of clustering and stratification, the Rao-

Scott second order design correction is applied. The corrected likelihood ratio test is

then assessed as to the goodness-of-fit. In this study a Rao-Scott second order design

correction, which is produced by SAS Version 9.4 in the PROC SURVEYLOGISTIC

procedure, of 0.0002 was applied to the likelihood ratio test. Consequently, at a 5%

level of significance, the global null hypothesis in Equation 3.26 is rejected, indicat-

ing that the model was an appropriate fit to the data.

The predictive power of a survey logistic regression model is an additional consid-

eration that one has to take into account. The predictive accuracy of the model is
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indicative of the probability that the outcome is correctly predicted subject to the

independent regressors. In this instance, the concordance index, c, which is equal to

the area under the receiver operating curve (ROC), is used to gauge the predictive

power under survey logistic regression. The concordance index, c, is produced in

the PROC SURVEYLOGISTIC procedure and is given by

c = [nc + 0.5(t− nc − nd)t−1] (3.36)

Within the context of ordinary logistic regression, the area under ROC is used to

assess the predictive ability of the model. Thus, in the case of a binary response

variable, the concordance index provides an estimate of the area under the ROC

curve (Hanley & McNeil, 1982) and (Agresti, 2007). With respect to Equation 3.36, n

is the total number of observations in the data set and t refers to the number of pairs

in the data given as follows

t =
n(n− 1)

2
(3.37)

And nc refers to the number of concordant pairs. A concordant pair of observations

may be described as a pair of observations wherein a lower order response has a

higher predicted mean than that of those responses which are higher ordered. Con-

versely, nd is the number of discordant pairs and t − nc − nd is the number of tied

pairs. These are pairs of observations with different responses which cannot be char-

acterised as concordant or discordant. N is the sum of the observed frequencies.

Mathematically this may be expressed as follows. Consider a pair of observations

(r1, c1) and (r2, c2). According to Rudolfer (2002) and Agresti (1990) (r1, c1) and

(r2, c2) are

concordant if (r1, c1)(r2, c2) > 0

discordant if (r1, c1)(r2, c2) < 0

tied if (r1, c1)(r2, c2) = 0

87



3.7. Survey Logistic Regression Applied to the HIPSS Baseline Data

A concordant pair is thus one in which a subject ranking higher on r also ranks higher

on c, and discordant if the subject ranking higher on r ranks lower on c and tied other-

wise. According to Agresti (2007) and Uno et al. (2019) the concordance index must

be within the range of 0.5 to 1, with the former an indication of no correlation and

the latter, complete correlation.

In addition to the concordance index, three other methods can be used to gauge the

model’s predictive accuracy; Somer’s D (SD), Goodman-Kruskal Gamma (GKG),

and Kendall’s Tau-a (KT) - all of which are produced in the PROC SURVEYLOGI −

STIC procedure.

SD = (nc − nd)t−1

GKG = (nc − nd)(nc + nd)
−1

KT = (nc − nd)[0.5N(N − 1)]−1

To gauge the predictive accuracy of a model using the aforementioned indicators,

Lee et al. (2019) argue that the greater these indicators, the better the forecasting ac-

curacy which can be regarded as a measure of correlation intensity. A value for the

Goodman-Kruskal Gamma must lie between−1 and 1, and a value close to or at one,

indicates that all pairs are concordant and thus there is complete correlation between

both the forecasted values and the actual values. Somer’s D and Kendall’s Tau-a are

also measures of correlation intensity ranging from 0 to 1 with a value close to one

indicative of complete correlation and concordance among the observed pairs.

A survey logistic regression model of the fixed effects was then constructed and all

possible two way interactions were explored. Thereafter, selected two-way inter-

action, and consequently, selected higher order interactions which pertained to the

domain and were found to result in a significant decrease in the deviance, were in-

vestigated, all of which were found to be significant under survey logistic regression.

Table 3.1 summarises the fixed effects and all two-way and higher order interactions

that inform the model that was fitted.
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A Taylor series approximation was used for the variance estimation of the survey

logistic regression model. The Taylor series approximation is the default under the

PROC SURVEYLOGISTIC procedure. The concordance index (c) of the final model

was 0.872 which indicates that 87.2% of positive HIV cases were correctly predicted,

and consequently the predictive accuracy of the model is found to be within an ac-

ceptable range.

After fitting the survey logistic regression model, it was found that HIV stigma and

the use of contraception were insignificant in predicting a participant’s HIV status

while variables of a socio-economic, socio-demographic and behavioral nature were

found to be significant. In terms of the two-way interaction effects, the association

between a participant’s highest educational qualification attained and their knowl-

edge of HIV prevention measures together with a participant’s knowledge of HIV

prevention measures and their acquisition of information and knowledge of HIV

prevention, were found to be significant.

Furthermore, a higher order three-way interaction between participants highest edu-

cational attainment, their knowledge of HIV prevention and their acquisition of HIV

information, was found to be significant. All variables, either significant or insignif-

icant, were deemed as such at a 5% level of significance. The parameter estimates

together with the adjusted odds ratio (aOR) and their respective 95% confidence in-

tervals and p-values are given in Table 3.2.

From a socio-economic perspective, there were increased odds of HIV among par-

ticipants residing in households wherein increased levels of household destitution

were observed. This could arguably be ascribed to participants, resident within

these households, being unable to access basic provisions such as primary health-

care that would enable them to mitigate the spread of HIV. Participants residing in

households that were classified as extremely deprived (aOR=1.381, 95% CI:1.007;
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3.7. Survey Logistic Regression Applied to the HIPSS Baseline Data

1.894) (10% of most deprived households) were increasingly likely to be at risk of

HIV than participants residing in households experiencing significant deprivation.

The odds of HIV infection were almost twice as high for females (aOR=1.964, 95%

CI:1.658; 2.326) than for males.

Advancement in age was observed to be indicative of an increased odds of HIV in-

fection. Participants in young adulthood (30-34 years) were found to be more than

twice as likely to be HIV positive than participants aged 45-49 years. A similar ob-

servation was made for participants in the 40-44 year age group. There was no sig-

nificant difference in the odds of HIV infection were observed for 25-29 year old

participants when compared to 45-49 year old participants.

With respect to the participants’ marital status, the odds of HIV was observed to be

low among those who were legally married (aOR=0.251, 95% CI:0.106; 0.595) com-

pared with those who were widowed. Legally married participants and participants

who were separated but still legally married were found to be significantly differ-

ent from widowers as evidenced by their confidence intervals ranging from 0.106

to 0.595 and from 0.037 to 0.764 respectively. There also appeared to be an increas-

ing likelihood of HIV infection among divorcees (aOR=0.824, 95% CI: 0.209 ; 3.239)

when compared to widowers.

Some of the possible contributory factors to HIV that were investigated in addi-

tion to the socio-economic and socio-demographic determinants were factors en-

compassing intellectual and social dynamics. Among these were participants’ per-

ceived risk of HIV and the level of HIV stigmatisation prevalent among participants.

In this respect, individuals who were questioned about their perceived risk of HIV

were observed to be risk averse compared to individuals who were already HIV pos-

itive irrespective of their perceptions surrounding their chances of HIV infection.
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Table 3.2: Odds ratio estimates (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the SLR Model

Parameter Odds Ratio (95% CI)

Household Deprivation Level (ref = Significant Deprivation)

No Deprivation 0.757 (0.557 ; 1.030)

Low Deprivation 0.793 (0.602 ; 1.043)

Minor Deprivation 0.815 (0.636 ; 1.046)

Intense Deprivation 0.876 (0.669 ; 1.147)

Serious Deprivation 0.935 (0.694 ; 1.259)

Severe Deprivation 1.046 (0.721 ; 1.516)

Extreme Deprivation 1.381 (1.007 ; 1.894)∗

Gender (ref = Male)

Female 1.964 (1.658 ; 2.326)∗

Age Group (ref = 45-49)

15-19 0.298 (0.198 ; 0.451)∗

20-24 0.643 (0.455 ; 0.911)∗

25-29 1.157 (0.818 ; 1.635)

30-34 2.029 (1.432 ; 2.875)∗

35-39 1.976 (1.390 ; 2.810)∗

40-44 2.213 (1.545 ; 3.170)∗

Marital status (ref = windowed)

Legally Married 0.251 (0.106 ; 0.595)∗

Separated - Legally Married 0.168 (0.037 ; 0.764)∗

Cohabiting 0.556 (0.216 ; 1.430)

Single - Never Married or Cohabited 0.626 (0.270 ; 1.451)

Divorced 0.824 (0.209 ; 3.239)

Single Live-in Partner 0.674 (0.275 ; 1.649)

Continued on next page
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Continued from previous page

Variables Odds Ratio (95% CI)

Perceived Risk of HIV (ref = Already HIV Positive)

Assured Infection 0.018 (0.011 ; 0.029)∗

Probable Infection 0.014 (0.009 ; 0.020)∗

Probable Non-Infection 0.011 (0.007 ; 0.016)∗

Assured Non-Infection 0.008 (0.005 ; 0.012)∗

HIV Stigma (ref = Severe Stigma)

No Stigma 0.775 (0.362 ; 1.662)

Mild Stigma 0.753 (0.342 ; 1.656)

Moderate Stigma 0.620 (0.256 ; 1.505)

Engaged in Sexual Intercourse (ref = Yes)

No 0.553 (0.400 ; 0.765)∗

Diagnosed with an STI (ref = Yes)

No 0.667 (0.481 ; 0.927)∗

Used Contraception (ref = Yes)

No 1.130 (0.947 ; 1.348)

∗ Significant at a 5% level of significance

Studies have shown that HIV stigma and discrimination is contributory to HIV vul-

nerability. Individuals facing increased odds of HIV often encounter such stigma-

tisation and discrimination based on their actual or perceived health status, socio-

economic standing and other socio-demographic characteristics. Such individuals

are sometimes shunned by family members, peers and the wider community. The

odds of HIV infection by respondents who espoused no stigmatisation (aOR=0.775,

95% CI:0.362; 1.662) and mild stigmatisation (aOR=0.753, 95% CI:0.342; 1.656) was

relatively low when compared to those who espoused severe levels of HIV stigmati-

sation. Overall, it was observed that varying levels of HIV stigmatisation prevalent

in the study area were not largely contributory to HIV incidence and that no signifi-

cant difference in the odds of HIV infection were observed with respect to different

levels of HIV stigma.
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Furthermore, selected behavioral and clinical determinants were observed to be

associated with vulnerability to HIV infection. Participants who did not engage

in sexual intercourse (aOR=0.553, 95% CI:0.400; 0.765) had lower odds of HIV in-

fection than those who engaged in sexual intercourse. In addition, participants

who affirmed that they did not make use of contraceptive methods at sexual debut

(aOR=1.130, 95% CI:0.947; 1.348) were observed as having higher odds of HIV infec-

tion than those who used contraceptive methods at sexual debut. A non-diagnosis

of a sexually transmitted infection (STI) by a certified healthcare worker in individ-

uals appeared non-indicative of increased odds of HIV infection.

Figure 3.1 depicts the higher order interaction between a participant’s knowledge of

HIV prevention, highest level of education and acquisition of HIV information. The

odds of HIV infection appeared relatively high for participants lacking adequate

HIV information irrespective of their level of academic qualification and knowledge

of HIV prevention. There were large fluctuations in the odds of HIV infection noted

among participants who were moderately well informed and who either had no for-

mal schooling, up to a primary level, or did not complete secondary school.

There were, once more, large fluctuations in odds of HIV infection noted among in-

dividuals who were well informed with information pertaining to HIV infection.

Individuals who were highly knowledgeable about HIV prevention and did not

complete a secondary education were observed to have the lowest odds of HIV infec-

tion. Participants who were moderately knowledgeable of HIV prevention and com-

pleted a secondary education were at a higher odds of HIV infection; slightly higher

than participants with the same qualification but highly knowledgeable about HIV

prevention measures.

The odds of HIV infection remained relatively low and stable among participants

who were in possession of a tertiary qualification and who were well informed irre-

spective of their level of knowledge in relation to HIV preventative measures.
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A similar observation was noted in individuals who did not possess any formal

schooling and were well informed but displayed a moderate to high degree of knowl-

edge about HIV prevention.

The interaction effect decisively proves that knowledge of HIV prevention measures

is vital to ensure that the odds of HIV among individuals is kept to a minimum.

However, a participant’s level of academic qualification is not indicative of reduced

odds of infection. Furthermore, it is evident that obtaining HIV information plus a

participant’s knowledge of HIV information, is commensurate with a reduction in

the odds of HIV infection. These factors, examined as part of higher order interac-

tions, also show that being well informed about HIV prevention measures is a driver

of reduced odds of HIV infection among participants. This is observed irrespective

of a persons knowledge of HIV prevention and of their academic and/or scholarly

achievements.

