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Preface 1 

Inflammation has now been recognised as an important risk factor for HIV acquisition and can 2 

undermine many prevention and/or treatment strategies. The purpose of this research was to understand 3 

how TLR-mediated inflammation influenced HIV infection of CD4+ T cells, and how select anti-4 

inflammatory drugs mitigate this TLR-mediated inflammation and HIV infection of CD4+ T cells. This 5 

work is important to understand the potential of immunomodulatory drugs to impact on inflammation 6 

and HIV infection for potential incorporation into HIV prevention and treatment strategies. 7 
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Abstract 1 

The relationship between inflammation and HIV has been a major focus of HIV research. In people 2 

living with HIV (PLWH), HIV-associated immune activation drives HIV disease progression. While 3 

genital inflammation has been significantly associated with increased risk for HIV acquisition and 4 

transmission, immune correlates for reduced HIV risk remain less well defined. In HIV-exposed 5 

seronegative individuals, the immune quiescent phenotype, characterised by regulated immune 6 

activation and inflammation, has been implicated in reducing HIV acquisition risk. Targeted 7 

management of inflammation, therefore, is a plausible strategy to mitigate the risk of HIV infection, 8 

and to slow HIV disease progression. Therefore, we sought to investigate how anti-inflammatory drugs 9 

affect TLR-mediated inflammation and impact HIV infection of CD4+ T cells. This study utilized an 10 

in vitro peripheral blood mononuclear cell (PBMC) model. PBMCs were either treated with the anti-11 

inflammatory drugs ibuprofen (IBF) or betamethasone (BMS) or were left untreated. Thereafter they 12 

were either left unstimulated or were stimulated with phytohaemagglutinin (PHA) or Toll-like receptor 13 

(TLR) agonists Pam3CSK4 (TLR1/2), LPS (TLR4) or R848 (TLR7/8) before exposure to HIV NL4-3 14 

AD8. To assess inflammation, multiplexed ELISA was used to measure 28 proinflammatory, 15 

chemotactic, growth-related, adaptive response-related or regulatory cytokines. Flow cytometry was 16 

used to measure activation (CD38, HLA-DR and CCR5) and HIV infection (p24 production) of CD4+ 17 

T cells. Despite minimal immune activation, TLR stimulation elicited significant cytokine responses 18 

(p<0.05). TLR4 stimulation significantly reduced HIV infection of CD4+ T cells (p<0.01). With the 19 

addition of IBF, minimal immunosuppressive effects were observed. In contrast, BMS significantly 20 

dampened inflammation (p<0.05) and immune activation (p<0.05) regardless of the stimulation 21 

condition. Regardless of global immunosuppression, only with TLR4 stimulation did BMS significantly 22 

reduce HIV infection of CD4+ T cells (p=0.02). The finding that TLR4 stimulation reduces rather than 23 

increases susceptibility of CD4+ T cells to HIV infection, while BMS only affected HIV infection in 24 

the TLR4 condition, strongly suggests that additional factors, and not only inflammation play a 25 

powerful, although complex, role in determining HIV infection risk. Together, these data emphasize 26 

the importance of understanding signalling pathways induced during inflammation to identify novel 27 

targets to mitigate HIV infection. 28 

 29 



 
 

 

1 

1 Chapter 1: Introduction 1 

 2 

In 1983, the Human Immunodeficiency Virus (HIV), the pathogenic causative agent for the acquired 3 

immunodeficiency syndrome (AIDS) was discovered by Françoise Barré-Sinoussi and Luc 4 

Montagnier (1, 2). Two major epidemiological trends have emerged in the global distribution of the 5 

HIV epidemic, referred to as a ‘concentrated’ and a ‘generalized’ epidemic (Reviewed in 3). A 6 

‘concentrated’ epidemic refers to infections in specific population groups, generally at high risk because 7 

of behavioural factors. The ‘generalized’ trend refers to a self-sustaining epidemic that is not limited to 8 

specific groups, however this does not mean the risk of infection is equal across the whole population 9 

as there are still high-risk groups. These patterns occur as a result of a combination of biological, 10 

behavioural and socio-economic factors. To date, HIV is a global public health challenge and remains 11 

one of the leading causes of morbidity and mortality around the world, despite the recent modest 12 

downturn in HIV incidence rates (4-6).  13 

 14 

The HIV/AIDS epidemic currently affects approximately 38 million people (range 31.6–44.5 million 15 

people) with an estimated 1.7 million (range 1.2–2.2 million) new infections for the year of 2019 (6). 16 

Despite a relatively late introduction of the virus to sub-Saharan Africa (SSA), it now bears more than 17 

half of the world’s HIV burden. SSA has approximately 20.7 million infected individuals (range 18.4–18 

23. million), with 730 000 new infections in the region during 2019 (6). South Africa accounts for 7.5 19 

million (range 6.9—8 million) of SSA’s infections, with 200 000 new infections during 2019 (7). The 20 

disproportionate burden of HIV can also be seen between genders in SSA, with women accounting for 21 

more than half (62%) of the infections. Specifically, in South Africa, women (15+ years) accounted for 22 

4.7 million of the infected individuals, with 120 000 new infections (range 110 000—140 000) in 2019 23 

(7). Of concern, young women (15-24 years) accounted for approximately half of these new infections. 24 

 25 

Globally there have been an estimated 32.7 million deaths associated with AIDS-related illnesses, with 26 

690 000 thousand (range 500 000— 970 000) deaths in 2019 alone (6), with South Africa accounting 27 

for approximately 72 000 (range 58 000—89 000) deaths (7). Encouragingly though, the advent of ART 28 

has been critical in transforming the HIV/AIDS epidemic into a manageable disease. As of 2019, 25.4 29 

million HIV-infected people had access to antiretroviral therapy (ART) globally, while in SSA 30 

approximately 15 million people had ART access (6). Despite the strides made in prevention through 31 

the use of ARVs, social, behavioural and biological factors can undermine the effectiveness of 32 

prevention strategies, adding to the complexity of this disease, and the need for new and different 33 

prevention strategies.  34 

 35 

 36 



 
 

 

2 

1.1  Mechanisms and Biology of HIV transmission 1 

There are several modes by which HIV can be transmitted. HIV-1 transmission can occur through 2 

transfer of contaminated blood or blood products via intravenous transmission or vertical transmission 3 

from mother to child (MTCT) during birth (intra-partum), around birth and delivery (peri-partum) or 4 

through breastfeeding (post-partum). The most common route, however, is the horizontal transmission 5 

route which occurs through sexual contact, primarily involving exposure to the virus via penetrative 6 

vaginal or anal intercourse. While the predominant mode of HIV infection is through mucosal 7 

transmission during sexual intercourse (Reviewed in 8), with women more likely to be HIV infected 8 

than men (9), several biological and social/behavioural factors further increase HIV acquisition risk. 9 

1.1.1 HIV life cycle  10 

The HIV life cycle can be classified in five main stages: attachment and fusion (Reviewed in 10), 11 

reverse transcription (Reviewed in 11), integration (Reviewed in 12), replication (Reviewed in 13), 12 

assembly, budding and maturation (Reviewed in 14). The majority of these steps hijacks the host cell 13 

metabolites and machinery (15-18) to produce virions to perpetuate the infection/virus production cycle. 14 

1.1.2 HIV Tropism and Target cells 15 

HIV viruses have two predominant tropisms; the R5-tropic strains (which utilise the CCR5 co-receptor) 16 

and the X4-tropic strains (which utilise the CXCR4 co-receptor). However, preferential transmission of 17 

the R5-tropic phenotype occurs (19-21), with the X4 phenotype more vulnerable to host restrictions 18 

(Reviewed in 22). Additional characteristics such as increased dendritic cell interactions and IFN-19 

resistance enhance transmission probability (23). HIV predominantly infects activated CD4+ T cells 20 

expressing the co-receptors (24-26), however, any cellular subtypes expressing these receptors can be 21 

infected, such as resting CD4+ T cells (27, 28), natural killer cells (29, 30), B cells (31), macrophages 22 

(32, 33) and dendritic cells (34-39). These cellular subsets are generally not productively infected but 23 

instead act as a carrier and transporter of the virus (40-46). Additionally, some studies have reported 24 

cases of other CD4+ cell subtypes becoming infected (Reveiwed in 47, 48-52). Recently, Stieh et al., 25 

(2016) found that a subset of CD4+ T cells, Th17 cells expressing CCR6 and CD4 receptors, were 26 

preferentially infected by SIV in a rhesus macaque vaginal challenge model (53). 27 

 28 

1.2 Factors that influence the risk of HIV acquisition and transmission 29 

Transmission of HIV in the female genital tract is relatively low between a healthy individual and an 30 

infected partner per sex act (between 1:200 to 1:2000 exposures). Among others, several viral 31 

characteristics, host adaptive and innate immune responses, and microbial factors are known to 32 

influence the risk of HIV acquisition and transmission (54).  33 
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1.2.1 Virological Factors 1 

Virological factors influence infection, transmission and pathogenesis. Certain conditions favour HIV 2 

acquisition and facilitate transmission, including the selective bottleneck that the virus undergoes to 3 

escape the immune system and establish productive infection (55-59). Transmitted variants that have 4 

escaped may leave clues for prevention, and adds to the complexity of more than one viral variant 5 

causing infection (20, 57, 58, 60, 61). Becoming infected with more than one viral variant has been 6 

correlated to the presence of pre-existing sexually transmitted infections (STIs) and hormonal 7 

contraception use (58, 62). Recently, replication capacity of the founder virus, and not viral infectivity 8 

alone, was shown to drive disease progression (63). Furthermore, infection with more than one virus is 9 

associated with faster disease progression (64, 65). In addition, animal studies demonstrated that viruses 10 

transmitted during chronic infection stage are often more pathogenic, with a  >3000 fold increased 11 

replication capacity or high virulence phenotypes than viruses transmitted during the early stage of 12 

infection (66).  13 

Viruses that do not have high virulence or high replicative capacity are preferentially transmitted, 14 

supporting the concept that the virus “resets” at transmission to its original phenotype (21, 67-69). 15 

Taken together these data show that a minor variant may be selectively transmitted suggesting that the 16 

process of transmission is not stochastic (55, 56, 62, 70, 71).  In addition, >95% of viruses that use the 17 

CCR5 co-receptor are also selected for transmission (72-74) and are likely to be less glycosylated and 18 

have shorter variable loop sequence lengths (68, 75-81). The less glycosylated phenotype showed 19 

enhanced binding to the 4 7 integrin on CD4+ T cells (82-84) increasing efficiency for transmission. 20 

Early stage transmitted viruses also display more resistance to IFN- (23, 21 

85).  22 

The proportion of infections due to cell-free or cell-to-cell transmission, or a combination of these two, 23 

is a topic of ongoing study and speculation. Cell-to-cell spread is an efficient process because of the 24 

virological synapse that essentially transmits the virus to another cell without the virus becoming 25 

soluble or exposed (86). In the context of vertical transmission, transmitting mothers have higher levels 26 

of cell-associated HIV in breast milk than non-transmitting mothers, even when controlling for the 27 

levels of cell free virus (87). Studies have shown that in terms of prevention, certain select neutralizing 28 

antibodies are ineffective in inhibiting cell-to-cell spread of HIV (41, 88-91). It has been repeatedly 29 

shown that cell-associated viral transmission and replication is highly resistant to the action of certain 30 

classes of ARV’s (92-96).  31 

The unique biological properties of the transmitted viruses have been repeatedly demonstrated in many 32 

studies. However, the factors that govern the biology and anatomy in the genital mucosae, also play a 33 

central role in HIV acquisition (by providing more permeable transmission routes such as the single 34 

layered columnar epithelium and more targets for HIV infection) or protection (by the more 35 
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impermeable squamous epithelium and possible immunity to hinder HIV infection). Therefore, defining 1 

the immune correlates of risk or protection in the genital mucosae in addition to understanding the viral 2 

transmission dynamics may further aid in developing combination HIV prevention modalities. 3 

1.2.2 Host biological factors 4 

There are various host immunological factors that can reduce or increase the risk of HIV acquisition. 5 

These factors include those from the innate and adaptive immune arms that influence and impact the 6 

cellular activation and inflammation status in the systemic or mucosal compartments. 7 

1.2.2.1 Innate immunity  8 

The immune system of the female genital tract (FGT) has characteristics that distinguish it from other 9 

mucosal systems, and in particular the systemic immune system (97-99). The mucosal surface of a 10 

healthy FGT is a hostile environment for microbial growth with an acidic pH (pH<7) maintained by 11 

local commensal bacteria through the production of lactic acid and hydrogen peroxide (100, 101), and 12 

a viscous mucous comprised of mucins that can provide an effective barrier to the upper FGT from 13 

pathogen invasion (102, 103). Furthermore, secreted innate proteins (Reviewed in 104), like cationic 14 

alpha -defensins, made by epithelial cells and leukocytes, inhibit a broad range of bacteria, fungi and 15 

viruses, including HIV (105). -defensins act through direct inactivation of virions, interference of 16 

gp120 attachment to CD4 inhibiting viral attachment or entry, down-regulation of co-receptor 17 

-chemokines, or inhibition of viral fusion and down-regulation of 18 

intracellular viral replication (106-111). However, -defensins made by neutrophils, known as the 19 

human neutrophil peptides (HNPs), are also associated with increased HIV risk (112-116) in the 20 

presence of pre-existing sexually transmitted infections (117) . These -defensins may enhance HIV 21 

infection by promoting viral entry through an unknown mechanism, can recruit T cells, monocytes and 22 

dendritic cells (DCs) and regulate cellular activation and cytokine production (112-116, 118). Human 23 

-defensin 3 also inhibit the inflammatory response induced by lipopolysaccharide (LPS) (119, 120) 24 

and tumor necrosis factor (TNF)- (121) -defensin 25 

3. Another group of secreted acidic proteins, such as secretory leucocyte protease inhibitor (SLPI) (122-26 

124) and elafin (125), have been shown to inhibit HIV movement into the sub-epithelium (54). Despite 27 

the innate defences of the mucosal environment of the FGT, HIV and other sexually transmitted 28 

infections (STIs) do breach the mucosal barrier to hijack the local immune system, fuelling the 29 

inflammatory process causing cellular activation and increasing the availability of targets for the 30 

establishment and spread of infection.  31 

1.2.2.2 Adaptive immunity 32 

Activation of the innate immune system leads to subsequent activation of the adaptive immune system, 33 

a more specific response (126). The innate immune system drives and controls adaptive immunity by 34 

presentation of antigen peptide via MHC molecules and through the expression of cytokines by antigen 35 
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presenting cells such as DCs (127-129). The specific milieu of cytokines secreted directs how the 1 

adaptive immune response matures and exerts immune function (130, Reviewed in 131). Two main 2 

arms of the adaptive immune response exist, namely the cell-mediated and humoral  responses (132). 3 

The cell-mediated response is dominated by T cells and involves cytotoxic T lymphocytes (CTLs), such 4 

as CD8+ T cells. Primate studies demonstrate the importance of cell-mediated immunity in controlling 5 

SIV replication (133, 134). Similarly, in humans, strong and early induction of HIV-induced CD8+ T 6 

cell responses are crucial for the control of acute HIV infections, leading to lower viral set points (135). 7 

Broad Gag-specific CD8+ T cell responses were associated with viral control during primary infections 8 

(136), in addition to the secretion of HIV suppressive factors, such as RANTES, MIP- -9 

which compete with HIV for CCR5 co-receptor binding (137). Similarly, in elite controllers, increased 10 

levels of MIPs increased resistance to R5, but not X4-tropic viral strains (138). The humoral arm of 11 

adaptive immunity is characterised by the production and secretion of antibodies, and can be either T-12 

cell dependent or T-cell independent (139). The T-cell independent humoral response is initiated by 13 

TLR engagement and B-cell receptor (BCR) engagement that induce complementary signalling 14 

pathways that result in immunoglobulin class switching (140). The T-cell dependent pathway requires 15 

three signals: engagement of BCR by antigen, signals from T helper cells (such as CD40L from CD4+ 16 

T cells), and signals by cytokines (141, Reviewed in 142). Antibodies have three main mechanisms of 17 

action; direct neutralisation, which prevents pathogen adherence; opsonisation, which promotes 18 

antibody dependent cell-mediated cytotoxicity or phagocytosis; and complement activation, which 19 

either enhances opsonisation or induces lysis of bacteria (139). Neutralisation is the ultimate protective 20 

mechanism (143). Broadly neutralizing antibodies (bNAbs) to HIV, which are defined as having both 21 

potency and breadth, have the potential to block HIV transmission and supress HIV viremia (144-151). 22 

Suppression of viremia could be attributed to the enhanced clearance of cell-free virions (152) as well 23 

as HIV infected cells (153). Recently potent and broad bNAbs (CAP256-VRC26 family) against HIV-24 

1 were isolated from a clinical patient of the CAPRISA002 study (154, 155), highlighting the potential 25 

of the immune system to naturally control HIV infection.   26 

1.2.2.3 Inflammation 27 

Inflammation is a necessary natural response elicited to control infection and limit tissue damage 28 

(Reveiwed in 156, 157). However, persistent inflammation can result in autoimmune or auto-29 

inflammatory disorders (157). Inflammation, generally a symptom of infection, can occur in the absence 30 

of infection or tissue damage, a phenomenon known as sterile inflammation. The initial step in the 31 

inflammatory process is the recognition of pathogen/damage associated molecular patterns 32 

(P/DAMP’s) by pathogen recognition receptors (PRR’s) such as TLRs (Reviewed in Janeway, 1989), 33 

either on the surface or within (Reviewed in Blasius and Beutler, 2010) innate immune cells such as 34 

dendritic cells, macrophages and monocytes (Medzhitov and Janeway, 2002, Akira et al., 2006, Kumar 35 

et al., 2011). Common PAMPs that are known to have significant immunological effects include 36 
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lipopolysaccharide (LPS) recognised by TLR4 (Fang et al., 2004, Porter et al., 2010, Ngkelo et al., 1 

2012, Plociennikowska et al., 2015), single stranded RNA (ssRNA) recognised by TLR7/8 (Xagorari 2 

and Chlichlia, 2008, Jounai et al., 2012, Bernard et al., 2014) and bacterial lipopeptides recognised by 3 

TLR2 (Mukherjee et al., 2016, Frasnelli et al., 2005, Gambhir et al., 2012). There are two aspects to 4 

inflammation: the pro-inflammatory response which upregulates and facilitates activation of the 5 

immune system; and the anti-inflammatory response which regulates the pro-inflammatory response to 6 

mitigate the development of autoimmune or auto-inflammatory disorders (Reviewed in 158).  7 

1.2.2.4 Genital tract inflammation and risk for HIV acquisition 8 

Genital inflammation increases the risk of HIV transmission and acquisition. In PLWH, increased pro-9 

inflammatory cytokines and immune activation directly correlated with increased HIV viral loads in 10 

genital secretions (159-163), increasing HIV transmission. In HIV-uninfected individuals, 11 

inflammation resulted in recruitment of HIV target cells and epithelial barrier damage (164-166). 12 

Moreover, immune activation and increased cytokines were significantly associated with increased HIV 13 

risk in both the blood (167, 168), and the genital tract (117, 169). Multiple studies have reported reduced 14 

immune activation in HIV-exposed but seronegative individuals (170-175), underscoring the 15 

importance of modulating inflammation or promoting a quiescent immune environment to minimize 16 

the risk of HIV acquisition or onward transmission. 17 

Various consequences of inflammation create a conducive environment for HIV acquisition. Nazli et 18 

al., (2010) demonstrated that mucosal epithelial cells secreted increased pro-inflammatory cytokines 19 

upon exposure to HIV-1 (176). In addition, TNF- -20 

epithelial barrier function, through increased permeability of the mucosal barrier (176-181). TNF-21 

IL-1 also directly affect HIV replication through activation of NF-22 

binds the HIV promoter region (182). Li et al., (2009) described a target cell recruitment process in 23 

which; macrophage inflammatory protein (MIP)- -8 recruit plasmacytoid dendritic cells 24 

(pDCs) which secrete MIP- -  in a rhesus macaque model 25 

(pathogenic host for SIV infection who progress to an AIDS like state). In this model, inflammation 26 

and recruitment of target cells to the genital tract were important preceding events for effective SIV 27 

infection following vaginal challenge (183). Unlike rhesus macaques, sooty mangabeys (the natural 28 

hosts for SIV that do not progress to an AIDS like state) have lower levels of systemic and mucosal 29 

CD4+CCR5+ T cells, and are less likely to get infected with SIV (184). Masson et al., (2015) found 30 

that increased genital tract chemokines MIP- - -8 and IFN- -inducible protein (IP)-10 31 

conferred more than a three-fold increased risk of HIV acquisition (169). Similarly, a follow-up study 32 

by Liebenberg et al., (2017) comparing plasma and genital tract cytokine levels showed that increased 33 

mucosal concentrations of IP-10, MIP- -8 and monocyte chemoattractant protein (MCP)-1 was 34 

associated with increased HIV acquisition risk (185). MIP- -8 are important chemokines that 35 
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facilitate infection through their chemotactic activity involved in the recruitment of HIV target cells 1 

(Reviewed in 156, 186). Additionally, IP-10, MIP- -2 

target cells (Reviewed in 187, 188-190). Furthermore, MIP- -CCR5 interaction was shown to activate 3 

the JAK/STAT signalling pathway involved in cellular proliferation (191). 4 

1.2.3 The human microbiome and bacterial dysbiosis 5 

Microbiome refers to the naturally occurring microorganisms that grow within the mucosal 6 

environments and plays a central role in the maintenance of a healthy immune system (Reviewed in 7 

192, 193), with the normal flora protecting epithelial cells from pathogens through Toll-Like receptor 8 

(TLR) signalling (Reviewed in 194). A healthy vaginal microbiome is generally dominated by 9 

Lactobacillus species. Lactobacillus species generally maintain a low and acidic vaginal mucosal 10 

environment through the production of lactic acid and hydrogen peroxide (195), providing hostile 11 

conditions for foreign microbes or viruses (Reviewed in 196, 197).  However, a disruption of the 12 

microbiome, by, among others, antibiotic use (198) and intravaginal practices (199), leads to an increase 13 

in bacterial species diversity (dysbiosis) and imbalance and decrease of healthy bacterial communities 14 

has been associated with the presence of bacterial dysbiosis in the FGT (Reviewed in 200, 201). This 15 

dysbiosis often leads to an inflammatory response and subsequent increase in mucosal permeability, 16 

thus increasing the risk of HIV acquisition (202-205). Prevotella bivia, for example, a microbe highly 17 

associated with bacterial dysbiosis (206), can infect epithelial cells and induce an inflammatory 18 

response (Reviewed in 207). Furthermore, the efficacy of the topical 1% tenofovir gel used in the 19 

