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PRE F ACE 

An interest in the emission electron microscope some years ago provided 

the author with a stimulus to study electrostatic electron optics, and 

the desire to carry out high precision electron optical calculations on 

the relatively sma I I computers that he had access to during the initial 

stages of the study, led to the investigation of the possibi I ity of using 

orthogonal functions in electron optical analysis and design. 

Prof. N.D. Clarence, then head of the department of Physics at Natal 

University (Durban) was approached by me with a proposal of a Ph. D. 

project in electron optics, and - although no research was undertaken in 

his department in this branch of physics - he was kind enough to accept 

me as a student. 

in me. 

I shal I always remain grateful to him for this trust 

Dr. P.W. Hawkes of Cavendish Laboratory, Cambridge, was requested to 

evaluate the proposal, and thanks to his encouraging comments this study 

was undertaken. Dr. Hawkes has also been kind enough to read and comment 

on some of the publ ications I isted below, and I want to assure him of my 

appreciation for his assistance. 

Prof. A.D.M. Walker and Dr. D. Spalding were appointed as my supervisors, 

and I want to express my appreciation for the courteous and helpful way 

in which they responded to my queries over the years. Prof. Walker is 

alsothankedfor reading and commenting on this manuscript as wei I as some of 

the publ ications I isted below. 

In view of the rapid development of electron optics I decided to publ ish 
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results as they became avai lable. In this way the fol lowing chapters 

were publ ished, or were submitted for publ ication in virtually their 

present forms, except for minor modifications and editing: 

Chapter (2) was publ ished as : !' Electron Optical Properties of some 

Fourier-Bessel Electrostati c Fields with Rotational Symmetry. I , 

Basis Fields." 

no. 23 (1978). 

University of Zululand Publ ications, Series I I I, 

Chapter (3) was publ ished as : rtElectron Optical Properties of some 

Fourier-Bessel Electrostatic Fields with Rotational Symmetry. I I, 

An Analytical Study of Weak Fields". University of Zululand Publ i= 

cations, Series III, no. 24 (1978). 

Chapter (4) was publ ished as : "Electron Optical Properties of some 

Fourier-Bessel Electrostat ic Fields with Rotational Symmetry. I I I, 

Computed Properties of Synthesized Fields". 

Publications, Series III, no. 25 (1978). 

University of Zululand 

Chapter (5) was publ ished as "A Fourier-Bessel Solution of an Einzel 

Type E.I ectrostat i c Fie I d with Rotat i ona I Symmetry". J. App I. Phys. 

49,4335 (1978). 

Chapter (6) wi I I be publ ished as : "Fourier-Bessel Series Solution for 

Potential and Intensity Field of Open Electron Optical Systems with 

Rotational Symmetry, in Terms of 10 Bessel Functions". 

Phys. (To be published, Jan., 1979). 

J. App I. 

2 



Chapter (7) has been submitted for publ ication as : ~'Charge distribu= 

t ions on fo i I s of e I ectrostat i c one-fo i I lenses with rotat iona I 

symmetry, as related to some electron optical properties". 

Chapter (8) has been submitted for publ ication as 

Dirichlet Problem". 

"The Inverse Interior 

Appendix (1) was publ ished as : "Series Expansions and Tables of Integrals 

of Products of some Bessel Functions". University of Zulu land Publ i= 

cat ions, Ser i es I I I, no. 20 (1977). 

Appendix (2) was accepted for publ ication as : "Fourier-Bessel Series 

Solution of an Exterior Dirichlet Boundary Value Problem with Rota= 

tional Symmet ry" (J. Appl. Phys., to be publ ished>. 

Chs. (1) and (9) were added to place the various investigations into per= 

spective, and Appendix (4) contains some prel iminary results on the use 

of the solution given in Ch. (8). The contents of this thesis is the 

original work of the author, with the exception of Appendix (3), in which 

some properties of Bessel functions are given for quick reference. 

I wish to extend my thanks to the heads and staff of the computer centres 

and I ibraries of the Universities of Natal (Durban) and of Zululand for 

their valued cooperation, and express my appreciation for the profes= 

sional way in whic h Mrs. H.L. Bisschoff handled the typing and Mrs. R. 

van Schalkwyk prepared the figures for this manuscript. 
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I would I ike to acknowledge the financial support given by the Publ ica= 

tion and Research Committee of the University of Zulu land and the encourage= 

ment of Prof. F.K. Peters, the previous head of the Department of Physics 

of the University of Zululand, and Prof. B. Spoelstra, his successor. As 

locum tenens, Prof. J.A.V. Fairbrother rei ieved me of my lecturing respon= 

sibi I ities during the past semester and in this way made possible the pre= 

paration of this manuscript. Mr. C.H. Rohwer is thanked for always being 

wi I I ing to discuss problems of a mathematical nature. gained much from 

his broad knowledge and experience of numerical analysis. 

I also remember with gratitude the influence and examples set by my late 

father, mother and close fami Iy circle, the encouragement of those that 

educated me, and in particular the personal sacrifices made by my wife, son 

and daughter during the course of this study. 
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C HAP T E R 

OUTLINE OF ELECTRON OPTICAL PROBLEMS TO BE INVESTIGATED, AND CHOICE 

OF MATHEMATICAL MODEL 

1. INTRODUCT ION 

Electron optics, as a branch of science, may be considered to 

have a history of almost a century, inaugurated in 1880 by 

Crookes and, independently, by Goldstein with their experiments 

with free electrons. The discoveries by Wiechert and Fleming 

that electrons can be focussed by a magnetic coi I, fol lowed two 

decades later, and the construction of the first electrostatic 

lens may be credited to Wehnelt who succeeded in 1905 in conver= 

ting the divergent cathode lens into a convergent immersion 

objective by inserting the third lens component which now bears 

his name. , [For references on the early history of the subject, 

see, e.g., Myers (1940) and Glaser (1956)J 

These discoveries and experiments served to stimulate the more 

complete and more systematic investigation of the relationships 

between the electric or magnetic fields and the nature of the 

deflections caused by them; in the decade fol lowing 1925 these 

relationships were discovered experimentally and predicted 

theoretically by E. BrUche, M. Knol I, E. Ruska, C.J. Davisson, 

C.J. Calbick, H. Busch, W. Glaser, J. Picht, O. Scherzer and 

others. 

The first comprehensive monographs were written by Glaser (1933) 

and BrUche and Scherzer (1934), and the first English language 
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textbooks fol lowed some five years later. Several textbooks, 

monographs and reviews have appeared since, a selection of which 

is I isted with the references. 

The industrial possibi I ities of electron optics provided both 

the stimulus and the financial support for more detai led studies, 

which were subsequently carried out in America, the United 

Kingdom and France, as wei I. The U.S.S.R. and Japan were late 

to start, but have intensified their research efforts during the 

past decade and a half. Apart from experimenting with the 

actual lenses, various models Gee Section (4)] have b~en used 

to simulate electron optical elements that could be used in, 

i .a., television cameras and tubes, and electron microscopes. 

Due to the avai labi I ity of the digital computer, a change in 

approach has occurred during the past 25 years, enabl ing the 

electron optical properties of compl icated configurations to be 

calculated to a high level of precision. 

The purpose of this study is to investigate and demonstrate the 

use of certain orthogonal functions in the description of the 

potential and intensity fields of electron optical systems, 

and in the calculation of certain focal properties. The 

possibi lity wi I I be discussed of developing a systematic 

procedure by means of which optimization of a system can be 

carried out. 

Ch. (1) 
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2. DESCRIPTION OF ELECTRON OPTICAL SYSTEMS TO BE CONSIDERED 

Although some of the methods to be discussed in later chapters 

may, with I ittle or no modification, be applicable to a broader 

class of electron optical systems, the configurations discussed 

in the rest of this dissertation are restricted to those which 

are purely electrostatic, have rotational symmetry, and are 

free from space charge. It is assumed that particles are not 

accelerated to such high velocities that relativistic effects 

need be taken into account, and that apertures are large enough 

that the wave nature of the charged particles need not be consi= 

dered. The inner radii of electrodes wi I I be taken large 

enough that the trajectories of particles are not measurably 

affected by·fields that can be attributed to the electrode 

images of the particles [Hubert (1949)J. It is also assumed 

that the space charge of the beam which is focused, is so smal I 

that its effect on the trajectories of the individual particles 

may be neglected. By requiring that particles should not 

leave the lens on the entrance side, mirrors are also excluded. 

Although the theory wi I I apply to both positive and negative 

particles, it wi I I be assumed throughout the text - for the 

sake of ~revity - that the charged particles to be focused are 

electrons and not positive ions. 

Not only open lenses, but also systems with one or more plane 

conducting foi Is wi I I be considered. The fol Is are assumed 
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to be thin enough to be t ra nsparent to electrons of sufficiently 

high energy. [A summary of th.e properties of foi Is currently 

manufactured can be found in the papers cited in Section (1) of 

Ch. (7). The theory of one-foi I configurations can, of course, 

also be appl ied to cathode lenses or immersion objectives.] 

3. DESCRIPTION OF FOCAL PROPERTIES TO BE CONSIDERED 

The determination of first order focal properties of electron 

optical systems can be done fairly easi Iy by existing methods, 

although it may be remarked that the Fourier-Bessel methods to 

be described al Iowan increase in the attained precision through 

an increase in computer time only, whereas most of the other 

methods would require an increase in the computer memory size 

as we II. 

Much more of a problem area in electron optics is the calcula= 

tion of h igher order focal properties, in which cases it may 

prove to be more difficult to obtain the required precision. 

The objective of this study is not so much to arrive' at a 

particular electron optical configuration in which the combined 

detrimental effects due to various aberrations have been mini= 

mized in a balanced way, but rather to concentrate on the one 

geometrical aberration which limits the resolution of images of 

point objects on the optical axis, namely the spherical aberra= 

tion. [Various measures quantifying this aberration are defined 
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and applied in Chs. (2), (3) and (4).] A considerable amount 

of research has been concentrated on the el imination of spherical 

aberration, and it is shown in the comprehensive review by 

Septier (1966) that magnetic lenses are by far superior to open 

electrostat ic lenses as far as this aberration is concerned. 

It is generally accepted that, according to the proof given by 

Scherzer (1936), electrostatic lenses cannot show negative 

spherical aberration, unless one of the fol lowing actions is 

taken [see Septier (1966) for references] : 

3.1 Elements may be introduced which deviate from rotational 

symmetry. This possibi I ity has been explored by many workers, 

and a considerable number of papers on theoretical and experi= 

mental results have been publ ished. 

3.2 High frequency potentials on certain electrodes may be 

used. This approach by Kompfner (1941) seems to have been 

abandoned, due to practical difficulties. 

3.3 Negative charge may be introduced into the region between 

the particle to be focused, and the optical axis [see also 

Ch. (7)]. This can be done in various ways 

a) I ntroducti on of a high dens i ty electron beam or cloud in 

the lens region; this suggestion is not simple to imple= 

ment in practice, and very I ittle progress has been 

reported. 

Ch. (1) 
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b) An axial conducting electrode may be introduced into the 

lens region; it has been found experimentally that 

correction can be effected for rays within a narrowband 

of radial distances, and a refinement of the method is 

required, possibly using a combination of the solutions 

of Ch. (6) and Appendix (2). 

c) The charge may be induced on an electrode that forms 

part of an annular aperture; Schwarzer (1976) has per= 

formed experiments with smal I annular apertures, but appa= 

rently not with the present principle in mind. 

d) The charge may be induced on one or more gauzes or grids; 

it is, however, found that the openings in the gauzes act 

as miniature lenses with their own aberrations. 

e) The charge may be induced on one or more conducting foi Is 

wh ich are thin enough as to be transparent to high energy 

electrons. 

f) The charges may be induced on the cathode or anode of a 

system. 

Of the methods (3.3a)-(3.3f) the first four wi I I be considered to 

be outside the scope of this study [although the solution of 

Appendix (2) is I ikely to be appl icable to the boundary value 
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problems associated with method (3.3b)]. Method (3.3e) wi I I be 

investigated in Chs. (2), (3), (4) and (7), and it wi II be found 

that the solution of Ch. (7) appl ies to case (3.3f) as well. 

Before outlining [in Section (5)] the approach proposed for this 

study, a brief review wi I I be given in the next section of the 

various methods that have unti I now been appl ied to study the 

electron optics of electrostatic lenses and, more specifically, 

to minimize the spherical aberration. 

4. OUTL I NE OF METHODS CURRENTLY USED TO OPT I M I ZE ELECTRON ·OPT I CAL 

SYSTEMS 

Methods used during the past fifty years to optimize electron 

optical systems may be divided into two broad groups namely 

a) empirical methods which, on a basis of trial and error, 

vary some lens parameters in the hope that the resulting 

trai I may bring the designer close to an optimum design, 

and 

b) methods which, founded on some mathematical considerations, 

provide a trai I leading to an optimum system (noting 

however that there would be no guarantee that a global 

and not a local extremum is reached). 

Broadly speaking, the methods of Sections (4.1) and (4.2) may be 

grouped under category (a), and the methods of Section (5) under 
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category (b). 

4.1 Empirical methods based on proposed configurations 

These studies are based on experiments with actual devices or 

analogical or mathematical models. A smal I number of parameters 

can usually be varied, subject to pre-defined constraints. Para= 

meters include a) physical' dimensions of electrodes and of gaps 

between electrodes and b) potentials at which the electrodes are 

kept. 

Constraints include: 

a) the number of electrodes, 

b) the topological nature of electrodes (e.g. tubular 

rather than annular), 

c) the preferred shape within a chosen topological class 

(e . g. tubular electrode rather than a disc with an 

aperture), 

d) maximum absolute values of potentials on electrodes 

e) maximum absolute values of electric intensities in the 

lens region, 

f) maximum or minimum potentials at particular points with= 

in the lens, e.g. at axial saddle points, 

g) presence or absence of electric intensity at points or 

surfaces within the configuration, e.g. at the cathode 

or anode, 
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h) electron optical constraints, e.g. one aberration should 

not exceed a specified value when another aberration is 

min imized. 

In the fol lowing subsections brief surveys wi I I be given of the 

types of electron optical problems solved by means of the various 

methods. The methods themselves have been described in various 

handbooks and reviews, and wi I I not be discussed here. 

4.1.1 Experiments with physical lenses or systems 

First and third order focal properties have been determined 

by performing experiments with actual devices of a broad 

va r iety. After the pioneering work of German groups in 

the nineteen thirties, a comprehensive set of graphs were 

pub lished by Spangenberg (1943) which were used for more 

than two decades for the design of systems containing 

immersion and Einzel lenses. As recently as 1969 his 

data on immersion lenses were used by Heddle (1969) to 

design three-tube lenses with smal I chromatic aberration; 

the latter lenses were, in turn, tested experimentally. 

Rang (1948) attempted to find projective Einzel lenses 

with reduced distortion, Liebman (1949) and Heise et al. 

(1949) investigated Einzel lenses, and Lippert et al. 

(1952 and 1953) measured first and third order focal 

properties of three-electrode lenses of which the elec= 
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trode shapes were varied. Hanszen (1958) compared the 

spherical aberration of symmetrical and asymmetr ica l Einzel 

lenses, finding that - as in glass optics - the asymmetry 

can be exploited to reduce the spherical aberration. 

Further investigations on three-electrode lenses consisting 

of tubes of unequal or equal diameters were carried out by 

Varakin et al. (1974), Bobykin et al. (1976) and Heddle 

et al. (1970); and Imhof et al. (1968) attempted to design 

a three-aperture lens which could form images of f ixed 

position, using particles of variable energy. 

In most of the studies quoted aobve, the shapes of, and 

potentials on electrodes were varied and, when a design 

with favourable properties was obtained, the result could 

not rea I I Y have been ant i c i pated . I n contrast, Sept i er 

et al. (1959) investigated open lenses with electrodes 

which approximated hyperbolae of revolution, hoping that 

the fact that 3cp/3r a r for fields cp(r,z)=k(r2/2-z2) 

might result in a reduction of the spherical aber ration 

of open lenses as well. [See Zashkvara et al. (1977) 

for a theoretical treatment, and for further references)]. 

This hope was not real ized, because the openings in the 

electrodes cause a change in the flux pattern; no matter 

how smal I the holes are made, the lens changes from a 

fo i I I ens to an open I ens, caus i ng the I ens propert i es to 

change fundamentally, as can easi Iy be shown by Gauss' 
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law. A more deta i led discussion of this point wi I I be 

given inCh. (7). 

Apart from the ' work on open lenses, experimental measure = 

ments were carried out on a field-emission illumination 

system by Veneklasen (1972) and on a combined objective 

and anode lens by Liebl (1972), the latter lens bei ng 

used to focus both the primary and secondary beams in a 

microprobe. Mol lenstedt et al. (1973) used annular 

rather than circular apertures to increase the contrast 

in emission microscopes, but apparently without .real izing 

that a charge distribution induced on the central part of 

the aperture electrode can be used to reduce the spherical 

aberration of the lens [see Ch. (7)J. Annu lar apertures 

were also compared with circular apertures by Schwarzer 

(1975a and 1975b) as far as image contrast and the 

electron energy distribution in the emission-electron 

microscope were concerned. 

The effects of grids inside electron lenses were investi= 

gated by Bernard (1953b) and by Mayo et al. (1972); The 

reduction of the spherical aberration of magnetic lenses 

by means of a one-foi I lens was investigated by Hibino 

et al. (1976 and 1977), Ichihashi et al. (1971 and 

1973) and Maruse et al. (1970a and 1970b); and Wittels 

(1975) measured focal properties of a two-foi I lens. 
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4.1.2 

Apart from the quasi-hyperbol ic lens of Septier et al. 

(1959), it may be said of the above studies that in most 

cases severe constraints prevented optimum designs to be 

obta i ned; the constraints in the majority of cases being 

i) a restriction on the number of electrodes, and i i) the 

requ i rement that the electrodes should have simple shapes. 

The use of analogical techniques 

Up to a decade ago it was not uncommon to use physical 

analogues to solve the boundary value problems associated 

with lens fields, in order to carry out ray tracings by. 

e.g. , electromechanical devices or analogue computers. 

Francken (1967) wrote a review of the methods avai lable, 

a book edited by Vitkovich (1966) was publ ished on 

mode l ling, Verster (1963) gave a detai led description of 

an integrator he coupled to an electrolytic tank, Der 

Shvarts (1966) described appl ications of his '!matrix 

integrator", Heinemann et al. (1968) described their 

simulation of a three-electrode cathode lens, Firestein 

et al. (1963) described ray tracing performed by digital 

comp uter using field data provided by a resistance network, 

and Ashley (1972) designed thick lenses by combining an 

analogue and a digital computer. 

During the past decade, the advantages of carrying out 

the complete simulation by digital computer have become 
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4.1.3 

obvious, resulting in the phasing out of the methods 

summarized in this subsection. 

The use of finite difference techniques 

An alternative to physical analogues is the use of mathe= 

matical models, briefly outlined in the next four subsec= 

tions. The use of finite differences has a history going 

back to pre-computer days - with, e.g., Motz et al. (1946) 

calculating the potential field in an electrostatic lens 

by manual relaxation, fol lowed by numerical ray tracings. 

Due to the avai labi I ity of the digital computer, finite 

difference techniques have dominated the field of electron 

optical design for the past two decades. The var i ous 

finite difference solutions appl icable to the interior 

Dirichlet boundary value problem have been analysed in 

great detai I, and several reviews have appeared, i .a. 

Young et al. (1963), Weber (1967), Binns et al. (1973) and 

Lenz (1973). The review by Weber also discusses ray 

tracing, using field data at mesh points, and Lenz 

advances a number of reasons why finite difference 

methods may be preferable to the finite element method of 

Sect i on (4. 1 .4) . 

The fol lowing reports represent a selection of investiga= 

tions that have been carried out since the last reviews 

cited 
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Fol lowing the first order analysis of two-tube lenses by 

Natal i et al. (1972a and 1972b), Dichio et al. (1974 

and 1975), and Kuyatt et al. (1974) investigated their 

third order properties. EI-Kareh et al. (1972) and 

Shimizu (1974) studied three-aperture lenses and Saito 

et al. (1977) calculated first and third order focal 

properties of three-tube Einzel lenses. Cleaver (1975) 

simulated field emission electron guns for el ectron 

mic roprobes; Riddle (1978) used finite differences to 

calculate the axial potential in Einzel lenses used in 

field emission electron guns; and Henkelman et al. (1974) 

studied mirrors formed by the cathode and two further 

lens elements, for use in an electron spectrometer. 

A probable reason for the continuing popularity of this 

method is the ease of programming, if the boundaries have 

reasonably s imple shapes. Two disadvantages are i) the 

need to increase the size of the computer memory if the 

precision is to be increased, resulting in an increase in 

the amount of computat i on· per i terat i on, and ' a I so in the 

number of iterations required, and ii) the necessity to 

manipulate large amounts of information which may even= 

tual Iy not be required (for instance, even if only the 

axial potential is required, the relaxation process sti I I 

involves al I the grid values in zonal regions). 

Sma I I gaps between electrodes can be accommodated readi Iy, 
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4.1.4 

4. 1 .5 

but problems may arise when the configuration consists of 

a few ting shaped electrodes separated by large gaps; in 

such a case problems associated with the exterior Oirich= 

let problem - as discussed in Appendix (2) - wi I I have to 

be overcome. In these cases the charge calculation method 

of Section (4.1.5) is probably the most convenient to use. 

The use of finite elements 

Although the use of finite elements has gained popularity 

in many diverse fields, and the method has been studied in 

great detai I by numerical analysts, it is interesting to 

note that apparently only one group has made extensive 

use of finite elements in electron optical design. Refe= 

rences on appl ications studied by Munro and by Bunting may 

be found in the review paper by Munro (1973). The remark 

on gaps [see Section (4.1.3)J appl ies to this method as wei I, 

and the amount of programming needed (if an existing 

package cannot be used) probably counterbalances the 

advantages of the method. 

The source calculation method 

If an (unknown) function O(s) represents the volume charge 

density at points (defined by the position vector ~) in and 

near an electron optical system, and a (known) function 

represents the potential distribution in the same region, 

then V(s) can be expressed in terms of O(s) by means of 
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Cou lomb's law. On the other hand, D(~) can be related to 

V(s) in terms of a Fredholm integral equation of the first 

kind. The solution of such an integral equation can be 

obtained by a variety of methods, as discussed in the 

review by Mi Iler (1974). 

When used in practical electron optical design, the 

conducting electrodes defining the electron optical confi= 

guration are normally divided into a sufficiently large 

number (N) of elements, and the surface charge density on 

the i-th element represented by a variable, 0i .. The 

potentials at a chosen number (n) of points on the elec= 

trodes can be represented in terms of these variables. 

Since the potentials on the electrodes have been pre-defined, 

a set of I inear algebraic equations results, and the 0i 

can be found if n ) N. Normally the solution is obtained 

by performing a matrix inversion, in which case the precision 

attainable is largely dependent upon the computer word length. 

When the 0i is known, the potential at any point in space 

can be calculated, using Coulomb's law. The potential 

is given in the form of a series, the terms of which have 

elliptic integrals as factors. It is also possible to 

express the electric intensity E at any point in terms of 

a series (again involving el I iptic integrals), so that E 

need not be calculated from the potential, as required by 

the finite difference and finite element methods. 
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4.1.6 

Some theoretical aspects of the charge calculation method 

have been discussed by Cruise (1963), Lewis (1966), Singer 

et al. (1970), Mautz et al. (1970), and Appelt (1973a and 

1973b). Du Toit (1976) and Viljoen (1976) applied the 

method in the analysis of image intensifier tubes, the 

latter paper discussing the matter of precision in some 

detai I. Read et al. (1970) studied the first and third 

order focal properties of two-cyl inder lenses, and a book 

of tables of properties of a wide variety of lenses was 

compi led by Harting et al. (1976). 

By summary, it appears as if this method is a versati Ie 

one , al lowing electron optical calculations of fairly 

high precision to be carried out. That the potential 

need not be defined everywhere on a closed surface, is an 

important advantage. 

The use of orthogonal functions 

As stated in Section (2), this study is concerned with 

electron optical systems without space charge. We may 

therefore assume that everywhere, except on the electrodes, 

the potential ~(s) satisfies Laplace's equation. 

o ( 1 • 1 ) 
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The function ¢ can, among others, be chosen to be of the 

form ¢(r,e,z)=R(r) 8 (e)Z(z) ( 1 .2) 

or of the form 

¢(p,e,~)=R(p) 8 (e) ~ (~) ( 1 .3) 

in which (r;e; z) and (p;e;~) are polar coordinates of 

cyl indrical and spherical symmetry" respectively. Although 

it may happen in some special cases that part of an electron 

optical system may have spherical symmetry, it is found 

that for the majority of configurations, the form with 

cyl indrical symmetry is the most profitable choice. 

Using the standard method of separation of variables and 

requiring that ¢ should not be a function of e, the 

fo llowing differential equation results: 

l ~ [ r a¢ ] + a
2
¢ = 0 

r ar ar az2 
( 1 .4) 

Substitution from Eq. (1.2) into Eq. (1.4) results in 

a2z 
a/ 

and 

a2R 
-+ 
ar2 r 

BZ 

aR 

dr 
+ BR 0 

in which B is the separation constant. 

( 1 .5) 

( 1 .6) 

Eq. (1.6) is satisfied by four Bessel functions of order 

zero, namely 10 and KQ, the modified Bessel function of 

the first and second kind, resp., and J O and YO' the un= 
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modified Bessel function of the first and second kind, resp. 

[To repr~sent higher order Bessel functions, the subscript 

"0" wi I I be rep I aced by the order, n. For a short I ist of 

properties of Bessel functions, see Appendix (3).J In 

view of possible misunderstanding due to the relationship 

10(x)=JO(ix), the arguments of al I Bessel functions 

appearing in this manuscript wi I I be considered to be real. 

For negative values of B, the functions 10 and KO apply, 

in which case Z(z) is a trigonometrical sine or cosine 

function. For positive values of B, the functibns JO 

and YO apply, and Z(z) is a hyperbol ic sine or cosine 

function. For B=O, R a loge (r) and Z a z are also 

solutions, but the latter two solutions wi I I not be given 

further consideration in this chapter. 

The general solution for ~ therefore includes members of 

the following fami li'e5 of functions (referred to in this 

manuscript as Fou ri er-Besse I functions) 

Ko (ar) sin (az) , KO(ar) cos (az) ; (1. 7) 

10 (8r) sin (8z) , 10(8r) cos (8z) ; ( 1 .8) 

J 0 (yr) sinh(yz), JO(yr) cosh (yz); and ( 1 .9) 

YO( 6r) sinh (6z), YO(or) cosh (6z). ( 1 . 10) 

The method of choosing the fami I ies to be included in a 

solution, and of assigning ampl itudes to particular members 

of the fami I ies, wi I I depend upon the general approach 

followed. In the majority of electron optica1 studies 
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4.1.6.1 

reported, a configuration of electrodes is proposed, and 

then - using various analytical or numerical methods 

suitable combinations of functions are obtained so as to 

find a function $ which approximates the potentials on 

the electrodes to an acceptable degree of precision. 

These appl ications wi I I be reviewed in Section (4.1.6.1). 

The other approach is to fol low some optimization algorithm 

which is expected to result in a Fourier-Bessel series 

representing the optimum field (i .e. optimized i .r.o. some 

predefined criteria). 

Sect i on (5). 

This approach wi I I be discussed in 

Some properties of Fourier-Bessel potential fields 

Before discussing in Section (4.1 .6.2)the use of Fourier­

Bessel functions in electron-optical design, the Fourier­

Bessel series representation of the potential field in the 

vicinity of a given physical configuration wi I I be consi= 

dered briefly. 

By way of introduction, it may be pointed out that the 

members of the fami I ies of functions of Eqs. (1.7)-(1.10) 

are solutions of certain basic boundary value problems. 

In the examples given below, the functions I isted in 

Eqs. (1.7) and (1.8) with a cosine factor wi I I not be 

considered because they can be changed to the form with 
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the sine factor, through a z-transfonmation representing 

a translation. As far as Eqs. (1.9) and (1.10) are 

concerned, it may be noted that cosh (z) + sinh (z) = exp (z), 

and that cosh (z) - sinh (z) = exp (-z); for ease of 

visual isation, only 

Jo(yr) exp (-yz) and YO(6r) exp (-6z) (1.11) 

wi I I be considered, noting that members with exponentials 

with positive argument can be obtained by reversing the 

sense of the z-axis. The chosen functions wi I I now be 

considered briefly. 

i ) The function ~(r;z)=Ko(ar) sin (az): ( 1 • 1 2) 

This function represents the solution of the fol lowing 

boundary value problem 

~2~ ( r > A;z) = 0 for 0 < z < L 

~(r =A;z) = Ko(nnA/L) sin (nnz/L) for 0 ~ z < L 

~(r ; O) = ~(r;L) = 0 V r > A 

( 1 • 13) 

( 1 • 14) 

( 1 • 15) 

in which nnA/L = a; A and L are non-zero lengths and 

n is a pos i t i ve integer. [The case A=O is not a II owed, 

because KO(r + 0)+ 00 .J 

Superpositions of these functions are employed in the 

solution of the exterior Dirichlet boundary value problem 

of Appendix (2), and is of use in configurations of two 

cyl indrical electrodes [see also Yeh et al. (1969)J. 

i i ) The function ~(r;z)=IO(8r) sin (8z): ( 1 • 16) 
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This function represents the solution of the fol lowing 

boundary value problem 

\/2 q, (r < A;z) = 0 for o < z < L ( 1. 17) 

1><O;z) sin (nnz/U for 0 " z " L ( 1 • 18) 

q,(rjO) = q,(r;U = 0 If r (1.19) 

in which A and L are non-zero lengths and n is a positive 

integer. 

Superpositions of these functions are used in the solution 

of the inverse interior Dirichlet problem of Ch. (8), 

which is app l ied inCh. (9)' 

iii) The function of Eq. (1.16) also represents the 

solution of the fol lowing boundary value problem 

\/2q,(r < A;z) = 0 for 0 < z < L 

q,(A;z) = 10 (nnA/L) sin (nnz/L) for 0 " z " L 

q,(r;O) = q,(r;L) = 0 If r < A 

(1 .20) 

( 1 . 21 ) 

( 1 .22) 

Superpositions of these functions are used in the solution 

of the interior Dirichlet problem, as appl ied in Chs. (2) -

(7), and in several examples to be discussed in this sec= 

tion. 

iv ) The function q,(rjz) = JO(yr) exp (-yz) : ( 1 .23) 

Th is function is the solution of the fol lowing boundary 

value problem (an interior problem with quasi-Dirichlet 

conditions) : 
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2 
V <j>(r;z>O) = 0 

<j>(r~O) = JO(rZOn/A) 

<j>(A;z~O) = 0 

If r 

If r ~ A 

( 1 .24) 

( 1 .25) 

( 1 .26) 

in which A is a length, and ZOn is the n-th zero of JO' 

Superpositions of these functions are employed in Ch. (5) 

and in several examples to be quoted in this section. 

v) The function of Eq. (1.23) is also the solution of 

the fol lowing exterior-type Dirichlet problem: 

V2<j>(r>A;z>0) = 0 

<j>(r~O) = JO(rZOn/A) 

<j>(A;z ~ 0) = 0 

If r ~ A 

( 1.27) 

( 1 .28) 

( 1 .29) 

This type of boundary value problem has apparently not yet 

found appl ication in electron optical problems, and wi I I 

not be given further consideration. 

vi) The function <j>(r;z)=YO(or) exp (- oz) ( 1 .30) 

The function JO in case (v) may be replaced by YO' but 

apparently nothing is gained in this way, since YO is 

clumsier to handle both numerically and analytically. 

The function cannot be replaced by YO in case (iv), due 

to the singularity of YO at z=O. No further considera= 

tion wi I I be given to the YO Bessel functions in the rest 

of this study. 
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4.1.6.2 The use of Fourier-Bessel fields in electron optics 

The representation of simple electron optical configurations 

by means of Fourier-Bessel integrals have been known for a 

long time, but due to the complexities of evaluating these 

integrals [see Ch. (6) and Appendix (2)J, the latter were 

initially uti lized only to obtain analytical approximations 

for the potential inside an immersion lens consisting of two 

infinitely long juxtaposed coaxial cyl inders of equal dia= 

meter and with no gap between them. Approximations were 

obtained for paraxial regions by Gray (1939) and Bertram 

(1940), and for zonal regions by Bertram (1942), using 

Fourier-Bessel functions of la-type as described in case 

( i i) of Sect ion (4. 1 .6. 1 ) . 

Bernard (1951a) considered a grid lens consisting of a grid 

at a potential ~1' placed in the gap of negl igible size 

between two juxtaposed coaxial cyl inders of equal diameter, 

which are held at a potential ~21~1' Starting from the 

Fourier-Bessel integral formulated in terms of 10 Bessel 

functions, he found an analytical approximation for the 

axial potential, which he used to calculate the first 

order focal properties of the grid lens [Bernard (1951b)]. 

Cook and Heddle (1976) used J O Bessel functions [case (iv) 

of Section (4.1 .6.1)J to describe the same immersion lens 

as Gray, but al lowing a finite gap size between the two 
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tubes. Assuming a linear potential variation in the gap, 

he calculated the first order focal properties of the 

lens. 

To represent a three-tube Einzel lens with negl igible gap 

sizes, Werner (1971) divided the space inside the lens into 

three regions, to which three different series expansions 

in terms of 10 functions appl ied [case (iv) of Section 

(4.1.6.1)]; first and third order focal properties were 

found. 

Wittels et al. (1976) used subregions to describe the 

potential in a two-foi I Einzel lens with a circular aper= 

ture in the central electrode. Orlov (1967/8) also accommo= 

dated an aperture in a closed immersion lens by dividing 

the lens interior into four subregions; 10 and KO Bessel 

functions were used. The potential distribution in a three= 

tube Einzel lens with gaps between the tubes (and assuming 

a linear potential variation in the gaps) was described by 

Anicin et al. (1976), and Read (1969a) used JO Bessel functions 

to find an analytical expression for the potential in a two­

aperture immersion lens; the approximation was used in subse= 

quent studies of symmetrical and asymmetrical Einzel aperture 

lenses [Read (1969b and 1970)]. Finally the Fourier-Bessel 

series representations of less common configurations with 

rotational symmetry may be mentioned, e.g. transaxial sys= 

tems [Mel 'nikov (1971)], capacitor-I ike systems [Heerens 
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et al. (1975) and Heerens (1976)J, a tube inside another 

coaxial tube [Lebedev et al. (1960)J, and juxtaposed co= 

axial cylinder with unequal diameters [Yeh (1975 and 

1976)] . 

Summarizing, it can be stated that the above configurations 

do not al low much freedom in the cho.ice of electrodes. In 

most cases configurations were chosen as to faci I itate the 

der ivation of the Fourier-Bessel representation and/or al low 

ease of manufacture; consequently only discs or tubes we re 

apparently uti I ized. The latter restrictions wi I I be lifted 

for two-foi I lenses in Chs. (2)-(4), for open lenses in 

Chs. (5) and (6), for one-foi I lenses in Ch. (7) and for open, 

one-foi I and two-foi I lenses in Ch. (8), in order to investi= 

gate, i .a., whether the restrictions mentioned did not se= 

riously hamper the optimization of systems. 

4.1.7 Analytic functions 

The functions of Section (4.1.6.1) could have been discussed 

under this heading, but due to the different techniques 

used, the functions which are members of orthogonal sets 

have been discussed separately. As far as the "non-

orthogonal" analytic functions are concerned, it is very 

seldom possible to "derive" the form that a function should 

take to represent a given configuration or a theoretically 

optimized system: normally various functions of convenient 
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forms are investigated, and a particular one selected which 

i) shows the most favour'ab lee I ectron-opt i ca I propert i es, 

or i i) gives the best approximation to the potential 

field due to a given set of electrodes. 

Although most of the investigations reported are of an 

empirical nature, dividing lines cannot always be drawn 

with certainty, and Section (4.2) is devoted to the elec= 

tron optical use of analytic functions, whatever the nature 

of the approach. 

4.2 Lenses represented by analytic axial potential functions 

In view of the expense of machining electrodes of various types 

for use in the experi menta I stud i es of Sect ions (4.1 .1) and (4.1 .2) 

the use of a simple mathematical model has its obvious attractions. 

