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Abstract 

Incomplete block designs have been widely applied in several fields of statistical 

research. However, there has been little work done on applying these designs in on-farm 

trials. On-farm trials have gained considerable attention in the area of agricultural 

research. Despite this, little attention has been given to the efficient design of 

experiments for improvement of the precision of results from these trials. Much of the 

work conducted in these trials is done using the randomized complete block design. This 

is a standard design with proper orthogonality properties. However, the size of 

experiments, variability in farms, missing observations etc., are a few of the problems 

encountered in on-farm trials. These problems always render the randomized complete 

block design less efficient in studies in on-farm trials. 

This study reviews the incomplete block designs with the aim of analyzing the efficiency 

of these designs when applied to on-farm trials. Several techniques are employed to 

classify these designs as compared to the randomized complete block designs. 

Optimization of these designs is then considered both under constrained and 

unconstrained design scenarios. Missing observation analysis is discussed. In this study, 

computations of the efficiencies in constrained and unconstrained cases of on-farm 

scenanos after incorporating appropriate covariance structures are compared to evaluate 

designs. 

Worst cases of missing observations are identified alongside their effect on the design 

efficiencies. Overall, we show that the gain in the use of incomplete block designs in on­

farm trials is of key importance. However, the maximization of information and 

minimizing cost cannot always be achieved simultaneously. As a consequence, 

compromise designs should always be considered, which satisfy requirements as far as 

possible and are practical at the same time. 
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Chapter 1 

Introduction 

On-farm trials are beginning to receive a wide acceptance and credibility where proper 

statistical procedures have been applicd(Ashby et al, 1990; Lockeretz, 1987; Stroup et al, 

1993). Therefore, it is of great importance to pay attention to the efficient design of on­

farm trialB. The process of making better decisions begins with the proper design of your 

experiment(Zandastra et al,1981). Proper integration of agronomic and socio-economic 

perspectives into diagnosis, together with an analysis of the existing variability in manage­

ment practices and yields in farmers' fields, has the potential to improve the efficiency of 

on-farm trials and at times substitute partially for costly experimentation(Byerlee, Triom­

phe and Sebillotte, 1991). Efficient designs that lead to extraction of desired information 

from on-farm trials are required. Therefore, construction of optimal or near-optimal de­

signs to improve on the efficiencies of on-farm trials should be considered. 

The randomized complete block design(RCBD) is commonly used in on-farm trials be­

cause of the ease and control of site variability by simple blocking, which is preferred over 

the completely randomized design. I3ut its ability to account for the site variability is 

limited (Fu, Clarke, Namkoong and Yanchuk, 1998). In many ideal situations, RCBD 

provides an easier, flexible and less sophisticated analysis as compared to other designs 

However, the conditions for on-farm trials are less controlled than those of research star 

tions and this calls for special attention to the design of such experiments. On-farm trials 

are characterized by several problems such as missing observations, large field layouts , 

1 
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high variability etc (Lockerctz, 1987). In on-farm trials, the RCBD provides for bigger 

blocks and this incorporates a large amount of va.riability within blocks. This explains 

why in forest trials, genotype effects obtained from RCBD trials are always inflated or 

have large standard errors (Magnussen, 1993a). 

In on-farm trials, incomplete block designs(IDD) can be of proven value especially in re­

ducing variability through reduction in block sizes. IDD were originally devised to allow 

for smaller block sizes when equal precision Wa.':3 desired on all treatment comparisons 

(Yates, 1936). Yates points out two vital situations when small block sizes are desired. 

One is where the number of treatments is so large that the amount of material needed 

for a complete block is very heterogeneous. Thus by using smaller blocks the material 

within the blocks can be more homogeneous, thereby giving more efficient estimates of 

treatment comparisons. The second situation is when the number of possible units per 

block is less than the total nnmber of treatments. On-farm trials often fall into one the 

two situations described above. 

In many on-station trials, IBD have shown higher efficiency values than RCBD. Alpha­

lattice designs have been shown to be more efficient than RCBD in field trials conducted 

in the UK (Patterson and Hunter1 1983; Patterson and Williams, 1976 ). Thus IBD can be 

a valuable design to replace RCBD in many of these agricultural on-farm trials. Smaller 

blocks are less heterogenous than bigger blocks and thus larger site variation among blocks 

is removed from the experimental error so that the contribution of the site variance ef­

fects to the error of estimating treatment means is reduced(Fu, Clarke, Namkoong and 

Yanchuk, 1998). 

The procedure of confounding is applied in factorial experiments when the number of 

treatments is large (Gomez and Gomez,1984). This is aimed at reducing the block size 

in order to ensure more precise estimation of lower order interactions at the cost of less 

important higher order interactions. However, in a situation in which all treatment com-



3 

parisons are of interest confounding is not applicable (Federer, 1955). This situa.tion calls 

for the application of the incomplete block designs. 

1.1 Case for on-farm trials 

On-farm trials a.re a vital tool to assess the level of technology transfer and applicability 

on the actual farmers' fields(Gomez and Gomez, 1984). The gap between the on-station

trials where conditions are very well controlled and the farmers' fields where conditions 

a.re poorly managed ia big in developing countries (Lockeretz, 1987; Lockeretz and Ander­

son, 1993). Thus on-farm trials can be a solution to closing up such technology transfer 

problems. There are numerous reasons to justify use of on-farm trials. For instance they 

can be used to determine the general distribution of response to a new technology and to 

estimate the frequency of success under a wide range of conditions as well as management 

and environmental factors that impact on success (St-Pierre and Jones, 1999). They also 

offer a cost-efficient alternative to researchers when a large number of experimental units 

are required. The importance of on-farm triaLc; as a component of farming systems re­

search is described fully by Hildebrand and Poey (1985). 

On-farm trials can be grouped into multi-site(MS) and single-site(SS) trials. In multi-site 

trials, several farms are used simultaneously. These trials provide a wide scope of study 

on a given variable across several location.s. However, single-site trials reduce the com­

plexity associated with an experiment involving a multitude of locations. Therefore, this 

reduction in complexity is done at the expense of the inference range that is lost. Thu.s the 

validity of the results from SS trials covers a much narrower range of conditions. Different 

forms of on-farm trials call for different designs ( Mustsaers & Walker, 1990). There are 

many practical challenges related to the experimental design, data collection procedures 

and data analysis of on-farm trials ( Coe, 1998; Hammerton & Lauckner, 1984; Nokoe, 

1999). Some on-farm trials are too large to be manageable as compared to on-station 
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experiments, which receive a well-planned and controlled setup. 

Incomplete block designs are characterized by small block sizes that allow for estima­

tion of treatment effects with a certain degree of precision (John, 1971; Mead, 1994). 

The randomized complete b lock design is a "conventional" design used widely in field 

experiments, especially those carried out on-station. The use of the design assumes well­

controlled situations where unbalanced and missing data are never a problem. However, 

research is increasingly shifting from on-station to on-farm where experimental condi­

tions ai-e difficult to predict. Large variability, unbalanced and missing data are common 

problems associated with on-farm trials ( Hildebrand and Russell, 1996). Such problems 

make analyzing data from such trials difficult and results are less informative. In many 

on-farm trials, it is unlikely that an experimenter has any control over the experiment 

as compared to on-station trials. So it is not possible to use the standard block designs 

since each situation calls for a specific design in order to accommodate the problems that 

may arise ( Mustsaers and Walker, 1991). If missing observations a.re likely to occur from 

some unforeseen events, it would be best to select an appropriate initial design with good 

characteristics and properties to protect against the whole experiment being ruined. 

1.2 Design considerations 

An assessment of the efficiency of a design that takes account of unforeseen events that 

may arise is of great benefit. This would enable an experimenter to consider the risk of 

using a particular design in practice. An experiment can be designed such that it has a 

certain degree of controlled non-orthogonality, which will not upset the simplicity of the 

analysis of variance. In most on-farm trials, the responses for some plots, or in some cases 

even a full block ma.y be lost for reasons unrelated to the structure of the experiment or 

the treatments used. This prompts the need to choose a design that will minimize the 

influence of most on-farm problems affecting the results from the trials. The loss of a full 
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block has been studied by Gupta and Srivastava (1992) and Bhaumik and Whittinghill 

(1991). The design of on-farm trials involves the selection of the most appropriate factors 

to control variability and other related problems with on-farm trials. Typically, traditional 

experimental designs have been used for such purposes but little has been documented 

about the success of these designs (Hildebrand and Russell, 1996). Randomized complete 

block designs have the merit of simplicity but can be inefficient in on-farm trials for a 

number of reasons. 

• It may not be possible to choose homogeneous blocks of sufficiently large size for

complete blocks in on-farm trials.

• Blocks/farms may be natural units of a size that does not coincide with the size of

a treatment replicate.

• A single set of blocks may not be adequate to account for all sources of variability

in an experiment in on-farm trials.

• It may not be apparent how to choose an appropriate set of complete randomized

blocks prior to an experiment..

All the above reasons reveal an efficiency deficit that can arise in the use of randomized 

complete block designs. We should compare the loss in efficiency that could be incurred by 

using these designs with the loss of efficiency that could be incurred by incomplete block 

designs. Based on these gains and losses in efficiency, we are able to recommend the right 

designs for on-farm trials. This study aims to assess the efficiency of the incomplete block 

designs in general in overcoming the limitations of on-farm trials. Particular emphasis is 

devoted to the way in which most efficiency factors would behave in varying situations 

for different forms of incomplete block designs. 

A review of incomplete block designs is given in chapter 2. In chapter 3 we restrict 

attention to the efficiency estimations in designs and the design optimality criterions. 

Chapter 4 gives an in depth knowledge on the optimal incomplete block designs alongside 
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the robustness of these designs in the case of missing observations. Chapter 5 considers 

the different scenarios in on-farm trials and how design selection tools can be UBed to 

obtain the most appropriate design. A case study of o n-fa.rm trials set up in Uganda is 

analyzed in this chapter. The conclusions and suggestions are given in  chapter 6. 

1.3 Overall objectives 

To determine the extent to which incomplete block designs could be used in on-farm trials. 

Specific objectives 

1. To assess the pos sibilities of UBing incomplete block designs in on-farm trials.

2. To determine the different levels of efficiency of incomplete block designs with respect

to on-farm trials by designing flexible experimental designs.

3. To determine the precision of treatment means and the difference of treatment means

using power analysis.



Chapter 2 

Literature Review 

2.1 Introduction 

Major factors for consideration when designing on-farm experiments are the limited and 

varying farm space, and the inherent variability within a given farm (Riley and Alexan­

der, 1997). In on-farm trials, challenges and conditions are experiment dependent and 

therefore no set of rules provide the "correcti, design. The id.ea that not every farm 

requires an identical set of treatments is more novel (Steiner, 1987; Stroud, 1993). It 

is preferable to limit the number of treatments in order to increase the precision of the 

experiment. The design strategy described in Gomez and Gomez (1984), which requires 

equal numbers of plots and replicates on each farm, is not feasible. An incomplete block 

design provides an alternative to commonly used randomized complete block designs when 

farms cannot accommodate a full set of treatments(John, 1980). A proper consideration 

of statistical tools in experimental designs is capable of providing an answer to the prob­

lems of on-farm trials. Although statistics is commonly viewed as primarily dealing with 

post-experimental data analysis, statistical experimental design is of proven value at the 

planning stages. Fisher(1951; p.3) noted that, 

"statistical procedure and experimental design are only two different aspects 

of the same whole, and that they both aid to the logico.l requirements of the 

complete process of adding to natural knowledge by experimentation". 

7 
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·while it is a trivial task to find a good incomplete block design, the topic has been under

study for decades and there is a body of research to help find efficient experimental plans. 

The designs that are most suitable for on-farm trials depend on the questions of interest, 

and the available resources. Most incomplete block designs are capable of fulfilling this 

task. 

2 .2 Incomplete block designs 

Incomplete block designs where introduced by Yates(l930) at the Rothamsted Experi­

mental Station. These designs normally pose several questions to researchers: 

• Given a resource constraint, what is the best way to choose subsets of the treatments

to allocate to the blocks?

• How should the data from the experiment be analyzed?

• How efficient and reliable are these designs?

A common problem arises when the blocks available are not large enough to accommodate 

all the available treatments. In such instances, we consider the incomplete block <lesigns, 

where blocks do not contain a full set of treatments. In many forms of investigation that 

involve screening of large numbers of new treatments or subjects, only a small amount 

of new material is available and few replications are therefore possible. In an experiment 

to compare new treatments with old treatments, one is unwilling to allocate more than a. 

small number of replications to the new treatments because of costs involved in screening 

large numbers of new treatments (Federer, 1955). For instance) in the screening of numer­

ous new fungicides, herbicides, or soil fumigants, at various levels it becomes expensive 

to run all replications of these treatment combinations. Sometimes it may be desirable 

or necessary to have the new treatments replicated only once or twice in the experiment 

and to have the standard or old treatments replicated r times. 

A common situation is where farmers cannot apply all the available treatments due to 
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limited farm size or due to other constraints, therefore research scientists who conduct on­

farm trials tend to bias the randomization through farmer selection {Skinner and Mwaniki, 

1994). To avoid the biru,, Pardey, Roseboom and Beintema (1996) suggested farmer clas­

sification procedures which would lead to effective results for particular farm groups. 

The experimental designs which accomplish this objective are Augmented designs and 

the related Reinforced and Staircase designs (Das1 1958). For Augmented block designs 

with new treatments appearing once and the standard trea.tments appearing r times, one 

simply sets up block designs for t.he standard treatments, then enlarges the blocks to 

accommodate the standard treatments as well as the new treatments (Das, 1958). The 

statistical analysis is performed on standard yields only to obtain solutions for block ef­

fects, which are then used to adjust the yields of the new treatments for the blocks in 

which they appear (Federer, 1955). 

Traditionally, randomized complete block designs (HCBD) have been used in most agri­

cultural trials. A randomized complete block design is constructed on principles of homo­

geneous experimental units per block (Montgomery, 1976). In basic experimental designs, 

we apply a.II treatments within each hlor.k because experimental units (plots) located in 

each block are more or less uniform (John, 1971}. Sometimes it is difficult, inconvenient 

or impossible to apply all treatments in each block (Mead, 1994). This calls for the use 

of incomplete block designs and forms the ba.ciis for their introduction (Yates, 1933). 

Balanced incomplete block designs (BIBD) are a special case of incomplete block de­

signs that are constructed such that every pair of treatments occur together in the same 

block a given number of times (Cochran and Cox, 1957; Bose, Clatworthy & Shrikhande, 

1954; Bose, 1947; Rao, 1947). All treatment compa.risons are of the same a.ccw-acy in 

these designs. For a given block size, replication, and number of treatments, a BIBD is of 

maximum efficiency if it exists (Conniffe and Stone, 1974). Conniffe and Stone (1974) de-
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fined efficiency as the inverse ratio of the average variance of treatment differences to that 

of a. complete block design with the same replication. Designs where residual effects are 

negligible are available, and such arrangements include Latin square and Youden squares. 

These are balanced incomplete block arrangements, with the additional restriction that 

each treatment occurs just once in each position of the blocks (Conniffe and Stone, 1974). 

The property of balance, more specifically called total balance, possessed by the BIBD 

is useful when designing experiments, because it is tbe next most efficient simple form 

of design after the orthogonal randomized complete block design ( Clarke and Kempson, 

1997). Incomplete block designs are expected to be from 1.2 to 1.5 times as efficient as 

randomized complete block designs (Goulden; 1937). The average gain in efficiency from 

using incomplete block designs in a series of 166 trials was a factor of 1.43 and in one case 

as high as 3.82 ( Patterson and Hunter, 1983). 

Another form of incomplete block designs is the partially balanced incomplete block de­

signs (PBIB). These are designs in which not all pairs of treatments appear together in 

a block. PBIB designs were introduced by Bose and Nair (1939). Under these we have 

lattice designs, which is a simple case of the PBIB designs with the £2 association scheme. 

For the £2 association scheme, the treatments are arranged in a square array, and two 

treatments are first associates if they appear in the same row or column ( John, 1971). The 

practical application of other designs does not provide the real solution in large on-farm 

agricultural experiments. This is because the sizes and conditions of farms vary consider­

ably. Unbalanced incomplete block designs usually provide a better design to fit the true 

on-fa.rm situation. Augmented designs, reinforced and staircase designs provided by Das 

(1958) a.re more practical in relation to the on-farm trials. Searle (1965) provides a major 

breakthrough in the analysis of augmented randomized complete block designs. However, 

a key factor in obtaining appropriate treatment effects is orthogonality. Orthogonal de­

signs have a special role in the calculations of efficiency. An orthogonal design is one in 
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which treatment differences are estimated independently of block differences (Clarke and 

Kempson , 1997). The principal consequence of orthogonality is that effects of treatments 

can be interpreted without simultaneously considering inferences about the block effects. 

It also simplifies the calculations both for the analysis of variance and for tbe comparison 

of treatment effects (Mead, 1994). In these designs all the information on the treatments 

is obtained from the intrarblock analysis. Yates (1933) has the classical statistical account 

of orthogonal comparative experiments. Yates states that, 

"Orthogonality is that property of the design which ensures that the different 

classes of effects to which the experimental material is subject shall be capable 

of direct and separate estimation without any entanglement". 

Pearce (1953) offers the following condition for orthogonality " Two classifications are 

mutually orthogonal if various groups of plots formed by one classification are composed. 

of the same proportionate number of plots of the other". 

Where all pairs of classification arc mutually orthogonal, the whole design is sa.id to be 

orthogonal. In a non-orthogonal design information is obtained from within compar­

isons and the remaining information is recovered from an inter-block analysis, through 

comparison between blocks (John, 1987). In the analysis of variance, formulations of an 

orthogonal decomposition of the data vector are possible such that the total variance 

is partitioned into components attributable to identifiable causes ( Kempthorne, 1952). 

Rao(1959) applied randomization models to the ha.lanced incomplete block design but did 

not incorporate complete or incomplete sampling considerations. Although it seems obvi­

ous on how to allocate factors into block and treatment, the criteria to be followed are not 

clearly laid out by many writers ( Mead and Curnow, 1983; Preece, 1982; Yates, 1975). 

Furthermore, in agricultural experiments there is little literature on how this should be 

done. 

This can be illustrated by considering the model 

(2.1) 
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where Yiik is the kth observation due to the ith treatment in the jth block, Ti denotes the 

ith treatment effect, (31 denotes the jth block effect , ( r/3)ij denotes the interaction effect 

between the ith treatment and the jth block, and µ is the overal l mean, E( E,1k) = 0 , 

Var(Eijk) = o-2 and cov[Eijk,ci'j'k'] = 0 for (i,j,k) i- (i',j', k').

Such a model is normally not of full rank and constraints are often placed on one or 

both the parameters and the estimates in order to obtain a solution. Commonly used 

constraints include; 

L Ti= LIJi = L(r/3)ij = L(T/3)ij = 0 
i j ; j 

If such constraints are not considered then some of the components in the model ma.y not 

be estimable( Hocking, 1973; Searle, 1971). 

However, the principles related to the design and analysis of on-station experiments are 

well documented hut how they should be applied to on-farm trials is not well defined. 

The success of these trial.s lies on the efficient design of experiments if efficient estimates 

of treatment mearu:; a.re required. Common to most on-farm trials a.re the problems of 

missing observations and unbalanced data. These problems have a significant effect on the 

orthogonality of the design. However, with a well designed experiment, a good amount of 

information can be recovered from trials using statistical techniques such as mixed models 

a.nalysis.

2.2.1 Mixed models review 

This consists of both the random effects and fixed effects analysis(Scheffe, 1959). Mixed 

models were first applied by Fisher(1925) in developing the spilt-plot analysis and in 

Fisher(1935) while analyzing an experiment involving the testing of varieties at several 

locations. Several author s have looked at Mixed models since then (Eisenhart, 1947; 

Plackett, 1960). More recent articles on the subject a.re by Harville(1977), Sea.rle(1971), 

and Graybill(1976). These models are a form of the general linear model given as below: 

y = X/3 +e (2.2) 
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where y, X and (3 are defined as: y is the vector of n observations, X is a known n x p 

matrix of rank r (r :S p), /3 is a vector of p unknown parameters and t.: is the error 

component such that E[1o] = 0 and cov[t.:] = I;. 

In the mixed models form, (2.2) can be expressed as {Harville, 1977): 

where E[y] = X/3 

P m 

y = "I:xi/3t + LZfr/j
ia=l j=I 

Zj is the design matrix for the jth random term and of order n X mi, 

mi being the number of effects in the jth term, 

1lj an mi x 1 vector of random effects a.nd 

1}j ~ N(O, ,/;jl) and ffim = n and Zm = I, so that Var[y] = V = E7= 1 (pjZjz;. 

(2.3) 

The </>'s form the canonical components of excess variation (Nelder, 1977). They can be 

interpreted a.s classical variance components or covariances of the observations (Nelder, 

1977; Scheffe, 1959). The advantage of the canonical components are that they have the 

same interpretations in respect of the variance matrix of the observations for a.11 formu­

lations of the modeL It is important to obtain estimates that are Best linear unbiased 

estimators(BLUEs) and the implication of this for designed experiments is that the exper­

iment needs to be orthogonal for the simple least squares estimates(SLSE) to be BLUEs. 

In the paper by Houtman and Spccd(l983), their concern was not with establishing the 

equality of SLSEs and BLUEs since for many designs e.g IBD, orthogonality is not ob­

tained and so SLSE are never appropriate. The solution to this is having a model with 

an orthogonal variation structure (OVS), where the analysis can be based on the hypoth­

esized variance ma�ri.x. V. Most experimental designs have OVS (Bailey 1982a, 1984). In 

effect all block designs with equal block sizes and the usual dispersion model have proper 

orthogonality properties and general balance in treatments (Houtman and Speed, 1983). 

All in all, partially balanced block designs may or may not fulfill Nelder's (1965, 1968) 

definition of general balance depending on what decomposition of the treatment subspace 

is specified. The problem normally arises in examination of the possibilities when </J's are 



14 

unknown; i.e the ¢'s must be estimated from the data. 

There arc several estimation techniques which include; Analysis of variance (ANOVA), 

Maximum Likelihood (ML), Residual Maximum Likelihood (REML), Minimum norm 

quadratic unbiased estimation (MINQUE) and Minimum variance quadratic unbiased es­

timation (MIVQUE). The AN9VA estimators are equal to REML, MINQUE, MIVQUE 

for orthogonal analysis, so long as non-negativity constraints on the variance components 

do not come into play. ANOVA estimators aie location invariant, unbiased, have mini­

mum variance amongst all unbalanced quadratic estimators, and under normality, they 

are minimum variance amongst all unbiruied estimators (Searle, 1971). But they may lead 

to negative parameter estimates which can fall outside the parameter space. Maximum 

Likelihood (ML) estimators a.re biased since they do not consider degrees of freedom lost 

in estimating the fixed effects of the model and require intensive computations. But non­

negativity constraints can be properly imposed. REML estimators have an advantage over 

ML estimators in that they overcome the loss of degrees of freedom problem of ML and are 

the same as ANOVA estimators provided that the non-negativity constraints on variance 

components do not come into play (Harville, 1977). However, for non-orthogonal cruies, 

equivalence of ANOVA and other estimators ceases to hold. In this case, the ANOVA 

estimators are not available for terms totally confounded with fixed effects and may not 

have minimum variance. Henderson (1953) provides a method of ANOVA to handle such 

problems. However, Harville (1977) suggests that REML procedures are to be preferred 

to Henderson estimators. In studies by Corbeil & Searle (1976), and Harville (1978), 

comparing ML and REML revealed that although ML estimates are biased, they have 

smaller mean-squared errors than REML estimates even under orthogonal experiments. 