CAPRISA 004 trial was undermined in women who had a non-lactobacillus dominated microbiome 20 

(208). This decreased efficacy was attributed to the direct metabolism of tenofovir (TFV) by 21 

Gardnerella vaginalis in women with a non-lactobacillus dominated vaginal microbiome (208, 22 

Reviewed in 209).  23 

1.2.4 Sexually Transmitted Infections 24 

Risk for HIV acquisition has been associated with the presence of pre-existing STIs (210-212), mainly 25 

attributed to the induction of inflammation (213, 214). Many laboratory diagnosed STIs are 26 

asymptomatic (no clinical symptoms), and are clinically undiagnosed, undetected and untreated and 27 

therefore pose risk. These asymptomatic STIs still contribute to elevated genital tract inflammatory 28 

cytokines and increased HIV risk (215). Therefore, proper STI diagnosis, and not just syndromic STI 29 

management is key to developing effective HIV prevention strategies.  30 

 31 
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1.3  Prevention strategies against HIV acquisition and transmission 1 

1.3.1 Pre-exposure prophylaxis (PrEP) 2 

Pre-Exposure Prophylaxis (PrEP) has led to effective preventative interventions and treatment regimens 3 

(216, 217, Reviewed in 218). Among the PrEP strategies, ARV-containing microbicide gels and 4 

intravaginal rings and ARV treatment as prevention have been studied and proposed as options. 5 

Microbicide gels showed promise for HIV prevention in 2010 when the CAPRISA 004 1% tenofovir 6 

gel trial showed a 39% efficacy (219), with high gel adherers having a 54% efficacy. However, 7 

presumably due to poor product adherence, the findings of the two follow-up trials using the 1% 8 

tenofovir gel, the Vaginal and Oral Interventions to Control the Epidemic (VOICE) study (220) and the 9 

Follow-on African Consortium for Tenofovir Studies (FACTS) 001 study (221) trials did not replicate 10 

these findings. However, in a post hoc analysis of the CAPRISA 004 1% tenofovir gel trial, genital 11 

inflammation was shown to undermine the efficacy of the microbicide gel, even in high adherers (222). 12 

Similar to microbicide gels, ARV containing intra-vaginal rings showed the potential as a means of 13 

HIV prevention. In two studies investigating the monthly vaginal ring containing the ARV- dapivirine, 14 

the efficacies were 27% (223) and 30.7% respectively (224). Poor adherence here too, attributed to the 15 

poor efficacies. The most promising preventative intervention has been daily oral PrEP with Truvada® 16 

(tenofovir disoproxil fumarate and emtricitabine) in reducing HIV infections (220, 225-230). Again, 17 

PrEP adherence was a key contributor to some of the lower efficacies observed in clinical trials in 18 

African women (231, 232). Even though PrEP is the current best practice, many behavioural and 19 

biological factors still undermine its effectiveness. Therefore, a comprehensive approach to modify HIV 20 

risk may include targeted interventions such as adjunctive treatment and education to prevent infections. 21 

1.3.2 Post-exposure prophylaxis (PeP) 22 

Treatment as prevention as post-exposure prophylaxis (PeP) is also effective at reducing HIV. Cohen 23 

et al., (2011) showed a reduction in transmission events by 96% with early initiation of ART in sero-24 

discordant couples in the HIV Prevention Trials Network (HPTN) 052 trial (233). Additionally, Tanser 25 

et al., (2013) also showed that high coverage of ART reduced rates of HIV (234). PeP is an effective 26 

intervention in preventing establishment of productive infection after HIV exposure, provided it is 27 

timeously initiated. 28 

1.3.3 Vaccines 29 

Despite the strides made with PrEP and other preventative strategies, the development of an effective 30 

HIV vaccine remains a public health priority. Vaccines prime the immune system to fight infections 31 

and immunity is long lived due to induction of long-term immune memory T and B cells. However 32 

there are many challenges with developing an effective vaccine to HIV, and many trials failed to show 33 

protection (235-238). The RV144 trial was the only vaccine trial to show a moderate efficacy against 34 

HIV (239). Recently, the follow-up to RV144, Uhambo HVTN 702 trial, was stopped due to a lack of 35 
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efficacy (240). In the absence of efficacious HIV vaccines or potential vaccine candidates, broadly 1 

neutralizing antibodies (bNAbs) have become important options for proof of concept in HIV prevention. 2 

bNAbs have shown great promise as passive immunity to prevent or treat HIV (241-244) and are 3 

currently undergoing extensive clinical trial testing. In addition, bNAbs in combination with ART is 4 

more effective than ART alone for suppression and control of HIV-1 (245), demonstrating their 5 

importance and potential for therapeutic management of HIV disease. The development of an effective 6 

long-lasting vaccine is the ultimate goal to prevent HIV, however development of such a vaccine 7 

remains a formidable challenge. In the meantime, in the absence of an effective HIV vaccine, other 8 

prevention strategies, which could be adjunctive, can be used effectively to limit transmission or prevent 9 

HIV acquisition. 10 

1.3.4 Anti-inflammatories 11 

The prominent link between inflammation and HIV underscores the potential for therapeutic use of 12 

drugs to dampen inflammation to manage HIV disease and reduce infection risk (246). Most research 13 

with anti-inflammatory drugs has been focussed on reducing HIV-associated immune activation to slow 14 

disease progression as well as to reduce co-morbidities (247-249). Chloroquine and the derivative 15 

hydroxychloroquine have been used extensively to treat HIV-associated immune activation with 16 

positive outcomes (250-253). Aspirin® also reduced HIV-associated immune activation in individuals 17 

on ART (254). Furthermore, glucocorticoids, specifically prednisolone, reduced HIV-associated 18 

immune activation, slowed CD4+ T cell loss and disease progression (255-260). The use of anti-19 

inflammatory products as a preventative method to reduce HIV risk has been investigated. Daily oral 20 

hydroxychloroquine and Aspirin® reduced inflammation and the numbers and activation status of CD4+ 21 

T cells systemically and at the FGT (261). Systemic long-term use of anti-inflammatory drugs can have 22 

serious adverse effects, therefore topical formulations are preferred because of better safety profiles. A 23 

vaginal implant containing hydroxychloroquine was shown to significantly reduce immune activation 24 

and inflammation in a small animal model (262). Glycerol monolaurate (GML), a naturally occurring 25 

compound also showed anti-inflammatory effects, and reduced SIV infection in rhesus macaques (183, 26 

263). These studies highlight the potential for the use of anti-inflammatory products to prevent disease 27 

progression and modulate immunity to mitigate HIV risk. 28 

  29 
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1.4  Hypothesis 1 

We hypothesised that TLR agonists would induce inflammation and immune activation of CD4+ T 2 

cells, thereby increasing their susceptibility to HIV infection. Furthermore, the NSAID; ibuprofen and 3 

the glucocorticoid; betamethasone, two anti-inflammatory drugs, modulates the TLR-mediated 4 

inflammation and immune activation of CD4+ T cells, thereby reducing the TLR-mediated 5 

inflammatory responses and mitigate the susceptibility of CD4+ T cells to HIV infection. 6 

1.5 Aim 7 
 8 

The aim of this project was to assess how anti-inflammatory drugs impact TLR-induced inflammation 9 

and immune activation, and how this affects TLR-mediated HIV infection of CD4+ T cells. 10 

1.6  Objectives 11 

Primary objective: To assess how TLR agonists mediate inflammation, immune activation and HIV 12 

infection of target CD4+ T cells in a PBMC model. 13 

Secondary objective: To assess how the NSAID Ibuprofen and the glucocorticoid modulated TLR-14 

mediated inflammation, immune activation and HIV infection of CD4+ T cells. 15 

 16 

1.7  Methods and Materials 17 

This in vitro study had been granted ethics approval by the University of KwaZulu-Natal Biomedical 18 

Research Ethics Committee (UKZN BREC; Ethics number: BE433/14). Whole blood was obtained 19 

from 5 healthy donors enrolled in a volunteer blood study (Ethics number: BE022/13). Peripheral blood 20 

mononuclear cells (PBMCs) were isolated by density centrifugation. PBMCs were then stimulated with 21 

TLR agonists Pam3CSK4 (TLR1/2), LPS (TLR4) or R848 (TLR7/8) or stimulated with PHA as a 22 

positive control or left unstimulated as a negative control in the absence (Chapter 2) or presence 23 

(Chapter 3) of anti-inflammatory drugs ibuprofen or betamethasone. PBMCs were then exposed to the 24 

R5 tropic strain of HIV, NL4-3 AD8 (264), at a MOI of 0.9. Cell culture supernatants were used for the 25 

assessment of soluble cytokines by multiplex ELISA assays. PBMCs were used for cellular phenotyping 26 

and the assessment of immune activation (CD38, HLA-DR and CCR5) of CD4+ and CD8+ T cells by 27 

flow cytometry. Titration of antibodies and FMOs are shown in the appendices as supplementary figures 28 

1-3.  29 
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1.7.1 Statistical analysis 1 

GraphPad Prism version 7.02 software for Windows (GraphPad Software, La Jolla, CA, USA) was used 2 

for statistical analyses and graphical representation of data. For comparisons of cellular activation 3 

markers CD38, HLA-DR on CD4+ and CD8+ T cells, between stimulated conditions and the 4 

unstimulated control, as well as between anti-inflammatory treated conditions and the untreated control, 5 

a repeated measures two-way ANOVA with a Dunnett’s multiple comparisons test was performed. 6 

Similarly, for CCR5 and cytokine comparisons, an ordinary one-way ANOVA with Dunnett’s multiple 7 

comparison test was performed. Cellular activation results are displayed as mean percentage (%) ± 8 

standard deviation (SD) of CD4+ or CD8+ T cells. Cytokine data was normalized by Log10 9 

transformation and is displayed as mean concentration (Log10 pg/ml) ± standard deviation (SD). Heat 10 

maps were generated by performing a single linkage hierarchical cluster analysis using R version 3.3.3 11 

statistical software (R Foundation for Statistical Computing, Vienna, Austria), to visualize the effect of 12 

various TLR agonists and anti-inflammatory drugs on cytokine expression.  Radial spider plots were 13 

created using Microsoft Excel© 2013 software (Microsoft Corporation, Redmond, WA, USA).  14 
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1.8  Bridging chapter 1 

The associations between inflammation and HIV risk have not been fully defined. Genital inflammation 2 

significantly modifies HIV acquisition and transmission risk, while HIV-associated inflammation in 3 

Persons living with HIV increased disease progression. The biological mechanisms that underpin 4 

genital inflammation and HIV risk are not fully elucidated. Immune quiescence, characterised by 5 

regulated immune activation and inflammation, has been identified as a potential immune correlate of 6 

reduced risk in individuals who are naturally resistant to HIV infection. Toll-Like receptors (TLRs) are 7 

important innate pattern recognition receptors for pathogens and initiate immune responses. Therefore, 8 

we used three common TLR agonists which bind to TLR1/2, TLR4 and TLR7/8 to induce inflammation 9 

and immune cell activation. We then assessed how these TLR agonists impacted on HIV infection of 10 

target CD4+ T cells and have published a paper. This paper, entitled “Diminished HIV Infection of 11 

Target CD4+ T Cells in a Toll-Like Receptor 4 Stimulated in vitro Model”, has been published 12 

on 23rd July 2019 in the Frontiers Journal of Immunology, subsection Viral Immunology (Front. 13 

Immunol. 10:1705. doi: 10.3389/fimmu.2019.01705). This paper formed the basis for the in vitro 14 

model used to simulate inflammation and provided a segue for the use of anti-inflammatory drugs to 15 

modulate inflammation and mitigate HIV infection for chapter 3. 16 

 17 
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2.1  Abstract  1 

Genital inflammation is associated with increased HIV acquisition risk. Induction of an inflammatory 2 

response can occur through the recognition of pathogenic or commensal microbes by Toll-like receptors 3 

(TLRs) on various immune cells. We used an in vitro peripheral blood mononuclear cell (PBMC) 4 

system to understand the contribution of TLR stimulation in inducing inflammation and the activation 5 

of target T cells, and its effect on HIV susceptibility. PBMCs were stimulated with TLR agonists LPS 6 

(TLR4), R848 (TLR7/8), and Pam3CSK4 (TLR1/2), and then infected with HIV NL4-3 AD8. 7 

Multiplexed ELISA was used to measure 28 cytokines in cell culture supernatants. Flow cytometry was 8 

used to measure the activation state (CD38 and HLA-DR), and CCR5 expression on CD4+ and CD8+ 9 

T cells. Although TLR agonists induced higher cytokine and chemokine secretion, they did not 10 

significantly activate CD4+ and CD8+ T cells and showed decreased CCR5 expression relative to the 11 

unstimulated control. Despite several classes of inflammatory cytokines and chemokines being 12 

upregulated by TLR agonists, CD4+ T cells were significantly less infectable by HIV after TLR4-13 

stimulation than the unstimulated control. These data demonstrate that the inflammatory effects that 14 

occur in the presence TLR agonist stimulations do not necessarily translate to the activation of T cells. 15 

Most importantly, the finding that TLR4-stimulation reduces rather than increases susceptibility of 16 

CD4+ T cells to HIV infection in this in vitro system strongly suggests that the increased chemokine 17 

and possible antiviral factor expression induced by these TLR agonists play a powerful although 18 

complex role in determining HIV infection risk. 19 

  20 
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2.2  Introduction 1 

HIV and AIDS is a global epidemic that affects approximately 37 million people worldwide, with an 2 

additional 1.8 million new HIV infections documented in 2017 (1). Sub-Saharan Africa bears more than 3 

half of the global HIV burden, with young adolescent women (aged 15–24 years) twice as likely to be 4 

living with HIV compared to men in this region (1). Furthermore, 75% of new HIV infections among 5 

adolescents (15–19 years) are in girls (1). Specifically, South Africa accounts for 19% of HIV infected 6 

people globally, 15% of new HIV infections annually and 11% of AIDS related deaths worldwide (2). 7 

The inception of antiretroviral therapy (ART) has dramatically reduced the risk of HIV related 8 

morbidity and mortality and has transformed the epidemic into a manageable chronic disease (3). 9 

Strategies to prevent infection are crucial for control and eventual eradication of the HIV epidemic. 10 

Various pre-exposure prophylaxis (PrEP) strategies such as oral tablets, microbicides or intra-vaginal 11 

rings containing anti-retroviral drugs, have been proposed with various levels of success.  12 

Many social, behavioural and biological factors undermine the efficacy of these prevention strategies 13 

(4–6). One important biological factor is female genital tract inflammation. Genital inflammation, 14 

defined by the increase in inflammatory and chemotactic cytokines such as IL- - - -15 

- -10, and IL-8, among others, has been associated with an increased risk of HIV 16 

acquisition (7–9). One of the mechanisms implicated is that inflammation increases HIV risk by causing 17 

activation of HIV target cells (CD4+ T cells), thereby priming the cells for HIV infection (10). 18 

Inflammation also leads to increased recruitment of these activated target CD4+ T cells to the 19 

environment where infection occurs (11). Additionally, T cell activation profiles in the blood predicted 20 

those in the genital tract (12), suggesting that these activation profiles in the blood could be a surrogate 21 

indication of activation in the genital tract with subsequent increased risk for HIV. Lastly genital 22 

inflammation leads to the disruption of the mucosal barrier, which is not only more permissive to viral 23 

translocation (11) but also facilitates infection with less infectious virions (13). Furthermore, genital 24 

inflammation has been shown to reduce the protective effect of TFV 1% gel as a vaginal microbicide 25 

in the CAPRISA 004 trial (6, 14). Additionally, a dysbiotic microbiome or bacterial vaginosis (BV), 26 

which is often associated with genital inflammation (15, 16), also undermined the efficacy of the 1% 27 

TFV gel microbicide (17). The reduced efficacy was attributed to the direct metabolism of TFV by 28 

Gardnerella vaginalis (17), a microbe which is often associated with BV (18).  29 

Inflammation is the natural biological response for protection against invading pathogens and damaged 30 

tissue. Inflammation can be broadly defined into three stages; recognition and release, activation and 31 

recruitment, and resolution and repair (19). The causes of genital inflammation have yet to be fully 32 

understood, however, sexually transmitted infections (STI) and a dysbiotic microbiome have been 33 

implicated (9, 15, 20). The mechanisms underlying the induction of inflammation by these two factors 34 

likely involve the recognition of pathogen associated molecular patterns (PAMPs) by Toll-Like 35 
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Receptors (TLRs) (21), a cardinal pathway for the induction of an immune response (22). Various TLRs 1 

are able to recognize a broad range of antigens, from bacterial wall proteins to various types of bacterial 2 

and viral genetic products (23), and each TLR initiates a distinct signalling cascade for the induction of 3 

innate immune responses (24, 25). TLRs are expressed to various degrees on most immune cells, with 4 

innate antigen presenting cells expressing the widest range (23). Common PAMPs that are known to 5 

have significant immunological effects include lipopolysaccharide (LPS) recognized by TLR4 (26, 27), 6 

single stranded RNA (ssRNA) recognized by TLR7/8 (28, 29) and bacterial lipopeptides recognized by 7 

TLR1/2 (30, 31). TLR-stimulation of mouse splenocytes with R848 (TLR7/8 agonist) increased IL-8 

IL-2 and IL-6 expression, while LPS increased IL- -2 and IL-4 expression (32). Additionally, 9 

Wang et al. demonstrated that human peripheral blood mononuclear cells (PBMCs) stimulated with 10 

LPS induced the production of IL- - -6, and IL-22 (32). Similarly, in a study investigating 11 

Th17 cell induction in human PBMCs, the TLR agonists R848 and LPS elicited production of IP- 10, 12 

IL-6, MCP-1, IL-8, MIP-1  RANTES, while R848 further induced IL-12(p40), IL- -13 

production (33). Furthermore, in the context of vaccine induced immunity, very similar cytokine 14 

responses from human monocyte-derived- DC’s (MDDCs) and monocyte-derived-macrophages 15 

(MDMs) were found with vaccine adjuvants R848 and the TLR4 agonist Glucopyranosyl Lipid 16 

Adjuvant (GLA) (34). A strong chemokine response was observed with high expression of MIP-17 

MIP- -10, while the pro-inflammatory cytokine response was less pronounced, 18 

with lower expression of IL- - -  19 

TLR agonists have been shown to induce potent inflammatory responses and genital inflammation has 20 

been associated with the increased risk of HIV acquisition.  Therefore, we sought to recapitulate some 21 

of the findings from genital inflammation studies using an in vitro PBMC system to understand the 22 

contribution of TLR-mediated inflammatory response to the activation and HIV infection of target 23 

CD4+ T cells.  24 
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2.3  Materials and Methods 1 

2.3.1 Ethics statement 2 

This study was carried out in accordance with the recommendations of the University of KwaZulu-3 

Natal (UKZN) Biomedical Research Ethics Committee (BREC). All subjects gave written informed 4 

consent in accordance with the Declaration    of Helsinki. The protocol was approved by the UKZN 5 

BREC (BE433/14). 6 

2.3.2 Cell culture media 7 

C10 media was used for all cell culture experiments. C10 media consisted of RPMI 1640 with L-8 

glutamine (Lonza, Basel, Switzerland) containing 10% FCS (non-Hi FCS; Highveld Biological, JHB, 9 

SA), 2% L-glutamine, 1% HEPES, 1% NaPy, 1% NEAA (all from Lonza, Basel, Switzerland). Media 10 

was sterile filtered through the Filtermax 500 ml (Techno Plastic Products, Trasadingen, Switzerland). 11 

IL-2 (PeproTech, Rocky Hill, NJ, USA), was added to C10 media prior to use at a final concentration 12 

of 0.01 μg/ml. 13 

2.3.3 Stimulants and HIV strain 14 

The TLR agonists LPS (TLR4), R848 (TLR7/8), and Pam3CSK4 (TLR1/2) (all from Invivogen, San 15 

Diego, CA, USA) concentrations were previously optimized in TLR titration experiments. As no 16 

significant differences were observed in HIV infections (Supplementary Figure 1) or cytokine profiles 17 

(Supplementary Figures 2–4) between the TLR concentrations, a final concentration of 2 μg/ml was used. 18 

Phytohaemagglutinin (PHA) (Sigma-Aldrich, St. Louis, MO, USA), used as the positive control at a final 19 

concentration of 10μg/ml. Unstimulated PBMCs were used as the negative control. The CCR5-tropic 20 

HIV-1 NL4-3 AD8 (35) (a gift from Dr. Alex Sigal), was used at a working dilution of 1:20, which 21 

corresponded to a MOI of 0.9, which had been previously optimized (data not shown). PHA and 22 

unstimulated uninfected conditions were used as controls for HIV. 23 

2.3.4 Cell Culture 24 

Blood was collected from 5 healthy volunteer donors and PBMCs were isolated by density gradient 25 

centrifugation. PBMCs were resuspended to 1x106 cells/ml in C10 media and plated into cell culture 26 

plates. PBMCs were left either unstimulated (as a negative control) or stimulated immediately after 27 

plating with TLR agonists or PHA, which was used as a positive control. Following stimulation, the 28 

PBMCs were cultured at 37oC 5% CO2 for 48 hours. Following this incubation, the contents of each 29 

well was collected into 15ml falcon tubes and an aliquot of 500μl was removed for multiplexed ELISA 30 

(culture supernatants) and flow cytometry (PBMCs) for the day 3 time-point (post stimulation, prior to 31 

HIV infection). The 15ml falcon tubes were centrifuged, supernatants were discarded, and media 32 

replacement was performed with fresh C10 media. PBMCs were plated at 1x106 cells/ml into 24-well 33 

cell culture plates, no further TLR or PHA stimulations were performed. Subsequently, HIV infection 34 
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was done by the addition of 250μl at a 1:20 dilution of the HIV-1 NL4-3 AD8 viral stocks. PHA and 1 

unstimulated uninfected wells were treated with 250μl C10 media. Plates were incubated at 37oC 5% 2 

