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R EF ACE

An interest in the emission electron microscope some years ago.provided
the author with a stimulus to study electrostatic electron optics, and
the desire to carry out high precision electron optical calculations on
the relatively small computers that he had access to during the initial
stages of the study, led to the investigation of the possibility of using

orthogonal functions in electron optical analysis and design.

Prof. N.D. Clarence, then head of the department of Physics at Natal
University (Durban) was approached by me with a proposal of a Ph. D.
project in electron optics, and — although no research was undertaken in
his department in this branch of physics — he was kind enough to accept
me as a student. | shall always remain grateful to him for this trust

in me.

Dr. P.W. Hawkes of Cavendish Laboratory, Cambridge, was requested to
evaluate the proposal, and thanks fo his encouraging comments this study
was undertaken. Or. Hawkes has also been kind enough to read and comment
on some of the publications listed below, and | want to assure him of my

appreciation for his assistance.

Prof. A.D.M. Walker and Dr. D. Spalding were appointed as my supervisors,
and | want to express my appreciation for the courteous and helpful way

in which they responded to my queries over the years. Prof. Walker is
also thankedfor reading and commenting on this manuscript as well as some of

the publications listed below.

In view of the rapid development of electron optics | decided to publish



results as they became available. In this way the following chapters
were published, or were submitted for publication in virtually their

present forms, except for minor modifications and editing :

Chapter (2) was published as : "Electron Optical Properties of some
Fourier-Bessel Electrostatic Fields with Rotational Symmetry. |,
Basis Fields." University of Zululand Publications, Series III,

Re 25 e LI )

Chapter (3) was published as : "Electron Optical Properties of some
Fourier-Bessel Electrostatic Fields with Rotational Symmetry. 11,
An Analytical Study of Weak Fields". University of Zululand Publi=
cations, Series |Il, no. 24 (1978).

Chapter (4) was published as : "Electron Optical Properties of some
Fourier-Bessel Electrostatic Fields with Rotational Symmetry. I11,
Computed Properties of Synthesized Fields". University of Zululand

Publications, Series |ll, no. 25 (1978).

Chapter (5) was published as "A fourier-Bessel Solution of an Einzel
Type Electrostatic Field with Rotational Symmetry". J. Appl. Phys.

49, 4535 (1978),

Chapter (6) will be published as : "Fourier-Bessel Series Solution for
Potential and Intensity Field of Open Electron Optical Systems with
Rotational Symmetry, in Terms of Ig Bessel Functions". J. Appl.

Phys. (To be published, Jan., 1979).



Chapter (7) has been submitted for publication as : "Charge distribu=
t+ions on folls of electrostatic one-foil lenses with rotational

symmetry, as related to some electron optical properties'.

Chapter (8) has been submitted for publication as : "The Inverse Interior

Dirichlet Problem".

Appendix (1) was published as : "Series Expansions and Tables of Integrals
of Products of some Bessel Functions'. University of Zululand Publis=

cations, Series |11, no. 20 (1977).

Appendix (2) was accepted for publication as : "Fourier-Bessel Series
Solution of an Exterior Dirichlet Boundary Value Problem with Rota=

tional Symmetry" (J. Appl. Phys., to be published).

Chs. (1) and (9) were added to place +He various investigations into per=
spective, and Appendix (4) contains some preliminary results on the use
of the solution given in Ch. (8). The contents of this thesis is the
original work of the author, with the exception of Appendix (3), in which

some properties of Bessel functions are given for quick reference.

| wish to extend my thanks to the heads and staff of the computer centres
and libraries of the Universities of Natal (Durban) and of Zululand for
their valued cooperation, and express my appreciation for the profes=
sional way in which Mrs. H.L. Bisschoff handled the typing and Mrs. R.

van Schalkwyk prepared the figures for this manuscript.
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CoH AR SR L

OUTLINE OF ELECTRON OPTICAL PROBLEMS TO BE INVESTIGATED, AND CHOICE

OF MATHEMATICAL MODEL

1. | NTRODUCT ION

Electron optics, as a branch of science, may be considered to
have a history of almost a century, inaugurated in 1880 by
Crookes and, independently, by Goldstein with their experiments
with free electrons. The discoveries by Wiechert and Fleming
that electrons can be focussed by a magnetic coil, followed two
decades later, and the construction of the first electrostatic
lens may be credited to Wehnelt who succeeded in 1905 in conver=
ting the divergent cathode lens into a convergent immersion
objective by inserting the third lens component which now bears
his name. [For references on the early history of the subject,
see, e€.g9., Myers (1940) and Glaser (1956)]

These discoveries and experiments served to stimulate the more
complete and more systematic investigation of the relationships
between the electric or magnetic fields and the nature of the
deflections caused by them; in the decade following 1925 these
relationships were discovered experimentally and predicted
theoretically by E. Briche, M. Knoll, E. Ruska, C.J. Davisson,

C.J. Calbick, H. Busch, W. Glaser, J. Picht, 0. Scherzer and

others.

The first comprehensive monographs were written by Glaser (1933)

and Briiche and Scherzer (1934), and the first English language



textbooks followed some five years later. Several textbooks,
monographs and reviews have appeared since, a selection of which

is listed with the references.

The industrial possibilities of electron optics provided both

the stimulus and the financial support for more detailed studies,
which were subsequently carried out in America, the United
Kingdom and France, as well. The U.S.S5.R. and Japan were late
to start, but have intensified their research efforts during the
past decade and a half. Apart from experimenting with the
actual lenses, various models [see Section (4)] have been used
to simulate electron optical elements that could be used in,

i.a., television cameras and tubes, and electron microscopes.

Oue to the availability of the digital computer, a change in
approach has occurred during the past 25 years, enabling the

electron optical properties of complicated configurations to be

calculated to a high level of precision.

The purpose of this study is fo investigate and demonstrate the
use of certain orthogonal functions in the description of the
potential and intensity fields of electron optical systems,

and in the calculation of certain focal properties. The
possibility will be discussed of developing a systematic

procedure by means of which optimization of a system can be

carried out.

Ch. (1)



DESCRIPTION OF ELECTRON OPTICAL SYSTEMS TO BE CONSIDERED

Although some of the methods fo be discussed in later chapters
may, with |ittle or no modification, be applicable to a broader
class of electron optical systems, the configurations discussed
in the rest of this dissertation are restricted to those which
are purely electrostatic, have rotational symmetry, and are

free from space charge. It is assumed that particles are not
accelerated to such high velocities that relativistic effects
need be taken into account, and that apertures are large enough
that the wave nature of the charged particies need not be consi=
dered. The inner radii of electrodes will be faken large
enough that the frajectories of particies are not measurably
affected by fields that can be attributed to the electrode
images of the particles [HuberT (1949)]. I+ is also assumed
that the space charge of the beam which is focused, is so small
that its effect on the trajectories of the individual particles
may be neglected. By requiring that particles should not

feave the lens on the entrance side, mirrors are also excluded.

Although the theory wil!l apply to both positive and negative
particles, it will be assumed throughout the text — for the
sake of brevity — that the charged particles to be focused are

electrons and not positive ions.

Not only open lenses, but also systems with one or more plane

conducting foils will be considered. The foils are assumed

Ch. (1)
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to be thin enough to be transparent to electrons of sufficiently
high energy. [A summary of the properties of foils currentiy

manufactured can be found in the papers cited in Section (1) of
Ch. (7). The theory of one-foil configurations can, of course,

also be applied to cathode lenses or immersion objecfives.]

DESCRIPTION OF FOCAL PROPERTIES TO BE CONSIDERED

The determination of first order focal properties of electron
optical systems can be done fairly easily by existing methods,
although it may be remarked that the Fourier-Bessel methods to
be described allow an increase in the attained precision through
an increase in computer time only, whereas most of the other
methods would require an increase in the computer memory size

as well.

Much more of a problem area in electron optics is the calcula=
tion of higher order focal properties, in which cases it may

prove to be more difficult to obtain the required precision.

The objective of this study is not so much to arrive at a
particular electron optical configuration in which the combined
detrimental effects due fo various aberrations have been mini=
mized in a balanced way, but rather to concentrate on the one
geometrical aberration which limits the resolution of images of
point objects on the optical axis, namely the spherical aberra=

tion. [Various measures quantifying this aberration are defined

Ch. (1)



and applied in Chs. (2), (3) and (4).] A considerable amount

of research has been concentrated on the elimination of spherical
aberration, and it is shown in the comprehensive review by
Septier (1966) that magnetic lenses are by far superior to open
electrostatic lenses as far as this aberration is concerned.

It is generally accepted that, according to the proof given by
Scherzer (1936), electrostatic lenses cannot show negative
spherical aberration, unless one of the following actions is

taken [see Septier (1966) for references] :

3.1 Elements may be introduced which deviate from rotational
symmetry. This possibility has been explored by many workers,
and a considerable number of papers on theoretical and experi=

mental results have been published.

3.2 High frequency potentials on certain electrodes may be
used. This approach by Kompfner (1941) seems to have been

abandoned, due to practical difficulties.

3.3 Negative charge may be introduced into the region between
the particle to be focused, and the optical axis [see also

Ch. (7)]. This can be done in various ways

a) Introduction of a high density electron beam or cloud in
the lens region; this suggestion is not simple to imples=

ment in practice, and very |ittle progress has been

reported.

Ch. (1)



b)

c)

d)

e)

)

An axial conducting electrode may be introduced into the
lens region; it has been found experimentally that
correction can be effected for rays within a narrow band
of radial distances, and a refinement of the method is
required, possibly using a combination of the solutions

of Ch. (6) and Appendix (2).

The charge may be induced on an electrode that forms
part of an annular aperture; Schwarzer (1976) has per=
formed experiments with small annular apertures, but appa=

rently not with the present principle in mind.

The charge may be induced on one or more gauzes or grids;
it is, however, found that the openings in the gauzes act

as miniature lenses with their own aberrations.

The charge may be induced on one or more conducting foils
which are thin enough as to be transparent to high energy

electrons.

The charges may be induced on the cathode or anode of a

system.

Of the methods (3.3a)-(3.3f) the first four will be considered to

be outside the scope of this study [aIThough the solution of

Appendix (2) is likely to be applicable to the boundary value

Ch. (1)



problems associated with mefhod (3.3b)].  Method (3.3e) will be
investigated in Chs. (2), (3), (4) and (7), and it will be found

+hat the solution of Ch. (7) applies to case (3.3f) as well.

Before outlining [In Section (5)] the approach proposed for this
study, a brief review will be given in the next section of the
various methods that have until now been applied to study the
electron optics of electrostatic lenses and, more specifically,

to minimize the spherical aberration.

OUTLINE OF METHODS CURRENTLY USED TO OPTIMIZE ELECTRON OPTICAL

SYSTEMS

Methods used during the past fifty years to optimize electron

optical systems may be divided into two broad groups namely

aj empirical methods which, on a basis of frial and error,
vary some lens parameters in the hope that the resulting

trail may bring the designer close to an optimum design,

and
b) methods which, founded on some mathematical considerations,
provide a trail leading to an optimum system (noting

however that there would be no guarantee that a global

and not a local extremum is reached).

Broadly speaking, the methods of Sections (4.1) and (4.2) may be

grouped under category (a), and the methods of Section (5) under

Ch. (1)



category (b).

4.1 Empirical methods based on proposed configurations

These studies are based on experiments with actual devices or
analogical or mathematical models. A small number of parameters
can usually be varied, subject to pre-defined constraints. Para=
meters include a) physical dimensions of electrodes and of gaps
between electrodes and b) potentials at which the electrodes are

kept.

Constraints inciude :

a) the number of electrodes,

b) the topological nature of electrodes (e.g. tubular
rather than annular),

c) the preferred shape within a chosen topological class
(e.g. tubular electrode rather than a disc with an
aperture),

d) maximum absolute values of potentials on electrodes

e) maximum absolute values of electric intensities in the
lens region,

) maximum or minimum potentials at particular points with=
in the lens, e.qg. at axial saddle points,

g) presence or absence of electric intensity at points or
surfaces within the configuration, e.g. at the cathode

or anode,

Ch. (1)
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h) electron optical constraints, e.g. one aberration should

not exceed a specified value when another aberration is

minimized.

In the following subsections brief surveys will be given of the
types of electron optical problems solved by means of the various
methods. The methods themselves have been described in various

handbooks and reviews, and will not be discussed here.

4.1.1 Experiments with physical lenses or systems

First and third order focal properties have beeﬁ determined
by performing experiments with actual devices of a broad
variety. After the pioneering work of German groups in
the nineteen thirties, a comprehensive set of graphs were
published by Spangenberg (1943) which were used for more
than two decades for the design of systems containing
immersion and Einzel lenses. As recently as 1969 his

data on immersion lenses were used by Heddle (1969) to
design three-tube lenses with small chromatic aberration;

the latter lenses were, in furn, tested experimentally.

Rang (1948) attempted to find projective Einzel lenses
with reduced distortion, Liebman (1949) and Heise et al.
(1949) investigated Einzel lenses, and Lippert et al.
(1952 and 1953) measured first and third order focal

properties of three-electrode lenses of which the elec=

Ch. (1)



trode shapes were varied. Hanszen (1958) compared the
spherical aberration of symmetrical and asymmetfrical Einzal
lenses, finding that — as in glass optics — the asymmetry
can be exploited to reduce the spherical aberration.
Further investigations on three-electrode lenses consisting
of tubes of unequal or equal diameters were carried out by
Varakin et al. (1974), Bobykin et al. (1976) and Heddle

et al. (1970); and Imhof et al. (1968) attempted to design
a three-aperfure lens which could form images of fixed

position, using particles of variable energy.

In most of the studies quoted aobve, the shapes of, and
potentials on electrodes were varied and, when a design
with favourable properties was obtained, the result could
not really have been anticipated. In contrast, Septier
et al. (1959) investigated open lenses with electrodes
which approximated hyperbolae of revolution, hoping that
the fact that 3¢/or o r for fields ¢(r,z)=k(r2/2—22)
might result in a reduction of the spherical aberration
of open lenses as well. [see Zashkvara et al. (1977)
for a theoretical treatment, and for further references)].
This hope was not realized, because the openings in the
electrodes cause a change in the flux pattern; no matter
how small the holes are méde, the lens changes from a
foil lens to an open lens, causing the lens properties to

change fundamentally, as can easily be shown by Gauss'

Ch. (1) 20



faw. A more detailed discussion of this point will be

given in Ch. (7).

Apart from the work on open lenses, experimental measure=
ments were carried out on a field-emission illumination
system by Veneklasen (1972) and on a combined objective
and anode lens by Liebl (1972), the latter lens being
used to focus both the primary and secondary beams in a
microprobe. M&llenstedt et al. (1973) used annular
rather than circular apertures to increase the contrast
in emission microscopes, but apparently without .realizing
that a charge distribution induced on the central part of
the aperture electrode can be used to reduce the spherical
aberration of the lens [see Ch. (7)]. Annular apertures
were also compared with circular apertures by Schwarzer
(1875a and 1975b) as far as image contrast and the
electron energy distribution in the emission-electron

microscope were concerned.

The effects of grids inside electron lenses were investi=

gated by Bernard (1953b) and by Mayo et al, (1972). The
reduction of the spherical aberration of magnetic lenses

by means of a one-foil Iehs was investigated by Hibino

et al. (1976 and 1977), Ichihashi et al. (1971 and
1973) and Maruse et al. (1970a and 1970b); and Wittels

(1975) measured focal properties of a two-foil lens.

Ch. (1) 21



4.

1.

Apart from the quasi-hyperbolic lens of Septier et al.
(1959), it may be said of the above studies that in most
cases severe constraints prevented optimum designs to be
obtained; the constraints in the majority of cases being
i) a restriction on the number of electrodes, and 1ii) the

requirement that the electrodes should have simple shapes.

The use of analogical techniques

Up to a decade ago it was not uncommon to use physical
analogues to solve the boundary value problems associated
with lens fields, in order to carry out ray tracings by,
e.g., electromechanical devices or analogue computers.
Francken (1967) wrote a review of the methods available,
a book edited by Vitkovich (1966) was published on

model ling, Verster (1963) gave a detailed description of
an integrator he coupled to an electrolytic tank, Der
Shvarts (1966) described applications of his "matrix
integrator", Heinemann et al. (1968) described their
simulation of a three-electrode cathode lens, Firestein
et al. (1963) described ray tracing performed by digital
computer using field data provided by a resistance network,
and Ashley (1972) designed thick lenses by combining an

analogue and a digital computer.

During the past decade, the advantages of carrying out

the complete simulation by digital computer have become

Ch. (1)
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.

obvious, resulting in the phasing out of the methods

summarized in this subsection.

The use of finite difference fechniques

An alternative fto physical analogues is the use of mathe=
matical models, briefly outlined in the next four subsec=
tions. The use of finite differences has a history going
back to pre-computer days — with, e.g., Motz et al. (1946)
calculating the potential field in an electrostatic lens
by manual relaxation, followed by numerical ray tracings.
Due to the availability of the digital compu+er,.finiTe
difference techniques have dominated the field of electron
optical design for the past fwo decades. The various
finite difference solutions applicable to the interior
Dirichlet boundary value problem have been analysed in
great detail, and several reviews have appeared, i.a.
Young et al. (1963), Weber (1967), Binns et al. (1973) and
Lenz (1973). The review by Weber also discusses ray
tracing, using field data at mesh points, and Lenz
advances a number of reasons why finite difference

methods may be preferable to the finite element method of

Section (4.1.4).

\

The following reports represent a selection of investiga=

tions that have been carried out since the last reviews

cited

Ch. (1)
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Following the first order analysis of two-fube lenses Dy
Natali et al. (1972a and 1972b), Dichio et al. (1974
and 1975), and Kuyatt et al. (1974) investigated their
Third order properties. El-Kareh et al. (1972) and
Shimizu (1974) sfudied three-aperfure lenses and Saifo
et al. (1977) calculated first and third order focal
properties of fthree-tube Einzel lenses. Cleaver (1975)
simulated field emission electron guns for electron
microprobes; Riddie (1978) used finite differences to
calculate the axial potential in Einzel lenses used in
field emission elecfron guns; and Henkelman et al. (1974)
studied mirrors formed by the cathode and two further

lens elements, for use in an electron spectrometer.

A probable reason for the continuing popularity of this
method is the ease of programming, if the boundaries have
reasonably simple shapes. Two disadvantages are i) the
need to increase the size of the computer memory if the
precision is to be increased, resulting in an increase in
the amount of computation per iteration, and also in the
number of iterations required, and ii) The necessity to
manipulate large amounfs of information which may even=
tually not be required (for instance, even if only the
axial potential is required, the relaxation process still

involves all the grid values in zonal regions).

Small gaps between electrodes can be accommodated readily,

Ch. (1) 24
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4.

g

1.

4

but problems may arise when the configuration consists of
a few ring shaped electrodes separated by large gaps; in
such a case problems associated with the exterior Dirich=
let problem — as discussed in Appendix (2) — will have fo
be overcome. In these cases the charge calculation method

of Section (4.1.5) is probably the most convenient to use.

The use of finite elements

Although the use of finite elements has gained popularity
in many diverse fields, and the method has been studied in
great detail by numerical analysts, it is inTeregfing 1o
note that apparently only one group has made extensive

use of finite elements in electron coptical design. Refe=
rences on applications studied by Munro and by Bunting may

be found in the review paper by Munro (1973). The remark

on gaps [see Section (4.1.3)] applies to this method as well,

and the amount of programming needed (if an existing
package cannot be used) probably counterbalances the

advantages of the method.

The source calculation method

If an (unknown) function D(s) represents the volume charge
density at points (defined by the position vector s) in and
near an electron optical system, and a (known) function
represents the potential distribution in the same region,

then V(s) can be expressed in terms of D(s) by means of

Ch. (1)
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Coulomb's law. On the other hand, D(s) can be related to
V(s) in terms of a Fredholm integral equation of the first
kind. The solution of such an integral equation can be

obtained by a variety of methods, as discussed in the

review by Miller (1974).

When used in practical electron optical design, the
conducting electrodes defining the electron optical confi=
guration are normally divided into a sufficiently large
number (N) of elements, and the surface charge density on
the i-th element represented by a variable, o;.  The
potentials at a chosen number (n) of points on the elec=
trodes can be represented in terms of these variables.

Since the potentials on the electrodes have been pre-defined,
a set of linear algebraic equations results, and the oj

can be found if n > N. Normal ly the solution is obtained

by performing a matrix inversion, in which case the precision

attainable is largely dependent upon the computer word length.

When the o; is known, the potential at any point in space
can be calculated, using Coulomb's law. The potential

is given in the form of a series, the terms of which have
elliptic integrals as factors. It is also possible to

express the electric intensity E at any point in terms of
a series (again involving elliptic integrals), so that E
need not be calculated from the potential, as required by

the finite difference and finite element methods.
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Some theoretical aspects of the charge calculation method
have been discussed by Cruise (1963), Lewis (1966), Singer
et al. (1970), Mautz et al. (1970), and Appelt (19732 and

1973b). Du Toit (1976) and Viljoen (1976) applied the
method in the analysis of image intensifier tubes, the
latter paper discussing the matter of precision in some
detail. Read et al. (1970) studied the first and third
order focal properties of fwo-cylinder lenses, and a book
of tables of properties of a wide variety of |lenses was

compiled by Harting et al. (1976).

By summary, it appears as if this method is a versatile
one, allowing electron optical calculations of fairly
high precision to be carried out. That the potential
need not be defined everywhere on a closed surface, is an

imporTanTIadvanTage.

The use of orthogonal functions

As stated in Section (2), this study is concerned with
electron optical systems without space charge. We may
therefore assume that everywhere, except on the electrodes,

the potential ¢(s) satisfies Laplace's equation.

V2 ¢ =0 ‘ .10
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The function ¢ can, among others, be chosen to be of the
form ¢(r,0,z)=R(r) @ (0) Z(z) (e 23

or of the form

$(p,0,¥)=R(p) 8 (©) ¥ (V) (128}

in which (r;0; z) and (p;0;¥) are polar coordinates of
cylindrical and spherical symmetry, respectively. Al though
it may happen in some special cases That part of an electron
optical system may have spherical symmetry, it is found

that for the majority of configurations, the form with

cylindrical symmetry is the most profitable choice.

Using the standard method of separation of variables and
requiring that ¢ should not be a function of O, the

following differential equation results :

2
L [ g gi-] 3 S (1.4)
r

Substitution from Eq. (1.2) into Eq. (1.4) results in

2
E_g - 87 (1.5)
oz

and

%R 1 3R
R - - (1.6)
ar ar

in which B is the separation constant.
Eq. (1.6) is satisfied by four Bessel functions of order

zero, namely lg and Kg, the modified Bessel function of

the first and second kind, resp., and Jo and YO, The un=
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medified Bessel function of the first and second kind, resp.

[To represent higher order Bessel functions, the subscript
"O" will be replaced by the order, n. For a short list of
properties of Bessel functions, see Appendix (3).] In
view of possible misunderstanding due to the relationship
lo(x)=Jg(ix), the arguments of all Bessel functions

appearing in this manuscript will be considered to be real.

For negative values of B, the functions Ig and Ky apply,
in which case Z(z) is a trigonometrical sine or cosine
function. For positive values of B, the functions Jo
and Yo apply, and Z(z) is a hyperbolic sine or cosine
function. For B=0, R a loge (r) and Z o, z are also
solutions, but the latter two solutions will not be given

further consideration in this chapter.

The general solution for ¢ therefore includes members of
the following familjes of functions (referred to in this

manuscript as Fourier-Bessel functions)

Ko(ar) sin (az), Kglor) cos (az); (857
lo(Br) sin (Bz), Ig(Br) cos (Bz); (18
Jolyr) sinh(yz), Jo(yr) cosh (yz);  apg (1.9
Yo(ér) sinh (8z), Yy(8r) cosh (8z). (1..197)

The method of choosing the families to be included in a

solution, and of assigning amplitudes to particular members

of the families, will depend upon the general approach
fol lowed. In the majority of electron optical studies
Ch. (1)
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reported, a configuration of electrodes is proposed, and
then — using various analytical or numerical methods —
suitable combinations of functions are obtained so as to
find a function ¢ which approximates the potentials on
the electrodes to an acceptable degree of precision.

These applications will be reviewed in Section (4,1.6.1).

The other approach is to follow some optimization algorithm
which is expected fto result in a Fourier-Bessel series

representing the optimum field (i.e. optimized i.r.o. some
predefined criteria). This approach will be discussed in

Section (5).

Some properties of Fourier-Bessel potential fields

Before discussing in Section (4.1.6.2) the use of Fourier-
Bessel functions in electron-optical design, the Fourier-
Bessel series representation of the potential field in the
vicinity of a given physical configuration will be consi=

dered briefly.

By way of introduction, it may be pointed out that the
members of the families of functions of Egs. (1.7)=(1.10)
are soluTioHs of certain basic boundary value problems.
In the examples given below, the functions listed in

Egs. (1.7) and (1.8) with a cosine factor will not be

considered because they can be changed to the form with
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the sine factor, through a z-transformation representing

a translation. As far as Egs. (1.9) and (1.10) are
concerned, it may be noted that cosh (z) + sinh (z) = exp (z),
and that cosh (z) - sinh (z) = exp (-2); for ease of
visualisation, only

Jolyr) exp (=yz) and Yg(8r) exp (-8z) WETRY
will be considered, noting that members with exponentials

with positive argument can be obtained by reversing the

sense of the z-axis. The chosen functions will now be

considered briefly.

i) The function ¢(r;z)=Kglar) sin (az): (Hie 12)
This function represents the solution of the following

boundary value problem :

V2o(r > A;z) = 0 for 0 < z < L (1.13)
¢(r=A;z) = Ky(nmA/L) sin (nmz/L) for 0 € z < L (1.14)
d(r;0) = ¢(r;L) = 0 ¥ro>A (1.15)

in which nmA/L = o ; A and L are non-zero lengths and

n is a positive integer. [The case A=0 is not allowed,

because Ko(r > Q)> o .J

Superpositions of these functions are employed in the
solution of the exterior Dirichlet boundary value problem
of Appendix (2), and is of use in configurations of two

cylindrical electrodes [see also Yeh et al. (1969)].

ii) The function ¢(r;z)=|0(8r) sin (Bz): (1.16)
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This function represents the solution of the fol lowing

boundary value probiem :

v2 ¢(r < A;z) =0 for 0<z <L (1.7
$(0;2) = sin (nmz/L) for 0<z <L (1.18)
$(r;0) = ¢(r;L) =0 ¥ r (1.19)

in which A and L are non-zero lengths and n is a positive

integer.

Superpositions of these functions are used in the solution
of the inverse interior Dirichlet problem of Ch. (8),

which is applied in Ch. (9).

iii) The function of Eq. (1.16) also represents the

solution of the following boundary vafue probfem :

V2¢(r < Ayz) = 0 for 0 <z <L (1.20)
¢(A;z) = lg (nmA/L) sin (nmz/L) for 0 € z € L (1.21)
$(r;0) = ¢(r;L) = 0 ¥r <A (1.22)

Superpositions of these functions are used in the solution
of the interior Dirichlet problem, as applied in Chs. (2) -
(7), and in several examples to be discussed in this sec=

Tion.

iv) The function ¢(r;z) = Jo(yr) exp (-yz) : (1.23)
This function is the solution of the following boundary
value problem (an interior problem with quasi-Dirichlet

conditions)
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2

V ¢(r;z>0) = 0 ¥or (1.24)
$(r;0) = do(rZy,/A) ¥r <A (1.25)
¢(A;220) = 0 (1.26)

in which A is a length, and ZOn is the n-th zero of Jj.

Superpositions of these functions are employed in Ch. (5)

and in several examples to be quoted in this section.

v) The function of Eq. (1.23) is also the solution of

the following exterior-type Dirichlet problem :

V24 (r>As2>0) = 0 C(1.2D)
¢(r;0) = JolrZg,/A) ¥rxA {1.28)
6(Asz 3 0) = 0 (1.29)

This type of boundary value problem has apparently not ye?
found application in electron optical problems, and will

not be given further consideration.

vi)  The function ¢(r;z)=Yy(8r) exp (- §z) : {1 .30
The function Jy in case (v) may be replaced by Yq, but
apparently nothing is gained in this way, since Yg is
clumsier to handle both numerically and analytically.

The function cannot be replaced by Yo in case (iv), due
to the singularity of Yy at z=0. No further considera=
tion will be given to the Y, Bessel functions in the rest

of this study.
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4,1.6.2

The use of Fourier-Bessel fields in electron optics

The representation of simple electron optical configurations
by means of Fourier-Bessel integrals have been known for a
long time, but due to the complexities of evaluating these
integrals [see Ch. (6) and Appendix (2)], the latter were

initially utilized only fo obtain analytical approximations

for the potential inside an immersion lens consisting of two

Iinfinitely long juxtaposed coaxial cylinders of equal dia=
meter and with no gap between them. Approximations were
obtained for paraxial regions by Gray (1939) and Bertram
(1940), and for zonal regions by Bertram (1942), using
Fourier-Bessel functions of In-type as described in case

(1i) of Section (4.1.6.1).

Bernard (1951a) considered a grid lens consisting of a grid
at a potential ¢4, placed in the gap of negligible size
between ftwo juxtaposed coaxial cylinders of equal diameter,
which are held at a potential ¢2%¢1. Starting from the
Fourier-Bessel integral formulated in terms of lo Bessel
functions, he found an analytical approximation for the
axial potential, which he used to calculate the first

order focal properties of the grid lens [Bernard (1951b)].

Cook and Heddle (1976) used Jo Bessel functions [case (iv)
of Section (4.1.6.1)] to describe the same immersion lens

as Gray, but allowing a finite gap size between the two
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tubes. Assuming a |inear potential variation in the gap,
he calculated the first order focal properties of the

lens.

To represent a three-tube Einzel lens with negligible gap
sizes, Werner (1971) divided the space inside the lens into
three regions, to which three different series expansions
in ferms of Iy functions applied»[case (iv) of Section
(4.1.6.1)]; first and third order focal properties were

found.

Wittels et al. (1976) used subregions to describe the
potential in a two-foil Einzel lens with a circular aper=

ture in the central electrode. Orlov (1967/8) also accommo=
dated an aperture in a closed immersion lens by dividing

the lens interior into four subregions; 15 and Ko Bessel
functions were used. The potential distribution in a three=
tube Einzel lens with gaps between the tubes (and assuming

a linear potential variation in the gaps) was described by
Anicin et al. (1976), and Read (1969a) used Jy Bessel functions
to find an analytical expression for the potential in a two-
aperture immersion lens; the approximation was used in subse=
quent studies of symmetrical and asymmetrical Einzel aperture
lenses [Read (1969b and 1970)] . Fiﬁally the Fourier-Bessel
series representations of less common configurations with
rotational symmetry may be mentioned, e.g. transaxial sys=

tems [Mel'nikov (1971)], capacitor-like systems [Heerens
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4.

1

)

et al. (1975) and Heerens (1976)], a tube inside another
coaxial tube [Lebedev et al. (1960)], and juxtaposed co=
axial cylinder with unequal diameters [Yeh (1975 and

1976)] .

Summarizing, it can be stated that the above configurations
do not allow much freedom in the choice of electrodes. In
most cases configurations were chosen as to facilitate the
derivation of the Fourier-Bessel representation and/or allow

ease of manufacture; consequently only discs or tubes were

apparently utilized. The latter restrictions will be [ifted
for two-foil lenses in Chs. (2)-(4), for open lenses in

Chs. (5) and (6), for one-foil lenses in Ch. (7) and for open,
one~-foil and two-foil lenses in Ch. (8), in order to investi=

gate, i.a., whether the restrictions mentioned did not se=

riously hamper the optimization of systems.

Analytic functions

The functions of Section (4.1.6.1) could have been discussed
under this heading, but due fto the different techniques
used, the functions which are members of orthogonal sets
have been discussed separately. As far as the "non-
orthogonal" analytic functions are concerned, it is very
seldom poséible to "derive" the form that a function should
take to represent a given configuration or a theoretically

optimized system : normally various functions of convenient
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forms are investigated, and a particular one selected which
i) shows the most favourable electron-optical properties,
or i) gives the best approximation fto the potential

field due to a given set of electrodes.

Aithough most of the investigations reporfed are of an
empirical nature, dividing lines cannot always be drawn
with certainty, and Section (4.2) is devoted to the elec=
tron optical use of analytic functions, whatever the nature

of the approach.

4,2 Lenses represented by analytic axial potential functions

In view of the expense of machining electrodes of various types
for use in the experimental studies of Sections(4.1.1) and(4.1.2)
the use of a simple mathematical model has its obvious attractions.
In pre-computer days it would have been particularly advantageous
to find a potential field which is expressed in closed form in
such a way that not only the trajectory, but also the cardinal
points can be derived in closed form. Unfortunately only a few
such fields have been discovered, e.g. the parallel electric
intensity field used by Gianola (1950) to reduce the spherical
aberration of existing lenses. [Examples are also quoted by
Glaser (1956) and Harman (1953)]. Consequently more complicated
functions were often used, applying various methods to calculate

the electron optical properties associated with such functions.
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In the majority of cases, an axial potential function f(z) was
chosen in such a way that 9f/9z » 0 for |z|+ ©, so that open
lenses could be modelled. A popular method of analysis has been
the use of expressions for the various focal properties, given in
terms of f(z) and its derivatives. These expressions were derived
by Glaser (1933) and Scherzer (1936) and they apply fto paraxial
rays. The vast majority of reports, in fact, deal with the
paraxial focal properties of lenses. Among the more comprehen=
sive treatments are Glaser (1933), Regenstreif (1951), Ramberg
(1942) and Wendt (1951). The latter report includes a funda=
mental discussion on the fypes of analytical functions that allow
physical implementation by means of a relatively small number of
electrodes (in contrast to some of the fields of following
chapters which can only be obtained by a large number of ring

electrodes).

