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Abstract

Incomplete block designs have been widely applied in several fields of statistical
research. However, there has been little work done on applying these designs in on-farm
trials, On-farm trials have gained considerable attention in the area of agricultural
research. Despite this, little attention has been given to the efficient design of
experiments for improvement of the precision of results from these trials. Much of the
work conducted in these trials is done using the randomized complete block design. This
is a standard design with proper orthogonality properties. However, the size of
experiments, variability in farms, missing observations etc., are a few of the problems
encountered in on-farm trials. These problems always render the randomized complete
block design less efficient in studies in on-farm trials.

This study reviews the incomplete block designs with the aim of analyzing the efficiency
of these designs when applied to on-farm trials. Several techniques are employed to
classify these designs as compared to the randomized complete block designs.
Optimization of these designs is then considered both under constrained and
unconstrained design scenarios. Missing observation analysis is discussed. In this study,
computations of the efficiencies in constrained and unconstrained cases of on-farm
scenarios after incorporating appropriate covariance structures are compared to evaluate
designs.

Worst cases of missing observations are identified alongside their effect on the design
efficiencies. Overall, we show that the gain in the use of incomplete block designs in on-
farm trials is of key importance. However, the maximization of information and
minimizing cost cannot always be achieved simultaneously. As a consequence,
compromise designs should always be considered, which satisfy requirements as far as

possible and are practical at the same time.
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Chapter 1

Introduction

On-farm trials are beginning to reccive a wide acceptance and credibility where proper
statistical procedures have been applied(Ashby et af, 1990; Lockeretz, 1987; Stroup et al,
1993). Therefore, it is of great importance to pay attention to the efficient design of on-
farm trials. The process of making better decisions begins with the proper design of your
experiment(Zandastra et al,1981). Proper integration of agronomic and socio-economic
perspectives into diagnosis, together with an analysis of the existing variability in manage-
ment, practices and yields in farmers’ fields, has the potential to improve the efficiency of
on-farm trials and at times substitute partially for costly experimentation (Byerlee, Triom-
phe and Sebillotte, 1991). Efficient designs that lead to cxtraction of desired information
from on-farm trials are required. Therefore, construction of optimnal or near-optimal de-
signs to improve on the efficiencies of on-farm trials should be considered.

The randomized complete block design(RCBD) is commonly used in on-farm trials be-
cause of the ease and control of site variability by simple blocking, which is preferred over
the completely randomized design. But its ability to account for the site variability is
limited (Fu, Clarke, Namkoong and Yanchuk, 1998). In many ideal situations, RCBD
provides an easier, flexible and less sophisticated analysis as compared to other designs .
However, the conditions for on-farm trials are less controlled than those of research sta-
tions and this calls for special attention to the design of such experiments. On-farm trials

are characterized by several problems such as missing ohservations, large field layouts ,



high variahility etc (Lockerctz, 1987). In on-farm trials, the RCBD provides for bigger
blocks and this incorporates a large amount of variability within blocks. This explains
why in forest trials, genotype effects obtained from RCBD trials are always inflated or
have large standard crrors (Magnussen, 1993a).

In on-farm trials, incomplete block designs(IBD) can be of proven value especially in re-
ducing variability through reduction in block sizes. IBD were originally devised to allow
for smaller block sizes when equal precision was desired on all treatment comparisons
(Yates, 1936). Yates points out two vital situations when small block sizes are desired.
One is where the number of treatments is so large that the amount of material needed
for a complcte block is very heterogeneous. Thus by using smaller blocks the material
within the blocks can be more hamogeneous, thereby giving more efficient estimates of
trcatment comparisons. The second situation is when the number of possible units per
block is lcss than the total number of treatments. On-farm trials often fall into one the

two situations described above.

In many on-station trials, IBD have shown higher efficiency values than RCBD. Alpha-
lattice designs have been shown to be more efficient than RCBD in ficld trials conducted
in the UK (Patterson and Hunter, 1983; Patterson and Williams, 1976 ). Thus IBD can be
a valuable design to replace RCBD in many of these agricultural on-farm trials. Smaller
blocks are less heterogenous than bigger blocks and thus larger site variation among blocks
is removed from the experimental error so that the contribution of the site variance cf-
fects to the error of estimating treatment means is reduced(Fu, Clarke, Namkoong and
Yanchuk, 1998).

The procedure of confounding is applicd in factorial experiments when the number of
treatments is large (Gomez and Gomez,1984). This is aimed at reducing the block size
in order to ensure more precise estimation of lower order interactions at the cost of less

important higher order interactions. However, in & situation in which all treatment com-



parisons are of interest confounding is not applicable (Federer, 1955). This situation calls

for the application of the incomplete block designs.

1.1 Case for on-farm trials

On-farm trials are a vital tool to assess the level of technology transfer and applicability
on the actual farmers’ fields(Gemez and Gomez, 1984). The gap between the on-station
trials where conditions are very well controlled and the farmers’ fields where conditions
are poorly managed is big in developing countries (Lockeretz, 1987; Lockeretz and Ander-
son, 1993). Thus on-farm trials can be a solution to closing up such technology transfer
problems. There are numerous reasons to justify use of on-farm trials. For instance they
can be used to determine the general distribution of response to a new technology and to
estimate the frequency of success under a wide range of conditions as well as management
and environmental factors that impact on success (St-Pierre and Jones, 1999). They also
offer a cost-efficient alternative to researchers when a large number of experimental units
are required. The importance of on-farm trials as a component of farming systems re-

search is described fully by Hildebrand and Poey (1985).

On-farm trials can be grouped into multi-site(MS) and single-site(SS) trials. In multi-sitc
trials, several farms are used simultaneously. These trials provide a wide scope of study
on a given variable across several locations. However, single-site trials reduce the com-
plexity associated with an experiment involving a multitude of locations. Therefore, this
reduction in complexity is done at the expense of the inferencc range that is lost. Thus the
validity of the results from SS trials covers a much narrower range of conditions. Different
forms of on-farm trials call for different designs ( Mustsaers & Walker, 1990). There are
many practical challenges related to the experimental design, data collection procedures
and data analysis of on-farm trials { Coe, 1998; Hammerton & Lauckner, 1984; Nokoe,

1999). Some on-farm trials are too large to be manageable as compared to on-station



experiments, which receive a well-planned and controlled setup.

Incomplete block designs are characterized by small block sizes that allow for estima-
tion of treatment effccts with a certain degree of precision (John, 1971; Mead, 1994).
The randomized completc block design is a “conventional” design used widely in field
experiments, especially thosc carried out on-station. The use of the design assumes well-
controlled situations where unbalanced and missing data are never a problem. However,
research is increasingly shifting from on-station to on-farm where experimental condi-
tions are difficult to predict. Large variability, unbalanced and missing data are common
problems associated with on-farm trials ( Hildebrand and Russell, 1996). Such problems
make analyzing data from such trials difficult and results are less informative. In many
on-farm trials, it is unlikely that an experimenter has any control over the experiment
as compared to on-station trials. So it is not possible to use the standard block designs
since each situation calls for a specific design in order to accommodate the problems that
may arise ( Mustsaers and Walker, 1991). If missing observations are likely to occur from
some unforeseen events, it would be best to select an appropriate initial design with good

characteristics and properties to protect against the wholc experiment being ruined.

1.2 Design considerations

An assessment of the efficiency of a design that takes account of unforeseen events that
may arise is of great benefit. This would enable an experimenter to consider the risk of
using a particular design in practice. An experiment can be designed such that it has a
certain degree of controlled non-orthogonality, which will not upset the simplicity of the
analysis of variance. In most on-farm trials, the responses for some plots, or in some cases
even a full block may be lost for reasons unrelated to the structure of the experiment or
the treatments used. This prompts the need to choose a design that will minimize the

influence of most on-farm problems affecting the results from the trials. The loss of a full



block has been studied by Gupta and Srivastava (1992) and Bhaumik and Whittinghill
(1991). The design of on-farm trials involves the selection of the most appropriate factors
to control variability and other related problems with on-farm trials. Typically, traditional
experimental designs have been used for such purposes but little has been documented
about the success of these designs (Hildebrand and Russell, 1996). Randomized complete
block designs have the merit of simplicity but can be ineflicient in on-farm trials fer a

number of reasons.

o It may not be possible to choose homogeneous blocks of sufficiently large size for

complete blocks in on-farm trials.

e Blocks/farmis may be natural units of a size that does not coincide with the size of

a treatment replicate.

e A single set of blocks may not be adequate to account for all sources of variability

in an experiment in on-farm trials.

e It may not be apparent how to choose an appropriate set of complete randomized

blocks prior to an experiment.

All the above reasons reveal an efficiency deficit that can arise in the use of randomized
complete block designs. We should compare the loss in efficiency that could be incurred by
using these designs with the loss of efficiency that could be incurred by incomplete block
designs. Based on these gains and losses in efficiency, we are able to recommend the right
designs for on-farm trials. This study aims to assess the efficiency of the incomplete block
designs in general in ovcrcoming the limitations of en-farm trials. Particular cmphasis is
devoted to the way in which most efficiency factors would behave in varying situations
for different forms of incomplete block designs.

A review of incomplete block designs is given in chapter 2. In chapter 3 we restrict
attention to the efficiency estimations in designs and the design optimality criterions.

Chapter 4 gives an in depth knowledge on the optimal incomplete block designs alongside



the robustness of these designs in the case of missing observations. Chapter & considers
the different scenarios in on-farm trials and how design selection tools can be used to
obtain the most appropriate design. A case study of on-farm trials set up in Uganda is

analyzed in this chapter. The conclusions and suggestions are given in chapter 6.

1.3 Overall objectives

To determine the extent to which incomplete block designs could be used in on-farm trials.
Specific objectives

1. To assess the possibilities of using incomplete block designs in on-farm trials.

2. To determine the different levels of efficiency of incomplete block designs with respect

to on-farm trials by designing flexible experimental designs.

3. To determine the precision of treatment means and the difference of treatment means

using power analysis.



Chapter 2

Literature Review

2.1 Introduction

Major factors for consideration when designing on-farm experiments are the limited and
varying farm space, and the inherent variability within a given farm (Riley and Alexan-
der, 1997). In on-farm trials, challcnges and conditions are cxperiment dependent and
therefore no set of rules provide the “correct” design. The idea that not every farm
requires an identical set of treatments is more novel (Steiner, 1987; Stroud, 1993). It
is preferable to limit the number of treatments in order to increase the precision of the
experiment. The design strategy descrihed in Gomez and Gomez (1984), which requires
equal numbers of plots and replicates on each farm, is not feasible. An incomplete block
design provides an alternative to conmonly used randomized complete block designs when
farms cannot accommodate a full set of treatments(John, 1980). A proper consideration
of statistical tools in experimental designs is capable of providing an answer to the prob-
lers of on-farm trials. Although statistics is commonly viewed as primarily dealing with
post-experimental data analysis, statistical experimental design is of proven value at the

planning stages. Fisher(1951; p.3) noted that,

“statistical procedure and experimental design are only two different aspects
of the same whole, and that they both aid to the logical requirements of the

complete process of adding to natural knowledge by experimentation”.



While it is a trivial task to find a good incemplete bleck design, the topic has been under
study for decades and there is a body of research to help find efficient experimental plans.
The designs that are most suitable for on-farm trials depend on the questions of interest,
and the available resources. Most incomplete block designs are capable of fulfilling this

task.

2.2 Incomplete block designs

Incomplete block designs where introduced by Yates(1930) at the Rothamsted Experi-

mental Station. These designs normally pose several questions te researchers:

o Given a resource constraint, what is the best way to choose subsets of the treatments

to allocate to the blocks?
¢ How should the data from the experiment be analyzed?
e How efficient and reliable are these designs?

A common problem arises when the blocks available are not large enough to accornnodate
all the available treatments. In such instances, we consider the incomplete block designs,
where blocks do not contain a full set of treatments. In many forms of investigation that
involve screening of large numbers of new treatments or subjects, only a small amount
of new material is available and few replications are therefore possible. In an experiment
to compare new treatments with old treatments, one is unwiiling to allocate more than a
small number of replications to the new treatments because of costs involved in screening
large numbers of new treatments (Federer, 1955). For instance, in the screening of numer-
ous new fungicides, herbicides, or soil fumigants, at various levels it becotnes expensive
to run all replications of these treatinent combinations. Sometimes it may be desirable
or necessary to have the new treatments replicated only once or twice in the experiment
and to have the standard or old treatments replicated r times.

A common situation is where farmers cannot apply all the available treatments due to



limited farm size or due to other constraints, therefore research scientists who conduct on-
farm trials tend to bias the randomization through farmer selection (Skinner and Mwaniki,
1994). To avoid the bias, Pardey, Roseboom and Beintema (1996) suggested farmer clas-
sification procedures which would lead to effective results for particular farm groups.
The experimental designs which accomplish this objective are Augmentcd designs and
the related Reinforced and Staircase designs (Das, 1958). For Augmented block designs
with new trcatments appearing once and the standard treatments appearing r times, one
simply sets up block designs for the standard treatments, then enlarges the blocks to
accommodate thc standard treatments as well as the new treatments (Das, 1958). The
statistical analysis is performed on standard yields only to obtain solutions for block ef-
fects, which are then used to adjust the yields of the new treatments for the blocks in

which they appear (Federer, 1955).

Traditionally, randomized complete block designs (RCBD) have been used in most agri-
cultural trials. A randomized complete block design is constructed on principles of homo-
geneous experimental units per hlock (Montgomery, 1976). In basic experimental designs,
we apply all treatments within each hlock hecause experimental units (plots) located in
each block are more or less uniform (John, 1971). Sometimes it is difficult, inconvenient
or impossible to apply all treatments in each block (Mead, 1994). This calls for the use

of incomplete block designs and forms the basis for their introduction (Yates, 1933).

Balanced incomplete block designs (BIBD) are a special case of incomplete block de-
signs that are constructed such that every pair of treatments occur together in the same
block a given number of times (Cochran and Cox, 1957; Bose, Clatworthy & Shrikhande,
1954; Bose, 1947, Rao, 1947). All treatment comparisons are of the same accuracy in
these designs. For a given block size, replication, and number of treatments, a BIBD is of

maximum efficiency if it exists (Conniffe and Stone, 1974). Conniffe and Stone (1974) de-



10

fined efficiency as the inverse ratio of the average variance of treatment differences to that
of a complete block design with the same replication. Designs where residual effects are
negligible are available, and such arrangements include Latin square and Youden squares.
These are balanced incomplete block arrangernents, with the additional restriction that
each treatment occurs just once in each position of the blocks {Conniffe and Stone, 1974).
The property of balance, more specifically called total balance, possessed by the BIBD
is useful when designing experiments, because it is tbe next most efficient simnple form
of design after the orthogonal randomized complete block design ( Clarke and Kempson,
1997). Incomplete block designs are expected to be from 1.2 to 1.5 times as efficient as
randomized complete block designs (Goulden, 1937). The average gain in efficiency from
using incomplete block designs in a series of 166 trials was a factor of 1.43 and in one case

as high as 3.82 ( Patterson and Hunter, 1983).

Another form of incomplete block designs is the partially balanced incomplete block de-
signs (PBIB). These are designs in which not all pairs of treatments appear together in
a block. PBIB designs were introduced by Bose and Nair (1939}. Under these we have
lattice designs, which is a simple case of the PBIB designs with the Ly association scheme.
For the L, association scheme, the treatments are arranged in a square array, and two
treatments are first associates if they appear in the same row or column (John, 1971). The
practical application of other designs does not provide the real solution in large on-farm
agricultural experiments. This is because the sizes and conditions of farms vary consider-
ably. Unbalanced incomplete block decsigns usually provide a better design to fit the true
on-farm situation. Augmented designs, reinferced and staircase designs provided by Das
(1958) are more practical in relation to the on-farm trials. Searle (1965) provides a major
breakthrough in the analysis of augmented randotnized complete block designs. However,
a key factor in obtaining appropriate treatment effects is orthogonality. Orthogonal de-

signs have a special role in the calculations of efficiency. An orthogonal design is one in
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which treatment differences are estimated indepcndently of block differences (Clarke and
Kempson , 1997). The principal consequence of orthogonality is that effects of treatments
can be interpreted without simultaneously considering inferences about the block effects.
It also simplifies the calculations botb for the analysis of variance and for tbe comparison
of treatment effccts (Mead, 1994). In these designs all the information on the treatments
is obtained from the intra-block analysis. Yates (1933) has the classical statistical account

of orthogonal comparative experiments. Yates states that,

“Orthogonality is that property of the design which ensures that the different
classes of effects to which the experimental material is subject shall be capable

of direct and separate estimation without any entanglement”.

Pearce (1953) offers the following condition for orthogonality “ Two classifications are
mutually orthogonal if vertous groups of plots formed by one classification are cemposed
of the same proportionate number of plots of the other”.

Where all pairs of classification arc mutually orthogonal, the whole design is said to be
orthogonal. In a non-orthogonal design information is obtained from within compar-
isons and the remaining infermation is recevered from an inter-block analysis, through
comparison between blocks (John, 1987). In the analysis of variance, formulations of an
orthogonal decomposition of the data vector are possible such that the total veriance
is partitioned into components attributable to identifiable causes ( Kempthorne, 1952).
Rao(1959) applied randomization models to the balanced incomplete block design but did
not incorporate complete or incomplete sampling considerations. Although it seems obvi-
ous on how to allocate factors into block and treatment, the criteria to be fellowed are not
clearly laid out by many writers ( Mead and Curnow, 1983; Preece, 1982; Yates, 1975).
Furthermore, in agricultural experiments there is little literature on how this should e
done.

This can be illustrated by considering the model

Yigk = p+ 75+ B + (78)i5 + €ije (2.1)
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where ;5% 15 the kth observation due to the ith treatment in the jth block, 7; denotes the
ith treatment effect, (3; denotes the jth block effect , (7/3);; denotes the interaction effect
between the ith treatment and the jth block, and u is the overall mean, E(e;) = 0,
Var{eyx) = o? and cov(eyjix, €vjar] = 0 for (3,7,k) # (¢, 5, K').
Such a model is normally not of full rank and constraints are often placed on one or
both the parameters and the estimates in order to obtain a solution. Commonly used
constraints include;

Sor=Y 8= (8= (15 =0

i 7 i i

[f such constraints are not considered then some of the components in the rnodel may not
be estimable( Hocking, 1973; Searle, 1971).
However, the principles related to the design and analysis of on-station experiments are
well documented hut how they should be applied to on-farm trials is not well defined.
The success of these trials lies on the efficient design ef experiments if efficient estimates
of treatment means are required. Common to most on-farm trials are the problems of
missing observations and unbalanced data. These problems have a significant effect on the
orthogonality of the design. However, with a well designed experiment, a good amount of
information can be recevered from trials using statistical techniques such as mixed models

analysis.

2.2.1 Mixed models review

This consists of both the randem effects and fixed effects analysis(Scheffe, 1959). Mixed
models were first applied by Fisher(1925) in developing the spilt-plot analysis and in
Fisher(1935) while analyzing an experiment involving the testing of varieties at several
locations. Several authors havec looked at Mixed models since then (Eisenhart, 1947,
Plackett, 1960). More recent articles on the subject are by Harville(1977), Searle(1971),

and Graybill(1976). These models are a form of the general linear model given as below:

y=XpB+e (2.2)
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where y, X and [ are defined as: y is the vector of 1 observations, X is a known n x p
matrix of rank » (r < p), f is a vector of p unknown parameters and ¢ is the error
component such that Ele] = 0 and covle] = Z.

In the mixed models form, (2.2) can be expressed as (Harville, 1977):

m

y= i T 0 + E 2N (2.3)

i=1 Jj=1
where Ey] = X0
z; is the design matrix for the jth random term and of order n x m;,
m; being thc number of effects in the jth term,
7; an m; x 1 vector of random effects and
7 ~ N(0,¢;1) and m,, = n and 2z, = I, so that Varly| =V = 3" ¢, 2,7}
The ¢’s form the canonical components of excess variation (Nelder, 1977). They can be
interpreted as classical variance components or covariances of the observations (Nelder,
1977; Scheffe, 1959). The advantage of the canonical components are that they have the
same interpretations in respect of the variance matrix of the observations for all formu-
lations of the model. It is important to obtain estitnates that are Best linear unhissed
estimators(BLUEs) and the implication of this fer designed experiments is that the exper-
iment needs to be orthogonal for the simple least squares estimates(SLSE) to be BLUEs.
In the paper by Houtman and Speed(1983), their concern was not with establishing the
equality of SLSEs and BLUEs since for many designs e.g TBD, orthogonality is not ob-
tained and so SLSE are never appropriate. The solution to this is having a model with
an orthegenal variation structurc (OVS), where the analysis can be based on the hypoth-
esized variance matrix V. Most experimental designs have OVS (Bailey 1982a, 1984). In
effect all block designs with equal block sizes and the usual dispersion model have preper
orthogonality properties and general balance in treatments (Houtman and Speed, 1983).
All in all, partially balanced block designs may or may not fulfill Nelder’s (1965, 1968)
definition of general balance depending on what decomposition of the treatinent subspace

is specified. The problem normally arises in examination of the possibilities when ¢’s are
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unknown; i.e the ¢’s must be estimated from the data.

There arc several estimation techniques which include; Analysis of variance (ANOVA),
Maximum Likelihood (ML), Residual Maximum Likelihood (REML), Minimum norm
quadratic unbiased estimation (MINQUE) and Minimum variance quadratic unbiased es-
timation (MIVQUE). The ANOVA estimators are equal to REML, MINQUE, MIVQUE
[or orthogonal analysis, so long as non-negativity constraints on the variance components
do not come into play. ANOVA estimators are location invariant, unbiased, have mini-
mum variance amongst all unbalanced quadratic estimators, and under normality, they
are minimum variance amongst all unbiased estimators (Searle, 1971). But they may lead
to negative parameter estimates which can fall outside the parameter space. Maximum
Likelihood (ML) estimators are biased since they do not consider degrees of freedom lost
in estimating the fixed effects of the model and require intensive computations. But non-
negativity constraints can be properly imposed. REML estimators have an advantage over
ML estimators in that they overcome the loss of degrees of freedom problem of ML and are
the same as ANOVA estimators provided that the non-negativity constraints en variance
components do not come into play (Harville, 1977). However, for non-orthogonal cases,
equivalence ol ANOVA and other estimators ceases to hold. In this case, the ANOVA
estimaters are not available for terms totally conlounded with fixed effects and may not
have minimum variance. Henderson (1953) provides a method of ANOVA to handle such
problems. However, Harville (1977) suggests that REML procedures are to be preferred
to Henderson estimators. In studies by Corbeil & Searle (1976), and Harville (1978),
comparing ML and REML revealed that although ML estimates are biased, thcy have
smaller mean-squared errors than REML estimates even under orthogonal experiments.
In comparing REML and ML for incomplete block designs, the results revealed that there
is benefit of using REML mostly in estimating standard errors of the means (Nabugoomu
and Allen, 1990, 1994). Fisher (1935) also draws attention to the fact that knowledge

of the behavior of the experimental material should be incorporated into the design and
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analysis in the form of an hypothesized model if at all minimizing mean-squared errors is
desired.