95



Fi
gu

re
3.

1:
Th

e
es

ti
m

at
ed

lo
g-

od
ds

as
so

ci
at

ed
w

it
h

th
e

in
te

ra
ct

io
n

of
th

e
hi

gh
es

t
le

ve
l

of
ed

uc
at

io
n,

kn
ow

le
dg

e
of

H
IV

pr
ev

en
ti

on
an

d
H

IV
in

fo
rm

at
io

n
ac

qu
is

it
io

n

96



3.8. Summary and Discussion

3.8 Summary and Discussion

The presence of sample weights as a consequence of complex survey design is a

contentious issue among researchers. Incorporating survey weights into likelihood

based models does not always involve taking the reciprocal of the probability of in-

clusion to represent the weight. The logistics extend far beyond this and not without

its complexities as (Gelman, 2007, p. 153) states unequivocally:

”Survey weighting is a mess. It is not always clear how to use weights in es-

timating anything more complicated than a simple mean or ratio, and standard

errors are tricky even with simple weighted means.”

Adjustments for certain characteristics and factors ought to be accounted for by us-

ing an amalgamation of probability calculations. Consideration of the sampling

weights is paramount if each individual does not have an equal chance of selection

into the sample, failing which, the statistical inferences drawn will be redundant

and inconclusive. Survey logistic regression, applied in this instance, concurrently

accounts for both survey weights and a binary response variable.

The results presented in this chapter, accounting for the survey design, show conclu-

sively that socio-economic circumstances together with socio-demographic and se-

lected behavioural characteristics were associated with HIV infection. Furthermore,

the two-way and three-way joint effects were observed to be significant in the model.

If the sampling design is ignored and simple random sampling is assumed to be the

sampling design and the standard logistic regression model is applied, then, both

the point estimates and their standard errors will be erroneously calculated. While

the survey logistic regression model does incorporates the survey design, it does not

compensate for the effect of clustering. The effect of clustering refers to the possibil-

ity that participants within the same cluster exhibit similar traits and characteristics

to participants from different clusters. This renders the potential for correlation in
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the outcome among participants a very real possibility resulting in a violation of the

independence assumption, of which the inevitable result is statistical bias.

The presence of statistical bias inevitably results in inconsistent estimates and hence

the results will be considered superfluous. Oltean & Gagnier (2015) state that if

clustering is predetermined to be a realistic consideration, it should be accounted for

in the analysis. Accordingly, in the following chapter, the generalised linear mixed

model (GLMM) is employed to account for the effect of clustering.
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Chapter 4

The Generalised Linear Mixed

Model

4.1 Introduction

Partitioning a data set into smaller enumerated groups, wherein constituents of the

groupings exhibit a particularly common but unmeasured characteristic, increases

the number of fixed effects parameters as the sample size increases for fixed effects.

Such models are frequently applied in an array of disciplines such as medicine, pub-

lic health, ecology and evolutionary biology where responses are sometimes clus-

tered and non-normal.

The generalised linear mixed model (GLMM), first conceptualised by Breslow &

Clayton (1993), is used to analyse responses that are correlated as a result of clus-

tered observations. This is achieved by amalgamating the theoretical considerations

of the generalised linear model (GLM) and the linear mixed model (LMM) (Broström

& Holmberg, 2011; Rich, 2018). What differentiates the GLMM from the GLM is the

structure of the GLMM in which provision is made for a random effect in the linear

predictor. The random effect is able to accommodate correlation in non-normally

distributed data making the application of GLMMs indispensable in many practical

fields.
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The objective of this study was to investigate the determinants of HIV wherein the

response variable is binary, that is, whether a participant is HIV positive or neg-

ative. For a model containing only fixed effects, a generalised linear model will

suffice. However, with randomisation involved in the selection of the primary sam-

pling unit (PSU), these are included in the model as random effects. Furthermore, as

there is only one random factor under consideration, the most simplest form of the

GLMM, the random intercept model, is employed to assess the effect of clustering

in modelling HIV status.

4.2 The Generalised Linear Mixed Model

Suppose a sample n is drawn from n independent clusters denoted by y such that

y = (yT1 ,y
T
2 , ....,y

T
n )T where yi = (yi1, yi2, ...., yiti) for i ∈ [1, n]. Now, within clusters,

it is often the case that responses are correlated. Define bi as the cluster random

effect, whose inclusion in the model may be ascribed to shared characteristics among

subjects; it is the condition on which within cluster responses, yi = (yi1, yi2, ...., yiti),

are conditioned on such that

yi1, yi2, ...., yiti |bi ind
∼

f(yij |bi) (4.1)

where bi = (b1,b2, ....,bn)′ and E(yij |bi) = µcij is the mean of the conditional den-

sity function f(yij |bi) which follows a generalised linear model (GLM) that incor-

porates a random factor. This is referred to as the generalised linear mixed model

(GLMM) and is expressed mathematically as

g(µcij) = x′ijβ + z′ijbi (4.2)

And more compactly in vector form as

g(µci ) = Xiβ + Zibi (4.3)
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where µci = E(Yi|bi) and Xi is a ti × p design matrix of the fixed effects constructed

from x′ij and Zi is ti × q design matrix of the random effects constructed in a similar

manner to the computation of Xi. These respective matrices are detailed below.

Xi =



1 X11 X12 · · · X1ti

1 X21 X22 · · · X2t2

...
...

...
. . .

...

1 Xi1 Xi2 · · · Xiti


n×(ti+1)

,Zi =



z11 z12 · · · z1ti

z21 z22 · · · z2t2

...
...

. . .
...

zi1 zi2 · · · ziti


ti×q

Furthermore, we define β = (β0, β1, ..., βti+1)′(ti+1)×1 as the column vector of regres-

sion coefficients.

The q × 1 vector of random effects bi, over n clusters is assumed to have a mean of

0 and a variance-covariance matrix G(Ψ) such that

b1,b2, ......,bn iid
∼

f(bi,Ψ) (4.4)

The common choices of the distribution of the density function f(bi,Ψ) are:

• The normal distribution

• A conjugate distribution for the conditional distribution of yij , or

• f may be left unspecified or several non-parametric approaches are possible.

There are two approaches in computing the regression coefficients of a GLMM: a

Bayesian approach and a maximum likelihood based approach. The general pref-

erence for the maximum likelihood approach over the Bayesian approach is the rel-

ative ease with which maximum likelihood produces unbiased estimates (Browne

& Draper, 2006). Furthermore, owing to the optimal properties of the maximum

likelihood-based approach, it is usually the preferred method of fitting a multilevel

model (Searle et al., 2006). Thus, the maximum likelihood-based approach will be

examined.
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4.3 Maximum Likelihood Estimation

The ith cluster contributes to the likelihood function through the marginal density of

yi which is given by f(yi;β,Ψ). This marginal density is however, not specified di-

rectly in the model and must by computed from the conditional density of yi given

bi and the marginal density of bi. This is done by first computing the joint density

of yi and bi and consequently deriving the marginal density of yi.

The joint density function of yi and bi is given by:

f (yi,bi,β,Ψ) = f (bi; Ψ)f (yi|bi;β) (4.5)

= f (bi; Ψ)

ti∏
j=1

f (yij |bi;β) (4.6)

Thus, the marginal density of yi is given by

f (yi,β,Ψ) =

∫
f (yi,bi;β,Ψ) (4.7)

=

∫
f (bi; Ψ)

ti∏
j=1

f (yij |bi;β)dbi (4.8)

As a result of the independence of the clusters, the likelihood function is thus the

product of the joint and marginal density functions and is expressed as

L(β,Ψ,y) =
n∏
i=1

∫
f (bi; Ψ)

ti∏
j=1

f (yij |bi;β)dbi (4.9)

The likelihood function of the linear mixed model is considered simplistic as a so-

lution exists in closed form and can be evaluated using numerical integration. This

in large part, may be ascribed to the linearity of the model. However, Jiang (2007)

contends that the evaluation of the likelihood function is computationally more de-

manding in the GLMM as the integral in L(β,Σ,ψ) has to be numerically evaluated

but no solution exists in closed form. Thus, the application of iterative techniques is

employed to produce an approximated solution to the likelihood function.
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4.3. Maximum Likelihood Estimation

4.3.1 Evaluation of the Log-Likelihood Function of the GLMM

Evaluating the log-likelihood function may be quantified in three approaches:

• Numerical integration methods wherein the integral is approximated using

quadrature techniques.

• Analytic approximation of the integrand using Laplace approximation.

• Monte Carlo integration which uses simulation-based techniques in the evalu-

ation of the log-likelihood function.

Numerical integration techniques are focused on quadrature methods that account

for sample weights and are usually an a priori consideration in survey methodology.

Other common methods employed are the marginal quasi-likelihood (MQL), pe-

nalised quasi-likelihood (PQL) functions, and Laplacian approximations. That these

methods are not investigated as part of this study is in large part owed to the find-

ings of Rodrı́guez & Goldman (1995), Pinheiro & Bates (1995) and Tierney & Kadane

(1986) who found significant bias in the estimation of the model parameters employ-

ing these respective methods, particularly the MQL and PQL which produced these

estimates in the presence of large variance components.

4.3.2 Numerical Integration Techniques

The Gauss-Hermite Quadrature (GHQ)

Quadrature techniques approximate an integral using a finite weighted sum of the

integrand evaluated at a set of values of the variable to be integrated out. There are

two common types of quadrature approaches, namely the Gauss-Hermite quadra-

ture and the adaptive Gaussian quadrature. The Gauss-Hermite quadrature evalu-

ates integrals of the form

∫ +∞

−∞
exp−x

2
f (x)dx (4.10)
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where f(·) is a smooth function which is approximated by a polynomial. The Gauss-

Hermite quadrature uses the principle that an integral can be thought of as an infi-

nite weighted sum of the function being integrated (the integrand). Hence, Equation

4.10 can be approximated as

∫ +∞

−∞
exp−x

2
f (x)dx u

R∑
j=1

wjf (xj) (4.11)

where xj is the quadrature points (called: abscissas), and the solution of the Lth or-

der to the Hermitian polynomial f (·) and wj is the quadrature weights. The number

of quadrature points, R, is selected such that the accuracy of the approximation is

linked with an increasing R. Furthermore, if f(·) is a 2(R − 1) degree polynomial,

then the R point GHQ is an exact approximation. The application of the Gaussian-

Hermite quadrature is practical for a model with random effects as a result of the

weight function, exp(x2) being proportional to the normal density.

As stated in Section 4.1 there is only a single random effect in the model under con-

sideration. Hence, for illustrative purposes, the simplistic GLMM with only the ran-

dom intercept will be considered to explicate the process of numerical integration

and approximation.

The rudimentary form of the GLMM with a single random effect is

g(µij) = x′ij + bi, {bi} iid
∼

N(0,Ψ) (4.12)

Hence, the likelihood contribution from the ith cluster will be given by

∫ +∞

−∞
f(bi|Ψ)

ni∏
j=1

f(yij |bi)dbi (4.13)

In order to evaluate Equation 4.13, the change of variable technique to a standard

normal distribution is conducted. The substitution ui =
bi√
Ψ

is made such that
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4.3. Maximum Likelihood Estimation

Equation 4.13 becomes

∫ +∞

−∞
φ(ui)

ni∏
j=1

f(yij |
√

Ψui)dui (4.14)

where

φ(ui) =
1√
2π

exp

(
−u

2
i

2

)
(4.15)

Now, applying the GHQ as per Equation 4.11, yields the following relationship

∫ +∞

−∞
φ(ui)

ni∏
j=1

f(yij |
√

Ψui)dui u
R∑
j=1

wj

ni∏
j=1

f(yij |
√

Ψaj) (4.16)

where

wj ≡
w∗j√
π
, aj ≡

√
2a∗j (4.17)

where the quadrature points xj are the roots of the Lth order Hermitian polynomial

with sampling weights wj .