Various reasons were advanced for choosing particular axial
potential distributions. For insfance, Grivet et al. (1952)

used a function which was shown 1o approximate the axial beha=
viour of the Fourier-Bessel series which Gray (1940) had obtained
for two-tube lenses. The resulting saving in volume of computing
was an important consideration, in view of the non-availability

of computers.

Analytical models for paraxial regions were utilized by Dommaschk

(1965/66) for a disc with an aperfure, by Typke (1966/67) in his
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study of two-tube lenses with large voltage ratios, by Croitoru
(1965/66) in treating weak lenses, by Adams et al. (1972a) for
Einzel and non-Einzel three-element lenses, and by Ei-Kareh et al.
(1971) for three-tube symmetrical Einzels. In some cases
functions were attractive to investigate due to their mathematical
forms but were not simple to approximate physically, e.g. the
zero gap aperture lens of Read (1971) and the hyperbolic lens
discussed by, i.a., Zashkvara et af. (1977); the latter could,

in principle, be used as a foil lens, or portions of the closed
lens could be used for special purposes, as explained in his

report.

Further studies include The_Three—Tube lenses of Ciric et al.
(1976) and those by Kanaya et al (1972 and 1978) of immersion
lenses and three-element lenses. Finally may be mentioned the
two-volume study by EI—Kareh_eT af. (1970a and 1970b) in which
extensive tables are provided on a variety of lenses. The lack
of precision of enfries in some of the tables has, however,
provoked unfavourable comment from reviewers who felt that alter=
native methods of higher precfsion should have been employed

instead.

Grid lenses of various types were studied by Bernard (1951b ,
1952 , 1953a and 1953b), and one-foil lenses by Hibino et al.

(1976) and Iichihashi et al. (1973).

In all the above investigations, axial potential functions were
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utilized, and paraxial focal properties obtained. In contrast,
Kuroda et al. (1974) made use of an analytical potential at a
fixed radial distance, and Johnson (1975) approximated the pofen=
tial field in the region between two coaxial cones in a configura=
tion designed to reduce the spread of the outer parts of a beam

of charged particles.

In the above reports the emphasis was placed on finding an analy=
tical approximation to a physical configuration of some kind, and
not on whether such a configuration has any paETicuIar merit as
far as the reduction of aberrations were concerned. As optimiza=
tion methods, the above attempts are probably on a par with the

experimental methods of Sections(4.1.1) and (4.1.2).

In a different category are the analytical functions arrived aft

on theoretical grounds. For instance, Scherzer (1936a) and
(1936b) advanced some arguments based on the electron optical
properties of paraxial regions to show why a particular bell-
shaped poTenTial distribution would result in a minimum Third
order spherical aberration. Similar distributions were investi=
gated by Yamamoto (1974) who studied weak lenses by means of the
Glaser bell shaped function, Yamazaki (1977) in his investigation
of the influence of the magnification of an Einzel lens on its
higher order focal properties, and by Yamazaki (1973) who compared
the electron optical properties associated with his Gaussian poten=
tial distribution, with those of the Glaser, Regenstreif and the

Bernard-Grivet models. A summary of further functions used in
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electron optical design has been given by Skollermo (1976a) and
1976b), together with inverse boundary value probiem solutions

[see also Ch. (8)].

In spite of claims [Gabor (1942) and Crewe (1977), and the
discussion by Septier (1966) of fields suggested by Glaser and
Scherzer] that certain distributions represent "ideal" lenses
— for instance having a minimum of spherical aberration — it is

normally found that modifications of these functions can lead to

superior designs. The disadvantage of some of the abovementioned
functions is that they allow very few degrees of freedom — in some
cases the half-width is the only adjustable parameter. This also

applies to the model used by Tonomura (1973) to design a field
emission electron gun. The function is a polynomial of seventh
degree which, however, has only a single adjustable parameter, due

to the particular choice of polynomial.

A possible course of action to gain more degrees of freedom is

that of superposing or juxtaposing suitable functions, and it was
indeed found by Plass (1942) that an asymmetrical field obtained
from a bell shaped distribution gave a reduced spherical aberration.
Kanaya et al. (1966) combined Glaser's beli-shaped distributions

to approximate thicker lenses, and investigated first and third

order focal properties.
Finally the composite lenses studied by Glikman et al. may be
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mentioned. Calculations were performed on juxtaposed tubular
lenses of equal diameters. Glikman et al. (1974a) reported
results on lenses with constant potential differences between the
tubes, Glikman et al. (1974b) deal with juxtaposed Einzel lenses
with either constant potential differences or constant ratios of
electrode potentials, and Glikman et al. (1976) calculated the
cardinal elements of juxtaposed immersion lenses with constant
ratios between potentials on neighbouring electrodes. In all
these cases it was found that an increase in the number of elec=
trodes led to a decrease in the spherical aberraTion; [I+ may
be remarked here that the solution given in Ch. (6) allows this
configuration to be represented by a Fourier-Bessel series,
allowing both paraxial and zonal focal properties to be calculated
to a high degree of precision, especially if the number of elec=
trodes takes on a large value; in such a case the solution of

Glikman et al. suffers from an increased error accumulaTion].

Summarizing the analytical models discussed above, it may be
stated that some models allowed precise calculations of first and
third order focal properties to be made of particular classes of
lenses, but that most of the procedures followed could not be
expected to lead to absolute minima for the aberrations under
consideration. This view is supported by the following two
considerations: i) assuming that some "optimum" function
$(0,z)=f(z) exists, and must be approximated on a certain axial
interval, it is clear that in most cases cited in this subsection,

no effort was made to ensure that the functions chosen constituted
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a complete set on that inTervalﬁ and ii) the procedures

fol lowed were usually not based on a mathematically founded op=

timization theory.

In Section (6) the possibility will be discussed of satisfying

these two criteria in electron optical design.

ELECTRON-OPT ICAL OPTIMIZATION : MOSES AND SZILAGY!

In previous sections it became obvious that most of the approaches
were of the trial and error type, offering no guarantee that an
optimum system will result from the chosen procedure. 'In cons=
trast, two approaches which are based on mathematically founded
optimization procedures, and are in é cafegory of their own, have

been formulated and applied in recent years :

i) Moses (1973) has developed an optimization procedure which is
based on variation theory and makes use of the paraxial ray equa=
tion. Restrictions on, e.g. the maximum allowed electric inten=
sify can be accommodated by the theory, and one aberration can be
reduced while demanding that other aberrations should not exceed
certain limits. Moses has applied the theory to magnetic electron
optical systems, but it does not seem to have become a popular
method, probably due to its mathematical complexity, whfch fact
Moses concedes. ‘One must also note that the optimization is
achieved for paraxial properties only.

i) Szilagyi (1977) has developed a method based on a dynamic
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programming search fo reduce the spherical aberration of magnetic
and electrostatic immersion lenses [Szilagyi (1978)]. The abers=
ration to be minimized is expressed in terms of a piece-wise linear
axial potential function, by means of the paraxial ray equation.
Themethod appears to be simple enough to become more widely used

in the future, but — as Moses' method — is presently formulated

to optimize the system for paraxial properties only.
in Section (6) the possibility will be investigated of formulating
a steepest descent method which can handle both paraxial and zonal

electron optical properties.

OPT IMIZAT ION BY A GRADIENT METHOD

Various solutions to boundary value problems of Section (4.1.6.1)

may be used in procedures to optimize different categories of

lenses. Instead of giving here a general formulation of the
method, a few specific examples will be discussed by way of
illustration.

6.1 Example : two-foil lens

As a simple example, it may be required to find a function ¢(r;z)
such that the lens corresponding to the function will focus a
uniform, parallel beam of electrons entering the lens at z=0, to
a disc of confusion of minimum diameter at ErRps The lens

should have a radius A, a length L, and is closed off at z=0 and

Ch. (1)

44



z=L by plane conducting foils which are earthed (making the lens
an Einzel lens). No axial electrode is allowed, and the field
¢(r<A,z) inside the lens will be created by a set of coaxial ring

electrodes at r=A, for 0 < z < L.

The problem can be tackled in two ways :

i) The potential at r=A can be written as
‘ N
f(z) = j{; B, sin (nmz/L)
n:

so that inside the lens,
o0

o(r;2)=  » B, sin (nmz/L) Ig(nmr/L)/ 1o (nmA/L)
n=1
I+ is required to find the vector [B] = [81;82, 3 .] so that the

radius Ry of the disc of confusion reaches a minimum value.

A simple gradient method can now be followed by calculating

Rg — through kay tracing — for ¢ given by [B]a = [1;0;0;...],

by [B]p = [1; 0,001; 0;0;...], by [B]lc = [1; 0; 0,001; 0;0;...],
etc. This allows an approximate calculation of 9R4/0Bj,

dRy/9Bsz, etc.  The gradient VRy can be calculated from these
derivatives, and a translation in function space can be undertaken
in the direction of éy Ry- The procedure is repeated until a
sufficiently low value of Ry is reached. If the focal length is
found to be shorter or longer than the stipulated value, the

(uniform) veIociTy of the charged particles entering the lens is

adjusted.
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The advantage of the procedure is that it can be expected tfo

lead to a function f(z) which approximates the true optimum func=
tion F(z), since the trigonometric functions constitute a complete
set on the interval (0,L). The larger the value of N, the more

closely f(z) can approximate F(z).

A disadvantage of the procedure is that a large value of N will
slow down the calculation of V Ry, in view of the ray tracings.
fn Ch. (4) it is shown how time may be saved by using a better star=

ting point than [B] = [1; 0;0; ...].

i) The problem may be formulated in terms of an axial func=
tion

C_ sin (nmz/l)

gl(z) = .

M=

so that, inside the lens,
N

¢(r;z)= ) Cy sin (nmz/L) 1y (nmr/L)
n=1

As in 1), a starting point [C] is chosen, and a path along the
gradient followed until the optimum point is reached. The ex=
pression given above for ¢(r;z) again allows the potentials on a
set of coaxial ring electrodes to be found. Without going into
details, it may be remarked here that the approaches of i) and
i1) may differ in efficiency, depending upon the A/L ratio.

6.2 Example : A one-foil lens

A lens which is open on the right hand side and has i+s left
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hand side closed off by a conducting plane foil at z=0, is re=
quired to focus a uniform, parallel electron beam of radius A to
a disc of confusion of minimum radius. The required focal length

is also stipulated.

Again two approaches may be followed

i) A function H(z)=¢(A;z) is defined as follows
N

H(z)=h(z)= j{% B, sin (nmz/L) for 0<z<L
n:

and H(z)=0 for L €z ¢« L',

in which A is the given radius of the beam, and L and Lf are
lengths such that L>>A, L'>>A and L'>>L. Then the solution of
Ch. (6) can be used fo calculate ¢(r;z) inside the lens for any
[B]. The same optimization procedure as described above can be

used to find the optimum [B].

i) An axial function G(z)=¢(0;z) may be defined

N
G(z)=g(z)= ) D, sin (nmz/L) for 0<z<L
n=1
and G(z)=0 for L€z < L'

and the procedure of i) followed, using the solution of Ch. (8)

to the inverse interior Dirichlet problem.

6.3 Example : an open Einzel lens

The open lens version of the previous problem can again be tackled

in two ways

i) A function H(z)=¢(A;z) may be defined :

H(z)=0 for 0cz< L
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N
H(z)=h(z)= » By sin [nm®z-L)/(L'-D] for L <z < L
n=1

H(z)=0 f&r LY €.z € L"
Suitable restrictions will have fo be imposed on L,L' and L",
e.g. that (L'-L)>>A. A study of these restrictions have not yef
been undertaken, and it is not known whether the set of approxima=
ting functions constitute a complete set in this case.
ii) Without going into details, it appears as if the restric=
tions of L,L' and L" may be less severe if, instead of defining

®#(A;z), an axial potential function $(03z)=G(z) is defined

G(z)=0 for 0 € z € L
N

G(z)=g(z)= »_ D, sin [nm(z-L)/(L'-L)] for L <z« L'
n=1

G(z)=0 for L' £ z < L"

As in Section (6.2), case (ii), the solution to the inverse inte=

rior Dirichiet problem of Ch. (8) is utilized.

6.4 Some general remarks on the proposed procedure

i) in the example of Section (6.1) it is possible tfo find a
symmetrical Einzel foil lens by equating all the B-coeffi=
cients of even index to zero, and not changing them in the
course of the optimization procedure. The same approach,
coupled with the correct choice of L' and L" will lead to a
symmetrical open Einzel lens in the example of Section (6.3)

ii) As mentioned in Section (6.1), the optimization procedure

may be speeded up considerably by carefully choosing the
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starting vector [B]. A suitable starting point may also
be obtained from axial functions resulting from paraxial
optimization procedures [e.g. the bell-shaped axial func=
tions of Section (4.2)]. Favourable starting points may
also be obtained from weak lens approximations — using

results as presented in Chs. (4), (7) and (8).

SUMMARY OF PROPOSED STUDY AND OUTLINE OF CHAPTERS

The exploration of various techniques of utilizing Fourier-Bessel
functions in electron optical design will constitute the main theme
of this dissertation, and the techniques will be aimed éf reducing
the spherical aberration of space charge free electrostatic lenses
with rotational symmetry. The |y Bessel functions will be found
to be of most use in simulating open, one-foil as well as two-foil
lenses, and will receive most of the attention. [The KO functions
can be used in lenses with axial electrodes, using the solution

of Appendix (2), and Jg functions are particularly useful in the
analysis of mirrors, using solutions like those of Ch. (5). These

applications are excluded from the present sTudy.]

In Chapter (2) some electron optical properties of individual

o Fourier-Bessel fields are studied with two objectives in mind :
i) to find out whether these fields have any unique properties that
may be found useful, and ii) fo aid in understanding the beha=

viour of lenses synthesized from these fields.

Ch. (1)
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In Chapter (3) a study is made of weak symmetrical fields, and
analytical expressions obtained for various focal properties.
An attempt is then made to synthesize two fields to reduce the

spherical aberration.

In Chapter. (4) syntheses are sought that would reduce the spherical
aberration of strong symmetrical fields. The syntheses are at=
tempted i.a. by using information about some properties of indivi=
dual fields, as to provide suitable starting points for the gra=
dient optimization procedure described in Section (6) of Chapter

(1.

Whereas Chs. (2) - (4) deal with two-foil lenses, a Fourier-
Bessel representation of a class of open lenses is given in
Chapter (5). The lens region is divided into three parts, each
represented by its own series, and both Ig and Jg functions are
utilized. Integrals of products of Bessel functions are required
for one of the derivations, and — since they are not available in

literature — are tabulated in Appendix (1). Series expansions

for the integrals are also given in this appendix.

Although the solution of ChapTer%(S} is useful for mirrors, con=
vergence of some series are slow at certain points if lenses are
described, and an alternative solution is given in Chapter (6),

in which only lg Bessel functions appear. The solution applies

equally well to open, one-foil and two-foil lenses.
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The computation of potentials may be speeded up considerably
through the use of associated Fourier-Bessel series which can be
formulated by taking into account aspects of the image charge
model . Since the problem of convergence is more serious in
exterior Dirichlet problems, the method of associated series is

described in Appendix (2) for the exterior problem. This solu=

tion is also directly applicable to the study of axial electrode

lenses, which are, however, excluded from this study.

Chapter (7) illustrates some applications of the solution of

Ch. (6) by i) predicting the behaviour of one-foil lenses through

a study of the charge distributions induced on the foil, ii) using

the solution in ray tracing studies of some configurations which
— in their weak forms — show negative spherical aberration, and
iii) finding corrective elements which show zero convergence
paraxially, but focus zonal rays with large negative spherical

aberration.

In Chapter (8) the inverse interior Dirichlet boundary value
problem is discussed, and approximate solutions presented.
Electron optical properties of some of the solutions of Ch. (8)

are briefly discussed in Chapter (9).

The contents of the first two appendeces have already been dis=

cussed. In Appendix (3) some properties of Bessel functions

often referred to in the text, are given for quick reference.

Ch. (1)
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CHAPRPTER 7

SOME ELECTRON OPTICAL PROPERTIES OF FOURIER-BESSEL BASIS FIELDS

il

INTRODUCT I1ON

In Ch. (1) the following boundary value problem was considered :
d(r;0)=¢(r;L)=0 Mo LA (2.1a)

d(A;z)=f(z) for 0 <z <L (2 iy

in which A and L are given lengths, and f(z) is a given function.

The solution, which describes a broad class of two-foil lenses

(with plane foils at z=0 and z=L) is

d(ryz)= ZE: B, sin(nmz/L) lg (nmr/L)/lg(nmA/L) (Z:23
n=1
in which
L
B=(2/L) f f(z) sin(nmz/L) dz (2:3)
0

In Ch. (4) an attempt is made to find functions f(z) for which
at least two of the coefficients By a;e non-zero. To obtain
such syntheses, it is necessary to have some information on the
electron-optical properties of fields corresponding to functions
f(z) for which only one coefficient B, is non-zero. A report
of a computer study of such fields is given in this chapter,
whereas an analytical study of weak fields of the same fype is

found in Ch. (3).

ELECTRON OPTICAL PROPERTIES OF THE FOURIER-BESSEL FIELDS

2.1 Introduction

The electron optical properties of some of the electro=
2z



static fields corresponding to n=%1, 2, 3, .... in Eq. (2.2) are
described in This section. Due to the difficulty of finding
analytical expressions for the integrals of Fourier-Bessel

functions, the results of a numerical study are presented here.

To facilitate the description, the fterms of the series in Eq. (2.2)
are now referred to as Fourier-Besse! '"components’ or "component
fields", and a system of indexing is infroduced as follows :

lgtn T r/L)
C(tn) =

1+

e sintn m z/L)
lo(n 7 A/L)

In this publication only objects at z + - ® are considered. As
shown in Fig. (2.1),rays paralle! to the z-axis and at different
radii enter the field from the left, The field is zero for

P/ HORET T it i 0 (N For all the resul!ts shown, the value of the
radius A has been taken as 0,2m and L was taken equal to 1m. The
trajectories of electrons of different kinetic energies were cal=

culated, and the ratio

S = (saddle point potential of field/(kinetic energy of electron

in the field free region)

was found to be a convenient parameter. In the case of single
component fields it is found that for a chosen value of S, the
value of the radius A has no infliuence upon the electron-optical
properties described here. When superposing two or more Fourier-
Bessel fields, however, the radius A plays a most important part

[see Chs. (3) and (4)].
Ch. (2)
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Note on normalization: Normalization with respect to maximum

electric intensity is required when comparing various lenses or
component fields. In the case of C(1) and C(2), for instance,
C(2) would contain electric intensity values at r = A which are
twice as large as those found at comparable points in C(1), if
they have the same length L. All single components can there=
fore be normalized with respect to maximum electric intensity by

multiplying the physical dimensions of C(n) by a factor n.

The electron optical properties covered in this report are the
focal distance, the position of the principal plane, the. focal
length and the spherical aberration. The chromatic aberration

is mentioned briefly in Section (2.2).

2.2 The focal distance.

The Gaussian focal distance zd (i.e. the distance between the
Gaussian focal point and the point z = 0) is plotted for various
normal ized component fields vs. 1/S [Fig. (2.2)]. As in fol low=
ing graphs, only exterior focal points are represented (i.e. ob=
Jective and no projective properties are shown). Component
fields or ranges of S resulting in divergent lens action are

also excluded from this chapter , but some of these cases are

discussed in Ch. (3).

For small values of S, it seems as if zq is proportional to /8,

for C(-1), C(=3) and C(-5).

Ch. (2
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When z4 is plotted vs. 1/52, straight lines are obtained for
C(+2), C(+4), C(-2) and C(-4) in their weak ranges [Fig.(23)].
No simple relationship has been found for C(+3) and C(+5) in

their convergent ranges.

Note on the chromatic aberration :

The chromatic aberration, 5
Zf

Cc = V—

oV
may be found from Fig. (2.2) by noting that the slope of any of the
curves may be equated to (1/V) 9z(/3V (where V is the potential

energy of the electron in the field free region).

Low values of C. are reached at low values of z¢, and the compo=

nents C(-1) and C(4) appear to be superior fo other components.

2.5 The principal plane.

The principal surface is defined [Fig. (2.1)] as The locus of the
points of intersection of the |inear extrapolations of the rays
entering and leaving the field. As a first approximation the
surface may be considered to be plane (the Gaussian principal
plane) and the distance Zp between this surface and the geometri=

cal centre of the field is plotted vs. S [Fig. (2.4)].

The curves may be divided info four groups, according to whether
they are symmetrical or asymmetrical and initially accelerating

or decelerating.

Ch. (2)
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The large positive values of Zp for the fields C(+2) and C(+4)
bring about short focal lengths for these fields; see also [Fig.

(2,87}

2.4 The spherical aberration

The spherical aberration of electron lenses may be specified i.a.
by expressing the longitudinal aberration AJ or transverse aberra=
tion Ar in terms of series expansions in which even powers of the
angular aperture ©; or the linear aperture ry appear. ry may be
measured in any of a number of possible aperture planes [see also

Ch. (4)].

Although the values of AJ or Ar are known fo several significant
figures [see Section (3)], the less precise representation by means

of the primary aberration coefficient

is used in this report to facilitate comparison of present results

with published data.

I f the dimensionless quantity Cs/zf is used to indicate the quality
of a field as far as spherical aberration is concerned, it may be

seen from Fig. (2.5) that components C(n) of small n are superior.

The spherical aberration of some fields with divergent action is

discussed in Ch. (3).
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PRECISION OF THE RESULTS.

A simple predictor-corrector method of ray tracing was used through=
out this study. In calculating the force on the electron, modified
Bessel functions of the first kind and of orders nought and one had

to be evaluated. Since the rational approximation of tenth degree

quoted by Abramowitz et. al. (1968) allowed a precision of | part

in 107 only, the more time consuming series expansion of Eq. (2.7)

had to be utilized for lg, and a related one for I;.

Although the arithmetic was carried out to 16 significant figures,
the Bessel functions were normally evaluated to 12 significant
figures only. The factor |imiting tThe final precision reached,
was the number of steps in fthe trajectory calculation, which varied
from N=80 to N=1280. The precision of z¢ varied between 3 and 5
significant figures, depending upon the value of N and the strength
of the lens. The precision of Cg varied between 1 and 3 signifi=

cant figures.

PHYS ICAL APPROXIMAT ION

Although the physical approximation of the Fourier-Bessel
fields is discussed in more detail in Ch. (4), an example is given

in Fig. (2.6) for a C(+1) field.

Equipotential lines are drawn for ¢(r,z), as given by Eq. (2.2)

for r < A, faking A1=1, and A4=0, ¥ n > 1.

Ch. (2)
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For the region r > A, 0 < z < L, we draw equipotential lines for

[see Ch. (D]:
Ko(m r/L) sin (m z/L)

¢(r,z) =
Ko(m A/L

A suitable equipotential line is chosen, and a physical electrode
of this shape and with the corresponding potential placed in posi=

Tion.

The size of the gaps between this electrode and the planes z = 0
and z = L depends i.a. upon the A/L ratio, and it may be required
to position a number of ring electrodes to establish the required
potentials in the gaps. The potentials of the ring electrodes are
supplied from a resistance chain. |f proper care is fTaken the
physical configuration should be a fair approximation of the mathe=
matical field of which the electron optical properties are known

from the computer study.

SOME CONCLUS IONS

5.1 As far as the focal length is concerned, it seems as if the
fields C(n) with low values of n are preferable if strong conver=
verging lenses are required. Particularly short focal lengths
are reached with C(+2) due to the right shift of the principal

plane.

Dy Low values of the spherical aberration are reached with

C(=1) which is maftched only by C(+2) at short focal lengths.
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Fig. 2.6 Equipotential lines for the field C(+1) with A = 0,5 and L = 1,0.

Only the left upper quandrant is given.
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From Fig. (2.5) it can be seen that fields of the same convergence
have spherical aberrations which depend upon the values of n. The
possibility therefore exists of superposing or juxtaposing two or
more fields of different n in an attempt to reduce or eliminate the
spherical aberration of the combined field. Such syntheses are

discussed in the next two chapters.

5.3 Fields C(+3) and C(+5) are divergent for fast electrons
(small S), but are convergent for slow electrons (large S), due to
a reduced speed in the negative potential regions where the radial
acceleration is negative. Only C(+1) is divergent for electrons
of all velocities. A discussion of the possibility of divergent
electron optical lenses is given in Ch. (3). See also Section

(2.2) of Ch, (7) in this regard.

5.4 In The case of single component fields the chromatic aberra=
tion reaches a minimum for large values of S, where the spherical
aberration is also minimized, This does not seem to be true for

strong superposed fields, as shown in Ch. (4).
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G ARATUE R, 5

AN ANALYTICAL STUDY OF WEAK BASIS FIELDS AND OF SOME SYNTHESES OF TWO

e

COMPONENTS

INTRODUCT ION

In Ch. (2) some electron optical properties of.various fourier-
Bessel component fields

log(nmr/L)
Clan) = 2 e sin (nmz/L)

lgtn mA/L)

were described.

In this chapter an approximate analytical study is made of weak
fields, so as to systematize the results of the numerical studies
of Chs. (2) and (4) and aid in predicting the properties of syn=
thesized fields. Only rays entering the field in a direction

parallel to the axis are considered here.

TRAJECTORY APPROXIMAT ION

When electrons pass through rotationally symmetrical electric in=
tensity fields, it is found that both v,, the longitudinal velocity

and r, the radial coordinate, change.

To simplify the analytical integration it is assumed in this study
that neither r nor vz change appreciably. This implies either
that the particles have high initial z velocities, or that the
electric intensities are small, i.e. the ratio S of Section (2.1)

of Ch. (2) is limited fo small values only.

Ch. (3)
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I+ may be shown that if this assumption is made for C(n) with n
an even number, the field will cause no convergence or divergence.
For these asymmetrical fields the lens action results from the
variations in vz and r, and a different procedure must be followed

[ch. (H)].

The same remarks apply to both symmetrical and asymmetrical '"open"
lenses (i.e. lenses not closed off by thin conducting foils or
gauzes). This can be seen by considering the electric intensity
flux through an infinitely long coaxial cylinder. [|+ is shown in
Ch. (5) that in Einzel fype open lenses the flux caused by Iy (modi=
fied Bessel function) type potential fields is equal and opposite
to the flux caused by the associated Jg (ordinary Bessel function)

type fields.]

The results of Sections (4) - (9) apply to symmetrical fields only,

in view of The above remarks.

THE RADIAL VELOCITY v .

We investigate the ftrajectory of an electron of charge to mass
ratio gy which enters the field C(n) from the left, and parallel

to the axis.

The radial velocity vp(f) may be found by integration :

i Z
ar
vp(t) = ar dt = — dz
vz
0 0

Ch. (3)
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The radial acceleration ap is given by the radial derivative of

C(n)
|1(nﬂr/L)
nm ;
ar = |am| T —_— sin (nmA/L) (3.1}
] lgnmA/L)
where '1 is The modified Bessel function of the first kind and of

order one.

We now assume that r does not change appreciably (so that the
Bessel functions need not be integrated here), and that v, may be

considered constant (removing v, from the integration).

Z

integrating,

|qm| Iy (nmr/L)
ve(z) = e e l-cos(nmz/L)
z lg(nmA/L) (3.2)
At the exit plane, z = L, the radial velocity is
2|qm| Iy (nmr/L)
g i (5 58 ] A R S G355
W lo(nmA/L
Or Ypg =40 ifn-=2, 4,6,
The constant gy may be eliminated by substituting
(2 ql/v2) 10001/ IgnmA/L) by S :
Vre = S vz |1 (nmr/L) for m = 1. 3, 85 .. (3.4)
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THE ANGULAR DEFLECTION, Q;.

The angular deflection O, at the exit plane is given by
[1(nmr/L)
0, = arc tan(vre/vz) % 2 |gy| ————— forn =1, 3, 5,
lg(nmA/L) .
(32

£S5 |y (nmr/L)

THE RADIAL DISPLACEMENT &r

The radial displacement may be found by integration :

T
SE - = J' Vr(T) dt
0
: s |y (nmr/L)
L Iqml — e 1- cos (nmz/L) dz
v | ~(nTA/L)
z ‘0 0

if v, may be assumed to be constant.

As a first approximation of ratio &r/r may be assumed to be very

small, so that the Bessel function I{ (nmr/L) need not be inte=

grated.
Integrating :
|q | 1y (omr/L)
§r = = { z- %? sin (nnz/L)} (3.6)
¥ lg (nmA/L
AT the exit plane :
ly(nmr/L)
L
8rg = |qml = _ &5
v, lg{nmA/L)
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o= 1 (nmr/L) (3.8)
Lv

0 = e (3.9)
2vZ

THE FOCAL DISTANCE, z4.

The focal distance z4 (i.e. the distance between z = 0 and the
point where the axis is cut by the ray entering the field at a
radial distance r) may be calculated from

Z4r -L v

z
= cot (=@) = =—

r+drg “Vre

as follows from Fig. (2.1)

Substituting for 8rg from Eq. (3.7) and for vpo from Eq. (3.3) we

find
L = L
2dr = ST (mr/D T2 b

The Gaussian focal distance Z4q is found by calculating

_lim
g T oo Zdr

o il =T v &
0 S nmr [1+(EE£)2 + ...} -
2 8
3 2 1
= [;ﬁg— i 'f} (3.11)
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in which 17 has been replaced by ifs series expansion. The above

expressions are valid for all C(n) for which n is negative and odd.

THE PRINCIPAL PLANE

From Fig. (3.1) it follows that

(L/2)-z

Sr Vre

PS Vz

where zpg is the distance between the Gaussian principal plane and

the centre of the field.

Substituting from Eq. (3.9) we find =0 (2

Zpg

THE FOCAL LENGTH, zg.

The focal length of a ray enfering the field at a radial distance
r is found from Egs. (3.10) and (3.12)

- Ak
Zfr = S (nmr /D) (3.13)

and the Gaussian focal length is found from Egs. (3.11) and (3.12)

el
2fg = s (3.14)

LONGITUDINAL SPHERICAL ABERRAT ION

The longitudinal spherical aberration AJ is found from Egs. (3.10)

and (3.11)

nmrl
4S |

using the series expansion for |y, and neglecting terms containing
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10.

fourth and higher powers of r.

Taking into account the conventional definition of the sign of AJ,
as expressed by Eq. (3.15), we note that the fields C(n) with n
negative and odd will have positive spherical aberration, i.e. zonal
rays will cut the axis closer to the centre of the field, than par=

axial rays.

The longitudinal spherical aberration constant Cg as referred to an

object at z+» is given by

Doy nmr2
7= LS
02 4s3L|f(nnr/L>
. : (3.16)
nwS

in which Eq. (3.5) has been used, and in a series expansion for |}
all terms containing powers of r higher than one have been neglec=

ted.

The relative longitudinal spherical aberration constant is given
by :

Cs 1
Cap Fige o

2tg" pg2

(3.17)

THEORET ICAL VALUES COMPARED WITH RAY TRACING RESULTS

The theoretical predictions of the above sections are compared in

Table (3.1) with the results of the computer ray tracings of Ch. (2)

14
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Table (3.1) Comparison of theoretical (Xth) and computed values & e

of Vre, Fe, 2d, and AJ for rays of different radii r. The ratio
(Xth=Xpum ! X+h 1s given. S = 0,02.
') 0,001m 0,004m 0,016m 0, 064m
X of \
Vie -4,0E-3 =4,0E=3 -4,0E-3 -4,0E-3
Ia N.A. A PEERD = o= -1 2Ea2
Zgr | % 1E-3 4,1E-3 4,1E-3 4,1E-3
Al N.A. 0,38 0,024 1,0E-3
Table (3.2): The ratios Rz and Ry for various values of n.
Radius r = 0,1 L
n Ro R3 R4 R2+R3+R4
¥
Cor-
Fagg 3 0 | -4,56x10"4 | -9,38x1076 | -4,65x10™4
Ted
by
means 5 0 | -1,26x10"3 | -6,77x105 | -1,33x10~3
of
B.C.(n) 7 0 -2,48x1075 | -2,55x10~4 | -2,74x1073
Uncor- L -2 -3 =5 —7
TR 1,23x10 4,11x10 7,60x10 1,65x10
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by quoting relative differences between the theoretical and numeri=
cal values, for various rays entering a weak field C(-1) charactes=

rized by S = 0,02.

CONDITION FOR NOUGHT SPHERICAL ABERRATION

From Eq. (3.11) and Fig. (3.1) it follows that if ail the rays cross

the axis at the same point,

—— = sin (-0Q) = ' (34518)
ng VZ

so that we require that

Veg O F k3.19)

for a field that shows zero spherical aberration. The conditfion
of Eq. (3.18) is valid for weak fields only, in view of the appro=

ximate nature of Eq. (3.11).

Replacing the Bessel function |y in Eg. (3.4) by its series expan=

sion, we have for any field C(n)

24212 4.4 .4
Vre=2|qm|%{{1+(”“2”+(”“2)+ ..... }» (3.20)
8L 1921
lo(nmA/L)
from which it can be seen that Eq. (3.19) will| be satisfied only if

all terms but the first in the face brackets of Eq. (3.20) can be
eliminated. We also note that i) the sign of vpe depends upon the
sign of n, and ii) the convergence of the series in Eg. (3.20)
depends upon nZ. if we aim to eliminate Third order spherical

aberration completely, we could superpose a field C(-1) and a
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12,

field B times C(n), with n positive and odd, and B a constant chosen
so as to equate the magnitudes of the terms containing rZ in the

given series.

