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Abstract

The Frobenius group is an example of a split extension. In this dissertation we study and describe

the properties and structure of the group. We also describe the properties and structure of the

kernel and complement, two non-trivial subgroups of every Frobenius group. Examples of Frobenius

groups are included and we also describe the characters of the group. Finally we construct the

Frobenius group 292 : SL(2, 5) and then compute it’s Fischer matrices and character table.
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1

Preliminaries

1.1 Introduction

Generally speaking, any group G which contains a given groupH as a subgroup is called an extension

of H. Here we consider the case in which H is a normal subgroup of G.

A group G having a normal subgroup N can be factored into N and G/N. The study of extensions

involves the reverse question : Given N�G and G/N, to what extent can one recapture G?

Otto Schreier first considered the problem of constructing all groups G such that G will have a

given normal subgroup N and a given factor group H ∼= G/N. There is always one such group,

since the direct product of N and H has this property.

Note 1.1.1. All groups and all sets on which there is some action in this dissertation are finite.

Definition 1.1.1. Let G be a non -simple group. Then G is an extension of N by a group H if

N�G and G/N ∼= H.

Note 1.1.2. The group H in Definition 1.1.1 need not be a subgroup of G.

Definition 1.1.2. An extension G of a group N by a group H is said to be split (or a split extension)

if N�G, H ≤ G such that G = NH and N∩H = {1G}. Thus G/N = NH/N ∼= H/N∩H = H/{1G} =

H.

Alternatively we say that N is complemented in G by H or G is the semi- direct product of N by

H.

Note 1.1.3. A split extension G of N by G will be denoted as G = N : G and a non-split extension

G of N by G will be denoted as G = N.G.

Remark 1.1.1. If G is the semi- direct product of N by H, then every g ∈ G can be uniquely

written in the form g = nh with n ∈ N and h ∈ H. This representation is unique since if

g = nh = mk with n,m ∈ N and h, k ∈ H, then

nh = mk ⇒ m−1n = kh−1 ⇒ m−1n ∈ N and m−1n ∈ H ⇒ m−1n ∈ N ∩H = {1G} ⇒ m = n.

1



CHAPTER 1. PRELIMINARIES 2

Similarly we can show that h = k.

Note 1.1.4. If the subgroup H in Definition 1.1.2 is also normal in G, then G = N×H.

The Frobenius group is an example of a group which is a split extension.

Below is a brief description of the work carried out in this dissertation. In the remaining part of

this chapter we describe results about Permutation groups since we give our definition of a Frobe-

nius group as a Permutation group. This will include definitions and results about permutation

groups that we would use later on. A significant part of the chapter is devoted to the theory of

Representations and Characters which we will use in later chapters. We close the chapter by briefly

describing coset analysis and the Fischer matrices.

In Chapter Two, we define the Frobenius group and give some general properties of the group. In

Chapter Three we go into details by looking at the structure of the group. We give some important

results about the kernel and complement of a Frobenius group and also describe ways to construct

Frobenius groups.

Chapter Four contains examples of Frobenius groups. Included is a list of Frobenius groups of small

order (up to order 32 ).

In Chapter Five we describe the Characters of Frobenius groups and then use these results to con-

struct the character table of the Dihedral group D2n, when n is odd. The method of coset analysis

is applied to the Frobenius group verifying results obtained earlier. We also apply the theory of

the Fischer matrices to the Frobenius group discovering that the Fischer matrices of the group are

very simple.

Chapter Six deals with the group 292 : SL(2, 5) and it’s character table. We first describe the

construction of the group and then it’s character table using the theory we described in earlier

chapters. Finally we determine the Fischer matrices for the group 292 : SL(2, 5).

1.2 Permutation Groups

Much of the material covered in this chapter is from Moori [17].

Definition 1.2.1. ([16]). Let G be a group and X a set. We say that G acts on X if there is a

homomorphism ρ : G → SX. Then ρ(g) ∈ SX ∀g ∈ G. The action of ρ(g)on X, that is ρ(g)(x), is

denoted by xg for any x ∈ X. We say that G is a permutation group on X.

Definition 1.2.2. (Orbits) Let G be a group that acts on a set X and let x ∈ X. Then the orbit
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of x under the action of G is defined by

xG : = {xg | g ∈ G}.

Theorem 1.2.1. Let G be a group that acts on a set X. The set of all orbits of G on X form a

partition of X.

PROOF:Define a relation ∼ on X by x ∼ y if and only if x = yg for some g ∈ G. Then ∼ is an

equivalence relation on X since

x ∼ y ⇒ x = yg ⇒ xg
−1

= y ⇒ y ∼ x.

And if

x = yg and y = zg
′

then x = zg
′g implies that x ∼ z.

And [x] = {xg | g ∈ G} = xG. Hence the set of all orbits of G on X partitions X. �

Definition 1.2.3. (Stabilizer) If G is a group that acts on a set X and x ∈ X then the stabilizer

of x in G, denoted by Gx is the set Gx = {g | xg = x}. That is Gx is the set of elements of G that

fixes x.

Theorem 1.2.2. Let G be a group that acts on a set X. Then

1. Gx is a subgroup of G for each x ∈ X.

2. |xG| = [G : Gx], that is the number of elements in the orbit of x is equal to the index of Gx in

G.

PROOF:(1) Since x1G = x, 1G ∈ Gx. Hence Gx 6= ∅. Let g, h be two elements of Gx. Then

xg = xh = x. So (xg)h
−1

= (xh)h
−1

= x1G = x, and therefore xgh
−1

= x. Thus gh−1 ∈ Gx.
(2) Since

xg = xh ⇐⇒ x = xhg
−1 ⇐⇒ hg−1 ∈ Gx⇐⇒ (Gx)g = (Gx)h,

the map γ : xG → G/Gx given by γ(xg) = (Gx)g is well defined and one-to-one. Obviously γ is

onto. Hence there is a one-to-one correspondence between xG and G/Gx. Thus |xG| = |G/Gx|. �

Corollary 1.2.3. If G is a finite group acting on a finite set X then ∀x ∈ X, |xG| divides |G|.

PROOF:By Theorem 1.2.2, we have |xG| = [G : Gx] = |G|/|Gx|. Hence |G| = |xG| × |Gx|. Thus |xG|

divides |G|. �

Theorem 1.2.4. 1. If G is a finite group, then ∀g ∈ G the number of conjugates of g in G is

equal to [G : CG(g)].
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2. If G is a finite group and H is a subgroup of G, then the number of conjugates of H in G is

equal to [G : NG(H)].

PROOF:(1) Since G acts on itself by conjugation, using Theorem 1.2.2 we have |gG| = [G : Gg]. But

since

gG = {gh | h ∈ G} = {hgh−1 | h ∈ G} = [g]

and

Gg = {h ∈ G | gh = g} = {h ∈ G | hgh−1 = g} = {h ∈ G | hg = gh} = CG(g),

we have

|gG| = |[g]| = [G : Gg] = [G : CG(g)] =
|G|

|CG(g)|
.

(2) Let G act on the set of it’s subgroups by conjugation. Then by Theorem 1.2.2 we have |HG| =

[G : GH]. Since HG = {Hg | g ∈ G} = {gHg−1 | g ∈ G} = [H] and GH = {g ∈ G | Hg = H} = {g ∈
G | gHg−1 = H} = NG(H), we have |[H]| = |HG| = [G : GH] = [G : NG(H)] =

|G|
|NG(H)|

. �

Theorem 1.2.5. (Cauchy − Frobenius) Let G be a finite group acting on a finite set X. Let n

denote the number of orbits of G on X. Let F(g) denote the number of elements of X fixed by g ∈ G.

Then n = 1
|G|

∑
g∈G

F(g).

PROOF:Consider S =
∑
g∈G F(g). Let x ∈ X. Since there are |Gx| elements in G that fix x, x is

counted |Gx| times in S. If ∆ = xG, then ∀y ∈ ∆ we have |∆| = |xG| = |yG| = [G : Gx] = [G : Gy].

Hence |Gx| = |Gy|. Thus ∆ contributes [G : Gx].|Gx| to the sum S. But [G : Gx].|Gx| = |G| is

independent to the choice of ∆ and hence each orbit of G on X contributes |G| to the sum S. Since

we have n orbits, we have S = n|G|. �

Definition 1.2.4. (Transitive Groups) Let G be a group acting on a set X. If G has only one

orbit on X, then we say that G is transitive on X, otherwise we say that G is intransitive on X.

If G is transitive on X, then xG = X ∀x ∈ X. This means that ∀x, y ∈ X, ∃g ∈ G such that xg = y.

Note 1.2.1. If G is a finite transitive group acting on a finite set X, then Theorem 1.2.2, part (2)

implies that |xG| = |X| = |G|/|Gx|. Hence |G| = |X|.|Gx|.

Definition 1.2.5. (Multiply Transitive Groups) Let G be a group that acts on a set X and let

|X| = n and 1 ≤ k ≤ n be a positive integer. We say that G is k− transitive on X if for every two

ordered k - tuples (x1, x2, . . . . . . , xk) and (y1, y2, . . . . . . , yk) with xi 6= xj and yi 6= yj for i 6= j there

exists g ∈ G such that xgi = yi for i = 1, 2, . . . . . . , k.

Theorem 1.2.6. If G is a k - transitive group on a set X with |X| = n, then

|G| = n(n− 1)(n− 2) . . . . . . (n− k+ 1)
∣∣G[x1,x2,......,xk]

∣∣
for every choice of k- distinct x1, x2, . . . . . . , xk ∈ X, where G[x1,x2,......,xk] denote the set of all elements

g ∈ G such that xgi = xi, 1 ≤ i ≤ k.



CHAPTER 1. PRELIMINARIES 5

PROOF:Let x1 ∈ X. Then since G is k - transitive, we have

|G| = n× |Gx1 | (1.1)

and Gx1 is (k − 1) transitive on X − {x1} (see Theorem 9.7 in Rotman [23]). Choose x2 ∈ X − {x1}.

Then since Gx1 is (k − 1) - transitive on X − {x1} we have |Gx1 | = |X − {x1}| × |(Gx1)x2 |, that is

|Gx1 | = (n− 1)× |G[x1,x2]| and G[x1,x2] is (k− 2) - transitive on X− {x1, x2}.

Now by (1.1) we get that |G| = n(n− 1)× |G[x1,x2]|. If we continue in this way, we will get

|G| = n(n− 1)(n− 2) . . . . . . (n− k+ 1)
∣∣G[x1,x2,......,xk]

∣∣.
�

Theorem 1.2.7. Let G be a group that acts transitively on a finite set X with |X| > 1. Then there

exists g ∈ G such that g has no fixed points.

PROOF:By Theorem 1.2.5 we have

1 = n =
1

|G|

∑
g∈G

F(g)

=
1

|G|

[
F(1G) +

∑
g∈G−{1G}

F(g)
]

=
1

|G|

[
|X|+

∑
g∈G−{1G}

F(g)
]

If F(g) > 0 for all g ∈ G, then we have

1 =
1

|G|

[
|X|+

∑
g∈G−{1G}

F(g)
]
≥ 1

|G|

[
|X|+ |G|− 1

]
≥ 1+

|X|− 1

|G|
> 1.

�

Definition 1.2.6. ([21]). (Semiregular ; Regular) Let X be a nonempty set and let G be a group

that acts on X. The permutation group G is said to be semiregular if StabG(x) = {1G} for all

x ∈ X. The permutation group G is said to be regular if it is both transitive and semiregular.

1.3 Representation Theory and Characters of Finite Groups

There are two kinds of representations; permutation and matrix. Cayleys Theorem, which asserts

that any group G can be embedded into the Symmetric group SG, is an example of a permutation

representation. We are interested here in matrix representations.
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Definition 1.3.1. Let G be a group. Any homomorphism ρ : G→ GL(n,F), where GL(n,F) is the

group consisting of all n× n non-singular matrices is called a matrix representation or simply

a representation of G. If F = C, then ρ is called an ordinary representation. The integer n is

called the degree of ρ. Two representations ρ and σ are said to be equivalent if there exists

P ∈ GL(n,F) such that σ(g) = Pρ(g)P−1, ∀g ∈ G.

We will restrict our work to ordinary representations.

Definition 1.3.2. (Character) Let ρ : G → GL(n,C) be a representation of a group G. Then

ρ affords a complex valued function χρ : G → C defined by χρ(g) = trace(ρ(g)), ∀g ∈ G. The

function χρ is called a character afforded by the representation ρ of G or simply a character of G.

The integer n is called the degree of χρ. If n = 1, then χρ is said to be linear.

Note 1.3.1. For any group G, consider the function ρ : G→ GL(1,C) given by ρ(g) = 1, ∀g ∈ G.

It is clear that ρ is a representation of G and χρ(g) = 1, ∀g ∈ G. The character χρ is called the

trivial character and it may also be denoted by 1.

Definition 1.3.3. (Class Function) If φ : G → C is a function that is constant on conjugacy

classes of a group G, that is φ(g) = φ(xgx−1), ∀x ∈ G, then we say that φ is a class function.

Proposition 1.3.1. A character is a class function.

PROOF:Immediate since similar matrices have the same trace. �

Definition 1.3.4. (F − Algebra) If F is a field and A is a vector space over F, then we say that

A is an F − Algebra if:

1. A is a ring with identity,

2. for all λ ∈ F and x, y ∈ A, we have λ(xy) = λ(x)y = x(λy).

Definition 1.3.5. (Group Algebra) Let G be a finite group and F any field. Then by F[G] we

mean the set of formal sums
{∑

g∈G λg.g : λg ∈ F
}

. We define the operations on F[G] by

1.
∑
g∈G λgg +

∑
g∈G µgg :=

∑
g∈G(λg + µg)g,

2. λ
(∑

g∈G λgg
)
:=
∑
g∈G
(
λλg
)
g, λ ∈ F,

3.
(∑

g∈G λgg
)
.
(∑

g∈G µgg
)
:=
∑
g∈G
[∑

h∈G λhµh−1g
]
g.

Under the above operations F[G] is an F-algebra known as the group algebra of G over F.



CHAPTER 1. PRELIMINARIES 7

Let G be a group. Now define over the set of class functions of G addition and multiplication of

two class functions ψ1 and ψ2 by

(ψ1 +ψ2)(g) = ψ1(g) +ψ2(g), ∀g ∈ G,

ψ1ψ2(g) = ψ1(g)ψ2(g), ∀g ∈ G

Clearly ψ1 + ψ2 and ψ1ψ2 are class functions of G. Also if λ ∈ C, then λψ is a class function of

G whenever ψ is. Therefore the set of all class functions of G forms an algebra, denoted by C(G).
The set of all characters of G forms a subalgebra of C(G).

Proposition 1.3.2. If χψ and χφ are two characters of a group G, then so is χψ + χφ.

PROOF:Let ψ and φ be representations of G affording the characters χψ and χφ respectively. Define

the function ξ on G by ξ(g) =

(
ψ(g) 0

0 φ(g)

)
= ψ(g)

⊕
φ(g). Clearly ξ is a homomorphism of

G with χξ = χψ + χφ. �

Definition 1.3.6. Let S be a set of (n × n) matrices over F. We say that S is reducible if

∃ m,k ∈ N, and there exists P ∈ GL(n,F) such that ∀A ∈ S we have

PAP−1 =

(
B 0

C D

)
where B is an m×m matrix, D and C are k× k and k×m matrices respectively. Here 0 denotes

the zero m × k matrix. If there is no such P, we say that S is irreducible. If C = 0, the

zero k × m matrix, for all A ∈ S then we say that S is fully reducible. We say that S is

completely reducible if ∃ P ∈ GL(n,F) such that

PAP−1 =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bk

 , ∀A ∈ S,

where each Bi is irreducible.

Definition 1.3.7. Let f : G → GL(n,F) be a representation of G over F. Let S = {f(g)|g ∈ G}.
Then S ⊆ GL(n,F). We say that f is reducible, fully reducible or completely reducible if S

is reducible, fully reducible or completely reducible.

We state below two important results in representation theory, namely Maschke’s Theorem and

Schur’s Lemma. The proof of both these results can be found in Moori [17].

Theorem 1.3.3. (Maschke ′s Theorem) Let ρ : G→ GL(n,F) be a representation of a group G.

If the characteristic of F is zero or does not divide |G|, then ρ =

r⊕
i=1

ρi, where ρi are irreducible

representations of G.
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PROOF:See Moori [17]. �

Theorem 1.3.4. (Schur ′s Lemma) Let ρ and φ be two irreducible representations of degree n and

m respectively, of a group G over a field F. Assume that there exists an m× n matrix P such that

Pρ(g) = φ(g)P for all g ∈ G. Then either P = 0m×n or P is non-singular so that ρ(g) = P−1φ(g)P

(that is ρ and φ are equivalent representations of G).

PROOF:See Moori [17]. �

Definition 1.3.8. (Inner Product) Let G be a group. Over C(G) we define an inner product

〈 , 〉 : C(G)× C(G)→ C by 〈ψ,φ〉 = 1

|G|

∑
g∈G

ψ(g)φ(g),

where φ(g) is the complex conjugate of φ(g).

In the following Proposition we list some properties of characters of a group.

Proposition 1.3.5. 1. Let χρ be the character afforded by an irreducible representation ρ of a

group G. Then 〈χρ, χρ〉 = 1

2. If χρ and χρ ′ are irreducible characters of two non equivalent representations of G, then

〈χρ, χρ ′〉 = 0.

3. If ρ ∼=

k⊕
i=1

diρi, then χρ =

k∑
i=1

diχρi .

4. If ρ ∼=

k⊕
i=1

diρi, then di = 〈χρ, χρi〉.

PROOF:See Moori [17] or James [10]. �

Proposition 1.3.6. Let χρ be the character afforded by a representation ρ of a group G. Then ρ

is irreducible if and only if 〈χρ, χρ〉 = 1.

PROOF:See James [10]. �

Let Irr(G) denote the set of all ordinary irreducible characters of a group G.

Corollary 1.3.7. The set Irr(G) forms an orthonormal basis for C(G) over C.

PROOF:See James [10]. �

Note 1.3.2. Corollary 1.3.7 asserts that if ψ is a class function of a group G, then ψ =
∑k
i=1 λiχi

where λi ∈ C and Irr(G) = {χ1, χ2, . . . . . . , χk}. If λi ∈ Z, ∀i, then ψ is called a generalised character.

Moreover, if λi ∈ N ∪ {0}, then ψ is a character of G.
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The following counting result counts the number of irreducible characters of a group.

Theorem 1.3.8. The number of irreducible characters of a group G is equal to the number of

conjugacy classes of G.

PROOF:See James [10] or Moori [17]. �

Proposition 1.3.9. The number of linear characters of a group G is given by |G|/|G ′|, where G ′

is the derived subgroup of G.

PROOF:See Moori [16]. �

1.3.1 The Character Table and Orthogonality Relations

The irreducible characters of a finite group are class functions, and the number of them by Theo-

rem 1.3.8 is equal to the number of conjugacy classes of the group. A table recording the values of

all the irreducible characters of the group is called a character table of the group.

Definition 1.3.9. (Character Table) The character table of a group G is a square matrix whose

columns correspond to the conjugacy classes of G and whose rows correspond to the irreducible

characters of G.

The character table is a useful tool which can be used to make inferences about the group. For

example later on we will show that provided certain conditions are satisfied , we can use a given

character table of some group to determine whether the group is Frobenius (see Theorem 5.2.2).

The simplicity, normality and solvability as well as the center and commutator of the group can

also be determined from the character table.

The following Propositions contains some useful results about the values of the irreducible characters

in the character table of a group G.

Proposition 1.3.10. 1. χ(1G)
∣∣|G|, ∀χ ∈ Irr(G).

2.

|Irr(G)|∑
i=1

(
χi(1G)

)2
= |G|.

3. If χ ∈ Irr(G), then χ ∈ Irr(G), where χ(g) = χ(g), ∀g ∈ G.

4. χ(g−1) = χ(g), ∀g ∈ G. In particular if g−1 ∈ [g], then χ(g) ∈ R, ∀χ.

PROOF:See Moori [17]. �

The rows and columns of the character table also satisfy orthogonality relations which we state in

the next theorem.
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Theorem 1.3.11. Let Irr(G) = {χ1, χ2, . . . . . . , χk} and {g1, g2, . . . . . . , gk} be a collection of repre-

sentatives for the conjugacy classes of a group G. For each 1 ≤ i ≤ k let CG(gi) be the centralizer

of gi. Then we have the following:

1. The row orthogonality relation:

For each 1 ≤ i, j ≤ k,
k∑
r=1

χi(gr)χj(gr)

|CG(gr)|
= 〈χi, χj〉 = δij.

2. The column orthogonality relation:

For each 1 ≤ i, j ≤ k,
k∑
r=1

χr(gi)χr(gj)

|CG(gi)|
= δij.

PROOF:(1) Using Proposition 1.3.5(2) we have

δij = 〈χi, χj〉 =
1

|G|

∑
g∈G

χi(g)χj(g) =
1

|G|

k∑
r=1

|G|

|CG(gr)|
χi(gr)χj(gr) =

k∑
r=1

χi(gr)χj(gr)

|CG(gr)|
.

(2) For fixed 1 ≤ s ≤ k, define ψs : G→ C by ψs(g) =

{
1 if g ∈ [gs],

0 otherwise.

It is clear that ψs is a class function on G. Since Irr(G) form an orthonormal basis for C(G), there

exists λ ′ts ∈ C such that ψs =

k∑
t=1

λtχt. Now for 1 ≤ j ≤ k we have

λj = 〈ψs, χj〉 =
1

|G|

∑
g∈G

ψs(g)χj(g) =

k∑
t=1

ψs(gt)χj(gt)

|CG(gt)|
=

χj(gs)

|CG(gs)|
.

Hence ψs =

k∑
j=1

χj(gs)

|CG(gs)|
χj. Thus we have the required formula:

δst = ψs(gt) =

k∑
j=1

χj(gt)χj(gs)

|CG(gt)|
.

�

1.3.2 Tensor Product of Characters

We show in this section that if ψ and χ are characters of a group G, then the product χψ defined

by

(χψ)(g) = χ(g).ψ(g), ∀g ∈ G

is also a character of G. It is clear that if χ and ψ are class functions on G, then so is χψ.
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Definition 1.3.10. (Tensor Product of Matrices − Kronecker Product)

Let P = (pij)m×m and Q = (qij)n×n be two matrices. Define the mn×mn matrix P ⊗Q by

P ⊗Q := (pijQ) =


p11Q p12Q · · · p1mQ

p21Q p22Q · · · p2mQ
...

...
. . .

...

pm1Q pm2Q · · · pmmQ


Then we have

trace(P ⊗Q) = p11trace(Q) + p12trace(Q) + . . .+ pmmtrace(Q)

= trace(P).trace(Q)

Definition 1.3.11. (Tensor Product of Representations) Let T and U be two representations

of a group G. We define the tensor product T ⊗U by

(T ⊗U)(g) := T(g)⊗U(g),

where ⊗ on the RHS is defined by Definition 1.3.10.

Theorem 1.3.12. Let T and U be two representations of a group G. Then

1. T ⊗U is a representation of G.

2. χT⊗U = χT .χU.

PROOF:(1) ∀g, h ∈ G we have

(T ⊗U)(gh) = T(gh)⊗U(gh)

= (T(g).T(h))⊗ (U(g).U(h))

= (T(g)⊗U(g)).(T(h)⊗U(h))

= (T ⊗U)(g).(T ⊗U)(h) by Definition 1.3.11

(2) ∀g ∈ G

χT⊗U(g) = trace((T ⊗U)(g))

= trace(T(g)⊗U(g))

= trace(T(g)).trace(U(g))

= χT (g).χU(g)

= (χT .χU)(g).

Hence χT⊗U = χT .χU �
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Definition 1.3.12. (Direct Product) Let G be a group. Let G = H× K be the direct product of

H and K. Let T : H→ GL(m,C) and U : K→ GL(n,C) be representations of H and K respectively.

Define the direct product T ⊗ U as follows: Let g ∈ G. Then g can be written uniquely in the

form hk, h ∈ H, k ∈ K. Define

(T ⊗U)(g) := T(h)⊗U(k)

where ⊗ on the RHS is the tensor product given in Definition 1.3.10.

Also T ⊗U is a representation of degree mn of G = H× K and

(χT⊗U)(g) = χT (h).χU(k),where g = hk.

Theorem 1.3.13. Let G = H × K be the direct product of the groups H and K. Then the di-

rect product of any irreducible character of H and any irreducible character of K is an irreducible

character of G. Moreover, every irreducible character of G can be constructed in this way.

PROOF:Let χT ∈ Irr(H) and χU ∈ Irr(K). Let χ = χT⊗U = χT .χU. Then χ is a character of G. We

claim χ ∈ Irr(G). Let g ∈ G, then ∃! h ∈ H, k ∈ K such that g = hk. So∑
g∈G

∣∣χ(g)∣∣2 =
∑
h∈H

∑
k∈K

∣∣χT (h).χU(k)∣∣2
=
∑
h∈H

∑
k∈K

∣∣χT (h)∣∣2.∣∣χU(k)∣∣2
=
∑
h∈H

∣∣χT (h)∣∣2.∑
k∈K

∣∣χU(k)∣∣2
= |H|.|K| = |G|.

Hence 1
|G|

∑
|χ(g)|2 = 1; so 〈χ, χ〉 = 1. Thus χ ∈ Irr(G). �

Remark 1.3.1. Suppose that |Irr(H)| = r and |Irr(K)| = s, then we obtain rs irreducible characters

of G = H × K in this way. If g1 = hk and g2 = h ′k ′ are two elements in G, then g1 ∼ g2 if and

only if h ∼ h ′ in H and k ∼ k ′ in K. Thus the number of conjugacy classes of G equals the number

of conjugacy classes of H times the number of conjugacy classes of K which equals rs. Hence

|Irr(G)| = rs.

1.3.3 Lifting of Characters

We present here a method for constructing characters of a group G when G has a normal subgroup

N. Assuming that the irreducible characters of the factor group G/N are known, the idea here is

to construct characters of G by a process known as lifting of characters.

Definition 1.3.13. (Kernel) Let χ be a character of a group G afforded by a representation ρ of

G. Then

Ker(ρ) = Ker(χ) = {g ∈ G | χ(g) = χ(1G)}�G.
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Also if N ≤ G such that N is an intersection of the kernel of irreducible characters of G, then N�G.

Proposition 1.3.14. Let G be a group. Let N � G and χ̃ be a character of G/N. The function

χ : G → C defined by χ(g) = χ̃(gN), ∀g ∈ G is a character of G with deg(χ) = deg(χ̃). Moreover,

if χ̃ ∈ Irr(G/N), then χ ∈ Irr(G).

PROOF:Suppose that ρ̃ : G/N→ GL(n,C) is a representation which affords the character χ̃. Define

the function ρ : G → GL(n,C) by ρ(g) = ρ̃(gN), ∀g ∈ G. Then ρ defines a representation on G

since

ρ(gh) = ρ̃(ghN) = ρ̃(gNhN) = ρ̃(gN)ρ̃(hN) = ρ(g)ρ(h), ∀g, h ∈ G.

Hence the character χ, which is afforded by ρ, satisfies

χ(g) = trace(ρ(g)) = trace(ρ̃(gN)) = χ̃(gN) ∀g ∈ G.

So χ is a character of G. The degree of χ is

deg(χ) = χ(1G) = χ̃(1GN) = χ̃(N) = deg(χ̃).