The GHQ may be efficient for a small R, that is, for an integrand well approximated

by a polynomial. However, it is often the case that for GLMM, R < 10 can be inaccu-

rate and an R > 20 is necessary (McCullogh & Searle, 2008) . Notwithstanding these

recommendations for R, the pitfalls of the GHQ are compounded when clusters are

too large and there is increased variability in the random effects. These problems

can be mitigated by employing the adaptive Gaussian quadrature (AGQ) which tai-

lors (rescales) the quadrature points and weights to the function integrated (Hartzel

et al., 2001). Furthermore, the AGQ can be applied with arbitrary degrees of ac-

curacy that can lead to nearly unbiased estimates. However, the increased level of

complexity in its computation is sometimes the reason for its avoidance (Pinheiro &

Bates, 1995) and (Pinheiro & Chao, 2006).
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The Adaptive Gaussian Quadrature (AGQ)

The following relationship holds true for the function in Equation 4.13

φ(ui)

ni∏
j=1

f(yij |
√

Ψui) ∝ f(bi|yij) (4.18)

This density can be approximated by a normal density φ(ui;µi, τ
2
i ) ∼ N(µi, τ

2
i ). The

prior density φ(ui), instead of being viewed as the weight function, may be rewritten

as

∫ +∞

−∞
φ(ui;µi, τ

2
i )


φ(ui)

ni∏
j=1

f(yij |
√

Ψui)

φ(ui;µi, τ
2
i )


dui (4.19)

which approximates the posterior density as the weight function for the quadrature.

Changing the variable of integration from ui to zi =
(ui − µi)

τi
yields the following

result

f(yi) =

∫ +∞

−∞

φ(zi)

τi



φ(τizi + µi)

ni∏
j=1

f(yij |
√

Ψ(τizi + µi))

exp

(
−z2

i

2

)
√

2πτ2
i


(4.20)

Applying the GHQ as stipulated in Equation 4.11

f(yi) =

∫ +∞

−∞

φ(zi)

τi



φ(τizi + µi)

ni∏
j=1

f(yij |
√

Ψ(τizi + µi))

exp

(
−z2

i

2

)
√

2πτ2
i


(4.21)
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≈
R∑
j=1

wj


φ(τiaj + µi)

ni∏
j=1

f(yij |
√

Ψ(τiaj + µi))

exp(−a2
j/2)√

2πτ2
i


=

R∑
j=1

πij

ni∏
j=1

f(yij |
√

Ψαij)

(4.22)

where

αij ≡ τiaj + µi (4.23)

are the shifted and re-scaled quadrature points with weights, and

πij ≡
√

2πτi exp
(wj

2

)
φ(τiaj + µi)wj (4.24)

In the GHQ, the quadrature points xj and the weights wj are fixed and indepen-

dent of φ(ui).f(ui), the function describing the contribution to the likelihood of each

observation, whereas in the AGQ the quadrature points and weights are adapted to

support φ(ui).f(ui). Thus, the term adaptive refers to the scaling of the function be-

ing integrated using the Hessian function at optimal points as is similarly done in

Laplacian approximation. A typical drawback of the AGQ is that the application

is time consuming and computationally complex since calculating the quadrature

points and weights are dependent on the fixed effects and variance components. In

addition, the parameters need to be updated at each iteration and the computation

is further complicated when an increasing number of random effects are included in

the model (Handayani et al., 2017).

4.4 Model Selection Criteria

An important feature of model evaluation is selecting an appropriate model to ac-

curately capture the relationship between the outcome and the explanatory effects.

This process is referred to as model selection and makes use of the concept of an
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information criterion. This is a technique designed to minimise the amount of infor-

mation required to express data as a concise regression model which is an accurate

representation of the data (Wasserman, 2000) and (Acquah, 2010). In practice, two

penalised criteria are usually employed in selecting an appropriate model.

The Akaike information criterion (AIC) and the Bayesian information criterion (BIC)

have been used extensively in this endeavour. The two methods differ in that the

AIC is concerned with finding the most simplistic model while the BIC is designed

to identify the true model. Bozdogan (1987) and Acquah (2010) note that as the AIC

does not depend directly on sample size, the property of asymptotic consistency is

absent in AIC but present in BIC, resulting in the BIC sometimes being favoured to

produce more simple models.

Extending on the basic principles of the AIC and BIC has been the focal point of

research over many years resulting numerous revisions to existing methods and the

development of new information criterion for model selection. However, the sim-

plistic approach and application of the AIC and BIC methods has seen widespread

use in applied statistical investigation. The formulation of the AIC and BIC is de-

tailed below as delineated by Hilbe (2009).

4.4.1 Akaike Information Criterion - AIC

The AIC is one of the most prominent information criterion used in model selection

first proposed by Hirotugu Akaike (1974). The AIC technique selects a model by

minimising the negative log-likelihood function conditioned on the number of pa-

rameters in the regression model. The original formulation of the AIC is given as

follows

AIC = − 2

n
(lnL(β)− k) (4.25)

where lnL(β) represents the log-likelihood function and k is the number of predictor

108



4.5. Generalized Linear Mixed Models Applied to the HIPSS Baseline Data

variables included in the model including the model intercept term. Doubling the

number of predictor variables, that is, the 2k term is referred to as the penalty term

that adjusts for the size and complexity of the model. Thus, if more parameters

are introduced into the model, any bias will be mitigated. The consideration of the

sample size, n allows for a per observation contribution. Thus, larger samples of n

produces a smaller AIC which is favoured as an indication of a better model fit.

4.4.2 Bayes Information Criterion - BIC

The Bayes information criterion (BIC) proposed by Raftery (1995) is another method

of model selection that features prominently alongside the AIC. Similar to the AIC,

models that minimize the BIC are considered favourable. Unlike the AIC however,

the BIC is conceptualised within a Bayesian framework and hence is designed to

find the most probable model.

The Bayes information criterion was originally defined by Raftery (1995) as

BIC = D − df ln(n) (4.26)

where D is the model deviance statistic, n represents the number of model observa-

tions and df, the model degrees of freedom. Whilst various simulation studies have

been conducted to examine the superiority of the BIC or the AIC, these are consid-

ered superfluous as the theoretical aspects between both methods differ to a degree.

As such, for purposes of application, it is accepted that the stated aim of the AIC and

BIC is to aid in the selection of a concise and accurate model (Acquah, 2010).

4.5 Generalized Linear Mixed Models Applied to the HIPSS

Baseline Data

The analysis presented herein was conducted using SAS Version 9.4. The procedure,

PROC GLIMMIX allows a generalised linear mixed model (GLMM) to be fitted to
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the HIPSS data. Under conventional circumstances in which the PROC GLIMMIX

statement is employed, the METHOD statement, which specifies the method of ap-

proximation of the likelihood function, would be the Laplace method of approxima-

tion. However, the inclusion of survey weights in the data necessitates the Gauss-

Hermite quadrature (GHQ) method be used in the approximation in order to pro-

duce a weighted maximum likelihood function to determine the regression coeffi-

cients. The study setting consisted of 221 enumeration areas from which fifty house-

holds were randomly selected from each PSU. Further to this, a logit link function

was used in conjunction with a binary distribution. Established methods of model

selection such as the Akaike Information Criterion (AIC) and the Bayes Information

Criterion (BIC) was used as the GHQ is likelihood based. The RANDOM statement

specifies the random effect (PSU) that is to be included in the model. In order to ac-

count for heterogeneity between clusters, the inclusion of a cluster varying intercept

term in the model resulted in a random intercept model.

Additionally, within the RANDOM and MODEL statements, consideration is given to

the survey weights, particularly individual weights. Within the realm of GLMM,

the primary sampling unit (PSU) corresponds to the SUBJECT statement while the

WEIGHT statement refers to the survey weight variable.

Furthermore, the need for a random intercept was evaluated using the COVTEST

procedure which produces likelihood ratio tests for the covariance parameters. Table

4.1 below summarises the results of this test when a weighted GLMM is fitted to

the HIPSS data. At a 5% level of significance the null hypothesis of the covariance

parameters equaling zero was rejected indicating that the inclusion of the random

cluster effect was highly significant in the model.

Table 4.1: Test of covariance parameters based on the likelihood.

Label DF -2Log Likelihood χ2 P-Value

No G - side effects 2 186,956 275.30 <0.0001
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4.5. Generalized Linear Mixed Models Applied to the HIPSS Baseline Data

An a priori consideration to model selection of the fixed effects is fitting a covariance

structure for G. Four such covariance structures were fitted; the initial one being the

Variance Components (VC) covariance structure which is the default in SAS Version

9.4. The other covariance structures fitted were the Unstructured (UN), Compound

Symmetry (CS) and the AR(1) covariance structures. Table 4.2 displays the differ-

ent covariance structures fitted plus their corresponding AIC values. The Variance

Components (VC) and the Unstructured (UN) covariance structures produced the

lowest AIC value. Owing to the less complex nature of fitting the structure, the Vari-

ance Components covariance structure was selected.

Table 4.2: AIC Goodness of Fit for the GLMM

Covariance Structure AIC

Variance Components (VC) 186,822.7∗

Compound Symmetry (CS) 186,825.3

Autoregressive (AR) 186,824.7

Unstructured (UN) 186,822.7

∗ Selected covariance structure

The Pearson Chi-Square statistic over its degrees of freedom was 0.67 which is rela-

tively close to one. This is an indicator that the variability in the data was properly

modelled thus mitigating the effects of any residual over-dispersion. Furthermore,

the estimate for the variance component for the cluster effect was 0.8687 with a stan-

dard error of 0.4502. This estimate exceeds zero and further justifies the inclusion of

a random effect in the model.

A GLMM of the fixed effects was produced and all two-way interactions were ex-

plored. Thereafter, selected two way and consequently, selected higher order three-

way interactions were explored and included in the model producing the final GLMM

which is summarised in Table 4.3. The denominator degrees of freedom was calcu-
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lated to be 9,754. The results emanating as a consequence of the inclusion of a ran-

dom effect concurred with the results produced by the SLR model. Consistent with

the SLR model, all socio-economic and socio-demographic variables were significant

while variables such as HIV stigmatisation and the use of contraception, variables

that may be described as behavioural predictors, were not significant in predicting

HIV infection.

The two-way interaction between highest level of education and knowledge about

HIV prevention and the highest level of education and the participants’ acquisition

of HIV clinical and preventative information, were significant. Furthermore, the

higher order three-way interaction between participants’ highest level of education,

knowledge about HIV prevention and their acquisition of HIV information, was sig-

nificant. All variables deemed to be either significant or not significant were done

at a 5% level of significance. Table 4.4 summarises the adjusted odds ratio and their

corresponding 95% confidence interval.

Examining the socio-economic dynamics of the study setting under the GLMM,

household deprivation appeared consequential of an increased odds of HIV infec-

tion among those resident in such houses. The result largely concurred with the SLR

model wherein it was observed that participants residing in households with ex-

treme levels of socio-economic deprivation displayed a higher odds of HIV infection.

Under the GLMM as in the SLR model, the odds of HIV infection among residents

of the bottom 10% of extremely deprived households (aOR=1.399, 95% CI:0.9796;

2.006) was twice that of residents in significantly deprived households. Participants

residing in seriously deprived households (aOR=1.078, 95%CI:0.703; 1.652) were also

observed to be vulnerable to HIV infection when compared to households that are

considered significantly deprived. At an individual level, and in line with the SLR

model, female participants (aOR=2.216, 95% CI:1.786; 2.750) were observed to be at

a disproportionately higher likelihood of HIV infection than male participants.
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Table 4.4: Odds ratio estimates (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the GLMM

Parameter Odds Ratio (95% CI)

Household Deprivation Level (ref = Significant Deprivation)

No Deprivation 0.729 (0.515 ; 1.032)

Low Deprivation 0.720 (0.529 ; 0.980)∗

Minor Deprivation 0.793 (0.597 ; 1.053)

Intense Deprivation 0.826 (0.609 ; 1.121)

Serious Deprivation 1.078 (0.703 ; 1.652)

Severe Deprivation 0.899 (0.641 ; 1.263)

Extreme Deprivation 1.399 (0.976 ; 2.006)

Gender (ref = Male)

Female 2.216 (1.786 ; 2.750)∗

Age Group (ref = 45-49)

15-19 0.268 (0.167 ; 0.427)∗

20-24 0.609 (0.409 ; 0.906)∗

25-29 1.161 (0.786 ; 1.715)

30-34 2.271 (1.522 ; 3.388)∗

35-39 2.169 (1.453 ; 3.237)∗

40-44 2.651 (1.740 ; 4.040)∗

Marital status (ref = Widowed)

Legally Married 0.191 (0.071 ; 0.571)∗

Separated - Legally Married 0.143 (0.023 ; 0.896)∗

Cohabiting 0.508 (0.176 ; 1.470)

Single - Never Married or Cohabited 0.559 (0.216 ; 1.446)

Divorced 0.634 (0.131 ; 3.059)

Single - Live in Partner 0.621 (0.226 ; 1.705)

Continued on next page
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Continued from previous page

Variables Odds Ratio (95% CI)

Perceived Risk of HIV (ref = Already HIV Positive)

Assured Infection 0.010 (0.005 ; 0.020)∗

Probable Infection 0.007 (0.004 ; 0.014)∗

Probable Non-Infection 0.006 (0.003 ; 0.010)∗

Assured Non-Infection 0.004 (0.002 ; 0.007)∗

HIV Stigma (ref = Severe Stigma)

No Stigma 0.764 (0.314 ; 1.859)

Mild Stigma 0.738 (0.295 ; 1.847)

Moderate Stigma 0.570 (0.207 ; 1.569)

Engaged in Sexual Intercourse (ref = Yes)

No 0.534 (0.373 ; 0.765)∗

Diagnosed with an STI (ref = Yes)

No 0.625 (0.432 ; 0.905)∗

Used Contraception (ref = Yes)

No 1.152 (0.942 ; 1.408)

∗Significant at a 5% level of significance

Advanced age also appeared to be indicative of an increased odds of HIV infec-

tion which became increasingly apparent for individuals approaching their midlife,

agreeing with the results of the SLR model. Adolescent participants reported the

lowest odds of HIV infection (aOR=0.268, 95% CI:0.167; 0.427) in comparison with

their study counterparts aged between 45-49. This, while participants in their early

to mid forties were increasingly likely to be HIV positive (aOR=2.651, 95% CI:1.740;

4.040) when compared to those who were aged between 45 and 49 years. The likeli-

hood of HIV infection in participants within the 30-34 years (aOR=2.271, 95% CI:1.522;

3.388) and 35-39 years (aOR=2.169, 95% CI:1.453; 3.237) age bracket were found to

be markedly higher compared to participants aged between 45-49 years old. In re-

spect of marital status, no significant difference in the odds of HIV infection were
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observed among participants who were cohabiting, single (either living with a part-

ner or have never having married or cohabited) or divorcees. This was in accordance

with the findings under the SLR model.