Writing x = nr/L and y = mA/L,

2| | [ ~1qax) B I, (nx) ]

v +
re v IO(y) |0 (ny)

_Zq
= __J_lﬁl [ Lq€x) = B 1y (nxd ]
lo(y)

B Ig(y)

with D = _TETHVT

Replacing the Bessel functions |1 by their series expansions, and

simplifying :
o iR (1-Dn) +x2  (1-Dn3) w4 (1-Dn®) +x®  (1-Dn7)
re = Yy Toty) 8 192 9216

+ ...] {321 )

To eliminate the x2 term, we choose

1 -Dn2 =0

|o(n ™ A/L)
i.e. B = . i (3.22)
n” 1g(mA/L)

QUALITY OF CORRECTION

To evaluate the degree to which the spherical aberration has been

reduced, it may be helpful to investigate the contributions of the

Ch. (3)
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terms in the series of Egs. (3.20) and (3.21). Let R; be the ratie
of the i-th term and the first term in either of the expansions, and
let us investigate a ray of radius r= 0,1L. With D= 1/n3 it is
shown in Table (3.2) that correction by means of C(3) is superior to
C(5) and C(7). For a more complete elimination of the spherical
aberration, it would be profitable fo etiminate not only the third
order aberration, but higher orders as well; see Chs. (4), (7) and

(2.

12.1 Ray fTracing results.

The spherical aberration coefficient Cg has been calcula+ed from the
focal points of rays entering the field C(-1) + B.C(3) parallel to
the axis. Table (3.3) shows Cg values for various radii and values
of B. S = 0,02 for all the rays. It is seen that the uncorrected
field (i.e. B=0) shows a considerably larger aberration than the
corrected fields. From Eq. (3.22) we predict that the third order
spherical aberration should vanish with B=0,212 (for the expansion
radius A=0,2L), but the results in the table indicate a slightly

larger value, probably B=0,222.

EXISTENCE OF NEGATIVE SPHERICAL ABERRAT |ON

In Section (12) it was seen that the corrected field had values R3
and Ry which were negative. Investigation of Eq. (3.21) shows
that if D is gradually reduced, Ry, R3, Ry, etc., would in turn all
become positive. On the other hand, if D is chosen to be larger

than 1/n3, all the terms after the first in the expansion would be
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Table (3.3): The spherical aberration coefficient Cg as calculated from
rays of different initial radii r, passing through fields C(-~1) + R/ EE,
for various values of the amplitude factor B. The value B=0 refers to

the uncorrected field C(-1). S = 0,02 and A/L = 0,2.

B 0 0,212 W 0,247 0222
r
0,01 1,2x103 74 36 0,66
!

0,02 1,2x103 72 37 -1,0
0,03 1,2x10° 70 | 34 -3,8
0,04 1,2x103 66 31 -7,8
0,05 1,2x103 61 26 -12,9
0,06 1,2x103 55 20 -19,1

Chis (5



negative for all r < A. This implies that such a field would show
negative spherical aberration for all rays of 1 £ A . Table 351

also shows some negative values of Cg.

The existence of negative spherical aberration and the possibility
of reducing the spherical aberration of a positive lens by means of
a juxtaposed negative lens have been reported before [see Eh. )

for a discussion of current liTerafure].

In the solutions described in Sections (11) and (12), the correction
is not brought about by juxtaposing two fields, but by superposing

fields with divergent and convergent actions.

The presence of the conducting foils infroduces a discontinuity info
the field, and therefore the above results do not constitute a vio=
lation of Scherzer's Theorem [Scherzer (1936)] (which asserts the
impossibility of negative spherical aberration in rotationally sym=

metrical fields).

PHYS ICAL IMPLEMENTAT ION

A more complete discussion of the ways in which the field syntheses
may be brought about by physical electrodes is given in Ch. (4) but
by summary it may be stated that some fields may be obtained by
positioning relatively few (one or three) conducting electrodes
between the two outer earthed electrodes (type |), whereas in other
cases it is required to position a much larger number of ring elec=
trodes in the space between the central electrode and the outer

Ch. (3)
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earthed electrodes (fype [1).

Fig. (3.1) shows equipotential lines for the field C(-1) + 0,212 C(3
and it can be seen that the type || solution applies here. Ring
electrodes are shown by circles, and the suggested central electrode

by a heavy solid line.

LIMITATION ON THE EXPANSION RADIUS A.

For a field of type |l the potentials of the electrodes would be ob=
tained from a potential divider resistor chain, and it may be advan=
tageous to limit the electrode potential o one po|ari+y'only, SO
that all the potentials can be obtained from one power supply.

This will be the case as long as the constant B does not exceed a

certain maximum value By, and it can be shown that

By = 1 (3.23)
n
lg(nTAL/L) .
th - =
so that Eq. (22) becomes o (A7) n (3.24)

in which A, is the maximum expansion radius for physical configura=
tions of single polarity. SolQing Eq. (3.24) it is found that
A/l = 0,4517; 0,3302 or 0,2854 for n= 35 5 or 7 respectively.

On the basis of this information and the contents of Table (3.2) it
seems as if the choice of n = 3 would be the most advantageous for

weak fields.

Ch. (3)
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Fig. 3.1 Equipotential lines for the field C(-1) + 0,212 C(3) with A = 0,2m and L = 1,0m.

Only the left upper quadrant is given.



16.

CONCLUS ION

Both analytical predictions and ray tracing results point at i) the
possibility of reducing the Sphericél aberration by superposing cer=
tain weak Fourier-Besse! fields, and ii) the occurence of negative

spherical aberration values for some weak fields.

Because of the simplifying assumptions of Section (2), the theory of
this chapter cannot be expected to apply fo strong fields, and the
electron optical properties of the latter are found by computer ray

tracing, as is discussed in Ch. (4).
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CHRVRGE ER 4

SYNTHESES REPRESENT ING STRONG TWO-FOI|L LENSES W|TH REDUCED SPHERICAL ABER=

RATION, AS OBTAINED BY COMPUTER RAY TRACING

e

INTRODUCT | ON

In Ch. (2) it was seen that the basis fields C(tn) individually
showed large spherical aberration, Cg, and this was explained in
Ch. (3) for weak fields, by investigating the series expansions for
C(xn). In Ch. (3) it was also shown how a reduction in Cs could
result from combining ftwo basis fields. Only weak fields were
dealt with, and it was not possible to obtain small values for Cg
for paraxial and zonal rays simultaneously if the syntheses were

restricted to fwo fields only.

In this chapter an attempt will be made to obtain a reduction in
Cg for strong fields, and up to four fields will be allowed in order
to accomodate both paraxial and zonal rays. As in the previous two

chapters, the functions ¢n(r;z) are chosen with only the following

restrictions in mind :

i) the designed lens will be a foil lens and only parallel
plane foils are allowed (in view of the fact that plane
foils are much easier to produce than those of specified

curvature);

ii)  the lens will be symmetrical w.r.t. the plane z = L/2,
where L is the distance between the two foils (for simpli=

city we take L = Im in this study);
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i) the final field must be such that it can be approximated
by physical electrodes; therefore we exclude distribus=
tions containing terms Kg(r), the modified Bessel functions
of the second kind and of order zero. [See also Section
(4.1.6.1.1) of €h. (1) and Section (5) of Ch. (9)].

In later chapters, conditions i) and ii) will be dropped, allowing

open and/or asymmetrical lenses to be investigated.

The functions ¢(r;z) chosen in this study are the only basic solu=
tions of Laplace’s equation and the boundary conditions listed in
Section (2), and therefore the author believes that the required
potential field ¥Y-(r;z) (in our case the space charge free symme=
trical foil lens of minimum spherical aberration which can be

approximated by real electrodes) can be expressed as a superposition

[oe]

Yprlr;z) = zg: Brop(rsz) (4.1)

n=1
in the sense of a two-dimensional Fourier-Bessel expansion; and
that a suitable systematic procedure will allow the determination

of the constants Bn in the above series.

While recognizing that the syntheses obtained in this chapter are
not optimized, but only represent improvements on the field used as
a starting point, the author is, at the same time, of the opinion
that in some previous investigations the optimum distributions
could not be found, because of restrictions on the solution subsets;

the restrictions are introduced by the a priori choices of elec=

Ch. (4)
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trode forms (in some experimental studies) or classes of preferred

functions (in some theoretical studies).

|t must be reiterated here that the syntheses of this chapter are
obtained with only one objective in mind, namely the reduction of
spherical aberration in strong ftwo-foil lenses. This objective
has been chosen to illustrate the use of Fourier-Bessel methods,
and it may happen that the syntheses arrived at in the process of

reducing Cg, may have other lens aberrations with increased values.

POTENTIAL FIELDS AND SOME ELECTRON OPTICAL PROPERTIES

In Chs. (2) and (3) some electron optical properties were given of
symmetrical component fields
. lotnmr/L) _
Penirizd = C(n) =% TBTHFK7ET sin (nmz/L) (4. 23
where A is the expansion radius, lp is the modified Bessel function

of the first kind and of order zero, and n is an odd integer.

In Ch. (2) it was shown that the component fields of different n-values
but of equal power show different spherical aberration values, so

that the possibility seems to exist that components of different

n values and carefully chosen amplitudes may be used to reduce the

spherical aberration of the synthesis.

In Ch. (3) it was shown that an electron which passes through a
weak field C(n) with a z-velocity, Vz, will have a radial velocity

Vre and radial displacement §., at the exit given by :
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Vre = S vyl (nmr/L) (4.3)

L v

re
and 8o = (4.4)
re 2 VZ
where n is an odd integer, 11 is the modified Bessel function of

the first kind and or order one; and S is the ratio of the saddle
point potential to the kinetic energy of the particle in the field-

free region z<0 or z>L:

Therefore the weak lens condition for zero spherical aberration
Vpe O T (4.5)

is not satisfied, as is shown by the series expansion of ij:

g 3 3 T
I (nmr/L) = o { e BRI, ELE Z * ---} (4.6)
g2 1921

Egs. (4.3) and (4.4) were obtained analytically by assuming that

neither v, nor r changes appreciably as the electron passes through
the field, i.e. the field is relatively weak. See Section (11)

of Ch. (3).

For stronger fields the above assumptions are no longer valid, and
a rigorous analytical freatment does not seem feasible. However,
if we assume that r does not change appreciably, but that vy
varies, it is possible to find an expression for vre by analytical

integration, namely

2
T gn dH(e)l _ HA(r)
Vre an| S voli(nmr/L) [ Tt o] " 7B . (4.7)

for fields C(¥n); here vy is the value of v, outside the lens, and
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2|q] 1gtnmr/L)
H(r) = =& Fylmwe/l)

mvy Io(nnA/L)

This expression for vpe can not be expected to be sufficiently pre=
cise to attempt syntheses for strong lenses, but can serve as a

useful guide.

To establish whether the assumption that r may be considered con=
stant for purposes of Eq. (4.7) is a realistic one, rays were
traced by computer through a C(3) field, and vpe calculated for the

following cases :

a) both r and v, are allowed to vary;

b) changes in vz are suppressed during
computation;

c) changes in r are suppressed during compu=
tation.

In Fig. (4.1) the ratios

(Vrelb = (vrela
Ry Tvraly (4.8)

d R (Vre)c 5 | (Vr—e)a
an P = Vras (4.9)

are plotted against r;, the radius of the ray as it enters the
field. It can be seen that for the S = 0,01 case the rays b)
and c) correspond very closely to a), the correct ray, the Gaussian
focal length in this case is 20 L. For the field S = 0,05, which

gives a Gaussian focal length of 4 L, the correspondence between
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Fig. 4.1 The ratios Rl and R2 of Egs. (4.8) and (4.9) plotted for the

field C(+3) against the ray radius r; at z = 0.

Solid lines : S = 0,01 Dotted lines : S = 0,05
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b) and a) is still fair, whereas there is a rather large difference
between ¢) and a). it may be noted that the assumption that r
and/or v, stays constant will be useful for weak fields C(£n) with

even n but not with odd n; nor for fields resembling open lenses.

In view of The above consideration one may describe the exit radial
velocity by means of the following relationship

N i

Vre = l1(nmr/L) L A [Io(nﬂr/L)} (4.10)

i=0
in which the constant A; may be found by means of a least squares
procedure. For our present purpose Eq. (4.7) suffices and the
constants AQ and A] may be obtained from Eq. (4.7). The quality

of the fits are shown in Fig. (4.2) for N = 0, 1 and 2.

A similar description can be given of 8.5, the radial displacement

at the exit :

N i
&e = l1(nmr/L) zg: D; [Io(nﬂr/L)] (4.11)

i=0

REDUCT ION OF SPHERICAL ABERRATION BY SYNTHESIS

Our aim is to determine the constant in Eq. (4.1) so as 1o minimize
the spherical aberration. It is known that the spherical aberra=
tion is not a lens constant, and this study is |imited to

i) objects at z + — » and

ii} strong fields.

Ch. (4)
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First a sure must be defined to characterize the presence (or
absence) of spherical aberration. In principle the constants Aj

and Dj can be tabulated, since the longitudinal or ftransverse sphe=
rical aberrations (AJy or AJT) can be found from these constants.
Alternatively the polynomial expansion for AJ| or AJT can be given,
and the primary aberration constant Cg specified[éecffon (9% of

Ch. (2) ]. The latter approach is useful for the paraxial case, or
when the third order aberration predominates. In the present study,
however, the spherical aberration of low orders is reduced to such an
extent that several terms in the (possibly alternating) series will
have to be considered. This makes the comparison of various syn=
theses difficult, and therefore the disc of confusion itself is used

as measure of the quality of the synthesis.

Subsequent to ray tracing through a synthesized field, the radius
of the disc of confusion may be calculated for various planes z = 2i,
so as to locate the cross-over plane. The radius of the disc of
confusion in this plane is called R1,0(rp), the subscript indicating
that 100% of the incoming rays pass through this disc, assuming that

a parallel electron beam of uniform density and radius ', enters the

field at z = 0.

A plane may also be found in which the radius R0,66(rb) is minimized
(i.e. the radius of the disc through which 66% of the incoming beam
passes). It is obvious that both R1,0(rp) and Ro,66(rp) would

depend upon rp; therefore the radii may be calculated and plotted

for various values of ry.
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Fig. 4.3 The radii of the circles of confusion Rl,O and RO,66
for the field S5 of Table (4.1) plotted versus the

radius rp of the beam at z = 0.
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To show the extent to which the spherical aberration has been
reduced, the radii Ri 0 and RO,66 are also [see Fig. (4.3)] found
for the uncorrected field C(-1). Vo the z-velocity at z = 0, is

adjusted to obtain a focal length equal to that of the syntheses.

The ratios T1,O(rb) and TO,66(rb) are then calculated for the

various ry, with

Rp(rb) of the uncorrected field C(-1)

Rp(rb) of synthesis

1] (rb) -

(4.12)
D 2

The values of R1,O(rb) and TO,66(rb) are plotted against r, for
various syntheses in Figs (4.4) and (4.5), and may be taken as a
measure of the extent to which the spherical aberration of the

C(-1) field has been reduced.

THE OPTIMIZING PROCEDURE

Before the optimizing procedure can be carried out, an objective
has to be defined, which involves choosing a beam radius r
(depending upon the required aperture) and deciding whether 1.0

or TO,66 must be optimized. The expansion radius A of Eq. (2.2)
must also be chosen, as well as an approximate focal length. From
figures in Ch. (2) the amplitude of C(-1) can then be found, or the
initial beam velocity v, adjusted to obtain the focal length. (In
this paper the constants B are of the order of 1V. For practical
lenses, the constants would be multiplied by some suitably large

factor).
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Fig. 4.4 The ratios Tl,O and T0,66 of Eq. (4.12) plotted against
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Two procedures to accomplish the synthesis are now described.

4.1 Steepest descent method :

Component fields kn(C(n), with n = 3, 5, 7, etc., and k. small
fractions, are added to C(-1) one at a time and ray tracing carried

out by computer. The changes AT  for each of the perturbations

P
can then be found, allowing BTp/'c)kn to be calculated for

R =AE By V) S e These derivatives allow the calculation

of the gradient used in the steepest descent method. Due to the
high precision required in the calculation of the Rp(rb) values,
the calculation of the gradients may make excessive demands on

computer time, so that this method may not be very fast, especially

if some of the constants B, of Eq. (4.1) are fairly large.

4.2 The ®zone" method :

This is a trial and error method which can be used to obtain appro=
ximate syntheses fairly quickly, and which is based upon some under=

standing of Egs. (4.6) and (4.10).

I+ can be seen from Eq. (4.10) that v.o is proportional to a func=
tion which is almost a Bessel | function of r, so that the field
C(-1) will show positive spherical aberration (i.e. zonal rays have
shorter focal lengths than paraxial rays). We therefore want to
introduce perturbations that will increase the focal lengths of

the zonal rays, without affecting the focal lengths of the paraxial
rays excessively. Consideration of the terms in Eq. (4.6) shows
that this can be accomplished by using a field B3C(+3) for the
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correction of rays just outside the paraxial region; usually
0<Bz<1. For the zonal regions the fields C(5) or C(7) would be
more effective than C(3) in increasing the focal lengths, because

of the factor n? in the terms ndm4r4/192L% in Eq. (4.6).

One can therefore divide the region O<r<% into (fairly arbitrary)
"zones of influence" in which e.g. the fields C(3), C(5), C(7) and
C(9) are used for focal length reduction of rays in the zones

0<r<0,25 rp; 0,25 rp<r<0,5 rp; 0,5 rp<r<0,75 ry and 0,75 rp<r<ry,

respectively.

ConsTantsBB, 85, B and Bg are therefore chosen, and varied accor=
ding to the outcome of ray tracings by computer. The syntheses
Sas» Sp» Sc and Sq discussed in the next paragraph were obtained
after only a few adjustments each, requiring considerably less

computer time than the steepest descent method would have required.

DISCUSSION OF SOME SYNTHESES

Some electron optical properties of four synthesized fields are
discussed in This section. The syntheses discussed are given for
illustrative purposes only, and were arrived at within a few trials
with the "zone" optimization method. They can provide starting

points for a sTéepesT descent method. Some information about the

syntheses are given in Table (4.1), in which S5 is the (uncorrected)

tield 0,295 Cl=1).

Ch. (4)
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Table (4.1) : Some characteristics of the syntheses : the coefficients B, of Eq. (1), the initial

ray velocity vy, the Gaussian focal point ztg and the principal plane position, Zp-

e

(¥)

L6

Syn= B1 Bz Bs By By vo{m/s) Zgg(m) zp(m)
thesis :
S | 0,295 | -0,24 | 0,00]| -0,03 | -0,04 || 11,3380 4,242 | -0,0345
! ]
[ F B 1 oy
| S, 0,795 | -g;24 | 0,061 -0.03 | <630 1,3380 4,242 | -0,0346
S3 0,295 | -0,24 | 0,00| -0,02 | -0,40 1, 3380 4,242 | -0,0345
i
L — S NN S
S4 0,295 | -0,24 | 0,02| -0,08 | -0,40 1,3380 4,237 | -0,0346
i l .
tﬁ Sg 0,295 0,00 0,00 0,00 0,00 1,4545 4,263 -0,0362
- oy el . ey




5.1 Reduced disc of confusion

The values of Ry g and Ry g6 for S5 are given in Fig. (4.3), and

the ratios T1,O and TO,66 are shown in Figs. (4.4) and (4.5), for
syntheses S1 and S4, and S and S3 respectively. It can be seen
that very significant changes in the spherical aberration can be
brought about by rather small changes in the coefficients B, This
is illustrated graphically in Fig. (4.6) by plotting the function
Y(A,z), i.e. the potential at the expansion radius A, for each of

the syntheses.

Due to the close correspondence between the functions in the paraxial
region, the single heavy solid line represents the function ¥(0,x)

for each of the syntheses S;, Sz, S3 and S4.
Figs. (4.7) and (4.8) show the upper left quadrants of the fields
¥(r,z) for Sq and S, respectively. A discussion of the physical

approximation of these fields is given in Section (7).

5.2 Role of object position

Since the spherical aberration of a lens depends, i.a., upon the
object distance zy, one may expect a synthesis found by minimizing
the spherical aberration for zg » — «, to be non-optimal for other
object positions. Calculations have been made for T1,O for the
synthesis S4, with zg = 10L and 5L, and the results are given in
Fig. (4.8). It appears that the correction is effective in the

paraxial region for a wide variety of object positions, but that
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Fig. 4.6 The potential functionw(r,z) for various syntheses,

plotted vs. z.

(light) y(A,z) for S

__________ V(A,z) for

.................... V(A,z) fpr S

—————— (heavy) ¥(0,z) for
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this does not apply to zonal rays.

S Negative spherical aberration

Fig. (4.10) gives the longitudinal spherical aberration
A = ze(r) - z£(0)
for various syntheses and for the uncorrected field, as a function

of the radius r of the ray at z = 0.

[t can be seen that some curves show negative spherical aberration.

The possibility of obtaining negative aberration was predicted for

weak fields, but in the present study it was found fo be relatively

easy to obtain negative spherical aberration for rays of r<A, in

The case of strong fields as well, [see also Section (6)].

CORRECT ION OF SPHERICAL ABERRATION OF A GIVEN LENS

The spherical aberration of all open lenses (i.e. lenses not con=
taining thin conducting foils) seems to be positive. Because of
the ease of obtaining negative spherical aberration in the foil
lenses described above, it seems To be possible to use suitably
designed foil lenses fo correct the spherical aberration of exis=

ting lenses, if the vpe vs.r and 6rg vs.r characteristics of the

given lens is known. The optimization procedure of Section (4)
can still be used, the only difference being that the rays entering
the field being synthesized will now have a certain known radial

velocity distribution in need of adjustment.

Ch. (4)
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Fig. 4.7 Upper left quadrant of the field Y(r;z) for synthesis Sl,
showing cross-sectional equipotential lines.
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T also seems possible to obtain a synthesized field which will show
zero (Gaussian) convergence, but only the required negative spheri=
cal aberration. |f placed behind a given lens, such a lens would
correct the spherical aberration of the given lens, without affec=
ting its (Gaussian) focal length. Syntheses of this type are also

discussed in Ch. (7).

PHYS|CAL |MPLEMENTAT ION

The ways in whiéh the mathematical fields discussed above can be
obtained by means of physical electrodes, were discussed in Chs. (2)
and (3) as far as relatively simple fields are concerned. The
fields of the syntheses S{ - S4 can again be obtained by means of

a large number of metal ring electrodes of radius rg, with A3rg3ry,

the aperture radius. Alfernatively a field like that of S
[Fig. (4.7)] can also be obtained by relatively few electrodes, in

the following way :

i) an electrode at OV is positioned as shown
by Ps, Pg, P7; it may touch or be integrated

with the plane electrode at z = 0;

ii) an electrode is placed at the 0,250 equipo=
tential surface; if a smaller aperture at
z = L/2 can be tolerated, a lower equipoten=

tial surface may be chosen;



0.7m

Fig. 4.8

20,02

0,250-->

04m

Part of the upper left quadrant of the field y(r;z) for the

synthesis 52, showing cross-sectional equipotential lines.
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iii) as far as the region between the above elec=
trodes is concerned, there are the alterna=
tives of positioning two electrodes (e.g.
0,00 and 0,08) or choosing the unique sur=
face (0,063) passing through the off-axis
saddle point Py (strictly speaking, this is
a saddle line). Although the part of the
electrode between P1 and r = A is the more
important part of the electrode in defining
the potentials in the region r<A, it would
be advisable to suspend the electrode by
means of the curved part passing through Pp.
A slit or holes are made in this electrode
to allow the suspension of the central

(i.e. 0,250) electrode to pass tThrough.

It may be noted that a further off-axis saddle point is located at
P4, but it does not seem to be useful for purposes of electrode

design.

|+ should also be noted that in the design of the electrodes it is
important o minimize the gap sizes between the electrodes, at r = A.
For sufficiently small gaps tThe potentials in the lens region should

be a fair physical approximation of The synthesis.

To illustrate how the electrode shapes for the various syntheses

differ, part of the left upper quadrant of the S, synthesis is
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shown in Fig. (4.8).

The dashed |ine P{P3 [in Figs. (4.7) and (4.8)] is given only to
show the equipotential surface and does not form part of a physical

electrode.

An important consideration in the design of lenses is that of
reducing the maximum electric inftensities between the electrodes,
wherever possible. |f the equipotential curves of Figs. (4.7) and
(4.8) are studied, or the potential functions of Fig. (4.6), it can
be seen that the potential gradfenTs appearing in the syntheses are
far in excess of the values found in the S5 (i.e. uncorrected C(-1))
field. It seems as if the correction of spherical aberration is
accomp | ished at the expense of freedom in choosing high electrode

potentials or small lens dimensions.

CONCLUS [ON

A method has been described which allows the design of electrostatic
foil lenses of rotational symmetry in a systematic way in terms of
superposed basic Fourier-Bessel potential fields. As an example

it was shown how the spherical aberration of foil lenses can be

reduced significantly by

i) allowing electrodes of curved cross
sections and/or
it) allowing more than one central electrode

and/or
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Fig. 4.10 The longitudinal spherical aberration AJ plotted against the radius
of the ray at z = O.
Solid lines : syntheses Sl - Su.
Dotted line represents 0,1A3 for SS’ the uncorrected C(-1) field.
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iii) allowing both positive and negative

potential regions within the lens.

The syntheses of Section (5) could be obtained by means of the opti=
mization methods described, because a relatively small number of
coefficients B, had to be accommodated (a larger number of coeffi=
cients would have resulted in superior syntheses by means of the
gradient method, but would at the same time have required more com=

puter time).

When dealing with open lenses, it will be shown in Chs. (5), (6)

and (8) that these lenses cannot be represented by a series trun=

cated after a small number of terms. It therefore appears as if a
different approach will have to be followed when optimizing open
lenses.
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CHAPTER 5

MODELLING OF OPEN LENSES BY MEANS OF FOURIER-BESSEL SERIES

The preceding three chapters dealt with some electron optical properties
of two-foil lenses. To study one-foil lenses or foilless systems, a new
type of representation in terms of Fourier-Bessel functions will have fo
be found, and this chapter discusses one such a solution, in which both
lo and Jg Bessel functions appear. In Ch. (6) a solution is discussed
which can be considered to be a variant of the present solution, and
which has a number of advantages as far as the modelling of lenses is
concerned. For the modelling of mirrors, the solution given in this
chapter is probably superior to that of Ch. (6). Yet another approach
is that of Ch. (8), in which a solution of the inverse interior Dirichlet

problem is given.

In this chapter a solution ¢(r;z) is given of a rotationally symmetric
boundary value problem : ¢(A;z) = 0 for z<0 and z3L; and ¢(A;z) = F(z)
for 03z3L. A and L are given constants and F(z) is a given function
which is symmefr{cal with respect to the plane z = L/2. The solution is
in the form of an infinite Fourier-Bessel series, the coefficients of
which can be found without inverting matrices. It is shown that the
given field can be approximated physically by means of two long equipoten=
tial cylinders and one or more central electrodes of curved cross section.
Since the electric intensity is also known at all points, the solution
allows a precise determination of the electron optical properties of a

wide variety of electrostatic Einzel lenses with curved electrodes.

1. INTRODUCT | ON

Fourier-Bessel series solutions of the electrostatic fields in
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the vicinity of certain simple configurations with rotational
symmetry have been known for some time. Examples are pairs of
equidiameter coaxial cylinders of finite or infinite length and
negligible separation [Weber (1950)], a pair of thin apertures of
equal diameter [Read (1969a)], three thin apertures [Read (1969b
and 1970)], a pair of equidiameter coaxial cylinders with finite
separation [Read et. al. (1970] and three equidiameter coaxial

cylinders with negligible separation [Werner (]971)].

If used in electron optical design, the above configurations do not
leave much freedom to change the form of the image forming field.
By allowing the central element of a lens to be curved, more free=
dom is gained, but it appears that most investigations of this
nature have been |imited to the two-foil lenses described in

Chs. (2) to (4) as well as by Wittels et al. (1976), in which case
the presence of the thin conducting foils constitutes a limitation

to practical applications.

In this chapter a solution is given for an open configuration (i.e.
absence of thin foils) which allows curved central elements to be
introduced. Another feature of this solution is that it is analy=
tical in the sense that no matrix inversion need be carried out
(required in many of the cited papers because collocation require=
ments result in a set of simultaneous |inear equations). This
results in minimal computer requirements, allowing electric poten=
Tial or intensity calculations to be carried out even on desk top

computers.
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BASIC SOLUTIONS :

In the absence of space charge, Laplace's equation for rotational
symmetry is :

3%¢

1.2 2. 28

r or or 9z

=0 (5.1)

We are interested in solutions of the form ¢ (r;z) = R(r)Z(z),

satisfying certain boundary conditions :

Solution "B"
let ¢ = 0 at z=0and z =L (5.2a)
and ¢ = F(z) at r = A, O<zgL (5.2b)

F(z) is a continuous function.

Then

olr;z) = E B litrmrfL) sin (nmz/L)
e ¥ r<A
n=1 Io(nnA7L)

(5.3)
where |g is the modified Bessel function of the first kind and of

order zero. The coefficients are obtained by Fourier analysis

at r=A :
L
B =2 ( F(z) sin (nmz/L)dz (5.4)
L
0]
Solution "E" :
let ¢ = 0O at r =A
and ¢ = f(r) at z = 0 {5,5)
then
$p(r;z) = ZE: Enexp(—AOnZ)Jo(Aonr) ¥ r<A (5.6)

n=1

where the consTanTSAon=Zon/A, ZOn are the solutions of Jg(z) =
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The coefficients may be found by Fourier analysis at z = 0 :

A
2J Ff(r) Jghgr)dr
0

E.Cie (5.7)

n

A% [41 gt ] 8

Jo and Jy are the ordinary Bessel functions of the first kind and

of orders nought and one, respectively.

Solutions by superposition :

We now consider [see Fig. (5.1)] three coaxial regions in space,
and propose the following solutions (superpositions of solutions
of types "B" and "E") which are chosen so as to make the potential

function ¢(r;z) continuous at the boundaries between the regions :

Region I. For - o<z <0 :
9| = ZE: Endo{Agnr) [exp(xonz) + exp[+Aon(z-qu
n=1 (5.8)
Region [1. fior 0= z'<€ L3
= lo(nmr/L) sin(nmz/L)
¢ = ZE: By To(nmA/L)
n=1
+ ZE: Endo(Agnr? [éxp(—konz) + exp[—xon(L—z)ﬂ
- (5.9)

Region |11, Fer L.€ & & o=

iy = ZE:: Endo(Aonr) [exp(—AOnz)-+exp[-k0n(z-L)]]
n=1 (5.10)
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|+ can be seen that ¢| = ¢|| at z = 0

and that by = ¢||| at z = L (5.8)
We must note here that the same coefficients E, appear in Eqs. (5.8)
and (5.10). This implies that the function F(z) of Eq. (5.2b) must

be symmetrical w.r.t. z = L/2, so that Bp = B4 = ... = O.

FORMULATION OF THE PROBLEM :

Suppose that the following potential fields are applied by means of

external electrodes [see also Section (5)]:

¢1(A;z) = 0 for z £ 0
o)1 (As2) = F(z) for 0 < z < L
¢ gy lhszi = 0 for z 2 L (5.11)

For any given continuous function, F(z), Eq. (4) may be used to
obtain the coefficients B . The type "B" part of the solution is,
therefore, known. Since the function f(r) in Eq. (5.7) is, how=
ever, not known, the Fourier analysis of Eq. (5.7) can not be
carried out, and we have to develop an alternative method to cal=

culate the coefficients Ep. The potential ¢(r;z) would then be

known in all three regions.

Determination of Ep:

Two relationships may be used to determine the coefficients E,.
An integral relationship, derived by applying Gauss' Theorem, is
given in Section (4.1). A differential relationship is derived

in Section (4.2) by requiring that 3 ¢ / 9 z be continuous at z = 0
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and z = L.

Although both relationships allow E, to be calculated by means of

Fourier analysis, the second one requires less computation.

4.1 Intfegral relationship used in determination of Ep.

An identity involving the coefficients E, may be derived by apply=
ing Gauss'sTheorem to an infinite cylinder (coaxial with the
defined fields) of radius r < A. Because the cylinder contains
no charge, the total outward flux should be zero, for all r < A.
The flux entering the cylinder is caused by the type "B" solution,

and the flux leaving the cylinder is caused by the type "E" solu=

tions.
Therefore :
. L
j;— B, . 18 I](nﬂr/L) sin(nmz/L) dz
P L lo(nwA/L)
0
®© L
= -4 ZE: En 2mr Aond(Aonr) o Aonz dz
n=1
0
¥r <A,
1. ;{: End1(Agpr) = 2 Zg: Bn 11(nmr/L)
n=1 n=1,3,5 To(nmA/L) (5.12)
Simpler final expressions will result if we change to a new varia=
Ch. (5)

115



bie, p = r/A. Therefore :

Z End1(Zgnp) = 4 g L HEARL) W0 q (5.12a)
’ [o(nTiA/L)
n=1 n=1,3,5
= g(p), say,

There are various ways in which the E, may be found.

4.1,1 Determination of E, by matrix inversion.

One may write down series expansions for the left and right hand
sides of Eq. (5.12) and require that the coefficients of r, r3,
ro, etc., match. The result is an infinite set of equations in

an infinite number of unknowns :

zg: e (=) NL gy 520 —
n - .
On 215(MA/L)

Alternatively m values may be chosen for r, and substituted in

Eq. (5.12). The point testing will result in m equations in an
infinite number of unknowns. One may set Ep = 0¥ p > m/k where
m is some chosen value which depends upon the precision required,
and k is a constant which determines to which extent the resulting
set of simultaneous linear equations will be overdetermined; k > 2

is normally sufficient [Read (1969a) and Wittels et. al. (1976)].