Let T be a transversal of N in G. Then

1 = 〈χ̃, χ̃〉 =
1

|G/N|

∑
gN∈G/N

χ̃(gN)χ̃(gN)−1

=
1

|G|

∑
gN∈G/N

|N| χ̃(gN)χ̃(gN)−1

=
1

|G|

∑
g∈T

|N| χ̃(gN)χ̃(g−1N)

=
1

|G|

∑
g∈T

|N| χ(g)χ(g−1)

=
1

|G|

∑
g∈G

χ(g)χ(g−1)

= 〈χ, χ〉.

�

1.3.4 Induction and Restriction of Characters

Restriction to a Subgroup

Let G be a group, H ≤ G. If ρ : G→ GL(n,C) is a representation of G, then ρ ↓ H : H→ GL(n,C)
given by (ρ ↓ H)(h) = ρ(h), ∀h ∈ H, is a representation of H. We say that ρ ↓ H is the restriction

of ρ to H. If χρ is the character of ρ, then χρ ↓ H is the character of ρ ↓ H. We refer to χρ ↓ H as

the restriction of χρ to H.
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Remark 1.3.2. It is clear that deg(ρ) = deg(ρ ↓ H). However, ρ irreducible does not imply (in

general) that ρ ↓ H is irreducible.

Theorem 1.3.15. Let G be a group, H ≤ G. Let ψ be a character of H. Then there is an irreducible

character χ of G such that 〈χ ↓ H,ψ〉H 6= 0.
PROOF:See Moori [17]. �

Theorem 1.3.16. Let G be a group, H ≤ G. Let χ ∈ Irr(G) and let Irr(H) = {ψ1, ψ2, . . . . . . , ψr}.

Then χ ↓ H =

r∑
i=1

diψi, where di ∈ N ∪ {0} and
r∑
i=1

d2i ≤ [G : H]. (∗)

Moreover, we have equality in (∗) if and only if χ(g) = 0 ∀g ∈ G\H.

PROOF:We have

r∑
i=1

d2i = 〈χ ↓ H, χ ↓ H〉H =
1

|H|

∑
h∈H

χ(h).χ(h) .

Since χ is irreducible,

1 = 〈χ, χ〉G =
1

|G|

∑
g∈G

χ(g).χ(g)

=
1

|G|

∑
g∈H

χ(g).χ(g) +
1

|G|

∑
g∈G−H

χ(g).χ(g)

=
|H|

|G|

r∑
i=1

d2i + K,

where K = 1
|G|

∑
g∈G−H

χ(g)χ(g). Since K = 1
|G|

∑
g∈G−H

|χ(g)|2, K ≥ 0.

Thus

|H|

|G|

r∑
i=1

d2i = 1− K ≤ 1,

so

r∑
i=1

d2i ≤ |G|/|H| = [G : H].

Also

K = 0 if and only if |χ(g)|2 = 0 ∀g ∈ G−H.

Hence K = 0 if and only if χ(g) = 0, ∀g ∈ G−H. �
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Induced Representations

Definition 1.3.14. (Transversal) Let G be a group. Let H ≤ G. By a right transversal of H

in G we mean a set of representatives for the right cosets of H in G.

Theorem 1.3.17. Let G be a group. Let H ≤ G and T be a representation of H of degree n.

Extend T to G by T 0(g) = T(g) if g ∈ H and T 0(g) = 0n×n if g /∈ H. Let {x1, x2, . . . . . . , xr} be a

right transversal of H in G. Define T ↑ G by

(T ↑ G)(g) :=

T 0(x1gx

−1
1 ) T 0(x1gx

−1
2 ) · · · T 0(x1gx

−1
r )

T 0(x2gx
−1
1 ) T 0(x2gx

−1
2 ) · · · T 0(x2gx

−1
r )

...
...

. . .
...

T 0(xrgx
−1
1 ) T 0(xrgx

−1
2 ) · · · T 0(xrgx

−1
r )

 =
(
T 0(xigx

−1
j )
)
i,j=1

, ∀g ∈ G.

Then T ↑ G is a representation of G of degree nr.

PROOF:See Moori [17] �

Definition 1.3.15. (Induced Representation/Character) The representation T ↑ G defined

above is said to be induced from the representation T of H. Let φ be the character afforded by T .

Then the character afforded by T ↑ G is called the induced character from φ and is denoted by

φG. If we extend φ to G by φ0(g) = φ(g) if g ∈ H and φ0(g) = 0 if g /∈ H, then

φG(g) = trace
(
(T ↑ G)(g)) = r∑

i=1

trace
(
T 0(xigx

−1
i )
)
=

r∑
i=1

φ0(xigx
−1
i ).

Note also that φG(1G) = nr =
|G|
|H|
.φ(1).

Proposition 1.3.18. The values of the induced character φG are given by

φG(g) =
1

|H|

∑
x∈G

φ0(xgx−1) , ∀g ∈ G.

PROOF:See Moori [17]. �

Proposition 1.3.19. Let G be a group. Let H ≤ G. Assume that φ is a character of H and g ∈ G.

Let [g] denote the conjugacy class of G containing g.

1. If H ∩ [g] = ∅, then φG(g) = 0,

2. if H ∩ [g] 6= ∅, then φG(g) =
∣∣CG(g)∣∣ m∑

i=1

φ(xi)∣∣CH(xi)∣∣ ,
where x1, x2, . . . . . . , xm are representatives of classes of H that fuse to [g]. That is H ∩ [g] breaks

up into m conjugacy classes of H with representatives x1, x2, . . . . . . , xm.
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PROOF:By Proposition 1.3.18 we have

φG(g) =
1

|H|

∑
x∈G

φ0(xgx−1).

If H ∩ [g] = ∅, then xgx−1 /∈ H for all x ∈ G, so φ0(xgx−1) = 0 ∀x ∈ G and φG(g) = 0. Now

suppose that H ∩ [g] 6= ∅. As x runs over G, xgx−1 covers [g] exactly |CG(g)| times, so

φG(g) =
1

|H|
× |CG(g)|

∑
y∈[g]

φ0(y)

=
|CG(g)|

|H|

∑
y∈[g]∩H

φ(y)

=
|CG(g)|

|H|

m∑
i=1

[
H : CH(xi)

]
φ(xi)

= |CG(g)|

m∑
i=1

φ(xi)

|CH(xi)|
.

�

1.3.5 The Frobenius Reciprocity Law

Definition 1.3.16. (Induced Class Function) Let G be a group. Let H ≤ G and φ be a class

function on H. Then the induced class function φG on G is defined by

φG(g) =
1

|H|

∑
x∈G

φ0(xgx−1) ,

where φ0 coincides with φ on H and is zero otherwise.

Note also that

φG(ygy−1) =
1

|H|

∑
x∈G

φ0(xygy−1x−1) =
1

|H|

∑
x∈G

φ0
(
(xy)g(xy)−1

)
=

1

|H|

∑
z∈G

φ0(zgz−1) = φG(g).

Thus φG is also a class function on G.

Note 1.3.3. Let G be group. If H ≤ G and φ is a class function on G, then φ ↓ H is a class

function on H.

Induction and Restriction of characters are related by the following result.

Theorem 1.3.20. (Frobenius Reciprocity) Let G be a group. Let H ≤ G, φ be a class function

on H and ψ a class function on G. Then

〈φ,ψ ↓ H〉H = 〈φG, ψ〉G.
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PROOF:

〈φG, ψ〉G =
1

|G|

∑
g∈G

φG(g) . ψ(g)

=
1

|G|

∑
g∈G

( 1
|H|

∑
x∈G

φ0(xgx−1)
)
. ψ(g)

=
1

|G||H|

∑
g∈G

∑
x∈G

φ0(xgx−1) . ψ(g) . (1.2)

Let y = xgx−1. Then as g runs over G, xgx−1 runs through G. Also since ψ is a class function on

G, ψ(y) = ψ(xgx−1) = ψ(g). Thus by 1.2 above we have

〈φG, ψ〉G =
1

|G||H|

∑
y∈G

∑
x∈G

φ0(y)ψ(y)

=
1

|G||H|

∑
x∈G

(∑
y∈G

φ0(y)ψ(y)
)

=
1

|G||H|
. |G|
∑
y∈G

φ0(y)ψ(y)

=
1

|H|

∑
y∈H

φ(y)ψ(y) = 〈φ,ψ ↓ H〉H .

�

1.3.6 Normal Subgroups

Definition 1.3.17. (Conjugate Class Function/Representation) Let G be a group. Let N�G.

If φ is a class function on N, for each g ∈ G define φg(n) = φ(gng−1), n ∈ N. The function

φg is said to be conjugate to φ in G. Also if P is a representation of N � G, the conjugate

representation is Pg given by Pg(n) = P(gng−1).

Proposition 1.3.21. Let G be a group. Let N�G and φ,ψ class functions on N. Let x, y ∈ G .

Then

1. φx is a class function on N ;

2. (φx)y = φxy ;

3. 〈φx, ψy〉 = 〈φ,ψ〉 ;

4. 〈χ ↓ N,φx〉 = 〈χ ↓ N,φ〉 where χ is a class function on G ;

5. If φ is a character, then so is φx.

PROOF:See Moori [17] �
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Proposition 1.3.22. Let g, h ∈ G. Then g ∼ h if and only if χ(g) = χ(h) for all characters χ of

G.

PROOF:See Moori [17]. �

Corollary 1.3.23. If Irr(G) = {χi | i = 1, 2, . . . , r}, then ∩ri=1 Ker(χi) = {1G}.

PROOF:If g ∈ ∩ri=1Ker(χi), then χi(g) = χi(1G) ∀i = 1, 2, . . . , r. Hence χ(g) = χ(1G) for all

characters χ of G. So g ∼ 1G by Proposition 1.3.22. Thus g = 1G. �

Theorem 1.3.24. Let G be a group. Let N � G. Then there exist some irreducible characters

χ1, χ2, . . . , χs of G such that N = ∩si=1Ker(χi).

PROOF:Let Irr(G/N) = {χ̂1, χ̂2, . . . , χ̂s}. Then by Corollary 1.3.23, we have

∩si=1Ker(χ̂i) = {1G/N} = {N}.

Let χi be the lift to G of χ̂i (that is χi(g) = χ̂i(gN), for all g ∈ G). We claim N = ∩si=1Ker(χi):
Since χi(n) = χ̂i(nN) = χ̂i(N) = χi(1G), we have n ∈ Ker(χi) so N ⊆ ∩si=1Ker(χi). Now let

g ∈ ∩si=1Ker(χi). Then

χ̂i(N) = χi(1G) = χi(g) = χ̂i(gN) , i = 1, 2, . . . , s

imply that gN ∈ ∩si=1Ker(χ̂i) = {N}. So g ∈ N and hence ∩si=1Ker(χi) ⊆ N. Thus N = ∩si=1Ker(χi).
�

Definition 1.3.18. Suppose that ψ is a character of a group G, and that χ is an irreducible

character of G. We say that χ is a constituent of ψ if 〈ψ, χ〉 6= 0. Thus, the constituents of ψ are

the irreducible characters χi of G for which the integer di in the expression ψ = d1χ1 + . . .+ dkχk

is non-zero.

Theorem 1.3.25. (Clifford Theorem) Let G be a group. Let N � G and χ ∈ Irr(G). Let φ be

an irreducible constituent of χ ↓ N and let φ1, φ2, . . . , φk (where φ = φ1) be the distinct conjugates

of φ in G. Then

χ ↓ N = e

k∑
i=1

φi , where e = 〈χ ↓ N,φ〉N.
PROOF:Let n ∈ N. Then

φG(n) =
1

|N|

∑
x∈G

φ0(xnx−1) =
1

|N|

∑
x∈G

φ(xnx−1) =
1

|N|

∑
x∈G

φx(n) ,

where we have used the fact that xnx−1 ∈ N , ∀x ∈ G. Now if ψ ∈ Irr(N) and ψ /∈ {φ1, φ2, . . . , φk} ,

then 〈
∑
x∈G

φx, ψ〉N = 0 whence 〈(φG) ↓ N,ψ〉N = 0. Using the Frobenius Reciprocity theorem we

get

0 = 〈(φG) ↓ N,ψ〉N = 〈φG, ψG〉G
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and

0 6= 〈φ, χ ↓ N〉N = 〈φG, χ〉G.

Thus

〈χ,ψG〉G = 0 ; so 〈χ ↓ N,ψ〉N = 0.

Hence

χ ↓ N =

k∑
i=1

〈χ ↓ N,φi〉Nφi.
Now by Proposition 1.3.21(4) we have

〈χ ↓ N,φi〉N = 〈χ ↓ N,φ〉N = e for all i = 1, 2, . . . , k.

Thus

χ ↓ N =

k∑
i=1

e φi = e

k∑
i=1

φi.

�

Definition 1.3.19. (Inertia Group) Let G be a group. Let N�G and let φ ∈ Irr(N). Then the

inertia group of φ is defined by

IG(φ) := {g ∈ G | φg = φ}.

Proposition 1.3.26. Let G be a group. Let N�G, φ ∈ Irr(N). Then φG ∈ Irr(G) if and only if

IG(φ) = N.

PROOF:Let g, k ∈ G. Then φg = φk if and only if φgk
−1

= φ if and only if gk−1 ∈ IG(φ) if and only

if IG(φ).g = IG(φ).k. So if {t1, t2, . . . , tm} is a right transversal for IG(φ) in G then φt1 , φt2 , . . . , φtm

is a complete set of distinct conjugates of φ in G. Now for any g ∈ G we have

φG(g) =
1

|N|

∑
x∈G

φ0(xgx−1) =
1

|N|

∑
y∈I

m∑
j=1

φ0(ytjgt
−1
j y

−1) , where I = IG(φ).

Thus ∀ n ∈ N

(φG ↓ N)(n) =
1

|N|

∑
y∈I

m∑
j=1

φ(ytjnt
−1
j y

−1)

=
1

|N|
| I |

m∑
j=1

φ(tjnt
−1
j )

= [I : N]

m∑
j=1

φtj(n).

(Note: We have used the fact that ytjnt
−1
j y

−1 ∈ N , ∀y ∈ I, ∀tj). Hence

〈φG ↓ N,φ〉N = [I : N]

m∑
j=1

〈φtj , φ〉N = [I : N] ,
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since φtj 6= φ if j 6= 1 and φtj are irreducible (because φ is and by Proposition 1.3.21(3)). Now by

the Frobenius Reciprocity theorem we have

〈φG, φG〉G = 〈φG ↓ N,φ〉N = [I : N].

So φG is irreducible if and only if [I : N] = 1. Hence φG is irreducible if and only if N = IG(φ). �

Proposition 1.3.27. Let G be group. Assume that G = N : H. That is G is a split extension of

N by H. Let φ ∈ Irr(N). Then IG(φ) = N : IH(φ). Hence φG ∈ Irr(G) if and only if IH(φ) = {1H}.

PROOF:Since N ≤ IG(φ) and N � G, N � IG(φ). Let g ∈ IG(φ). Then g ∈ G and g = nh where

n ∈ N and h ∈ H. So

φ = φg = φnh = (φn)h = φh.

Hence h ∈ IH(φ); so IG(φ) ⊆ NIH(φ). Similarly we can show that NIH(φ) ⊆ IG(φ). Thus

NIH(φ) = IG(φ). Since IH(φ) ⊆ H and H∩N = {1G} , N∩ IH(φ) = {1G}. Thus IG(φ) = N : IH(φ).

Now IG(φ) = N : IH(φ) = N if and only if IH(φ) = {1G}. The result now follows by Proposi-

tion 1.3.26. �

1.4 Coset Analysis

The technique works for both split and non-split extensions and was developed and first used by

Moori. We use the method described in Mpono [19].

First we define a lifting.

Definition 1.4.1. (Lifting) If G is a split extension of N by G, then G = ∪g∈GNg, so G may be

regarded as a right transversal for N in G (that is, a complete set of right coset representatives of

N in G). Now suppose G is any extension of N by G, not necessarily split, then, since G/N ∼= G,

there is an onto homomorphism λ : G→ G with kernel N. For g ∈ G define a lifting of g to be an

element g ∈ G such that λ(g) = g.

1.4.1 Coset Analysis

Let G = N.G where N is an abelian normal subgroup of G.

• For each conjugacy class [g] in G with representative g ∈ G, we analyze the coset Ng, where

g is a lifting of g in G and G = ∪g∈GNg.

• To each class representative g ∈ G with lifting g ∈ G, we define

Cg = {x ∈ G | x(Ng) = (Ng)x}.

Then Cg is the stabilizer of Ng in G under the action by conjugation of G on Ng, and hence

Cg is a subgroup of G.
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• If G = N : G then we can identify Cg with Cg = {x ∈ G | x(Ng) = (Ng)x}, where the lifting

of g ∈ G is g itself since G ≤ G.

• The conjugacy classes of G will be determined by the action by conjugation of G, for each

each conjugacy class [g] of G, on the elements of Ng.

• To act G on the elements of Ng, we first act N and then act {h | h ∈ CG(g)} where h is a

lifting of h in G.

• We describe the action in two steps:

1. The action of N on Ng:

Let CN(g) be the stabilizer of g in N. Then for any n ∈ N we have

x ∈ CN(ng) ⇐⇒ x(ng)x−1 = ng ,⇐⇒ xnx−1xgx−1 = ng ,⇐⇒ xgx−1 = g , (since N is abelian)⇐⇒ x ∈ CN(g) .

Thus CN(g) fixes every element of Ng. Now let |CN(g)| = k. Then under the action of N,

Ng splits into k orbits Q1, Q2, . . . , Qk where |Qi| = [N : CN(g)] =
|N|
k for i ∈ {1, 2, . . . , k}.

2. The action of {h | h ∈ CN(g)} on Ng:

Since the elements of Ng are now in orbits Q1, Q2, . . . , Qk from step (1) above, we only

act {h | h ∈ CG(g)} on these k orbits. Suppose that under this action fj of these orbits

Q1, Q2, . . . , Qk fuse together to form one orbit4j , then the fj ′s obtained this way satisfy

∑
j

fj = k and |4j| = fj ×
|N|

k
.

Thus for x ∈ 4j , we obtain that

|[x]G| = |4j |× |[g]G| (1.3)

= fj ×
|N|

k
× |G|

|CG(g)|

= fj ×
|G|

k|CG(g)|
.

Thus,

|CG(x)| =
|G|

|[x]G|
= |G|× k |CG(g)|

fj |G|

=
k |CG(g)|

fj
. (1.4)
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1.5 Fischer Matrices

Let G be an extension of N by G. Let χ1, χ2, . . . , χt be representatives of the orbits of G on Irr(N),

and letHi = IG(χi) andHi = Hi/N. Let ψi be an extension of χi toH. Take χ1 = 1N, soH1 = G and

H1 = G. We consider a conjugacy class [g] of G with representative g. Let X(g) = {x1, x2, . . . , xc(g)}

be representatives of G-conjugacy classes of elements of the coset Ng. Take x1 = g. Let R(g) be

a set of pairs (i, y) where i ∈ {1, . . . , t} such that Hi contains an element of [g], and y ranges over

representatives of the conjugacy classes of Hi that fuse to [g]. Corresponding to this y ∈ Hi, let

{yi} be representatives of conjugacy classes of Hi that contain liftings of y.

Definition 1.5.1. We define the Fischer matrix M(g) =
(
a
j
(i,y)

)
with columns indexed by X(g)

and rows indexed by R(g) (as described above) by

a
j
(i,y) =

′∑
k

|CG(xj)|

|CHi(ylk)|
ψi(ylk) . (1.5)

where
′∑
k

is the sum over those k for which ylk is conjugate to xj in G .

Remark 1.5.1. We have kept the theory in this section brief since the Fischer matrices of the

Frobenius group are simple. However, Fischer matrices have other special properties which are

used in their computations. For a more detailed account see Whitney [25] and Moori and Mpono

[18].



2

The Frobenius Group

2.1 Introduction

In the previous chapter we described Permutation Groups. The concept of a permutation group

is not only interesting in it’s own right but can also be used to describe groups in general. In this

chapter we will use the definition of permutation groups to introduce a class of permutation groups

that are split extensions. These groups are the Frobenius groups.

2.2 Definition and Preliminaries

Definition 2.2.1. ([14]). Let G be a transitive permutation group on a set Ω with |Ω| > 1. Then

G is said to be a Frobenius Group on Ω if:

1. Gα 6= {1G} for any α ∈ Ω.

2. Gα ∩Gβ = {1G} for all α,β ∈ Ω and α 6= β.

Note 2.2.1. Gα here is the stabilizer of α ∈ Ω.

Note 2.2.2. Although all our groups in this dissertation are finite, infinite Frobenius groups do

exist (see Collins [2]), for an example.

Remark 2.2.1. Although we have defined them as permutation groups, Frobenius groups have

numerous equivalent descriptions. The following proposition is one of several characterizations of

Frobenius groups.

Proposition 2.2.1. ([6]). A group G is a Frobenius group if and only if it has a proper subgroup

H 6= {1G} such that H ∩Hx = {1G} for all x ∈ G−H.

PROOF:Assume G acts on Ω. Take α ∈ Ω and let Gα = H 6= {1G}.

Now for any x ∈ G−H, αx 6= α (since if αx = α, then x ∈ Gα = H which is a contradiction).

23
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Let 1G 6= y ∈ H. We will show that y /∈ Hx, ∀x ∈ G−H. Since y ∈ H, we have αy = α.

Let αx = β for any x ∈ G−H and β ∈ Ω. Then β = αx 6= α. Now if (αx)y = αx then

y ∈ Gβ contradicting part (2) of definition 2.2.1. Therefore

(αx)y 6= αx ⇒ αxyx
−1 6= α1G = α⇒ xyx−1 /∈ Gα⇒ y /∈ x−1Gαx = x−1Hx = Hx

−1
= Hx

′
for x ′ ∈ G.

So H ∩Hx = {1G} ∀x ∈ G−H.

Conversely, set Ω = {xH : x ∈ G} where {1G} < H < G. Then G acts transitively on Ω by the

Generalised Cayley Theorem. First we show that for any α ∈ Ω,Gα 6= 1G. Let α = g0H for some

g0 ∈ G. Then

Gα = {g ∈ G : gg0H = g0H} = {g ∈ G : g−10 gg0H = H}

= {g ∈ G : g−10 gg0 ∈ H} = {g ∈ G : g ∈ g0Hg
−1
0 }

= Hg0 6= {1G} (since H 6= {1G}).

So Gα 6= {1G} for any α ∈ Ω. Now let α = xH and β = yH for α,β ∈ Ω and x, y ∈ G such that

α 6= β. Then by the above argumentGα = Hx andGβ = Hy. We know thatH∩Ht = {1G} ∀t ∈ G\H.

We just need to show that Hx ∩Hy = {1G}. So suppose that g ∈ Hx and g ∈ Hy for g ∈ G. Then

g = xh ′x−1 = yh ′′y−1 for h ′, h ′′ ∈ H, which implies that h ′ = x−1yh ′′y−1x = x−1yh ′′(x−1y)−1.

Let w = x−1y. Then w ∈ G\H since if w ∈ H, then x−1y ∈ H which implies that x−1yH = H and

hence that yH = xH, that is α = β, which is a contradiction. Thus h ′ ∈ H and h ′ ∈ Hw implies

h ′ ∈ H ∩Hw = {1G}. Therefore, g = xh ′x−1 = x{1G}x
−1 = 1G. Hence, Hx ∩Hy = {1G}. �

Corollary 2.2.2. ([6]). If G is a Frobenius group and H ≤ G is the stabilizer of a point then

NG(H) = H.

PROOF:Let {1G} < H < G. We know that H ⊆ NG(H) since gHg−1 = H ∀g ∈ H. Let g ∈ NG(H)
and suppose that g 6∈ H. Since g ∈ NG(H), gHg−1 = H ∀g ∈ G\H. But G is a Frobenius group.

Therefore Hg ∩H = {1G} ∀g ∈ G\H. This implies that Hg = H = {1G} ∀g ∈ G\H contradicting the

fact that H 6= {1G}. Therefore g ∈ H and hence NG(H) ⊆ H and the result follows. �

Note 2.2.3. ([6]). If G is a Frobenius group on Ω and H = Gα for some α ∈ Ω then H is called

the Frobenius Complement in G. Denote by N∗ the set of all x ∈ G having no fixed points

in Ω and set N = N∗ ∪ {1G}. Then N =
(
G\ ∪ {Hx : x ∈ G}

)
∪ {1G} and we call N the Frobenius

Kernel of G.

In 1901, Frobenius proved that Frobenius kernels of Frobenius groups are normal subgroups. We

will prove this later on as the Frobenius Theorem after the following two Propositions. It should

be mentioned that there is no known proof of Frobenius Theorem which does not use character

theory. However, Corradi and Horvath [3] provide a proof of the theorem when the complement H

is solvable or has even order and Knapp and Schmid [13] provide a proof that uses character theory

but is simpler and more direct.
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Proposition 2.2.3. ([6]). Suppose that G is a Frobenius group with complement H, and suppose

that θ is an element of the set of class functions of H
(
θ ∈ cf(H)

)
with θ(1G) = 0, then (θG)↓H = θ.

PROOF:Note that θG(1G) = |G|
|H|
θ(1G) = n × r. So θG(1G) = [G : H] θ(1G) = [G : H] × 0 = 0. If

1G 6= y ∈ H then θG(y) = 1
|H|

∑
t∈G

θ0(tyt−1). Now if tyt−1 ∈ H then y ∈ t−1Ht and hence

y ∈ Ht−1 = Ht
′

for t ′ ∈ G. So y ∈ H ∩ Ht ′ . But since 1G 6= y and G is a Frobenius group,

y ∈ H ∩ Ht ′ implies that t ′ ∈ H. Therefore θ0(t ′yt ′−1) = θ(t ′yt ′−1) = θ(y). Hence, θG(y) =
1
|H|
× |H|× θ(y) = θ(y) ∀y ∈ H. �

Proposition 2.2.4. ([6]). Suppose G is a Frobenius group with complement H and kernel N. Then

1. |N| = [G : H] > 1.

2. If K�G with K ∩H = {1G} then K ⊆ N.

PROOF:1. Since NG(H) = H by Corollary 2.2.2, there are [G : H] distinct conjugates of H in G. So∣∣∪ {Hx : x ∈ G}
∣∣ = [G : H]×

(
|H|− 1

)
+ 1

=
|G|

|H|
×
(
|H|− 1

)
+ 1

= |G|−
|G|

|H|
+ 1

= |G|− [G : H] + 1.

Now since N =
(
G\ ∪ {Hx : x ∈ G}

)
∪ {1G}, we have

|N| = |G|−
(
|G|− [G : H] + 1

)
+ 1

= |G|− |G|+ [G : H] − 1+ 1

= [G : H].

Also {1G} < H < G implies [G : H] > 1.

2. Let 1G 6= k ∈ K. Suppose k /∈ N. Then k ∈ Hz for some z ∈ G\H. So k = zhz−1 for some h ∈ H.

So z−1kz = h ∈ H and since K�G we have z−1kz ∈ K. Therefore z−1kz ∈ H ∩ K = {1G} and hence

k = 1G which is a contradiction. Therefore k ∈ N and K ⊆ N. �

Theorem 2.2.5. ([6]). If G is a Frobenius group with complement H and kernel N then N is a

normal subgroup of G.

PROOF:We will show that N is the intersection of the kernels of some irreducible characters of G.

Take IH 6= φ ∈ Irr(H), where IH is the principle character of H and set θ = φ−φ(1G)IH. Then

θ is a generalized character of H. Also θ(1G) = 0 and by the Frobenius Reciprocity Theorem,
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and Proposition 2.2.3, we have that 〈θG, θG〉 = 〈θ, θG↓H〉 = 〈θ, θ〉.
Now

〈θ, θ〉 = 〈φ− φ(1G)IH, φ− φ(1G)IH〉

= 〈φ,φ〉− φ(1G)〈φ, IH〉− φ(1G)〈IH, φ〉 + (φ(1G))
2〈IH, IH〉

= 1− 0− 0+ (φ(1G))
2

= 1+ φ(1G)
2.