In pre-computer days it would have been particularly advantageous 

to find a potential field which is expressed in closed form in 

such a way that not only the trajectory, but also the cardinal 

points can be derived in closed form. Unfortunately only a few 

such fields have been ' discovered, e.g. the paral lei electric 

intensity field used by Gianola (1950) to reduce the spherical 

aberration of existing lenses. [Examples are also quoted by 

Glaser (1956) and ,Harman (1953)J. Consequently more complicated 

functions were often used, applying various methods to calculate 

the electron optical properties associated with such functi ,ons. 
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In the majority of cases, an axial potential function fez) was 

chosen in such a way that af/az ~ 0 for Izl~ 00, so that open 

lenses could be model led. A popular method of analysis has been 

the use of expressions for the various focal properties, given in 

terms of fez) and its derivatives. These expressions were derived 

by Glaser (1933) and Scherzer (1936) and they apply to paraxial 

rays. The vast majority of reports, in fact, deal with the 

paraxial focal properties of lenses. Among the more comprehen= 

sive treatments are Glaser (1933), Regenstreif (1951), Ramberg 

(1942) and Wendt (1951). The latter report includes a funda= 

mental discussion on the types of analytical functions that al low 

physical implementation by means of a relatively smal I number of 

electrodes ( in contrast to some of the fields of fol lowing 

chapters wh ich can only be obtained by a large number of ring 

electrodes). 

Various reasons were advanced for choosing particular axial 

potential distributions. For instance, Grivet et al. (1952) 

used a function which was shown to approximate the axial beha= 

viour of the Fourier-Bessel series which Gray (1940) had obtained 

for two-tube lenses. The resulting saving in volume of computing 

was an important consideration, in view of the non-avai labi I ity 

of computers. 

Analytical models for paraxial regions were uti I ized by Dommaschk 

(1965/66) for a disc with an aperture, by Typke (1966/67) in his 
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study of two-tube lenses with large voltage ratios, by Croitoru 

(1965/66) in treating weak lenses, by Adams et al. (1972a) for 

Einzel and non-Einzel three~element lenses, and by EI-Kareh et al. 

(1971) for three-tube symmetrical Einzels. In some cases 

functions were attractive to investigate due to their mathematical 

forms but were not simple to approximate physically, e.g. the 

zero gap aperture lens of Read (1971) and the hyperbol ic lens 

discussed by, i .a., Zashkvara et al. (1977); the latter could, 

in princip le, be used as a foi I lens, or portions of the closed 

lens could be used for special purposes, as explained in his 

report. 

Further studies include the three-tube lenses of Ciric et al. 

(1976) and those by Kanaya et al (1972 and 1978) of immersion 

lenses and three-element lenses. Finally may be mentioned the 

two-volume study by EI-Kareh et al. (1970a and 1970b) in which 

extensive tables are provided ona ~ariety of lenses. The lack 

of precision of entries in some of the tables has, however, 

provoked unfavourable comment from reviewers who felt that alter= 

native methods of higher precision should have been employed 

instead. 

Grid lenses of various types were studied by Bernard (1951b , 

1952, 1953a and 1953b), and one-fo i I I enses by Hi b i no et a I. 

( 1976) and I ch i hash i et a I. (1973). 

In al I the above investigations, axial potential functions were 
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uti I ized, and paraxial focal properties obtained. In contrast, 

Kuroda et al. (1974) made use of an analytical potential at a 

fixed radial distance, and Johnson (1975) approximated the poten= 

tial field in the region between two coaxial cones in a configura= 

tion designed to reduce the spread of the outer parts of a beam 

of charged particles. 

In the above reports the emphasis was placed on finding an analy= 

tical approximation to a physical configuration of some kind, and 

not on whet her such a configuration has any particular merit as 

far as the reduction of aberra"tions were concerned. As optimiza= 

tion methods, the above attempts are probably on a par with the 

experimental methods of Sections(4.1 .1) and (4.1.2). 

In a different category are the analytical functions arrived at 

on theoretical grounds. For instance, Scherzer (1936a) and 

(1936b) advanced some arguments based on the electron optical 

properties of paraxial regions to show why a particular bel 1-

shaped potential distribution would result in a minimum third 

order spherical aberration. Simi lar distributions were investi= 

gated by Yamamoto (1974) who studied weak lenses by means of the 

Glaser bel I shaped functiQn, Yamazaki (1977) in his investigation 

of the influence of the magnification of an Einzel lens on its 

higher order focat properties, and by Yamazaki (1973) who compared 

the electron optical properties associated with his Gaussian poten= 

tial distribution, with those of the Glaser, Regenstreif and the 

Bernard-Grivet models. A summary of further functions used in 
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electron optical design has been given by Skol~ermo (1976a) and 

1976b), together with inverse boundary value problem solutions 

[see also Ch. (8)J. 

In spite of claims [Gabor (1942) and Crewe (1977), and the 

discussion by Septier (1966) of fields suggested by Glaser and 

Scherzer] that certain distributions represent "ideal" lenses 

- for instance having a minimum of spherical aberration - it is 

normally found that modifications of these functions can lead to 

superior designs. The disadvantage of some of the abovementioned 

functions is that they al low very few degrees of freedom - in some 

cases the half-width is the only adjustable parameter. This also 

appl ies to the model used by Tonomura (1973) to design a field 

emission electron gun. The function is a polynomial of seventh 

degree which, however, has only a single adjustable parameter, due 

to the particular choice of polynomial. 

A possible course of action to gain more degrees of freedom is 

that of superposing or juxtaposing suitable functions, and it was 

indeed found by Plass (1942) that an asymmetrical field obtained 

from a bel I shaped distribution gave a reduced spherical aberration. 

Kanaya et al. (1966) combined Glaser's bel I-shaped distributions 

to approximate thicker lenses, and investigated first and third 

order focal properties. 

Finally the composite lenses studied by GI ikman et al. may be 
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mer.tioned. Calculations were performed on juxtaposed tubular 

lenses of equal diameters. Glikman et al. (1974a) reported 

results on lenses with constant potential differences between the 

tubes, GI ikman et al. (1974b) deal with juxtaposed Einzel lenses 

with either constant potential differences or constant ratios of 

electrode potentials, and Glikman et al. (1976) calculated the 

cardinal e lements of juxtaposed immersion lenses with constant 

ratios between potentials on neighbouring electrodes. In all 

these cases it was found that an increase in the number of elec= 

trodes led to a decrease in the spherical aberration. [It may 

be remarked here that the solution given in Ch. (6) al lows this 

configuration to be represented by a Fourier-Bessel series, 

al lowing both paraxial and zonal focal properties to be calculated 

to a high degree of precision, especially if the number of elec= 

trodes takes on a large value; in such a case the solution of 

Glikman et al. suffers from an increased error accumulation]. 

Summarizing the analytical models discussed above, it may be 

stated that some models al lowed precise calculations of first and 

third order focal properties to be made of particular classes of 

lenses, but that most of the procedures fol lowed could not be 

expected to lead to absolute minima for the aberrations under 

consideration. Th i s view is supported by the fol lowing two 

considerations: j) assuming that some "optimum" function 

~(O,z)=f(z) exists, and must be approximated on a certain axial 

interval, it is clear that in most cases cited in this subsection, 

no effort was made to ensure that the functions chosen constituted 

Ch. (1) 42 



5. 

a complete set on that interval; and i i) the procedures 

fol lowed were usually not based on a mathematically founded op= 

timization t heory. 

In Section (6) the possibi I ity wi I I be discussed of satisfying 

these two criteria in electron optical design. 

ELECTRON-OPTICAL OPTIMIZATION MOSES AND SZILAGYI 

In previous sections it became obvious that most of the approaches 

were of the trial and error type, offering no guarantee that an 

optimum system wi I I result from the chosen procedure. In con= 

trast, two approaches which are based on mathematically founded 

optimization procedures, and are in a category of their own, have 

been formulated and appl ied in recent years: 

i) Moses (1973) has developed an optimization procedure which is 

based on va r iation theory and makes use of the paraxial ray equa= 

tion. Restr i ct ions on, e. g. the max i mum a I lowed e I.ectr i c i nten= 

sity can be accommodated by the theory, and one aberration can be 

reduced whi Ie demanding that other aberrations should not exceed 

certain limits. Moses has applied the theory to magnetic electron 

optical systems, but it does not seem to have become a popular 

method, probably due to its mathematical complexity, which fact 

Moses concedes. One must also note that the optimization is 

achieved fo r paraxial properties only. 

i i) Szi lagyi (1977) has developed a method based on a dynamic 
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programming search to reduce the spherical aberration of magnetic 

and electrostatic immersion lenses [Szi lagyi (1978)J. The aber= 

ration to be minimized is expressed in terms of a piece-wise linear 

axial potential function, by means of the paraxial ray equation. 

Themethod appears to be simple enough to become more widely used 

in the futu re, but - as Moses' method - is presently formulated 

to optimize the system for paraxial properties only. 

In Section (6) the possibi I ity wLI I be investigated of formulating 

a steepest descent method which can handle both paraxial and zonal 

electron optical properties. 

6. OPTIMIZATION BY A GRADIENT METHOD 

Various solutions to boundary value problems of Section (4.1.6.1) 

may be used in procedures to optimize different categories of 

lenses. Instead of giving here a general formulation of the 

method, a few specific examples wi I I be discussed by way of 

i I I ust rat i on . 

6.1 Example two-foi I lens 

As a simple example, it may be required to find a function ~(r;z) 

such that the lens corresponding to the function wi I I focus a 

uniform, parallel beam of electrons entering the lens at z=O, to 

a disc of confusion of minimum diameter at z=zf' The lens 

should have a radius A, a length L, and is closed off at z=O and 
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z=L by plane conducting foi Is which are earthed (making the lens 

an E i nze I I ens) • No axial electrode is al lowed, and the field 

¢(r<A,z) inside the lens wi I I be created by a set of coaxial ring 

electrodes at r=A, tor 0 < z < L. 

The problem can be tackled in two ways: 

i) The potential at r=A can be written as 
N 

f(z) = L Bn sin (mTz/U 
n=l 

so that inside the lens, 
CXl 

¢(r;z)= L 
n=l 

Bn sin (nTIz/L) 10(nTIr/L)/IO(nTIA/L) 

It is required to find the vector [BJ = [B1;B2, .. J so that the 

radius Rd of the disc of confusion reaches a minimum value. 

A simple gradient method can now be fol lowed by calculating 

Rd - through ray tracing - for ¢ given by [B]a = [1;0;0; .. ·1, 
by [BJb = [1; 0,001; O;O; ..• J, by [Blc = [1; 0; 0,001; 0;0; ..• 'J, 

etc. This al lows an approximate calculation of aRd/aB2' 

The gradient ~Rd can be calculated from these 

derivatives, and a translation in function space can be undertaken 

in the direction of -~ Rd' The procedure is repeated unti I a 

sufficiently low value of Rd is reached. I f the foca I length is 

found to be shorter or longer than the stipulated value, the 

(uniform) velocity of the charged particles entering the lens is 

adjusted. 

Ch. (1) 45 



The advantage of the procedure is that it can be expected to 

lead to a function f(z) which approximates the true optimum func= 

tion F(z), since the trigonometric functions constitute a complete 

set on the i nterva I (0, U. The larger the value of N, the more 

closely f(z ) can approximate F(z). 

A disadvantage of the procedure is ' that a large value of N wi I I 

slow down t he calculation of ~ Rd, in view of the ray tracings. 

In Ch. (4) it is shown how time may be saved by using a better star= 

ting point than [B] = [1; 0; 0; •.. J. 

i i) The problem may be formulated in terms of an axial func= 

tion 
N 

g (z ) = ~ Cn sin (n7Tz/U . 

so that, inside the lens, 
N 

c/l(r;z)= ~ Cn s in (n7Tz/U 10 (n7Tr/U 
n=l 

As in i), a starting point [C] is chosen, and a path along the 

gradient fol lowed unti I the optimum point is reached. The ex= 

pression given above for c/l(r;z) again al lows the potent ials on a 

set of coaxial ring electrodes to be found. Without going into 

detai Is, it may be remarked here that the approaches of i) and 

i i) may differ inefficiency, depending upon the AIL ratio. 

6.2 Example A one-foi I lens 

A lens wh i ch is open on the right hand side and has its left 
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hand side closed off by a conducting plane foi I at z=O, is re= 

qui red to focus a uniform, paral lei electron beam of radius A to 

a disc of confusion of minimum radius. The requ ired foca I length 

is also stipulated. 

Again two approaches may be fol lowed: 

i) A function H(z)=¢(A;z) is defined as fol lows 
N 

H(z)=h(z)= L Sn sin (nnz/U for 0 ~ z ~ L 
n=l 

and H(z)=O for L ( z ~ L', 

in which A is the given radius of the beam, and Land L' are 

lengths such that L»A, L'»A and L'»L. Then the solution of 

Ch. (6) can be used to calculate ¢(r;z) inside the lens for any 

[S]. The same optimization procedure as described above can be 

used to find the optimum [SJ. 

i i) An axial function G(z)=¢(O;z) may be defined: 
N 

G(z)=g(z)= ~ On sin (nnz/L) for 0 ~ z ~ L 
n=l 

and G(z)=O for L ( z ~ L' 

and the procedure of i) fol lowed, using the solution of Ch. (8) 

to the inverse interior Dirichlet problem. 

6.3 Example an open Einzel lens 

The open lens version of the previous problem can again be tackled 

in two ways: 

i) A function H(z)=¢(A;z) may be defined 

H(z)=O for 
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N 
H(z)=h(z)= I. Bn sin [nw(z-U/(L'-U] for L ~ z ~ L' 

n~l 

H(z) =O for L' ~ z ~ L" 

Suitable restrictions wi 1'1 have to be imposed on L,L' and L", 

e.g. that (L'-L»>A. A study of these restrictions have not yet 

been undertaken, and it is not known whether the set of approxima= 

ting functions constitute a complete set in this case. 

i i) Without going into detai Is, it appears as if the restric= 

tions of L,L' and L" may be less severe if, instead of defining 

~(A;z), an axial potential function ~(Ojz)=G(z) is defined: 

G(z)=O for 0 " z ~ L 
N 

G(z)=g(z)= ~ On sin [mr(z-U/(L'-U] for L " z " L' 
n=l 

G(z)=O for L' " z " L" 

As in Section (6.2), case (i i), the solution to the inverse inte= 

rior Dirichlet problem of Ch. (8) is uti I ized. 

6.4 Some general remarks on the proposed procedure 

i) In the example of Section (6.1) it is possible to find a 

symmetrical Einzel foi I lens by equating al I the B-coeffi= 

cients of even index to zero, and not changing them in the 

course of the optimization procedure. The same approach, 

coupled with the correct choice of L' and L" wi I I lead to a 

symmetrical open Einzel lens in the example of Section (6.3) 

i i) As mentioned in Section (6.1), the optimization procedure 

may be speeded up considerably by carefully choosing the 
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starting vector [B]. A suitable starting point may also 

be obtained from axial functions resulting from paraxial 

optimization procedures [e.g. the bel I-shaped axial func= 

tions of Section (4.2)]. Favourable starting points may 

also be obtained from weak lens approximations - using 

resu Its as presented in Chs. (4), (7) and (8). 

7. SUMMARY OF PROPOSED STUDY AND OUTLINE OF CHAPTERS 

The exploration of various techniques of uti I izing Fourier-Bessel 

functions in electron optical design wi I I constitute the main theme 

of this dissertation, and the techniques wi I I be aimed at reducing 

the spherical aberration of space charge free electrostatic lenses 

with rotational symmetry. The 10 Bessel functions wi I I be found 

to be of most use in simulating open, one-foi I as wei I as two-foi I 

lenses, and wi I I receive most of the attention. [The Ko functions 

can be used in lenses with axial electrodes, using the solution 

of Appendix (2), and J O functions are particularly useful in the 

analysis of mirrors, using solutions I ike those of Ch. (5). These 

appl ications are excluded from the present study.] 

In Chapter (2) some electron optical properties of individual 

10 Fourier-Bessel fields are studied with two objectives in mind 

i) to find out whether these fields have any unique properties that 

may be found useful, and i i) to aid in understanding the beha= . 

viour of lenses synthesized from these fields. 
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In Chapter (3) a study is made of weak symmetrical fields, and 

analytical expressions obtained for various focal properties. 

An attempt is then made to synthesize two fields to reduce the 

spherical aberration. 

In Chapter (4) syntheses are sought that would reduce the spherical 

aberration of strong symmetrical fields. The syntheses are at= 

tempted i .a. by using information about some properties of indivi= 

dual fields, as to provide suitable starting points for the gra= 

dient optimization procedure described in Section (6) of Chapter 

( 1 ). 

Whereas Chs. (2) - (4) deal with two-foi I lenses, a Fourier­

Bessel representation of a class of open lenses is given in 

Chapter (5). The lens region is divided into three parts, each 

represented by its own series, and both 10 and JO functions are 

uti I i zed. Integrals of products of Bessel functions are required 

for one of the derivations, and - since they are not avai lable in 

literature - are tabulated in Appendix (1). Series expansions 

for the integrals are also given in this appendix. 

Although the solutIon of Chapte~ (51 is useful for mirrors, con= 

vergence of some series are slow at certain points if lenses are 

described; and an alternative solution is given in Chapter (6), 

in which only 10 Bessel functions appear. The solution appl ies 

equally well to open, one-foi I and two-foi I lenses. 
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The computation of potentials may be speeded up considerably 

through the use of associated Fourier-Bessel series which can be 

formulated by taking into account aspects of the image charge 

model. Since the problem of convergence is more seri ous in 

exterior Di r ichlet problems, the method of associated series is 

described in Appendix (2) for the exterior problem. This solu= 

tion is also directly appl icable to the study of axial electrode 

le nses, which are, however, excluded from this study. 

Chapter (7) illustrates some appl ications of the solution of 

Ch. (6) by i) predicting the behaviour of one-foil lenses through 

a study of the charge distributions induced on the foi I, i i) using 

the solution in ray tracing studies of some configurations which 

- in their weak forms - show negative spherical aberration, and 

iii) finding corrective elements which show zero convergence 

paraxially, but focus zonal rays with large negative spherical 

aberration. 

In Chapter (8) the inverse interior Dirichlet boundary value 

problem is discussed, and approximate solutions presented. 

Electron optical properties of some of the solutions of Ch. (8) 

are briefly discussed in Chapter (9). 

The contents of the first two appendeces have already been dis= 

cussed. In Appendix (3) some properties of Bessel functions 

often referred to in the text, are given for quick reference. 
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C HAP T E R 2 

SOME ELtCTRON OPTICAL PROPERTIES OF FOURIER-BESSEL BASIS FIELDS 

1. INTRODUCTION 

In Ch. (1) the fol lowing boundary value problem was considered 

<j>(r;O)=<j>(r;U=O '¥ r ~ A (2. 1 a) 

<j>(A;z)=f(z) for 0 ~ z ~ L (2. 1 b) 

in which A and L are given lengths, and fez) is a given function. 

The solution, which describes a broad class of two-foi I lenses 

(with plane , foi Is at z=O and z=L) is 

00 

<j>(r;z)= L 
n=l 

in which 

Bn=(2/L~ 
JO

L 

Bn sin(n7Tz/U 10 (n7Tr/U/IO(n7TA!U 

f(z) sin(n7Tz/U dz 

(2.2) 

(2.3) 

In Ch. (4) an attempt is made to find functions fez) for which 

at least two of the coefficients Bn are non-zero. To obtain 

such syntheses, it is necessary to have some information on the 

electron-optical properties of fields corresponding to functions 

fez) for which only one coefficient Bn is non-zero. A report 

of a computer study of such fields is given in this chapter, 

whereas an analytical study of weak fields of the same type is 

found inCh. (3). 

2. ELECTRON OPTICAL PROPERTIES OF THE FOURIER-BESSEL FIELDS 

2. 1 I ntroduct i on 

The electron optical properties of some of the electro= 



static fields corresponding to n= l , 2, 3, .... in Eq. (2.2) are 

described in this section. ~ Due t o the difficulty of finding 

analytical expressions for the int egrals of Fourier-Bessel 

functions, the results of a numerica l study are presented here. 

To faci I itate the description, the terms of the series in Eq. (2.2) 

are now referred to as Four i er-Besse I !:components:! or flcomponent 

fields", and a system of indexing is i ntroduced as fol lows: 

C(±n) 
IO(n TI r/L> 

± s in(n TI z/L) 
IO(n TI A/L> 

In this publ ication only objects at z ~ - 00 are considered. As 

shown in Fig. (2.J),rays paral le i to the z-axis and at different 

radii enter the field from the lef t. The fieJd is zero for 

z < 0 and z > L. For al I the resul t s shown, the value of the 

radius A has been taken as O,2m and L was taken equal to 1m. The 

trajectories of electrons of different kinetic energies were cal= 

culated, and the ratio 

S (saddle point potential of f ie ld/(kinetic energy of electron 

in the field free region) 

was found to be a convenient parameter. In the case of single 

component fields it is found that for a chosen value of S, the 

value of the radius A has no inf luence upon the electron-optical 

properties described here. When superposing two or more Fourier-

Bessel fields, however, the rad ius A plays a most important part 

[see Chs. (3) and (4)]. 
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Note on normal ization: Normal ization with respect to maximum 

electric intensify is required when comparing various lenses or 

component fields. In the case of C(l) and C(2), for instance, 

C(2) would contain electric intensity values at r = A which are 

twice as large as those found at comparable points in C(l), if 

they have the same length L. AI I single components can there= 

fore be normal ized with respect to maximum electric intensity by 

multiplying the physical dimensions of C(n) by a factor n. 

The electron optical properties covered in this report are the 

focal distance, the position of the principal plane, the. focal 

length and t he spherical aberration. The chromatic aberration 

is mentioned briefly in Section (2.2). 

2.2 The focal distance. 

The Gaussian focal distance zd (i.e. the distance between the 

Gaussian focal point and the point z = 0) is plotted for various 

norma I i zed component fie Ids vs. l/S [F i g. (2.2)]. As info I low= 

ing graphs, only exterior focal points are represented (i.e. ob= 

jective and no projective properties are shown). Component 

fields or ranges of S resulting in divergent lens action are 

a I so exc I uded from th i s cha pte r , but some of these cases are 

discussed in Ch. (3L 

For sma I I values of S, it seems as if zd is proportional to liS, 

for C~-l), C(-3) and C(-5). 
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When zd is plotted vs. 1/52, straight I ines are obtained for 

C(+2), C(+4), C(-2) and C(-4) in their weak ranges [Fig. (2.3)]. 

No simple relationship has been found for C(+3) and C(+5) in 

their convergent ranges. 

Note on the chromatic aberration 

The chromatic aberration, dZf 
Cc = v­

a v 

may be found from Fig. (2.2) by noting that the slope of any of the 

curves may be equated to (l/V) dZf/av (where V is the potential 

energy of the electron in the field free region). 

Low values of Cc are reached at low values of zf, and the compo= 

nents C(-l) and C(4) appear to be superior to other components. 

2.3 The principal plane. 

The principal surface is defined [Fig. (2.1)J as the locus of the 

points of intersection of the I inear extrapolations of the rays 

entering and leaving the field. As a first approximation the 

surface may be considered to be plane (the Gaussian principal 

plane) and the distance zp between this surface and the geometri= 

cal centre of the field is plotted vs. 5 [Fig. (2.4)]. 

The curves may be divided into four groups, according to whether 

they are symmetrical or asymmetrical and initially accelerating 

or decelerating. 
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The large positive values of zp for the fields C(+2) and C(+4) 

"bring about short focal lengths for these fields; see also [Fig. 

(2.5)] . 

2:4 The spherical aberration 

The spherical aberration of electron lenses may be specified i .a. 

by expressing the longitudinal aberration ~J or transverse aberra= 

tion ~r in terms of series expansions in which even powers of the 

angular aperture 0i or the I inear aperture ra appear. ra may be 

measured in any of a number of possible aperture planes [see also 

Ch. (4)]. 

Although the values of ~J or ~r are known to several significant 

figures [see Section (3)J, the less precise representation by means 

of the primary aberration coefficient 

C = ~J 
s 0~ 

I 

is used in this report to faci I itate comparison of present results 

with publ ished data. 

If the dimensionless quantity Cs/z f is used to indicate the qual ity 

of a field as far as spherical aberration is concerned, it may be 

seen from Fig. (2.5) that components C(n) of sma I I n are superior. 

The spherical aberration of some fields with divergent action is 

d"iscussed in Ch. (3), 
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3. PRECISION OF THE RESULTS. 

A simple predictor-corrector method of ray tracing was used through= 

out this study. In calculating the force on the electron, modified 

Bessel functions of the first kind and of orders nought and one had 

to be evaluated. Since the rational approximation of tenth degree 

quoted by Abramowitz et. al. (1968) al lowed a precision of 1 part 

in 107 only, the more time consuming series expansion of Eq. (2.7) 

had to be uti I ized for 10' and a related one for 11. 

Although the arithmetic was carried out to 16 significant figures, 

the Bessel functions were normally evaluated to 12 signi"ficant 

figures only. The factor I imiting the final precision reached, 

was the number of steps in the trajectory calculation, which varied 

from N=80 to N=1280. The precision of zf varied between 3 and 5 

significant figures, depending upon the value of N and the strength 

of the lens. The precision of Cs varied between 1 and 3 signifi= 

cant figures. 

4. PHYSICAL APPROXIMATION 

Although the physical approximation of the Fourier-Bessel 

fields is discussed in more detai I in Ch. (4), an example is given 

in Fig. (2.6) for a C(+1) field. 

Equipotential I ines are drawn for ¢(r,z), as given by Eq. (2.2) 

for r < A, taking A]=1, and An=O, ¥ n > 1. 
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For the region r > A, 0 < z < L, we draw equ~potentia~ I ines for 

[see Ch. (1)]: 

KO(rr r/L) sin (rr z/L) 
<p(r,z) = 

KO(rr AIL 

A suitable equipotential line is chosen, and a physical electrode 

of this shape and with the corresponding potential placed in posi= 

tion. 

The size of the gaps between this electrode and the planes z = 0 

and z = L depends i.a. upon the A/L ratio, and it may be required 

to position a number of ring electrodes to establ ish the required 

potentials in the gaps. The potentials of the ring electrodes are 

suppl ied from a resistance chain. If proper care is taken the 

physical configuration should be a fair approximation of the mathe= 

matical 'field of which the electron optical properties are known 

from the computer study. 

5. SOME CONCLUSIONS 

5. 1 As far as the foca I length is concerned lit seems as if the 

fields C(n) with low values of n are preferable if strong conver= 

verging lenses are required. Particularly short focal lengths 

are reached with C(+2) due to the right shift of the principal 

plane. 

5.2 Low values of the spherical aberration are reached with 

C(-l) which is matched only by C(+2) at short focal lengths. 
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From Fig. (2.5) it can be seen t hat fi elds of the same convergence 

have spherical aberrations which dep end upon the values of n. The 

possibi I ity therefore exists of supe rposing or juxtaposing two or 

more fields of different n in an attempt to reduce or el iminate the 

spherical aberration of the comb i ned f ield. 

discussed in the next two chapters. 

Such syntheses are 

5.3 Fields C(+3) and C(+5) are divergent for fast electrons 

(smal I S), but are convergent for slow electrons (large S), due to 

a reduced speed in the negative potent ial regions where the radial 

acceleration is negative. Only C(+ 1) is divergent for electrons 

of al I velocities. A discussion of the possibi I ity of divergent 

electron opt i ca I lenses is given in Ch. (3). 

(2.2) of Ch. (7) in this regard. 

See also Section 

5.4 In the case of single component fields the chromatic aberra= 

tion reaches a minimum for large va lues of S, where the spherical 

aberration is also minimized. This does not seem to be true for 

strong superposed fields, as shown in Ch. (4). 
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C HAP T E R 3 

AN ANALYTICAL STUDY OF WEAK BASIS FIELDS AND OF SOME SYNTHE SES OF TWO 

COMPONENTS 

1. INTRODUCTION 

In Ch. (2) some electron optical properties of ' various Fourier­

Bessel component fields 

C(+n) = + 
IO(nnr/U 

IO(nnA/U 

were described. 

sin (nnz/U 

In th i s chapter an approx i mate ana I yt i ca I study is made o'f weak 

fields, so as to systematize the results of the numerical studies 

of Chs. (2) and (4) and aid in predicting the properties of syn= 

thesized fields. OnlY rays entering the field in a direction 

paral lei to the axis are considered here. 

2. TRAJECTORY APPROXIMATION 

When electrons pass through rotationally symmetrical electric in= 

tensity fields, it is found that both vz, the longitudinal velocity 

and r, the radial coordinate, change. 

To simpl ify the analytical integration it is assumed in this study 

that neither r nor Vz change appreciably. This impl ies either 

that the particles have high initial z velocities, or that the 

electric intensities are smal I, i.e. the ratiQ S of Section (2.1) 

of Ch. (2) is I imited to smal I values only. 
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It may be shown that if this assumption is made for C(±n) with n 

an even number, the field wi I I cause no convergence or divergence. 

For these asymmetrical fields the lens action results from the 

variations in Vz and r, and a different procedure must be fol lowed 

[Ch. (4)J. 

The same remarks apply to both symmetrical and asymmetrical "open" 

lenses (i.e. lenses not closed off by thin conducting foi Is or 

gauzes) • This can be seen by considering the electric intensity 

flux through an infinitely long coaxial cyl inder. [I tis shown in 

Ch. (5) that in Einzel type open lenses the flux caused by 10 (modi= 

fied Bessel function) type potential fields is equal and opposite 

to the flux caused by the associated JO (ordinary Bessel function) 

type fields.J 

The results of Sections (4) - (9) apply to symmetrical fields only, 

in view of the above remarks. 

3. THE RADIAL VELOCITY vr . 

We investigate the trajectory of an electron of charge to mass 

ratio qm which enters the field C(n) from the left, and paral lei 

to the axis. 

The radial velocity vr(t) may be found by integration 

f o 
dz 
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The radial acceleration a r is given by the radial derivative of 

C( n) : 

nlr 
T 

I 1 (nlrr/U 

IO(nlrA/U 
sin (nlrA!U (3. 1 ) 

where 11 is the modified Bessel function of the first kind and of 

order one. 

We now assume that r does not change appreciably (so that the 

Bessel functions need not be integrated here), and that Vz may be 

considered constant (removing Vz from the integration). 

I nteg rat i ng, 
11 (mrr/U 

I O( mrA/U [ 1-cos (nlrz/u] 

At the exi t plane, z = L, the radial velocity is 

~I 11 (mrr/U 
vre if n = 1, 3, 5, .... 

Vz I O( nrrA!L 
, 

or vre 0 if n 2, 4, 6, 

The constant qm may be el iminated by substituting 

(2Iqml/v~) IO~O)/lo(nrrA/L) by S: 

Vre S Vz 11 (nrrr/L) for n 1, 3, 5, ... 
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4. THE ANGULAR DEFLECTION, 8 t • 

The angular deflection 8 j at the exit plane is given by 
I, (mrr/U 

8 j = arc tan(vre/vz) ~ 2 Iqml for n = 1, 3, 5, 
10(mrA/U 

. S 11 (mrr/U 

5. THE RADIAL DISPLACEMENT or 

The radial displacement may be found by integration 

11(mrr/U 

I O( mrA/U 

if Vz may be assumed to be constant. 

dz 

(3.5) 

As a first approximation of ratio or/r may be assumed to be very 

smal I, so that the Bessel function 11 (nnr/L) need not be inte= 

grated. 

I nteg rat i ng 

or 
I qml 11 (nnr/U 

2 
V z 10 (nnA!L 

[ z- L; sin (nnz/u] 

At the exit plane 

L 
"2 v 

z 

11 (nnr/U 

10 (nnA/U 
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LS 
or -2- I 1 ( mrr/U (3.8) 

LV re (3.9) or 2vz 

6. THE FOCAL DISTANCE} zd' 

The focal distance zdr (i .e. the distance between Z = 0 and the 

point where the axis is cut by the ray entering the field at a 

radial distance r) may be calculated from 

cot (-0) 

as follows from Fig. (2 .1) 

Substituting for ore from Eq. (3.7) and for vre from Eq. (3.3) we 

find 

-r L 
+ -

2 
(3. 10) S 11 (mrr!U 

The Gaussian focal distance Zdg is found by calculating 

lim -r L 
r~O ~ 

+ 
mrr [1+(nrrr)2 + ... J 2 
-2- 8 

- L [_2_ + ~] nrrS (3.11) 
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in which 11 has been replaced by its series expansion. The above 

expressions are val id for all C(n) for which n is negative and odd. 

7. THE PRINCIPAL PLANE 

From Fig. (3.1) it follows that 

(L/2)-Zpg Vz 

or vre 

where Zpg is the distance between the Gaussian principal plane and 

the centre of the field. 

S.ubstituting from Eq. (3.9) we find Zpg 0 (3. 12) 

8. THE FOCAL LENGTH, zfr' 

The foca I I ength of a ray enter i ng the fie I d at a rad i a I distance 

r is found from Eqs. (3.10) and (3.12) 

-r 
Zfr S 11 (mrr/U (3. 13) 

and the Gaussian focal length is found from Eqs. (3.11) and (3.12) 

2L 
Zfg - mrS 

9. LONGITUDINAL SPHERICAL ABERRATION 

(3.14) 

The longitudinal spherical aberration 6J is found from Eqs. (3.10) 

and (3.11) 

(3.15) 

using the series expansion for 11, and neglecting terms containing 
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fourth and higher powers of r. 

Taking into account the conventional definition of the sign of 6J, 

as expressed by Eq. (3.15), we note that the fields C(n) with n 

negative and odd wi I I have positive spherical aberration, i.e. zonal 

rays wi I I cut the axis closer to the centre of the field, than par= 

axial rays. 

The longitudinal spherical aberration constant Cs as referred to an 

object at z+oo is given by 

3 2 
4S Ll1(nlrr/U 

L 

n1rS3 
(3. 16) 

in which Eq. (3.5) has been used, and in a series expansion for 11 

al I terms containing powers of r higher than one have been neglec= 

ted. 

The relative longitudinal spherical aberration constant is given 

by : 

(3. 17) 

jO. THEORETICAL VALUE~ COMPARED WITH RAY TRACING RESULTS 

The theoretical predictions of the above sections are compared in 

Table (3. 1) with the results of the computer ray tracings of Ch. (2), 
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Table (3.1) Comparison of theoretical (Xth) and computed values (Xnum ) 

of vre. re , zd, and ~J for rays of different radi i r. The ratio 

S = 0,02. 

~ O,OO lm O,004m O,016m O,064m 

vre -4,OE-3 -4,OE-3 -4,OE-3 -4,OE-3 

re N.A . -1,2E-2 -1,2E-2 -1,2E-2 

zdr 4,lE-3 4,lE-3 4,lE-3 4,lE-3 

~J N.A . 0,38 0,024 1,OE-3 

Table (3.2): The ratios R3 and R4 for various values of n. 

Ra diu s r = 0, 1 L • 

n R2 R3 R4 R2+R3+ R4 
1-

- -- -

Cor-
red- 3 0 -4,56xl0-4 -9 38x10-6 -4,65xl0-4 
ted , 

by 
means 5 0 -1,26x10-3 -6 77x10-5 , -1,33x10-3 
of 

B.C. (n) 7 0 -2,48x10-3 -2,55x10-4 -2,74x10-3 
I 

Uncor- 1,23x10-2 4,11x10-3 7,60x10-5 1,65x10-2 
rected -
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by quoting relative differences between the theoretical and numeri= 

cal values, for various rays entering a weak field C(-l) characte= 

rized by S = 0,02. 

11. CONDITION FOR NOUGHT SPHERICAL ABERRATION 

From- Eq. (3.11) and Fig. (3.1) it follows that if all the rays cross 

the axis at the same point, 

r 
Zfg 

sin (--8) = 
-v re 

Vz 

so that we require that 

vre a. r 

(3. 18) 

(3. 19) 

for a field that shows zero spherical aberration. The condition 

of Eq. (3.18) is val id for weak fields only, in view of the appro= 

ximate nature of Eq. (3.11). 

Replacing the Bessel function 11 in Eq. (3.4) by its series expan= 

sion, we have for any field C(n) 

vre mrr { 1 + 
2I 

I O( mrA/U 

t + •••• -} (3.20) 

from which it can be seen that Eq. (3.19) wi I I be satisfied only if 

al I terms but the first in the face brackets of Eq. (3.20) can be 

eli m i nated. We also note that i) the sign of vre depends upon the 

sign of n, and i i) the convergence of the series in Eq. (3.20) 

depends upon n2 . If we aim to el iminate third order spherical 

aberration completely, we could superpose a field C(-l) and a 
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field 8 times C(n), with n positive and odd, and 8 a constant chosen 

so as to equate the magnitudes of the terms containing r2 in the 

given series. 

Writing x = rr r/L and y rrA/L, 

with 0 = 

+ 
8 11 (nx) ] 

10 (ny) . 