The following set of equations is then solved in a least squares

sense @

Ch. (5) 116



B | (nTA p./L)
S Eh@uep =t ) B U J (5.13b)

<iar o Io(nﬂA/L)
where j = 1, 2, ...... m
4.1.2 Direct determination of E

A difficulty encountered in the solution of Eq. (5.12) is that the

functions J1(Z np) are not an orthogonal set of functions, due to

0

the fact that the constants ZOn are not the zeros of J], but of JO'

Therefore a Fourier analytical determination of the En[rnul+ip|ying

by pJ1(ZOnp) and integrating between 0 and 1] is not possible.

We therefore first establish a set of orthonormal functions V, in

the following way :

n-1i

Let : Vp(p) = I Gy V;(p) + Gpody(Zg,e) (5.14)
i

J

in which the constants Gij have to be chosen so as'To

(i) orthogonal ize the set of functions VJ on the interval
(0;1), and
(ii) normalize the functions on the interval (0;1) : i.e.

1
( Vi(p) VJ(p) dp = sij
0

The constant Gij can be found by computer by means of a Gram-Schmidt

orthonormalization procedure. In this procedure the values of the

integral
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1
o =f0 31(Zgi0) I4(Zg0) dp ¥i,J. (5.15)
are required, and a series expansion is given in Appendix (1), in
which tables of numerically integrated values are also found.

Examples of the coefficients G;. are given in Table (5.1).

J

The orthonormal set of functions Vi, now allows a Fourier series

expansion for g(p), namely :
(p)= s;— HV (p) (5.16)
gip ik n'n'P

in which the coefficients H, may be found from

]
H, = Jf g(p) Vn(p) dp (5.17)
0

The procedure may, however, be streamlined by expressing the

functions V, (p) in terms of Bessel functions only :

n
Vg = 2{: FniJ1(Zin) (5.18)
|=
wiTh Fii = Gli ¥ i
o
and Fij = j{: Gik ij ¥i#]
k=1

[Values of some Fij are |isted in Table (5.2)]

The calculation of the coefficients H, s now simplified :
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Table (5.1)

Coefficients Gy

| B
\\?\\i ! 2 | 3 4 5
gl i L |
|
1 2,214274000 0 g 0 0
2 0,315389502 -2,8382584261 0 0 0
3 0,108749122 —0,429911485i -3,399280258 | 0 0
|
4 0,083597809 | =0,202562699 | -0,477326603 | -3,889315045 | 0
L 5 0,047408055 | -0,151191597 | -0,251407231 | -0,503071876 |-4,327159257
Table (5.2) Coefficients Fij
A SR
1 2 3 4 5
1 | 2,214274000 0 0 0 0
2 |l 0,698358774 | -2,838258426 | 0 0 0
1 :
3 -0,059432104 1,220199894 | -3,399280258 | 0 0
4 0,072015541 | -0,00750858 1,622566897 | -3,889315045 | 0
5 -0,021898888 0,126131105 | 0,038334866 | 1,956605014 | -4,327159257
Table (5.3) Values of i as defined in Section (6)
zZ
r 0,6 0,8 1,0 i,2 1,4 1,6 1,8 2,0
\4_ » i
0,0 ‘ 5 9 60 9 6 4 4 3
0,4 5 7 2z , 5 4 4 3
0,8 5 7 20 7 5 4 4 3
Ch. (5)
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H = F . W, (5.19)

in which

W, = J( g(p) J1(Zin) dp (5.20)
0

The evaluation of the integral in Eq. (5.20) may be carried out
numerically but series expansions for wi for some simple functions

g(p) are given in Appendix (1).

The coefficients E, may now be calculated from Egs. (5.12a), (5.16)

and (5.18)

E, = j{: HiFin (5.21)

I=n

4.2 Differential relationship used in determination of E..

As an alternative to Eq. (5.12) we may require that 3 ¢/3 z be
continuous at z = L (or at z = 0). (This condition may be derived
by applying Gauss' Theorem to a coaxial ring-like surface placed at

L). After simplifying,

Z.‘-‘
= B, nm I, (nmr/L) =
:{: & :E: Zho Bty B (5.22)
= L 1g(nmA/L) oy
¥r <A

4.2.1 Determination of E,

Although a point testing technique [similar to Section (4.1)] may
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be applied, finding En by matrix inversion, one may profitably make
use of the orthogonality of the set of functions JO(XOnr), and

solve for E, by a conventional Fourier analysis. The result is :

B. Jm A

En =

2 . 2
o1,3,5: .. B HGLITER G, [4,g,0) “J0 (5.23)
The integrations of Eq. (5.23) may be done numerically, but a series

expansion is given in Appendix (1).

PHYSICAL APPROXIMATION

It has been assumed up to now that a potential field ¢ (A;z) ¥ z is
applied by means of external electrodes. The values ¢(A;z) = 0
for z < 0 and for z > L are applied by means of two coaxial cylin=
drical earthed electrodes. The application of the potential func=
tion ¢ (A;z) = F(z), 0 < z < L[ see Egs. (5.2b) and (5.9&, is more
complicated, and three methods are suggested :

(i) A set of coaxial conducting rings of radii A may be
positioned between z = 0 and z = L, with the required
potentials supplied from potential dividers; an experi=
mental study of the electron optical properties of the
fields created by various potential functions F(z) can be

carried out in this way to compare with the computer

predictions.

(in) A cylindrical electrode with a resistive layer on the in=
side surface may replace the rings of i); the thickness

of the film is a function of z, so as to result in a

Ch. (5)
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(iii)

it we take

potential distribution F(z) if the film is earthed at
z=0and z = L, and a fixed potential is applied to the

layer at z = L/2.

A more practical approach involves the field ¢ (r;z) in

the region r<A, 0<z<L, rather than .he field F(z) itself.

For any given symmetrical [see Section (2)] function

F(z) = ¢ (Ayz), we make use of Egs. (5.9) and (5.21) to

find ¢ (r;z) for r <A, which allows us to draw equipoten=

tial surfaces in Region |l of Section (2). A suitable
equipotential surface is chosen and a physical electrode
positioned as to coincide with This surface [;hown in
Fig. (5.2) as the heavy Iine]. Close attention must be
paid To the gaps between the electrodes, so as to ensure
that the potential function ¢9 found in the gaps matches
the required function F(z); otherwise the solutions of
Egs. (5.8), (5.9) and (5.10) will not be applicable.
This may be accomplished by also considering the poten=

tial ¢,y In region IV (i.e. 0 <z <L, r > A). oy

will satisfy Laplace's equation and the boundary condi=
tTions
¢ (riD) w @ (ril) a0 ¥r > A (5.24a)
¢ (Asz) = F(z) &g €0 (5.24b)

@ s

B Ky(nmr/L)  sin(nmr/L)
dyylr;z) = Z (5.25)
e Ko(nﬂA/L)

Ch. (5)
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L/2 L z

Fig. 5.2 Equipotential lines for f(z) = sin(mwz/L) and L = A = 1,0.
Only the region z>L/2 is shown.

Ch. (5) 123



where K0 is the modified Bessel function of the second kind and of

order zero.

The dotted lines in Fig. (5.2) show equipotential lines of a cross
section of ¢y, and the heavy dotted |ine shows how the physical
electrode should be continued into region IV. One or more shiel=
ding electrodes may also be positioned to coincide with any of the
equipotential surfaces represented by dotted |ines terminating aft
poinfs in the gaps. This will ensure that g matches F(z), as long
as the support of this electrode does not cause excessive devia=
tions from ¢ |y as given by Eq. (5.25). In the event of-a miss=
match, a reduction in the size of the gaps (i.a. through a judicious
choice of the ratio A/L) will ensure that the potentials in the

paraxial regions are not affected excessively.

The ftwo parallel plane equipotential surfaces of Eq. (5.24a) may be
replaced by a single curved electrode which follows any of the dot=
ted equipotential lines representing a sufficiently low potential.

Holes (or a slit) in this electrode allow the supports of the cen=

tral electrode to pass through.

If the above precautions are taken, the physical configuration
should be a fair approximation to the mathematical model of Egs. (5.8),

(5.9), (5.10) and (5.11),

PRECISION

The potential ¢(r;z) is given by two series, involving the Bessel
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functions IO and JO [Eqs. (5.8-5.10)]. The function F(z) would
normal ly [see Section (7)] be a superposition of a few chosen tri=
gonometrical functions, so that the 'O series would be a finite

one. We therefore consider the convergence of the JO series only.

The convergence of the JO series depends upon i) the values of the

coefficients En and ii) the position of the point (r;z).

Due to the exponential functions the series converges very fast for
all |z| >>L; on the other hand, convergence is slowest for the
points (0;0) and (0;L). This is demonstrated in Table (5.2) for a
configuration with A = 1, L = 1 and F(z) = sin(llz/L). Let T;
represent the i-th term of the series, and

Tl
[

e T

i
i

Ri =

The numbers in the table are the values of i for which Ri < 10-3,

It is found that this series altfernates for points (r<<A;z) but
does not alternate for points (r = A;z). The method applied to
accelerate convergence would therefore normally depend upon the

position of the point.
For an alternating series an Euler transformation may be used to

advantage, and a relative precision of 106 may be reached with

18 terms at the points (0;0) or (0;L).
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For some combinations of fields F(z) and values of A it may be
found that convergence of the series at (rj;z = 0) or (r;z = L) is
too slow to be acceptable [e.g. requiring values of E, which may
not be available from values of integrals tabulated in Appendix

(1)]. For such points one may either perform a bivariate inter=

polation of suitably high degree, or carry out a finite difference

relaxation procedure in a selected part of the field, or make use

of a Taylor expansion

= (zzg)d adetrszg)
¢(rsz) = Z{: -
=r ! 3z

o

= (z- zO) j
. 21_ ii: Edo(Zogr/A) (Zg /A)

=0 > n=

C_.

X [éxp (=Z5,20/A) + exp[—ZOn(zO—L)/A]]

where, e.g. Ay 108 mng 2+ L

The precision of ¢(r;z) would also depend upon the precision of the

coefficients E;, and therefore care should be taken to evaluate the

integrals of Eq. (5.23) sufficiently precisely.

IMPLICATIONS FOR ELECTRON OPTICAL DESIGN

The main advantage of the Fourier-Besse! series approach in solving
this field problem is that the electron optical properties of elec=

trostatic fields corresponding to certain basic mathematical fields

may be sfudied individually or as perturbations, and syntheses

obtained in a systematic way [as In Gh. (4)] so as to optimize
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certain electron optical properties. One may, for example, in=
clude the fields ¢,(r;z) resulting from the applied potential
functions F(z) = £ sin (mz/L), % sin (3mz/L), etc., in the synthe=

sis in an attempt to obtain an Einzel lens with certain specified

electron optical properties.

Further advantages are that the boundary value problem can be solved
to the required precision with a minimal amount of computation com=
pared to, e.g., the iterative methods; and no interpolation is
required when calculating frajectories, because the field is known
at all points. (When used for ray tracing, however, one would
normal ly calculate ¢ and some derivatives at regular grid points,
and store these matrices on disc for various functions F(z). Syn=

thesized fields are then obtained by matrix addition).
T may also be noted that series expansions exist for the deriva=
tives 3"9/3z" and 3"¢/arN of all orders, allowing the use of high

order trajectory calculations. [Dirmikis et. al (1975)]

7.1 The introduction of apertures

If thin grounded coaxial discs with aperatures of equal radii

rs < A are introduced at z = 0 and z = L, Egs. (5.12) and (5.22)
apply only to r<ry. For r>rg, ¢(r;0) = ¢(r;L) = 0, The author
has not succeeded in obtaining a direct solution for this configura=
tion, although a least squares solution seems feasible, by means

of a point testing procedure which involves Eq. (5.8), (5.9) or
(3.10} for r2r,, and Eg. (5.12) ar (5.22) for r<ra. This problem
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requires some further investigation as does a relafted proiiem in
which the central cylinder has a larger radius than the outer

cylinders [Yeh (1975 and 1976)].

7.2 Asymmetrical Fields

Fields similar to those found in immersion lenses and image intfen=
sifiers may be treated by a modification of the method described

here, and will be discussed in a future paper.

CONCLUS ION

A Fourier-Bessel series solution can be found for certain Einzel
configurations. The method is a direct one, and no |imitation
has been found on the precision that can be reached. The method

can be applied to advantage in electron optical design.

In the next chapter another solution to the same boundary value
problem will be presented; the solution may be considered to be
a variant of the present one, and offers some advantages when

lenses rather than mirrors are model led.

Ch. (5)

128



GH AP T ER 16

FOURIER-BESSEL SERIES SOLUTION OF POTENTIAL FIELDS WITH ROTATIONAL

SYMMETRY, IN TERMS OF 1 BESSEL FUNCTIONS

The Fourier-Bessel series representation of open electrostatic configura=
t+ions discussed in the previous chapter is more suited fo the modelling
of electrostatic mirrors than of lenses. One reason is that the lens
region is divided into three parts, each having its own solution. The
second is that for the central region, both lg and Jg functions appear

in the series, and a third reason is that the convergence of the series

is rather slow in some regions.

In this chapter a solution for the modelling of closed, semi-open and
open configurations is discussed, in which tThese disadvantages have been
eliminated. A Fourier-Bessel series representation in terms of I
Bessel functions is given for the potential distribution in certain open
Einzel or immersion type electrostatic configurations with rotational
symmetry described by ¢(A;z) = F(z), 0 <z < L; and ¢(A;z) = 0¥ z< O
and ¥ z > L. F(z) is a given function and A and L are constants. The
method is a direct one — no iterations or matrix inversions are required —
and a superior rate of convergence in the paraxial region is achieved
through the elimination of J, Bessel functions. The precision reached
is apparently |imited by the computer word tength only, programming is
of a simple nature, and computer memory requirements are modest enough

to allow implementation on small desk top computers.

1 INTRODUCT ION

The analytical determination of the coefficients of Fourier-Bessel
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series representations of the electrostatic potential or intensity
fields in the vicinity of certain simple configurations of electrodes
with rotational symmetry has been reported in several papers [Gray
(1939), Weber (1950}, Choriton (1968) and Werner (1971)]. [T has,
however, been found that the analytical determination of the Fourier
coefficients tends to be cumbersome, unless the electrodes have
simple shapes and/or are small in number and/or have negligibly
smal|l gaps between the electrodes. Relaxaffon of these restric=
Tions have been brought about by calculating the coefticients by
computer, and solutions have been published for some closed and open
configurations [Read (196% , 196%b , 1970), Read &af al, (1970),
Wittels et al. (1976), Yeh (1975 , 1976 and 1977), Andreev

et al. (1976), Mel'nikov (1971), Anicin et al. (1976) and Cook

et al. (]976)]. A solution resulting in one or more inner elec=

trodes of curved cross section, was discussed in Ch. (5).

In the latter case the solution contains both the unmodified (Jg)
and modified (lg) Bessel functions of the first kind and of order
zero. [ Since lo{x)=Jg(ix), possible misunderstanding is eliminated

by restricting the arguments of Bessel functions *o real

values only.]

Although the expression of the fields in terms of Jg functions may
be of use in understanding the properties of the fields in the outer
regions, it would offer several advantages if a series representas=
tion can be found from which the Jo fields have been eliminated,

since this may result in the simplification of various calculations
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connected with electron optics.

FORMULATION OF THE BOUNDARY VALUE PROBLEM

Let ¢(r;z) be the potential at a point (r;z) w.r.t. a cylindrical

polar coordinate system, and consider the following boundary value

problem :
d(A;z)=F(z) for 0<z<L (6.1)
¢(r;0) = ¢(r;L) = 0 for O<r<A {G2)

Since the solution of the boundary value problem is needed for
electron optical purposes, we restrict F(z) to funcTions.ThaT can
be approximated by, or be associated with, configurations of physi=
cal electrodes. |+ can therefore be expected that F(z) satisfies
the Fourier analytical Dirichlet conditions, so that it can be
represented by either a Fourier integral (for L»«) or a Fourier
series (for finite L). For most functions F(z) the evaluation of
the Fourier integral will be carried out by computer, involving a
numerical integration which closely resembles the computer evalua=
tion of a Fourier series [see also Section (11)]. For the present

discussion we therefore limit L to finite values, in which case

[ o]
F(z) ~ ;E: By, sin(mmz/L) (6.3)
m=1
with
L
By, = %-'f F(z) sin (mmz/L)dz (6.4)
0
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The potential ¢(r;z) is then given by

|
¢(r;z) ~ B o (mmA/0)

O(mﬂr/L)sin (mmz/L)

(&6.5)

m=1
which is a convergent series if the series of Eq. (6.3) is conver=

gent, since lg(mur/L) < lg(mwA/L) ¥ <A,

It will be shown in the next section that the solution given by
Eq. (6.5) can also be used to approximate the solution of the
following boundary value problem:

$(A;2)=F(z) for 0<z<L (6.6)

¢(A;2)=0 for z<0 and z>L (6.7)

This boundary value problem describes "open" electrostatic lenses,
in contrast to the "closed" lenses of Eqs. (6.1) and (6.2). In
this paper the terms "open" and "closed" lenses refer to the ab=
sence or presence of conducting electrodes at z=0 and z=L; wheres=
as charged particles have to penetrate thin conducting foils when
entering and leaving closed lenses, open lenses have extended re=
gions on both sides where V¢ is negligible as far as the electron
optical properties of the lens are concerned. The conditions
under which the solution of Eq. (6.5) applies to open lenses will

be discussed in the next paragraph.

Finally it may be noted that, since the open lenses of Eqs. (6.6)
and (7) may be closed off by conducting electrodes at z + —= and

z » + », the region r<A is still fully enclosed by a boundary with
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a)

b)

specified potential values, so that the problem is still a conven=

tional interior Dirichlet problem.

APPLICABILITY OF SOLUTION TO OPEN LENSES.

Consider a field ¢(r;z), represented by Eq. (6.5) and which has the

following property :

Vv ¢ (r32)] <€ (6.8)
for all r and for 0<z<(L -Lg)/2 as well as for (L+Lg)/2<z<L where
€ and Lg are constants, the weles of which are determined by the
nature of the boundary value problem and the precision Té which

¢(r;z) must be found (see following sections). For the present

let us assume € = 1077 max | (¢(r<A3z)| and Lg 24A.

The the following can be postulated : If L is sufficiently larger

than Lg, then

the conducting electrodes at z=0 and z=L together with the charges
induced on their surfaces may be removed without causing a signifi=
cant change in the potentials in the region (L-Lg)/2<z<(L+Lg)/2,

or

if the problem is reformulated in terms of images, rather than in=
duced surface charges, the charge distributions giving rise to the
potential fields given by Eg. (6.5) for the regions z<0 and z>L

will have no significant influence on the potentials in the region

(L-Lg)/2<z<(L+Lg)/2, and may be neglected. The boundary conditions
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of Eq. (6.7) will therefore apply :
d(A5z) = F(z)=0 ¥ z<0 and z>L

PROOFS

Proofs of varying mathematical rigour may be given for the postu=
lates [e.g. showing that Eq. (6.5) represents an approximation
to the Fourier integral solution tfo Thé boundary value problem
defined by Eqs. (6.6) and (6.7)], but for the sake of brevity the

fol lowing arguments from electrostatics theory are given :

i) Conducting electrodes are superfluous if no free or induced
charges are found on them; since |Y¢|<€ at z=0 and z=L,
these electrodes may be removed. This is equivalent to
stating that the image charge distributions may be neglec=
ted as far as potential calculations in the region 0<z<L,

r<A are concerned.

ii) The potentials at the ends of a conducting ftube of radius A
and length L+ have negligible influence on the potentials at
the centre of the tube if the ratio Ly/A is sufficiently
large. This can be shown by Investigating the analytical
solution [Chorlton (1968)] to the boundary value problem

¢(r;0)=C=0(r;L+) ¥ r<A and ¢(A;z)=0, 0<z<Ls:

o

¢(r;L+/2) = :g: 2En JO (Anr) (6.9)
n=1

2 ol sinh(knLT/ZA)

in which E_ =
n i
AAn smh()\nLI/A).J

1()\n)
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and An is the nth zero of Jo(z) [Abramowifz et al. (1970)].
Table (6.1) gives ¢(O;L+/2) as a function of L+, for A=C=1,0

For L+/A>>l, the following approximation is useful

2 C exp (—A1L+/2A)J0(A1r)

o(r;Ly/2) = AX T X))

Although the use of Eq. (6.5) as a solution to Egs. (6.6) and (6.7)
may seem plausible in view of the given postulates, it must still
be shown that sufficient precision can be obtained without undue

computational effort.

THE RATIO L/Le

Eq. (6.8) defines Le to be a measure of the physical extent of the
region (the so-called lens region) where the magnitude of the
gradient of the potential is not negligible (i.e. > €). Since

the value assigned to € depends upon the precision required for the
electron optical calculation, the value of Le is affected by this

choice as well.

To complicate matters, the relationship between Le and € is no
simple one; in Ch. (5) it was shown that for a given function F(z)
a representation can be found for € as a series of exponential
functions and only for large values of z can € be approximated by

a single exponential function.

For illustrative purposes, Le is calculated for three functions

Ch. (6)

k35



)

Table (6

The potential ¢(O;LT/2)’ at the centre of

of radius A=1m and length L;, as given by Eg. (6.9).

Ly(m) 6(05L4/2) (V)

1 0,767825

] 2 0,278574

; 5 | 0,784435 x 1072

l 10 ! 0,192165 x 1074

t 1 -9

| 20 ‘ 0,115255 x 10

} 40 | 0,414607 x 10720
80 i 0,268261 x 10741

Table (6.2)

V/m) for three functicon types.

The functions i),

ii) and iii) are

a cylinder

Le of Section (5) as influenced by the choice of € (in

defined by Egs. (6.10), (6.11) and (6.12) respectively. A=1,0m. The
value of Ly/ 2 is listed in metres.
T NS e I | | T
| T | | |
! $FUnc+ion 1073 1074 T T B 7 T
i) ? 3,7 | 4,7 5.7 6,7 157 f 8.7 |
i) i 3,6 | 4,5 5,5 6,4 dedn 8,4 |
iii) | 3,9 i 4,9 5,9 6,9 7,8 f 8,8
» |
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F(z), chosen fo represent function fypes of varying smoothness :

Type (i) is a recfangular function, i.e. a function with a singula=

rity in the gradient :

Fiz) = 0¥ 2z < (L/Z - Lf) gnd %z > (L/2 + Lf)

Flzd = Gy PR = Lf) £y e LLI2 e Lf) (6.10)

in which C, and L, are constanfs. We take here Cy=1V and
Lf=],0m<<L/2. Type (ii) is a B-spline, i.e. a continuous function

with a continuous gradient :

F(z)=0, ¥z<(L/2 - 3A/2)

F(2)=Cy(2-L/2+30/2)7, (L/2-30/2)<z<(L/2= \/2)

F(z)=Cp{Cs -2(z-L/2 + A2)(z-L/2-1/2)}, (L/2-A/2)<z<(L/2 + X/2)

F(2)=Co(z-L/2-30/2)%, (L/2 + A\/2)<z<(L/2+3)/2)

F(z)=0 ¥ z > (L/2 + 3)A/2) LE11)
in which Cy=(2/3)V/mZ, C3=1m? and A=im
Type (iii) is an exponential function, i.e. an analytic function :

F(z)=C, exp(-Dz?) ¥z (6.12)
in which Cy=1V.
The value of Le for various choices of € is given in Table (6.2).
|f we take the constant D in Eq. (6.12) equal to 1,O/m2, the three
types of field will have approximafely the same value L, on the

basis of 8510_6V. In all three cases A was taken as 1m.

To determine the influence of the choice of L upon the precision
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of ¢(r;z) as calculated by means of Eq. (6.5), L was equated to
5, 10, 20 and 40 m and ¢(r;z) calculated in each case for a number
of different points (r;z). Let these values be called ¢5(r;z),

$19(r;z), etc.

The differences

8. = |4 [ (r;2) = ¢g0(r;2)|
have been calculated and are given in Table (6.3). Care has been
taken to calculate the Fourier coefficients of Eq. (6.5), to
approximately 9 significant figures, and in the summation of each
series a sufficient number of terms were included to ensure that
the truncation error was less than 1077, |t therefore seems
reasonable to assume that the differences 6L may be ascribed fo the
violation of the criteria of the postulates of Section (3). Inves=
tigating the differences of §,5 and 620 it seems a fair assumption

that the difference between ¢4q5(r;z) and the correct solution ¢e(r;z)

should be smaller than 1077,

As shown in the next section, the convergence of the series of

Eq. (6.5) is strongly dependent upon the choice of the ratio Lo ®L/ A,
and The value of L chosen in practice will again depend upon the
value of the precision €' of the potential ¢ as required by the
electron optical problem. For €' = IO_8V,L can be taken equal to

20 m.

Fig. (6.1) shows equipotentials for the type (iii) function. (This
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Table (6.3) : The values (in V/m) of 8§ of Section (5) as a function
L, for the three function fypes of Egs. &6, 103, (6.11) and 16.F2) Tesp.
For each function § is listed for points a, b and ¢ with coordinates

(0;L/2), (0;L/2+2) and (0;L/2+4) resp. A= I m

L
R
Function | Point >m | 10 m 20 m
|
i) a i % 1678 <1079 <1077
b 6x 1031 4x108 | <1079
| |
|
c NAL 5 x e | eigm®
i) a 5% 10 | 1x 0™ <1079
b 2w 108 2.z 1000 <107°
c N.A. |« 3 x 107 <1079
1
i) a rxtrdl = io? <1079
b 1 x 1072 7 x 10~8 <1079
c N.A. 1 x 1072 <1079
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type of function could not be hand!ed by fthe Fourier-Bessel method
of Ch. (5) unless a large Ly ratio is chosen; in That event the
contributions from the Jo Bessel functions will be negligible, and
t+he method of Ch. (5) becomes identical to the method described in
this chapter. The potentials ¢(r>A;z) have been found by means of
the solution given in Appendix (2), where both interior and exterior
equipotential lines are also shown for the case where F(z) is a step

function.

CONVERGENCE OF THE SERIES

As stated in Section (2), the series of Eq. (6.5) will be‘convergenT
if the series of Eq. (6.3) is convergent. To be useful in practice,
the series must have a high rate of convergence, which is generally
not obtained with high La ratios. [t is therefore important to
choose L, a ratio which complies with the requirements of Sections
(5) and (6), but is low enough to give an acceptabie rate of conver=

gence.

The convergence of the series of Egq. (6.5) can be seen to depend
upon two factors : the convergence of the series for F(z) and the

ratio Ig(nmr/L)/Ig(nmA/L).

The convergence of the series for F(z) is a function of z, and also
depends upon the nature of F(z), IT is therefore not feasible to
express the convergence as a function of z and r; for a rough esti=

mate one may, however, calculate a value of n. such that the func=
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5,0m "X

Fig. (6.1) Equipotential lines for boundary value problem of

Eq.(6.12), for part of upper right quadrant.
D=1,05 A=l,03 La=320.

Interior and exterior equipotentials are shown.

La was given this large value to allow the precise

determination of exterior potential values.
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tien By lo(nﬂr/L)/IO(nﬁA/L) <e' ¥ n> n.. The value of n. will be

determined by the nature of F(z) and will be a function of r; values

of ne are listed in Table (6.4) for the three functions of Section

(5), and for various values of €'.

I+ can be concluded that for functions resembling (i), (ii) and

(iii), high precision electron optical calculations (e.g. absolute

error of potentials <10-7V) may be carried out with series truncated

after a few tens of terms. The number of terms may be reduced by

means of accelerating methods, one of which is mentioned in the next

section.

THE USE OF LANCZOS o-FACTORS

If F(z) includes any discontinuities (e.g. step functions) a Fou=
rier analytical representation of ¢(r;z) will be affected by the
Gibbs phenomenon in the vicinity of the discontinuity [Carlslaw
(1930)].  Since true step function discontinuities are not found
in physical configurations — finite gaps are required between
electrodes at different potentials — it is profitable to make use
of Lanczos o-factors [Lanczos (1957)] and represent ¢(r;z) by a

finite series :

N-1
- | A(mmr/L)
. 5|n(ﬂm/N)l : 0
dirsz) - E B %: T TS ) sin (mmwz/L) IO(mﬁA B

m=1
in which the Lanczos o-factors are shown in braces.
The terms in the braces can be seen to cause an acceleration

of convergence (for N=101 the last term of the finite series will
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Table (6.4) : n. of Section (5) given for two values of the radius

for the three function types of Egqs. (6.10), (6.11) and (6.12). No

accelerating methods have been applied here.

A=1,0 m and L=20 m.

T

VN

Function Radius 104 | 1076 1078 1010
i) r=0 gar | 38 50 67
5
r=A/2 35 59 80 100
|
i
i) r=0 20 i 59 72 79
r=A/2 33 | 63 7 100
| |
P r=0 B | 19 23 26
r=A/2 16 E 20 24 28
|
1=
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be 100 times smaller than the corresponding term of the original
series) and because the calculation of the Lanczos o-factors are
based upon a spatial averaging procnss, the Gibbs overshoot at the

discontinuity and associated ripple elsewhere will be smoothed out.

APPLICATION TO IMMERSION LENSES

Consider the following function F(z)

F(z) = 0O, 0 <z < (L/3 =d)
Fiz) = glz), AL/E3=g) < 2 € (Li3 +d)
F(z) = Gy, (/3 4d) €2 < | /2

Let F(z) be symmetrical w.r.t. z = L/2, let d be a constant <<L,

and let g(z) be a given continuous function with the properties :

gizd = Q:por-z = /3 ~d

and gz} = Q; far:z = L/3 +d

It can be seen that the regions near L/3 and 2L/3 represent immers=
sion lenses for which Eq. (6.5) will represent the potentials ¢(r;z)
to any degree of precision by taking the L/A ratio sufficiently
large. By means of different functions g(z) a wide variety of
immersion lenses can be described. Since the remarks of the
previous sections on the applicability of Eq. (6.5) to Einzel

lenses apply here as well, no detailed discussion on the immersion

lens representations is given here.

DESCRIPTION OF WIDE ANGLE LENSES

It may seem from the given examples as if the Ly ratio must be

significantly targer than 1,0 for all given functions F(z), so
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10.

that wide angle lenses are excluded. This is not the case, and

lenses with V ¢ £ 0 at z=0 and z=L have been found for Li<1,

if F(z) is allowed to oscillate between large positive and negative

values, not unlike some zona! fields found as approximate solutions

to the inverse interior Dirichlet problem for certain non-analytic

potential distributions [see Ch. (8)].

ADVANTAGES OF THE METHOD

The Fourier-Bessel solution given by Eq. (6.5) has a number of

advantages when compared fo alternative methods of solving the

Dirichlet boundary value problem :

a)

b) .

c)

d)

The method is a direct one, employing no itferative

procedures.

No matrices need be inverted, resulting in high precision
(apparently limited only by the computer word length) and
extremely modest computer memory requirements — a desk top

computer with a few kilobytes can be used.

The programming is simple, requiring a few tens of state=

ments in BASIC or FORTRAN.

In addition to ¢(r;z), any derivatives of ¢ are obtained in
series form by differentiating Eq. (6.5), allowing very high
precision calculation of the derivatives used, e.g., in

trajectory calculations [Dirmikis St &l (1975)].
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e) The potential and its derivatives are calculated for any
point (r;z) without needing interpciation (as in the finite
difference method, where values are normally known on a

regular grid only).

f) Compared to the Fourier-Bessel solution of Ch. (5), the
present formulation is superior for paraxial calculations,
because of fast convergence near the axis, for all values
of z. (In contract, the former expansion has two zones
on the axis where convergence is slow, necessitating the

use of accelerating methods).

g) The solution is in a form which is suiftable for use in
electron optical optimization programs as has been described

in Ch. (4) for closed configurations.

h) The solution is of use [Ch. (8)] in formulating a solution
to the inverse internal Dirichlet problem (i.e. the axial
potential distribution is given, and off-axis potentials
have to be found). The present approach allows approximate
solutions of high precision tc be found for given analytic
as well as non-analytic axia! potential distributions, in
contrast to the analytic continuation method [Skollermo

(1976a and 1976b)] which is restricted to analytic functions

only.

One disadvantage of present solution that must, however, be men=

tioned, is that F(z) must be known ¥z. This is a disadvantage



o

shared by the finite difference and finite element approaches, but
not by the integral equation method. Fourier methods to handle

gaps between electrodes require further investigation.

REMARK ON FOURIER-BESSEL INTEGRAL REPRESENTATION

As stated in Section (2), we can represent F(z) of Eq. (6.1) by a
Fourier integral, if F(z) is not periodic. In this case the solu=
tion to the boundary value problem of Egs. (6.6) and (6.7) can be

written as a Fourier-Bessel integral

¢(r;z) = Jf Blw) lo(wr) sin (wz) dw (6.13)
0 |O(mA)
where B(w) =-% ~{ F(z) sin (wz) dz (6.14)
0

When used in practice, the integration of Eq. (6.13) has to be
carried out by computer. |f, for example, the trapezium rule or
Simpson's rule is applied, a finite Fourier-Bessel series is in
effect utilized to approximate the integral. This means that a
periodic function is used fo approximate the non-periodic function
o(r;z). This periodic function can approximate ¢(A;z) = F(z) Yo
The required precision within the required region of interest (i.e.
0<z<L), because the integral of Eq. (6.13) is a Fourier integral for
r=A, and no longer a Fourier-Bessel integral. Einarsson (1968 ,

1971 and 1972) has shown by computer studies that the integra=

tion of a Fourier integral by cubic splines (as suggested by Quade
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and Collatz) is superior to the Filon, trapezium and Simpson methods,
and allows high precision to be reached [see also Einarsson (1976)
for +he use of Richardson extrapolation for increased precision].
The quality of fit of ¢(A;z) for the region 0<z<L is not adversely

affected by the periodicity of the Fourier series.