Again by the Frobenius reciprocity we have that;

〈θG, IG〉 = 〈θ, IH〉

= 〈φ− φ(1G)IH, IH〉

= 〈φ, IH〉− φ(1G)〈IH, IH〉

= 0− φ(1G)× 1

= −φ(1G).

So 〈θG, IG〉 = 〈θ, IH〉 = −φ(1G). Thus if we set φ∗ = θG + φ(1G)IG then φ∗ is a generalized

character of G and we have

〈φ∗, IG〉 = 〈θG + φ(1G)IG, IG〉

= 〈θG, IG〉+ φ(1G)〈IG, IG〉

= −φ(1G) + φ(1G)

= 0.

Also

〈φ∗, φ∗〉 = 〈θG + φ(1G)IG, θ
G + φ(1G)IG〉

= 〈θG, θG〉+ φ(1G)〈θG, IG〉+ φ(1G)〈IG, θG〉+ (φ(1G))
2〈IG, IG〉

= 〈θ, θ〉− φ(1G)φ(1G) − φ(1G)φ(1G) + (φ(1G))
2

= 1+ φ(1G)
2 − φ(1G)

2 − φ(1G)
2 + φ(1G)

2

= 1.

Therefore either φ∗ or −φ∗ ∈ Irr(G), since if φ∗ =
∑
λiχi for λ ∈ Z and χi ∈ Irr(G) then

〈φ∗, φ∗〉 = 1 ⇒ ∑
λ2i = 1⇒ λi = ± 1 or λj = 0 ∀i 6= j⇒ φ∗ = χi or − φ∗ = χi.

By Proposition 2.2.3 we have for y ∈ H that;

φ∗(y) = θG(y) + φ(1G)IG(y) = θ(y) + φ(1G)× 1

= θ(y) + φ(1G) = φ(y).
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So in particular φ∗(1G) = φ(1G) > 0 and hence φ∗ ∈ Irr(G). So for every non-principle φ ∈ Irr(H)
we have chosen an extension φ∗ ∈ Irr(G).
Now set K =

⋂
{kerφ∗ : IH 6= φ ∈ Irr(H)}�G. We want to show that K = N. Suppose y ∈ H∩K.

Then y ∈ H and y ∈ K. So φ(y) = φ∗(y) = φ∗(1G) (since y ∈ kerφ∗, ∀IH 6= φ ∈ Irr(H)).
But φ∗(1G) = φ(1G) implies that y ∈ kerφ ; ∀φ ∈ Irr(H) and φ 6= IH. Since

⋂
φ∈Irr(H) kerφ =

{1H} = {1G}, (see Moori, Corollary 4.2 [17]), we have that y = 1G. Now since K�G and K∩H = {1G},

by Proposition 2.2.4 we have K ⊆ N. On the other hand if 1G 6= x ∈ N then x /∈ Hz for any z ∈ G.

So

φ∗(x) = θG(x) + φ(1G)IG(x)

= 0+ φ(1G) = φ
∗(1G),

since θG(x) = 0 ∀x ∈ G\H. This implies that x ∈ kerφ∗. So N ⊆ K. Thus K = N�G. �

Corollary 2.2.6. If G is a Frobenius group with kernel N and complement H then G is a semi-direct

product of N by H.

PROOF:We know that N =
(
G\ ∪ {Hx : x ∈ G}

)
∪ {1G} and N ∩H = {1G}. Also N�G and H ≤ G.

So

|NH| =
|N|× |H|

|N ∩H|
=

(G : H)× |H|

1
= |G| .

Therefore G = NH. Thus G is a semi-direct product of N by H. �



3

Structure of The Frobenius Group

3.1 Introduction

This chapter forms the main part of this thesis. We look here at the structure of the Frobenius

group. Some of the results provide us with alternate definitions of the Frobenius group, while

others can be used to construct Frobenius groups. We look at the structure of the kernel N and

the complement H in greater detail. Lemma 3.2.15 is a useful result and provides some insight

into the conjugacy classes of the group. We also give some results about the center, commutator

subgroup and Frattini subgroup of a Frobenius group. We end the chapter by briefly mentioning

some results about solvability of Frobenius groups.

3.2 Structure

Proposition 3.2.1. ([6]). Suppose that G is a Frobenius group with complement H and kernel N.

If 1G 6= x ∈ N then CG(x) ≤ N.

PROOF:Since CG(x) ≤ G we just need to show that CG(x) ⊆ N. First we will show that if h ∈
H ∩ CG(x) then h = 1G. So suppose that for h ∈ H and x ∈ N,h ∈ H ∩ CG(x). Now h ∈ CG(x)
implies that hxh−1 = x. So h = xhx−1 = hx ∈ Hx. Therefore h ∈ H∩Hx = {1G} and hence h = 1G.

Suppose now that y ∈ CG(x). We will show that y ∈ N. Assume that y /∈ N, then 1G 6= y ∈ Hz

for some z ∈ G. This follows from the definition of the Frobenius kernel, see Note 2.2.3. Now

y ∈ CG(x) implies that yxy−1 = x and since y ∈ Hz we have y = zhz−1 for some h ∈ H. Therefore

z−1yz = h and hence yz
−1

= yz
′
= h ∈ H for some z ′ ∈ G.

28



CHAPTER 3. STRUCTURE OF THE FROBENIUS GROUP 29

Now

yxy−1 = x⇒ (zhz−1)x(zhz−1)−1 = x ⇒ zh(z−1xz)h−1z−1 = x⇒ zh(xz
−1
)h−1z−1 = x ⇒ z−1[zh(xz

−1
)h−1z−1]z = z−1xz⇒ h(xz

−1
)h−1 = z−1xz ⇒ h(xz

−1
)h−1 = xz

−1

⇒ h ∈ CG(x
z−1) ⇒ yz

−1 ∈ CG(xz
−1
).

Therefore yz
−1 ∈ H ∩ CG(xz

−1
). Also since xz

−1 ∈ N (∵ N � G) and xz
−1 6= 1G (∵ x 6= 1G), by the

first part of the proof, since yz
−1 ∈ H ∩CG(xz

−1
), we have that yz

−1
= 1G and hence y = 1G which

is a contradiction. Therefore y ∈ N and hence CG(x) ⊆ N. �

Proposition 3.2.2. ([6]). Suppose that G is a Frobenius group with complement H and kernel N.

Then ◦(H)
∣∣◦(N) − 1.

PROOF:Now G acts by conjugation on N. Restricting this action to H, the complement H acts by

conjugation on N. Let 1G 6= x ∈ N. Then Hx = {h ∈ H : xh = x} = {h ∈ H : hxh−1 = x} = CH(x).

Now by Proposition 3.2.1, CG(x) ≤ N. Since CH(x) ⊆ CG(x) ≤ N, CH(x) ≤ N. But G is a

Frobenius group and H∩N = {1G}. Therefore CH(x) = {1G}. Now by the Orbit Stabilizer Theorem,

we have that
∣∣xH∣∣ = [H : Hx]. So

∣∣xH∣∣ = |H|
|Hx|

= |H|
1 = |H|. Since the H - orbits partition N, N\{1G}

is a union of H - orbits each of size |H|. Therefore |N|− 1 = α |H| where α is the number of orbits.

This implies that |H|
∣∣|N|− 1. �

Note 3.2.1. A subgroup H of a group G is called a Hall subgroup if |H| and [G : H] are relatively

prime. Thus, by Proposition 2.2.4 and the following Corollary, in a Frobenius group the order of

the complement H and the kernel N are always relatively prime.

Corollary 3.2.3. The complement H of a Frobenius group G is a Hall subgroup of G and the kernel

N is a normal Hall subgroup of G.

PROOF:By Proposition 3.2.2, we have |H|
∣∣|N| − 1. So |H| × α = |N| − 1 for some α ∈ N. So

|N| − α |H| = 1 implies that (|N| , |H|) = 1. But by Proposition 2.2.4, we have |N| = [G : H].

So
(
[G : H] , |H|

)
= 1 and hence that H is a Hall subgroup of G. Since G = NH and |G| =

|N|× |H| , |G|
|N|

= |H|. So [G : N] = |H|. Hence by above,
(
|N| , [G : N]

)
= 1. This implies that N is

a normal Hall subgroup of G. �

Lemma 3.2.4. If G is a group and T (x) = x−1 ∀x ∈ G, then

1. T is 1-1 from G onto G.

2. T is an automorphism ⇔ G is abelian.

PROOF:Easy and omitted. �
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Proposition 3.2.5. ([6]). If G is a Frobenius group with complement H of even order , then the

kernel N is abelian.

PROOF:Since 2
∣∣|H|, by Cauchy’s Theorem there exists h ∈ H such that ◦(h) = 2. If 1G 6= x ∈ N

then x 6= xh ∈ N (since xh = x implies that h ∈ CG(x) ≤ N which is a contradiction). So xh 6= x

and hence xhx−1 6= 1G. Consider now the map φ(x) = xhx−1 ∀x ∈ N. We will show that φ is an

automorphism of N which coincides with the map ψ(z) = z−1 ∀z ∈ N, and by Lemma 3.2.4 the

result will follow.

φ is well defined :

Let x, y ∈ N. Then x = y implies that y−1x = 1G. So

(y−1x)h = y−1x = 1G⇒ h(y−1x)h = y−1x ⇒ hy−1(hh)xh = y−1x⇒ (hy−1h)(hxh) = y−1x ⇒ (hyh)−1(hxh) = y−1x⇒ (yh)−1xh = y−1x ⇒ xhx−1 = yhy−1⇒ φ(x) = φ(y).

φ is 1− 1 :

Suppose φ(x) = φ(y) for x, y ∈ N, then

xhx−1 = yhy−1 ⇒ (yh)−1xh = y−1x⇒ (hyh)−1(hxh) = y−1x ⇒ (hy−1h)(hxh) = y−1x⇒ hy−1(h2)xh = y−1x ⇒ hy−1xh = y−1x⇒ (y−1x)h = y−1x ⇒ y−1x = 1G,

since y−1x ∈ N and h /∈ CG(y−1x) by Proposition 3.2.1. Hence y = x.

Also φ is onto since N is finite. Therefore N = {xhx−1 | x ∈ G}. Setting z = xhx−1, we have that

zh = (xhx−1)h = h(xhx−1)h = h(hxh)x−1h

= h2(xh)x−1h = x(hx−1h) = x(hxh)−1

= x(xh)−1 = (xhx−1)−1 = z−1.

Now the map z 7→ zh is an automorphism of N. Since zh = z−1, the automorphism z 7→ zh is the

same as the map z 7→ z−1. Since this map is an automorphism of N, by Lemma 3.2.4

N is abelian. �

Proposition 3.2.6. Suppose that G is a Frobenius group with kernel N and complement H. Let z

be an involution in H. Then xz = x−1 ∀x ∈ N.

PROOF:Since |H| is even, by Proposition 3.2.5 the kernel N is abelian. Note first that if x ∈ N then

(xz)2 = xzxz = x(zxz) ∈ N, since N�G implies that (zxz) ∈ N. Now

z(xz)2 = z(xzxz) =
[
(zxz)x

]
z =

[
x(zxz)

]
z (since N is abelian)

= (xzxz)z = (xz)2z.
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Therefore (xz)2 ∈ CG(z) ≤ H. Since (xz)2 ∈ N, we have (xz)2 = 1G. Now since (xz)2 = x(xz), we

must have xz = x−1. �

Note 3.2.2. If |H| is even, then H contains a unique involution z, and therefore z is central. Since,

if z ′ ∈ H is another involution, then by Proposition 3.2.6 we have

xz
′

= x−1 = xz⇒ z ′xz ′−1 = zxz−1 ⇒ (z−1z ′)x = x(z−1z ′)⇒ z−1z ′ ∈ CG(x) ≤ N.

Since H ∩N = {1G}, z
−1z ′ = 1G ⇒ z = z ′.

Theorem 3.2.7. ([6]). A finite group G is a Frobenius group if and only if it has a non-trivial

proper normal subgroup N such that if 1G 6= x ∈ N then CG(x) ≤ N.

PROOF:If G is A Frobenius group, then by Proposition 3.2.1, we have CG(x) ≤ N.

Conversely suppose now that a finite group G has a non-trivial proper normal subgroup N such

that if 1G 6= x ∈ N then CG(x) ≤ N. First we show that N is a normal Hall subgroup of G. Suppose

that N is not a normal Hall subgroup of G. There exists a prime p such that p
∣∣|N| and p

∣∣[G : N].

Let |G| = pαq and |N| = pβq ′ with α > β and (p, q) = 1 = (p, q ′). Let P be a Sylow p - subgroup

of N and let Q be a Sylow p - subgroup of G with {1G} ≤ P ≤ Q and Q 6= P. Then |P| = pβ and

|Q| = pα. Since Q is a non-trivial p - group, the centre of Q is non-trivial.

Clearly P ≤ Q ∩N. Now Q ∩N ≤ N and Q ∩N ≤ Q. Therefore Q ∩N is a p - subgroup of N.

Now since P is a maximal p - subgroup of N we must have that Q ∩N ≤ P and hence P = Q ∩N.

Let x ∈ Z(Q) with ◦(x) = p. Then xg = gx ∀g ∈ Q. So Q ⊆ CG(x). Now if x ∈ P then x ∈ N
and CG(x) ≤ N implies that Q ⊆ CG(x) ⊆ N which is a contradiction, since Q ∩N = P. Suppose

now x /∈ P. Then for any 1G 6= y ∈ P we have y ∈ Q (∵ P ≤ Q) and hence xy = yx. Therefore

x ∈ CG(y). Now 1G 6= y ∈ N implies that CG(y) ≤ N by Proposition 3.2.1. Hence, x ∈ N, so that

x ∈ Q ∩N = P, which is a contradiction. Hence, N must be a normal Hall subgroup of G.

By the Schur-Zassenhaus Theorem there is a complement H to N in G such that G = NH and

N ∩H = {1G}. Let x ∈ G\H and suppose that H ∩Hx 6= {1G}. Since G = NH, we can write x = nh

with x ∈ N and h ∈ H.

Then

Hx = Hnh = nh(H)(nh)−1

= nh(H)h−1n−1 = n(hHh−1)n−1 = nHn−1 = Hn.

So H ∩ Hn 6= {1G} and there exists 1G 6= y ∈ H ∩ Hn such that y ∈ H and y = nh ′n−1 for some

1G 6= h ′ ∈ H. So

nh ′n−1 ∈ H ⇒ (nh ′n−1)h ′−1 ∈ H ⇒ n(h ′n−1h ′−1) ∈ H.
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But n(h ′n−1h ′−1) ∈ N since h ′n−1h ′−1 ∈ N (∵ N�G).

Therefore nh ′n−1h ′−1 ∈ N ∩ H = {1G} and hence nh ′ = h ′n. This implies that h ′ ∈ CG(x) ≤ N,

which is a contradiction since h ′ 6= 1G. Therefore H ∩ Hx = {1G} ∀x ∈ G\H and by Proposition

2.2.1, G is a Frobenius group. �

Theorem 3.2.8. ([6]).

1. Suppose that |G| = mn with (m,n) = 1, that either xn = 1G or xm = 1G ∀x ∈ G and that

N = {x ∈ G : xn = 1G}�G. Then G is a Frobenius group with kernel N.

2. Conversely, if G is a Frobenius group with kernel N and complement H, and if |N| = n ,

|H| = m, then either xn = 1G or xm = 1G ∀x ∈ G and N = {x ∈ G : xn = 1G}.

PROOF:(1) First we show that
(
|N| ,m

)
= 1. So suppose that

(
|N| ,m

)
6= 1. Then there exists a

prime p such that p
∣∣ |N| and p

∣∣m. But p
∣∣ |N| implies that there exists x ∈ N such that o(x) = p

and hence that p
∣∣n which contradicts the fact that (m,n) = 1. Thus

(
|N| ,m

)
= 1.

Since |N|
∣∣ |G| = mn and

(
|N| ,m

)
= 1, we have that |N|

∣∣n. If n = pαn ′ with (p, n ′) = 1, then

Q ∈ Sylp(G) implies that |Q| = pα. If 1G 6= x ∈ Q then xp
α
= 1G and this implies that o(x)

∣∣pα and

hence o(x)
∣∣n. Now if xm = 1G then o(x)

∣∣m and since x 6= 1G this implies that (m,n) 6= 1 which is a

contradiction. Thus xn = 1G which implies that x ∈ N. So Q ⊆ N. But Q ∈ Sylp(G). This implies

that Q ∈ Sylp(N). Thus for each prime p dividing n there is a Sylow p - subgroup of G in N. So

|N| = pαn ′′ with (p, n ′′) = 1. Therefore n
∣∣ |N| and hence |N| = n. Since |G| = mn and (m,n) = 1,

we have that N is a normal Hall subgroup of G. By the Schur Zassenhaus Theorem there is

a complement H to N in G. Therefore G = NH and N ∩H = {1G}. The order of H is m. We just

need to show that H is a Frobenius complement. Suppose now that H ∩Hx 6= {1G} and x /∈ H.

So either x ∈ N or x = kh for 1G 6= k ∈ N and 1G 6= h ∈ H. Assume that x ∈ N. Then since

H ∩Hx 6= {1G}, choose 1G 6= h ∈ H ∩Hx. Then h = xh ′x−1 for h ′ ∈ H. Now

h = xh ′x−1 ⇒ x−1hx = h ′ ⇒ hx
−1

= h ′ ⇒ hx
−1
h−1 = h ′h−1 ∈ H.

Also hx
−1
h−1 = (x−1hx)h−1 = x−1(hxh−1) ∈ N (since N�G).

Therefore

hx
−1
h−1 ∈ H ∩N = {1G}⇒ hx

−1
h−1 = 1G ⇒ x−1hxh−1 = 1G ⇒ hx = xh.

Since (m,n) = 1, o(xh) = o(x) × o(h). Let o(x) = n ′ and o(h) = m ′, then n ′
∣∣n and m ′

∣∣m. Now

o(xh) = n ′m ′. Also since xh ∈ G, either (xh)n = 1G or (xh)m = 1G. If (xh)n = 1G, then n ′m ′
∣∣n

implies that n = n ′m ′k for k ∈ Z. This implies that m ′
∣∣n. But m ′

∣∣m. This contradicts the fact

that (m,n) = 1. We get a similar contradiction if (xh)m = 1G. Assume now that x /∈ N and x = kh

for 1G 6= k ∈ N and 1G 6= h ∈ H. Then

Hx = Hkh = khH(kh)−1 = k(hHh−1)k−1 = kHk−1 = Hk.
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So H ∩Hx 6= {1G} implies that H ∩Hk 6= {1G}. Therefore there exists y ∈ H such that y = kh ′′k−1

for some h ′′ ∈ H. Now yh ′′−1 = k(h ′′k−1h ′′−1) ∈ N�G. So kh ′′k−1h ′′−1 ∈ H∩N = {1G}. Therefore

kh ′′ = h ′′k which implies that h ′′ ∈ CG(k) and hence by Proposition 3.2.1 that h ′′ ∈ N. But this

is a contradiction. Thus H∩Hx = {1G} ∀x ∈ G\H which implies that H is a Frobenius complement

of N in G by Proposition 2.2.1.

(2) If 1G 6= x ∈ N then since |N| = n, xn = 1G. Also if 1G 6= y ∈ H then since |H| = m,ym = 1G.

Suppose now x ∈ G and x /∈ N and x /∈ H. Then x = kh for some 1G 6= k ∈ N and 1G 6= h ∈ H.

Now

xn = (kh)n = (kh)(kh)(kh)n−2 = (khkh−1hh)(kh)n−2 = k(hkh−1)h2(kh)n−2

= kk ′h2(kh)n−2 (for some k ′ ∈ N�G)

= k ′′h2(kh)n−2 (for some k ′′ ∈ N)

= k ′′h2(kh)(kh)(kh)n−4 = k ′′h2(khkh−1hh)(kh)n−4

= k ′′h2kk ′′′h2(kh)n−4 (for k ′′′ ∈ N�G)

= k ′′h2k2h
2(kh)n−4 (for k2 ∈ N)

= k ′′h(hk2h
−1)h3(kh)n−4

= k ′′hk3h
3(kh)n−4 (for k3 ∈ N�G)

= k ′′(hk3h
−1)h4(kh)n−4

= k ′′k4h
4(kh)n−4 (for k4 ∈ N�G)

= k5h
4(kh)n−4 (for k5 ∈ N), . . . . . .

continuing in this fashion we find that xn = n0h
n for some n0 ∈ N. Suppose now that xn = 1G.

Then n0h
n = 1G which implies that hn = n1 for some n1 ∈ N and hence that hn = 1G, since

H ∩ N = {1G}. Therefore o(h)
∣∣n and since o(h)

∣∣m, this implies that (m,n) 6= 1 which is a

contradiction. Hence xn 6= 1G. Since (m,n) = 1 and o(x)
∣∣mn and the order of x does not divide

n we must have that o(x)
∣∣m. Thus xm = 1G. Hence, either xm = 1G or xn = 1G ∀x ∈ G.

By definition the Frobenius kernel is N =
(
G\ ∪ {Hx : x ∈ G}

)
∪ {1G}. So if 1G 6= x ∈ G is in any

conjugate of H then xm = 1G. The remaining g ∈ G are in the kernel N. Thus N = {x ∈ G : xn =

1G}. �

Proposition 3.2.9. ([6]). Suppose G is a Frobenius group with kernel N and complement H and

that {1G} 6= N1 ≤ N, {1G} 6= H1 ≤ H, with H1 ≤ NG(N1). Then G1 = N1H1 is a Frobenius group

with kernel N1 and complement H1.

PROOF:Since N1 � NG(N1) and H1 ≤ NG(N1), N1H1 ≤ NG(N1) ≤ G. Also N1 � NG(N1) and

N1 ≤ G1 = N1H1 ≤ NG(N1) implies that N1 �G1. Clearly G1 = N1 : H1 since N1 ∩H1 ⊆ N∩H =

{1G}. First we show that N1H1 ∩ N = N1. Now N1 is clearly contained in the intersection since

N1 ⊆ N1H1 and N1 ⊆ N. To show the reverse containment, suppose that 1G 6= x ∈ N1H1 ∩N but

x /∈ N1. Since x ∈ N1H1 and x ∈ N, x /∈ N1 implies that x = 1G.h for some h ∈ H1 or x = n ′h ′ for
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some n ′ ∈ N1 and h ′ ∈ H1. If x = 1G.h then x ∈ H (since H1 ≤ H) which is a contradiction since

H ∩ N = {1G}. If x = n ′h ′ then x ∈ N implies that n ′h ′ ∈ N and hence that h ′ ∈ N which is a

contradiction since H ∩N = {1G}. Therefore, N1 ⊆ N1H1 ∩N and hence N1H1 ∩N = N1.

Now N1 is a non-trivial normal subgroup of G1 so that all we need to show is that for 1G 6= x ∈
N1, CG1(x) ≤ N1, so by Theorem 3.2.7 we can conclude that G1 is Frobenius. Since G is Frobenius,

for 1G 6= x ∈ N1 ≤ N, we have that CG(x) ≤ N by Proposition 3.2.1. Now G1 ≤ G implies that

CG1(x) ≤ CG(x) ≤ N. Also since CG1(x) ≤ G1, we have CG1(x) ≤ G1 ∩ N = N1H1 ∩ N = N1.

Hence, by Theorem 3.2.7, G1 is a Frobenius group. �

Proposition 3.2.10. ([12]). Let G be a Frobenius group with kernel N and let K be a subgroup of

G. Then one of the following must occur.

1. K ⊆ N.

2. K ∩N = {1G}.

3. K is a Frobenius group with kernel N ∩ K.

PROOF:(1) Let M = N∩K and assume that neither (1) nor (2) holds. Then M 6= {1G} and M 6= K.

We have that M � K. Now let 1G 6= x ∈ M, then x ∈ N, so by Proposition 3.2.1, CG(x) ⊆ N.

Also CK(x) ⊆ CG(x) ⊆ N and CK(x) ⊆ K. So CK(x) ⊆ N ∩ K =M. Hence, by Theorem 3.2.7, K is

Frobenius with kernel N ∩ K. �

Proposition 3.2.11. ([12]). Let K 6= {1G} be a subgroup of G such that K 6= NG(K) and CG(x) ⊆
K ∀ 1G 6= x ∈ K. Then NG(K) is a Frobenius group with Frobenius kernel K.

PROOF:It is clear that K �NG(K). If 1G 6= x ∈ K then by hypothesis CNG(K)(x) ⊆ CG(x) ⊆ K. So

by Theorem 3.2.7, NG(K) is a Frobenius group with kernel K. �

Proposition 3.2.12. ([6]). Suppose G is a Frobenius group with kernel N and complement H, and

that K ≤ N;K 6= N and K�G. Then G/K is Frobenius with kernel N/K.

PROOF:By the Correspondence Theorem since K ≤ N and K � G,N/K � G/K. The index of N/K

in G/K is
[
G/K : N/K

]
and[
G/K : N/K

]
=

∣∣G/K∣∣/∣∣N/K∣∣
=

(∣∣G∣∣/∣∣K∣∣)× (∣∣K∣∣/∣∣N∣∣)
=

∣∣G∣∣/∣∣N∣∣
=

[
G : N

]
=
∣∣H∣∣ by Proposition 2.2.4.

The order of N/K is
∣∣N/K∣∣ = ∣∣N∣∣/∣∣K∣∣ = [

G:H
]∣∣K∣∣ by Proposition 2.2.4. Now

[
G : H

]
and

∣∣H∣∣ are

relatively prime since H is a Hall subgroup of G. Let

[
G:H
]

|K|
= n and |H| = m.
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Now if p is a prime and p
∣∣m and p

∣∣n then p
∣∣|H| and p

∣∣[G : H
]
. But this is a contradiction because

H is a Hall subgroup. Therefore (m,n) = 1 which implies that N/K is a normal Hall subgroup

of G/K. We show now that N/K =
{
xK ∈ G/K : (xK)n = 1G/K

}
. If 1G/K 6= xK ∈ G/K then

since
∣∣N/K∣∣ = n, xK ∈ N/K implies that (xK)n = 1G/K. Let 1G/K 6= xK ∈ G/K and (xK)n = 1G/K.

Suppose now that (xK) /∈ N/K. Then x /∈ N and since G is Frobenius either x ∈ H or x = n ′h for

some 1G 6= n ′ ∈ N and 1G 6= h ∈ H. If x ∈ H then since |H| = m,xm = 1G. So xmK = K implies that

(xK)m = 1G/K and hence that o(xK)
∣∣m. But this a contradiction since o(xK)

∣∣n and (m,n) = 1.

If x = n ′h then xn = n ′′hn for some n ′′ ∈ N. (See the proof of Theorem 3.2.8, part(2)). Now

(xK)n = 1G/K implies that xnK = K and hence that xn ∈ K ≤ N. Since xn ∈ N, n ′′hn ∈ N which

implies that hn ∈ N. Since h 6= 1G, hn = 1G implies that o(h)
∣∣n which is a contradiction since

o(h)
∣∣m and (m,n) = 1. Thus we must have that N/K =

{
xK ∈ G/K : (xK)n = 1G/K

}
and by

part(1) of Theorem 3.2.8 , G/K is Frobenius with kernel N/K. �

Proposition 3.2.13. ([6]). If G is abelian and the only characteristic subgroups in G are {1G} and

G, then G is elementary abelian.