In comparing REML 8Jld ML for incomplete block designs, the results revealed that there 

is benefit of using REML mostly in estimating standard errors of the means (Nabugoomu 

and Allen: 1990, 1994). Fisher (1935) also draws attention to the fact that knowledge 

of the behavior of the experimental material should be incorporated into the design and 
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analysis in the form of an hypothesized model if at all minimizing mean-squared errors is 

desired . 

The IBD are crucial to on-farm trials and their use needs to be investigated using the 

principles highlighted by Yates (1930). There is need for rigorous application of appro­

priate statistical procedures to the design and analysis of on-farm trials that will enable 

wi<le acceptance and improvement in credibility of on-farm trials (Njuho, 1998). 

2.2.2 General incomplete block design 

The general incomplete block design con::;ists oft treatments in b blocks of size ki. Treat-

ment i( i = 1, ... , t) will have ri replicates implying that they will appear in Ti plots and 

block j(j = 1, ... , b) will contain ki plots. The matrix (t x b) forms the incidence matrix 

N and it has elements nii equal to the number of times that treatment i appears in block 

j. In most incomplete block designs, Ti will be equal to r and all kj will be equal to k.

This implies that the incidence matrix will be composed of zeros and ones. Treatment i 

appearing in the jth block is denoted by 1 and 0 otherwise. Such designs are referred to 

as binary designs. If ki = k for all j, then the design is called proper. If Ti = r for all i, 

the design is called an cquircplicate. 

The model 

Let Yiim denote the mth observation on the ith treatment in the jth block. \�Te obtain 

the model; 

(2.4) 

where i = 1,2, ... ,t; j = 1,2, ... ,b; m = 0,1 ) 2, ... ,nij, eiim are the error terms which 

are uncorrelated random variables each with mean zero and variance a2
, Ti ia the ith 

fixed treatment effect, /3j is the jth block effect and µ is the overall mean. The Intra­

block analysis and recovery of Inter-block information is widely discussed ( John, 1971 ; 

Cochran and Cox, 1957; Khatri and Shah; 1975; Bose and Shimamoto, 1952; Nair, 1954 

; Yates, 1940). 
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2.2.3 Intra-block analysis 

Let G be the grand total of all the observations, Ti be the sum of all the observations on 

treatment i, and Bj be the sum of the observations in block j. The intra-block estimates 

of the treatment effects and the analysis of va.riance table can be obtained by solving the 

system of equa.tions below. From (2.4) the following normal equations are obtained using 

the method of least squares (John, 1971) 

nµ+ Lki3i + Z:rifi = G 
j 

rl.{1, + L nii/Ji + rifi = L Yii = �
j 

(2.5) 

(2.6) 

(2.7) 

where j = 1, 2, ... , b; i = 1, 2, ···: t. The above set of normal equations can be expressed in 

matrix form as follows; 

(2.8) 

Equation (2.8) can also be expressed as Y = X/3 where 1 is a column of all ones, R is the 

t x t matrix with diagonal elements r1, r2: ... , rt and the off-diagonal elements are zero. 

Thus R = diag(r1, r2, ... , rt). K is a b x b matrix defined as K = diag( k1, k2, ... , kb) and 

N is the incidence matrix of t rows and b columns where N = ( 'T¾j) , T' = (T1 , T2, ... , Tl) , 

B' = ( Bi , B2 , ... , Bb) , r' = ( T1 ,T2, ... , Tt) and /J' = (/31, /32
1 • • •  , /Jb). The solutions to the 

matrix system (2.8) depend on the rank of X whether it is of full rank or not full rank. 

In most incomplete block designs, X is of less than full rank) which implies that many 

solutions are possible. From John (1971), multiplying both sides of the equation (2.8) by 

(2.9) 



Note that Rli = Nlb and Klb = N'lt, 

This gives the following set of equations 

T-NK-1B = (R-NK- 1N1)f = Q 

B- N'R- 1T = (K - N'R- 1N)/J
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(2.10) 

(2.11) 

(2.12) 

The above equations are of primary interest and are referred to aa the reduced intra-block 

equations ( John, 1971). From Giesbrecht (1986), one set of solutions to the equations can 

be obtained as; 

(2.13) 

and 

(2.14) 

where (K -N1R- 1N)+ denotes the Moore-Penrose generalized inverse of (K -N'R:-1N). 

From (2.11) the reduced normal equations for the estimation of the vector of treatment 

effects can be expressed in the form; 

Cf =Q (2.15) 

where C = (R - N K-1 N') and Q depends on the n observations, which a.re assumed to 

be uncorrelated with variance a2 independent of the block size. Note that Cl = 0 and 

(K -N1 R-1N)l = 0 , so if we consider a case where Chas rank t-1 and (K -N'R-1N) 

has rank b - 1, then this form of design is connected and as such contrasts and effects are 

estimable. Thus we obtain the /J from the equations Klµ+ N'f + K/J = B 

as�= K- 1B-K- 1N1f- lbµ, 

From John(1971), the sum of squares for the model is then given as

Gµ + B'/J + T'f = Gµ+ B'K- 1 B + (T' - B'K- 1N')i
- GP,

(2.16) 
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The resultant analysis of variance table for the intra-block analysis using G2 /N as cor­

rection factor is then given as follows: 

Table 2.1: Analysis of variance table for intra-block analysis 

Source of variation Sums of squares Degrees of 

freedom 

Blocks ( ignoring B1K-1B - G' b-1
treatments) 

Treatments (adjusted Q'+ t-1

for blocks) 
Residual By subtraction N-b-t+l

Total E E E Yfim - � N-1

Adjusted treatment and block totals 

The adjusted treatment totals Qi are linearly dependent since Q'lt = L Qi = 0 (where 

this is not the case, the set of equations Of = Q would be inconsistent). Therefore , 

Similarly, (B - N' R- 1T)'lb = 0 

2.2.4 Inter-block analysis 

In the case of incomplete block designs, the block totals may a lso be expected to provide 

some informa.tion on the treatments1 since the set of observations occurring in different 

blocks are different. This technique introduced by Yates(1940) utilizes the block totals to 

estimate treatment differences. It is when the blocks arc considered random that one ca.n 

utilize the information provided by block totals. Consider (2.4) simplified such that 

(2.17) 
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Assuming a proper design and let the variance of the intra-block errors eii be a;. V•le 

88SUme that the /3j arc random variables and therefore /3j ~ iidN(O, an. From the b bloc.k 

totals , considering all the above conditions, the block totals can be regarded as a. set of 

observations: 

Bj = kµ + L nijTi + (k/3j + L eij) 
j 

= kµ + L n;,jT; + ej
i 

thus on the basis of the assumptions made, e; ~ iidN(O,k2al + ka;). Applying least 

squares analysis, we minimize 

L(Bj - kµ - L nihfh)
2 

j h 

(2.18) 

where/Land f denote the inter-block estimates; µ and fi denote the intra-block estimates. 

We obtain normal equations by taking partial derivatives with respect to the parameters 

and equating them to zero, i.e 

This yields 

while 

yields 

k L nijµ +LL ni.jnjhTh = L niiBi
j j h j 

for i = 1, 2, ... , t. Solving the two equations and applying the side condition 

we obtain 

(2.19) 

(2.20) 
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for i = 1, 2, ... : t. These estimates are orthogonal to the intra-block estimates obtained 

previously. The ei:.tirnates of the treatment differences are, 

(2.21) 

hf= i 

where >. is the number of times treatment i and treatment h appear in a common block. 

Thus the Var[1\ -f1.] can be obtained. From Tt = I:,
j

n;1Bi , it follows that 

Also the covariance 

Var['½*] = L n;j Var[Bj] 
j 

Var[Tt] = L nfi(k2a? + ka;) 
j 

Var['½*]= var[T,:] 

The variance of the treatment differences can be obtained as 

2(r - >.)k 
( 2 2 

= (r - .�.)2 kab + a-,,)

2k 
( 2 2 

(r->.) kab+a.J

(2.22) 

For r f= >. consider a BIBD, its normal equations for the inter-block estimation are give n 

as 

L nijBj = rkµ + rfi + ,\ L f,.

j h 

Denote I:, niJBi by Tf. Considering the side condition l'r = 0, the first equation gives 

µ = G / N, and the second equation becomes 
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hence 

(2.23) 

Note that ET[= KG= trkµ so that Eii � 0. Thus in the general case, we minimize 

and obtain the normal equations as 

Multiplying both sides by 

gives the equations 

[ G 

l [
bk 1

1 R 

l [ µ l NB = RIK NN' f 

Recall that Rlt = Nlb thus the above yields 

N(B - Gl/b) = (N N' - RJR/b)f 

and recalling that l'Rr = 0 the equations become G/N =µand 

N(B- Gl/b) = NN'f 

so that 

(2.24) 

(2.25) 

(2.26) 

Therefore, the existence of the inter-block estimates requires that N N' exists: and hence 

that the incidence ma.trix. N has rank t. So we have two sets of estimates: f = B11 Q and 

f which is a function of Band G. Since for any i and any j , c.ov(Qi , Bi)= 0, it follows 

that the two sets of estimates are orthogonal and under normality are independent. 
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An arrangement oft treatments in b blocks of k plots each, ( k < t), i s  known as a Balanced 

Incomplete Block design(BIBD) if every treatment occurs once and only once in r blocks 

and any two treatments occur together in ,\ blocks. The constants t, b, r, k, N and ,\ are 

used in incomplete block designs. 

b = Number of blocks in the experiment. 

t = Number of treatments. 

k = Number of experimental units per block. 

r = Number of replications for a given treatment in the experiment. 

N = Total number of experimental units. 

). = Number of times each pair of treatments appear together in a block (number of 

concurrences). 

�i = T he number of times block j contains a given treatment i. (i = I, 2, ... , t;j -

1, 2, ... , b). 

Thus a balanced incomplete block design can be denoted as BIBD(t, b, r, k, >..). 

The following conditions must be fulfilled in order to obtain a balanced incomplete block 

design. 

I. 

2. 

rt= bk= N (2.27) 

Consider a single treatment occurring r times. For a given treatment ti , it must 

appear together with others in a block r(k - 1) times in total. 

But it also appears), times with each other (t - 1) treatments. So the total number 

of concurrences of all pairs of treatments is given as follows 

>.(t -1) = r(k - 1). (2.28) 
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But by definition, >. has to be an integer and thus this equation places restrictions 

on the possible values of k and t.

3. 

(2.29) 

A design with b = t and r = k is said to be symmetric. This inequality is due to Fisher 

(1940) and the proof was presented by Bose (1949). Shrikande (1950) shows that the 

above three conditions are necessary for the existence of a balanced incomplete block 

design although not sufficient. Given t treatments and blocks of size k, we can construct 

BIB designs by taking the t treatments, k at a time in all possible ways. 

Consider the model(2.17), for BIBD the following norma.1 equations are obtained(John, 

1971) 

(2.30) 
j 

(2.31) 

rµ + L nij/3i + rf = L Yij = Ti (2.32) 

i = 1, 2 1 ... , t and j = 1, 2, ... , b. Equation (2.30) ic; obtained by minimizing forµ, equation

(2.31) forms the block equation and equation (2.32) forms the treatment equations. 

The treatments effects are obtained by eliminatin g block effects. Solving the block equa­

tions for /Ji . We have, 

(2.33) 

or 

(2.34) 

Substituting (2.34) into (2.32) we obtain 

rf, + �n;, { ¼s; -¼ �n,;f,} +rf; -T, (2.35) 



Equation(2.35) simplifies to 

But 

thus 

But 

rkjl. + � n;1 { B1 -� n,;f,} + rkf, = kT; 

Lnijkµ = rkµ 
j 

rkfi - LLnijnih-fh = kTi - LnijB; 
j h j 

Further simplification leads to 

where 

rtfi - rfi - >. L 1?i = kT; - I:n.,jBj 

hi) j 

1 

Qi = T;--;:;Ln,;Bj 

j 
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(2.36) 

(2.37) 

i = 1, 2, ... , t. The component Qi is the sum of the deviations of each observation on 

treatment j from the mean of all observations in that block. It is also called the adjusted

treatment total for the ith treatment. 

Imposing the condition L ih = 0 would imply that 

{ 
r(k - 1)}

A r(k - 1) + 
(t 

_ l) Ti = kQi 
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which simplifies to 

(2.38) 

Thus 

for i = �' 2, ... , t . The sum 

can be computed, Bj is the total for block ;' and n,j = 1 only if treatment i is in block j. 

Summing over the block totals, while considering only those containing treatment i, pro­

vides the ANOVA table 2.2. 

Table 2.2: Analysis of variance table for inter-block analysis 

Source of variation Degrees of freedom 

Mean 1 

Blocks ignoring b-l

treatment.s 
Treatments eliminating T-1

blocks 
Error rt - (b -1) - (t - 1) 

Total( uncorrected) rt 

Sums of squares 
G' 

l 'i:,B,2 _ G' 
k J rt 

Ei+iQi 

By subtraction 

Li L1Yi
.,{,

The error sum of squares is the sum of squares for intra-block error. The mean square for 

treatments (adjusted for block) is tested against the error mean square. 

2.3.1 Estimating the difference between treatment means 

From equation (2.37) we note that 
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Consider the estimate ih. - fi for h =/:- i. From (2.38) substituting for Qi we have

f; = \�• = ;t { T, - ¼ � n,,,B.} (2.39) 

and 

(2.40) 

Subtracting (2.39) from (2.40) provides the estimate of the treatment means differences. 

A A 
k { 1" 1" }Th, - Ti = )..t Th. - T1 - k L n;,hBi + k � 71.viBv 

2.3.2 Computing variances of the estimates 

(2.41) 

In order to estimate vaiiances we use the idea of computing var iances for linear functions of 

treatment means. From John(1971) and Chakrabarti(1962), the variance of the difference 

between treatment means can be obtained a._" Var('A -t). That is 

A A k2 { 
2 

2rk<12 4ro-2 4>..a2 2>.ka2} 
Var(Th. -T;) = t

2
>.

2 
2ra + � - -k- + -k- - k

2 

This simplifies to Var('I'ii - 'I';,) = t,�2 {2rk2a2 - 2rka2 + 2>..ka2 } 

A A 2ka2 
2ka

2 

Var(T11 - Ti) = >.2fl [kr - r + >.] = >.2t2 [r(k - 1) + >.]

But from (2.28) we then have Var(A-in = ���= [>..(t - 1) + >.]

Thus 
A A 2ka2 2ka2

Var(T,. -71) = -[>.t] = -x1-t2 >..t 

(2.42) 

(2.43) 

(2.44) 

The estimate of a2 is the error mean square obta.inetl from the analysis of variance of the 

<lat.a. For a balanced incomplete block design, the variance of the treatment differences i.e. 

Var('I'ii -T;) is a constant value for all h =J. i (John, 1971). This is because from (2.44), 

all the variables involved are constant terms such that the variance for the treatment 

differences across all the treatments is a constant. The variance of the difference between 

treatment means for a BIBD with each treatment replicated r times in blocks of size k

can be generalized as 

(2.45) 
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where (j
2 is the plot-to-plot variance for the plots in the incomplete block designs. In 
p 

comparing the efficiency of incomplete block designs in relation to randomized complete 

block design, we use the variances of treatment differences a.s a tool for the mea.sure of ef­

ficiency (Das and Giri, 1979). For a randomized complete block design with r replications 

of each treatment, the variance of the treatment differences is given as 

(2.46) 

where a� is the plot-to-plot variance among the plots in the randomized complete block 

designs. 

2.3.3 The efficiency factor E 

The efficiency of an incomplete block design in which each treatment is replicated r times 

ir:; measured relative to the complete block design with the same number of replicates. 

From (2.45) and {2.46), the ratio of the variances of the difference between treatment 

means can be expressed as � >.t { 2} _r _ __ aR 
2ko-i - rk cr

2 

�t 
p 

(2.47) 

If this ratio is greater than 1 then the BIBD is more efficient than the RCBD with which 
2 

it is compared (Das and Giri, 1979). The quantity � is expected to be greater than 1 
CT

r, 

since BIBD haB less variable and more homogenous blocks as compared to the RCBD. 

The efficiency factor is given as 

(2.48) 

E does not provide a complete evaluation of the efficiency of incomplete block designs 

but it is an important statistic in the evaluation of this efficiency ( John, 1987). It is 

the lower limit t.o the efficiency of the balanced incomplete block design compared to a 

complete block design. The efficiency factor E gives the maximum amount of efficiency 

that could be lost. However one should be more interested in the complete ratio (2.47) 

since it provides much more information on the gain in efficiency. 
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Partially balanced incomplete block designs(PBIBD) were introduced by Bose and Nair 

(1939) and Bose and Shimamoto(l952) as an extension of balanced Incomplete block 

designs(BIBD). BIBD have an important property that they are the most efficient among 

all connected incomplete block designs in which each block has the same number of 

plots a.nd ea.ch treatment. is replicated the same number of times(Bose, Shrikhande and 

Bhattacharya, 1953). However BIBD do not exist for all situations and for certain numbers 

of treatments they can only exist with large numbers of replications(Bailey, 1985). PBIBD 

were introduced to solve this problem. 

2.4.1 Association schemes 

Suppose we have t = mn treatments and that we divide them into m groups of n treat­

ments each. Vle call treatments in the same group first associates, and treatments in 

different groups second associates in case of 2 associate classes only. In general, an in­

complete block design is partially balanced if 

1. The experimental material is divided into b blocks of k units each, with different

treatments being applied to the units in the same block.

2. There a.re t treatments each of which occurs in r blocks.

3. There can be established a relation of association between any 2 treatments satis­

fying the following requirement;

Two treatments are either 1st
, 2nd

, . . .  ,or mth associates.

Each treatment has exactly ni, ith associates (i = 1, 2, ... , m).

For any two treatments which are ith associates, the number of treatments common

to the jth associates of the first, and the kth associates of the 2nd is P]1c: and is

independent of the pair of treatments with which we start. Also P]
k 
= J1J.

4. Two treatments which are ·ith associates occur together in exactly >.i blocks(i = 1, 2).
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Thus the following holds between the parameters of a PBIBD. 

l. bk= tr. The numbers t, b, k, >.1 , >.2, ... , >.m, n1, n2, ... , nm are the parameters of the

1st kind and the numbers PA (i,j,k = 1,2 ... ,m) the para.meters of the second

kind, belonging to the design. Therefore , there are 2m + 4 parameters for the first

kind and m2{m + 1)/2 for the second ( since Pj
k 

= P�i ).

4. �Pjk = niPfk = nk�,

m • { n, if i#j 5. Lk=l P]k = 
ni -1 if i=j 

A design with b blocks of size k and rt = bk in which every treatment appears >.1 times with

each of its first associater:; and >.2 times with each of its second associates is called a group 

divisible design. The division of the treatments into groups constitutes a group divisible 

association scheme. PBIBD with only 2 associate classes( m = 2) a.re of special interest. 

These designs depend on 8 parameters of the 1st kind i.e t, b, r, k, >.1, >.2 , n1, n2 connected

by the 3 relations (1), (2), (3) and six parameters of the 2nd kind Pjk (i,J°, k = 1, 2) 

connected by the relations (4) and (5). Therefore the parameters of the 2nd kind can be 

exhibited as elements of two symmetric ma.trices i.e 

and 

2.4.2 

J,', = { P:,

P21 

p• -{ Pf,
jk 

-
2 

P21 

Analysis of PBIBD 

1 

}
P12 

Pk 

Pi2 

}Y22 

Consider t treatments to be compared in b blocks of si?;e k such that each treatment is 

replicated r times. Therefore the design requires N = bk experimental units. Assuming 
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all the requirements for having a partially balanced incomplete block design with two 

associate clas::;es a.re fulfilled. Consider the following model. 

(2.49) 

For j = 1; 2, ... , b; i = l, 2, ... , t and where Yii is the observation resulting from applying 

the ith treatment to a unit in the jth block, µ is the general mean, ti is the ith treatment 

effect, bj is the jth block effect a.nd Eij is the random effect which is normally distributed 

N(O, a2). Denote the total of all observations for the ith treatment by T;, and let Bj be the 

sum of all the k observations from the jth block. Let Q, denote the a.dju::;ted yield for the 

ith treatment, where Qi is obtained by subtracting from � the sum of the block averages 

for those blocks in which the ith treatment occurs. For example, if the ith treatment 

occurs in the blocks 1, 2, 3, . .. , r then 

If we let S1 ( Q) be the sum of all the adjusted yields for all the first associates of the i - th 

treatment. i.e. if the first associates of the ith treatment a.re the treatments numbered 

h,i2 , ... ,in1, then 

Let the gTand total of all the N observations be denoted by G. According to Bose, 

Clatworthy and Shrikha.nde (1953), we define the constants .6., H, c1, c2 by the following 

relations. 

where a = r( k - 1), f = Pb and g = P[2
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2.4.2.1 Intra-block and Inter-block analysis 

The best linear estimate ii of the treatment effect tz is given as 

for i = 1, 2, ... 1 t. The variance of the eRtimate of the d ifference between two treatment 

effects is given by 

(
A. _ A ) 

_ 2a2 (k - cj)
V t2 tu -

r(k _ I) 
(2.50) 

where the treatments i and u are .f - th associates (j = 1, 2). With a completely random-

iwd block design, with the same number of replications r, the variance of the difference 

between two treatment effects is given as 

where l1':cbd is its error variance. Therefore if a reduction in the block size does not reduce 

the error variance then setting cr;cbd = a2 implies that the efficiency factor would then be 

given as

k-1
Ei = --k-ci

(j = 1, 2) which is the ratio of the variance of the estimate of ti - tu when the randomized 

block design is used to the variance of the same estimate when the partially balanced 

block design is used. Thus the quantities E1 and E2 are called the efficiency factors of the 

two kinds of comparison. Therefore, from all possible contrasts, n1 of these are estimated 

ea.ch with variance 

and the remaining n2 are estimated each with variance 

Therefore the average variance of the treatment comparison is given by 

2a2{n1(k - c1) + �(k - c2)} 
r(k - l)(t - 1) (2.51) 
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Thus when we take the ratios of the variance of the RCBD with the above variance we 

obtain the overall efficiency of the partially balanced incomplete block design. Assuming 

that CJ;
cbd 

= CJ
2 then the overall efficiency is given as 

E= (k-l)(t-1) 

n1(k - c1) + n2(k - c2) 

2.5 Other incomplete block designs 

2.5.1 Lattice designs 

(2.52) 

One important characteristic of incomplete block designs is whether the blocks can be 

grouped so that each group of blocks contains a complete replicate of the set of treat­

ments. When this division of an experiment into replicate groups of blocks is possible the 

design is said to be resolvable (Clatworthy, 1973; Mead, 1994). Non resolvable designs 

exist but a.re less valuable for field trials since they don't allow a two stage removal of 

field trends, where importantly, the first-stage removal is carried out by replicates which 

are orthogonal to treatments (Williams and Matheson, 1994). The overall structure of an 

r replicate resolvable design for t treatments with b blocks of size k within each replicate 

is an example of a generalized lattice design. Cochran and Cox(1957) give special cases of 

these designs. The common ones are the lattice designs where k = b and the rectangular 

lattice designs where k = b - l. In these designs, the concurrence matrices contain either 

zeros or ones in the off-diagonal positioJlB. Consider a BIBD with k2 treatments arranged 

in b = k(k + 1) blocks with k runs per block and r = k + l replicates. This type of design 

is what we call a balanced lattice. The blocks can be grouped into sets in such a way that 

each set contains a complete replicate. 