For r#A the situation is completely different. Some thought will
show that if ¢(A;z) is periodic (w.r.t. z), then ¢(r<A;z) for

0<z<L corresponds to the boundary value problem of Egs. (6.1) and
(6.2), and not of Eqs. (6.6) and (6.7). Care should therefore be
taken to determine the period of the finite Fourier-Bessel series
resulting from the discretization of the function B(w) of Eq. (6.13),
a process normally inherent in the numerical computation of the
Fourier-Bessel integral. |f the period is too small to meet the
requirements of Section (3), totally wrong values of ¢(r<A;z) may

be obtained.

The Fourier-Bessel series approach outlined in thischapterhas not
been.opfimized as far as computational! efficiency is concerned.

The present formulation shows similarity to the trapezium rule
integration of the Fourier-Bessel integral of Eq. (6.13) which is
not an efficient method if calculaticn of integrand values is time
consuming. Fewer evaluations of Bessel functions can result from
using Simpson's rule, or deriving the Fourier-Bessel equivalent of
Filon's formula for the Fourier integral (likely to be complicated)
or using cubic splines in a way similar to Einarsson. These possi=

bilities have not been explored, the purpose of the present paper
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13.

being to offer a solution which is simple and is easily programmed.

POSSIBILITY OF INCREASING PRECISION

For the interior Dirichlet problem the precision of the solution
given above should be sufficient for most electron optical purposes.
For the exterior Dirichlet problem the convergence of the Fourier-
Bessel series may, however, be so slow for the larger r/L ratios,
that methods must be applied to eliminate the effect of the grounded
plane electrodes, by taking into account the effects of either the
induced charge distributions on these electrodes, or of the equiva=
lent charge images [Appendix (2)]. These corrections are equally

applicable to the interior Dirichlet problem.

CONCLUS | ON

A Fourier-Bessel series representation is given for the potential
distribution in certain open Einze! or immersion Type electrostatic
configurations with rotational symmetry. The method is a direct
one and eliminates the use of J, Bessel functions, resulting in
superior convergence in the paraxial region. The precision
reached is apparently |limited by the computer word length only,
programming is of a simple nature, and computer memory requirements

are modest enough to use small desk top computers.

As an example of the use of the solution discussed in this chapter,

some electron optical properties of one-foil lenses are discussed

in Ch. (7).
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THE ELECTRON OPTICAL PROPERTIES OF A CLASS OF ONE-FOIL LENSES, AS

RELATED TO THE CHARGE DISTRIBUTION ON THE FOIL

The Fourier-Bessel series solution given in Ch. (6) allows open,
one-foil and two-foil lenses To be mode!led. The solution is used in
this chapter, not fto optimize lenses as far as a particular electron-

optical property is concerned, but rather fto predict electron optical

patterns of behaviour of a class of one-foil lenses, by varying a small
number of parameters. It can be expected that, by investigating the
roles played by the parameters, sufficient insight will be gained to

decide on a course to be followed, shou!d optimization be required.

In this study weak one-foil lenses are investigated by emphasizing
relationships between some focal properties and the charge distributions
induced on the foil. The earthed foil! is placed at z=0, the region

z < 0 is at zero potential, and the following potential distribution is
applied at z 3 0 :

$(A;2)=0, 0 <€ z < zy 5 @(As2)=Vy sin [T (z-24)/Lg],

zg € z € zptlg ; ¢(A;2)=0 ¥ z > zO+L9. Vo is either +1V or -1V,

and zg and Lg are varied one at a time. The cases n=1 and n=2 are
censidered. I+ is shown that the resulting foil lenses show broader

patterns of behaviour than might be construed from current |iterature.

1. INTRODUCT | ON

It is a well established property of open electrostatic electron

optical lenses that they show positive spherical aberration, i.e.
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that for instance for an object at z > -, the rays passing through
the lens at larger radial distances cross fhe optical axis Oz at
points closer fo fthe lens than paraxial rays do. This is also

the case with objects placed at any finite distance.

Open systems have the further property that they are convergent in
their first operating range. (Rays crossing the axis inside the
lens are refocussed and may cross the axis any number of times, but
these operating ranges of higher order are excluded from this

discussion.)

In a comprehensive review article Septier (1966) showed that most
of the efforts to correct electrostatic systems with rotational
symmetry were based on the introduction of an electrostatic charge
into the lens region traversed by the rays : either a charge dis=
tribution on an axial electrode, or space charge in the form of an
electron cloud or beam, or charge distributions on conducting foils
which are thin enough to be highly transparent fo electrons

[Wittels (1975)].

Due to the presence of the conducting foils, the so-called foil
lenses have properties that differ fundamentally from open (i.e.
foilless) configurations ; it is, for example, possible to design
divergent lenses and also lenses with negative spherical aberra=
tion. It is also possible fo replace the foil by a gauze or a
grid, but the openings in the gauze act individually as miniature

open lenses, requiring a more complex analysis [Versfer (1963)]
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+han foil lenses. And although some of the resulfs reported in
this paper will apply To gauze lenses as well, the text will mainly

refer to foil lenses.

Of the papers on foil or gauze lenses, some deal with curved foils
[Hoch et al. (1976)] or gauzes LVerSTer(1963)J ; these are diffis=
cult to manufacture and are excluded from this discussion. Others
deal with (converging) magnetic lenses which are combined with
(diverging) foil lenses so as to obtain an overall reduction in
spherical aberration [Maruse et al. (1970), Maruse, Hiratake

and lchihashi (1970), Maruse, lIchihashi and Hiratake (1970),
lchihashi and Maruse (1971) and (1973), Hibino and Maruse (1976) anrd
Hibino et al. (1977)]. Only the electrostatic part of such com=

binations will be covered by examples in Section (4).

Of the purely electrostatic lenses the special case [Gianola (1950)
and Mayor et al. (1972)] of a uniform intensity field between two
parallel foils or gauzes is excluded from this discussion, because
its lens action is brought about by changes in the velocity v,
parailel to the optical axis only ; parallel beams are not convers=
ged or diverged, and to be effective To reduce the positive spherical
aberration of converging beams, it must be used in its strong form.
Electrostatic lenses with two foils as discussed in Chs. (2)-(4) and
by Wittels (1975) and Munro et al. (1977) are also excluded,

because of the additional scattering of the particles by the second

foils.
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Lenses with single foils or grids have been described for simple
[VersTer (1963), Young (1975), and Bernard (1951a , 1951b

and 1952)] and more elaborate [Hoch et. al. (1976), Scherzer
(1949), and Typke (1972a and 1972b)] configurations, and in the
majority of cases the electron optical properties have been related
to the physical dimensions of and potentiais on the electrodes.
This makes the qualitative understanding of the behaviour of the
lenses a difficult task, because lenses that have very similar
shapes often show patterns of behaviour that are fundamentally
different. Typke (1968 , 1972a and 1972b) approached the
correction of lenses with spherical aberration by using the para=
xial lens equation to predict under which conditions space and surs=
face charge disfributions can be expected to reduce aberrations of

various types and orders.

The approach of this chapter is to consider some simple boundary

potential distributions and find the corresponding charge distri=

butions on the foil. It is then shown how the charge distribu=
tions affect the focal properties of the lenses. In this way the
behaviour of a wide variety of foil lenses can be explained

qualitatively and quantitatively for paraxial as well as zonal

rays.

CONDITIONS FOR CONVERGENCE AND ZERO SPHERICAL ABERRAT ION

In open lenses both the radial distance r and the z velocity of

the charged particle vary as it passes through the lens. [We use
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cylindrical polar coordinates (r;z), with the optical axis coinci=
ding with the 0z axis]. Both these effects, which may be labelled
the O and 0, effects, contribute to i) making fthe lens conver=
gent and i) causing overal! positive spherical aberration. I f
r and v, had remained constant, the net impulse on the particle

would have been zero, as may be deduced from Gauss' law.

In foil lenses a third effect (which may be labelled the F effect)
has an influence on the impulse received by the particle, due to
the fact that the total charge within a cylinder r=rg will in
general not be zero, resulting by Gauss' law in a net non-zero
impulse on a particle passing through the lens at an (almost) con=

stant radial distance rg and an (almost) constant v,.

|+ can be seen that, for fast particles, the deflection due to the
F effect will be much stronger than that due to the Or and 0,
effects so that the focal properties of weak foil lenses may be
ascribed mainly to the F effect. For stronger lenses the 0 and
0, effects increase in importance and this may, e.g. cause a lens
which shows negative spherical aberration at long focal lengths,
to show positive spherical aberration at short focal lengths,

as shown in Ch. (4) and as reported by Hoch et al. (1976). It
can also cause a lens which is divergent for fast particles to

be convergent for slow particles, as shown in Ch. (2),. The main
purpose of this chapter is to discuss the focal properties due to

the F-effect, for various simple configurations, explaining their
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behaviour as weak lenses. The behaviour of the same configurations
used as strong lenses can be understood qualitatively by mentally

superposing the Oy and 0, effects.

221 Condition for a lens to be convergent
Consider an electron which enters a foil lens from a field free
region z < 0. The earthed foil is found at z=0, and various other

electrodes with rotational symmetry cause a non-zero potential
field §ir;z) at z > 0, gxtending up 1o 2=Lg, the lens length.
(Strictly speaking, Lg > «@in one-foil lenses, but for practical
purposes Lg may be taken as such a distance that 3¢/dr aﬁd 39/9dz
have been reduced to 1070 of their maximum values). At z=0, the

particle is characterized by r=rg, vz # 0, v.=0.

The total radial impulse experienced by an electron is proportional

to

(o]

3 o  (rps o) @z
T (rg) -J e 0 %0
0

Using Gauss' law,

q(rg) r g A1) Ur

I
N
=]
De———
o R}
(&)

a5 g8 (Fai- 20 dz .
= 2ﬂeo o ( P 0 = -2ﬂeor0 T(ro) 7. <2)
0
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in which o(r) is the surface charge density on the foil and q(rg)

is the charge on the foil between the axis and r=rg.

Normal ly o(r) is calculated from 3¢(r;0)/9z, so that

ro
Trg) = - %28‘):0 - - 50'1'0 ( r 21500 d0 (g 3
|t can be seen that weak electron !enseg with T positive or nega=
tive will result in divergent or convergent lenses, respectively.
I+ will also be seen in Section (4) that q(r) need not have the
same sign ¥ r. It is therefore more correct to say that q(rg) < 0
or > 0 will cause an electron entering the lens at radial distance

ro» to diverge or converge, respectively.

2.2 Conditions for zero, positive and negative spherical aberra=

tion

If the trajectories of particles through weak lenses are investi=
gated, it can be shown by simple geometry that the constant B in the
approximate relationship T a rB will determine whether the longitudinal
spherical aberration

S{rg)  £,(0) - f, (rg) (7.4)
of a parallel ray passing through (rg;0) will be zero or non-zero;
z=f,(rg) is the focal point of this ray. [The proportionality given
above represents a concise alternative to the more conventional
series formulation 1 = C1r+C2r3 (1+C3r2+C4r4+...) The conditions
B<1, B=1orB>1are used as substitutes for mathematically

more rigorous but clumsier statements as, e.g., Cp < 0, Cp=0 or
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C; > 0 for C{ > 0, Cz >0, C4 > 0, etc; similar statements *hen

have to be given to cover the many other possibilities.]

The case B = 1,0

Weak lenses with B=1,0 show zero spherical aberration. This con=
dition can be satisfied approximately by a variety of one-foil and
two-foil lenses. It may be of infterest to compare lenses with
plane foils and B = 1,0 (labelled Zero Spherical Aberration Plane
Foil Lenses, ZSAPFL) with the unique class of lenses in which the
impulse received in the vicinity of (r;z) is proportional to r, ¥ z;
this condition is met by [see, e.g., Zashkvara et. al. (1977)] the
potential distribution ¢(r;z) = rZ - 422 (labelled the Ideal Double
Foil Lens, IDFL). i) The ZSAPFL and IDFL, although equivalent in
their weak forms, can be expected to bshave differently in their
strong forms; computer ray tracing results will be reported else=
where; (ii) the equipotentials of the ZSAPFL are all curved,
except for |z| + ® or r + », making such a design more difficult to
implement; (ii1) |V ¢(r;z)| increases with r and |z| in the IDFL,
whereas in the ZSAPFL |V ¢(r;z)| decreases within z = Lg to a suffi=

ciently low value that the foil at z = Lg becomes superfluous and

may be discarded.

In view of the above differences, the ZSAPFL has distinct advantages,

if only the spherical aberration has to be eliminated.

The condition T a rB, B # 1,0

Here B8 > 1 and B < 1 result in S]> 0 and S1< 0 resp., for convergent

Ch. (7)
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lenses, and S1< 0 and §;> 0 for divergent lenses. Septier (1966)
has stated that "it is thus possible to cancel, or even reverse the
sign of C3" (third order spherical aberration) "by altering the
potential on the grid. This is possible only when the lens is
divergent, however; a grid lens free of aberration cannot be used
on its own, but only as a correcting element". Although this is
correct for the special class of feil lenses studied by Bernard
(1951a , 1951b and 1952), and may appear to apply to the more
complex configurations [Bernard (1953a and 1953b)] approximated
by his analytical model, it will be seen in Section (4) that it is
possible to design foil lenses which show positive and negative
spherical aberration irrespective of whether the lens is convergent
or divergent. (Convergent foil lenses with negative spherical
aberration have been reported in Ch.(4),and also by Hoch et. al.
(1976), but without pointing out that Septier's statement was contra=
dicted. A theoretical treatment given by Scherzer (1949) also
predicted that a convergent lens can be designed with S;= 0, and
not ruling out the possibility that S;< O could be obtained by

varying some parameters).

It may be remarked that if 1(r) o rB is differentiated w.r.t. r, it
is seen for convergent lenses, for instance,that the conditions
B<1,0; B=1,0and B > 1,0 correspond to negative, zero and
positive spherical aberration, respectively. o(r), rather than
T(r) can therefore be represented graphically, so that for conver=

gent lenses g(r) vs, r graphs which decrease in absolute value,
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remain constant or increase in absolute value, indicate negative,
zero and positive spherical aberration, respectively. A similar

statement can be formulated for divergent lenses.

THE BOUNDARY VALUE PROBLEM AND SOLUT ION

Variations of the following configuration are considered : the
plane z = 0 represents a plane earthed conducting foil which is
thin enough to be sufficiently transparent to electrons. A set
of ring electrodes, all of radius r = A, provide the following

potential distribution :

¢(Azz) = 0 ez = Zg  (7.5a)
$(A;2) = Vp sin [nm (z-20)/Lg] , zp € z € zg+lg (7.5b)
¢(A;z) = 0, z 2 zO+L9 (7.5¢)

For all the cases reported here, A = Im and Vp, = + 1V. The cases

Vm = =1V are not represented graphically, but feature in some of the
discussions. For a chosen value of n (n is either 1 or 2), either Lg

is varied, keeping Iy = 0 Of zg Is varied, keeping Lo, = %000
These .variations seem to allow a qualitative explanation of the
behaviour of most of the simple configurations that are of practical

interest.

A solution for ¢(r;z) ¥ r € A and z > O was given in Ch. (6) in the

form of a Fourier-Bessel series [see also Appendix (2)]:

[= e}

; ) z lo(n T r/L)
2 E By si
o(r;z n sin (nm z/L) (7 A7D) £7:8)

n=1
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in which
L
/ #{A;z) sin (n w z/L) dz, GT=578)

Jo

IO is the modified Bessel function of the first kind and of order

w
|
I

zero, and L is a length which is chosen sufficiently larger than A
that (L - Lg)/A >> C, a constant which is normally taken iarger than
5, depending upon the precision required. Making use of the dis=
cussion of the solution in Ch. (6}, L was chosen to be 10m, allowing
the series in Eq. (7.6) to be fruncated after about 40 terms for

r = O, or aboyt 80 terms for r = Q,8A.

The Fourier analysis of Eq. (7.7) is simple to carry out, using

Eq. (2.532) of [Gradshteyn et al. (1965)]. The electric infen=
sity 9¢/9z is found by differentiating the series of Eq. (7.6).
Although it has been found fo be more instructive to give a graphical
representation of o(r) rather than of t(r), the latter can easily be
found from Eq. (7.6) by making use of Eq. (6.561.7) of Gradshteyn

et al. (1965) or of Section (2.3.2) of Appendix (2).

It may be pointed out that if the region z < 0 is field free, a
resultant force acts on the foil along the z-axis, resulting in
severe mechanical stresses and possiblie deformation. The z-compo=
nents of these stresses may be eliminated by introducing into the
region z < 0 a potential distribution ¢1(A;z<0)=¢(A; |2|) ; the
analysis given above applies equally well to z < 0, provided the

sign of V. is reversed.
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FOCAL PROPERTIES OF THE VARIQUS CONFIGURAT IONS

The focal properties of the various configurations are summarized

in Tables (7.1) and (7.2). The seventh column gives graph numbers
in the figures listed in column 6. Separate graphs are not given
for the Vn = -1V lenses, but the graphs are similar to those with

Vm = +1V provided that the entities on the vertical axes have their
signs reversed. The reversal of sign is indicated by appending

(=) to the graph number. Under the heading "C/D" the entries "C"
or "D" indicate that the electron lens is convergent or divergent,
respectively. In the column headed "SY, a -1, 0 or +1 indicates
"that the spherical aberration is negative, (paraxially) véry small,
or positive, respectively. No indication is given of the magnitude
of the aberration; an estimate may be obtained by studying the rate
of change of the ag(r) vs. r graphs. The entry (X 1) in brackets

in The last column indicates that the value of S1in the transition
region cannot easily be determined from the o(r) graphs only; the
value of S;in this region may be found by studying the corresponding
T(r) graphs as well. Finafiy, the presence of more than one entry
in The last two cotumns indicates that paraxial rays are described

by the first entry and zonal rays by the second entry.

Remarking on some of the entries, it may be pointed out that the
simplest type of foil lens is represented by nos. 11-20. In these
lenses the radial force has one sign throughout the trajectory, so
that the lenses 11-15 are uniformly convergent and 16~20 are uniform=

ly divergent, irrespective of the focal length of the lens. The
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Table (7.1) : Classification of one-foil lenses, with n=1 in Eq. (7.5b)
No. .l 2p Lg Fig. no. Graph no. C/D S
1 140,8 1 1.8 e a D 1
2 1165 | 1,8 1 % b D 0, +1
3 111,80 § 1.0 Yo - D +1
4 || (- S | d D +1
5 114240 f 1.8 G e D +1
6 =1 10,01 10 [ al(=) C +1
7 =i G 158 Tk g L B (=) C B; =]

8 =1 10 3 RS - cl(=) C #] |
9 =10 §8 | 450 - d(=) C ~
10 i 2.0 [ 140 12 e(-) g -1
11 1]10,0 | 0,5 3 20 2 D ]
12 8 e A T 3 ;B b D +1
13 11550 | 1,3 5 , B - D +1
14 118,01 2,0 2 8 d D +1
15 1 0.0 | 2.8 98 e D +1
16 o B s O I T 55 6 a(=) G =~
17 =] F g | 1.0 5 i 6 b=} C -1
18 =1 18,0 | 13 g-: B ci=) C =
19 =10 9,0 | 2,0 >e B di(-) C =]
20 =Ll | 2.9 55 6 e(-) C -1
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Table (7.2) : Classification of one-foil lenses, with n=2 in Eq. (7.5b)

No. Aol Y% Zp s T Fig. no. Graph no. C/D Sy

21 2 1 #1 | 8001 1,0 3 Ay | a C;D | =1;(x1);-1
22 2 | #1 |05 ] 1,0 - b D | -1; +1
23 2 Loy | oage e 3 4.4 } ¢ D .1

24 200 et | i s ., | d D | +1

25 2 | =1} 00 )0 34 a(-) D;C | +1; (1)1
26 2 | -110,5]1,0 3 o4 b(=) C | +h -1
27 0 S O I T 34 | c(=) C -1

28 2 1 Lob5 ] L8 3 14 | d(-) = -1

29 2 | e1F 9,0 6.5 7 a Gn s tinel=
30 2| +1 0,0/ 1,0 348 : b C;D | ~1;(x1);-1
31 g1 &f | o) 1.8 raal c D -1

32 2 | #1 [ 0,0] 2.0 7,8 : d D -1

33 21 1l o0t 28 ¥ il I e D -1

34 2] -1]0,0] 0,5 718 . | a(-) D;C| —1(+1)+1
35 2 | =t o] 1,0 Tt b(-) D;Cl +1:¢21)-1
36 gk w1 | ONG. 1 S 78 c(=) e +1

37 21 ~1] 0,0} 2,0 - LA, l d(-) C +1

38 2! =1} 0,0] 2,5 78 | e(-) C +1
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0,25 ¢

-0,25

-0,5 . :

z
Fig.(7.1) ¢(03z) vs. z (top) and (3/3z2)¢(03;z) vs. z (bottom) for

lenses 1 to 5. Lens parameters are given in Table (7.1)
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Fig.(7.2) (8/82)¢(r;0) vs. r, for lenses 1 to S.. Lens

parameters are given in Table (7.1)
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values of S1and %/f are, however, dependent upon f [see, e.g.,
Ch. (2) for the analogous two-foil lens behaviour?], although the

sign of S, remains unchanged. Lenses consisting of two coaxial

1
tubes separated by a small gap, with one tube closed off by a foil
on the gap side [Versfer (1963) and Young (1975)] show this ftype of
behaviour, as does a lens consisting of two coaxiai tubes of radius
A, separated by a gap in which a foil of radius R >> A is placed

[Bernard (1951a , 1951b and 1952), Klemperer et al. (1971), and

Grivet (1965)].

If in the latter lens R < A, so that the foil has to be supported by
a thicker electrode [Hoch et al. (1976), Scherzer (1949), and Typke
(1972b)], the field can change fundamentally, in that i) B of
Section (2.2) may be reduced to values lower than 1,0, so that

i1) regions are introduced where 9¢/3r changes its sign along the
trajectory, so that iii) the convergent O and 0, effects may in
some cases exceed the F-effect, causing the lens to be divergent for
fast particles, but convergent for slow parTiclés. Point (i) is

illustrated by nos. 2-5 and 7-10.

Although entries 7-10 represent convergent lenses with negative
spherical aberration, the value of |S| is comparatively small, so
that the change-over from a negative to a positive value of S1may
occur at a relatively large value of f. To obtain convergent
lenses of short focal length but with S1s 0, one can investigate

configurations which correspond qualitatively to lens 21 (=30}, for

Ch. (7)
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0,2 |

=0, 3

0 ? 4m
Z

Fig.(7.3) &(052z) vs. z (top) and (3/3z)$(0;2) vs. z (bottom) for

lenses 11 to 15. Lens parameters are given in Table (7.1)
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3¢(r;0)
9z

0,6
V/m

0,4

Fig.(7;4) (9/92)¢(r;0) vs. r, fof lenses 11 to 15.

Lens parameters are given in Table (7.1)
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which (3/3r)[(3/3z) ¢ (r;0)] has a relatively large value in the
raraxial region. This is accomplished by infroducing a region of
opposite polarity along r = A, which may be obtained in practice by

an electrode [see, e.g., Typke (1972a and 1972b)] which plays a

part not unlike a conventional Wehnelt electrode. Fig. (9) compares

the negative spherical aberration of lens 21 with lens 3 for a range

of focal lengths.

Several entries between nos. 21 and 38 have such a large spherical
aberration that the focal length has a sign in the zonal region
which differs from its sign in the paraxial region. The nature of
a potential field of this type is shown in Fig (10); in this case,

n = 4, and the entry is not represented in the tables.

Regarding enfries 22 and 23, it may be seen that for some value of

Lg between 1,0 and 1,5, 9¢(0;0)/9z will be zero, but 3¢(r>0;0)/3z > O
(the value of Lg turns out to be 1,065 for n = 2, or Lg = 1,612 for
n=4). This configuration will show zero convergence paraxially,
but will be divergent for zona! regions; this lens is therefore a

zero convergence lens showing negative spherical aberration. (1f

the sign of Vg is changed, positive spherical aberration will result).

IT may be introduced as a correcting element in order to remove posi=
Tive spherical aberration from a system, without affecting its focal

length.  The possibility of obtaining such an element was mentioned

in Ch. (4) and &(r:z) and (3/3z) &(r;z) graphs are given in Figs.

¢7.10) and {7401,
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: 3 e
0,6V} /‘ \ \_.

Fig.(7.5) ¢(05;z) vs. z (top) and (3/3z)$(0;z) vs. z (bottom) for lenses

21 to 24, Lens parameters are given in Table (7.2) 170
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Fig.(7.6) (B/Bz)¢(r;0) vs. r, for lenses 21 to 24. Lens

parameters are given in Table (7.2)
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RELATIONSHIPS BETWEEN o(r), ¢(0;z) AND ¢(A;z)

In view of the wide variety of functiors T(r) obtained by the rather
simple boundary potential distributions ¢(A;z) considered in the
previous sections, the possibility will now be investigated of
determining a function ¢(A;z) that will result in a pre-specified
(impulse) function T(r) which is considered suitable to correct

the spherical aberration of a given lens. One may, for example,

wish to correct a lens that shows third order spherical aberration Cz,
by juxtaposing a correcting lens with T(r)ar3. From Eq. (7.3) we
deduce that q(r) a r3, o(r) a r¢ and therefore (38/3z)¢(r;0) a r2;
take

3¢(r;0) = kr2

53 £7.8)

It is known that an analytic function ¢(r;z) satisfies Laplace's
equation, and is uniquely determined by the behaviour of the func=

tion along the axis, as shown by the expansion

~13)N 2n (0;2) ‘
o(r;z) = j{: fsln. | r2n (7.9)
(nt2n)? =
n=0 2 a2
which can be derived, i.a., by analytic continuation. More speci=

fically, ¢(r;zp) is uniquely determined by ¢ and its even z deriva=

tives at a point zg; the same applies to ¢(0;z), ¥ z.

Differentiation of Eq. (7.9) shows that the boundary value problem

of Eq. (7.8) will be solved if a function ¢(0;z) is found satisfying
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Fig.(7.7) 9(0;3z) vs.z (top) and (39/92)9(03z) vs. z (bottom)
for lenses 29 to 33. Llens parameters are given in
Table (7.2) 173
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Fig.(7.8) (3/38z)¢(r;0) vs. r, for lenses 22 to 33.
parameters are given in Table (7.2)
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<~ : 2n+1
” =130 .
w2 « 3 (rizd (SRS i i\ (7.10)
92 (n'2n)2 822n+]

n=0

[+ may seem as if the solution of this equation is a straightforward
matter, because, for instance, the function ¢(0;z) = (-k/3)z> satis=
fies Eq. (7.10). However, ¢(0; z »+ «) + », and the condition
(3/22)¢$(0,2)=0 is satisfied for z = 0 only; consequently the

function ¢(r;z) cannot represent a one-foil lens. It is therefore
required that an analytic function ¢(0;z) be found which behaves
(approximately) like (-k/3)z> near z = 0, but is such that (3/3z2)¢(0;z)
reaches sufficiently low values within the specified lens length Lg.
This is no simple task, especially because piece-wise continuous
functions are excluded if Eq. (7.9) must be applied to obtain ¢(r#0;z);
see, e.g9., Skollermo (1976a and 1976b). Attempts fto circumvent
the obstacle of having to use a single analytic function are des=
cribed in Ch. (8). Not a single function, but a series is utilized;
it has the following properties : i) the basis functions are trigono=
meTrigal, and therefore analytic , i) the coefficients are chosen

in such a way that Eq. (7.8) is approximately satisfied for small
values of z; and iii) the coefficients are chosen so as to let

(3/32)¢(0;2z) reach negligibly small values near z=Lg.
Having found the series representing $(0;z), Eq. (7.9) can be used

to find ¢(r#0;z), although it mué+ be realized that an increased

approximation error is propagated to the zonal regions, so that
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Fig.(7.9) The spherical aberration coefficient c:[fZ(O.OOOlR)—fZ(O.lR)] /(O.lR)2 plotted

against the paraxial focal length fZ(O.OOOlR). ——— : lens 3,

: lens 21.
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(3/92)(r;0) may differ from the expected value for large values of r;
this affects T(r) as well. A more detailed discussion is given in

Ch. (8).

For two-foil lenses an alternative to the above approach may be fors=

mulated, based on Eq. (7.6). Differentiation of this equation gives

(o]

k2 = 220032} Z Cy lg (n m r/L) (7.11)
et
in which C, = B, nm /[Ligtn m A/L)].  If the constants C, can be

found, satisfying Eq. (7.11) approximately, the problem is solved.
This may be attempted by i) considering the series as a finite one
and by point testing obtain an overdetermined system of |inear equa=
tions from which C, may be found by matrix inversion; or i) by
orthogonalizing the functions lg(n w r/L) so that Eq. (7.11) can be
used to find C, by Fourier analysis [+he description of such a proce=
dure is given in Ch. (5)]. Due to the nature of the |, Bessel func=
tions, it will be found in cases i) as we!ll as ii) that the matrices
are not well conditioned, and precise solutions of Eq. (7.8) should

not be expected.

CONCLUS IONS

By relating the impulse experienced by a charged particle passing
through a one-foil lens, to the charge distribution on the foil, and
then investigating the charge distributions due to variations of

piece-wise sinusoidal potential distributions ¢(A;z), it has been
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shown that foil lenses can have i.a. the following patterns of
behaviour for particles entering the lens at a radial distance
r < A, and at a velocity v, :
i) convergent ¥ r and ¥ v,
ii) convergent ¥ r < rg and ¥ v,; divergent
¥r>rgand ¥ v, > (vz)o; but convergent
¥ b < (vz)p
iii) divergent ¥ r and ¥ v,
iv) convergent ¥ r > rg and ¥ v, >> (v;)g; diver=s
gent ¥r < rg and ¥ vz >> (v,)g; but convergent
¥ rand ¥ v, << (vz)g
v) convergent and S1> 0¥ v,
vi) convergent and S]< 0¥ v > (v, )p
vii) divergent and S1< 0¥ v,
viii) divergent and S1> 0¥ v, > (v,])
in which rg and (v,)qg are constants dependent upon the nature of the

configuration, and % is given by Ea. (7.4).

The list is not comprehensive, but serves to show that foil (or
gridf lenses are not l|imited to types i), iii), v) and vii) as

might be deduced from current |iterature.

It is also shown that lenses with negative (or positive) spherical
aberration but with negligible convergence can be obtained by a care=
ful choice of boundary potential function; such a correcting lens
can be introduced intfo a lens system without affecting its focal

length.
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CHAPIT-ER 8

THE INVERSE INTERIOR DIRICHLET PROBLEM

In the preceding chapters the electron optical properties were
investigated of potential fields brought about by a set of equi=
diameter coaxial ring electrodes held at potentials given by a
function f(z). Properties of some two-foil lenses and one-foil
lenses were investigated, and the Fourier-Bessel series solution
of Ch. (6) would allow a similar study to be undertaken of open

lenses.

It may, however, be argued that a much more direct approach
will result if a function on the axis itself is investigated.
The possibility of performing an optimization in this way was
already suggested in Section (6) of Ch. (1). To allow this
approach to be implemented, requires that a solution to the
inverse interior Dirichlet problem be utilized. In this
chapter the possibility is investigated of finding an approxi=
mate solution to this problem in terms of Fourier-Bessel

functions.
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it will be shown that an infinite number of rotationally symmetrical
functions ¥(r;z) can be found which approximate a given function f(z)

on the optical axis 0z (r and z being cylindrical polar coordinates).

The ¥(r;z) are given in the form of a finifte Fourier-Bessel series and

it is shown how a solution that can be used in electron optical design

can be selected by carefully assigning values to the following parameters
the number of terms in the series, the period of the series and the amount
of smoothing introduced. In this way a compromise is established between
the quality of the axial approximation, the magnitude of potential gra=
dients to be contended with in zonal regicns, and the sizes of apertures
al lowed. Two-foil, one-foil and open lenses can be modelled, and given
axial potential functions can be accommodated which are either i) analytic,
ii) continuous, but with piece-wise con*tinuous z-derivatives, or iii) in

the form of a set of experimentally determined values.

It will be shown that the method requires no matrix inversion, the computer
programming is of a simple nature, and memory requirements are modest enough

to allow implementation of the program on small desk-top computers.

1. INTRODUCT ION

The inverse interior Dirichlet prob!em considered in this chapter is

the following :
VZ ¢(r;z) =0 ¥ r<Rand¥z (8.1)
$(0;z) = f(z) ¥z (8.2)

It is required to find ¢(r;z) ¥ z and ¥ r < R, a given finite radius.

r and z are cylindrical polar coordinates, and f(z) is a given finite



function which is defined for all z, has at most a finite number of

discontinuities, and satisfies

lim f(z) = 0 {8:35)

|
The solution of this problem is of interest in electron optical
design because of the possibility of determining (or postulating)
axial potential fields which are expected to have certain desired
paraxial electron optical properties [ Skéllermo (1976a and 1976b)].
To implement such a design, the notential field in zonal regions
must then be calculated to make it possible to determine the shapes
and potentials of conducting electrodes which will give rfse to the

chosen axial potential distribution.

Two possible methods of finding the solution were given by Scherzer
in some of his first papers on theoretical electron optics, namely

the integral expression [Scherzer (1936a)]
/o
(r;z) = 2 Re[ ¢(z + i r sino)] da (8.4)
’ ™ i - .
0
and the series expansion [Scherzer (1933)]

oo}

2n

-1)N

¢(r;z) = j{: (=1 5 - gty rZn (8.5)
L il g | e

The possibility of using a finite difference method was mentioned by
Cosslett (1946) who quoted some unpublished results by Motz. The

nature of the method is not known.
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Solving the inverse problem by first calculating the charge distri=
bution (for instance on the surface r=R) which will give rise to
$(0;z), and thenusing Coulomb's law to find ¢(r > 0;z) was suggested
recently by Hawkes (1973) and Du Toit (1976), but a practical imple=

mentation of the method could not be traced.