On consideration of the behavioural and clinical factors, participants who did not

make use of contraception at their sexual debut were 1.152 (95% CI: 0.942; 1.408)

times more likely to be HIV positive than those who did. Furthermore, significant

differences in the odds of HIV infection was observed among participants who prac-

ticed abstinence and those who did not. Additionally, individuals who were not di-

agnosed with sexually transmitted infections were viewed to be less susceptible to

HIV infection than those who attested to a prior STI diagnosis.

Challenging societal discrimination that is sometimes inherent where traditionalist

attitudes prevail cannot be understated. In these societies HIV related stigma can

be found with negative psychological impacts on the people it is directed at. In

measuring the level of HIV stigmatisation prevalent in the study setting, the results

revealed that HIV stigmatisation was not associated with rising odds of HIV infec-

tion as there was no significant differences noted across the increasingly intensifying

levels of stigmatisation espoused by the participants.

Figure 4.1 depicts the higher order three-way interaction between a participant’s

highest level of education, knowledge about HIV prevention and acquisition of HIV

information. In Figure 4.1 it can be observed that the participants who appear to

be lacking in adequate clinical and preventative information, irrespective of their

knowledge of HIV prevention and level of educational attainment, were vulnerable

to HIV infection.

Furthermore, there appeared to be mutually high odds of HIV infection between

these participants and moderately well informed participants with academic qual-
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ifications ranging from incomplete secondary school to having completed a sec-

ondary education. In addition, these participants possessed moderate to high levels

of knowledge about HIV prevention. Respective participants who were in receipt of

moderate to advanced levels of HIV preventative information and having graduated

from a tertiary institution, were observed as having lower odds of HIV infection.

This observation was noted among those who were moderately informed and well

informed about HIV infection having sought information from a variety of sources.
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4.6 Summary and Discussion

A data set partitioned into smaller subgroups due to a common unmeasured charac-

teristic is commonplace in many of research fields. These subgroups are referred to

as clusters and to account for within cluster correlation, a generalised linear mixed

model is employed in which the clusters serve as random component. The use of the

Gaussian quadrature, a likelihood estimation technique well suited for weighted ob-

servations, is employed for the purpose of parametric estimation.

The results obtained as a consequence of the inclusion of a random effect largely

concur with the results produced by the survey logistic regression model. More-

over, the socio-economic background of participants in tandem with certain socio-

demographic and behavioural determinants of HIV infection were observed to be

significant. These determinants encompassed the scale of household deprivation,

gender, age group, highest academic attainment, marital status, knowledge about

HIV prevention, perceived risk of HIV, whether or not the participant engaged in

sexual intercourse and their acquisition of information pertaining to HIV.

Furthermore, building on the fixed effects, relevant and significant two-way, and

subsequently, three-way interactions were identified and investigated. The two-way

interactions were associations between highest level of education and knowledge of

prevention together with participants’ knowledge about HIV prevention and their

acquisition of HIV information. The three-way interaction investigated the associa-

tion between the highest level of education, knowledge about HIV prevention, and

acquisition of HIV information. These joint effects were significant under the GLMM

as was the case under the SLR model.

It is usually the case that spatial autocorrelation is present between selected enu-

meration areas and, subsequently, selected households. This necessitates the use of

geographically weighted regression techniques that are able to compensate for spa-
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tial variability. Failure to account for the correlation structure renders the estimates

arising from the analysis inconsistent due to underestimated standard errors. The

next chapter investigates the effect of spatial variability between primary sampling

units (PSUs).
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Chapter 5

The Spatial Generalised Linear

Mixed Model

5.1 Introduction

When data can be partitioned into smaller subsets of a population, the constituent

subjects will exhibit similar characteristics and other traits. Data with accompanying

geospatial information will show the results of spatial dependencies which intensify

with observations in close proximity. Access to spatial information of data is there-

fore considered vital to allow one to take into consideration both spatial interactions

and spatial externalities in the analysis. Analysing the spatial structure allows one

to address, if necessary, any violation of hypotheses and to confirm the assumptions

of spatial independence.

Autocorrelation refers to the measure of correlation (relatedness) of a variable with itself

when observations are considered in terms of a time lag or in space, a spatio-temporal

shift. Spatial autocorrelation is the correlation (whether positive or negative) of a vari-

able with itself as a consequence of the spatial location of the variable. Spatial auto-

correlation is often the result of undetectable and sometimes complex processes that

are unable to be quantified, thus giving rise to spatial structuring.
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From a statistical viewpoint, analyses are conducted on the hypotheses of indepen-

dence among the variables. However, a variable that is spatially autocorrelated vi-

olates this hypothesis and challenges the validity of the results. It should be noted

that spatial autocorrelation and spatial structure do not exist independently of one

another and that analysis of spatial autocorrelation enables analysis of spatial struc-

tures.

To codify the process of accounting for spatial variability, one first detects for spatial

autocorrelation among the regression residuals. The rationale behind investigating

residual autocorrelation allows the researcher to mitigate any structural defects by

accounting for autocorrelation so that the resultant model is free of same and thus

will not violate the assumption for normality. Thereafter, once spatial autocorrela-

tion is established within the residuals, the presence of autocorrelation can be ac-

counted for in the GLMM (Chen, 2016). The resulting model, once survey weights

are accounted for, is termed a spatially weighted generalised linear mixed model.

The results emanating from this are compared and contrasted with the SLR model

and the GLMM.

5.1.1 The Weight Matrix

Prior to assessing spatial autocorrelation, one first needs to formally define what

constitutes two observations being in close proximity. In this instance, one must con-

ceptualise a measure of contiguity or spatial adjacency between two observations pre-

sented in the form of a n×n weight matrix, wij . Each wij reflects the spatial influence

of observation i on j. The weight matrix is based on the centroid distance dij between

the pairs of spatial units i and j.

The weight matrix, wij , may be mathematically described as per the following forms

according to (Leung et al., 2000).
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K-Nearest Neighbour Weight Matrix

Let each centroid distance, dij , from spatial observation i to spatial observation j, ∀

j 6= i, be ranked as dij(1) ≤ dij(2) ≤ .... ≤ dij(n−1). Then for each k = 1, ..., (n − 1),

the set Nk(i) = {j(1), j(2), ..., j(k)} contains the k closest units to i. For a given k, the

k-nearest neighbour weight matrix, wij , expressed mathematically, has the form

wij =


1 if j ∈ Nk(i),

0 otherwise.

(5.1)

The Gaussian Weight Function

The Gaussian function is one of the commonly used weighting functions. The prin-

ciple behind the Gaussian weighting function is that observations close to the centre

are more important and points further away from the centre are considered insignif-

icant. If i is a spatial location, an observation, j, close to i will exert more influence

on i than any observation further away from i than j. Therefore, any analysis should

place more emphasis on j owing to its proximity to i than any other observation

within the geospatial location.

The Gaussian weight function is given below

wj(i) = exp(−θd2
ij) j = 1, 2, ...., n (5.2)

where dij is the distance between spatial locations i and j and θ is a pre-specified

parameter that determines the centre of the spatial location and defines the degree

to which the two locations are deemed close.
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The Distance Weight Function

Lastly, the distance function is another possible weighting function. If the spatial

weights are set to zero beyond a radius d and decrease monotonically to zero with

increasing distance, dij , then the distance weighting function is given by

wi(j) =



(
1−

d2
ij

d2

)2

if dij ≤ d,

0 if dij > d

(5.3)

5.2 Measures of Spatial Autocorrelation Among Residuals

As stated in the introduction, the focus will be on testing for spatial autocorrelation

among the residuals, r = (r1, r2, ..., rn)′. The null and alternative hypothesis for

testing for spatial autocorrelation among the residuals is, as per (Leung et al., 2000):

H0 : There exists no presence spatial autocorrelation among the residuals

H1 : There exists the presence of spatial autocorrelation among the residuals

Alternatively, the null hypothesis, H0 may be expressed as

H0 : Var(r) = E(rr′) = σ2I (5.4)

The alternative hypothesis is that there is spatial autocorrelation among the resid-

uals (either positive or negative) and among the residuals with respect to a weight

matrix, W , which is governed by the underlying spatial structure which in itself

is determined by the degree of spatial contiguity or spatial adjacency (Leung et al.,

2000). The appropriate rejection region for the hypotheses test for Moran’s I and

Geary’s C are addressed in Subsection 5.2.1 and Subsection 5.2.2 respectively.
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In seeking to test for the presence of spatial autocorrelation, two methods are fre-

quently employed. These are Moran’s I and Geary’s C proposed by Moran (1950)

and Geary (1954) respectively. While Moran’s I is a more global measurement and

though demonstrably proved by Cliff & Ord (1975) and Cliff & Ord (1981) in simu-

lation studies to be more consistent and powerful than Geary’s C, the latter is em-

ployed in this study owing to its sensitivity to differences in smaller neighbour-

hoods. Largely, however, one should expect the same conclusion irrespective of

the methodology used. Moran’s I and Geary’s C are presented below as individ-

ual methods employed to detect the presence of spatial autocorrelation among the

residuals as delineated by Leung et al. (2000).

5.2.1 Moran’s Index (I)

For a vector of residuals r, estimated by r̂, where r̂ = (r̂1, r̂2, ...., r̂n)′ and W , a pre-

specified spatial weight matrix, W = (wij), Moran’s I is expressed mathematically

as

I =
n

s


n∑
i=1

n∑
j=1

wij r̂ir̂j

n∑
i=1

r̂2

 =
n

s

(
r̂′Wr̂

r̂′r̂

)
(5.5)

where

s =

n∑
i=1

n∑
j=1

wij (5.6)

Now,W is frequently used in a row standardised form in which the rows ofW sum

to one, thereby renderingW as asymmetric. In this instance,W ∗ is defined as a new

symmetric spatially weighted matrix, where

W ∗ = (w∗ij) =
1

2
(W +W ′) (5.7)
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As such it can be assumed that without the loss of generality, W is also symmetric

and that

r̂′W ′r̂ = r̂′Wr̂ (5.8)

The term n
s is a scaling factor and thus may be excluded without any ensuing reper-

cussion on the p-value for W , the symmetric spatial weight matrix of the nth order.