PROOF:Let p be a prime divisor of |G| . Then H =
{
x ∈ G : xp = 1G

}
≤ G. Note first that H 6= {1G}

since by Cauchy’s Theorem there exists x ∈ G such that o(x) = p. So x ∈ G and xp = 1G implies

that x ∈ H. Also 1G ∈ H since 1pG = 1G. If α,β ∈ H then αp = βp = 1G.

So

αp = βp ⇒ β−pαp = 1G ⇒ (β−1)p(αp) = 1G⇒ (β−1α)p = 1G (since G is abelian)

So β−1α ∈ H and therefore H ≤ G.

Let φ be any automorphism of G. Since H ≤ G and φ is an isomorphism, φ(H) =
{
φ(h) : h ∈ H

}
is

a subgroup of G. We show that H is a characteristic subgroup of G. Let h ∈ H. Then hp = 1G. Now

φ(1G) = 1G implies that φ(hp) = 1G and hence that
[
φ(h)

]p
= 1G. So φ(h) ∈ H and φ(H) ≤ H.

Since this is true for any automorphism φ of G, it is true for φ−1. So φ−1(H) ≤ H which implies

that φ
[
φ−1(H)

]
≤ φ(H) and hence that H ≤ φ(H). So φ(H) = H ∀φ ∈ Aut(G). Therefore H is

characteristic in G. Since H 6= {1G}, and the only characteristic subgroups of G are {1G} and G, we

have that H = G. So xp = 1G ∀x ∈ H implies that xp = 1G ∀x ∈ G. By definition this implies that

G is an elementary abelian group. �

Note 3.2.3. A Frobenius group G is said to be minimal if no proper subgroup of G is Frobenius.

Remark 3.2.1. LetH be a Frobenius complement of a Frobenius groupG. Let {1G, q1, q2, . . . . . . , qn−1}

be a left transversal for H in G. Then G = H ∪ q1H ∪ . . . . . . ∪ qn−1H where [G : H] = n. It follows

then that the conjugates of H by elements of G are {H,Hq1 , Hq2 , . . . . . . , Hqn−1} and no two of them

coincide since if Hq1 = Hq2 then q1Hq
−1
1 = q2Hq

−1
2 which implies that (q−12 q1)H(q

−1
2 q1)

−1 = H

and hence that q−12 q1 ∈ NG(H) = H by Corollary 2.2.2.
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Therefore q−12 q1H = H which implies that q2H = q1H which is a contradiction. Also the intersec-

tion of any two distinct conjugates of H is trivial since if x ∈ Hq1 ∩Hq2 then x = q1hq
−1
1 = q2h

′q−12
for h, h ′ ∈ H. So (q−12 q1)h(q

−1
2 q1)

−1 = h ′ which implies that q−12 q1 ∈ H. Therefore q−12 q1H = H

which implies that q1H = q2H which is a contradiction. Hence any of the conjugates of H satis-

fies the condition to be a Frobenius complement. Therefore in a Frobenius group G replacing the

complement H by any of it’s conjugates gives us another representation of G as a Frobenius group.

Theorem 3.2.14. ([6]). If G is a minimal Frobenius group with kernel N and complement H then

N is elementary abelian and H has prime order.

PROOF:If {1G} < H1 < H then H1 < NG(N) = G, so by Proposition 3.2.9, G1 = NH1 is a proper

Frobenius subgroup of G contradicting the minimality of G. Hence, H must be of prime or-

der. Let the order of H = q a prime. We will show that N is elementary abelian. Let P be

a Sylow p - subgroup of N and let N ′ = NG(P). Then G = NN ′ by the Frattini Argument.

Since |NN ′| = |G| = |NH| = |N|q, we have that q
∣∣|N ′|. Let Q1 ∈ Sylq(N ′), then |Q1| = q and

Q1 ≤ N ′ = NG(P). So NQ1 ≤ G and |NQ1| =
|N||Q1|
|N∩Q1| =

|N|q
1 = |N|q. Therefore G = NQ1. Since

Q1 is also a Sylow q - subgroup of G, it is conjugate to H in G. Therefore by the Remark 3.2.1,

G = NQ1 is Frobenius. The minimality of G now implies that P = N. If K 6= {1G} is a character-

istic subgroup of N, then since N�G,K�G. So applying Proposition 3.2.9 to G = NH, we have

that G1 = KH is a Frobenius group. The minimality of G now implies that K = N. In particular

Z(N) = N which implies that N is abelian. (Since for every group G it’s centre is characteristic

in G). Also Z(N) 6= {1G} since a p - group has a non-trivial centre. By Proposition 3.2.13 now, N

is elementary abelian. �

The following lemma contains some useful characterisations of Frobenius groups.

Lemma 3.2.15. ([9]). Let N � G, H ≤ G with NH = G and N ∩ H = {1G}. Then the following

are equivalent.

1. CG(n) ≤ N ∀1G 6= n ∈ N.

2. CH(n) = {1G} ∀1G 6= n ∈ N.

3. CG(h) ≤ H ∀1G 6= h ∈ H.

4. Every x ∈ G\N is conjugate to an element of H.

5. If 1G 6= h ∈ H, then h is conjugate to every element of Nh.

6. H is a Frobenius complement in G.

PROOF:Note first that

G = N ∪Nh2 ∪Nh3 . . . ∪Nhm ,
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and that

H = {1G, h2, h3, . . . , hm} ,

where the hi are distinct.

Also

Nhi = {hi, n1hi, n2hi, . . . , nihi} ,

and each nihi is distinct since if nihi = njhi then ni = nj.

Also note that

∀ g ∈ G,
(
Nhi

)g
= g

(
Nhi)g

−1 = gN(g−1g)hig
−1 = (gNg−1)(ghig

−1)

= Nh
g
i . (3.1)

This is true for any normal subgroup of a group. Since G is a semi-direct product, if g = mh for

m ∈ N and h ∈ H , we have that:(
Nhi

)g
= Nhgi = Nhmhi by (3.1)

= N
(
mhhih

−1m−1
)
= Nm

(
hhih

−1
)
m−1 = Nmh ′m−1 for h ′ = hhih

−1

= Nh ′m−1 since m ∈ N

= Nh ′m−1h ′−1h ′ = Nh ′ since h ′m−1h ′−1 ∈ N

= Nhhih
−1 = Nhhi =

(
Nhi

)h
. by (3.1) (3.2)

Now we prove the lemma.

(6) ⇒ (1)

H is a Frobenius complement by definition implies that G is a Frobenius group so (1) then follows

by Proposition 3.2.1.

(1) ⇒ (2)

Let g ∈ CH(n), where 1G 6= n ∈ N. Then gn = ng and this implies that g ∈ CG(n) ≤ N. Hence,

g ∈ H ∩N = {1G} and (2) follows.

(2) ⇒ (3)

Let g ∈ CG(h). Then gh = hg. Assume that n 6= 1G. Let g = nh ′ for n ∈ N and h ′ ∈ H.

Then

h = ghg−1 = hg ⇒ h = hnh
′

= nh ′(h)h ′−1n−1 = n(h ′hh ′−1)n−1

= nh ′′n−1 = h ′′n where h ′′ = h ′hh ′−1 ∈ H.



CHAPTER 3. STRUCTURE OF THE FROBENIUS GROUP 38

So

h = h ′′n ⇒ nh ′′ = hn ⇒ nh ′′h−1 = hnh−1⇒ nh ′′′ = n ′ where h ′′h−1 = h ′′′ ∈ H, and hnh−1 = n ′ ∈ N⇒ h ′′′ = n−1n ′ ∈ N (3.3)

So h ′′′ ∈ H ∩ N and this implies that h ′′′ = 1G and n = n ′. Now hnh−1 = n ′ = n implies that

h ∈ CG(n) = 1G. This contradicts the assumption given in (2) since h 6= 1G. Hence we must have

n = 1G and hence g = h ′ ∈ H. Thus CG(g) ≤ H.

(3) ⇒ (4)

We have

G = N ∪Nh2 ∪Nh3 . . . . . . ∪Nhm.

So

G\N = Nh2 ∪Nh3 ∪Nh4 . . . . . . ∪Nhm.

Since by assumption we have

CG(hi) ⊆ H ∀i = 2, . . . . . . ,m,

we deduce that

CG(hi) = CH(hi) ∀i = 2, . . . . . . ,m,

Now ∣∣[hi]H∣∣ = [H : CH(hi)
]
, (3.4)

and ∣∣[hi]G∣∣= [G : CG(hi)
]
. (3.5)

Now dividing equation (3.5) by equation (3.4) gives

∣∣[hi]
G

∣∣∣∣[hi]
H

∣∣ = |G|
|H|

.

This now implies that ∣∣[hi]G∣∣ = ∣∣N∣∣× ∣∣[hi]H∣∣ ∀i = 2, . . . . . . ,m. (3.6)

Also if hi is not conjugate to hj in H then hi is not conjugate to hj in G. From equation (3.6) we

have that: ∣∣ ⋃
1G 6=h∈H

[
h
]
G

∣∣ =
∣∣N∣∣× ∣∣ ⋃

1G 6=h∈H

[
h
]
H

∣∣ (h here is a class representative in H)

= |N|×
(
|H|− 1

)
= |N|× |H|− |N|

= |G|− |N| . (3.7)
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By equation (3.7) now we have that

G = N
⋃{ ⋃

1G 6=h∈H

[
h
]
G

}
.

This implies that if x ∈ G\N then x ∈
[
h
]
G

for some h ∈ H proving (4).

(4) ⇒ (5)

Since by (4) nhi is conjugate to hj in G for some hj ∈ H, there exists g ∈ G with g = mh for

m ∈ N,h ∈ H such that (nhi)
g = hj. Now (nhi)

g ∈
(
Nhi)

g = Nhgi = Nh
h
i by equation 3.1.

So (nhi)
g = n ′hhi for some n ′ ∈ N implies that hj = n

′hhi , and hence n ′ ∈ N ∩H = 1G. Therefore

hj = h
h
i and hence hj is conjugate to hi. Thus nhi is conjugate to hi and since this is true for all

n ∈ N the result follows.

(5) ⇒ (6)

We need to show that H ∩ Hg = {1G} ∀g ∈ G\H. So suppose now that H ∩ Hg 6= {1G} with

g ∈ G, g = nh,n 6= 1G. So there is a 1G 6= h ′ ∈ H such that h ′g ∈ H. Let h ′g = h0 for some

h0 ∈ H. Now by (5) we have that h ′g ∈ Nh ′. So h ′g = nh ′ for some n ∈ N. Thus we have that

h0 = h ′g = nh ′. The uniqueness of the representation of each g ∈ G now implies that n = 1G

which is a contradiction. This now completes the proof. �

We prove the following Lemma by using Lemma 3.2.15.

Lemma 3.2.16. Let G be a frobenius group with kernel K and complement H. Then any two

non-identity elements of H conjugate in G are already conjugate in H.

PROOF:If h1 is conjugate to h2 in G ,then there exists 1G 6= g ∈ G with g = mh wherem ∈ N,h ∈ H
such that hg1 = h2. Thus

gh1g
−1 = h2 ⇒ (mh)h1(h

−1m−1) = h2⇒ m(hh1h
−1)m−1 = h2 ⇒ mh ′m−1 = h2 where h ′ ∈ H⇒ mh ′m−1(h ′−1h ′) = h2 ⇒ m(h ′m−1h ′−1)h ′ = h2⇒ m ′h ′ = h2 where m ′ = m(h ′m−1h ′−1) ∈ N⇒ m ′h ′ = 1G.h2 ⇒ m ′ = 1G by the uniqueness of the representation of g ∈ G⇒ mh ′m−1h ′−1 = 1G ⇒ mh ′ = h ′m ⇒ m ∈ CG(h ′) ⊆ H ⇒ m = 1G.

Therefore g = 1G.h which implies that hh1 = h2 and hence that h1 is conjugate to h2 in H. �

Lemma 3.2.17. ([24]). If G is a Frobenius group with kernel N and K�G ,then either K ⊆ N or

N ⊆ K.

PROOF:Assume that K 6⊆ N. Let H be a complement of N and let x ∈ K\N.

First we show that CG(x)∩N = {1G}. Suppose that CG(x)∩N 6= {1G} and let y ∈ CG(x)∩N. Since
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y ∈ N, by Proposition 3.2.1 CG(x) ≤ N. Also y ∈ CG(x) implies that xy = yx. But this implies

that x ∈ CG(y) ≤ N which is a contradiction. Thus CG(x) ∩N = {1G}.

Now NCG(x) ≤ G and |NCG(x)|
∣∣|G|. So

|NCG(x)|k = |G| ⇒ |CG(x)| |N|

|CG(x) ∩N|
k = |G| ⇒ |N| |CG(x)|k = |N| |H| ,

for some k ∈ N. This implies that |CG(x)|
∣∣|H|.

Since |CG(x)|
∣∣|H| implies that |CG(x)|q = |H| for some q ∈ N, and |G| = |CG(x)| |[x]|, we have that

|G|q = |CG(x)| [x]|q = |H| |[x]|. This implies that |N| |H|q = |[x]| |H| and hence that |N|q = |[x]|.

Thus |N|
∣∣|[x]| . Since [x] ⊆ K, |N|

∣∣|K|.
Now let |N| = pαz, then |K| = pαkz for some k, z ∈ N. Also since N is a normal Hall subgroup of

G, |G| = pαz ′ for z ′ ∈ N. Let P ∈ Sylp(K) then P ∈ Sylp(G). If Q ∈ Sylp(N) then Q is conjugate

to P in G which implies that Q = gPg−1 for some g ∈ G. So P = g−1Qg ≤ N (since N � G). So

every Sylow p - subgroup of K such that p
∣∣|N| is contained in N. Hence, N ⊆ K. �

Note 3.2.4. Let G be a Frobenius group with kernel N and complement H. If K � G such that

N ⊂ K then K = N : (H ∩ K) is a Frobenius group since, N ⊂ K, H ∩ K 6= {1G} by Proposition 2.2.4

and by Flavell [5] (Corollary 3.1), K = (K ∩N) : (H ∩ K) is a Frobenius group which implies that

K = N : (H ∩ K) is Frobenius.

Theorem 3.2.18. ([6]). If G is a Frobenius group with kernel N and complement H, then no

subgroup of H is Frobenius.

PROOF:Suppose the result is false. Let G be a counter example of minimal order. Then H itself

is Frobenius and minimal. (Since if H has a subgroup H1 say which is Frobenius, then H will be

another counter example of order less than the order of G which is a contradiction). Hence, the

kernel K of H is elementary abelian and it’s complement Q is cyclic of prime order. We want to

show that N is an elementary abelian p - group.

Suppose that p is a prime that divides the order of N. Let P be a Sylow p - subgroup of N and

let N ′ = NG(P). Then G = NN ′ by the Frattini argument. So |G| = |N||N ′|
|N∩N ′| = |H| |N|. This implies

that |H|
∣∣|N ′|. Now N ∩N ′ �N ′ and since G/N = NN ′/N ∼= N ′/N ∩N ′, [G : N] = [N ′ : N ∩N ′].

Therefore
([
N ′ : (N ∩N ′)

]
, |N ∩N ′|

)
= 1 which implies that N ∩N ′ is a normal Hall subgroup of

N ′, since if there is a prime q such that q
∣∣ |N ∩N ′| and q

∣∣[N ′ : (N ∩N ′)] then q
∣∣ |N| and q

∣∣ [G : N]

which is a contradiction since N is a normal Hall subgroup.

By the Schur Zassenhaus Theorem, N ∩N ′ has a complement L. Therefore N ′ = (N ∩N ′)L and

since H ∼= G/N = N ′/N ∩N ′ ∼= L, |L| = |H| = [G : N]. Thus G = NL and L is minimal Frobenius.

Since L ≤ N ′ = NG(P) and P �NG(P), PL ≤ NG(P) ≤ G. We show that PL is Frobenius.

First we show that if 1G 6= x ∈ P, then CPL(x) ≤ PL ∩ N. Now CPL(x) ⊆ PL and since x ∈ N
(P ⊆ N), by Proposition 3.2.1, CPL(x) ⊆ CG(x) ⊆ N. Thus CPL(x) ⊆ PL ∩N. We now show that

PL∩N = N, and PL is Frobenius will follow from Proposition 3.2.1. Now P ⊆ PL∩N since P ⊆ PL
and P ⊆ N. Let 1G 6= x ′ ∈ PL ∩N, then x ′ ∈ PL implies x ′ = zl with z ∈ P and 1G 6= l ∈ L. Since
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x ′ ∈ N, zl = n for some n ∈ N. So l = z−1n ∈ N. Therefore l ∈ N and l ∈ N ′ (L ≤ N ′). Therefore

l ∈ N∩N ′. But (N ∩N ′)∩L = {1G} since L is the complement of (N ∩N ′) in N ′. Therefore l = 1G

which is a contradiction. Therefore x ′ = z and hence x ′ ∈ P. So PL∩N ⊆ P and PL∩N = P. Now

PL is a Frobenius group follows by Proposition 3.2.1. Since PL is Frobenius and we already have

that L is minimal Frobenius, PL is another counter example of order less than the order of G. Thus

we must have that

|PL| = |G| ⇒ |PL| = |P| |L| = |N| |H| ⇒ |P| = |N| ⇒ P = N.

Therefore N is a p group.

Furthermore by Proposition 3.2.12 no non-trivial normal subgroup of G is properly contained in N,

because if R ≤ N,R 6= N and R�G, then by Proposition 3.2.12, G/R is Frobenius with kernel N/R.

Say the complement of N/R is W/R where W ≤ G. Then by the Third Isomorphism Theorem we

have: W/R ∼=
G/R
N/R

∼= G/N ∼= H. Therefore W/R is Frobenius. But G is the counter example of

minimal order and G/R is another counter example and since
∣∣G/R∣∣ < |G|, we have a contradiction.

Therefore R = {1G} which implies that no non-trivial normal subgroup of G is properly contained in

N. In particular, since N is a p - group, {1G} 6= Z(N) = N which implies that N is abelian and since

N has no non-trivial proper characteristic subgroups, by Proposition 3.2.13, N is an elementary

abelian p - group.

We may now view N (written additively) as a vector space over Zp. The action of H on N by

conjugation is a Zp representation T , of H on N. First we will show that T is faithfull.

If ρh is the automorphism of N which represents conjugation by h ∈ H, then ρh(α) = hαh−1 ∀α ∈
N. For h ∈ H, T(h) = ρh and T(h) = 1 implies that ρh(α) = α ∀α ∈ N. Hence hαh−1 = α

implying that hα = αh and hence h ∈ CG(α). Since this is true for all α ∈ N,h ∈ CG(N) and

hence h = 1G, implying that T is faithfull. The only T - invariant subspaces are 0 and N since N

has no other subgroups normal in G. Therefore T is irreducible [6].

Choose a finite extension F of Zp that is a splitting field for both H and K. (Since char(Zp) does

not divide the order of H, there is a finite extension F of Zp that is a splitting field for H). Then

TF ∼ S1
⊕
S2
⊕
. . . . . .

⊕
Sl with each Si absolutely irreducible. Say that S = S1 acts on the F -

subspace V of NF. Restricting the action of T to K, write V = V1
⊕
V2
⊕
. . . . . .

⊕
Vk with each

Vi an irreducible K - invariant subspace. But K is abelian, so each Vi is one dimensional, and if

x ∈ K then Ŝ(x) is a diagonal matrix (where Ŝ is the matrix representation of S). Combine the

subspaces Vi so that V =W1

⊕
W2

⊕
. . . . . .

⊕
Wu where Ŝ(x) restricts to a scalar matrix on each

Wi, ∀x ∈ K with different scalars for some x if i 6= j. Observe that if v ∈ V and Ŝ(x)v = λxv

for λx ∈ F and ∀x ∈ K, then v ∈ Wi for some i. Say Q = 〈y〉 and choose v ∈ Wi. For each

x ∈ K we have Ŝ(x)Ŝ(y)v = Ŝ(y)Ŝ(y−1xy)v = Ŝ(y)λxyv = λxy Ŝ(y)v. So Ŝ(y)v ∈ Wj for some j.

Thus for each i there is some j = j(i) such that Ŝ(y)Wi = Wj(i). So Q acts as a permutation

group on the set {Wi}. Now Q has no fixed points since a fixed point would be both Q - invariant

and K - invariant as a subspace, hence H - invariant, whereas S is irreducible on V. Since Q

is cyclic of prime order q, Ŝ(y) permutes each Q orbit in {Wi} cyclically as a q cycle. Relabel if
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necessary so that Ŝ(y)W1 = W2, Ŝ(y)W2 = W3, . . . . . . , Ŝ(y)Wq−1 = Wq. Choose w 6= 0 ∈ W1 and

set v = w + Ŝ(y)w + Ŝ(y2)w + . . . . . . . Then Ŝ(y)v = v 6= 0, so 1 is an eigenvalue of Ŝ(y), hence of

T(y). This means that for some z ∈ N with z 6= 1 we have T(y)z = zy = z. But then y ∈ CG(z),
contradicting Proposition 3.2.1 and proving the theorem. �

Theorem 3.2.19. ([24]). The Frobenius kernel of a Frobenius group is unique.

PROOF:Let G be a Frobenius group with Frobenius kernels N and N1 with H a complement of N. By

Lemma 3.2.17, without any loss of generality, we may assume that N ⊆ N1. Let K = H ∩N1 �H.

Since N ⊆ N1 and N � G,N � N1. Therefore NK ≤ N1. Let n1 ∈ N1. Then n1 = nh for

1G 6= n ∈ N and 1G 6= h ∈ H, (since n1 ∈ G). So h = n−1n1 ∈ N1 (since n−1 ∈ N ⊆ N1 and

n1 ∈ N1). So h ∈ N1∩H = K. Since h ∈ K, n1 = nh ∈ NK which implies that N1 ⊆ NK. Therefore

N1 = NK. If 1G 6= x ∈ K, then since N1 is a Frobenius kernel, by Proposition 3.2.1, CG(x) ≤ N1.
Also x ∈ K implies that x ∈ H and by Lemma 3.2.15, for 1G 6= x ∈ H,CG(x) ⊆ H. So we have for

1G 6= x ∈ K,CG(x) ⊆ H ∩N1 = K. Since CH(x) = CG(x) ⊆ K for 1G 6= x ∈ K, we have that H is a

Frobenius group with kernel K by Theorem 3.2.7. But this contradicts Theorem 3.2.18. Hence we

have N = N1. �

Proposition 3.2.20. ([6]). Suppose that G is Frobenius with kernel N and complement H, and

that p, q are primes in N, not necessarily distinct. If K ≤ H and |K| = pq then K is cyclic.

PROOF:Suppose the result is false. Let G be a counter example of minimal order. So G is Frobenius

with complement H and kernel N and there exists K ≤ H such that |K| = p2 or pq and K is not

cyclic. Since K ≤ H with |K| = p2 or pq, by Proposition 3.2.9, NK is Frobenius. Since K is not

cyclic, NK is another counterexample of order less than the order of G, which is a contradiction.

Therefore G = NH = NK and hence, H = K. Therefore |H| = p2 or pq.

Also, if N1 �G and N1 ≤ N, then N1H is a Frobenius group by Proposition 3.2.9. But then N1H

is another counterexample of order less than the order of G, which is a contradiction. Thus N is a

minimal normal subgroup of G.

If |H| = pq, then since H is not cyclic, by Example 2 in the next chapter it is Frobenius. But this

contradicts Theorem 3.2.18. Hence, H is of order p2 and therefore abelian. If R ∈ Sylr(N) for

r a prime and N ′ = NG(R) then G = NN ′ by the Frattini argument. So |G| = |N| |H| = |N||N ′|
|N∩N ′| .

Thus |H|
∣∣ |N ′|. Now H ∈ Sylp(G) since |G| = |H| |N| = p2m where (m,p) = 1. Since |H|

∣∣|N ′|, some

conjugate of H is in N ′. Without loss of generality, say H itself is in N ′. Applying Proposition 3.2.9

to G = NN ′, we have that RH is Frobenius. The minimality of G now implies that G = RH.

Now since R � G and R ≤ N the minimality of N now implies that R = N. Since N is a minimal

normal r - group, N = N1 × N2 × N3 × . . . . . . × Nl where the Ni are isomorphic simple groups.

This implies that N = Zr × Zr × . . . . . .× Zr, and thus that N is an elementary abelian r - group.

As in the proof of Theorem 3.2.18, the action of H on N by conjugation determines a faithful

irreducible Zr representation T of H on N. So choose a finite extension F of Zr that is a splitting

field for H so TF ∼ T1
⊕
T2
⊕
. . . . . .

⊕
Tk, with degTi = 1 ∀i. Thus for an appropriate choice of
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basis, T̂(x) is diagonal (where T̂ is the matrix representation of T) ∀x ∈ H, and each diagonal entry

of T̂i(x) is a pth root of unity in F (Since ∀1G 6= x ∈ H,
[
T(x)

]p
= I (identity matrix) and T(x)

is a diagonal matrix. If T̂(x) = diag (ε1, ε2, . . . . . . εm) where m = dim N and εi ∈ F then since[
T(x)

]p
= I, we have that εpi = 1 implies that εi’s are pth roots of unity).

There are at most p distinct pth roots of unity in F, and since |H| = p2, there exists x, y ∈ H, x 6= y
such that T̂1(x) = T̂1(y), or T̂1(xy

−1) = 1G. If z = xy−1, then this implies that 1 is an eigenvalue of

T(z), so there is an eigenvector u ∈ N,u 6= 0 (multiplicatively u 6= 1), and T(z)u = u or uz = u.

Thus 1G 6= z ∈ CG(u) ∩H, contradicting Proposition 3.2.7 �

Lemma 3.2.21. ([6]). Suppose that |G| = pm for some p and that G has a unique subgroup of

order p. Then G is either cyclic or generalized quaternion.

PROOF:See Grove [6] page 93. �

Proposition 3.2.22. ([6]). Suppose G is a Frobenius group with complement H. Let P ∈ Sylp(H)
then

1. If p = 2, then P is cyclic or generalized quaternion.

2. If p 6= 2, then P is cyclic.

PROOF:By Proposition 3.2.20, P contains no noncyclic subgroup of order p2. Since Z(P) is non-

trivial, take K ≤ Z(P) with |K| = p. If there is another subgroup L of P with |L| = p and L 6= K then

|KL| = |K||L|
|K∩L| = p2. Since KL is abelian, by the Basis Theorem KL ∼= Zp × Zp = Ep2 . Therefore KL

is noncyclic since Epn is cyclic if and only if n equals one. But this contradicts Proposition 3.2.20.

Thus P has only one subgroup of order p and by Lemma 3.2.21 the result follows. �

Note 3.2.5. A finite group G is nilpotent if and only if it is the direct product of it’s Sylow

subgroups.

Proposition 3.2.23. Frobenius kernels are nilpotent.

PROOF:See Passman [20] pg 184. �

The result in Proposition 3.2.23 implies that Frobenius kernels are solvable since every finite nilpo-

tent group is solvable.

3.3 The Center, Commutator and Frattini Subgroups of a Frobenius Group

We describe here briefly the Center, Commutator and the Frattini subgroups of a Frobenius group.



CHAPTER 3. STRUCTURE OF THE FROBENIUS GROUP 44

3.3.1 The Center

Lemma 3.3.1. The center of a Frobenius group is trivial.

PROOF:Let G be a Frobenius group. Now Z(G) ≤ CG(x) for x ∈ G. Since CG(x) ≤ N ∀x ∈
N,Z(G) ≤ N. Suppose now that 1G 6= x ∈ Z(G), then since Z(G) ≤ N, x /∈ H. (Since H∩N = {1G}).