The IBD are crucial to on-farm trials and their use needs to be investigated using the
principles highlighted by Yates (1930). There is need for rigorous application of appro-
priate statistical procedures to the design and analysis of on-farm trials that will enable

wide acceptance and imprevement in credibility of on-farm trials (Njuho, 1998).

2.2.2 General incomplete block design

The general incomplete block design consists of ¢ treatments in b blecks of size k;. reat-
ment (2 = 1,...,t) will have r; replicates implying that they will appear in r; plots and
block j(3 =1,...,b) will contain k; plots. The matrix (¢ x ) forms the incidence matrix
N and it has elements n;; equal to the number of times that treatment ¢ appcars in block
J. In most incomplete block designs, r; will be equal to 7 and all k; will be equal to k.
This implies that the incidence matrix will be composed of zeros and ones. Treatment ¢
appcaring in the jth block is denoted by 1 and 0 otherwise. Such designs are referred to
as binary designs. If &; = k for all 7, then the design is called proper. If 7; = r for all ¢,

the design is called an cquircplicate.
The model

Let y;jm denote the mth observation on the ith treatment in the jth block. We obtain
the model,

Yijm = b+ T + G5 + €im (2.4)
where i = 1,2,...,t ; 7 = 1,2,..,6; m = 0,1,2, ..., nj, €;m are the etror terms which
are uncorrelated random variables each with mean zero and variance o?, 7; is the ith
fixed treatment cffect, B; is the jth block effect and y is the overall mean. The Intra-
block analysis and recovery of Inter-block information is widely discussed (John, 1971 ;
Cochran and Cox, 1957 ; Khatri and Shah, 1975 ; Bose and Shimainoto, 1952 ; Nair, 1954

; Yates, 1940).
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2.2.3 Intra-block analysis

Let G be the grand total of all the observations, 7; be the sum ef all thc observations on
treatment i, and B; be the sum of the observations in block j. The intra-bleck estimates
of the treatment effects and the analysis of variance table can be obtained by solving the
system of equations below. From (2.4) the following normal equations are obtained using

the method of least squares (John, 1971)

nﬂ-&—zkyﬁj +ZT-§’?¢ =G (25)
F i
KL+ ki35 + Zﬁﬁ' = B; (2.6)
rift + E nijﬁj + 77 = Eya’j =T (2.7)
j b

where j =1,2,...,b;1=1,2,...,¢. The above set of normal equations can be expressed in

mairix form as follows;

G n 1R LK 7
T|=|R:y R N 7 (2.8)
B Kl, N K A

Equation (2.8) can also be expressed as ¥ = X3 where 1 is a column of all ones, R is the
t x t matrix with diagonal elements 1,73, ...,7; and the eff-diagonal elements are zero.
Thus R = diag(ry,7,...,7¢). K is a b x b matrix defined as K = diag(k, ka, . - ., k») and
N is the incidence matrix of ¢ rows and b columns where N = (n;) , 7" = (11, T3, ..., Tv) ,
B =(B1,Ba2,...,By), 7 =(n,7,...,1) and §' = (61,52,...,0s). The solutions to the
matrix system (2.8) depend on the rank of X whether it is of full rank or not full rank.
In most incomplete block designs, X is of less than full rank, which implies that many
solutions are possible. From John (1971), multiplying both sides of the equation (2.8) by
N1 0 ¢
0 1, —-NK- (2.9)
0 -NR! 1y
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Note that R1, = N1, and K1, = N'l;.

This gives the following set of cquations

. fUR? I'K3| G
b {12) {208} 8 e
T—NK'B=(R-NK N =Q (2.11)
B—N'R'T = (K- NR'N)j (2.12)

The above equations are of primary interest and are referred to as the reduced intra-block
equations (John, 1971). From Giesbrecht (1986), onc set of solutions to the equations can
be obtained as;

% = (R— NK-'N')*(T — NK~1B) (2.13)

and

= (K - N'RIN)*(B- N'R™'T) (2.14)
where (K — N'R™!1N)* denotes the Moore-Penrose generalized inverse of (K — N'R™IN).
From (2.11) the reduced normal equations for the estimation of the vector of treatment

effects can be expressed in the form;
Cr=Q (2.15)

where C = (R — NK~*N’) and @ depends on the n observations, which are assumed to
be uncorrelated with variance ¢? independent of the block size. Note that C1 = 0 and
(I{ = N'R"'N)1 =0, so if we consider a case where C has rank ¢t —1 and (K — N'R"!N)
has rank b— 1, then this form of design is connected and as such contrasts and effects are
estimable. Thus we obtain the 3 from the equations K1 + N'# + K3 = B

as f = K™1B— K™IN'F — Lyjt.

From John(1971), the sum of squares for the model is then given as

Gi+ BB+ T+=Ga+ BK B+ (T' - BK™IN')7 — G

=B'K'B+Q'+ (2.16)



18

The resultant analysis of variance table for the intra-block analysis using G?/N as cor-

rection factor is then given as follows:

Table 2.1: Analysis of variance table for intra-block analysis

[ Source of variation | Sums of squares | Degrees of
freedom
Blocks(ignoring B'K-'B — QNZ b-1
treatments)
Treatments(adjusted Q7 t—1
for blocks)
Residual By subtraction N-b—-t+1
Total XY Vm-T] N-1

Adjusted treatment and block totals

The adjusted treatment totals @); are linearly dependent since @', = > @; = 0 (where

this is not the case, the set of equations C7 = @ would be inconsistent). Therefore ,
Q1 =T1—-BK N,
QL =G-BK'K1,=G-G=0
Similarly, (B — N'R-'T)1, = 0
2.2.4 Inter-block analysis

In the case of incomplete block designs, the block totals may also be expected to provide
some information on the treatinents, since the set of observations occurring in different
blocks are different. This technique introduced by Yates(1940) utilizes the block totals to
estimate treatment differences. It is when the blocks arc considercd random that one can

utilize the information provided by block totals. Consider (2.4) simplified such that

Yi = p+ 7+ G + € (2.17)
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Assuming a proper design and let the variance of the intra-block errors e;; be o2, We
assume that the 8; arc random variables and therefore 3; ~ #dN (0, 03). From the b block

totals , considering all the above conditions, the block totals can be regarded as a set of

observations:

B; = kﬂ+znij7¢ + (kB; + Zfij)
i i

= kﬂ+ Zn.-jn- + C;

thus on the basis of the assumptions made, ¢; ~ #dN(0,k%07 + koZ). Applying least

squares analysis, we minimize

) (B; —kii— > naf)’ (2.18)
7 h
where jz and 7 denote the inter-block estimates; it and 7; denote the intra-block estimates.
We obtain normal equations by taking partial derivatives with respect to the parameters
and equating them to zero, i.e

%(Z(Bj—kﬁ—zh:nmﬁ)z =0 (2.19)

7

This yields

Zanhﬁ—f—Zanhﬁ:G
R P

J

while
4 ~ = \2
E(;(Bj ~ kfi ~ Zh: nihf)? =0 (2.20)
yields
& Z 721;_7'[1 + Z Z n,;jnjhﬁ = Z n,-ij
J J A J

fer ¢ = 1,2,...,t. Solving the two equations and applying the side condition

Y =0

we obtain
T} — rki
= r—A

~
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for i = 1,2,...,t. These estimatcs are orthogonal to the intra-block estimates obtained

previously. The estimates of the treatment differences are,

¥ . %
”f"{ - ’Fh s —; _ Ah (2'21)

b

where A is the number of times treatment i and treatment A appear in a common block.

Thus the Var([f; — 74] can be obtained. From T =}, n; B;, it follows that

Var[T}] = Zn Var(B

Var(T}) = Z ng;(k*af + ka?)
J
Var(T7] = var|T}]

Also the covariance

Cov[T}, T = A(kEUg -4 koz)
The variance of the treatment differences can be obtained as

1 ;
Var|[t; — ) = {m}z(Zrk2a§ + 2rko? — 2\k%0f — 20 ka?) (2.22)

= (72_]6—)\)(100'?“}‘0':)

Fer v # A consider a BIBD, its normal equations for the inter-block estimation are given
as
G=Np+) ri;
;

Z’n,’ij = T‘k‘ﬂ"“l‘ﬁ' +)\Z7:h
J

h
Denote > n;B; by T]. Considering the side cendition 1’7 = 8, the first equation gives

= G/N, and the sccond equation becomes

={r— A% +rki
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hence
. T —rki

e 2.23
R (2.23)

Note that YT = KG = trkjfi so that > 7; ~ 0. Thus in the general case, we minimize
(B — Kjil, — N'?)(B — Kjil, — N')

and obtain the normal equations as

G bk IR fi
- # (2.24)
NB R1K NN’ T
Multiplying both sides by
1 0
—R1/b I

gives the equations

[ 4 } (2.25)

[ G } B [ bk 'R
NB- S8 0 NN - 23
Recall that K1, = N1, thus the above yields
N(B — G1/b) = (NN' — RIR/b)7
and recalling that 1’RT = 0 the equations become G/N = j and
N(B-G1/b) = NN'7

so that
G

P (VN)IN(B - 50 = (NN)INE - 15

(2.26)

Therefere, the existence of the inter-block estimates requires that NN’ exists, and hence
that the incidence msatrix N has rank ¢. So we have two sets of estimates: ¥ = By, and
7 which is a function ef B and G. Since for any 7 and any j , cov(@;, B;) = 0, it follows

that the two sets of estimates are orthogonal and under normality are independent.
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2.3 Balanced incomplete block designs

An arrangement of ¢ treatments in b blocks of k plots each, (k < t), is known as a Balanced
Incomplete Block design(BIBD) if every treatment occurs once and only once in 7 blocks
and any two treatments occur together in A blocks. The constants t,b,r, k, N and A are
used in incomplete block designs.

b = Number of blocks in the experiment.

t = Number of treatments.

k = Number of experimental units per block.

7 = Number of replications for a given treatment in the experiment.

N = Total number of experimental units.

A = Number of times each pair of treatments appear together in a block (number of

concurrences).
n;; = The number of times block j contains a given treatment i. (i = 1,2,...,t;j =
1,2,...,b).

Thus a balanced incomplete block design can be denoted as BIBD(t, b, 7, k, A).

The following conditions must be fulfilled in order to obtain a balanced incomplete block

design.

rt=>bk=N (2.27)

Consider a single trcatment occurring r times. For a given treatment t;, it must
appear together with others in a block 7(k — 1) times in total.
But it also appears A times with each other (f — 1) treatments. So the total number

of concurrences of all pairs of treatments is given as follows

At —1) =r(k - 1). (2.28)



such that A = T({tk_—_s)
But by definition, A has to be an integer and thus this equation places restrictions

on the possible values of £ and ¢.

t<b (2.29)

A design with b = ¢ and » = & is said to be symmetric. This inequality is due to Fisher
(1940) and the proof was presented by Bose (1949). Shrikande (1950) shows that the
above three conditions are necessary for the existence of a balanced incomplete block
design although not sufficient. Given t treatments and blocks of size &k, we can coustruct
BIB designs by taking the ¢ treatments, k at a time in all possible ways.

Consider the model(2.17), for BIBD the following narmal equations are obtained(John,
1971)

i

T‘tﬁ'{’kZﬁAj‘FTZﬁ:ZZ?}@j:G (230)
3 i Y]

kit + kd; + Z Ny Ty = Zyij = B; (2.31)
Th+ an‘jéj +rf = E v =T; (2.32)
i ]

i=12,.,tand j = 1,2,...,b. Equation (2.30) is obtained by minimizing for p, equation
(2.31) forms the block equation and equation (2.32) forms the treatment equations.
The treatments effects are obtained by eliminating block effects. Solving the block equa-

tions fer f; . We have,

B 1 3 -
or
5 1 ik A
ﬂj = T:’B‘? — ‘E E Ny Ty — [ (2‘34)

Substituting (2.34) into (2.32) we obtain

1 1
Th+ an‘j {EBj % Z n»sjﬁ'} +rii=T, (2.35)
J I
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Equation(2.35) simplifies to

rhit + Z ij {BJ’ - Z "ii'ﬁt} + rkii = KT} (2.36)
J i

But
Z nvkﬂ = Tk[l,
J
thus
TI‘J‘F,‘ — Z Znijmh'fh = /CT, — Z’nijBJ
i A i
But
A—h#j
Znij'nrih = i
: r—h=73
Further simplification leads to
T'tTg D TT,‘ ) AZ Th LCZ - an (237)
h#j
= ki
where
-1 T,
i =1,2,...,t. The component @; is the sum of the deviations of each observation on

treatment 7 from the mean of all observations in that block. It is also called the adjusted
treatment total for the sth treatment.
Imposing the condition ) 7, = 0 would imply that

>

haki

Therefore Tk#; — 77; + AT = kQ;

{r(k —n+ "((ti_illT)} f = kQ,
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which simplifies to

M = kQ (2.38)
Thus

.

T = ‘;\;Qi
for i=1,2,...,t . The sum

Z'n‘-ij

can be computed, B; is the total for block j and n;; = 1 only if treatment < is in block j.
Summing over the block totals, while considering only those containing treatment i, pro-

vides the ANOVA table 2.2.

Table 2.2: Analysis of variance table for inter-block analysis

Sourcce of variation Degrees of freedom | Sums of squares

Mean 1 ?—f
Blocks ignoring b—1 1Y B2-<
treatments
Treatments eliminating T-1 ) T

blocks
Error rt — (b—1) — (t — 1) | By subtraction

Total(uncorrected) Tt D) i

The error sum of squares is the sum of squares for intra-block error. The mean square for

treatments (adjusted for block) is tested against the error mean square.

2.3.1 Estimating the difference between treatment means

From equation (2.37) we note that

1
Q=T — %Zniij
J



Consider the estimate 7}, — 7; for A # 7. From (2.38) substituting for ¢); we have

7 = % = th- {TR - %‘Z:WBU} (2.39)
and
e kﬁh ft { e "ZW‘B } (2.40)
Subtracting (2.39) from (2.40) pravides the estimate of the treatment means differences.
N 1 1
Th—’r,'=A—t{Th—Ti—EthBi-i-Z;nu;Bv} (2.41)

2.3.2 Computing variances of the estimates

In order to estimate variances we use the idea of computing variances for linear functions of
treatment means. From John(1971) and Chakrabarti(1962), the variance of the difference

between treatment means can be obtained as Var(T, — T;). That is

A k? o 2rke? dro? dXe®  2)\ko?

Var(Th — Ti) = W {2 + L2 - % + k - 22 } (2.42)

This simplifies to Var(Ty — T}) = gks {2rk?0? — 2rko? + ”/\kaz}

. - 2k0'

Var(T, - T;) = [kr —r+ A= A2t2 [r(k ~1)+ A (2.43)

But from (2.28) we then have Var(Ty — T) = %’%‘t’—:-[)\(t —1)+ )]

Thus
P 2ka 27\0

var(fh— 1) = 55 = (2.44)

The estimate of o2 is the error mean square obtained from the analysis of variance of the
data. For a balanced incomplete block design, the variance of the treatment differences i.e.
Var(T, - T;) is a constant value for all h # ¢ (John, 1971). This is because from (2.44),
all the variables involved are constant terms such that the variance for the treatment
differences across all the treatments is a constant. The variance of the difference between
treatment means for a BIBD with each treatment replicated r times in blocks of size &

can be generalized as

A N chrf7
Var(Th — T) = v (2.45)
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where aﬁ is the plot-to-plot variance for the plots in the incomplete bluock designs. In
comparing the efficiency of incomplcte block designs in relation to randomized complete
block design, we use the variances of treatment differences as a tool for the measure of ef-
ficiency (Das and Giri, 1979). For a randomized complete block design with r replications

of cach treatment, the variance of the treatment differences is given as

« & 202
Var(Th —T3) = -% (2.46)

where 0% is the plot-to-plot variance among the plots in the randomized complete block

designs.

2.3.3 The efficiency factor E

The efficiency of an incomplete block design in which each treatment is replicated r times
is measured relative to the complete block design with the same number of replicates.
From (2.45) and (2.46), the ratio of the variances of the difference between treatment

means can be expressed as

27k At [ o%
B " 7k {a_z} (247)

If this ratio is greater than 1 then the BIBD is more efficient than the RCBD with which
it is compared (Das and Giri, 1979). The quantity %}} is expected to be greater than 1
P

since BIBD has less variablc and more homogenous blocks as compared to the RCBD.

The efficiency factor is given as

= :% (2.48)
E does not provide a complete evaluation of the efficiency of incomplete block designs
but it is an important statistic in the evaluation of this efficiency (John, 1987). It is
the lower limit to the efficiency of the balanced incomplete block design compared to a
complete block design. The efficiency factor £ gives the maximum amount of efficiency

that could be lost. However one should be more interested in the complete ratio (2.47)

since it provides much more information on the gain in efficiency.
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2.4 Partially balanced incomplete block designs

Partially balanced incomplete block designs(PBIBD)} were introduced by Bose and Nair
(1939) and Bose and Shimamoto(1952) as an extension of balanced Incomplete block
designs(BIBD). BIBD have an important property that they are the most efficient among
all connected incomplete block designs in which each block has the same number of
plots and each treatment is replicatcd the same number of times(Bose, Shrikhande and
Bhattacharya, 1953). However BIBD do not exist for all situations and for certain numbers
of treatments they can only exist with large numbers of replications(Bailey, 1985). PBIBD

were introduced to solve this problem.

2.4.1 Association schemes

Suppose we have t = mn treatments and that we divide them into m groups of n treat-
ments each. We call treatments in the sane group first associates, and treatments in
different groups second associates in case of 2 associate classes only. In general, an in-

complete block design is partially balanced if

1. The experimental material is divided into b blocks of k units each, with different

treatments being applied to the units in the same block.
2. There are t treatments each of which occurs in 7 blocks.

3. There can be established a relation of association between any 2 treatments satis-
fying the following requirement;
Two treatments are either 1%, 2", ... or mth associates.
Each treatment has exactly n;, ith associates (z = 1,2,...,m).
For any two treatments which are ¢th associates, the number of treatments common
to the jth associates of the first, and the kth associates of the 2™ is P;k and is

independent of the pair of treatments with which we start. Also P}k = P,:_,,..

4. Two treatments which are ith associates occur together in exactly \; blocks(s = 1,2).
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Thus the following holds betwecn the parametcrs of a PBIBD.

4.

5.

. bk = tr. The numbers ¢, b, k, A\i, Az, . . ., Am, N1, M2, . .., N, are the parameters of the

1** kind and the numbers PJ‘L (t,7,k = 1,2...,m) the parameters of the second
kind, belonging to the design. Therefore , there are 2m + 4 parameters for the first

kind and m?(m + 1)/2 for the second ( since P}, = F; ).

. F ety =1t—1

s n1,\1 - Tl-g/\g +...+ nm)\m o- T(k - 1}

P K __ k
ni P = n; P = B

n, if i
nj—1 if i=j

Zi?:l ;k = {

A design with b blocks of size k and ¢ = bk in which every treatment appears A; times with

each of its first associates and ), times with each of its second associates is called a group

divisible design. The division of the treatments into groups constitutes a group divisible

association scheme. PBIBD with only 2 associate classes( m = 2) are of special interest.