Hence, from Equation 5.8, the following holds true

r̂W ′r̂

r̂′r̂
=
r̂W r̂

r̂′r̂
(5.9)

Thus, Moran’s I, as per Equation 5.5, may be expressed in terms of the residuals as

I =
r̂′Wr̂

r̂′r̂
(5.10)

For large values of I, it follows that there is evidence of positive autocorrelation

among the residuals with the converse being true. If i is defined as the observed

value for I, then, with respect to the p-values of I, the following holds true for the

null and alternative hypotheses respectively, where if;

p =


P(I ≥ i) H0 is not rejected,

P(I ≤ i) H0 is rejected

(5.11)

Hence, following the existing framework as per Section 5.2 it can be concluded that

at an α level of significance and with the presence of spatial autocorrelation (H0 not

rejected) the following assumption is justified

r = (r1, r2, ..., rn)′ ∼ N(0, σ2I) (5.12)
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5.2.2 Geary’s Coefficient (C)

For the residuals, r̂ = (r̂1, r̂2, ...., r̂n)′ as described in Subsection 5.2.1 and a pre-

specified spatial weight matrix W = (wij), Geary’s C is expressed mathematically

as

C =
n− 1

2s


n∑
i=1

n∑
j=1

wij(r̂i − r̂j)2

n∑
i=1

r̂2
i

 (5.13)

Through a rudimentary mathematical manipulation, the numerator in Equation 5.13

may be expressed in vector notation as

n∑
i=1

n∑
j=1

wij(r̂i − r̂j)2 = r̂′(D − 2W )r̂ (5.14)

where the sum of the ith row and ith column are respectively given by

wi. =

n∑
j=1

wij and w.j =

n∑
i=1

wji (5.15)

D is the diagonal of the weight matrix expressed as

D = diag(w1. + w.1w2. + w.2w3. + ......+ wn. + w.n) (5.16)

Thus, substituting Equation 5.14 into Equation 5.13 and excluding the scale factor
n− 1

2s
, Geary’s C may be expressed as

C =
r̂′(D − 2W )r̂

r̂′r̂
=
r̂′Ar̂

r̂′r̂
(5.17)

where

A = (D − 2W ) (5.18)

127



5.2. Measures of Spatial Autocorrelation Among Residuals

and ifW is symmetric, then

D = 2 diag(w1., w2., ...., wn.) = 2D∗ (5.19)

Thus, if D∗ is the diagonal matrix wherein each element along the main diagonal

corresponds to the row sum of W ·, then A = 2(D −W ) is symmetric. For a W ,

whereW is row standardised, thenA∗ is defined as

A∗ =
1

2
(A+AT ) (5.20)

= D − (W +W T ) (5.21)

Then, ifA∗ is symmetric, it can be assumed, without loss of generality, thatA is also

symmetric and that

r̂′A∗r̂ = r̂′Ar̂ (5.22)

Now, for a pre-specified weight matrix,W , a relatively low value for C, implies that

the alternative hypothesis holds true and that there is a presence of spatial auto-

correlation among the residuals, r̂, while the converse is true. Suppose c is used to

denote the observed value for C and P, the p-value of C. Thus, the test for the null

hypothesis, H0, can be encapsulated as

p =


P(C ≥ c) H0 is not rejected,

P(C ≤ c) H0 is rejected

(5.23)

Hence, following the existing framework as per Section 5.2 it can be concluded that

at an α level of significance and with the presence of spatial autocorrelation (H0 not

rejected) the following assumption is justified

r = (r1, r2, ..., rn) ∼ N(0, σ2I) (5.24)
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5.3 Point Referenced Modelling

5.3.1 Preliminary Considerations

Suppose there is a spatial process, S, with the outcome Y (S), a mean µ(s)=E(Y (s))

and associated variance σ2
s valid ∀ S ∈ D, the spatial domain. The outcome is said

to be Gaussian if, for n ≥ 1, and for spatial locations denoted by S = {s1, s2, ..., sn},

Y = (Y (s1), Y (s2), ....., Y (sn)) follows a multivariate normal distribution.

As with time series models, spatial models also exhibit stationarity where changes

over time and space (spatio-temporal shifts) do not result in a change of distribution.

Stationarity can be quantified into three unique categories listed below. Consider n

spatial locations ∀ n ≥ 1 h ∈ <D. Then, a spatial process is deemed:

• Strictly Stationary: if the distribution of (Y (s1), Y (s2), ...., Y (sn)) and (Y (s1+

h), Y (s2 + h), ...., Y (sn + h)) does not change despite a spatio-temporal shift.

• Weakly Stationary: if µ(S) ≡ µ. This implies that the process has a constant

mean. Furthermore, a process is weakly stationary if Cov(Y (S), Y (S + h)))=C(h)

(Cressie, 1993).

• Instrinsically Stationary: if a process is considered intrinsically stationary

then V ar(Z(S+h)−Z(S)) is not dependent on the position of S but rather on

the distance between them. In addition, Matheron (1965) expresses the mean of

an intrinsically stationary process as E
[
(r(S + h)− r(S))2

]
. In other words,

the variance is only determined by the lag distance h and there is constant

expectation. Hence, the concept of a variogram arises allowing the following

relationship to be stated

V ar(Z(S + h)− Z(S)) = 2γ(h) (5.25)

The premise behind stationarity is that if we regard the outcome from a spatial lo-

cation as a regionalised phenomenon, it is obvious that for each spatial location there
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is only one realisation (outcome). Matheron (1965) thus contends that for inferential

geostatistics to be plausible, there should be additional assumptions made about the

random function governing Y (S). As a result, this has led to stationarity assump-

tions which are a priori considerations and summarised as per (Matheron et al., 2019,

p. 46) 1

”A stationary random function is, in a way, repeating itself in space, and this

repetition gives a new opportunity for statistical inference from a single realisa-

tion”

5.3.2 The Variogram Procedure

Consider an intrinsically stationary spatial process, S, in which the spatial locations,

S = (s1, s2, ...., sn)′, are governed by the restriction [Z(S),S ∈ D,D ⊂ <d]. The pro-

cess of fitting a variogram model commences by first fitting an empirical semi-variogram

(Matheron, 1963). The empirical semi-variogram is a rudimentary, nonparametric

estimate of the semi-variogram which is then compared against a series of theoretical

semi-variogram models which are further discussed in Section 5.3.4. The empirical

semi-variogram is

γ̂(si − sj) =
1

2N(h)

∑
(si,sj)∈N(h)

[Y (si)− Y (sj)]
2 = γ̂(h) (5.26)

The constituent components of an intrinsically stationary process is referred to as

isotropic if γ(si − sj) is a function of the Euclidean distance, ‖si − sj‖ between two

observed locations allowing the simpler notation, γ(h) to be used to specify the semi-

variogram (2γ(h) would be the variogram). A valid semi-variogram must be condi-

tionally negative and must satisfy the following condition

n∑
i=1

n∑
i=1

wijγ(si − sj) ≤ 0 (5.27)

1This book was a posthumous publication of the lectures and seminal works of Georges Matheron
and published 19 years after Matheron’s demise in August 2000.
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for each pair of locations s1, s2, ..., sn and all weights w1.w2., ..., wn. 3
n∑
i=1

wi = 0.

Now, for a sample of given realisations from Y (·), the empirical variogram is the

unbiased estimator of the isotropic variogram and is expressed as

2γ̂(h) =
1

|N(h)|
∑

(si,sj)∈N(h)

[Y (si)− Y (sj)]
2 (5.28)

where

N(h) = Card{(si − sj) : ‖si − sj‖ = h : ∀i, j ∈ [1, 2, ..., n]} (5.29)

‖N(h)‖ is the number of distinct pairs in N(h). Furthermore, the semi-variogram

may be estimated in different directions in a particular spatial location thus high-

lighting its aniostrophic property.

Geo-statistical research suggests the use of several theoretical models that are equipped

to fit the data to a sample variogram. For the purpose of this study, we consider six

theoretical models which are further examined in Section 5.3.4 in concert with how

these models link with the parameters of the theoretical variogram.

5.3.3 Construction of the Theoretical Variogram Model

As stated earlier, an important consideration in variograms is that of isotropy. Baner-

jee et al. (2004) state that if the semi-variogram, γ(h), depends only on the separation

vector via its length ‖h‖ then this process is called isotropic, and if not, it s referred

to as an aniostrophic process. Hence, an isotropic process, [γ(h) ∈ <D] which is also

univariate, can be expressed as γ(‖h‖).

A sample variogram involves using the input distance h between two points to pro-

duce a variogram estimate γ(h) which explains the variation in Y over these two

points. The construction of the sample variogram can be quantified into the four

steps detailed below (West, 2001):
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1. The range of distances between two sampled points is divided into a set of in-

tervals wherein each lag or interval h is sufficiently large and contains enough

point pairs for estimation in all intervals. While a benchmark of at least thirty

point pairs are deemed sufficient, it is advantageous to have as many pairs as

possible for plotting γ(h) against h.

2. Compute the distance between every pair of sample points together with the

squared difference in Y values.

3. Assign each pair of sampled points to an interval; this results in accumulated

variance in each level.

4. Thereafter, once each pair of points has been assigned an interval, compute

the average variation per interval. This value will be γ(h) and is then plotted

against the midpoint distance of each interval h.

The resulting plot consists of as many points as there are intervals with an estimate

for each distance. Computing a variogram to model all possible distances rather

than relying solely on a plot of the midpoints of the intervals is a crucial step. In this

endeavour, theoretical variogram models are employed to fit the variogram.

5.3.4 Calculation of the Theoretical Variogram Model

A significant advantage of isotropic processes is their simplicity of interpretation

and that numerous parametric forms of isotropic processes are available for imple-

mentation in geostatistical models (Banerjee et al., 2004). Discussed below are the

different parametric forms of isotropic processes. Whilst a variety of these paramet-

ric forms are available, a select few, namely those that are used in the analysis and

will eventually inform the covariance structure are addressed below as per (Banerjee

et al., 2004).

If τ2 is defined to be the nugget which is often viewed as a non-spatial effect variance,

and σ2 as the sill or spatial effect variance then along with φ, as the range parameter
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(sometimes called the decay parameter), the following variogram forms are consid-

ered.

Linear: The linear isotropic process is a straight line semi-variogram. As ‖h‖ →

0, γ(h) → ∞. This linear semi-variogram is not weakly stationary despite being

intrinsically stationary.

γ(h) =


τ2 + σ2‖h‖, ‖h‖ > 0, τ2 > 0, σ2 > 0

0, otherwise

(5.30)

Spherical: The validity of the spherical semi-variogram does not extend beyond

the third dimension; as for fourth and beyond, the covariance matrix will not be

positive definite. An advantageous feature to fitting a spherical variogram is the

clearly defined nugget, sill, and range; the three components that constitute the

semi-variogram.

γ(h) =



τ2 + σ2, ‖h‖ ≥ 1
φ

τ2 + σ2

{
3φ‖h‖

2
− 1

2(φ‖h‖)3

}
, 0 < ‖h‖ ≥ 1

φ

0, otherwise

(5.31)

Exponential: The exponential model is considered to be more advantageous than the

spherical variogram in that it is of a simpler functional form in all dimensions. The

exponential variogram is one that approaches the sill gradually but never converges

with the sill.

γ(h) =


τ2 + σ2(1− exp(−φ‖h‖), ‖h‖ > 0

0, otherwise

(5.32)
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Gaussian: The Gaussian variogram is analytic and produces smooth realisations of

the spatial process. It is similar to the exponential function and is observed to ascend

gradually from the nugget prior to which it rapidly advances toward the sill.

γ(h) =


τ2 + σ2(1− exp(−φ2‖h‖2)), ‖h‖ > 0

0, otherwise

(5.33)

Powered Exponential: The powered exponential variogram produces a family of valid

variograms. On inspection, it can be deduced that for p =1,2, the powered exponen-

tial variogram is the exponential and Gaussian variograms respectively.

γ(h) =


τ2 + σ2(1− exp(−|φ‖h‖|p)), ‖h‖ > 0

0, otherwise

(5.34)

Matérn: The Matérn variogram stems from Matérn (1960). The parameter v is called

the smoothness parameter, Γ(.) is the usual gamma function, and Kv is the modified

Bessel function of order v.

γ(h) =


τ2 + σ2

[
1− (2

√
vφ)v

2v−1Γ(v)
Kv(2

√
v‖h‖φ)

]
‖h‖ > 0

0, otherwise

(5.35)

5.3.5 Components of the Semi-Variogram

The significance of the variogram in spatial statistics cannot be understated as it

plays a significant role in facilitating one’s understanding of the observations and

underlying spatial autocorrelation structure. It can therefore be unequivocally stated

that the variogram is a focal point of geostatistical methods.
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However, the empirical variogram and accompanying properties, as detailed in Sec-

tion 5.3, cannot be directly applied as some of these properties are not satisfied. In

order to allow for its implementation in geostatistical models, various adjustments

are required using theoretical models that are well equipped for geostatistical analy-

sis. Prior to detailing these adjustments, we proceed by presenting the classical form

of the variogram and detailing the constituent components that constitute the vari-

ogram. Thereafter, we address the functions that satisfy the aforementioned proper-

ties by detailing how these are configured to effect meaning to the concepts detailed

below.