Some properties of the first two methods will be discussed briefly.

1.1 The integral method

Although this method requires that the function f(z) is given as a
simple analytical expression, it is found that for most functions f(z)
the integral of Eq. (8.4) cannot be obtained in closed form [Glaser
(1956)]. The integral may be represented by a series, as shown by
Scherzer (193%6a) for his potentia! field of minimum spherical aber=
ration, and as also suggested by Berz (1950), but the most profitable
use of this method was made by Sk&llermo (1976a and 1976b) who deters=
mined the real part of the integrand analytically, and then performed
the quadrature by computer. In these comprehensive papers, a number
of electric and magnetic fields of interest to electron optics were
discussed. It is, however, important to note that only analytic

functions f(z) can be accommodated by this method.

1.2 The series expansion method

Although Eq. (8.5) has been quoted ESCherzer (1933), Cosslett (1946),
Glaser (1956), Maloff et al. (1933), Plass (1942) and Harman (1953)]

for a few decades as the standard method of finding ¢(r;z) for the
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paraxial regions, it is hampered by the same limitation as the

integral method, namely that f(z) shouild be an analytic function.

If f(z) is a function which has a discontinuity in a z-derivative

of any order at z=zy, for instance, ¢(r > 0; z1) will be found to

be discontinuous at z=zq. The method is therefore unsuitable for
functions f(z) with piecewise continuous z-derivatives, the reason
being that the right hand side of Eq. (8.5) is determined by the
axial potential distribution in the close vicinity of the point
(0;z) only. This is no problem if f(z) is an analytic function,
because f(z) is known ¥ z (and for the whole complex domain) if f(z)
is specified for a line element of infinitesimal length [Berz

(1950)].

If f(z) is given in the form of a discrete set of experimentally
determined values, severe problems will be encountered [Olsen et al.
(1966)] in calculating the higher derivatives, requiring smoothing by,

e.g., performing a least squares fit to the given data.

THE FOURIER-BESSEL SERIES METHOD

Depending on the reason why the solution to the boundary value
problem of Eqs. (8.1) and (8.2) is required, it may be found that
the solution of the following boundary value problem is also accep=
table as a substitute :

vy =0 ¥z and ¥ r <R (8.6)

¥(0;2z) = f(z) + € (2) ¥lz]< z (8.7)
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where £(z) = ¥(0;z)-¢(0;2z). is the error of approximation of which

the absolute value is restricted to values smaller than g1, ¥|z[< Z.
The constant Z is a given length which is related to (and for purs
poses of this chapter will be considered to be equal to) the lens
length, i.e. the paraxial region where the electric intensity is large

enough to be of importance in electror optical computations.

At this point it may be remarked that, although a choice of a suffi=
ciently small €1 may ensure that ¥(0;z) is an acceptable approxima=
tion to ¢(0;z), it may happen that ¥(r > 0;z) turns out to be a poor
approximation to ¢(r > 0;z), depending on the nature of the given
function $(0;z), and the resulting €(z). A few further general

remarks on the properties of ¥(r > 0;z) may be given here :

i) There are infinitely many functions €(z) that satisfy Eq. (8.7).
Consequently there are infinitely many functions¥(r > 0,z) that
satisfy Egs.(8.6) and (8.7). Especially for larger values of
r, the various solutions may differ appreciably from each

other.

ii) |t was pointed out by Berz (1950) that further conditions may
be laid down, restricting the behaviour of ¥(r > 0;z). One
may, for instance, require that plane OV equipotentials are
located at z=0 and z=L, so as 1o enable a two-foil lens having

parallel, plane foils to be modelled.
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iii)

2

iv)

In the absence of a restriction of the type just mentioned,

it will be found that the behaviour of e( |z|> Z) will still
influence Y(r > 0; |z|< Z), especially for large values of r.
[If g(r) is considered to be an analytic function, this state=
ment may be rephrased by remarking that Y(r;z) will be deter=
mined not enly by e€lzg), but by all the z-derivatives of € at

any chosen point z=zg].

In view of the above considerations, it would be profitable,
having found a solution ¥(r;z) satisfying Eqs. (8.6) and (8.7),
to establish whether its properties are compatible with the
requirements of the physical problem which necessitated the
choice of f(z) of Eq. (8.2) in the first place. This will

be illustrated by Sections (3) and (4).

The choice of approximating function, Y¥(r;z)

The approximating function, ¥(r;z) discussed in thischapter is in the

form of a series

Y(r;z) = zgj An W, (r;z) (8.8)

n=1

in which the functions W,(r;z) are separable :

Whlr;z) = gn(z)hp(r) (8.9)

The sets of functions gn(z) are chosen from a relatively small list

of sets for which the integral [see Eq. (8.4)]

Ch. (8)



AN

W(rs;z) = J Re[g(z + i r sina)] do (8.10)
0

can readily be found in closed form. Some are discussed briefly :

2.1.1 The function W(r;z) resulting from integrating gn(z)=Cn1+Cn22+Cn3
[z arctan (z)+1)] isgivenby El-Kareh et al. (1970), but it does
not seem simple to accompl!ish a fit of a given axial potential
by Eq. (8.8), using functions of this ftype. See El Kareh
et al. (1970) for references on attempts to use superpositions

of these functions.

2.1.2 For the functions gn(z)=z”, the functions W,(r;z) can easily
be found analytically, giving 1, z, 22—r2/4, ete., for nh=0,1,2,
etc. When transformed to spherical polar coordinates (p,$,0},
 the functions are p" P,(cos @), P, being n-th order Legendre

functions.

Approximating a function f(z) by a series based on the polyno=
.mials z" presents no problem, especially if they are used in
orthonormalized form, but the frigonometrical functions of
Section (2.1.5) are probably more convenient because of some
practical reasons; $68;5 ol SecTions[Z.Z(ii)] and [2.2(ii2)]

of Ch. (7).

2.1.3 The integrals of the functions gn(z)=z™" can similarly be

shown to be p™" P,(cos ©), and they have the advantage that
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z7 N > 0 for large z, but the approximation of a given function
f(z) by means of a series based on z7" is not as simple as, e.g.

the Fourier technique of Sectior (2.1.5).

The functions g,(z) = exp (-nz) can be integrated [using

Eq. (9.1.18) ot Abramowitz &t al. (1970)] to give solutions

exp (-nz)Jp(nr), in which Jpo is the unmodified Bessel func=

tion of the first kind and of order zero. The functions exp(-nz)
can in principle be used, especially if orthogonalized [a com=
puter procedure is given in Ch. (5)], but they are not very
suitable for orthogonalization, and it is unlikely that high
precision approximations of "non-exponential" functions f(z)

will be accomplished. [The functions exp(-nz) Yy(nr), which

are also solutions of Laplace's equation, are also rejected

because the Bessel functions Yc(r+0)+-M.]

The functions g,(z) = sin (nz) and cos (nz) can be integrated
[using Eq. (9.6.16) of Abramowitz et al. (1970)] to give
sin(nz)lg(nr) and cos(nz)lp(nr), in which IO is the modified
Bessel function of the first kind and of order zero. (The
functions sin(nz)Kp(nr) and cos(nz)Ky(nr) which are solutions
of Laplace's equation, are rejected because the Besse! func=
tions Kg(r20)»<,  The functions cos(nz)lg(nr) are also dis=
carded because they can be converted to the form sin(nz)lg(nr)

through a phase change.

Of all fthe functions mentioned above, the set gnfz)=sin(nz)
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are probabiy the most convenient for approximating f(z), due

to the simplicity of the Fourier-analytical procedures, and

the balance of the paper is devoted to the resulting solutions.

PROPERT [ES OF THE FOURIER-BESSEL SOLUTIONS

I+ can be shown [Lanczos (1957)] that not only sin(nz)lg(nr), but also

Y(r;z) = f Alw) sin (wz) lglwr) dw (8.11)
0
is a solution of Laplace's equation. Taking r=0, the function A(w)

can be found from the Fourier transform

= o]

A(m)=321 { Y(0;z)sin(wz) dz (8.12)
0

which is applicable to a function ¥(0;z) which is not periodic.

Due to the computational difficulties [see Appendix (2)] of dealing
with the Fourier-Bessel integral of Eq. (8.11), we rather investi=

gate a solution of the form

N
¥lryz) « j{: An sin (nmz/L) ln(nmr/L) (8.13)

n=1

in which the coefficients

J f(z) sin (nmz/L) dz (8.14)
0
are found by Fourier analysis. [See Bertram (1940 and 1942) for an

Ch. (8)
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alternative way of avoiding the computational difficulties mentioned

above].

I+ can be seen that the function ¥(0;z) will be periodic, with a
period 2L; if f(z) is periodic with period 2Ly, the choice L=l

will obviously be made. If f(z) is not periodic, care must be taken
in assigning a value to L, because this choice may affect the nature
of the solution ¥(r > 0,2) in the region of interest |z|<Z, as men=

tioned in Section (2); see also Section (3.2).

3.1 Convergence of the series

The factor Ig(nmr/L) in the series of Eq. (8.13) has a near-exponen=
tial behaviour for large arguments, forcing us to restrict N to
finite values, except in cases where the functions f(z) in Eq. (8.14)
result in Fourier coefficients A, such that the product A, lq(nmr/L)
goes to zero rapidly enough, for large n. And if the latter condi=
tion is not satisfied, it will be found that the function ¥(r;z)
oscillates violently if large values are assigned to N and r. There=
fore there appears to be a |imitation to the precision to which a
given axial function f(z) may be approximated by a function ¥(0;z)
resulting from a set of physical electrodes : i) a large value of N
ensures that the truncation error of the Fourier series representing
f(z) is acceptably small; this requirement is in conflict with the
requirement that i) large values of N must be avoided so as to
limit |¥(r > 0;2)] or |V¥(r > 0;z)| to values that are small enough
that they can be used in practical designs without running the risk

of field emission between the electrodes. iii) One way of effecting
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the compromise befween i) and ii) is to restrict r to relatively
small values, or more precisely, to small r/L ratios. iv) Another
alternative is to restrict f(z) to relatively smooth functions;

this will ensure that A, goes to zero more rapidiy.

it Therefore appears that in the practical use of the solution of
Eq. (8.13) a trade-off must be contended with between the following
factors : 1) a good axial approximation, i) small gradients of V¥
in the zonal regions, 1iii) Tthe use of large r/L ratios allowing
strong lenses with large apertures to be modelled, and iv) the free=
dom to approximate functions f(z) which are not very smooth. For

a fifth factor, see Section (3.2.4).

One way of accommodating non-smooth axial functions (e.g. piece-wise
linear functions) is the use of Lanczos o - factors which are arrived
at by performing a spatial averaging process [Lanczos (1957)]. The
process may be repeated any number of +imes to obtain further

smoothing — and faster convergence — so that the series of Eq. (8.13)

is replaced by the following one :

N
n |t nm/(N+1)

p
v."— .
Whps ey p A S|n[nn/(N+1)]}- sin(nmz/L)ig(nmr/L) (8.15)

n
in which A, is still given by Eq. (8.14), and P is a constant equal
to the number of times the smoothing process has been performed.
(The Lanczos o-factor is the expresssion shown in braces), In
Section (3.2.3) it will be seen that large values of P allow larger

apertures to be accommodated, but also cause a deterioration in the
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quality of the approximation of the axia! potential function.

3.2 Discussion of some examples

The examples presented in the figures have been chosen fo illustrate
the points discussed in Section (3.1). The parameters referred to

in this section are those that appear in Eq. (8.15).

3.2.1 Systems with analytic axial potential distributions

As shown in Fig. (8.1) the present method represents an
alternative to the methods ftraditionally used to soive the
inverse interior Dirichlet problem for analytic functions.
Here f(z) = Cy exp(-Cpz2) with Cy=1V and Cp = (Im)™2; P=0,

L=20 and N=60.

For functions not as smooth as the above one, the equipoten=
tial diagram does not appear to be the best graphical way to
illustrate the behaviour of ¥(r;z); graphs showing ¥(r;z)

as a function of two variables are given for the remaining

functions.

3.2.2 Systems with continuous axial potential distributions, but

discontinuous z-derivatives; role of r

Fig. (8.2) shows that the Fourier-Bessel approach can provide
a solution Y(r;z) corresponding to an axial distribution

¥(0;z) which approximates a function f{z) which has discon=
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Fig. (8.1) Cross section of equipotential surfaces of Y(r;z)
corresponding to the axial function f(z) defined

in Section (3.2.1). Potentials are given in volts,
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3.2.4

tinuous derivatives :

f(z) =0 Tl < 2 Ga (8.16a)
f(z)=Cysin{m(z= C,)/C3] for Cp<z<C3 (8.16b)
f(z) = 0 for G4z € L (8.16¢)

in which Cy=1V, C2=2m, Cz=4m, L=6m, P=3 and N=140.

It can be seen that ¥(r;z) shows an oscillating behaviour in
zonal regions, for z-values at which 3Mf/3z" is discontinuous

for any n>0.

Systems with continuous axial potential distributions buft

discontinuous z-derivatives; role of P

If it is required to accommodate particle beams of larger
radius, the function ¥(r,z) must show an acceptabl!y smooth
behaviour in zonal regions where suitably chosen conducting
electrodes must be positioned. This may be accomplished by
assigning a high value to P (or more precisely, by increasing
the P/N ratio); this is illustrated in Fig. (8.3) for the
function defined by Eqs. (8.16a) ~ (8.16c¢c), with N=140 and
P=5, 10 or 15. On the other hand the quality of the axial
approximation deteriorates with larger P, in the regions in

which f(z) changes rapidly.

Systems with continuous axial potential distributions but

discontinuous z-derivatives; role of L.

In the design of two-foil lenses, the period L of the

Ch. (8)
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Fig. (8.2) Y(r;z) corresponding to the axial function f(z) defined
in Section (3.2.2)
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Fourier-Bessel expansion of Eq. (8.13) can be assigned any
AY

of the values of the examples illustrated by Figs. (8.1-8.9;

depending upon the value of |VW¥(r;z)| required at z=0 or z=L.

In Eq..(8.16) let C3-C, = Lyj. Then with open (i.e. foilless)
lenses, the following additional requirement applies : f(z)
must be zero for sufficiently large regions 0 < z < (L-L3)/2
and (L+L1)}/2 = z £ L a5 to ensure that | (3/82)¥(r;2)| shall

be so small at z=0 and z=L that the magnitudes of charge dis=
tributions induced con the circular regicns r < R on the foils
at z=0 and z=L are reduced to values low enough that these
parts of the foils may be discarded by inftroducing apertures
in The foils. (By "small enough" is meant that the electron-
optical properties are not changed significantly by the pre=
sence or absence of these distributions). [n Ch. (6) and
Appendix (2) discussions are found of the circumstances under
which parts of electrodes can be discarded in solutions of the
interior and exterior Dirichlet probliems, respectively. For
our present problem, some information of a similar nature is
given in Fig. (8.10). For any given function f(z), the
induced charge distributions o(r;0) or o(r;L) at z=0 or z=L
may be obtained by differentiating Eq. (8.13). For instance,

olrsls = = #4 j;—

N
(A nﬂ/L)IO(nﬂr/L) (8.17)

n=1
in which €g is the permittivity of free space. The values
of L, N and P can then be increased until! it is found that
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¥(0,2;z) corresponding to the axial function f(z)

Fig. (8.3)
defined in Section (3.2.3), for various values of P.
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|c(r;0)|<eC ¥ r < R, a specified aperture; €. is a small
constant, the value of which can be estimated by analyzing
the electron-optical properties of the configuration — see
also Ch. (7). For the computation of second order focal
properties, a smaller value must be assigned to €. than for
first order properties; in the former case, €. should pro=
bably not exceed 1076 g€g times the maximum potential gradient

found in that region inside the lens which is traversed by

the electrons.

One must note that if L is increased without increasing N at
the same time, the gquality of approximaticon of the non-zero

part of f(z) will deteriorate. This is illustrated in

Fig. (8.4) for the function defined in Eqs. (8.16a - 8.16c).
Here N=20, P=1 and L=3, 9 or 27 m. To the list of factors

[Section (3.2)] among which a compromise must be found, must

therefore be added a fifth one, namely the freedom to choose
a sufficiently large value of L to allow open or semi-open

systems to be model led.

Reference to Fig. (8.10) will also show that an increase in
N must be accompanied by an increase in F, if the charge
distributions on the foils must be minimized. This will
in turn affect the quality of approximation of f(z) in
regions where f(z) changes rapidly, as discussed in Sectijon

£3.2.3)
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Fig. (8.4) Y(0;z) corresponding to the axial function f(z)
defined in Section (3.2.4) for various values of L.
Cl:lV; CZ:L/Z-O,Sm and C3:L/2+O,5m.
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One-foil lenses

For one-foil lenses the condition stipulated above for g need
be satisfied on one side only. fn Ch. (7) it is shown how
the charge distribution on the remaining foil may be used to
obtain certain electron optical properties. [n this way,
for instance, a convergent lens region may be introduced into
the region z > 0. Whereas the field of Fig. (8.6) has a
uniformly convergent or uniformly divergent action, depending
on the sign of €4, it is shown in Ch. (7) that the filelds of
some one-foil ienses may be divergent for fast particles but

convergent for slow ones. [See also Sec+i0n5(3.2L6)-(3.2.8)].
Fig. (8.5) shows the behaviour of ¥(r;z) near the foil, for a
function f(z) defined by Eqs. (8.16a) - (18.16¢) and with

Ci=1V, Cr=0,5 m and C3=1,8m. N=20 ; -P=2 and L = 6 m.
£

Piece-wise linear functions : the "zero spherical aberration

fwo-foil lens".

Figs. (8.6 - 8.9) show that piece-wise |inear distributions

are handled with varying degrees of success, depending on the
nature of the distribution. These systems may be label led
"Lenses with Separated Longitudinal and Radial Force Fields",
or LSLRFF, and they differ from normal electron optical systems
in that a trajectory may be divided into sections where, para=
xialiy, either 1) a z-force exists, resulting in a translation

and an angular deflection which can be given in closed form if
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Y(r;z) corresponding to the axial function f(z)

defined in Section (3.2.5).
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the initial conditions are known; or ii) only a radial force
exists; the latter force is found to be non-negligible only
at or near values of z where (3/9z)¥(0;z) changes, and there=
fore has the effect of an impulse, which results in an angular
deflection only. Due fto the presence of the radial force
fields, these lenses differ from those considered by Gianola
(1950) and also differ from systems consisting of parallel
conducting electrodes with coaxial apertfures in that the iaftter
have well| separated paraxial force compcnents only if the radii
of the apertures are quite small compared to the distance
between the electrodes. The LSLRFF of Fig. (8.6) appears to
have well separated force components for much larger r/L

ratios.

If a beam of fast particles passes through the two-foil lens
of Fig. (8.6), the radial impulse received by a particle at
(r; L/2) will be proportional to the charge inside a coaxial
cylinder of radius r [see, e.9., Ch. (7)]. As can be seen
from the slopes of the graphs at z=0 in Figs. (8.6) and (8.7),
an LSLRFF with ¥(0;2z) o z results in o(r;0)being approximately
constant. Using Eg. (8.17) it has been calculated that by a
suitable choice of N and P, the absolute relative error

| {0000 - 0 (0;0]] /00,0 can be reduced to 107 or less, for
0<r<o0,2L. The impulse received by fast particles will
be proportional to r, so that the beam is focussed without
spherical aberration into a single spot on the axis. This

is only one demonstration of the close relationship between

Ch. (8)
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Fig. (8.6) Y(r;z) corresponding to the axial function f(z)
defined in Section (3.2.6).
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olr;0)and ¥(0;z), which has been discussed in more detail in
G 79 The related general problem of having to determine
¥(0;z) which is found on the axis in the presence of a given
charge distribution, 0¢;0)— the solution of which may be re=
quired in the design of correcting two-foil ienses - is not
so simple to solve, and results found so far have not been

precise enough to warrant discussion at this stage.

Fig. (8.6) shows Y(r;z) for the function

f(z)

Gy =/i0s8L3, Qs =% L/2

f(z) = C1(L-2)/(0,5L), L/2 ¢z L

with Ci=1V, L=2 m, N=20 and P=2

Piece-wise |linear functions : "zero spherical aberration
one-foil lens"
Fig. (8.7) shows ¥(r;z) which approximates a one-foil lens

with constant o(;0) on the foil at z=0. f(z) is defined by
the |ine passing through the following points of the diagram :
(Om; OV), (2m;1V), (4m; 1V) and (6m;0V). L=6 m, N=80 and

P=8

Since 0 is constant, and VW(r < 0,3m;z) is negiigible near
z=L/2, the field shown for 0 € z g L/2 approximates a zero
spherical aberration cathode lens (or, if the polarity is

reversed, a zero spherical aberration anode lens). The

lenses will showsmall spherical aberration for beams that
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1,5

1,0

Fig. (8.7) 4WU(r;z) corresponding to the axial function f(z)
defined in Section (3.2.7).
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are parallel at z=0. Due to the field-free region found for

2m < z < 4m, the change in spherical aberration brought about
when a converging or diverging beam passes through an electric
field which is parallel to the axis [Gianola (1950)], is absent
here, so that the spherical aberration observed should not be
affected much by the (uniform) velocity at which the beam en=
ters the lens. This implies that the spherical aberration is a
weak function of the lens strength, and in this respect the field

of Fig. (8.7) differ from the field of Fig. (8.6) ESee App . (4)]

Piece-wise linear functions : Einzel lenses

As with Fig. (8.5) the introduction of axial regions where
f(z)=0, allows Einzel lenses to be approximated. The diffe=
rence between the electron optical properties of systems |ike
this one, in which the radial and axial force components are
well separated, with those [e.g. Fig. (8.2), or the B-splines
of Egs. (6.11)] in which it is not the case, will be reported

elsewhere.
f(z) of Fig. (8.9) is defined by the !ine passing through the
following points on the diagram : (Om;0V), (1,5m;0V), (3m;1V),

(4,5m;0V) and (6m;0V). L=6m, N=80 and P=8.

Piece-wise |linear functions : immersion lenses

Fig. (8.9) shows one way of obtaining an LSLRFF of immersion

type : the region 0 < z < L/2 represents an immersion lens if,
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Fig. (8.8) Wy(r;z) corresponding to the axial function f(z)
defined in Section (3.2.8)
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e.g., f(z) is defined by the line passing through the fcl low=
ing points on the diagram : (Om;0V), (Im;OV), (2m31V), (5m;1V)

and (6m;0V). L=12m, N=80, and P=8.

CONCLUS IONS

The Fourier-Bessel method presented in this paper can be used to ob=
tain an approximate solution of the inverse interior Dirichlet problem

defined in Section (1), for axial potential functions which are

i) analytic, in which case it represents an alternative to the
integral method of Section (1.1) and the series expansion

method of Section (1.2).

ii) continuous but have piece-wise continuous z-derivatives; for
these functions the alternatives mentioned in i) can not be
applied, and the suggested alternative of calculating an
approximate charge distribution o(r > 03z) that gives rise
to the given potential distribution, does not appear to have
been implemented to date. The latter method would involve
the inversion of large matrices if a precise solution is
required, whereas the Fourier-Bessel method requires no

matrix inversion.

iii) given in the form of a set of experimentally determined axial

potentials.
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Fig. (8.9) W(r;z) corresponding to the axial function f(z) defined

in Section (3.2.9).



iv) piece-wise continuous; in this case, the convergence of the
series ¥(0;z) is so slow that the solution ¥(r > 0;z) is of

|ittle practical use.

In using the Fourier-Bessel solution of Eq. (8.15}, the rojes played

by some parameters must be taken info account :

ek if N, the number of terms included in the series, is large,
a good axial approximation will be obtained, but ¥(r > 0;z)

may oscillate violently w.r.t. z;

ii) a large value of P which is a measure of smoothing introduced,
will result in a reduction of the oscillations mentioned in
i); it may also improve the quality of approximation in axial
regions where the function is fairly constant, but may result
in a deterioration of the approximation where the axial func=

tion varies rapidly;

iii) larger values of L, the half-period of the Fourier-Bessel
series, may be required to allow open (i.e. foilless) lenses

to be modelled, but will also result in a slower convergence

of the series, again causing large gradients in zona! regions.

From the infinity of solutions ¥(r;z} which approximate the given
axial function f(z), a solution that can be used in practical

electron optical design can be seiected by assigning particular
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Fig. (8.10) (3/3z)Y(r;0) corresponding to the function f(z)
defined by Egs.(8.16). For all curves, L=6.
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values to N,P and L.

Due to the absence of matrix inversion, computer memory requirements
are modest enough that desk-top computers can be used fc obtain
solutions, and the programming is found to be straightforward, in=

volving a few Tens of statements in FORTRAN or BASIC.
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cHARTER. ¥

CONCLUS IONS

INTRODUCT ION

In Ch. (1) it was stated that the objective of the study is the
investigation of the possibility of using orthogonal functions in
electrostatic electron optics, and that the efforts would be concentra=
ted on the reduction of the spherical aberration of systems of rota=
tional symmetry, rather than the minimization of the resultant

effect of all the aberrations of a particular device.

Various approaches were followed : the properties of indi&idualr
fields of the form Ig(ar) sin (az) were investigated analytically
and by computer ray tracing, and syntheses attempted of two or four
fields. Physical devices creating the above fields would be of

the two-foil type.

To study one;foil or open lenses, Fourier-Bessel series had to be
found to represent such configurations. Two possibilities were
investigated, namely the determination of the focal properties of
fields associated with functions f(z) describing the potential

i) on a set of equidiameter coaxial ring electrodes, or ii) on the
axis. The solution to case i) was applied in a study of the
expected behaviour patterns of simple one-foil lenses, and the
solution to case iij was used to study some focal properties asso=
ciated with piece-wise linear axial potentiai distributions. Both

in cases i) and ii) the solution can be cast in a form which will
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allow an optimization by steepest descent to be carried out,

In Sections (2) to (7) some results obtained by the various

approaches just mentioned, are investigated in some more detail.

OPT IMIZAT ION METHODS

The vast majority of experimental and computational studies carried
out to optimize electron optical elements i.r.o. various criteria,
have been of a trial and error type; this also applies to most of
the analytical studies in which the paraxial focal properties asso=
ciated with analytical axial potential functions are calculated.

In Section (5) of Ch. (1) two important approaches are mentioned
which fall in a different category, being based on mathematically
founded optimization theory. In these approaches (by Moses and by
Szilagyi) the paraxial ray equation plays an essential role, and

at this stage it seems as if these methods are restricted to para=

xial optimization.

In Section (6) of Ch. (1) it is suggested that the optimum field
(i.e. the unknown field which is to be found) be represented by a
finite Fourier-Bessel series with undetermined coefficients. The
latter can then be found by carrying out a steepest descent proce=
dure which involves computer ray tracing. | f the Fourier-Bessel
functions are elements of a set which is complete on a suitably
chosen inferval, fthe finite series should approximate the optimum

solution., And by including zonal rays in the ray tracing, it is
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ensured that the optimization app!ies to both paraxial and zonal

regions.

Information obtained in the investigation of the solutions to the
boundary value problems of Chs. (4)-(6) and (8) can be expected to
be of use when the suggested optimization procedure is put into
practice. A brief survey of results reported in Chs. (2) - (8)

will now be given.

PROPERTIES OF INDIVIDUAL FIELDS

Since the Kp and Yg Besse!l functions are singular on +he‘axis, and
the fields Jglar) exp(-az) are not simple fo produce by means of
physical electrodes, the only fields studied individually were of
the type lglar) sinfaz). (Some focal properties of fields with

Jo, Kg and Legendre functions as factors have also been investigated,
but in an effort to reduce the length of this dissertation, these

results will be reported elsewhere).

The ray tracings showed that the fields Ig(ar) sin (az) differed
from those of open lenses in a number of respects : they tend to be
more highly converging, they can be divergent, and Tthey can exhibit
negative spherical aberration, Cg. (1t was also seen that, apart
from uniformly convergent or uniformly divergent fields, some fields
may be found which are divergent for fast particles but convergent
for slow particles; the sign of C; of the latter group of fields

may also be different for slow and for fast particles.)
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It was also found that Cg was dependent on o, which suggested fhat
two fields of different a values and polarities may be superposed fo
obtain a reduction in Cg for the resulfant field. Aftempts at

obtaining such syntheses were described in Chs. (3) and (4).

SYNTHESES OF TWO FIELDS

fn Ch. (3) the behaviour of weak fields of the type Inlar) sin (az)
was studied analytically, and it was possible to obtain closed form
expressions for various focal properties of individual fields.
These expressions were valid for zonal as well as paraxial regions,
in contrast to the majority of analytical studies reporféd in

| iterature, where the use of the paraxial ray equation restricted

the analysis to paraxial focal properties.

As a control, ray tracings through weak fields were carried out by
computer, and the results corresponded well with the theoretical

predictions.

Using the results obtained for individual fields, syntheses of two
fields were obtained analytically, which had greatly reduced

values of Cq for paraxial rays.

It is possible to formulate a Fourier technique to synthesize a
larger number of fields so as to extend the correction to rays at
larger radial distances. One such procedure involves the

inversion of a matrix which is not very well behaved, so that only
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five or six fields can normally be accommodated, unless the com=
puter has a word length in excess of the usual extended precision
(approximately fifteen significant figures). Another procedure
involves the orthogonalization of the | Bessel functions, but in
doing this the same problem of computer word length puts a limit
on the number of fields handled. A description of these proce=

dures and some results will be published elsewhere.

STRONG TWO-FOIL LENSES

The approximations used in Ch. (3) do not apply to strong lenses;
consequently the focal properties of syntheses representing strong

lenses in Ch. (4) were obtained by computer ray tracings.

Two methods were outlined of obtaining syntheses of reduced Cg
values. The first method is based on an understanding of the
properties of individual fields, and its use resulfed in a reduction
of the circle of confusion by factors as large as 1000 for non-
paraxial cases. Only four fields were used in the syntheses which
could be chosen as starting points for the steepest descent method
also described in the chapter. Any number of fields can be
accommodated by the latter method [see Section (6) of Ch. (1)],

and results obtained with this method will be reported elsewhere.

FOURIER-BESSEL SERIES REPRESENTATIONS OF ONE-FOIL AND OPEN SYSTEMS

In Chs. (5) and (6) Fourier-Bessel series solutions are given for

Ch. (9)
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the modelling of one-foil and open systems. In Ch. (5) the lens
region is divided into three parts, each of which is represented by
a different series (involving Jg and lg functions), whereas the
single solution (involving Ig functions only) given in Ch. (6)

describes the complete lens region.

The latter solution is more easily programmed, and the convergence
of the series is acceptable at all points. The solutions of Chs.
(5) and (6) can also be combined — using the solution of Ch. (5) to
model the outer lens regions, for which the convergence of the Jp-

series is superior.

| f the solution of Ch. (6) is used on a routine basis to analyse
electron optical systems, it would be important fto improve the con=
vergence of the series at the cost of some additional programming.
This can be done by investigating the role played by the z-period
(2L) of the first term in the series. In Ch. (6) it was shown
that a large value of L increased the accuracy of the solution, but
at the same time slowed down the convergence of the series. In
Appendix (2) it is shown how associated Fourier-Bessel series may
be derived which, if added to the original solution, allow smaller
values of L to be folerated. The method is based on the electro=
static theory of images, and is described for an exterior Dirichlet
boundary value problem (in view of the fact that the problem of
convergence is much more serious in exterior than in interior
problems). The computer time needed to evaluate the potential or

electric intensity at a point may be reduced by one or more orders
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of magnitude, depending on the precision required.

[I+ may also be mentioned that The solution of Appendix (Z) can be
utilized in analytical and ray tracing studies of configurations
with axial electrodes. I+ can be shown — by taking into account
the properties of the Ky Bessel functions — that such systems can
show divergent or convergent behaviour, and that foilless convergent
systems can show negative spherical aberration. Combining the
solution of Ch. (6) and Appendix (2) may allow systems fo be
obtained with reduced Cg in a cylindrical region between two sets

of coaxial ring electrodes; see also Sections (3.3b) and (3.3c)

of Bhs (12 I+ is intended to make a study of the suggested method

in the near fuTure.J

In conclusion it may be mentioned that fthe solution presented in

Ch. (6) may be adapted fo two further situations : i) Systems with
gaps between juxtaposed coaxial tubular electrodes may be accommo=
dated by representing the potential in the gap by a separate finite
Fourier series, and the coefficients of the latter may be calculated

by requiring that Laplace's equation is satisfied in the gap.

ii) Systems with space charge may be described by representing
the volume charge density in the lens region (excluding the elec=

trodes) by a separate Fourier-Bessel series.

Both these cases have been excluded from the present study, and will

be investigated in the near future.

Shi {31

220



A STUDY OF ONE-FOIL LENSES

The solution of Ch. (6) is in a form which allows the charge dis=
tribution o(r) on the foil of one-foil lenses to be calculated.

In Ch. (7) a discussion is found on the behaviour of weak one-foil
lenses, in which the signs of the focal length and of Cg are re=
lated to the nature of o(r). tn the graphs presented, the close
relationship between o(r) and the axial potential distribution is
also illustrated. By means of the graphs a good insight may be
gained into the electron optical behaviour of a wide variety of
cathode lenses and immersion objectives and, in particufar, the

role played by Wehnelt electrodes.

It is also shown that weak one-foil lenses can be designed which
have a negligible focussing effect on paraxial rays, but (e.g.)

a large divergent effect on zonal rays. Such a lens can be used
to reduce the spherical aberration of an existing system, without
changing its focal length. By computer ray tracing the focal
properties of some lenses of this type were determined and the

results presented graphically.