These designs depend on 8 parameters of the 1st kind i.e ¢,b, 7, k, A1, Ag, 1,19 connected

by the 3 relations (1), (2), (3) and six parameters of the 2nd kind Pj (i,7.k = 1,2)

connccted by the relations (4) and (5). Therefore the parameters of the 2nd kind can be

exhibited as elements of two symnmetric matrices i.e

and

1
pl — Py P}z
ik 1 1
Doy P2

P2 = { Plgl p%2 }
*®=N
Py P§2

2.4.2 Analysis of PBIBD

Consider t treatments to be compared in b blocks of size & such that each treatment is

replicated 7 times. Therefore the design requires N = bk experimental units. Assuming
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all the requirements for having a partially balanced incomplete block design with two

associate classes are fulfilled. Consider the following model.
Yii = ptti+bi+e; (2.49)

For j=1,2,...,b;i=1,2,...,t and where y;; is the observation resulting from applying
the ith treatment to a unit in the jth block, p is the general mean, ¢; is the ith treatment
effect, b; is the jth biock effect and ¢;; is the random effect which is normally distrihuted
N(0, 02). Denote the total of all observations for the tth treatment hy T, and let B; be the
sum of all the k observations from the jth block. Let @; denote the adjusted yield for the
ith treatment, where Q; is obtained by subtracting from 7; the sum of the block averages
for those blocks in which the ith treatment occurs. For example, if the ith treatment

occurs in the blocks 1,2,3,...,r then

1
Qi=ﬂ_E{Bil+B52+~-+Bir}

If we let S1(@) be the sum of all the adjusted yields for all the first associates of the i —th
treatment. i.e. if the first associates of the ith treatinent are the treatments nuinbered
i3.92, ..., %n1, then

S QD=0 +Qu+...+Oim

Let the grand total of all the N observations be denoted by G. According to Bose,
Clatworthy and Shrikhande (1953), we define the constants A, H, c;, ¢z by the following

relations.
L kA = (a+ M)(a+ ) + (0~ XaMalf — @) + fho — el },
2. kH =(2a4+ X1 + 2+ (f — al( X = Ao,
3. kAcr = Aila+ M) + (A — XM Fhs — ahi),

4. kAcs = dofa 4+ MY+ (X = Mo Fha — ala).

where a = r(k — 1), f = P}, and g = P}



31

2.4.2.1 Intra-block and Inter-block analysis

The best linear estimate £; of the treatment effect ¢; is given as
r{k — 1) = (k — )@ + (&1 — c2)$1 (@)

for i =1,2,...,t. The variance of thc estimate of the difference between two treatment
effects is given by

PO 20%(k — ¢;)

V(t, —-t,) = ——22

( 1 u) T(k _ 1)

where the treatments i and u are 7 — th associates (7 = 1,2). With a completely random-

(2.50)

ized block design, with the same number of replications r, the variance of the difference

between two trcatment effects is given as

2
2arcbd
r

where 02, is its error variance. Thercfore if a reduction in the block size does not reduce
the error variance then setting 02,4, = o implies that the efficiency factor would then be

given as
k—1
k—Cj

E; =

(7 = 1,2) which is the ratio of the variance of the estimate of ¢; — f, when the randomized
block design is used to the variance of the same estimate when the partially balanced
block design is used. Thus the quantities £, and E» are called the efficiency factors of the
two kinds of comparison. Therefore, from all possible contrasts, n; of these are estimated

each with variance
20 2 (k == Cl)
r{k — 1)

and the remaining n, are estimated each with variance

20%(k — ¢3)
r(k—1)

Therefore the average variance of the treatment comparison is given by

202 {ni(k — 1) + na(k — c2)}
rtk—-1)(E—-1)
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Thus when we take the ratios of the variance of the RCBD with the above variance we
obtain the overall efficiency of the partially balanced incomplete block design. Assuming

that 02,4 = o2 then the overall efficiency is given as

(k=1 —1)
n1(k — c1) + na(k — c2)

E= (2.52)

2.5 Other incomplete block designs
2.5.1 Lattice designs

One important characteristic of incomplete block designs is whether the blocks can be
grouped so that each group of blocks contains a complete replicate of the set of treat-
ments. When this division of an experiment into replicate groups of blocks is possible the
design is said to be resolvable (Clatworthy, 1973; Mead, 1994). Non resolvable designs
exist but are less valuable for field trials since they don’t allow a two stage removal of
field trends, where importantly, the first-stage removal is carried out by replicates which
are orthogonal to treatments (Williams and Matheson, 1994). The overall structure of an
r replicate resolvable design for ¢ treatments with & blocks of size k& within each replicate
is an example of a generalized lattice design. Cochran and Cox(1957) give special cases of
these designs. The common ones are the lattice designs where £ = & and the rectangular
lattice designs where & = b — 1. In these designs, the concurrence matrices contain either
zeros or ones in the off-diagonal positions. Consider a BIBD with &2 treatments arranged
in b = k(k +1) blocks with & runs per block and r = £+ 1 replicates. This type of design
is what we call a balanced lattice. The blocks can be grouped into sets in sich a way that
each set contains a complete replicate.

Lattice designs are very important where therc are a large number of treatment combina-
tions to be analyzed. Sizes of these designs can be reduced by adopting partially balanced
lattices. These designs include the Simple lattice, where 2 replicates of a design for &?
treatments are in 2k blocks of k runs each. e.g consider the 3 x 3 balanced lattice design

below in table 2.3.



Table 2.3: A simple 3 x 3 balanced lattice design

Replicate 1 Replicate 2
Blockl | Block 2 | Block 3 | Block 1 | Block 2 | Block 3
1 4 7 1 2 3
2 5 8 4 5 6
3 6 9 7 8 9
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Here wc achieve partial balance e.g treatment 2 appears in the same block with treatments
1, 3, 5, 8 and does not appear in a block with any of 4, 6, 7 and 9. A triple lattice is a
lattice design with k2 treatments in 3k blocks grouped into 3 replicates. A lattice design
with %2 treatments in 4k blocks arranged in 4 replicates is called & quadruple lattice.
Cochran and Cox (1957) provide details of some of the available lattice designs. These
designs are efficient and optimal. In most practical situations, field conditions dictate the
use of resolvable designs (Patterson & Williams, 1976). Yates(1940) acknowledges the
importance of resolvable designs which is a major characteristic of most lattice designs.
This advantage of lattice designs is broadly shared by other resolvable incomplete block

designs especially the a — designs.

2.5.2 Alpha designs

Alpha designs are a class of generalized lattice designs, which allows for most practical
situations encountered in field trials (Patterson and Williams, 1976). A more detailed
study on alpha designs is presented by John and Williams (1995). One advantage is that
they provide great flexibility in the number of treatments and block sizes. Alpha-lattice
designs in studies of field trials in the UK and Poland have shown more efficiency than
RCBD (Patterson and Hunter,1983; Pilarczyk, 1991). In the study of the efficiency of
alpha-lattice designs in the international variety trials of barley and wheat, thesc designs
resulted in an average efficiency 18% higher than the randomized complete block designs
when average variance was used as the comparison criterion(Yau, 1997).

Patterson and Williams(1976) recommmend that the efficiency of the design should be
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cvaluated beforc the design is rccommended for use. But the computation of the efficiency
of the alpha designs is not straight forward as seen below. Williams and Hunter(1978)

provide this estimate of efficiency of the alpha designs. Let Nyx; be the incidence matrix,

then define
C=I-LNN (2.53)
rk
And
Cp=1-— iN'N (2.54)
rk

The subscript D shows that this equation refers to the dual of the original design.
One eigenvalue of Cp will be zero; let thc non-zero eigenvalues of Cp be denoted by
61,0y, ...,6, 1. The matrix C has v eigenvalues, which include 6,0, ..., 85—, and also v—b
ones.

According to John(1987), the efficiency of the design in question relative to the random-

ized complete block design is given by E where

E— v—1
(-1 + 356
relative to the randomized complete block design. Paterson and Paterson(1983) recog-

(2.55)

nized (2.55) as the harmonic mean of the eigenvalues.
From Patterson and Williams(1976), an upper bound(U;) for a resolvable design is given

_ (w—1(r—-1)
(v—1)(r =2)(b—r)

The cfficiency computations above are in comparison to a standard randomized complete

U, (2.56)

block design with the same number of treatments and replications.

2.5.3 Cyclic designs

Cyclic designs (John,1971) are vital in the designing of incomplete block designs. They
provide a simpler methodology in the designing of incomplete block designs. In recent
studies of IBD, cyclic methods of construction of designs have been widely used ( Pat-

terson and Williams, 1976; Jarrett and Hall, 1978). For a given set of paramecters, many
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cyclic designs are possible, and many possess good statistical properties.

Definition 1. Let D = (V, B) be a BIBD. A bijection o: V — V i3 called an automor-
phism of D if 0(B) € B for all B € 8. A group G of automorphisms of D is called regular
if it acts transitively and faithfully on points, i.e., for any 2,y € V , there is a unique
o € G such that o(z) = y. If a BIBD has a regular cyclic greup of automorphisms, it is
called cyclic.

Note that the order of a regular automorphism group of a (v,b,r,k,A) BIBD is v.
It follows imnediately that the complement of a cyclic design is cyclic and multiples of
a cyclic BIBD are cyclic. A classical example of a cyclic design is a symmetrtic design
generated by a cyclic difference set. Thus, for any prime power ¢ and any positive integer
d, there exists a cyclic design(d, g). An extensive list of cyclic BIBDs can be found in the

section on difference families in Colbourn and Dinitz(1996).

Jarrett and Hall (1978) listed efficient generalized cyclic designs, in a sense of maximizing
the overall average efficiency factors, with the parameters 10 < v € 60 and r < k£ < 10.
They consider a method for constructing a generalized cyclic design with larger values
of the parameters from a generalized cyclic design and give a relationship between the
efficiency factors of these designs. They present efficient larger generalized cyclic designs
with v < 100 and r < & < 25, applying the method to the efficient cyclic designs listed
by John (1981). Most of the resulting generalized cyclic designs have fairly high effi-
ciency factors, it therefore seems that the method is useful in constructing efficient larger

generalized cyclic designs, provided that the original designs are efficient.

2.6 Summary of designs

There is a comprehensive list of incomplete block designs each with special statistical
qualities specific to an area of study. The above represent a few of the incomplete block
designs available. In on-farm trials, each problem calls for a special design. Therefore,

there is no specific standard incomplete block design that can adequately cover the design
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problems in on-farm trials. However, a few of the incomplete Block designs discussed in

this chapter have qualities that are clase to solving on-farm experimental design problems.



Chapter 3

Efficiency Estimation

Efficiency evaluation is a decision tool that enables researchers to select a design that
optimizes available resources and produces adcquate information. The results from on-
farm trials are based on the estimated parameters and therefore estimation procedures
that produce efficient estimates are of critical importance. In conducting an experiment,
there are always many design issues to resolve(Kempthorne, 1952). These may include
deciding which treatments to study, what factors to control and what aspects of a design
to randomize (Verdinelli & kadane, 1992). All other aspects relating to considerations
of how miany experimental units are needed, how many observations should be allocated
to each treatment, or what levels of the treatments should be used fall within the ambit
of the statistical design(Fisher, 1958). The purpose of efficiency is to improve statistical
inferences regarding the quantities of interest by the optimal selection of values for design
factors under the control of the investigator, and within the constraints of the available
resources(Winer, 1971 ; Ostle, 1963). Several criteria are in existence for this purpose.
The efficiency issues discussed in this study are given in the context of improving on

on-farm trials results.

3.1 Review of efficiency estimation in designs

Consider an incomplete block design with equal block size k, equal treatment replications

r , and each treatment appearing with another A times in blocks, with the restriction

37
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that each treatment appears at most oncc in any one block. The normal equations for
the treatment parameter estimates 7; are given as in (2.4), (2.5), and (2.6). Conniffe and
Stone (1974) defined the relative efficiency of the incomplete ®lock design as 2/r0 which
is the inverse ratio of the average variance to that of a randomized complete block design
with the same replication ». And ¢ is the average variance of the treatment differences
Fy—T5-

Kempthorne(1956) gives v as

— (3.1)

where w; are the nonzero eigenvalucs of the n x n matrix whose off-diagonal elements are
—w;;j/k and with diagonal elements (r — r/k). Kempthorne(1956) considered the average
variance of the elementary treatment contrasts to obtain the harmonic mean of the w's as
a dcfinition of the efficiency factor of a design. Kshirsagar(1958) considered the geometric
mean of the w’s as a criterion to measure the efficiency of a design. Thus (wyws . . .wp—1)™!

or
t-1
1

=1 Wi
can be used as a measure of the efficiency of a design. For

C=rl— %NN’ (32)

where I; denotes the identity matrix of order ¢ and V;xp is the incidence matrix of the

design. Then

-1
Zwi =trC = tr(rk — EIC-NN’) (3.3)

4a=1

Thus minimizing either

(&)1(1)’) v .w+_1)_l

or
=1 g
2
subject to the condition
t—1

ZUJ,;‘—-‘K

a1
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where K is a constant, we obtain the design with the highest efficiency( Kshirsagar,
1958; Mote, 1958 and Conniffe and Stone, 1974). Conniffe and Stone (1974) provided an
estimation of the upper and lower bound to the efficiency of an incomplete block design.
Thus the 7 x n matrix whose off-diagonal elemnents arc —w;;/k and with diagonal elcments
(r —r/k) has rank n — 1 such that wy = 0. But the sum of the eigenvalues equals to the
trace of the matrix and thus Y w; = n(r —r/k) = nr(k - 1)/k.
Let

nr(kk 1) — A
Since the eigenvalues of the square of the matrix are equal to the squares of the eigenvalues

of that matrix, it follows that

2,201 _ 1\2 2
ZwiﬁznT (I“ 1) +E§wu

k2
Conniffe and Stone (1974) fixed 3" > w? and hence w + ... + w? = B say. Using the
Lagrangian maximization and minimization criterion, it is noted that at a stationary
point, n; of the eigenvalues equal R; and n, equal Ry. Where ny Ry + ngRs = A, n 3 +
mR2 =B, n +nyg=n—1.
Conniffe and Stone(1974) presented the lower and upper bound to the efficiency of an

incomplete block design as

Y n—2 1
mm{; ;"} =(n—1) {A — (&=1yp AT (n—2)172(n — 1)1/2P} (3.4)
and
N T —2 1
5 1= -1
ma:l:{;wi} (n ){A+(g:—;)1/2p+A—(n—2)1/2(n_1)1/2p} (3.5)
where
2 172
n—1
Therefore

s Ly oS 7\ 1
min{y ;1} < Zw— & max{;-w—i]

4=
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Using these boundaries, we can compare efficiencies of several designs based on the limits
of their stationary values i.e min and mnaz. Given two designs with the same treatment
replications but with different w;;’s, if the largest stationary value for one design is less
than the stnallest stationary valuc for the other design, then the first design is more
efficient. This implies that a design that maximizes efliciency can be obtained hy choosing

w;; to minimize P (Tocher, 1952; Pearce, 1968 & KKempthorne, 1956).

3.2 The optimality criterion

Optimal experimental designs continue to receive a wide and considerable amount of at-
tention in the statistical literature as acknowledged by Chaloner(1984). Several authors
have looked at this field (Kiefer, 1958 & 1959; Fedorov, 1972; Silvey, 1980) and more
recently Atkinson and Donev (1992). The goal is to obtain the best design that will
optimally provide the unbiased estimation of treatment contrasts with maximnm effi-
ciency. There are many optimality criteria that have been studied to accomplish this goal
(Atkinson aud Donev, 1992). Kiefer(1975) noted that if a binary balanced incomplete
block design(BIBD) exists, then it is universelly optimal for simultaneously estimating
all the trcatment contrasts. However, once any of the observations in a BIBD becomes
unavailable, its optimality properties are lost. Many reseaxrchers have studied the robust-
ness of incomplete block designs when some observations are unavailable{Ghosh, 1982a,;
Baksalary and Tabis, 1987; Whittinghall, 1986 and 1989). This particular problem is very
commmon in on-farm trials. However, the efficient design of IBD is capable of handling
such problems. In this case the selection of the most optimal design that suits the on-farm

trial is of great benefit.
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3.2.1 Optimal design theory

Classical formulation of optimal design theory is based on a model given as:

»
Y = Z F5(z:)B5 + ¢ (3.6)
j=1
fori=1,...,n;
where f; are known functions of design points z;, and 3, ..., 3, are unknown coefficients

and ¢; are uncorrelated errors with mean 0 and common variance 02. The equation (3.6)

can be written in the form

Yo=F.p+¢ (3.7)

Notice that in this case the information matrix is directly proportional to FJ F,. The

information matrix can be written in the form

IR = [ f@) @)

where &, is the discrete measure that places mass % at each z; (Atkinson and Donev,

1992). Define
M(©) = [ s@ 1@ (3.8
x
for any positive measure £. Optimal design criteria are of the form:

Choose £ to minimize T{M ()} for some function ¥{.}.

The examples include:
e D-optimality: ¥ = ~leg|M(&)|.
o A-optimality: ¥ = tr{M (&)1},
¢ E-optimality: U is largest eigenvalue of M(£)™!.
e G-optimality: ¥ = maz,cyd(z,&) where d(z,&) = f(z)TM(£)™* f().

Note that

[tz e =



Thus if we can find £* for which maz,e,d(z, £*) = p, £ must be G-optimal.
General equivalence theorem

Suppose 4, is a unit point mass at x and consider modifying £ into
baa = (1 — ) +ad;
where 0 < a < 1. Then
M(Eqz) = (1 - ) M(g) + aM(é.)
The derivative of ¥, in the direction 6., is

§(z,€) = limaio (¥ (M(E,.)} — H{M(O))

The General equivalence theorem asserts that the following are equivalent:
1. € minimizes ¥{M(£)},
2. ¢(z,€") >0 for all z,

3. ¢(z, €*) achieves its minimum at points of the design, i.e at points £ which have

positive point measure under £*.

Consider ¢ treatments to be arranged in b blocks comprising a total of n experimental
units. Any particular arrangement or design, d is associated with a ¢ x b incidence matrix
Ng = ny;, where n;; denotes the number of times the i** treatment appears in the jit
block. Let the replication of treatment i be denoted by r; and the number of units in
block 7 be denoted by k;. Writing Rs=diag(r1,...,r:)} and K;=diag(k;,..., ks), the least
squares analysis of this design leads to the reduced normal equations given as(equation

2.15)
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where 7 = (11,...,7)" is the vector of unknown treatment effects, @ is the vector of the

adjusted treatment totals, and the information matrix Cjy is given as
Cy= Ry — NdKJIN,;

The matrix C; is nonnegative definite and for connected designs it has rank ¢ — 1.

A connected block design d is said to be variance balanced if and only if all £ — 1 non-zero
eigenvalues of Cy are equal(Kiefer, 1975). Let w3 < wp < ... < wy—; be the nonzero
eigenvalues of Cy.

Definition 2. A design d is said to be @p-optimal over the class of designs D if it mini-

mizes
t-1 1/p
=1

overd e D.

For p = oo the above definition becomes a maximization of wy, and the optimal design
is then said to be E-optimal (Dey and Das, 1989). While for p = 1 the common term
is A-optimality(Kiefer, 1959). Another measure based on this result is the conventional

efficiency € which is defined as

= (1 o9

where ¢ is defined as above for p = 1, 7 is the number of treatment replications, and ¢ is
the number of treatments. The efficiency ¢ is the ratio of the average variance of all pairs
of treatment differences to the minimum which would be achieved by a randomized block
design, if one existed.

Consider the model given in (2.4)

Yiim = W+ T + 0i + Eiim (3‘10)

Where 1 = 1,2, ...,t,7 = 1,2,....bym = 0,1,2,...,n;and where n;; denotes the number
of cxperimental units in block j assigned to treatment i , z denotes the general mean,

7; the effect of the treatment i, §; the effect of block j, and €jjm the random error.
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Let D=D(t,b,n,k,,ry) be a class of connected block designs having ¢ treatments, n
experimental units, minimum replication of treatments, rp, and with maximum block size

of k-

Definition 3. A design d* in a class D of competing designs is said to be E-optimal in D
if and only if the smullest non-zero eigenvalue of Cy- is at least as large as that of Cy for
any other d € D. Thus d* is E-optimal if and enly if it minimizes the mazimum variance
of the least square estimators of normalized treatment contrasts.

Model (3.10) can also be expressed in matrix form as follows;
Y=X3+¢ (3.11)

where X, x, is design matrix, B,; is & vector of regression parameters, Ynx; vector of
observations and &, is a vector of error terms. We assume that € is i¢d normal with

mean zero and cov(¢) = g2I. Thus, from the least squares estimate we have that
B=(X'X)" XY (3.12)

where var() = o2(X' X)~, V; = 2 and the var(Y;) = o22(X’' X)~2' where (X' X)™is
the generalized inverse of (X’X) if X’ X is not of full rank, otherwise (X'X)~ is replaced by
the unique inverse (X’ X)! . Notice that the variance-covariance matrix of the vector of
parameter estimates of 8 in a least squares analysis is proportional to (X’X)~!. Therefore
an efficient design is one with a small variance matrix, and the eigenvalues of (X'X) !
provide measures of its size. Thus the design problem involves selecting row vectors xp
for ally; ,7=1,2,...,n from a given design space y such that the design defined by these n
vectors is in one way or another optimal. Solutions to this problem involve formulating a
criterion based on the above model and using it to obtain optimal designs. There are many
criteria that have been developed to enable comparison of experimental designs(Kiefer,
1959). These optimality criteria are based on minimizing the variance of the estimates of

the fixed effects and the variance components.
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3.2.2 G-optimality criterion

Smith (1918) developed a criterion to obtain optimal designs for regression problems,
based on minimization of the maximum variance of any predicted velue over the exper-
imental space. Kiefer and Wolfowitz (1960) called this the G-optimality criterion from
which we derive the G-efficiency design measure. G-efficiency is & common criterion for
optimal design. It is based on the variance of prediction of the candidate points, which is
proportional to (X’X)~!. Thus, this criterion is related to the information matrix X'X.
Minimizing the average prediction variance leads to the I-optimality, where “I” denotes

integration over the candidate space(Kiefer, 1959). In general the G-efficiency is defined

G-eff={\/ p/Na }xlOO (3.13)

mazzece (X' X) 1z

where p is the number of parameters in the linear model, N; is the number of design

as

points and C is a set of candidate points

3.2.3 D-optimality criterion

Wald (1943) proposed the D-optimality criterion which puts more emphasis on the qual-
ity of the parameter estimates. A design is said to be D-optimal if for the model the joint
confidence region for the vector of unknown parameters is minimum. As a consequence,
the global maximum of the determinant of X’'X is achieved. D-efficiency is a function of
the geometric mean of the eigenvalues , which is given by |(X/X)~!['/? i.e. the dctermi-
nant [(X'X)™}| is the product of the eigenvalues of (X'X)~! , and the pth root of the
determinant is the geometric mean. Thus a design @* is said to be D-optimal if it has the

minimum value of the determinant of (X’X)~. In general D-efficiency is defined as

D—eff:{l——}%%l—uf} x 100 (3.14)

where p and Ny are defined as in (3.13).
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3.2.4 A-optimality criterion

The A-optimality criterion minimizes the average variance of the parameter estimates
(Chernoff, 1953). i.e. min trace((X'X)™") . A-efficiency is a function of the arithmetic
mean of the variances, which is given by trace((X'X) 1)/p . Notice that trace is the
surn of the diagonal elements of (X'X)™! , which is the sum of the variances and also
the sum of the eigenvalues of (X’X)~!. In this context A-efficiency is the most logical
criterion to use in evaluating design goodness. This is because as orthogonality decreases,
both the off-diagonal and diagonal elements of (X’X)~! increase. Thus considering the
average variances whilc ignoring the off-diagonal covariances, is reasonable since variances

increase as the covariances increase. In general A-efficiency is given as

_ p/Na
A—eff= {_—tmcc(X’)F} x 100 (3.15)

where p and V; are defined as above in (3.13)

3.2.5 E-optimality criterion

Another criterion is the F-optimality, which finds a design which maximizes the minimum
eigenvalues of (X’X). In other wards, a design d* is said to be E-optimal if it has least
value for Apnaz Where Apqz is the maximum eigenvalue of (X’X)~!; where (X’X)~! is the

inverse of (X'X).