Lattice designs are very important where there are a large number of treatment combina­

tions to be analyzed. Sizes of these designs can be reduced by adopting partially balanced 

lattices. These designs include the Simple lattice, where 2 replicates of a design for k2 

treatments are in 2k blocks of k runs each. e.g con..'lider the 3 x 3 balanced lattice design 

below in table 2.3. 
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Table 2.3: A simple 3 x 3 balanced la.ttice design 

Replicate 1 Replicate 2 

Blockl Block 2 Block 3 Block 1 Block 2 Block 3 

1 4 7 1 2 3 

2 5 8 4 5 6 

3 6 9 7 8 9 

Here we achieve partial balance e.g treatment 2 appears in the same block with treatments 

1, 3, 5, 8 and does not appear in a. block with any of 4, 6, 7 and 9. A triple lattice is a. 

lattice design with k2 treatments in 3k blocks grouped into 3 replicates. A lattice design 

with k2 treatments in 4k blocks arranged in 4 replicates is called a. quadruple lattice. 

Cochran and Cox (1957) provide details of some of the available lattice designs. These 

designs are efficient and optimal. In most practical situations, field conditions dictate the 

use of resolvable designs (Patterson & Williams, 1976). Yates(1940) acknowledges the 

importance of resolvable designs which is a major characteristic of most lattice designs. 

This advantage of lattice designs is broadly shared by other resolvable incomplete block 

designs especially the a - designs. 

2.5.2 Alpha designs 

Alpha designs are a class of generalized lattice designs, which allows for most practical 

situations encountered in field trials (Patterson and \Villiams, 1976). A more detailed 

study on alpha designs is presented by John and Williams (1995). One advantage is that 

they provide great flexibility in the number of treatments and block sizes. Alpha-lattice 

designs in studies of field trials in the UK and Poland ha.ve shown more efficiency tha.n 

RCBD (Patterson and Hunter,1983; Pilarczyk, 1991). In the study of the efficiency of 

alpha-lattice designs in the international variety trials of barley and wheat, these designs 

resulted in an average efficiency 18% higher than the randomized complete block designs 

when average variance was used as the comparison criterion(Yau, 1997). 

Patterson and Williams(1976) recommend that the efficiency of the design should be 
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evaluated before the design is recommended for use. But the computation of the efficiency 

of the alpha designs is not straight forward as seen below. Williams and Hunter{1978) 

provide this estimate of efficiency of the alpha desigru;. Let Nvxb be the incidence matrix, 

then define 

And 

1 N ,C=I-- N rk 

Cv =1-}:__N'Nrk 

(2.53) 

(2.54) 

The subsclipt D shows that this equation refers to the dual of the original design. 

One eigenvalue of CD will be zero; let the non-zero eigenvd.lues of Cv be denoted by

fh, 02, ••. , 01,-.-1- The matrix Chas v eigenvalues, which include fh, 02, ... , 0t,-I and also v-b

ones. 

According to John(1987), the efficiency of the design in question relative to the random­

ized complete block design is given by E where 

E= 
v-1

(v -1) + �:: 0; 1
(2.55) 

relative to the randomized complete block design. Paterson and Paterson(l983) recog­

nized (2.55) as the harmonic mean of the eigenvalues. 

From Patterson and '\�lilliams(1976), a.n upper bound(Ub) for a resolvable design is given 

as 

Ut, = (v - l)(r - 1)

(v - l)(r - l)(b- r) (2.56) 

The efficiency computations above are in comparison to a standard randomized complete 

block design with the same number of treatments and replications. 

2.5.3 Cyclic designs 

Cyclic designs (John,1971) are vital in the designing of incomplete block designs. They 

provide a simpler methodology in the designing of incomplete block designs. In recent 

studies of IBD, cyclic methods of construction of desigl15 have been widely used ( Pat­

terson and \Villiams, 1976; .Jarrett and Hall, 1978). For a given set of parameters, many 



35 

cyclic designs are possible, and many possess good statistical properties. 

Definition 1. Let D = (V, B) be a BIBD. A bijection C1: V -+ V is called an automor­
phism of D if O"(B) E :f3 for all B E B. A group G of a-i.1,tomorphisrns of D is called regular 
if it act.s transitively and faithfully on points, i.e., for any x, y E V , there is a unique 
O' E G s1LCh that C1(x) = y. If a BIBD has a regular cyclic group of automorphisms, it is 
called cyclic. 

Note that the order of a. regular automorphism group of a (v, b, r, k, >.) BIBD is v. 

It follows immediately that the complement of a cyclic design is cyclic and multiples of 

a cyclic BIBD are cyclic. A classical example of a, cyclic design is a symmetric design 

generated by a cyclic difference set. Thus, for any prime power q and any positive integer 

d, there exists a cyclic design(d, q). An extensive list of cyclic BIBDs can be found in the 

section on difference families in Colbourn and Dinitz(1996). 

Jarrett and Hall (1978) listed efficient generalized cyclic designs, in a sense of maximizing 

the overa.ll average efficiency factors, with the parameters 10 $ v $ 60 and r < k $ 10. 

They consider a method for con1::>tructing a generalized cyclic design with larger values 

of the parameters from a generalized cyclic design and give a relationship between the 

efficiency factors of these designs. They present efficient larger generalized cyclic de.signs 

with v $ 100 and r < k $ 25, applying the method to the efficient cyclic designs listed 

by John (1981). Most of the resulting generalized cyclic designs have fairly high effi­

ciency factors, it. therefore seems that the method is useful in constructing efficient larger 

generalized cyclic designs, provided that the original designs are efficient. 

2.6 Summary of designs 

There is a comprehensive list of incomplete block designs each with special statiiltical 

qualities specific to an area. of study. The above represent. a few of the incomplete block 

designs available. In on-farm trials, each problem calls for a special design. Therefore, 

there is no specific standard incomplete block design that can adequately cover the design 
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problems in on-farm trials. However, a few of the incomplete block designs discussed in 

this chapter have qualities that are close to solving on-farm experimental design problems. 



Chapter 3 

Efficiency Estimation 

Efficiency evaluation is a decision tool that enables researchers to select a design that 

optimizes available resources 8Jld produces adequate information. The results from on­

farm trials are based on the estimated para.meters and therefore estimation procedures 

tha.t produce efficient estimates are of critical importance. In conducting an experiment, 

there are always many design issues to resolve(Kempthorne, 1952). These may include 

deciding which treatments to study, what factors to control and what aspects of a d.esign 

to ra.nd.omize (Verdinelli & kadane, 1992). All other aspects relating to considera.tions 

of how many experimental units are needed, how many observations should be allocated 

to each treatment, or what levels of the treatments should be used fall within the ambit 

of the statistical design(Fisher, 1958). The purpose of efficiency is to improve statistical 

inferences regarding the quantities of interest by the ·optimal selection of values for design 

factors under the control of the investigator, and within the constraints of the available 

resources(Winer, 1971 ; Ostle, 1963). Several criteria are in existence for this purpose. 

The efficiency issues discussed in this study are given in the context of improving on 

on-farm trials results. 

3 .1 Review of efficiency estimation in designs 

Consider an incomplete block design with equal block size k, equal treatment replications 

r , and each treatment appearing with another ..\. times in blocks, with the restrict.ion 

37 
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that ea.ch treatment appea.rs at most once in any one block. The normal equations for 

the treatment parameter estimates Ti a.re given as in (2.4), (2.5), and (2.6). Conniffe and 

Stone (1974) defined the relative efficiency of the incomplete block design as 2/rv which 

is the inverse ratio of the average variance to that of a randomized complete block design 

with the same replication r. And v is the average variance of the treatment differences 

Kempthorne(1956) gives ii as 
2u2 

n l 
v = n - 1 L w·

(3.l) 
i=2 I 

where w., are the nonzero eigenvalues of then x n matrix whose off-diagonal elements are 

-w�i/k and with diagonal elements (r - r/k). Kempthorne(1956) considered the average

variance of the elementary treatment contrasts to obtain the harmonic mean of the w's as

a definition of the efficiency factor of a design. Kshirsagar(1958) considered the geometric

mean of thew's as a criterion to merumre the efficiency of a design. Thus (w1w2 .. ,Wt-t)-1 

or
t-1 1

L w .
i=1 1 

can be used ru:; a measure of the efficiem;y of a design. For 

(3.2) 

where It denotes the identity matrix of order t and Ntxb is the incidence matrix of the 

design. Then 

(3.3) 

Thus minimizing either 

or 

subjec.t to the condition 
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where K is a constant, we obtain the design with the highest efficiency( Kshirsagar,

1958; Mote, 1958 and Conniffe and Stone, 1974). Conniffe and Stone (1974) provided an

estimation of the upper and lower bound to the efficiency of an incomplete block design.

Thus the n x n matrix whose off-diagonal elements BIC -Wij / k and with diagonal elements

(r - r/k) has rank n - 1 such that w1 = 0. But the sum of the eigenvalues equals to the

trace of the matrLx and thus I:wi = n(r -r/k) = nr(k -1)/k.

Let
nr(k-I) 

= A 
k 

Since the eigenvalues of the square of the matrix are equal to the squares of the eigenvalues

of that matrix, it follows that

Conni.ffe and Stone (1974) fixed I: �w'& and hence w? + ... + w; = B say. Using the

Lagrangian maximization and minimization criterion, it is noted that at a stationary

point, n1 of the eigenvalues equal R1 and n2 equal R2 . Where n1R1 + n2R2 = A, n1Ri +

n2� = B, n1 + n2 = n-1.

Conni.ffe and Stone(1974) presented the lower and upper bound to the efficiency of an

incomplete block design as 

and

where

max - = n-1 
Ln l { n-2 1 

}{ •=Z wJ ( ) A+ (;=½)112P + A - (n - 2)1/2(n - l)1/2p 

{ 
A2 }1/2 

P= B--­
n-1 

Therefore

{3.4) 

(3.5) 
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Using these boundaries, we can compa.re efficiencies of several designs based on the limits 

of their stationary values i.e min and max. Given two designs with the same treatment 

replications but with different Wij's, if the largest stationary value for one design is less 

than the smallest stationary value for the other design, then the first design is more 

efficient. This implies that a. design that ma..-ximizes efficiency can be obtained by choosing 

Wij to minimize P (Tocher, 1952; Pearce, 1968 & Kempthorne, 1956). 

3.2 The optimality criterion 

Optimal experimental designs continue to receive a wide and considerable a.mow1t of at­

tention in the statistical litera.ture as acknowledged by Cha.loner(1984). Several authors 

have looked at this field (Kiefer, 1958 & 1959; Fedorov, 1972; Silvey, 1980) and more 

recently Atkinson and Donev (1992). The goal is to obtain the best design tha.t will 

optimally provide the unbiased estimation of treatment contrasts with maximum effi­

ciency. There are many optimality criteria that have been studied to accomplish this goal 

(Atkinson and Donev, 1992). Kiefer(l975) noted that if a binary balanced incomplete 

block design(BIBD) exists, then it. is universally optimal for simultaneously estimating 

all the treatment contrasts. However, once any of the observations in a BIBD becomes 

una.vailable, its optimality properties are lost. Many researchers have studied the robust­

ness of incomplete block designs when some observations are unavailable(Ghosh, 1982a; 

Baksalary and Tabis, 1987; Whittinghall, 1986 and 1989). This particular problem is very 

common in on-form trials. However, the efficient design of IBD is capable of handling 

such problems. In this case the selection of the most optimal design that suits the on-farm 

trial is of great benefit.. 



3.2.1 Optimal design theory 

Classical formulation of optimal design theory is based on a model given as:

p 

for i = 1, ... , n; 

Yi = L /j(xi)/Ji + t:i 

j=l 
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(3.6) 

where iJ are known functions of design points Xi, and /31 , ... , /3p are unknown coefficients 

and t:i are uncorrelated errors with mean O and common variance cr2
. The equation (3.6) 

can be written in the form 

(3.7) 

Notice that in this ca,.ge the information matrix is directly proportional to � Fn . The 

information matrix can be written in the form 

where {n is the discrete measure that places mass ¾ at each Xi (Atkinson and Donev, 

1992) . Define 

M({) = 1 J(x)f(xf d�(x)

for any positive measure{. Optimal design criteria are of the form: 

Choose� to minimize w{M({)} for some function w{.}. 

The examples include: 

• D-optimalit.y: \JI= -loglM(�)j.

• E-optimality: \JI is largest eigenvalue of M(�t1
. 

• G-optimality: W = max,,Exd(x, {) where d(x,{) = f(x)T M({t1 f(x).

Note that 

(3.8) 



Thus if we can find C for which maxxExd(x, €") = p, (* must be G-opt.imal. 

General equivalence theorem 

Suppose 6x is a unit point mass at x and consider modifying { into 

where O < a < 1. Then 

The derivative of 1¥, in the direction Ox, is 

The General equivalence theorem asserts that the following are equivalent: 

1. e* minimizes 'lt{M(.;)},

2. ¢(x, e'") c: 0 for all x,
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3. ¢(x, C) achieves its minimum at points of the design, i.e at points x which have

positive point measure under C. 

Consider t treatments to be arranged in b blocks comprising a. total of n experimental 

units. Any particular arrangement or design, dis associated with at x b incidence matrix 

Nd = 'Tl-ii, where 'n;j denotes the number of times the i
th trea.tment appears in the /h 

block. Let the replication of treatment i be denoted by r1 and the number of units in 

squares analysis of this design leads to the reduced normal equations given as(equation 

2.15) 
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where r = ( r1, ... , Tt)' is the vector of unknown treatment effects, Q is the vector of the 

adjusted treatment totals, and the information matrix Cd is given as 

'l'he matrix Cd is nonnegative definite and for connected deaigns it has rank t - 1. 

A connected block design d is said to be variance balanced if and only if all t - 1 non-zero 

eigenvalues of Cd a.re equal(Kiefer, 1975). Let W1 � W2 s; ... � wtJ-1 be the nonzero 

eigenvalues of Cd . 

Definition 2. A design d is said to be <P
p
-optimal over the class of designs D if it mini­

mizes 

overdED. 

For p = oo the above definition becomes a maximization of w1, and the optimal design 

is then said to be E-optirnal (Dey and Das, 1989). While for p = 1 the common term 

is A-optimality(Kiefer: 1959). Another measure based on this result is the conventional 

efficiency .; which is defined as 

(3.9) 

where <Pis defined as above for p = 1, r is the number of treatment replications, a.nd tis 

the number of treatments. The efficiency { is the ratio of the average variance of all pairs 

of treatment differences to the minimum which would be achieved by a randomized block 

design, if one existed. 

Consider the model given in (2.4) 

(3.10) 

Where i = 1,2, ... 
1
t;j = 1,2, ... ,b;m = 0,1,2, ... ,niJ;and where nij denotes the number 

of experimental units in block j assigned to treatment i , µ denotes the general mean, 

r, the effect of the treatment i, /3; the effect of block j, and Eijm the random error. 
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Let D=D(t, b, n, km, r
p

) be a class of connected block designs having t treatments, n

experimental units, minimum replication of treatments, r
p
, and with maximum block size 

of k.,,..

Definition 3. A design d"" in a class D of competing designs is said to be E-optimal in D 
if and only if the smallest non-zero eigenvalue of Cd• is at least as large as that of Cd for 
any other d E D. Thus d* is E-opt-irnal if and only if it minimizes the maximum variance 
of the least sq1iare, estimators of normal-ized treatment contrasts. 

Model (3.10) can also be expressed in matrix form as follows; 

Y=X/J+c: (3.11) 

where Xn.xp is design matrix, /3pxI is a vector of regression parameters, Yri xl vector of 

observations and cnxt is a vector of error terms. We assume that c is iid normal with 

mean zero and cov(t:) = a21. Thus, from the least squares estimate we have that

(3.12) 

where var(/]) = c,
2 (X'X)- , t = x/3 and the var(Y,,) = a2x(X' X)-x' where (X'X)- is 

the generali7,ed inverse of (X' X) if X' Xis not of full rank, otherwise (X'X)- is replaced by 

the unique inverse (X'X)-1 
. Notice that the variance-covariance matrix of the vector of 

parameter estimates of (3 in a least squares a.na.lysis is proportional to (X' X)-1
. Therefore 

an efficient design is one with a small variance matrix, and the eigenvalues of (X' Xt1

provide measures of its size. Thus the design problem involves selecting row vectors XJxp

for all Yi , i = 1, 2, ... , n from a given design space <{) such that the design defined by these n 

vectors is in one way or another optimal. Solutions to this problem involve formulating a 

criterion based on the above model and using it to obtain optimal designs. There are many 

criteria that have been developed to enable comparison of experimental designs(Kiefer, 

1959). These optimality criteria are based on minimizing the variance of the estimates of 

the fixed effects and the variance components. 



45

3.2.2 G-optimality criterion 

Smith (1918) developed a criterion to obta.in optimal designs for regression problems,

based on minimization of the maximum variance of any predicted value over the exper­

imental space. Kiefer and Wolfowitz (1960) called this the G-optimality criterion from

which we derive the G-efficiency design measure. G-efficiency is a. common criterion for

optimal design. It is ba.<ied on the varia.nce of prediction of the candidate points, which is

proportional to (X'x)- 1
. Thus, this criterion is related to the information matrix X'X.

Minimizing the average prediction variance leads to the I-optimality, where "I" denotes

integration over the candidate space(Kiefer, 1959). In general the G-efficiency is defined

G-eff = { (3.13)

where p i::; the number of pare.meters in the linear model, Nd is the number of design

points and C is a set of candidate points

3.2.3 D-optimality criterion 

Wald (1943) proposed the D-optimality criterion which puts more emphasis on the qual­

ity of the parameter estimates. A design i::; said to be D-optimal if for the model the joint

confidence region for the vector of unknown parameters is minimum. AB a consequence,

the global maximum of the determinant of X' X is achieved. D-efficiency is a function of

the geometric mean of the eigenvalues , which is given by I ( X' Xt 1 I l/p i.e. the determi­

nant l(X'Xttl is the product of the eigenvalues of (X'X)-1 1 and the pth root of the

determinant is the geometric mean. Thus a design d* is said to be D-optimal if it has the

minimum value of the determinant of (X' x)-1
• In general D-efficiency is defined as

D-eff
= {) X�j t/p} x 100

where p and Nd a.re defined as in (3.13).

(3.14)
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3.2.4 A-optimality criterion 

The A--0ptimalit.y criterion minimizes the a.verag;e variance of the parameter estimates 

(Chernoff, 1953). i.e. min trace((X'Xt1) . A-efficiency is a function of the arithmetic

mean of the variances, which is given by trace((X'X)-1 )/p . Notice that trace is the

sum of the diagonal elements of (X'X)-1 
, which is the sum of the variances and also 

the sum of the eigenvalues of (X' x)-1
• In this context A-efficiency is the mm,'t logical 

criterion to use in evaluating det:.ign goodness. This is because as orthogonality decreases, 

both the off-diagonal and diagonal elements of (X' X)- 1 increase. Thus considering the 

average variances while ignoring the off-diagonal covariances, is reasonable since variance� 

increase as the covariances increase. In general A-efficiency is given as 

{ p/Nd } A - ef f = trace(X' X)-1 x 100 (3.15) 

where p and Nd are defined as above in (3.13) 

3.2.5 E-optimality criterion 

Another criterion is the E-optimality, which finds a design which maximizes the minimum 

eigenvalues of (X' X). In other wards, a design d* is said to be E-optimal if it has least 

value for >-max where Amil.% is the maximum eigenvalue of (X'X)-1; where (X'X)-1 is the 

inverse of (X'X). 

The above criteria can be selected on the basis of the objective of the study. The unpre­

dictable nature of on-farm trials would make one wish to recommend a general optimality 

criterion. But such criteria a.re not available and therefore we compare across all criteria 

to obtain an appropriate design. An illustrative example is presented to show the use of 

the above optimality criteria.. 
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Example 1 

Consider the situation of a.n on-farm experiment where we are interested in BIB optimal 

design for 6 fanns(blocks) for testing 7 treatments. Suppose that there is a resource con­

straint such tha.t only 24 experimental units can be considered. Using the SAS procedure 

OPTEX we can generate and compare such designs. SAS code for the above example is 

provided in the appendix C.l. 

Table 3.1: Results of optimality Efficiency criteria for the on-farm trial considered with 
b = 6, t = 7, k = 4, and N = 24 

Design Number D-efficiency A-efficiency G-efficiency Average prediction 
Standard error 

1 92.8850 85.9649 82.8417 0.7626 
2 92.8850 85.9649 82.8417 0.7626 
3 92.8850 85.9649 82.8417 0.7626 
4 92.8850 85.9649 82.8417 0.7626 
5 92.8850 85.9649 82.8417 0.7626 
6 92.8850 85.9649 82.8417 0.7626 
7 92.6860 85.2011 81.4257 0.7661 
8 92.6860 85.2011 81.4257 0.7661 
9 92.5877 84.8357 81.4627 0.7677 

10 92.5668 84.7444 80.0776 0.7681 

The order of the designs range from 1 (most efficient design) to 10 (least efficient 

design). Note that the efficiency values obtained are in comparison to a.n orthogonal ran­

domized complete block design. The D-efficiency value remained constant from design 

1(92.885) to 6 and decreased slightly to 92.686 for designs 7 and 8 and thereafter dropped 

to 92.5877 for design 9 and finally to the lowest value of 92.5668 for design 10. The reason 

for the differing values of these measures across designs is due to the different treatment 

combinations that can result .. Each treatment combination has an effect on the quality of 

the parameter estimates as mirrored in the design matrix. Other design optimality mea,­

sures present a similar pattern of performance across all 10 designs. Table 3.2 presents 

results on the best design obtained by the OPTEX SAS procedure. 
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Table 3.2: Best design obtained by the OPTEX SAS procedure 

Blk/farm 1 Blk/farm 2 Blk/farm 3 Elk/farm 4 Blk/fa.rrn 5 Blk/farm 6 
7 7 6 5 
6 5 5 4 
4 3 4 3 

2 3 1 1 2 1 

The above example illustrates the benefit of using IBD which have less restrictions than

RCBD. In this example, the best IBD results in a loss of efficiency compared to a RCBD 

of 7%, 14% and 18% on the D-efficiency, A-efficiency and G--efficiency criteria respectively 

and has an average prediction standard error of 0. 7626. 

3.3 Complexity criterion 

The choice of a design is an important determinant of the properties in linear estimation. 

Thus the design itself is an essential aspect of model selection. Maklad and Nichols(1980) 

noted that complexity can be a good criterion for use in model selection. Emden(l971) 

shows that complexity maybe used effectively as a tool in design evaluation. The com­

plexity of a design essentially gauges the nonorthogonality of the design matrix X, as 

mirrored through the inverse of X' X. Ramirez(l989) st udied in detail two complexity 

indices. 

Consider a random variable Y = [Yi: ... 
1 
Yk]' with a distribution D(Y) and a dispersion 

matrix A, then the complexity of Y(Y) was defined by Emden(1971) in terms of the 

dispersion matrix A as

(3.16) 

Let >.1 2: >.2 2 ... 2 >..k > 0 denote the ordered non-zero eigenvalues of A. Let A be the 

average of all the eigenva.lues(arithrnetic mean) and GM(>..) denote their geometric mean. 