CO2 for 48 hours, whereupon multiplexed ELISA (culture supernatants) and flow cytometry (PBMCs) 3 

was performed for the day 5 time-point (post HIV infection). 4 

2.3.5 Antibodies 5 

Cellular activation was assessed by measurement of HLA-DR and CD38, similar to previous studies 6 

(12, 36, 37). Staining for flow cytometry was performed both extracellularly and intracellularly. The 7 

extracellular staining cocktail consisted of LIVE/DEAD Amcyan fixable dye (Thermo Fisher Scientific, 8 

Waltham, MA, USA), anti-CD3-APC-H7, anti-CD4-BV605, anti-CD8-BV655, anti-CD14-Pacific blue 9 

(all from BD Biosciences, Franklin Lakes, NJ,  USA),  and  anti-CD19- pacific blue (Biolegend, San 10 

Diego, CA, USA). The intracellular staining cocktail consisted of anti-CCR5-APC, anti-HLA- DR-11 

PerCP-CY5.5 (all from BD Biosciences, Franklin Lakes, NJ, USA), anti-CD38-PE-CY7 (Biolegend, 12 

San Diego, CA, USA) and anti-p24-FITC (Beckman Coulter, Brea, CA, USA). PBMCs were collected 13 

at two time-points: day 3 (48 h post stimulation and prior to HIV infection) and day 5 (48 h post 14 

infection). 15 

2.3.6 Cell Culture 16 

The cell culture and HIV infection protocol used in this study was adapted from previous studies (38, 17 

39). Blood was collected from 5 healthy volunteer donors and PBMCs were isolated by density gradient 18 

centrifugation. PBMCs were resuspended to 1 × 106 cells/ml in C10 media and plated into cell culture 19 

plates. PBMCs were left either unstimulated (as a negative control) or stimulated immediately after 20 

plating with TLR agonists or PHA, which was used as a positive control. Following stimulation, the 21 

22 

was collected into 15 ml falcon tubes and an aliquot of 500 μl was removed for multiplexed ELISA 23 

(culture supernatants) and flow cytometry (PBMCs) for the day 3 time- point (post stimulation, prior to 24 

HIV infection). The 15 ml falcon tubes were centrifuged, supernatants were discarded, and media 25 

replacement was performed with fresh C10 media. PBMCs were plated at 1 × 106 cells/ml into 24-well 26 

cell culture plates, no further TLR or PHA stimulations were performed. Subsequently, HIV infection 27 

was done by the addition of 250 μl at a 1:20 dilution of the HIV-1 NL4-3 AD8 viral stocks at a MOI of 28 

0.9. PHA and unstimulated uninfected wells were treated with 250 μl C10 media. Plates were incubated 29 

30 

(PBMCs) was performed for the day 5 time-point (post HIV infection). 31 

2.3.7  Flow Cytometry 32 

PBMCs were centrifuged at 3,500 rpm for 5 min to pellet the cells and remove soluble HIV, and the 33 

hed with 34 

sterile PBS supplemented with 2% FCS and then stained 35 
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with 100 μl extracellular staining cocktail, fixed, and then stained with 100 μl intracellular staining 1 

cocktail. Data was acquired by flow cytometry on a BD LSR Fortessa (BD Biosciences, Franklin Lakes, 2 

NJ, USA). Data analysis was performed using FlowJo v10.4.1 software (Tree Star, Ashland, OR, USA), 3 

according to the gating strategy (Supplementary Figure 5). For the purpose of this study we reported on 4 

four activation phenotypes and defined these as the following; The CD38+HLA-DR+ phenotype was 5 

defined as hyper-activated, the CD38+HLA-DR- and CD38- HLA-DR+ phenotypes were defined as 6 

intermediately activated, and the CD38-HLA-DR- phenotype was defined as resting or not activated. 7 

2.3.8 Cytokine Quantification 8 

The concentrations of 28 cytokines were assessed from cell culture supernatants using the Bio-Plex Pro 9 

Human Cytokine Group I 27-Plex Panel (Bio-Rad Laboratories, Hercules, CA, USA) and the Magnetic 10 

Luminex®  Assay IL- leplex Kit (Research  and  Diagnostic  (R&D)  systems  Inc., Minneapolis, 11 

Minnesota, USA) as per manufacturer’s instructions. Data was acquired on the Bio-Plex® 200 system 12 

(Bio-Rad Laboratories, Hercules, CA, USA). Optimization of standard curves were performed 13 

automatically using the Bio-Plex manager software version 6.1 (Bio-Rad Laboratories, Hercules, CA, 14 

USA). Values with coefficients of variation <20% and with observed recoveries between 70 and 130% 15 

were considered reliable. Values that were below the detectable limit were assigned half of the lowest 16 

limit of detection value (LLOD), while values that were above the detectable limit were assigned double 17 

the highest limited of detection (HLOD) value. 18 

2.3.9 Statistical Analysis 19 

Statistical analyses and graphical representation of data was performed using the GraphPad Prism 20 

version 7.02 software for windows (GraphPad Software, La Jolla, CA, USA). For comparisons of 21 

cellular activation markers CD38, HLA-DR on CD4+ and CD8+ T cells, between stimulated conditions 22 

and the unstimulated control, a repeated measures two-way ANOVA with a Dunnett’s multiple 23 

comparisons test was performed. Similarly, for CCR5 and cytokine comparisons, an ordinary one-way 24 

ANOVA with Dunnett’s multiple comparison test was performed. Cellular activation results are 25 

displayed as mean percentage (%) ± standard deviation (SD) of CD4+ or CD8+ T cells. Cytokine data 26 

was normalized by Log10 transformation and is displayed as mean concentration (Log10 pg/ml) ± 27 

standard deviation (SD). To understand the effect of various TLR agonists on cytokine expression, heat 28 

maps were generated by performing a single linkage hierarchical cluster analysis using R version 3.3.3 29 

statistical software (R Foundation for Statistical Computing, Vienna, Austria). Radial spider plots were 30 

created using Microsoft Excel© 2013 software (Microsoft Corporation, Redmond, WA, USA). 31 

 32 
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2.4  Results 1 

2.4.1 TLR Stimulation Did Not Result in the Activation of CD4+ T Cells 2 

Minimal cytotoxic effects were observed with TLR stimulation, apart from R848 where a significant 3 

reduction in cell viability was observed (Supplementary Figure 6). As highly activated CD4+ T cells 4 

have been shown to be preferentially infected (10), we determined how TLR stimulation impacted on 5 

the expression   of the activation markers HLA-DR and CD38 on CD4+ T cells. TLR stimulation did 6 

not induce significant CD4+ T cell activation compared to the unstimulated control (p > 0.05) at day 3 7 

(post stimulation, prior to HIV infection) or day 5 (post infection) (Figure 1). However, when PBMCs 8 

were stimulated with the mitogen PHA, distinct increased cellular activation was observed, with all 9 

three activation phenotypes significantly increased compared to the unstimulated control on day 3 (p < 10 

0.05). Similarly, on day 5 and irrespective of infection status, PHA induced significantly elevated 11 

expressions of CD38+HLA-DR+ and  CD38+HLA-DR-,  but  not  CD38-HLA-DR+  on  CD4+ T cells 12 

13 

flow cytometric data are shown in Supplementary Figure 7. Relevant mean ± SD for data depicted in 14 

Figure 1 are listed in Supplementary Table 1. 15 

Figure 1: Activation profiles (A&B) and CCR5 expression (C&D) of CD4+ T cells on day 3 prior to HIV 
infection (A&C) and day 5 post HIV infection (B&D). PHA was used in a 1:500 dilution at a working 
concentration of 5mg/ml. TLR agonists were used at a final concentration of 2ug/ml. A repeated measures two-
way ANOVA with Dunnett’s multiple comparisons test was used for immune activation, and an ordinary one-
way ANOVA with a Dunnett’s multiple comparisons test for CCR5 expression. Significance is displayed as * 

mulated/unstimulated infected 
control, unless otherwise shown. Sample size, n=5, 4 donors run in quadruplicate, 1 donor run in duplicate. 
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2.4.2 TLR Activation Downregulated CCR5 Expression on CD4+ T Cells 1 

Since CCR5 is a co-receptor for R5-tropic HIV infection, we determined how TLR activation impacted 2 

the expression of CCR5 by CD4+ T cells. R848 stimulation significantly lowered CCR5 expression 3 

(3.2 ± 1.2% of CD4+ T cells) compared to the unstimulated control (6.9 ± 2.9% of CD4+ T cells) (p < 4 

0.05), while PHA significantly increased the CCR5 expression (16.6 5 

0.0001) at day 3 (Figure 1C). Of note, CCR5 expression was significantly lower in PHA- stimulated 6 

infected condition by day 5 (22.1 ± 7.9% of CD4+ T cells) compared to the PHA-stimulated but 7 

uninfected condition (29.1 ± 8.6% of CD4+ T cells) (p = 0.0003), although both conditions had 8 

significantly higher CCR5 expression than the unstimulated but HIV-infected control (8.8 ± 2.9% of 9 

CD4+ T cells) (Figure 1D). Representative dot plots of flow cytometric data are shown in 10 

Supplementary Figure 7. 11 

2.4.3 R848 (TLR7/8) Induced Activation of CD8+ T Cells 12 

As CD8+ T cells are important effector cells and are crucial in viral control, we sought to assess the 13 

effect of TLR activation on CD8+ T cells. Similar findings were observed in the CD8+ and CD4+ T 14 

Figure 2: Activation profiles (A&B) and CCR5 expression (C&D) of CD8+ T cells on day 3 prior to HIV 

infection (A&C) and day 5 post HIV infection (B&D). PHA was used in a 1:500 dilution at a working 

concentration of 5mg/ml. TLR agonists were used at a final concentration of 2ug/ml. A repeated measures two-

way ANOVA with Dunnett’s multiple comparisons test was used for immune activation, and an ordinary one-

way ANOVA with a Dunnett’s multiple comparisons test for CCR5 expression. Significance is displayed as * 

control, unless otherwise shown. Sample size, n=5, 4 donors run in quadruplicate, 1 donor run in duplicate. 
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cells, with no significant activation observed with LPS or Pam3CSK4 stimulations compared to the 1 

unstimulated control at day 3 (Figure 2A). While there was a significant reduction of inactivated (CD38-2 

HLA-DR-) CD8+ T cells with   R848-stimulation compared to the unstimulated control (p < 0.01), this 3 

did not translate to a significant increase in any of the activated phenotypes (Figure 2A). PHA induced 4 

significant cellular activation, with all three activation phenotypes significantly increased compared to 5 

the unstimulated control (p < 0.05) on day 3 (Figure 2A). On day 5, only R848 significantly increased 6 

the frequency of CD8+ T cells expressing CD38+HLA-DR- (p < 0.05), compared to unstimulated cells 7 

tatus, maintained elevated levels of the 8 

activation phenotypes CD38+HLA-DR+ and CD38+HLA-DR- 9 

10 

in Supplementary Figure 8. Relevant mean ± SD for data depicted in Figure 2 are listed in 11 

Supplementary Table 2. 12 

2.4.4 TLR-Mediated Reduction of CCR5 Expression on CD8+ T Cells Is Restored Over 13 

Time 14 

CCR5 expression by CD8+ T cells was significantly lower than the unstimulated control (14.3 ± 7.8% 15 

of CD8+ T cells) with LPS  (7.2  ± 3.8% of  CD8+ T  cells)  (p  < 0.05),  R848  (8.1 ± 3.8% of CD8+ 16 

T cells) (p < 0.05) or Pam3CSK4 (6.7 ± 3.2% of CD8+ T cells) (p < 0.01) on day 3 (Figure 2C). 17 

Conversely, significantly elevated CCR5 expression on CD8+ T cells was observed with PHA (22.6 ± 18 

7.6% of CD8+ T cells) compared to the unstimulated control (p < 0.01) on day 3. Only LPS (13.1 ± 19 

7.6% of CD8+ T cells) maintained significantly lower CCR5 expression on CD8+ T cells than the 20 

unstimulated infected control (21.6 ± 7.8% of CD8+ T cells) on day 5 (p < 0.05) (Figure 2D). 21 

Representative dot plots of flow cytometric data are shown in Supplementary Figure 8. 22 

 23 

2.4.5 LPS (TLR4) and R848 (TLR7/8) Induced Strong Inflammatory Cytokine 24 

Responses 25 

Unsupervised hierarchical clustering analysis and Radial spider plots were used to evaluate cytokine 26 

27 

Supplementary Figures 9, 10, respectively). Pam3CSK4 (TLR1/2) did not induce much cytokine 28 

production and tended to cluster closely with the unstimulated conditions, while LPS, R848, and PHA 29 

tended to cluster together, with similarly elevated inflammatory cytokine profiles. Cytokine induction 30 

by these TLR agonists appeared to be higher at day 3 than day 5 (Figure 3). 31 
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1 

2.4.6 TLR4 and TLR7/8 Activation Induced the Greatest Inflammatory Profile, With 2 

TLR7/8 Activation Maintaining Inflammatory Cytokine Profile 3 

As previous studies have shown that genital inflammation, defined by increased concentrations of a 4 

subset of 12 inflammatory   cytokines   and   chemokines   (including IL- - -6, IL-7, IL-8, 5 

IL-10, TNF- - - - - -CSF), predicted >3-fold increased risk for 6 

HIV acquisition (7), we sought to  focus  further  analysis  on the effect of TLR activation on these 7 

cytokines and 4 others (IL-12p70, IFN- -17) that have crucial immunological roles. 8 

 production  of  the  pro-inflammatory  cytokines  IL- -9 

IL-6, IL-12p70, IFN- -10 

unstimulated control (Figures 4A–F). Pam3CSK4 also elicited significantly elevated pro-inflammatory 11 

cytokines compared to the unstimulated control (p < 0.001), however these levels were generally lower 12 

than those observed with LPS or R848 (Figures 4A–F). Although cytokine induction was declining by 13 

day 5, pro- inflammatory cytokines IL- -14 

15 

Figure 3: Unsupervised hierarchical cluster heat map analysis of 28 cytokines measured in cell culture 

supernatants on day 3 (yellow) and day 5 (brown) from the unstimulated (red), PHA (blue), LPS (green), 

Pam3CSK4 (purple) or R848 (orange) conditions. PHA was used at a 1:500 dilution at a working concentration 

of 5mg/ml. TLR agonists were used at a final concentration of 2ug/ml. In this heatmap, the redder the colour 

depicts the higher concentration, while the bluer the colour the lower the concentration. Sample size, n=5, 4 

donors run in quadruplicate, 1 donor run in duplicate. 
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to the unstimulated HIV-infected control (Figures 4H,I). IL- 1 

and PHA uninfected conditions (p < 0.05) (Figure 4G), while IFN- -2 

elevated only in the R848 condition (p < 0.05) (Figures 4K, L). Relevant mean ± SD for data depicted 3 

in Figure 4 are listed in Supplementary Table 3. 4 

5 

Figure 4: 10 concentrations of pro-inflammatory cytokines IL-

A&G), IL-1b (B&H), IL-6 (C&I), IL-12p70 (D&J), IFN- E&K) and TNF- F&L) from unstimulated 

(red), LPS (green), R848 (orange), Pam3CSK4 (purple) and PHA (blue) conditions on day 3 prior to HIV 

infection (top box: A-F) and day 5 post HIV infection (bottom box: G-L). TLR agonists were used at a final 

concentration of 2ug/ml. PHA was used at a 1:500 dilution at a working concentration of 5mg/ml. All TLR 

stimulation conditions were infected. An ordinary one-way ANOVA with a Dunnett’s multiple comparisons test 

to the unstimulated control. Sample size, n=5, 4 donors run in quadruplicate, 1 donor run in duplicate. 
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2.4.7 Potent Chemokine Response to TLR Activation, With Concomitant 1 

Downregulation of IP-10 2 

At day 3, PHA stimulation or TLR activation with LPS, R848  or Pam3CSK4 significantly increased 3 

the levels of chemotactic cytokines IL- - - -4 

–5 

Additionally, IP- 10 was significantly increased with PHA stimulation compared to the unstimulated 6 

10 concentrations of chemotactic cytokines IL-8 

(A&G P- B&H - C&I), IP-10 (D&J -1 (E&K F&L) from 

unstimulated (red), LPS (green), R848 (orange), Pam3CSK4 (purple) and PHA (blue) conditions on day 3 

prior to HIV infection (top box: A-F) and day 5 post HIV infection (bottom box: G-L). TLR agonists were 

used at a final concentration of 2ug/ml. PHA was used in a 1:500 dilution at a working concentration of 

5mg/ml. All TLR stimulation conditions were infected. An ordinary one-way ANOVA with a Dunnett’s 

multiple comparisons test was performed. Significance displayed as * (p<0.05), ** (p<0.01), *** (p<0.001), 

donor run in duplicate 
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control (p < 0.01) (Figure 5D). R848 appeared to be a more potent inducer of IP-10 than either LPS or 1 

Pam3CSK4 (Figure 5D). At day 5, the chemokines IL- - nificantly elevated in 2 

3 

compared to the unstimulated infected control (Figures 5G,H). TLR activation with LPS (p < 0.01), 4 

- to the 5 

unstimulated infected control (Figure 5I).  The PHA infected, but not the uninfected, condition had 6 

-7 

Intere - PHA infected conditions had significantly 8 

9 

 infected conditions compared to the 10 

unstimulated control (p < 0.05) (Figure 5L). Conversely, IP-10 concentrations were significantly 11 

reduced in the LPS (p < 0.05), R848 (p < 0.05) and the PHA uninfected (p < 0.01) conditions compared 12 

to the unstimulated infected control (Figure 5J). Relevant mean ± SD for data depicted in Figure 5 are 13 

listed in Supplementary Table 4. 14 

2.4.8 Potent Induction of IL-17 Response with TLR Agonists LPS (TLR4), R848 15 

(TLR7/8) and Pam3CSK4 (TLR1/2) 16 

At day 3, the haematopoietic IL-7 and IL-17 were significantly elevated following LPS (p < 0.01), R848 17 

(p <  0.01),  and PHA stimulation (p < 0.001) compared to the unstimulated controls,  while  only  IL-18 

-17 19 

increased in a dose-dependent manner with R848 stimulation, with this effect more prominent at day 3 20 

t -CSF 21 

compared to the unstimulated control (p < 0.05) (Figure 6C). The anti-inflammatory cytokine IL-10 22 

was significantly elevated by LPS, R848, Pam3CSK4, and PHA stimulation compared to the 23 

-17 were elevated in the LPS 24 

-stimulated  and  uninfected  (p  25 

<  0.001)  and  infected 26 

6F). Similarly, IL-10 levels were elevated in the R848 (p < 0.001), Pam3CSK4 (p < 0.05), and PHA 27 

infected (p < 0.01) conditions compared to the unstimulated infected control (Figure 6H). Relevant 28 

mean ± SD for data depicted in Figure 6 are listed in Supplementary Table 5.  29 
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1 

10 concentrations of haematopoietic cytokines IL-

7 (A&E) and IL-17 (B&F -CSF (C&G) and the anti-inflammatory cytokine IL-10 

(D&H) from unstimulated (red), LPS (green), R848 (orange), Pam3CSK4 (purple) and PHA (blue) conditions 

on day 3 prior to HIV infection (top box: A-F) and day 5 post HIV infection (bottom box: G-L). TLR 

agonists were used at a final concentration of 2ug/ml. PHA was used at a 1:500 dilution at a working 

concentration of 5mg/ml. All TLR stimulation conditions were infected. An ordinary one-way ANOVA with 

a Dunnett’s multiple comparisons test was performed. Significance is displayed as * (p<0.05), ** (p<0.01), 

quadruplicate, 1 donor run in duplicate. 
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2.4.9 TLR-Induced Inflammation Limits HIV Infection of CD4+ T Cells 1 

We determined the effect of TLR-mediated inflammation on the susceptibility of CD4+ T cells to R5 2 

tropic HIV infection with NL4-3 AD8 HIV. Stimulation with LPS (TLR4; p < 0.01), and R848 3 

(TLR7/8) to a lesser extent, reduced HIV infection of CD4+ T cells compared to unstimulated cells 4 

(Figure 7). Pam3CSK4 induced infection similar to that of the unstimulated infected control. PHA-5 

stimulation resulted in significantly more infection than all other conditions (p < 0.001), with 6 

approximately 25% of CD4+ T cells infected (Figure 7).  Furthermore, using a combination of TLR 7 

agonist and PHA, we found that even in the presence of hyper activation, stimulation with either LPS 8 

or R848 protected CD4+ T cells from HIV infection (p > 0.0001; Supplementary Figure 12). 9 

Figure 7: Infection rates (measured by p24 expression) of CD4+ T cells either unstimulated or stimulated 

a donor, while different shades of each symbol represent repeats for that donor. PHA was used at a 1:500 

dilution at a working concentration of 5mg/ml. TLR agonists were used at a final concentration of 2ug/ml. 