The above criteria can be selected on the basis of the objective of the study. The unpre-
dictable nature of on-farm trials would make one wish to recommend a general optimality
criterionn. But such criteria are not available and therefore we compare across all criteria
to obtain an appropriate design. An illustrative exemple is presented to show the use of

the above optimality criteria.
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Example 1

Consider the situation of an on-farm experiment where we are interested in BIB optimal
design for 6 fartns(blocks) for testing 7 treatments. Suppose that there is a resource con-
straint such that only 24 experimental units can be considered. Using the SAS procedure
OPTEX we can gencrate and compare such designs. SAS code for the above example is
provided in the appendix C.1.

Table 3.1: Results of optimality Efficiency criteria for the on-farm trial considered with
b=6,t=T7k=4,and N =24

Design Number | D-efficiency | A-efficiency | G-efficiency | Average prediction
Standard error
I 1 92.8850 85.9649 82.8417 0.7626
2 92.8850 85.9649 82.8417 0.7626
3 92.8850 85.9649 82.8417 0.7626
4 92.8850 85.9649 82.8417 0.7626
o 92.8850 85.9649 82.8417 0.7626
6 92.8850 85.9649 82.8417 0.7626
7 92.6860 85.2011 81.4257 0.7661
I 8 92.6860 85.2011 81.4257 0.7661
| 9 92.5877 84.8357 81.4627 0.7677
[ 10 92.5668 84.7444 80.0776 0.7681

The order of the designs range from 1 (most efficient design) to 10 (least efficient
design). Note that the efficiency values obtained are in comparison to an orthogonal ran-
domized complete block design. The D-efficiency value remained constant from design
1(92.885) to 6 and decreased slightly to 92.686 fer designs 7 and 8 and thereafter dropped
to 92.5877 fer design 9 and finally to the lowest value of 92.5668 for design 10. The reason
for the differing values of these measures across designs is due to the different treatment
combinations that can result. Each treatinent combination has an effect on the quality of
the parameter estimates as mirrored in the design matrix. Other design optimality mea-
sures present a similar pattern of performance across all 10 designs. Table 3.2 presents

results on the best design obtained by the OPTEX SAS procedure.
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Blk/farm 1 | Blk/farm 2 | Blk/farm 3 | Blk/farm 4 | Blk/farm 5 | Blk/farm 6
7 7 7 6 ' 5 6
6 6 5 5 4 3
5 4 3 4 3 2
2 3 1 1 2 i

The above example illustrates the benefit of using IBD which have less restrictions than
RCBD. In this example, the best IBD results in a loss of efficiency compared to a RCBD
of 7%, 14% and 18% on the D-efficiency, A-efficiency and G-efficiency criteria respectively

and has an average prediction standard error of 0.7626.

3.3 Complexity criterion

The choice of a design is an important determinant of the preperties in linear estimation.
Thus the design itself is an essential aspect of model selection. Maklad and Nichols(1980)
noted that complexity can be a good criterien for usc in model selection. Emden(1971)
shows that complexity maybc used effectively as a tool in design evaluation. The com-
plexity of a design essentially gauges the nonorthegonality of the design matrix X, as
mirrored through the inverse of X’'X. Ramirez(1989) studied in detail two complexity
indices.

Consider a random variable Y = {V, ..., Y] with a distribution ©(Y) and a dispersion
matrix A, then the complexity of T(Y) was defined by Emden(1971) in terms of the

dispersion matrix A as

(3.16)

o) = e ~mgan} /2

Let Ay > A2 > ... > A > 0 denote the ordered non-zero eigenvalues of A. Let ) be the

average of all the eigenvalues(arithmetic mean) and GM () denote their geometric mean.
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Then

A ) A
B(A) = {zn(ﬁk—T)} /2= (k/2) 1n{ ﬁY(T)} (3.17)

i=1"M

Note that ¢(A) > 0 by the arithmetic-geometric mean inequality and ¢(A) =0 iff A is a
scalar matrix. Thus ¢(.) can be used to gauge whether a design X yields Gauss Markov
estimators ,@(X) more precisely than another design H. In order to compare designs on
the basis of their relative complexity , we drop the logarithmic scale and say that design

X is less complex than a design H whenever C1(X, H) < 1, wherc

_tr(®) [l
CX.H) = s {12]} (3.18)

where & = [X'X]™! and Q = [H'H| ™.

There is a link between the standard design criteria of A- and D-efficiency and the reiative
complexity of two desigus i.e. A-efficiency is related directly, and D-efficiency is inversely
related to C; complexity. The link between these criteria is further cstablished by the

following theorem.

Theorem 1. Consider designs X and H, with £ = [X'X]™ and Q = [H'H]™*, pertaining
to the Gauss Markov estimators (X) and B(H), respectively.

1. Then ¢(Z) , ¢(Q) and C1(X, H) are related as

#(Z) = () = (1/2)In { %%;%} ~ (D WC(X,H)  (319)

2. If X and H are D-eguivalent, then H has greater A-efficiency than X if and only if
H is less complex than X.

§. If X and H are A-equivalent , then H has greater D-efficiency than X if and only if
H is more compler than X.
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3.3.1 Numerical example

Consider an on-farm trial to test for 3 treatments on 3 farms. The mede!l for such a trial
would be

Yii=pt+7+fit+e; (3.20)
i =1,2,3 and j = 1,2,3; where Yj; is the observation for the ith treatment in the jth
farm, u is the overall mean,7; is the éth treatment effect, and f; is the jth farm effect.

Consider two designs a complete block design and en incomplete block design given in

table 3.3.

Table 3.3: Complete block design 1 and Incomplete block design 2

Complete block design 1 | Incomplete block design 2
}'F;rm 1| Farm 2 | Farm 3 || Farm 1 | Farm 2 | Farm 3
1 1 1 1 - 1
2 2 2 2 2 -

3 3 3 - 3 3

The design matrix X for each of these examples are given in the appendix A.1. Using the
X matrix we obtain the cigenvalues of the X’ X matrix. We then compute the arithmetic
mean, geometric mean and thereafter the complexity index using 3.17. The results of the
computations are presented in table 3.4.

Table 3.4: The eigenvalues, arithmetic and geometric means, and complexity index for
the two designs using the model 3.20.

Design | Eigenvalues | Arithmetic | Geometric | Complexity
Number | for (X'X) Mean mean Index
1 15,3,3,3,3 5.4 1.069 4.0492
2 10,3,3,1,1 3.6 1.226 2.6929

In this example design two is less complex(2.6929) as commpared to design one. This is
because in design 2 the blocks are incomplete but connectedness is maintained. While

design 1 is a comnplete block design with full connectedness, its complexity index compared
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to an incomplete connected design is greater. This provides an insight that incomplete

block designs can he as efficicnt or even more efficient than randomized complete block

designs.

3.4 Power analysis in designs

In many situations in analyzing dcsigns, therc is need to compute the power of a design
as compared to other designs in answering a specific objective. Very often RCBD are
used in experiments where another design would be appropriate. O'Brien and Lohr(1984)
developed a method using ordinary least squares linear models to obtain power valucs for
designs. They used SAS PROC GLM to obtain non-centrality parameters of a non-central
F under departures from the null hypothesis of no treatment differences which was the aim
of the study. Their study did not cover the aspects of spatial variations that occur in fields
since the designs were restricted to a single source of identically independent distributed
experimental errors. In the on-farm trials, spatial variability is a common occurrence and
more specifically with the use of incomplete block designs, where recovery of inter-block

infermation is required, power analysis is a vital tool in assessing and comparing designs.

3.4.1 Basis for power analysis

The power analysis in design is considered under a mixed model obtained by modifying (

2.3) such that
y=XB+ Zu+te (3.21)

where

Y 1S a response vector,

X is a design matrix for fixed effects,

3 is the vector for the fixed effects paraineters,
Z 1s the design matrix fer the random effects,

u is the vector of random effects,
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e is the vector of residuals.

In mixed models theory y ~ MVN{XB,V} where V= ZGZ’ + R and

MECESY

In mixed models analysis the null hypothesis is Hg: K’ = 0 where K’ is estimable and

where

this can be tested using thc generalized F-statistic

_ (KY[K/(X'VTIX) T K](K'6)

F (K

(3.22)

where b is the estimate of 3, r(K) denotes the rank of K and V is replaced by its estimate
depending on the variance-covariance matrix form of G and R. F in equation (3.22) is
distributed approximately Fj(k)». The denominator degrees of freedom(d.f) v, are the
d.f to cstimate K/(X'V~1X)"'K. And A is the non-centrality parameter which is given

as
A= (K'BY{K(X'VIX) K} Y K'B) (3.23)
Under Hy, A = 0 and if Hy is false A > 0. Thus the actual value of A depends on the design
and replication associated with X, K’S and V the variance-covariance components.
Power is then defined as the Prob[F,(;()ﬂ,,,\] > Fgi; where F. = Fox) .04 the value
of the central F at the designated a-level. A- is the non-centrality parameter under
the alternative hypothesis of interest. In evaluating designs, interest is in assessing the
expected precision of competing designs rather than the cxpected power(Mead, 1994).

The variance of the estimate of an estimable function in mixed models is given as
Var(K'f) = K'(X'V1X) 'K (3.24)

Therefore, when comparing designs, we use precision with which they can be expected
to estimate functions K’(3 deemed to be of major interest. The idea of designing ex-
periments involves identifying the objectives, treatment structure and formulation of the

appropriate sets of contrasts to address the problem or objectives. Use of power analysis
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can then be employed to select the most appropriate and best design. Example 2 given

below illustrates the procedure of power analysis in design selection.

Example 2

Consider an on-farm trial to test € treatments(t) on 6 farms(blocks) which can only
accommodate a maximum of k = 4 treatments each. Thus the maximum number of
experimental plots would be 4 x 6 = 24 experimental plots. Therefore, this causes a
restriction on the number of treatments te allocate to a given farm since they can only
accommodate a maximum of 4 treatments.

Probable designs would be in the class of incomplete block designs e.g. BIBD, PBIBD,
RCBD with distorted naturally existing structure etc. Tables 3.5, 3.8 and 3.7 represent

the PBIB, BIBD and RCBD designs considered respectively.

Table 3.5: Design 1: Partially balanced incomplete block design(PBIB) layout with 4
treatments per farm

farm 1 | farm 2 | farm 3 | farm 4 | farm 5 | farm 6
1 1 4 6 5 A
2 2 o 3 6 6
3 3 6 1 4 5
4 5 1 2 1 4

Table 3.6: Design 2: Balanced incomplete block design(BIBD) layout with 4 treatments
per farm

farm 1 | farm 2 | farm 3 | farm 4 | farm 5 | farm 6
2 1 3 4 6 4
1 2 1 ¢ 4 6
4 6 2 3 L} 1
3 5 5 5 2 3
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Table 3.7: Design 3: Randomized complete block design(RCBD) layout with 4 treatments
per larm

farm 1 | farm 2 | farm 3 | farm 4 | farm 5 | farm 6
2 1 3 4 6 4
1 2 1 6 4 6
4 6 2 3 5 1
3 5 5 5 2 3
5 3 4 2 3 5
6 4 6 1 1 2

The RCBD design in table 3.7 shows a constraint where complete block designs are nat
possible. This implies that the treatments in lower portien of the table cannot be accom-

modated in the design implementation.

Assuming that the variance among farms is given as orf. = 3.5 and the variance between
plots within a given [arm is o2, = 5. We can then evaluate thesc designs using PROC
MIXED in SAS. Using simulated data we are able to assess the power of these designs in
estimating a given contrast i.e. (1,0 ,-1, -1, 0 ,1). Results from the simulation study are

presented in table 3.8. The SAS procedure used in the case are given in Appendix C.2.

Results from the SAS output

Table 3.8: Results for power estimate fer testing the contrast(1, 8 -1, -1, 0 ,1)

Dcsign | ndf ddf alpha fcritical ncparm F value Pr > F | power
PBIBD | 1 13 0.05 4.66719 10.27 10.27  0.0069 | 0.84157
BIBD 1 13 005 4.66719 114 11.40 0.005 | 0.87669
RCBD | 1 13 0.05 4.66719 5.53 5.53 0.0268 | 0.58558

where ndf is the numerator degrees of freedom, ddf is denominator degrees of freedom,
alpha is level of significance, fcritical is the F-critical observed value, ncparm is the product

of ndf and F.
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From table(3.8) we notice the discrepancy between the incomplete ®block designs and
the randomized complete block design as far as power of a design is concerned. In this
particular scenario RCBD is less appropriate(Power=0.58558) as compared to BIBD and
PBIBD with power of 0.87669 and 0.84157 respectively. In this example power analysis
demonstrates how designs can be assessed on their application for a given situation and
constraint.

Power analysis gives the prior probability of detecting an expected relevant difference
between treatments. This would involve use of previous knowledge about the experiment

and the subject matter under experimentation.



Chapter 4

Stability Status of Designs

Optimal incomplete block designs are particularly important for most agricultural experi-
ments since they can provide the maximum information from an experiment. Cheng(1978)
provides much information on the designing and analyzing these designs. The actual de-
sign of experiments is aimed at optimizing certain characteristics of the statistical pro-
cedures to be used which depend on the settings for the experimental conditions expe-
rienced (Schwabe, 1996). Designing on-farm trials is more complicated than designing
on-station trials (Hilderbrand and Russell, 1996). Thcre are many factors of influence in
on-farm trials and these interact in many different ways and this makes designing such
experiments even more difficult{Coe, 1998). Possible confounding factors may arise for a
well designed on-farm trial due to various reasons. Missing observations and breakdown
in communication between the farmer and the researcher are some of the factors which
may occur during implementation of the trial. These are some of the factors that affect
design stability. The stability status of the design is assessed through consideration of

missing plot evaluation, and robustness of the resulting design.

Kiefer(1975) dealt with general criteria in the block design setting. In his paper, the
universal optimality of balanced block designs is adequately discussed. There many ways
in which a design loses its optimality; but mostly it is through distortion of a design cither

by loss of some treatments( missing observations). However, it is important to know how

o6
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much efficiency is lost when optimality distortions occur. This is particularly important
since the information provided by a design largely depends on how efficient a design will
he even after loss of some treatments. It is therefore important to study the effects of

missing observations on the design optimality of incomplete block designs.

4.1 Analysis of the effect of Missing plots

Unlike on-station trials, a common problem in most on-farm trials is the unavailability of
some observations for analysis(Lockeretz, 1987). In some cases an entire block may be lost
for reasons not related to the structure of the experiment. Since missing observations are a
real possibility in on-farm trials, it is very important to select a design that would minimize
the influence of these missing observations on the efficiency of the design selected. Studies
concerning the loss of a single treatment, loss of whole blocks and the loss of any number
of treatments in a single block have been done(Ghosh,1982a,b; Whittinghill, 1989; Dey,
1993; Prescott and Mansson, 2001; Most, 1975; Das and Kageyama, 1992; Bhaumik and
Whittinghill, 1991 and Gupta and Srivastava, 1992). From a practical point of view it
is unlikely that a researcher or farmer has any influence over which treatments become
missing.

However, if missing observations are a common occurrence due to unforeseen events, then
it is best for the researcher to choose an initial design with good robustness properties to
guard against the ruination of the experiment (Prescott and Mansson, 2001). Hedayat and
John(1974) developed resistant balanced incomplete block designs which remain variance
balanced even if all observations of a particular treatment become unavailable before
the analysis. Ghosh(1982a) proved that a BIBD with r replications is robust to the
unavailability of any r — 1 observations as well as any r — 1 blocks. This is because the
resulting design remains connected with respect to treatment. Since we are intcrested
in the treatment effects, we look at the C; matrix which is the treatment information

matrix for a general block design @ which is a ¢ x ¢ matrix given as in (3.2). A general
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block design d consists of ¢ treatments allocated to plots in b blocks. The number of
plots in each block is given by K = (ky,...,ky)". Define ry = (r1,..., ;) as the vector
of replications of treatments in the design d, and N,; = n;; is the £ x b incidence matrix
whose elements n;; equal the number of times treatment ¢ appears in block 7,7 =1, ... ,¢
and 7 = 1,...,5. The treatment information matrix for a general block design ¢ x ¢ can
be expressed as

Cy=r,— N;K'N, (4.1)
where 7, = diag(ry,..., ;) and K~ = diag(1/ki,...,1/k). The matrix C; is symmetric,
nonnegative definite, and bas row sums equal to zero. When the design is connected, Cy
has rank ¢ — 1 and its resultant eigenvalues can be given by the vector w = (wy, ws, ..., w;)’
where w; is the ith largest eigenvalue and wy = 0. Cy can be expressed in canonical form

(Prescott and Mansson, 2001) as
t—1
Ca= Z w;2i2; (4.2)
i=1

where z; is the normalized eigenvector corresponding to w; such that z: z; = 1 and z:- z; =0
for 1 # j. To obtain the treatment estimates # of 7 = (71,...,7), we need te have the
generalized inverse of Cy say G such that C;GCy = C,. Prescott and Mansson(2001) give

this inverse as

i=1 ¢

This implies that ¥ = G(T — NsK "B} where 7' and B are the vectors of the treatment
and the block totals respectively. Also var(f) = Go2?. In assessing the robustness of
designs to missing observations, use is made of the pairwise treatment comparisons based
on var(tih — 7i2) for i1,49 = 1,...,¢t and 4; # 4. If T is a contrast matrix of dimension
(¢(t — 1)/2) x t identifying these differences, then the diagonal elements of the YGY'o?
are the variances of these contrasts. Then average variance of the pair-wise treatment

differences(Prescott and Mansson, 2001) is given by

tr(YGY')o®  2r(TGY")o?
tt—-1)/2  tlt—1)

(4.3)

Ave {var(7y ~ 7o)} =
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In this context, for a balanced incomplete block design, k; = & for all § and r; = 7 for all

i such that the imformation matrix of the treatment effects for this design reduces to

At J
ci=3{1-1]

where J is the matrix of all I’s and A is the number of times that treatment ¢ and j
appear together in the same block, and I is the identity matrix. Thus Cy has t — 1 non-

zero eigenvalues all equal to ¢A/k. Since {I — %} is idempotent, the generalized inverse

k J

For a BIBD all estimates of the treatment differences have variance 202k/At and the

of Cy denoted by G is given by

estimated pair-wise treatment difference for a completely randomized design with ¢ treat-
ments and 7 replications is given by 20%/r. The efficiency factor of the BIBD is At/rk. In
the cvent of loss of some observations, the new properties of the resulting design largely de-
pend on the specific configuration of the missing observations(Whittinghill, 1986). Some
variances of the pair-wise treatment differences will be increased while ethers may not.
This change affects the eigenvalues of the original design and thus the robustness of the

whole resultant design. In the evaluation of these designs we use several approaches.

4.1.1 The average variance and the relative efficiency of the re-
sulting designs

For ¢; observations missing, the sum of the eigenvalues of the information matrix is given

as t((i 12; and its only tbe t; eigenvalues that are affected but not w, which is always equal

to zero. Thus the average variance expressed in terms of the non-zero eigenvalues of the

information matrix is given as the sum of the eigenvalues of its generalized inverse. For a

given design d the average variance(Whittinghill, 1989) is given as

t—1

2
Avevar(7}) — Tia) = ol - (d) (4.4)

i=1
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Therefore the relative efficiency () of two designs d; and d, is defined as the ratio of their

average variances which can be given as

Etﬁl 1

i=1 w;(dy)

Zt—l 1
i=1 wi(d))

R is compared to 1 whereby if R > 1, then design 1 is better than design 2. While if

R= (4.5)

£ < 1 then design 2 is better than 1. In the event that £ = 1 then the two designs are

equally good.

4.1.2 Mini-max variability criterion

The min-max variability method given by Whittinghill(1989) compares the variability V3

of the ¢ —1 non-zero eigenvalues of the resultant C-matrix of design d introduced in section

4.2 where
Yoecifwi — @)}
Vo= { = 4.
where @ is the mean of the eigenvalues w; for ¢ = 1,...,t — 1. Therefore, using this

measure of variability, a resulting design d, is said to be better or more nearly variance
balanced than a resulting design d» if Vg, is nearer to O than V. When d is variance
balanced, its Vg=0.

In the on-farm trial situation, where the problem of missing plots is fairly common, the
criteria discussed above could be applied in order to compute standard errors and evaluate
design efficiency.

Presence of outliers and missing observations or blocks are some of the prohlems likely to
he encountered in on-farm trials especially when data has to be recorded by the farmer.
BIBD is known to have robustness. The discussion in the following section establishes a

further role of BIBD in the case of such problems.

4.2 Robustness of balanced incomplete block designs

Design problems are often encountered even for well-planned on-farm trials. These range

from missing observations, presence of outliers, loss of all observations pertaining to a
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given treatment, etc. This results in poor performance of an optimal design and loss in
efficiency. The idca of robustness is explained further in the following definition.

Definition 4. A design d s said to be robust ggainst one or more of the above distortions
if it remains insensitive to the presence of one or more of the above distortions in terms of
design properties such as connectedness, varience balance, efficiency, optimel properties,
etc.

Connectedness of block designs is a vital property since it ensures that estimability
ol all paired differences among treatment effects is possible. Balanced incomplete block
designs have a special property of complete connectedness. Therefore, for these designs,
the loss of some plots may result in the design losing its connectedness with respect to
treatments and it will no longer be a BIBD. The following definitions elaberate more on

the robust and strongly robust cases of a BIBD.

Definition 5. A BIBD(t,b, k,r, A) is said to be robust against the unavailability of any ¢
observations if the block design obteined by vmitting any q observations remains connected
with respect to treatment.

Definition 6. A BIBD(t,b,k,7, ) is said to be strongly robust against the unavailability
of any q observations if the block design obtained by omitting any q observations remains
completely connected.

Ghosh(1982b) shows that a BIBD is robust against the unavailability of any 7 — 1
observations. However, a BIBD is not robust against the unavailability of any = obser-
vations. This is because if all 7 observations corresponding to a particular treatment are
lost then the treatment will be disconnected from the other treatments. Therefore, BIBD
is robust against the unavailability of any g observations so long as q is less than 7 — 1.
The robust and strongly robust properties are summarized in theorem 2 and 3 below.