[ I)(x) - 0 I) (nx) 1 

Replacing the 8essel functions 11 by their series expansions, and 

simp I i fy i ng 

-x 
vre [ ( 1-0n) +x2 

"8 

To el iminate the x2 term, we choose 

1 - On3 = 0 

i.e. 8 
10(n rr AIL> 

n
3 IO(TIA/U 

12. QUALITY OF CORRECTION 

+ ••• ] (3.21 ) 

(3.22) 

To evaluate the degree to which the spherical aberration has been 

reduced, it may be helpful to investigate the contributions of the 
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terms in the series of Eqs. (3.20) and (3.21). Let Ri be the ratio 

of the i-th term and the first term in either of the expansions, and 

let us investigate a ray of radius r= O,lL. With 0= 1/n3 it is 

shown in Table (3.2) that correction by means of C(3) is superior to 

C(5) and C(7). For a more complete el imination of the spherical 

aberration, it would be profitable to el iminate not only the third 

order aberration, but higher orders as wei I; see Chs. (4), (7) and 

( 9), 

12.1 Ray tracing results. 

The spherical aberration coefficient Cs has been calculated from the 

focal points of rays entering the field C(-l) + B.C(3) paral lei to 

the axis. Table (3.3) shows Cs values for various radii and values 

of B. S 0,02 for al I the rays. It is seen that the uncorrected 

field (i.e . B=O) shows a considerably larger aberration than the 

corrected f ields. From Eq. (3.22) we predict that the third order 

spherical aberration should vanish with B=0,212 (for the expansion 

radius A=0,2L), but the results in the table indicate a sl ightly 

larger value, probably 8=0,222. 

13. EXISTENCE OF NEGATIVE SPHERICAL ABERRATION 

In Section (12) it was seen that the corrected field had values R3 

and R4 which were negative. Investigation of Eq. (3.21) shows 

that if 0 is gradually reduced, R2, R3, R4, etc., would in turn al I 

become positive. On the other hand, if 0 is chosen to be larger 

than 1/n3, al I the terms after the first in the expansion would be 
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Table (3.3): The spherical aberration coefficient Cs as calculated from 

rays of different Initial radii r, passing through fields C(-l) + B.C(3), 

for various values of the ampl itude factor B. The value B=O refers to 

the uncorrected field C(-l). s 0,02 and ' AIL = 0,2. 

r\ 0 0,212 0,217 0,222 

0,01 1 ,2x1 03 74 36 0,66 

0,02 1 , 2x 103 72 37 -1,0 

I 

0,03 1, 2x 103 70 34 I -3,8 
I 

0,04 1,2x103 66 31 I -7,8 I 

0,05 1, 2x1 03 61 26 -12,9 

0,06 1, 2x1 03 55 20 -19,1 
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negative for al I ' r < A. This impl ies that such a fi e ld would show 

negative spherical aberration for al I rays of r < A. 

also shows some negative values of Cs . 

Table (3. 3) 

The existence of negative spherical aberration and the possibi I ity 

of reducing the spherical aberration of a positive lens by means of 

a juxtaposed negative lens have been reported before [see Ch. (7) 

for a discussion of current literature]. 

In the solutions described in Sections (11) and (12), the correction 

is not brought about by juxtaposing two fields, but by superposing 

fields with divergent and convergent actions. 

The presence of the conducting foi Is introduces a discontinuity into 

the field, and therefore the above results do not constitute a vio= 

lation of Scherzer's Theorem [Scherzer (1936)J (which asserts the 

impossibi I ity of negative spherical aberration in rotationally sym= 

metrical fields). 

14. PHYSICAL IMPLEMENTATION 

A more complete discussion of the ways in which the field syntheses 

may be brought about by physical electrodes is given in Ch. (4) but 

by summary it may be stated that some fields may be obtained by 

positioning relatively few (one or three) conducting electrodes 

between the two outer earthed electrodes (type I), whereas in other 

cases it is required to position a much larger number of ring elec= 

trodes in the space between the central electrode and the outer 
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earthed electrodes (type I I). 

Fig. (3.1) shows equipotential lines for the field C(-l) + 0,212 C(3), 

and it can be seen that the type I I solution appl ies here. Ring 

electrodes are shown by circles, and the suggested central electrode 

by a heavy sol id line. 

15. LIMITATION ON THE EXPANSION RADIUS A. 

For a field of type I I the potentials of the electrodes would be ob= 

tained from a potential divider resistor chain, and it may be advan= 

tageous to I imit the electrode potential to one polarity only, so 

that al I the potentials can be obtained from one power supply. 

This wi I I be the case as long as the constant B does not exceed a 

certain maximum value Bm, and it can be shown that 

Bm = 1 
n 

so that Eq. (22) becomes 
10(nlTA,n/U 

I o (lTAn/U 

(3.23) 

(3.24 ) 

in which Am is the maximum expansion radius for physical configura= 

tions of single polarity. Solving Eq. (3.24) it is found that 

Am/L = 0,4517; 0,3302 or 0,2654 for n = 3; 5 or 7 respectively. 

On the basis of this information and the contents of Table (3.2) it 

seems as if the choice of n = 3 would be the most advantageous for 

weak fields. 
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Fig. 3.1 Equipotential lines for the field C(-l) + 0,212 C(3) with A 0,2m and L = 1,0m. 

Only the left upper quadrant is given. 
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16. CONCLUSION 

Both analytical predictions and ray tracing results point at i) the 

possibi I ity of reducing the spherical aberration by superposing cer= 

tain weak Fourier-Bessel fields, and i i) the occurence of negative 

spherical aberration values for some weak fields. 

Because of the simpl ifying assumptions of Section (2), the theory of 

this chapter cannot be expected to apply to strong fields, and the 

electron optical properties of the latter are found by computer ray 

tracing, as is discussed in Ch. (4). 
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C HAP T E R 4 

SYNTHESES REPRESENTI NG STRONG TWO-FOIL LE NSES WITH REDUCED SPH ERI CAL ABER= 

RATION, AS OBTAINED BY COMPUTER RAY TRACING 

1. INTRODUCTION 

In Ch. (2) It was seen that the basis fields C(±n) individually 

showed large spherical aberration, Cs , and this was explained in 

tho (3) for weak fields, by investigating the series expansions for 

C(±n). In Ch. (3) it was also shown how a reduction in Cs could 

result from combining two basis fields. Only weak fields were 

dealt with, and it was not possible to obtain sma I I values for Cs 

for paraxial and zonal rays simultaneously if the syntheses were 

restricted to two fields only. 

In this chapter an attempt wi I I be made to obtain a reduction in 

Cs for strong fields, and up to four fields wi I I be al lowed in order 

to accomodate both paraxial and zonal rays. As in the previous two 

chapters, the functions ~n(r;z) are chosen with only the fol lowing 

restrictions in mind: 

i) the des i gned I ens wi I I be a fa i I I ens and on I y para I I e I 

plane foi Is are al lowed ( in view of the fact that plane 

fol Is are much easier to produce than those of specified 

curvature) j 

I I) ' the lens wi II be symmetrical w.r.t. the plane z = L!2, 

where L is the distance between the two foi Is (for simpl i= 

city we take L = 1m In this study); 
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ii i) the final field must be such that it can be approximated 

by physical electrodes; therefore we exclude distribu= 

tions containing terms Ko(r), the modified Bessel functions 

of the second kind and of order zero. [See also Section 

(4.1 .6.1.i) of Ch. (1) and Section (5) of Ch. (9)J. 

In later chapters, conditions i) and ii) wi I I be dropped, al lowing 

open and/or asymmetrical lenses to be investigated. 

The functions ~(r;z) chosen in this study are the onty basic solu= 

tions of Laplace's equation and the boundary conditions I isted in 

Section (2), and therefore the author bel ieves that the required 

potential field ~r(r;z) (in our case the space charge free symme= 

trical foi I lens of minimum spherical aberration which can be 

approximated by real electrodes) can be expressed as a superposition 

00 

I (4. 1 ) 

n=l 

in the sense of a two-dimensional Fourier-Bessel expansion; and 

that a sui t able systematic procedure wi I I al low the determination 

of the constants Bn in the above series. 

Whi Ie recognizing that the syntheses obtained in this chapter are 

not optimized, but only represent improvements on the field used as 

a starting point, the author is, at the same time, of the opinion 

that in some previous investigations the optimum distributions 

could not be found, because of restrictions on the solution subsets; 

the restrictions are introduced by the a priori choices of elec= 
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trode forms (in some experimental studies) or classes of preferred 

functions (in some theoretical studies). 

It must be reiterated here that the syntheses of this chapter are 

obtained with only one objective in mind, namely the reduction of 

spherical aberration in strong two- foi I lenses. This objective 

has been chosen to illustrate the use of Fourier-Bessel methods, 

and it may happen that the syntheses arrived at in the process of 

reducing . Cs , may have other lens aberrations with increased values. 

2. POTENTIAL FIELDS AND SOME ELECTRON OPTICAL PROPERTIES 

In Chs. (2 ) and (3) some electron optical properties were given of 

symmetrica l component 'fields 

~±n(riz) = C(±n) - ± 
10(nlTr/U 

I o (n'ITAiU 
sin (n'ITz/U (4.2) 

where A is the expansion radius, 10 is the modified Bessel function 

of the first kind and of order zero, and n is an odd integer. 

In Ch. (2) it was shown that the component fields of different n-values 

but of equal power show different spherical aberration values, so 

that the possibi I ity seems to exist that components of different 

n values and carefully chosen ampl itudes may be used to reduce the 

spherical aberration of the synthesis. 

In Ch. (3) it was shown that an electron which passes through a 

weak field C(n) with a z-velocity, vz , wi I I have a radial velocity 

vre and radial displacement ore at the exit given by : 
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(4.3) 

and ore . (4.4) 

where n is an odd integer, 11 is the modified Bessel function of 

the first kind and or order one; and S is the ratio of the saddle 

point potential to the kinetic energy of the particle in the field-

free region z<O or z>L: 

Therefore the weak lens condition for zero spherical aberration 

vre ex. r (4.5) 

is not satisfied, as is shown by the series expansion of 11: 

11 (mrr/U 
n'ITr 
2L + (4.6) 

Eqs. (4.3) and (4.4) were obtained analytically by assuming that 

neither Vz nor r changes appreciably as the electron passes through 

the field, i.e. the field is relatively weak. See Section (11) 

of Ch. (3). 

For stronger fields the above assumptions are no longer val id, and 

a rigorous analytical treatment does not seem feasible. However, 

if we assume that r does not change appreciably, but that Vz 

varies, it is possible to find an expression for Vre by analytical 

integration, namely 

vre S[l. S i ( / L) r 1 + S[l. 'lTH ( r) H2 ( r) J (4 7) - I qn I vo 1 n'ITr L I q I . 8 . + 4 • 

for fields C(±n); here Vo is the value of Vz outside the lens, and 
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I 

H (r) = 
2Iql l o(n1rr/U 

2 
mvO I ° ( n1r AI U 

S I O( nrrr/U 

This expression for vre can not be expected to be sufficiently pre= 

cise to attempt syntheses for strong lenses, but can serve as a 

useful guide. 

To establ ish whether the assumption that r may be considered con= 

stant for purposes of Eq. (4.7) is a real istic one, rays were 

traced by computer through a C(3) field, and vre calculated for the 

following cases: 

a) both rand Vz are al lowed to vary; 

b) changes in Vz are suppressed during 

computation; 

c) .changes in r are suppressed during compu= 

tation. 

In Fig. (4 . 1) the ratios 

and 

( v re ) b - ( v re ) a 

(vre)a 

( v re ) c - (v re ) a 

(vre)a 

(4.8) 

(4.9) 

are plotted against ri, the radius of the ray as it enters the 

field. It can be seen that for the S 0,01 case the rays b) 

and c) correspond very closely to a), the correct ray; the Gaussian 

foca I length in th is case is 20 L. For the field S 0.05, which 

gJves a Gaussian focal length of 4 L, the correspondence between 

Ch. (4) 86 



0,08 
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0,02 
.. ' 
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.... .. 
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r· I 

Q,4m 

Fig. 4.1 The r atios Rl and R2 of Eqs. (4.8) and (4.9) plotted for the 

field C(+3) against the ray radius ri at z = 0. 

Solid lines : S = 0,01 Dotted lines: S = 0,05 
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b) and a) is sti I I fair, ~hereas there is a rather large difference 

between c) and a). It may be noted that the assumption that r 

and/or Vz stays constant wi I I be useful for weak fields C(±n) with 

even n but not with odd nj nor for fields resembl ing open lenses. 

In view of the above consideration one may describe the exit radial 

velocity by means of the fol lowing relationship 

N 

11(mrr/U I 
i=O 

I 

Ai [lo(n.r/U ] (4. 10) 

in which the constant Ai may be found by means of a lea$t squares 

procedure. For our present purpose Eq. (4.7) suffices and the 

constants AO and A1 may be obtained from Eq. (4.7). The qua Ii ty 

of the fits are shown in Fig. (4.2) for N = 0, 1 and 2. 

A simi lar description can be given of ore' the radial displacement 

at the exit: 

Ore 

N 

11 (mrr/U I 
i=O 

I 

Di [Io(mrr/u] 

3. REDUCTION OF SPHERICAL ABERRATION BY SYNTHESIS 

(4. 11 ) 

Our aim is to determine the constant in Eq. (4.1) so as to minimize 

the spherical aberration. ·It is known that the spherical aberra= 

tion is not a lens constant, and this study is I imited to 

i) objects at z ~ - wand 

ii ) strong fields. 
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The exit radial velocity v plotted against the ray radius r. at z = 0. re 1 

v is found: by ray tracing (lines e) and by using Eqs.(4.7) and re 

(4.10) with N = ° (lines a), N = 1 (lines b) and N = 2 (lines c). 

Dotted lines field C(+3) and S = 0,01 

Solid lines field C(+3) and S = 0,05 

Dashed lines field C(-l) and S = 0,5 
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First a ' sure must be defined to characterize the presence (or 

absence) of spherical aberration. In principle the constants Ai 

and Di can be tabulated, since the longitudinal or transverse sphe= 

rical aberrations (~JL or ~JT) can be found from these constants. 

Alternativel'y the polynomial expansion for ~JL or ~JT can be given, 

and the primary aberration constant Cs specified~ection (9) of 

Ch. (2) ]. The latter approach is useful for the paraxial case, or 

when the third order aberration predominates. In the present study, 

however, the spherical aberration of low orders is reduced to such an 

extent that several terms in the (possibly alternating) series wi I I 

have to be considered. This makes the comparison of various syn= 

theses difficult, and therefore the disc of confusion itself is used 

as measure of the qual ity of the synthesis. 

Subsequent to ray tracing through a synthesized field, the radius 

of the disc of confusion may be calculated for various planes z = zi, 

so as to locate the cross-over plane. The radius of the disc of 

confusion · in this plane is cal led Rl,o(rb), the subscript indicating 

that 100% of the incoming rays pass through this disc, assuming that 

a paral lei electron beam of uniform density and radius rb enters the 

field at z = O. 

A plane may also be found in which the radius Rc,66(rb) is minimized 

(i.e. the radius of the disc through which 66% of the incoming beam 

passes). It is obvious that both Rl,O(rb) and Ro,66(rb) would 

depend upon rb; therefore the radii may be calculated and plotted 

for various values of rb. 
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Fig. 4.3 The radii of the circles of confusion RI,O and R
O

,66 

for the field S5 of Table (4.1) plotted versus the 

radius r of the beam at z = 0. p 
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To show the extent to which the spherical aberration has been 

reduced, the radi i R1.0 and RO 66 are also {see Fig. (4.3)J found , 
for the uncorrected field C(-l). vo, the z-velocity at z = 0, is 

adjusted to obtain a focal length equal to that of the syntheses. 

The ratios T1 O(rb) and TO 66(rb) are then calculated for the , , 
various rb' with 

Rp(rb) of the uncorrected field C(-l) 

Rp(rb) of synthesis 
(4.12) 

The values of R1,0(rb) and TO,66(rb) are plotted against rb for 

various syntheses in Figs (4.4) and (4.5), and may be taken as a 

measure of the extent to which the spherical aberration of the 

C(-l) field has been reduced. 

4. THE OPTIMIZING PROCEDURE 

Before the optimizing procedure can be carried out, an objective 

has to be defined, which involves choosing a beam radius rb 

(depending upon the required aperture) and deciding whether T1,0 

or TO 66 must be optimized. , The expansion radius A of Eq. (2.2) 

must also be chosen, as wei I as an approximate focal length. From 

figures in Ch. (2) the ampl itude of C(-l) can then be found, or the 

initial beam velocity Vz adjusted to obtain the focal length. (In 

this paper the constants Bn are of the order of lV. For practical 

lenses, the constants would be multipl ied by some suitably large 

factor). 

Ch. (4) 92 



" ............... ~ ...... . 
\ ............ .. /./. " .... . 

\ ...... .J ' /' " ..........•.. 
,........ / ~ " ". 

2 
.... \~ ,.,. " ................................ .. 

....... ~./ \ 

\ \. , \ , ~.-~ 

:\. ~ ------ , " , , 
\ ' , \" , 

\ ' " 

" 

1 " 

\. 

0 ..... ___ ....... ___ ..... ___ ....... ___ ....... 
0'15 , 0,25 Q,35m 

Fig. 4.4 The ratios Tl ,O and TO,66 of Eq. (4.12) plotted against 
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Two procedures to accompl ish the synthesis are now described. 

4. 1 Steepest descent method 

Component fields kn(C(n), with n = 3, 5, 7, etc., and kn sma I I 

fractions, are added to C(-1) one at a time and ray tracing carried 

out by computer. The changes ~Tp for each of the perturbations 

can then be found, al lowing aTp/akn to be calculated for 

n = 3, 5, 7, ...... . These derivatives al low the calculation 

of the gradient used in the steepest descent method. Due to the 

high precision required in the calculation of the Rp(rb) values, 

the calculation of the gradients may make excessive demands on 

computer time, so that this method may not be very fast, especially 

if some of the constants Bn of Eq. (4.1) are fairly large. 

4.2 The "zonett method : 

This is a t rial and error method which can be used to obtain appro= 

ximate synt heses fairly quickly, and which is based upon some under= 

standing of Eqs. (4.6) and (4.10), 

It can be seen from Eq. (4.10) that vre is proportional to a func= 

tion which is almost a Bessel 11 function of r, so that the field 

C(-l) wi I I show positive spherical aberration (i .e. zonal rays have 

shorter focal lengths than paraxial rays). We therefore want to 

introduce perturbations that wi I I increase the focal lengths of 

the zonal rays, without affecting the focal lengths of the paraxial 

rays excessively. Consideration of the terms in Eq. (4.6) shows 

that this can be accompl ished by using a field B3C(+3) for the 
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correction of rays just outside the paraxial region; usually 

0<83<1. For the zonal regions the ffelds C(5) or C(7) would be 

more effective than C(3) in increasing the focal lengths, because 

of the factor n4 in the terms n4TI4r4/192L4 in Eq. (4.6). 

One can therefore divide the · region O<r<~ into (fairly arbitrary) 

"zones of influence" in which e.g. the fields C(3), C(5), C(7) and 

C(9) are used for focal length reduction of rays in the zones 

0<r<0,25 rb~ 0,25 rb<r<0,5 rb~ 0,5 rb<r<0,75 rb and 0,75 rb<r<rb, 

respectively. 

Constan~83 ' 85, 87 and 89 are therefore chosen, and varied accor= 

ding to the outcome of ray tracings by computer. The syntheses 

Sa, Sb, Sc and Sd discussed in the next paragraph were obtained 

after only a few adjustments each, requiring considerably less 

computer time than the steepest descent method would have required. 

5. DISCUSSION OF SOME SYNTHESES 

Some .electron optical properties of four synthesized fields are 

discussed in this section. The syntheses discussed are given for 

illustrative purposes only~ and Were arrived at within a few trials 

with the "zone" optimization method. They can provide starting 

points for a steepest descent method. Some information about the 

syntheses are given in Table (4. I), in which S5 is the (uncorrected) 

field 0,295 C(-l). 
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Table (4.1) 

Syn= 
thesis 

Sl 

I 
S2 

S3 

S4 

S5 

Some characteristics of the syntheses: the coefficients 8n of Eq. (1), the initial 

ray velocity vO' the Gaussian focal point Zfg and the principal plane position, zp. 

81 83 85 87 89 vO(m/s) zfg(m) zp(m) 

I 0,295 I -0,24 0,00 -0,03 -0,04 1,3380 4,242 -0,0345 
I I 

I 

I 
I 

0,295 -0,24 0,00 -0,03 -0,30 
I 

1,3380 4,242 -0,0346 

I 

0,295 -0,24 0,00 -0,02 -0,40 1,3380 4,242 -0,0345 

0,295 -0,24 0,02 -0,08 -0,40 1,3380 4,237 -0,0346 

0,295 0,00 0,00 0,00 0,00 1,4545 4,263 -0,0362 

-



5.1 Reduced disc of confusion 

The values of R1,0 and Ro,66 for S5 are given in Fig. (4.3), and 

the ratios T1,0 and TO,66 are shown in Figs. (4.4) and (4.5), for 

syntheses S, and S4, and S2 and S3 respectively. It can be 'seen 

that very significant changes in the spherical aberration can be 

brought about by rather smal I changes in the coefficients Bn. This 

is illustrated graphically in Fig. (4.6) by plotting the function 

~(A,z), i.e. the potential at the expansion radius A, for each of 

the syntheses. ' 

Due to the close' correspondence between the functions in the paraxial 

region, the single heavy sol id line represents the function ~(O,x) 

Figs. (4.7 ) and (4.8) show the upper left quadrants of the fields 

~(r,z) for Sl and S2, respectively. A discussion of the physical 

approximat ion of th~se fields is given in Section (7). 

5.2 Role of object position 

Since the spherical aberration of a lens depends, i.a., upon the 

object distance zO' one may expect a synthesis found by minimizing 

the spherical aberration for zo + - 00, to be non-optimal for other 

object positions. Calculations have been made for T1 0 for the , 
synthesis $4' with Zo = 10L and 5L, and the results are given in 

Fig. (4.9). It appears that the correction is effective in the 

,paraxial region for a wide variety of object positions, but that 
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Fig. 4.6 The potential function~(r,z) for various syntheses, 

plotted vs. z. 

(light) 1jJ(A,z) for 51 and 53 

---- ----- - 1jJ(A,z) for 52 

.... ..... . ... .. . .. .. 1jJ(A,z) fpr 5~ . 

(heavy) 1jJ(O,z) for 51 ,52 ,5
3 and 54 
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this does not apply to zonal rays. 

5.3 Negative spherical aberration 

Fig. (4.10) gives the longitudinal spherical aberration 

~J = zf(r} - Zf(O} 

for various syntheses and for the uncorrected field, as a function 

of the radius r of the ray at Z = O. 

It can be seen that some curves show negative spherical aberration. 

Thepossibi I ity of obtaining negative aberration was predicted for 

weak fields, but in the present study it was found to be . relatively 

easy to obtain negative spherical aberration for rays of r<A, in 

the case of strong fields as wei I, [see also Section (6)J. 

6. CORRECTION OF SPHERICAL ABERRATION OF A GIVEN LENS 

The spherical aberration of al I open lenses (i.e. lenses not con= 

taining thin conducting fo i Is) seems to be positive. Because of 

the ease of obtaining negative spherical aberration in the foi I 

lenses described above, it seems to be possible to use suitably 

designed foi I lenses to correct the spherical aberration of exis= 

ting lenses, if the vre vs. rand orevs. r characteristics of the 

given lens i s known. The optimization procedure of Section (4) 

can sti I I be used, the only difference being that the rays entering 

the field being synthesized wi I I now have a certain known radial 

velocity distribution in need of adjustment. 
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Fig. 4.7 Upper left quadrant of the field ~(r;z) for synthesis 51' 

showing cross-sectional equipotential lines. 
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It also seems possible to obtain a synthesized field which wi I I show 

zero (Gaussian) convergence, but only the required negative spheri= 

cal aberration. If placed behind a given lens, such a lens would 

correct the spherical aberration of the given lens, without affec= 

ting its (Gaussian) focal length. Syntheses of this type are also 

discussed in Ch. (7). 

7. PHYSICAL IMPLEMENTATION 

The ways in which the mathematical fields discussed above can be 

obtained by means of physical electrodes, were discussed in Chs. (2) 

and (3) as far as relatively simple fields are concerne~. · The 

fields of the syntheses S1 - S4 can again be obtained by means of 

a large number of metal ring electrodes of radius re, with A~re~ra, 

the aperture radius. Alternatively a field I ike that of Sl 

[Fig. (4.7)J can also be obtained by relatively few electrodes, in 

the fol lowing way: 

i) an electrode at OV is positioned as shown 

by P5, P6, P7; it may touch or be integrated 

with the plane electrode at z = 0; 

i i) an electrode is placed at the 0,250 equipo= 

tential surface; if a smaller aperture at 

z = L/2 can be tolerated, a lower equipoten= 

tial surface may be chosen; 
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Fig. 4.8 Part of th~ upper left quadrant of the field ~(r;z) for the 

synthesis 52' showing cross-sectional equipotential lines. 
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iii ) as far as the region between the above elec= 

trodes is concerned, there are the alterna= 

tives of positioning two electrodes (e.g. 

0,00 and 0,08) or choosing the unique sur= 

face (0,063) passing through the off-axis 

saddle point Pl (strictly speaking, this is 

a saddle I ine). Although the part of the 

electrode between Pl and r = A is the more 

important part of the electrode in defining 

the potentials in the region r<A, it would 

be advisable to suspend the electrode by 

means of the curved part passing through P2. 

A sl it or holes are made in this electrode 

to al low the suspension 6f the central 

(i.e. 0,250) electrode to pass through. 

It may be noted that a further off-axis sad~le point is located at 

P4' but it does not seem to be useful for purposes of electrode 

design. 

It should also be noted that in the design of the electrodes it is 

important to minimize the gap sizes between the electrodes, at r = A. 

For sufficiently sma I I gaps the potentials in the lens region should 

be a fair physical. approximation of the synthesis. 

To illustrate how the electrode shapes for the various syntheses 

differ, part of the I eft upper qu'adran:t of the $2 synthes i sis 
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shown in Fig. (4.8). 

The dashed l ine P1 P3 [in Figs. (4.7) and (4.8)J is given only to 

show the equipotential surface and does not form part of a physical 

electrode. 

An important consideration in the design of lenses is that of 

reducing the maximum electric intensities between the electrodes, 

wherever possible. If the equipotential curves of Figs. (4.7) and 

(4.8) are studied, or the potential functions of Fig. (4.6), it can 

be seen that the potential gradients appearing in the syntheses are 

far in excess of the values found in the S5 (i.e. uncorrected C(-l» 

field. It seems as if the correction of spherical aberration is 

accompl ished at the expense of freedom in choosing high electrode 

potentials or sma I I lens dimensions. 

8. CONCLUSION 

A method has been described which al lows the design of electrostatic 

foi I lenses of rotational symmetry in a systematic way in terms of 

superposed basic Fourier-Bessel potential fields. As an example 

it was shown how the spherical aberration of foi I lenses can be 

reduced significantly by 

j) al lowing electrodes of curved cross 

sections and/or 

it) al lowing more than one central electrode 

and/or 
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iii) al lowing both positive and negative 

potential regions within the lens. 

The syntheses of Section (5) could be obtained by means of the opti= 

mization methods described, because a relatively sma I I number of 

coefficients Bn had to be accommodated (a larger number of coeffi= 

cients would have resulted in superior syntheses by means of the 

gradient method, but would at the same time have required more com= 

puter time). 

When deal ing with open lenses, It wi II be shown in Chs. ,(5), (6) 

and (8) that these lenses cannot be represented by a series trun= 

cated after a sma I I number of terms. It therefore appears as if a 

different approc.ch wi II have to be followed when optimizing open 

lenses. 
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C HAP T E R 5 

MODELLING OF OPEN LENSES BY MEANS OF FOURIER-BESSEL SERIES 

The preceding th ree chapters dealt with some electron optical properties 

of two-foi I lenses. To study one-foi I lenses or foi I less systems, a new 

type of representation in terms of Fourier-Bessel functions wil I have to 

be found, and this chapter discusses one such a solution, in which both 

10 and JO Bessel functions appear. In Ch. (6) a solution is discussed 

which can be considered to be a variant of the present solution, and 

which has a number of advantages as far as the model I ing of lenses is 

concerned. For the model I ing of mirrors, the solution given in this 

chapter is probably superior to that of Ch. (6). Yet another approach 

is that of Ch. (8), in which a solution of the inverse interior Dirichlet 

problem is given. 

In this chapter a solution ~(r;z) is given of a rotationally symmetric 

boundary value problem : ~(A;z) = 0 for z'O and z)L; and ~(A;z) = F(z) 

for O)z)L. A and L are given constants and F(z) is a given function 

which is symmetrical with respect to the plane z = L/2. The solution is 

in the form of an infinite Fourier-Bessel series, the coefficients of 

which can be fou nd without inverting matrices. It is shown that the 

given field can be approximated physically by means of two long equipoten= 

tial cyl inders and one or more central electrodes of curved cross section. 

Since the electric intensity is also known at al I points, the solution 

al lows a precise determination of the electron optical properties of a 

wide variety of electrostatic Einzel lenses with curved electrodes. 

l. INTRODUCTION 

Fourier-Bessel series solutions of the electrostatic fields in 
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the vicinity of certain simple configurations with rotational 

symmetry have been known for some time. Examples are pairs of 

equidiameter coaxial cyl inders of finite or infinite length and 

negl igible separation [Weber (1950)J, a pair of thin apertures of 

equal diameter [Read (1969a)], three thin apertures [Read (1969b 

and 1970)J, a pair of equidiameter coaxial cyl inders with finite 

separation [Read et. al. (1970] and three equidiameter coaxial 

cyl inders with negl igible separation [Werner (1971)]. 

If ~sed in electron optical design, the above configurations do not 

leave much freedom to change the form of the image formi.ng field. 

By al lowing the central element of a lens to be curved, more free= 

dom is gained, but it appears that most investigations of this 

nature have been I imited to the two-foi I lenses described in 

Chs. (2) to (4) as wei I as by Wittels et al. (1976), in which case 

the presence of the thin conducting foi Is constitutes a limitation 

to practical appl ications. 

In this chapter a solution is given for an open configuration (i.e. 

absence of thin foi Is) which al lows curved central elements to be 

introduced. Another feature of this solution is that it is analy= 

tical in the sense that no matrix inversion need be carried out 

(required in many of the cited papers because col location require= 

ments result in a set of simultaneous linear equations). This 

results in minimal computer requirements, al lowing electric poten= 

tial or intensity calculations to be carried out even on desk top 

computers. 
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2. BASIC SOLUTIONS: 

In the absence of space charge, Laplace's equation for rotational 

symmetry is : 

r 

d (rdCP) 
dr dr 

(5. 1 ) 

We are interested in solutions of the form cP (r;z) = R(r)Z(z), 

satisfying certain boundary conditions: 

Solution "B" 

Let cP = 0 at z = 0 and z = L 

F(z) is a continuous function. 

Then 
00 

cp(r;z) = I 
n=l 

Bn 10 (nnr/U 

10(nnA!U 

sin (nnz/U 

(5.2a) 

(5.2b) 

If- r<A 

(5.3) 

where 10 is the modified Bessel function of the first kind and of 

order zero . The coefficients are obtained by Fourier analysis 

at r=A : 

B = 2 
n I 

Solution "E" 

Let cP o at r = A 

and cP = f ( r ) at z = 

then 
00 

cp(rjz) = I 
n=J 

F(z) sin (nnz/L)dz (5.4) 

0 (5.5) 

Enexp(-Aonz)JO(Aonr) If- r<A (5.6) 

where the constantsAOn=ZOn/A, ZOn are the solutions of Jo(z) = O. 
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The coefficients may be found by Fourier analysis at Z = 0 

(5.7) 

JO and J1 are the ordinary Bessel functions of the first kind and 

of orders nought and one, respectively. 

Solutions by superposition: 

We now consider [see Fig. (5.1)] three coaxial regions in space, 

and propose the fol lowing solutions (superpositions of solutions 

of types "B" and "E") which are chosen so as to make the potential 

function ~ ( r;z) continuous at the boundaries between the regions: 

Region I. For - 00 < z < 0 : 

00 

~I = L 
Reg ion II. 

~" 

00 

+ I 
n=l 

Region I I I. 

~"I 

n=l 

For 0 < z < L 

00 

I lo(mrr/U s i n( mrz/U 
Bn 10(mrA/U 

n=l 

EnJO(Aonr) [exp (-AOnZ) + exp[-Aon(L-Z)~ 
(5.9) 

For L < z < 00 

00 

L 
n=l 

EnJO(AOnr) [eXP(-AOnZ) + exp[-AOn(Z-UJ ] 

(5.10) 
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It can be seen that 91 = ~II 

and that ~II = ~III 

at Z = 0 

at Z L (5.8) 

We must note here that the same coefficients En appear in Eqs. (5.8) 

and (5.10). This impl ies that the function F(z) of Eq. (5.2b) must 

be symmetrical w.r.t. z = L/2, so that B2 = B4 = ... = o. 

3. FORMULATION OF THE PROBLEM 

Suppose that the fol lowing potential fields are appl ied by means of 

external electrodes [see also Section (5)J: 

~1(A;z) = 0 for z ~ 0 

~11(A;z) = F(z) for 0 < z < L 

~I I I(Ai Z) = 0 for z ~ L (5. 11) 

For any given continuous function, F(z), Eq. (4) may be used to 

obtain the coefficients Bn. The type "B" part of the solution is, 

therefore, known. Since the function fer) in Eq. (5.7) is, how= 

ever, not known, the Fourier analysis of Eq. (5.7) can not be 

carried out, and we have to develop an alternative method to cal= 

culate the coefficients En. The potential ~(r~z) would then be 

known in al I three regions. 

4. Determination of En: 

Two relationships may be used to determine the coefficients En. 

An integral relationship, derived by applying Gauss' Theorem, is 

given in Section (4.1). A differential relationship is derived 

in Section (4.2) by requiring that a ~ / a z be continuous at z = 0 
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and z = L. 

Although both relationships al low En to be calculated by means of 

Fourier analysis, the second one requires less computation. 

4.1 Integral relationship used in determination of En. 

An identity involving the coefficients En may be derived by apply= 

ing Gauss'sTheorem to an infinite cylinder (coaxial with the 

defined fields) of radius r < A. Because the cylinder contains 

no charge, the total outward flux should be zero, for al I r < A. 

The flux enter i ng the cy I i nder is caused by the type "B"- so I ut i on, 

and the flux leaving the cyl inder is caused by the type "E" solu= 

tions. 

Therefore 

00 ( L Bn 2n2 rn 11 (nnr/U sin (n7TZ/L) dz 

n=1 L 10 (nn.A/L) 

00 

( = -4 L En AOnZ 2nr AOnJ 1 (AO n r) dz 
n=l e 

Y r , A, 

00 00 

i.e. L EnJ·1(AOnr} = t I Bn 11(n'rrr/L) 

n=1,3,5 lo(nnA/L) (5.12) 

Simpler final expressions wil I result if we change to a new varia= 
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ble, p riA. Therefore 

00 00 

L EnJ 1 ~ZOnp) = I L Bn 
11 (n7TAp/U Vp ~ 1 'i" 

IO( nnAlU n=l n=l,3,5 

(5. 12a) 

= g(p), say, 

There are various ways in which the En may be found. 

4. 1 • 1 Determination of En by matrix inversion. 

One may write down series expansions for the left and right hand 

sides of Eq. (5.12) and require that the coefficients of r, r3, 

r5, etc., match. The result is an infinite set of equations in 

an infinite number of unknowns: 

00 

L 
n=l 

for m 

En Zm = On 
(-1) (m+1 )/2 (7TA/U 2m 

2 I o (7T.A/U 

1, 3,5 ..• 

(5.13a) 

Alternatively m yalues may be chosen for r, and substituted in 

Eq. (5. 12) . The point testing wi I I result in m equations in an 

infinite number of unknowns. One may set Ep = 0 V P > m/k where 

m is some chosen value which depends upon the precision required, 

and k is a constant which determines to which extent the resulting 

set of simultaneous I inear equations wi I I be overdetermined; k > 2 

is normally sufficient [Read (1969a) and Wittels et. al. (1976)J. 

The fol lowing set of equations is then solved in a least squares 

sense : 
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p<m p<m 

L EnJ 1 (ZOnP j ) = I L Bn 
'1 (nTlA p/U (5.13b) ~ 

n=l n=l 'O(n'rrA/U 

where j 1, 2, •••••• m. 