Then 

¢(A)= {ln( / _)} /2 = (k/2) ln { Glv�(A)}Il=I Ai 
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(3.17)
:Note that ¢(A) � 0 by the arithmetic-geometric mean inequality and ¢(A) = 0 iff A is a 

scalar ma.trix. Thus¢(.) can be used to gauge whether a design X yields Ga.uss Markov 

estimators /J(X) more precisely than another design H. In order to compare designs on 

the basis of their relative complexity , we drop the logarithmic scale and say that design 

X is less complex than a design H whenever C1 (X, H) ::;- 1, where 

C (X H) 
= tr(E) {el} 

1 ' tr(D) !El 

where E = [X'XJ-1 and n = [H'HJ-1
.

1/k (3.18)

There is a link between the standard design criteria. of A- and D-efficiency and the relative 

complexity of two designs i.e. A-efficiency is related directly, and D-efficiency is inversely 

related to C1 complexity. The link between these criteria is further established by the 

following theorem. 

Theorem 1. Consider designs X and H, with E = [X'XJ-1 and n = [H'HJ-1, pertaining 
to the Gauss Markov estimators /J(X) and /J(H), respectively. 

1. Then c;!>(E) , ¢(0) and C1 (X, H) are related as

{ (tr(E))1"/0I}
¢(E) - ¢(Q) = (1/2) In 

(
tr

(
fl))klEI 

= (k/2) ln(Ct(X, H)) (3.19)
2. If X and Hare D-equivalent, then H has greater A-efficiency than X if and only if

H is less complex than X.

3. If X and Hare A-equivalent 
I 

then H has greater D-efficiency than X if and only if
H is more complex than X.
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3.3.1 Numerical example 

Consider an on-farm trial to test for 3 treatments on 3 farms. The model for such a trial 

would be 

(3.20) 

i = 1, 2, 3 and j = 1, 2, 3; where Jij ii:; the observation for the ith treatment in the jth 

farm, µ is the overall mea.n,-ri is the ith tre1:1.tment effect, and /i is the jth farm effect. 

Consider two designs a complete block de::iign and an incomplete block design given in 

table 3.3. 

Table 3.3: Complete block design 1 and Incomplete block design 2 

Complete block design I Incomplete block design 2 
Farm 1 Farm 2 Farm 3 Farm I Farm 2 Farm 3 

1 1 1 1 - 1 

2 2 2 2 2 -

3 3 3 - 3 3 

The de.sign matrix X for ea.ch of these examples are given in the appendix A.I. Using the 

X matrix we obtain the eigenvalues of the X' X matrix. We then compute the arithmetic 

mean, geometric mean and thereafter the complexity index using 3.17. The results of the 

computations a.re presented in table 3.4. 

Table 3.4: The eigenvalues, arithmetic and geometric means, and complexity index for 
the two designs using the model 3.20. 

Design Eigenvalues Arithmetic Geometric Complexity 
Number for (X'X) Mean mean Index 

1 15,3,3,3,3 5.4 1.069 4.0492 
2 10,3,3,1,1 3.6 1.226 2.6929 

In this example design two is less complex(2.6929) as compared to design one. This is 

because in design 2 the blocks are incomplete but connectedness is maintained. While 

design 1 is a complete block design with full connectedness, its complexity index compared 
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to an incomplete connected design is gTeater. This provides an insight that incomplete 

block designs ca.n he as efficient or even more efficient than randomized complete block 

designs. 

3.4 Power analysis in designs 

In many situations in analyzing designs, there is need to compute the power of a design 

as compared to other designs in answering a specific objective. Very often RCBD are 

used in experiments where another design would be appropriate. O'Brien and Lohr(I984) 

developed a method using ordinary lea.st squares linear models to obtain power values for 

designs. They used SAS PROC GLM to obtain non-centrality parameters of a non-central 

F under departures from the null hypothesis of no treatment differences which was the aim 

of the study. Their study did not cover the aspects of spatial variations that occur in fields 

since the designs were restricted to a single source of identically independent distributed 

experimental errors. In the on-farm trials, spatial variability is a common occurrence and 

more specifically with the use of incomplete block designs, where recovery of inter-block 

information is required, power analysis is a vital tool in assessing and comparing· designs. 

3.4.1 Basis for power analysis 

The power analysis in design is considered under a mixed model obtained by modifying ( 

2.3) such that 

y = X/3+ Zu+ e 

where 

y is a response vector 
1 

X is a design matrix for fixed effects, 

/3 is the vector for the fixed effects parameters, 

Z is the design matrix for the random effects, 

u is the vector of random effects,

(3.21) 



e is the vector of residuals. 

In mixed models theory y ~ MV N {X/3, V} where V = ZGZ' +Rand 

where 

{ : } ~ MVN { � : } 
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In mixed models analysis the null hypothesis is H0 :K'J3 = 0 where K'/3 is estimable and 

this can be tested using the generalized F-statistic 

(K'b)'[K'(X 1v-
1 x)-1 K](K'b) 

F = 

r(K) 
(3.22) 

where bis the estimate of /3, r(K) denotes the rank of Kand Vis replaced by its estimate 

depending on the variance-covariance rnatrLx form of G and R. F in equation {3.22) is 

distributed approximately Fr(K),v,>-.• The denominator degrees of freedom(d.f) v, are the 

d.f to estimate K'(X'v-1 X)-1 K. And ,\ is the non-centrality parameter which is given

as 

(3.23) 

Under H0, >. = 0 and if H0 is false>. > 0. Thus the actual value of,\ depends on the design 

and replication associated with X, K' f3 and V the variance-covariance components. 

Power is then defined as the Prob[Fr(K),1,,>-.] > Fcrit ; where Fe = Fr(K) ,v,o,a, the value 

of the central F at the designated a-level. >.- is the non-centrality para.meter under 

the a lternative hypothesis of interest. In evaluating designs, interest is in assessing the 

expected precision of competing designs rather than the expected power(Mead, 1994). 

The variance of the estimate of an estimable function in mixed models is given as 

{3.24) 

Therefore, when comparing designs, we use precision with which they can be expected 

to estimate functions K'/3 deemed to be of major interest. The idea of designing ex­

periments involves identifying the objectives ) treatment structure and formulation of the 

appropriate sets of contrasts to address the problem or objectives. Use of power analysis 
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can then be employed to select the most appropriate and best design. Example 2 given 

below illustrates the procedure of power analysis in design select.ion. 

Example 2 

Consider an on-fa.rm tria.l to test 6 treatments(t) on 6 farms(blocks) which can only 

accommodate a. maximum of k = 4 treatments each. Thus the maximum number of 

experimental plots would be 4 x 6 = 24 experimental plots. Therefore, this causes a 

restriction on the number of treatments to allocate to a given farm since they can only 

accommodate a maximum of 4 treatments. 

Probable designs would be in the claBs of incomplete block designs e.g. BIBD, PBIBD, 

RCBD with distorted naturally existing structure etc. Tables 3.5, 3.6 and 3.7 represent 

the PBIB, BIBD and RCBD designs considered respectively. 

Table 3.5: Design 1: Partially balanced incomplete block design(PBIB) layout with 4

treatments per farm 

farm 1 farm 2 farm 3 farm 4 farm 5 farm 6 

1 4 6 5 

2 5 3 6 6 
3 6 1 4 

5 1 2 1 4 

Table 3.6: Design 2: Balanced incomplete block design(BIBD) layout with 4 treatments 
per farm 

farm 1 farm 2 farm 3 farm 4 farm 5 farm 6 
1 3 4 6 4 

2 1 6 4 

6 2 3 5 

3 5 5 5 2 3 
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Table 3.7: Design 3: Randomized complete block design(RCBD) layout with 4 treatments 
per farm

farm 1 

2 
1 
4 

3 
5 
6 

farm 2 
1 

2 
6 
5 
3 
4 

farm 3 
3 

1 

2 
5 

4 
6 

farm 4 
4 
6 
3 

5 
2 
I 

fa.rm 5 
6 
4 
5 
2 

3 
1 

farm 6

4 
6 

1 
3 
5 
2 

The RCBD design in table 3. 7 shows a. conBtraint where complete block designB are not 

possible. This implies that the treatments in lower portion of the table cannot be accom­

modated in the design implementation. 

Assuming that the variance among farms is given as a} = 3.5 and the variance between 

plots within a given farm is u;
1 

= 5. We can then evaluate these designs using PROC 

MIXED in SAS. Using simulated data we are able to aBsess the power of these designs in 

estimating a given contrast i.e. (1, 0 ,-1, -1, 0 ,1). Results from the simulation study rue

presented in table 3.8. The SAS procedure used in the case are given in Appendix C.2. 

Results from the SAS output 

Table 3.8: Results for power estimate for testing the contra.st(!, 0 ,-1, -1, O )) 

Design ndf ddf alpha fcritical ncparm F value Pr> F power 
PBIBD 1 13 0.05 4.66719 10.27 10.27 0.0069 0.84157 
BIBD 1 13 0.05 4.66719 11.4 ll.40 0.005 0.87669 
RCBD 1 13 0.05 4.66719 5.53 5.53 0.0268 0.58558 

where ndf is the numerator degrees of freedom, ddf is denominator degrees of freedom, 

alpha is level of significance, fcritical is the F-critical observed value, ncparm is the product 

of ndf and F. 
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From table(3.8) we notice the discrepancy between the incomplete block designs and 

the randomized complete block design as far as power of a design is concerned. In this 

particular i:;cenario RCBD is less appropriate(Power=0.58558) as compared to BIBO a.nd 

PBIBD with power of 0.87669 and 0.84157 respectively. In this example power analysis 

demonstratei:; how designs can be assessed on their application for a given situation and 

constraint. 

Power analysis gives the prior probability of detecting an expected relevant difference 

between treatments. This would involve use of previous knowledge about the experiment 

and the subject matter under experimentation. 



Chapter 4 

Stability Status of Designs 

Optimal incomplete block designs are particularly important for most agricultural experi­

ments since they can provide the maximum information from an experiment. Cheng(1978) 

provides much information on the designing and analyzing these designs. The actual de­

sign of experiments is aimed a.t optimizing certain characteristics of the statistical pro­

cedures to be use<l which depend on the settings for the experimental conditions expe­

rience<l(Schwabe, 1996). Designing on-farm trials is more complicated than designing 

011-sta.tion triahi (Hilderbrand and Russell, 1996). There are many factors of influence in

on-farm trials and these interact in many different ways and this makes designing such 

experiments even more difficult(Coe, 1998). Possible confounding factors may arise for a 

well clesigned on-farm trial due to vaiious reasons. Missing observations and breakdown 

in communication between the farmer and the researcher B.l'e some of the factors which 

may occur during implementation of the trial. These B.l'e some of the factors that affect 

design stability. The stability status of t.he design is assessed through consideration of 

missing plot evaluation, and robustness of the resulting design. 

Kiefer(l975) dealt with general criteria in the block clesign setting-. In his pa.per, the 

univen;al optimality of balanced block designs is adequately di:scussed. There many ways 

in which a. design loses its optimality; but mostly it is through distortion of a design either 

by loss of some treatments( missing observations). However, it is important to know bow 

56 
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much efficiency is lost when optimality distortions occur. This is particularly important 

since the information provided by a design largely depends on how efficient a design will 

he even after loss of some treatments. It is therefore important to study the effects of 

missing observations on the design optimality of incomplete block designs. 

4.1 Analysis of the effect of Missing plots 

Unlike on-station trials, a common problem in most on-farm trials is the unavailability of 

some observations for analysis(Lockeretz, 1987). In some cases an entire block may be lost 

for reasons not related to the structure of the experiment. Since missing observations arc a 

real possibility in on-farm trials, it is very important to select a design that would minimize 

the influence of these missing observations on the efficiency of the design selected. Studies 

concerning the loss of a single treatment, loss of whole blocks and the loss of any number 

of treatments in a single block have been donc(Ghosh,1982a,b; Whittinghill, 1989; Dey, 

1993; Prescott and Mansson; 2001; Most, 1975; Das and Kageya.ma, 1992; Bhaumik and 

Whittinghill, 1991 and Gupta and Srivastava, 1992). From a practical point of view it 

is unlikely that a researcher or farmer has any influence over which treatments become 

missing. 

However, if missing observations are a common occurrence due to unforeseen events, then 

it is best for the researcher to choose an initial design with good robustness properties to 

guard agaim;t the ruination of the experiment (Prescott and Mansson, 2001). Hedayat and 

John(1974) developed resistant balanced incomplete block designs which remain variance 

balanced even if all observations of a particular treatment become unavailable before 

the analysis. Ghosh(1982a) proved that a BIBD with r replications is robust to the 

unavailability of any r - 1 observations as well as any r - 1 blocks. This is because the 

resulting design remains connected with respect to treatment. Since we are interested 

in the treatment effects, we look at the Ca matrix which is the treatment information 

matrix for a general block design d which is at x t matrix given as in (3.2). A general 
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block design d consists of t treatments allocated to plots in b blocks. The number of 

plots in each block is given by K = (k1 , ... , kb)'. Define rd= (r1, ... , rt) as the vector 

of replications of treatments in the design d, and Nd = n1,j is the t x b incidence matrix 

whose elements nij equal the number of times treatment i appears in block j, i = 1, ... , t

and j = 1, ... , b. The treatment information matrix for a general block design t x t can 

be expressed a.s 

( 4.1) 

where r� = diag(r1 , ... , rt) and K-' = diag(l/k1 , ... , 1/kb). The matrix Ca. is symmetric, 

nonnegative definite, and bas row sums equal to zero. "When the design is connected, Cd 

has rank t-1 and its resultant eigenvalues can be given by the vector w = (w1, w2, ... , wt)' 

where Wi is the ith largest eigenvalue and Wt = 0. Cd can be expressed in canonical form 

(Prescott and Mansson, 2001) as 
t-1

Cd = _LWjZjZ; 

i=l
(4.2) 

where Zi is the normalized eigenvector corresponding to Wi such that z; zi = l and z; Zj = 0 

for i -/- j. To obtain the treatment estimates f of T = (r1, ... , rt), we need to have the 

f!;eneralized inverse of Cd say G such that Ct1.GCd = Cd . Prescott and Mansson(2001) give 

this inverse as 

This implies that f = G(T -NdK-' B) where T and B are the vectors of the treatment 

and the block totals respectively. Also var(f) = Gc,2
• In assessing the robustness of 

designs to missing observations, use is made of the pairwise treatment comparisons based 

on va.r(Ti1 - n2) for i1, i2 = 1, ... , t a.nd i1 # i2 . If Y is a contrast matrix of dimension 

(t(t - 1)/2) x t identifying these differences, then the diagonal elements of the YGY'a2 

a.re the variances of these contrasts. Then average variance of the pair-wise treatment 

differences(Prescott and Mansson, 2001) is given by 

A { ( -: _ -: )} _ tr(YGY')a2 
_ 2tr(YGY')o-2 

ve var T11 Ti2 - ( )/ - ( ) 
tt-1 2 tt-1 

( 4.3) 
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In this context, for a balanced incomplete block design, kj = k for all j and ri = r for all 

i such that the information matrix of the treatment effects for this design red uccs to 

where J is the matrix of all 1 's and ,\ i.8 the number of times that treatment i and .i

appear together in the same block, and I is the identity matrix. Thus Cd hast - l non­

zero eigenvalues all equal to t>./k. Since { I - f} is idempotent, the generalized inverse 

of Cd denoted by G is given by 

G= !5... {1-:!_} 
,\t t 

For a BIBD all estimates of the treatment differences have variance 20'2k/,\t and the 

estimated pair-wise treatment difference for a completely randomized design with t treat­

ments and r replications is given by 2e72 /r. The efficiency factor of the BIBD is >.t/rk. In 

the event of loss of some observations, the new properties of the resulting design largely de­

pend on the specific configuration of the missing observations(,1/hittinghill, 1986). Some 

variances of the pair-wise treatment differences will be increased while others may not. 

This change affects the eigenvalues of the original design and thus the robustness of the 

whole resultant design. In the evaluation of these desigru, we use several approaches. 

4.1.1 The average variance and the relative efficiency of the re­

sulting designs 

For t; observations missing, the sum of the eigenvalues of the information matrix is given 

as ti�-_1j/' and its only tbe ti eigenvalues that are affected but not w1 which is always equal 

to zero. Thus the average variance expressed in terms of the non-zero eigenvalues of the 

information ma.trix is given as the sum of the eigenvalues of its generalized inverse. For a 

given design d the average variance(Whittinghill, 1989) is given as 

t-1

A (� �) 2 I: i 2 vevar Til - Ti2 = -- ---e7 

t - 1 w(d)
i=l i 

(4.4) 
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Therefore the relative efficiency(R) of two designs d1 and d2 is defined as the ratio of their 

average variances which can be given as 

"t-1 1 
R = ui=l w;(d0

' 
t-1 1 

Li=l w,(d1 ) 
(4.5) 

R is compared to 1 whereby if R > 1, then design 1 is better than design 2. While if 

R < 1 then design 2 is better than 1. In the event that R = 1 then the two designs are 

equally good. 

4.1.2 Mini-max variability criterion 

The min-max variability method given by vVhittinghill{1989) compares the variability ¼ 

of the t-1 non-zero eigenvalues of the resultant C-matrix of design d introduced in section 

4.2 where 

(4.6) 

where w is the mean of the eigenvalues Wi for i = 1, ... , t - 1. Therefore, using this 

measure of variability, a resulting design d1 is said to be better or more nearly variance 

balanced than a resulting design d2 if Vd1 is nearer to O than Vd2 • When d is variance 

balanced, its Vd=O.

In the on-farm trial situation, where the problem of missing plots is fairly common, the

criteria discussed above could be applied in order to compute standard errors and evaluate

design efficiency.

Presence of outliers and missing observations or blocks are some of the prohlems likely to

he encountered in on-farm trials especially when data has to be recorded by the farmer.

BIBD is known to have robustness. The discussion in the following section establishes a

further role of BIBD in the case of such problems.

4.2 Robustness of balanced incomplete block designs 

Design problems are often encountered even for well-planned on-farm trials. These range 

from missing observations, presence of outliers, loss of a.II observations pertaining to a 
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given treatment, etc. This results in poor performance of an optimal design and loss in 

efficiency. The idea of robustness is explained further in the following definition. 

Definition 4. A de.!!ign d is said to be robust against one or more of the above distortions 
if it remains insensitive to the presence of one or more of the above distortions in terms of 
design properties such as connectedness, variance balance, efficiency, optimal properties; 
etc. 

Connectedness of block designs is a vital property since it ensures that estimability 

of all paired differences among treatment effects is possible. Balanced incomplete block 

designs have a special property of complete connectedness. Therefore, for these designs, 

the loss of some plots may result in the design losing its connectedness with respect to 

treatments and it will no longer be a. BIBO. The following definitions elaborate more on 

the robust and strongly robust cases of a BIBD. 

Definition 5. A BIBD(t, b, k, r, ).) is said to be robust against the unavailability of any q 
observations if the block design obtained by urnitting any q observations remains connected 
with respect to treatment. 

Definition 6. A BIBD(t, b, k, r, ).) is said to be strongly robust against the unavailability 
of any q observations if the block design obtained by omitting any q observations remains 
completely connected. 

Ghosh(I982b) shows that a BIBO is robust against the unavailability of any r - 1 

observations. However, a BIBD is not robust against the unavailability of any r obser­

vations. This is because if all r observations corresponding to a particular treatment are 

lost then the treatment will be disconnected from the other treatments. Therefore, BIBD 

is robust against the unavailability of any q observations so long as q is less thau r - I. 

The robust and strongly robust properties are summarized in theorem 2 and 3 below. 

Theorem 2 . . A BIBD(t, b, k, r, ,\) is robust against the unavailability of a.ll observations 
in any r - I blocks. 

Theorem 3 . . A BIBD (t, b, k, r, >.) is strongly robust against the unavailability of any 
k - I observations. 

Note that a BIBO is not strongly robust against the unavailability of any k observa­

tions. The maximum number of observations q that should be unavailable in order for 
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the BIBD not to be strongly robust is k - 1. 

According to Prescott and Mansson(2001), missing observations affect a design by their 

effect on the eigenvalues of the BIB design and thereby affect the average variance and 

the relative efficiency of the design as compared to the complete block design. They note 

that in a situation where one observation is missing, the properties of the resultant design 

are the same regardless of the type of treatment lost as well as its position in the initial 

design. In such a case; the specific variances of the pairwise treatment differences depend 

on the type of treatment lost for that specific observation, but the average and the max­

imum variance will be unchanged. For the ca.se of two missing observations, it is rather 

complicated since it callB for different configurations, each with different eigenvalues, to be 

considered. Let g be the number of treatments common to the pairs of blocks. There are 

different possible cases in the loss of two observations that exist (Prescott and Mansson, 

2001). Some of these include: 

1. Different treatments in different blocks where neither treatment is common to the

two blocks.

2. Different treatments in different blocks, with one of the two treatments common to

both blocks.

3. Two treatments lost in the same block.

4. Both treatments are different and occur in both blocks.

5. Two replicates of the same treatment missing. etc

For all such situations, two eigenvalues are affected. The two eigenvalues affected take on 

values given as Wt-2 = 
t; - 1 + x and Wt-1 = t; - 1 - x. Table 4.1 presents the results on 

average variance and relative efficiency for a single missing observation and two missing 

observations. 



Table 4.1: Summary of cases involving loss of a treatment(s) in a design 

Observations missin,g 
One missing 

Observation (t - 1) 
Two missing 

observations (t -2) 
Wt-1=

t
.� - l + X 

Average Variances 
2ka1 2Pa� 

tX""° + t(t-1)>.(t>.-k) 

2ka2 4k·(t>.-k+kx')
tX""° + t(t-l)>.{(t>.-k)2-k�x2 }

Relative efficiency 

{l + (t-l)Zt.x-;,)
-

l 

{ 1 2k(t>.-k+kx· � }-1
+ (t-l){(t>.-k)Lk x2} 
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For the case Wt-l = tt -1-x the x values and the number of configurations can take on

different values. 

Table 4.2: Summary of value of x and number of configurations 

Case Value of x Number of configurations 
1 x = g J { k ( k -l)} , for g = 0, ... , k - I (k - g)'/. 

x = (k -g)/{k(k -1)},for g = l, ... , k -1 2g(k - g) 
x=O bk(k -1)/2

x = (2k-g)/{k(k -1)},for g = 2 1 • • •  , k 9(9 - l) 
x = (k2 

-
2k + g)/{k(k- I)}, for g =I, ... ,k 9 

In general the smallest loss in efficiency occurs in cases 3 and a section of case I when 

the g = 0. The worst scenario is where two replicates of the same treatment are lost 

from different blocks( case 5). In general the loss in efficiency will largely depend on the 

experimental design used and how the treatments are laid out in this design. The incor­

poration of prior knowledge at the design and implementation stage can be a vital tool 

in improving the design and minimizing efficiency losses. 

Treatments tested in on-farm trials can take different forms depending on the researchers 

interest. Treatments of factorial structure may be used by researchers especially soil fer­

tility scientists. Ma.inta.ining such a structure may lea<l to large set of treatments which 

could cause application problems in on-farm trials. The optimality of factorial treatment 

structure in incomplete block design is discussed in the next section. 