Theorem 2. . A BIBD(t,b,k,r,\) is robust against the unavailability of all observations
i any v — 1 blocks.

Theorem 3. . A BIBD (t,b,k,7,A) is strongly robust against the unavailability of any
k — 1 observations.
Note that a BIBD is not strongly robust against the unavailability of any k observa-

tions. The maximum number of observations g that should be unavailable in order for
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the BIBD not to be strongly robust is & — 1.

According to Prescott and Mansson(2001), missing observations affect a design by their
effect on the eigenvalues of the BIB design and thereby affect the average variance and
the relative efficiency of the design as compared to the complete block design. They note
that in a situation where one observation is missing, the properties of the resultant design
are the same regardless of the type of treatment lost as well as its position in the initial
design. In such a case, the specific variances of the pairwise treatment differences depend
on the type of treatment lost for that specific observation, but the average and the max-
imum variance will be unchanged. For the case of two missing observations, it is rather
complicated since it calls for different configurations, each with different eigenvalues, to be
considered. Let g be the number of treatments common to the pairs of blocks. There are
different possible cases in the loss of two observations that exist (Prescott and Mansson,

2001). Some of these include:

1. Different treatments in different blocks where neither treatment is common to the

two blocks.

2. Different treatments in different blocks, with one of the two treatments common to

both blocks.
3. Two treatments lost in the same block.
4. Both treatments are different and occur in both blocks.

5. Two replicates of the same treatment missing. ctc

For all such situations, two eigenvalues are affected. The two eigenvalues affected take on
values given as wy—p = % —1+4+zand w_y = -% —~1—2z. Table 4.1 presents the results on
average variance and relative efficiency for a single missing observation and two missing

observations.
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Table 4.1: Summary of cases involving loss of a treatment(s) in a design

Observations missing Average Variances Relative efficiency
f ot 2ko? 2k"o” k -1
One missing i suleak cuvsws) {1+ ﬁ(‘mrk)}
Observation (¢ — 1)
HET ka? 4k7 (tA—k+ka”) k(tA—k+kz”) -1
Two missing = 4 =) M (A —RE—F22T) {1+ (t_l){(t,\-k)ﬁ-k%?}}
obscrvations (z — 2)
Ut_lzéé e l +z

For the case wy—y = -‘f —1 — z the z values and the number of configurations can take on

diffcrent values.

Table 4.2: Summary of value of z and number of configurations

Case Value of x Number of configurations
1 t=g/{k(k—1)} forg=0,...,k—1 (k— g)°
2 z=(k—g)/{k(k—D}forg=1,...,k—1 2g9(k - g)
3 z=20 bk(k —1)/2
4 z=(2k—g)/{k(k—D}forg=2,.. ,k g{g—1)
5 |o=@kK-2k+g)/{k(k—1)}, forg=1,.. .,k g |

In general the smallest loss in efficiency occurs in cases 3 and a section of case 1 when
the ¢ = 0. The worst scenario is where two replicates of the same treatment are lost
from different blocks(case 5). In general the loss in efficiency will largely depend on the
experimental design used and how the treatments are laid out in this design. The incor-
poration of prior knowledge at the design and implementation stage can be a vital tool

in improving the design and minimizing efficiency losses.

Treatments tested in on-farm trials can take different forms depending on the researchers
interest. Treatments of factorial structure may be used by researchers cspecially soil fer-
tility scientists. Maintaining such a structure may lead to large set of treatments which
could cause application problems in on-farm trials. The optimality of factorial treatment

structure in incomplete block design is discussed in the next section.
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4.3 Factorial treatment structure in incomplete blocks

Many factorial and fractional factorial designs have been applied in agricultural experi-
ments. These designs are very common in soil fertility, agronemic and animal production
trials. Because not all interaction levels can be run in these experiments, use of fractional
factorial designs has gained censiderable attention. The work by Yates(1935) on facto-
rial trials addresses the necessity of proper blocking in experimentation. Proper blocking
grcatly increases the precision of experimental designs(Kempthorne, 1947). Farms or
farms in regions are a comnmon blocking factor in most on-farm trials. Therefore, in on-
farm trials, farm*treatment factor interactions need due attention. Yates(1935) address
this problem on differential responses in different blecks in agricultural experiments. The
interpretation of most factorial designs with a high degree of confounding or fractional
replication depends on the assumption that block-treatment interactions are negligible.
This is however not the case in on-farm trials since the regions are expected to contribute
an environmental effect and the different management practices in different farms are
cxpected to have an effect as well. In fact the investigation of farm-treatment factor

interactions is often one of the objectives of an on-farm trial.
4.3.1 Choosing an IBD for a factorial treatment structure
Selecting an incomplete block design depends on

e The number of factors and treatment combinations involved.

e The size of the blocks

e The resourccs available to determine number of replications needed.

There are several lists of designs where one can easily obtain an incomplete block design.
Montgomery{1997), Cochran and Cox (1957) are a few such references. The designs pro-
vided in these references do not cover the confounding structure of the block- treatment

factor interactions. In on-farm trials, analysis of block-treatment factor interactions is an
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important component. Thus using incomplete block designs for on-farm trials requires
obtaining such information concerning these interactions. Therefore, the guiding princi-
ples in selecting incomplete block designs with a factorial treatment structure for on-farm
trials, is the ability for the design to provide estimates for the farm-treatment factor in-
teractions. Secondly, its important to select designs with blocks that are resolution III
and above (Cochran and Cox ,1957; Mead, 1994). In such a situation, one will be able
to obtain estimates of main effects for the farms/blocks. Such recommended designs are

given in table 4.3.

Table 4.3: Factorial treatment designs with resolution III and above for different numbers
of factors

Number of Factors Farm size Number of farms Design resolution
3 4 4 I11
4 8 2 v
5 8 4 I1I
6 16 4 v
6 8 8 I
7 16 4 v

An on-farm trial involving 4 farms, each of size 4 accommodating 3 factors qualifies to be
a design of resolution III. In such a trial its possible to estimate main effect and two factor
interactions. Similarly a design with 4 farms of size 16, with 7 factors is of resolution IV.
Researcher choice of design resolution depends on the highcer interaction factors to be con-

founded. The choice of which depends on the important component to be investigated.
Analysis of factorial treatment structure in IBD
Steps for analyzing an incomplete block factorial trial.

e Factors should enter the model in the order of main effects, all two factor interac-
tions and finally all block-treatment factor interactions. It is important to use the
sequential sums of squares to analyze the data. This is because it allows for the

interaction effect to be investigated free of the maiu effect.
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e We examine the mean squares for the block-treatment factor interactions for any
abnormal values. If any of the block-treatment effects are abnormal, then a reason

must be established for the lack of consistence across the blocks.

o If all the block-factor interactions arc small, then we can drop the effects from
the model. Therefore analyzing such a trial would proceed as a typical factorial

experiment.

Notice that a large mean square would imply that the effect of this factor is not consis-
tent across the experiment. And thereforc a plot of the main cffects by block can help
in understanding the changing nature of the main effects across blocks. The aforemen-
tioned idea is the result of the fundamental differences between expectation and variation
models in respect to the behavior of marginal terms( Nelder, 1977). A more elaborate
study on the design and analysis of factorial designs is given by Yates(1933), Plackett and
Burman(1946) , Fisher(1942), Bose(1947) and Rao(1947).

In general, several methods have been suggested for the construction and selection of
optimal incomplete block designs(Nguyen & Williams, 1993; Nguyen, 1994). Most of
these methods are based on optimizing various criteria such as the A-E- D-optimality
criteria. Huber and Zwerina(1996) identify four principles underlying the optimality of
designs. These include level balance, orthogonality, minimal overlap and utility balance.
These principles adequately define what makes a design efficient in relation to other de-
signs. In this context, level balance refers to equal replications of each treatment in the
experiment, minimal overlap is attained when the alternatives within each treatment com-
bination choice set have non-overlapping treatment levels, and utility balance is attained
when the utilities of alternatives within treatment combination choice sets are the same.
Orthogonality is as defined by Yates(1933), i.e where the different classes of cffects to
which the experimental material is subject are capable of direct and separate estimation

without any entanglement. Most of these methods are based on algorithms that optimize
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design efficiency parameters in order to obtain an optimal incomplete block design.

4.4 Standard versus control treatments

In many on-farm trials it is not possible for experimental material to meet the requircments
of a classical design. Designing an experiment is sometimes viewed as picking from a
library of designs the design recipe which comes closest to fitting the particular situations
of the experiment, and then making compromises in the objectives of the experiment and
the structure of the experimental material in order to force the experiment into the recipe’s
rcquirements{Mead, 1994). Standard designs are vital, but how often their requirements
are or can be naturally met in on-farm trials remains the question(Kuehl, 2000). Consider
an on-farm situation of comparing ¢ test treatments, denoted by 1,2, ..., ¢t , with a standard
treatment, denoted by O , in b blocks of size k£ . Assuming an additive model, the fixed

effect model for a one- way elimination of heterogeneity is given as
Yis =p+71+ [J’j + &y (47)

where p denotes the general mean |, 7; the effect of the ith treatment and 3; the effect of the
Jth block. €;; are uncorrelated random errors with mean 0 and variance 0?. The quantity
n,; is design dependent and denotes the number of times that treatment ¢ is administered
to a plot in block j (Thus for some ¢ and j , n;; = 0). This experiment/scenario aims at
inference ahout the treatment differences 7, —7,,79—75, ...., 7t —7, the comparisons betwecn
test treatments and the standard treatment. Ceutrasts among the new treatments are of
equal interest, but contrasts between the new treatments and the standard are required

to be more accurately estimated. This design will be a proper block design so long as
b
> noimig (4.8)
j=i

1=1,2,...,t and
b
> nim (4.9)
j=1
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i,9=1,2,...,t 1 # 4 do not dcpend on i and ¢'.

This implies that this form of balanced incomplete block design(BIB) is one for which the
Lnr(r,/:\'r,) and the cov(m,ﬁo) are independcnt of 4 and ', ¢ # i’, where the
notation 'r,/—\ro denotes the best linear unhiased estimator of 1; — 7, . Notice also that
provided Ej ngjn;; > 0 then the BIB will be connected. Martin and Eccleston (1993)
note that the best criterion for selecting optimal designs in such situations considers only
the sum of the variances of the pairwise contrasts between the new treatments and the
standard treatment. In such a case the standard treatment gets more replicates than
the new treatments. Consider a design in the class of designs d(, b, k); if we reinforce
a control treatment then we have a class of designs d*(t + 1,5, k) . Constantinc(1983)

defines a design d*(t + 1,b, k) as being trace optimal for control over a collection D of

designs in d*(¢ + 1, b, k) if
1¢ I
3 z—;var& (i —7) < = ;’de('fz — T,) (4.10)

forallde D

Trace optimality for control considers paired comparisons with the control. A design is
trace efficient for the control if it is trace-better for control than the great majority of
designs. Cousider a situation where & divides b and 7, and the control trcatment appears
bk~! times in each row of d*, while the other trcatment occurs 7A~! times in each row
of d*. If each distinct pair of treatments from the set(l,2, ...,?] occurs in A blocks of d,
then according to Bellman(1970), the information matrix of d* for treatment effects can

be written as
bk —1) ~rl!

—rl (k=1 + NI —AJ

where 1 is the column vector with all its entries 1, I is the identity matrix and J is

kCyq- = (4.11)

the matrix with all entries 1. Cj is a non-negative definite matrix with zero row sums
such that, kCy = diag(krg, ..., krat) — NgNy where Ny = (ngi;) with ng; indicating the

number of times treatment ¢ appears iu the jth block of d ; 74 is the replication number
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of treatment i in d. The rank of Cy- is ¢ thus the generalized inverse of kCy- is given as

0 0’ 1

(4.12)
0 (r(k—1)+A)"tr rl +AJ) J

K=

Notice that Cy and C;, are of dimension ¢ + 1. Ghosh(1982b) noted that a BIB design is
D-,A-, and E-optimal and as such designs d@* are more efficicnt for control than any other
design in D . Constantine(1983) proved that the idea of reinforcing is in fact compatible
to a satisfactory extent especially when it comes to trace efficiency for control. Part of
the main objective for on-furm trials is to compare new treatments against the farmer’s
practice {control). The findings of Ghosh(1982b) on the efficiency of BIB emphasizes the

need to use BIBDs in on-farm trials.



Chapter 5

Possible Scenarios of On-farm Trials

In chapter 3 and 4, we looked at the various forms of measuring efficiency in designs and
how optimal incomplete block designs can be obtained through use of several criteria. We
highlighted a number of issues in incomplete block designs that need to be dealt with if a
satisfactory strategy for on-farm trials designs is to bc obtained. In this chapter we apply
the methods and criteria. presented in this thesis to various scenarios involved in on-farm
trials to assess the performance of these different designs. This will provide a paradigm

for analysis of on-tarm trials and clarify several important issues.

5.1 Introduction to the problem

As in all agricultural experiments, the proper planning of on-farm trials is an important
step to ensure that valid results and conclusions are obtained (Gomez and Gomez, 1984).
The identification of the most appropriate experimental design is very crucial in the plan-
ning stage (Fisher, 1953). The statistical validity of a design, and its ability to adequately
estimate the required parameters as well as its flexibility in case of any eventualities are
important components(Stroud, 1993). It is always difficult, and at times impossible to
recover enough information from a poorly designed experiment. On-farm trials, whether
managed by the farmer or researcher require simplicity in design that takes into account
the practical situation. Most constraints are due to limited resources such as land and

treatment materials. Complexity in design makes the work of the management and data

70
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collection cumbersome, especially for the farmer. Thcre are several constraints and con-
ditions that occur in on-farm trials as far as plot and block treatments are concerned. In
many on-farm trials we are faced with a problem where the whole experiment, with or
without replications cannot be carried out on one smallholder’s farm. This would then
necessitate the use of several farms, cither as replicates or single plots. In the case where
there are no limitations on the plot sizes, resources(treatments) and availability of the
farms, then a complete trial is performed on all farms. Such a situation calls for the use
of a standard design depending on the nature and treatments being tested. In situations
where the farms are large enough to accommodate all treatments, but not large enough
to allow for replications, we take farms as replicates. Here use of RCBD may be feasible
where a farm acts as a block receiving all treatments.

Possible scenarios in on-farm trials are discussed in the following section. These scenarios
are based on possible problems encountered in on-farm trials. The performance of these
scenarios is analysed using the optimality and efficiency criteria discussed in the previous

chapters.

5.2 The scenarios in on-farm trials

Very often, we encounter situations where farmers are not capable of accommodating all
the available treatments. This is because the land available to farmers is of varying sizes,
where not all the available treatments can be accommodated. In such a case some farmers

select a few treatments whereas others take a full set of treatments for experimenting.

5.2.1 Scenario I: Farms unable to accommodate all treatments

Consider a situation were the test materials are in abundance but the available land sizes
do not allow for the allocation of all treatments on the same farm. This would result in
some farms not receiving certain treatments. Such situations call for the use of incomplete

block designs. Balancing treatments in this scenario is very important in order to obtain
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valid and meaningful results. The following example illustrates such a scenario. Consider
an on-farm trial where farms can only accommodate a maximum of 4 treatments. In order

to achieve balance,

e For 5 treatments, we would need 5 farins with each pair of treatments appearing

together on a given farm 3 tirnes.

e For 6 trecatments, we would need 15 farms with each pair of treatments occurring

together on a given farm 6 times.

e For 7 treatments, we need 35 farms with each pair of treatments occurring together

on the same farm 10 times.

These combinations are derived as noted in section (2.27 and 2.28) for the BIBD. Each
of the above cases highlights a variation in order of the different levels of precision achieved

and calls for different size of experimental material which depends on its availability.

5.2.2 Scenario II: Use of farms as experimental units

In some situations farms can be used as experimental units if all treatments caunot be
applied on a single farm. We would then have farms as experimental plots/units. Not-
mally there are two possibilities, i.e Farms are either identical or variable in nature. In
experimental design theory, interest is in observing the effects of treatments when applied
to identical experimental material(Fisher, 1930). In case of identical farms, we apply
treatments to the farms randomly and in such a case, the completely randomized design
can be an appropriate design. However, for variable farms, this calls for a blocking of
identical farms. Therefore we would then group the similar farms together and then ap-
plv the treatments accordingly.

Consider an on-farm trial with 4 treatments to be tested A,B,C,D,and 12 farms(farm =
1,2,...,12) which are located in 3 different soil zones. In this situation, we can group

the farms in similar soil zones together and then apply the treatments to the respective



73

farms {alling in a given common soil zone . Suppese farms 4,7,11,2 fall in zone 1, while
farms 1,9,6,10 fall in zone 2, and farms 8, 5, 12, 3 fall in zone 3. In this case each farm is
considered as an experimental unit. The design layout of the groupings of farms in zones

is presented in table 5.1.

Table 5.1: Design layout of the groupings of farms in zones for the above example
[ Soil Zonel |  Soil Zone 2 Soil Zone 3
| Farm | Treatment | Farm | Treatment | Farm | Treatment
" 4 A 1 | A 8 B
7 B 9 D 5 A
11 C | 6 | C 12 D
2 D | 10 | B 3 C

This illustrates an example of a design under strict assumption on farms falling in each

zone to be homogenous. This is a possible scenario in on-farm trials.

5.2.3 Scenario III: Naturally occurring imbalances

The example considered here describes a situation where balance in treatment allocation
within a block is not possible due to naturally existing blocks. This would imply that
we have farms taking on varying numbers of treatments. We can still obtain efficient
and sensible designs when the block size is not equal to the number of treatments(Mead,
1994).

Consider an on-farm trial testing 7 treatments (A, B, C, D,E|F, and G). Suppose that
the availakle farms are of unequal sizes. This means that each farm is capable of accom-
modating different numbers of treatments.

Case I

Consider 6 farms where farms are considered as blocks. If the farms contain 3, 3, 4, 5, 6
and 7 plots respectively then a suitable design can be obtained. The design layout is as

given in the figure 5.1.
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Figure 5.1: The columns represent the farms and within columns we have the plots for
each farm.
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Assuming equal importance of all treatment comparisons, we can allocate the 7 treat-
ments to the plots within the various farms such that efficient and meaningful resuits can
be obtained. Any 3 of the 7 available treatments could be accommodated in farm 1 or
farin 2, whereas farm 6 accommodates all treatments. A possible layout of treatments in
each of the six farms is presented i the figure 5.2. The treatments within a farm are not
randomized.

Figure 5.2: Allocation of treatments into the plots within farms for Example 5. Experi-

mental plan for comparing 7 treatments in 6 blocks with three, three, four, five, six and
seven plots.
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Case I1

Consider 5 farms where farms are considered as blocks. If the farms contain 3, 4, 5, 7 and
9 plots respectively then a suitable design layout can be obtained as shown in the figure

5.3. Treatments within a farm are non-randomized.

Figure 5.3: Allocation of treatments into the plots within farms for Example 6. Experi-
mental plan for comparing 7 treatments in 5 blocks with three, four, five, seven, and nine
plots
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This example demonstrates a sitnation where Farm IV can acconimodate all 7 treatments
and Farm V can accommodate more than 7 treatments.

The two possible on-farm trials layout discussed in scenario III are compared to a RCBD
en the criterion of the resulting standard errors of estimating treatment differences. This

evaluation is presented in the following sectiomn.
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5.2.4 Evaluation of designs on the basis of standard errors

Consider a randomized complete block design with 7 treatments, 7 blocks and with each
treatment replicated 7 times. This design requires 49 experimental units.

Consider also a balanced incomplete block design with parameters BIBD(t,r, bk, \) =
(7,4,7,4,2). This design would require 28 experimental units. The two sample designs
are given in appendix A.2. We use a dummy analysis in Genstat to compare these de-
signs for efficiency by examining the resulting standard errors(s.e). Table 5.2 presents the

results of the standard errors.

Table 5.2: standard errers of the 2 unbalanced incomplete block design with a BIBD
structure and RCBD in estimating treatment differences

Estimated difference | BIB s.e’s | RCBD s.e’s | UBIBI1 s.e’s | UBIBD2 s.e’s
B-A 0.7560 0.5350 0.7270 0.7070
C-A 0.756¢0 0.5350 0.7300 0.707o
D-A 0.7560 0.535¢0 0.765¢ 0.741c
E—-A 0.7560 0.5350 0.7460 0.741¢0
F-A 0.756¢0 0.5350 0.7460 0.7610
G-4A 0.7560 0.5350 0.7360 0.7610
F-G | 0.7560 0.535¢0 0.7380 0.707c

Unbalanced incomplete block design is denoted by UBIB where UBIB! and UBIB2 refer
to the design layout in figures 5.2 and 5.3 respectively.

From table 5.2, assuming equal variance o2 for all four designs, we notice that the preci-
sion of the different comparisons for the two unequal block designs differs slightly from the
balanced incomplete block design while for the RCBD, the difference is greater. However,
both designs are efficient and sensible for the conditions under which they were set. In
some cases these designs perform better in estimating certain treatment differences e.g.
in comparing (F-G). However, RCBD with a standard error value of 0.535¢, seems to be
the best design in terms of figures if at all a complete blocks design can be set . But under

this on-farm scenario, the argument is that complete blocks are impossible. In addition
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to the above, RCBD would require 49 experimental plots for this experiment in contrast
to 28 experimental units required by the Incomplete block designs. Therefore, there is a
big gain in terms of resource savings. In this study we also assumed that treatments are
of equal importance. But sometimes this may not be the case. Mead(1994) clarifies that
in such a situation, an experimental procedure is to consider the desired relative precision
of different comparisons and thereby choose the appropriate replication r for each treat-
ment such that the resulting variances of the treatment differences for the experiment
incorporates the relative importance of each treatment. By emphasizing use of BIB® in
on-farm trials, it should be noted that more than one treatment may be accominodated
in situations where experimental material is available. This would lead to an increasc
in precision as demonstrated by the difference in standard errors for UBIB1 and UBIB2.
The fact that more treatments were accommodated by some farms in UBIB2 led to a

smaller standard error.