The structure of the variogram is such that it initially increases up to a certain level

forming a plateau. At this level the value of h corresponding to the plateau is called

the range. The range is understood to be the relationship between the covariance

function and the semi-variogram and represents the point at which total variability

is reached.

Furthermore, to understand why the semi-variogram is increasing at this point con-

sider the covariance function of two observations h distance apart. The covariance

relates to the semi-variogram as per the following function

2γ(h) = V ar[Y (S + h)− Y (S)] (5.36)

which, via an elementary mathematical manipulation is

2γ(h) = 2[C(0)− C(h)] (5.37)

thus yielding the following result

γ(h) = C(0)− C(h) (5.38)

As the covariance is a decreasing function for increasing distance, it can be deduced
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from Equation 5.36 that the variogram is an increasing function for a decreasing co-

variance function.

At a certain distance after the peak of the range, the covariance is cancelled out

beyond which there is no possible relationship between the observed values. With

respect to the semi-variogram, the values beyond the range are constant implying

that C=C(0)=σ2. This point is referred to as the sill and is the point at which, for large

values of h, corresponds to the variance of the observation(s). Now, for h = 0, the

value of the variogram is zero, however, for values close to zero, the variogram takes

on values larger than zero resulting in a level of discontinuity at or near the origin.

This phenomenon, which can be regarded as one of the limits of the variogram, is

called the nugget. The nugget can be regarded as the intercept of the variogram

or a representation of measurement error at separations smaller than the sample

distance. Drawing on the explanation of the semi-variogram by Matheron (1965),

the nugget effect can be encapsulated as the variation between two measurements

made at infinitely close locations from which arises two effects:

• Variability of the measuring instrument: the nugget is partly a measurement

of statistical errors that are spatially dependent.

• The real nugget effect: a sudden change in the measured parameter possibly

ascribed to sampling error and short-scale variability resulting in unusual vari-

ation between two observations.

These components come together to form the variogram which is shown in Figure

5.1.
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Figure 5.1: Components of the semi-variogram (Arnold, 2013)

5.4 Multilevel Spatial Models

Spatial modelling has become indispensable in contributing to societal understand-

ing of numerous facets of everyday life. Advances in multiple spheres of scientific,

societal and economic research can be attributed to the conceptualisation of spatial

regression. Spatial data is considered a realisation from a random field, and the

focus is largely based on predicting a random variable at a new location or region

(Shojaei et al., 2018). In this respect, Kriging, a geostatistical technique developed

in the late 1950s by Matheron (1963) building on the work of Danie Krige, a South

African mining engineer who proposed innovative methods for mining estimation,

is a frequent topic of discussion and application (West, 2001). As the primary focus

of this section is modelling spatial variation, Kriging is not discussed any further.

Whereas random effects have the benefit of accounting for spatial correlations, these

are usually unobserved and cannot be predicted without the benefit of prior infor-

mation (Fortin, 2013) and (Skrondal & Rabe-Hesketh, 2009). In this respect, a gen-

eralised linear mixed model with spatially correlated random effects is employed in

the analysis of discrete or continuous data. The random effects are usually a zero

mean Gaussian random field (GRF) (Shojaei et al., 2018).
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The spatial generalised linear mixed model (SGLMM) is presented as per Bonat &

Ribeiro (2016) and Fortin (2013), and together with the maximum likelihood esti-

mation technique, the Gauss-Hermite quadrature (GHQ) is adapted to include the

spatial element for observations located within a spatial domain. The GHQ is em-

ployed because it is equipped for the approximation of regression coefficients in the

presence of spatial weights.

5.4.1 The Spatial Generalized Linear Mixed Model

Suppose that y = (y1, y2, ...., yn)′ are recorded observations from spatial locations

S = (s1, s2, ..., sn)′ and that y is the realisation of Y = (Y1, Y2, ...., Yn)′. Then the

spatial generalised linear mixed model (SGLMM) is given by

Y (S)|S(s) ∼ f(·, µ(S), ψ)

f(µ(S)c) = xTijβ + σzij(S, γ) + εR

= Xiβ +Zi(S) + εR (5.39)

S(s) ∼ N(0,Ψ)

The SGLMM is formulated on the assumption that Y1,Y2, ...,Yn are conditionally in-

dependent for a Gaussian spatial process S(s) which is distributed as f(·, µ(S), ψ).

The SGLMM comprises two sets of parameters, µ(S)c and ψ; the conditional mean

and the dispersion or precision parameter respectively. The conditional mean is re-

lated to the linear predictor through the link function g(·). The dispersion parameter

is included in the probability density function but treated independently as an addi-

tional parameter when evaluating the likelihood function.

Furthermore, the spatial process comprises a spatially dependent process Z(S) and

spatially independent process (R), each with unit variance and scaled parameter σ

and ε respectively. The linear predictor consists of the fixed effects,Xiβ, the spatially
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correlated random effects Z (S) and the spatially uncorrelated random component

εR = δ ∼ N(0, εI). The design matrix X of the potential covariates, and β, the

column vector of regression parameters, are given by

X =



1 X12 · · · X1j

1 X22 · · · X2j

...
...

. . .
...

1 Xi2 · · · Xij


n×(t+1)

,β =



β0

β1

β2

...

βt+1


(t+1)×1

In the realm of geostatistics, Z(S), is a unit variance Gaussian random field (GRF)

with correlation function ρ(h, γ), for ρ ∈ D. The correlation function which is com-

posed of h, is the distance between two spatial locations given by the Euclidean

distance ‖si − sj‖ and γ, the parameter measuring spatial correlation.

5.4.2 Maximum Likelihood Estimation

The ith cluster contributes to the likelihood function through the marginal density

of y which is given by f(yi,β,Ψ). As stated in Section 4.3 and reiterated in this

section, the marginal density cannot be specified from the model itself, but, must

be computed from the conditional density of yi given the spatial domain S and the

marginal density of S. This process commences by computing the marginal density

of yi and S and thereafter deriving the marginal density of yi.

The joint density function of yi and S is

f(yi,S,β,Ψ) = f(S; Ψ)f(yi|S;β) (5.40)

= f(S; Ψ)

ti∏
j=1

f(yij , |S;β) (5.41)
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Thus, the marginal density of yi is

f(yi,β,Ψ) =

∫
f(yi,S,β,Ψ) (5.42)

=

∫
f(S; Ψ)

ti∏
j=1

f(yij |S;β)dS (5.43)

Now, owing to the independence of the clusters, the likelihood function is the prod-

uct of the joint and marginal density functions and can be expressed as

L(β,Ψ,y) =
n∏
i=1

∫
f(S; Ψ)

ti∏
j=1

f(yij |S;β)dS (5.44)

Despite the mathematical rigour and computationally demanding nature of the Gauss-

Hermite quadrature, it is presented as a means of evaluating the log-likelihood func-

tion as per Fortin (2013).

Evaluating the Log Likelihood Function

In Equation 5.39, let (S, γ) = ui, then Equation 5.39 can be rewritten as

E(Y(S)|xij) =

∫
f(xijβ + zijui)PDF(ui,Ψu)dui (5.45)

where PDF(ui,Ψ
2
u) is the probability density function of the normal distribution

with a mean of zero and a variance Ψ. The Gaussian quadrature method assumes

the function to be integrated over the variable vi may be expressed as

f(vi) = w(vi)h(vi) (5.46)

where w(vi) is the weighting function and h(vi) is the polynomial to be approxi-

mated. In this respect, f(vi) can be approximated as

∫
f(vi)dvi ≈

r∑
k=1

w′jh(vi,j) (5.47)
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where r is the number of quadrature points and w′j and h(vi,j) represent the weight

function and associated value of the weight function associated with the jth obser-

vation respectively. As the number of quadrature points, p, is increased, the more

precise the approximation is in Equation 5.47. However, increasing the number of

quadrature points exponentially is computationally more demanding. The weights,

w′j , are dependent on the quadrature points as well as the weighting function w(vi).

The Gauss-Hermite quadrature is a special case of the Gaussian quadrature and the

weight function w(vi) = e−v
2
i which is directly applied to Equation 5.45 for a Gaus-

sian PDF. Applying the change of variable technique, we let ui =
√

2Ψ2
uvi, hence

dui
dvi

=
√

2Ψ2
u and consequently, dui =

√
2Ψ2

udvi.. The Gauss-Hermite quadrature

for the spatial generalised linear mixed model is derived thus

f(Y (S|xij)) =

∫
f (xijβ + zijui) PDF(ui,Ψu)dui

=

∫
f (xijβ + zijui)

exp

(
−u2

i

2Ψu

)
√

2πΨu

dui

=

∫
f
(
xijβ + zij

√
2Ψuvi

) exp(−vi)2

√
π

dvi

=

∫
exp(−v2

i )
g
(
xijβ + zij

√
2Ψuvi

)
√
π

dvi

Applying the Gauss-Hermite approximation as per Equation 5.47

≈ 1√
π

r∑
j=1

w′jf(xijβ + zij)
√

2Ψuvi,j (5.48)

At point j, the weight, w′j , is calculated as

w′j =
2r−1r!

√
π

r2[Hr−1(vi,j)]
2 (5.49)

where Hr−1 is the Hermitian polynomial of order r − 1.
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5.5 Accounting for Spatial Variability

5.5.1 Examining Residual Autocorrelation

The Variogram Procedure

Prior to constructing a model that accounts for spatial autocorrelation, it must first

be established whether there is autocorrelation present in the data by detecting the

presence of spatial autocorrelation in the residuals. This process is conducted by

constructing and examining the structure of the empirical semi-variogram which

measures the distance between dwelling units by using GIS coordinates.

A prerequisite requirement to constructing an empirical semi-variogram is to group

the spatial locations into intervals in accordance with the common distance between

them. In SAS Version 9.4, the procedure PROC VARIOGRAM, which produces an em-

pirical semi-variogram, determines the distance between each spatial location using

the uniqueness of the GIS coordinates for a particular location. The procedure also

requires that the user specifies both the size of the lag class and maximum number

of lags using the LAGDISTANCE and MAXLAG commands respectively.

Table 5.1: Pairwise information for 50 classes

Number of Lags 51

Lag Distance 0.0071

Maximum Data Distance in Latitude 0.18

Maximum Data Distance in Longitude 0.31

Maximum Data Distance 0.36

Specifying the appropriate number of intervals usually happens at the discretion of

the researcher and there is no interval that is specific to any given data set. The arbi-

trary nature of the number of interval classes has thus been subject to examination

by Banerjee et al. (2004) and Journel & Huijbregts (1978), recommending that inter-
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vals be wide enough to capture at least thirty pairwise observations per interval. For

the purpose of the construction of the variogram it was decided that spatial locations

would be grouped across fifty classes. Based on this, the following pairwise infor-

mation, presented in Table 5.1 was collated. With the information presented in Table

5.1, a common lag distance of 0.0071 was specified accompanied by a maximum

number of thirty-eight intervals. The figures presented were obtained as follows:

Common Lag-Distance = [Upper Bound - Lag (n+1)]− [Upper Bound - Lag (n)]

= 0.01068− 0.00356

= 0.0071

There was a sufficient number of pairwise observations per class up to and including

the 38th lag, which had a class interval of (0.26697 ; 0.27409). Hence, the following

calculation justifies the maximum number of lags:

Maximum Number of Classes =
0.27409

0.0071
= 38

Figure 5.2: Empirical semi-variogram of the HIPSS data
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Using the information contained in Table 5.1 together with the calculations above,

the empirical semi-variogram is constructed and presented in Figure 5.2. On in-

spection of the semi-variogram, one is able to discern that with increasing distance

between households in the study location, the semi-variogram decreases. This sug-

gests that there is progressively less variation among spatial units (households) the

further apart properties become. The implication herein is that spatial units in close

geographic proximity exhibit spatial autocorrelation.

Detecting Spatial Autocorrelation Using Geary’s C

As discussed in Section 5.2, Geary’s coefficient, often referred to as Geary’s C, is

employed in the detection of spatial autocorrelation, though less frequently than

Moran’s I owing to the latter’s affinity to detect spatial autocorrelation on a global

scale. Notwithstanding this, an advantage of Geary’s C is the localised nature of the

methodology and its affinity for detecting differences in smaller spatial locations.