Since G is Frobenius, Hx ∩ H = {1G} ∀x ∈ G\H. But x ∈ Z(G) implies that Hx = H which is a

contradiction. �

3.3.2 The Commutator Subgroup

Let G be a Frobenius group with kernel N and complement H.

1. By Lemma 3.2.15, part (5), for all n ∈ N, there exists g ∈ G such that hg = nh. Hence

hg = ghg−1 = nh ⇒ ghg−1h−1 = n⇒ [g, h] = n ⇒ N ⊆ G ′ .

2. Also if the complement H has prime order (and hence abelian), then H ∼= G/N is abelian and

N�G implies that G ′ ⊆ N. So by (1) above we have that N = G ′.

3.3.3 The Frattini Subgroup

Let G be a group and let

φ(G) =
⋂
M∈M

M,

where M is a maximal subgroup of G and M is the collection of all maximal subgroups of G.

Then φ(G) is called the Frattini Subgroup of G. If G 6= {1G} and G is finite, then G certainly has

at least one maximal subgroup. Every proper subgroup of G lies in a maximal subgroup. Since any

automorphism of G sends a maximal subgroup into a maximal subgroup, the setM is invariant by

any automorphism, and so is φ(G). This shows that φ(G) is a characteristic subgroup and since

characteristic subgroups are normal, we have that φ(G) � G. Now if N � G with G finite, then

N ≤ φ(G) if and only if there is no proper subgroup H of G such that G = NH (see Rodrigues [22]).

Now if G is a Frobenius group, then since by definition the complement H is a proper subgroup of

G, the above result and the result of Lemma 3.2.17 implies that φ(G) ≤ N.

Note 3.3.1. 1. If G is a Frobenius group and the order of G is odd, then by the Feit Thompson

Theorem, G is solvable.

2. If the complement H of a Frobenius group G is solvable, then G is solvable. (Since, H solvable

implies that G/N is solvable. By Proposition 3.2.23, N the Frobenius kernel is solvable. Since

G/N is solvable, and N�G is solvable, G is solvable (see Theorem 4.2.3 in Moori [16])).
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3. If the complement H of a Frobenius group G has odd order, then G is solvable. This follows

from the Feit Thompson Theorem and (2) above.



4

Examples of Frobenius Groups

We list here with proof some Examples of Frobenius groups. Also we include a list of Frobenius

groups of small order (up to 32).

4.1 Examples

Example 1 : The Dihedral Group D2q where q is odd is a Frobenius group.

Let G = D2q with q odd. Then

G = 〈a, b : aq = b2 = 1G, bab = a−1〉

= {1G, a, a
2, . . . . . . , aq−1, b, ab, . . . . . . , aq−1b}.

Now o (a) = q and o (b) = 2. Let 〈a〉 = N and 〈b〉 = H = {1G, b}. Since N has index 2 in G, it is

normal in G. Now N�G,H ≤ G, so NH ≤ G and |NH| = |N||H|
|N∩H| = 2q. Therefore G = N : H. This

implies that H is the complement of N in G. To show that D2q is a Frobenius group, we must show

that H is a Frobenius complement in G. We just need to show that H ∩Hx = {1G} ∀x ∈ G\H.

Now x ∈ G implies that x = ak or x = akb for 0 < k ≤ q − 1. If x = ak, then Hx = {1G, a
kba−k}.

But since bak = a−kb ∀k ∈ N, Hx = {1G, a
k(akb)} = {1G, a

2kb}. Suppose now that H ∩ Hx 6= {1G}

for some x ∈ G\H. Then H ∩ Hx = {1G, b}. Therefore a2kb = b implies that a2k = 1G. So q
∣∣2k

and q
∣∣k. Therefore qk ′ = k for some k ′ ∈ N. Hence, x = ak = aqk

′
= 1G which is a contradiction.

If x = akb then Hx = {1G, (a
kb)b(akb)−1} = {1G, a

kba−k}. So by the argument used above we get

the contradiction x = 1G. Therefore H ∩Hx = {1G} ∀x ∈ G\H. This implies that H is a Frobenius

complement in D2q.

Example 2 : If p and q are primes and G is a non-abelian group of order pq, then G is Frobenius.

We can assume that p and q are distinct primes, since if p = q then |G| = p2 and G is abelian

contradicting the hypothesis. So let |G| = pq with p > q. If q = 2 then |G| = 2p with p odd. In

this case G is either cyclic or G = D2p. If G is cyclic then G is abelian contrary to hypothesis. If

G = D2p then by Example 1, G is Frobenius.

So assume |G| = pq, p > q, p 6= 2. By Cauchy’s Theorem G has an element of order p and an

46
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element of order q. Let a ∈ G such that o (a) = p, then 〈a〉 = P is a Sylow p - subgroup of G.

If b ∈ G such that o (b) = q, then 〈b〉 = Q is a Sylow q - subgroup of G. If np is the number of

Sylow p - subgroups of G, then np ≡ 1(mod p) and np
∣∣q. So np = 1 or np = q. If np = q then

q ≡ 1(mod p) and hence q− 1 = kp for k ∈ Z. This is not possible since p > q. Therefore np = 1

which implies that P�G. If nq is the number of Sylow q - subgroups of G, then nq ≡ 1(mod q) and

nq
∣∣p. So nq = 1 or nq = p. If nq = 1, then Q�G. Since P∩Q = {1G} and PQ ≤ G, |PQ| = pq and

hence G = P : Q. So G ∼= P ×Q ∼= Zp × Zq ∼= Zpq. Therefore G is abelian contrary to hypothesis.

Therefore nq = p. So there are p Sylow q - subgroups each of order q in G. Now Q ∈ Sylq(G)
implies that xQx−1 ∈ Sylq(G) ∀x ∈ G. Let Sylq(G) = {Qi : 1 ≤ i ≤ p}. Since Qi ∩ Qj ≤ Qi for

i 6= j, we have that Qi ∩Qj = {1G}. Therefore Q ∩Qx = {1G} ∀x ∈ G\Q. This implies that Q is a

Frobenius complement in G. So if p and q are primes and G is a non-abelian group of order pq,

then G is Frobenius. The kernel is the Sylow p - subgroup generated by the element of order p

and the complement is the Sylow q - subgroup generated by the element of order q.

Note 4.1.1. (f .p.f .automorphism) If G is a group and if σ ∈ Aut(G) fixes only the identity,

then σ is called a fixed point free automorphism of G.

Example 3 : If H is a non-trivial fixed point free group of automorphisms of a finite group N, then

a semi-direct product of N by H is a Frobenius group.

Let H ≤ Aut(N). Since H is a fixed point free non-trivial group of automorphisms of N, ∀1G 6=
h ∈ H and ∀1G 6= n ∈ N,nh 6= n. Therefore CH(n) = {1G} and so by Lemma 3.2.15, G = N : H is

Frobenius (since H is a Frobenius complement in G).

Example 4 : The semi-direct product G = Zp : Zp−1 for p a prime is Frobenius.

Firstly the Aut(Zp) ∼= Zp−1. Let Zp = 〈a〉. Each α ∈ Aut(Zp) is determined by α(a). Therefore

Aut(Zp) = {α1, α2, α3, . . . . . . , αp−1} where we define αi(a) = a
i for i = 1, 2, . . . . . . , p− 1. Let Z∗p be

the multiplicative group of non-zero elements of Zp ∼= Z/pZ.

Define

ψ : Aut(Zp) 7→ Z∗p by ψ(αi) = i

Then ψ is an automorphism so that Aut(Zp) ∼= Z∗p. Since the non-zero elements of a finite field

is a cyclic group, Aut(Zp) ∼= Zp−1. We just need to show now that Aut(Zp)is fixed point free and

the result will then follow from Example 3 above. We have defined αi : Zp → Zp by αi(a) = ai

with 1 ≤ i ≤ p − 1. If i = 1 then α1(a) = a which implies that α1(a
i) = ai ∀ 1 ≤ i ≤ p − 1. This

implies that α1 = 1Aut(Zp). So if αi(a) = a
i with 2 ≤ i ≤ p− 1 then each αi ∈ Aut(Zp) maps onto

a different non-identity element of Zp. This implies that Aut(Zp) is fixed point free. Therefore

Zp−1 is a non-trivial fixed point free group of automorphisms of Zp and by Example 3, the split

extension Zp : Zp−1 is Frobenius.

Example 5 : If p is a prime, q not necessarily prime and q
∣∣p− 1, then we write Fp,q for the group

of order pq with presentation: Fp,q = 〈a, b
∣∣ap = bq = 1, b−1ab = au〉 where u is an element of
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order q in Z∗p. Then Fp,q is Frobenius.

Let N = 〈a〉 and H = 〈b〉. Then |N| = p and N is cyclic. Also |H| = q and since q
∣∣p−1 , (p, q) = 1.

Let N ∈ Sylp(Fp,q). By Sylow’s theorem np ≡ 1(modp) and np
∣∣q. So np = 1 + kp and npk

′ = q

for k, k ′ ∈ Z. So q = k ′(1 + kp). But q < p. Therefore we must have that k = 0. So np = 1 and

N � Fp,q. Therefore |NH| = |N||H|
|N∩H| = |N| |H| = pq. So Fp,q = NH and we have that Fp,q is a split

extension of N by H. We now show that H ≤ Aut(N) and that H is a fixed point free group of

automorphisms of N and thus by Example 3 the result will follow.

Now the action of H on N is given by the relation b−1ab = au where u is an element of order q

in Zp−1. Since u ∈ Zp−1, u ∈ Aut(Zp). If u fixes a ∈ N then b−1ab = a or bab−1 = a. The

definition of the multiplication in Fp,q now gives:

(ab)(a ′b ′) = aba ′b−1bb ′ = a(ba ′b−1)bb ′ = aa ′bbb ′ = (aa ′)(bb ′) (since a ′b = a ′).

Hence, N : H = N×H which implies that Fp,q is abelian and hence not Frobenius. Therefore each

u ∈ Zp−1 sends each a ∈ N to a different , non-identity element of N. Hence, each b ∈ H induces

a fixed point free automorphism of N. Thus by Example 3 above, the semi direct product Fp,q is

a Frobenius group.

Example 6 : The Alternating Group A4 is Frobenius.

We will show that A4 = N : H, where N ∼= V4 and H ∼= Z3. Let N = V4 = {1G, α, β, γ} where

α = (12)(34), β = (13)(24) and γ = (14)(23), and H = 〈a〉 = 〈(123)〉.
Now V4 � A4 since V4 is a union of conjugacy classes of A4. Therefore V4〈(123)〉 ≤ A4. Also it is

clear that V4 ∩ 〈a〉 = {1G} so,

|V4〈(123)〉| =
|V4|× |〈(123)〉|
|V4 ∩ 〈(123)〉|

= |V4|× |〈(123)〉| = |A4|

So A4 = V4 : H. The subgroup H generated by a 3-cycle in A4 is a Sylow 3 - subgroup. By Sylow’s

Theorem there are four conjugates of H in A4. That is, [A4 : NA4(H)] = 4 which implies that

NA4(H) = H. Therefore Hx = H if and only if x ∈ H which implies that Hx 6= H ∀x ∈ G\H.

Therefore Hx ∩H = {1G} ∀x ∈ G\H. Hence H is a Frobenius complement in A4.

Example 7 : If F is a field, write F∗ for it’s multiplicative group F\{0}. Denote by Aff(F) the

group (under function composition) of all functions τa,b : F → F where a ∈ F∗, b ∈ F and

τa,b(x) = ax + b ∀x ∈ F So let G = Aff(F) = {τa,b : a ∈ F∗, b ∈ F}. If F is finite, say |F| = q

then |G| = q(q− 1).

Suppose now that F = Fq, q > 2. Then G acts transitively on F and each τ1,b, b 6= 0 has no

fixed points, since if τ1,b(x) = x for some x ∈ F, then x + b = x implies that b = 0 which

is a contradiction. If a 6= 1 then τa,b has a unique fixed point b
1−a . The translation group

N = {τ1,b : b ∈ F} � G. This group is isomorphic with the additive group of the field F. The

subgroup H = StabG(0) = {τa,0 : a ∈ F∗} is isomorphic with the multiplicative group of the field F.

So G is a semi-direct product of N by H.

To show that G is Frobenius, we need to show that CG(τ) ≤ N ∀1G 6= τ ∈ N and the result will
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then follow from Theorem 3.2.7. Suppose 1G 6= τ ∈ N,π ∈ G and that πτπ−1 = τ. So π ∈ CG(τ).
Let τ(x) = x + a and π(x) = bx + c, so τ−1(x) = x − a and π−1(x) = b−1(x − c). Now πτπ−1 = τ

implies that π = τπτ−1. So

π(x) = τπτ−1(x) = τπ(x− a) = τ(bx− ab+ c) = bx− ab+ c+ a.

Thus,

bx+ c = bx− ab+ c+ a ⇒ 0 = a(1− b).

Since F has no zero divisors, a = 0 or b = 1. If a = 0 then τ(x) = x and hence τ = 1 contrary to

assumption. Therefore, b = 1. Thus, π(x) = x+ c and π ∈ N. Hence, CG(τ) ⊆ N. The result now

follows from Theorem 3.2.7.

4.2 Frobenius Groups of Small Order

We list here the groups of order less than 32. First we make the following notes.

Note 4.2.1. 1. Cyclic groups are not Frobenius since they are abelian and abelian groups are

not Frobenius since they have a non-trivial center (see Lemma 3.3.1).

2. p groups are not Frobenius since they have a non-trivial center.

3. Sn is not Frobenius for n > 4. Since the only proper normal subgroup of Sn is An , if Sn

wants to be Frobenius then it must equal a split extension of An by Z2 where An is the

kernel and Z2 is the complement. But since the order of the kernel and the complement are

relatively prime, Sn can be Frobenius if and only if |An| is odd. This can only happen if n = 2

or n = 3. Hence, Sn is not Frobenius for n > 4. Now S1 = {1G} and S2 ∼= Z2. Also S3 ∼= D6

which is Frobenius by Example 1 and this is the smallest Frobenius group since the group of

order six is the smallest non-abelian group (Frobenius groups are non-abelian).

If n = 4 then the normal subgroups of S4 are S4, V4, A4 and {e}. Since the kernel is a

non-trivial proper subgroup, only V4 and A4 can be kernels. However, in a Frobenius group

the order of the complement divides the order of the kernel less one (see Proposition 3.2.2).

This implies that neither A4 (2 - 11) nor V4 (8 - 3) can be a kernel in S4. Hence S4 is not

Frobenius.

4. An is Frobenius if and only if n = 4. If n = 2 or n = 3 then |An| = 1 or 2 respectively and

An is not Frobenius since the smallest Frobenius group is S3. Since An is simple if n ≥ 5, it

can’t be Frobenius for n ≥ 5. This leaves n = 4 and A4 is Frobenius by Example 6.

4.2.1 Frobenius Groups of Order < 32

1. The prime integers between 1 and 32 are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31}. For each of these

primes, there is precisely one group, the cyclic group of that order. Thus by (1) in the

Note 4.2.1, there is no Frobenius group of these orders.
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2. There is no Frobenius group of order 4, since there are only two groups of order 4 and both

are abelian.

3. There are two groups of order 6. They are S3 and Z6. Since Z6 is abelian, it can’t be Frobenius

and S3 we have already mentioned is the smallest Frobenius group.

4. There are five groups of order 8. Three are abelian and two are non-abelian. The non-abelian

groups are D8 and Q8. Both D8 and Q8 have order 23 and are therefore extra special

groups. Thus, if G = D8 then G ′ = Z(D8) and |G ′| = |Z(D8)| = 2. Similarly, if H = Q8 then

H ′ = Z(H) and |H ′| = |Z(H)| = 2. Since both these groups have a non-trivial center, they

can’t be Frobenius (Frobenius groups have a trivial center). Hence, there are no Frobenius

groups of order 8.

5. There is no Frobenius group of order 9 since there are only two groups of order 9 and both

are abelian.

6. There are two groups of order 10. The abelian group is Z10 and the non-abelian group is D10

which is Frobenius by Example 1.

7. There are five groups of order 12. Three of them are non-abelian. They are T, D12 and A4.

Both T and D12 have non-trivial centers since Z(T) = Z(D12) = Z2. So neither one of them

can be Frobenius. We already know from Example 6 that A4 is Frobenius.

8. There are two groups of order 14. One is abelian which is Z14 and the other non-abelian

which is D14. This group is Frobenius by Example 1.

9. There is only one group of order 15 and this group is cyclic and hence not Frobenius.

10. Of the fourteen groups of order 16, 9 of them are non-abelian. None of them, however, are

Frobenius since they have a non-trivial center. We list the nine groups or presentations of

them together with their centers (see Humpherys [8]).

• G = D8 × Z2 and Z(G) = Z2 × Z2.

• G = Q8 × Z2 and Z(G) = Z2 × Z2.

• G = D16 and Z(G) = Z2.

• G = Q16 and Z(G) = Z2.

• G = 〈x, y : x8 = y2 = 1, xy = x3〉 and Z(G) = 〈x4〉.

• G = 〈x, y : x8 = y2 = 1, xy = x5〉 and Z(G) = 〈x2〉.

• G = 〈x, y, z : x4 = y2 = z2 = 1, x central, zy = zx2〉 and Z(G) = 〈x〉.

• G = 〈x, y : x4 = y4 = 1, xy = x3〉 and Z(G) = 〈x2, y2〉.

• G = 〈x, y, z : x4 = y2 = z2 = 1, z central, xy = xz〉 and Z(G) = 〈x2, z〉.
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So there is no Frobenius group of order 16.

11. There are five groups of order 18. Three of them are non-abelian. They are:

• G = D6 × Z3 with Z(G) = Z3, hence not Frobenius.

• D18 which is Frobenius by Example 1.

• The group E with presentation given by:

E = 〈x, y, z : x3 = y3 = z2 = 1, xy = yx, zxz−1 = x2, zyz−1 = y2〉. This group is not

Frobenius since by using GAP we can show that it has a non-trivial center, |Z(E)| = 3.

12. There are five groups of order 20. Three of them are non-abelian. The groups are:

• D20 with Z(D20) = Z2 , hence not Frobenius.

• Q20 with Z(Q20) = Z2, hence not Frobenius.

• The group with presentation given by: 〈x, y : x5 = y4 = 1, xy = x2〉 = F5,4. This group

is Frobenius by Example 5.

13. There are two groups of order 21. The cyclic group Z21 and the non-abelian group with

presentation given by: 〈x, y : x7 = y3 = 1, xy = x2〉 = F7,3. This group is Frobenius by

Example 5.

14. There are two groups of order 22. The non-abelian group is D22 which is Frobenius by

Example 1. The other group is abelian.

15. There are twelve non-abelian groups of order 24. Eleven of these groups have a non-trivial

center and therefore can’t be Frobenius. The twelfth group is S4 which we know by Note 4.2.1,

part(3) is not Frobenius. We list the 12 non- abelian groups together with their centers (see

Humpherys [8]).

• G = 〈x, y : x3 = 1 = y8, xy = x−1〉, Z(G) = 〈y2〉.

• G = Z4 ×D6, Z(G) = Z4.

• G = Z2 ×Q12, Z(G) = Z2 × Z2.

• G = Z2 ×D12, Z(G) = Z2 × Z2.

• G = Z2 ×A4, Z(G) = Z2.

• G = Z3 ×D8, Z(G) = Z6.

• G = D24, Z(G) = Z2.

• G = S4, Z(G) = {1G}.

• G = Q24, Z(G) = Z2.

• G = SL(2, 3), Z(G) = Z2.

• G = Z3 ×Q8, Z(G) = Z6.
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• T = 〈x, y, z : x4 = y2 = z3 = 1, yxy−1 = x−1, zx = z−1, zy = z〉, Z(T) = 〈x2〉.

Thus there is no Frobenius group of order 24.

16. The two groups of order 25 are both abelian.

17. There are two groups of order 26. The non-abelian group is D26 which is Frobenius by

Example 1. The other group is Z26.

18. There are five groups of order 27. Two of them are non-abelian. They are:

• G = 〈x, y : x9 = 1 = y3, xy = x2〉

• H = 〈x, y, z : x3 = 1 = y3 = z3, z central, xy = xz〉

In both cases we have that G ′ = Z(G) and |G ′| = |Z(G)| = 3, H ′ = Z(H) and |H ′| = |Z(H)| = 3.

So both these groups are extra special groups and hence not Frobenius.

19. There are four groups of order 28. Two of these four groups are non-abelian. They are:

• D28 with Z(D28) = Z2, hence not Frobenius.

• Q28 with Z(Q28) = Z4, hence not Frobenius.

Thus there is no Frobenius group of order 28.

20. There are four groups of order 30. Three of these groups are non-abelian. They are:

• G = Z3 ×D10 with Z(G) = Z3, hence not Frobenius.

• G = Z5 ×D6 with Z(G) = Z5, hence not Frobenius.

• D30 which is Frobenius by Example 1.

So for order less than 32, there are exactly ten Frobenius groups. Seven of them are Dihedral

groups D6, D10, D14, D18, D22, D26 and D30, one is the alternating group A4 and the remaining two

groups are F5,4 and F7,3.



5

Characters of Frobenius Groups

In this chapter we describe the characters of the Frobenius groups. We will then use the results

here to calculate the character table of the Dihedral group D2n. The theory introduced here

will also be used to calculate the character table of the Frobenius group G = 292 : SL(2, 5), in the

next chapter. Proposition 5.2.1 gives a necessary condition for a group H to be a complement of a

Frobenius kernel N in a Frobenius group G. We end the chapter by applying the theory of coset

analysis described in Chapter 1 to the Frobenius group and describe the theory to find the Fischer

matrices of the Frobenius group.

5.1 Characters of Frobenius Groups

Let S = {1, 2, . . . . . . , n} and X = S×S. Let σ be a permutation of X and A = [a1,j] an n×n matrix

over a field F. Define Aσ = [bi,j] where bi,j = akl with (k, l) = (i, j)σ. Since Aστ = (Aσ)τ for any

other permutation τ of X, any permutation action on X determines a permutation action on the

set of n× n matrices.

Proposition 5.1.1. ([6]). Suppose that G is a permutation group on X = S× S as above, F ⊆ C
and A is an invertible n×n matrix over F. Suppose further that for each σ ∈ G the matrix Aσ can

be obtained from A either by permuting the rows of A or by permuting the columns of A, so G can

be viewed either as a permutation group Gr on the set of rows of A or Gc on the set of columns of

A. Then the permutation characters θr and θc of Gr and Gc respectively, are equal.

PROOF:If σ ∈ G then there are permutation matrices σ(R) and σ(C) for which σ(R)A = σ(A) =

Aσ(C). In fact, σ 7→ σ(R)t and σ 7→ σ(C) are permutation representations of Gr and Gc respectively.

Thus A−1σ(R)A = σ(C). So trace σ(R)t = trace σ(C) ∀σ ∈ G and θr = θc. �

Corollary 5.1.2. In the setting of Brauer ′s lemma the number of orbits of Gr and Gc are equal.

PROOF:Since θr = θc we have that 〈θr, 1G〉 = 〈θc, 1G〉.

53
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But

θr(g) = θc(g) ∀g ∈ G ⇒ 1

|G|

∑
g∈G

θr(g) =
1

|G|

∑
g∈G

θc(g).

So the number of orbits of Gr equals the number of orbits of Gc. �

Proposition 5.1.3. ([6]). If G is a Frobenius group with kernel N and if χ1 6= χ ∈ Irr(N) then χ

has inertia group IG(χ) = N.

PROOF:If A is the character table of N then G acts on the rows of A by conjugating characters

and on the columns of A by conjugating the conjugacy classes of N. If x ∈ G\N,χ ∈ Irr(N)

and L is a conjugacy class of N, then χx(l) = χ(lx) ∀l ∈ L. Choose x ∈ G\N and suppose Lx = L

for a conjugacy class L of N. Let L = [y] where 1G 6= y ∈ N. Thus yx ∈ L, so yx = yn for some

n ∈ N. So yn
−1x = y which implies that n−1x ∈ CG(y) and hence that x ∈ CG(y). But then x ∈ N

since by Proposition 3.2.1, CG(y) ≤ N. This is a contradiction. Therefore y = 1G and L={1G}.

Thus θc(x) = 1 ∀x ∈ G\N, and so by Brauers Lemma θr(x) = 1. But this implies that χx 6= χ if

χ1 6= χ ∈ Irr(N). Hence, if χ1 6= χ ∈ Irr(N), then StabG(χ) contains elements from N only. This

implies that IG(χ) = N. �

Note 5.1.1. If G is Frobenius with kernel N and complement H then G/N ∼= H, so any character

of H can be viewed as a character of G/N, hence also as a character of G by lifting. In particular,

Irr(H) can be viewed as a subset of Irr(G) in a natural way.

Theorem 5.1.4. Suppose that G is Frobenius with complement H and kernel N.

1. If φ1 6= φ ∈ Irr(N), then φG ∈ Irr(G).

2. If ψ ∈ Irr(G), then either N ⊂ kerψ or ψ = φG for some irreducible character φ1 6= φ of N.

3. If ψ ∈ Irr(G), such that kerψ 6⊃ N and ρ is the regular representation of H, then ψ
∣∣
H
= nρ

where n ∈ N.

PROOF:(1) Let φ1 6= φ ∈ Irr(N). Then by Proposition 5.1.3, IG(φ) = N. But this implies that

φG ∈ Irr(G) (see Moori, Proposition 5.7. [17]).

(2) Let ψ
∣∣
N
=
∑
aiφi with φi ∈ Irr(N). If some ai 6= 0 for i 6= 1, then by the Frobenius Reciprocity

Theorem we have that 〈φGi , ψ〉 = 〈φi, ψ
∣∣
N
〉 = ai 6= 0 and since by (1) φGi ∈ Irr(G), we have ai = 1

and φGi = ψ. If all ai = 0 for i 6= 1 then ψ
∣∣
N
= a1φ1, ψ(x) = a1 ∀x ∈ N. Hence, N ⊂ kerψ. So

Irr(G) = Irr(H) ∪ {φG : φ1 6= φ ∈ Irr(N)}.

(3) By part (2), there is an irreducible character φ of N such that ψ = φG. Now φG(y) = 0 ∀y ∈
H\{1G} and also φG(1G) = [G : N]φ(1G) = ρ(1G)φ(1G). Thus ψ

∣∣
H
(y) = φG(y) = ρ(y)φ(y) ∀y ∈ H,

so that ψ
∣∣
H
= nρ where n = φ(1G) is a positive integer. �

The following notes are consequences of Theorem 5.1.4
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Note 5.1.2. If G is Frobenius with kernel N and complement H then,

1. From Theorem 5.1.4(2) the irreducible characters of G are of 2 types; those with kernel

containing N and those induced from non-trivial irreducible characters of N.

2. Also from Theorem 5.1.4(3) the order of H divides the degree of the induced character φG for

φ1 6= φ ∈ Irr(N). That is |H|
∣∣φG(1G). Furthermore, if φ1 6= φ ∈ Irr(N) is a linear character

then |H| = φG(1G).

Theorem 5.1.5. ([6]). Suppose that G is a Frobenius group with kernel N and complement H,

and that φ, θ are non-trivial irreducible characters of N. Then φG = θG if and only if θ ∈
OrbH(φ) = ∆φ. Furthermore, |∆φ| = |H|, so G has c(N) − 1

|H|
distinct irreducible characters of the

form φG, φ1 6= φ ∈ Irr(N). (Here c(N) is the number of conjugacy classes of N).