5.2.5 Scenario IV: Control versus standard treatments

Researchers are particularly interested in comparing standard treatments and a comtrol
treatment with a specified number of treatment replications. Such a trial can be set up
in smaller incomplete blocks and a control treatment augmented onto the design. An
incomplete block set up balanced in such a way that the objectives of the experiment are
capable of being tested can be the augmented incomplete block designs. Consider 7 stan-
dard treatments and a control treatment O. Thus in total we have cight treatments which
are denoted as A,B,C,D,E,F,G and O. Suppose it is decided that the control treatment
O has to appear in every block and that each of the other standard treatments has to be
replicated 4 times.

An appropriate experimental plan for this study would require seven blocks of size 5 plots

each. A suitable design for this study is shown in figure 5.4.
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Figure 5.4: Experimental plan for comparing 7 standard treatments plus 1 control treat-

ment in seven blocks of size five plots.
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We examine performance of this design using a Genstat analysis on standard errors of

treatment comparisons. A procedure exists in Genstat{Genstat 4.2, 2000) that allows one

to evaluate various designs using only dummy variables. The procedure used to produce

results given in table 5.3 is given in Appendix A.3 The Genstat procedure is based on

regression analysis and therefore the results are presented as regression coefficients and

standard errors associated with them. Using the covariance matrix in Appendix A.3, we

can obtain other s.e’s of treatment comparisons.

Table 5.3: Estimates of the regression coefficients and standard errors of the treatment

comparisons
Estimated difference | Estimate | Standard error
B-A 0.800 0.745
C-A 0.000 0.745
D-A 0.000 0.745
E-A 0.000 0.745
F-A 0.000 0.745
G-A 0.000 0.745
O-A 0.000 0.645

It should be noted that all the estiamtes are zero because no data has been used. Our

interest in this case is in the standard errors used in treatment versus control comparisons.

Suppose we wish to compare treatments B and E, noting that the available information is
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on B-A and E-A. The standard error of the comparison (B-E) can be obtained as follows:

Using thc property of connectedness,
B-E=(B-A)-(E-A)
The variance of (B-E) denoted as Var(B-E) is computed as
Var(B—E)=Var(B—- A)+ Var(E— A) —2Cou(B —~ A, E — A)
From Appendix A.3,Var(B—~A) = Var(E—A) = 0.5556 and Cov(B—A, £~ A) = 0.2778
Var(B — E) = 0.5556 + 0.5556 — 2(0.2778)

Var(B — E) = 0.5556

The standard error

S.e(B—E)=+/Var(B — E) = 0.7453

All standard treatment comparisons have the same standard error 0.7453. The standard
error of the comparison of standard treatments with the control treatment O is given as
0.645. This is because a BIBD design was considered.

In this scenario, the control treatment O is replicated more times and it provides for a
comparison of each standard treatment with the control treatment within each block /farm.
In effect the control treatment is estimated with greater precision than the standard
treatments. This scenario represents an on-farm case where the farmers own treatment
is compared with the other standard treatments. The design is balanced in the standard
treatments, efficient and adequately provides all the required information. Choice of
a suitable set of treatments is obviously essential for a successful experiment and the
appropriate treatment design is a vital part of any good experimental design. However,
on-farm experiments often have large non-treatment sources of variability and the proper
allocation of treatments to units using an appropriate block design is also essential for

effective experimentation.



80
5.3 Constrained and unconstrained scenarios

A few of the different scenarios that occur in on-farm trials were discussed in section 5.2.
We classify such scenarios as the constrained and unconstrained. Constrained scenarios
oceur in situations where the standard design is distorted either by the researcher to fit a
given situation or due to unavoidable circumstances. Naturally occurring events may force
a design to be distorted due to loss of some treatments. The unconstrained scenarios occur
when a standard design is set and analyzed as planned with no distortions. A general
on-farm mathematical model for both constrained and unconstrained scenarios is of the
form:

Yisk = 1+ fi + o(f)ij + 7 + fri + ek (6.1)

where

Yij is the observation on the j*» block at the i** farm for the £** treatinent.

fi is the @™ farm effect; i = 1,2,..., f

b(f)i; is the ij®* block within farm effect; j =1,2,... b

7, is the effect of the k% treatment; k = 1,2,....k

f7ix is the ik** farm-by-treatment interaction effect.

i denotes the general niean.

e.;« denotes the random error term.

The assumptions for the random elements are

the f; are i.i.d. N(0,0%)

the b(f):; are i.i.d. N(0,03;)

the fr are i.i.d. N(0,0%)

the ey are ii.d. N(0,0?)

The assumption in on-farm trials is that a large number of farms are available from which
a sample of farms can be selected. Thus, farms are a random sample from a population
of farms and they form a random effect. Therefore all interaction effects involving a farm

will also be assumed to be random(Hocking, 1973).
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Gomez and Gomez (1984) noted that large variation among farms and between fields in a
farm is very common, and this forms a range of sites of various environmental variatiens.
This problem can be handled by spatial modelling of the environmental variation(Legendre
and Fortin, 1989). In this context we will introduce a spatial model of environmental
variation to cater for the effects from the different locations of these farms. The spatial
variation can occur both in constrained and unconstrained cases. Thus, incorporation of

a spatial model in on-farm trials is considered in the following section.

5.3.1 Incorporation of a spatial model

It should be noted that spatial variations in fields used in on-farm trials exist. Thesc
variations are complicated and difficult to describe. Several authors have investigated the
use of spatial analysis techniques for improving the precision of estimating treatment con-
trasts for data from large field trials( Zimmerman and Harville, 1991; Cullis and Gleeson,
1991). This is because in field trials variation results from many factors such as soils,
land gradients/steeps, plant nutrient intake etc. Spatial modelling techniques are able to
use covariance between sample points by modelling it as a function of distance between
these points. This accounts for both correlation between clustered farms and potential
correlation between plots that are close to each other. Several spatial models exist for fit-
ting these variations(Magnussen, 1990; Cressie, 1991). We employ a widely used spherical
spatial model by Cressie(1991) because of its flexibility and easy convergence. Here every
experimental plot is represented by coordinates (i,5) and therefore a yield from such a

plot receiving treatment k is given as
Yij(k) = Tk T &5 (5.2)

We assume that the error component e;; may have nonzero means and covariances which
are functions of their distances apart. We assume that e;; has mean & which has a

component of the drift parameter v and variance given as V, where V' = v;;. The spherical
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covariance function is given as(Martérn, 1986)
o2 {1-§() +3(%)*} for 0<dy<p
Vg = og+0> for dy; =0 (5.3)
0 for dij > p
The range of the covariance function is the distance after which observations ®ecome
uncorrelated. Thercfore d;; is the unit distance between plots ¢ and 7, g is the maxi-

mum distance apart beyond which plot yields are uncorrelated which is called the mnge

parameter (Magnussen, 1990). We define e as
e=Vin (5.4)

where V2 is the cholesky factor /square root of V' and 7 is the normally distributed vector
with mean of zero and variance 1. Therefore by specifying drift and range parameters ~y

and p, we are capable of obtaining several spatial error distributions across the ficlds.

The following process illustrates how data with a V' matrix that fulfills cholesky factor
conditions are generated. These data are later used in both constrained and unconstrained
scenarios. Six V matrices arc generated using the model (5.3) with different levels of the
range parameter. This is done using a SAS program for each of the designs and the
respective range parameters. Vectors of sizes of the total numbers of observations 7' for

each design for each farm and treatment applications are generated. i.e

Tii=t + 1y (5.5)
t=1,2,...,t (treatment), j = 1,2,..., f (farm)
A vector n equal to the size of the total number of observation for that specific design is
generated with a mean 0 and variance 1. Then a final vector of the data W given as

is generated. Data are finally analyzed using both SAS Proc Mixed procedures and Resid-

ual Maximum likelihood(REML)precedures in Genstat after assembling the appropriate
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input files.

From the designs, we obtain the design matrix, the incidence matrix N of the design, the
matrix of replications r4 and the matrix k of the block sizes. We use these to obtain the
required Cy matrix which is given as

Cd =Td— Ndkle; (57)

We usc the C; matrix corresponding to the design to obtain the appropriate eigenvalues

which are used in calculating the various criteria.

5.3.2 The constrained scenarios

Consider a study to compare t = 6 standard treatments with a control treatment O in &
blocks of size k + 1, where 1 is the additional unit in each block representing the control
treatment(farmers treatment). In total we consider 7 treatments for this scenario. The
design layouts considered in this section are given in Appendix B.1. The fact that an
additional treatment was applied led to coustrained condition both fer BIBD and RCBD.
The performance of these designs under the stated condition is evaluated to determine
their performance using the previously discussed optimality and efficiency measure crite-
ria. The design parameters for the 7 design scenarios evaluated are presented in Table

54.

Table 5.4: Summary of design parameters for the constrained scenarios

Design | Number of | replications | block | Lambda | Total number
scenario blocks size A of treatments

1 10 5 4 2 40

2 6 1 2 - 12

3 15 5 3 1 45

4 20 10 4 4 80

5 15 10 5 6 75

6 6 5 6 4 36

7 6 6 7 6 42

It should be noted that arrangement of treatments A to F meet BIBD conditions. How-
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ever , the cendition dees not hold anymore with the addition of the control treatment O.
Lot the treatments be A, B, C, D, E, F and O. In analyzing these trials we require the
matrix Cy(John,1971) which is given as Cz =74 — Nyk™' N} as in (5.7)

Design scenario 1. The randomized BIBD with the additional control treatment(reinferced)
given as scenario 1 in Appendix B.1l for constrained designs is considered. Each of the
treatments A, B, C, D, E,and F is replicated r = 5 times while treatment O is replicated

T, = 10 times since it appears on each block. Thus the 7 x 7 diagonal ry matrix of the

above design is given as

/500000 0)
050000 0
005000 0
000500 0
000050 0
000005 0
\00000010)

The 10 x 10 diagonal matrix k is also given as

(4000000000\
0400000000
0040000000
0004000000
0000400000
0000040000
0000004000
0000000400
0000000040

\0 00000000 4)
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The 7 x 10 incidence matrix Ny for this design is given as

(111000010 1)
0101001110
1001011001
1011100010
0000110111
0110111000
\1111111111)

Thus the 7 x 7 treatment information matrix Cy given as
Cd =T4 Nd’c_lN‘;

; [ 375 05 -05 -05 —05 —-125 —125°
~05 375 —05 -05 —05 -05 —125 |
~05 —05 875 —05 -05 —-05 —125

Ci=| -05 —~05 —05 375 -05 —05 —125 (5.8)

~05 -05 -05 —05 375 -05 —1.25

~05 -05 —05 -05 -05 375 -125

\ -1.25 —125 -125 —125 —125 —125 7.5

The eigenvalues of Cy are given as w;=(8.750, 4.250, 4.250, 4.250, 4.250, 4.250, 0.000). The

average variance expressed in terms of the non-zero eigenvalues of the information matrix
is given as;
2 1,

AveVar(r; — 1) = 7:~1 —0 (5.9)

This gives

= % x 1.29075602 = 0.4303¢2

or more correctly as the sum of the eigenvalues of its generalized inverse is given as
n ol
AveVar(r; — 70) = ] Z Wigiy0> (5.10)

where wjig) are the eigenvalues of the generalized inverse of the information matrix Cy

and o is the common variance. From the above, the eigenvalues of the generalized inverse



are given as; (0.2353,0.2353, 0.2353, 0.2353, 0.2353,0.1143, 0.0000). Similarly ,

Analyzing all other design scenarios using a similar approach we have the results in Table

5.5.

AveVar(r; — 1) = % % 1.290802 = 0.430302

Table 5.5: Summary of resuits for the cenrstrained cases

Scenario Eigenvalues of Cy matrix AveVar(r; — 1)
1 (8.750, 4.250, 4.250, 4.250, 4.250, 4.250, 0.000) 0.43030°
2 (3.5,0.5,0.5,0.5,0.5,0.5,0) 3.42860?
3 (11.667, 3.667, 3.667, 3.667, 3.667, 3.667, 0) 0.48300
4 (17.5,8.5,8.5,8.5,8.5,8.5,0) 0.21510°
5 (14.0,9.2,9.2,9.2,9.2,9.2,0) 0.205002
6 (5.833, 4.833,4.833, 4.833, 4.833,4.833, 0) 0.40200
7 (6.0,6.0,6.0,6.0, 6.0, 6.0, —0.002) 0.333302

The high value of average variance observed for scenario 2 (3.4286¢2) is due to the fact

that only one replication was used whereas the low value of 0.20500? was as a result of

maximum number of replications(10) and A(6).




Evaluation of scenarios

The evaluation of scenarios 1-7 whose average variance of (;—7y) are presented in table 5.5
based on conventional efficiency, average variance of differences and minimum variability
criteria is considered. The results of the efficiency measures are given in the table 5.6.

Table 5.6: Results of Conventional efficiency, Average variance and mini-max variability
criterion

Scenario | Conventional | Mini-max variability | Average variance
efficiency ¢ criterion of differences
1 91.7 3.3750 0.3440
2 53.8 1.5000 0.1890
3 80.0 10.667 0.0846
4 91.8 13.500 0.0490
5 97.1 3.8400 0.0798
6 99.4 0.1670 0.0614
7 100.0 0.0000 0.0314

Conventional efficiency criterion

The conventional efficiency criterion(3.9) results are given in table 5.6. Scenarios 1, 4, 5,
and 6 provide reasonable efficiency values as compared to scenario 7(RCBD) which has
a value of 100. Scenario 2 and 3 have very low conventional efficiency values. Scenario 2
with conventional efficiency value of 53.8 is the worst under this criterion.

The choice of the design to use in on-farm trial would not only be based on a given
criterion but also on availability of resources. Under the constrained situation one needs

to be aware of amount of information achievable.
Mini-max variability criterion

According to this measure of variability, a resulting design is said to be better or nearly
variance balanced than another design if its variability value i3 nearer to O than the
latter’s. The mini-max variability criterion values given in Table 5.6 were computed using

(4.6). Scenario 6 provides the best design with a variability value= 0.167. The worst
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scenario is 4 with a variability value of 13.50. Scenario 7 has a value = 0 implying that
this design(RCBD) is variance balanced.

Average variance of differences criterion

The average variance expressed in terms of the non-zero eigenvalues of the information
matrix is given as the sum of the eigenvalues of its generalized inverse. Based on this
criterion we notice that scenario 7{RCBD) has the minimum value of the average variance

of differences(0.0314) followed by scenario 4 with a value 0.049.
Evaluation of scenarios based on A-,E-,D-optimality and Efficiency factor

The results of the efficiency measures are given in Table 5.7

Table 5.7: Results for A- E-,D-optimality and efficiency factor

"Scenario | A-optimality | E-optimality | D-optimality | efficiency factor
1 1.29075 4.250 12132.57 0.80
2 10.2860 0.500 0.109375 0.00
3 1.44900 3.667 7735.950 0.60
4 0.64540 8.500 776484.297 0.80
5 0.61500* 9.200* 922714.133* 0.90
l 6 1.20600 4.833 15380.690 0.96
{ 7 1.00000 6.000 4665%.000 1.00

Based on the A-optimality criterion(3.2.1) , scenario 5 is the best since it has the minimum
value for A-optimal. Scenario 7(RCBD) has a value of 1.0 which is higher than that
obtained by both 4 and 5. The worst scenario for this measure is 2 with an A-optimality
value of 10.286. E-optimality also agrees with A-optimality criterion. Here the 2 scenarios
5 and 4 are the best respectively and they are both better than scenario 7(6.0). The worst
scenario is 2(0.5). The D-optimality criterion also gives similar results as seen in Table
5.7 . We invcstigate these desigus further using the SAS OPTEX Procedure.

The SAS OPTEX(SAS System versiou 8) Procedure produces the efficiency measures

for defined designs. Using this procedure the efficiency measures for the scenarios were
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obtained and presented in table 5.8. The SAS OPTEX Procedure produces the best
design for a given scenario. Each scenario is characterized by design parameters given in

table 5.4

Table 5.8: Efficiency measures of the respective cases using the SAS OPTEX procedure

Scenario | D-efficiency | A-efficiency | G-efficiency | Aver. Pred. S.E' |
1 96.4131 92.7265 88.1594 0.6359
2 73.7596 45.2055 56.0612 1.4240
3 94.4730 88.5766 87.9794 0.7084
4 97.8945 95.6855 93.4326 0.5715
S 98.9599 97.8991 93.6262 0.5219
6 989729 | 97.9802 95.3087 0.5170
7 100.00 | 100.00 100.00 0.5528

tAver.Pred.S.E means Average Prediction Standard Error.

From table 5.8 we note that among the incomplete block designs, case 6 is identified as
the best design by all the criteria in comparison to the orthogonal design casec 7. It is
closely followed hy case 5 which is marginally different from case 6. The worst design
is case number 2 which on average loses about 40% of its efficiency when compared to
the orthogonal design. Therefore, for the constrained cases, we would then select either
case 6 or case 5 in the family of incomplete block designs depending on the resources
available. The good performance of scenario 6 could be attributed to the fact that only
one treatment was missing per block. Therefore, it has qualities close to those of RCBD.

In addition, it is less complex as compared to other incomplete block scenarios.
Evaluation using the Complexity criterion

The evaluation of the scenarios using the complexity criterion( 3.16 and 3.17) was con-

sidered. The summary of computations and results are presented in table 5.9.
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Table 5.9: Complexity criterion computations for the different design cases

Scenario A sy M #(A)
1 5 | 1213257 0.1265
2 1 0.109375 1.1065
3 5.0003 | 7735.952 0.3533
4 10 | 776484.297 | 0.1265
5 10 | 922714.133 | 0.04022
6 4.9997 | 15380.6947 | 0.0076995
7 6 46656 0.0

From table 5.9, based on the complexity design criterion, we notice that the worst de-
sign is case 2(¢(A) = 1.1065) and the best design is case 6(¢(A) = 0.0076995) followed
by design 5(0.04022) in the class of the constrained incomplete block designs. Design 7

provides a value of 0 since it is variance balanced.

The results discussed under the constrained cases illustrate the possibility of conduct-
ing on-farm trials under limited resources and restrictions. The researchers become aware
of gains/ losses of information under these constraints. This would enable researchers to

select a design knowing well in advance how much is expected from such a design.

5.3.3 The unconstrained scenario

Four BIB designs, one cyclic design and one RCBD were generated using the design pro-
cedures in the statistical package Genstat for 7 treatments(A, B, C, D, E, F, and @). The
design matrix was obtained for each design. We denote the designs as BIB1, BIB2, BIB3,
BIB4, CYCLIC and RCBD. Several criteria were applied in analyzing these designs which
include complexity criterion, optimality criteria (A, D,and E), efficiency factor measures,
conventional efficiency, mini-max variability criterion, etc. The design parameters are

given in table 5.10.
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Design | blocks | Replications | block size | Lambda | Total number Number
b T k A of expt* units | of treatments

BIB1 7 3 3 1 21 7

BI1B2 7 4 4 2 28 7

BIB3 14 6 3 2 42 7

BIB4 14 8 4 4 o6 7
CYCLIC 7 3 3 1 21 7

RCBD 7 7 7 7 49 7

* expt stands for experimental.

The data for these designs were analyzed using the statistical packages Genstat and SAS

and the results based on the criteria of interest presented. As in constrained cases we

also develop the C; matrix and we use it to obtain the necessary eigenvalues and other

information pertaining to the design which formulates the basis to compare these designs.

The results from the various criteria on the designs are given in Tables 5.11 and 5.12.

Table 5.11: Standard errors(s.e) of differences of means for each design and the relative
efficiencies of the 5 designs to RCBD

Case | S.E Rem! | S.E Anova | Efficiency factor | conv.eff
BIB1 0.663 0.715 0.778 0.8935
BIB2 0.6571 0.6831 0.875 1.024
BIB3 0.3789 0.4279 0.778 0.894
BIB4 0.2681 0.2828 0.875 1.0244
CYCLIC | 0.9965 1.189 0.778 0.8939
RCBD 0.3909 0.4 1 1.0
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Table 5.12: Average variance, Optimality values and Complexity values for the designs

Case Ave.var | A-optimal value | D-optimal | E-optimal | Complexity criterion
BIB1 | 0.8573 2.5718 161.246 2.333 0
BIB2 | 0.5714 1.7143 1838.27 3.50 0 !
BIB3 | 0.4285 1.2854 10346.3 16.66 0 '
BIB4 | 0.2857 0.8571 117649 16.67 0 t
CYCLIC | 0.8569 2.5707 161.6 2.334 0 l
RCBD | 0.2381 0.7143 44471.32 2.646 0 |

Discussion of results

From tables 5.11 and 5.12 we note the following: from the standard error of the differences
of means using both Reml and Anova, BIB4 has the minimum value followed by BIB3
and RCBD respectively. The maximum value is obtained in the cyclic design which shows
that this design had the highest variance in estimating treatment means differences. On
the basis of the conventional efficiency factor, the two designs BIB2 and BIB4 have values
greater than 1 implying that they are more efficient than the RCBD based on this criterion.
The other 3 IBD seem to lose about 11% of the efficiency in comparison to the RCBD.
On the criterion of the average variance of the estimates of treatment means differences
according to Kshirsagar(1958), RCBD is the best design followed by BIB4 and then BIBS.
Using the A-optimality criterion, RCBD is the A-optimal design overall and in the class
of the IBD the A-optimal design is BIB4 i.e. the design which minimizes the A-optimal
value is the A-optimal design. The D-optimal design is BIB4. RCBD ranks second under
this criterion and the worst is BIB1. The E-eptimal design is BIB4. It is followed by
BIB3, BIB2, RCBD, CYCLIC and the worst is BIB1. Since all these designs are variance
balanced, the complexity criterion turns out to be 0 for all.

The results from the unconstrained scenarios indicate that a particular set of BIB designs

can be used in on-farin trials where resource constraints do not exist.
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Power analysis in unconstrained designs

Using power analysis in the SAS PROC MIXED procedure, we assessed the performance
of designs given in Table 5.10. For illustration purposes, suppose a variance 2.5 among
blocks(farms) and a variance of 4 between plots within a given block(farm) are assumed.
Under this condition the power in estimating the treatment contrast (1,1,1, -1, -1, -1, 0)
was computed for each of the designs. This contrast represents a comparison between
treatments A, B, C versus D, E, and F. The results are presented in Table 5.13 where
obs denotes number of observed contrasts, ndf denotes numerator degrees of freedom, ddf
denotes denominator degrees of freedom, alpha, denotes the significance level of the test,
ncparm is the product of ndf and the observed F-value and fcrit denotes the critical value

of F. The results show that design BIB2, BIB4 and RCBD have power values ahove 0.5.