Significance was assessed by two-way ANOVA with Dunnett’s multiple comparisons test. Significance is 

displayed as * (p<0.05), ** (p<0.01), *** (p<0.0001) compared to the unstimulated infected control.  Sample 

size, n=5, 4 donors run in quadruplicate, 1 donor run in duplicate. 
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2.5 Discussion 1 

The purpose of this study was to identify the effects of TLR agonists on T cell activation, cytokine 2 

responses, and the ability of HIV to infect CD4+ T cells. TLR stimulation resulted in limited T cell 3 

activation, down-regulation of the CCR5 co- receptor necessary for HIV entry as well as potent 4 

inflammatory cytokine responses, creating an environment less conducive to HIV infection of CD4+ T 5 

cells. CD4+ T cells have been shown to express various classes of TLRs (40), providing the ability to 6 

recognize and respond to TLR agonists. In our study, no significant increase in activation marker 7 

expression was observed for either CD4+ or CD8+ T cells when stimulated with agonists targeting 8 

TLR1/2, 7/8, or 4. It has been demonstrated that TLR receptors require co- stimulation, needing primary 9 

T-cell receptor (TCR) engagement to induce functional T cell responses (41). This is evident with the 10 

mitogen, PHA, where significant CD4+ T cell activation was observed following stimulation. PHA is 11 

a plant lectin that binds to carbohydrates on the cell surface, including the TCR, thereby inducing 12 

proliferation and activation of T lymphocytes (42–45). TLR7/8 agonist R848 induced subtle activation 13 

of CD4+ T cells, possibly due to intracellular recognition of R848 that may have stimulated an adaptive 14 

Th1 immune response even in the absence of TCR s15 

highly reliant on CD4+ T cell help for functional and memory responses (47). Thus, the modest 16 

activation of CD4+ T cells with R848 was also observed in the CD8+ T cells, providing further evidence 17 

of a cytotoxic Th1 response. Distinct activation of both CD4+ and CD8+ T cells was observed with 18 

PHA stimulation, likely due to the robust TCR engagement by PHA. A distinct inflammatory response 19 

was observed when looking at the cytokine profiles induced by TLR stimulation compared to the 20 

unstimulated control. TLR agonists LPS and R848 elicited potent cytokine storms, similar to previous 21 

studies that showed increases in pro-inflammatory and chemotactic cytokines after stimulation with 22 

these TLR agonists (32–34). R848 also induced the strongest IFN- -12p70 response, reminiscent 23 

of the anti-viral Th1 response (48). Furthermore, R848 stimulated the prolonged expression of IL-24 

IFN- -  responses associated with 25 

the adaptive immune response. Additionally, cytokines associated with immune modulation, such as 26 

IL-1RA, IL-4, and IL-10 were upregulated, presumably to prevent a prolonged inflammatory response. 27 

These data suggest that the inflammatory responses associated with LPS and R848 stimulation are 28 

regulated through immunomodulatory cytokines to counteract the exaggerated pro-inflammatory 29 

response. Furthermore, Pam3CSK4-mediated expression of IL-1RA, IL- 4, and IL-10 was much lower 30 

than LPS or R848, suggesting that this TLR agonist induces either a Th2 biased or more regulatory 31 

cytokine response or a less potent Th1 response. This phenomenon may be in part due to this TLR1/2 32 

agonist being analogous to gram-positive bacteria, which are generally less pathogenic and less 33 

inflammatory than gram-negative bacteria (49, 50). The chemokine responses induced by TLR 34 

stimulation were potent, with prolonged IL- - - - -35 

he recruitment of CCR5+ cells (51). In the 36 
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female genital tract, these chemokines are important factors that are associated with increased risk for 1 

HIV acquisition in -2 

infected conditions compared to their uninfected controls at day 5, suggesting that HIV itself induces 3 

- -1 Nef induced the 4 

- -5 

-6 

expression of IL-8 -1 at day 3, which are chemotactic for neutrophils (53) and monocytes (54) 7 

respectively, provides the basis for   the initiation of innate immune responses, which then further 8 

potentiate inflammation. Interestingly, higher prolonged IL-8 levels were observed with the bacterial 9 

TLR agonists LPS and Pam3CSK4 compared to the viral TLR agonist R848, suggesting that neutrophils 10 

would be sufficient for control and clearance of bacterial infections, whereas viral infections generally 11 

require a Th1 cytotoxic adaptive immune response to prevent infection. This is supported by the finding 12 

that IP-10 was induced at significantly higher concentrations by R848 than the bacterial TLR agonists. 13 

Compared to the unstimulated control at day 5, significantly less IP-10 was produced following LPS 14 

and R848 stimulation, but not by Pam3CSK4. This further supports the findings above which allude to 15 

the induction of an adaptive Th1 response to TLR7/8 activation, but not TLR1/2, while there is potential 16 

for the initiation of an adaptive response with continued TLR4 activation. We found no effect of TLR 17 

stimulation on the production of -CSF, which was surprising given the inflammatory response 18 

-CSF stimulates granulocyte and macrophage differentiation (55), which we postulated 19 

would be key in the innate immune response, especially against the bacterial TLR agonists. However, 20 

- -21 

CSF stimulation is known to downregulate the expression of TLR1, 2 and 4 on human monocytes (56), 22 

it has also been shown to enhance LPS-mediated pro-inflammatory cytokine production in murine 23 

microglia via the upregulation of TLR4 and CD14 (57). -CSF 24 

partially restored TLR-mediated functional responses of monocytes from septic patients (58). One 25 

possibility for blunt - -CSF 26 

may be lost in this lymphocyte-enriched system. Th17 cells have an important role to play in the 27 

homeostasis and maintenance of the mucosal barrier (59–62), as well as increased susceptibility to HIV 28 

infection (63, 64). One of the limitations of this study is that we did not assess the Th17 cells by flow 29 

cytometry, however IL-17, as well as IL-7, are good surrogate indicators for Th17 cell functions (65–30 

67). In our study, we found elevated IL-7 in all stimulation conditions, with the exception of 31 

Pam3CSK4, possibly suggesting a dampened or tolerogenic response to this TLR agonist. Furthermore, 32 

IL- 17 was also elevated in all stimulated conditions at both day 3 and day 5. Interestingly, a less potent 33 

IL-17 response was seen at day 5 in R848 stimulated cells than those stimulated with either LPS or 34 

Pam3CSK4. These data suggest that the sensing of bacterial antigens, analogous to microbial 35 

translocation, may induce a prolonged and potent Th17 response to maintain homeostasis and integrity 36 

of the mucosal barrier. However, the observed significant dose-dependent increase of IL-17 with R848 37 
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stimulation suggests a stronger Th17 response with increased viral sensing. Unexpectedly, TLR 1 

stimulation did not lead to increased HIV infection of CD4+ T cells. Initially, we assumed that the lack   2 

of CD4+ T cell activation could explain this observation, given that activated CD4+ T cells are 3 

preferentially and more easily infected (10, 68). However, in preliminary follow up experiments we 4 

found that even in a hyper activated setting, where PHA in addition to TLR agonists LPS or R848 were 5 

used, HIV infection rates of CD4+ T cells were still lower in the TLR agonist and PHA conditions 6 

compared to the PHA only control, thereby indicating other mechanisms at play. One possibility for the 7 

reduced HIV infection with LPS or R848 stimulation is through increased CC- binding chemokines 8 

which compete with HIV for CCR5 binding (69, 70), which was determined as a mechanism of 9 

resistance   to R5-tropic viruses in elite controllers (71). This model system supports the concept of 10 

increased CC-binding chemokines relative to a decrease in CCR5 expression with a concomitant 11 

reduction in HIV infection. Furthermore, activation of TLR4 and TLR7/8, by LPS and R848 12 

respectively, has been shown   to induce type 1 interferons (72), which have potent antiviral effects and 13 

most likely played a role in the observed protection against HIV infection (73). Similarly, the observed 14 

protective effect suggests the induction of an innate antiviral response (74). This innate antiviral 15 

16 

nucleic acid editing functions (75– limit intracellular deoxynucleoside 17 

triphosphates thereby restricting viral replication (78, 79). This model of TLR stimulation creating an 18 

environment less conducive to HIV infection, is similar to the findings of inflammation and partial 19 

immune activation in highly exposed sero-20 

 21 

nature of inflammation and immune activation, that determine HIV risk. To further understand the 22 

effects of TLR stimulation on adaptive cellular activation, and address the limitations of this model 23 

system, these experiments could be repeated with the addition of a TCR stimulant such as anti-24 

CD3/CD28 beads. Furthermore, we used markers of activation which are more relevant to assessing 25 

26 

been more appropriate. Additionally, innate antiviral pathways including interferon stimulated genes, 27 

28 

observed protective effect by TLR agonists LPS and R848. Furthermore, the activation of innate 29 

immune cells such as monocytes and DCs were not assessed, and these could have provided valuable 30 

insight into the mechanisms of a TLR- mediated immunity. Antigen presenting cells such as DCs, 31 

macrophages and monocytes are generally the first line of defence in the recognition of pathogens, and 32 

subsequently activate the adaptive immune responses (84). However, monocytes constitute 33 

34 

occurred. There was an overall decrease in cytokines from day 3 to day 5, which is likely due to the 35 

removal of stimulants at day 3 prior to HIV infection. In future, it will be important to assess HIV 36 

infection rates in the presence of continued TLR stimulation. Furthermore, we assessed cytokine 37 
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expression from culture supernatants and could not distinguish the cellular origin of cytokines. As there 1 

was a lack of T cell activation in TLR-stimulated conditions, the observed cytokine responses were 2 

likely mediated by innate immune cells such as monocytes and neutrophils. Therefore, performing 3 

intracellular cytokine staining (ICS) for a few key cytokines would allow better discrimination of the 4 

main cells producing key inflammatory cytokines. Furthermore, ICS would allow better discrimination 5 

of cellular functionality, allowing clearer assessment of cellular subsets. 6 

reflect cells in the genital tract of women, this culture system provides valuable insight into   the 7 

mechanisms of TLR-induced inflammation. Additionally8 

a combination of peripheral and trafficked cells from the tissue, which better reflects an in vivo setting 9 

compared to depleted or purified immune cell models or cell lines. Jaspan et al. (12) previously reported 10 

that the extent of T cell activation in blood significantly predicted activation of these cells at the cervix 11 

12 

there are still many difficulties in obtaining and assessing immunity even in these types of samples (86–13 

88). 14 

engagement to induce activation of adaptive T cells. These results also provide insight into the nature 15 

of the immune responses elicited by various TLR agonists, with specific responses induced to particular 16 

pathogenic signals. Together, these data provide important mechanistic insights for HIV acquisition as 17 

the types of immune responses induced according to the pathogens or combinations of pathogens 18 

sensed, could govern HIV risk. 19 
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2.12  Supplementary data  1 

All TLR stimulation conditions were infected. Infection measured by p24 quantification by flow 

cytometry at day 5. Sample size, n=5, each donor run in duplicate. 
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 1 

Supplementary Figure 2: Hierarchical cluster heat map analysis of all 48 cytokines from the LPS stimulated 

condition at LPS concentrations of low (green, 1μg/ml), medium (blue, 2μg/ml) and high (red, 4μg/ml) on day 

3 (grey) and day 5 (yellow). In this heatmap, the redder the colour depicts the higher concentration, while the 

bluer the colour the lower the concentration. Sample size, n=5, each donor run in duplicate. 
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 1 

Supplementary Figure 3: Hierarchical cluster heat map analysis of all 48 cytokines from the Pam3CSK4 

stimulated condition at Pam3CSK4 concentrations of low (green, 1μg/ml), medium (blue, 2μg/ml) and 

high (red, 4μg/ml) on day 3 (grey) and day 5 (yellow). In this heatmap, the redder the colour depicts the 

higher concentration, while the bluer the colour the lower the concentration. Sample size, n=5, each donor 

run in duplicate. 

Supplementary Figure 3: Hierarchical cluster heat map analysis of all 48 cytokines from the Pam3CSK4



 
 

 

44 

 1 

Supplementary Figure 4: Hierarchical cluster heat map analysis of all 48 cytokines from the R848 

stimulated condition at R848 concentrations of low (green, 1μg/ml), medium (blue, 2μg/ml) and high (red, 

4μg/ml) on day 3 (grey) and day 5 (yellow). In this heatmap, the redder the colour depicts the higher 

concentration, while the bluer the colour the lower the concentration. Sample size, n=5, each donor run in 

duplicate. 

S l t Fi 4 Hi hi l l t h t l i f ll 48 t ki f th R848
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 1 

Supplementary Figure 5: Schematic diagram of the gating strategy used for analyses of flow cytometric 

data 
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 1 

stimulated with TLR agonists LPS, R848 or Pam3CSK4, or the positive control PHA 

at day 3 (red) and day 5 (green). Sample size, n=5, 4 donors run in quadruplicate, 1 

donor run in duplicate. 
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Supplementary Figure 7: Representative dot plots of flow cytometric data of cellular activation, CCR5 expression and 

HIV infection of CD4+ T cells not treated with anti-inflammatory drugs (no AI) prior to HIV infection on day 3 (top 

box) and post HIV infection on day 5 (bottom box) from the Unstimulated, LPS, Pam3CSK4, R848 and PHA (left to 

right ordered) conditions. 
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Supplementary Figure 8: Representative dot plots of flow cytometric data of cellular activation and CCR5 expression of 

CD8+ T cells prior to HIV infection on day 3 (top box) and post HIV infection on day 5 (bottom box) from the 

Unstimulated, LPS, Pam3CSK4, R848 and PHA (left to right ordered) conditions.
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Supplementary Figure 9: Spider plot showing mean Log10 concentrations (pg/ml) of 28 

cytokines measured in cell culture supernatants at day 3 prior to HIV infection from the 

unstimulated (red line), LPS (green line), R848 (orange line), Pam3CSK4 (purple line) and 

PHA (blue line) conditions. Cytokine data was sorted in a clockwise manner on the 

unstimulated condition from lowest to highest expressed cytokine. PHA was used at a final 

concentration of 10μg/ml. TLR agonists were used at a final concentration of 2μg/ml. All TLR 

stimulation conditions were infected with HIV. Sample size, n=5, 4 donors run in quadruplicate, 

1 donor run in duplicate. 
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Supplementary Figure 10: Spider plot showing mean Log10 concentrations (pg/ml) of 28 cytokines 

measured in cell culture supernatants at day 5 post HIV infection from the unstimulated uninfected 

(dotted red line), unstimulated infected (red line) LPS (green line), R848 (orange line), Pam3CSK4 

(purple line), PHA uninfected (dotted blue line) and PHA infected (blue line) conditions. Cytokine data 

was sorted in a clockwise manner on the unstimulated condition from lowest to highest expressed 

cytokine. PHA was used at a final concentration of 10μg/ml. TLR agonists were used at a final 

concentration of 2μg/ml. All TLR stimulation conditions were infected with HIV. Sample size, n=5, 4 

donors run in quadruplicate, 1 donor run in duplicate. 
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ing mean ± SD Log10 concentrations of 

haematopoietic cytokine IL-17 after stimulation with the different concentrations of the TLR7/8 agonist R848 

at day 3 prior to HIV infection and day 5 post HIV infection. Concentrations of R848 shown on the X axis. 

PHA was used at a final concentration of 10μg/ml. All TLR stimulation conditions were infected with HIV. 

An ordinary one-way ANOVA with a Dunnett’s multiple comparisons test was performed. Significance is 

displayed as * (p<0.05), ** (p<0.01), *** (p<0.001), *

Samples size, n=1 run in duplicate. 
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Supplementary Figure 12: Infection rates (measured by p24 expression) of CD4+ T cells either unstimulated 

of stimulated with PHA and/or TLR agonists; LPS (TLR4) or R848 (TLR7/8) at the concentrations depicted. 

PHA was used at a final concentration of 10μg/ml. Significance was assessed by two-way ANOVA with 

Dunnett’s multiple comparisons test. Significance is displayed as * (p<0.05), ** (p<0.01), *** (p<0.0001) 

compared to the PHA infected control.  Sample size, n=1, run in duplicate. 
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  1 

Day 3 CD38+HLA-DR+ CD38+HLA-DR- CD38-HLA-DR+ CD38-HLA-DR- 
mean SD mean SD mean SD mean SD 

Unstimulated 1.96 1.35 20.43 9.44 8.05 4.19 69.58 12.84 
LPS 2.35 1.68 18.93 8.50 9.14 4.56 69.57 12.77 
R848 3.08 1.90 21.80 8.79 8.22 4.34 66.93 12.37 

Pam3CSK4 2.30 1.68 18.00 7.26 10.16 5.22 69.57 11.99 
PHA 26.38 12.82 26.79 9.21 13.33 3.90 33.53 16.81 

                  

Day 5 CD38+HLA-DR+ CD38+HLA-DR- CD38-HLA-DR+ CD38-HLA-DR- 
mean SD mean SD mean SD mean SD 

Unstimulated Uninfected 2.57 2.81 18.01 9.67 10.47 8.39 68.95 14.15 
Unstimulated Infected 3.07 2.81 19.42 10.71 11.08 8.40 66.46 13.50 

LPS 3.07 3.17 17.88 9.53 11.19 8.51 67.86 15.17 
R848 4.12 3.65 21.82 10.87 8.89 7.24 65.17 14.56 

Pam3CSK4 3.17 2.69 17.18 8.95 12.33 8.27 67.32 13.95 
PHA Uninfected 26.27 14.85 45.12 8.79 6.63 3.01 22.00 11.55 

PHA Infected 24.96 14.60 45.72 8.38 5.95 2.49 23.37 9.96 

Day 3 CD38+HLA-DR+ CD38+HLA-DR- CD38-HLA-DR+ CD38-HLA-DR- 
mean SD mean SD mean SD mean SD 

Unstimulated 1.28 0.91 8.44 6.40 9.19 6.07 81.09 10.47 
LPS 2.20 2.23 8.51 5.27 10.79 6.98 78.50 11.38 
R848 4.13 3.41 11.83 6.40 11.06 6.84 73.01 11.82 

Pam3CSK4 1.25 0.88 7.29 4.47 10.19 6.50 81.26 9.37 
PHA 30.37 14.18 15.50 6.93 17.71 5.27 36.43 17.87 

                  

Day 5 CD38+HLA-DR+ CD38+HLA-DR- CD38-HLA-DR+ CD38-HLA-DR- 
mean SD mean SD mean SD mean SD 

Unstimulated Uninfected 1.69 1.61 6.07 6.49 13.39 12.49 78.84 15.75 
Unstimulated Infected 3.29 3.45 8.85 7.98 13.48 10.97 74.36 15.27 

LPS 2.66 2.57 7.32 6.37 14.37 13.30 75.67 16.62 
R848 7.40 5.24 14.24 8.34 12.92 11.43 65.46 15.66 

Pam3CSK4 2.38 1.87 6.66 5.68 13.84 11.53 77.11 13.69 
PHA Uninfected 38.35 16.79 41.41 13.43 4.08 2.53 16.14 9.15 

PHA Infected 38.91 16.31 41.87 13.32 3.79 2.29 15.45 9.89 

activation markers CD38 and HLA-DR in unstimulated or stimulated (LPS, R848, Pam3CSK4 and PHA) 
conditions at day 3 (top) and day 5 (bottom). Sample size, n=5, 4 donors run in quadruplicate, 1 donor run in 
duplicate. 

activation markers CD38 and HLA-DR in unstimulated or stimulated (LPS, R848, Pam3CSK4 and PHA) 
conditions at day 3 (top) and day 5 (bottom). Sample size, n=5, 4 donors run in quadruplicate, 1 donor run in 
duplicate. 
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 2 

 3 

 4 

 5 

 6 

 7 

 8 

Pro-inflammatory 
cytokines Day 3 

IL-  IL-  IL-6 IL-12p70 IFN-  TNF
mean SD mean SD mean SD mean SD mean SD mean 

Unstimulated 0.900 0.713 0.503 1.111 1.795 0.711 0.701 0.582 1.738 1.029 1.792 
LPS 2.347 0.404 3.170 0.306 4.229 0.597 1.482 0.175 2.722 0.136 3.222 
R848 2.441 0.321 3.570 0.418 4.216 0.460 1.771 0.246 3.006 0.273 3.965 

Pam3CSK4 1.573 0.366 2.357 0.249 3.935 0.401 1.212 0.260 2.533 0.194 2.828 
PHA 2.506 0.348 3.289 0.202 4.279 0.602 1.534 0.163 3.207 0.309 3.456 

             
Pro-inflammatory 
cytokines Day 5 

IL-  IL-  IL-6 IL-12p70 IFN-  TNF
mean SD mean SD mean SD mean SD mean SD mean 

Unstimulated Uninfected 0.943 1.158 0.505 0.371 2.091 0.464 0.845 0.546 1.572 1.238 2.140 
Unstimulated Infected 0.966 0.904 0.569 0.463 2.071 0.575 0.849 0.700 1.954 0.810 1.993 

LPS 1.426 0.504 1.731 0.401 3.167 0.742 1.087 0.563 2.368 0.293 2.185 
R848 1.633 0.213 2.070 0.268 3.107 0.389 1.208 0.302 2.488 0.197 2.403 

Pam3CSK4 1.318 0.569 1.286 0.245 3.351 0.464 1.036 0.539 2.421 0.308 2.296 
PHA Uninfected 1.546 0.347 1.780 0.246 3.031 0.567 0.900 0.428 2.319 0.287 2.082 

PHA Infected 1.498 0.288 1.774 0.456 3.020 0.666 1.018 0.546 2.366 0.255 2.212 

Chemokines Day 3 IL-8 -  -  IP-10 -1 RANT
mean SD mean SD mean SD mean SD mean SD mean 

Unstimulated 3.551 0.632 0.950 0.820 2.052 0.479 2.653 0.958 3.217 0.833 2.275 
LPS 4.787 0.175 3.751 0.325 3.951 0.338 2.374 0.481 3.693 0.344 3.046 
R848 4.720 0.284 3.751 0.330 4.082 0.244 3.228 0.933 3.693 0.301 3.063 

Pam3CSK4 4.833 0.339 3.573 0.278 3.696 0.352 2.456 0.668 3.781 0.387 2.844 
PHA 4.946 0.395 3.762 0.327 4.290 0.360 3.507 0.713 3.704 0.327 3.428 

             

Chemokines Day 5 IL-8 -  -  IP-10 -1 RANT
mean SD mean SD mean SD mean SD mean SD mean 

Unstimulated Uninfected 3.781 0.244 1.393 0.648 1.594 0.281 3.093 1.046 3.514 0.404 2.040 
Unstimulated Infected 3.697 0.380 1.372 0.644 2.387 0.613 3.426 1.186 3.649 0.303 2.002 

LPS 4.534 0.325 2.484 0.784 2.948 0.667 2.531 0.638 3.713 0.238 2.215 
R848 4.292 0.194 2.909 0.498 3.159 0.285 2.675 0.716 3.608 0.160 2.446 

Pam3CSK4 4.700 0.196 2.599 0.486 3.056 0.238 2.906 0.943 3.832 0.270 2.115 
PHA Uninfected 4.415 0.151 2.255 0.589 2.090 0.752 2.466 0.535 3.583 0.316 2.393 

PHA Infected 4.408 0.307 2.354 0.521 2.933 0.294 2.742 0.765 3.582 0.260 2.526 

concentrations (Log10 pg/ml) and standard deviations (SD) of chemotactic 
cytokines in cell culture supernatants at day 3 (top) and day 5 (bottom) from unstimulated, TLR or PHA 

 

10 pg/ml) and standard deviations (SD) of pro-
inflammatory cytokines in cell culture supernatants at day 3 (top) and day 5 (bottom) from unstimulated, 
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1 

Haematopoietic and anti-
inflammatory cytokines Day 3 

IL-7 IL-17 -CSF IL-10 
mean SD mean SD mean SD mean SD 

Unstimulated -0.193 0.997 1.772 0.297 1.819 0.870 1.219 0.330 
LPS 0.599 0.616 2.588 0.108 2.178 0.572 2.771 0.240 
R848 0.618 0.617 2.584 0.110 2.186 0.516 2.865 0.249 