PROOF:By Theorem 5.1.4, θ,φ ∈ Irr(N) imply that θG, φG ∈ Irr(G). Suppose that θG = φG. By

Frobenius reciprocity we have that: 〈φG
∣∣
N
, θ〉H = 〈φG, θG〉 = 1. So θ is an irreducible constituent

of φG
∣∣
N

. So by Clifford Theorem

φG
∣∣
N
=
∑
θi∈∆φ

θi. (5.1)

Also 〈φG
∣∣
N
, φ〉N = 〈φG, φG〉 = 1. So φ is an irreducible constituent of φG

∣∣
N

and by Clifford

Theorem

φG
∣∣
N
=
∑
φi∈∆φ

φi. (5.2)

Now (5.1) and (5.2) imply that
∑
θi∈∆φ θi =

∑
φi∈∆φ φi. Therefore some θi = φj, which implies

that there exists y ∈ G such that θ = φy. That is θ ∈ ∆φ. Note that θ ∈ ∆φ, implies that any

conjugate of θ will also be in ∆φ.

So

φG(g) =
1

|N|

∑
x∈G

φ0(xgx−1)

=
1

|N|

∑
x∈G

φx(g)

=
1

|N|

∑
x∈G

θy
−1x(g)

=
1

|N|

∑
z∈G

θz(g)

=
1

|N|

∑
z∈G

θ0(zgz−1) = θG(g).

Thus θG = φG. By the Orbit Stabilizer Theorem we have that |OrbH(φ)| |IH(φ)| = |H|. Since

φG ∈ Irr(G), IH(φ) = 1G which implies that |∆φ| = |H|. �

Corollary 5.1.6. If G is Frobenius with complement H and kernel N then c(G) = c(H) + c(N)−1
|H|

.
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PROOF:This follows from Theorem 5.1.4, part(2) and Theorem 5.1.5. Since Irr(G) = Irr(H) ∪ {φG :

φ1 6= φ ∈ Irr(N} and since the number of irreducible characters equals the number of conjugacy

classes, the equation above gives c(G) = c(H) + c(N)−1
|H|

. �

5.2 The Character Table of D2n , n odd.

In this section we use the results of the previous section on Frobenius Characters and theory of

Frobenius groups to construct the character table of D2n. The result is already well known but we

demonstrate here as an example the use of the results on the Frobenius characters to achieve this.

The following points are used to construct the character table of D2n.

1. From Example 1 of Section 4.1, we know that D2n = N : H is Frobenius with kernel N = Zn
and complement H = Z2. Here N = 〈a〉 and H = 〈b〉.

2. Now by Section 3.3.2, G ′ = (D2n)
′ = N = Zn. So the number of linear characters of D2n

equals [G : G ′] =
[
D2n : (D2n)

′] = 2 (see Moori , Theorem 5.2.21 [17]).

3. By Theorem 5.1.4, φ1 6= φ ∈ Irr(Zn) implies that φG ∈ Irr(D2n). Also by Theorem 5.1.4,

Irr(D2n) = Irr(Z2) ∪ {φG : φ1 6= φ ∈ Irr(Zn)}. The number of characters of D2n of the form

φG by Theorem 5.1.5 is equal to c(N)−1
|H|

= n−1
2 . Therefore |Irr(D2n)| = 2+

n−1
2 = n+3

2 .

4. Now by the Note 5.1.2, since φ ∈ Irr(Zn) is linear, the degree of the induced character φG

equals |H| = 2.

5. Thus D2n has n−1
2 characters of degree 2 and two characters of degree 1. This takes care of

the number of irreducible characters and their respective degrees.

6. Now the number of conjugacy classes of D2n equals n+3
2 .

7. By Proposition 3.2.2, the action of Z2 on Zn partitions Zn\{1G} into Z2 orbits each of size

|Z2| = 2. The number of orbits is α = |N|−1
|H|

= n−1
2 . So there are n−1

2 conjugacy classes (each

orbit represents a conjugacy class, since the action of Z2 on Zn is by conjugation) produced

by the action of Z2 on Zn each of size 2. Since there are n+3
2 conjugacy classes in D2n, there

are two remaining conjugacy classes, one a singleton which is the identity conjugacy class and

the remaining conjugacy class which has size n. (Because n−1
2 × 2+ n+ 1 = 2n).

8. Since Zn � D2n and D2n/Zn ∼= Z2, the two linear characters of D2n are obtained by lifting

the irreducible characters of D2n/Zn to D2n. These characters are given by χ1 and χ2.

9. Now χ1 is the identity character and χ1(g) = 1 ∀g ∈ D2n.

10. χ2(g) =

{
1 when g ∈ Zn
−1 when g /∈ Zn.
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11. Thus the value of χ2 on each ar for 1 ≤ r ≤ n−1
2 is 1. Here ar is the representative of the

conjugacy class [ar]. This follows from Theorem 5.1.4, part(2) since we have that N ⊆ kerχ2.
The value of χ2 on b is -1. Here b is the representative of the remaining conjugacy class [b].

Note that χ2(1G) +
n−1
2 × 2× 1+ χ2(b)× n = 0 ⇒ χ2(b) =

1−n−1
n = −1.

12. Now let ψj = φ
G
i for j = 1, . . . . . . , n−12 where φ1 6= φi ∈ Irr(Zn). Let ar for r = 1, . . . . . . , n−12

be representatives of the conjugacy classes [ar]. By Proposition 3.2.6, the action of Z2 on Zn
by conjugation sends an x ∈ Zn to it’s inverse. Thus x ∈ [ar] implies that x−1 ∈ [ar] ∀r =
1, . . . . . . , n−12 . Thus ψj(x) = ψj(x

−1) ∀j = 1, . . . . . . , n−12 and ∀x ∈ Zn. So ψj(x) ∈ R since

ψj(x) = ψj(x) ∀j = 1, . . . . . . , n−12 .

Now

ψj(a
r) =

∣∣CD2n(ar)∣∣ n∑
i=1

φ(xi)∣∣CZn(xi)
∣∣ ∀j = 1, . . . . . . , n− 1

2
,

where xi are class representatives of Zn which fuse to form [ar]. But by Lemma 3.2.15,

(3)⇒ (4),
∣∣CD2n(ar)∣∣ = ∣∣CZn(xi)

∣∣. So

ψj(a
r) =

n∑
i=1

φ(xi) = φ(xi) + φ(x
−1
i ) = φ(xi) + φ(xi) ∀j = 1, . . . . . . ,

n− 1

2
.

Therefore ψj(a
r) = 2α where α is the real part of e

2πri
n .

13. Finally we have that ψj(b) = 0, since Zn ∩ [b] = ∅.

Using all of the above , we can now construct the character table of the Dihedral group D2n where

n is odd.

classes of D2n [1] [ar] [b](
1 ≤ r ≤ n−1

2

)∣∣CG(g)∣∣ 2n n 2

χ1 1 1 1

χ2 1 1 −1

ψj 2 2α 0(
1 ≤ j ≤ n−1

2

)
Table 5.1: Character Table of D2n

Proposition 5.2.1. Let H 6= {1G} be a group. Then there exists a Frobenius group G with Frobenius

kernel N and G/N ∼= H if and only if there exists an irreducible character χ of H such that for

every subgroup K of H with K 6= {1G} we have 〈χ↓K, 1K〉 = 0.
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PROOF:For proof of this result see Feit’s book on Characters of Finite Groups, page 136 [4]. �

By using the result above, it is possible to give a complete classification of groups H which can

occur as the complement of a Frobenius kernel N in a Frobenius group G.

We illustrate with the following examples.

Example 1: There is no Frobenius group which has H = S3 as a complement. The character table

of S3 is:

ClassRep 1S3 (12) (123)

hi 1 3 2

χ1 1 1 1

χ2 2 0 −1

χ3 1 −1 1

Table 5.2: Character Table of S3

Now the subgroups of S3 excluding the trivial subgroup and S3 itself are:

K2 = 〈(12)〉, K3 = 〈(13)〉, K4 = 〈(23)〉, K5 = 〈(123)〉 = A3.

All we need to do is find one subgroup Ki of S3 which fails to satisfy the condition 〈χi↓, 1Ki〉 = 0

for some irreducible character χi ∈ Irr(S3).
We need the character tables of each of the subgroups Ki for i = 2, 3 and 4. So we need the

character table of Z2 since each Ki ∼= Z2 for i = 2, 3, 4. We will just use the character table of K2:

Classes 1K2 (12)

θ1 1 1

θ2 1 −1

Table 5.3: Character Table of K2

Take χ2 :

χ2↓K2 = θ1 + θ2 ⇒ 〈χ2↓K2 , 1K2〉 = 〈θ1 + θ2, θ1〉 = 1.
Thus for the irreducible character χ2, the subgroup K2 fails to satisfy the condition of Proposi-

tion 5.2.1
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Now K5 = A3. The character table is that of Z3. The character table is:

ClassRep 1A3 (132) (123)

hi 1 3 3

θ1 1 1 1

θ2 1 α α

θ3 1 α α

Table 5.4: Character Table of K5

where α = −1+
√
3

2 .

Take χ3 :

χ3↓K5 = θ1 ⇒ 〈θ1, 1K5〉 = 〈θ1, θ1〉 = 1.

For the irreducible character χ3, the subgroup K5 fails to satisfy the condition of Proposition 5.2.1.

Thus there is no irreducible character of S3 satisfying the condition of the Proposition. Hence,

there is no Frobenius group which can have S3 as a complement.

Example 2: There is no Frobenius group that has H = V4 = {e, a, b, c} as a complement.

Now the character table of V4 is:

Classes of V4 [e] [a] [b] [c]

χ1 1 1 1 1

χ2 1 −1 −1 1

χ3 1 −1 1 −1

χ4 1 1 −1 −1

Table 5.5: Character Table of V4

The subgroups of V4 excluding the trivial subgroup and V4 itself are:

K2 = {e, a}, K3 = {e, b}, K4 = {e, c}.

The character table of each Ki for i = 2, 3, 4 is:

Classes [e] [g]

θ1 1 1

θ2 1 −1

Table 5.6: Character Table of Ki for i = 2, 3, 4
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Take χ2 :

χ2↓K2 = θ2 , χ2↓K3 = θ2 , χ2↓K4 = θ1.
Thus for the irreducible character χ2, the subgroup K4 fails to satisfy the condition of Proposi-

tion 5.2.1

Take χ3 :

χ3↓K2 = θ2 , χ3↓K3 = θ1 , χ3↓K4 = θ2.
For the irreducible character χ3, the subgroup K3 fails to satisfy the condition of Proposition 5.2.1

Take χ4 :

χ4↓K2 = θ1 , χ4↓K3 = θ2 , χ4↓K4 = θ2.
Here the subgroup K2 fails to satisfy the condition of Proposition 5.2.1.

So none of the nontrivial irreducible characters of V4 satisfy the condition of Proposition 5.2.1, for

every proper subgroup of V4. Thus there is no Frobenius group which can have V4 as a complement.

The following theorem illustrates how the character table of a group can be used to determine

whether the group is Frobenius or not.

Theorem 5.2.2. Let G be a group, let t > 1 be a proper divisor of |G| and let K = ∩kerχ, where

χ ranges over all irreducible characters of G with t not dividing χ(1G). Then the following are

equivalent:

1. G is a Frobenius group with Frobenius complement of order t.

2. [G : K] = t and G is a Frobenius group with kernel K.

3. [G : K] = t.

PROOF:See Karpilovsky [12]. �
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To illustrate the result in Theorem 5.2.2 consider the character table below of the group G with

presentation G = 〈a, b : a13 = b4 = 1, b−1ab = a5〉 .

gi 1 a a2 a4 b b2 b3

|CG(gi)| 52 13 13 13 4 4 4

χ0 1 1 1 1 1 1 1

χ1 1 1 1 1 i −1 −i

χ2 1 1 1 1 −1 1 −1

χ3 1 1 1 1 −i −1 i

φ1 4 α β γ 0 0 0

φ2 4 β γ α 0 0 0

φ3 4 γ α β 0 0 0

where ε = e
2πi
13 and α = ε+ ε5 + ε8 + ε12, β = ε2 + ε3 + ε10 + ε11, γ = ε4 + ε6 + ε7 + ε9.

Then applying the result of Theorem 5.2.2 to the character table above we have

〈a〉 = K = ∩kerχi for i = 0, . . . , 3.

Since t = [G : K] = 4, G is a Frobenius group with kernel K.

5.3 Coset analysis applied to the Frobenius Group

We begin by making the following note which applies in this section and the next.

Note 5.3.1. In Chapter 1 in our description of coset analysis, we used the conventional notation

for the split extension G = N : G. In our Frobenius group we have used the notation G = N : H.

To allow for easy transition between the relevant section of Chapter 1 and this section, we will use

the conventional notation.

So let G = N : G be a Frobenius group with kernel N and complement G. Since the extension is

split, a lifting of g ∈ G is g itself since G ≤ G. So G = ∪g∈GNg. So in a Frobenius group, for

step(1) of coset analysis we have that CN(g) = CN(g) = {1G} by Lemma 3.2.15. So k = 1 here

and under the action of N, Ng remains intact. Since k = 1, in step(2) we now have that fj = 1

so that |∆j| = |N| and equation (1.3) now implies that:
∣∣[x]G∣∣ = |N| .

∣∣[g]G∣∣. This is the same result

we obtained in Lemma 3.2.15, (3⇒ 4). Also since k = fj = 1, equation (1.4) now implies that:∣∣CG(x)∣∣ = |CG(g)|, which is the same result we obtained in the proof of Lemma 3.2.15. Note that

in the equation:
∣∣CG(x)∣∣ = |CG(g)|, the element x on the left hand side is in ∆j and the g on the

right hand side is in the coset Ng. Since the coset remains intact, ∆j = Ng and x ∈ Ng. So we

may choose this x to be g. This will give:
∣∣CG(g)∣∣ = |CG(g)|.
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5.4 Fischer Matrices of the Frobenius group

Having defined and described the Fischer matrices in Chapter 1, we now describe the Fischer ma-

trices for a Frobenius group.

Let G = N : G be a Frobenius group with kernel N and complement G. By Proposition 5.1.3 we

know that ∀χ1 6= χ ∈ Irr(N), the inertia group of χ is N. Since IG(χ1) = G, in a Frobenius group,

the inertia factors are G and {1G} corresponding to the inertia groups G and N respectively. Let

X(g) and R(g) be as defined in section 1.5 of Chapter 1. We have defined the Fischer matrix M(g)

for g ∈ G as a matrix whose rows are indexed by R(g) and columns by X(g). We now find X(g)

and R(g) for a Fischer matrix in a Frobenius group.

If g = 1G, then X(g) is made up of the class representatives of the conjugacy classes of G that

come from N (since g = 1G implies that Ng = N). These are representatives of the (m+ 1) orbits

(m non-trivial orbits and the trivial orbit) of G on N, where m = |N|−1
|G|

.

For g = 1G, the inertia factors Hi for i = {1, 2, . . . . . . , t} contain [g], where t = m + 1 orbits of

G on N which is the same as the number of orbits of G on Irr(N). The conjugacy classes of the Hi

that fuse to [g] is the singleton conjugacy classes containing the identity 1G. So y = 1G. Thus R(g)

contains the t = m + 1 ordered pairs (i, 1) where i ∈ {1, 2, . . . . . . , t}. Therefore the Fischer matrix

M(1G) in a Frobenius group is an (m+ 1)× (m+ 1) matrix where m is the number of non-trivial

orbits of G on N. Now the entries in this matrix are given by:

M(1G) =
[
a
j
(i,1)

]
= ψGi (xj), where xj ∈ X(g) for j = 1, 2, . . . . . . , t = m + 1 and ψi ∈ Irr(N) is a

representative of the t = m+ 1 orbits of G on Irr(N).

Note that the ψGi here is the induction of a character ψi which is the extension of θi ∈ Irr(N) to

IG(θi). But since IG(θi) = N ∀θ1 6= θi ∈ Irr(N), ψi is the same as θi for each i. So ψGi is just the

induction of ψi ∈ Irr(N) which we know from Theorem 5.1.4 is an irreducible character of G.

If g 6= 1G, then X(g) is made up of the representatives of G conjugacy classes of elements of Ng.

But by Lemma 3.2.15, every element of Ng is conjugate to g. So the conjugacy class of G that

contains g will contain Ng. So this entire coset is contained in the conjugacy class of G which

has g as a representative. The coset therefore contributes to only this conjugacy class of G with

representative g. Therefore X(g) = {g}.

For g 6= 1G, only H1 = G contains an element of [g]. So i = 1 and y = g only. So R(g) =

{(1, g)} ∀g 6= 1G. Therefore ∀g 6= 1G, the Fischer matrix M(g) is a 1× 1 matrix. The entry of this

matrix is given by: M(g) =
[
a
j
(1,g)

]
= ψG1 (g) = 1

In summary then :

In a Frobenius group G = N : G, the Fischer matrix M(1G) is an (m+ 1)× (m+ 1) matrix where

m is the number of non-trivial orbits of G on N, and M(g) ∀g 6= 1G is just 1.



6

The Frobenius Group 292 : SL(2, 5) and it’s

Character Table

In this chapter we will construct the character table of the Frobenius Group 292 : SL(2, 5) using the

theory built in the previous chapter. First we say something about the group SL(2, 5) which is the

Frobenius complement. We then explain the construction of the group 292 : SL(2, 5) and conclude

the chapter by constructing the character table.

6.1 The Group SL(2, 5)

1. SL(2, 5) is a normal subgroup of the General Linear group GL(2, 5), of order 120.

2. For q odd, SL(2, q) has q + 4 conjugacy classes and hence q + 4 irreducible characters. So

SL(2, 5) has 9 conjugacy classes and 9 irreducible characters (see Basheer, Section 4.4.1 [1]).

3. The Sylow 2 - subgroups of SL(2, 5) are quaternion.

4. The group SL(2, 5) is perfect, since for q ≥ 5 and q a prime SL(2, q) is perfect (see Holt[7]).

Also Meierfrankenfeld [15] gives two proofs characterizing SL(2, 5) as the only perfect Frobe-

nius complement.

5. The group SL(2, 5) itself is not Frobenius since it has a non-trivial center, Z(SL(2, 5)) =

{I , −I}.

Proposition 6.1.1. SL(2, 5) is the unique non-solvable group of order 120 with quaternion Sylow

2 - subgroup. Moreover SL(2, 5) = 〈x, y, z, : x3 = y5 = z2 = 1, xz = x, yz = y, (xy)2 = z〉.

PROOF:See Passman page 122 [20]. �

Note 6.1.1. If a group G acts on a set X and N � G, then N is a regular normal subgroup if

the action of N on X is regular. That is, the action of N on X is transitive and StabN(x) = {1G}

63
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for each x ∈ X. The action of N on X is semiregular if StabN(x) = {1G} for each x ∈ X (see

Definition 1.2.6).

Remark 6.1.1. If G = NH is a Frobenius group with kernel N and complement H, then the kernel

N is a regular normal subgroup of G (see Note 6.1.1 and Note 2.2.3), and the complement H acts

semi-regularly on N (see Lemma 3.2.15 part (2) and Note 6.1.1).

Proposition 6.1.2. SL(2, 5) is a non-solvable complement.

PROOF:From Proposition 6.1.1,we have that SL(2, 5) is non-solvable and that

SL(2, 5) = 〈x, y, z : x3 = y5 = z2 = 1, xz = x, yz = y, (xy)2 = z〉.

Let F be a finite field with char(F) /∈ {2, 3, 5} and assume that
√
5,
√
−1 ∈ F.

Define the matrices x, y, z as follows:

x =

(
−1 1

−1 0

)
y =

(
0

√
−1

√
−1

√
5+1
2

)
z =

(
−1 0

0 −1

)
.

We can show that

x3 = y5 = z2 = 1, xz = x, yz = y and (xy)2 = z.

Thus the map x → x, y → y, z → z induces a homomorphism of SL(2, 5) into Aut V, where V is

the 2 - dimensional vector space over F. In this way G = SL(2, 5) acts on V. If v ∈ V, g ∈ G\{1G}
and vg = v, then we show that v = 0. It suffices to assume that g has prime order p. If p = 2, then

g = z and v = 0 since char(F) 6= 2. If p = 3, then 〈g〉 is conjugate to 〈x〉 and hence we can assume

that g = x. This yields v = 0 since char(F) 6= 3. Finally if p = 5 then we can assume that g = y

and this yields easily v = 0 since char(F) 6= 5. Set L = VG and let L act on L/G by permuting the

right cosets of G. Then V is a regular normal subgroup and G acts semi-regularly on V\{0}. Hence

L is a Frobenius group and G is a Frobenius complement. �

Remark 6.1.2. If G is a Frobenius group with kernel N and complement H, then the condition

that |H|
∣∣ |N| − 1, (see Proposition 3.2.2), implies that |N| ≡ 1 mod (|H|) . In the Frobenius group

L = VG constructed above in Proposition 6.1.2, G = SL(2, 5) is the complement. Since |G| = 120

and 5
∣∣120, the congruence relation |V | ≡ 1 mod (|G|), is equivalent to |V | ≡ 1 (mod 5) (because

|V | = 1+ k |G| = 1+ k× 24× 5⇒ |V | ≡ 1(mod 5)).
Now let F = GF(p). Since the kernel V is a vector space of dimension two over GF(p), the order

of V as an abelian group is p2. Therefore for V to be a Frobenius kernel to G = SL(2, 5), we must

choose p such that p2 ≡ 1 (mod 5). Therefore we must find all primes p ∈ a ∈ Z/5Z such that

a2 = 1, where a is the residue class mod 5.

So we find all p such that p ∈ 1 ∈ Z5 or p ∈ 4 ∈ Z5. We list below all p < 100 in these two residue
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classes in Z5. If p ∈ 1, then p ∈ {11, 31, 41, 61, 71, 91}. If p ∈ 4, then p ∈ {19, 29, 59, 79, 89}. Thus,

using the construction described in Proposition 6.1.2, for p < 100, there are 11 Frobenius groups

of this type all having SL(2, 5) as a complement. The smallest such group is a direct product of

SL(2, 5) by an abelian group of order 112, that is a vector space of dimension 2 over a field of 11

elements.

We will now apply Proposition 6.1.2 to construct the Frobenius group 292 : SL(2, 5), that is we are

choosing p = 29 here. Consider H = SL(2, 5) with the following presentation:

〈x, y, z,
∣∣x3 = y5 = z2 = 1, xz = x, yz = y, (xy)2 = z〉.

via

x 7→ (
0 1

4 4

)
, y 7→ (

1 0

1 1

)
, z 7→ (

−1 0

0 −1

)
.

The matrices above satisfy the relations in the presentation given and they generate SL(2, 5),

so there is a homomorphism onto SL(2, 5).

Now let F = Z29. So 122 ≡ −1, 112 ≡ 5. Our choice of F = Z29 stems from the fact it is the first

field of characteristic not 2, 3 or 5 in which -1 and 5 are squares.

Now define

X =

(
−1 1

−1 0

)
, Y =

(
0 −12

−12 0

)
, Z =

(
−1 0

0 −1

)
in SL(2, 29).

The matrices X, Y and Z satisfies the relations in the presentation of H. It follows that H maps

isomorphically into a subgroup of SL(2, 29) via x 7→ X, y 7→ Y, z 7→ Z. Thus we take the point of

view that H is that subgroup of SL(2, 29).

Now set N = Z29
⊗

Z29, so that H ≤ Aut(N), and finally let G be the resulting semi-direct product

of N by H. By Proposition 6.1.2, now G = 292 : SL(2, 5) is a Frobenius group.

6.2 The Character Table of 292 : SL(2, 5)

Note 6.2.1. For this section we will use the conventional notation of representing the complement

by G and the split extension by G. So G = N : G = 292 : SL(2, 5).
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6.2.1 The Characters of G

1. The number of conjugacy classes of 292 : SL(2, 5) equals the number of irreducible characters

of 292 : SL(2, 5).

2. By Corollary 5.1.6, the number of conjugacy classes and hence irreducible characters of

292 : SL(2, 5) equals :

c
(
292 : SL(2, 5)

)
= c (SL(2, 5)) +

c
(
292
)
− 1

|SL(2, 5)|
= 9+

840

120
= 16.

3. By the Note 5.1.2, the sixteen irreducible characters are split into two types; those containing

the kernel N = 292 and those induced from non-trivial irreducible characters of 292.

4. Also by Theorem 5.1.5, the number of distinct irreducible characters of G of the form

φG , φ1 6= φ ∈ Irr(N) is given by:

c (N) − 1

|SL(2, 5)|
=
840

120
= 7.

5. The remaining nine irreducible characters of G come from G. These nine characters have

degrees : 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 and 6.

6. Since all the irreducible characters of 292 are linear, by the Note 5.1.2, we have that φG(1G) =

|G| = 120 for φ1 6= φ ∈ Irr(292).

7. So in the character table of 292 : SL(2, 5) there are sixteen irreducible characters, the first

nine are the irreducible characters of SL(2, 5) with degrees : 1 , 2 , 2 , 3 , 3 , 4 , 4 , 5 and 6.

The remaining seven characters each of degree 120 are induced from N = 292.

6.2.2 The Conjugacy Classes of 292 : SL(2, 5)

1. By Proposition 3.2.2, SL(2, 5) acts on N = 292 partitioning N\{1G} into α = |N|−1
|G|

= 7 orbits

each of size |G| = 120. Therefore in G, N\{1G} splits into seven conjugacy classes each of size

120.

2. Since 292 : SL(2, 5) has sixteen conjugacy classes, the remaining nine conjugacy classes come

from SL(2, 5) by Corollary 5.1.6. But SL(2, 5) has nine conjugacy classes. Thus each conjugacy

class of SL(2, 5) gives a conjugacy class of 292 : SL(2, 5).

3. If 1G 6= g ∈ G is a representative of [g]G, then by Lemma 3.2.15, g is conjugate to every

element of Ng. Also g is conjugate to g ′ in G implies that Ng ′ ⊆ [g]G by Lemma 3.2.15.

So [g]G = ∪Ng ′ where g ′ is conjugate to g in G and hence∣∣[g]G∣∣ = ∣∣[g]G∣∣× |N| .
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Therefore each conjugacy class [g]G produces a bigger conjugacy class [g]G of size given by

the equation above.

6.2.3 Table of Conjugacy Classes of 292 : SL(2, 5)

The following table lists the sixteen conjugacy classes of 292 : SL(2, 5) together with a representative,

the size of each class, the order of each representative and the order of the centralizer of this

representative.

Table 6.1: Conjugacy Classes of G

Class[g] [1] [n1] [n2] [n3] [n4] [n5] [n6] [n7]

|[g]| 1 120 120 120 120 120 120 120

◦ (g) 1 29 29 29 29 29 29 29∣∣CG (g)
∣∣ 292.120 292 292 292 292 292 292 292

Table 6.1 (continued)

Class[g] [g1] [g2] [g3] [g4] [g5] [g6] [g7] [g8]

|[g]| 292.12 292.12 292 292.12 292.12 292.20 292.20 292.30

◦ (g) 10 10 2 5 5 3 6 4∣∣CG (g)
∣∣ 10 10 120 10 10 6 6 4

Note 6.2.2. 1. By Lemma 3.2.15 we have that:∣∣[g]G∣∣ = ∣∣[g]G∣∣× ∣∣N∣∣.
Therefore

∣∣CG (gi)
∣∣ =

∣∣G∣∣∣∣[gi]G∣∣ = |G|× |N|

|[gi]G|× |N|
=

|G|

|[gi]G|
= |CG (gi)| .