4. 1 .2 Direct determination of Em 

A difficulty encountered in the solution of Eq. (5.12) is that the 

functions J1 (ZOnP) are not an orthogonal set of functions, due to 

the fact that the constants ZOn are not the zeros of J 1, but of JO• 

Therefore a Fourier analytical determination of the En[multiplying 

by pJ1(ZOnP) and integrating between 0 and 1] is not po~sible. 

We therefore first establ ish a set of orthonormal functions Vn in 

the fol lowing way: 

n-1 
Let Vn(p) = E GnjVj(p) + GnnJ1(ZOnP) 

j=l 

in which the constants Gij have to be chosen so as to 

(5.14) 

(i) orthogonal ize the set of functions Vj on the interval 

(0;1>, and 

( i i ) normal ize the functions on the interval (0;1) i.e. 

The constant Gij can be found by computer by means of a Gram-Schmidt 

orthonormalization procedure. In this procedure the values of the 

integral 
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1'i ,j. (5. 15) 

are required, and a series expansion is given in Appendix (1), in 

which tables of numerically integrated values are also found. 

Examples of the coefficients Gij are given in Table (5.1). 

The orthonormal set of functions Vn now al lows a Fourier series 

expansion for g(p), namely 

00 

g(p): I 
n=l 

in which the coefficients Hn may be found from 

(5.16) 

(5.17) 

The procedure may, however, be stream I ined by expressing the 

functions Vn(p) in terms of Bessel functions only: 

n 

Vn L F . J 1 (ZO' p) n I I 
(5.18) 

i = 1 

with Fi i = Gi i 

i-j 

and F .. =I Gi k Fkj IJ 

k= 1 

[Values of some Fij are I isted in Table (5.2)J 

The calculation of the coefficients Hn is now simpl ified 
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Table (5.1) Coefficients GiJ 

j I 
I 

2 

2'214;~40~~ 0 , 
I 

0,3153895021 
I 

2 - 2,838258426 : 
I 

-0,429911485 i 3 0, 108749122 . 

4 0,083597809 -0,202562699 

5 0,047408055 -0,151191597 

Table (5.2) Coefficients Fij 

2 

3 

4 

5 

j 

I

, 2,21 

I 0,69 
II 
11 -0,05 

I 0,07 

-0,02 

1 2 

4274000 0 

8358774 -2,838258426 

9432104 1,220199894 

2015541 -0,00750858 

1898888 0,126131105 

I 
3 4 5 

0 0 0 

0 0 0 

-3,399280258 0 0 

-0,477326603 -3,889315045 0 

-0,251407231 -0,503071876 -4,327159257 

3 4 
--r 

5 

0 I 0 0 

I 
0 I 0 0 I 

I , 
I 

, 

-3,399280258 I 0 0 

I 
1,622566897 -3,889315045 0 

0,038334866 1,956605014 -4,327159257 

Table (5.3) Values of as defined in Section (6) 

~ 
--

0,6 0,8 1,0 1,2 1,4 1,6 1,8 I 2,0 i 
--

0,0 
, 

5 9 60 9 6 4 4 3 

0,4 5 7 22 7 5 4 4 3 

0,8 5 7 20 7 5 4 4 3 
- -
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n 

Hn L F . w. nl I 
(5.19) 

i = 1 

in which 

w. = fa1 g(p) J 1(ZOi P) dp 
I 

(5.20) 

The evaluation of the integral in Eq. (5.20) may be carried out 

numerical Iybut series expansions for W. for some simple functions 
I 

g(p) are given in Appendix (1). 

The coefficients En may now be calculated from Eqs. (5.12a), (5.16) 

and (5.18) : 

co 

(5.21 ) 

i=n 

4.2 Differential relationship used in ~etermination of En. 

As an alternative to Eq. (5.12) we may require that a ¢/a z be 

continuous at z = L (or at z = 0). (This condition may be derived 

-by applying Gauss' Theorem to a coaxial ring-I ike surface placed at 

z = U. 

co 

L 
n=l 

V r < A 

4.2.1 

After simpl ifying, 

Bn n1r 'o(n7Tr/U 

L 'O(n7TA/U 

Determination of En 

co 

(5.22) 

Although a point testing technique [simi far to Section (4.1)J may 
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be applied, finding En by matrix inversion, one may profitably make 

use of the orthogonal ity of the set of functions JO(~Onr), and 

solve for En by a conventional Fourier analysis. The result is 

j=1,3,5 ... 

rIO(j~r/L)JO(AOnr)dr 

(5.23) 

The integrations of Eq. (5.23) may be done numerically, but a series 

expansion is given in Appendix (1). 

5. PHYSICAL APPROXIMATION 

It has been assumed up to now that a potential field ¢ (A;z) V z is 

appl ied by means of external electrodes. The values ¢(A;z) = 0 

for z < 0 and for z > L are appl ied by means of two coaxial cylin= 

drical earthed electrodes. The application of the potential func= 

tion ¢ (A;z) F(z), 0 < z < L [see Eqs. (5.2b) and (5.9)J, is more 

complicated, and three methods are suggested 

( i ) A set of coaxial conducting rings of radi i A may be 

positioned between z = 0 and z = L, with the required 

potentials supplied from potential dividers; an experi= 

mental study of the electron optical properties of the 

fields created by various potential functions F(z) can be 

carried out in this way to compare with the computer 

predictions. 

(ii) A cylindrical electrode with a resistive layer on the in= 

side surface may replace the rings of i); the thickness 

of the fi 1m is a function of z, so as to result in a 
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potential distribution F(z) if the fi 1m is earthed at 

z = 0 and z = L, and a fixed potential is appl ied to the 

layer at z = L/2. 

(iii) A more practical approach involves the field ~ (r;z) in 

if we take 

the region r<A, O<i<L, rather than ihe field F(z) itself. 

For any given symmetrical [see Section (2)] function 

F(z) = ~ (A~z), we make use of Eqs. (5.9) and (5.21) to 

find ~ (r;z) for r <A, which allows us to draw equipoten= 

t ial surfaces in Region I I of Section (2). A suitable 

equipotential surface is chosen and a physical electrode 

positioned as to coincide with this surface [shown in 

Fig. (5.2) as the heavy line]. Close attention must be 

paid to the gaps between the electrodes, so as to ensure 

that the potential function ~g found in the gaps matches 

the required function F(z); otherwise the solutions of 

Eqs. (5.8), (5.9) and (5.10) wi II not be appl icable. 

This may be accompl ished by also considering the poten= 

tial ~IV in region IV (i.e. 0 < z < L, r > A). ~IV 

wi I I satisfy Laplace's equation and the boundary condi= 

tions 

~ (rj 0) = ~ (r; U 0 Yr > A (5.24a) 

~ (Ajz) = F(z) o < z < L (5.24b) 

00 

L B KO(n:nr/U s i n(mrr/U 
~IV(r;z) = 

n . 
(5.25) 

n=l KO(n'ITA/L) 
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Fig. 5.2 Equipot ential lines for f(z) = sin(nz/L) and L = A = 1,0. 

Only the region z>L/2 is shown. 
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where KO is the modified Bessel function of the second kind and of 

order zero. 

The dotted I ines in Fig. (5.2) show equipotential I ines of a cross 

section of ~IV' and the heavy dotted I ine shows how the physical 

electrode should be continued into region IV. One or more shiel= 

ding electrodes may also be positioned to coincide with any of the 

equipotential surfaces represented by dotted I ines terminating at 

points in the gaps. This wil I ensure that $g matches F(z), as long 

as the support of t his electrode does not cause excessive devia= 

tions from $IV as given by Eq. (5.25), In the event of ' a miss= 

match, a reduction in the size of the gaps (i.a. through a judicious 

choice of the ratio AIL) wi I I ensure that the potentials in the 

paraxial regions are not affected excessively. 

The two paral lei plane equipotential surfaces of Eq. (5.24a) may be 

replaced by a single curved electrode which fol lows any of the dot= 

ted equipotential I ines representing a sufficiently low potential. 

Holes (or a sl it) in this electrode al low the supports of the cen= 

tral electrode to pass through. 

If the above precautions are taken, the physical configuration 

should be a fair approximation to the mathematical model of Eqs. (5.8), 

(5.9), (5.10) and (·5.11). 

6. PRECISION 

The potential $(r;z) is given by two series, involving the Bessel 
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functions 10 and J O [Eqs. (5.8-5.1O)}. The function F(z) would 

normally [see Section (7)J be a superposition of a few chosen tri= 

gonometrical functions, so that the 10 series would be a finite 

one. We therefore consider the convergence of the J O series only. 

The convergence of the J O series depends upon i) the values of the 

coefficients En and i i) the position of the point (r;z). 

Due to the exponential functions the series converges very fast for 

al I Izl »L; on the other hand, convergence is slowest for the 

points (0;0) and (O;L). This is demonstrated in Table .(5.2) for a 

configuration with A = 1, L = 1 and F(z) = sin(ITz/L). Let Ti 

represent the i-th term of the series, and 

T. 
Ri 

I 

i 

L Tj j=l 

The numbers in the table are the values of for which R. < 10-3. 
I 

It is found that this series alternates for points (r«A;z) but 

does not a lternate for points (r ~ A;z). The method applied to 

accelerate convergence would therefore normally depend upon the 

position of the point. 

For an alternating series an Euler transformation may be used to 

advantage, and a relative precision of 10-6 may be reached with 

18 terms at the points (0;0) or (O;L). 
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For some combinations of fields F(z) and values of A it may be 

found that convergence of the series at (r;z = 0) or (r;z = L) is 

too slow to be acceptable [e.g. requiring values of En which may 

not be avai lable from values of integrals tabulated in Appendix 

For such points one may either perform a bivariate inter= 

polation of suitably high degree, or carry out a finite difference 

relaxation procedure in a selected part of the field, or make use 

of a Taylor expansion 
00 

<!>(r;z) = ~ 
j=O 

00 

=L 
j=O 

(z-z )J o 
j! 

j! 

00 

~ EnJo(Zonr/A)(Zon/A)j 

n=l 

x [exp (-ZOnzO/A) + exp[-ZOn(zO-Ll/A] ] 

where, e.g. Zo = 1, 15L and z ~ L 

The precision of <!>(r;z) would also depend upon the precision of the 

coefficients Ei , and therefore care shoul~ be taken to evaluate the 

integrals of Eq. (5.23) sufficiently precisely. 

7. IMPLICATIONS FOR ELECTRON OPTICAL DESIGN 

The main advantage of the Fourier-Bessel series approach in solving 

this field problem is that the electron optical properties of elec= 

trostatic fields corresponding to certain basic mathematical fields 

may be studied individually or as perturbations, and syntheses 

obtained in a systematic way [as in Ch. (4)J so as to optimize 
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certain electron optical properties. One may, for example, in= 

clude the fields ¢n(r;z) resulting from the appl ied potential 

functions F(z) = ! sin (nz/L), ! sin (3nz/L), etc., in the synthe= 

sis in an attempt to obtain an Einzel lens with certain specified 

electron opt ical properties. 

Further advantages are that the boundary value problem can be solved 

to the requ i red precision with a minimal amount of computation com= 

pared to, e . g., the iterative methods; and no interpolation is 

required when calcu lating trajector ies, because the field is known 

at a I I po i nt s • (When used for ray tracing, however, one would 

normally calculate ¢ and some derivatives at regular grid points, 

and store t hese matrices on disc for various functions F(z). Syn= 

thesized fields are then obtained by matrix addition). 

It may also be noted that series expansions exist for the deriva= 

tives an¢/az n and an¢/arn of al I orders, al lowing the use of high 

order trajectory calculations. [Dirmikis et. al (1975)J 

7.1 The introduction of apertures 

If thin grounded coaxial d~scs with aperatures of equal radi i 

ra < A are introduced at z = 0 and z = ~, Eqs. (5.12) and (5.22) 

apply only to r<ra. For r>ra , ¢(riO) = ¢(r;L) = O. The author 

has not succeeded in obtaining a direct solution for this configura= 

tion, although a least squares solution seems feasible, by means 

of a point testing procedure which involves Eq. (5.8), (5.9) or 

(5.10) for r>ra , and Eq. (5.12) or (5.22) for r<ra. This problem 
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requires some further investigation as doe s a rel at ed pr Diem in 

which the central cyl inder has a larger radius tha n t he outer 

cyl inders [Yeh (1975 and 1976)1 . 
..J 

7.2 Asymmetrical Fields 

Fields simi lar to those found in immersion lenses and image inten= 

sifiers may be treated by a modification of the method described 

here, and wi I I be discussed in a future paper. 

8. CONCLUSION 

A Fourier-Bessel series solution can be found for certain Einzel 
, 

configurations. The method is a direct one, and no I imitation 

has been found on the precision that can be reached. The method 

can be app l ied to advantage in electron optical design. 

In the next chapte r another solution to the same boundary value 

problem wi I I be presented; the solution may be considered to be 

a variant of the present one, and offers some advantages when 

lenses rather than mirrors are model led. 
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C HAP T E R 6 

FOURIER-BESSEL SERIES SOLUTION OF POTENTIAL FIELDS WITH ROTATIONAL 

SYMMETRY, IN TERMS OF 10 BESSEL FUNCTIONS 

The Fourier-Bessel series representation of open electrostatic configura= 

tions discussed in the previous chapter is more suited to the model ling 

of electrostatic mirrors than of lenses. One reason Is that the lens 

region is divided into three parts, each having its own solution. The 

second is that for the central region, both 10 and JO functions appear 

in the series, and a third reason is that the convergence of the series 

is rather slow in some regions . 

In this chapter a solution for the model ling of closed, semi-open and 

open configurations is discussed, in which these disadvantages have been 

eliminated. A Fourier-Bessel series representation in terms of 10 

Bessel functions is given for the potential distribution in certain open 

Einzel or immersion type electrostatic configurations with rotational 

symmetry described by ~(A;z) = F(z), 0 < z < L; and~(A;z) = 0 V z < 0 

and V z > L. F(z) is a given function and A and L are constants. The 

method is a direct one - no iterations or matrix inversions are required _ 

and a superior rate of convergence in the paraxial region is achieved 

through the el imination of J O Bessel functions. The precision reached 

is apparently limited by the computer word length only, programming is 

of a simple nature, and computer memory requirements are modest enough 

to al low implementation on smal I desk top computers. 

INTRODUCTION 

The analytical determination of the coefficients of Fourier-Bessel 
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series representations of the electrostatic potential or intensity 

fields in the vicinity of certain simple configurations of electrodes 

with rotational symmetry has been reported in several papers [Gray 

(1939), Weber (1950), Chorlton (1968) and Werner (1971)J. It has, 

however, been found that the analytical determination of the Fourier 

coefficients tends to be cumbersome, unless the electrodes have 

simple shapes and/or are sma I I in number and/or have negligibly 

sma I I gaps between the electrodes. Relaxation of these restric= 

tions have been brought about by calculating the coefficients by 

computer, and solutions have been publ ished for some closed and open 

configurations [Read (1969a, 1969b, 1970), Read et al. (1970), 

Wittels et al. (1976), Yeh (1975, 1976 and 1977), Andreev 

et al. (1976), Mel'nikov (1971), Anicin et al. (1976) and Cook 

et al. (1976)]. A solution resulting in one or more inner elec= 

trodes of curved cross section, was discussed in Ch. (5). 

In the latter case the solution contains both the unmodified (JO) 

and modified (10) Bessel functions of the first kind and of order 

zero. r Since 10(x)=JO(ix), possible misunderstanding is el iminated 

by restricting the arguments of Bessel functions to real 

values only.] 

Although the expression of the fields in terms of JO functions may 

be of use in understanding the properties of the fields in the outer 

regions, it would offer several advantages if a series representa= 

tion can be found from which the JO fields have been el iminated, 

since this may result in the simpl ification of various calculations 
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connected with electron optics. 

2 FORMULATION OF THE BOUNDARY VALUE PROBLEM 

Let ~(r;z) be the potential at a point (r;z) w.r.t. a cylindrical 

polar coordinate system, and consider the fol lowing boundary value 

problem: 

~(A;z)=F(z) for O<z<L (6. 1) 

~(r;O) = ~(r;L) = 0 for O~r~A (6.2) 

Since the solution of t he boundary value problem is needed for 

electron optical purposes, we restrict F(z) to functions that can 

be approximated by, or be associated with, configurations of physi= 

cal electrodes. It can therefore be expected that F(z) satisfies 

the Fourier analytical Dirichlet conditions, so that it can be 

represented by either a Fourier integral (for L~) or a Fourier 

series (for finite L). For most functions F(z) the evaluation of 

the Fourier integral wi I I be carried out by computer, involving a 

numerical integration which closely resembles the computer evalua= 

tion ~f a Fourier series [see also Section (11)]. For the present 

discussion we therefore limit L to finite values, in which case 

00 

F(z) - L 8m sin (mlTz/U (6.3) 

m=l 

with 

L 

Bm 
2 

fa F(z) sin (mlTz/U dz - L (6.4) 
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The potential ~(r;z) is then given by 
00 

~(r;z) - L 
m=l 

IO(mnr/L)sin (mnz/L) 

IO(mnA/U 
(6.5) 

which is a convergent series if the series of Eq. (6.3) is conver= 

gent, since IO(mnr/L} < IO(mnA/L} V r<A. 

It wi I I be shown in the next section that the solution given by 

Eq. (6.5) can also be used to approximate the solution of the 

fol lowing boundary value problem: 

~(A;z}=F(z) for O<z<L (6.6) 

~(A;z)=O for z<O and z>L (6.7) 

This boundary value problem describes "open" electrostatic lenses, 

in contrast to the "closed" lenses of Eqs. (6.1) and (6.2). In 

this paper the terms "open" and "closed" lenses refer to the ab= 

sence or presence of conducting electrodes at z=O and z=L; wnere= 

as charged particles have to penetrate thin conducting foi Is when 

entering and leaving closed lenses, open lenses have extended re= 

gions' on both sides where ~~ is negligible as far as the electron 

optical properties of the lens are concerned. The conditions 

under which the solution of Eq. (6.5) appl ies to open lenses wi I I 

be discussed in the next paragraph. 

Finally it may be noted that, since the open lenses of Eqs. (6.6) 

and (7) may be closed off by conducting electrodes at z ~ -oo ' and 

z ~ + 00, the region r<A is sti I I fully enclosed by a boundary with 
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specified potential values, so that the problem is sti I I a conven= 

tional interior Dirichlet problem. 

3 APPL I CAB t'L tTy OF SOLUT ION TO OPEN LENSES. 

Consider a field ~(rjz), represented by Eq. (6.5) and which has the 

fol lowing property: 

!~ ~ (rjz)! < e: (6.8) 

for al I r and for O<z«L -Le)/2 as wei I as for (L+Le )/2<z<L where 

e: and Le are constants, the \elues of which are determined by the 

nature of the boundary value problem and the precision to which 

~(r;z) must be found (see fol lowing sections). For the present 

let us assume e: = 10-7 max ! (~(r'A;z)! and Le =4A. 

The the fol lowing can be postulated 

than Le, then 

If L is sufficiently larger 

a) the conducting electrodes at z=O and z=L together with the charges 

induced on their surfaces may be removed without causing a signifi= 

cant change in the potentials in the region (L-Le )/2<z«L+Le )/2, 

or 

b) if the problem is reformulated in terms of images, rather than in= 

duced surface charges, the charge distributions giving rise to the 

potential fields given by Eq. (6.5) for the regions z<O and z>L 

wi I I have no significant influence on the potentials in the region 

(L-Le )/2<z« L+Le )/2, and may be neglected. The boundary conditions 
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of Eq. (6.7) wi I I therefore apply 

~(AJz) = F(z)=O V z<O and z>L 

4. PROOFS 

Proofs of varying mathematical rigour may be given for the postu= 

lates [e.g . showing that Eq. (6.5) represents an approximation 

to the Fourier integral solution to the boundary value problem 

defined by Eqs. (6.6) and (6.7)], but for the sake of brevity the 

fol lowing arguments from electrostatics theory are given : 

i) Conducting electrodes are superfluous if no free or induced 

charges are found on themj since I~~I<£ at z=O and z=L, 

these electrodes may be removed. This is equivalent to 

stating that the image charge distributions may be neglec= 

ted as far as potential calculations in the region O<z<L, 

r<A are concerned. 

ii) The potentials at the ends of a conducting tube of radius A 

and length Lt have negligible influence on the potentials at 

the centre of the tube if the ratio Lt/A is sufficiently 

large. This can be shown by Investigating the analytical 

solution [~horlton (1968)] to the boundary value problem 

~(r;O)=C=~(r;Lt) V r<A and ~(A;z)=O, O<z<Lt: 

00 

~(r;Lt/2) = ~ 
n=l 

in which En AA sinh(A Lt /A).J 1(A ) 
n n n 
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and An is the nth zero of JO(z) [Abramowitz et al. (1970)J. 

Table (6.1) gives ~(O;Lt/2) as a function of Lt , for A=C=1,O 

the following approximation is useful: 

2 C exp (-A , Lt /2A)J O(A , r) 

AA, J 1 (X 1 ) 

Although the use of Eq. (6.5) as a solution to Eqs. (6.6) and (6.7) 

may seem plausible in view of the given postulates, it must sti I I 

be shown that sufficient precision can be obtained without undue 

computational effort. 

5. THE RATIO LILe 

Eq. (6.8) defines Le to be a measure of the physical extent of the 

region (the so-cal led lens region) where the magnitude of the 

gradient of the potential is not negligible (i.e. > E). Since 

the value assigned to £ depends upon the precision required for the 

electron optical calculation, the value of Le is affected by this 

choice as well. 

To complicate matters, the relationship between Le and £ is no 

simple onej in Ch. (5) it was shown that for a given function F(z) 

a representation can be found for £ as a series of exponential 

functions and only for large values of z can £ be approximated by 

a single exponential function. 

For I I lustratlve purposes, Le Is calculated for three functions 
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Table (6.1) : The potential ~(0;Lt/2), at the centre of acyl inder 

of radius A=lm and length Lt , as given by Eq. (6.9). 

Lt(m) ~(0;Lt/2) (V) 

0,767825 

I 
2 0,278674 

I 
l 5 i 0,784435 x 10-2 

j 
l 10 0,192165 x 10-4 

J 

I 20 I 0,115255 x 10-9 

L:: L 0,414607 x 10-20 

0,268261 x 10-41 

Table (6.2) : Le of Section (5) as infl uenced by the choice of E (in 

Vim) for three function types. The functions i), i i) and iii) are 

defined by Eqs. (6.10), (6.11) and (6.12) respectively. A=1,0 m. The 

value of Lei 2 is I isted in metres. 

~:sz -
I --I 
I I I 

! Function , 10-3 I 10-4 10-5 10-6 ! 10-7 I 10-8 i 
i I 

! 
f 

; i ) I 3,7 4,7 5, 7 6,7 7,7 8,7 
I 

II 
I 

I I I 
j i i ) d 3,6 4,5 5,5 6,4 7,4 I I 

II 8,4 
i 
I Iii) 3,9 4,9 5,9 6,9 7,8 8,8 

I 
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F(z), chosen to represent function types of varying smoothness 

Type (i) is a rectangular function, i.e. a function with a singula= 

rity in the gradient: 

F(z) 

F(z) 

o V z < (L/2 - Lf ) and V z > (L/2 + Lf ) 

Cl , (L/2 - Lf ) < z < (L/2 + Lf ) 

in which Cl and Lf are constants. We take here C1=lV and 

(6.10) 

Type (i i) is a B-spline, i.e. a continuous function 

with a continuous gradient: 

F(z)=O, Vz«L/2 - 3A/2) 

F(z)=C2(z-L/2+3A/2)2, (L/2-3A/2)<z«L/2- A/2) 

F(z)=C2{C3 -2(z-L/2 + A/2)(z-L/2-A/2)~ (L/2-A/2)<z«L/2 + A/2) 

F(z)=C2(Z-L/2-3A/2)2, (L/2 + A/2)<z«L/2+3A/2) 

F(z)=O V z > (L/2 + 3A/2) (6. 11) 

in which C2=(2/3)V/m2, C3=lm2 and A=lm 

Type (ii i) is an exponential function, i.e. an analytic function: 

(6.12) 

in which C4=lV. 

The value of Le for various choices of £ is given in Table (6.2). 

If we take the constant 0 in Eq. (6.12) equal to 1,0/m2, the three 

types of field wi I I have approximately the same value Le on the 

basis of £~10-6V. In al I three cases A was taken as 1m. 

To determine the influence of the choice of L upon the precision 
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of ~(r;z) as calculated by means of Eq. (6.5), L was equated to 

5, 10, 20 and 40 m and ~(r;z) calcu lated in each case fur a number 

of different points (r;z). Let these values be cal led ~5(r;z), 

~ 10 ( r; z), etc. 

The d i ft'erences 

have been calculated and are given in Table (6.3). Care has been 

taken to calculate the Fourier coefficients of Eq. (6.5), to 

approximately 9 significant figures, and in the summation of each 

series a ' sufficient number of terms we re included to ensure that 

the truncation error was less than 10-9 . It therefore seems 

reasonable to assume that the differences 0L may be ascribed to the 

violation of the criteria of the postulates of Section (3). Inves= 

tigating the differences of 010 and 020 it seems a fair assumption 

that the difference between ~40(r;z) and the correct solution ~oo(r;z) 

should be sma I ler than 10-9 . 

As shown in the next section, the convergence of the series of 

Eq. (6.5) is strongly dependent upon the choice of the ratio La=L/A, 

and the value of L chosen in practice wi I I again depend upon the 

value of the precision £' of the potential ~ as required by the 

electron optical problem. , -8 For £ = 10 V,L can be taken equal to 

20 m. 

Fig. (6.]) shows equipotentials for the type (iii) function. <Th i s 
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Table (6.3) The values (in Vim) of oL of Section (5) as a function 

L, for the three function types of Eqs. (6. 10), (6.11) and (6.12) resp. 

For each function 0L is I isted for points a, band c with coordinates 

(0;L/2), <O;L/2+2) and (0;L/2+4) resp. A= 1 m 

Function It< 5 m 10 m 20 m 

i ) a 1 x 10-4 <10-9 <10-9 

b 6 x 10-3 4 x 10-8 

I 

<10-9 

c N.A. I 5 x 10-6 <10-9 I 

I 
I 

I 
x 10-9 i i ) a 5 x 10-5 ! 1 <10-9 

I 
b 2 x 10-

2
1 

2 x 10-8 <10-9 

c 3 x 10-6 . <10-9 N.A. 

iii) a 2 x 10-4 1 x 10-9 <10-9 

b 1 x 10-2 7 x 10-8 <10-9 

c N.A. 1 x 10-5 <10-9 
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type of function could not be hand led by the Fourier-Bessel method 

of Ch. (5) unless a large La ratio is chosen; in that event the 

contributions from the JO Bessel functions wi I I be negl igible, and 

the method of Ch. (5) becomes ident ica l to the method described in 

this chapter. The potentials ~(r>A;z) have been found by means of 

the solution given in Appendix (2), where both interior and exterior 

equipotential I ines are also shown for the case where F(z) is a step 

function. 

6. CONVERGENCE OF THE SERIES 

As stated in Section (2), the series of Eq. (6.5) wi I I be convergent 

if the series of Eq. C6.3) is convergent. To be useful in practice, 

the series must have a high rate of convergence, which is generally 

not obtained with high La ratios. It is therefore important to 

choose La a ratio which campi ies with the requirements of Sections 

(5) and (6), but is low enough to give an acceptable rate of conver= 

gence. 

The convergence of the series of Eq. (6.5) can be seen to depend 

upon two factors: the convergence of the series for FCz) and the 

ratio 10Cnnr/L)/IOCnnA/L). 

The convergence of the series for FCz) is a function of z, and also 

depends upon the nature of FCz). It is therefore not feasible to 

express the convergence as a function of z and r; for a rough esti= 

mate one may, however, calculate a value of nc such that the func= 
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4,0 0,05 

3,0 

2,0 

0,001 
1,0 

0,0001 

0,0 
0,0 1,0 2,0 3,0 

z 

Fig. (6.1) Equipotential lines for boundary value problem of 

Eq.(6.l2), for part of upper right quadrant. 

0=1,0; A=l,O; L =320. . a 
Interior and exterior equipotentials are shown. 

La was given this large value to allow the precise 

determination of exter ior potential values. 
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tion Bn 10(nnr/L)/IO(nnA/L) <E' ~ n> nco The value of nc wi I I be 

determined by the nature of F(z) and wi I I be a function of r; values 

of nc are I isted in Table (6.4) for the three functions of Section 

(5), and for various values of E'. 

It can be concluded that for functions resembling (i), (ii) and 

(i ii), high precision electron optica l calculations (e.g. absolute 

error of potentials <10-7V) may be carried out with series truncated 

after a few tens of terms. The number· of terms may be reduced by 

means of accelerating methods, one of which is mentioned in the next 

section. 

7. THE USE OF LANCZOS a-FACTORS 

If F(z) includes any discontinuities (e.g. step functions) a Fou= 

rier analytical representation of ~(r;z) wi I I be affected by the 

Gibbs phenomenon in the vicinity of the discontinuity [Carlslaw 

(1930) ] . Since true step function discontinuities are not found 

in physical co~figurations - finite gaps are required between 

electrodes at different potentials - it is profitable to make use 

of Lanczos a-factors [Lanczos (1957)J and represent ~(r;z) by a 

finite series: 

N-1 

~(r;z) - L 
m=l 

{ 
s i n(nm/N)} . 8m (nm/N) sin (mnz/L) 

10 (mnr /U 

10 (mnA/U 

in wh i ch the Lanczos a-factors are sho.wn in braces. 

The terms in the braces can be seen to cause an acceleration 

of convergence (for N=101 the last term of the finite series wi I I 
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Table (6.4): nc of Section (5) given for two values of the radius r, 

for the three function types of Eqs. (6.10), (6.11) and (6.12). No 

accelerating methods have been applied here. A=1,0 m and L=20 m. 

t 
e:' 

{ Radius 

>-

Function 10-4 10-6 10-8 10-10 

i ) r=O 24 38 50 67 

r=A/2 35 59 80 100 

i i ) r=O 20 59 72 79 

r=A/2 33 63 77 100 

iii) r=O 15 19 23 26 

r=A/2 16 20 24 28 
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be 100 times sma I ler than the corresponding term of the original 

series) and because the calculation of the Lanczos a-factors are 

based upon a spatial averaging proc~ss, the Gibbs overshoot at the 

discontinuity and associated ripple elsewhere wi I I be smoothed out. 

8. APPLICATION TO IMMERSION -LENSES 

Consider the fol lowing function F(z) 

F(z) = 0, o < z < (L/3 -d) 

F (z) = g (z) , ( L/3-d) < z < (L/3 +d) 

F(z) Ci, (L/3 ~d) < z < L/2 

Let F(z) be symmetrical w.r.t. z = L/2, let d be a constant «L, 

and let g(z) be a given continuous function with the properties: 

g(z) = o for z = L/3 -d 

and g(z) = Ci for z = L/3 +d 

It can be seen that the regions near L/3 and 2L/3 represent immer= 

sion lenses for which Eq. (6.5) wi I I represent the potentials ~(r;z) 

to any degree of precision by taking the L/A ratio sufficiently 

large. By means of different funct ions g(z) a wide variety of 

immersion lenses can be described. Since the remarks of the 

previous sections on the appl icabi I ity of Eq. (6.5) to Einzel 

lenses apply here as wei I, no detailed discussion on the immersion 

lens representations is given here. 

9. DESCRIPTION OF WIDE ANGLE LENSES 

It may seem from the given examp les as if the La ratio must be 

significantly larger than 1,0 for al I given functions F(z), so 
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that wide angle lenses are excluded. This is not the case, and 

lenses with ~ ~ = 0 at z=O and z=L have been found for La<l, 

if F(z) is al lowed to osci I late between large positive and negative 

values, not unl ike some zonal fields found as approximate solutions 

to the inverse interior Dirichlet problem for certain non-analytic 

potential distributions [see Ch. (8)J. 

10. ADVANTAGES OF THE METHOD 

The Fourier-Bessel solution given by Eq. (6.5) has a number of 

advantages when compared to alternative methods of solving the 

Dirichl.et boundary value problem: 

a) The method is a direct one, employing no iterative 

procedures. 

b)· No matrices need be inverted, resulting in high precision 

(apparently I imited only by the computer word length) and 

extremely modest computer memory requirements - a desk top 

computer with a few ki lobytes can be used. 

c) The programming is simple, requiring a few tens of state= 

ments in BASIC or FORTRAN. 

d) In addition to ~(r;z), any derivatives of ~ are obtained in 

series form by differentiating Eq. (6.5), al lowing very high 

precision 'calculation of the derivatives used, e.g., in 

trajectory calculations [Dinmikis et al. (1975)J. 
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e) The pot ential and its derivatives are calculated for any 

point (r;z) without needin! interp( lation (as in the finite 

difference method, where va lues are normally known on a 

regular grid only). 

f) Compared to the Fourier-Bessel solution of Ch. (5), the 

present formulation is superior for paraxial calculations, 

because of fast convergence near the axis, for al I values 

of z. (In contract, the former expansion has two zones 

on the axis where convergence is slow, necessitating the 

use of accelerating methods). 

g) The solution is in a form which is suitable for use in 

electron optical optimization programs as has been described 

in Ch. (4) for closed conf igurations. 

h) The solution is of use [Ch. (8)J in formulating a solution 

to the inverse internal Dirichlet problem (i.e. the axial 

potential distribution is given, and off-axis potentials 

have to be found). The present approach al lows approximate 

solut ions of high precision to be found for given analytic 

as wei I as non-analytic axial potential distributions, in 

cont rast to the analytic continuation method [Skollermo 

(1976a and 1976b)] which is restricted to analytic functions 

only. 

One disadvantage of present solution that must, however, be men= 

tioned, is that F(z) must be known ¥z. This is a disadvantage 
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shared by the finite difference and finite element approaches, but 

not by the integral equation method. Fourier methods to handle 

gaps between electrodes require further investigation. 

11. REMARK ON FOUR I ER-BESSEL INTEGRAL REPRESENTAT I ON 

As stated in Section (2), we can represent F(z) of Eq. (6.1) by a 

Fourier integral, if F(z) is not periodic. In this case the solu= 

tion to the boundary value problem of Eqs. (6.6) and (6.7) can be 

written as a Fourier-Bessel integral 

¢(rjz) = r: B(w) 10 (wr) sin (wz) dw (6. 13) 

IO(wA) 

-
00 

where B(w) 7T 

fa F(z) sin (wz) dz (6. 14) = "2 

When used in practice, the integration of Eq. (6.13) has to be 

carried out by computer. If, for example, the trapezium rule or 

Simpson's rule is appl ied, a finite Fourier-Bessel series is in 

effect uti I ized to approximate the integral. This means that a 

periodic function is used to approximate the non-periodic function 

¢(ri z ). This periodic function can approximate ¢(Ajz) = F(z) to 

the required precision within the required region of interest (i.e. 

O<z<L), because the integral of Eq. (6.13) is a Fourier integral for 

r=A, and no longer a Fourier-Bessel integral. Einarsson (1968 , 

1971 and 1972) has shown by computer studies that the integra= 

tion of a Fourier integral by cubic spl ines (as suggested by Quade 

Ch. (6) 147 



and Col latz) is superior to the Fi Ion, trapezium and Simpson methods, 

and al lows high precision to be reached [see also Einarsson (1976) 

for the use of Richardson extrapolation for increased precision]. 

The qual ity of fit of ~(A;z) for the region O<z<L is not adversely 

affected by the periodicity of the Fourier series. 

For rrA the situation is completely different. Some thought wi I I 

show that if ~(A;z) is periodic (w.r.t. z), then ~(r<A;z) for 

O<z<L corresponds to the boundary value problem of Eqs. (6.1) and 

(6.2), and not of Eqs. (6.6) and (6.7). Care should therefore be 

taken to determine the period of the finite Fourier-Besse.! series 

resulting from the discretization of the function B(w) of Eq. (6.13), 

a process normally inherent in the numerical computation of the 

Fourier-Bessel integral. If the period is too sma I I to meet the 

requirements of Section (3), totally wrong values of ~(r<Aiz) may 

be obtained. 

The Fourier-Bessel series approach outl ined in this chapter has not 

been optimized as far as computational efficiency is concerned. 

The present formulation shows simi larity to the trapezium rule 

integration of the Fourier-Bessel integral of Eq. (6.13) which is 

not an efficient method if calculation of integrand values is time 

consuming. Fewer evaluations of Bessel functions can result from 

using Simpson's rule, or deriving the Fourier-Bessel equivalent of 

Fi lon's formula for the Fourier integral (I ikely to be complicated) 

or using cubic spl ines in a way simi lar to Einarsson. These possi= 

bi I ities have not been explored, the purpose of the present paper 
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being to offer a solution which is simple and is easi Iy programmed. 