64 

4.3 Factorial treatment structure in incomplete blocks 

Many factorial and fractional factorial designs have been applied in agricultural experi­

ments. These designs are very common in soil fertility, agronomic a.nd animal production 

trials. Because not all interaction levels can be run in these experiments 1 use of fractional 

factorial designs has gained considerable attention. The work by Yates(1935) on facto­

rial trials addresses the necessity of proper blocking in experimentation. Proper blocking 

greatly increases the precision of experimental designs(Kempthorne, 1947). Farms or 

farms in regions are a common blocking factor in most on-farm trials. Therefore, in on­

farm trials, farm*treatment factor interactions need due a.ttention. Yates(1935) address 

this problem on differential responseB in different blocks in agricultural experiments. The 

interpretation of most factorial designs with a high degree of confounding or fractional 

replication depends on the assumption that block-treatment interactions are negligible. 

This is however not the case in on-farm trials since the regions are expected to contribute 

an environmental effect and the different management practices in different farms are 

expected to have an effect as well. In fact the investigation of farm-treatment factor 

interactions is often one of the objectives of an on-farm trial. 

4.3.1 Choosing an IBD for a factorial treatment structure 

Selecting an incomplete block design depends on 

• The number of factors and treatment combinations involved:

• The size of the blocks

• The resources available to determine number of replications needed.

There are several lists of designs where one can easily obtain an incomplete block design. 

Montgomery(1997), Cochran and Cox (1957) are a few such references. The designs pro­

vided in these references do not cover the confounding structure of the block- treatment 

factor interactions. In on-farm trials, analysis of block-treatment factor interact.ions is an 
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important component. Thus using incomplete block designs for on-farm trials requires 

obtaining such information concerning these interactions. Therefore, the guiding princi­

ples in selecting incomplete block designs with a factorial treatment structure for on-farm 

trials, is the ability for the design to provide estimates for the farm-treatment factor in­

teractions. Secondly, its important to select designs with blocks that are resolution III 

and above (Cochran and Cox ,1957; Mead, 1994). In such a situation, one will be able 

to obtain estimates of main effects for the farms/blocks. Such recommended designs are 

given in table 4.3. 

Table 4.3: Factorial treatment desigllil with resolution III and above for different numbers 
of factors 

Number of Factors Farm size Number of farms Design resolution 
4 4 III 

4 8 2 IV 

5 8 4 III 
6 16 4 IV 

6 8 8 III 
7 16 4 IV 

An on-farm trial involving 4 farms, each of size 4 accommodating 3 factors qualifies to be 

a design of resolution III. In such a trial its possible to estimate main effect and two factor 

interactions. Similarly a design with 4 farms of size 16, with 7 factors is of resolution IV. 

Researcher choice of design resolution depends on the higher interaction factors to be con­

founded. The choice of which depends on the import.ant component to be investigated. 

Analysis of factorial treatment structure in IBD 

Steps for analyzing an incomplete block factorial trial. 

• Factors should enter the model in the order of main effects, all two factor interac­

tions and finally all block-treatment factor interactions. It is important to use the

sequential sums of squares to analyze the data. This is bec ause it allows for the

interaction effect to be investigated free of the main effect.
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• V•,le examine the mean squares for the block-treatment factor interactions for any

abnormal values. If any of the block-trea.tment effects are abnormal, then a reason

must be established for the lack of consistence across the blocks.

• If all the block-factor interactions arc small, then we can drop the effects from

the model. Therefore analyzing such a trial would proceed mi a typical factorial

experiment.

Notice tha.t. a large mean square would imply that the effect of this factor is not consis­

tent across the experiment. And therefore a plot of the main effects by block can help 

in understanding the changing nature of the main effects across blocks. The aforemen­

tioned idea is the result of the fundamental differences between expectation and variation 

models in respect to the behavior of marginal terms( Nelder, 1977). A more elaborate 

study on the design and analysis of factorial designs is given by Yates(1933), Plackett and 

Burman(194G) , Fisher(1942), Bose(1947) and Rao(1947). 

In general, several methods have been suggested for the construction and selection of 

optimal incomplete block designs(Nguyen & Williams, 1993; Nguyen, 1994). Most of 

these methods are based on optimizing various criteria such as the A-,E-,D-optimality 

criteria. Huber and Zwerina(1996) identify four principles underlying the optimality of 

designs. These include level balance, orthogonality, minimal overlap and utility balance. 

These principles adequately define what makes a design efficient in relation to other de­

signs. In this context, level balance refers to equal replications of ea.ch treatment in the 

experiment, minimal overlap is attained when the alternatives within each treatment com­

bination choice set have non-overlapping treatment levels, and utility balance is attained 

when the utilities of alternatives within treatment combination choice sets are the same. 

Orthogonality is as defined by Yates(1933), i.e where the different classes of effects to 

which the experimental material is subject are capable of direct and separate estimation 

without any entanglement. Most of these methods are based on algorithms that optimize 
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4.4 Standard versus control treatments 
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In many on-farm trials it is not possible for experimental material to meet the requirements 

of a classical design. Designing an experiment is sometimes viewed as picking from a 

library of designs the design recipe which comes closest to fitting the particular situations 

of the experiment, and then making compromises in the objectives of the experiment and 

the structure of the experimental material in order to force the experiment into the recipe's 

rcquirements(Mead, 1994). Standard designs are vital, but how often their requirements 

are or can be naturally met in on-farm trials remains the question(Kuehl, 2000). Consider 

an on-farm situation of comparing t test treatments, denoted by 1, 2, ... , t , with a standard 

treatment, denoted by O , in b blocks of size k . Assuming an additive model, the fixed 

effect model for a one- way elimination of heterogeneity is given as 

(4.7) 

whereµ denotes the general mean , Ti the effect of the ith treatment and /3j the effect of the 

jth block. E:i.i are uncorrelated random errors with mean O and variance (1
2

. The quantity 

ni.i is design dependent and denotes the number of times that treatment i is administered 

to a plot in block j (Thllil for some i and j , nij = 0). This experiment/scenario aims at 

infarence ahout the treatment differences r1 -r01 
r2 -r0 , .... , Tt-To the comparisons between 

test treatments and the standard treatment. Contrasts among the new treatments are of 

equal interest, but contrasts between the new treatments and the standard are required 

to be more accurately estimated. This design will be a proper block design so long as 

i = 1, 2, ... , t and 

b 

I:no1nii 
j=l 

L nijni'j
j,,=1 

(4.8) 

(4.9) 
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i, i' = l; 2, ... ,ti=/. i' do not depend on i and i'. 

This implies that this form of balanced incomplete block dcsign(BIB) is one for which the 

var(�0) and the cov(�, .,:;,-=r0) are independent of i and i' , i =/. i', where the 

notation � denotes the best linear unbiased estimator of Ti - To . Notice also that 

provided I:i 11,ojniJ 2: 0 then the BIB will be connected. Martin and Eccleston (1993) 

note that the best criterion for selecting optimal designs in such situations considers only 

the sum of the variances of the pairwise contrasts between the new treatments and the 

standard treatment. In such a case the standard treatment gets more replicates than 

the new treatments. Consider a design in the class of designs d(t, b, k); if we reinforce 

a control treatment then we have a class of designs d*(t + 1, b
1 
k) . Constantinc(1983) 

defines a design d*(t + 1, b, k) as being trace optimal for control over a collection D of 

designs in d*(t + 1, b, k) if 

(4.10) 

for all d ED 

Trace optimality for control considers paired comparisons with the control. A design is 

tra.ce efficient for the control if it is trace-better for control than the great majority of 

designs. Consider a. situation where k divides b and r, and the control treatment appears 

bk- 1 times in each row of d*, while the other treatment occurs rk- 1 times in each row 

of d*. If each distinct pair of treatments from t.he set[l, 2
1 

••• , t) occurs in .>i. blocks of d,

then according to Bellman(1970), the information matrix of tJ;t for treatment effects can 

be written as 

kCd. = [ 
b(k - 1) -rl'

l -rl (r(k - 1) + >.)J - >iJ
(4.11) 

where 1 is the column vector with all its entries 1, I is the identity matrix and J is 

the matrix with all entries 1. Ca is a non-negative definite matrix with zero row sums 

such that, kCa = diag(kr<fJ, ... , krat) - NaN� where Na = (naij) with ndij indicating the 

number of times treatment i appears in the jth block of d; 1'di is the replication number 
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of treatment. i in d. The rank of Cd. is t thus the generalized inverse of kCd. is given as 

(4.12) 

Notice that Cd• and C;;,. are of dimension t + 1. Ghosh(1982b) noted that a BIB design is 

D-,A-, and E-optimal and as such designs d* are more efficient for control than any other 

design in D . Constantine(1983) proved that the idea of reinforcing is in fac.t compatible 

to a satisfactory extent especially when it comes to trace efficiency for control. Part of 

the main objective for on-farm trials is to compare new treatments against the farmer's 

practice (control). The findings of Ghosh(1982b) on the efficiency of BIB emphasizes the 

need to use BIBDs in on-farm trials. 



Chapter 5 

Possible Scenarios of On-farm Trials 

In chapter 3 and 4, we looked at the various forms of measuring efficiency in designs and 

how optimal incomplete block designs can be obtained through use of several criteria. We 

highlighted a number of issues in incomplete block designs that need to be dealt with if a 

satisfactory strategy for on-farm trials designs iB to be obtained. In this chapter we apply 

the methods and criteria. presented in this the.sis to various scenarios involved in on-farm 

trials to assess the performance of these different designs. This will provide a paradigm 

for analysis of on-farm trials and clarify several important issues. 

5.1 Introduction to the problem 

As in all agricultural experiments, the proper planning of on-farm trials iB an important 

step to ensure that valid re.suits a:nd conclusions are obtained (Gomez and Gomez, 1984). 

The identification of the most appropriate experimental design is very crucial in the plan­

ning stage (Fisher, 1953). The statistical validity of a design, and its ability to adequately 

estimate the required parameters as well as its flexibility in case of any eventualities are 

important components(Stroud, 1993). It is always difficult, and at times impossible to 

recover enough information from a poorly designed experiment. On-farm trials, whether 

managed by the farmer or researcher require simplicity in design that takes into account 

the practical situation. Most constraints are due to limited resources such aB land and 

treatment materials. Complexity in design makes the work of the management and data 

70 
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collection cumbersome
1 

especially for the farmer. There are several constraints and con­

ditions that occur in on-farm trials as far as plot and block treatments are concerned. In 

many on-farm trials we a.re faced with a problem where the whole experiment, with or 

without replications cannot be carried out on one smallholder's fa.rm. This would then 

necessitate the use of several farms, either as replicates or single plots. In the case where 

there are no limitations on the plot sizes, rcsources(treatments) and availability of the 

farms, then a complete trial is performed on all farms. Such a situation calls for the use 

of a standard design depending on the nature and treatments being tested. In situations 

where the farms are large enough to accommodate all treatments, but not large enough 

to allow for replications, we take farms as replicates. Here use of RCBD may be feasible 

where a farm acts as a block receiving all treatments. 

Possible scenarios in on-farm trials are discussed in the following section. These scenarios 

are ba..Cled on possible problems encountered in on-farm trials. The performance of these 

scenarios is analysed using the optimality and efficiency criteria discussed in the previous 

chapters. 

5.2 The scenarios in on-farm trials 

Very often, we encounter situations where farmers are not capable of accommodating all 

the available treatments. This is because the land available to farmers is of varying sizes, 

where not all the available treatments can be accommodated. In such a case some farmers 

select a few treatments whereas others take a full set of treatments for experimenting. 

5.2.1 Scenario I: Farms unable to accommodate all treatments 

Consider a situation were the test materials are in abundance but the ava.ila.ble land sizes 

do not allow for the allocation of all treatments on the same farm. This would result in 

some farms not receiving certain treatments. Such situations call for the use of incomplete 

block designs. Balancing treatments in this scenario is very important in order to obtain 
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valid and meaningful results. The following example illustrates such a scenario. Consider 

an on-farm trial where farms can only accommodate a maximum of 4 treatments. In order 

to achieve balance, 

• For 5 treatments, we would need 5 forms with each pair of treatments appearing

together on a given farm 3 times.

• For 6 treatments, we would need 15 farms with each pair of treatments occurring

together on a given farm 6 times.

• For 7 treatments, we need 35 farms with each pair of treatments occurring together

on the same farm 10 times.

These combinations are derived as noted in section (2.27 and 2.28) for the BIBD. Each 

of the above cases highlights a variation in order of the different levels of precision achieved 

and calls for different si�e of experimental material which depends on its availability. 

5.2.2 Scenario II: Use of farms as experimental units 

In some situations farms can be used as experimental units if all treatments cannot be 

applied on a single faxm. We would then have farms as experimental plots/units. Nor­

mally there are two possibilities, i.e Farms are either identical or variable in nature. In 

experimental design theory, interest is in observing the effects of treatments when applied 

to identical experimental ma.terial(Fisher, 1930). In case of identical farms, we apply 

treatments to the farms randomly and in such a case, the completely randomized design 

can be an appropriate design. However, for variable farms1 this calls for a blocking of 

identical farms. Therefore we would then group the similar farms together and then ap­

ply the treatments accordingly. 

Consider an on-farm trial with 4 treatments to be tested A,B,C,D,and 12 farms(farm =

1, 2, ... , 12) which are located in 3 different soil zones. In this situation, we can group 

the farms in similar soil zones together and then apply the treatments to the respective 
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farms falling in a given common soil zone . Suppose farms 4,7,11,2 fall in zone 1, while 

farms 1,9,6,10 fall in zone 2, and farms 8, 5, 12, 3 fall in zone 3. In this case each farm is

considered as an experimental unit.. The design layout of the groupings of farms in zones 

is presented in table 5.1.

Table 5.1: Design layout of the groupings of farms in zones for the above example 
Soil Zone 1 Soil Zone 2 Soil Zone 3 

Farm Treatment Farm Treatment Farm Treatment 

4 A 1 A 8 B 

7 B 9 D 5 A 

11 C 6 C 12 D 
2 D 10 B 3 C 

This illustrates an example of a design under strict assumption on farms falling in each 

zone to be homogenous. This is a possible scenario in on-farm trials. 

5.2.3 Scenario III: Naturally occurring imbalances 

The example considered here describes a situation where balance in treatment allocation 

within a block is not possible due to naturally existing blocks. This would imply that 

we have farms taking on varying numbers of treatments. We can still obtain efficient 

and sensible designs when the block size is not equal to the number of treatments(Mead, 

1994). 

Consider an on-farm trial testing 7 treatments (A, B, C, D,E,F, and G). Suppose that

the available farms are of unequal sizes. This means that each farm is capable of accom­

modating different numbers of treatments. 

Case I 

Consider 6 farms where farms are considered as blocks. If the farms contain 3, 3, 4, 5, 6

and 7 plots respectively then a. suitable design can be obtained. The design layout is as 

given in the figure 5.1. 
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Figure 5.1: The columns represent the farms and within columns we have the plots for 
each farm. 
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Assuming equal importance of all treatment comparisons, we can allocate the 7 treat­

ments to the plots within the various farms such that efficient and meaningful results can 

be obtained. Any 3 of the 7 available treatment.s could be accommodated in farm 1 or 

farm 2, whereas farm 6 accommodates all treatments. A possible layout of treatments in 

each of the six farms is presented in the figure 5.2. The treatments within a farm are not 

randomi7..ed. 

Figure 5.2: Allocation of treatments into the plots within farms for Example 5. Experi­
mental plan for comparing 7 treatments in 6 blocks with three, three, four, five, six and 
seven plots. 

Blocks 

Farm/ Farm!/ Farm/II FannIV FarmV FarmVI 

A D B A A A 

B E C B C B 

C F D E D C 

G F E D 

G F E 

G F 

G 
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Case II 

Consider 5 farms where farms are considered as blocks. If the farms contain 3, 4, 5, 7 and 

9 plots respectively then a suitable design layout can be obtained a.s shown in the figure 

5.3. Treatments within a fa.rm a.re non-randomized. 

Figure 5.3: Allocation of treatments into the plots within farms for Example 6. Experi­
mental plan for comparing 7 treatments in 5 blocks with three, four, five, seven, and nine 
plots 

Blocks 

Farm! Farm/I Farmlll FarmlV FarmV 

A D A A A 

B E B B B 

C F C C C 

G D D D 

E E E 

F F 

G G 

F 

G 

This example demonstrates a situation where Farm IV can accommodate all 7 treatments 

and Farm V can accommodate more than 7 treatments. 

The two possible on-farm trials layout discussed in scenario III are compared to a RCBD 

on the criterion of the resulting standard errors of estimating treatment differences. This 

evaluation is presented in the following section. 
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Consider a randomized complete block design with 7 treatments, 7 blocks and with each 

treatment replicated 7 times. This design requires 49 experimental units. 

Consider also a balanced incomplete block design with parameters BIBD(t, r, b, k, >.) == 

(7: 4, 7, 4, 2). Thia design would require 28 experimental units. The two sample designs 

are given in appendix A.2. We use a dummy analysis in Genstat to compare these de­

signs for efficiency by examining the resulting standard errors(s.e). Table 5.2 presents the 

results of the standard errors. 

Table 5.2: standard errors of the 2 unbalanced incomplete block design with a BIBD 
structure and RCBD in estimating treatment differences 

Estimated difference BIB s.e's RCBD s.e's UBIBl s.e's UBIBD2 s.e's 
B-A 0.7560- 0.535cr 0.7270" 0.7070-
C-A 0.756cr 0.5350- 0.730cr 0.707cr 
D-A 0.756cr 0.5350- 0.765a 0.741cr 
E-A 0.7560- 0.5350- 0.7460- 0.7410" 
F-A 0.756cr 0.535cr 0.746cr 0.7610-
G-A 0.7560- 0.535cr 0.7360" 0.7610-
F-G 0.7560" 0.5350- 0.7380" 0.707cr 

Unbalanced incomplete block design is denoted by UBIB where UBIBl and UBIB2 refer 

to the design layout in figur81:l 5.2 and 5.3 re.spectively. 

From table 5.2, assuming equal variance cr2 for all four designs, we notice that the preci­

sion of the different comparisons for the two unequal block designs differs slightly from the 

balanced incomplete block design while for the RCBD, the difference is greater. However, 

both designs are efficient and sensible for the conditions under which they were set. In 

some cas� these designs perform better in estimating certain treatment differences e.g. 

in comparing (F-G). However, RCBD with a standard error value of 0.535u, seems to be 

the best design in terms of figures if at all a complete blocks design can be set . But under 

this on-farm scenario, the argument is that complete blocks are impossible. In addition 
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to the above, RCBD would require 49 experimental plots for this experiment in contrast 

to 28 experimental units required by the Incomplete block designs. Therefore, there is a. 

big gain in terms of resource savings. In this study we also assumed that treatments are 

of equal importance. But sometimes this may not be the case. Mead(l994) clarifies that 

in such a situation, an experimenta.l procedure is to consider the desired relative precision 

of different comparisons and thereby choose the appropriate replication r for each treat­

ment such that the re.•mlting variances of the treatment differences for the experiment 

incorporates the relative importance of each treatment. By emphasizing use of BIBD in 

on-farm trials, it should be noted tha.t more than one treatment may be accommodated 

in situations where experimental material is available. This would lead to an increase 

in precision aB demonstrated by the difference in standard errors for UBIBl and UBIB2. 

The fa.ct that more treatments were accommodated by some farms in UBIB2 led to a 

smaller standard error. 

5.2.5 Scenario IV: Control versus standard treatments 

Researchers are particularly interested in comparing standard treatments and a control 

treatment with a specified number of treatment replications. Such a trial can be set up 

in smaller incomplete blocks and a control treatment augmented onto the design. An 

incomplete block set up balanced in such a way that the objectives of the experiment are 

capable of being tested can be the augmented incomplete block designs. Consider 7 stan­

dard treatments and a control treatment 0. Thus in total we have eight treatments which 

are denoted as A,B,C,D,E,F,G and 0. Suppose it is decided that the control treatment 

0 has to appear in every block and that each of the other standard treatments has to be 

replicated 4 times. 

An appropriate experimental plan for this study would require seven blocks of size 5 plots 

each. A suitable design for this study is shown in figure 5.4. 



78 

Figure 5.4: Experimental plan for comparing 7 standard treatments plus 1 control treat­
ment in seven blocks of size five plots. 
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We examine performance of this design using a Genstat analysis on standard errors of 

treatment comparisons. A procedure exists in Genstat(Genstat 4.2, 2000) that allows one 

to evaluate various designs using only dummy variables. The procedure used to produce 

results given in table 5.3 is given in Appendix A.3 The Genstat procedure is based on 

regression analysis and therefore the results are presented as regression coefficients and 

standard errors associa.ted with them. Using the covariance matrix in Appendix A.3, we 

can obtain others.e's of treatment comparisons. 

Table 5.3: Estimates of the regression coefficients and standard errors of the treatment 
comparisons 

Estimated difference Estimate Standard error 
B-A 0.000 0.745 
C-A 0.000 0.745 
D-A 0.000 0.745 
E-A 0.000 0.745 
F-A 0.000 0.745 
G-A 0.000 0.745 
0-A 0.000 0.645 

It should be noted that all the estia.mtes are zero because no data has been used. Our 

interest in this case is in the standard errors used in treatment versus control comparisons. 

Suppose we wish to compare treatments B and E, noting that the available information is
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on B-A and E-A. The standard error of the comparison (B-E) can be obtained a.5 follows: 

Using the property of connectedness, 

B - E = (B - A) - (E - A)

The variance of (B-E) denoted as Var(B-E) is computed as 

Var(B - E) = Var(B-A) + Var(E-A) -2Cov(B- A,E- A) 

From Appendix A.3,Var(B-A) = Var(E-A) = 0.5556 and Cov(B-A, E-A) = 0.2778 

Var(B - E) = 0.5556 + 0.5556 - 2(0.2778) 

Var(B - E) = 0.5556 

The standard error 

S.e(B - E) = Jvar(B - E) = 0.7453

All standard treatment comparisons have the same standard error 0.7453. The standard 

error of the comparison of standard treatments with the control treatment O is given as 

0.645. This is because a BIBD design was c-.onsidered. 

In this scenario, the control treatment O is replicated more times and it provides for a 

comparison of each standard treatment with the control treatment within each block/farm. 

In effect the control treatment is estimated with greater precision than the standard 

treatments. This scenario represents an on-fa.rm ciu,e where the farmers own treatment 

is compared with the other standard treatments. The design is balanced in the standard 

treatments, efficient and adequately provides all the required information. Choice of 

a suitable set of treatments is obviously essential for a successful experiment and the 

appropriate treatment design is a vital part of any good experimental design. However 1

on-farm experiments often have large non-treatment sources of variability and the proper 

allocation of treatments to units using an appropriate block design is also essential for 

effective experimentation. 
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A few of the different scenarios that occur in on-farm trials were discussed in section 5.2. 

We classify such scenarios as the constrained and unconstrained. Constrained scenarios 

occur in situations where the standard design is distorted either by the researcher to fit a 

given situation or due to unavoidable circumstances. Naturally occurring events may force 

a design to be distorted due to loss of some treatments. The unconstrained scenarios occur 

when a standard design is set and analyzed BB planned with no distortions. A general 

on-farm mathematical model for both constrained and unconstrained scenarios is of the 

form: 

where 

y,;k is the observation on the l" block at the ith farm for the kth treatment. 