Pam3CSK4 0.189 0.812 2.472 0.205 2.142 0.601 2.140 0.212 
PHA 0.789 0.652 3.332 0.333 2.421 0.389 3.137 0.151 

           
Haematopoietic and anti-

inflammatory cytokines Day 5 
IL-7 IL-17 -CSF IL-10 

mean SD mean SD mean SD mean SD 
Unstimulated Uninfected -0.206 1.129 1.879 0.411 1.793 0.995 1.372 0.292 

Unstimulated Infected -0.040 0.963 1.887 0.433 1.800 0.930 1.373 0.285 
LPS 0.005 0.819 2.509 0.511 1.980 0.795 1.494 0.292 
R848 0.203 0.928 2.307 0.191 2.046 0.660 1.729 0.197 

Pam3CSK4 -0.253 0.967 2.496 0.472 2.069 0.713 1.599 0.139 
PHA Uninfected -0.597 1.138 2.389 0.295 1.891 0.785 1.557 0.164 

PHA Infected 0.317 0.643 2.514 0.491 1.910 0.824 1.636 0.273 

10 pg/ml) and standard deviations (SD) of haematopoietic and 
anti-inflammatory cytokines in cell culture supernatants at day 3 (top) and day 5 (bottom) from unstimulated, 

un in duplicate. 
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2.13 Bridging chapter 1 

TLR-mediated inflammation was protective against HIV infection of CD4+ T cells, contrary to our 2 

initial hypothesis. However, we do provide biological plausibility for the mechanism behind this 3 

finding. The TLR agonists did not induce significant immune activation, but induced a potent cytokine 4 

response, similar to the positive control, PHA. Interestingly, the TLR-mediated immune response in 5 

vitro partially mimicked an immune quiescent environment seen in vivo horts, resulting 6 

in minimal immune activation and a specific cytokine signature which was protective against HIV 7 

infection. In addition, we still wanted to investigate how two anti-inflammatory drugs; ibuprofen (a 8 

NSAID) and betamethasone (a glucocorticoid) would modulate this TLR-mediated inflammation and 9 

impact on HIV infection of CD4+ T cells. We hypothesised that these anti-inflammatory drugs would 10 

dampen the protective TLR-mediated inflammation, and thus increase HIV infection of CD4+ T cells. 11 

This manuscript, entitled “Betamethasone induces potent immunosuppression and reduces HIV 12 

infection in a PBMC in vitro model”, has been published on 1st October 2020 in the Journal of 13 

Investigative Medicine (doi:10.1136/jim-2020-001424).  14 
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3.1  Abstract 1 

Genital inflammation is an established risk factor for increased HIV acquisition risk. Certain HIV-2 

exposed seronegative populations, who are naturally resistant to HIV infection have an immune 3 

quiescent phenotype defined by reduced immune activation and inflammatory cytokines at the genital 4 

tract. Therefore, the aim of this study was to create an immune quiescent environment using 5 

immunomodulatory drugs to mitigate HIV infection. Using an in vitro peripheral blood mononuclear 6 

cell (PBMC) model, inflammation was induced using phytohaemagglutinin (PHA) and Toll-like 7 

receptor (TLR) agonists Pam3CSK4 (TLR1/2), LPS (TLR4) and R848 (TLR7/8). After treatment with 8 

anti-inflammatory drugs, ibuprofen (IBF) and betamethasone (BMS), PBMCs were exposed to HIV 9 

NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines to assess inflammation. Flow 10 

cytometry was used to measure immune activation (CD38, HLA-DR and CCR5) and HIV infection 11 

(p24 production) of CD4+ T cells. Betamethasone potently suppressed inflammation (soluble cytokines, 12 

p<0.05) and immune activation (CD4+ T cells, p<0.05). Betamethasone significantly reduced HIV 13 

infection of CD4+ T cells only in the LPS (0.98%) and unstimulated (1.7%) conditions (p<0.02). In 14 

contrast, ibuprofen had minimal anti-inflammatory and immunosuppressive, but no anti-HIV effects. 15 

Betamethasone demonstrated potent anti-inflammatory effects, regardless of stimulation condition. 16 

Despite uniform immunosuppression, betamethasone differentially affected HIV infection according to 17 

the stimulation conditions, highlighting the complex nature of these interactions. Together, these data 18 

underscore the importance of interrogating inflammatory signalling pathways to identify novel drug 19 

targets to mitigate HIV infection. 20 

3.2  Introduction 21 

HIV remains a public health challenge with an estimated 1.8 million new infections globally in 2017 22 

(1). South Africa is disproportionately affected by HIV, harbouring 20% of the world’s HIV infected 23 

population, and women in this region account for 60% of these infections (2). Despite high levels of 24 

protection in clinical trials testing antiretroviral drugs as pre-exposure prophylaxis (PrEP) in men who 25 

have sex with men (MSM) (3-6), inconsistent levels of protection have been shown among heterosexual 26 

populations, particularly in African women (7-11). While adherence to PrEP likely undermines 27 

protection in women (12), biological factors such as genital inflammation (13-16) are known to increase 28 

women’s susceptibility to HIV, even in those using PrEP (17-20). 29 

Inflammation, a necessary natural response elicited by the body to control infection and limit tissue 30 

damage (21, 22), is initiated through the recognition of pathogen- and damage- associated molecular 31 

patterns (PAMPs and DAMPs, respectively) by pathogen recognition receptors (PRRs). These include 32 

toll-like receptors (TLRs) that are expressed both inside and on the cell surface on many cell types, 33 

particularly innate immune cells (23-27). Some of the most potent PAMPs, that exert significant 34 

immunological and inflammatory responses, include bacterial lipopeptides recognised by TLR2 (28-35 
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30), lipopolysaccharide (LPS) recognised by TLR4 (31-34), and single stranded RNA (ssRNA) 1 

recognised by TLR7/8 (35-37). Although inflammation is necessary to mount a successful host defence 2 

against pathogens, it can lead to pathology if dysregulated and persistent. 3 

Genital inflammation is associated with immune activation and recruitment of HIV target cells, in 4 

addition to disrupting the mucosal barrier. Immune activation and increased concentrations of cytokines 5 

in genital tract (14, 38) and blood (39, 40) have directly been associated with increased HIV acquisition 6 

risk. Inflammatory cytokines activate CD4+ T cells, targets for HIV (41), which are preferentially and 7 

more easily infected than resting CD4+ T cells (42-44). Chemokines secreted by mucosal epithelial 8 

cells recruit innate immune cells such as plasmacytoid dendritic cells (pDCs) which in turn produce 9 

other chemokines to attract HIV target cells (45). Inflammation and cellular recruitment are important 10 

precursors for establishment of SIV infection following vaginal challenge in Rhesus macaques (45). 11 

These findings were confirmed in sooty managabeys where protection against SIV infection were 12 

associated with lower levels of systemic and mucosal CD4+CCR5+ T cells (46). In humans, increased 13 

chemokines in the genital tract conferred >three-fold increased risk for HIV acquisition (14). Similarly, 14 

increased mucosal concentrations of inflammatory cytokines compared to plasma was associated with 15 

increased HIV risk (47). Inflammation even in HIV negative individuals resulted in recruitment of HIV 16 

target cells and epithelial barrier disruption (48-50). Nazli et al., (2010) demonstrated that co-culture of 17 

mucosal epithelial cells with infectious HIV stimulated inflammatory cytokines, which in turn 18 

compromised the epithelial barrier leading to increased mucosal barrier permeability (51-54). Some 19 

known causes of genital inflammation include vaginal microbial dysbiosis and sexually transmitted 20 

infections (STIs) (17, 55-61). However, while there are many potential causes of genital inflammation, 21 

eliminating these causes may not fully reverse their negative effects, further necessitating additional 22 

interventions. Therefore, understanding the complex associations between HIV and the biological 23 

factors that drive susceptibility are crucial. 24 

Multiple studies have reported reduced immune activation in HIV-exposed seronegative (HESN) 25 

individuals (62-67), which was suggested to confer protection in these individuals against HIV 26 

acquisition. Safe, licenced, and easily obtainable drugs that modulate immunity to induce an immune 27 

quiescent phenotype to reduce HIV acquisition risk, are a theoretically attractive option. Recently, anti-28 

inflammatory drugs like acetylsalicylic acid (ASA; commonly known as Aspirin®) and 29 

hydroxychloroquine (HCQ) were shown to reduce inflammation and immune activation of CD4+ T and 30 

Th17 cells systemically and at the mucosa of low-risk uninfected women who were taking these oral 31 

drugs daily for six weeks (68). Furthermore, HCQ also reduced systemic inflammatory cytokines (68). 32 

Even though the work by Lajoie et al. demonstrated proof of principle that NSAIDs can reduce the 33 

proportion of target CD4+ CCR5+ and Th17 cells in women, this study did not investigate the effects 34 

of these two anti-inflammatory drugs in preventing HIV infection. Similarly, in HIV infected 35 

individuals, chloroquine (CQ) and HCQ significantly reduced HIV associated immune activation (69-36 
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72). Additionally, in a small animal model, an HCQ implant compared to a placebo, reduced recruitment 1 

of immune cells to the genital tract, improved mucosal epithelial integrity and reduced T cell activation 2 

and inflammatory cytokines (73). Topical application of a glucocorticoid (GC) drug like betamethasone 3 

(BMS) (74) or a non-steroidal anti-inflammatory drug (NSAID) like ibuprofen (IBF) (75) have also 4 

demonstrated efficacy for treating inflammatory skin conditions and genital inflammation, respectively. 5 

Furthermore, a natural product like glycerol monolaurate, which has anti-inflammatory properties, 6 

showed efficacy in reducing SIV infections in rhesus macaques (45, 76). These data demonstrate the 7 

capacity of anti-inflammatory drugs to reduce immune activation and inflammation as additional 8 

modalities toward mitigating HIV risk. 9 

The use of anti-inflammatory drugs to reduce genital inflammation and mucosal immune activation, to 10 

mitigate HIV acquisition risk in women, may be plausible in regions with high levels of genital 11 

inflammation and HIV burden. The use of such products requires thorough pre-clinical testing to assess 12 

the viability, utility and efficacy of such strategies. Using a PBMC-based in vitro model for HIV 13 

infection, we tested the hypothesis that modulating TLR-induced inflammation with anti-inflammatory 14 

drugs; including ibuprofen (IBF) and betamethasone (BMS), reduced inflammatory responses, immune 15 

activation and HIV infection.   16 

3.3  Materials and Methods 17 

3.3.1 Ethics statement 18 

This study was approved by the University of KwaZulu-Natal (UKZN) Biomedical Research Ethics 19 

Committee (BREC; Ethics number: BE433/14), with written informed consent from all healthy blood 20 

donors included in a volunteer donor blood study (Ethics number: BE022/13). Informed consent was 21 

obtained from all donors in accordance with the Declaration of Helsinki. 22 

3.3.2 Isolation and culture of peripheral blood mononuclear cells (PBMCs) with HIV 23 

For each experiment, peripheral blood mononuclear cells (PBMCs) were isolated from fresh blood 24 

collected from four healthy HIV-negative donors by density gradient centrifugation (77). PBMCs were 25 

resuspended to 1x106 cells/ml in C10 media and placed into 24-well cell culture plates. For all cell 26 

culture experiments, C10 media consisting of RPMI 1640 with L-glutamine (Lonza, Basel, Switzerland) 27 

containing 10% FCS (non-heat inactivated FCS; Highveld Biological, JHB, SA), 2% L-glutamine, 1% 28 

HEPES, 1% NaPy, 1% NEAA (all from Lonza, Basel, Switzerland) was used. Interleukin-2 (IL-2) 29 

(PeproTech, Rocky Hill, NJ, USA), added to C10 media prior to use, was used at a final concentration 30 

of 0.01 μg/ml. Unstimulated PBMCs were used as the negative control and stimulation with 31 

phytohaemagglutinin (PHA) (Sigma-Aldrich, St. Louis, MO, USA) was used as the positive control, at 32 

a final concentration of 10 μg/ml. The CCR5-tropic HIV-1 NL4-3 AD8 (78) was used at a MOI of 0.9, 33 

as previously described (77).  34 
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3.3.3 TLR agonists and anti-inflammatory drugs 1 

TLR agonists LPS (TLR4), R848 (TLR7/8) and Pam3CSK4 (TLR1/2) (all from Invivogen, San Diego, 2 

CA, USA) were used at a final concentration of 2 μg/ml, as described previously (77). In addition to 3 

these TLR agonists, the following anti-inflammatory drugs were used in this study: ibuprofen (IBF) and 4 

betamethasone (BMS) (both from Sigma-Aldrich, St. Louis, MO, USA). IBF was resuspended in sterile 5 

PBS, while BMS was initially resuspended in 100% ethanol before diluting 1:5 with sterile PBS, and 6 

both drugs were used at a final concentration of 1 μg/ml, which was the drug concentration previously 7 

optimized in anti-inflammatory drug titration experiments (data not shown).  8 

3.3.4 Treatment of PBMCs with TLRs, anti-inflammatory drugs and HIV 9 

PBMCs were either treated with IBF or BMS or left untreated (negative control) and incubated at 37oC 10 

5% CO2 for 2 hours. Following this incubation period, PBMCs were left either unstimulated (negative 11 

control) or stimulated with TLR agonists or PHA (positive control) then incubated for 48 hours at 37oC 12 

5% CO2. Following this incubation (for the day 3 time-point, 48 hours post-stimulation but prior to 13 

HIV exposure), both PBMCs and culture supernatants of each well were collected into sterile tubes for 14 

flow cytometry analysis and multiplex ELISA experiments, respectively. The tubes containing the 15 

remaining PBMCs (that were subsequently exposed to HIV-1 NL4-3 AD8, as described below) were 16 

centrifuged, supernatants were discarded, and media replacements were performed with fresh C10 17 

media. PBMCs were then plated at 1x106 cells/ml into 24-well cell culture plates, no further 18 

stimulations were performed. Subsequently, 250 μl of 1:20 diluted HIV-1 NL4-3 AD8 viral stocks (a 19 

gift from Dr Alex Sigal), corresponding to a MOI of 0.9, was added to expose PBMCs to HIV for 20 

infection. PHA and unstimulated uninfected wells were treated with 250 μl C10 media. Plates were 21 

incubated at 37oC 5% CO2 for 48 hours, whereupon multiplexed ELISA (culture supernatants) and 22 

flow cytometry (PBMCs) was performed for the day 5 time-point (48 hours post-HIV exposure). 23 

3.3.5 Flow cytometry  24 

Cellular activation of PBMCs at two time-points (day 3: 48 hours post-stimulation and prior to HIV 25 

exposure and day 5: 48 hours post HIV exposure) was assessed by flow cytometry, focusing on CCR5, 26 

HLA-DR and CD38 expression by CD4+ cells, as previously described (79-81), using both extracellular 27 

and intracellular staining. The extracellular staining cocktail consisted of LIVE/DEAD Amcyan fixable 28 

dye (Thermo Fisher Scientific, Waltham, MA, USA), anti-CD3-APC-H7, anti-CD4-BV605, anti-CD8-29 

BV655, anti-CD14-Pacific blue (all from BD Biosciences, Franklin Lakes, NJ, USA), and anti-CD19-30 

pacific blue (Biolegend, San Diego, CA, USA). The intracellular staining cocktail consisted of anti-31 

CCR5-APC, anti-HLA-DR-PerCP-CY5.5 (all from BD Biosciences, Franklin Lakes, NJ, USA), anti-32 

CD38-PE-CY7 (Biolegend, San Diego, CA, USA) and anti-p24-FITC (Beckman Coulter, Brea, CA, 33 

USA).  34 
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To pellet the cells and remove soluble HIV, PBMCs were centrifuged at 3,500 rpm for 5 minutes and 1 

cell culture supernatants were stored at -80oC for cytokine quantification. PBMCs were washed with 2 

sterile PBS supplemented with 2% FCS and then stained with 100 μl extracellular staining cocktail, 3 

fixed, and then stained with 100 μl intracellular staining cocktail. Data were acquired by flow cytometry 4 

on a BD LSR Fortessa (BD Biosciences, Franklin Lakes, NJ, USA), with 5 x 105 events within the 5 

lymphocyte gate collected per sample. Data analysis was performed using FlowJo v10.4.1 software 6 

(Tree Star, Ashland, OR, USA). Supplementary Figure 1 shows the gating strategy. In this study, we 7 

reported on four activation phenotypes (CD38+HLA-DR+, CD38+HLA-DR-, CD38-HLA-DR+, and 8 

CD38-HLA-DR-) and define these as previously described (42, 77, 80). CD4+ T cells expressing 9 

CD38+HLA-DR+ were defined as hyper-activated, the CD38+HLA-DR- and CD38-HLA-DR+ 10 

phenotypes were defined as intermediately activated, and CD38-HLA-DR- CD4+ T cells were defined 11 

as resting or not activated. Representative dot plots of flow cytometric data are shown in Supplementary 12 

Figure 2. 13 

3.3.6 Cytokine quantification 14 

From cell culture supernatants the concentrations of 28 cytokines were assessed using the Bio-Plex Pro 15 

Human Cytokine Group I 27-Plex Panel (Bio-Rad Laboratories, Hercules, CA, USA) and the Magnetic 16 

Luminex® Assay IL- h and Diagnostic (R&D) systems Inc., Minneapolis, 17 

Minnesota, USA) as per manufacturer’s instructions. Data were acquired on a Bio-Plex® 200 system 18 

(Bio-Rad Laboratories, Hercules, CA, USA). Standard curves were optimized using the Bio-Plex 19 

manager software version 6.1 (Bio-Rad Laboratories, Hercules, CA, USA). Values with coefficients of 20 

variation <20% and with observed recoveries between 70 – 130% were considered reliable. Values that 21 

were below the detectable limit were assigned half of the lowest limit of detection value (LLOD), while 22 

values that were above the detectable limit were assigned double the highest limit of detection (HLOD) 23 

value.  24 

3.3.7 Statistical analyses 25 

GraphPad Prism version 7.02 software for Windows (GraphPad Software, La Jolla, CA, USA) was used 26 

for statistical analyses and graphical representation of data. The Shapiro-Wilk normality test was 27 

performed to determine the distribution of the data. Cellular activation results are displayed as mean 28 

percentage (%) ± standard deviation (SD) of CD4+ T cells. For comparisons of cellular activation 29 

markers CD38, HLA-DR on CD4+ T cells, between anti-inflammatory treated conditions and the 30 

untreated control, a repeated measures two-way ANOVA with a Dunnett’s multiple comparisons test 31 

was performed. Similarly, an ordinary one-way ANOVA with Dunnett’s multiple comparison test was 32 

performed for CCR5 expression and cytokine comparisons. Cytokine data were normalized by log10 33 

transformation and is displayed as mean concentration (log10 pg/ml) ± standard deviation (SD). Heat 34 

maps were generated by performing a single linkage hierarchical cluster analysis using R version 3.3.3 35 
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statistical software (R Foundation for Statistical Computing, Vienna, Austria), to visualize the effect of 1 

various TLR agonists and anti-inflammatory drugs on cytokine expression. Radial spider plots were 2 

created using Microsoft Excel© 2013 software (Microsoft Corporation, Redmond, WA, USA). 3 

Figure 1: Activation profiles of CD4+ T cells on day 3 prior to HIV exposure either treated with anti-

inflammatory drugs ibuprofen (IBF) or betamethasone (BMS) or left untreated (no AI) and then either left 

unstimulated (A) or stimulated with PHA (B), LPS (C), R848 (D) or Pam3CSK4 (E). PHA was used at a final 

concentration of 10 μg/ml. TLR agonists were used at a final concentration of 2 μg/ml. Anti-inflammatory 

(AI) drugs IBF and BMS were both used at a final concentration of 1 ug/ml. A repeated measures two-way 

ANOVA with Dunnett’s multiple comparisons test was performed to assess significant differences between 

AI conditions within each stimulation condition. Significance is displayed as * (p<0.05), ** (p<0.01), *** 

duplicate. 
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3.4  Results 1 

3.4.1 Reduction of CD4+ T cell activation by BMS but not IBF prior to HIV exposure 2 

As anti-inflammatory drugs can have cytotoxic effects (82), we sought to determine how IBF and BMS 3 

impacted on the viability of CD4+ T cells. Prior to HIV exposure (day 3), BMS was slightly toxic to 4 

5 

6 

, post HIV exposure (day 5) BMS 7 

improved cellular viability in the LPS, R848 and Pam3CSK4-8 

Supplementary Figure 4C-E).  9 

We sought to determine how anti-inflammatory drugs IBF and BMS impacted the activation status of 10 

CD4+ T cells stimulated with TLR agonists, given that activated target cells have been shown to be 11 

preferentially infected with HIV (42, 43) and allow more proficient viral replication (83-85). TLR 12 

agonists LPS, R848 and Pam3CSK4 had a minimal impact on the activation of CD4+ T cells, unlike 13 

the positive control PHA (Figure 1). IBF significantly reduced the frequency of intermediately activated 14 

CD38+HLA-DR- -15 

conditions by 2.35% and 2.36% respectively (Figure 1A&E). Decreases in this subset in the 16 

Pam3CSK4-stimulated condition were concomitant with a significantly increased frequency of 17 

inactivated CD38-HLA-DR- CD4+ T cells, suggesting that IBF returned CD4+ T cells to their resting 18 

.009; Figure 1E). A similar phenomenon is likely in the unstimulated condition, with a less 19 

pronounced increase in the resting CD4+ T cells. Compared to IBF, BMS had potent 20 

immunosuppressive effects on CD4+ T cell activation, with increased frequencies of inactivated/resting 21 

CD38-HLA-DR- 22 

significant cellular activation, the frequency of highly activated CD38+HLA-DR+ CD4+ T cells were 23 

significantly reduced by 20.8% with BMS t24 

in the frequency of CD38+HLA-DR- CD4+ T cells was observed across all stimulation conditions 25 

(p<0.01; Figure 1). Similarly, the frequency of CD38-HLA-DR+ CD4+ T cells were reduced in the 26 

unstimulated - -27 

3.8% and 4.48% respectively (Figure 1A, C and E respectively).  28 

3.4.2 Suppression of T cell activation is maintained by BMS after HIV exposure 29 

Similar to the results observed prior to HIV exposure, IBF had minimal immunosuppressive effects in 30 

terms of hyperactivated CD4+ T cells, with only a modest 2.76% decrease in the frequency of 31 

intermediately activated CD38+HLA-DR- CD4+ T cells in the Pam3CSK4-stimulated condition 32 

ure 2E). Furthermore, an increased frequency of inactivated/resting CD38-HLA-DR- 33 

-34 

2.7% and 3.71% respectively following IBF treatment (Figure 2C&E). As previously observed, BMS 35 
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had more potent immunosuppressive activity than IBF, resulting in significantly lower frequencies of 1 

highly activated CD38+HLA-2 

5% respectively (Figure 2B, C and D). 3 

Additionally, BMS also resulted in significantly reduced frequencies of intermediately activated 4 

CD38+HLA-DR- -5 

and 4.5% respectively (Figure 2B and D). Furthermore, significant reductions in the frequency of 6 

Figure 2: Activation profiles of CD4+ T cells on day 5 post HIV exposure either treated with anti-inflammatory 

drugs ibuprofen (IBF) or betamethasone (BMS) or left untreated (no AI) and then either left unstimulated (A) 

or stimulated with PHA (B), LPS (C), R848 (D) or Pam3CSK4 (E). PHA was used at a final concentration of 

10 μg/ml. TLR agonists were used at a final concentration of 2 μg/ml. Anti-inflammatory (AI) drugs IBF and 

BMS were both used at a final concentration of 1 ug/ml. A repeated measures two-way ANOVA with 

Dunnett’s multiple comparisons test was performed to assess significant differences between AI conditions 

within each stimulation condition. Significance is displayed as * (p<0.05), ** (p<0.01), *** (p<0.001), **** 
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CD38-HLA-DR+ CD4+ T cells (p<0.05), and a significant increase in the frequency of CD38-HLA-1 

DR- CD4+ T cells (p<0.001) were observed across all stimulation conditions (Figure 2A-E).  2 

3.4.3 Modulation of TLR-mediated CCR5 expression by BMS occurs only at the early 3 

time-point 4 

As CCR5 expression on CD4+ T cells is crucial for R5 tropic HIV infection, we sought to assess how 5 

the anti-inflammatory drugs IBF and BMS impacted on CCR5 expression following TLR agonist 6 

Figure 3: CCR5 expression on CD4+ T cells on day 3 prior to HIV exposure (A) or day 5 post HIV exposure 

(B) either treated with anti-inflammatory drugs ibuprofen (IBF, green) or betamethasone (BMS, blue) or left 

untreated (no AI, red) and then either left unstimulated or stimulated with PHA, LPS, R848 or Pam3CSK4. 