12. POSSIBILITY OF INCREASING PRECISION 

For the interior Dirichlet problem the precision of the solution 

given above should be sufficient for most electron optical purposes. 

For the exterior Dirichlet problem the convergence of the Fourier­

Bessel series may, however, be so slow for the larger r/L ratios, 

that methods must be appl ied to el iminate the effect of the grounded 

plane electrodes, by taking into account the effects of either the 

induced charge distributions on these electrodes, or of the equiva= 

lent charge images [Appendix (2)J. These corrections are equally 

appl icable to the interio r Dirich let problem. 

13. CONCLUSION 

A Fourier-Bessel series represent ation is given for the potential 

distribution in certain open Einzel or immersion type electrostatic 

configurations with rotational symmetry. The method is a direct 

one and el iminates the use of J O Bessel functions, resulting in 

superior convergence in the parax ial region. The precision 

reached is apparentiy I imited by the computer word length only. 

programming is of a simple nature, and computer memory requirements 

are modest enough to use smal I desk top computers. 

As an example of the use of the solut ion discussed in this chapter, 

some electron optical properties of one-foi I lenses are discussed 

in Ch. (7) . 
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C HAP T E R 7 

THE ELECTRON OPTICAL PROPERTIES OF A CLASS OF ONE-FOIL LENSES, AS 

RELATED TO THE CHARGE DISTRIBUTION ON TH E FOIL 

The Fourier-Besse l series solution given in Ch. (6) al lows open, 

one-foi I and two-foi I lenses to be mode l led. The solution is used in 

this chapter, not to optimize lenses as fa r as a particular electron­

optical property is concerned, but rather t o predict electron optical 

patterns of behaviour of a class of one-fo i I lenses, by varying a small 

number of parameters. It can be expected that, by investigating the 

roles played by the parameters, suffic ient insight wi I I be gained to 

decide on a course to be fol lowed, shoul d opt imization be required. 

In this study weak one-foi I lenses are i nvestigated by emphasizing 

relationships between some focal propert ies and the charge distributions 

induced on the foi I. The earthed foi I is placed at z=O, the region 

z ~ 0 is at zero potential, and the fol low i ng potential distribution is 

app l ied at z > 0 

~(A;z)=O, 0 ~ z ~ zo ~(A;z)=Vm sin [mT (z-zO)/L9]' 

V~ is either +lV or -lV, 

and zO and · L9 are varied one at a time . The cases n=l and n=2 are 

cc 'nsidered. It is shown that the restllting foi I lenses show broader 

patterns of behaviour than might be construed . from current ' literature. 

1. INTRODUCTION 

It is a wei I' establ ished property of open electrostatic electron 

optical lenses that they show pos itive spherical aberration, i.e. 
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that for inst ance for an object at z + -00, the rays passing through 

the lens at larger radial distances cross the optical axis Oz at 

points close r to the lens than paraxia l rays do. This is also 

the case with objects placed at any finite distance. 

Open systems have the further property that they are convergent in 

their first operating range. (Rays crossing the axis inside the 

I ens arerefocussed and may cross the ax is any number of times, but 

these bperating ranges of higher order are excluded from this 

discussion.) 

In a comprehensive review article Septier (1966) showed that most 

of the efforts to correct electrostatic systems with rotational 

symmetry were based on the introduction of an electrostatic charge 

into the lens region traversed by the rays: either a charge dis= 

tribution on an axial electrode, or SDace charge in the form of an 

electron cloud or beam, or charge distributions on conducting foi Is 

which are thin enough to be highly transparent to electrons 

[Wittels (1975)J. 

Due to the presence of the conduct I ng fo i Is, the so-ca" ed fo i I 

lenses have properties that differ fundamentally from open (i .e. 

foi I less) configurations; it is, for example, possible to design 

divergent lenses and also lenses with negative spherical aberra= 

tion. It i s also possible to replace the foi I by a gauze or a 

grid, but the openings in the gauze act individually as miniature 

open lenses, requiring a more 'complex analysis [Verster (1963)J 
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than foi I lenses. And although some of the res u lts reported in 

this paper wi I I apply to gauze lenses as wei I, the text wi I I mainly 

refer to fo i I lenses. 

Of the papers on foi I or gauze lenses, some deal with curved foi Is 

[Hoch et al. (1976)J or gauzes lVerster(1963)J ; these are diffi= 

cult to manufacture and are excluded from th is discussion . Others 

deal with (converging) magnetic lenses which are combined with 

(diverging) foi I lenses so as to obtain an overal I reduction in 

spherical aberration [Maruse et al. (1970), Maruse, Hiratake 

and Ichihashi (1970), Maruse, Ichihashi and Hiratake (1970), 

Ichihashi and Maruse (1971) and (1973), Hibino and Maruse (1976) and 

Hibino et al. (1977)] . Only the electrostatic part of such com= 

binations wi I I be covered by examples in Section (4). 

Of the purely electrostatic lenses the special case [Gianola (1950) 

and Mayor et al. (1972)] of a uni form intensity field between two 

paral lei foi Is or gauzes is excluded from this discussion, because 

its lens action is brought about by changes in the velocity Vz 

paral lei to the optical axis on ly; paral lei beams are not conver= 

ged or diverged, and to be effect ive to reduce the positive spherical 

aberration of converging beams, it must be used in its strong form. 

Electrostatic lenses with two foi Is as discussed in Chs. (2)-(4) and 

by Wittels (1975) and Munro et al. (1977) are also excluded, 

because of the additional scattering of the particles by the second 

foi Is. 
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Lenses with single foi Is or grids have been described for simple 

[Verster (1963), Young (1975), and Bernard (1951a, 1951b 

and 1952)J and more elaborate [Hoch et. al. (1976), Scherzer 

(1949), and Typke (1972a and 1972b)] configurations, and in the 

majority of cases the electron optical properties have been related 

to the physical dimensions of and potentials on the electrodes. 

This makes the qual itative understanding of the behaviour of the 

lenses a difficult task, because lenses that have very simi lar 

shapes often show patterns of behaviour that are fundamentally 

different. Typke (1968, 1972a and 1972b) approached the 

correction of lenses with spherical aberration by using :he para= 

xial lens equation to predict under which conditions space and sur= 

face charge distributions can be expected to reduce aberrations of 

various types and orders. 

The approach of this chapter is to consider some simple boundary 

potential distributions and find the corresponding charge distri= 

butions on the foi I. It is then shown how the charge distribu= 

tions affect the focal properties of the lenses. In this way the 

behaviour of a wide variety of foi I lenses can be explained 

qualitatively and quantitatively for paraxial as wei I as zonal 

rays. 

2. CONDITIONS FOR CONVERGENCE AND ZERO SPHERICAL ABERRATION 

In open lenses both the radial distance r and the z velocity of 

the charged particle vary as it passes through the lens. [We use 
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cylindrical polar coordinates (r;z), with the optical axis coinci= 

ding with the Oz aXis]. Both these effects, which may be label led 

the Or and Oz effects, contribute to i) making the lens conver= 

gent and i I) causing overal I positive spherical aberration. 

rand Vz had remained constant, the net impulse on the particle 

would have been zero, as may be deduced from Gauss' law. 

If 

In foi I lenses a third effect (which may be label led the F effect) 

has an influence on the impulse received by the particle, due to 

the fact that the total charge within acyl inder r=rO wi I I in 

general not be zero, resulting by Gauss' law in a net non-zero 

impulse on a particle passing through the lens at an (almost) con= 

stant radial distance rO and an (almost) constant vZ' 

It can be seen that, for fast particles, the deflection due to the 

F effect wi I I be much stronger than that due to the Or and Oz 

effects so that the focal properties of weak foi I lenses may be 

ascribed mainly to the F effect. For stronger lenses the Or and 

Oz ef~ects increase in importance and this may, e.g. cause a lens 

which shows negative spherical aberration at long focal lengths, 

to show positive spherical aberration at short focal lengths, 

as shown in Ch. (4) and as reported by Hoch et al. (1976). It 

can also cause a lens which is divergent for fast particles to 

be convergent for slow particles, as shown in Ch. (2). The main 

purpose of this chapter i~ to discuss the focal properties due to 

the F-effect, for various simple configurations, explaining their -
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behaviour as weak lenses. The behav iour of the same configurations 

used as strong lenses can be unde rs tood qual itatively by mentally 

superposing the Or and Oz effects. 

2.1 Condition for a lens to be convergent 

Consider an electron which enters a foi I lens from a field free 

reg i on z < O. The earthed foi t is found at z=O, and various other 

electrodes with rotational symmetry cause a non-zero potential 

field ¢(rjz) at z > 0, extending up t o z=Lg, the lens length. 

(Strictly speaking, Lg -+- ooin one- foi I lenses, but for practical 

purposes Lg may be taken as such a distance that a¢/ar and a¢/az 

have been reduced to 10-6 of the i r maximum values). At z=O, the 

particle is characterized by r=rO, Vz I 0, vr=O. 

The total radial impulse experienced by an electron is proportional 

to 

(7. 1 ) 

Using Gauss' law, 

r (J (r) dr 

Ch. (7) 155 



in which a(r) is the surface charge density on the foi I and q(rO) 

is the charge on the foi I between the axis and r=rO· 

Normally a(r) is calculated from 3¢(rjO)/3z, so that 

T ( rO) = 
_ q(ro) C 3¢ (rj 0) dr (7.3) = --- r dZ 27TEOrO EOrO 

It can be seen that weak electron lenses with T positive or nega= 

tive wi I I result in divergent or convergent lenses, respectively. 

It wi I I also be seen in Section (4) that q(r) need not have the 

same sign '¥ r. It is therefore more correct to say that q(rO) < 0 

or > 0 wi I I cause an electron entering the lens at radial· distance 

ro, to diverge or converge, respectively. 

2.2 Conditions for zero, positive and negative spherical aberra= 

tton 

If the trajectories of particles through weak lenses are investi= 

gated, it can be shown by simple geometry that the constant 8 in the 

approximate relationship T a r8 wi I I determine whether the longitudinal 

spherical aberration 

(7.4) 

of a paral lei ray passing through (rOjO) wi I I be zero or non-zero; 

z=fz(rO) is the focal point of this ray. [The proportionality given 

above represents a concise alternative to the more conventional 

The conditions 

a < 1, a = 1 or a > 1 are used as substitutes for mathematically 

more rigorous but clumsier statements as, e.g., C2 < 0, C2=0 or 
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C2 > 0 for C1 > 0, C3 > 0, C4 > 0, etc; simi lar statements then 

have to be given to cover the many other possibi I ities.] 

The case S 1,0 

Weak lenses with S=l,O show zero spher ical aberration. This con= 

dition can be satisfied approximately by a variety of one-foi I and 

two-fo i I lenses. It may be of interest to compare lenses with 

plane foi Is and S = 1,0 (label led Zero Spherical Aberration Plane 

Foi I Lenses, ZSAPFL) with the un ique c lass of lenses in which the 

impulse received in the vicinity of (r;z) is proportional to r, ¥ z; 

this condition is met by [see, e.g., Zashkvara et. al. (1977)] the 

potential distribution $(r;z) = r2 - 4z2 (label led the Ideal Double 

Foil Lens, IDFU. i) The ZSAPFL and IDFL, although equivalent in 

their weak forms, can be expected t o behave differently in their 

strong forms; computer ray tracing results wi I I be reported else= 

where; (ii) the equipotentials of the ZSAPFL are al I curved, 

except for Izl ~ 00 or r ~ 00, making such a design more difficult to 

implement; (i i i) IV' $(r;z) I increases with rand Izl in the IDFL, 

whereas in the ZSAPFL IV' $(riz)1 decreases within z = L9 to a suffi= 

ciently low value that the foi I at z = L9 becomes superfluous and 

may be discarded. 

In view of the above differences, the ZSAPFL has distinct advantages, 

if only the spherical aberration has to be el iminated. 

The condition TarS, S I 1,0 

Here S > 1 and S < 1 result in $1> 0 and $1< 0 resp., for convergent 
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lenses, and Sl< 0 and Sl> 0 for divergent lenses. Septier (1966) 

has stated that !lit is thus possible to cancel, or even reverse the 

sign of C3" (third order spherical aberration) "by altering the 

potential on the grid. This is possible only when the lens is 

divergent, however; a grid lens free of aberration cannot be used 

on its own, but only as a correcting e lement". Although this is 

correct for the special class of foil lenses studied by Bernard 

(1951a, 1951b and 1952), and may appear to apply to the more 

complex configurations [Bernard (1953a and 1953b)] approximated 

by his analytical model, it wi I I be seen in Section (4) that it is 

possible to design foi I lenses wh ich show positive and ne~ative 

spherical aberration irrespective of whether the lens is convergent 

or divergent . (Convergent foi I lenses with negative spherical 

aberration have been reported in Ch. (4~,and also by Hoch et. al. 

(1976), but without pointing out that Septier's statement was contra= 

d i cted. A theoretical treatment given by Scherzer (1949) also 

predicted that a convergent lens can be designed with Sl= 0, and 

not rul ing out the possibi I ity that S, < 0 could be obtained by 

varying some parameters). 

It may be remarked that if T(r) a rB is differentiated w.r.t. r, it 

is seen for convergent lenses, for instance, that the conditions 

B < 1,0; B = 1,0 and B > 1,0 correspond to negative, zero and 

positive spherical aberration, respectively. oCr), rather than 

T(r) can therefore be represented graphically, so that for conver= 

gent lenses o(r) vs. r graphs which decrease In absolute value, 
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remain constant or increase in absolute value, indicate negative, 

zero and positive spherical aberration, respectively. A simi lar 

statement can be formulated for divergent lenses. 

3. THE BOUNDARY VALUE PROBLEM AND SOLUTION 

Variations of the fol lowing configurat ion are considered: the 

plane z = 0 represents a plane earthed conducting foi I which is 

thin enough to be sufficiently transparent to electrons. A set 

of ring electrodes, al I of radius r = A, provide the fol lowing 

potential distribution 

¢(A;z) o (7.5a) 

¢(A;z) = Vm sin [n 'IT (z-zO)/Lg] , zo ~ z ~ zO+Lg (7.5b) 

¢(A;z) 0, z ) zO+Lg (7. 5c) 

For al I the cases reported here, A = 1m and Vm = + lV. The cases 

Vm = -lV are not represented graphically, but feature in some of the 

discussions . For a chosen value of n (n is either 1 or 2), either Lg 

is varied, keeping Zo = OJ or Zo is varied, keeping Lg = 1,Om. 

These .variations seem to al Iowa qual itative explanation of the 

behaviour of most of the simple configurations that are of practical 

interest. 

A solution for ¢(r;z) Y r , A and z ) 0 was given in C~ (6) in the 

form of a Fourier-Bessel series [see also Appendix (2)J: 

co 

¢(r;z) = I 
n=l 

'o(n'IT r/U 
Bn sin (n 'IT z I U -:---:----,-,..,.....,.. 

'O(n 'IT A/U 
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in which 

2 
L 

~(A;z) sin (n TI z/L) dz, (7.7) 

10 is the modified Bessel function of the first kind and of order 

zero, and L is a length which is chosen sufficiently larger than A 

that (L - L9)/A » C, a constant which is normally taken larger than 

5, depending upon the precision required. Making use of the dis= 

cuss ion of the solution in Ch. (6), L was chosen to be 10m, al lowing 

the series in Eq. {7.6) to be truncated after about 40 terms for 

. 
r = 0, or about 80 terms for r = 0,8A. 

The Fourier analysis of Eq. (7.7) is simple to carry out, using 

Eq. (2.532) of [Gradshteyn et a I. (1965)]. The electric inten= 

sity a~/az is found by differentiating the series of Eq. (7.6). 

Although it has been found to be more instructive to give a graphical 

representation of' o(r) rather than of T(r), the latter can easi Iy be 

found from Eq. (7.6) by making use of Eq. (6.561.7) of Gradshteyn 

et al. (1965) or of Section (2.3.2) of Appendix (2). 

It may be pointed out that if the region z < 0 is field free, a 

resultant force acts on the foi I along the z-axis, resulting in 

severe mechanical stresses and possible deformation. The z-compo= 

nents of these stresses may be el iminated by introducing into the 

region z < 0 a potential distribution ~l(A;z<O)=~(A; ~I) the 

analysis given above appl ies equally wei I to z < 0, provided the 

sign of Vm is reversed. 
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4. FOCAL PROPERTIES OF THE VARIOUS CONFIGURAT IONS 

The focal properties of the various configurations are summarized 

in Tables (7.1) and (7.2>. The sevent h column gives graph numbers 

in the figures I isted in column 6. Separate graphs are not given 

for the Vm : -lV lenses, but the graphs are simi lar to those with 

Vm : +lV provided that the entities on the vertical axes have their 

signs reversed. The reversal of sign is indicated by appending 

(-) to the graph number. Under the heading "C/O" the entries "C" 

or "0" indicate that the electron lens is convergent or divergent, 

respectively. In the column headed 'lSI', a -1,0 or +1 indicates 

that the spherical aberration is negative, (paraxially) very sma I I, 

or positive, respectively. No indication is given of the magnitude 

of the aberration; an estimate may be obtained by studying the rate 

of change of the oCr) vs. r graphs. The entry (~ 1) in brackets 

in the last column indicates that the value of S1 in the transition 

region cannot easi Iy be determined from the oCr) graphs only; the 

value of S1 in this region may be found by studying the corresponding 
, I 

'fer) graphs as well. Finally, the presence of more than one entry 

in the last two columns indicates that paraxial rays are described 

by the first entry and zonal rays by the second entry. 

Remarking on some of the entries, it may be pointed out that the 

simplest type of foi I lens is represented by nos. 11-20. In these 

lenses the radial force has one sign throughout the trajectory, so 

that the lenses 11-15 are uniformly convergent and 16-20 are uniform: 

I Y divergent , i rrespect i ve of the foca I I ength of the I ens. The 
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Table (7.1) Classification of one-foil lenses, with n=1 in Eq. (7.5b) 

No. n Vm zo L9 Fig. no. Graph no. c/o $1 

1 1 1 0,0 1 ,0 1 , 2 a 0 -1 

2 1 1 0,5 1, a 1 , 2 b 0 0; + 1 

3 1 1 1, a 1 ,0 1 , 2 c 0 +1 

4 1 1 1,5 1,0 1 , 2 d 0 +1 

5 1 1 2,0 1 , a 1 , 2 e 0 + 1 

6 1 -1 0,0 1 • a 1 · 2 a(-) C +1 , 

7 1 -1 0,5 1, a 1 , 2 b(-) C 0; -1 I 
8 1 -1 1 , a 1 ,0 1 , 2 c(-) C -1 

I 9 1 -1 1 ,5 1,0 1 , 2 d(-) C -1 

10 1 -1 2,0 I 1, a 1 , 2 e(-) C -1 
I 

. 
; 11 1 1 0,0 0,5 5 · 6 a 0 +1 , 

12 1 1 0,0 1, a 5 · 6 b 0 + 1 , 

13 1 1 0,0 1 ,5 5 , 6 c 0 + 1 

114 1 1 0,0 2,0 5 , 6 d 0 I +1 

15 1 1 0,0 2,5 5 · 6 e 0 +1 , 

16 ,1 -1 0,0 0,5 5 · 6 a(-) C -1 , 

17 1 -1 0,0 1, a 5 , 6 b(-) C -1 . 
18 1 -1 0,0 1 ,5 5 , 6 c(-) C -1 

19 1 -1 0,0 2,0 5 , 6 d(-) C -1 

20 1 -1 0,0 2,5 5 , 6 e(-) C -1 
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Table (7.2) 

No. n 

21 2 

22 2 

23 2 

24 2 

25 2 

26 2 

27 2 

28 2 

29 2 

30 2 

31 2 

32 2 

33 2 

34 

35 2 

36 2 

37 2 

38 2 

Classification of one-foi I lenses, with n=2 in Eq. C7.5b) 

zo L9 

+1 0,0 1,0 

+1 0,5 1,0 

+1 1,0 1,0 

+1 1,5 1,0 

-1 " 0,0 1,0 

-1 0,5 1,0 

-1 1,0 1,0 

-1 1,5 1,0 

+1 0,0 0,5 

+1 0,0 1,0 

+1 0,0 1,5 

+1 0,0 2,0 

+ 1 0,0 2,5 

-1 0,0 0,5 

-1 0,0 1 ,0 

-1 0,0 1 ,5 

-1 0,0 2,0 

-1 0,0 2,5 

Fig. no. 

3 ; 4 

3 ; 4 

3 ; 4 

3 , 4 

3 ; 4 

3 , 4 

3 ; 4 

3 , 4 

7 ; 8 

7 , 8 

7 , 8 

7 , 8 

7 ; 8 

7 , 8 

7 , 8 

7 , 8 

7 , 8 

7 , 8 
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Graph no. 

a 

b 

c 

d 

aC-) 

bC-) 

c(-) 

dC-) 

a 

b 

c 

d 

e 

aC-) 

bC-) 

c( -) 

dC-) 

eC-) 

C/O s, 

C;O -1~(:!:1);-1 

o -1; +1 

o +1 

o +1 

O;C +l;C!l)~··l 

C + 1; -1 

C -1 

C -1 

C;O +1; C~l) ;-1 

C;O -l;C!1);-l 

o 

o 

o 

O;C 

D;C 

C 

C 

C 

-1 

-1 

-1 

-1~C:!: 1 t+ 1 

+l'C~l )'-1 . , 
+1 

+1 

+1 
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0,25 
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-0,5 

° 2 4m 
z 

Fig.(7.l) CP(O;z) vs. z (top) and (a/az)~(O;z) vs. z (bottom) for 

lenses 1 to 5. Lens parameters are given in Table (7.1) 
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1,5 

Vim 

1,0 

0,5r-------____________ ~b 

0,2 0,4 0.6m 

Fig.(7.2) (a/az)t(r;O) vs.r, for lenses 1 to 5. Lens 

parameters are given in Table (7.1) 
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values of Sand Sif are, however, dependent upon f [see, e.g., 
1 1 

Ch. (2) for the analogous two-foi I lens behaviour], although the 

sign of ~ remains unchanged. Lenses consisting of two coaxial 

tubes separated by a sma I I gap, wi t h one tube closed off by a foi I 

on the gap s ide [Verster (1963) and Young (1975)J show this type of 

behaviour, as does a lens consist i ng of two coaxia l tubes of radius 

A, separated by a gap in which a foi I of radius R » A is placed 

[Bernard (1951a, 1951b and 1952), Klemperer et al. (1971), and 

Grivet (1965)J. 

If in the latter lens R < A, so that the foi I has to be s~pported by 

a thicker electrode [Hoch et al. (1976), Scherzer (1949), and Typke 

(1972b)] , the field can change fundamentally, in that i) B of 

Section (2.2) may be reduced to values lower than 1,0, so that 

i i) regions are introduced where d~/dr changes its sign along the 

trajectory, so that i i i) the convergent Or and 0z effects may in 

some cases exceed the F-effect, causing the lens to be divergent for 

fast partic les, but convergent for s low particles. Po i nt (i) is 

illustrated by nos. 2-5 and 7-10. 

Although entries 7-10 represent convergent lenses with negative 

spher i ca I aberrat i on, the va I ue of 1 S11 is comparat i ve I y sma I I, 50 

that the change-over from a negative to a positive value of S1 may 

occur at a relatively large value of f. To obtain convergent 

lenses of short focal length but wit h S1' 0, one can investigate 

configurations which correspond qual itatively to lens 21 (=30), for 
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Fig.(7.3) ¢(O;z ) vs. z (top) and (Cl/Clz)¢(O;z) vs. z (bottom) for 

lenses 11 to 15. Lens parameters are given in Table (7.1) 
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Fig.(7.4) (a/az)cp(r;O) vs. r, for lenses 11 to 15. 

Lens parameters are given in Table (7.1) 
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which (3/3r> [(3/3z> ~ (riO)] has a relatively large value in the 

paraxial region. This is accompl ished by introducing a region of 

opposite polarity along r = A, which may be obtained in practice by 

an electrode [see, e.g., Typke (1972a and 1972b)] which plays a 

part not unl ike a conventional Wehnel t electrode. Fig. (9) compares 

the negative spherical aberration of lens 21 with lens 3 for a range 

of foca I lengths. 

Several entries between nos. 21 and 38 have such a large spherical 

aberration that the focal length has a sign in the zonal region 

which differs from its sign in the paraxial region. The. nature of 

a potential field of this type is shown in Fig (10); in this case, 

n = 4, and the entry is not represented in the tables. 

Regarding entries 22 and 23, it may be seen that for some value of 

L9 between 1,0 and 1,5, 3~(0;0)/az wi I I be zero, but a~(r>O;O)/az > 0 

(the value of L9 turns out to be 1,065 for n = 2, or L9 = 1,612 for 

n = 4), This configuration wi I I show zero convergence paraxially, 

but wi I I be divergent for zonal regions; this lens is therefore a 

zero convergence lens showing negative spherical aberration. (If 

'the sign of Vm is changed, positive spherical aberration wil I result). 

It may be introduced as a correct i ng element in order to remove posi= 

tive spherical aberration from a system, without affecting its focal 

length. The possibi I ity of obta i ning such an element was mentioned 

in Ch. (4) and q,(r;z) and (~/az) <p(r;z) graphs are given in Figs. 

(7.10) and (7.11>. 
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Fig.(7.5) <I>(O;z) vs. z (top) and (a/az)<I>(Ojz) vs. z (bottom) for lenses 

21 to 24. Lens parameters are given in Table (7.2) 
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Fig.(7.6) (a/az)q,(r;O) vs. r, for lenses 21 to 24. Lens 

parameters are given in Table (7.2) 
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5. RELATIONSHIPS BETWEEN oCr), ~(O;z) AND ~(A;z) 

In view of the wide variety of functions T(r) obtained by the rather 

simple boundary potential distributions ~(A;z) considered in the 

previous sections, the possibi I ity wi I I now be investigated of 

determining a function ~(A;z) that wi I I result in a pre-specified 

(impulse) function T(r) which is considered suitable to correct 

the spherica l aberration of a given lens. One may, for example, 

wish to correct a lens that shows third order spherical aberration C3, 

by juxtaposing a correct i ng lens with T(r)ar3 • From Eq. (7.3) we 

deduce that q(r) a r3 , oCr) a r2 and therefore (a/az)~(r;O) a r2; 

take 

a~(r;O) 
az (7.8) 

It is known that an analytic function ~(r;z) satisfies Laplace's 

equation, and is uniquely determined by the behaviour of the func= 

tion along the axis, as shown by the expansion 

00 

~(r;z) = L 
n=O 

a2n ~ (O~z) 
.~ 

az 

which can be derived, i.a., by ana lytic continuation. 

(7.9) 

More speci= 

fical Iy, ~(r;zO) is uniquely determined by ~ and its even z deriva= 

tives at a point zO; the same app l ies to ~(O;z), ¥ z. 

Differentiation of Eq. (7.9) shows that the boundary value problem 

of Eq. (7.8) wi I I be solved if a function ~(O;z) is found satisfying 
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Fig.(7.7) ¢(O;z) vs. z (top) and (3,3z )¢(O;z)vs. z (bottom) 

for lenses 29 to 33. Lens parameters are given in 

Table (7.2) 
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kr2 a~ (rjz) 
az 

00 

(7.10) 

n=O 

It may seem as if the solution of thi s equation is a straightforward 

matter, because; for instance, t he fu nction ~(O;z) (-k/3)z3 satis= 

f i es Eq. ( 7. 1 0) . However, ~(O; z ~ (0 ) ~ 00, and the condition 

(a/2z)~(0;z)=0 is satisfied for z = 0 onlYi consequently the 

function ~(r;z) cannot represent a one-foi I lens. It is therefore 

required that an ana lyt ic funct ion ~ (O;z) be found which behaves 

(approximately) I ike (-k/3 )z3 near z 0, but is such that (a/az)~(O;z) 

reaches sufficiently low values with in the specified lens length L9. 

This is no simple task, especially because piece-wise continuous 

functions are excluded if Eq. (7.9) must be appl ied to obtain ~(rIO;z)i 

see, e.g., Sk611ermo (1976a and 1976b). Attempts to circumvent 

the obstacle of having to use a s ingle analytic function are des= 

cribed in Ch. (8). Not a single f unction, but a series is uti I izedi 

it has the fol lowing properties: i ) the basis functions are trigono= 

metrical, and therefore analytic i i) the coefficients are chosen 

in such a way that Eq. (7.8) is app rox imately satisfied for sma I I 

values of Zi and ii i) the coeff icient s are chosen so as to let 

(a/az)~(O;z) reach negl igibly sma ll values near z=L9. 

Having found the series representi ng ~ (O;z), Eq. (7.9) can be used 

to find ~(rIO;z), although it must be real ized that an increased 

approximation error is propagated to t he zonal regions, so that 
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(a/az)~(r;O) may differ from the expected value for large values of r; 

this affects T(r) as wei I. A more detai led discussion is given in 

Ch. (8), 

For two-fo i I I enses an a I ternat i ve to the above approach may be for= 

mulated, based on Eq. (7.6). Differentiation of this equation gives 

00 

a~(Q;z) = ~ 
az L Cn 10 (n IT r/U (7. 11) 

n=1 

If the constants Cn can be 

found, satisfying Eq. (7.11) approximately, the problem i~ solved. 

This may be attempted by i) considering the series as a finite one 

and by point testing obtain an overdetermined system of linear equa= 

tions from which Cn may be found by matrix inversion; or i i) by 

orthogonal izing the functions lo(n IT r/L) so that Eq. (7.11) can be 

used to find Cn by Fourier analysis [the description of such a proce= 

du re is given inCh. (5)]. Due to the nature of the 10 Bessel func= 

tions, it wi I I be found in cases i) as wei I as i i) that the matrices 

are not wei I conditioned, and prec ise solutions of Eq. (7.8) should 

not be expected. 

6. CONCLUSIONS 

By relating the impulse experienced by a charged particle passing 

through a one-foi I lens, to the charge distribution on the foi I, and 

then investigating the charge distributions due to variations of 

piece-wise sinusoidal potential distributions ~(A;z), it has been 
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shown that foi I lenses can have i.a. t he fol lowing patterns of 

behaviour for particles entering the lens at a radial distance 

r < A, and at a velocity Vz 

i ) convergent 'V r and 'V Vz 

i i ) convergent 'V r < rO and 'V vz; d ivergent 

'V r > rO and 'V Vz > {vz)O; bu t convergent 

'V v < (vz)O . z 

iii) divergent 'V r and 'V Vz 

i v) conve rgent 'V r > rO and 'V Vz » (vz)O; diver= 

gent 'Vr < rO and 'V Vz » (vz)O ; but convergent 

'V rand 'V Vz « (vz)O 

v) convergent and S > 
1 

o 'V Vz 

vi) convergent and S < 
1 

o 'V Vz > (vz )O 

vii) divergent and S < 
1 

o 'V Vz 

vii i ) divergent and S > 
1 

o 'V Vz > {vz) O 

in which rO and {vz)O are constant s dependent upon the nature of the 

configuration, and 1 is given by Eq. (7.4). 

The I ist is not comprehensive, but se rves to show that foi I (or 

grid) lenses are not I imited to types i), iii), v) and vii) as 

might be deduced from current literat ure. 

It is also shown that lenses with negative (or positive) spherical 

aberration but with neg I igible convergence can be obtained by a care= 

ful choice of boundary potential function; such a correcting lens 

can be introduced into a lens syst em without affecting its focal 

length. 
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C H A PT E R 8 

THE INVERSE INTERIOR DIRICHLET PROBLEM 

In the preceding chapters t he electron optical properties were 

investigatsd of potential fields brought about by a set of equi= 

diameter coaxial ring electrodes held at potentials given by a 

function fez) . Properties of · some two-foi I lenses and one-foi I 

lenses were investigated, and the Fourier-Bessel series solution 

of Ch. (6) would al Iowa s imi lar study to be undertaken of open 

lenses. 

It may, however, be argued that a much more direct approach 

wi I I result if a function on the axis itself is investigated. 

The possibi I ity of performing an opt imization in this way was 

already suggested in Section (6) of Ch. (1). To al low this 

approach to be implemented, requires t hat a solution to the 

inverse interior Dirichlet problem be uti I ized. In this 

chapter the possibi I ity is investigated of finding an approxi= 

mate solution to this problem in terms of Fourier-Bessel 

functions. 

181 



It wi I I be shown that an infinite numbe r of rotationally symmetrical 

functions ~(rjz) can be found which approx imate a given function fez) 

on the optical axis Oz (r and z being cyl indrical polar coordinates). 

The ~(r;z) are given in the form of a fi ni t e Fourier-Bessel series and 

it is shown how a solution that can be used in electron optical design 

can be selected by carefully assigning values to the fol lowing parameters 

the number of terms in the series, the per iod of the series and the amount 

of smooth i ng introduced. In th i s way a comprom i se is estab I i shed between 

the qual ity of the axial approximation, t he magnitude of potential gra= 

dients to be contended with in zonal regions, and the sizes of apertures 

al lowed. Two-foi I, one-foi I. and open lenses can be model led, and given 

axial potential functions can be accommodated which are either i) analytic, 

i i) continuous, but with piece-wise continuous z-derivatives, or iii) in 

the form of a set of experimentally determ i ned values. 

It wi I I be shown that the method requires no matrix inversion, the computer 

programming is of a simple nature, and memory requirements are modest enough 

to al low implementation of the program on sma I I desk-top computers. 

1. INTRODUCTION 

The inverse interior Dirichlet prob lem considered in this chapter is 

the following: 

V2 </>(rjz) = 0 

</>(O;z) = fez) 

V r < R an.d V z 

V z 

(8. 1 ) 

(8.2) 

It is required to find </>(r;z) V z and V r < R, a given finite radius. 

rand z are cylindrical polar coord inates, and fez) is a given finite 
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function which is defined for al I z, has at most a finite number of 

discontinuities, and satisfies 

lim fez) o (8.3) 
Izl-+oo 

The solution of this problem is of interest in electron optical 

design because of the possibi Iity of determining (or postulating) 

axial potential fields which are expected to have certain desired 

paraxial electron optical properties [Skal lermo (1976a and 1976b)]. 

To implement such a design, the potent ial field in zonal regions 

must then be calculated to make it possible to determine the shapes 

and potentials of conducting electrodes which wi I I give rise to the 

chosen axial potential distribut ion. 

Two possible methods of finding the solution were given by Scherzer 

in some of his first papers on theoretical electron optics, namely 

the integral expression [Scherzer (1936a8 

Tf/2 

~ ( r; z) • ~ foRe [ ~ (z + irs in,,)] do (8.4) 

and the series expansion [Scherzer (1933)J 

00 

<t>(riz) L (8.5) 

n=O 

The posslbl I ity of using a finite difference method was mentioned by 

Cosslett (1946) who quoted some unpubl ished results by Matz. The 

nature of the method is not known. 
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Solving the inverse problem by first calculating the charge distri = 

bution (for instance on the surface r=R) which wil I give rise to 

~(O;z), and thenusing Coulomb's law to find ~(r > O;z) was suggested 

recently by Hawkes (1973) and Du Toit (1976), but a practical imple= 

mentation of the method could not be traced. 

Some propert ies of the first two methods wi I I be discussed briefly. 

1.1 The integral method 

Although this method requires that the function f(z) is given as a 

simple analytical expression, it is found that for most functions f(z) 

the integral of Eq. (8.4) cannot be obtained in closed form [Glaser 

(1956)J. The integral may be represented by a series, as shown by 

Scherzer (1936a) for his potent ial f ield of minimum spherical aber= 

ration, and as also suggested by Berz (1950), but the most profitable 

use of this method was made by Sk61 lermo (1976a and 1976b) who deter= 

mined the real part of the integrand analytically, and then performed 

the quadrature by computer. In these comprehensive papers, a number 

of electric and magnetic fields of interest to electron optics were 

discussed. It is, however, important to note that only analytic 

f unct ions f (z) can be accommodated by th i s method'. 

1.2 The series expansion method 

Although Eq . (8.5) has been quoted [Scherzer (1933), Cosslett (1946), 

Glaser (1956), Maloff et al. (1938), Plass (1942) and Harman (1953)J 

for a few decades as the standard method of finding ~(r;z) for the 
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paraxial regions, it is hampered by the same I imitation as the 

integral method, namely that fez) shou ld be an analytic function. 