Ji is the ith farm effect; i = 1, 2, . .. , f

b(J)ij is the il" block within faxm effect; j = 1, 2, ... , b 

Tk is the effect of the kth treatment; k = 1, 2, ... , k

f-ril, is the ikth farm-by-treatment interaction effect. 

µ denotes the genera.I mean. 

eij/c denotes the random error term. 

The assumptions for the random elements are 

the f, are i.i.d. N(O, o}) 

the b(f)ii are i.i.d. N(O, ol1) 

the fnk are i.i.d. N(O,cr;1)

the eijk are i.i.d. N(O,cr2 ) 

(5.1) 

The assumption in on-farm trials is that a large number of farms are available from which 

a sample of farms can be selected. Thus, farms are a random sample from a population 

of farms and they form a random effect. Therefore all interaction effects involving a farm 

will also be assumed to be random(Hocking, 1973). 
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Gomez and Gomez (1984) noted that large variation among farms and between fields in a 

farm is very common, and this forms a range of sites of va.rious environmental variations. 

This problem can be handled by spatial modelling of the environmental va.riation(Legendre 

and Fortin, 1989). In this context we will introduce a spatial model of environmental 

variation to cater for the effects from the different locations of these farms. The spatial 

variation can occur both in constrained and unconstrained cases. Thus, incorporation of 

a. spatial model in on-farm trials is considered in the following section.

5.3.1 Incorporation of a spatial model 

It should be noted that spatial variations in fields used in on-farm trials exist. These 

variations are complicated and difficult to describe. Several authors have investigated the 

use of spatial analysis techniques for improving the precision of estimating treatment con­

trasts for data from large field trials( Zimmerman and Harville, 1991; Cullis and Gleeson, 

1991). This is because in field trials variation resultfl from many factors such as soils, 

land gradients/steeps, plant nutrient intake etc. Spatial modelling techniques are able to 

use covariance between sample points by modelling it as a function of distance between 

these points. This a.ccounts for both correlation between clustered farms and potential 

correlation between plots that are dose to each other. Severa.I spatial models exist for fit­

ting these variations(Magnussen, 1990; Cressie, 1991). We employ a widely used spherical 

spatial model by Cressie(l991) because of its flexibility and easy convergence. Here every 

experimental plot is represented by coordinates (i,j) a.nd therefore a yield from such a 

plot receiving treatment k is given as 

(5.2) 

We assume that the error component eij ma.y have nonzero means and covariances which 

a.re functions of their distances apart. We assume that �j has mean e which has a 

component of the drift parameter "f and variance given as V, where V = vij. The spherical 



covariance function is given as(Martern, 1986) { u; { 1 - H�) + ½ (� )3} for O < di; � p

Vij = a-0 + a� for diJ = O (5.3) 

0 for diJ > p
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The range of the cova.riance function is the distance after which observations become 

uncorrelated. Therefore dij is the unit distance between plots i and .i, p is the maxi­

mum distance apart beyond which plot yields are uncorrelated which is called the range

parameter (Magnussen, 1990). We define e as 

1 

e = V:1n (5.4) 

where v½ is the cholesky factor/square root of V aud n is the normally distributed vector 

with mean of zero and variance 1. Therefore by specifying drift and range parameters 1

and p, we are capable of obtaining several spatial error distributions across the fields. 

The following process illustrates how data with a V matrix that fulfills cholesky factor 

conditions are generated. These data are later used in both constrained and unconstrained 

sccna.rios. Six V matrices arc generated using the model (5.3) with different levels of the 

range parameter. This is done using a SAS program for each of the designs and the 

respective range parameters. Vectors of sizes of the total numbers of observations T for 

each design for each farm and treatment applications are generated. i.e 

(5.5) 

i = 1, 2, ... , t (treatment), j = 1, 2, ... , f {farm) 

A vector n equal to the size of the total number of observation for that specific design is 

generated with a mean O and variance 1. Then a final vector of the data W given as 

(5.6) 

is generated. Data are finally analyzed using both SAS Proc Mixed procedures and Resid­

ual Maximum likelihood(REML)procedures in Genstat after assembling the appropriate 
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input files. 

From the designs, we obtain the design matrix, the incidence matrix N of the design, the 

matrix of replications rd and the matrix k of the block sizes. We use these to obtain the 

required Cd matrix which is given as 

(5.7) 

We use the Cd matrix corresponding to the design to obtain the appropriate eigenvalues 

which a.re used in calculating the various criteria. 

5.3.2 The constrained scenarios 

Consider a study to compare t = 6 standard treatments with a control treatment O in b

blocks of size k + l, where 1 is the additional unit in each block representing the control 

treatment(farmers treatment). In total we consider 7 treatments for this scenario. The 

design layouts considered in this section are given in Appendix B.l. The fact that an 

additional treatment was applied led to constrained condition both for BIBD and RCBD. 

The performance of these designs under the stated condition is evaluated to determine 

their performance using the previously discussed optimality and efficiency measure crite­

ria. The design parameters for the 7 design scenarios evaluated are presented in Table 

5.4. 

Table 5.4: Summary of design parameters for the constrained scenarios 

Design Number of replications block Lambda Total number 
scenario blocks size >- of treatments 

10 5 4 2 40 

2 6 1 2 - 12 

3 15 5 3 1 45 

20 10 4 4 80 

15 10 5 6 75 

6 5 6 4 36 
6 6 7 6 42 

It should be noted that arrangement of treatments A to F meet BIBD conditions. How-
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ever , the condition does not hold anymore with the addition of the control treatment 0. 

Let the treatments be A, B, C, D, E, F and 0. In analyzing these trials we require the 

matrix Cit(John,1971) which is given as Cd = -rd- Nak- 1N� as in (5.7) 

Design scenario 1. The randomized BIBD with the additional control trea.tment(reinforced) 

given as scena.rio 1 in Appendix B.l for constrained designs is considered. Each of the 

treatments A, B, C, D, E,and Fis replicated r = 5 times while treatment O is replicated 

rO = 10 times since it appears on each block. Thus the 7 x 7 diagonal rd matrix of the 

above design is given as 

5 0 0 0 0 0 0 

u 5 0 0 0 0 0

0 0 5 0 0 0 0 

0 0 0 5 0 0 0 

0 0 0 0 5 0 0 

0 0 0 0 0 5 0 

0 0 0 0 0 0 10 

The 10 x 10 diagonal matrix k is also given aa 

4 0 0 0 0 0 0 0 0 0 

0 4 0 0 0 0 0 0 0 0 

0 0 4 0 0 0 0 0 0 0 

0 0 0 4 0 0 0 0 0 0 

0 0 0 0 4 0 0 0 0 0 

0 0 0 0 0 4 0 0 0 0 

u 0 0 0 0 0 4 0 u 0

0 0 0 0 0 0 0 4 0 0 

0 0 0 0 0 0 0 0 4 0 

0 0 0 0 0 0 0 0 0 4 
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The 7 x 10 incidence matrix Nd for this design is given a.s 

1 1 1 0 0 0 0 1 0 1 

0 1 0 1 0 0 1 1 1 0 

1 0 0 1 0 1 1 0 0 1 

1 0 1 1 1 0 0 0 1 0 

0 0 0 0 I 1 0 1 I 1 

0 1 1 0 I 1 1 0 0 0 

I 1 1 1 1 1 1 1 1 1 

Thus t.he 7 x 7 treatment information matrix Cd given a.s 

Cd= rd - Ndk-1 N�

is 
3.75 -0.5 -0.5 -0.5 -0.5 -1.25 -1.25

-0.5 3.75 -0.5 -0.5 -0.5 -0.5 -1.25

-0.5 -0.5 3.75 -0.5 -0.5 -0.5 -1.25

Cd= -0.5 -0.5 -0.5 3.75 -0.5 -0.5 -1.25 (5.8) 

-0.5 -0.5 -0.5 -0.5 3.75 -0.5 -1.25

-0.5 -0.5 -0.5 -0.5 -0.5 3.75 -1.25

-1.25 -1.25 -1.25 -1.25 -1.25 -1.25 7.5

The eigenvalues of Cd are given as w1 =(8. 750, 4.250, 4.250, 4.250, 4.250, 4.250, 0.000). The 

average variance expressed in terms of the non-zero eigenvalues of the information matrix 

is given as; 

This gives 

2 t-1 I 
AveVar(ri - ro) = -- � -c/2 

t-1 L-w. 
i=l ' 

= 

3 
X 1.2907560-2 

= 0.43030-2 

(5.9) 

or more correctly as the sum of the eigenV"olues of its generalized inverse is given as 

t-1 
2 I: 2 AveVar(ri - ro) = -- Wi(gi)O" 

t-I
i=l 

(5.10) 

where Wi(gi) are the eigenvalues of the generalized inverse of the information matrix C,t 

and a2 is the common variance. From the above, the eigenvalues of the generalized inverse 



are given as; (0.2353, 0.2353, 0.2353, 0.2353, 0.2353, 0.1143, 0.0000). Similarly ,

AveVa-r( Ti - r0) = ½ x 1.29080-2 
= 0.43030'2 
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Analyzing all other design scenarios using a similar approach we have the results in Table

5.5.

Table 5.5: Summary of results for the constrained cases

Scenario Eigenvalues of Cd matrix Ave Var( ri - ro)

(8. 750, 4.250, 4.250, 4.250, 4.250, 4.250, 0.000) 0.43030-:.! 

2 (3.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0) 3.42860"2 

3 (11.667, 3.667, 3.667, 3.667, 3.667, 3.667, 0) 0.4830u2 

(17.5, 8.5, 8.5, 8.5, 8.5, 8.5, 0) 0.21510'2 

(14.0, 9.2, 9.2, 9.2, 9.2, 9.2, 0) 0.20500-2 

6 (5.833, 4.833, 4.833, 4.833, 4.833, 4.833, 0) 0.4020u2 

(6.0, 6.0, 6.0, 6.0, 6.0, 6.0, -0.002) 0.3333a2 

The high value of average variance observed for scenario 2 (3.4286a2) is due to the fact

that only one replication was used whereas the low value of 0.2050u
2 was as a re.sult of

maximum number of replications(lO) and A(6).
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Evaluation of scenarios 

The eva.Iuat.ion of scenarios 1-7 whose average variance of ( Ti--ro) are presented in table 5.5 

based on conventional efficiency, average variance of differences and minimum variability 

criteria is considered. The results of the efficiency measures are given in the table 5.6. 

Table 5.6: Results of Conventional efficiency, Average variance and mini-max varia.bility 
criterion 

Scenario Conventional Mini-max variability Average variance 
efficiency e criterion of differences 

1 91.7 3.3750 0.3440 
2 53.8 1.5000 0.1890 
3 80.0 10.667 0.0846 
4 91.8 13.500 0.0490 
5 97.1 3.8400 0.0798 
6 99.4 0.1670 0.0614 
7 100.0 0. 0000 0.0314 

Conventional efficiency criterion 

The conventional efficiency criterion(3.9) results are given in table 5.6. Scenarios 1, 4, 5, 

and 6 provide reasonable efficiency values as compared to scenario 7(RCBD) which has 

a value of 100. Scenario 2 and 3 have very low conventional efficiency values. Scenario 2 

with conventional efficiency value of 53.8 is the worst under this criterion. 

The choice of tlie de,5ign to use in on-farm trial would not only be based on a given 

criterion but also on availability of resources. Under the constrained situation one needs 

to be aware of amount of information achievable. 

Mini-max variability criterion 

According to this measure of variability, a resulting design is said to be better or nearly 

variance balanced than another design if its variability value is nearer to O than the 

latter's. The mini-max variability criterion values given in Table 5.6 were computed using 

(4.6). Scenario 6 provides the best design with a variability value= 0.167. The worst 
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scenario is 4 with a variability value of 13.50. Sce.nario 7 has a value = 0 implying that 

this design(RCBD) is variance balanced. 

Average variance of differences criterion 

The average variance expressed in terms of the non-zero eigenvalues of the information 

matrix is given as the sum of the eigenvalues of its generalized inverse. Based on this 

criterion we notice that scenario 7(RCBD) has the minimum value of the average variance 

of differences(0.0314) followed by scenario 4 with a value 0.049. 

Evaluation of scenarios based on A-,E-,D-optimality and Efficiency factor 

The results of the efficiency measures are given in Table 5.7 

Table 5. 7: Results for A-,E-,D-optima.lity and efficiency factor 

Scenario A-optimality E--optimality D-opt.imality efficiency factor 
1.29075 4.250 12132.57 0.80 

2 10.2860 0.500 0.109375 0.00 
3 1.44900 3.667 7735.950 0.6 0 
4 0.64540 8.500 776484.297 0.80 

0.61500* 9.200* 922714.133* 0.90 
6 1.20600 4.833 15380.690 0.96 
7 1.00000 6.000 46656.000 1.00 

Based on the A-optimality criterion(3.2.1), scenario 5 is the best since it has the minimum 

value for A-optimal. Scenario 7(RCBD) has a value of 1.0 which is higher th.an th.at 

obtained by_ both 4 and 5. The worst scenario for this measure is 2 with an A-optimality 

value of 10.286. E-optimality also agrees with A-optimality criterion. Here the 2 scenarios 

5 and 4 are the best respectively and they are both better than scenario 7(6.0). The worst 

scenario is 2(0.5). The D-optimality criterion also gives similar results as seen in Table 

5.7. We investigate these designs further using the SAS OPTEX Procedure. 

The SAS OPTEX(SAS System version 8) Procedure produces the efficiency measures 

for defined designs. Using this procedure the efficiency measures for the scenarios were 
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obtained and presented in table 5.8. The SAS OPTEX Procedure produces the best 

design for a given scenario. Each scenario is characterized by design para.meters given in 

table 5.4 

Table 5.8: Efficiency measures of the respective cases using the SAS OPTEX procedure 

Scenario D-efficiency A-efficiency G-efficiency Aver. Pred. S.ET 
1 96.4131 92.7265 88.1594 0.6359 
2 73.7596 45.2055 56.0612 1.4240 
3 94.4730 88.5766 87.9794 0.7084 
4 97.8945 95.6855 93.4326 0.5715 
5 98.9599 97.8991 93.6262 0.5219 
6 98.9729 97.9802 95.3087 0.5170 
7 100.00 I 100.00 100.00 0.5528 

tAver.Pred.S.E means Average Prediction Standard Error. 

From table 5.8 we note that among the incomplete block designs, case 6 is identified as 

the best design by all the criteria in comparison to the orthogonal design case 7. It is 

closely followed by case 5 which is marginally different from case 6. The worst design 

is case number 2 which on average loses about 40% of it.c::i efficiency when compared to 

the orthogonal design. Therefore, for the constrained casP.s, we would then select either 

case 6 or case 5 in the family of incomplete block designs depending on the resources 

available. The good performance of scenario 6 could be attributed to the fact that only 

one treatment was missing per block. Therefore, it has qualities close to those of RCBD. 

In addition, it is less complex as compared to other incomplete block scenarios. 

Evaluation using the Complexity criterion 

The evaluation of the scenarios using the complexity criterion( 3.16 and 3.17) was con­

sidered. The summary of computations and results are presented in table 5.9. 



Table 5.9: Complexity criterion computations for the different design cases 

Scenario � 

5 

2 1 

3 5.0003 
4 10 
5 10 
6 4.9997 
7 6 

rr lhl Ai 

12132.57 
0.109375 
7735.952 

776484.297 
922714.133 
15380.6947 

46656 

</>(A) 
0.1265 
1.1065 
0.3533 
0.1265 
0.04022 

0.0076995 
0.0 
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&om table 5.9, based on the complexity design criterion, we notice that the worst de­

sign is case 2(¢(A) = 1.1065) and the best design is case 6(¢(A) = 0.0076995) followed 

by design 5(0.04022) in the class of the constrained incomplete block designs. Design 7 

provides a. value of 0 since it is variance balanced. 

The results discussed under the oonstrained CMes illustrate the possibility of conduct­

ing on-farm trials under limited resources and restrictions. The researchers become aware 

of gains/ losses of information under these constraints. This would enable researchers to 

select a de8ign knowing well in advance how much is expected from such a design. 

5.3.3 The unconstrained scenario 

Four BIB designs, one cyclic design and one RCBD were generated using the design pro­

cedures in the statistical package Genstat for 7 treatments(A, B, C, D, E, F, and 0). The 

design matrix was obtained for each design. We denote the designs as BIBI, BIB2, BIB3, 

BIB4, CYCLIC and RCBD. Several criteria were applied in analyzing these designs which 

include complexity criterion, optimality criteria (A, D,and E), efficiency factor measures, 

conventional efficiency, mini-max variability criterion, etc. The design parameters are 

given in table 5.10. 
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Table 5.10: Summary of design parameters for the unconstrained case 

Design blocks Replications block size Lambda Total number Number 

b r k ). of expt" units of treatments 

BIBl 7 3 3 1 21 7 

B1B2 7 4 4 2 28 7 

BIB3 14 6 3 2 42 7 

BIB4 14 8 4 4 56 7 

CYCLIC 7 3 3 1 21 7 

RCBD 7 7 7 7 49 7 

* expt stands for experimental.

The data for these designs were analyzed using the statistical packages Genstat and SAS 

and the results based on the criteria of interest presented. As in constrained cases we 

also develop the Ctt matrix and we use it to obtain the necessary eigenvalues and other 

information pertaining to the design which formulates the basis to compare these designs. 

The resulu; from the various criteria on the designs are given in Tables 5.11 and 5.12. 

Table 5.11: Standard errors(s.e) of differences of means for each design and the relative 
efficiencies of the 5 designs to RCBD 

Case S.E Reml S.E Anova Efficiency factor conv.eff 
BIBl 0.663 0.715 0.778 0.8935 

BIB2 0.6571 0.6831 0.875 1.024 
BIB3 0.3789 0.4279 0.778 0.894 
BIB4 0.2681 0.2828 0.875 1.0244 

CYCLIC 0.9965 1.189 0.778 0.8939 
RCBD 0.3909 0.4 1 1.0 
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Table 5.12: Average variance, Optimality values and Complexity values for the designs 

Case Ave.vaI A-optimal value D-optimal E-optimal Complexity criterion 

BIBI 0.8573 2.5718 161.246 2.333 0 

BIB2 0.5714 1.7143 1838.27 3.50 0 

BIB3 0.4285 1.2854 10346.3 16.66 0 
BIB4 0.2857 0.8571 117649 16.67 0 

CYCLIC 0.8569 2.5707 161.6 2.334 0 

RCBD 0.2381 0.7143 44471.32 2.646 0 

Discussion of results 

From tables 5.11 and 5.12 we note the following: from the standard error of the differences 

of means using both Reml and Anova, BIB4 has the minimum value followed by BIB3 

and RCBD respectively. The maximum value is obtained in the cyclic design which shows 

that this design had the highest vaiiance in estimating treatment means differences. On 

the basis of the conventional efficiency factor, the two designs BIB2 and BID4 have values 

greater than 1 implying that they arc more efficient tha.n the RCBD based on this criterion. 

The other 3 IBD seem to lose about 11 % of the efficiency in comp&ison to the RCBD. 

On the criterion of the average variance of the estima.tes of treatment means differences 

according to Kshirsa.gar(1958), RCBD is the best design followed by BIB4 and then BIB3. 

Using the A-optirna.lity criterion, RCBD is the A-optimal design overall and in the class 

of the IBD the A-optimal design is BIB4 i.e. the design which minimizes the A-optimal 

value is the A-optimal design. The D-optimal design is BIB4. RCBD ranks second under 

this criterion and the worst is BIBI. The E-optimal design is BIB4. It is followed by 

BIB3, BIB2, RCBD, CYCLIC and the worst is BIBI. Since all these designs are variance 

balanced, the complexity criterion turns out to be O for all. 

The results from the unconstrained scenarios indicate that a. particular set of BIB designs 

can be used in on-farm trials where resource constraints do not exist. 
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Power analysis in unconstrained designs 

Using power analysis in the SAS PROC 1v1IXED procedure, we assessed the performance 

of designs given in Table 5.10. For illustration purposes, suppose a variance 2.5 among 

blocks(farms) a.nd a variance of 4 between plots within a given block(farm) are assumed. 

Under this condition the power in estimating the treatment contrast (1, 1, 1, -1, -1, -1, 0) 

was computed for each of the designs. This contra.st represents a comparison between 

treatments A, B, C versus D, E, and F. The results arc presented in Table 5.13 where 

obs denotes number of observed contrasts, ndf denotes numerator degrees of freedom, ddf 

denotes denominator degrees of freedom, alpha, denotes the significance level of the test, 

ncparm is the product of ndf and the observed F-value and fcrit denotes the critical value 

of F. The results show that design BIB2, BIB4 and RCBD have power values above 0.5. 

Table 5.13: Power analysis of the unconstrained designs in estimating a treatment contrast 

Design Obs ndf ddf ncparm alpha fcrit Power 
BIBl 1 1 8 3.04 0.05 5.31766 0.33627 
B1B2 1 1 15 4.57 0.05 4.54308 0.51607 
BIB3 1 1 22 3.84 0.05 4.30095 0.46576 
BIB4 1 1 36 5.12 0.05 4.11317 0.59568 

CYCLIC 1 1 8 1.80 0.05 5.31766 0.21990 
RCBD 1 1 36 5.01 0.05 4.11317 0.58645 

However, in estimating this particular contrast, the incomplete block design (BIB4) is 

more powerful than the randomized oomplete block design(RCBD). The cyclic design is 

not suitable for the estimation of this cont.rast and it has the least power value of 0.21990. 

Therefore, depending on the interest of the researcher, i.e the question to be answered, 

we can use power analysis to obtain the appropriate design in order to obtain the best 

information in answering the research questions. The procedure is to express the research 

question in from of a contra.st and we analyze the power of the designs in estimating that 

contra.st. For this particular contrast, BIB4 would be the most appropriate design since 

it has a power value greater than that for the RCBD. 
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In this section we consider two scenarios 1 and 4 under the constrained scenarios given in 

Table 5.4. We evaluate these designs on the missing plots criteria given in section 4.1. 

Scenario 1 

From Table 5.4 t = 6 treatments, k = 3 treatments per block, b = 10 blocks, r = 5 

replications of treatments and ,\ = 2. The average variance of a pair-wise treatment 

difference for the complete design is 

The efficiency of this design relative to a completely randomized design with the same 

number of treatments t and replications r is 

)..tjrk = 2 x 6/5 x 3 = 0.8 

For one missing observation we have Average Variance 

32o-2
=--

60 (5.11) 

with Relative efficiency to the complete design 

k 
Rel.E ff= {1 + (t _ l)(t..\ 

_ k) }- 1 = 0.9375. (5.12) 

With two missing observations, there are 5 different configurations: each with different 

eigenvalues to be considered. However, four of these configurations have sub-cases that 

arise depending on g, the number of treatments common to the pairs of blocks. 

These cc1Ses are: 

• I. Two observations in same block.

• II. Different treatments in separate blocks(no treatment common to the two blocks).
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• III. Different treatments in different blocks(and one of the two treatments common

to both blocks.

• IV. Both treatments are different and occur in both blocks.

• V .Two replicates of the same treatment lost.

The results of average variances and their corresponding relative efficiencies are presented 

in table 5.14. 