Table 5.13: Power analysis of the unconstrained designs in estimating a treatment contrast

Design | Obs | ndf | ddf | ncparm | alpha | ferit Power

BIB1 1 1 8 3.04 0.05 | 5.31766 | 0.33627

BIB2 1 1 |15 4.57 0.05 | 4.54308 | 0.51607

BIB3 1 1 |22 3.84 0.05 | 4.30095 | 0.46576

BIB4 1 1 | 36 5.12 0.05 | 4.11317 | 0.59568

CYCLIC | 1 1 8 1.80 0.05 | 5.31766 | 0.21990

RCBD 1 1 | 36 5.01 0.05 | 4.11317 | 0.58645

However, in estimating this particular contrast, the incomplete block design (BIB4) is
more powerful than the randomized complete block design(RCBD). The cyclic design is
not suitable for the estimation of this contrast and it has the least power value of 0.21990.
Therefore, depending on the interest of the researcher, i.e the question to be answered,
we can use power analysis to obtain the appropriate design in order to obtain the best
information in answering the research questions. The procedure is to express the research
question in from of a contrast and we analyze the power of the designs in estimating that
contrast. For this particular contrast, BIB4 would be the most appropriate design since

it hes a power value greater than that for the RCBD.
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5.4 Missing plot evaluation in BIB designs

In this section we consider two scenarios 1 and 4 under the constrained scenarios given in
Table 5.4. We evaluate these designs on the missing plots criteria given in section 4.1.
Scenario 1

From Table 5.4 ¢ = 6 treatments, & = 3 treatments per block, b = 10 blocks, r = 5
replications of treatments and A = 2. The average variance of a pair-wise treatment

difference for the complete design is

(2k/At)o? =2 % 3/2 x 6)o® = o?/2

The efficiency of this design relative to a compietely randomized design with the same

number of treatments t and replications r is
Mirk=2x6/5x3=038

For one missing observation we have Average Variance

p) 2_2 3902
2ko 2k*c _ 320 (5.11)

AveVar{tn —to) = ==+ TR - 60

with Relative efficiency to the complete design

Rel.Eff ={1+ T }~! =0.9375. (5.12)

k
~-1)(tA - k)

With two missing observations, there are 5 different configurations, each with different
eigenvalues to be considered. However, four of these conrfigurations have sub-cases that
arise depending on g, the number of treatments common to the pairs of blocks.

These cases are:
o I. Two observations in same block.

o 1I. Different treatments in separate blocks(no treatment common to the two blocks).



95

o III. Different treatments in different blocks(and one of the two treatments common

to both blocks.
e IV. Both treatments are different and occur in both blocks.
e V .Two replicates of the same treatment lost.

The results of average variances and their corresponding relative efficiencies are presented

n table 5.14.

Table 5.14: The average variances and their corresponding relative efficiencies

(lase | g value | z z Average Variance | Relative efficiency Number of
configurations

[ 1 | &=0 0 0 0.566700 0.88240 30
| I g=1 1/6 | 1/36 0.567500 0.88110 g
[ g=2 [2/6] 1/9 0.569998 0.87720 4
I g=1 2/6 | 1/9 0.569998 0.87720 4
g=2 1/6 | 1/36 0.567500 0.88110 4

v g=2 |4/6| 4/9 0.580520 0.86100 2
g=3 |3/6| 1/4 0.574300 0.87063 G

\Y% g=1 4/6 | 4/9 0.580520 0.86130 i
g=2 5/6 | 25/36 0.588960 0.84895 2

g=3 1 1 0.600000 0.83300 3

From the table(5.14) we notice that the best case is where two observations are lost from
the same block and the blocks are arranged in such a way that, the number of treatments
common to the pairs of blocks is zero. This is case I with g = 0 and it provides a relative
efficiency of 0.8824 with an average variance of 0.5667. The minimum loss of efficiency is
about 11%. However, the worst case occurs when two replicates of the same treatment
are lost in a situation where the blocks are arranged in such a way that the number of
treatments common to the pairs of blocks is 3 i.e g = 3. In this case, such a situation
leads to a minimum loss of efficiency of about 16% with an average variance of about 0.6.
This is case V with a g-value= 3. From Figure 5.5 we notice that on average there is a

drastic {all in efficiency as we move down the different cases{g-values). The graph displays
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a sharp fall/risc in efficiency for the g values between 3g2(case III with g=2) and 4g3(case
IV with g=3) respectively. With case III and g-value=2 we lose 2 treatments in the same
block with 2 treatments common to the pairs of the blocks. While for case IV and g-
value=2, we lose 2 different treatments which occur in both blocks, and the blocks are
such that there are 2 treatments common to the pairs of blocks. This is because for case
IV, g-value=2, there is a. direct impact on the connectivity of the design and this makes
the design less efficient thus a sharp fall in the resulting efficiency. From 4g3(case IV, g=4)
to 5g3(case V, g=3) we experience a steady fall in the efficiency. With two treatments
lost and both are different and occur in both blocks, g the number of treatments common
to the pairs of blocks has a significant effect on the resulting efficiency. In this example
we notice that for g=3 the efficiency registered is 0.87063 for case IV as compared to g=2
which is 0.8610. Therefore the greater the number of treatments common to the pairs
of blocks, the greater the efficiency that will be obtained in case of losing two different
observations if they both occurred in both blocks in the original design. This can also be
noticed from figure 5.6 of the average variance against cases(g values). This figure also

portrays a similar picture in terms of the average variances obtained.



97

a.e8 ——

o
3
D

o
S

0.85 - \

Relative efficlency values

>
4

-

0.83

190 29t 22 39! 3g2 4g2 4g3 591 592 593
g-values in cases

Figure 5.5: The relative efficiencies against the g-values in the various cases for scenario
1.
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Figure 5.6: Average variance of the different cases verses the g-values of the cases for the
loss of an observation for scenario 1
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Scenario 4

In this study we have ¢ = 6 treatments, k = 3 treatments per block, b = 20 blocks, r = 10
replications of treatments and A = 4. The average variance of a pairwise treatment differ-
ence for the complete design is (2k/At)o? = g2/4. Its efficiency relative to the completely
randomized design with ¢ treatments and r replications is At/rk = 0.8.

For one missing observation we have Average Variance =0.25714302 with Relative effi-
ciency to the complete design as 0.97222.

Tor two missing observations, the results arc presented in table 5.15.

Table 5.15: Average variances, relative efficiencies and Number of configurations for Sce-
nario 4 for 2 missing observations

Case | g value | =z 2? Average | Relative Number of

variance | efficiency | configurations
| g=0 0 0 0.264300 | 0.945895 60
11 g=1 1/6 | 1/36 | 0.264350 | 0.945720 9
g=2 |[2/6| 1/9 | 0.264545 | 0.945020 4
11 g=1 |2/6| 1/9 | 0.264545 | 0.945020 4
g=2 | 1/6 | 1/36 | 0.264350 | 0.945720 4
v g=2 |4/6 | 4/9 | 0.265332 | 0.942216 2
=3 |3/6| 1/4 | 0.264870 | 0.943860 6
\'% g=1 |4/6 | 4/9 |0.265332 | 0.942216 1
g=2 |5/6|25/36 | 0.265930 | 0.940100 2
g= 1 1 0.266700 | 0.937400 3

From the table 5.15, we notice that this situation is in agreement with the first scenario,
i.e. the best case is where two observations are lost from the same block and the blocks
are arranged in such a way that the number of treatments common to the pairs of blocks
is zero.

However, in this design the number of blocks & and A is increased and we notice a great
improvement in the relative efliciencies as compared to the original design. The minimum
loss of efficiency in this design is about 6% for the worst case(V) with ¢ = 3 as compared

to the worst case in scenario 1 which has a minimum loss of efficiency of about 16% un-
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der a similar case. On the basis of the average variances, scenario 4 still has all values
less then 0.27 as compared to the previous which has values ranging between 8.5 to 0.6.
Therefore, on average scenario 4 is a better design than scenario 1 as far as missing plots
are concerned. Figure 5.7 is a. graph of the relative efficiencies of this scenario against the
cases and it is not much different from the graph for scenario 1 in behavior. Similarly,
Figure 5.8 also reveals a similar pattern as the average variance graph for scenario 1. The

only difference is in the magnitude of the efficiencies and the average variances.
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Figure 5.7: Relative eflicieucies of the different cases versus the g-values of the cases for
the loss of 2 observations in Scenario 4
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5.4.1 Discussion of the results

In many on-farm trials there is a high chance of not having all the observations available at
the end of the trial and hence many missing observations. Therefore, in designing on-farm
trials particularly in incomplete block designs we need to safe guard against case V which
provides lower efficiency values i.e losing 2 replicates of the same treatment. The results
rcveal that the greater the number of treatments common to the pairs of blocks(g), the
greater the loss in efficiency. Therefore, for a better design we would need to minimize the
number of treatments commen to the pairs of blocks in cases where two replicates of the
same treatment are most likely to be missing. In cases where both treatments are different
and occur in both blocks(case IV), we would maximize the number of treatments common
to pairs of blecks in order to obtain maximum efficiency in case of losing 2 observations.
The best situatien is case I where we lose different treatments in diffcrent blocks where

neither treatment is common to the two blocks and the number of treatments common

to the pairs of blocks(g) is zero.
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This case provides for proper connectivity within the design and therefore treatment
comparisons/estimates can still be obtained. Designs that consist of blocks with many
common treatments tend to average to very low efficiency values.

This is why the worst designs would be where the missing observatiens are for the same
treatinent in similar blocks. In general, to obtain minimal loss in efficiency of a design ss a
result of loss of treatments, we require an incomplete block design with as few treatments

common to blocks as possible.
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5.5 Case study: Cowpea trials

A cowpea trial was conducted in two major cowpea grewing districts in Eastern Uganda
to investigate the performance of two promising cultivars with different pest management
technologies. Pest infestation data werc collected weekly throughout the study and yield
data were collected at the end of the trials.

The treatment combinations werc;

. Variety Ebelat; at 60 x 20¢m; no spraying(T1)

—ry

2. Varicty Ebelat; at 60 x 20cm; sprayed once at budding,flowering and podding(3

sprays a season)(T2)
3. Variety Ebelat; at 60 x 20cm; sprayed weekly(8 sprays a season)(T3)
4. Variety Makerere; at 60 X 20em ; no spraying(T4)

5. Variety Makererc;at 60 x 20cmn; sprayed once at budding,flowering and podding(3

sprays a season)(T5)

6. Variety Makerere;at 60 x 20cm; sprayed weekly(8 sprays a season)(T6)

-3

. Farmers variety and method of management(T7)

A control treatment which is the farmers own management practice was included in the
trial. Two incomplete randomized block triels and one Randomized complete block design
trial were considered. Two in Pallise district and ene in Kumi district. The designs for

the trials are presented in the Appendix B.3.



Analysis of designs based on the efficiency measure criteria

103

Results for the performance of designs on the efficiency measures are presented in tables

5.16 and 5.17.

Table 5.16: Results for A-optimal, E-optimal and D-optimal criteria

Trial A-optimal E-optimal D-optimal
PalisalBD | 1.29075 4.2500 12132.57
KumilBD | 30.1880 0.1667 0.000665

RCBD 1.00000 6.0000 46656

Table 5.17: Results for the complexity criterion, average variance, conventional efficiency

and efficicncy factor

[ Trial Complexity Average Conventional efficiency
criterion  Variance efficiency factor
PalisalBD 0.1265 0.4303 0.917 0.8
KumilBD 3.6580 10.063 0.040 0.8
RCBD 0.0000 0.0314 1.000 -

The optimality criteria(A-,E- and D-) reveal that RCBD is better fellowed by the IBD
for Pallisa and Kumi is the worst. As seen in the table above, RCBD has the minimum
value of the A-optimality(1.0), it has the maximum value of E-optimality(6.0) and has
maximum value of D-eptimality(46656). It is consistently followed by the Pallisa IBD.
Similarly, with the complexity, Average variance and conventional efficiency measures,they

all identify RCBD as the best design in these trials.
Relative efficiency measures

Three standard errors of the treatment differences are computed, i.e maximum standard
errer of differences, the average standard error of differences, and the minimum stan-

dard error of differences. The relative efficiency of the incomplete block design to the



184

randomized complete block design is then computed as

Standard Error of differences for RCBD
Standard Error of differencesfor IBD

Rel.Ef fi. =

The summary of results is given in the table (5.18) bclow.

Table 5.18: Average variances, Standard errors(S.E) and Relative efficiency values for the
respective trials for estimating differences between means.

Kumi IBD Pallisa IBD Pallisa RCBD | Relative efficiency values
Kumi IBD | Pallisa IBD
Maximum s.e
of differences 0.4137 0.3325
Average s.e
of differcnces 0.4078 0.2843 0.2562 0.628 0.90116
Minimum s.e
of differences 0.3929 0.2147
Average variance
of differences 0.1664 0.08176 0.06575 0.3951 0.8042

The relative efficiency values are less than 1 for the two case studies which implies that
RCBD performed better than the two IBD. The disparity can be explained in the high
level of missing observations that occurred in the two incomplete block designs. This was
due to the long drought during the months of September to January 2001 in these regions.
Other trials were destroyed by wild or domestic animals that roam around uncontrolled
during the night. This exactly describes a true scenario in on-farm trials.

In general, the randomized complete block designs performed better in these trials. The
efficiency measure criteria considered here show a greater difference in the two sets of
designs. However, it should be noted that the incomplete block designs for these trials
were not selected as the best from a set of all possible designs. This study considered
an incomplete block design without assessing several designs that would even be more
efficient for this experiment. This thesis covers scveral approaches that can be used for

this design selection problem. In light of the costs involved in setting up the on-farmn
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trials, therc is a significant difference in costs incurred in setting up a RCBD and an IBD.
Therefore, on this basis, we can adopt an incomplete block design with highest efficiency

values, and good parameters that can achieve high precision and yet restrict ourselves to

the available resources.



Chapter 6

Conclusions

This study gives some insight into the key benefits and weaknesses in the use of incomplete
block designs in onfarm trials. Several techniques are used in the evaluation of designs in
order to obtain a proper incomplete block design solution for a given situation in on-farm
trials. The proper use of these techniques is of key importance. This study illustrates a
tradeoff between using incomplete block designs in place of randomized complete block
designs. It shows that adequate information can be obtained without unduly large exper-
iments.

The results reveal that designs that have a balance between control and standard treat-
ments are not always the best designs. This is because power estimations are clearly
related to the design parameters. Thns with hypothesized parameters, one is capable of
asscssing and obtaining thc best design decisions for the many different scenarios that
exist in on-farm trials. Although the appreaches discussed here are theoretically complex,
they depend on clear and simplified assumptions te enable one to make the best decisions

regarding experimental designs for on-farm trials.

6.1 Specific contributions
The thesis adds to the state of knowledge about on-farm trials in the following ways:

o A review of the literature about incomplete block designs reveals a clear benefit in

the use of these designs(Kempson & Clarke, 1997; Goulden, 1937; Harrington, 1948;

106



107

Patterson & Hunter, 1983). The review shows a clear gain in efficiency attained by

the use of incomplete block designs.

We review the different forms of incomplete block designs which adequately fit the
true on-farm situation, especially in the variability of farms which calls for unequal
block sizes and augmented designs(Des, 1958), which accommodate the trials of

standard treatments versus control treatment.

Analytical techniques exist for constrained and unconstrained on-farm trials. Han-
dling of missing data scenarios which is a major characteristic of on-farm {rials has
been considered. Mixed models analysis today provides proper analysis of incom-
plete hlock design trials. And therefore rigid orthogonality in designs remains less

of a limitation as far as obtaining the results from a trial is concerned.

The methods demonstrated allow for flexihility of designs and provide researchers
with information on the gain / loses of efficiency depending on the design used which
is mainly controlled by the available resources and conditions. Incorporation of the
appropriate covariance model is another important area of designing on-farm trials.
This enables a researcher to fully account for the variability in the results that are
obtained. Consideration of several efficiency criteria and measures for constrained
and unconstrained designs can lead to slightly different conclusions. This confirms
that the use of augmented designs and all other constrained designs can be of great

help to on-farm trials especially since they fit the on-farm setting perfectly.

In comparing incomplete block designs to the randomized complete block design, the
results rcveal in general that the RCBD is better. However the IBD have efficiency
values closc to that of the RCBD and thus could be useful in on-farm trials given the
compensation in the costs involved in having full blocks in relation to incomplete
blocks. The power calculations for the performance of designs provides a concise

approach to comparisons of all forms of designs.
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The key question here was how to evaluate the efficiency of incomplete block designs in
relation to randomized complete block designs. The methods considered reveal that in
several cases the IBD are close to being as efficient as RCBD. In addition to reducing
the time spent on complete blocks, there is a big saving in the costs involved in setting
up complete blocks. Therefore, on the basis of this argnment, incomplete block designs
are capable of providing dcsign solutions in en-farm trials particularly where randomized
complete block is hard to implement, either by nature of land, resources, limitations in

complete blocking schemes, etc.

Researchers have been particularly reluctant about the application of IBD to on-farm
trials due to the complexity involved in designing, laying out and analyzing these designs.
However, with the emergence of computing services, these problems can fully be addressed
today. Adoption of randomized complete block design, results in an increase in error vari-
ance due to large block sizes in on-farm trials (Das and Giri, 1979). In environments
where considerable variation occurs over the testing ground, smaller blocks are most suit-
able and this renders the incomplete block designs most suitable. Although on-farm tests
in incomplete blocks vary in their effectiveness in answering research questions, trials have

clearly indicated that incomplete blocks are a necessary design for on-farm trials.
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6.2 Further research

We have looked at the different incomplete designs, and considered criteria that can be
used to select an optimal and efficient design from a class of all possible designs. How-
ever, these are standard criteria and each of them uses an indcpendent method of selec-
tion depending on what the aim of the experiment maybe or the interest of a researcher.
Therefore, more research will be required in the area. of how to integrate all the different
approaches in order to have a standard method catering for all the general selection meth-
ods. This would reduce the amount of work involved in the selection of the best design.

On-farm trials are very unpredictable due to the nature and lack of control of several key
factors in these trials. Factors such as natural catastrophes, destruction by wild animals
and farmer negligence in case of farmer-managed trials. Therefore, in order to achieve
genuine and acceptable results, both the farmer and researcher need to give all their pos-
sible input in order for these trials to succeed. Even if proper or efficient designs arc
selected for these trials, the final results and efficiency will depend on what type or kind
of data is obtained from these trials. In summary, there is a considerable gain in the use
of incomplete block designs for on-farm trials.

In some cases the difference between the RCBD and IBD is very minimal, thereby prompt-
ing the use of IBD. At times the nature of the field of trial will in no way call for the use
of RCBD. In such cases therefore we need the incomplete block designs. In on-farm trials

this is normally the case as illustrated in the different scenarios.
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Appendix A

Designs considered

A.1 Design matrix for the complexity criterion ex-

amples

For design 1
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A.2 RCBD and IBD trial design layout

Treatment are listed as 1,2.3.4,5,6,7 denoting A,B,C,D,E,F,G respectively in the designs.

A.2.1 Randomized complete block design

Treatment combinations on each unit of the design for RCBD

Blocks
1 55 b} 51 3
3 6 4 i 6 6 1
727 3 T3 7
41 2 6 3 5 ¢
2 41 2 2 4 2
57 6 1 4 7 5
6 3 3 7 1 26

A.2.2 Incomplete block design

Treatment combinations on each unit of the design for IBD

Blocks
1 6 735
7 5 4 4 3
3 4 1 36 2
6 4 521

A.3 Genstat analyses based on standard errors

GenStat Release 4.21

{(PC/Windowus XP) 04 october 2002 17:57:14

Randomized complete Blocks example

Treatment factors are listed in the order: Treatl

model{dispersion=1]yield3 fit farm3 + Treat3

141 model [dispersion=1]yield3
142 fit farm3 + Treat3

Regression Analysis



Response variate: yield3
Fitted terms: Constant + farm3 + Treat3

sx» Sumnary of 2nalysis **x

d.f. s.8 n.S. v.r
Regression 12 0 0. 0.00
Residual 36 0. 0.
Total 48 0. Q.

* MESSAGE: ratios are based on dispersion parameter with value 1
Standard error of observations is fixed at 1.00

Estimates of parameters

estimate s.e. t(*)
Constant 0.000 0.515 0.00
farm3 2 0.000 0.535 0.00
farm3 3 0.000 0.535 0.00
farm3 4 0.000 0.535 0.00
farm3 S 0.000 0.535 0.00
farm3 6 0.000 0.535 0.00
farm3 7 0,000 0.535 0.00
Treat3 2 0.000 0.535 0.00
Treat3 3 0.000 0.535 0.00
Treat3 4 0.000 0.535 0.00
Treat3 5 0.000 0.535 0.00
Treatd 6 0.000 0.535 0.00
Treatd 7 0.000 0.535 0.00

*« MESSAGE: s.e.s are based on dispersion parameter with value 1
Parameters for factors are differences compared with the reference

level:
Factor Reference level

farm3 |
Treatd t
Balanced incomplete block design example

model (dispersion=1]yieldl fit blk + treat4

164 model {dispersion=1]yieldl
165 fit blk + treatq

Regressior Analysis

Response variate: yieldl
Fitted terms: Constant + blk + treatd

*x% Jumpmary of analysis =»»

d.f. 5.5, m.s. v.r.
Regression 12 0. 0. 0.00
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Residual 15 0. 0.