If fez) is a function which has a discontinuity in a z-derivative 

of any order at z=zl, for instance, ¢(r > 0; L1) wi I I be found to 

be discontinuous at z=zl. The method is therefore unsuitable for 

functions fez) with piecewise continuous z-derivatives, the reason 

being that the right hand side of Eq. (8.5) is determined by the 

axial potential distribution in the c lose vicinity of the point 

(O;z) only. This is no problem if fez) is an analytic function, 

because fez) is known 'Y z (and for the whole complex doma.in) if fez) 

is specified for a I ine element of inf initesimal length [Berz 

(1950)]. 

If fez) is given in the form of a discrete set of experimentally 

determined values, severe problems wi I I be encountered [Olsen et al. 

(1966)J in calculating the higher derivatives, requiring smoothing by, 

e.g., performing a least squares fit to the given data. 

2. THE FOURIER-BESSEL SERIES METHOD 

Depending on the reason why the solution to the boundary value 

problem of Eqs. (8.1:) and (8.2) is required, it may be found that 

the solution of the fol lowing boundary value problem is also accep= 

table as a substitute 

'iJ2 If = 0 If z and l,f r < R (8.6) 

If(O;z) = fez) + E (z) (8.7) 
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where £(z) = '(O;z)-~(O;z) is the error of approximation of which 

the absolute value is restricted to va lues sma I ler than £1, vlzl< Z. 

The constant Z is a given length which is related to (and for pur= 

poses of this chapier'wi II be considered to be equal to) the lens 

length, i.e. the paraxial region where the electric intensity is large 

enough to be of importance in electron optical computations. 

At this point it may be remarked that, although a choice of a suffi= 

ciently sma I I £1 may ensure that '(Oiz) is an acceptable approxima= 

tion to ¢(Ojz), it may happen that '(r > O;z) turns out to be a poor 

approximation to ¢(r > O;z), depending on the nature of the given 

function ¢(O;z), and the resulting £(z). A few further general 

remarks on the properties of '(r > O; z ) may be given here: 

i) There are infinitely many functions £(z) that satisfy Eq. (8.7). 

Consequently there are infinitely many functioffi'(r > O,z) that 

satisfy Eqs. (8.6) and (8.7 ) . Especially for larger values of 

r, the various solutions may differ appreciably from each 

other. 

ii) It was pointed out by Berz (1950) that further conditions may 

be laid down, restricting the behaviour of '(r > O;z). One 

may, for instance, require that plane OV equipotentials are 

located at z;:O and z=L, so as to enable a two-foi I lens having 

para' lei, plane foi Is to be model led. 
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iii) In the absence of a restriction of the type just mentioned, 

it wi I I be found that the behaviour of £( Izl> Z) wi I I sti I I 

influence ~(r > 0; Izl< Z), especially for large values of r. 

[If £(r) is considered to be an analytic function, this state= 

ment may be rephrased by remarking that ~(r;z) wi I I be deter= 

mined not only by £(zO)' but by al I the z-derivatives of £ at 

any chosen point z=zO]' 

iv) In view of the above considerations, it would be profitable, 

having found a solution ~(r;z) satisfying Eqs. (8.6) and (8.7), 

to establ ish whether its properties are compatible. with the 

requirements of the physical problem which necessitated the 

choice of fez) of Eq. (8.2) in the first place. This wil I 

be illustrated by Sections (3) and (4). 

2.1 The choice of approximating function, ~(r;z) 

The approximating function, ~(r;z) discussed in this chapter is in the 

form of a series 

~(r;z) (8.8) 

n=l 

in which the functions Wn(r;z) are separable· . 

(8.9) 

The sets of functions gn(z) are chosen from a relatively sma I I list 

of sets for which the integral [see Eq. (8.4)J 
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W(r;z) 2 Re[g(z + da (8.10) = -
'IT 

can readi Iy be found in closed form. Some are discussed briefly 

2.1.1 The function W(r;z) resulting from integrating gn(z)=Cnl+Cn2z+Cn3 

[z arctan (z)+1)] is given by EI-Kareh et a I. (1970), but it does 

not seem simple to accompl ish a fit of a given axial potential 

by Eq. (8.8), using functions of this type. See EI Kareh 

et al. (1970) for references on attempts to use superpositions 

of these functions. 

2.1.2 For the functions gn(z)=zn, the functions Wn(r;z) can easi Iy 

be found analytically, giv ing 1, z, z2- r2/4, etc., for n=0,1,2, 

etc. When transformed to spherical polar coordinates (p,¢,e), 

the functions are pn Pn(cos e), Pn being n-th order Legendre 

functions. 

Approximating a function f(z) by a series based on the polyno= 

, mials zn presents no problem, espeqially if they are used in 

orthonormalized form, but the trigonometrical functions of 

Section (2.1.5) are probably more convenient because of some 

practical reasons; see, i .a., Sections [2.2( i i)] and [2.2( iii)] 

of Ch. (7). 

2.1.3 The integrals of the functions gn(z)=z-n can simi larly be 

shown to be p-n Pn(cos e), and they have the advantage that 
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z-n ~ 0 for large z, but the ap proxi mation of a given funct ion 

f(z) by means of a series based on z-n is not as simple as, e .g . 

the Fourier technique of Sect ion (2.1.5 ) . 

2.1.4 The functions gn(z) = exp (-nz) can be integrated [us i ng 

Eq. (9 . 1.18) of Abramowitz et a l . (1970)J to give solutions 

exp (-nz)JO(nr), in which JO is the unmodified Bessel func= 

tion of the f i rst kind and of order zero. The functions exp(-nz) 

can in principle be used, espec ially if orthogonal ized [a com= 

puter procedure is given in Ch. (5)J, but they are not very 

suitable for orthogonal iza t ion , and it is unl ikely .that high 

precision approximations of "non-exponential" functions f(z) 

wi I I be accompl ished. [The f unctions exp(-nz) YO(nr), whi ch 

are also solutions of Laplace's equation, are also rejected 

because the Bessel function s YO( ~O)~-oo.] 

2.1.5 The functions gn(z) sin (nz) and cos (nz) can be integrated 

[using Eq. (9.6.16) of Abramowitz et al. (1970)J to give 

sin(nz)IO(nr) and cos(nz)IO(nr ) , in which 10 is the modifi ed 

Bessel function of the first kind and of order zero. (The 

functions sin(nz)KO(nr) and cos (nz)Ko(nr) which are solutions 

of Laplace's equation, are rejected because the Bessel func= 

tions Ko(r-+-O)~. The functions cos(nz)IO(nr) are also dis= 

carded because they can be converted to the form sin(nz)IO(n r ) 

through a phase change. 

Of al I the functions mentioned above, the set gn(z)=sin(nz) 
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are probably the most convenient for approximating fez), due 

to the simpl icity of the Fourier-analytica l procedures, and 

the balance of the paper is devoted to the resulting solutions. 

3. PROPERTIES OF THE FOURIER-BESSEL SOLUTIONS 

It can be shown [Lanczos (1957~ that not only sin(nz)IO(nr), but also 

00 

'P(rjz) 
f 

A(w) sin (wz)IO(wr) dw 

o 
(B.l1) 

is a solution of Laplace's equation. Taking r=O, the function A(w) 

can be found from the Fourier transform 

A(w) = ¥ {OO 
o 

'P(O;z)sin(wz) dz (B.12) 

which is appl icable to a function 'P(O;z) which is not periodic. 

Due to the computational difficulties [see Appendix (2)J of deal ing 

with the Fourier-Bessel integral of Eq. (B.ll), we rather investi= 

gate a solution of the form 

N 

'P(rjz) _ I An sin (nnz/L)IO(nnr/L) 

n= 1 

in which the coefficients 

fL. f (z) sin (nnz/U dz 

o 

(B.13) 

(B.14) 

are found by Fourier analysis. [See Bertram (1940 and 1942) for an 

Ch. (B) 190 



alternative wa y of avoiding the computational difficulties ment ioned 

above] . 

It can be seen that the function ~(O;z) wi I I be periodic, with a 

period 2L; if fez) is periodic with period 2Ll, the choice L=Ll 

wi I I obviously be made. If fez) is not periodic, care must be taken 

in assigning a value to L, because this choice may affect the nature 

of the solution ~(r > O,z) in the region of interest Izl<z, as men= 

tloned in Section (2); see also Sectioh (3.2). 

3.1 Convergence of the series 

The factor IO (nrrr/L) in the series of Eq. (8.13) has a near-exponen= 

tial behaviou r for large arguments, forcing us to restrict N to 

finite values, except in cases where the functions fez) in Eq. (8.14) 

result in Fourier coefficient s An such that the product AnIO(nrrr/L) 

goes t o zero rapidly enough, for large n. And if the latter condi= 

tion is not satisfied, it wi I I be found that the function ~(r;z) 

osci I lates violently if large values are assigned to Nand r. There= 

fore there appears to be a I imitation to the precision to which a 

given axial function fez) may be approximated by a function ~(O;z ) 

resulting from a set of physical electrodes: i) a large value of N 

ensures that the truncation error of the Fourier series representing 

fez) is acceptably sma I I; this requirement is in confl ict with the 

requirement t hat ii) large values of N must be avoided so as to 

I imit I~(r > O;z)/ or IV~(r > O;z)/ to values that are smal I enough 

that they can be used in practical designs without running the risk 

of field emission between the electrodes. iii) One way of effecting 
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the compromise between i) and ii) is to restrict r to relatively 

sma I I values, or more precisely, to sma I I r/L ratios. iv) Another 

alternative is to restrict fez) to relatively smooth functions; 

this wi I I ensure that An goes to zero more rapidly. 

It therefore appears that in the practical use of the solution of 

Eq. (8.13) a trade-off must be contended with between the fol lowing 

factors: i) a good axial approximation, ii) sma I I gradients of ~ 

in the zonal regions, iii) the use of large r/L ratios al lowing 

strong lenses with large apertures to be model led, and iv) the free= 

dom to approximate functions fez) which are not very smooth. For 

a fifth factor, see Section (3.2.4). 

One way of accommodating non-smooth axial functions (e.g. piece-wise 

I inear functions) is the use of Lanczos a - factors which are arrived 

at by performing a spatial averaging process [Lanczos (1957)]. The 

process may be repeated any number of times to obtain further 

smoothing - and faster convergence - so that the series of Eq. (8.13) 

is replaced by the fol lowing one: 

N 

~(r;z) - L sin(nTIz/L)IO(nTIr/L) (8.15) 

n=l 

in which An i s sti I I given by Eq. (8.14), and P is a constant equal 

to the number of times the smoothing process has been performed. 

(The Lanczos a-factor is the expresssion shown in braces). In 

Section (3.2.3) it wi I I be seen that large values of P al low larger 

apertures to be accommodated, but also cause a deterioration in the 
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qual ity of the approximation of the axial potential function. 

3.2 Discussion of some examples 

The examples presented in the figures have been chosen to illustrate 

the points discussed in Section (3.1). The parameters referred to 

in this section are those that appear in Eq. (8.15). 

3.2.1 Systems with analytic axial potential distributions 

As shown in Fig. (8.1) the present method represents an 

alternative to the methods traditionally used to s.olve the 

inverse interior Dirichlet problem for analytic functions. 

Here fez) = C1 exp(-C2z2) with Cl=lV and C2 = (lm)-2; P=O, 

L=20 and N=60. 

For functions not as smooth as the above one, the equipoten= 

tial diagram does not appear to be the best graphical way to 

illust rate the behaviour of ~(r;z); graphs showing ~(r;z) 

as a f unction of two variables are given for the remaining 

functions. 

3.2.2 Syst~ms with continuous axial potential distributions, but 

discontinuous z-derivatives; role of r 

Fig. (8.2) shows that the Fourier-Bessel approach can provide 

a solution ~(r;z) corresponding to an axial distribution 

~(O;z) which approximates a function f(z) which has discon= 
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2,0 
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0,5 0,1 

1,0 2,Om 
z 

Fig. (8.1) Cross section of equipotential surfaces of ~(r;z) 

corresponding to the axial function f(z) defined 

in Section (3.2.1). Potentials are given in volts. 
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tinuous derivatives: 

f(z) = 0 for 0 < z < C2 (8. 16a) 

(8.16b) 

f(z) = 0 for C3 < z < L (8.16c) 

in which Cl=lV, C2=2m, C3=4m, L=6m, P=3 and N=140. 

It can be seen that ~(r;z) shows an osci I lating behaviour in 
I 

zonal regions, for z-values at which anf/azn is discontinuous 

for any n>O. 

3.2.3 Systems with continuous axial potential distributions but 

discontinuous z-derivatives; role of P 

If it is required to accommodate particle beams of larger 

radius, the function ~(r,z) must show an acceptably smooth 

behaviour in zonal regions where suitably chosen conducting 

electrodes must be positioned. This may be accompl ished by 

assigning a high value to P (or more precisely, by increasing 

the PIN ratio); this is illustrated in Fig. (8.3) for the 

function defined by Eqs. (8.16a) - (8.16c), with N=140 and 

P=5, 10 or 15. On the other hand the qual ity of the axial 

approximation deteriorates with larger P, in the regions in 

which f(z) changes rapidly. 

3.2.4 Systems with continuous axial potential distributions but 

discontinuous z-derivatives; role of L. 

In the design of two-foi I lenses, the period L of the 
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Fig. (8.2) \(!(r;z) corresponding to the axial function f(z) defined 

in Section (3.2.2) 
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Fourier-Bessel expansion of Eq. (8.13) can be assigned any 

of the values of the examples illustrated by Figs . (8.1-8.9) 

depending upon the value of IV~(r;z)1 required at z=O or z=L. 

Then with open (i .e. foi Iless) 

lenses, the fol lowing additional requirement appl ies : fez) 

must be zero for sufficiently large regions 0 < z < (L-Ll)/2 

and (L+L1)/2 < z < L as to ensure that I (a/az)~(r;z)1 shal I 

be so smal I at z=O and z=L that the magnitudes of charge dis= 

tributions induced on the circular regions r < R on the foi Is 

at z=O and z=L are reduced to values low enough that these 

parts of the foi Is may be discarded by introducing apertures 

in the foils. (By "smal I enough" is meant that the electron-

optical properties are not changed significantly by the pre= 

sence or absence of these distributions). InCh. (6) and 

Appendix (2) discussions are found of the circumstances under 

which parts of electrodes can be discarded in solutions of the 

interior and exterior Dirichlet problems, respectively. For 

our present problem, some information of a simi lar nature is 

given i n Fig. (8. 1 0) • For any given function fez), the 

induced charge distributions a(r;O) or a(r;L) at z=O or z=L 

may be obtained by differentiating Eq. (8.13). For instance, 

N 

a ( r; 0 ) = - EO L 
n=l 

in which EO is the permittivity of free space. 

(8.17) 

The values 

of L, Nand P can then be increased unti I it is found that 
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Fig. (8.3) ~(0,2;z) corresponding to the axial function fez) 

defined in Section (3.2.3), for various values of P. 
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lo(r;O)I<E
C 

V r < R, a specified aperture; Ec is a smal I 

constant, the value of which can be estimated by analyzing 

the electron-optical properties of the configuration - see 

also Ch. (7). For the computation of second order focal 

properties, a smaller value must be assigned to Ec than for 

first order properties; in the former case, Ec should pro= 

bably not exceed 10-6 EO times the maximum potential gradient 

found in that region inside the lens which is traversed by 

the electrons. 

One must note that if L is increased without increasing N at 

the same time, the qual ity of approximation of the non-zero 

part of f(z) wi I I deteriorate. This is illustrated in 

Fig. (B.4) for the function defined in Eqs. (B.16a - B.16c). 

Here N=20, P=1 and L=3, 9 or 27 m. To the I ist of factors 

[Section (3.2~ among which a compromise must be found, must 

therefore be added a fifth one, namely the freedom to choose 

a sufficiently large value of L to al low open or semi-open 

systems to be model led. 

Reference to Fig. (B.10) wi I I also show that an increase in 

N must be accompanied by an increase in P, if the charge 

distributions on the foi Is must be minimized. This wi I I 

in turn affect the qual ity of approximation of f(z) in 

regions where f(z) changes rapidly, as discussed "in Section 
" " 

(3.2 . 3) 
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27m 

O,S 

o ~----~~~----~-.J3 
0,5 1,0 1,Sm 

z - L/2 

Fig. (8.4) I\J(O;z) corresponding to the axial function f(z} 

defined in Section (3.2.4) for various values of L. 

C1=lV; C2=L/2-0,5m and C3=L/2+0,Sm. 
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3.2.5 One-foi I lenses 

For one-foi I lenses the condition stipulated above for a need 

be satisfied on one side only. In Ch. (7) it is shown how 

the charge distribution on the remaining foi I may be used to 

obtain certain electron optical properties. In this way, 

for instance, a convergent lens region may be introduced into 

the region z > O. Whereas the field of Fig. (8.6) has a 

uniformly convergent or uniformly divergent action, depending 

on the sign of C1, it is shown in Ch. (7) that the fields of 

some one-foi I lenses may be divergent for fast particles but 

convergent for slow ones. [See also Sections(3.2·.6)-(3.2.8)]. 

Fig. (8.5) shows the behaviour of '(r~z) near the foi I, for a 

function fez) defined by Eqs. (8.16a) - (18.16c) and with 

N=20 'P=2 and L = 6 m. 

3.2.6 Piece-wise I inear functions the "zero spherical aberration 

two-foi I lens". 

Figs. (8.6 - 8.9) show that piece-wise I inear distributions 

are handled with varying degrees of success, depending on the 

nature of the distribution. These systems may be label led 

"Lenses with Separated Longitudinal and Radial Force Fields", 

or LSLRFF, and they differ from normal electron optical systems 

in that a trajectory may be divided into sections where, para= 

xial iy, either i) a z-force exists, resulting in a translation 

and an angular deflection which can be given in closed form if 

Ch. (8) 201 



1,5V 

\jI(r;z) 

1,0 

0,5 

° 1 2 3m 
z 

Fig. (8.5) \jI(r;z) corresponding to the axial function f(z) 

defined in Section (3.2.5). 
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the initial conditions are known; or i i) only a radial force 

exists; the latter force is found to be non-negligible only 

at or near values of z where (a/az)~(O;z) changes, and there= 

fore has the effect of an impulse, which results in an angular 

deflection only. Due to the presence of the radial force 

fields, these lenses differ from those considered by Gianola 

(1950) and also differ from systems consisting of paral lei 

conducting electrodes with coaxial apertures in that the latter 

have wei I separated paraxial force components only if the radii 

of the apertures are quite sma I I compared to the distance 

between the electrodes. The LSLRFF of Fig. (S.6) appears to 

have wei I separated force components for much larger r/L 

ratios. 

I f a beam of fast part i c I es passes through the two-fo i I I ens 

of Fig. (S.6), the radial impulse received by a particle at 

(r; L/2) wi I I be proportional to the charge inside a coaxial 

cyl inder of radius r [see, e.g., Ch. (7)J. As can be seen 

from the slopes of the graphs at z=O in Figs. (S.6) and (S.7), 

an LSLRFF with ~(O;z) a z results in o(r;O) being approximately 

const ant. Using Eq. (8.17) it has been calculated that by a 

suitable choice of Nand P, the absolute relative error 

I [o(r;O) - 0 (o;O~ /0(0;0>1 can be reduced to 10-9 or less, for 

o , r < 0, 2L. The impulse received by fast particles wi I I 

be proportional to r, so that the beam is focussed without 

spherical aberration into a single spot on the axis. This 

is only one demonstration of the close relationship between 
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Fig. (8.6) ~(r;z) corresponding to the axial function f(z) 

defined in Section (3.2.6). 

Ch. (8) 204 



a~;O)and ~(O;z), which has been discussed in more detai I in 

Ch. (7). The related general problem of having to determine 

~(O;z) which is found on the axis in the presence of a given 

charge distribution, ar;O)- the solution of which may be re= 

qu ired in the des i gn of correct i ng two-fo i I lenses - is not 

so simple to solve, and results found so far have not been 

precise enough to warrant discussion at this stage. 

Fig. (8.6) shows ~(r;z) for the function 

fez) Cl z/(O,5L), ° ~ z ~ L/2 

fez) Cl(L-z)/(O,5U, L/2 ~ z (: L 

with C,=lV, L=2 m, N=20 and P=2 

3.2.7 Piece-wise I inear functions 

one-fo i I I ens" 

"zero spherical aberration 

Fig. <8 .7) shows ~(r;z) which approximates a one-foi I lens 

with constant a(r;O) on the foi I at z=O. fez) is defined by 

the I ine passing through the fol lowing points of the diagram 

(Om~ OV), (2m;lV), (4m~ lV) and (6miOV). L=6 m, N=80 and 

P=8 

Since a is constant, and ~~(r < 0,3mjz) is negl igible near 

z=L/2, the field shown for 0 ~ z ~ L/2 approximates a zero 

spherical aberration cathode lens (or, if the polarity is 

reversed, a zero spherical aberration anode lens). The 

lenses wi I I show Sma I I spher i ca I aberrat i on for beams that 
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Fig. (8.7) 1jJ(r;z) corresponding to the axial function fez) 

defined in Section (3.2.7). 

Ch. (8) 206 



are paral lei at z=O. Due to the field-free region found for 

2m < z < 4m, the change in spherical aberration brought about 

when a converging or diverging beam passes through an electric 

field which is parallel to the axis [Gianola (19S0)], is absent 

here, so that the spherical aberration observed should not be 

affected much by the (uniform) velocity at which the beam en= 

ters the lens. This impl ies that the spherical aberration is a 

weak function of the lens strength, and in this respect the field 

of Fig. (8.7) differ from the field of Fig. (8.6) [See App. (4)J 

3.2.8 Piece-wise I inear functions Einzel lenses 

As with Fig. (8.S) the introduction of axial regions where 

f(z)=O, al lows Einzel lenses to be approximated. The d i ffe= 

rence between the electron optical properties of systems I ike 

this one, in which the radial and axial force components are 

wei I separated, with those [e.g. Fig. (8.2), or the S-spl ines 

of Eqs. (6.11)] . in which it is not the case, wi II be reported 

elsewhere. 

fez) of Fig. (8.9) is defined by the : ine passing through the 

following points on the diagram: (Om;OV), (l,SmjOV), (3mj1V), 

(4,SmjOV) and (6mjOV). L=6m, N=80 and P=8. 

3.2.9 Piece-wise I inear functions immersion lenses 

Fig. (8.9) shows one way of obtaining an LSLRFF of immersion 

type: the region 0 < z < L/2 represents an immersion lens if, 
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Fig. (8.8) \)J(r;z) corresponding to the axial function f(z) 

defined in Section (3.2.8) 
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e.g., fez) is defined by the I ine passing through the fol low= 

ing points on the diagram: (Om;OV), (lm;OV), (2m;lV), (5m;lV) 

and (6m;OV). L=12m, N=80, and P=8. 

4. CONCLUSIONS 

The Fourier-Bessel method presented in this paper can be used to ob= 

tain an approximate solution of the inverse interior Dirichlet problem 

defined in Section (1), for axial potential functions which are 

i) analytic, in which case it represents an alternative to the 

integral method of Section (1.1) and the series expansion 

method of Section (1.2). 

i i) continuous but have piece-wise continuous z-derivatives; for 

these functions the alternatives mentioned in i) can not be 

appl ied, and the suggested alternative of calculating an 

approximate charge distribution o(r > OJz) that gives rise 

to the given potential distribution, does not appear to have 

been implemented to date. The latter method would involve 

the inversion of large matrices if a precise solution is 

required, whereas the Fourier-Bessel method requires no 

matrix inversion. 

iii) given in the form of a set of experimentally determined axial 

potentials. 
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iv) piece-wise continuous; in this case, the convergence of the 

series ~(O;z) is so slow that the solution ~(r > Ojz) is of 

.1 itt le pract ical use. 

In using the Fourier-Bessel solution of Eq. (8. 15), the ro les played 

by some parameters must be taken into account: 

i) if N, the number of terms included in the series, is large, 

a good axial approx imation wi I I be obtained, but ~(r > O;z) 

may osc i I late violently w.r. t . z; 

i i) a large value of P which is a measure of smoothing introduced, 

wi I I result in a reduction of the osci I lations mentioned in 

i); it may also improve the qual ity of approximation in axial 

regions where the function is fairly constant, but may result 

in a deterioration of the approximation where the axial func= 

tion varies rapidly; 

iii) I arger va I ues of L, the ha If-per i od of the Fou r i er-Besse I 

series, may be required to al low open (i.e. foi I less) lenses 

to be model led, but wi I I also result in a slower convergence 

of the series, again causing large grad ients in zonal regions. 

From the infinity of solutions ~(r;z) which approximate the given 

axial function f(z), a solution that can be used in practical 

electron optical design can be selected by assigning particular 
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values to N,P and L. 

Due to the absence of matrix inversion, computer memory requ i rements 

are modest enough that desk-top computers can be used to obtain 

solutions, and the programming is found to be straightforward, 

volving a few tens of statements in FORTRAN or BASIC. 
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C HAP T E R 9 

CONCLUSIONS 

1. INTRODUCTION 

In Ch. (1) it was stated that the objective of the study is the 

investigation of the possibi I ity of using orthogonal functions in 

electrostatic electron optics, and that the efforts would be concentra= 

ted on the reduction of the spherical aberration of systems of rota= 

tional symmetry, rather than the minimization of the resultant 

effect of al I the aberrations of a particular device. 

Various approaches were fol lowed: the properties of individual 

fields of the form IOCar) sin Caz) were investigated analytically 

and by computer ray tracing, and syntheses attempted of two or four 

fields. Physical devices creating the above fields would be of 

the two-foi I type. 

To study one-foi I or open lenses, Fourier-Bessel series had to be 

found to represent such configurations. Two possibi I ities were 

investigated, namely the determination of the focal properties of 

fields associated with functions fez) describing the potential 

i) on a set of equidiameter coaxial ring electrodes, or i i) on the 

axis. The solution to case i) was appl ied in a study of the 

expected behaviour patterns of simple one-foi I lenses, and the 

solution to case i i) was used to study some focal properties asso= 

ciated with piece-wise I inear axial potential distributions. Both 

in cases i) and i i) the solution can be cast in a form which wi I I 
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al Iowan optimization by steepest descent to be carried out. 

In Sections (2) to (7) some results obtained by the various 

approaches just mentioned, are investigated in some more detai I. 

2. OPTIMIZATION METHODS 

The vast majority of experimental and computational studies carried 

out to optimize electron optical elements i .r.o. various criteria, 

have been of a trial and error type; this also applies to most of 

the analytical studies in which the paraxial focal properties asso= 

ciated with analytical axial potential functions are calculated. 

In Section (5) of Ch. (1) two important approaches are mentioned 

which fal I in a different category, being based on mathematically 

founded optimization theory. In these approaches (by Moses and by 

Szi lagyi) the paraxial ray equation plays an essential role, and 

at this stage it seems as if these methods are restricted to para= 

xial optimization. 

In Section (6) of Ch. (1) it is suggested that the optimum field 

(i .e. the unknown field which is to be found) be represented by a 

finite Fourier-Bessel series with undetermined coefficients. The 

latter can then be found by carrying out a steepest descent proce= 

dure which involves computer ray tracing. If the Fourier-Bessel 

functions are elements of a set which is complete on a suitably 

chosen interval, the finite series should approximate the optimum 

solution. And by including zonal rays in the ray tracing, it is 
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ensured that the optimization appl iesto both paraxial and zona l 

regions. 

Information obtained in the investigation of the solutions to the 

boundary value problems of Chs. (4)-(6) and (8) can be expected to 

be of use when the suggested optimization procedure is put into 

practice. A brief survey of results reported in Chs. (2) - (8) 

wi I I now be given. 

3. PROPERTIES OF INDIVIDUAL FIELDS 

Since the KO and YO Bessel functions are singular on the axis, and 

the fields JO(ar) exp(-az) are not simple to produce by means of 

physical electrodes, the only fields studied individually were of 

the type IO(ar) sin(az). (Some focal properties of fields with 

JO, KO and Legendre functions as factors have also been investigated, 

but in an effort to reduce the length of this dissertation, these 

results wi I I be reported elsewhere). 

The ray tracings showed that the fields IO(ar) sin (az) differed 

from those of open lenses in a number of respects: they tend to be 

more highly converging, they can be divergent, and they can exhibit 

negative spherical aberration, Cs ' (It was also seen that, apart 

from uniformly convergent or uniformly divergent fields, some fields 

may be found which are divergent for fast particles but convergent 

for slow particles; the sign of Cs of the latter group of fields 

may also be different for slow and for fast particles.) 
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It was also found that Cs was dependent on a, which suggested that 

two fields of different a values and polarities may be superposed to 

obtain a reduction i n Cs for the resultant field. Attempts at 

obtaining such syntheses were described in Chs. (3) and (4). 

4. SYNTHESES OF TWO FIELDS 

In Ch. (3) the behaviour of weak fields of the type IO(ar) sin (az) 

was studied analytically, and it was possible to obtain closed form 

expressions for various focal properties of individual fields. 

These expressions were val id for zonal as wei I as paraxial regions, 

in contrast to the majority of analytical studies reported in 

I iterature, where the use of the paraxial ray equation restricted 

the analysis to paraxial focal properties. 

As a control, ray tracings through weak fields were carried out by 

computer , and the results corresponded wei I with the theoretical 

predictions. 

Using the results obtained for individual fields, syntheses of two 

fields were obtained analytically, which had greatly reduced 

values of Cs for paraxial rays. 

It is possible to formulate a Fourier technique to synthesize a 

larger number of fields so as to extend the correction to rays at 

larger radial distances. One such procedure involves the 

inversion of a matrix which is not very wei I behaved, so that only 
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five or six fields can normally be accommodated, unless the com= 

puter has a word length in excess of the usual extended precision 

(approximately fifteen significant figures). Another procedure 

involves the orthogonal ization of the 11 Bessel functions, but in 

doing this the same problem of computer word length puts a limit 

on the number of fields handled. A description of these proce= 

dures and some results wi I I be publ ished elsewhere. 

5. STRONG TWO-FOIL LENSES 

The approximations used in Ch. (3) do not apply to strong lenses; 

consequently the focal properties of syntheses represent~ng strong 

lenses in Ch. (4) were obtained by computer ray tracings. 

Two methods were outl ined of obtaining syntheses of reduced Cs 

values. The first method is based on an understanding of the 

properties of individual fields, and its use resulted in a reduction 

of the circ le of confusion by factors as large as 1000 for non-

paraxial cases. Only four fields were used in the syntheses which 

could be chosen as starting points for the steepest descent method 

also described in the chapter. Any number of fields can be 

accommodated by the latter method [see Section (6) of Ch. (1 )J, 
and results obtained with this method wi I I be reported elsewhere. 

6. FOURIER-BESSEL SERIES REPRESENTATIONS OF ONE-FOIL AND OPEN SYSTEMS 

In Chs. (5) and (6) Fourier-Bessel series solutions are given for 
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the model I ing of one-foi I and open systems. In Ch. (5) the lens 

region is divided into three parts, each of which is represented by 

a different series (involving JO and 10 functions), whereas the 

single solution (involving 10 functions only) given in Ch. (6) 

describes the complete lens region. 

The latter solution is more easi Iy programmed, and the convergence 

of the series is acceptable at al I points. The solutions of Chs. 

(5) and (6) can also be combined - using the solution of Ch. (5) to 

model the outer lens regions, for which the convergence of the JO­

series is superior. 

If the solution of Ch. (6) is used on a routine basis to analyse 

electron optical systems, it would be important to improve the con= 

vergence of the series at the cost of some additional programming. 

This can be done by investigating the role played by the z-period 

(2L) of the first term in the series. In Ch. (6) it was shown 

that a large value of L increased the accuracy of the solution, but 

at the same time slowed down the convergence of the series. In 

Appendix (2) it is shown how associated Fourier-Bessel series may 

be derived which, if added to the original solution, al low smaller 

values of L to be tolerated. The method is based on the electro= 

static theory of images, and is described for an exterior Dirichlet 

boundary value problem (in view of the fact that the problem of 

convergence is much more serious in exterior than in interior 

problems). The computer time needed to evaluate the potential or 

electric intensity at a point may be reduced by one or more orders 
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of magnitude, depending on the precision required. 

[It may also be mentioned that the solution of Appendix (2) can be 

uti I ized in analytical and ray tracing studies of configurations 

with axial electrodes. It can be shown - by taking into account 

the properties of the Ko Bessel functions - that such systems can 

show divergent or convergent behaviour, and that foi I less convergent 

systems can show negative spherical aberration. Combining the 

solution of Ch. (6) and Appendix (2) may al low systems to be 

obtained with reduced Cs in acyl indrical region between two sets 

of 60axial ring electrodes; see also Sections (3.3b) a~d (3.3c) 

of Ch. (1). It is intended to make a study of the suggested method 

in the near future.] 

In conclusion it may be mentioned that the solution presented in 

Ch. (6) may be adapted to two further situations: i) Systems with 

gaps between juxtaposed coaxial tubular electrodes may be accommo= 

dated by representing the potential in the gap by a separate finite 

Fourier series, and the coefficients of the latter may be calculated 

by requiring that Laplace's equation is satisfied in the gap. 

i i) Systems with space charge may be described by representing 

the volume charge density in the lens region (excluding the elec= 

trodes) by a separate Fourier-Bessel series. 

Both these cases have been excluded from the present study, and wi I I 

be investigated in the near future. 
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7. A STUDY OF ONE-FOIL LENSES 

The solution of Ch. (6) is in a form which al lows the charge dis= 

tribution a(r) on the foi I of one-foi I lenses to be calculated. 

In Ch. (7) a discussion is found on the behaviour of weak one-foi I 

lenses, in wh i ch the signs of the foca I I ength and of Cs are re= 

lated to the nature of 0'(1-). In the graphs presented, the close 

relationship between a(r) and the axial potential distribution is 

also illustrated. By means of the graphs a good insight may be 

gained into the electron optical behaviour of a wide variety of 

cathode lenses and immersion objectives and, in particular, the 

role played by Wehnelt electrodes. 

It is also shown that weak one-foi I lenses can be designed which 

have a negl igible focussing effect on paraxial rays, but (e.g.) 

a large divergent effect on zonal rays. Such a lens can be used 

to reduce the spherical aberration of an existing system, without 

changing its focal length. By computer ray tracing the focal 

properties of some lenses of this type were determined and the 

results presented graphically. 

This study was undertaken i) to determine the uti I ity of the 

solution of Ch. (6), i i) to demonstrate the relationships between 

a(r) and the focal properties of the lens in its weak form, and also 

between a(r) and the axial potential distribution, iii) to relate 

the axial potential behaviour to the zonal "Wehnelt" voltages, and 

show how the latter determine the properties of cathode lenses and 
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immersion objectives; and iv) to investigate some properties of 

zero-convergence correcting lenses. It is hoped to carry out a 

more complete study of the latter group of lenses at a later stage. 

8. CONFIGURATIONS ASSOCIATED WITH AXIAL POTENTIAL DISTRIBUTIONS -

THE INVERSE INTERIOR DIRICHLET PROBLEM 

Analytical axial potential functions have played an important role 

in the study of the paraxial focal properties of electron optical 

systems. Further progress has, however, been hampered by two 

aspects: i) t he fact that the paraxial ray equation was used, 

excluded the i nvestigation of zonal focal properties, and i i) the 

axial potential functions in common use did not lend themselves to 

simple optimization procedures. 

Sect i on (5) of Ch. (1). ] 

[Two exceptions were discussed in 

In Section (6) of Ch. (1) it was suggested that open and closed 

electron optical systems can be optimized i .r .o. both zonal and 

paraxial focal properties, if the solution to the inverse interior 

Dirichlet problem is expressed in terms of a suitable Fourier-Bessel 

series. As a first step towards real izing the goal, various aspects 

of such solutions were investigated in Ch. (8). 

It was shown how infinitely many solutions ~(r;z) can be found which 

approximate a given axial function f(z). Restrictions may also be 

imposed so as to select solutions that can be approximated by physi= 

cal electrodes in a practical way. 
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Whereas existing solutions to the inverse interior Dirichlet boundary 

value problem were limited to analytic axial functions, the solution 

given in Ch. (8) was shown to apply to a broader class of axial 

functions, namely continuous functions with piece-wise continuous 

z-derivatives. Prellminary results indicate that experimentally 

measured axial distributions can also be handled, but a complete 

report wi I I be publ ished elsewhere. 

As an illustration of the electron optical use of the solution of 

Ch. (8), computer ray tracings were carried out for a one-foi I lens 

very simi lar to that of Section (3.2.7) of Ch. (8). The resu Its, 

presented in Appendix (4),show that for strong lenses of this type, 

the value of Cs depends strongly upon, i .a., the focal length of 

the lens, and the Lanczos smoothing factor introduced in the solu= 

tion of the inverse problem. It is found that - in contrast to 

open lenses - the longitudinal spherical aberration ~J does not 

increase significantly if the focal length is increased. There= 

fore the circle of confusion ~r due to spherical aberration is 

approximately proportional to the inverse of the focal length, 

whereas open lenses usually reach low values of ~r at short focal 

lengths. 