Table 5.14: The average variances and their corresponding relative efficiencies 

Case g value X x
"- Average Variance Relative efficiency Number of 

configurations 
g=O 0 0 0.566700 0.88240 30 

II g=l 1/6 1/36 0.567500 0.88110 
g=2 2/6 1/9 0.569998 0.87720 

III g=l 2/6 1/9 0.569998 0.87720 
g=2 1/6 1/36 0.567500 0.88110 
g=2 4/6 4/9 0.580520 0.86100 2 
g=3 3/6 1/4 0.574300 0.87063 

V g=l 4/6 4/9 0.580520 0.86130 
g=2 5/6 25/36 0.588960 0.84895 2 
g=3 1 1 0.600000 0.83300 3 

From the table(5.14) we notice that the best case is where two observations are lost from 

the same block and the blocks are arranged in such a way that, the number of treatments 

common to the pairs of blocks is zero. This is case I with g = 0 and it provides a relative 

efficiency of 0.8824 with an average variance of 0.5667. The minimum loss of efficiency is 

about 11%. However, the worst case occurs when two replicates of the same treatment 

are lost in a situation where the blocks are arranged in such a way that. tho number of 

treatments common to the pairs of blocks is 3 i.e g = 3. In this case1 such a situation 

leads to a minimum loss of efficiency of a.bout 16% with an average variance of about 0.6. 

This is case V with a g-value= 3. From Figure 5.5 we notice that on average there is a 

drastic fall in efficiency as we move down the different cases(g-values). The graph displays 
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a sharp fall/rise in efficiency for the g values between 3g2(case III with g=2) and 4g3(case 

IV with g=3) respectively. With case III and g-value=2 we lose 2 treatments in the same 

block with 2 treatments common to the pairs of the blocks. While for case IV and g­

value=2, we lo::,e 2 different treatments which occur in both blocks, and the blocks are 

such that there are 2 treatments common to the pairs of blocks. This is because for case 

N, g-value=2, there is a direct impact on the connectivity of the design and this makes 

the design less efficient thus a sharp fall in the resulting efficiency. From 4g3( case IV, g=4) 

to 5g3(case V, g=3) we experience a steady fall in the efficiency. With two treatments 

lost and both are different and occur in both blocks, g the number of treatments common 

to the pairs of blocks has a significant effect on the resulting efficiency. In this example 

we notice that for g=3 the efficiency registered is 0.87063 for case IV as compared to g=2 

which is 0.8610. Therefore the greater the number of treatments common to the pairs 

of block1;, the greater the efficiency that will be obtained in case of losing two different 

observations if they both occurred in both blocks in the original design. This can also be 

noticed from figure 5.6 of the average variance against cases(g values). This figure also 

portrays a similar picture in terms of the average variances obtained. 
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Figure 5.5: The relative efficiencies against the g-values in the various cases for scenario 
1. 
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Figure 5.6: Average variance of the different cases verses the g-va.lues of the cases for the 
loss of a.n observation for scenario 1 
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Scenario 4 

In this study we have t = 6 treatments, k = 3 treatments per block, b = 20 blocks, r = 10 

replications of treatments and .A = 4. The average variance of a pairwise treatment differ­

ence for the complete design is (2k/ >..t)a2 = a2 /4. Its efficiency relative to the completely 

randomized design with t treatments and r replications is >..t/rk = 0.8. 

For one missing observation we have Average Variance =0.257143a2 with Relative effi­

ciency to the complete design as 0.97222. 

For two missing observations, the results arc presented in table 5.15. 

Table 5.15: Average variances, relative efficiencies and Number of configurations for Sce­
nario 4 for 2 missing observations 

Case g value X x2 Average Relative Number of 
variance efficiency configurations 

g=O 0 0 0.264300 0.945895 60 
II g=l 1/6 1/36 0.264350 0.945720 9 

g=2 2/6 1/9 0.264545 0.945020 4 
III g=l 2/6 1/9 0.264545 0.945020 4 

g=2 1/6 1/36 0.264350 0.945720 4 
IV g=2 4/6 4/9 0.265332 0.942216 2 

g=3 3/6 1/4 0.264870 0.943860 6 
V g=l 4/6 4/9 0.265332 0.942216 1 

g=2 5/6 25/36 0.265930 0.940100 2 

g=3 1 1 0.266700 0.937400 3 

From the table 5.15, we notice that this situation is in agreement with the first scenario, 

i.e. the best case is where two observations are lost from the same block and the blocks

are arranged in such a way that the number of treatments common to the pairs of blocks 

is zero. 

However, in this design the number of blocks b and >. is increased and we notice a. great 

improvement in the relative efficiencies a.s compared to the original design. The minimum 

loss of efficiency in this design is about 6% for the worst case(V) with g = 3 as compared 

to the worst case in scenario 1 which has a minimum loss of efficiency of about 16% un-
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dcr a similar case. On the basis of the average variances, scenario 4 still has all values 

less than 0.27 as compared to the previous which has values ranging between 0.5 to 0.6. 

Therefore, on average scenario 4 is a better design than scenario 1 as far as missing plots 

are concerned. Figure 5. 7 is a. graph of the relative efficiencies of this scenario against the 

cases and it is not much different from the gTaph for scenario 1 in behavior. Similarly, 

Figure 5.8 also reveals a similar pattern as the average variance graph for scenario 1. The 

only difference is in the magnitude of the efficiencies and the average variances. 

0.946 

co 0.944 

! 
i 

.! 0.942 · 

� 
� 

i 0.940 

0.938 

,-. ...... ___ .. 
� ... 

, ......... _, ___ , 

- •. 
- ' 

..

: 
' '

.. 
\ 

1g0 2g1 2g2 3g1 3g2 4g2 4g3 591 5g2 5g3 

g-va/uea or cases

Figure 5.7: Relative efficiencies of the different ca.<,es versus the g-values of the cases for 

the loss of 2 observations in Scenario 4 
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Figure 5.8: Average variances of the different cases versus the g-values of the cases for 
the loss of 2 observations in scenario 4 

5.4.1 Discussion of the results 

In many on-farm trials there is a high chance of not having a.11 the observations available at 

the end of the trial and hence many missing observations. Therefore, in designing on-farm 

trials particularly in incomplete block designs we need to safe guard against case V which 

provides lower efficiency values i.e losing 2 replicates of the same treatment. The results 

reveal that the greater the number of treatments common to the pairs of blocks(g), the 

greater the loss in efficiency. Therefore, for a better design we would need to minimize the 

number of treatments common to the pairs of blocks in cases where two replicates of the 

same treatment are most likely to be missing. In cases where both treatments are different 

and occur in both blocks(ease IV), we would maximize the number of treatments common 

to pairs of blocks in order to obtain maximum efficiency in case of losing 2 observation.r:,. 

The best situation is case I where we lose different treatments in different blocks where 

neither treatment is common to the two blocks and the number of treatments common 

to the pairs of blocks(g) is zero. 
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This case provides for proper connectivity within the design and therefore treatment 

comparisons/estimates can still be obtained. Designs t,hat consist of blocks with many 

common treatments tend to average to very low efficiency values. 

This is why the worst designs would be where the missing observations are for the same 

treatment in similar blocks. In general, to obtain minimal loss in efficiency of a design a.s a 

mmlt of loss of treatments, we require an incomplete block design with as few treatments 

common to blocks as possible. 



5.5 Case study: Cowpea trials 
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A cowpea trial was conducted in two major cowpea growing districts in Eastern Uganda 

to investigate the performance of two promising cultivars with different pest management 

technologies. Pest infestation data were collected weekly throughout the study and yield 

data were collected at the end of the trials. 

The treatment combinations were; 

1. Variety Ebelat; at 60 x 20cm; no spraying(Tl)

2. Variety Ebelat; at 60 x 20cm; sprayed once a.t budding,flowering and podding(3

sprays a seaaon)(T2)

3. Variety Ebelat; at 60 x 20cm; sprayed weekly(8 sprays a season)(T3)

4. Variety Makerere; at 60 x 20cm; no spraying(T4)

5. Variety Makererc;at 60 x 20cm; sprayed once at budding,flowering and podding(3

sprays a se�on)(TS)

6. Variety Makerere;at 60 x 20cm; sprayed weekly{8 sprays a Secll:lon)(T6)

7. Farmers variety and method of management(T7)

A control treatment which is the farmers own management practice was included in the 

trial. Two incomplete randomized block trials and one Randomized complete block design 

trial were considered. Two in Pallisa district and one in Kumi district. The designs for 

the trials are presented in the Appendix B.3. 
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Analysis of designs based on the efficiency measure criteria 

Results for the performance of designs on the efficiency measures are presented in tables 

5.16 and 5.17. 

Table 5.16: Results for A-optimal, E-optimal a.nd D-optimal criteria 

Trial A-optimal E-optimal D-opt.imal
PalisaIBD 1.29075 4.2500 12132.57 
KumiIBD 30.1880 0.1667 0.000665 

RCBD 1.00000 6.0000 46656 

Table 5.17: Results for the complexity criterion, average variance, conventional efficiency 
a.nd efficiency factor

Trial Complexity Average Conventional efficiency 
criterion Variance efficiency factor 

Palisa!BD 0.1265 0.4303 0.917 0.8 
KumiIBD 3.6580 10.063 0.040 0.8 

RCBD 0.0000 0.0314 1.000 -

The optimality critcria(A-,E- and D-) reveal that RCBD is better followed by the IBD 

for Pallisa and Kumi is the worst. As seen in the table above, RCBD has the minimum 

value of the A-optimality(l.O), it has the maximum value of E-optimality(6.0) and has 

maximum value of D-optimality(46656). It is consistently followed by the Pallisa IBD. 

Similarly, with the complexity, Average variance and conventional efficiency merumres,they 

all identify RCBD rui the best design in these trials. 

Relative efficiency measures 

Three standacd errors of the treatment differences are computed, i.e maximum standard 

error of differences, the average standard error of differences, and the minimum stan­

dard error of differences. The relative efficiency of the incomplete block design to the 



randomized complete block design is then computed as 

Standard Error of differences for RCBD 
Rel.E J f i. = . ·

Standard Error of differences for IBD 

The summary of results is given in the table (5.18) below. 
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Table 5.18: Average variances, Standard errors(S.E) a.nd Relative efficiency values for the 
respective trials for estimating differences between means. 

Kumi IBD Pallisa IBD Pallisa RCBD Relative efficiency values 
Kumi IBD Pallisa IBD 

Maximum s.e 
of differences 0.4137 0.3325 
Average s.e 
of differences 0.4078 0.2843 0.2562 0.628 0.90116 

Minimum s.e 
of differences 0.3929 0.2147 
Average variance 
of differences 0.1664 0.08176 0.06575 0.3951 0.8042 

The relative efficiency values are less than 1 for the two case studies which implies that 

RCBD performed better than the two IBD. The disparity can be explained in the high 

level of missing observations that occurred in the two incomplete block designs. This was 

due to the long drought during the months of September to January 2001 in these regions. 

Other trials were destroyed by wild or domestic animals that roam around uncontrolled 

during the night. This exactly describes a. true scenario in on-fa.rm trials. 

In general, the randomi.,;ed complete block designs performed better in these trials. The 

efficiency measure criteria considered here show a greater difference in the two sets of 

designs. However I it should be noted that the incomplete block designs for these trials 

were not selected as the best from a set of all possible designs. This study considered 

an incomplete block design without assessing several designs that would even be more 

efficient for this experiment. This thesis covers several approaches that can be used for 

this design selection problem. In light of the costs involved in setting up the on-farm 
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triaJs, there is a significant difference in costs incurred in setting up a RCBD and an IBD. 

Therefore, on this basis, we can adopt an incomplete block design with highest efficiency 

values, and good parameters that can achieve high precision and yet restrict ourselves to 

the available resources. 



Chapter 6 

Conclusions 

This study gives some insight into the key benefits and weaknesses in the use of incomplete 

block designs in o n -farm trials. Several teclmiques are used in the evaluation of designs in 

order to obtain a proper incomplete block design solution for a given situation in on-farm 

trials. The proper use of these techniques is of key importance. This study illustrates a 

tradeoff between using incomplete block designs in place of randomized complete block 

designs. It shows that adequate information can be obtained without unduly large exper­

iments. 

The results reveal that designs that have a balance between control and standard treat­

ments a.re not always the best designs. This is because power estimations are clearly 

related to the design parameters. Thns with hypothesized parBJlleters, one is capable of 

assessing and obtaining the best design decisions for the many different scenarios that 

exist in on-farm trials. Although the approaches discussed here are theoretically complex, 

they depend on clear and simplified assumptions to enable one to make the best decisions 

regarding experimental designs for on-farm trials. 

6.1 Specific contributions 

The thesis adds to the state of knowledge about on-farm trials in the following ways: 

• A review of the literature about incomplete block designs reveals a clear benefit in

the use of these designs(Kempson & Clarke, 1997; Goulden, 1937; Harrington, 1948;

106 
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Pa.tterson & Hunter, 1983). The review shows a clear gain in efficiency attained by 

the use of incomplete block designs. 

• We review the different forms of incomplete block designs which adequately fit the

true on-farm situation, especially in the variability of farms which calls for unequal

block sizes and augmented desigru,(Das, 1958}, which accommodate the trials of

standard treatments versus control treatment.

• Analytical techniques exist for constrained and unconstrained on-farm trials. Han­

dling of missing data scenarios which is a major characteristic of on-farm trials has

been considered. Mixed models analysis today provides proper analysis of incom­

plete block design trials. And therefore rigid orthogonality in designs remains less

of a limitation as far as obtaining the results from a trial is concerned.

• The methods demonstrated allow for flexibility of designs and provide researchers

with information on the gain / loses of efficiency depending on the design used which

is mainly controlled by the available resources and conditions. Incorporation of the

appropriate covariance model is another important area of designing on-farm trials.

This enables a researcher to fully account for the variability in the results that a.re

obtained. Consideration of several efficiency criteria a.nd measures for constrained

and unconstrained designs can lead to slightly different conclusions. This confirms

that the use of augmented designs and all other constrained designs can be of great

help to on-farm trials especially since they fit the on-farm setting perfectly.

• In comparing incomplete block desigru, to the randomized complete block design, the

results reveal in general that the RCBD is better. However the IBD have efficiency

values close to that of the RCBD and thus could be useful in on-farm trials given the

comperu,ation in the costs involved in having full blocks in relation to incomplete

blocks. The power calculations for the performance of designs provides a concise

approach to comparisons of all forms of designs.
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The key question here was how to evaluate the efficiency of incomplete block designs in 

relation to randomized complete block designs. The methods considered reveal that in 

several cruses the IBO are close to being as efficient as RCBD. In addition to reducing 

the time spent on complete blocks, there is a big saving in the costs involved in setting 

up complete blocks. Therefore, on the ba5is of this argument, incomplete block designs 

are capable of providing design solutions in on-farm trials particularly where randomized 

complete block is hard to implement, either by nature of land, resources, limitations in 

complete blocking schemes, etc. 

Researchers have been particularly reluctant about the application of IBD to on-farm 

trials due to the complexity involved in designing, laying out and analyzing these designs. 

However, with the emergence of computing services, these problems can fully be addressed 

today. Adoption of randomized complete block design, results in an increa.se in error vari­

ance due to large_ block sizes in on-farm trials (Das and Giri, 1979). In environments 

where considerable variation occurs over the testing ground, smaller blocks are most suit­

able and this renders the incomplete block designs most suitable. Although on-farm tests 

in incomplete blocks vary in their effectiveness in answering research questions, trials have 

clearly indicated that incomplete blocks are a necessary design for on-farm trials. 
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6.2 Further research 

Vife have looked at the different incomplete designs, and considered criteria that can be 

used to select an optimal and efficient design from a. cla..c,s of all possible designs. How­

ever, these are standard criteria and each of them uses an independent method of selec­

tion depending on what the aim of the experiment maybe or the interest of a researcher. 

Therefore, more research will be required in the area. of how to integrate all the different 

approaches in order to have a standard method catering for all the general selection meth­

ods. This would reduce the amount of work involved in the selection of the best design. 

On-farm trials are very unpredictable due to the nature and lack of control of several key 

factors in these trials. Factors such rui natural catastrophes, destruction by wild animals 

and farmer negligence in case of farmer-managed trials. Therefore, in order to achieve 

genuine and acceptable results, both the farmer and researcher need to give all their pos­

sible input in order for these trials to succeed. Even if proper or efficient designs arc 

selected for these trials, the final results and efficiency will depend on what type or kind 

of data is obtained from these trials. In summary, there is a considerable gain in the use 

of incomplete block designs for on-farm trials. 

In some cases the difference between the RCBO and IBO is very minimal, thereby prompt­

ing the use of IBO. At times the nature of the field of trial will in no way call for the use 

of RCBO. In such cases therefore we need the incomplete block designs. In on-farm trials 

this is normally the case as illustrated in the different scenarios. 
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Appendix A 

Designs considered 

A.1 Design matrix for the complexity criterion ex-
amples 

For design 1 

Y11 1 1 0 0 1 0 0 

Y21 1 0 1 0 1 0 0 µ 

Ys1 1 0 0 1 1 0 0 T1 

Y12 1 1 0 0 0 1 0 T2 

Y22 - 1 0 1 0 0 1 0 T3 + Eij (A.1) 

Y32 1 0 0 1 0 1 0 Ji 

Yt3 1 1 0 0 0 0 1 12 

Y23 1 0 1 0 0 0 1 is 

y33 1 0 0 1 0 0 1 

For design 2. 

1 1 0 0 1 0 0 Y11 

Y21 1 0 1 0 1 0 0 
T1 

1 0 1 0 0 1 0 
T2 

Y22 
T3 +ciJ (A.2) 

y32 1 0 0 1 0 1 0 

1 1 0 0 0 0 1 
Ji 

Yl3 

1 0 0 1 0 0 1 Y33 

h 
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A.2 RCBD and IBD trial design layout

121 

Treatment are listed as 1,2,3,4,5,6,7 denoting A,B,C,D,E,F,G respectively in the designs. 

A.2.1 Randomized complete block design 

Treatment combinations on each unit of the design for RCBD 

Blocks 

I 5 5 5 5 1 3 

3 6 4 4 6 6 1 

7 2 7 3 7 3 7 

4 1 2 6 3 5 4 

2 4 I 2 2 4 2 

5 7 6 1 4 7 5 

6 3 3 7 1 2 6 

A.2.2 Incomplete block design

Treatment combinations on each unit of the design for IBD 

Blocks 

1 2 6 6 7 3 5 

7 7 2 5 4 4 3 

3 4 7 1 3 6 2 

6 1 5 4 5 2 1 

A.3 Genstat analyses based on standard errors

GenStat Release 4.21 (PC/Windows XP) 

Randomized complete Blocks example 

04 October 2002 17:57:14 

Treatment !actors are listed in the order: Treat1 

model[dispersion=1)yield3 fit farm3 + Treat3 

141 model[dispersion=1]yield3 
142 fit farm3 + Treat3 

Regression Analysis 



Response variate: yield3 
Fitted terms: Constant + far�3 + Treat3 

•*� Swnmary of analysis ••• 

d.f. 5.B. m.s. v.r.
Regression 12 0. o. 0.00
Residual 36 0. 0.
Total 48 o. 0. 
• MESSAGE: ratios are based on dispersion parameter with value 1

Standard error of observations is fixed at 1.00 

Estimates cf parameters 

estimate s.e. t (•) 
Constant 0.000 0.515 0.00 
f.um3 2 0.000 0.535 0.00 
farm3 3 0.000 0.535 0.00 
farm3 4 0.000 0.535 0.00 
.farm3 5 0.000 0.535 0.00 
farm3 6 0.000 0.535 0.00 
farm3 7 0,000 0.535 0.00 
Treat3 2 0.000 0.535 0.00 
Treat3 3 0.000 0.535 0.00 
Treat3 4 0.000 0.535 o.oo

Treat3 5 0.000 0.535 0.00 
Treat3 6 0.000 0.535 0.00 
Treat3 7 0.000 0.535 0.00 
• MESSAGE: s.e.s are based on dispersion parameter with value 1

Parameters for factors are differences compared vith the reference 
level: 

Factor Reference level 
farm3 1 

Treat3 1 

Bala.need incomplete block design example 

model(dispersion=1]yield1 fit blk + treat4 

164 model(dispersion=1]yield1 
165 fit blk + treat4 

Regression Analysis 

Response variate: yieldl 
Fitted terms: Constant + blk + treat4 

••• Summary of analysis ••• 

Regression 
d. f.

12 
s.s.

0, 
m.s.

0. 
v.r. 

0.00 
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Residual 15 0. 0.
Total 27 o. 0. 
• MESSAGE: ratios are based on dispersion parameter with value 1

Standard error of observations is tixed at 1.00 

Estimates of parameters 
estimate s.e. t (•) 

Constant 0.000 0.681 0.00 
blk 2 0.000 0.756 0.00 
blk 3 0.000 0.756 o.oo

blk 4 0.000 0.756 0.00 
blk 5 0.000 0.756 o.oo

blk 6 0.000 0,756 0.00 
blk 7 0.000 0.756 0.00 
treat4 2 0.000 0.756 0.00 
treat4 3 0.000 0.756 0.00 
treat4 4 0.000 0.756 0.00 
treat4- 5 0.000 0.755 0.00 
treat4 6 0.000 0.756 0.00 
treat4 7 0.000 0.756 0.00 
• MESSAGE: s.e.s are based on dispersion parameter vith value 1

Parameters tor factors are differences compared Yith the reference 
level: 

Factor 
blk 

treat4 

Reference level 
1 
1 

Example tor Unbalanced incomplete block/!artn design 1 

171 model[dispersion=l)yield1 
172 fit farm+ treatment! 

Regression Analysis 

Response variate: yield! 
Fitted terms: Constant + farm + treatment1 

••• S=ary ot analysis *** 

Regression 
Residual 
Total 

<Lf. 
11 
16 
27 

6,S, 

o. 

0. 
0. 

Ill, 6, 

0. 
0. 
o. 

v.r.

o.oo

• MESSAGE: ratios are based on dispersion parameter vith value 1

Standard error of observations is tixed at 1.00 

*** Estimates ot parameters ••• 
estimate 

Constant 
farm 2 
tann 3 

0.000 
0 .000 
0.000 

. s .e. 
0.715 
0.946 
0.810 

t(•) 

0.00 
0.00 
0.00 
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:farm 4 0.000 0. 786 . 0.00 

farm 5 0.000 0.769 0.00 

fa:m 6 0.000 0.734 0.00 

treatment! 2 0.000 0.727 o.oo

treatment! 3 0.000 0.730 0.00 

treatment1 4 0.000 0.765 0.00 
treatment1 5 0.000 0.746 o.oo

treatment! 6 0.000 0.746 o.oo

treatmet1tl 7 0.000 0.736 0.00 

• MESSAGE: s.e.s are based on dispersion parameter vith vaiue 1

Parameters for factors are differences compared Yith the reference 
level: 

Factor 
f= 

Reference level 
1 

treatment! 
rkeep V = COVIT 

print covv 

1 

173 rkeep v= covv 
174 print covv 

Constant 
tarrn 2 
ta.r111 3 
fal'lll 4 
Cann 5 
!ann 6

treatnrentl 2 
trQatmentl 3 
treatment! 4 
treat111entl 5 
treatmentl 6 
treatment! 7 

fum 6 
treatmentl 2 
treatmentl 3 
treatment! 4 
treatment! 5 
treatment! 6 
treatmentl 7 

covv 

0 .5110 
-0.3404
-0.2877
-0.3563
-0.3515
-0.3363
-0.2659
-0.2671
-0.1820
-0.1649
-0.1649
-0.1781

Constant 

0.5390 
0.0055 
0.0035 

-0.1082
-0.1117
-0.1117
-0.0963

0.8947 
0.4149 
0.4480 
0,4668 
0,4469 
0.0130 
0.0083 

-0.21 54
-0.2237
-0.2237
-0.1037

farm 2 

0.5292 
0.2687 
0.2654 
0.2468 
0.2468 
0.2666 

taro 6 treatment1 2

treatmentl 6 
treatroentl 7 

0.5659 

0.2759 0.54t0 

treatment! 6 treatmentl 7 

0.6565 
0.3753 
0.3904 
0.3852 

-0.0665
-0.0703
-0 .1740
-0.1037
-0.1037
-0.1641

farm 3 

0.5327 
0.2807 
0.2479 
0.2479 
0:2676 

treatment! 