2. Also

∣∣CG (ni)
∣∣ =

∣∣G∣∣
|[ni]|

∀ i = 1, . . . . . . , 7

=

∣∣G∣∣
120

=

∣∣G∣∣
|G|

= |N| .
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6.2.4 The Character Table of SL(2, 5)

We reproduce here the character table of the complement SL(2, 5). This character table forms a

block of the character table of 292 : SL(2, 5). In the character table we display a representative of

each of the nine conjugacy classes and the nine irreducible characters of SL(2, 5).

Table 6.2: Character Table of SL(2, 5)

[1] [g1] [g2] [g3] [g4] [g5] [g6] [g7] [g8]

χ1 1 1 1 1 1 1 1 1 1

χ2 2 A A∗ −2 −A −A∗ −1 1 0

χ3 2 A∗ A −2 −A∗ −A∗ −1 1 0

χ4 3 A A∗ 3 A∗ A 0 0 −1

χ5 3 A A∗ 3 A A∗ 0 0 1

χ6 4 −1 −1 4 −1 −1 1 1 0

χ7 4 1 1 −4 −1 −1 1 −1 0

χ8 5 0 0 5 0 0 −1 −1 1

χ9 6 −1 −1 −6 1 1 0 0 0

where A = 1−
√
5

2 and A∗ = 1+
√
5

2 .

6.2.5 Construction of the Character Table of 292 : SL(2, 5)

We will show here how the character table of 292;SL(2, 5) is completed.

1. If χ̂ is a character of G/N ∼= G, then by lifting of characters we have that χ (g) = χ̂ (gN) for

g ∈ G. So for n ∈ N,

χi (n) = χ̂i (nN) = χ̂i (N) = χ̂i

(
1G/N

)
∀i = 2, . . . . . . , 9.

2. Now χi (g) = χ̂i (gN) for g ∈ G. But by Lemma 3.2.15 gN ⊆ [g] for g ∈ G. So χ̂i (gN) =

χ̂i (g) = χi (g) ∀i = 2, . . . . . . , 9. Therefore the column under each [gi] in the character table of

292 : SL(2, 5) will be the same as the column under each [gi] in the character table of SL(2, 5).

3. Also χi (gi) = 0 for i = 10, . . . . . . , 16 and ∀gi ∈ G since by Proposition 4.2.4 in Moori [17],

we have that N ∩ [gi]G = ∅.

4. By Proposition 4.2.4 in Moori [17], since N ∩ [nj]G 6= ∅,

χ (nj) =
∣∣CG(nj)∣∣ m∑

i=1

φ (xi)

|CN (xi)|
, (6.1)
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where x1, x2, . . . . . . , xm are class representatives of classes of N that fuse to [nj]G , nj for

j = 1, . . . . . . , 7 are representatives of the conjugacy classes [n1], . . . . . . , [n7] and χ = φG for

φ1 6= φ ∈ Irr (N).

5. First we construct the character φ ∈ Irr (N) using the direct product of characters.

Taking the identity character ψ1 of Z29 and the character ψ2 of Z29, and using the direct

product of characters, we construct the character φ = ψ1.ψ2 of N = 292, where φ (g) =

ψ1 (n) .ψ2 (n
′) and g = nn ′ for n,n ′ ∈ Z29 and g ∈ Z29

⊗
Z29.

6. Since ψ1 is the identity character of Z29, φ (g) = ψ2 (n
′) and since Z29 has order 29, ψ2 (n

′)

is a 29th root of unity ∀n ′ ∈ Z29.

7. Now N has 292 conjugacy classes which we denote as :

[1a, 1a] [1a, 29a] · · · [1a, 29ab]

[29a, 1a] [29a, 29a] · · · [29a, 29ab]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[29ab, 1a] [29ab, 29a] · · · [29ab, 29ab]

The notation here is consistent with that of GAP. Thus the values of χ2 appears in the

character table of N = 292 as 29 cycles of the 29th roots of unity as follows:

1 χ2(29a) χ2(29b) · · · · · · χ2(29ab)
1 χ2(29a) χ2(29b) · · · · · · χ2(29ab)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 χ2(29a) χ2(29b) · · · · · · χ2(29ab)

8. Let ni for i = 1, . . . . . . , 7 be representatives of the conjugacy classes [n1], [n2], . . . . . . , [n7].

Then x ∈ [ni] implies that x−1 ∈ [ni] ∀i = 1, 2, . . . . . . , 7. Thus χj(x) = χj(x
−1) ∀χj where

j = 10, . . . . . . , 16. So χj(x) ∈ R since χj(x) = χj(x
−1) = χj(x) for j = 10, . . . . . . , 16.

9. Now by (6.1) above ,

φG(nj) =
∣∣CG(nj)∣∣ m∑

i=1

φ(xi)

|CN(xi)|

= 292
m∑
i=1

φ(xi)

292

=

m∑
i=1

φ(xi),

where the xi are class representatives of the conjugacy classes of N which fuse to give [nj],

where [nj] for i = 1, . . . . . . , 7 are class representatives of the classes [n1], [n2], . . . . . . , [n7] and
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φ ∈ Irr(N) is as constructed in (5) above. Consider now the conjugacy class [n1]

(note that n1 6= 1N).

10. The character χ10 is one of 7 irreducible characters of the form φG for φ ∈ Irr(N). So let

φ1 = ψ1 · ψ2 be as constructed in (5) above. Then ψ10 = φ
G
1 = (ψ1 ·ψ2)G . By (6.1) above

we have that:

χ10 (n1) =

120∑
i=1

φ (xi)

=

120∑
i=1

(ψ1 ·ψ2) (xi)

=

120∑
i=1

ψ2 (xi) ,

where the xi are the 120 elements(vectors) of N which fuse to form [n1].

11. Since there are 120 elements in each conjugacy class and each element in the conjugacy class

containing n1 has it’s inverse also in the class, we can group these 120 elements into 60

pairs. Now ψ2
(
x−1i
)
= ψ2 (xi) so ψ2 (xi) + ψ2

(
x−1i
)
= 2r where α = r + si is a 29th root of

unity. Using the character table of Z29 we can now find the value of the character ψ10 on the

conjugacy class [n1].

12. Listed below are the 120 elements paired with their inverses of the conjugacy class [n1]. The

remaining six conjugacy classes are shown in Section A of the Appendix.

[n1] = {(0, 1)&(0, 28); (28, 0)&(1, 0); (17, 23)&(12, 6); (1, 28)&(28, 1); (0, 12)&(0, 17);

(23, 17)&(6, 12); (14, 6)&(15, 23); (12, 11)&(17, 18); (17, 0)&(12, 0); (1, 15)&(28, 14);

(23, 23)&(6, 6); (21, 14)&(8, 15); (15, 28)&(14, 1); (23, 12)&(6, 17); (13, 9)&(16, 20);

(12, 17)&(17, 12); (15, 1)&(14, 28); (23, 14)&(6, 15); (14, 22)&(15, 7); (6, 21)&(23, 8);

(16, 15)&(13, 14); (11, 23)&(18, 6); (7, 13)&(22, 16); (8, 14)&(21, 15); (28, 16)&(1, 13);

(15, 15)&(14, 14); (20, 23)&(9, 6); (26, 10)&(3, 19); (9, 24)&(20, 5); (14, 20)&(15, 9);

(9, 7)&(20, 22); (22, 8)&(7, 21); (11, 21)&(18, 8); (23, 3)&(6, 26); (7, 26)&(22, 3);

(25, 9)&(4, 20); (2, 22)&(27, 7); (21, 27)&(8, 2); (3, 21)&(26, 8); (26, 11)&(3, 18);

(9, 23)&(20, 6); (22, 4)&(7, 25); (10, 7)&(19, 22); (24, 25)&(5, 4); (9, 2)&(20, 27);

(10, 21)&(19, 8); (24, 3)&(5, 26); (9, 26)&(20, 3); (21, 26)&(8, 3); (3, 9)&(26, 20);

(26, 22)&(3, 7); (3, 17)&(26, 12); (22, 9)&(7, 20); (27, 10)&(2, 19); (21, 24)&(8, 5);

(12, 9)&(17, 20); (4, 26)&(25, 3); (28, 21)&(1, 8); (7, 1)&(22, 28); (21, 22)&(8, 7)}
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Now evaluating ψ2 at the second member of each of these ordered pairs, we get :

χ10 (n1) =

120∑
i=1

ψ2 (xi) where xi ∈ [n1]

= 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5

+ 12ω6 + 12ω7 + 12ω8 + 12ω9 + 4ω10

+ 4ω11 + 10ω12 + 4ω13 + 12ω14 = a,

where ωk = cos
(
2kπ
29

)
for k = 1, 2, . . . . . . , 14.

Similarly, for the remaining 6 conjugacy classes we get:

χ10 (n2) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5

+ 12ω6 + 4ω7 + 4ω8 + 4ω9 + 4ω10

+ 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

χ10 (n3) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5

+ 4ω6 + 12ω7 + 4ω8 + 4ω9 + 10ω10

+ 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

χ10 (n4) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5

+ 12ω6 + 4ω7 + 10ω8 + 10ω9 + 12ω10

+ 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.

χ10 (n5) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5

+ 4ω6 + 4ω7 + 12ω8 + 12ω9 + 12ω10

+ 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

χ10 (n6) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5

+ 4ω6 + 10ω7 + 12ω8 + 12ω9 + 4ω10

+ 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ10 (n7) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5

+ 10ω6 + 12ω7 + 4ω8 + 4ω9 + 12ω10

+ 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.
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13. So for the character χ10 we have the following:

Table 6.3: The Values of the Character χ10

Class[g] [1] [n1] [n2] [n3] [n4] [n5] [n6] [n7]

|[g]| 1 120 120 120 120 120 120 120

◦ (g) 1 29 29 29 29 29 29 29∣∣CG (g)
∣∣ 292.120 292 292 292 292 292 292 292

χ10 120 a b c d e f g

Table 6.3 (continued)

Class[g] [g1] [g2] [g3] [g4] [g5] [g6] [g7] [g8]

|[g]| 292.12 292.12 292 292.12 292.12 292.20 292.20 292.30

◦ (g) 10 10 2 5 5 3 6 4∣∣CG (g)
∣∣ 10 10 120 10 10 6 6 4

χ10 0 0 0 0 0 0 0 0

14. We can now complete the character table of 292 : SL(2, 5) by completing the values of the

irreducible characters χi for i = 11, . . . . . . , 16 by repeating the process described in (5) - (l2)

above. Each of these irreducible characters are constructed by taking the direct product of

irreducible characters of Z29. We list these characters below and then put their values on the

conjugacy classes of our group (the computations for each of these characters are shown in

Sections C - H of the Appendix) thus completing the character table of the group.

• χ11 = φG2 = (ψ1 ·ψ3)G

• χ12 = φG3 = (ψ1 ·ψ4)G

• χ13 = φG4 = (ψ1 ·ψ5)G

• χ14 = φG5 = (ψ1 ·ψ7)G

• χ15 = φG6 = (ψ1 ·ψ9)G

• χ16 = φG7 = (ψ1 ·ψ12)G

6.2.6 The Character Table of 292 : SL(2, 5)
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For values of a,b,c,d,e,f and g see 6.2.5 (12).

6.3 The Fischer Matrices of the Group: 292 : SL(2, 5)

We construct here the Fischer Matrices for our group 292 : SL(2, 5). As we described in Section 5.4,

the Fischer matrices for a Frobenius group comprise of one (m + 1) × (m + 1) matrix where m is

the number of non-trivial orbits of the action of G on N, and the remaining Fischer matrices are

just 1× 1 matrices with the sole entry being 1. So we have: ∀1G 6= g ∈ G,M(g) = [1].

The Fischer matrix corresponding to the identity element of G = 292 : SL(2, 5) is a 8 × 8 matrix

given by:

M(1G)=



1 1 1 1 1 1 1 1

120 a b c d e f g

120 b c d e f g a

120 f g a b c d e

120 c d e f g a b

120 g a b c d e f

120 d e f g a b c

120 e f g a b c d


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Appendix

7.1 Section A

The remaining six conjugacy classes [ni] i = 2, . . . , 7 of the group 292 : SL(2, 5).

[n2] = {(0, 27)&(0, 2); (2, 0)&(27, 0); (24, 12)&(5, 17); (27, 2)&(2, 27); (0, 5)&(0, 24);

(12, 24)&(17, 5); (1, 17)&(28, 12); (5, 7)&(24, 22); (24, 0)&(5, 0); (27, 28)&(2, 1);

(12, 12)&(17, 17); (16, 1)&(13, 28); (28, 2)&(1, 27); (12, 5)&(17, 24); (3, 11)&(26, 18);

(5, 24)&(24, 5); (28, 27)&(1, 2); (12, 1)&(17, 28); (1, 14)&(28, 15); (17, 16)&(12, 13);

(26, 28)&(3, 1); (7, 12)&(22, 17); (15, 3)&(14, 26); (13, 1)&(16, 28); (2, 26)&(27, 3);

(28, 28)&(1, 1); (18, 12)&(11, 17); (6, 9)&(23, 20); (11, 10)&(18, 19); (1, 18)&(28, 11);

(11, 15)&(18, 14); (14, 13)&(15, 16); (7, 16)&(22, 13); (12, 23)&(17, 6); (15, 6)&(14, 23);

(8, 11)&(21, 18); (25, 14)&(4, 15); (16, 4)&(13, 25); (23, 16)&(6, 13)&(6, 7)&(23, 22);

(11, 12)&(18, 17); (14, 21)&(15, 8); (9, 15)&(20, 14); (10, 8)&(19, 21); (11, 25)&(18, 4);

(9, 16)&(20, 13); (10, 23)&(19, 6); (11, 6)&(18, 23); (16, 6)&(13, 23); (23, 11)&(6, 18);

(6, 14)&(23, 15); (23, 24)&(6, 5); (14, 11)&(15, 18); (4, 9)&(25, 20); (16, 10)&(13, 19);

(5, 11)&(24, 18); (21, 6)&(8, 23); (2, 16)&(27, 13); (16, 14)&(13, 15); (14, 2)&(15, 27)}.

[n3] = {(0, 4)&(0, 25); (4, 25)&(25, 4); (10, 5)&(19, 24); (0, 19)&(0, 10); (4, 0)&(25, 0);

(5, 10)&(24, 19); (27, 24)&(2, 5); (19, 15)&(10, 14); (10, 0)&(19, 0); (4, 2)&(25, 27);

(5, 5)&(24, 24); (26, 27)&(3, 2); (2, 25)&(27, 4); (5, 19)&(24, 10); (23, 7)&(6, 22);

(19, 10)&(10, 19); (2, 4)&(27, 25); (5, 27)&(24, 2); (27, 1)&(2, 28); (24, 26)&(5, 3);

(6, 2)&(23, 27); (15, 5)&(14, 24); (28, 23)&(1, 6); (3, 27)&(26, 2); (25, 6)&(4, 23);

(2, 2)&(27, 27); (22, 5)&(7, 24); (17, 11)&(12, 18); (7, 9)&(22, 20); (27, 22)&(2, 7);

(7, 28)&(22, 1); (1, 3)&(28, 26); (15, 26)&(14, 3); (5, 12)&(24, 17); (28, 17)&(1, 12);

(13, 7)&(16, 22); (8, 1)&(21, 28); (26, 21)&(3, 8); (12, 26)&(17, 3); (17, 15)&(12, 14);

(7, 5)&(22, 24); (1, 16)&(28, 13); (11, 28)&(18, 1); (9, 13)&(20, 16); (7, 8)&(22, 21);

(11, 26)&(18, 3); (9, 12)&(20, 17); (7, 17)&(22, 12); (26, 17)&(3, 12); (12, 7)&(17, 22);

(17, 1)&(12, 28); (1, 7)&(28, 22); (21, 11)&(8, 18); (26, 9)&(3, 20); (19, 7)&(10, 22);

75
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(16, 17)&(13, 12); (25, 26)&(4, 3); (17, 19)&(12, 10); (3, 28)&(26, 1); (28, 4)&(1, 25)}.

[n4] = {(0, 21)&(0, 8); (8, 0)&(21, 0); (9, 19)&(20, 10); (21, 8)&(8, 21); (0, 20)&(0, 9);

(19, 9)&(10, 20); (4, 10)&(25, 19); (20, 28)&(9, 1); (9, 0)&(20, 0); (21, 25)&(8, 4);

(19, 19)&(10, 10); (6, 4)&(23, 25); (25, 8)&(4, 21); (19, 20)&(10, 9); (12, 15)&(17, 14);

(20, 9)&(9, 20); (25, 21)&(4, 8); (19, 4)&(10, 25); (4, 27)&(25, 2); (10, 6)&(19, 23);

(17, 25)&(12, 4); (28, 19)&(1, 10); (2, 12)&(27, 17); (23, 4)&(6, 25); (8, 17)&(21, 12);

(25, 25)&(4, 4); (14, 19)&(15, 10); (24, 7)&(5, 22); (15, 11)&(14, 18); (4, 14)&(25, 15);

(15, 2)&(14, 27); (27, 23)&(2, 6); (28, 6)&(1, 23); (19, 5)&(10, 24); (2, 24)&(27, 5);

(3, 15)&(26, 14); (13, 27)&(16, 2); (6, 16)&(23, 13); (5, 6)&(24, 23); (24, 28)&(5, 1);

(15, 19)&(14, 10); (27, 26)&(2, 3); (7, 2)&(22, 27); (11, 3)&(18, 26); (15, 13)&(14, 16);

(7, 6)&(22, 23); (11, 5)&(18, 24); (15, 24)&(14, 5); (6, 24)&(23, 5); (5, 15)&(24, 14);

(24, 27)&(5, 2); (5, 9)&(24, 20); (27, 15)&(2, 14); (16, 7)&(13, 22); (6, 11)&(23, 18);

(20, 15)&(9, 14); (26, 24)&(3, 5); (8, 6)&(21, 23); (23, 2)&(6, 27); (2, 21)&(27, 8)}.

[n5] = {(0, 16)&(0, 13); (13, 0)&(16, 0); (11, 20)&(18, 9); (16, 13)&(13, 16); (0, 18)&(0, 11);

(20, 11)&(9, 18); (21, 9)&(8, 20); (18, 2)&(11, 27); (11, 0)&(18, 0); (16, 8)&(13, 21);

(20, 20)&(9, 9); (17, 21)&(12, 8); (8, 13)&(21, 16); (20, 18)&(9, 11); (5, 28)&(24, 1);

(18, 11)&(11, 18); (8, 16)&(21, 13); (20, 21)&(9, 8); (21, 4)&(8, 25); (9, 17)&(20, 12);

(24, 8)&(5, 21); (2, 20)&(27, 9); (25, 5)&(4, 24); (12, 21)&(17, 8); (13, 24)&(16, 5);

(8, 8)&(21, 21); (1, 20)&(28, 9); (10, 15)&(19, 14); (28, 7)&(1, 22); (21, 1)&(8, 28);

(28, 25)&(1, 4); (4, 12)&(25, 17); (2, 17)&(27, 12); (20, 19)&(9, 10); (25, 10)&(4, 19);

(23, 28)&(6, 1); (3, 4)&(26, 25); (17, 26)&(12, 3); (19, 17)&(10, 12); (10, 2)&(19, 27);

(28, 20)&(1, 9); (4, 6)&(25, 23); (15, 25)&(14, 4); (7, 23)&(22, 6); (28, 3)&(1, 26);

(15, 17)&(14, 12); (7, 19)&(22, 10); (28, 10)&(1, 19); (17, 10)&(12, 19); (19, 28)&(10, 1);

(10, 4)&(19, 25); (19, 11)&(10, 18); (4, 28)&(25, 1); (26, 15)&(3, 14); (17, 7)&(12, 22);

(18, 28)&(11, 1); (6, 10)&(23, 19); (13, 17)&(16, 12); (17, 4)&(12, 25); (25, 16)&(4, 13)}.

[n6] = {(0, 26)&(0, 3); (3, 0)&(26, 0); (7, 18)&(22, 11); (0, 22)&(0, 7); (26, 3)&(3, 26);

(18, 7)&(11, 22); (16, 11)&(13, 18); (22, 25)&(7, 4); (7, 0)&(22, 0); (26, 13)&(3, 16);

(18, 18)&(11, 11); (24, 16)&(5, 13); (13, 3)&(16, 26); (18, 22)&(11, 7); (19, 2)&(10, 27);

(22, 7)&(7, 22); (13, 26)&(16, 3); ((18, 16)&(11, 13); (16, 21)&(13, 8); (11, 24)&(18, 5);

(10, 13)&(19, 16); (25, 18)&(4, 11); (8, 19)&(21, 10); (5, 16)&(24, 13); (3, 10)&(26, 19);

(13, 13)&(16, 16); (27, 18)&(2, 11); (9, 28)&(20, 1); (2, 15)&(27, 14); (16, 27)&(13, 2);

(2, 8)&(27, 21); (21, 5)&(8, 24); (25, 24)&(4, 5); (18, 20)&(11, 9); (8, 9)&(21, 20);

(17, 27)&(12, 2); (6, 8)&(23, 21); (5, 23)&(24, 6); (9, 5)&(20, 24); (20, 4)&(9, 25);

(27, 11)&(2, 18); (8, 12)&(21, 17); (1, 21)&(28, 8); (14, 17)&(15, 12); (27, 6)&(2, 23);

(1, 5)&(28, 24); (14, 9)&(15, 20); (27, 20)&(2, 9); (5, 20)&(24, 9); (9, 27)&(20, 2);

(20, 8)&(9, 21); (9, 22)&(20, 7); (21, 2)&(8, 27); (6, 28)&(23, 1); (24, 15)&(5, 14);

(22, 2)&(7, 27); (17, 9)&(12, 20); (3, 24)&(26, 5); (5, 8)&(24, 21); (8, 26)&(21, 3)}.



CHAPTER 7. APPENDIX 77

[n7] = {(0, 6)&(0, 23); (23, 0)&(6, 0); (15, 22)&(14, 7); (6, 23)&(23, 6); (0, 14)&(0, 15);

(26, 7)&(3, 22); (22, 15)&(7, 14); (14, 8)&(15, 21); (15, 0)&(14, 0); (6, 3)&(23, 26);

(22, 22)&(7, 7); (10, 26)&(19, 3); (3, 23)&(26, 6); (22, 14)&(7, 15); (20, 25)&(9, 4);

(14, 15)&(15, 14); (3, 6)&(26, 23); (22, 26)&(7, 3); (26, 16)&(3, 13); (7, 10)&(22, 19);

(9, 3)&(20, 26); (8, 22)&(21, 7); (13, 20)&(16, 9); (19, 26)&(10, 3); (23, 9)&(6, 20);

(3, 3)&(26, 26); (4, 22)&(25, 7); (11, 2)&(18, 27); (25, 28)&(4, 1); (26, 4)&(3, 25);

(25, 13)&(4, 16); (16, 19)&(13, 10); (8, 10)&(21, 19); (22, 18)&(7, 11); (13, 11)&(16, 18);

(5, 25)&(24, 4); (12, 16)&(17, 13); (10, 17)&(19, 12); (18, 10)&(11, 19); (11, 8)&(18, 21);

(25, 22)&(4, 7); (16, 24)&(13, 5); (2, 13)&(27, 16); (28, 5)&(1, 24); (25, 12)&(4, 17);

(2, 10)&(27, 19); (28, 18)&(1, 11); (25, 11)&(4, 18); (10, 11)&(19, 18); (18, 25)&(11, 4);

(11, 16)&(18, 13); (18, 15)&(11, 14); (16, 25)&(13, 4); (17, 2)&(12, 27); (10, 28)&(19, 1);

(14, 25)&(15, 4); (24, 11)&(5, 18); (23, 10)&(6, 19); (19, 13)&(10, 16); (13, 6)&(16, 23)}.

7.2 Section B

7.2.1 Character Values of χ10

Computing the character values for the character χ10 for the conjugacy classes [n1], [n2], . . . , [n7].

Now χ10 = φG1 = (ψ1.ψ2). Also χ10(ni) =

120∑
i=1

ψ2(xi) where the xi are the 120 vectors which fuse

to form the conjugacy class [ni] (ni a representative of the class).

Now ψ2(xi) where xi ∈ {0, 1, . . . , 28} equals ψ2 evaluated at the second entry of the 120 vectors that

make up the conjugacy class [ni]. These are the values in the character table of Z29.
Tabulated below are the values of ψ2(g) for g ∈ Z29.

Table 7.1: The Values of the Character ψ2

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ2 1 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14

Table 7.1 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ2 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ10(n1) :
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Since χ10 =

120∑
i=1

ψ2(xi), to compute the value χ10(n1), run through the conjugacy class [n1] and

count the number of pairs with 0, 1, 2, . . . , 14 in the second entry position. Count these digits only

once in each pair. Then find the value of ψ2(y) where y ∈ Z29 in the table 7.1. Each of these values

must then be multiplied by two (except for y=0). For [n1] there are two pairs with 0, 2, 4, 5, 10,

11 and 13; five pairs with 1 and 12 and six pairs with 3, 6, 7, 8, 9 and 14.

Hence,

χ10(n1) = 2× 2+ 2× 5×ω1 + 2× 2×ω2 + 2× 6×ω3 + 2× 2×ω4 + 2× 2×ω5
+2× 6×ω6 + 2× 6×ω7 + 2× 6×ω8 + 2× 6×ω9 + 2× 2×ω10

+2× 2×ω11 + 2× 5×ω12 + 2× 2×ω13 + 2× 6×ω14.

So

χ10(n1) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.

χ10(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ10(n2) = 2× 2+ 2× 6×ω1 + 2× 5×ω2 + 2× 2×ω3 + 2× 2×ω4 + 2× 5×ω5
+2× 6×ω6 + 2× 2×ω7 + 2× 2×ω8 + 2× 2×ω9 + 2× 2×ω10

+2× 6×ω11 + 2× 6×ω12 + 2× 6×ω13 + 2× 6×ω14.

So

χ10(n2) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

χ10(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ10(n3) = 2× 2+ 2× 12×ω1 + 2× 12×ω2 + 2× 12×ω3 + 2× 10×ω4 + 2× 12×ω5
+2× 4×ω6 + 2× 12×ω7 + 2× 4×ω8 + 2× 4×ω9 + 2× 10×ω10

+2× 4×ω11 + 2× 12×ω12 + 2× 4×ω13 + 2× 4×ω14.
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So

χ10(n3) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

χ10(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs

with 2, 4, 5, 6, 10 and 14.

Hence,

χ10(n4) = 2× 2+ 2× 4×ω1 + 2× 12×ω2 + 2× 4×ω3 + 2× 12×ω4 + 2× 12×ω5
+2× 12×ω6 + 2× 4×ω7 + 2× 10×ω8 + 2× 10×ω9 + 2× 12×ω10

+2× 4×ω11 + 2× 4×ω12 + 2× 4×ω13 + 2× 12×ω14.

So

χ10(n4) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.

χ10(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ10(n5) = 2× 2+ 2× 12×ω1 + 2× 4×ω2 + 2× 4×ω3 + 2× 12×ω4 + 2× 4×ω5
+2× 4×ω6 + 2× 4×ω7 + 2× 12×ω8 + 2× 12×ω9 + 2× 12×ω10

+2× 10×ω11 + 2× 12×ω12 + 2× 10×ω13 + 2× 4×ω14.