PHA was used at a final concentration of 10 μg/ml. TLR agonists were used at a final concentration of 2 

μg/ml. Anti-inflammatory drugs IBF and BMS were both used at a final concentration of 1 ug/ml. An ordinary 

one-way ANOVA with a Dunnett’s multiple comparisons test was performed to assess significant differences 

between AI conditions within each stimulation condition. Significance is displayed as * (p<0.05), ** (p<0.01), 

n in duplicate. 
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stimulations. Prior to HIV exposure, BMS downregulated CCR5 expression on CD4+ T cells in TLR 1 

(p<0.02) and PHA- -1.5% and 11.5% respectively, while IBF had 2 

no impact (Figure 3A). Following co-culture with HIV, BMS-mediated downregulation of CCR5 3 

following TLR stimulation was lost, while BMS-reduced CCR5 expression was observed in the 4 

-5 

(Figure 3B).  6 

3.4.4 BMS treatment potently reduces global cytokine and chemokine secretion 7 

Unsupervised hierarchical clustering analysis showed a pattern that overall, concentrations of all 8 

cytokines were reduced with BMS treatment compared to the untreated and IBF-treated conditions 9 

(Supplementary figure 5). Prior to HIV exposure (day 3), concentrations of IL-10 

increased by 0.45 Log10pg/ml with IBF treatment compared to the untreated control in the unstimulated 11 

- e TLR- (p<0.005) and 12 

PHA- -1.78 and 1.5 Log10pg/ml respectively (Figure 4A). 13 

Similarly, BMS significantly reduced IL- -6 (p<0.01), IL-14 

TNF- ntrol for all conditions (Figure 4B, C, D and F). 15 

Furthermore, IFN-16 

LPS- - -17 

Log10pg/ml respectively (Figure 4E). After HIV exposure (day 5), BMS treatment reduced IL-18 

-19 

0.98 Log10pg/ml respectively, but not the Pam3CSK4 condition, compared to the untreated control 20 

(Figure 4G). Consistent with the results prior to HIV exposure, the levels of IL- -6 21 

-22 

across all conditions (Figure 4H, I and L). Similarly, BMS dampened the production of IL-12(p70) in 23 

R848- - -24 

0.42 Log10pg/ml respectively, while IFN-25 

.0001) by 0.46 Log10pg/ml (Figure 4J and K).  26 

Similar to the pro-inflammatory cytokines, BMS significantly reduced IL- -27 

(p<0.05), MIP- -10 (p<0.005) production in all conditions compared to the 28 

untreated control, prior to HIV exposure (Figure 5A-D). Furthermore, MCP-1 was reduced by 2.12 29 

Log10pg/ml following BMS treatment in the unstimulated condition only (p<0.0001; Figure 5E). 30 

RANTES production was also significantly reduced following BMS treatment in all the TLR- 0.002) 31 
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and PHA- ons by 0.26-0.64 and 0.6 Log10pg/ml compared to the untreated 1 

controls (Figure 5F). Similarly, post HIV exposure, IL- -2 

significantly reduced with BMS treatment compared to the untreated control across all conditions 3 

(Figure 5G&H). Furthermore, MIP-4 

treatment compared to the untreated control in the TLR- and PHA-stimulated conditions after HIV 5 

-1 levels were significantly reduced with BMS 6 

treatment by 0.35 Log10pg/ml compared to the untreated control in the unstimulated condition 7 

-1 levels produced in response to R848 8 

stimulation by 0.17 Log10pg/ml compared to u -10 levels were 9 

Figure 4: Box and Whisker plots showing mean ± SD Log10 concentrations of soluble pro-inflammatory cytokines 

IL- A&G), IL- B&H), IL-6 (C&I), IL-12p70 (D&J), IFN- E&K) and TNF- F&L) from PBMCs either 

left untreated (no AI, red) or treated with anti-inflammatory drugs ibuprofen (IBF, green) or betamethasone (BMS, 

blue) and then either left unstimulated or stimulated with LPS, R848, Pam3CSK4 or PHA on day 3 prior to HIV 

exposure (A-F) and day 5 post HIV exposure (G-L). PHA was used at a final concentration of 10 μg/ml. TLR 

agonists were used at a final concentration of 2 μg/ml. Both IBF and BMS were used at 1 μg/ml. An ordinary one-

way ANOVA with a Dunnett’s multiple comparisons test was performed to assess significant differences between 

AI conditions within each stimulation condition. Significance is displayed as * (p<0.05), ** (p<0.01), *** 
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1 

increased in the Pam3CSK4- -2 

Log10pg/ml respectively with following BMS treatment compared to the untreated control (Figure 5J). 3 

Regulatory cytokines like IL-17 are secreted primarily by Th17 cells that maintain mucosal barrier 4 

homeostasis (86-88). Prior to HIV exposure, regulatory cytokines IL-17 and GM-CSF levels were 5 

reduced following BMS treatment compared to the untreated control in the unstimulated condition by 6 

Figure 5: Box and Whisker plots showing mean ± SD Log10 concentrations of soluble chemotactic cytokines 

IL-8 (A&G), MIP- B&H), MIP- C&I), IP-10 (D&J), MCP-1 (E&K) and RANTES (F&L) from 

PBMCs either left untreated (no AI, red) or treated with anti-inflammatory drugs ibuprofen (IBF, green) or 

betamethasone (BMS, blue) and then either left unstimulated or stimulated with LPS, R848, Pam3CSK4 or 

PHA on day 3 prior to HIV exposure (A-F) and day 5 post HIV exposure (G-L). PHA was used at a final 

concentration of 10 μg/ml. TLR agonists were used at a final concentration of 2 μg/ml. Both IBF and BMS 

were used at 1 μg/ml. An ordinary one-way ANOVA with a Dunnett’s multiple comparisons test was 

performed to assess significant differences between AI conditions within each stimulation condition. 

cate. 
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1.3 and 1.57 Log10pg/ml, and conditions stimulated with LPS by 0.83 and 0.7 Log10pg/ml, Pam3CSK4 1 

Figure 6: Box and Whisker plots showing mean ± SD Log10 concentrations of soluble haematopoietic cytokines 

IL-7 (A&E) and IL-17 (B&F), the growth factor GM-CSF (C&G) and the anti-inflammatory cytokine IL-10 

(D&H) from PBMCs either left untreated (no AI, red) or treated with anti-inflammatory drugs ibuprofen (IBF, 

green) or betamethasone (BMS, blue) and then either left unstimulated or stimulated with LPS, R848, 

Pam3CSK4 or PHA on day 3 prior to HIV exposure (A-D) and day 5 post HIV exposure (E-H). PHA was used 

at a final concentration of 10 μg/ml. TLR agonists were used at a final concentration of 2 μg/ml. Both IBF and 

BMS were used at 1 μg/ml. An ordinary one-way ANOVA with a Dunnett’s multiple comparisons test was 

performed to assess significant differences between AI conditions within each stimulation condition. 

(n  
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1 

Similarly, IL-10 levels were also significantly reduced with BMS treatment compared to the untreated 2 

control across all conditions (p<0.001; Figure 6D). Post HIV exposure, IL-17 and IL-10 levels were 3 

still reduced with BMS treatment compared to the untreated control i4 

TLR- -CSF levels were reduced with 5 

BMS treatment compared to the untreated control across all conditions (p<0.05; Figure 6G). 6 

Figure 7: Frequency of HIV infected CD4+ T cells (measured by p24 expression) either left untreated (no AI, 

red) or treated with anti-inflammatory drugs ibuprofen (IBF, green) or betamethasone (BMS, blue) and then 

either left unstimulated (A) or stimulated with PHA (B), LPS (C), R848 (D) or Pam3CSK4 (E). PHA was 

used at a final concentration of 10 μg/ml. TLR agonists were used at a final concentration of 2 μg/ml. Both 

IBF and BMS were used at 1 μg/ml. An ordinary one-way ANOVA with a Dunnett’s multiple comparisons 

test was performed to assess significant differences between AI conditions within each stimulation condition. 

Significance is displayed as * (p<0.05), *** (p<0.001) compared to the untreated (no AI) control. Sample 
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3.4.5 BMS-mediated reduction of HIV infection occurs in the unstimulated and LPS 1 

stimulated conditions 2 

Significant reductions of HIV infections were found in the BMS-3 

LPS- e untreated control 4 

(Figure 7A&C). No significant differences were observed with BMS treatment in the PHA-, R848- or 5 

Pam3CSK4-stimulated conditions (p>0.05; Figure 7B, D&E respectively), suggesting some differential 6 

interactions occurring in the unstimulated and LPS-stimulated conditions as opposed to the PHA-, 7 

R848- and Pam3CSK4-stimulated conditions with BMS. Additionally, no significant differences in 8 

HIV infection were observed with IBF treatment in any of the stimulation conditions (p>0.05; Figure 9 

7).  10 

 11 

3.5  Discussion 12 

Genital inflammation is associated with increased HIV acquisition risk (14, 16, 47), while immune 13 

quiescence is an established correlate of protection for reduced risk in HESN populations (64, 89, 90). 14 

Therefore, the utility of immunomodulatory drugs to augment immune quiescence is attractive to reduce 15 

HIV susceptibility. Using a PBMC-based culture system, this study aimed to investigate the effect of 16 

two licenced anti-inflammatory drugs; the glucocorticoid (GC) BMS and the non-steroidal anti-17 

inflammatory drug (NSAID) IBF, in limiting TLR-induced inflammatory cytokine productions, cellular 18 

activation and susceptibility to HIV infection. While IBF demonstrated only modest 19 

immunosuppression and no anti-inflammatory or anti-HIV activity in this model, BMS showed potent 20 

immunosuppression and anti-inflammatory effects, with reduced HIV infection. 21 

Consistent with our previous findings (77), TLR2 (Pam3CSK4) and TLR4 (LPS) stimulation did not 22 

induce significant CD4+ T cell activation, while TLR7/8 (R848) activation was moderately more 23 

effective. PHA induced the greatest cellular activation, likely due to activation of the T-cell receptor 24 

(TCR) on CD4+ T cells (91). All TLR agonists induced a strong pro-inflammatory cytokine response 25 

at day 3, with R848 inducing the strongest inflammatory response over time (77). PHA induced a similar 26 

pro-inflammatory profile with higher concentrations of growth factor, anti-inflammatory and adaptive 27 

responses, and chemokines (IP-10, MIP-  28 

With IBF treatment, minimal immunosuppressive effects were observed, with small reductions in 29 

frequencies of intermediately activated CD38+HLA-DR- CD4+ T cells in the unstimulated and 30 

Pam3CSK4 stimulated conditions. Furthermore, IBF treatment had no discernible impact on 31 

frequencies of T cells expressing CCR5. This lack of immunosuppression may be attributed to T cells 32 

being unable to produce prostaglandins, likely a result of non-functional cyclooxygenase (COX) 33 

enzymes (92, 93). However, conflicting data show NSAID-reduced T cell activation through the 34 
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inhibition of COX enzymes resulting in blocking of TCR dependent p38 MAPK activation (94). 1 

Therefore, IBF may have interfered with the signalling pathways involved in immune activation in the 2 

unstimulated and Pam3CSK4 stimulated conditions here. Lajoie et al., (2018) showed reduced levels 3 

of systemic and mucosal HIV target and Th17 cells in women treated with oral acetylsalicylic acid 4 

(ASA) daily for six weeks, while hydroxychloroquine (HCQ), mimicking the regime of ASA, reduced 5 

systemic CD4+CCR5+ and Th17 cells. Additionally, they showed that mucosal Th17 cells expressed 6 

lower CCR5 and CD69 following ASA treatment (68), highlighting that such commonly used NSAIDS 7 

may be effective in mitigating immune activation in vivo. IBF treatment had no effect on cytokine 8 

production here, in contrast to observations of reduced IL- -6 levels a human skin model (95) 9 

and similar findings of reduced systemic inflammatory cytokines with oral ASA and HCQ (68). 10 

Conversely, in human PBMCs, IBF enhanced TNF- -6 and IL- -1RA and IL-10 11 

(96), while ASA augmented IL-2 and IFN-12 

immune profiles associated with different drugs. IBF had no effect on HIV infection, regardless of the 13 

stimulation conditions whereas chloroquine (CQ), a NSAID, limited HIV replication in CD4+ T cells 14 

both in vitro and in vivo, through limiting DC-SIGN mediated viral transfer to CD4+ T cells (98). 15 

Unlike IBF, BMS had potent immunosuppressive and anti-inflammatory effects. CCR5 expression on 16 

CD4+ T cells was reduced by BMS prior to HIV-exposure in all stimulated conditions and the 17 

mechanisms underlying reduced CCR5 expression remains undefined. However, the effect of BMS 18 

reducing CCR5 expression in all TLR-stimulated conditions was lost after HIV exposure. Similarly, 19 

others also showed that GC treatment resulted in dramatic reduction of renal CCR5+CD3+ T cells (99). 20 

In contrast, upregulation of the chemokine receptor CCR2 (which binds MCP) was found on human 21 

monocytes with GC treatment, leading to increased HIV susceptibility (100). CCR2, like CCR5, has 22 

been shown to have functional importance for HIV infection and disease progression by acting as a co-23 

receptor for HIV (101-104). However, the heterogenous effects of BMS on CCR5 expression before 24 

and after HIV exposure was unexpected and the mechanisms underlying these differential effects need 25 

to be elucidated. Therefore, these findings necessitate the characterization of HIV co-receptor 26 

expression on target T cells especially if GC therapy is proposed as a means to mitigate HIV acquisition 27 

risk. BMS displayed potent immunosuppression and anti-inflammatory effects in all stimulation 28 

conditions, likely through the interference of gene transcription and signalling pathways (105-108). 29 

BMS was generally less effective with PHA-stimulation, likely due to robust TCR activation by PHA 30 

(109). In concordance with our data, human studies have shown that GCs effectively reduced 31 

inflammatory cytokines (110-113). In contrast, Frank et al., (2010) found that pre-treatment with GCs, 32 

prior to LPS challenge, augmented inflammatory cytokine production (TNF- - -6) (114). 33 

However, when GCs were administered post LPS challenge, the inflammation was supressed suggesting 34 

the temporal dynamics of anti-inflammatory action is likely to be important in determining their potency 35 

(114). These results suggest that there is differential sensitivity to GCs, which may be tissue or 36 
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compartment specific. Another postulate for the immunoregulatory mechanism of GCs is the up-1 

regulated transcription of anti-inflammatory genes, such as IL-10 via the GC receptor (115-117) and 2 

increased soluble IL-10 concentrations (112, 113). However, in our study, IL-10 production was 3 

reduced by BMS treatment, consistent with the global anti-inflammatory effects of GCs. BMS likely 4 

inhibited TLR-mediated induction of gene expression through NF- -1 blockade by the GC 5 

receptor (118, 119). GCs have been shown to impact HIV replication by interfering with viral 6 

transcription, mediated through the GC receptor (120). In the unstimulated and LPS-stimulated 7 

conditions only, BMS likely inhibited NF-8 

whereas R848 and Pam3CSK4 agonists likely use different signalling pathways (121), or have 9 

compensatory pathways with redundant functions. Despite the effective immunosuppression by BMS 10 

in the PHA condition, no impact on HIV infection was observed.  11 

Our model system has some limitations that need to be acknowledged (77). We used a PBMC model 12 

instead of a vaginal epithelial cell line or ex vivo samples such as cervical mononuclear cells or explants. 13 

Despite inherent deficiencies with this model, PBMCs are more biologically representative than cell 14 

lines, depleted or purified immune cell models or explants which are notoriously difficult to obtain and 15 

standardize  (49, 122, 123). PBMCs contain both peripheral and trafficked cells to or from tissues and 16 

the activation status of these cells correlated between these compartments (79). A further limitation was 17 

the lack of cellular activation and minimal HIV infection observed following TLR stimulation. In 18 

contrast, the PHA stimulated model showed higher HIV infection, as activated T cells are more 19 

efficiently and preferentially infected (42-44). However, strong inflammatory cytokine responses were 20 

induced by TLR agonists, highlighting their roles in initiating inflammation to drive immunity. In the 21 

genital tract, continuous TLR stimulation by pathogenic microbes drive immune activation and genital 22 

inflammation (59) which is associated with increased HIV risk (14, 124). To simulate similar conditions 23 

in a PBMC model, future experiments should include a TCR activator, such as anti-CD3 and anti-CD28 24 

beads, to mimic antigen presentation in combination with TLR stimulation to provide more robust 25 

immune activation. The TCR activated model may be more appropriate for testing of anti-inflammatory 26 

drugs for their effects on immunosuppression and subsequent HIV infection. A further limitation was 27 

despite the potent immunosuppression by BMS in the PHA condition, there were no reductions in HIV 28 

infections, and we postulate that BMS impacts HIV infection independently of immunosuppression. 29 

This concept is reflected by the reduced HIV infection with BMS in the LPS and unstimulated 30 

conditions. Insight into the action of BMS on the GC receptor and HIV transcription pathways, may 31 

give clarity into the mechanisms of reduced HIV infection in these two conditions. While IBF effects 32 

were inferior to BMS which we speculate may be related to the anti-inflammatory pathways each anti-33 

inflammatory drug targets, we did not measure levels of COX enzymes, prostaglandins or signalling 34 

proteins to verify possible mechanisms responsible for IBF’s relative inferior immunosuppressive and 35 

anti-inflammatory capabilities. While it would have been interesting to investigate in more depth the 36 
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temporal impact of anti-inflammatory drugs in relation to HIV co-culture, our study focussed on pre-1 

treatment with anti-inflammatory drugs prior to stimulation. In so doing we endeavoured to identify 2 

plausible drug candidates to mitigate genital inflammation in populations at increased risk for HIV 3 

acquisition. This approach has precedence given that glycerol monolaurate, a topically applied vaginal 4 

microbicide, reduced inflammation and prevented SIV infections in rhesus macaques (45, 76). Both 5 

BMS and IBF are also licenced as topical formulations (74, 75, 125, 126), making them attractive drug 6 

candidates. However, we acknowledge that long-term use of anti-inflammatory drugs do have unwanted 7 

and off-target adverse effects (127-130) that should be considered. Topical anti-inflammatory 8 

formulations may be subject to the same limitations of adherence that undermined topical PrEP (12). 9 

However, various HIV prevention options need to be explored to accommodate the varying and 10 

changing needs of the HIV affected communities. 11 

To our knowledge, this is the first study investigating the effects of NSAIDs or GC treatment on HIV 12 

infection using an in vitro model. Other studies have investigated the effects of these drugs on 13 

inflammation/immune activation and HIV-mediated immune activation/replication in disease 14 

progression. This study provides important information on NSAID and GC effects on TLR-mediated 15 

immune responses and HIV infection, as well as underscoring the need to interrogate the inflammatory 16 

signalling pathways to identify novel drug targets. Together, these data may inform on the use of anti-17 

inflammatory drug candidates as adjunctive prophylactic therapies in high risk populations for HIV. 18 
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3.10  Supplementary data 11 
  12 

13 

Supplementary Figure 1: Schematic diagram of the gating strategy used for analyses of flow cytometric data 
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 1 

Supplementary Figure 2: Representative dot plots of flow cytometric data of cellular activation, CCR5 expression and 

HIV infection of CD4+ T cells not treated with anti-inflammatory drugs (no AI) prior to HIV infection on day 3 (top 

box) and post HIV infection on day 5 (bottom box) from the Unstimulated, LPS, Pam3CSK4, R848 and PHA (left to 

right ordered) conditions. 
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 1 

Supplementary Figure 3: Toxicity profiles of PBMCs treated with Ibuprofen (IBF, green) or 

Betamethasone (BMS, blue) or left untreated (no AI, red) and either left unstimulated (A) or stimulated 

with PHA (B) or TLR agonists LPS (C), R848 (D), or Pam3CSK4 (E) at day 3 prior to HIV infection. 

PHA was used at a final concentration of 10μg/ml. TLR agonists were used at a final concentration of 

2μg/ml. Anti-inflammatory (AI) drugs IBF and BMS were both used at a final concentration of 1ug/ml. 