In Ch. (8) solutions were investigated for a variety of axial func= 

tions, and no indications were found that the series representation 

of Section (6.3) of Ch. (1) might be unsuitable for use in the 

suggested steepest descent method. Implementation of this method 

wi I I require a comprehensive study of various factors, which wi I I 

have to be reported elsewhere. 
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9. CONCLUDING REMARKS 

It has been attempted to show that orthogonal functions can be used 

profitably in electron optical design. A few of the advantages are 

i) Potentials and electric intensities can be calculated to a 

high degree of precision, and an estimate of the precision 

can easi Iy be made. 

i i) Ray tracing is fac i I itated by the fact that the fields are 

known at al I points; therefore no i nterpolation is required. 

iii) By means of the solutions presented, the precise calculation 

of charge distributicnson electrodes is a straightforward 

procedure; this is useful in understanding the behaviour 

of, i.a., weak foil lenses. 

iv) Fourier techniques can be appl ied to find approximate 

solutions to the inverse interior Dirichlet boundary value 

problem, al lowing a broader c lass of axial potential 

functions to be handled. 

v) If care is exercised in the choice of functions, it is 

possible to carry out a steepest descent procedure to opti= 

mize a system i .r.o. both paraxial and zonal focal properties. 

vi) The optimization procedure of Section (6.3.i) of Ch. (1) 
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may be carr i ed out exper i menta I I y, by app I y i ng th.e spec if i ed 

potentials to a set of coaxial ring electrodes. Th i s may, 

for instance, be practicable in attempting to reduce the image 

curvature in electrostatic image intensifiers. If the pre= 

cision of the experimental procedure becomes inadequate , and 

the optimization must be continued by computer, the experi= 

mental result provides a suitable starting point for the com= 

puter simulation. 

Many aspects of this study have been dealt with only very 

briefly, and some need further detai led investigation; there 

is also I ittle doubt that some methods may be refined consi= 

derably in order to increase the computational efficiency. 

At the same time it is hoped that it has been shown that 

existing methods of electron optical design can be augmented 

by methods, particular to the use of orthogonal functions, 

which are versati Ie, simple to understand and easy to imple= 

ment. 
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SERIES 

OF 

A P PEN D I X 

EXPANSIONS 

PRODUCTS OF 

AND TABLES OF INTEGRALS 

SOME BESSEL FUNCTIONS 

In the Fourier analysis performed when studying electrostatic electron-' 

optical systems of rotational symmetry, eva luation of some integrals of 

products of both normal and modified Bessel functions of the first kind 

and of orders nought and one is required. In this appendix the com= 

putation of the integrals are discussed and tables of some integrals 

are given. 
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1. I NTRODUCT I ON 

In Chs. (2-9) the electrostatic fields of some electron-optical 

systems with rotational symmetry were described in terms of various 

Bessel functions and several papers have appeared recently [Read 

(1969a, 1969b and 1970), Read et. a I. (1970), Werner (1971), 

Wittels et. al. (1976)J employing Fourier-analytical techniques 

involving Bessel functions. These procedures normally require 

the values of the integrals of the products of various Bessel 

functions, some of which are not found in existing tables. 

The evaluation of the integrals by numerical integration is time 

consuming, especially i f precise values are required (8 signifi= 

cant figures are normally adequate). Alternatively the Bessel 

functions can be series expanded and the resulting polynomials 

integrated analytically. This results in series expansions for 

the integrals themselves. If such a series is not alternating, 

its evaluation presents no problems, but the series of integrals 

involving the unmodified Bessel functions are found to alternate, 

and these would normally require excessive computer word lengths 

in their evaluation. 

2. SERIES EXPANSIONS FOR THE BESSEL PRODUCT INTEGRALS 

Asan alternative to the evaluation of the integrals, defined 

later in this paragraph, by straight numerical integration, series 

expansions for the integrals can be derived which, in principle, 

al low the evaluation of the integrals with a minimal amount of 

computing. 
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2.1 

In the integrals involving JO or J 1, however, the series expansions 

are alternating series, which can osci I late excessively before 

converging. (The largest term may be 1080 larger than the value 

of the series itself.) This cal Is for (i) a computer word length 

much in excess of the usual extended precision found on most digi= 

tal computers, and (i i) the avai labi I ity of the zero's of the 

8essel functions to a very large number of significant figures. 

[Abramowitz (1970), for instance, gives the zero's of JO to 12 

significant figures only.] 

The series expansions of the integrals are derived by making use 

of the fol lowing expansions for the 8essel functions: 

00 

{-0,25 z2)k 
(0,5 z)g L Jg{z) 

k=O k! (g + k)! 

00 

(0,5 z)2k 

I Ig(z) = {0,5 z)g 

k=O k! (g + k)! 

The integral Opq of Eq.( 5 .15) of Ch. (5 ) 

Opq = f: J 1 (ZOpx) J 1 (ZOqx) dx 

ZOp ZOq 

f~ rt Cj x 21 [ 
00 

x 2; J dx I 4 d· I 
i = 1 

with 

( - 1 ) i + 1 ( Zo p / 2 ) 2 ( i -1 ) 
co I 

i! (i -1) ! 
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2.2 

( -1 ) i + 1 (ZOq/2) 2 ( i -1 ) 

i ! (i -1) ! 

Therefore 

Qpq 

with 

K· I 

ZOp ZOq 
4 

i 

I 
j=1 

00 

L 2i + 1 
i = 1 

dx 

Table 1 I ists the values of Qpq V p,q ~ 20 (noting that Qpq Qqp). 

The integra I Pi j 
1 

= f 11 (ilr"Ax/ UJ 1(ZOj x)d x 
o . 

In the process of performing the Fourier analysis of Eq.(5.20) of 

Par. (4.1.2) of Ch. (5), the integrals Pij are required V j < j1 

and V n < nl, where j1 and nl are constants determined by the 

nature of the problem to be solved. For a :1typical ll configuration 

and a relative precision of 1:105 required for the solution of the 

boundary value problem, nl ; 20 and jl < 10. 

11 (inAx/U J 1 (ZOjx) dx 

00 

L 
k= 1 

App. (1) 
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With 

Therefore 

p .. 
IJ 

with 

( PTA/U 2h- 1 

h! (h-1) !4h- 1 

(-1 )k+1 ZO/k-1 

k! (k-1)! 4k- 1 

f: 
00 

I I ~ 

s=l 

00 

I Ks 
I 
~ 2s + 

s=l 

K x 2s s 

i 

cp ds +l-p 

dx 

The constant c = AIL depends upon the physical dimensions of the 

configuration under investigation, and only the values c = 0,2; 

0,5 and 1,0 are represented in Table 2. 

2.3 The integral Mhj 

To evaluate the integrals of Eq.(~23) of Ch. (5) we change to a 

variable 

p riA 

I: rlo(h~r/LlJO(AOJr) dr A2 ( pIO(hpA/LlJO(ZOJP) dp 

= A2 Mhj 
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J: Mh . P 
J 

00 

L 
s=l 

with 

and 

00 

L CkP2k 
k=O 

Ks 
2s 

(hlfA/2U 2k-2 

( ( k-l ) ! ) 2 

(-1 )m+l (ZOj)2m-2 

( (m-l ) ! ) 2 

s 

L 
p=l 

00 

~ d (_p2)m m dP 
m=O 

Due to the appearance of the constant c = AIL in the integrals 

Mhj' it can be seen that the integrals are specific to particular 

configurations; consequently the integrals Mhj are given for the 

values c = 0,2; 0,5 and 1,0 in Table 3. 

2.4 The integrals Spq = J1 11 (pcrrp) 11 (qc rrp)dp 

° 
If it is attempted to el iminate the spherical aberration 

of al I orders in weak electrostatic foi I lenses, the integrals Spq 

are required in the course of a Fourier analysis. In cases of 

practical interest the values of p and q would not exceed 10. 
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After substi t ution and simpl ification, the fol lowing series is 

obtained: 

00 

i = 1 

i 

L 
j=l 

(pcn!2)2h-1 
h! (h-1) ! 

(gcn/2)2k-1 
k! (k-1) ! 

Investigation of the series expansion of 1, shows that the series 

is not alternating, so that the evaluation of the series for Spq 

given above can be carried out without requiring an excessive 

computer wo rd length. Consequently no tables for Spq are given. 

3. PRECISION 

The integrals Q, P and M were computed on an IBM System 3 computer, 

using extended precision (i.e. 16 significant figures). The 

Simpson integration I imited the precision of the integrals to 

between 7 and 10 significant figures, depending upon the nature 

of the integrand. The evaluation of the Bessel function was 

carried out to 10 significant figures by means of the series 

expansions of §2, except where the nature of the series cal Is for 

a computer word length in excess of 16 decimal digits; in such 
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cases polynomial approximations [Abramowitz (1970~ were used for 

which the absolute ~rrors do not exceed 10-7. Therefore some or 

al I of the underlined digits in the tables mayor may not be sig= 

nificant. 
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Table 1: The integral Qpq(P} 

p q Q 

1 1 0,203956288 
1 2 ·0,050183900 
1 3 0,014447945 
1 4 0,009707T5i 
1 5 0,004947832 
1 6 0,004012868 
1 7 0,002481'78'0' 
1 8 0,002179629 
1 9 0,001489648 
1 10 0,001364649 
1 11 0,000993071 
1 1'2 0,000933999 
1 13 0,000709335 
1 14 0,000678963 
1 15 0,000532031 
1 16 0,000515647 
1 17 0,000413857 
1 18 0,000404800 
1 19 0,000331139 
1 20 0,000326~ 

p q Q 

2 2 0,136483329 
2 3 0,0481144'6b 
2 4 0,020738360'" 
2 5 0,013527ID" . 
2 6 0,008515N 
2 7 0,00645404'5 
2 8 0,004639643 
2 9 0,0037843T4 
2 10 0,002920498 
2 1 1 0,002488026 
2 12 0,0020075b4 
2 13 0,001760525 
2 14 0,001 464970 
2 15 0,001311m-
2 16 0,001116221 
2 17 0,001014iT9 
2 18 0,0008788'f5 
2 19 0,000808465 
2 20 0,000709880 

----_._ ._-
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Table 1: The integral Qpq(p) (cent.) 

p q Q. 

3 3 0,103560275-
3 4 0,043378537 
3 5 0,021861214 
3 6 0,014890175 
3 7 0,010118745 
3 8 0,007779021 
3 9 0,005878313 
3 10 0,004808256 
3 1 1 0,003850724 
3 12 0,003273215 
3 ·13 0,002720625 
3 14 0,002374120 
3 15 0,002025386 
3 16 0,001801528 
3 17 0,001566908 
3 18 0,001414Tf6 
3 19 0,001248498 
3 20 0,001139712 

p q Q 

4 4 0,084344545 
4 5 0,039077644 
4 6 0,021551508 
4 7 0,015234571 
4 8 0,010841416 
4 9 0,008490597 
4 10 

: 
0,006612002 

4 11 0,005464237 
4 12 0,004472582 , 

I 4 13 0,003824000 
4 14 0,'003232967 
4 15 0,002830252 
4 16 0,002448319 
4 17 0,002181075 
4 18 0,001919468 
4 19 0,001733077 
4 20 0,001545778 
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Table 1: The integral Qpq(p) (cont.) 

-- ,----
p q Q 

5 5 0,071639130 
5 6 0,035495077 
5 7 0,020789606 
5 8 0,015132208 
5 9 0,011122050 
5 10 0,008857123 
5 11 0,007046870 
5 12 0,005885501 
5 13 0,004893437 
5 14 0,004213413 
5 15 0,003605776 
5 ·16 0,003171976 
5 17 0,002771097 
5 18 0,002477003 
5 19 0,002197928 
5 20 0,001989231 

--- ----- -- -- ----- --

p q Q 

6 6 0,062551320 
6 7 0,032530476 
6 8 0,019901680 
6 9 

I 

0,014823749 
6 10 0,011165206 
6 11 0,009019523 
6 12 0,007295814 

I 6 13 0,006152423 
6 14 0,005178338 ! 

6 15 0,004489354 
6 16 0,003878763 
6 17 0,003429340 
6 18 0,003019206 
6 19 0,002709043 
6 20 0,002419375 
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Table 1: The integral Opq(P) (cont.) 

p q 0 
-- - --- - - - -_._---

7 7 0,055693849 
7 8 

I 
0,030057012 

I 
7 9 0,019009097 
7 10 0,014426091 , 

0,011076787 7 11 I 

7 12 0,009057551 I 
I 

7 13 0,007424997 I 
7 14 0,006315098 , 

7 I 15 0,005368678 i 
7 16 0,004683800 I 

I 

7 17 0,004078717 I 

7 .18 0,003623486 i 
! 

7 19 0,003210620 i 
7 20 0,002891627 

I 
! 
I 
I 

~ -

p q 0 

8 I 8 0,050315542 
8 ' 9 0,027956938 
8 ! 10 0,018157346 
8 I 11 0,013993389 
8 i 12 0,010915484 
8 I 13 0,009017979 
8 I 14 0,007475ill 

I 

8 I 15 0,006405672 
8 I 16 0,005491813 
8 ! 17 I 0,004818529 
8 18 I 0,004224250 
8 19 I 0,003769454 I 

8 20 
I 

0,003358329 

i I 
I 
I 

1 
1 

I 

I 

I 

I 
I 

i 
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Table 1: The integral Opq(p) (cent.) 

p q 0 

11 11 0,039359744 
11 12 0,023248178 
11 13 0,015950032 
11 14 0,012712329 
11 15 0,010254343 
11 16 0,008676ffi 
11 17 0;007369930 
11 18 0,006429691 
11 19 0,005618150 
11 20 0,004999066 

12 12 0,036777320 
12 13 0,022045976 
12 14 

I 
0,015326463 

12 15 0,012317705 
12 16 0,010018949 
12 17 I 0,008528976 
12 18 I 0,007290037 I 

12 19 I 0,006390324 
12 20 I 0,005611288 

-

p q 0 

13 13 0,034542153 
13 14 0,020975640 
13 15 0,0 14751754 
13 16 0,0 11943425 

I 
13 17 0,009785927 
13 18 0,008376232 
13 19 0,007199126 
13 20 0,006337814 

14 14 0,032586587 
14 15 0,020016123 

I 14 16 0,014221142 
I 14 17 0,011589502 
! 14 18 0,009557965 

I 14 19 0,008221404 
I 14 20 0, 007 1 0 1 1 0 1 
I 
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Tabl e 1: The integral Opq(p) (cont.) 

p q 0 

9 9 0,045971237 
9 10 0,026164417 
9 1 1 0,017362326 I 
9 12 0,013555810 
9 1.3 0,010711696 
9 14 . 0,008930554 
9 15 0,007472190 
9 16 0,006446T9T 
9 17 0,005566409 
9 18 0,004909318 
9 19 0, 004328671 
9 20 0,003878568 

- -

p q 0 

I 
10 10 0,042381461 
10 11 . 0,024609425 

I 
10 12 0,016627261 
10 13 0,013126174 

I 10 14 0,010487672 
10 15 0,008812598 

I 10 16 0,007433285 
10 17 0,006450731 

i 10 : 18 0,005605430 
; 

0,004966784 i 10 19 
I 10 20 0,004401607 
! 
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Table 1: 

Pf ' P I q 

15 15 
I 15 16 

I 
15 17 
15 18 

I 
15 19 
15 20 

~ ~16 16 
i 16

1 

17 I 
16 18 
16

1 

19 
16 20 

The integral Opq(p) (cont. ) 

0 

0,030859727 
0,019151351 
0 , 013730178 
0,011255288 
0,009336648 
0,008066795 

------.-- - -- ----------: 
0,029322490 
0,01 8364826 
0,013274825 
0,010939861 
0,009122849 

I p q 1---0
-----t 

I 17 ; 17 i 0,027944350 

hW
7 li18 0,017648568 

17 - 19 0,012851476 
17 , 20 0,0!0642986 

18 I 18 ' I 0,026701098 
I 18 . 19 I 0,016992491 
I 18 I 20 I 0,012456940 
~ -, '------ -----~-.-----.---==-, ---1 

~
9 19 : 0, 025573275 

19 I ~-'-l 0,016388~ 
20 20 i 0,0245459~ 

I 
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Table 2: The integral Pjn<P) 

j n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
.11 
12 
13 
14 
15 
16 
17 
18 
19 

1 20 

----1---l--

c = 0,2 

0,08202509700 ---+---0-, ; -5-"3 ;;~-:7-2-9 ----r --0-, 7: 1 :2:6'-:-2-2------1 

0,00633312625 I 0,00760281460 i -0,0713858737 
0,00548231315 0,01619418917 i 0,0624865659 
0,00165619138 0,00289335652 . -0,0093122187 
0,00174213404 0,00502173753 0,0183835473 
0,00075415889 0,00145710677 -0,0024122383 
0,00083708628 0,00237343687 0,0082909830 
0,00043174972 0,00087691805 -0,0007890852 
0,00048831619 0,00136840966 0,0046067584 
0,00027914825 0,00058365073 -0,0002731707 
0,00031886766 0,00088568075 0,0028943617 
0, 000 19563~28 0,000417 48945 -0, 0000 7 02"i26 
0,00022417788 0,00061833310 0,0019717583 
0,00014478739 0,00031365063 0,0000155306 
0,00016602493 0,00045532660 0,0014222080 
0,00011154052 0,00024445916 0,0000530227 
0,00012781026 0,00034885258 0,0010704169 
0,000088580870,00019594578 0,0000684065 
0,00010137096 0,00027556077 0,0008324737 I 
0,00007207985 0,00016067739 0,0000736295 

- - _i -- _J 
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Table 2: The integral Pjn(P) (cont.) 

- .-j -l -" ~ __ ~L _____ ~~~~ ___ [ __ ___ ~_ : o, ~ _____ . ___ _ . __ 

2 1 0,1775584802 0,7518226467 
2 2 0,0090470319 -0,0713859029 
2 3 0,0120409000 0 ; 0624865891 
2 4 0,0027723830 -0,0093122386 
2 5 0,0037716567 0,0183835649 
2 6 0,0013233916 -0,00241 22543 
2 7 0,001795T5i2 0, 0082909976 
2 8 0,0007761750 -0,0007890989 
2 9 0,0010402340 0 , 0046067711 
2 10 0,0005090513 -0,000273182i 
2 11 0,0006758662 0,0028943731 
2 12 0,0003604093 -0,0000702234-
2 13 0,0004732927 0,0019717686 
2 14 0,0002687516 0,0000155208 
2 15 0,0003493942 0,0014222174 
2 16 0,0002082609 0,0000530137 
2 17 0, 0002682532 0,0010704255 
2 18 0,000156T7i4 0,0000683982 
2 19 0,00021 22758 0,0008324816 
2 20 0,0001357483 0,0000736218 

'---1 -. 1 
c = 1 ° 

~ ~ "-". - . .- ~ .--- .- - ---

7,496749573 
-2,596078324 I 

1 ,249272951 
-0,622583776 

0,394901694 
-0,236814184 

0,175471453 
- 0 ,1 15968386 

0,094575715 
-0,066276132 
0,057525471 

-0,041786251 
0,037986446 

-0,028255085 
0,026612429 

-0,020114908 I 

0,019494890 __ J -0,01 4902212 
0,014785022 

-0,011389104 
--- ------- -~--- -
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Table 2: The integral Pjn(p) (cont.) 

j n 
---

3 1 
3 2 
3 3 
3 4 
3 5 
3 6 
3 7 
3 8 
3 9 
3 10 
3 1 1 
3 12 
3 13 
3 14 
3 15 
3 16 
3 17 
:-5 18 
3 19 
3 20 

c = 0,2 

0,3031901998 
0,0032249885 
0,0213104056 
0,0025333924 
0,0065338038 
0,0014233032 
0,003062506 ,-
0,0008980598 
0,0017549236 
0,0006132470 
0,0011304975 
0,0004463226 
0,0007862734 
0,0003394724 
0,0005771901 
0,0002670710 
0,0004410569 
0,0002156405 
0,0003476048 
0,0001778893 

c = 0,5 

2,300676827 
0,536295726 
0,270293444 
0,105095215 
0,079982323 
0,037189449 
0,035152508 
0,017470488 
0,018992718 
0,009699560 
0,011627ill 
0,005966583 
0,007737449 
0,00394763i 
0,005464299 
0,002754424 
0,004034752 

L
- 0,002002756 

0,003083603 
0,00150~ 

c 1, ° 
95,26447399 

-46,24433154 
25,62103442 

-15,18197534 
9,68692356 

-6,49153596 
4,59621595 

- 3 ,35031418 
2,54732390 

-1,9681253'-
1,56979357 

-1,26272541 
1,04316250 

-0,86420603 
0,73293855 

-0,62087390 
0, 537456f3" 

1 

I 
I 
I 
I 

-0,46330589 I 

l 0,40758594 J 
-0,35625896 

---, -------- ---== -----
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Table 2: The integral Pjn(P) (cant.) 

~ j n c ~ 0,2 

I 4 . 1 0,4824956303 
I 4 I 2 -0,0190558051 
. 4 3 0,0362603946 

4 4 -0,0005471306 
4 5 0,0108619802 
4 6 0,0005236555 
4 7 ' 0,0049943371 
4 8 0,0005432556 
4 9 0,0028199853 
4 10 0,0004475430 
4 11 0,0017954810 
4 i2 0,0003626770 
4 13 0,0012369221 
4 14 0,0002956157 
4 15 0,0009007799 
4 16 0,0002442515 
4 17 0,0006836498 
4 18 0,0002045351 
4 19 0,0005356138 
4 20 0,0001736446 

c 0,5 

7,496751669 
-2,596079697 

1,249274045 
-0,622584712 

0,394902523 
-0,236814935 
0, 1 754 721 44 

-0,115969029 
0,094576317 

-0,066276699 
0,057526009 

-0,041786762 
0,037986933 

-0,028255550 
0,026612874 

-0,020115335 
0,019495301 

-0,014902607 
0,014785402 

-0,011389470 

c 1,0 

1420,597962 
-785,643097 

491,299712 
-321,178995 

218,251580 
-153,726843 

111,974452 
-83,897246 

64,584731 
-50,770430 

40,69-7476 
-33,150992 

27,410822 
-22,941457 ' 

19,426748 
--16,605190 

14,329007 
-12,455740 

10,911466 
-9,614713 
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Table 2 The integral Pjn(p) (cont.) 

m-----
J I n 

5 I 1 

c = 0,2 

0,7518226467 
-0,0713859029 

0,0624865891 
-0,0093122386 

0,0183835649 
-0,0024122543 

0,0082909976 
-0,0007890989 

0,004606TITf 
-0,0002731827 

0,0028943731 

5 2 
5 I 3 
5 4 
5 5 
5 6 
5 7 
5 8 
5 9 
5 10 
5 11 
5 12 
5 13 
5 14 
5 15 
5 16 
5 17 
5 18 
5 19 
5 20 

-0,0000702234 
0,0019717686 
0,0000155208 
0,0014222174 
0,0000530137 
0,0010704255 
0,0000683982 
0,0008324816 
0,0000736218 

c = 0,5 

26,04764488 
11, 15784741 
5,72308062 

-3,16932773 
1,97631675 

-1,27840414 
0,90427288 

-0,64280169 
0,49288989 

-0,37263576 
0,30114028 

-0,23719553 
0,19915020 

-0,16150962 
0,13952487 

-0,11562006 
0,10213358 

-0,08605251 
0,07737019 

-0,06603415 

c 1,0 

23330,21030 
-13723,00890 

9253,3300'­
-6482,78438 

4656,58194 
-3423,71187 

2575,07715 
-1977,75215 

1550,62085 
-1236,96261 

1002,60334 
-824,28415 
686,34334 

-577,99373 
491,70438 

-422,12068 
365; 39593 

-318,64225 
279,7"4558 

-247,10530 
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Table 2: The integral Pjn(p) <cont.) 

j n 

6 1 
6 2 
6 3 
6 4 
6 5 
6 6 
6 7 
6 8 
6 9 
6 10 
6 11 
6 12 
6 13 
6 14 
6 15 
6 16 
6 17 
6 18 
6 19 
6 20 

1 
-0 

0 
-0 

0 
-0 

0 
-0 

0 
-0 

0 
-0 

0 
-0 

0 
-0 

0 
-0 

0 
-0 

-_.- ... 

c = 0,2 

, 169578674 
,177485172 
,110497474 
,029219517 
,032277477 
,009419158 
,014336335 
,004090078 
,007852508 
,002115120 
,004872041 
,001209940 
,003282791 
,000743189 
,002345028 
,000479685 
,001749827 
000321355 
001350350 
000220752 

---------- ----.-- --'-

c = 0,5 

95,26454055 
46,24437515 
25,621069T6-
15,18200504 
9,68694989 

-6,49155982 
4,59623790 

-3,35033461 
2,54734302 

-1,96814334 
1,56981064 

-1,2627416 if 
1,04317798 

-0,86422082 
0,73295272 

-0,62088750 
0,53746919 

-0,46331845 
0,40759804 

-0,35627062 

__ =---c = 1 0 - ---, 

1-- ' 407913,8980 
-248122,6904 

175328,8068 
-128936,8771 

96741,T§96 
-73775,3438 

57153,7324 
-44949, 727-5 

35908,4877 
-29079,8626 

23857,6313 
-19808,7290 

16627,-2322 
-14096,242T 

12058,6054 
-10400,8572 

9038,8178 
--7909, TT5T 

6963,85Y3" 
-6166,9752 

---------- - ----- - -+ 
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Table 2: The integral Pjn(P) (cent.) 

j n c = 0,2 

7 1 1,831675553 
7 2 -0,378889118 
7 3 0,199831594 
7 4 -0,070676936 
7 5 0,058704899 
7 6 -0,024467617 
7 7 0,025847171 
7 8 -0,01131 0411 
7 9 I 0,014012392 
7 10 -0,006197015 
7 11 0,008509009 
7 12 -0,003764528 
7 13 0,005748813 
7 14 -0,002461108 
7 15 0,004073081 
7 16 -0,001697257 
7 17 0,003016613 
7 18 - 0,001220055 
7 19 0,002311997 
7 20 -0,000905299 

.- -- - ---------- -

c = 0,5 c = 1,0 

362,3614514 7449810,572 
-190,2610141 -4623735,626 

112,7359972 3367754,201 
-70,4741582 -2562618,259 

46,4027925 1987795,844 
-31,9205977 -156 1994,491 

22,8899561 1241665,170 
-16,9330242 -997949,427 

12,9324878 811617,006 
-10,0904060 - 667 101,288 

8 ,0541628 554062,831 
-6,5284605 -464744,259 

5,3859132 393432,199 
-4,4917319 -335932,424 
3, 7993867 2891 '-o~8-8T 

-3,2385059 -250646,935 
2,7935154 218779,485 

-2,4226528 -192158,640 
2,1224565 169746,391 

-1,8663549 -150750,463 
- - - --
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Table 2: The integral Pjn(p) (conti.) 

j n c = 0,2 

8 1 2,897646412 
8 2 -0,748326365 
8 3 0,366490414 
8 4 -0,153377937 
8 5 0,109508773 
8 6 -0,055251535 
8 7 0,04811 9240 
8 8 -0,026265022 
8 9 0,025940001 
8 10 -0,014715980 
8 11 0,015837277 
8 ,12 -0,009127846 
8 13 0,010510400 
8 14 -0,006085673 
8 15 0,007403083 
8 16 -0,004277338 
8 17 0,005452679 
8 18 -0,003131849 
8 19 0,004157450 
8 20 -0,002366846 

c = 0,5 c = 1,0 

1420,599842 140476694,3 
-785,644328 " 88328564,5 

491,300693 65666551,0 
-321,179834 -51203252,6 

218,252324' 40735619 ;9 
-153,727517 -32790840,8 

111,975072 26641269,7 
-83,897823 -21826915,0 

64,585271 18045937,4 
-50,770939 

I 
-15042836, f 

40,697958 12644062;3 
-33,151450 -10713839,5 

27,411259 9148381,8 
-22,941875 -7868954,7 

19,427148 6814942,7 I 

-16,605574 "5940309, 1 
14,329376 5209316,T 

-12,456096 -4594026,8 
10,911808 4072585,1 
-9,615042 -3628051,8 
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Table 2: 

-

j n 
r---

9 1 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 8 
9 9 
9 10 
9 11 
9 .12 
9 13 
9 14 
9 15 
9 16 
9 17 
9 18 
9 19 
9 20 

The integral Pjn(P) (cent.) 

c = 0,2 c = 0,5 

4,635208378 5702,735785 
-1,413102852 -3269,096859 

0,676344042 2132,585857 
-0,314319985 -1447,636665 

0,207288517 1012,892366 
-0,116583020 -729,448337 

0,091409247 539,995629 
-0,056370316 -409,661182 I 

0,049198221 318,202688 I 
-0,031962875 -251,965733 ' 

0,029944689 203,053451 I 
-0,020029046 -166,158962 I 

0,019802907 137,841233 ! 

-0,01347"4840 -115,719951 I 
0,013898403 98,199263 i 

-0,009550155 -84,119913 I 
0,010200811 72,690197 

-0,007047081 -63,290089 I 
0,007751379 55,495227 J 

-0,005365665 -48,962552 
- -----_._-- --
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Table 3: The integral Mjn(P) 

I 
j n I c = 0,2 

1 I 1 0,2225247720 
1 I 2 -0,0670086744 
1 I 3 0,0343602708 
1 I 4 I -0,0216469117 
1 I 5 0,0152059134 i 
1 I 6 -0,0114254259 I 

1 I 7 0,0089868523 
1 I 8 -0,0073070735 
1 I 9 I 0,0060919191 

I i 
2 I 1 i 0,2434236563 

I I 

2 I -0,0841263532 I ; I 
2 I 0,0440992092 
2 4 

I 
-0,0279818302 

2 5 0,01971827 41 
2 6 -0,0148407409 
2 I 7 0,0116847750 
2 

I 
8 -0,0095067831 

2 9 0,0079291 744 

--

c = 0,5 c = 1, ° 
0,2600778344 

I 
0,4369105974 

-0,0980099347 -0,2550509822 
0,0521945899 0,1518214445 

-0,0332929254 -0,1008334371 
0,0235160620 0,0725650547 

-0,0177211601 -0,0552365288 
0,0139629554 0,0437849590 

-0,0113657327 -0,0357797261 
, 

0,0094826457 I 0,0299300192 I 
I I 

- I ---+ 
I 

0 , 4369105974 ; 2,4027332210 
I 

-0,2550509822 -2,3390394383 I 

0,1518214445 I 1,7892168731 
-0, 1008334371 i -1,3375048809 ! 

0,0725650547 1 ,0237253865 
-0,0552365288 -0,8073196600 

0,0437849590 0,6541436396 

I 
-0,0357797261 

I 
-0,5423549239 

0,0299300192 0,458228!2505 ~_----1---_ _ ~ 
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Tab Ie 3: The integra I Mjn (p) (cont,) 

j n c = 0,2 

3 . 1 0,2816323892 
3 2 -0,1162661262 
3 3 0,0630723768 
3 4 -0,0404854821 
3 5 0,0286777041 
3 6 -0,0216435320 
3 7 I 0,0170687986 
3 8 

I 
-0,0139019155 

3 9 0.0116031201 

4 1 0,3429159683 
4 2 -0, 1696865611 
4 3 0,0961414833 
4 4 -0,0626717501 
4 5 0,0447080837 
4 6 -0,0338700970 
4 7 0,0267715255 
4 8 -0,0218363329 
4 9 0,0182434085 

c = 0,5 I c = 1,0 

0,9406428331 21,55014318 
-0,7519415709 -25,71230955 

0,5102183932 23,43274832 
-0,3584898114 -19,64481700 

0,2653028228 16,15459984 
-0,2051285182 -13,33737694 

0,1641594656 11,14043127 
I -0,1349859004 -9,43242699 
I 0.1133981243 8.08888844 I 

2,4027332210 248)6875528 
-2,3390394333 - 325, 11410"4" 

1,7892168731 329,0274243 
-1,3375048809 - 300,98751 88 

1 ,0237253865 264,0427080 
-0,8073196600 -228,3295020 

0,6541436396 197, 1566531 
-0,5423549239 .-171,0150752 

0,4582282505 149,2984831 
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Table 3: The integral Mjn(P) (cont.) 

j 
~-

5 
5 I 

i 

5 ! 
I 5 
I 5 

5 I 

5 
5 
5 

n I . 
1 
2 
3 
4 
5 
6 
7 -
8 
9 

c = 0,2 

0,43691C 
-0,25505C 

0,151821 
-0, 100833 

0,072565 
-0,05523£,: 

0,043784 
-0,035779 

0,029930 
---

4 
--2 
--5 
--1 
--7 
--8 

o 
--1 
--2 

c = 0,5 

6,902536383 
-7,60274924i 

6,416058360 
-5,093886741 

4,04181 131 8 
-3,259409964 

2 , 679622698 
-2,243769693 

1 ; 908951120 

1 c = 1,0 ---t 

3329,511229 
-4563,08"3IT6 

4918, 708454-
-4785,031412 

4421,970435 
- 3985,091136 

3552, 74T848 
-3158,532313 

2810,313010 



Table 4: The coefficient Gij 

~I 

I 

i l 

N 
U1 
VI 

~I 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 

. 2,214274458 
0,315389998 
0,108748839 
0,083598168 
0,047407757 
0;041992204 
0,027993867 
0,026245636 
0,019002832 
0,018334813 

6 

0 
0 
0 
0 
0 

-4,725876196 
-0,530290039 
-0,314649691 
-0,249989523 
-0,191233003 

I 
2 

I 
i 0 I 
I -2,838259214 

I 
-0,429912062 
-0,202562399 

i -0,151192025 
I -0,100974442 
I -0,084486147 I 
I 

-0 ,063333382 
-0,055885577 
-0,044513349 

7 
.. 

0 
0 
0 
0 
0 
0 

-5,094108245 
-0,538454518 
-0,325211347 
-0,260721801 

I 3 4 5 

I 

I 0 0 0 .-
0 0 0 

-3,399281264 0 0 I 

-0,477327200 -3,889316224 0 

I 
-0,251406937 -0,503072468 -4,327160546 
-0, 191227709 -0,280883635 -0,519222932 
-0,135853378 -0,217535964 -0,300574195 

I -0,11371 678 5 -0,159995930 -0,236182173 
-0,089025527 -0,1348424 15 -0,177694988 
-0,078043494 I -0,108236202 -0,150881219 

8 

I 
9 10 

0 0 0 I 
0 0 0 

I 0 0 0 
0 0 0 

i , 

0 0 0 I , 
0 0 0 I 0 0 0 I 

-5,438048446 .0 0 
-0,544387311 -5,761071013 0 
-0,333441560 -0,549303188 -6,067699503 

_._ - - ·-1 
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Table 5: 

~",j 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

The coefficients Fij 

2 
0 

-0, 
0 

-0 
0 

-0 
0 

-0 
0 

2142 
6983 
0594 
0720 
0219 
0249 
0112 
0125 
0068 
0074' 

---

74458 
60016 
33617 
17089 
00472 
7391'-
68391 
03682 
6447 
2342 --

2 

0 
-2,838259214 

1,220201872 
-0,00751095 

0,126133493 
-0,010126469 

0,043116434 
-0,00761959 

0,021245710 
-0,00554125 

'-- ------ ._----- --

j 
6 7 i 

1 0 0 
2 0 0 
3 0 0 
4 0 0 
5 0 0 
6 -4,725876196 0 
7 2,506085073 -5,094108245 
8 I 0,137582655 2,742945598 
9 0,291513980 0,163437026 

10 0,044345691 0,323755718 

3 4 

0 i 0 
0 0 

-3,399281264 0 
1 ,622569407 -3,889316224 
0,038332896 1,95660791 
0,174380258 0,076529583 
0,00484265 0,217377429 
0,060421048 0,019030989 
0,00104051 0,076579945 
0,029702150 

I 
0,00602770 

-

8 9 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

-5,438048446 . 0 
2,960404570 J -5,761 07J...0J2 
0, 18709689 3, 164603476 ! 

I _ __ _ .-J 

5 

0 
0 
0 
0 

··4 327160546 , . ---
2,246760986 
0,109197826 
0,256257467 
0,032232350 
0,091609770 

o 
o 
o 
o 
o 
o 
o 
o 
o 

10 

--6,067699503 

I 
I 
I 



A P PEN D I X 2 

THE METHOD OF AUXILIARY FOURIER-BESSEL SERIES 

In Ch. (6) it is shown that the qual ity of model I ing of open or semi-open 

electrostatic lenses can be improved by increasing the z-period L of the 

Fourier-Bessel series used ,to approximate the potential ~(r;z) in the lens. 