So

χ10(n5) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

χ10(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ10(n6) = 2× 2+ 2× 4×ω1 + 2× 12×ω2 + 2× 10×ω3 + 2× 4×ω4 + 2× 12×ω5
+2× 4×ω6 + 2× 10×ω7 + 2× 12×ω8 + 2× 12×ω9 + 2× 4×ω10

+2× 12×ω11 + 2× 4×ω12 + 2× 12×ω13 + 2× 4×ω14.
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So

χ10(n6) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ10(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ10(n7) = 2× 2+ 2× 4×ω1 + 2× 4×ω2 + 2× 12×ω3 + 2× 12×ω4 + 2× 4×ω5
+2× 10×ω6 + 2× 12×ω7 + 2× 4×ω8 + 2× 4×ω9 + 2× 12×ω10

+2× 12×ω11 + 2× 4×ω12 + 2× 12×ω13 + 2× 10×ω14.

So

χ10(n7) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.

7.3 Section C

7.3.1 The Character Values of χ11

Now χ11 = φ
G
1 = (ψ1.ψ3) and χ11(ni) =

120∑
i=1

ψ3(xi). To find the values χ11(ni), we need the values

ψ3(g) for g ∈ Z29. They are tabulated below:

Table 7.2: The Values of the Character ψ3

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ3 1 ω2 ω4 ω6 ω8 ω10 ω12 ω14 ω13 ω11 ω9 ω7 ω5 ω3 ω1

Table 7.2 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ3 ω1 ω3 ω5 ω7 ω9 ω11 ω13 ω14 ω12 ω10 ω8 ω6 ω4 ω2

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ11(n1) :

For [n1] there are two pairs with 0, 2, 4, 5, 10, 11 and 13; five pairs with 1 and 12 and six pairs
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with 3, 6, 7, 8, 9 and 14.

Hence,

χ11(n1) = 2× 2+ 2× 5×ω2 + 2× 2×ω4 + 2× 6×ω6 + 2× 2×ω8 + 2× 2×ω10
+2× 6×ω12 + 2× 6×ω14 + 2× 6×ω13 + 2× 6×ω11 + 2× 2×ω9

+2× 2×ω7 + 2× 5×ω5 + 2× 2×ω3 + 2× 6×ω1.

So

χ11(n1) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

χ11(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ11(n2) = 2× 2+ 2× 6×ω2 + 2× 5×ω4 + 2× 2×ω6 + 2× 2×ω8 + 2× 5×ω10
+2× 6×ω12 + 2× 2×ω14 + 2× 2×ω13 + 2× 2×ω11 + 2× 2×ω9

+2× 6×ω7 + 2× 6×ω5 + 2× 6×ω3 + 2× 6×ω1.

So

χ11(n2) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

χ11(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ11(n3) = 2× 2+ 2× 12×ω2 + 2× 12×ω4 + 2× 12×ω6 + 2× 10×ω8 + 2× 12×ω10
+2× 4×ω12 + 2× 12×ω14 + 2× 4×ω13 + 2× 4×ω11 + 2× 10×ω9

+2× 4×ω7 + 2× 12×ω5 + 2× 4×ω3 + 2× 4×ω1.

So

χ11(n3) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.
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χ11(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs

with 2, 4, 5, 6, 10 and 14.

Hence,

χ11(n4) = 2× 2+ 2× 4×ω2 + 2× 12×ω4 + 2× 4×ω6 + 2× 12×ω8 + 2× 12×ω10
+2× 12×ω12 + 2× 4×ω14 + 2× 10×ω13 + 2× 10×ω11 + 2× 12×ω9

+2× 4×ω7 + 2× 4×ω5 + 2× 4×ω3 + 2× 12×ω1.

So

χ11(n4) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

χ11(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ11(n5) = 2× 2+ 2× 12×ω2 + 2× 4×ω4 + 2× 4×ω6 + 2× 12×ω8 + 2× 4×ω10
+2× 4×ω12 + 2× 4×ω14 + 2× 12×ω13 + 2× 12×ω11 + 2× 12×ω9

+2× 10×ω7 + 2× 12×ω5 + 2× 10×ω3 + 2× 4×ω1.

So

χ11(n5) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ11(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ11(n6) = 2× 2+ 2× 4×ω2 + 2× 12×ω4 + 2× 10×ω6 + 2× 4×ω8 + 2× 12×ω10
+2× 4×ω12 + 2× 10×ω14 + 2× 12×ω13 + 2× 12×ω11 + 2× 4×ω9

+2× 12×ω7 + 2× 4×ω5 + 2× 12×ω3 + 2× 4×ω1.

So

χ11(n6) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.
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χ11(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ11(n7) = 2× 2+ 2× 4×ω2 + 2× 4×ω4 + 2× 12×ω6 + 2× 12×ω8 + 2× 4×ω10
+2× 10×ω12 + 2× 12×ω14 + 2× 4×ω13 + 2× 4×ω11 + 2× 12×ω9

+2× 12×ω7 + 2× 4×ω5 + 2× 12×ω3 + 2× 10×ω1.

So

χ11(n7) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.

7.4 Section D

7.4.1 Character Values of χ12

Now χ12 = φ
G
1 = (ψ1.ψ4) and χ12(ni) =

120∑
i=1

ψ4(xi). To find the values χ12(ni), we need the values

ψ4(g) for g ∈ Z29. They are tabulated below:

Table 7.3: The Values of the Character ψ4

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ4 1 ω3 ω6 ω9 ω12 ω14 ω11 ω8 ω5 ω2 ω1 ω4 ω7 ω10 ω13

Table 7.3 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ4 ω13 ω10 ω7 ω4 ω1 ω2 ω5 ω8 ω11 ω14 ω12 ω9 ω6 ω3

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ12(n1) :

For [n1] there are two pairs with 0, 2, 4, 5, 10, 11 and 13; five pairs with 1 and 12 and six pairs

with 3, 6, 7, 8, 9 and 14.
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Hence,

χ12(n1) = 2× 2+ 2× 5×ω3 + 2× 2×ω6 + 2× 6×ω9 + 2× 2×ω12 + 2× 2×ω14
+2× 6×ω11 + 2× 6×ω8 + 2× 6×ω5 + 2× 6×ω2 + 2× 2×ω1

+2× 2×ω4 + 2× 5×ω7 + 2× 2×ω10 + 2× 6×ω13.

So

χ12(n1) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ12(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ12(n2) = 2× 2+ 2× 6×ω3 + 2× 5×ω6 + 2× 2×ω9 + 2× 2×ω12 + 2× 5×ω14
+2× 6×ω11 + 2× 2×ω8 + 2× 2×ω5 + 2× 2×ω2 + 2× 2×ω1

+2× 6×ω4 + 2× 6×ω7 + 2× 6×ω10 + 2× 6×ω13.

So

χ12(n2) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.

χ12(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ12(n3) = 2× 2+ 2× 12×ω3 + 2× 12×ω6 + 2× 12×ω9 + 2× 10×ω12 + 2× 12×ω14
+2× 4×ω11 + 2× 12×ω8 + 2× 4×ω5 + 2× 4×ω2 + 2× 10×ω1

+2× 4×ω4 + 2× 12×ω7 + 2× 4×ω10 + 2× 4×ω13.

So

χ12(n3) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.

χ12(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs
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with 2, 4, 5, 6, 10 and 14.

Hence,

χ12(n4) = 2× 2+ 2× 4×ω3 + 2× 12×ω6 + 2× 4×ω9 + 2× 12×ω12 + 2× 12×ω14
+2× 12×ω11 + 2× 4×ω8 + 2× 10×ω5 + 2× 10×ω2 + 2× 12×ω1

+2× 4×ω4 + 2× 4×ω7 + 2× 4×ω10 + 2× 12×ω13.

So

χ12(n4) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

χ12(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ12(n5) = 2× 2+ 2× 12×ω3 + 2× 4×ω6 + 2× 4×ω9 + 2× 12×ω12 + 2× 4×ω14
+2× 4×ω11 + 2× 4×ω8 + 2× 12×ω5 + 2× 12×ω2 + 2× 12×ω1

+2× 10×ω4 + 2× 12×ω7 + 2× 10×ω10 + 2× 4×ω13.

So

χ12(n5) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

χ12(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ12(n6) = 2× 2+ 2× 4×ω3 + 2× 12×ω6 + 2× 10×ω9 + 2× 4×ω12 + 2× 12×ω14
+2× 4×ω11 + 2× 10×ω8 + 2× 12×ω5 + 2× 12×ω2 + 2× 4×ω1

+2× 12×ω4 + 2× 4×ω7 + 2× 12×ω10 + 2× 4×ω13.

So

χ12(n6) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.
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χ12(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ12(n7) = 2× 2+ 2× 4×ω3 + 2× 4×ω6 + 2× 12×ω9 + 2× 12×ω12 + 2× 4×ω14
+2× 10×ω11 + 2× 12×ω8 + 2× 4×ω5 + 2× 4×ω2 + 2× 12×ω1

+2× 12×ω4 + 2× 4×ω7 + 2× 12×ω10 + 2× 10×ω13.

So

χ12(n7) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

7.5 Section E

7.5.1 Character Values of χ13

Now χ13 = φ
G
1 = (ψ1.ψ5) and χ13(ni) =

120∑
i=1

ψ5(xi). To find the values χ13(ni), we need the values

ψ5(g) for g ∈ Z29. They are tabulated below:

Table 7.4: The Values of the Character ψ5

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ5 1 ω4 ω8 ω12 ω13 ω9 ω5 ω1 ω3 ω7 ω11 ω14 ω10 ω6 ω2

Table 7.4 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ5 ω2 ω6 ω10 ω14 ω11 ω7 ω3 ω1 ω5 ω9 ω13 ω12 ω8 ω4

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ13(n1) :

For [n1] there are two pairs with 0, 2, 4, 5, 10, 11 and 13; five pairs with 1 and 12 and six pairs

with 3, 6, 7, 8, 9 and 14.
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Hence,

χ13(n1) = 2× 2+ 2× 5×ω4 + 2× 2×ω8 + 2× 6×ω12 + 2× 2×ω13 + 2× 2×ω9
+2× 6×ω5 + 2× 6×ω1 + 2× 6×ω3 + 2× 6×ω7 + 2× 2×ω11

+2× 2×ω14 + 2× 5×ω10 + 2× 2×ω6 + 2× 6×ω2.

So

χ13(n1) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

χ13(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ13(n2) = 2× 2+ 2× 6×ω4 + 2× 5×ω8 + 2× 2×ω12 + 2× 2×ω13 + 2× 5×ω9
+2× 6×ω5 + 2× 2×ω1 + 2× 2×ω3 + 2× 2×ω7 + 2× 2×ω11

+2× 6×ω14 + 2× 6×ω10 + 2× 6×ω6 + 2× 6×ω2.

So

χ13(n2) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.

χ13(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ13(n3) = 2× 2+ 2× 12×ω4 + 2× 12×ω8 + 2× 12×ω12 + 2× 10×ω13 + 2× 12×ω9
+2× 4×ω5 + 2× 12×ω1 + 2× 4×ω3 + 2× 4×ω7 + 2× 10×ω11

+2× 4×ω14 + 2× 12×ω10 + 2× 4×ω6 + 2× 4×ω2.

So

χ13(n3) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

χ13(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs
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with 2, 4, 5, 6, 10 and 14.

Hence,

χ13(n4) = 2× 2+ 2× 4×ω4 + 2× 12×ω8 + 2× 4×ω12 + 2× 12×ω13 + 2× 12×ω9
+2× 12×ω5 + 2× 4×ω1 + 2× 10×ω3 + 2× 10×ω7 + 2× 12×ω11

+2× 4×ω14 + 2× 4×ω10 + 2× 4×ω6 + 2× 12×ω2.

So

χ13(n4) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ13(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ13(n5) = 2× 2+ 2× 12×ω4 + 2× 4×ω8 + 2× 4×ω12 + 2× 12×ω13 + 2× 4×ω9
+2× 4×ω5 + 2× 4×ω1 + 2× 12×ω3 + 2× 12×ω7 + 2× 12×ω11

+2× 10×ω14 + 2× 12×ω10 + 2× 10×ω6 + 2× 4×ω2.

So

χ13(n5) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.

χ13(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ13(n6) = 2× 2+ 2× 4×ω4 + 2× 12×ω8 + 2× 10×ω12 + 2× 4×ω13 + 2× 12×ω9
+2× 4×ω5 + 2× 10×ω1 + 2× 12×ω3 + 2× 12×ω7 + 2× 4×ω11

+2× 12×ω14 + 2× 4×ω10 + 2× 12×ω6 + 2× 4×ω2.

So

χ13(n6) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.
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χ13(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ13(n7) = 2× 2+ 2× 4×ω4 + 2× 4×ω8 + 2× 12×ω12 + 2× 12×ω13 + 2× 4×ω9
+2× 10×ω5 + 2× 12×ω1 + 2× 4×ω3 + 2× 4×ω7 + 2× 12×ω11

+2× 12×ω14 + 2× 4×ω10 + 2× 12×ω6 + 2× 10×ω2.

So

χ13(n7) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

7.6 Section F

7.6.1 The Character Values of χ14

Now χ14 = φ
G
1 = (ψ1.ψ7) and χ14(ni) =

120∑
i=1

ψ7(xi). To find the values χ14(ni), we need the values

ψ7(g) for g ∈ Z29. They are tabulated below:

Table 7.5: The Values of the Character ψ7

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ7 1 ω6 ω12 ω11 ω5 ω1 ω7 ω13 ω10 ω4 ω2 ω8 ω14 ω9 ω3

Table 7.5 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ7 ω3 ω9 ω14 ω8 ω2 ω4 ω10 ω13 ω7 ω1 ω5 ω11 ω12 ω6

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ14(n1) :

For [n1] there are two pairs with 0, 2, 4, 5, 10, 11 and 13; five pairs with 1 and 12 and six pairs

with 3, 6, 7, 8, 9 and 14.
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Hence,

χ14(n1) = 2× 2+ 2× 5×ω6 + 2× 2×ω12 + 2× 6×ω11 + 2× 2×ω5 + 2× 2×ω1
+2× 6×ω7 + 2× 6×ω13 + 2× 6×ω10 + 2× 6×ω4 + 2× 2×ω2

+2× 2×ω8 + 2× 5×ω14 + 2× 2×ω9 + 2× 6×ω3.

So

χ14(n1) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.

χ14(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ14(n2) = 2× 2+ 2× 6×ω6 + 2× 5×ω12 + 2× 2×ω11 + 2× 2×ω5 + 2× 5×ω1
+2× 6×ω7 + 2× 2×ω13 + 2× 2×ω10 + 2× 2×ω4 + 2× 2×ω2

+2× 6×ω8 + 2× 6×ω14 + 2× 6×ω9 + 2× 6×ω3.

So

χ14(n2) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.

χ14(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ14(n3) = 2× 2+ 2× 12×ω6 + 2× 12×ω12 + 2× 12×ω11 + 2× 10×ω5 + 2× 12×ω1
+2× 4×ω7 + 2× 12×ω13 + 2× 4×ω10 + 2× 4×ω4 + 2× 10×ω2

+2× 4×ω8 + 2× 12×ω14 + 2× 4×ω9 + 2× 4×ω3.

So

χ14(n3) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

χ14(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs
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with 2, 4, 5, 6, 10 and 14.

Hence,

χ14(n4) = 2× 2+ 2× 4×ω6 + 2× 12×ω12 + 2× 4×ω12 + 2× 12×ω5 + 2× 12×ω1
+2× 12×ω7 + 2× 4×ω13 + 2× 10×ω10 + 2× 10×ω4 + 2× 12×ω2

+2× 4×ω8 + 2× 4×ω14 + 2× 4×ω9 + 2× 12×ω3.

So

χ14(n4) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

χ14(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ14(n5) = 2× 2+ 2× 12×ω6 + 2× 4×ω12 + 2× 4×ω11 + 2× 12×ω5 + 2× 4×ω1
+2× 4×ω7 + 2× 4×ω13 + 2× 12×ω10 + 2× 12×ω4 + 2× 12×ω2

+2× 10×ω8 + 2× 12×ω14 + 2× 10×ω9 + 2× 4×ω3.

So

χ14(n5) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.

χ14(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ14(n6) = 2× 2+ 2× 4×ω6 + 2× 12×ω12 + 2× 10×ω11 + 2× 4×ω5 + 2× 12×ω1
+2× 4×ω7 + 2× 10×ω13 + 2× 12×ω10 + 2× 12×ω4 + 2× 4×ω2

+2× 12×ω8 + 2× 4×ω14 + 2× 12×ω9 + 2× 4×ω3.

So

χ14(n6) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.
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χ14(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ14(n7) = 2× 2+ 2× 4×ω6 + 2× 4×ω12 + 2× 12×ω11 + 2× 12×ω5 + 2× 4×ω1
+2× 10×ω7 + 2× 12×ω13 + 2× 4×ω10 + 2× 4×ω4 + 2× 12×ω2

+2× 12×ω8 + 2× 4×ω14 + 2× 12×ω9 + 2× 10×ω3.

So

χ14(n7) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

7.7 Section G

7.7.1 Character Values of χ15

Now χ15 = φ
G
1 = (ψ1.ψ9) and χ15(ni) =

120∑
i=1

ψ9(xi). To find the values χ15(ni), we need the values

ψ9(g) for g ∈ Z29. They are tabulated below:

Table 7.6: The Values of the Character ψ9

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ9 1 ω8 ω13 ω5 ω3 ω11 ω10 ω2 ω6 ω14 ω7 ω1 ω9 ω12 ω4

Table 7.6 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ9 ω4 ω12 ω9 ω1 ω7 ω14 ω6 ω2 ω10 ω11 ω3 ω5 ω13 ω8

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ15(n1) :

For [n1] there are two pairs with 0, 2, 4, 5, 10, 11 and 13; five pairs with 1 and 12 and six pairs

with 3, 6, 7, 8, 9 and 14.
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Hence,

χ15(n1) = 2× 2+ 2× 5×ω8 + 2× 2×ω13 + 2× 6×ω5 + 2× 2×ω3 + 2× 2×ω11
+2× 6×ω10 + 2× 6×ω2 + 2× 6×ω6 + 2× 6×ω14 + 2× 2×ω7

+2× 2×ω1 + 2× 5×ω9 + 2× 2×ω12 + 2× 6×ω4.

So

χ15(n1) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.

χ15(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ15(n2) = 2× 2+ 2× 6×ω8 + 2× 5×ω13 + 2× 2×ω5 + 2× 2×ω3 + 2× 5×ω11
+2× 6×ω10 + 2× 2×ω2 + 2× 2×ω6 + 2× 2×ω14 + 2× 2×ω7

+2× 6×ω1 + 2× 6×ω9 + 2× 6×ω12 + 2× 6×ω4.

So

χ15(n2) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

χ15(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ15(n3) = 2× 2+ 2× 12×ω8 + 2× 12×ω13 + 2× 12×ω5 + 2× 10×ω3 + 2× 12×ω11
+2× 4×ω10 + 2× 12×ω2 + 2× 4×ω6 + 2× 4×ω14 + 2× 10×ω7

+2× 4×ω1 + 2× 12×ω9 + 2× 4×ω12 + 2× 4×ω4.

So

χ15(n3) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ15(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs
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with 2, 4, 5, 6, 10 and 14.

Hence,

χ15(n4) = 2× 2+ 2× 4×ω8 + 2× 12×ω13 + 2× 4×ω5 + 2× 12×ω3 + 2× 12×ω11
+2× 12×ω10 + 2× 4×ω2 + 2× 10×ω6 + 2× 10×ω14 + 2× 12×ω7

+2× 4×ω1 + 2× 4×ω9 + 2× 4×ω12 + 2× 12×ω4.

So

χ15(n4) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.

χ15(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ15(n5) = 2× 2+ 2× 12×ω8 + 2× 4×ω13 + 2× 4×ω5 + 2× 12×ω3 + 2× 4×ω11
+2× 4×ω10 + 2× 4×ω2 + 2× 12×ω6 + 2× 12×ω14 + 2× 12×ω7

+2× 10×ω1 + 2× 12×ω9 + 2× 10×ω12 + 2× 4×ω4.

So

χ15(n5) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.

χ15(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ15(n6) = 2× 2+ 2× 4×ω8 + 2× 12×ω13 + 2× 10×ω5 + 2× 4×ω3 + 2× 12×ω11
+2× 4×ω10 + 2× 10×ω2 + 2× 12×ω6 + 2× 12×ω14 + 2× 4×ω7

+2× 12×ω1 + 2× 4×ω9 + 2× 12×ω12 + 2× 4×ω4.

So

χ15(n6) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.
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χ15(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ15(n7) = 2× 2+ 2× 4×ω8 + 2× 4×ω13 + 2× 12×ω5 + 2× 12×ω3 + 2× 4×ω11
+2× 10×ω10 + 2× 12×ω2 + 2× 4×ω6 + 2× 4×ω14 + 2× 12×ω7

+2× 12×ω1 + 2× 4×ω9 + 2× 12×ω12 + 2× 10×ω4.

So

χ15(n7) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.

7.8 Section H

7.8.1 Character Values of χ16

Now χ16 = φ
G
1 = (ψ1.ψ12) and χ16(ni) =

120∑
i=1

ψ12(xi). To find the values χ16(ni), we need the values

ψ12(g) for g ∈ Z29. They are tabulated below:

Table 7.7: The Values of the Character ψ12

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ψ12 1 ω11 ω7 ω4 ω14 ω3 ω8 ω10 ω1 ω12 ω6 ω5 ω13 ω2 ω9

Table 7.7 (continued)

g 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ψ12 ω9 ω2 ω13 ω5 ω6 ω12 ω1 ω10 ω8 ω3 ω14 ω4 ω7 ω11

where ωi = e
2kπi
29 and ωi is the complex conjugate of ωi.

χ16(n1) :

For [n1] there are two pairs with 0, 2, 4, 5, 10, 11 and 13; five pairs with 1 and 12 and six pairs

with 3, 6, 7, 8, 9 and 14.
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Hence,

χ16(n1) = 2× 2+ 2× 5×ω11 + 2× 2×ω7 + 2× 6×ω4 + 2× 2×ω14 + 2× 2×ω3
+2× 6×ω8 + 2× 6×ω10 + 2× 6×ω1 + 2× 6×ω12 + 2× 2×ω6

+2× 2×ω5 + 2× 5×ω13 + 2× 2×ω2 + 2× 6×ω9.

So

χ16(n1) = 4+ 12ω1 + 4ω2 + 4ω3 + 12ω4 + 4ω5 + 4ω6 + 4ω7

+12ω8 + 12ω9 + 12ω10 + 10ω11 + 12ω12 + 10ω13 + 4ω14 = e.

χ16(n2) :

For [n2], there are two pairs with 0, 3, 4, 7, 8, 9 and 10; five pairs with 2 and 5 and six pairs with

1, 6, 11, 12, 13 and 14.

Hence,

χ16(n2) = 2× 2+ 2× 6×ω11 + 2× 5×ω7 + 2× 2×ω4 + 2× 2×ω14 + 2× 5×ω3
+2× 6×ω8 + 2× 2×ω10 + 2× 2×ω1 + 2× 2×ω12 + 2× 2×ω6

+2× 6×ω5 + 2× 6×ω13 + 2× 6×ω2 + 2× 6×ω9.

So

χ16(n2) = 4+ 4ω1 + 12ω2 + 10ω3 + 4ω4 + 12ω5 + 4ω6 + 10ω7

+12ω8 + 12ω9 + 4ω10 + 12ω11 + 4ω12 + 12ω13 + 4ω14 = f.

χ16(n3) :

For [n3], there are two pairs with 0, 6, 8, 9, 11, 13 and 14; five pairs with 4 and 10 and six pairs

with 1, 2, 3, 5, 7 and 12.

Hence,

χ16(n3) = 2× 2+ 2× 12×ω11 + 2× 12×ω7 + 2× 12×ω4 + 2× 10×ω14 + 2× 12×ω3
+2× 4×ω8 + 2× 12×ω10 + 2× 4×ω1 + 2× 4×ω12 + 2× 10×ω6

+2× 4×ω5 + 2× 12×ω13 + 2× 4×ω2 + 2× 4×ω9.

So

χ16(n3) = 4+ 4ω1 + 4ω2 + 12ω3 + 12ω4 + 4ω5 + 10ω6 + 12ω7

+4ω8 + 4ω9 + 12ω10 + 12ω11 + 4ω12 + 12ω13 + 10ω14 = g.

χ16(n4) :

For [n4], there are two pairs with 0, 1, 3, 7, 11, 12 and 14; five pairs with 8 and 9 and six pairs
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with 2, 4, 5, 6, 10 and 14.

Hence,

χ16(n4) = 2× 2+ 2× 4×ω11 + 2× 12×ω7 + 2× 4×ω4 + 2× 12×ω14 + 2× 12×ω3
+2× 12×ω8 + 2× 4×ω10 + 2× 10×ω1 + 2× 10×ω12 + 2× 12×ω6

+2× 4×ω5 + 2× 4×ω13 + 2× 4×ω2 + 2× 12×ω9.

So

χ16(n4) = 4+ 10ω1 + 4ω2 + 12ω3 + 4ω4 + 4ω5 + 12ω6 + 12ω7

+12ω8 + 12ω9 + 4ω10 + 4ω11 + 10ω12 + 4ω13 + 12ω14 = a.

χ16(n5) :

For [n5], there are two pairs with 0, 2, 3, 5, 6, 7 and 14; five pairs with 11 and 13 and six pairs

with 2, 4, 8, 9, 10 and 12.

Hence,

χ16(n5) = 2× 2+ 2× 12×ω11 + 2× 4×ω7 + 2× 4×ω4 + 2× 12×ω14 + 2× 4×ω3
+2× 4×ω8 + 2× 4×ω10 + 2× 12×ω1 + 2× 12×ω12 + 2× 12×ω6

+2× 10×ω5 + 2× 12×ω13 + 2× 10×ω2 + 2× 4×ω9.

So

χ16(n5) = 4+ 12ω1 + 10ω2 + 4ω3 + 4ω4 + 10ω5 + 12ω6 + 4ω7

+4ω8 + 4ω9 + 4ω10 + 12ω11 + 12ω12 + 12ω13 + 12ω14 = b.

χ16(n6) :

For [n6], there are two pairs with 0, 1, 4, 6, 10, 12 and 14; five pairs with 3 and 7 and six pairs

with 2, 5, 8, 9, 11 and 13.

Hence,

χ16(n6) = 2× 2+ 2× 4×ω11 + 2× 12×ω7 + 2× 10×ω4 + 2× 4×ω14 + 2× 12×ω3
+2× 4×ω8 + 2× 10×ω10 + 2× 12×ω1 + 2× 12×ω12 + 2× 4×ω6

+2× 12×ω5 + 2× 4×ω13 + 2× 12×ω2 + 2× 4×ω9.

So

χ16(n6) = 4+ 12ω1 + 12ω2 + 12ω3 + 10ω4 + 12ω5 + 4ω6 + 12ω7

+4ω8 + 4ω9 + 10ω10 + 4ω11 + 12ω12 + 4ω13 + 4ω14 = c.



CHAPTER 7. APPENDIX 98

χ16(n7) :

For [n7], there are two pairs with 0, 1, 2, 5, 8, 9 and 12; five pairs with 6 and 14 and six pairs with

3, 4, 7, 10, 11 and 13.

Hence,

χ16(n7) = 2× 2+ 2× 4×ω11 + 2× 4×ω7 + 2× 12×ω4 + 2× 12×ω14 + 2× 4×ω3
+2× 10×ω8 + 2× 12×ω10 + 2× 4×ω1 + 2× 4×ω12 + 2× 12×ω6

+2× 12×ω5 + 2× 4×ω13 + 2× 12×ω2 + 2× 10×ω9.

So

χ16(n7) = 4+ 4ω1 + 12ω2 + 4ω3 + 12ω4 + 12ω5 + 12ω6 + 4ω7

+10ω8 + 10ω9 + 12ω10 + 4ω11 + 4ω12 + 4ω13 + 12ω14 = d.
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