A repeated measures two-way ANOVA with Dunnett’s multiple comparisons test was performed to 

assess significant differences between AI conditions within each stimulation condition. Significance is 

displayed as * (p<0.05), ** (p<0.01), *** (p<0.001) compared to the untreated (no AI) control. Sample 
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 1 

Supplementary Figure 4: Toxicity profiles of PBMCs treated with Ibuprofen (IBF, green) or Betamethasone 

(BMS, blue) or left untreated (no AI, red) and either left unstimulated (A) or stimulated with PHA (B) or TLR 

agonists LPS (C), R848 (D), or Pam3CSK4 (E) at day 5 post HIV infection. PHA was used at a final 

concentration of 10μg/ml. TLR agonists were used at a final concentration of 2μg/ml. Anti-inflammatory (AI) 

drugs IBF and BMS were both used at a final concentration of 1ug/ml. A repeated measures two-way ANOVA 

with Dunnett’s multiple comparisons test was performed to assess significant differences between AI 

conditions within ea
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 1 

Supplementary Figure 5: Unsupervised hierarchical cluster heat map analysis of 28 cytokines measured in cell 

culture supernatants on day 3 (yellow) and day 5 (brown) from the unstimulated (red), PHA (blue), LPS 

(green), Pam3CSK4 (purple) or R848 (orange) conditions either left untreated (light green) or treated with 

anti-inflammatory drugs ibuprofen (IBF, light orange) or betamethasone (BMS, light blue). PHA was used at 

a final concentration of 10 μg/ml. TLR agonists were used at a final concentration of 2 μg/ml. Both IBF and 

BMS were used at 1 μg/ml. In this heatmap, the redder the colour depicts the higher concentration, while the 

bluer the colour the lower the concentration.  
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3.11 Bridging chapter 1 

The glucocorticoid drug, betamethasone, reduced HIV infection of CD4+ T cells in the TLR4 (LPS) 2 

stimulated condition, but not in the other stimulation conditions (TLR1/2, TLR7/8 and PHA). This was 3 

unexpected as the immunological profiles between TLR-stimulation conditions were similar, with 4 

potent immunosuppression across all stimulation conditions. These results suggest that it is not the 5 

suppression of immune activation and inflammation alone that is conferring this protective effect 6 

observed in this model. Rather these results suggest that the specific signalling pathways that were 7 

activated by TLR4 stimulation were affected by BMS treatment, thereby reducing productive HIV 8 

infection. These data highlight the complex nature of the inflammatory response, and how anti-9 

inflammatory drugs may impact on HIV susceptibility apart from their traditional immunosuppressive 10 

effects. However, we know that inflammation and immune activation increase HIV acquisition risk, as 11 

well as increasing the likelihood of HIV disease progression to AIDS. Therefore, we investigated a 12 

variety of immunomodulatory products that could be used to modulate inflammation in order to reduce 13 

HIV susceptibility and slow HIV disease progression. This review entitled “Inflammation, HIV and 14 

immune quiescence: leveraging immunomodulatory products to reduce HIV susceptibility” has 15 

been published on the 27th October 2020 in the Hindawi journal AIDS Research and Treatment 16 

for review (doi.org/10.1155/2020/8672850). 17 

  18 
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4.1  Abstract 12 

The relationship between inflammation and HIV has been a focus of HIV research over the last decade. 13 

In HIV infected individuals, HIV-associated immune activation is associated with disease progression 14 

to AIDS. While genital inflammation has been shown to significantly increase the risk of HIV 15 

acquisition and transmission, immune correlates for reduced HIV risk remain less well defined. In HIV-16 

exposed seronegative individuals, immune quiescence was the phenotype that characterised reduced 17 

risk for HIV infection. Immune quiescence was defined by specific targeted, highly regulated immune 18 

responses that do not cause overt inflammation or immune activation. Immune quiescence was also 19 

shown in sooty mangabeys, the natural host for SIV that do not progress to AIDS. Targeted management 20 

of inflammation, therefore, is a plausible strategy to mitigate HIV acquisition risk, and slow HIV disease 21 

progression. Many pharmaceutical products such as non-steroidal anti-inflammatory drugs and 22 

glucocorticoids are commonly used to treat inflammation. Furthermore, many have been formulated 23 

into topical products. However, the prolonged use of these pharmaceutical drugs, is often associated 24 

with adverse effects, both systemically and to a lesser extent topically. Natural products are also a viable 25 

option as they have less adverse effects and have been shown to have anti-inflammatory properties. The 26 

proposed products could also be used in combination with either ART for treatment of HIV disease or 27 

pre-exposure prophylaxis for HIV prevention. This review reaffirms the links between inflammation 28 

and HIV disease progression, the protective effect of an immune quiescent environment, and possible 29 

pharmaceutical and natural products that could be used either alone or in combination to manage 30 

inflammation. 31 
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4.2  Introduction 1 

Human immunodeficiency virus (HIV) which causes acquired immunodeficiency syndrome (AIDS), is 2 

a global epidemic affecting approximately 37.9 million people (range 32.7–44 million people) with an 3 

estimated 1.7 million (range 1.4–2.3 million) new infections for the year of 2018 [1]. Currently, sub-4 

Saharan Africa (SSA) is the worst affected region with 20.6 million infected individuals (range 18.2–5 

23.2 million), with 800 000 new infections in the region during 2018 [1]. Furthermore, young women 6 

(15-24 years) are of particular concern in SSA as they account for over half of new HIV infections in 7 

this region [2]. The roll out of antiretroviral (ARV) drugs for infected populations has significantly 8 

altered the trajectory of the disease and the epidemic, transforming it into a manageable chronic 9 

condition for the majority of infected individuals [3]. The use of ARVs as Pre-Exposure Prophylaxis 10 

(PrEP) for prevention, has shown promise in men who have sex with men (MSM) populations taking 11 

oral PrEP [4-7]. However, variable degrees of success with oral prep have been found in heterosexual 12 

populations [8-11]. The use of PrEP topically, in formulations such as microbicides gels and vaginal 13 

rings among others, has also shown some promise [12, 13].  However, despite the relative successes of 14 

these PrEP trials, behavioural factors like PrEP adherence [14] and biological factors such as genital 15 

inflammation [15] and a dysbiotic vaginal microbiome [16] have been shown to undermine these 16 

prevention strategies [17]. This review summarizes our current knowledge on the interplay between 17 

HIV and inflammation and the causes and consequences of inflammation. We also provide insight into 18 

immune quiescence as a protective factor against HIV acquisition with special emphasis on the putative 19 

use of pharmaceutical or natural products toward inducing a quiescent genital immune environment. 20 

4.3  Inflammation and HIV 21 

Inflammation has been associated with an increased risk of HIV transmission and acquisition [18-21]. 22 

In HIV-infected individuals, increased pro-inflammatory cytokines and immune activation directly 23 

correlated with increased HIV viral loads in genital secretions [20-23], thereby increasing the 24 

probability of onward transmission. Inflammatory cytokines: tumour necrosis factor- -25 

interleukin-1 (IL- -26 

factor, which bind to the HIV promoter region [24]. Furthermore, in a non-27 

of simian immunodeficiency virus (SIV) infection, higher monokine induced by interferon-28 

interferon- -induced protein 10 (IP- ositively correlated with 29 

more- -1 30 

replication in an ex vivo human cervical tissue model [26]. In women increased cervical concentrations 31 

- - -6 and IL-8 were found who were detectably shedding HIV compared to those that 32 

were not detectably shedding HIV in the genital tract [27]. Furthermore, monocyte chemoattractant 33 

protein 1 (MCP-1) was found to be positively correlated with viral loads, as well as promoting X4-34 

tropic HIV infection of resting CD4+ T cells [28]. 35 
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There are various mechanisms whereby inflammation creates a conducive environment for HIV 1 

acquisition. In HIV-uninfected individuals, inflammation resulted in recruitment of HIV target cells and 2 

epithelial barrier damage [29-31]. Moreover, immune activation and increased cytokines were directly 3 

associated with increased HIV acquisition risk in both the blood [32, 33], and the genital tract [19, 34]. 4 

pithelial cells secreted increased pro-inflammatory 5 

cytokines upon exposure to HIV- - -6 

reduced epithelial barrier function, thereby increasing permeability of the mucosal barrier [35-40]. Li 7 

et al., (2009) described a process for target cell recruitment; macrophage inflammatory protein (MIP)-8 

-8 expression recruit plasmacytoid dendritic cells (pDCs) which in turn secrete MIP-9 

MIP- sus macaque model, they showed that 10 

inflammation and recruitment of target cells to the genital tract were important events for seeding and 11 

forming foci of SIV infection following vaginal challenge [41]. A study by Masson et al., (2015) showed 12 

that elevated genital tract chemotactic cytokines MIP- - -8 and IP-10 which formed part 13 

of the definition for genital inflammation, conferred a more than three-fold increased risk for HIV 14 

acquisition [19]. Similarly, a follow-up study by Liebenberg et al., (2017) comparing plasma and genital 15 

tract cytokine levels showed that increased mucosal concentrations of IP-10, MIP- -8 and 16 

monocyte chemoattractant protein (MCP)-1 were associated with increased HIV acquisition risk [18]. 17 

MIP- -8 are important chemokines that facilitate infection through their chemotactic activity 18 

involved in the recruitment of HIV target cells [42, 43]. Additionally, IP-10, MIP- -19 

also been shown to recruit HIV target cells [44-47]. The MIP- -CCR5 interaction was also shown to 20 

activate the JAK/STAT signalling pathway which is also key to initiating cellular proliferation [48], 21 

and the inflammatory cascade [49, 50]. 22 

4.4  Causes of genital inflammation  23 

Various biological and behavioural factors have been implicated in causing inflammation in the genital 24 

tract. Biological factors include sexually transmitted infections (STIs) and a dysbiotic vaginal 25 

microbiome. Risk for HIV acquisition has been associated with presence of pre-existing STIs [51-53], 26 

likely due to the inflammatory and immune responses against the causative pathogens [54-56]. 27 

Furthermore, asymptomatic STIs can further exacerbate inflammation through elevated genital tract 28 

inflammatory cytokine profiles and increase the risk for HIV acquisition [57]. Common STIs associated 29 

with increased HIV acquisition risk include the Herpes simplex virus (HSV) [58, 59], human 30 

31 

Trichomonas vaginalis [64, 65]. 32 

A dysbiotic vaginal microbiome, commonly referred to as bacterial vaginosis (BV), occurs when there 33 

is a shift from a Lactobacillus dominant to a non-Lactobacillus dominant genital mucosal environment 34 

with highly diverse bacterial communities [66]. This dysbiosis often leads to an inflammatory response 35 
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and subsequent increase in the permeability of the mucosal epithelia [67-69], thus increasing the risk of 1 

HIV acquisition [70-74]. Furthermore, a recent study demonstrated that the efficacy of the topical 1% 2 

tenofovir gel used in the CAPRISA 004 trial was undermined in women who had a non-lactobacillus 3 

dominated microbiome [16]. This decreased efficacy was attributed to the direct metabolism of 4 

-lactobacillus dominated vaginal 5 

microbiome [16, 75]. 6 

Vaginal practices have been noted in certain populations of women, which include practices for intimate 7 

female hygiene [76] and to enhance sexual pleasure [77]. These practices include washing, douching, 8 

and insertion of products, among others [78]. While no studies have been powered to investigate the 9 

link between vaginal practices and HIV risk, and no compelling evidence [79, 80], there is however, 10 

biological plausibility [81]. Studies have shown that women who practice various forms of vaginal 11 

hygiene may impact the vaginal microflora [82, 83], which could lead to a dysbiotic microbiome [84, 12 

85] and a subsequent inflammatory response in the genital tract [67, 68, 86]. Furthermore, although 13 

there is no direct evidence, inserting products into the vaginal tract is likely to compromise the mucosal 14 

barrier through causing micro abrasions for easier HIV viral translocation. 15 

Together, STIs, a dysbiotic vaginal microbiome and vaginal practices have been shown as major factors 16 

driving inflammation in the FRT. However, these factors alone are not solely responsible for causing 17 

genital inflammation, and further studies are warranted to define the complex immunology of this 18 

vulnerable site. 19 

4.5  HIV-Exposed Seronegative (HESN) 20 

The risk of HIV infection is heterogenous across a population. Individuals that are continually exposed 21 

to HIV without becoming productively infected over a long period of observation are called HIV-22 

l phenotypes that 23 

have been posited as immune correlates of protection against HIV [87-24 

-95]. One 25 

particular genetic polymorphism was the delta 32 mutation in the CCR5 encoding region in the genome 26 

[96-98]. Other correlates of protection discovered were the presence or induction of particular immune 27 

responses [99] of both innate [100-104] and adaptive immunity [105-109], that were able to control 28 

acute infection by either neutralizing the virus [110-112] or killing infected cells [113-115] before viral 29 

propagation could occur. An additional correlate for reduced HIV susceptibility in vitro showed 30 

significantly greater sterol metabolism, possibility related to the induction of type-1 interferon genes, 31 

32 

responses, which are generally triggered through TLR signalling [117], have increased the interest in 33 

using TLR agonists as adjuvants in vaccine research [118, 119]. However, it should be noted that there 34 
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1 

protection, which makes the comparisons across studies difficul2 

3 

studied extensively since 1984 [120]. Reduced immune activation and inflammation, commonly termed 4 

as immune quiescence, was iden5 

correlate of protection for HIV acquisition has largely stemmed from biologic and behavioural studies 6 

on this particular cohort. 7 

4.6 Immune quiescence and HIV risk 8 

The concept of immune quies9 

mangabeys, the natural host for SIV. Despite these animals being infected with SIV, with high levels 10 

of viral replication and depletion of gut CD4+ T cells, sooty mangabeys do not progress to AIDS [121]. 11 

12 

lower Th17 cells [124], and better management of immune activation through IL-10 and regulatory T 13 

cell (Treg) upregulation [121] attributed to their quiescent state despite ongoing SIV replication and 14 

high viral loads. 15 

Multiple studies have reported reduced immune activation in HIV-exposed but seronegative individuals 16 

[89, 104, 125-128] underscoring the importance of modulating inflammation and immune activation or 17 

having an immune quiescent environment in an effort to minimize the risk of acquiring HIV. Reduced 18 

immune activation, defined by CD69 expression on CD4+ and CD8+ T cells, was found to be a correlate 19 

o HIV-uninfected CSWs, and this reduced immune activation 20 

21 

MSM cohort, low frequencies of CD4+ and CD8+ T cells expressing HLA-DR, CD38, CD70 and Ki67 22 

were found [131]. Similarly, the uninfected partners of serodiscordant couples, had reduced expression 23 

of CD38, HLA-DR and CCR5 on CD4+ T cells [132, 133], the target cells for HIV infection. Our in 24 

vitro data show that PBMCs stimulated with LPS were less susceptible to HIV infection than the 25 

unstimulated negative control [134]. LPS stimulation elicited a strong cytokine response with very 26 

limited immune activation (defined by CD38 and HLA-DR expression on CD4+ and CD8+ T cells) 27 

[134], partially reminiscent of an immune quiescent environment. These data highlight the potential of 28 

TLR agonists to induce protective immune responses, however, the continued management of these 29 

immune responses will be necessary to avoid overt inflammation. 30 

Furthermore, molecular studie31 

32 

CSWs compared to HIV-uninfected susceptible CSWs [127, 135]. The most under expressed genes 33 

iden34 
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replication [127, 135]. Additionally, McLaren et al., (2010) found that unstimulated PBMCs from 1 

-uninfected susceptible CSW PBMCs, 2 

3 

are not immunosuppressed, but rather have lower baseline expression of cytokines. Similarly, even post 4 

PBMC stimulation, lower levels of IL-17 and IL-5 

6 

T cells and play an important role in homeostasis of mucosal tissues [136-138]. However, as essential 7 

as Th17 cells are for mucosal barrier integrity, they are preferentially hijacked for HIV infection [139, 8 

140].  The duality of Th17 cells have been shown to be important targets and are particularly susceptible 9 

l [141, 142], while remaining susceptible to preferential depletion in 10 

HIV-infected individuals [143, 144].  11 

12 

will be important in determining HIV risk. In the study by Chege et al., (2012), cervical mononuclear 13 

cells (CMCs) expressed lower IL-17 and IL-22 after stimulation, suggesting that a blunted TH17 14 

response [125] maybe protective against HIV infection. Furthermore, reduced expression of pattern 15 

16 

Despite this, these CMCs produced a strong anti-viral responses post TLR7/8 stimulation, suggesting 17 

18 

against HIV [104]. Lajoie et al., (2012), investigating differences betw -infected 19 

CSWs and HIV- -20 

inflammatory cytokine IL- - -10. Furthermore, the 21 

reduced cytokine expression correlated w22 

individuals, suggesting unique expression patterns of mucosal immune mediators which creates an 23 

-10 bind to CXCR3 24 

which induces the recruitment of activated T cells [89], suggesting that these two chemokines play an 25 

important role in modifying HIV risk. These studies describe immune quiescence in the mucosal 26 

compartment, which leads to reduced recruitment of HIV target cells and therefore reduced HIV 27 

infection risk. Therefore, inducing an immune quiescent mucosal environment is a biologically 28 

plausible strategy to reduce risk of HIV infection. We suggest that the use of immunomodulatory 29 

products, possibly in combination with ARVs after thorough and rigorous scientific and clinical trial 30 

testing, may be an additional strategy to incorporate into the currently limited HIV prevention options. 31 

4.7 Immunomodulatory products 32 

As genital inflammation is regarded as a significant risk factor for HIV infection, and immune 33 

quiescence was attributed as a correlate of protection in certain populations, products that modulate 34 

inflammation are attractive additive HIV prevention options. Increased co-morbidities in HIV-infected 35 
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individuals [145, 146], warrant the use of anti-inflammatory therapies to stem HIV-associated 1 

inflammation and immune activation [147-151] to ameliorate disease. 2 

4.7.1 Antiretroviral drugs 3 

Interestingly, ARVs have been associated with reduced immune activation. In a rhesus macaque model 4 

of rectal SHIV infection, monkeys that were given oral PrEP had reduced levels of cytokines: IL-15, 5 

IL-18 and IL-RA [152]. Healthy individuals taking daily PrEP for 30 days had lower systemic CD8 T 6 

cell activation (CD38/HLA-DR co-expression) compared to their baseline before PrEP initiation, 7 

however cytokines and other markers of inflammation in the blood were not affected [153]. In high-8 

risk heterosexual HIV serodiscordant African couples, daily oral PrEP also did not modulate HIV-9 

specific immune responses [154]. There may, however, be a heterogenous effect of ARVs on immunity 10 

depending on exposure to HIV or HIV infection itself. 11 

4.7.2 Non-Steroidal Anti-Inflammatory Drugs 12 

-Steroidal Anti- -inflammatory drugs 13 

14 

approximately 5-10% of prescribed medication each year 15 

through the inhibition of the cyclooxygenase (COX) enzymes which convert arachidonic acid into 16 

prostaglandins [157]. Prostaglandins in turn exhibit varied and seemingly opposite functions such as 17 

induction and resolution of inflammation [158]. 18 

4.7.2.1  Aspirin 19 

20 

21 

approved and is also readily available as an over the counter drug. ASA is commonly used to treat 22 

headaches [160], to prevent of cardiovascular disease [161-163] and to reduce the risk of breast [164] 23 

and colorectal cancer [165].  24 

A study of daily oral Aspirin® in low-risk Kenyan women found reduced the levels of systemic and 25 

mucosal HIV target CD4+ T cells and Th17 cells, as well as reduced systemic inflammatory cytokines 26 

[166]. Even in HIV-infected virologically suppressed patients, low-dose Aspirin® was shown to reduce 27 

platelet count, T cell and monocyte activation [167], thereby reducing the risk of non-AIDS related 28 

morbidities, such as cardiovascular diseases [145].  29 

4.7.2.2 Ibuprofen 30 

31 

antipyretic properties [168, 169]. IBF has similar efficacies as ASA for the treatment of conditions such 32 

as headaches [170]. Furthermore, IBF is used for the treatment of various inflammatory, 33 

musculoskeletal and rheumatic disorders [171]. IBF has also been shown to increase the efficacy of 34 
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1 

the transport of -2 

3 

effective for treating the inflammatory condition vulvovaginitis, and has a superior action compared to 4 

.  5 

4.7.2.3 Indomethacin 6 

7 

HIV replication [175, 176]. In the presence of indomethacin, b8 

indoprofen, IBF or naproxen), MT-4 cells (CD4+ T cell line) displayed reduced HIV replication, 9 

measured by ELISA as reduced p24 production [175]. Furthermore, indomethacin suppressed HIV 10 

replication further when used in combination with an antiviral plant protein called MAP30 [176]. 11 

12 

proteins, thus reducing the efflux of these drugs out of cells [172, 173]. 13 

4.7.2.4 Chloroquine and Hydroxychloroquine 14 

The use of Chloroquine (CQ) and Hydroxychloroquine (HCQ) have been investigated fairly extensively 15 

in HIV-infected populations as well. Both of these drugs, taken orally, have been shown to significantly 16 

reduce HIV associated immune activation [148-151]. Furthermore, chloroquine was also shown to 17 

directly limit HIV replication and DC- in vitro 18 

and in vivo [177].  19 

Daily HCQ use was shown to reduce the numbers of circulating CD4+CCR5+ and Th17 cells, while 20 

mucosal Th17 cells expressed lower CCR5 and CD69 [166]. Oral HCQ administration reduced 21 

systemic, but not mucosal, IP-10 and IL-2RA [166]. Furthermore, an HCQ vaginal implant was tested 22 

in a rabbit and mouse model, and its immunomodulatory effects were tested in the presence of 23 

nonoxynol-24 

25 

HIV risk through causing inflammation [178-180]. In contrast, the HCQ implant alone was able to 26 

reduce the recruitment of immune cells, improve mucosal epithelial integrity, reduce T cell activation 27 

and reduce inflammatory cytokine production [181] suggesting that an implant containing an anti-28 

inflammatory drug may reduce the risk of HIV infection. 29 

4.7.3 Glucocorticoids 30 

31 

l glands and other 32 

tissues [182] as hormonal compounds and are essential to everyday life to regulate and support 33 

34 
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gene transcription, resulting in impaired signalling pathways [184, 185], as well as through non-1 

genomic effects such as interactions with cellular membranes and receptors to initiate or inhibit 2 