This study was undertaken i) to determine the utility of the
solution of Ch. (6), ii) fo demonstrate the relationships between
o(r) and the focal properties of the lens in its weak form, and also
between o(r) and the axial potential distribution, iii) to relate
the axial potential behaviour to the zonal "Wehnelt" voltages, and

show how the latter determine the properties of cathode lenses and
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immersion objectives; and iv) to investigate some properties of
zero-convergence correcting lenses. [+ is hoped to carry out a

more complete study of the latter group of lenses at a later stage.

CONF |GURATIONS ASSOCIATED WITH AXIAL POTENTIAL DISTRIBUTIONS —

THE INVERSE {NTERIOR DIRICHLET PROBLEM

Analytical axial potential functions have played an important role
in the study of the paraxial focal properties of electron optical
systems. Further progress has, however, been hampered by two
aspects : 1) the fact that the paraxial ray equation was used,
excluded the investigation of zonal focal properties, and ii) the
axial potential functions in common use did not lend themselves to
simple optimization procedures. [Two exceptions were discussed in

Section (5) of Ch. (1).]

In Section (6) of Ch. (1) it was suggested that copen and closed
electron optical systems can be optimized i.r.o. both zonal and
paraxial focal properties, if the solution to the inverse interior
Dirichlet problem is expressed in ferms of a suitable Fourier-Bessel
series. As a first step towards realizing the goal, various aspects

of such solutions were investigated in Ch. (8).

|t was shown how infinitely many solutions ¥(r;z) can be found which
approximate a given axial function f(z). Restrictions may also be
imposed so as to select solutions that can be approximated by physi=

cal electrodes in a practical way.

Chi, (99
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Whereas existing solutions to the inverse interior Dirichlet boundary

value problem were |imited fo analytic axial functions, the solution
given in Ch. (8) was shown to apply to a broader class of axial
functions, namely continuous functions with piece-wise continuous
z-derivatives. Preliminary results indicate that experimentally

measured axial distributions can also be handled, but a complete

report will be published elsewhere.
As an illustration of the electron optical use of the solution of
Ch. (8), computer ray *racings were carried out for a one~-foil lens

very similar to that of Section (3.2.7) of Ch. (8). The results,
presented in Appendix (4),show that for strong lenses of this type,
the value of Cg depends strongly upon, i.a., the focal length of

the lens, and the Lanczos smoothing factor introduced in the solu=s

tion of the inverse problem. It is found that — in contrast to
open lenses — the longitudinal spherical aberration AJ does not
increase significantly if the focal length is increased. There=
fore the circle of confusion Ar due to spherical aberration is
approximately proportional to the inverse of the focal length,

whereas open lenses usually reach low values of Ar at short focal

lengths.

In Ch. (8) solutions were investigated for a variety of axial func=
tions, and no indications were found that the series representation
of Section (6.3) of Ch. (1) might be unsuitable for use in the
suggested steepest descent method. Implementation of this method
will require a comprehensive study of various factors, which will

have to be reported elsewhere.

Ch. (9)
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9. CONCLUDING REMARKS

I+ has been attempted to show that orthogonal functions can be used

profitably in electron optical design. A few of the advantages are :

i)

V)

vi)

Potentials and electric intensities can be calculated fo a
high degree of precision, and an estimate of the precision

can easily be mace.

Ray tracing is facilitated by the fact that the fields are

known at all points; +therefore no interpolation is required.

By means of the solutions presented, the precise calculation
of charge distributionson electrodes is a straightforward
procedure; this is useful in understanding the behaviour

of, i.a., weak foil lenses.

Fourier techniques can be applied to find approximate
solutions to the inverse interior Dirichlet boundary value
problem, allowing a broader class of axial potential

functions to be handled.

If care is exercised in the choice of functions, it is
possible to carry out a steepest descent procedure to optis=

mize a system i.r.o. both paraxial and zonal focal properties.

The optimization procedure of Section (6.3.i) of Ch. (1)
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may be carried out experimentaliy, by applying the specified
potentials to a set of coaxial ring electrodes. This may,
for instance, be practicable in attempting to reduce fthe image
curvature in electrostatic image intensifiers. | fihe pre=
cision of the experimental procedure becomes inadequate, and
the optimization must be continued by computer, the experi=
mental result provides a suitable starting point for the com=

puter simulation.

Many aspects of this study have been dealt with only very
briefly, and some need further detailed investigation; there
is also little doubt that some methods may be refined consi=
derably in order to increase the computational efficiency.

At the same time it is hoped that I+ has been shown that
existing methods of electron optical design can be augmented
by methods, particular to the use of crthogonal functions,

which are versatile, simple to understand and easy fto imple=

ment.
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SERIES EXPANSIONS AND TABLES OF [INTEGRALS

OF PRODUCTS OF SOME BESSEL FUNCTIONS

In the Fourier analysis performed when studying electrostatic electron-
optical systems of rotational symmetry, evaluation of some integrals of
products of both normal and modified Bessel functions of the first kind
and of orders nought and one is required. In this appendix the com=

putation of the integrals are discussed and tables of some integrats

are given.



INTRODUCT ION

In Chs. (2-9) the electrostatic fields of some electron-optical
systems with rotational symmetry were described in fterms of various
Bessel functions and several papers have appeared recently [Read
(1969a , 1969b and 1970), Read et. al. (1970), Werner (1971),
Wittels et. al. (1976)] employing Fourier-analytical techniques
involving Bessel functions. These procedures normally require
the values of the integrals of the products of various Bessel

functions, some of which are not found in existing tables.

The evaluation of the integrals by numerical integration is time
consuming, especially if precise values are required (8 signifi=
cant figures are normally adequate). Alternatively the Bessel

functions can be series expanded and the resulting polynomials

integrated analytically. This results in series expansions for
the integrals themselves. if such a series is not alternating,
its evaluation presents no problems, but the series of integrals
involving the unmodified Bessel functions are found to alternate,
and these would normally require excessive computer word lengths

in their evaluation.

SERIES EXPANSIONS FOR THE BESSEL PRODUCT INTEGRALS

Asan alternative to the evaluation of the integrals, defined

later in this paragraph, by straight numerical integration, series
expansions for the integrals can be derived which, in principle,
allow the evaluation of the integrals with a minimal amount of
computing.

App. (1)
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In the integrals invelving Jg or J], however, the series expansions
are alternating series, which can oscillate excessively before
converging. (The largest term may be 1080 larger than the value
of the series itself.) This cails for (i) a computer word length
much in excess of the usual extended precision found on most digi=
tal computers, and (ii) the availability of fthe zero's of the
Bessel functions to a very large number of significant figures.
[AbramowiTz (1970), for insTance, glves tha zerg's of Jlg o 12

significant figures only.]

The series expansions of the integrals are derived by making use

of the following expansions for the Bessel functions :

= (-0,25 z2)k
(0,5 z)9 5;_ e

Jg(z) =
— ! 1
k=0 ol gl e et
g (0,5 z)2k
Ig(2) = (0,5 z)9 er ———
e k! (g + k)!

The integral qu af Eal9:i5) of O (B3
1

Opq = Jg J1(Zopx) J1(Zpgx) dx

[ [ = i
_ZopZog | 20 O 2i |
Bei i G ci X | di x 21 | dx
Li=1 L 1= |
with
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Ci =
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App. (1)



25l

_py i+ 2(i-1)
(-1 (Zpq/2)
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\ L Tty
Therefore
3 1 @ ]
| LOpZOq {_ zz_ Ki X 21} dx
Qpg = “3 | J
LA T
iy " 20 + 1
=
with :
-
Ki =) /;’ CJ' d|+] _J'
j=1

Table 1 lists the values of qu ¥ p,q € 20 (noting that qu = Qqp) -

1
The integral Pij = Jg I CimAx/L) 4 (Zgj x)d X

In the process of performing the Fourier analysis of Eq.(520) of
Par. (4.1.2) of Ch. (5), the integrals Pij are required ¥ ] < )4
and ¥ n < ny, where j{ and ny are constants determined by the
nature of the problem to be solved. For a “typical™ confiquration
and a relative precision of 1:102 required for the solution of the
boundary value problem, ny = 20 and j; < 10.

iJ (

J0

1

T
i

I CimAx/L) J1(Zgjx)  dx

/1

g

h=1

= 225 ]
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With

(ima/L) 2!
Ch - == et o
N L e
2k-1
y (=1)k+1 744
" e
kY CR=107 AT
Therefore
4| (e o]
Pij =4 ‘( Ks x 25 dx
0 s=1
o0
e Ks
s=1
with
S
Ks= D op 95 aisp
p=1

The constant ¢ = A/L depends upon the physical dimensions of the

configuration under investigation, and only the values ¢ = 0,2;

0,5 and 1,0 are represented in Table 2.

The integral Mhj

To evaluate the integrals of Eq.(523) of Ch. (5) we change to a
variable
p = r/A
A 1
J rlo(hﬂr/L)JO(Aojr) dr = AZ ( plo(hpA/L)Jo(ZOJp) dp
0 0

2
A th

App. (1)



2.4

! e w_
S 21 s 2
M- { 6 P EmptE P giedh g
J 0 k=0 m=0
3 2; K
it 2s
2k=2
(k=122
(-1ym+1(Zq)2m=2
s
((m=1)1)2
S
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Due to the appearance of the constant ¢ = A/L in the integrals
th, it can be seen that the integrals are specific to particular
configurations; consequently the integrals th are given for the

values ¢ = 0,2; 0,5 and 1,0 in Table 3.

1
The integrals Sp =/ Iy (pcmp) L1 (gc mpldp
Wy

If it is attempted to eliminate the spherical aberration
of all orders in weak electrostatic foil lenses, the integrals Spq
are required in the course of a Fourier analysis. In cases of

practical interest the values of p and g would not exceed 10.

App. (1)
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After substifution and simplification, the following series is

obtained :
® LR
8p = 2 :
P s
i=1
i
—
Ky = ) cpdian-j
j=1
LA en/2)2h!
“h T RT (h-T) !
e (9c7r/2)2"\"I
Kk 7 KU (k=1) ¢
Investigation of the series expansion of | shows that the series

is not alternating, so that the evaluation of the series for Spq
given above can be carried out without requiring an excessive

computer word length. Consequently no tables for Spq are given.

PRECISION

The infegrals Q, P and M were computed on an IBM System 3 computer,
using extended precision (i.e. 16 significant figures). The
Simpson integration |imited the precision of the integrals to
between 7 and 10 significant figures, depending upon the nature

of the integrand. The evaluation of the Bessel function was
carried out to 10 significant figures by means of the series
expansions of §2, except where the nature of the series calls for

a computer word length in excess of 16 decimal digits; in such

App. (1)



cases poiynomial approximaticns [Abramowifz (1970)] were used for
which the absolute errors do not exceed 10=7, Therefore some or
ail of the underlined digits in the ftables may or may not be sig=

nificant.

App. (1) 233



- ddy

(1)

1454

Table 1: The integral qu(p)

P q Q

1 1 0,203956288
1 2 0,050183900
1 3 0,014447945
1 4 0,009707157
1 5 0,004947832
1 6 0,004012868
1 7 0,002481780
1 8 0,002179629
1 9 0,001489648
1 10 0,001364649
1 11 0,000993071
1 12 0,000933999
1 13 0,000709335
1 14 0,000678963
1 15 0,000532031
1 16 0,000515647
1 17 0,000413857
1 18 0,000404800
1 19 0,000331139
1 20 0,000326183

—
p q Q
2 2 0, 136483329
2 3 0,048114466
2 4 0,020738360
2 5 0,013527872
2 6 0,008515331
3 0,006454043
2 8 0,004639643
2 9 0,0037843T4
210 0,002920498
I & 0,002488026
1 0,002007564
I 0,001760525
27114 0,001464970
2 15 0,001311426
- 2 0,001116221
2 0,001014719
2'118 0,000878813
2 |19 0,000808465
2 |20 0,000709880




+ddy

L)

194

Table 1:

The integral qu(p) (cont.)

Q -

N N N N N W W W W W W W W N W W o

— O WO~V W L=

TR B S e,
OWVWO~-NOWUMH WWN

0, 103560275
0,043378537
0,021861214
0,010118745
0,007779021
0,005878313
0,004808256
0,003850724
0,003273215
0,002720625
0,002374120
0,002025386
0,001801528
0,001566908
0,001414116
0,001248498
0,001139712

p q Q

4 4 0,084344545
4 5 0,039077644
4 6 0,021551508
4 7 0,015234571
4 8 0,010841416
4 9 0,008490597
4 10 0,006612002
4 11 0,005464237
4 12 0,004472582
4 13 0,003824000
4 14 0,003232967
4 15 0,002830252
4 16 0,002448319
4 17 0,002181075
4 18 0,001919468
4 19 0,001733077
4 20 0,001545778




* ddy

()

9¢¢l

Table 1: The integral qu(p) (cont.)

p q Q

5 5 0,071639130
5 6 0,035495077
5 i 0,020789606
5 8 0,015132208
5 9 0,011122050
5 10 0,008857123
5 11 0,007046870
5 12 0,005885501
5 13 0,004893437
5 14 0,004213413
5 15 0,003605776
5 16 0,003171976
5 17 0,002771097
5 18 0,002477003
5 19 0,002197928
5 20 0,001989231

P q Q

6 6 0,062551320
6 7 0,032530476
6 8 0,019901680
6 9 0,014823749
6 | 10 0,011165206
6 11 0,009019523
6 12 0,007295814
6 13 0,006152423
6 14 0,005178338
6 15 0,004489354
6 16 0,003878763
6 17 0,003429340
6 18 0,003019206
6 19 0,002709043
6 | 20 0,002419375




*ddy

(1)
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Table 1: The integral Qpq(P) (cont.)
p q Q
i 7 0,055693849
7 8 0,030057012
7 9 0,019009097
7 10 0,014426091
7 11 0,011076787 |
7 12 0,009057551 ;
7 13 0,007424997 ;
7 14 0,006315098 l
% 15 0,005368678
7 16 0,004683800
v 17 0,004078717
7 |18 0,003623486
¥ 0,003210620
7 20 0,002891627

P q Q

8 )-8 0,050315542
8| 9 0,027956938
g { 1 0,018157346
8 | 1 0,013993389
8 | 12 0,010915484
8 | 13 0,009017979
8 | 14 0,007475117
By 15 0,006405672
8 | 16 0,005491813
-0 1 0,004818529
8 | 18 0,004224250
8 | 19 0,003769454
8 | 20 0,003358329




*ddy
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Table 1: The integral qu(p) (cont.)

p q Q

11 11 0,039359744
1 12 0,023248178
11 13 0,015950032
11 14 0,012712329
11 15 0,010254343
11 16 0,008676151
11 17 0,007369930
11 18 0,006429691
11 19 0,005618150
11 20 0,004999066
12 12 0,036777320
12 13 0,022045976
12 14 0,015326463
12 i3 0,012317705
12 16 0,010018949
12 ¥z 0,008528976
57, 18 0,007290037
12 19 0,006390324
12 20 0,005611288

P q Q
13 13 0,034542153
12 14 0,020975640
13 15 0,014751754
13 16 0,011943425
i I 0,009785927
13 18 0,008376232
13 19 0,007199126
13 | 20 0,006337814
| 14 | 14 0,032586587
VIR 0,020016123
14 16 0,014221142
14 17 0,011589502
14 18 0,009557965
14 19 0,008221404
14 | 20

0,007101701




*ddy
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labie 1: The integral qu(p) (cont.)

p q Q

9 9 0,045971237
9 10 0,026164417
9 11 0,017362326
9 12 0,013555810
9 13 0,010711696
9 14 0,008930554
9 15 0,007472190
9 16 0,006446191
9 17 0,005566409
9 18 0,004909318
9 19 0,004328671
9 20 0,003878568

p q Q
g | 10 0,042381461
| 10 11 0,024609425
10 12 0,016627261

10 13 0,013126174
| 18 14 0,010487672
L 10 15 0,008812598
10 16 0,007433285
10 17 0,006450731
10 18 0,005605430
10 19 0,004966784
10 20 0,004401607

e ——




- ddy

(L)

ove

Table 1: The integral qu(p) (cont.)
f l
! P g | Q '
| 15| 15 | 0,030859727
- a8 16 | 0,01915135]
\ 15 17 | 0,013730178
Pos 18 [ 0,011255288
| 15 19 0,009336648
I { 0,00806679
o S 2
I 16 16 | 0,029322490
16| 17 | 0,018364826
16 18 0,013274825
16 19 0,010939861
16 20 0,009122849
l
| i
i |
| |
| 4

p q Q ‘
T RiEeegy B L O SRR |
: 17 17 0,027944350 i
| =13 18 0,017648568 i
=99 L 1B 0,012851476 ‘
| 17 2 0,010642086 |
| 18 18 0,026701098

18 19 0,016992491

& |20 0,012456940
ST 0,025573275
.19 20 0,016388548
bt g e o LA ol SIS

20 1 20 0,024545041




* ddy

¢

Table 2:

|

J

— ol = S bl N ok el S e R et a ik e s

|
i

|
1:, -
|
|
|

The integral P;. (p

Jn

)

|

=

U2 WUWN = O OUOdUHWN —

0,08202509700
0,00633312625
0,00548231315
0,00165619138
0,00174213404
0,00075415889
0,00083708628
0,00043174972
. 000488316“§
0,00027914
0, 0003188676
0,00019563 5
0,00022417
0,00014478 3
0,000166024
0,00011154052
0,00012781026
0, 00008858087
0,00010137096

0,00007207985

=R

UJ\O CO

i3

,\O|

0, 353512

O

0,0076028146
0,016194189]7
0, 00289335
0,00502173
0,00145710
0,002373436
0,0008769
0, 00136840966
0,00058365073
0,00088568075
0,00041748945
0,000618333 0
0,0003136506

0,00045532660
0,00024445916
0,00034885258
5 00019594578
0,00027556077
0,00016067739

|

(00]
~J

|

LI CEEL

I l

iEC

EE

BET1 (SO e

-0,0713858737
0,0624865659
-0,0093122187
0,0183835473
-0,0024122383
0,0082909830
-0,0007890852
0,0046067584
-0,0002731707
0,0028943617
-0, 0000702126
0,0019717583
0,0000155306
0,0014222080
0, 0000530227
0,0010704169
0,0000684065
0,0008324737
0,0000736295

s

0,7518226022



Table 2: The integral Pin(p) (cont.)

|
|

3| om c=0,2 c=0,5 1 c=1,0
2 p 0,1775584802 0,7518226467 } 7,496749573
2 | 2 0,0090470319 -0,0713859029 | -2,596078324
2 | 3 0,0120409000 0,0624865891 | 1,249272951
2 | 4 0,0027723830 -0,0093122386 -0,622583776
2.0 <5 0,0037716567 0,0183835649 | 0,394901694
2" | & 0,0013233916 -0,0024122543 . -0,236814184
& LY 0,0017951512 0,0082909976 | 0,175471453
. 2 | 8 0,0007761750 ~-0,0007890989 | -0,115968386
= 2t 5 0,0010402340 0,0046067711 j 0,094575715
. 2 10 0,0005090513 -0,0002731827 | -0,066276132
~ 2 11 0,0006758662 0,0028943731 | 0,057525471
> 2 12 | 0,0003604093 -0,0000702234 . -0,041786251
2 13 | 0,0004732927 0,0019717686 | 0,037986446
2 " 0,0002687516 0,0000155208 | -0,028255085
2 15 | 0 0003493 0,0014222174 i 0,026612429
o 16 | 0,00020826 0,0000530137 -0,020114908
2 gt gy 0002682532 0,0010704255 0,019494890
2 18 | 0,0001561714 0,0000683982 -0,014902212
2 19 | 0,0002122738 0,0008324816 0,014785022
2 | 2B 0,0001357483 0,0000736218 -0,011389104

e
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Table 2:

W N W W I N W N W W N W W W W W W

oE3

{
v
|
|
|
i

VWO~ U BN —

RETE s ML apli e R
QWO IOV WN—O

The integral Pin(p)

c=0,2

= — e

0,3031901998
0,0032249885
0,0213104056
0,0025333924
0,0065338038
0,0014233032
0,0030625061
0,0008980598
0,0017549236
0, 0006132470
0,0011304975
0,0004463226
0,0007862734
0,0003394724

0,0005771901

0,000267071

0,0004410569
0,000215640
0,000347604

0,0001778893

OO

(ee}

|

(cont.)

|
|
|

—

c = 0,5

2,300676827
0,536295726
0,270293444
0,105095215
0,079982323
0,037189449
0,035152508
0,017470488
0,018992718
0,009699560
0,011627121

0,005966583
0,007737449
0,003947637
0,005464299
0,0027544724
0,004034752
0,002002756
0,003083603

0,001503213

95,26447399
-46,24433154
25,62103442
-15,18197534
9,68692356
-6,49153596
4,59621595
-3,35031418
72,5473 560
-1,96812531
1,56979387
-1,26272541
1,04316250
-0,86420603
0,73293855
-0,62087390
0,5374561 3
-0, 46330589
0,40758594
-0, 35625896



*day

()

e

Table 2:

The integral Pjn(p)

(cont.)

J n & = 0,7

4 1 0,4824956303 7,496751669
4 2 -0,0190558051 -2,596079697
4 3 0,0362603946 1,249274045
4 4 -0,0005471306 -0,622584712
4 5 0,0108619802 0,394902523
4 6 0,0005236555 -0,236814935
4 7 0,0049943371 0,175472144
4 8 0,0005432556 -0,115969029
4 9 0,0028199853 0,094576317
4 10 0,0004475430 -0,066276699
4 11 0,0017954810 0,057526009
4 12 0,0003626770 -0,041786762
4 13 0,0012369221 0,037986933
4 14 0,0002956157 -0,028255550
4 15 0,0009007799 0,026612874
4 16 0,0002442515 -0,020115335
4 ip 0,0006836498 0,019495301
4 18 0,0002045351 -0,014902607
4 19 0,0005356138 0,014785402
4 20 0,0001736446 -0,011389470

|

1420,597962
-785,643097
491,299712
-321,178995
218,251580
-153,726843
111,974452
-83,897246
64,584731
-50, 770430
40,697476
-33,150992
27,410822
-22,941457
19,426748
~16,605190
14,329007
-12,455740
10,911466
-9,614713

— g



* ddy
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Table 2 : The integral Pjn(p) (cont.)
J n ? =02
S | =
gL | 0,7518226467
5 | 2 | -0,0713859029
5 | 3 |  0,0624865891
5 | 4 | -0,0093122386
5 | 5 | 0,0183835649
| 5 | & | -0,0024127543
B i 0,0082909976
5 | 8 | -0,0007890989
5 | 9 | 0,0046067711
5 | 10 -0,0002731827
5 | 11 | 0,002894373]
5 | 12 | -0,0000702234
5 | 13 |  0,0019717686
5 | 14 |  0,0000155208
5 i 15 |  0,0014222174
5 | 16 |  0,0000530137
5 | 17 |  0,0010704255
5 | 18 |  0,0000683982
5 | 19 |  0,0008324876
5 | 20 J__ 0,0000736218

i

26,04764488
11,15784741
5,72308062
-3,169327175
1,97631675
-1,27840414
0,90427288
-0,64280169
0,49288989
-0,37263576
0,30114028
~0,23719553
0,19915020
-0,16150962
0, 13952487

|

I

|

@

|
T,
i

c=1,0

23330,21030
~13723,00890
9253,3300]
-6482,78438
4656 ,58194

-3423,7118

2575,07715

-1977,75215

1550,62085

0]
~J
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Table 2: The

integral Pjn(p)

F J n [ e =1 07,
6 1 1,169578674
6 2 -0,177485172
6 3 0,110497474
6 4 -0,029219517
6 5 0,0322774717
6 6 —o,oo9419 8
6 7 0,014336335
6 8 -0,004090078
6 9 0,007852508
6 10| -0,002115120
6 11 | 0,00487204 1
6 12 | -0,0012099 o
6 13 0,00328279
6 14 -0 ooo74“??‘
6 15 0,002345028
6 16 -0, 000476___
6 17 0,001749827
6 18 -0,000321 55
6 19 o,oo135035o
6 20 -0,000220752

el Y S

4,59623790
-3,35033461
2,54734302
-1,96814334
1,56981064
-1,26274164
1,04317798
-0,86422082
0,7329527
-0,62088 5
0,53746
-0, 4633 8

0,4075 o
-0,35627 o

.

8]

EE

Ul

-

2

X

=C TR B o

407913 8980
-248122,6904
175328,§6B§
-128936,8771
96741,1996
-73775,3438
1153, 1324
-44949,7275
35908, 48 7
-2907/9,862¢
23857, 31
19808,7290
16627 2
-14096,2421
12058,6054
-10400,85
9038,
-7909, 11
6963,
-6166,9

l

o

C\
O N

f

~J

I\)
N
N

!

N

g

!

| N

7
7

CD(I)
(09}

51

ul °°l
Mhara




Table 2: The integral Pjn(p)

) J r n ¢ =:0,2 @& 055
7 1 1,831675553 362,3614514
7 2 -0,378889118 -190,2610141
2 3 0,199831594 112, 7359972
7 4 -0,070676936 -70,4741582
7 % 0,058704899 46,4027925
7 R -0,024467617 -31,9205977
7 7 0,025847171 22,8899561
7 8 | -0,011310411 -16,9330242
7 | & | 0,014012592 12,9324878
2z 7 e | -0,006197015 -10, 0904060
© z 1 : 0,008509009 8,0541628
s 7 1= -0,003764528 -6,5284605
- 7 3 0,005748813 5,3889132
7 14 -0,002461108 -4,4917319
7 15 0,00407308]1 3,7993867
7 16 -0,001697257 -3,2385059
7 17 0,003016613 2,7935154
7 18 ~-0,001220055 -2,4226528
7 19 0,002311997 2,1224565
7 20 -0,000905299 -1,8663549

7449810,572
-4623735,626
3367754,201
-2562618,259
1987795, 844
-1561994, 491
1241665,170
-997949,427
811617,006
-667101,288
554062, 831
-464744,259
393432,199
-335932,424
289110,881
-250646,935
218779,485
-192158,640
169746, 391
-150750, 463

Lve
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Table 2:

The integral Pjn(p)

(conti.)

J n c=0,2 c=0,5 c=1,0

8 1 2,897646412 1420,599842 140476694, 3
8 2 -0, 748326365 -785,644328 --88328564,5
8 3 0,366490414 491,300693 65666551 ,0
8 4 -0, 153377937 -321,179834 -51203252,6
8 5 0, 109508773 218,252324 40735619,9
8 6 -0,055251535 -153,727511 -32790840, 8
8 7 0,048119240 111,975072 26641269,7
8 8 -0,026265022 -83,897823 -21826915,0
8 9 0,025940001 | 64,585271 18045937,4
8 10 -0,014715980 | -50,770939 -15042836, 1
8 11 0,015837277 40,697958 12644062,3
8 12 -0,009127846 -33,151450 -10713839,5
8 13 0,010510400 27,417259 9148381, 8
8 14 -0,006085673 -22,941875 -7868954,7
8 15 0,007403083 19,427148 6814942,7
8 16 -0,004277338 -16,605574 5940309, 1
8 17 0,005452679 14,329376 5209316, 1
8 18 -0,003131849 -12,456096 -4594026, 8
8 19 0,004157450 10,917808 4072585, 1
8 20 -0,002366846 -9,615042 -3628051,8

|

T




- ddy

LA

6v¢

(cont.)

Table 2: The integral Pjn(p)
I J { n g = 0,2
! y I
i < YR 4,635208378
b b -1,413102852
S AL W 0,676344042
| -0,314319985
S I R 0,207288517
\ vl & -0, 116583020
9 | 7 0,091409247
| 9 | 8 -0,056370316
9 9 | 0,049198221
| 9 10 -0,031962875
9 11 0,029944689
9 12 | -0,020029046
9 13 i 0,019802907
| 9 14 | -0,013474840
l 8 {45 | 0,013898403
9 16 -0,009550155
BaE 0,010200811
9 18 -0,00704708T
b% 19 0,007751379
|9 20 -0,005365665

|

-3269,096859
2132,585857
-1447,63666
| 1012,892366
| -729,44833
539,995629
-409,661182
318,207688
-251,965733
203,053451

|

w

(00]
~J

|

1
(o)}
(o)}
(%)
@
\O
(o)
N

)

137,84723
-115,719951
| 98, 199263
. -84,119913

N

-48,962557




Table 3: The integral Mjn(p)

* ddy

L)

J n T c =0,2 c = 0,5 _IT c = 1,0
: StER AL i e e R
B R 0,2225247720 0,2600778344 | 0,4369105974
N S -0,0670086744 -0,0980099347 f -0,2550509822
TR 0,0343602708 0,0521945899 | 0,1518214445 i
1 4 . -0,0216469117 -0,0332929254 | -0, 1008334371 |
1 5 i 0,0152059134 0,0235160620 1 0,0725650547
1 6 -0,0114254259 -0,0177211601 -0,0552365288
B 7 0,0089868523 = 0,0139629554 : 0,0437849590
| 8 | =0,0073070735 -0,0113657327 _ -0,0357797261 |
i 1 9 ! 0,0060919191 0,0094826457 0,0299300192
! i ‘ e e e T e e e T |
&0 0,2434236563 0,4369105974 2,4027332210
| 2 2 | -0,0841263532 -0, 2550509822 ; -2,3390394383 |
e 3 0,0440992092 0,1518214445 ! 1,7892168731 .
[ 4 . -0,0279818302 ' -0,1008334371 , ~1,3375048809 !
2 5 ; 0,0197182741 : 0,0725650547 ; 1,0237253865
2 6 | -0,0148407409 | -0,0552365288 . -0,8073196600
2 7 | 0,0116847750 | 0,0437849590 ‘ 0,6541436396 |
2 8 | ~0,009506783] | -0,0357797261 . -0,5423549239 |
2 9 | 0,0079291744 0,0299300192 _L 0,4582282505

|
|



- ddy

()

14

Table 3: The integral M;,(p) (cont:)

{ J n [ c=0,2 c=0,5
3, 1 0,2816323892 0,9406428331
3 2 -0, 1162661262 -0,7519415709
3 . B 0,0630723768 0,5102183932
3 4 | -0,0404854821 -0,3584898114
3 5 | 0,0286777041 0,2653028228
3 6 | -0,0216435320 -0,2051285182
3 7 0,0170687986 0, 1641594656
3 8 -0,0139019155 -0, 1349859004
3 9 i 0,0116031207 0,1133981243
4 L i 0,3429159683 2,4027332210
4 z. | -0,169686561 1 -2,3390394333

| -4 & 0,0961414833 1,7892168731

| g -0,0626717501 -1,3375048809
LT l 0,0447080837 1,0237253865
4 & | 3 -0,0338700970 -0,8073196600
4 | ¥ 0,0267715255 0,6541436396
& &, | -0,0218363329 -0,5423549239
4 9 ' 0,0182434085 0,4582282505

21,55014318
-25,71230955
23,43274832
-19,64481700

! 16,15459984
-13,33737694
11, 14043127
-9,43242699
8,08888844
248,6875528
-325,1141014
329,0274243
-300,9875188
264,0427080
-228,3295020
197, 1566531
-171,0150752
149, 2984831

gt S
|

| R



Table 3: The integral Mjn(p) (cont.)

(\j n el 1 c = 0,5 } G = 10
|

0 0,4369105974 6,902536383 | 3329,511229
Bl <& -0,2550509822 -7,602749242 | -4563,083110
5 3 0,1518214445 g 6,416058360 i 4918,708454
5 4 -0, 1008334371 | -5,093886741 -4785,037412
3§ 9 0,0725650547 | 4,041817318 | 4421,970435
Bel 6 -0,0552365288 -3,259409964 -3985,091136
5 7 0,0437849590 2.,679622698 . 3552,741848
5 8 -0,0357797261 -2,243769693 ! -3158,532313
5 9 0,0299300192 1.908951120 | 2810,313010

WL I - Tl B B e | -t
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Table 4: The coefficient Gij

N
e 1 2 3 4 5
L
1| 2,214274458 | 0 b i g0 0
2 | 0,315389998 | -2,838259214 | O 0 0
3 | 0,108748839 | -0,429912062 | =-3,399281264 | O 0
4 | 0,083598168 | -0,202562399 ' -0,477327200 | ~3,889316224 0
5 | 0,047407757 | -0,151192025 | -0,251406937 | -0,503072468 | -4,327160546
6 i 0,041992204 | -0,100974442 | -0,191227709 | -0,280883635 | =-0,519222932
7| 0,027993867 . -0,084486147 | -0,135853378 | -0,217535964 | -0,300574195
8 | 0,026245636 | -0,0633333827 | -0,113716785 | -0,159995930 |  -0,236182173
9 | 0,019002832 -0,055885577 | -0,089025527 | -0,134842415 -0, 177694988
10 j 0,018334813 -0,044513349 -0,078043494 J -0, 108236202 -0,150881219
- it +

7\\\3 6 7 8 9 10 |
=T 4
[
1 0 0 0 0 0 §
2 0 0 0 0 0 |
3 0 0 0 0 0 |
4 0 0 0 0 0 :
5 0 0 0 0 0 !
6 ~4,725876196 0 0 0 0 ;
7 -0,530290039 -5,094108245 0 0 0 ;
8 -0,314649691 -0,538454518 -5,438048446 0 0
9 -0,249989523 -0,325211347 -0,544387311 -5,761071013 0
10 -0,191233003 -0,26072180] -0,333441560 -0,549303188 6,067699503J
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Table 5:

The coefficients F;

iJ

N g
Bos L 1 2 3 4 5
1 2,214274458 0 0 0 0
2 0,698360016 -2,838259214 0 L 8 0
3 -0,059433617 1,220201872 -3,399281264 | O 0
4 0,072017089 -0,00751095 1,622569407 | -3,889316224 0
5 -0,021900472 0,126133493 0,038332896 | 1,95660791 -4,327160546
| 6 0,0249739171 -0,010126469 0,174380258 | 0,076529583 2,246760986
AN ~0,011268391 0,043116434 0,00484265 | 0,217377429 0,109197826
| 8 0,012503682 -0,00761959 0,060421048 | 0,019030989 0,256257467
- 9 -0,00686447 0,021245710 0,00104051 | 0,076579945 0,032232350
o 10 0,00742342 -0,00554125 0,029702150 |  0,00602770 0,091609770
oo 6 7 8 9 10
1 0 0 0 0 | 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 -4,725876196 0 0 0 0
7 2,506085073 -5,094108245 0 0 0
8 0,137582655 2,742945598 -5,438048446 0 0
9 0,291513980 0,163437026 2,960404570 -5,761071013 0
10 0,044345691 0, 323785118 0,18709689 3,164603476 -6,067699503
e ] Ly e M i R e e e T W
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THE METHOD OF AUXILIARY FOURIER-BESSEL SERIES

In Ch. (6) it is shown That the quality of modelling of open or semi-open
electrostatic lenses can be improved by increasing the z-period L of the
Fourier-Bessel series used to approximafe the potential ¢(r;z) in the lens.
The increase in L requires a corresponding increase in N, the number of
%erms included in the series, so as to Ilimit the truncation error to an
acceptably small value. An increase in N resuifs in an increase in
computer time, which makes high precision ray tracing a costly process.