Table 5.2: Geary’s C for the presence of spatial autocorrelation

Assumption Coefficient Observed Std. Dev. Z Pr.|Z|

Normality Geary’s C 1.0044101 0.000384 11.49 <.0001

As the spatial location of the study forms part of a larger conurbation, Geary C is

well suited in its ability to detect spatial autocorrelation and is thus employed for

this purpose. As is evident in Table 5.2, using Geary’s C, the null hypothesis as

expressed earlier in Section 5.2 is refuted at a 5% level of significance. It may thus

be concluded that there is evidence of spatial autocorrelation in the data concurring

with the findings of the semi-variogram.

At this juncture, once the presence of residual autocorrelation has been established,

there follows the modelling procedure that will now account for the presence of spa-

tial correlation. The process now proceeds by fitting an appropriate spatial covari-

ance structure to the GLMM. In order to determine the most appropriate spatial co-

variance structure, one must specify a range of variogram models in the VARIOGRAM
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procedure and proceed to examine their AICs according to the smaller-is-better cri-

terion. The results of this process are presented in Table 5.3 along with their corre-

sponding AIC. As evidenced in Table 5.3, the spherical variogram is the most appro-

priate structure and will be the selected and specified under the TYPE command in

the PROC GLIMMIX procedure.

Table 5.3: Fit statistics of the spatial covariance structures for the semi-variogram

Spatial Model Spherical Exponential Power Matérn Gaussian

AIC 338.92417 338.92417 338.92418 340.92417 338.92417

Figure 5.3 depicts a comparison of the spherical model with Gaussian and exponen-

tial models. As one is able to discern from the figure, the spherical model is linear

at the origin and the range parameter is exactly the correlation length. This is one of

the salient features of the spherical variogram model; the ease of interpretation as-

sociated with it. In the following section the spherical variogram is employed in the

PROC GLIMMIX procedure to account for the spatial variability that was statistically

shown, via the residuals, to be inherent in the data.

Figure 5.3: Comparison of the spherical variogram model to the Gaussian and exponential
model (Arnold, 2013)
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5.6 Spatial Generalised Linear Mixed Models Applied to the

HIPSS Baseline Data

The analyses presented herein were conducted using SASVersion 9.4. The procedure

PROC GLIMMIX was employed to fit a generalised linear mixed model to the HIPSS

data. Accounting for the inclusion of survey weights, the Gaussian Hermite quadra-

ture method was specified in the METHOD command in lieu of the Laplacian approx-

imation which is conventionally used in the absence of survey weights to iteratively

determine the regression coefficients. Furthermore, the logit link function was em-

ployed together with a binary distribution. Methods of model selection such as the

Akaike Information Criterion (AIC) and Bayes Information Criterion informed the

selection of the model owing to the likelihood-based nature of the Gauss-Hermite

quadrature.

The RANDOM statement specifies a random effect, which is the primary sampling

unit (PSU) that will be included in the model. Additionally, to account for spatial

heterogeneity, a cluster varying intercept is added thus producing a random inter-

cept model. The RANDOM statement accommodates the inclusion of subject specific

weights for multilevel models, particularly in the case of our data, the individual

weights.

As previously detailed in Section 4.5, the COVTEST procedure evaluates the inclu-

sion of a random intercept by producing likelihood ratio tests for the covariance

parameters. As per Table 5.4 the null hypothesis is refuted that the covariance pa-

rameter equates to zero at a 5% level of significance. This indicates that accounting

for clustering is significant in the model.

Table 5.4: Test of covariance parameters based on the likelihood.

Label DF -2Log Likelihood χ2 P-Value

No G - side effects 2 180,218 232.00 <0.0001
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The ratio of the Pearson Chi-Square statistic to its degrees of freedom was 0.68; an

indicator that the variability in the data was properly modelled and that there were

no consequences of residual over-dispersion. A precursor to model selection of the

fixed effects is fitting a covariance structure for G. This is done in the form of fitting

an appropriate variogram using the smaller-is-better criterion of the AIC method of

model selection. As per Table 5.3, the spherical variogram model is selected. The es-

timate for the variance component of the cluster effect was 0.8170 which represents

the partial sill. The estimated range, which appears as SP(SPH), is 14.0000. This

implies that observations more than fourteen units apart are not spatially correlated.

It should be noted that the sphercial covariance structure precisely defines the range,

but that some structures as detailed in 5.3.4 do not. In such instances, spatial re-

searchers have to rely on a predetermined effective range. The effective range is de-

fined as the distance at which the semi-variogram attains 95% of the sill, or alterna-

tively, the distance at which spatial autocorrelation declines to, or below 0.05 which

is considered negligible autocorrelation. However, the effective range is considered

a point of contention among spatial experts. (Stroup, 2012, p. 445) disclaims:

”Our use of 0.05 as the effective range is for the purpose of discussion. In prac-

tice, effective range is a matter of judgment and, even then, spatial experts may

differ.”

The final SGLMM which accounted for spatial variation with both the fixed effects

and interaction effects is summarised in Table 5.5 while Table 5.6 summarises the

adjusted odds ratio (aOR) and their corresponding 95% confidence interval (CI).

An SGLMM of the fixed effects including the two-way and higher order three-way

interactions explored as per the SLR model and GLMM, were examined. The de-

nominator degrees of freedom was calculated to be 9,490. The results emanating

from the inclusion of a random effect and accounting for spatial variability, largely

147



5.6. Spatial Generalised Linear Mixed Models Applied to the HIPSS Baseline Data

concurred with the results of the SLR model and the GLMM at a 5% level of signif-

icance. Variables that one would consider socio-economic and socio-demographic

were found to be significant in the SGLMM. Predictors that are behavioural in na-

ture, such as the use of contraception, prevalence of HIV stigmatisation and partic-

ipants knowledge about HIV prevention measures, were not contributory in mod-

elling HIV prevalence. The latter, while not independently significant, was signifi-

cant when jointly modelled with the participants’ highest levels of education and in

a three-way interaction between itself, a participant’s highest level of education, and

their ability to acquire HIV information.

In a marked departure from the SLR model and the GLMM, the joint effect between

knowledge about HIV prevention and the participants’ acquisition of HIV infor-

mation, was not deemed significant in modelling HIV status. This despite one of

the constituent components, HIV information acquisition, being significant in the

model.

On inspection, there is no noticeable shift in the risk of HIV infection in partici-

pants that can be directly attributed to their socio-economic circumstances. In agree-

ment with the SLR and GLMM, participants living is households characterised as

extremely deprived (aOR=1.393, 95% CI:0.968; 2.004), that is the 10% of most de-

prived households, were observed to be at an inordinately higher risk of HIV infec-

tion than participants residing in households characterised as significantly deprived.

Furthermore, and in line with the results of the SLR and GLMM, female participants

(aOR=2.146, 95% CI:1.731; 2.660) were observed to be more than twice as likely to

be HIV positive than their male counterparts. While aging was observed to be as-

sociated with increased likelihood of HIV infection, the odds of infection among

the different age categories remained largely the same across the SLR, GLMM and

SGLMM.
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Table 5.6: Odds ratio estimates (OR) and corresponding 95% confidence intervals (CI) for
the variables not included in interactions for the SGLMM

Parameter Odds Ratio (95% CI)

Household Deprivation Level (ref = Significant Deprivation)

No Deprivation 0.723 (0.510 ; 1.025)

Low Deprivation 0.695 (0.510 ; 0.964)∗

Minor Deprivation 0.804 (0.604 ; 1.071)

Intense Deprivation 0.839 (0.615 ; 1.144)

Serious Deprivation 0.898 (0.638 ; 1.262)

Severe Deprivation 1.108 (0.723 ; 1.698)

Extreme Deprivation 1.393 (0.968 ; 2.004)

Gender (ref = Male)

Female 2.146 (1.731 ; 2.660)∗

Age Group (ref = 45-49)

15-19 0.259 (0.161 ; 0.416)∗

20-24 0.573 (0.383 ; 0.858)∗

25-29 1.111 (0.749 ; 1.649)

30-34 2.158 (1.438 ; 3.238)∗

35-39 2.107 (1.403 ; 3.162)∗

40-44 2.433 (1.591 ; 3.720)∗

Marital status (ref = Widowed)

Legally Married 0.156 (0.059 ; 0.413)∗

Separated - Legally Married 0.139 (0.019 ; 0.993)∗

Cohabiting 0.402 (0.140 ; 1.155)

Single - Never Married or Cohabited 0.457 (0.179 ; 1.164)

Divorced 0.513 (0.108 ; 2.442)

Single - Live in Partner 0.511 (0.188 ; 1.386)

Continued on next page
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Continued from previous page

Variables Odds Ratio (95% CI)

Perceived Risk of HIV (ref = Already HIV Positive)

Assured Infection 0.010 (0.005 ; 0.010)∗

Probable Infection 0.008 (0.004 ; 0.014)∗

Probable Non-Infection 0.006 (0.003 ; 0.011)∗

Assured Non-Infection 0.004 (0.002 ; 0.008)∗

HIV Stigma (ref = Severe Stigma)

No Stigma 0.770 (0.318 ; 1.865)

Mild Stigma 0.570 (0.208 ; 1.562)

Moderate Stigma 0.736 (0.295 ; 1.834)

Engaged in Sexual Intercourse (ref = Yes)

No 0.526 (0.365 ; 0.759)∗

Diagnosed with an STI (ref = Yes)

No 0.616 (0.426 ; 0.819)∗

Used Contraception (ref = Yes)

No 1.142 (0.933 ; 1.398)

∗ Significant at a 5% level of significance

As a participant approached midlife, there was a slight though noticeable decrease

in the odds of HIV infection upon comparison between the random effects model

which accounted for spatial variability and the model that did not. It was observed

that individuals in the 35-39 year and 40-44 year age groups were more than twice

as likely to be HIV positive compared to 45-49 year old participants. However, this

was not an occurrence peculiar to the model accounting for spatial variability, as it

was also the case in both the SLR model and the GLMM. With respect to marital

status, no significant difference was observed among participants who were cohab-

iting, single (either with a live-in partner, or who have never married or cohabited)

or divorcees as observed under the GLMM and SLR model.
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The participants who were questioned about their perceptions of their risk of HIV

infection appeared to be risk averse with no observable association between a per-

son’s perceived risk of infection and those who claimed that they were HIV positive.

A major area of concern is the prevalence of HIV stigma which is sometimes ob-

served in certain sectors of society. Research has shown that HIV stigmatisation

can have adverse consequences on HIV positive individuals who may become with-

drawn from society. However, the results show that HIV stigma is not statistically

significant and that however severe the levels of HIV stigma espoused by partici-

pants, it was not associated with increased (or decreased) odds of HIV infection.

The participants who did not use contraception (aOR=1.142, 95% CI:0.933; 1.398)

at their sexual debut were 1.142 times more likely to be HIV positive compared to

those who used contraception. In this instance, however, no significant difference

was observed. Furthermore, participants who had not engaged in sexual intercourse

(aOR=0.526, 95% CI:0.365; 0.759) were less susceptible to HIV infection compared to

those who had engaged in sexual intercourse. Additionally, participants who had

not been diagnosed with a sexually transmitted infection (aOR=0.616, 95% CI:0.426;

0.819) had significantly lower odds of HIV infection compared to those who had

been diagnosed with a sexually transmitted infection.

Figure 5.4 depicts the higher order three-way interaction between a participant’s

highest educational qualification, their knowledge about HIV prevention and their

acquisition of HIV clinical and preventative information. An observation of gen-

erally decreased odds of HIV infection was observed among participants who had

acquired a vast amount of information on HIV prevention compared to individuals

lacking information and those moderately informed. This was noted irrespective of

their levels of education.

Participants who had no formal schooling and who were moderately knowledgeable

to highly knowledgeable had a low susceptibility to HIV infection. Similarly, well
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informed individuals who were highly knowledgeable and did not complete sec-

ondary school had the lowest odds of HIV infection. Tertiary graduates, irrespective

of the tier of knowledge they were categorised into displayed a fairly stable odds of

HIV infection but far lower than high school graduates who were at the higher end

of the knowledge scale. A participant who either did not attend school or who only

attained up to a primary level and lacked information or who was moderately well

informed, displayed fluctuating odds of HIV infection. This observation was made

across varying levels of HIV preventative knowledge. A participant who attested to

attaining education beyond primary level, displayed a stable and almost equal but

high odds of HIV infection. The trend observed in the aforementioned interactions,

when accounting for spatial variability, was in most respects analogous to the SLR

model and the GLMM.
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5.7 Summary and Discussion

The use of geographically weighted regression procedures to explore spatial non-

stationarity has been well developed over time. An important assumption in this re-

spect is that of disturbance terms (residuals) being uncorrelated and characterised by

a common variance. The presence of spatial autocorrelation and failure to compen-

sate for it, however, challenges the validity of the assumption of homoscedasticity in

the residuals with the inevitable result of superfluous inferences. To this end Geary’s

C, considered well suited to detect spatial autocorrelation at a localised level, is em-

ployed to detect for the presence of spatial autocorrelation following which a well

suited spatial covariance structure is employed in spatially weighted generalised

linear mixed models to account for the presence of spatial autocorrelation. The pres-

ence of spatial autocorrelation was compensated for in the analysis.