3 

mechanism for immunomodulation. A major hallmark of AIDS is the steady decline in the numbers of 4 

CD4+ T cells through a combination of cellular apoptosis, exhaustion, and subsequent immune system 5 

dysfunction [188]. Triggering of the glucocorticoid induced tumour necrosis factor receptor family 6 

7 

8 

progression by limiting CD4+ T cell loss.  9 

4.7.3.1 Dexamethasone 10 

Dexamethasone (DEX) is a commonly used glucocorticoid. DEX has been shown to reduced cytokines 11 

associated with a TH1 response, with concomitant increases cytokines associated with a TH2 response 12 

in human PBMCs [190]. Apart f13 

additional posttranscriptional regulatory effects [191, 192], enhancing its immunomodulatory effects. 14 

Furthermore, DEX has also been shown to reduce arachidonic acid derived from the cellular membranes 15 

of epithelial cells [193], as well as suppression of COX-2 and prostaglandin E2 expression [194], 16 

highlighting the additional immunomodulatory effects of this drug. Similar to indomethacin, DEX has 17 

shown to inhibit HIV replication in an MT-4 cell line, an effect potentiated by concurrent MAP30 18 

treatment [176]. DEX also suppressed the HIV promoter region, thus inhibiting viral transcription and 19 

subsequent replication [195]. However, DEX inhibited the killing of HIV infected CD4+ T cells by 20 

macrophages, mediated through antibody dependent cellular cytotoxicity, in PBMCs from both HIV 21 

infected and uninfected individuals [196], highlighting that DEX, and likely most glucocorticoids, can 22 

be overtly immunosuppressive and dampen protective responses too.  23 

4.7.3.2 Betamethasone  24 

25 

used topically, and these topical formulations have been around for years [197]. In a mouse model, 26 

- -  - -17, IL-22 and IL-13 induced by 27 

TLR7/8 stimulation [198]. Similarly, a topical beclomethasone dipropionate inhibited allergen-induced 28 

T cell production of IL-3, IL- -CSF [199]. Data from our group shows that BMS was potently 29 

immunosuppressive in human PBMCs stimulated with TLR agonists LPS, R848 and Pam3CSK4 and 30 

the mitogen PHA, and even in our unstimulated condition (R Cromarty, unpublished results). 31 

Furthermore, despite global immunosuppression, BMS significantly reduced HIV infected CD4+ T 32 

cells in the unstimulated and LPS stimulated conditions, but not in the R848, Pam3CSK4 or the PHA 33 

conditions (R Cromarty, unpublished results). These results suggest that it may be prudent to understand 34 
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the inflammatory response at the gene transcription level to understand potential drug targets which 1 

lead to the discovery and formulation of appropriate drugs.  2 

4.7.3.3 Prednisolone 3 

-associated immune 4 

activation to slow the progression to AIDS [200]. The use of prednisolone has been shown to reduce 5 

HIV viral loads and the chemokine MCP-1 [201], as well as HIV associated immune activation [202]. 6 

Furthermore, prednisolone slows the loss of CD4+ T cells and inhibits apoptosis of activated CD4+ T 7 

cells in ARV treated patients and during structured therapy interruption [203-205], hindering the 8 

progression to AIDS. Conversely, prednisolone treatment in HIV infected ARV treatment naïve patients 9 

showed no effect on disease progression with continued high viral loads despite reduced immune 10 

activation, likely due to increased target CD4+ T cells supporting ongoing viral replication [206]. 11 

4.7.4 Natural Compounds 12 

Anti-inflammatory drugs do have unwanted and off-target adverse effects [207, 208]. Chronic use of 13 

14 

15 

and metabolic disease [215] and also neurodegeneration [216]16 

treatments have dramatically less common adverse effects, systemic effects have been reported with 17 

continued use [217, 218], especially in elderly patients [219]. Mucosal surfaces being more permeable 18 

than skin, are especially susceptible to potential adverse events [220]. Therefore, natural products that 19 

may have minimal, if any side effects, either in combination or alone may provide an alternative for 20 

certain indications. Three such products are discussed below as these have already been formulated for 21 

topical use and have shown promising results from in vitro and animal studies. 22 

4.7.4.1 Vitamin D 23 

Vitamin D deficiency has been associated with a myriad of diseases such as cardiovascular disease, 24 

cancers, chronic lung disease, diabetes and autoimmune diseases in addition to its well-known role in 25 

reduced bone homeostasis [221, 222]. Vitamin D has numerous physiological effects on the immune 26 

system [223] as its primary active metabolite is a steroid hormone [224]. Supplementation with the 27 

active compound of Vitamin D, calcitriol, has proven to be effective in preventing both the initiation 28 

and progression of various autoimmune diseases in humanized mice models [225-227]. Vitamin D is 29 

available as a topical formulation to treat psoriasis [228]. Vitamin D analogues are known to upregulate 30 

Th-31 

global immunosuppression. Combination therapies utilising BMS and another vitamin D analogue, 32 

Calcipotriol (CAL), were shown to be highly and more effective for treating psoriasis than BMS 33 

monotherapy alone [230].  34 
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Patients with vitamin D deficiency display a similar immune dysfunction profile to that of HIV infected 1 

patients. A hallmark of HIV disease progression is dysregulated immune activation [231]. Since 2 

Vitamin D has immunoregulatory properties [223], vitamin D supplementation may be a suitable 3 

adjunctive therapy to slow disease progression and possibly lower inflammation and immune activation 4 

to limi5 

in progress to assess the impact of Vitamin D supplementation on HIV latency. Furthermore, the 6 

association between the use of certain ARVs and reduced vitamin D levels [231], highlights the need 7 

for further studies to identify mechanisms for Vitamin D depletion in HIV infected populations on 8 

ARVs. These data may be important at a public health level for vitamin D supplementation into ARV 9 

regimens in HIV endemic populations. 10 

4.7.4.2 Glycerol Monolaurate 11 

The most successful non-12 

commonly used in cosmetic products. Two studies in SIV Rhesus macaque models demonstrate the 13 

infection [41, 232]. Two mechanisms of action were identified; firstly, 14 

15 

pore formation and T cell activation [233- lling and function 16 

[237] and inhibits cytokine and chemokine production thereby preventing the recruitment and activation 17 

of HIV target cells, important preceding events for establishment of SIV infection [41]. Furthermore, 18 

 19 

two microbes are associated with BV [66] and subsequent inflammation in the genital tract [54, 67, 68], 20 

and did not impact on the Lactobacilli sp. [238], the bacterial species generally associated with a healthy 21 

-22 

with its low side effects profile and its ability, at least in preclinical studies, to prevent SIV infections, 23 

is an attractive candidate for topical formulation as an HIV prevention modality. 24 

4.7.4.3 Lactic acid 25 

Lactic acid (LA) is a naturally occurring compound commonly found in the female genital tract that is 26 

produced by Lactobacillus species [241, 242]. The amount of LA depends on the dominance of the 27 

Lactobacillus species. A vaginal microbiome that is dominated by Lactobacillus species, with low 28 

abundance of microbial diversity, are often termed a “healthy” vaginal microbiome [243]. Research has 29 

been focussed on the role that LA plays in the female reproductive tract. Both the L and D isomers of 30 

LA have potent anti-inflammatory effects, with suppressed expression of inflammatory cytokines IL-31 

-6, IL- - - -inflammatory 32 

cytokine IL-1RA from cervicovaginal epithelial cells, even in the presence of TLR stimulation and 33 

seminal plasma [244]. Furthermore, LA has been shown to inactivate HIV in vitro, with the L- isoform 34 

more potent than the D- isoform, with this effect not solely due to pH [245]. Similarly, this anti-viral 35 
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effect of LA has been shown from clinical samples, whereby cervicovaginal fluid from women with 1 

lactobacillus-dominated microbiomes was shown to inactivate HIV ex vivo [246]. 2 

Furthermore, topical LA is versatile and is used for the treatment of various skin and oral complications 3 

such as acne vulgaris, melanogenesis and recurrent aphthous ulcerations respectively [247-250]. An 4 

over the counter LA containing vaginal douche was assessed for its impact on vaginal microbiota, with 5 

adverse findings of ~ three-fold-increased risk for acquiring diverse vaginal microbial species through 6 

douching with this product during menses [251]. However, the diverse and dysbiotic vaginal 7 

microbiome may arise through a combination of douching [83] and menses [252], and may not be the 8 

effect of LA itself, as the majority of the women in this study had a Lactobacillus dominant vaginal 9 

microbiome at the start of the study [251]. An LA based vaginal gel is also currently under investigation 10 

for its effectiveness in treating BV compared to the current standard-of-care, Metronidazole [253]. As 11 

there is a high recurrence rate of BV after Metronidazole treatment, a Lactobacillus crispatus containing 12 

vaginal gel used post Metronidazole treatment was effective in preventing BV recurrence [254]. 13 

4.7.4.4 Alternative natural products 14 

There are many other natural products that could be considered as possible adjunctive therapy due to 15 

their anti-inflammatory effects. Curcumin, a curcuminoid contained in turmeric, is one such natural 16 

product. Curcumin has shown potent anti-inflammatory and anti-microbial effects [255-258], as well 17 

as anti-viral activity against HIV-1 and HSV-18 

shown to display anti-inflammatory effects [260-262]. Similarly, consistent with the growing global 19 

acknowledgement of medicinal properties of Cannabis [263-265], this plant has been shown to have 20 

anti-inflammatory properties [266], mainly attributed to the cannabinoid metabolites contained within 21 

the plant [264, 267-270]. Cannabis was found to reduce the level of circulating CD16+ monocytes as 22 

well as levels of IP-10, compared to individuals who did not use cannabis [271]. Similarly, heavy 23 

cannabis use in HIV-infected individuals was associated with reduced frequencies of activated CD4+ 24 

and CD8+ T cells, intermediate and non-classical monocytes and cytokine producing antigen presenting 25 

cells [272], highlighting the immunomodulatory potential of cannabis in preventing inflammation and 26 

immune activation. As attractive as these products may be in modulating inflammation (based largely 27 

on in vitro data), their safety and side effects have to be rigorously, scientifically tested. 28 

4.8 Conclusion 29 

acquisition, although the causes of genital 30 

inflammation and exact biological mechanisms need to be further defined. Inflammation leads to the 31 

recruitment and activation of CD4+ T cells, which serve as target cells for HIV infection, with a 32 

concomitant disruption of the mucosal barrier allowing for easier viral translocation. HIV replicates 33 

more efficiently in activated target cells. Conversely, in the era preceding ARVs and PrEP, immune 34 
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quiescence has been identified as an immune correlate of protection against HIV infection in some high-1 

risk populations. The use of anti-inflammatories to reduce HIV transmission is therefore not a new 2 

concept and dampening inflammation to induce an immune quiescent phenotype in high risk 3 

populations is attractive as adjunctive therapy in combination with PrEP, or in areas where PrEP access 4 

is limited. Therefore, the purpose of this review was to reaffirm the links between inflammation and 5 

increased HIV risk, immune quiescence and HIV, and to propose products that may be used to induce 6 

immune quiescence to reduce the risk of HIV acquisition. Many pharmaceutical anti-inflammatory 7 

drugs have known adverse effects, therefore we also proposed natural products that may be used either 8 

in combination or alone to mitigate HIV risk by reducing genital inflammation. However, inflammation 9 

is a necessary and protective response against invading pathogens and damaged tissues. The modulation 10 

of specific immune responses that initiate and drive the inflammatory cascade may be key in preserving 11 

a certain threshold of inflammation that is protective. Therefore, interrogating the cellular 12 

transcriptional signalling pathways during inflammation will be an important first step in understanding 13 

which immunomodulatory products would be appropriate to use to mitigate overt inflammation, while 14 

allowing protective inflammatory responses to continue. 15 
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5 Chapter 5: Synthesis 1 

This synthesis chapter comprises of three main sections:  2 

The first part covers the effect of various TLR agonists on immune activation and inflammation 3 

pathways and their effects on HIV infection of target CD4+ T cells. The second part covers the effects 4 

of two anti-inflammatory drugs in modulating the various TLR-mediated immune activation and 5 

inflammatory responses and HIV infections of target CD4+ T cells. The final part reviews 6 

immunomodulatory pharmaceutical and natural products as putative adjunctive prophylaxis/therapies 7 

to modulate inflammatory responses in order to mitigate HIV risk. 8 

The link between inflammation, immune activation, and increased risk of HIV acquisition is well 9 

established. Various biological and behavioural factors together create immunological responses (205) 10 

conducive for HIV infection.  The ensuing inflammatory immune responses drive the recruitment and 11 

activation of HIV target cells (185, 265), and also disrupt the mucosal barrier, allowing for easier viral 12 

translocation (166, 266). Even in the presence of topical PrEP, genital inflammation can undermine 13 

drug efficacy (222). A cardinal initiator of inflammation and immune responses is the recognition of 14 

pathogen and damage associated molecular patterns (P/DAMPs) by pathogen recognition receptors 15 

(PRRs) such as TLRs (267). We hypothesised that TLR agonists (LPS (TLR4), R848 (TLR7/8) and 16 

Pam3CSK4 (TLR1/2)) would create an inflammatory environment which would be conducive to HIV 17 

infection of target CD4+ T cells. Therefore, in our study we used TLR agonists to induce inflammation 18 

and immune activation using PBMCs, similar to a previous study from our laboratory (268). These TLR 19 

agonists were used to mimic previous in vivo findings of inflammation associated with pathogenic 20 

infections or a dysbiotic microbiome (205). We then assessed how these TLR-mediated responses 21 

impacted on HIV infection of CD4+ T cells. We found that TLR agonists induced significant 22 

inflammatory cytokine responses, limited immune activation and down regulated the HIV co-receptor 23 

CCR5 which created a less conducive environment for HIV infection of target CD4+ T cells. The co-24 

stimulatory nature of TLRs likely resulted in the lack of CD4+ T cell activation while robust activation 25 

generally requires a TCR activator in combination with TLR stimulation (269). Contradictory to our 26 

hypothesis, we found that LPS-mediated inflammation significantly reduced HIV infection. While there 27 

was no evidence of reduced HIV infection with Pam3CSK4 and R848 stimulation, these results suggest 28 

the specific response to LPS, is likely to be a heightened innate anti-viral response which played an 29 

important role in reducing HIV infection of CD4+ T cells. These results partially mimic findings in 30 

certain HESN cohorts where targeted, robust immune and potent cytokine responses were observed 31 

(270-272) which likely contributed to the reduced likelihood of HIV infection in these individuals. 32 

Furthermore, stimulation of TLRs induced more robust immune responses in these HESN individuals 33 

(270). However, other studies have established an association between these inflammatory cytokine 34 

responses and increased risk of HIV acquisition in the genital mucosal environment (166, 169, 185). 35 
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Contrary to these data, in other HESN cohorts, another correlate of reduced risk of HIV infection was 1 

immune quiescence. The immune quiescent phenotype is defined as a reduced or highly regulated 2 

inflammatory and immune activation response/s (273). The use of anti-inflammatory drugs to induce 3 

immune quiescence and/or limit inflammation has been a topic of ongoing debate in the HIV prevention 4 

field, with one such study showing that the use of anti-inflammatory drugs reduced inflammation and 5 

immune activation (261).  6 

The assessment of two different classes of anti-inflammatory drugs were therefore investigated to 7 

understand their effects on TLR-mediated immune responses and HIV infection of CD4+ T cells. The 8 

NSAID; ibuprofen (IBF), and the glucocorticoid; betamethasone (BMS) were the two candidate drugs 9 

tested. We observed no significant differences between the TLR conditions in this chapter 10 

(supplementary figure 4 and supplementary table 1 in the appendices). These results were interesting as 11 

we did see a significant reduction in HIV infection with TLR4 stimulation in chapter 2, therefore these 12 

interaction need to be further analyses with RNAseq analysis. Following on from this we sought to 13 

assess how the two different classes of anti-inflammatory drugs impact on these TLR-mediated immune 14 

responses and HIV infection. IBF, a commonly used NSAID world-wide, did not have a strong anti-15 

inflammatory effect in this model. Despite the ineffectiveness of IBF in our model, this drug has been 16 

formulated as a topical vaginal douche for the effective management and treatment for an inflammatory 17 

condition in the genital tract, vulvovaginitis (274, 275). BMS, on the other hand, showed strong anti-18 

inflammatory and immunosuppressive potential in our in vitro model, and has already been formulated 19 

as a topical ointment for treatment of inflammatory skin conditions (276-278). Furthermore, BMS 20 

significantly limited HIV infection of CD4+ T cells in the LPS stimulated and unstimulated conditions, 21 

but not the other TLR (Pam3CSK4 and R848) or PHA stimulated conditions. These findings highlighted 22 

that in our model BMS was not exerting its protective mechanism through immunosuppression, as the 23 

reduction in HIV infection is only seen in the LPS and unstimulated conditions, despite potent 24 

immunosuppression across all conditions. Glucocorticoids (GC) such as BMS generally inhibit the 25 

induction of gene expression through NF- -1 blockade by the GC receptor (279, 280). 26 

Furthermore, GCs have been shown to interfere with viral replication, mediated through the GC 27 

receptor, thus hindering HIV’s ability to further replicate (281). In the unstimulated and LPS-stimulated 28 

conditions only, BMS likely inhibited NF-29 

replication (measured by p24 production). Whereas in the R848 (TLR7/8) and Pam3CSK4 (TLR1/2) 30 

stimulated conditions different signalling pathways were likely used (282). An alternative explanation 31 

is that compensatory pathways with redundant functions were activated. These results suggest that there 32 

are specific signalling pathways activated with each stimulation condition, and these were differentially 33 

affected by BMS, which determined the HIV infections observed. However, confirmatory follow-up 34 

studies focussing on transcriptional pathways in these different stimulation conditions would need to 35 
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be conducted. Therefore, assessment of inflammatory signalling pathways in the mucosal environments 1 

would play an important role in determining the most effective intervention.  2 

Although our studies did not replicate in vivo inflammation and immune activation associated with 3 

increased HIV infection, our previous clinical studies confirmed the link between genital inflammation 4 

and increased risk of HIV acquisition in women (166, 169, 283), while in some studies on HESN 5 

individuals, immune quiescence has been identified as a correlate of reduced risk against HIV infection 6 

(172, 273, 284, 285). However, other studies in different HESN individuals found that immune 7 

activation was present, and that this immunological activation provided protection against HIV 8 

infection (270-272). Together these studies demonstrate that a local immunological response that is 9 

specific against HIV or viral infections in general can be protective. However, this response needs to 10 

be highly regulated and not create an overt inflammatory environment, which is conducive to HIV 11 

infection (169, 286). Therefore, the use of immunomodulatory products to mediate, but not fully 12 

suppress, the mucosal inflammatory environment could be a plausible prevention strategy. One such 13 

study using a natural product, glycerol monolaurate (GML), has shown promising results. GML was 14 

shown to interfere with the inflammatory response and prevent SIV infection even after high-dose 15 

repeated viral exposures in pre-clinical trials on non-human primates (183, 263). However, the current 16 

trend is the utilisation of easily accessible and generally safe to use pharmaceutical products (261). 17 

These pharmaceutical immunomodulatory products can have adverse unwanted effects, especially after 18 

long term and systemic use, and the long-term safety of these products need to be assessed. Natural 19 

products that have immunomodulatory properties, do not appear to have adverse side effects, although 20 

clinical trials need to be conducted to confirm this.  21 

 22 

5.1  Conclusions and recommendations 23 

We found that TLR4, and to an extent TLR7/8 stimulation induced an inflammatory response that 24 

reduced HIV infection of target CD4+ T cells. Furthermore, the glucocorticoid betamethasone, and not 25 

the non-steroidal anti-inflammatory drug ibuprofen, reduced HIV infection of target CD4+ T cells only 26 

when TLR4 was stimulated or left unstimulated, with no such effects observed in the other stimulation 27 

conditions. Furthermore, these results were independent of immune activation. Therefore, these results 28 

suggest that the inflammatory signalling pathways elicited, in response to TLR4 and modulated in the 29 

presence of betamethasone, reduced HIV infection in this model. Data from human and animal studies 30 

have established the associations between inflammation/immune activation and increased risk of HIV 31 

acquisition, as well as disease progression. In this regard, immunomodulating products are an attractive 32 

strategy to manage inflammation and HIV acquisition risk, and slow HIV disease progression. The use 33 

of anti-inflammatories to reduce HIV transmission is not a new concept. However, many 34 
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pharmaceutical anti-inflammatory drugs that are indicated for oral use have adverse effects due to the 1 

prolonged presence of drugs in the systemic circulation. The use of natural or pharmaceutical topical 2 

immunomodulatory products may be plausible to limit such adverse effects. However, any such 3 

immunomodulatory products would need to undergo rigorous human clinical trials to assess their safety 4 

and efficacy. Despite the limitations of the model system used, our study is the first, to show reduced 5 

HIV infection with an anti-inflammatory drug. Our findings also support the notion that various 6 

stimulation conditions augment differential patterns of inflammation and immune activation. The use 7 

of transcriptional profiling to assess the inflammatory signalling pathways would be key to the 8 

identification of these new drug targets, as well as to better understand the immune responses specific 9 

to various conditions. Together, these data may inform on the use of anti-inflammatory drug candidates 10 

as adjunctive prophylactic strategies in high risk populations for HIV.  11 
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7 Appendices 1 
 2 

  3 

Supplementary figure 1: Dot plots representing antibody titration for CCR5, CD4, CD3, CD8, CD38, CD19 
and HLA-DR to assess optimal antibody dilutions.  
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Supplementary figure 2: Dot plots of fluorescence minus one (FMO) experiments for the difficult to 
distinguish antibodies p24, CCR5, CD38 and HLA-DR.  
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Supplementary figure 3: Representative dot plots of stimulated (top) and 
unstimulated (bottom) expression of CCR5 (left) and p24 (right). 

Supplementary Figure 4: HIV infection rates (measured by p24 expression) of CD4+ T cells either 

unstimulated (red) or stimulated with PHA (blue) or TLR agonists; LPS (green), Pam3CSK4 

(purple) or R848 (orange). PHA was used at a 1:500 dilution at a working concentration of 5mg/ml. 

TLR agonists were used at a final concentration of 2ug/ml. Sample size, n=4, each donor run in 

duplicate
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 1 

  2 Supplementary table 1: Repeated measures one-way ANOVA results of comparisons between stimulation 
conditions within the untreated (no AI) group. 
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