Total 27 0. 0.
« MESSAGE: ratios are based on dispersion parameter with value 1

Standard error of observations is fixed at 1.00

Estimates of parameters

estimate s.e. t(*)
Constant 0.000 0.681 0.00
blk 2 0.000 0.756 0.00
blk 3 0.000 0.756 0.00
blk 4 0.000 0.756 0.00
blk 5 0.000 0.756 0.00
blk 6 0.000 0.756 0.00
blk 7 0.000 0.756 0.00
treatd4 2 0.000 0.756 0.00
treatq 3 0.000 0.756 0.00
treat¢ 4 0.000 0.756 0.00
treatd4 5 0.000 0.756 0.00
treat4a 6 0.000 Q.756 0.00
treatd 7 0.000 0.756 0.00

= MESSAGE: s.e.s are based on dispersion parameter with value 1
Parameters for factors are differences compared with the reference

level:
Factor Reference level

blk 1
treaté¢ 1
Example for Unbalanced incomplete block/farm design 1

171 model [dispexrsion=1}yield1
172 fit farm + treatmentl

Regression Analysis

Response variate: yieldt
Fitted terms: Constant + farm + treatmenttl

*++ Summarxy Of analysis #*#**

d.f. 5.5, m.8. v.r.
Regression 11 0. 0. 0.00
Residual 16 0. 0.
Total 27 0. 0.

* MESSAGE: ratios are based on dispersion parameter with value 1
Standard error of observations is fixed at 1.00

*x¢ Ectimates 0f parametexrs *#*»

estimate . Ss.e. t(*)
Constant 0.000 0.715 0.00
farm 2 0.000 0.946 0.00

farm 3 0.000 0.810 0.00



farm 4 0.000 0.786 0.00

farm 5 0.000 0.769 0.00
farm 6 0.000 0.734 0.00
treatmentl 2 0.000 0.727 0.00
treatmenti 3 0.000 0.730 0.00
treatmenti 4 0.000 0.765 0.00
treatmenti 5 0.000 0.746 0.00
treatmentl 6 0.000 0.746 0.00
treatmentl 7 0.000 0.736 0.00
+ MESSAGE: s.e.s are based on dispersion parameter with value 1

Parameters for factors are differences compared with the reference
level:
Factor Reference level
farm 1
treatmenti 1
Tkeep vV = covv
print covv
173 1rkeep vz covv
174 print covv

covy
Constant 0.5110
farm 2 -0.3404 0.8947
farm 3 -0.2877 0.4149 0.656S
farm 4 ~0.3563 0.4480 0.3753 0.6182
farm 5 -0.3515 0.4668 0.3904 0.4077 0.5914
farm 6 -0.3363 0.4469 0.3852 0.3992 0.4071
treatmentl 2 -0.2659 0.0130 ~0.0665 0.0081 0.0502
treatmentl 3 -0.2671 0.0083 -0.0703 0.0607 0.0043
treatmentt 4 -0.1820 -0.2154 ~0.1740 -0.0513 -0.1124
treatmentl 5 ~0.1649 -0.2237 -0.1037 ~0.1120 -0.1167
treatmentl 6 -0.1649 -0.2237 -0.1037 -0.1120 -0.1167
treatmentl 7 -0.1781 -0.1037 ~0.164¢ -0.0938 ~0.0976
Constant farm 2 farm 3 farm 4 farm S
farm 6 0.5390
treatmentl 2 0.0055 0.5292
treatmentl 3 0.0035 0.2687 0.5327
treatmentl 4§ -0.1082 0.2654 0.2807 0.5845
treatmentl S -0.1117 0.2468 0.247s8 0.3038 0.5559
treatmentl 6 ~0.1117 0.2468 0.2478 0.3038 0.3059
treatmentl 7 -0.0963 0.2666 0.2676 0.2935 0.2759
farn 6 treatmentl 2 treatmentl 3 treatmentl 4 treatmentl 5
treatmentl 6 0.5689
treatmentl 7 0.2759 0.5410

treatmentl 6 treatmentl 7

Exanple for Unbalanced incomplete block design 2



167 model(dispersion=1]yield2
168 fit farm2 + treat2

Regression Analys

Response variate:

is

yield2

Fitted terms: Constant + farm2 + treat?2

Summary of analys
d.f.

Regression 10
Residual 17
Total 27

« MESSAGE: ratios are based on dispersion parameter with value 1

is

comn

0.

m.S. v.T.
0. 0.00
0.

0.

Standard error of observations is fixed atv 1.00

*+x Estimates of parametexrs *»=
estimate

Constant
farm2 2
farm2 3
farm2 4
farm2 5
treat2 2
treat2 3
treat?2 4
treat2 5
treat2 6
treat2 7

*« MESSAGE: s.e.s are based on dispersion parameter with value 1

Parametars for factors are differences compared with the reference

level:

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Factor Reference level
farm2 1
treat2 1

Tkeep v=coval
print covail

169 rkeep v=coval

170 print coval

Constant
farm2
farm2
farm2
faym?2

treat2

treat2
treat2

W N

= <N N B4y

coval

0.5000
-0.3333
-0.3333
-0.3333
-0.3333
-0.2500
-0.2500
~0.1667

O OO0 0O OO0

.7876
.4121
.4501
.4712
.0000
.0000
.1969

S.e.
.707
.a87
.758
737
.735
.707
.707
.741
0.741
0.761
0.761

O OO0 OO0 OoOo

0.5745
0.3783
0.3805
0.0000
0.0000
~0.1030

t(#*)
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.5429
0.4121
0.0000
0.0000
-0.11256

0.5408
0.0000
0.0000
-0.1178



treat2
treat?
treat?2

treat2
treat2
treat2
treat2
treat2
treat2

treat2

o]

" WN

N on

-0.1667
-0.1667
~0.1667

Constant

0.5000
0.2500
0.2500
0.2500
0.2500
0.2500

treat? 2

0.5788

treat2 7

-0.1969
~0.2117
-0.2117

farm2 2

0.5000
0.2500
0.2500
0.2500
0.2500

treat2 3

-0.1030
-0.0545
-0.0545

farm2 3

0.5492
0.2992
0.3029
0.3029

treat2 4 t

Standard versus control treatment example output
FACTOR [modify=yes;nvalues=35;levels=7} block FACTOR

[modify=yes;nvalues=35;levels=8] treat variate{values=35(0)lyield
VARIATE [nvalues=35) yield

model {dispersion=1)yield fit block + treat

Regression Apalysis
Response variate: yield
Fitted terms: Constant + block + treat

Summary of analysis

Regression

Resi
Tota

dual
i

d.f.
13
21
34

cocomn

*x» Estimates of parameters #*#

Const
block
block
block
block
block
block
treat
treat
treat
treat
treat
treat
treat

* MESSAGE: s.e.s are based on dispersion parameter with value 1

ant

MNOUNhLWNNOO O W

estimate
0.000
0.000
0.000
0.000
0.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

OO0OO0OO0OO0OO0OOOO

S.e.
0.645
0.667
.667
.667
.667
.667
.667
.745
.745
.745
.745
.745
.745
0.645

OO O0OO0OO0OO0OO0OO0OO0OOOo

-0.1125
-0.1210
-0.1210

farm?2 4

0.5492
0.3029
0.3029

reat2 5

t(e)
0.00
0.00
0.00
0.00
0.00
0.00
.00
.00
.00
.00
.00
.00
.00
0.00

OO o0Oo0ooo

~0.1178
-0.1579
-0.1579

farm2 S

0.5788
0.3288

treat2 6

126



Parameters for factors are differences compared with the reference
level:
Factor Reference level

block 1

treat 1
NB: The standard errors{s.e.) for treat 2 to treat 8 are
respactively the s.e.’s for

the treatment comparison B-A, C-A, D-A, E-A, F-A, and G-A.

rkeep v=cova print cova

41 rkeep v=cova
42 print cova

cova
Constant 0.4167
block 2 -0.1687 0.4444
block 3 -0.2222 0.2222 0.4444
block 4 -0.1667 0.2222 0.2222 0.4444
block 5 -0.2222 0.2222 0.2222 0.2222 0.4444
block 6 -0.1667 0.2222 0.2222 0.2222 0.2222
block 7 -0.2222 0.2222 0.2222 0.2222 0.2222
treat 2 -0.2778 ~0.0556 0.0556 -0.0556 0.0000
treat 3 ~0,2222 -0.1111 -0.0556 -0.0556 -0.0556
treat 4 ~0.2778 ~0.0556 0.0556 0.0000 0.0556
treat 5 -0.2222 -0.0556 0.0000 -0.1111 ~0.0556
treat 6 -0.2222 -0.1111 -0.0556 -0.1111 0.0000
treat 7 -0.2778 0.8000 0.0000 -0.0556 0.0556
treat 8 -0.2500 -0.0556 0.0000 -0.0558 0.0000
Constant block 2 block 3 block 4 block 5
block & 0.4444
block 7 0.2222 0.4444
treat 2 0.0000 0.0556 0.5556
treat 3 -0.1111 0.0000 0.2778 0.5556
treat 4 ~0.0556 0.0000 0.2778 0.2778 0.5556
treat 5 -0.1111 ~-0.0556 0.2778 0.2778 0.2778
treat 6 -0.0556 -0.0556 0.2778 0.2778 0.2778
treat 7 -0.0556 0.0556 0.2778 0.2778 0.2778
treat 8 -0.0556 0.0000 0.2778 0.2778 0.2778
block 6 block 7 treat 2 treat 3 treat 4
treat 5 0.5556
treat 6 0.2778 0.5556
treat 7 0.2778 0.2778 0.5556
treat 8 0.2778 0.2778 0.2778 0.4167
treat 5 treat 6 treat 7 treat 8

The covariance matrix cova is given above and we can use the
results from the matrix to obtain the standard errors of other

|
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comparisons.



Appendix B

Examples of designs considered

B.1 Constrained cases

Design scenario 1

Blocks 1
Plot 1 C
plot 2 D
plot 3 A
plot 4 O

OMmM W >Xx» N
OO0 Trxrow
OmUOAQAQ &
OoOmuomowm
oM mao
o '™Mw N
omMmo>» ™
O wWwmw
O Q> M=

Design scenario 2

(e}
o)

Block 1 2 3 4
plot 1 O 0 0 0 0 0
plot 2 A B C D E F

Design scenario 3
Plot 1 A A A A A B B B B C¢C C C D
Plot 2 B C
Plot 3 0 O©0 O

=
o m
e
a
o
m
a7
©
t
T
T

Design scenario 4

Bilk 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
pltiA A A A A AA A A A BB BB B B C
plt2B B B B ¢C C C DD E C€CC CD D E D
plt3¢c D E F D EVF EF F DE F E F F E
plt40 0 0O 0 OO OOCO OO0 OG O 0 0O

Design scenario §
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o m o

(e BN ) B @ I Vo)

O Mmoo
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11 12 13 14 15

10

1
A
B
C
D
0

Block
plt 1

plt 2

pit 3

plt 4

plt &

Design scenario 6

4 5

3
A

2

1
A
B
C
D

block
plt 1

A

Plt 2

plt 3

plt &

E
0

plt &

plt 6

Design scenario 7 RCBD

1
A
B
C
D
E
F
0

Block
PLT 1

PLT 2
PLT 3
PLT ¢
PLT 5
PLT 6
PLT 7

F
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B.2 Unconstrained designs

Treatment combinations on each unit of the design

BIBD1
Blocks 1 2 3 4 & 6 v 8 8 10 11 12 13 14

Units

i 4 6 2 2 4 4 i 1 3 4 3 1 2 6
2 7 8 3 7 3 2 €6 8 7T 8 6 7T T 2
3 2 7 4 5 7 &5 5 3 1 6 6 4 6 1
4 8 5 1 3 6 8 4 5 8 3 2 5 1 8

Treatment factors are listed in the order: Treatments

BIBD2
Blocks i 2 3 4 5 6 7 8 9 10 11 12 13 14
Units
1 1 1 2 1 2 3 4 2 K} 1 2 1 1 1
2 5 2 3 3 4 &5 6 3 4 4 5 3 2 2
3 v 6 7 4 5 6 7 4 5 5 6 6 4 3
4 8 8 8 8 8 8 8 6 7 6 T T T 5

Treatment factors are listed in the order: Treatments

CYCLIC DESIGN

Blocks 1 2 3 4 b5 6 7 8
Units
1 2 5§ 2 b 1 3 ) 3
2 8 8 4 T 7 2 3 8
3 6 4 8 3 5 6 2 1
4 7 6 i 4 6 4 i 7
RCBD
Blocks 1 2 3 4 5 6 7 8 5 10
Units
1 3 8 8 2 6 8 7 5 2 1
2 4 4 1 5 7 3 4 2 8 6
3 1 3 3 8 5 i 1 8 6 8
4 2 5 7 1 4 7 2 7 3 7
5 5 1 6 7 1 6 5 3 7 5
6 6 6 6§ 3 8 4 3 4 5 2
7 8 2 2 6 2 2 6 1 1 4
8 7 7 4 4 3 5 8 6 4 3



B.3 Design layouts for the Numerical example

Plot Blki Blk2 BYk3 Bilk4 Blkd Blk6
Ti Tt T1 T1 T1 T2
T2 T2 T2 T2 T3 T3
T3 T3 T3 T4 T4 T4
T¢ T4 T5 T5 TS TS
T6 T6 T6 T6 T6 T6
7 T7 T7 T7 T7 T7

A O WA e

Plts Blk1l Blk2 Blk3 Blk4 Blk5 Blk6 Blk7 Blk8 Blk9 BlkiO
1 T1 TT Tt T1 T1 T2 T2 T2 T3 T3

2 T2 T2 T3 T& T5 T3 T4 T& T4 T4

3 T3 T4 T5 T6 T6 T6 TS5 T6 TS5 T6

& T7 7 T7 Tr Tr T7 T7 T7 Tr T7

The Letter T stands for treatment and the treatments numbers 1, 2, 3, 4, 5, 6, 7
correspond to the various alphabetical letters A, B, C, D, E, F, O in that order.

Layout of the On-farm trials in Uganda(Pallisa district)RCB design

Plots Blkl Blk2 Blk3 Blk4 B1lkS5 Blk6

1 T3 T4 TS5 T6 T1 T2
2 T2 T7 Ta T2 T5 T7
3 T4 T2 T3 T7 T6 Ti1
G T6 T3 Tt T3 T2 T5
5 T1 5 T7 T4 T3 T6
6 TS T6 T2 TS T7 T4
7 T7 T1 T6 T1 T4 T3



Appendix C

SAS programmes

C.1 The SAS code for example on efficiency mea-
sures

data can;

do treat=1 to 7;

do blk=1 to 6;

output;

end;

end;

proc optex data=can seed = 23568 coding=orth;
class treat blk;

model treat blk;

generate n=24;

run;
_output out=bibd blockname=blk;

proc print data=bibd;
run;

C.2 The SAS codes for examples on Power analysis

The designs data and how it was set up is presented in Table C.1.

BIBD1

data bibdl7;
input blk plot trt yield1;

datalines;
(DESIGN SEATS HERE)
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Tun;
proc mixed noprofile;

class blk plot trt;

model

yieldi=blk plot trt;

parms(4) /noiter;

model yieldl=trt;

random blk;

parms (2.5) (4) /noiter;

contrast ‘trt x lin’ trt 11 1 -1 -1 -1 0O;
ods ouput contrast=nc;

data pwr; ndf=1;

ddf=8;

£=3.04;

alpha=0.05;

ncparm=ndf*{;
fcrit=finv(i-alpha,ndf,ddf,0);
power=1-probf (fcrit,ndf,ddf,ncparm) ;
proc print;

var ndf ddf

ncparm alpha fcrit power;

Tun;

BIBD2

data bibd27;
input blk2 plot2 trt2 yield2;
datalines;

(DESIGN SEATS HERE)

run;
proc mixed noprofile;

class blk2 plot2 trt2;

model yield2=blk2 plot2 trt2;

parms(4) /noiter;

model yield2=trt2;

random blk2;

parms(2.5) (4) /noiter;

contrast 'trt x lin’ trt2 111 -1 -1 -1 0;
ods output contrast=nc;

run;

data pwrd;




ndf=1;

ddf=15;

f=4.57;

alpha=0.05;

ncparm=ndf+f;
fcrit=finv(1-alpha,ndf,ddf,0);
power=1-probf (fcrit,ndf,ddf,ncparm);
proc print;

var ndf ddf ncparm alpkha fcrit power;
run;

BIBD3

data bibd37;

input bllk2 pllot2 trrt2 yield3;
datalines;

(DESIGN SEATS HERE)

run;

proc mixed noprofile;

class bllk2 pllot2 trrt2;

model yield3=bllk2 pllot2 trrt2;
parms (4) /noiter;

model yield3=trrt?2;

random bllk2;

parms (2.5) (4) /noiter;

contrast ’trt x 1lin’ trrt2 111 -1 -1 -1 0;
ods output contrast=nc;

run;

data pwrd;

ndf=1;

ddf=22;

£=3.84;

alpha=0.05;

ncparm=ndf#f;
fcrit=finv(l~-alpha,ndf,ddf,0);
power=1-probf (fcrit,ndf,ddf,ncparm);
proc print;\\

var ndf ddf ncparm alpha fcrit power;
run;

BIBD47
data bibd47,;
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input bllk4 pllot4d trrté yield4;

datalines;

(DESIGN SEATS HERE)

run;

proc mixed noprofile;

class bllk4 pllot4 trrt4; model yield4=bllk4 pllotd trrt4;
parms(4)/noiter;

model yield4=trrt4;

random bllk4;

parms(2.5) (4) /noiter;

contrast ’trt x lin’ trrtea 111 -1 -1 -1 Q;
ods output contrast=nc;

run;

data pwrd;

ndf=1;

dd£f=36;

f=5.12;

alpha=0.05;

ncparm=ndf*f; fcrit=finv(l-alpha,ndf,ddf,0);
power=1-probf(fcrit,ndf,ddf,ncparm);

proc print;

var ndf ddf ncparm alpha fcrit power;

run;

Cyclic

data bibdcyc;

input blcy plcy trcy yieldcy;

datalines;

(DESIGN SEATS HERE

Tun;

proc mixed moprofile;

class blcy plcy trcy;

model yieldcy=blcy plcy trcy; parms(4)/noiter;
model yieldcy=trcy;

random blcy;

parms (2.5) (4) /noiter;

contrast ’trt x lin’ trcy 1 11 -% -1 -1 O;
ods output contrast=nc;

run;

data pwid;

ndf=1;

ddf=8;



£=1.8;

alpha=0.05;

ncparn=ndf*f;
ferit=finv(1-alpha,ndf,ddf,0);
power=1-probf (fcrit,ndf,ddf,ncparm);
proc print;

var ndf ddf ncparm alpha fcrit power;
run;

RCBD

data rcbdc; input blrcbd plrcbd trrcbd yieldrcbd;
datalines;

(DESIGN SEATS HERE)

Tun;

proc mixed noprofile;

class blrcbd plrcbd trzrcbd;

model yieldrcbd=blrcbd plrcbd trrcbd;
parms(4)/noiter;

model yieldrcbd=trrcbd; random blrcbd;
parms(2.5)(4)/noiter;

contrast ’trt x lin’ trrcbd 1 11 -1 -1 -1 0;
ods output contrast=nc;

Tun;

data pwrd; ndf=i1;

ddf=36;

£=5.01;

alpha=0.05;

ncparm=ndf*f;
fcrit=finv(1-alpha,ndf,ddf,0);
power=1-probf (fcrit,ndf,ddf,ncparm);
proc print;

var ndf ddf ncparm alpha fcrit power;
run;



Appendix D

Data for unconstrained scenario
designs

Table D.1: Data table for the Unconstrained scenario designs. Designs are listed in the
order of block, plot, treatment, and yield.
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[ BIBDI7 BIBD27 BIBD37 BIBD47 Crelic RCBD
Ti12s2 71502 T 1 6 669 T 1 2 597 11664 7 1 3 42
21145 21 2 61 317 37
21441 21138 DY 2T 21575 Y
31752 31664 415 665 4 1 1 48 31564 s 1 4 41
51 3 39 51 4 59 6 1 6 55
41149 4158l 61 4 42 6 1 5 84 41598 7 17 4l
51743 51579 712 62 71 5 81 51451 1 23 57
814 52 81 6 67 2 2 4 45
61565 613 42 o1 5 o s 1 oo 61746 A
71352 71468 101 4 5.1 101 4 56 71259 4 2 2 s)
1115 77 111 2 48 5 2 6 S8
L2669 12734 121 1 47 121 4 52 LR 6 2 7 45
22509 22755 131 5 15 131 3 47 22736 7 2 3 42
141 5 8.1 141 6 64 1 35 69
32675 32456 121 56 (2 1 49 32654 2 3 | 49
425179 42668 22739 2 2 4 46 42263 33 1 48
322 41 32 4 52 4 3 7 42
52248 52152 426 11 4 2 3 53 52681 5 3 5 175
626 62 626172 522 64 s 2 3 42 62349 6 3 4 51
62576 6 2 2 S5 7 3 6 63
72466 726 66 $207¢ 223 72439 e
13145 13455 826 54 8 2 7 48 13763 2 4 2 67
9 21 43 9 2 7 55 3 4 5 71
23254 2344l 102 3 42 102 1 5.4 R 4 4 3 39
33454 33566 112 3 39 112 5 76 33151 S 4 2 59
122 5 79 122 3 46 6 4 2 51
43749 43753 132 3 5.1 132 5 71 43349 7 4 2 47
53337 53261 142 6 63 142 2 61 53353 15 6 61
13 4 51 1 3 4 48 2 5 7 48
63351 63133 I R 63138 A
73147 73366 33155 33 7 43 731 52: &5 4 66
437 46 43 4 43 5 5 7 58
IR 536 67 s 35 13 6 5 5 19
24246 63 2 49 6 3 7 49 7 5 4 55
73751 731 53 1 6 7 49
34145 83 3 46 8 3 1 41 2 6 5 91
44262 93 6 64 9 3 4 58 16 6 66
103 7 5.1 103 7 51 4 6 6 76
54339 113 1 44 113 7 48 5 6 1 41
64748 123 4 55 123 7 42 6 6 1 42
) 133 2 65 133 1 43 7 6 1 46
R 143 7 38; 143 3 47 1 7 2 63
1 4 3 51 2 7 6 67
2 4 6 66 5 7 2 49
34 6 58 4 7 1 s1
4 4 2 57 s 7 3 sa
54 6 64 6 7 3 4l
6 4 1 5 7 7 5 19;

7 4 6 67

£ 4 3 53

9 4 2 54

104 S 68

L4 3 49

224 5 83

134 6 53

144 7 51;

Table D. 1. Data table for the Unconstrained scenario designs. Designs are listcd in the order of block, Plot, Trcatment,

and Yield,
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