Example for Unbalanced incomplete block desi� 2 

0.6182 
0.4-077 0.5914 
0.3992 0.-4071 
0.0081 0.0502 
0.0607 0.0043 

-0.0513 -0.1124
-0.1120 -0.1167
-0.1120 -0.1167
-0.0938 -0.0976

farm 4 :farm 5 

0.5845 
0.3038 0.5559 
0.3038 0.3059 
0.2935 O.Z759

3 treatment! 4 treatment! 
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167 roodel[dispersion=1]yield2 
168 fit farm2 + treat2 

Regression Analysis 

Response variate: yield2 
Fitted terms: Constant + farm2 + treat2 

Summary of analysis 

d.f. s .a. m.s.

Regression 10 0. 0.

Residual 17 0. 0.

Total 27 0. o.

v.r.
0.00

• MESSAGE: ratios are based on dispersion parueter with value 1

Standard error of observations is fixed at 1.00 

••• Estimates of parameters ••• 
estimate s.e. t (•) 

Constant 0.000 0. 707 0.00 

farm2 2 0.000 0.887 0.00 

farm2 3 0.000 0.758 0.00 

farm2 4 0.000 0. 737 0.00 

farm2 5 0.000 0.735 0.00 

treat2 2 0.000 0. 707 0.00 

treat2 3 0.000 0. 707 0.00 

treat2 4 0.000 0. 741 0.00 

treat2 5 0.000 0.741 0.00 

treat2 6 0.000 0. 761 o.oo

treat2 7 0.000 0.761 0.00 

• MESSAGE: s.e.s are based on dispersion parameter with value 1

Parameters for factors are differences compared with the reference 
level: 

Factor Reference level 
farm2 1 

treat2 1 
rkeep v=coval 

prin-c cova1 
169 rkeep v=coval 
170 print coval 

covat 

Constant 0.5000 
farz;:i2 2 -0.3333
farm2 3 -0.3333
farn2 4 -0.3333
farm2 5 -0.3333

treat2 2 -0.2500
treat2 3 -0.2500
treat2 4 -0.1667

0. 7876 
0.4121 
0.4501 
0.4712 
0.0000 
0.0000 

-0.1969

0.5745 
0.3783 0.5429 
0.3805 0.4121 
0.0000 0.0000 
0.0000 0.0000 

-0.1030 -0.1125
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treat2 5 
treat2 6 
treat2 7 

treat2 2 
treat2 3 
treat2 4 
treat2 5 
treat2 6 
treat2 7 

treat2 7 

-0.1667
-0.1667
-0.1667

Constant 

0.5000 
0.2500 
0.2500 
0.2500 
0.2500 
0.2500 

treat2 2 

0.5788 

treat2 7 

-0.1969 -o .1030
-0.2117 -0.0545
-0.2117 -0.0545

farm2 2 farm2 3 

0.5000 
0.2500 0.5492 
0.2500 0.2992 
0.2500 0.3029 
0.2500 0.3029 

treat2 3 treat2 4 

Standard versus control treatment example output 

-0.1125
-0.1210
-0.1210

farm2 4 

0.5492 
0.3029 
0.3029 

treat2 5 

FACTOR (modify=yes;nvalues =35;levels=7) block FACTOR 
[modify=ye$;nvalues�35;levels=8] treat variate(values�3S(O)]yield 
VARIATE (nvalues=35) yield 

model(dispersion=l)yield fit block+ treat

Regression Analysis 
Response variate: yield 

Fitted terms: Constant + block+ treat 

S\llllJl\ary of analysis 

d.f. s.:s. m.s.
Regression 13 0. o.

Residual 21 0 0
Total 34 0. 0.

*"'* Estimates o:f parameters .....

estimate 
Constant 0.000 
block 2 0.000 
block 3 0.000 
block -4 0.000 
block 5 0.000 
block 6 0.000 
block 7 0.000 
treat 2 0.000 
treat 3 0.000 
treat 4 0.000 
treat s 0.000 
treat 6 0.000 
treat 7 0.000 
treat 8 0.000 

v.r.
0,00

s.e.

0.645 
0.667 
0.667 
0.667 
0.667 
0.667 
0.667 
0.745 
0.745 
0.745 
0.745 
0.745 
0.745 
0.645 

• MESSAGE: s.e.s are based on dispersion parameter vitb

t(•) 

o.oo

0.00 
o.oo

o.oo

0.00 
0.00 
0.00 
0.00 
o.oo

o.oo

0.00 
0.00 
0.00 
0.00 

value 1

126 

-0.1178
-0.1579
-0.1579

farm2 5 

0.5788 
0.3288 

treat2 6 



ParaJDeters for factors are differences compared with the reference 
level; 

Factor Reference level 
block 1 
treat 1 

NB: The standard errors(s.e.) for treat 2 to treat 8 are 
respectively the s.e. 's for 
the treatment comparison B-A, C-A, D-A, E-A, F-A, and G-A. 

rkeep v=cova print cova 

41 rkeep v=cova 
42 print cova 

Constant 
block 2 
block 3 
block 4 
block 5 
block 6 
block 7 
treat 2 
treat 3

treat 4 
treat 5 
treat 6 
treat 7 
treat 8 

block 6 
block 7 
treat 2 
treat 3 
treat 4 
treat 5 
treat 6 
treat 7 
treat 8 

treat 5 
treat 6 
treat 7 
treat 8 

cova 

0.4167 
-0.1667
-0.2222
-0 .1667
-0.2222
-o .1667
-0.2222
-0.2778
-0.2222
-0.2778
-0.2222
-0.2222
-0.2778
-0.2500

Constant 

0.4444 
0.2222 
0.0000 

-0 .1111

-0.0556
-o .1111
-0.0556
-0,0556
-0.0556

block 6 

0.5556 
0.2778 
0.2778 
0.2778 

treat 5 

0.444� 
0.2222 
0.2222 
0.2222 
0.2222 
0.2222 

-0.0556
-0.1111
-0.0556
-0.0556
-0.1111
0.0000

-0.0556

block 2 

0.4444 

0.0556 
0.0000 
0.0000 

-0.0556
-0.0556
0.0556
0.0000

block 7 

0.5556 
0,2778 
0.2778 

treat 6 

0.4444 

0.2222 
0.2222 
0.2222 
0.2222 
0.0556 

-0.0556

0.0556
0.0000

-0.0556
0.0000
0.0000

block 3 

0.5556 
0.2778 
0.2778 
0.2778 
0.2778 
0.2778 
0.2778 

treat 2 

0.5556 
0.2778 

treat 7 

0.4444 
0.2222 
0.2222 
0.2222 

-0.0556
-0.0556
0.0000

-0.1111
-0.1111
-0.0556
-0.0556

block 4 

0.5556 
0.2778 
0.2778 
0.2778 
0.2778 
0.2778 

treat 3 

0.4167 

treat 8 

The covariance matrix cova is given above and we can use the 
results from the matrix to obtain the standard errors of other 

0.4444 
0.2222 
0.2222 
0.0000 

-0.0556
0.0556

-0.0556
0.0000
0.0556
0.0006

block 5 

0.5556 
0.2778 
0.2778 
0.2778 
0.2778 

treat 4 
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Appendix B 

Examples of designs considered 

B.l Constrained cases 

Design scenario 1 

Blocks 1 2 3 4 s 6 7 8 9 10 

Plot 1 C A A C E C B A E E 

plot 2 D B F D D E F B 8 A 

plot 3 A F D 8 F F C E D C 

plot 4 0 0 0 0 0 0 0 0 0 0 

Design scenario 2 

Block 1 2 3 4 5 6 

plot 1 0 0 0 0 0 0 

plot 2 A B C D E F 

Design scenario 3 

Plot 1 A A A A A 8 8 B 8 C C C D D E 

Plot 2 B C D E F C D E F D E F E F F 

Plot 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Design scenario 4 

Elk 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

plt1 A A A A A A A A A A B B 8 8 8 B C C C D 

plt2 8 B B B C C C D D E C C C D D E D D E E 

plt3 C D E F D E F E F F D E F E F F E F F F 

plt4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 

Design scenario 5 
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Block 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

plt 1 A A A B B C B A A A A A A B A 

plt 2 B B B C C D C B C C D B B D C 

plt 3 C C C D D E E E D D E D D E E 

plt 4 D E F E F F F F E F F E F F F 

plt 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Design scenario 6 

block 1 2 3 4 5 6 

plt 1 A A A A B A 

plt 2 B B B B C C 

plt 3 C C C D D D 

plt 4: D D E E E E 

plt 5 E F F F F F 

plt 6 0 0 0 0 0 0 

Design scenario 7 RCBD 

Block 1 2 3 4 5 6 

PLT 1 A A A A A A 

PLT 2 B B B B B B 

PLT 3 C C C C C C 

PLT 4 D D D D D D 

PLT 5 E E E E E E 

PLT 6 F F F F F F 

PLT 7 ·O 0 0 0 0 0 
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B.2 Unconstrained designs 

Treatment combinations on each unit of the design 

BIBD1 

Blocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Units 

1 4 6 2 2 4 4 1 1 3 4 3 1 2 6 

2 7 8 3 7 3 2 6 8 7 8 5 7 7 2 

3 2 7 4 5 7 5 5 3 1 6 6 4 6 1 

4 8 5 1 3 6 8 4 5 8 3 2 5 1 8 

Treatment factors are listed in the order: Treatments 

BIBD2 

Blocks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Units 

1 1 1 2 1 2 3 4 2 3 1 2 1 1 1 

2 5 2 3 3 4 5 6 3 4 4 5 3 2 2 

3 7 6 7 4 5 6 7 4 5 5 6 6 4 3 

4 8 8 8 8 8 8 8 6 7 6 7 7 7 5 

Treatment factors are listed in the order: Treatments 

CYCLIC DESIGN 

Blocks 1 2 3 4 5 6 7 8 

Units 

1 2 5 2 5 1 3 5 3 

2 8 8 4 7 7 2 3 8 

3 6 4 8 3 5 6 2 1 

4 7 6 1 4 6 4 1 7 

RCBD 

Blocks 1 2 3 4 5 6 7 8 9 10 

Units 

1 3 8 8 2 6 8 7 5 2 1 

2 4 4 1 5 7 3 4 2 8 6 

3 1 3 3 8 5 1 1 8 6 8 

4 2 5 7 1 4 7 2 7 3 7 

5 5 1 6 7 1 6 5 3 7 5 

6 6 6 5 3 8 4 3 4 5 2 

7 8 2 2 6 2 2 6 1 1 4 

8 7 7 4 4 3 5 8 6 4 3 
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B.3 Design layouts for the Numerical example

Plot Blkl Blk2 Blk3 Blk4 Blk5 Blk6 

1 T1 T1 Tl Tl Ti T2 

2 T2 T2 T2 T2 T3 T3 

3 T3 T3 T3 T4 T4 T4 

4 T4 T4 TS TS TS TS 

s TS T6 T6 T6 T6 T6 

6 T7 T7 T7 T7 T7 T7 

Plts Blk1 Blk2 Blk3 Blk4 BlkS Blk6 Blk7 Blk8 Blk9 Blk10 

i Tl Ti Tl Tl Ti T2 T2 T2 T3 T3 

2 T2 T2 T3 T4 TS T3 T4 T5 T4 T4 

3 T3 T4 TS T6 T6 T6 TS T6 TS T6 

4 T7 T7 T7 T7 T7 T7 T7 T7 T7 T7 

The Letter T stands for treatment and the treatments numbers 1, 2, 3, 4, 5, 6, 7 

correspond to the various alphabetical letters A, B, C, D, E, F, 0 in that order. 

Layout of the On-farm trials in Uganda(Pallisa district)RCB design 

Plots Blk1 Blk2 Blk3 Blk4 BlkS Blk6 

1 T3 T4 TS T6 Tl T2 

2 T2 T7 T4 T2 TS T7 

3 T4- T2 T3 T7 T6 Tl 

4- T6 T3 T1 T3 T2 TS 

s T1 TS T7 T4 T3 T6 

6 TS T6 T2 TS T7 T4 

7 T7 T1 T6 T1 74 T3 



Appendix C 

SAS programmes 

C.1 The SAS code for example on efficiency mea­

sures 

data can; 

do treat=! to 7; 

do blk=l to 6; 

output; 

end; 

end; 

proc optex data;can seed= 23568 coding=orth; 

class treat blk; 

model treat blk; 

generate n=24; 

run; 
,output out=bibd blockname=blk; 

proc print data=bibd; 

run; 

C.2 The SAS codes for examples on Power analysis

The designs data and how it was set up is presented in Table C.l. 

BIBDl 

data bibdl 7; 

input blk plot trt yieldl; 

datalines; 

(DESIG� SEATS HERE) 
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run; 

proc mixed noprofile; 
class blk plot trt; 
model 
yieldl=blk plot trt; 
parms(4)/noiter; 
model yieldl=trt; 
random blk; 
parms(2.5)(4)/noiter; 
contrast 'trt x lin' trt 1 1 1 -1 -1 -1 O; 
ods ouput contrast=nc; 
data pwr; ndf..,1; 
ddf=8; 
f=-3.04; 
alpha=0.05; 
ncparm=ndf•f; 
fcrit=finv(l-alpha,ndf,ddf,0); 
power=1-probf(fcrit,ndf,ddf,ncparm); 
proc print; 
var·ndf ddf 
ncparm alpha fcrit power; 
run; 

BIBD2 

data bibd27; 

input blk2 plot2 trt2 yield2; 

da.talines; 

(DESIGN SEATS HERE) 

run; 

p roc mixed noprofile; 
class blk2 plot2 trt2; 
model yield2=blk2 plot2 trt2; 
parms(4)/noiter; 
model yield2=trt2; 
random blk2; 
parms(2.5)(4)/noiter; 
contrast 'trt x lin' trt2 1 1 1 -1 -1 -1 O; 
ods output contrast=nc; 
run; 
data pwrd; 
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ndf=1; 
ddf=15; 
f=4.57; 
alpha=0.05; 
ncparm=ndf*f; 
fcrit=finv(l-alpha,ndf,ddf,O); 
power=l-probf(fcrit,ndf,ddf,ncparm); 
proc print; 
var ndf ddf ncparm alpha fcrit power; 
run; 

BIBD3 

data bibd37; 
input bllk2 pllot2 trrt2 yield3; 
datalines; 
(DESIGN SEATS HERE) 

run; 
proc mixed noprofile; 
class bllk2 pllot2 trrt2; 
model yield3=bllk2 pllot2 trrt2; 
parms (4)/noiter; 
model yield3=trrt2; 
random bllk2; 
parms(2.5)(4)/noiter; 
contrast 'trt x lin' trrt2 1 1 1 -1 -1 -1 O; 
ods output contrast=nc; 
run; 

data pwrd; 
ndf=l; 
ddf=22; 

f=3.84; 
alpha=O. 05; 
ncparm=ndf*f; 
fcrit=finv(l-alpha,ndf,ddf,O); 
power=1-probf(fcrit,ndf,ddf,ncparm); 
proc print;\\ 
var ndf ddf ncparm alpha fcrit power; 
run; 

BIBD47 

data bibd47; 
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input bllk4 pllot4 trrt4 yield4; 

datalinea; 
(DESIGN SEATS HERE) 

run; 
proc mixed noprofile; 
class bllk4 pllot4 trrt4; model yield4=bllk4 pllot4 trrt4; 
parms(4)/noiter; 
model yield4=trrt4; 
random bllk4; 
parms(2.5)(4)/noiter; 
contrast 'trt x lin' trrt4 1 1 1 -1 -1 -1 O; 
ods output contrast=nc; 
run; 
data pwrd; 
ndf::1; 
ddf=36; 
f=S.12; 
alpha=0.05; 
ncparm:ndf•f; fcrit=finv(l-alpha,ndf,ddf,O); 
power=l-probf(fcrit,ndf,ddf,ncparm); 
proc print; 
var ndf ddf ncparm alpha fcrit power; 
run; 

Cyclic 

data bibdcyc; 
input blcy plcy trey yieldcy; 
datalines; 
(DESIGN SEATS HERE 

run; 
proc mixed noprofile; 
class blcy plcy trey; 
model yieldcy=blcy plcy trey; parms(4)/noiter; 
model yieldcy=trcy; 
random blcy; 
parms(2.5)(4)/noiter; 
contrast 1 trt x lin' trey 1 1 1 -1 -1 -1 O; 
ods output contrast=nc; 
run; 
data p�rd; 
ndf=l; 
ddf=8; 
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f=1.8; 
alpha=O. 05; 
ncparm=ndf•f; 
fcrit=finv(l-alpha,ndf,ddf,0); 
poyer=l-probf(fcrit,ndf,ddf,ncparm); 
proc print; 
var ndf ddf ncparm alpha fcrit power; 
run; 

RCBD 

data rcbdc; input blrcbd plrcbd trrcbd yieldrcbd; 
datalines; 
(DESICN SEATS HERE) 
run; 
proc mixed noprofile; 
class blrcbd plrcbd trrcbd; 
model yieldrcbd=blrcbd plrcbd trrcbd; 
parms(4)/noiter; 
model yieldrcbd=trrcbd; random blrcbd; 
parms(2.5)(4)/noiter; 
contrast 'trt x lin' trrcbd 1 1 1 -1 -1 -1 O; 
ods output contrast=nc; 
run; 

data pwrd; ndf=1; 
ddf==36; 
f=5.01; 
alpha=0.05; 
ncparm=ndf•f; 
fcrit=finv(1-alpha,ndf,ddf,O); 
po�er=i-probf(fcrit,ndf,ddf,ncparm); 
proc print; 
var ndf ddf ncparm alpha fcrit power; 
run; 
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Appendix D 

Data for unconstrained scenario 

designs 

Table D.l: Data table for the Unconstrained scenario designs. Designs are listed in the 
order of block, plot, treatment, and yield. 
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BIBD17 BIBD27 BIBD37 818D47 Cvclic RCBD 

1 l 2 5.2 I 1 5 9.2 1 l 6 6.64 l 1 2 5.97 1 1 6 6.4 2 l 

2 I l 4.5 2 1 2 6.1
2 1 5 7.5 

3 l 
2 l 4 4.l 2 1 1 3.8 

3 1 7 4.8 3 1 I 4.63 4 1 

3 1 7 5.2 3 1 6 6.4 4 1 5 6.65 4 1 l 4.8 3 I 5 6.4 5 I 

5 l 3 3.9 5 I 4 5.9
4 I 5 9.8 

6 1 
4 1 I 4.9 4 I 5 8.1 

6 l 4 4.2 6 1 5 8.4 7 l

5 I 7 4.3 5 l 5 7.9 7 1 2 6.2 7 I 5 8.1 5 1 4 5.1 1 2 

8 l 4 5.2 8 l 6 6.7
6 I 7 4.6 

2 2 
6 l 5 6.5 6 l 3 4.2 

9 1 2 6.8 9 l 6 7.1 3 2 

7 I 3 5.2 7 I 4 6.8 10 1 4 5.1 10 l 4 5.6 7 1 2 5.9 4 2 

1 2 7 3.4 
11 l 5 7.7 11 1 2 4.8

1 2 2 5.9 
5 2 

1 2 6 6.9 
12 I 1 4.7 12 1 4 5.2 6 2 

2 2 5 9.1 2 2 7 5.5 131 5 7.5 13 l 3 4.7 2 2 7 3.6 7 2 

3 2 6 7.5 3 2 4 5.6 
14 I 5 8.1 14 I 6 6.4

3 2 6 5.4 
1 3 

1 2 I 5.6 1 2 1 4.9 2 3 
4 2 5 7.9 4 2 6 6.8 2 2 7 3.9 2 2 4 4.6 4 2 2 6.3 3 3 

5 2 2 4.8 5 2 1 5.2 
3 2 2 4.l 3 2 4 5.2

5 2 6 8.1 
4 3 

4 2 6 7.l 4 2 3 5.3 5 3 
6 2 6 6.2 6 2 6 7.2 5 2 2 6.4 5 2 3 4.2 6 2 3 4.9 6 3 

7 2 4 6.6 7 2 6 6.6 
6 2 5 7.6 6 2 2 5.5

7 2 4 3.9 
7 3 

7 2 4 5.6 7 2 2 4.l I 4 
1 3 1 4.5 1 3 4 5.5 8 2 6 5.4 8 2 7 4.8 1 3 7 6.3 2 4 

2 3 2 5.4 2 3 4 4.l 
9 2 1 4.3 9 2 7 5.5

2 3 4 7.3 
3 4 

10 2 3 4.2 10 2 I 5.4 4 4 
3 3 4 5.4 3 3 5 6.6 11 2 3 3.9 11 2 5 7.6 3 3 l 5.1 5 4 

4 3 7 4.9 4 3 7 5.3
122 5 7.9 12 2 3 4.6

4 3 3 4.9 
6 4 

13 2 3 5.1 13 2 5 7.1 7 4 

5 3 3 3.7 5 3 2 6.1 14 2 6 6.3 14 2 2 6.1 5 3 3 5.3 1 5 

6 3 3 5.1 6 3 1 3.3 
1 3 4 5.1 1 3 4 4.8

6 3 1 3.8 
2 5 

2 3 3 3.3 2 3 5 7.6 3 5 

7 3 l 4.7; 7 3 3 6.6 3 3 I 5.5 3 3 7 4.3 7 3 1 5.2; 4 5 

1 4 3 4.3 
4 3 7 4.6 4 3 4 4.3 5 5 

5 3 6 6.7 5 3 5 7.3 6 5 

2 4 2 4.6 6 3 2 4.9 6 3 7 4.9 7 s 

3 4 l 4.5 
7 3 7 5.1 7 3 1 5.3 1 6 
8 3 3 4.6 8 3 I 4.1 2 6 

4 4 2 6.2 9 3 6 6.4 9 3 4 5.8 3 6 

5 4 3 3.9 
10 3 7 5. 1 10 3 7 5.1 4 6 
II 3 1 4.4 11 3 7 4.8 5 6 

6 4 7 4.8 12 3 4 5.5 12 3 7 4.2 6 6 

7 4 2 6.1; 
13 3 2 6.5 13 3 l 4.3 7 6 
14 3 7 3.8; 14 3 3 4.7 I 7 

l 4 3 5.l 2 7 
2 4 6 6.6 3 7 
3 4 6 5.8 4 7 
4 4 2 5.7 5 7 
5 4 6 6.4 6 7 
6 4 I 5 7 7 
7 4 6 6.7 
8 4 3 5.3 
9 4 2 5.4 
10 4 5 6.8 
11 4 3 4.9 
12 4 5 8.3 
13 4 6 5.3 
14 4 7 5.1 ; 

Table D. l. Data table for the Unconstrained scenario designs. Designs are listed in the order of block, Plot, Treatment, 
and Yield. 
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