The increase in L requires a corresponding increase in N, the number of 

terms included in the series, so as to I imit the truncation error to an 

acceptably smal I value. An increase in N results in an increase in 

computer time, which makes high precision ray tracing a costly process. 

In this appendix the method of auxi I iary series is discussed, a method 

which results in a significant reduction in the total number of terms 

to be evaluated. 

The method is illustrated by discussing the Fourier-Bessel solution to 

the exterior Dirichlet boundary value problem, for which unacceptably 

large values of L may be required if only the basic series is used. 

It is shown that for a finite period L, the error of the approximation 

can be understood either in terms of induced charge distributions on 

two paral lei planes, or by considering an infinity of image charge 

distributions at r=A. The error can be reduced by el iminating the 

image potential distributions, which is done numerically through 

the addition of suitably chosen auxi I iary Fourier-Bessel series. 

1. INTRODUCTION 

The fol lowing boundary value problem with rotational symmetry 

is considered 
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and 

~(A;z)=O for z,O and z~L 

~(A;z)=F(z) for O<z<L 

V2~(r;z)=0 for rIA 

(A2. 1 a) 

(A2. 1 b) 

(A2. 1 c) 

where ~(r;z) is the potential at a point (r;z), rand z being 

cyl indrical polar coordinates. A and L are two given lengths and 

F(z) is a given nonsingular function with a finite number of discon= 

tinuities. Let the region r<A be Qi and the region r>A be Qe ; 

then finding ~(r;z) in Qi and Qe constitutes the solution of an 

interior and exterior Dirichlet boundary value problem, respectively. 

The interior problem was discussed in Chs. (5) and (6), and this 

appendix gives a solution to the exteri'or problem in terms of a 

Fourier-Bessel series. 

Although quite a few different numerical methods can in principle 

be appl ied to solve both the interior and exterior boundary value 

problems, it is found that some of the methods that are commonly 

used to solve the interior problem can only be appl ied to the 

exterior problem if special care is taken, or certain modifications 

made. 

When, for instance, the finite difference method is used, Eqs. (A2.1a) 

and (A2.1b) provide boundary values on one side of, e.g., a square 

grid of infinite extent, and the values of ~ on the other three 

sides may be taken ' to be zero. Limiting the relaxation computa= 

tion to a square of finite size (Evans, 1977), it is found that the 

boundary values on three sides wi I I now be unknown, and approximate 

values wil I have to be suppl ied before iterative relaxation can 
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commence [Nedoma (1975a and 1975b)]. A possible approximation 

wi I I be ~=O; or a better choice is ~(p)=k/p where p is the distance 

between the boundary point and the "effective centre" of the source 

distribution , and k is a constant which can only be specified if the 

source of the potential distribution can be approximated (this 

information i s normally only known after the boundary value problem 

has been solved). It is also possible to solve the problem for 

squares of various sizes (taking ~=O on the three sides) and, by 

investigating the solutions, decide whether the error caused by using 

a finite boundary can be tolerated. [See Nedoma (1975b) for further 

references] . The finite element method is also hampered by the 

undefined finite boundaries, and several references on so-cal led 

boundary relaxation methods are given by Mcdonald et al. (1972). 

Computer experiments on the handling of boundaries have been described 

by Wood (1976) and a way to match a (two-dimensional) closed region 

containing the field sources, to a large annular region representing 

the surrounding empty space, has been discussed by Si Ivester et al. 

(1977 >. 

A novel way of deal ing with the infinite exterior region has been 

appl ted by Greenspan (1966) by converting the exterior problem to 

an interior one through inversion in the unit sphere, and then sol= 

ving the resulting interior problem by a finite difference method. 

Another way of avoiding the problem of infinite boundaries is to 

calculate the source distributIon giving rise to the potential 

field [Harrington (1968), Singer et al. (1970), Birtles et al. 
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(1973), Du Toit (1976) and Geer (1976)J. This normally i nvolves the 

solution of a system of I inear algebraic equations with a large 

number of unknowns. The potential at any point in ni or ne can then 

be found by means of Coulomb's law. For f ields with rotational sym= 

metry this involves evaluating an integral (or sum) with an el I iptic 

integral in the integrand. Altnough the interior problem can be 

solved to a high degree of accuracy, the author is not aware of re= 

ports on the accuracy of exterior solutions. 

In contrast to most of the methods outl ined above, which involve 

either iterati ve procedures or matrix inversion, the Fourier-Bessel 

solution to be described i s arrived at by summating a series, a pro= 

cess which can be terminated when sufficient precision has been 

reached. In this sense the method is a direct one, and there does 

not seem to be any I imit to the precision attainable. 

2. FOURIER-BESSEL SOLUTIONS 

In the case of rotational symmetry, Laplace's equation reduces to 

r d~ [r~~ ] +~ dZ = o (A2.2) 

a we invest igate solutions of the form $(r,z)=R(r)Z(z), where four 

fami I ies of functions may be of use 

KO(ar)sin(az),KO(ar)cos(az)j 

IO(Br)sin(~z),lo(Br)cos(Bz)j 

JO(yr) s i m(yz) ,JO(yrlcoshtyz) j and 

YO (or) s i nh«Sz) , YO (or) ca;h(6z) 
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where I n and Yn represent the unmodified Bessel functions of first 

and second kinds, respectively, and In and Kn the modified Bessel 

functions of first and second kinds, respectively, al I of order n. 

(Throughout this paper the arguments of Bessel functions are re= 

stricted to real values). 

For the exterior problem, the function 10 is unsuitable, because 

10(z~)~, and the function JO wi I I be given preference over YO 

because the numerical evaluation of I n is simpler than that of Yn. 

Two different types of solution are now discussed. 

2.1 Use of subregions 

The empty space ne can be subdivided into three regions, ~el' ne2 

and ne3, defined by z~O, O~z~L and z~L, respectively, and solutions 

¢), ¢)J and ¢ ')II' respectively, are defined in the three regions, 

choosing the form of the solutions in such a way that ¢I=¢l I at 

z=O and ¢ I ) =¢Il I at z=L; 

00 

(A2.3a) 

~JJ" ;[1 [Bn sin(n~z/L)KO(n~r/L)/KO(n~A/L) 

(A2.3b) 
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00 

<P 111 = I. 
n=l 

in which AOn=ZOn/A, ZOn being the n-th zero of JO' 

The coefficients Bn are determined by performing a Fourier analysis 

at r=A in the region ne2, using Eq. (A2.1b) : 

00 

I. Bn sin(nnz/L)=F(z) 

n=l 

Determination of the coefficients An and Cn may be done by requiring 

In Ch. (5) this approach has led, for the interior Dirichlet problem, 

to series with acceptable convergence in ni except at (r;z=O) and 

(r;z=L) and (r~A;z). The same behaviour may be expected for the 

exterior problem, but the practical imp lementation may prove to be 

more involved, because the orthogonal ization of the Bessel functions 

may be compl icated. 

2.2 Fourier integral approach 

Consider the function G(z)=<P(A;z), i.e. 

G(z)=O for z~O and z~L, and G(z)=F(z) for O<z<L (A2.4) 

Then G(z) can be represented by the Fourier integral 

G( z) = fOO 

o 
B ( w ) sin ( wz) d w (A2.5) 
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in which the amp I itude function is given by 

7T B(w) = -
2 

00 

t G(z) sin (wz) dz 

For ne· the fo I low i ng then represents a so I ut i on 

00 

cj>(r;z)= f 
o 

B ( w ) sin ( wz ) dw 

(A2.6 ) 

(A2.7) 

As discussed in Ch. (6), the integral of Eq. (A2.5) can be calcula= 

ted numerically to a high degree of precision, and for O<z<L the 

qual ity of fit of the Fourier integral representation of G(z) is not 

fundamentally affected by the fact that the numerical process of 

evaluating the integral amounts to the summation of a finite series 

N 

I B (wn) sin (wn z ) 

n=l 

in which the values of wn are determined by the nature of the nume= 

rical integration procedure. 

For the region Qe [and ni , as shown in Ch. (6)] the situation is 

different, since the Fourier-Bessel integral changes into a Fourier-

Bessel series of which the period is related to the lowest non-zero 

frequency wi found in the series. The nonperiodic function cj>(r;z) 

is represented symbol ical Iy by the nonperiodic function of Eq. (A2.7), 

but in practice is approximated ' by a periodic funct ion. This 

periodicity has a detrimental effect on the quality of the approxi= 

mation of cj>(rIA;z), as wi I I be shown in Section (2.3) 
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2.3 Four~er-Bessel series approach 

Consider the fol lowing boundary value problem 

~(A;z)=F(z) for O'z'L 

~(A;z)=O for (L-Lt)/2,z'O 

and for L,z'(Lt + L)/2 

~(r;(L-Lt)/2] =~[r;(Lt+L)/2J=O Yr 

H(z) 

H(z) 

(A2.8a) 

(A2.8b) 

(A2.8c) 

(A2.8d) 

where A,L and F(z) have been defined in Section (1), and Lt>L is an 

arbitrary length. 

The solution is then given by 

00 

~(r;z)= I Bn sin (nlrz'!Lt) Ko(nlrr/Lt)/Ko(nlrA/Lt) 

n=l 

with 

2 
B = -n Lt 

(Lt H[~-(Lt-U/2] s in (nnULt) d~ 
Jo 

(A2.9) 

(A2. 10) 

It can be shown that, if Lt~, the solution ~ wi I I be identical with 

the solution ~ of Eq. (A2.7). 

e.g., Lanczos (1957) p. 252.1 

[For the one-dimensional case, see, 

For finite Lt the infinite planes 

Pl and P2 at zero potential at z=(L-Lt)/2 and z=(Lt+L)/2 affect the 

solution for the regions rIA, as can be shown in various ways: 

2.3.1 Plac i ng zero values along the planes Pl and P2 where the 
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values of ~ are not expected to be zero, amounts to using a 

grid of finite extent in finite difference or finite element 

solutions, as discussed in Section (1). (The boundary 

values on only two, not three sides are modified here, how= 

ever). 

2.3.2 Charge distributions 0l(r) and 02(r) are induced on the 

earthed conducting plates at P1 and P2. These distributions 

cause ~(rIA;z) to differ from ~(rIAjz), and the magnitude of 

the error introduced can be calculated by means of Coulomb's 

law if the functions 01 and 02 are known. The latter func= 

tions can be found from the normal derivatives of ~ at the 

planes P1 and P2 : 

( ) 2 a~ -2nEOQ ° r =- EO 11 az = Lt--

00 

L n Bn 1'1. n-1 U ( r) 

n=l 

(A2. 11 ) 

where 1=1 for 01' 1=-1 for 02, EO= permittivity of free space, 

and 

Un(r)=KO(nnr/Lt)/KO(nnA/Lt ) for r > A 

Un(r)= 'O(nnr/Lt)/'O(nnA/Lt ) for r < A 

in which the field in ni has been approximated by 

~(r<Aj z) = f Bns in (nnz'/Lt) '0 (nnr/Lt ) /10 (nnA/Lt) 
n=l 

as in Ch. (6). 

(A2.12) 

01 and 02' the total induced charges on the two plates can 

be found by calculating 
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21Tr o/r>dr where j=l or 2 

00 

-41TEOA L 
n=l 

(A2. 13) 

using various integrals [Gradshteyn et al. (19 65 ), p. 684, 

and Abramowitz et al. (1970), pp. 77 and 484]; 0=n1TA/Lt. 

This is an extension of the well known result [Scanio (1973), 

Pump I in (1969) and Fong et al. (1967)J that the charges in= 

duced by a point charge q (which is distances x and L-x from 

two infinite paral lei conducting plates a distance L apart) 

are -q(L-x)/L and -qx/L. This fact can be used in an alter= 

native calculation of the induced charges 01 and 02 of the 

present problem, by noting that the charge distribution 

0A(z) at r=A is known V z, in terms of the discontinuity in 

the derivative (a/ar)~(A;z) 

a'¥ 
°A(z)=2EO ar (A;z) 

00 

=2EO(1T/Lt) I n Bn sin (n1Tz'lLt)[K1(0)/KO(0) 

n=l 

+ 11(0)/1 0 (0)J (A2.14) 

A ring-I ike element at (A;z), with charge denstiy 0A wi I I 

induce a charge -21TAoAz/Lt in the plate P2, giving 
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21TAoAZ dz 
Lt 

which gives the same expression as (Eq. (A 2.13). 

In spite of this detai led knowledge of the induced charge 

distributions, correction of ~(r;z) to find ¢(rjz) does not 

seem feasible. It wi I I, however, be shown in Section (3) 

that the required correction is possible by exploiting 

certain properties of the image charge model. 

2.3.3 Although the potential field of a point charge q I~cated 

between two paral lei grounded conducting plates can be 

calculated by taking into account q itself, and the induced 

distribution 0i on the plates (involving the evaluation of 

an integral with an el I iptic integral in the integrand), it 

is wei I known [Kellogg (1953)J that the potential between 

the plates can alternatively be found by considering an in= 

finityof image charges of alternating signs, in each of 

the plates. This obviates the inconvenience of the el I iptic 

integrals altogether, and the integration is now replaced by 

the evaluation of an infinite series. (The series converges 

very slowly, but since it alternates, efficient accelerating 

algorithms are avai lable). 

Some thought wi I I show that it is possible to estimate 

to what extent the image charges affect the potential distri= 
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but i on ~ ( r j z) [caus i ng it to d i f fer f rom ~ ( r; z) ] by ca I cu= 

fating the potential Vi(r;z) due to the image charges only, 

at points in 0e(or 0i) and at points (r=A;O<z<l). Fo r 

points in 0i the differences Vi(rfA;z)- Vi(Ajz) for O<z< L 

are smal I compared to the potential ~ at the po int, and it 

was seen in Ch. (6) that by simply taking Lt/L sufficiently 

large, the difference ~(r;z)-~(r;z) could be made acceptably 

small. For points in 0e' especially for r»A, it is found 

that the differences are large, cal I i ng for an alternative 

form of correction. 

The simplest way of reducing the effect of the induced 

charges (or image charges) is by taking Lt»L, which effec= 

tively moves the induced charges further away and, as can be 

shown, tends to reduce the magnitudes of 01 and 02' Fig. 

(A2.1) shows how an increase in Lt reduces the ratio 

(A2. 15) 

for two chosen functions F(z) and Eq. (A 2.1b). The func= 

tions F1(z) and F2(z) are zero everywhere, except in the 

fol lowing regions: 

for L/2-1<z<L/2+1 

F2(z)=-1 for L/2-2<z<L/2-1 

F2(z)=1 for L/2+1<z<L/2+2 

(A2. 16) 

(A2. 17a) 

(A2. 17b) 

The subscript x in Ex refers to the value Lt used in calcu= 
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lating ~x. For F1(z), ~ is evaluated at the point 

(rOjzO) (5m;L/2) and for F2(z), ~ is evaluated at 

(rO;zO) (5m;L/2+3). In both cases,A=l m. 

The rapid decrease in Ex when increasing Lt in the case of 

~ of F2 is explained by noting that (especially when A«L) 

the charge distribution giving rise to G(z) resembles that 

of a dipole, whereas with F1(z) it resembles a monopole. 

The flux lines of a monopole terminate at infinity, whereas 

those of a dipole terminate at the negative pole of the 

dipole. 

For functions I ike Fl(z) very large values of Lt would be 

required to obtain sufficiently precise solutions for points 

(r»Ajz), resulting in very slow convergence of the Fourier­

Bessel series, as shown in Section (4). A more practical 

method in these cases is that of el iminating the images, as 

discussed in the next section. 

3. ELIMINATION OF IMAGES 

The principle of the method is illustrated in Fig. (A2.2). Suppose 

that the boundary value problem of Eq. (A2. 1) must be solved, with 

F(z)=l. Then Lt is chosen large enough that the region in which 

¢(r;z) is required, fal Is within the limits -(Lt-L)/2<z«Lt+ L)/2. 

The solution ~(r;z) of Eq. (A2.9) which is the solution of Eqs. (A2.8), 

is a periodic solution (period Lt), and is therefore also the solu= 

tion of the fol lowing boundary value problem: 
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Hp(z)~~(A;z)=F(z) for sLt~z~sLt+L 

Hp(z)=~(A;z)=-F(z) for (s+l)Lt~z~(s+l)Lt+L 

Hp(z)=~(A;z)=O for sLt+(Lt-L)/2~z~sLt 

and fo r sLt+L~z~sLt+(Lt+L)/2 

V2~(rfA;z)=0 Vz 

in which s=0;~2;!4; 

The behaviour of H(z)=~(A;z) for the regions z«L-Lt)/2 and 

(A2.18a) 

(A2. 18b ) 

(A2.18C) 

(A2.l8d) 

(A2.18e) 

z>( Lt+U /2 is in comp I ete correspondence with the descri pt i on in 

terms of images; we may even extend the idea of point charge 

images to that of images of potential distributions, statJng that 

the potential ~(riz) at any point between two paral lei grounded 

conducting plates wi I I give rise to an infinity of image poten= 

tials in each of the plates. 

The method of el imination of images may be discussed by referring 

to Fig. ( A2 . 2 ) . ~(A;z) is shown as the top graph, and the region 

of interest is found between the two arrows. If the images marked 

1 ;2; ... and -1 ;-2; ... can be el iminated, ~(AiZ) of Eq. (A2.18) 

would be changed to ~(A;z) of Eq. (A2.1), and the boundary value 

problem of Section (1) solved. 

The el imination can be carried out as fol lows: to ~Lt (rjz) 

is added a function-~3Lt(r;z;-2Lt), shown by graph D1 (The 

variable d in ~nLt(r;z;d) indicates that the train of pulses is 

displaced towards the right by an amount d) · This el iminates images 

1;4;7, ... and -2;-5;-8; ... Then -~3Lt(rjz;2Lt) is added, el imina= 
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ting images 2;5;8, ... and -1 ;-4;-7, •.. After this first stage of 

correction, the nearest images are nos. 3 and -3, giving the 

corrected function ~C1 a period of T1=6Lt. In the second stage 

of correction the functions -~9Lt(r;z;-6Lt) and -~9Lt(r;z;6Lt) are 

added, eliminating images 3;12; ... and -6;15; ••. as well as 6;15; ... 

and -9;-18; ... so that the period of ~C2 is now T2=9Lt . (The arrows 

in graphs D1,D2, ... show half-periods of the respective functions.) 

It can be seen that after M stages of correction the period of the 

corrected function ~CM wi I I be TM=3M(2Lt) and for large values of M 

the distance to the nearest image wi I I be approximately TM/2. 

Although the proposed method increases the period of ~CM in an 

exponential fashion, and we know that ~CM ~¢ for M~, it must sti I I 

be establ ished that the total computational effort required by this 

method is less than choosing Lt a sufficiently large value TM in 

the first place. This is done in the next section by investigating 

the convergence of the series. 

4. CONVERGENCE OF THE FOURIER-BESSEL SERIES 

Suppose that the series of Eq. (A2.9) is truncated after the N-th 

term, and that the truncation error is EN(rjz). 

Then it can be shown that for a chosen point (rOjzO), EN(rOjzO) 

increases rapidly ~ith Lt, the chosen period. 

depends strongly upon r; [ due to the asymptotic behaviour of the 

10 and Ko Bessel functions, EN(rjzO) decreases with an increase in 

App. (2) 271 



IA-rl ¥ r J. If, for rO' a chosen value of r, it is found that 

£N(rO'z) is approximately constant for O<z<L, then the proposed 

method wi I I not bring about any reduction in computer time, but 

possibly even an increase. Fig. (A2.3) shows that except if N 

is taken quite large (e.g. N = 120), the use of the method of 

Section (3) wi I I only be profitable if the convergence is accele= 

rated. 

Investigating the series of Eq. (A2.9), as modified by the intro= 

duction of Lanczos a-factors [Lanczos (1957)] by writing 

N {. nn/(N+l )]~ . KO(nnr/Lt ) 
~Lanc,Lt L: Bn sl~n (N+l) sln(nnz/Lt) KO(nnA/Lt) 

n=l 
( 19) 

it is seen that, although the convergence of ~L L is slower anc, t 

than that of ~L near z = L/2, its convergence for low values of N 
t 

is considerably better for (L-Lt )/2<z«L-Lt )/3. The Lanczos 

a-factors, shown in braces in Eq. (A2.19) are derived by performing 

a spatial averaging process, and the property of H(z) of Eq. (A2.8) 

of being zero in the regions specified by Eqs. (A2.8b) and (A2.8c) 

al lows the function ~L L (rO,z) to approximate ¢(rO;z) very wei I anc, t 

in the outer regions Lt/3<lz-L/21<Lt/2 as long as rO/A«Lt. Due 

to the smoothing action, ~ L is not useful for O<z<L. Lanc, -;-

If we now investigate the convergence of 

~L 9L (rOjzj z3)+'" anc, t (A2.20) 

App. (2) 272 



1.0.-----------------------, 

10-t. 

100 

1~~L_ __________ ~ ____________ ~ __________ ~ 
o 50 m 100 y 150 

Fig. (A2.3) The truncati on error £N of Section (4) is plotted against y=z+L
t

/4-L/2 

L=2 and Lt =300. Let W be an estimate of WL (5mjz) of Eq.(A2.9), due 
t 

to a boundary function F(z) given by Eq.(A2.l6}. Then curves Band C 

show £N=lw L L (5mjz)-WI with WL L calculated by means of Eq.(A2.l9) anc, t anc, t 

with N=20 and N=120, resp. Curves A and D show €N=lw
L 

(5mjz)-WI, with W
L . t t 

given by Eq.(A2.9), as summed to 20 and 120 terms, resp. 

App. (2) 273 



in which zl,z2,'" are defined by Section (3) and illustrated in 

Fig. (A2.2), then the series representing each function of Eq. (A2.20) 

may be truncated after approximately the same number of terms. By 

wayof illustration the values of the terms appearing in the above 

equation are given for the point (5m; 1,5m) : 

~ (5m;1,5m)=0,0818005+0,00399316+0,000172+0,000042+0,000010 
corr 

=0,0868203 

in which the terms have been calculated by truncating the series 

at N= 40,40,40,20 and 20 respectively. 

The result obtained may be compared with the value ~7290=0,0868222 

which has been found by calculating ~ without Lanczos acceleration 

for Lt=7290m and N=5500. (The truncation error for this value is 

lxl0-6 and the error due to the remaining image charges is 3xl0-6 .) 

Since the method of el imination of images has required only 160 

terms for the same precision, it can be seen that the method al lows 

a significant reduction in computing time. 

This can be stated more generally by noting that every correcting 

stage requires a further 2N Fourier-Bessel terms to be evaluated, 

whereas the calculation by means of a straightforward threefold 

increase in Lt would have required 3N terms. For M stages, the 

proposed method would require 2MN evaluations, as compared to 3MN 

evaluations. For calculations of high precision, M may, for instance, 

be 8, in which case the ratio of the number of evaluations required 

by the two methods is 0,0024, a saving which is significant enough 

to warrant the additional programming to evaluate the expression of 
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Eq. (A2. 20 ) . 

In Fig. (A2.4) a cross section of part of the field is shown for 

<p(riZ) due to F(z) of Eq. (A2.16). The solution for r<A has been 

found by means of Eq. (A2. 12) i see Ch. (6). An equipotential 

diagram for <p(r;z) due to F(z)=exp(-Az2) is given in Ch. (6), as 

wei I a table comparing the convergence of the 10 Fourier-Bessel 

series for rectangular, spl ine and exponential functions, showing 

that for the smoother functions the convergence is considerably 

faster than for functions with discontinuities. The same 

behaviour can be expected for the KO Fourier-Bessel Series. 

5. CAPACITANCE 

Normally the calculation of capacitance is either an aim or a 

by-product of the solution of the exterior Dirichlet boundary 

value problem. In the present case the capacitance of an elec= 

trode (A;O<z<L) at an appl ied potential Vo can be found by means of 

Eq. (A2.14) if sma I I gaps are al lowed between this electrode and 

the earthed electrodes (A~z<O) and (A~z<L). The potentials in 

the gaps are, however, unknown, and special care must be taken 

[Read (1969a, 1969b and 1970), Wittels et al. (1976) and 

Natal i (1972)J if assumptions are to be made [Anicin (1976), Saito 

et al. (1977), Cook et al. (1976), Bertram (1940 and 1942), 

EI-Kareh et al. (1970a), Heerens et al. (1975) and Heerens 

(1976)J about the potential distributions in the gaps. For thin, 

tubular electrodes, the assumption of I inear distributions in the 

App. (2) 275 



;p 
"0 
"0 

N 

N 
-..J 
(J\ 

7m~, ----------------------------------------__ 
r 

6 

5 

4 
0,1 

3 

2 

1 0,0 

0,001 
o I • « 

1 2 3 4 5 6m 7 z -LI2 
Fig. (A2.4) Equipotential diagram for ~ (r;z) due to F(z) of Eq.(A2 .l6), showing part of the region z>L/2, r>O. 

The equipotential values are indicated by the figures in the diagram. The solution for r<A has 

been calculated from Eq.( A2 .l2 ) A=l m; L=2 m al .d L
t

=320 m. 



gaps wi I I not be justified, and a Fourier-Bessel method of handl ing 

boundary value problems with gaps is being developed at t he moment. 

It is expected that the prec ise calculation of capaci tances wi I I be 

made possible by this method. 

6. CONCLUSION 

A Fourier-Bessel integra l representation is given for the potential 

field of rotational symmetry in a region exterior to acyl indrical 

surface on which the potenti'al is specified: 

~(A;z<O)=~(A; z>L)=O and ~(A;O<z<L)=F(z), a given function. 

When the integral is evaluated numerically, the discretization of 

the amplitude function introduces an error which can be described 

in terms of potential fields of induced or image charge distribu= 

tions. It is shown how the error may be reduced by superposing 

Fourier-Bessel series of different periods. The method is a direct 

one, involving no iterations or matrix inversions. Programming is 

simple, requiring only a few tens of statements in the BASIC language. 

Computer requirements are very modest, al lowing implementation on 

a smal .1 desk-top computer. There does not seem to be a limit to 

the precision attainable, and the proposed method is appl icable to 

the corresponding interior Dirichlet boundary value problem of Ch. (6) 

as wei I. Whether the method can be appl ied profitably to the inverse 

interior Dir ichlet problem of Ch. (8) wi I I only be known after a 

detai led study has been completed. 
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A P PEN D I X (3) 

SOME PROPERTIES OF BESSEL FUNCTIONS 

The information in this appendix is taken from Ch. (9) of Abramowitz 

et al. (1970) and is provided for quick reference only. 

i) , Series expansions for integer values of n 

00 

(0,5z)n L 
k=O 

00 

(-0,25 z2)k 
k! (n + k)! 

<0,25 z2)k 
In (z) (0,5z)n I k! (n + k)! 

k=O 

n-1 
(-0,25 z2)k Kn (z) 0,5(0,5z)-n ;- (n-k-1)! 

k! ~ 

k=O 

+ (-1) n+ 1 loge (0,5z) In (z) 

in which ~ is the ~ -function 
n-1 

~(1) = -y and ~(n ~ 2) = -y + L 
k=l 

in which y is Euler's constant 

ii) Derivatives 

(a/az) JO (z) = -J1(z) 

(0 , 25 z2)k 
k!(n + k)! 
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(a/az) 10 (z) I, (z) 

(a/az) Ko (z) = -K,(z) 
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A P PE N D I X 4 

SOME ELECTRON OPTICAL PROPERTIES OF THE "ZERO SPHERICAL ABERRATION 

ONE-FO I L LENS". 

1. INTRODUCTION 

In this appendix some electron optical properties are given of a 

one-foi I lens simi lar to the one discussed in Section (3.2.7) 

of Ch. (8). This lens h~s a charge distribution on the foi I which 

is such that the lens can be expected to show negl igible spherical 

aberration to particles entering the lens paral lei to the axis at 

sufficient speed. 

The lens was represented by the Fourier-Bessel series of Eq. (8.15) 

by means of which ray tracings were carried out by computer. The 

number of terms, N, was taken large enough that the potential gra= 

dients for z > L/2 could be neglected, and different values of P 

were chosen in order to investigate the effect of smoothing on the 

Gaussian focal distance, zd, and the spherical aberration. Ray 

tracings were carried out for weak and strong lenses, and the re= 

suits are presented in Table (A4.1). The spherical aberration 

coefficients given, are c=6J/r2 and Cs cf2 = cz~ , in which 6J 

is the longitudinal spherical aberration experienced by a ray 

entering the lens at (r;O) 

2. DISCUSSION OF THE RESULTS. 

a. For a chosen value of N, a larger amount of smoothing (i .e. 
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a higher value of P) tends to cause a sl ight increase in zd, as shown 

by entries (1) to (6) and (7) to (8). 

For fast particles - entries (9) and (10) - the change in zd produced 

by increased smoothing is much smaller, probably because of 0r- and 

Oz- effects of Section (2) of Ch. (7) are much sma I ler than the 

F-effect in these cases. 

b. Larger P-values reduce the aberration c and Cs up to a point 

- entries (1) to (5) but a further increase in P causes an increase 

in c and Cs . 

c. Comparing entries (2) and (3) with entries (7) and (8), resp., 

shows that their electron optical properties are virtually identical, 

in spite of differences in Nand P. 

d. Entries (11) - (13) are included in the table to al Iowan 

estimate to be made of the precision of the results, by comparing 

these entries with numbers (9) and (7). 

e. Entries (9) and (10) show that their c-values are not much 

larger for weak lenses than for strong lenses. Considering the 

circle of confusion 6r~ r3c/ zd in the Gaussian focal plane, it is 

seen that a paral lei beam of radius r is focused to a value r a l/zd . 

This is in marked contrast to, e.g. 3-aperture open lenses for which, 

in their weak forms, Cs a f3 and c a f [see e.g., Klemperer (1971), 

Fig. (6.12)J. For strong open lenses of this type, Cs a fb, where 
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b<3, and ~r a fd, where d<Oj consequently low ~r values are 

obtained by increasing the strength of the open lens. 

f. The Cs/zd values for the stronger one-foi I lenses of Table 

(A4.1) appear to be sl ightly superior to open lenses of the same 

strength, and the weak one-fo i I I enses of the tab I e have Cslzd 

values which may be 2 orders of magnitude lower than open lenses 

of the same strength. 

g. It has been shown that for the one-foil lens under di.scus= 

sion, ~J is almost constant for a large range of focal lengths. 

An explanation may be arrived at by considering a zonal curve of 

Fig. (8.7) to be a superposition of a piece-wise I inear graph and 

a pertu rbat i on. The piece-wise linear potentfal field produces 

a deflection of a particle whi ch results in zero spherical 

aberration [see Section (2.2) of Ch. (7) and Section (3.2.7) of 

Ch. (9)J, but the perturbation corresponds to an open Einzel type 

lens. Use of relationships shown in Figs. (2.2) and (2.3) allows 

the invariance of ~J to be explained in mathematical termsj this 

wi I I be publ ished elsewhere. 
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Table (A4.1): Some focal properties of a one-foi I lens defined by the 

following points on the [z=cp(O,z)] diagram: (0 m; 0 V), (1 m; 1 V) and 

(3 m; 1V). Nand P are parameters appearing in Eq. (8.15) and L=6 m. vp 

is proportional the speed of the particle when entering the lens, and the 

number of steps in the ray tracing between z=O and z=L/2 is proportional 

No. N P vp N2 Zg c Cs 

1 40 1 2 I 8 5,1578 3,511 93,40 
I 

I 
I 
I 
I 

2 40 2 2 

I 
8 5,2082 2,727 73,97 

I 3 40 4 I 2 16 5,28083 2,0210 56,36 I 
I 

! 
I I I ! 

4 40 8 

I 
2 32 5,390266 1,44082 41,86 I I I 

I 

I 

I 

5 16 
I 

I 
40 2 ; 32 5,553414 1, 13786 35,09 

I 

i 6 40 32 2 I 32 5,902153 1, 18465 41,26 I 
I 

7 i 80 8 2 ! 16 5,2026 2,8724 I 77,75 1 
I I 

I 
i 

8 I 80 16 2 I 16 5,2826 2,0280 56,595 
I 
I 

I I 
I 

9 40 4 1 20 
I 

16 797,2884 2,1491 ! x 106 i I I 1,3661 
i 

I 
; 

I 
; I 

10 40 8 20 16 797,40669 i 106
1 

I 1,55754 ! 0,9037 x 

11 I 40 4 20 32 797,28790 2,13951 1,3600 x 10
6 i 

12 80 8 2 32 5,2011 2,89478 78,30 I 
13 80 8 2 64 5,20073 - -

App. (4) 283 



A P PEN 0 I X 5 

NOTATION 

a r , az : radial and transverse acceleration. 

A: expansion radius. 

C: S.I. unit 

Cc : chromatic aberration coefficient; Section (2.2) of Ch. (2). 

Cs : spherical aberration coefficient; Section (2.4) of Ch. (2). 

C(n): Fourier-Bessel basis f ields Section (2.1) of Ch. (2). 

F-effect: Section (2) of Ch. (7). 

Fij , Gij, Hi: coefficients used in orthonormal isation of Bessel functions. 

i: (- 1 )0,5 

In: modified Bessel function of first kind and order n. 

I n : unmodified Bessel function of first kind and order n. 

Kn: modified Bessel function of second kind and order n. 

L: half-period of Fourier expansions. 

La: L/A 

Le: lens length; Section (5) of Ch. (6) 

m:S.I.unit 

N: number of terms included in finite Fourier series. 

Or-and 0 -effects ; Section (2) of Ch. (7). 

P: power to which Lanczos sigma-factor is raised. 

qm: charge to mass ratio of particle. 

r: cyl indrical polar coordinate. 

5: S.I. unit. 

S: ratio of Einzel saddle potential to kinetic energy of particle 

S(r): spherical aberration; Eq. (7.4). 
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t: time variable. 

v: velocity. 

vre: radial speed of particle at exit plane. 

z: cylindrical polar coordinate 

zd: focal distance; Section (2.2) of Ch. (2). 

zf: focal length; Fig. (2.1>-

Zmn: n-th zero of J m 

zp: principal plane position, see Fig. (2.1) 

~J: longitudinal spherical aberration. 

£0: permittivity of free space. 

£: truncation error. 

n: numerical constant, 3,1415 ... 

p: volume charge density. 

a: surface charge density. 

8i: angle between i-th ray at exit, and optical axis; Fig. (2.1) 

¢: electric potential. 

V: nabla operator 
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A P PEN 0 I X 6 

SUMMARY 

The feasibi I ity of uti I izing Fourier-Bessel functions and Fourier techni= 

ques in the analysis and design of electrostatic electron optical systems 

with rotational symmetry, is investigated. Various approaches are fol= 

lowed, and open systems as wei I as systems closed off by one or two plane 

conducting foi Is, are included in the study. It is assumed that rela= 

tivistic effects may be disregarded, and that the systems are free of space 

charge. 

In one approach the electron optical properties of various "fundamental" 

fields are investigated, and syntheses found (superpositions of relatively 

smal I numbers of fields) which show reduced spherical aberration. Such 

syntheses correspond to lenses which are closed off by two plane foi Is. 

A steepest descent optimization method is also suggested, which can opti= 

mize two-foi I lenses i .r.o. zonal as well as paraxial focal properties. 

Fourier-Bessel series representations are given for the potential and 

electric intensity fields of open and one-foi I configurations, and it is 

also shown how the total amount of computing can be reduced by defining 

auxi I iary Fourier-Bessel series which are derived by means of the model 

of electrostatic images. 

Fourier-Bessel series can ~ Iso be found which represent the surface 

charge densities on electrodes in the system, and as an appl ication an 

analysis is given which relates the behaviour of various classes of 

one-fo i I I enses to the cha rge d i str i but ion induced on the fo i I . 
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A discussion i~ given of Fourier-Bessel series which approximate a given 

axial potential function ¢(O;z). There are inf initely many approximate 

solutions to such an inverse interior Dirichlet boundary value problem, 

and the roles played by var·ious parameters in the solution are investi= 

gated. It is shown that certain piece-wise I inear axial functions can 

be expected to render fields ¢(r;z) that have interest.ing electron optical 

properties, and ray tracing results are given for some one-foi I lenses of 

this type. 

The solutions to the inverse problem can represent two-foi I, one-foi I and 

open systems, and an optimization method is suggested which is appl icable 

to al I three these categories of lenses. 

A few outstanding features of the Fourier-Bessel approaches discussed are 

the high precision with which electric potential, intensity and charge 

distributions can be calculated (resulting in the precise determination 

of focal properties), the modest computer memory requirements, and the 

ease of programming. 
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