The results are centered around applying spatial generalised multilevel models, as

detailed above in assessing the socio-economic, socio-demographic and behavioural

determinants of HIV in adults in a rural setting in the Western region of KwaZulu-

Natal, a province of the Republic of South Africa. Research has shown that failure

to account for spatial variability could severely skew results and produce biased

estimators with inappropriate decisions and conclusions an inevitable consequence

(Jossart et al., 2020). From the process outlined in this chapter, the process of ac-

counting for spatial variability can be informally quantified into three stages

Suspect → Detect → Represent

In the suspect stage, the researcher suspects that there is a degree of autocorrelation

within the data. At this point the researcher will detect the presence of spatial au-

tocorrelation using either methods outlined in 5.2 and applied in 5.5.1 or one of the

many other existing measures for this purpose such as the variogram outlined in

5.3.2 and demonstrated in 5.5.1. Thereafter, they would represent this degree of au-
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tocorrelation within their modelling by accounting for the spatial structure of the

data under study.

For this study, it was demonstrably proved using Geary’s C and an empirical semi-

variogram procedure that there was inherent spatial autocorrelation within the re-

gression residuals. This is because the residuals are able capture vital information

that pertains to the structure of the data which allows one to verify whether the nor-

mality assumption had been violated or not.

On modelling the data and compensating for the spatial variability to produce an

SGLMM, it was observed that the results were in many respects comparable to that

produced having accounted for spatial weights and the inclusion of the random fac-

tor. Selected predictors characterised as behavioural predictors such as prevailing

levels of HIV stigmatisation, and the use of contraception were not significant un-

der the SLR model, GLMM and SGLMM. Predictors such as participant knowledge

about HIV prevention were significant under the SLR model and GLMM but not

under SGLMM, though in the latter, it was considered contributory to HIV infection

when jointly interacting with highest level of education and in a three-way inter-

action with highest level of education and the acquisition of HIV information by

participants.

Increasing one’s perception of HIV risk is vital in effecting understanding and ac-

ceptance of HIV infection. The results in this chapter revealed that whatever a par-

ticipant’s perceived vulnerability to HIV infection was, it was not observed to be

associated with an increased likelihood of HIV infection. Furthermore, the eradica-

tion HIV stigma is one of the stated goals of the United Nations and its associated

member states as it is seen as a barrier to universal access to treatment and support.

The result of the SGLMM revealed that espousal of HIV stigma is not indicative of

increased susceptibility to HIV infection. On the subject of sexual behaviour, though
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engaging in sexual intercourse and being clinically diagnosed with a sexually trans-

mitted infection is not linked to the likelihood of HIV infection, eschewing contra-

ception is likely to result in HIV infection.

The joint effect investigated the interaction between participants’ levels of HIV in-

formation acquired, highest level of education and their levels of HIV preventative

knowledge. It was unsurprising that the level of knowledge in well informed par-

ticipants was central to their risk of HIV infection and that level of education was

inconsequential in this regard.
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Chapter 6

Concluding Remarks

The focus of this study was to construct statistical models in an effort to analyse the

prevalence and risk factors of HIV among adults in the age group of 15-49 years in a

rural setting in the KwaZulu-Natal Province of South Africa. To achieve this the SLR,

GLMM and SGLMM were employed. The results that arose out of the analysis of the

baseline study employing these methods showed that socio-economic circumstance,

selected socio-demographic, behavioural and cognitive characteristics were signifi-

cantly associated with HIV infection in the study location. Furthermore, the results

emanating from the analysis largely concurred across each method employed.

At the time of writing this dissertation, the world is witnessing the unfolding of an-

other global pandemic, the SARS-CoV-2 (COVID-19) pandemic. Like the HIV-AIDS

pandemic, much research is now being coordinated to understand the etiology of

the novel coronavirus with the stated aim of producing a vaccine of maximum effi-

cacy thus providing maximum immunity to the population. As the HIV pandemic

spreads globally, the research that was initially conducted centered on investigat-

ing the etiology of the virus by examining the clinical factors associated with HIV

incidence. However, much of the research conducted from the second decade of

the pandemic to date has been largely dual focused, encompassing both clinical and

socio-economic determinants of HIV. A significant amount of research undertaken in
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this regard has shown the inextricable link between HIV incidence and individuals

living in destitute economic and environmental conditions. Pellowski et al. (2013)

perhaps encapsulate this by unequivocally stating that HIV is a disease rooted in

socio-economic inequality.

Using the provincial index of multiple deprivation as a guide in variable selection

and the Guttmann scale as a guide for scoring, we constructed household indices

of multiple deprivation. These indices assessed household income and material de-

privation, infrastructure and living standards, food security and financial security.

Employing the household indices of multiple deprivation and profiling households

according to their decile of deprivation was not wholly effective in definitively iden-

tifying the disparity between the poor and wealthy with respect to their risk of HIV

infection.

Deeply ingrained poverty prevalent in rural societies is often generational and is,

inter alia, observed to be a barrier to accessing amenities and services that are widely

available to wealthier populous in urban areas. An inevitable consequence of this is

that the rate of HIV infection in South Africa, particularly the province of KwaZulu-

Natal, has not been subdued in this, the fourth decade of the HIV pandemic. Wabiri

& Taffa (2013) explain that an enduring criticism of an index constructed using

household assets is that the line between what constitutes a poor household and

what constitutes a poorer household are blurred. This can potentially be rectified by

the suggestion of Rutstein (2008) who advocates a dual approach of using variables

that are suited to measuring economic status in urban and rural locations. These

variables should be adequate in describing a socio-economic situation by differenti-

ating between these two economic groups thereby allowing a composite index to be

calculated.

In addition to the plenitude of research conducted on the link between socio-economic
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status and HIV incidence, society now has the benefit of more than three decades of

behavioural research and its link to HIV infection. The Joint United Nations Pro-

gramme on HIV/AIDS (2014) has identified HIV stigma as a barrier to universal

access to HIV preventative treatment, care and support. It has advocated interven-

tion programmes to curb the scourge of HIV stigma to give credence to the words of

the former the South African President Nelson Mandela (2000) who remarked

”We need to break the silence, banish stigma and discrimination, and ensure

total inclusiveness within the struggle against AIDS.”

South Africa has had a long history of HIV denial which has often been reflected

in the once high levels of societal stigmatisation attached to HIV positive individ-

uals. While the majority of participants in this study espoused no stigmatisation

toward HIV positive individuals one cannot ignore the fact that high levels of HIV

stigmatisation are espoused by those who were themselves HIV positive. This, at a

time in which South Africa has achieved near universal coverage of anti-retroviral

treatment (ART), is an area of concern especially since HIV preventative informa-

tion is widespread in the public domain. An analysis into the extent to which HIV

stigma contributes toward HIV infection however, found that it was largely inconse-

quential and that varying levels of HIV stigma was not contributory to an increased

likelihood of HIV infection across the differing methodologies applied.

Survey data is not without intricate patterns hidden in individual responses. More

than inferring inherent data patterns in isolation, what ought to be studied are the as-

sociations between two or more variables contributing to HIV prevalence and the as-

sociated risk factors. Multiple correspondence analysis is always a foremost method

implemented to understand these associations. Employing multiple correspondence

analysis showed the stark association between HIV infection and a diverse range of

variables across the social spectrum. These relationships might not have been in-

ferred by simply examining our predictors independently.
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On the analytical front, three statistical models were employed to model the HIV

status of participants. To account for the presence of survey weights and the binary

nature of the response variable, a survey logistic regression model was used. The

inclusion of a random factor and in order to compensate for spatial variability, the

generalized linear mixed model and a spatial generalized linear mixed model were

respectively employed. The results emanating from these models seemingly con-

curred with each other, where a combination of socio-economic, socio-demographic,

behavioural and cognitive factors were found to be significantly associated with HIV

infection.

Within the realm of the three models applied, the risk of HIV infection remained

largely the same across the varying levels associated with each effect. This was ob-

served in the results as household socio-economic circumstance was indicative of

an increased likelihood of HIV infection. There was an increased likelihood of HIV

infection among participants resident in households that were classified as increas-

ingly deprived. With the link between socio-economic status and HIV infection be-

ing well established, targeted intervention programmes aimed at poverty alleviation

are now more than ever required; Baker (2019) shows inequality becoming deeply

entrenched in post-apartheid South Africa. Additionally, the risk of HIV infection is

observed to be gendered as female participants were at a disproportionately higher

risk of HIV infection than males. The risk of HIV infection also appeared to be higher

in elder participants than younger participants.

Acquiring preventative knowledge about and adopting the right attitude to HIV in-

fection is vital in stemming the tide of HIV infection. In the age of the internet super-

highway, social media is firmly at the centre of knowledge sharing and acquisition.

This has contributed to, inter alia, societal understanding (or misunderstanding) of

the scourge of HIV incidence. Shamu et al. (2020) conducted a study that gauged the

level of influence of social media in shaping individuals’ cognitive and behavioural
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decisions and their relation to HIV risk. There appeared to be a significant rela-

tionship between social media use and HIV knowledge, non-condom use and HIV

knowledge, and high-risk sexual behaviours and less HIV knowledge.

Our study is not without limitations, the first being the self-reported nature of the

data in which the responses were not subject to a reliability test such as Crohnbach’s

alpha. Additionally, not including race as a factor which may be a contributory

factor to HIV infection, may have been a significant drawback. Whilst there is an

appreciation of the significance of race as a vital factor in measuring socio-economic

status, particularly in an epidemiological setting, we believed that most of the vari-

ables we included in the measures of household deprivation were able to capture

the relationship between HIV prevalence and socio-economic status. A study of the

racial make-up of the study setting found that a significant number of participants

were black African. Thus, given the racial demographics of the study region, we

did not believe that race could explain HIV prevalence not explicable by the socio-

economic indicators of HIV.

The very nature of the cross-sectional data set was a limitation in itself. Cross-

sectional studies are a preferred method of data collection in a plethora of studies

across the social scientific, epidemiological and public health spectrum. This is true

as cross-sectional studies are a direct measure of exposure and outcome. However,

the nature of cross-sectional data is such that there is no provision for inferring tem-

poral relationship unless there exists a strong plausibility for one of the directions of

associations (Kestenbaum, 2019).

Furthermore, a serious limitation centered around joint effects. While subject to the

intuition of the researcher, there was not as many joint effects included in the anal-

ysis as there should have been. The studies, as outlined in Section 1.1 are observed

to link socio-economic status with behavioral and cognitive factors. In this regard a
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separate study should be undertaken in which selected though relevant joint effects

are investigated regarding their contribution to predicting HIV infection.

This study did not consider a variety of clinical factors as contributory to HIV in-

fection. Comorbidities associated with HIV infection are defined by diseases di-

agnosed outside of an Acquired Immune Deficiency Syndrome - associated illness.

Lorenc et al. (2014) cite diabetes mellitus, cardiovascular disease (CVD e.g. hyper-

tension), respiratory illnesses (e.g. chronic obstructive pulmonary disease, pneumo-

nia and tuberculosis) and hepatic diseases (e.g. hepatitis B and hepatitis C). Addi-

tionally, psychiatric disorders such as depression, anxiety, schizophrenia and cogni-

tive impairment are diagnosed in HIV positive individuals. These conditions tend

to worsen with worsening HIV severity. Despite the wide variety of research con-

ducted into HIV infection and associated comorbidities, the need for more research

in this area is encouraged, as for example conducted by Nlooto (2017). This study

found that coinfections and comorbidities are prevalent in HIV positive individuals.

In acknowledging these limitations, we also acknowledge that our study does not

terminate here. As stated, society has had the benefit of research into HIV infec-

tion not only from a clinical perspective, but a societal one as well. These contri-

butions to our understanding of HIV infection are by no means exhaustive, and to

gain more knowledge and insight from many perspectives is always encouraged,

particularly in a fast moving and ever-changing world. To chart a future direction

for this study, we recommend that the limitations addressed be incorporated in a

longitudinal study. A longitudinal study which incorporates the spatial effects of

this study will be advantageous as it will address developmental changes such as a

spatio-temporal shift over a sustained time period rather than at a single time point.

This could contribute to the sum of societal knowledge of HIV infection in perpetu-

ity.
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