In this appendix the method of auxiliary series is discussed, a method
which results in a significant reduction in the total number of terms

Yo be evaluated.

The method is illustrated by discussing the Fourier-Bessel solution to
the exterior Dirichlet boundary value problem, for which unacceptably
large values of L may be required if only the basic series is used.

It is shown that for a finite period L, the error of the approximation
can be understood either in terms of induced charge distributions on
two parallel planes, or by considering an infinity of image charge
distributions at r=A. The error can be reduced by eliminating the
image potential distributions , which is done numerically Through

the addition of suitably chosen auxiliary Fourier-Bessel series.

1. INTRODUCT | ON

The following boundary value problem with rotational symmetry

is considered

N
wun
un



$(A;z)=0 for z£0 and z3L (A2.1a)

¢(Asz)=F(z) for 0<z<L (AZ2.1b)
and  V2¢(r;z)=0 for r#A (AZ.1¢)
where ¢(r;z) is the potential at a point (r;z), r and z being
cylindrical polar coordinates. A and L are two given lengths and
F(z) is a given nonsingular function with a finite number of discon=
tinuities. Let the region r<A be Q; and the region r>A be {g;
then finding ¢(r;z) in §; and Qg constitutes the solution of an
interior and exterior Dirichlet boundary value problem, respectively.
The interior problem was discussed in Chs. (5) and (6), and this
appendix gives a solution to the exterior problem in terms of a

Fourier-Bessel series.

Although quite a few different numerical methods can in principle
be applied fo solve both the interior and exterior boundary value
problems, it is found that some of the methods that are commonly
used to solve the interior problem can only be app!ied To the
exterior problem if special care is taken, or certain modifications

made.

When, for instance, the finite difference method is used, Eqs. (A2.1a)
and (AZ2.1b) provide boundary values on one side of, e.g., a square
grid of infinite extent, and the values of ¢ on the other three

sides may be taken to be zero. Limiting the relaxation computa=

tion to a square of finite size (Evans, 1977), it is found that the

boundary values on three sides will now be unknown, and approximate
values will have to be supplied before iterative relaxation can
App. (2)
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commence [ Nedoma (1975a and 1975bﬂ. A possible approximation

will be ¢=0; or a better choice is ¢(p)=k/p where p is the distance
between the boundary point and the "effective centre" of the source
distribution, and k is a constant which can only be specified if the
source of the potential distribution can be approximated (this
information is normally only known after the boundary value problem
has been solved). It is also possible to solve the problem for
squares of various sizes (taking ¢=0 on the three sides) and, by
investigating the solutions, decide whether the error caused by using
a finite boundary can be tolerated. [See Nedoma (1975b) for further
references]. The finite element method is also hampered by the
undefined finite boundaries, and several references on so-called
boundary relaxation methods are given by Mcdonald et al. (1972).
Computer experiments on the handling of boundaries have been described
by Wood (1976) and a way to match a (two-dimensional) closed region
containing the field sources, to a large annular region representing
the surrounding empty space, has been discussed by Silvester et al.

CIaTiy,

A novel way of dealing with the infinite exterior region has been
applied by Greenspan (1966) by converting the exterior problem to
an interior one through inversion in the unit sphere, and then sol=

ving the resulting interior problem by a finite difference method.

Another way of avoiding the problem of infinite boundaries is to
calculate the source distribution giving rise to the potential

field [Harrington (1968), Singer et al. (1970), Birtles et al.
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(1973), Du Toit (1976) and Geer (1976)]. This normally involves the
solution of a system of linear algebraic equations with a large
number of unknowns. The potential at any point in Qj or Q, can then
be found by means of Coulomb's law. For fields with rotational sym=
metry this involves evaluating an integral (or sum) with an ellfiptic
integral in the integrand. Altnough the interior problem can be
solved to a high degree of accuracy, the author is not aware of re=

ports on the accuracy of exterior solutions.

In contrast to most of the methods outlined above, which involve
either iterative procedures or matrix inversion, the Fourier-Bessel
solution to be described is arrived at by summating a series, a pro=
cess which can be terminated when sufficient precision has been
reached. In this sense the method is a direct one, and there does

not seem to be any limit To the precision attainable.

FOURIER-BESSEL SOLUT IONS

In the case of rotational symmetry, Laplace's equation reduces to

3 [ 3¢ 3%9 _
o [FW] + E% = g (A2.2)

& we investigate solutions of the form ¢(r,z)=R(r}Z(z), where four

5=

families of functions may be of use :
Kolar)sintaz) ,Kglar)cos(az) ;
lo(Brisin(Bz), lg(Bricos(Bz);
Jolyr)simtyz),Jg(yricoshtyz); and

Yo(8r)sinh§z),Yo(8r)coshdz)
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where J, and Y, represent the unmodified Bessel functions of first
and second kinds, respectively, and |, and K, the medified Bessel
functions of first and second kinds, respectively, all of order n.
(Throughout this paper the arguments of Bessel functions are re=

stricted to real values).

For the exterior problem, the function ig is unsuitable, because
lp(z2@)>®, and the function Jg will be given preference over Yj

because The numerical evaluation of J, is simpler than that of Y.

Two different types of solution are now discussed.

gl Use of subregions

The empty space §}y can be subdivided into three regions, a1, g2
and {lg3, defined by z<0, O<z<L and z:L, respectively, and solutions
¢1, ¢y, and ¢y,,, respectively, are defined in the three regions,

choosing the form of the solutions in such a way that ¢;=¢,, at

z=0 and ¢, ,=¢,,, at z=L:

¢,= ;{N JO(AOnr) {_Anexp(AOnz) + Cnexp[AOn(z—L)Jj' (AZ.33)
n=1

o]
$),= 224 LBn sin(nmz/L)Kg(nmr/L) /Ko (nwA/L)

—~

IS

+ JO(AOnr)-{Anexp(— Aonz) + Cnexp[—kon(L—z)]] (AZ.3b)

J
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L

® 1
i Va ~, 7z Ay
¢|]l= j{: JO(AOnr) { Anexp(—konz) + Cnexp[-kon(z—L)]:} (AZ.3c¢)
|

n=1

in which XAgn=Zp,/A, Zgpn being the n-th zero of Jg.

The coefficients B, are determined by performing a Fourier analysis
at r=A in the region Q45, using Eq. (AZ.1Db)

e

B sin(nmz/L)=F(z)
=1

n

Determination of the coefficients A, and C, may be done by requiring
that 3¢,/3z=9¢,,/3z at z=0 and that 3¢, /0z=3¢,,/9z at z=L.

In Ch. (5) this approach has led, for the interior Dirichlet probiem,
to series with acceptable convergence in {; except at (r;z=0) and
(r;z=L) and (r=A;z). The same behaviour may be expected for the
exterior problem, but the practical implementation may prove to be
more involved, because the orthogonalization of the Bessel functions

may be complicated.

2.2 Fourier integral approach

Consider the function G(z)=¢(A;z), i.e.
G(z)=0 for z<0 and zzL, and G(z)=F(z) for 0<z<L (A2.4)
Then G(z) can be represented by the Fourier integral

oo

G(z)= I’ B(w) sin (wz) cw (A2.5)
0
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in which the amplitude function is given by

)

B(w)=—g- { G(z) sin (wz) dz (A2.6)
0

For Qg the following then represents a solution :

oo}

Ko(mr)

KO(wA)

p(r;z)= ( B(w) sin (wz) dw (A2.7)

0

As discussed in Ch. (6), the integral of Egq. (A2.5) can be calcula=
ted numerically to a high degree of precision, and for 0<z<L the
quality of fit of the Fourier integral representation of.G(z) is not
fundamental ly affected by the fact that the numerical process of

evaluating the integral amounts to the summation of a finite series

N

:g: Blwy) sin (w,z)

el
in which the values of w, are determined by the nature of the nume=

rical integration procedure.

For the region g [and Q;, as shown in Ch. (6)] the situation is
different, since the Fourier-Bessel integral changes into a Fourier-
Bessel series of which the period is related o the lowest non-zero
frequency wq found in the series. The nonperiodic function ¢(r;z)

is represented symbolically by the nonperiodic function of Eq. (A2.7),
but in practice is approximated by a periodic function. This
periodicity has a defrimental effect on the quality of the approxi=

mation of ¢(r#A;z), as will be shown in Section (2.3)



oS Fourier-Besse!| series approach

Consider the following boundary value problem :

H(z) = ¥(A;z)=F(z) for Ogz<L (A2.8a)

H(z) = ¥(A;2)=0 for (L-Ly)/2¢2€0 (A2.8b)
and for Lsz<(L, + L3S

Y[r; (L-Ly) /2] =¥[r; (L4+L)/2]=0 ¥r (A2.8c)

V2¥=0 for r>A, (L-L4)/2<z<(Ly+L)/2 (A2.8d)

where A,L and F(z) have been defined in Section (1), and Ly>L is an

arbitrary length.

The solution is then given by

[e0]
¥{r;z)= Z{: By sin (nmz/Ly)Kp(nmwr/Ly) /Ko (nTA/Ly) (A2.9)

=1
with

Lt

2 :

B,= T F H[g-(L4-1)/2] sin (nm&/Ly) dE (A2.10)

0
It can be shown that, if Li»», the solution ¥ will be identical with
the solution ¢ of Eq. (A2.7). [For the one-dimensional case, see,

e.g., Lanczos (1957) p. 252.] For finite LT the infinite planes
P1 and Py at zero potential at z=(L-L4)/2 and z=(L+L)/2 affect the
solution for the regions r#A, as can be shown in various ways :

2.3.1 Placing zero values along the planes Py and P, where the
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values of ¢ are not expected fo be zero, amounts to using a
grid of finite extent in finite difference or finite element
solutions, as discussed in Section (1). (The boundary
values on only two, not three sides are modified here, how=

ever) .

2.3.2 Charge distributions 01(r) and 0p(r) are induced on the
earthed conducting plates at Py and P,. These distributions
cause Y(r#A;z) to differ from ¢(r#A;z), and the magnitude of
the error inftroduced can be calculated by means of Coulomb's
law if the functions 01 and 0 are known. The latter func=
tions can be found from the normal derivatives of ¥ at the

planes Py and Py :

a b ¥ - -27T€ n-1
o(r)=-2eqn 5= = -1;911 g n By,  "Hur) (AZ.11)
n=1

where q=1 for oy, q=—1 for oz, €g= permittivity of free space,

Un(r)=KO(nnr/L+)/KO(nﬂA/LT) for r > A

and Un(r)= |o(nﬂr/L+)/'O(nﬂA/L+) for r < A

in which the field in ; has been approximated by
[oe]

¥Y(r<A;z)= :E; Bpsin(nmz/Lt) lo(nmr/Ly) /lg(nmA/Ly)  (A2.12)
n=

as in Ch., (6).

Q1 and Q2, the fotal induced charges on the two plates can

be found by calculating
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<o

Q)= .f 2ﬂr(ﬁ(r)dr where j=1 or 2
0

o]

- -4megA ZE: (=t B, [Ky(0)/Ko(@)
n=1
+ 11(0)/15(®)] | (A2.13)

using various integrals [Gradshteyn et al. (1965), p. 684,

and Abramowitz et al.(1970), pp. 77 and 484]; ©=nmA/L;.

This is an extension of the well known result [Scanio (1973),
Pumplin (1969) and Fong et al.(1967)] that the charges in=
duced by a point charge q (which is distances x and L-x from
two infinite parallel conducting plates a distance L apart)
are -q(L-x)/L and -gx/L. This fact can be used in an alter=
native calculation of the induced charges Qi and Q2 of the
present problem, by noting that the charge distribution

opl(z) at r=A is known ¥ z, in ferms of the discontinuity in
the derivative (8/3r)¥(A;z)

op(z)=2¢ %% (A;2)

=2eq(m/Lt) z;~ n By sin (nmz/L) [ K (0)/Ky(0)
n=1
+ 11(@)/15(0)] (A2.14)

A ring-like element at (A;z), with charge denstiy op will

induce a charge -2mAcpz/L+ in the plate Py, giving
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2.3.5

B 2mAopz dz
- [
0

which gives the same expression as (Eq. (A 2.13).

In spite of this detailed knowledge of the induced charge
distributions, correction of ¥(r;z) to find $(r;z) does not
seem feasible. I+ will, however, be shown in Section (3)
that the required correction is possible by exploiting

certain properties of the image charge model.

Although the potential field of a point charge q located
between two parallel grounded conducting plates can be
calculated by taking into account q itself, and the induced
distribution o; on the plates (involving the evaluation of

an integral with an elliptic integral in the infegrand), it
is well known [Kellogg (1953)] that the potential between

the plates can alternatively be found by considering an in=
finity of image charges of alternating signs, in each of

the plates. This obviates the inconvenience of the elliptic
integrals altogether, and the integration is now replaced by
The evaluation of an infinite series. (The series converges
very slowly, but since it alternates, efficient accelerating

algorithms are available).

Some thought will show that it is possible to estimate

to what extent the image charges affect the potential distri=
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bution ¥(r;z) [causing it to differ from ¢(r;z)] by calcu=
lating the potential V;(r;z) due to the image charges only,
at points in Qglor Q;) and at points (r=A;0<z<L). For
points in Q; the differences V;(r#A;z)- V;(A;z) for 0<z<L
are small compared to the potential Y at the point, and it
w;s seen in Ch. (6) that by simply taking L+/L sufficiently
large, the difference ¥(r;z)-¢(r;z) could be made acceptably
small. For points in Qg, especially for r>>A, it is found

that the differences are large, calling for an alternative

form of correction.

The simplest way of reducing the effect of the induced
charges (or image charges) is by taking Ly>>L, which effec=
tively moves the induced charges further away and, as can be
shown, tends fo reduce the magnitudes of Q; and Q2. Fig.

(A2.1) shows how an increase in L+ reduces the ratio

o Wx(ro5;o) +(i7?205r0;20) ol
1296 00

for two chosen functions F(z) and Eq. (A 2.1b). The func=
tions F;(z) and Fo(z) are zero everywhere, except in the
following regions :
Fi(z)=1 for L/2-1<z<L/2+1 (A2.16)
Fo(z)=-1 for L/2-2<z<L/2~1 (A2, 1T8)
Fo(z)=1 for L/2+1<z<L/2+2 (A2.17b)

The subscript x in Ey refers to the value Ly used in calcus=
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Fig. (A2.1) The ratio EL of Eq.(A2.15) plotted against Lt' Lines A' and B'apply

t
to ¥, (5m;z,) resulting from F, and F, resp., as evaluated at z.=L/2
L, 0 1 - 0
and zO:L/2+3, resp. The functionsFl and F2 are defined by Eqgs.(A2.16)

and (A2.17), resp.



lating Yx- For Fi(z), Y is evaluated at the point

(rg;zg) (5m;L/2) and for Fy(z), ¥ is evaluated at

(5m;L/2+3). In both cases, A=1 m,

(rg>zg)

The rapid decrease in E, when increasing Ly in fthe case of
Y of Fy is explained by noting that (especially when A<<L)
the charge distribution giving rise to G(z) resembles that
of a dipole, whereas with Fq(z) it resembles a monopole.
The flux |ines of a monopole terminate at infinity, whereas
those of a dipole terminate at the negative pole of the

dipole.

For functions like Fy(z) very large values of L; would be
required to obtain sufficiently precise solutions for points
(r>>A;z), resulting in very slow convergence of the Fourier-
Bessel series, as shown in Section (4). A more practical
method in these cases is that of eliminating the images, as

discussed in the next section.

ELIMINATION OF IMAGES

The principle of the method is illustrated in Fig. (A2.2). Suppose
that the boundary value problem of Eq. (A2.1) must be solved, with
F(z)=1. Then Lt is chosen large enough that the region in which
¢(r;z) is required, falls within the Iimits -(L4=L)/2<z<(L4++L)/2.

The solution ¥(r;z) of Eq. (A2.9) which is the solution of Egs. (A2.8),
is a periodic solution (period Lt+), and is therefore also the solu=

tion of the following boundary value problem :
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t

-12 -11 -10 -9 ]§1 -7 -6 -5-4 -3 -2 -l rl——1i g% 1jr~J&L—1ir——f%——qzr——?j zJ %9 il 12
D1 e = I 4 ¢ S i w _M o =
D2 L1 1 . * M i L g L M
D3 < ¢ i i y
D ' 2 ¢ 5
D5 i oL o)
D6 e !
Fig. (A2.2) Diagram to illustrate the correction of the function H(z) of Eq.(A2.18), shown in the top graph, by

superposing the functions appearing in Eq.(A2.20), shown by graphs Dl’ DZ"" The arrows indicate

half-periods of the various periodic functions, and the numbers at the top show the positions of the

images discussed in Section (3).



Hp(z)=W(A;z)=F(z) for sLt<z<slyrl (A2.18a)

Ho(2)=¥(A;2)==F(z) for (s+D)Lt<z<(s+1)L+L (A2.18b)
Hp(z)=¥(A;2)=0 for sLy+(Ly-L)/2¢zssly (A2.18c)

and for sLy+L€zgsly+(Lt+L)/2 (A2.18d)
V2Y(r#A;z)=0 ¥z (A2.18e)

in which s=0;4+2;4+4;

The behaviour of H(z)=¥(A;z) for the regions z<(L-L4+)/2 and
z>(L++L)/2 is in complete correspondence with the description in
terms of images; we may even extend the idea of point charge
images to that of images of potential distributions, stating that
the potential ¥(r;z) at any point between two parallel grounded
conducting plates will give rise o an infinity of image poten=

tials in each of The plates.

The method of elimination of images may be discussed by referring
to Fig. (A2.2). Y(A;z) is shown as the top graph, and the region
of Interest is found between the two arrows. |f the images marked
1;2,... and -1;-2;... can be eliminated, Y(A;z) of Eq. (A2.18)

would.be changed to ¢(A;z) of Eq. (A2.1), and the boundary value

problem of Section (1) solved.

The elimination can be carried out as follows: +to WLT ir;z)

is added a function —W3L+(r;z;—2L+), shown by graph D; (The
variable d in TnLT(r;z;d) indicates that the train of pulses is
displaced towards the right by an amount d)- This eliminates images

1;,4;7,... and -2;-5;-8;... Then -W3L+(r;z;2L+) is added, elimina=
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+ing Tmages Z2;5;8,. s B =15=23=7, 0 oy After this first stage of
correction, the nearest images are nos. 3 and -3, giving the
corrected function ¥C! a period of T1=6L4. In the second stage

of correction the functions —WgLT(r;z;—6LT) and —W9L+(r;z;6L+) are
added, eliminating images 3;12;... and -6;15;... as well as 6;15,...
and -9;-18;... so that the period of ¥C2 is now To=9L;. (The arrows
in graphs D{,Dp,... show half-periods of the respective functions.)
It can be seen that after M stages of correction the period of the
corrected function YoM wili be TM=3M(2L+) and for large values of M

the distance to the nearest image will be approximately Tpn/2.

Although the proposed method increases the period of YeM in an
exponential fashion, and we know that yCM > for M =+, it must still
be established that the total computational effort required by this
method is less than choosing L+ a sufficiently large value Ty in

the first place. This is done in the next section by investigating

the convergence of the series.

CONVERGENCE OF THE FOURIER-BESSEL SERIES

Suppose that the series of Eq. (A2.9) is truncated after the N-th

term, and that the truncation error is en(r;z).

Then it can be shown that for a chosen point (roszoY, e€nN(rgszp!
increases rapidly with Li, the chosen period. enir;zg) also
depends strongly upon r; [ due to the asymptotic behaviour of the

lo and Ko Bessel functions, en(r;zg) decreases with an increase in

App. (2) 2
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lA-rI ¥r ]. |f, for rg, a chosen value of r, it is found that
eN(rg,z) is approximately constant for 0<z<L, then the proposed
method will not bring about any reduction in computer time, but
possibly even an increase. Fig. (A2.3) shows that except if N
is tfaken quite large (e.g. N = 120), the use of the method of
Section (3) will only be profitable if the convergence is acceles=

rated.

Investigating the series of Eq. (A2.9), as modified by the intro=

duction of Lanczos o-factors [Lanczos (1957)] by writing

N . K. (nar/L 3
¥ ¥ sin [wn/(N+D][ . 0 t
Lanc,Ly = 21 Bn{ TS sin(nnz/L+) [Ty (19)

fi=

it is seen that, although the convergence of ¥ is slower

Lanc,L+

than that of WLT near z = L/2, its convergence for low values of N

is considerably better for (L-L,)/2<z<(L-L4+)/3. The Lanczos

o-factors, shown in braces in Eq. (A2.19) are derived by performing

a spatial averaging process, and the property of H(z) of Eq. (A2.8)

of being zero in the regions specified by Eqs. (A2.8b) and (A2.8c)

allows the function ¥
Lanc,L_Jr

in the outer regions Ly/3<|z-L/2|<L+/2 as long as ro/A<<L+.  Due

to the smoothing action, V¥ is not useful for 0<z<L.
Lanc L.

If we now investigate the convergence of

Wcorr(ro;z)=WL+(ro;z)-WLanC’3L+(ro;z;z1)—WLanC’3L+(rQ;z;zz)

(rgsZ3523)% .« o

Y
Lanc, 9L+ (A2.20)

App. (2)
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Fig. (A2.3)

50 m 100 y 150

The truncation error N of Section (4) is plotted against y§z+Lt/4-L/2
L=2 and Lt:300. let W be an estimate of wL (5m;z) of Eq.(A2.9), due
t
to a boundary function F(z) given by Eq.{A2.16). Then curves B and C
show eN:|w Lanc’Lt(Sm;z)-Wl with wLanc,Lt calculated by means of Eq.{A2.19)
with N=20 and N=120, resp. Curves A and D show eNzle (5m;2)-W|, with wL
t t

given by Eq.(A2.9), as summed to 20 and 120 terms, resp.
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in which z9,22,... are defined by Section (3) and illustrated in

Fig. (A2.2), then the series representing each function of Eqg. (A2.20)

may be truncated after approximately the same number of ferms. By

way of illustration the values of the terms appearing in the above

equation are given for the point (5m; 1,5m)

Wcorr(5m;1,5m)=0,0818005+0,00399316+0,000172+0,000042+0,0000lO
=0,0868203

in which the terms have been calculated by truncating the series

at N= 40,40,40,20 and 20 respectively.

The result obtained may be compared with the value W7290=0,0868222
which has been found by calculating ¥ without Lanczos acceleration
for L+=7290m and N=5500. (The truncation error for this value is
1x107® and the error due to the remaining image charges is 3%1076.)
Since the method of elimination of images has required only 160

terms for the same precision, it can be seen that the method al lows

a significant reduction in computing time.

This can be stated more generally by noting that every correcting
stage requires a further 2N Fourier-Bessel terms to be evaluated,
whereas the calculation by means of a straightforward threefold
increase in Ly would have required 3N terms. For M stages, the
proposed method would require 2MN evaluations, as compared to 3MN
evaluations. For calculations of high precision, M may, for instance,
be 8, in which case the ratio of the number of evaluations required

by the two methods is 0,0024, a saving which is significant enough

to warrant the additional programming to evaluate the expression of
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Eq. (A2.20).

In Fig. (A2.4) a cross section of part of the field is shown for
¢(r;z) due to F(z) of Eq. (A2.16). The solution for r<A has been
found by means of Eq. (A2.12); see Ch. (6). An equipotential
diagram for ¢(r;z) due to F(z)=exp(—AzZ) is given in Ch. (6), as
well a table comparing the convergence of the |O Fourier-Bessel
series for rectangular, spline and exponential functions, showing
that for the smoother functions the convergence is considerably
faster than for functions with discontinuities. The same

behaviour can be expected for the Ky Fourier-Bessel Series.

CAPAC | TANCE

Normal ly the calculation of capacitance is either an aim or a
by-product of the solution of the exterior Dirichlet boundary
value problem. In the present case the capacitance of an elec=
trode (A;0<z<L) at an applied potential Vg can be found by means of
Eqg. (A2.14) if small gaps are allowed between this electrode and
the earthed electrodes (A;z<0) and (A;z<L). The potentials in
the gaps are, however, unknown, and special care must be taken
[Read (1969a , 1969 and 1970), Wittels et al. (1976) and
Natal i (1972)] if assumptions are fo be made [Anicin (1976), Saito
et al. (1977}, Cook et al, (1976), Bertram (1940 -and 1947},
El-Kareh et al. (1970a), Heerens et al. (1975) and Heerens
(1976)] about the potential distributions in the gaps. For thin,

tubular electrodes, the assumption of linear distributions in the
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Fig. (A2.4) Equipotential diagram for ¢(r;z) due to F(z) of Eq.(A2.16), showing part of the region z>L/2, r>0.
The equipotential values are indicated by the figures in the diagram. The solution for r<A has

been calculated from Eg.{A2,12) A=l m; L=2 m ard L =320 m.




gaps will not be justified, and a Fourier-Bessel method of handl ing
boundary value problems with gaps is being developed at the moment .
It is expected that the precise calculation of capacitances will be

made possible by this method.

CONCLUS ION

A Fourier-Bessel integra! representation is given for the potential
field of rotational symmetry in a region exterior to a cylindrical
surface on which the potential is specified

d(A;z<0)=¢(A;z>L)=0 and $(A;0<z<L)=F(z), a given function.

When the integral is evaluated numerically, the discretization of
the amplitude function introduces an error which can be described
in terms of potential fields of induced or image charge distribu=

tions. |t is shown how the error may be reduced by superposing

Fourier-Bessel series of different periods. The method is a direct

one, involving no iterations or matrix inversions. Programming is

simple, requiring only a few tens of statements in the BASIC language.

Computer requirements are very modest, allowing implementation on
a small desk-top computer. There does not seem to be a limit to

the precision attainable, and the proposed method is applicable to

the corresponding interior Dirichlet boundary value problem of Ch. (6)

as well. Whether the method can be applied profitably to the inverse

interior Dirichlet problem of Ch. (8) will only be known after a

detailed study has been completed.
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| X (3)

SOME PROPERTIES OF BESSEL FUNCTIONS

The information in this appendix is

et al. (1970) and is provided for

i) Series expansions for integer

taken from Ch.

quick reference only.

values of n

oo

(-0
Jy (2) sz j{: (P B R

k=0

25 723K
n + k)!

- K
| n (0,25 z2)
by bzl = (0,52 Zg: e T
k=0
n-1 K
i ST o L 2
Kn(z) = 0,5(0,52™" > (”kT b is e o)
k=0
A PR - R, ST
. (0,25 22)K
+ (=1)N 0,5 (O,5Z)n ‘P(k+1)+‘l’(n+k+]) k—,z"m)—'
k=0
in which Y is the ¥ -function s
Y(1) = -y and ¥(n > Kk~
k=1

in which v is Euler's constant

ii) Derivatives

(3/92) Jg (2) = =Jq(2)

(9) of Abramowitz
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(3/32) g (2) (2)

i
=

(3/3z) Ky (z)

‘-Kl (z)
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SOME ELECTRON OPTICAL PROPERTIES OF THE "ZERO SPHERICAL ABERRATION

ONE-FOIL LENS".

1.

INTRODUCT ION

In this appendix some electron optical properties are given of a
one-foil lens similar to the one discussed in Section (3.2.7)

of Ch. (8). This tens has a charge distribution on the foil which
is such that the lens can be expected to show negligible spherical
aberration to particles entering the lens parallel to the axis at

sufficient speed.

The lens was represented by the Fourier-Bessel series of Eq. (8.15)
by means of which ray tracings were carried out by computer. The
number of terms, N, was taken large enough that the potential gra=
dients for z > L/2 could be neglected, and different values of P
were chosen in order to investigate the effect of smoothing on the
Gaussian focal distance, z4, and the spherical aberration. Ray
tracings were carried out for weak and strong lenses, and the re=
sults are presented in Table (A4.1). The spherical aberration
coefficients given, are c=AJ/r? and Cs = cf2 = czi , in which AJ

is the longitudinal spherical aberration experienced by a ray

entering the lens at (r;0)

DISCUSSION OF THE RESULTS.

a. For a chosen value of N, a larger amount of smoothing (i.e.
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a higher value of P) fends fo cause a slight increase in z4, as shown

by entries (1) to (6) and (7) to (8).

For fast particles — entries (9) and (10) — the change in zgq produced
by increased smoothing is much smaller, probably because of Op- and
0,- effects of Section (2) of Ch. (7) are much smaller than the

F-effect in these cases.

b. Larger P-values reduce the aberration c and Cs up to a point
— entries (1) to (5) — but a further increase in P causes an increase

in ¢ and Cg.

(0 Comparing entries (2) and (3) with entries (7) and (8), resp.,
shows that their electron optical properties are virtually identical,

in spite of differences in N and P.

d. Entries (11) — (13) are included in the table to allow an
estimate to be made of the precision of the results, by comparing

these entries with numbers (9) and (7).

e. Entries (9) and (10) show that their c-values are not much
larger for weak lenses than for strong lenses. Considering the
circle of confusion Ar= r3c/zd in the Gaussian focal plane, it is
seen that a parallel beam of radius r is focused to a value F o
This is in marked contrast fo, e.g. 3-aperture open lenses for which,
in their weak forms, C; « t3 and c o f [see e.g., Klemperer (1971),

Fig. (6.12)]. For strong open lenses of this type, Cg O fb, where
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b<3, and Ar o fd, where d<0; consequently low Ar values are

obtained by increasing the strength of the open lens.

f. The Cs/zq values for the stronger one-foil lenses of Table
(A4.1) appear to be slightly superior to open lenses of the same
strength, and the weak one-foil lenses of the table have Cg/zd
values which may be 2 orders of magnitude lower than open lenses

of the same strength.

g. It has been shown that for the one-foil lens under discus=
sion, AJ is almost constant for a large range of focal leﬁgfhs.

An explanation may be arrived at by considering a zonal curve of
Fig. (8.7) fo be a superposition of a piece-wise |linear graph and
a perturbation. The piece~-wise |inear potential field produces

a deflection of a particle which results in zero spherical
aberration [see Section (2.2} of-Bh, 1) and Sectlian (3,2.7) af
Ch. (9)], but the perturbation corresponds fto an open Einzel type
lens. Use of relationships shown in Figs. (2.2) and (2.3) allows
the invariance of AJ to be explained in mathematical terms; +this

will be published elsewhere.
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Table (A4.1)

Some focal

following points on the [z=¢(0,z)] diagram :

(3 m;

V).

properties of a one-foil

(O m; O VY, (I m;

lens defined by the
1 V) and

N and P are parameters appearing in Eg. (8.15) and L=6 m. Vp

is proportional the speed of the particle when entering the lens, and the

number of steps in the ray tracing between z=0 and z=L/2 is proportional

to No

No.[ N ] 2 Vp N2 Zq (s Cg
F 2 ,
1|40 1| 2] 85,1578 3,511 93,40 |
2 40| 2] 2| 8 ' 5,2082 Z:747 73,97 )
3 |40 | 4 ? 2 | 16 | 5,28083 2,0210 56, 36 |

s e8] 23 | 5,390266 | 1,44082 41,86

5 |40 |16 2 132 | 5,555414 | 1,13786 35,09
6 | 40 |32 2 i 32 | 5,902153 | 1,18465 41,26 |
7180 |8 | 2]16] 5,202 2,8724 | 77,75 |
8 i 80 116 | 2 | 16 | 5,2626 2,0280 | 56,595 |
o | 40| 4|20 16|797,2884 | 2,1491 | 1,3661 x 106 |
| a | :
10 |40 | 8 | 20 | 16 | 79740869 | 1,55754 . 0,9037 x 106 |
11 140 | 4 | 20 | 32 | 797,28790 | 2,13951 1,3600 x 1o6i
12 180 |8 | 2|32 |5,2001 2,89478 78,30 |
13 | 80| 8| 2| 64| 5,20073 . . |
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NOTAT ION
ar, a, radial and transverse acceleration.
A: expansion radius.

BF] Sel HRET

Ce: chromatic aberration coefficient; Section (2.2) of Ch. (2).
Cg: spherical aberration coefficient; Section (2.4) of Ch. (2).
Cln): Fourisr-Bessel bas|s fields Section (2.1) of Ch. (2).
Ans>BnsCn,Dpn,En: Fourier coefficients.

F-effect: Section (2} of Ch. (7).

G

Fij’ L Hi: coefficients used in orthonormalisation of Bessel functions.

i: (-1)0s

In: modified Bessel function of first kind and order n.
Jn: unmodified Bessel function of first kind and order n.
Kn: modified Bessel function of second kind and order n.
L: half-period of Fourier expansions.

La: L/A

Lg: lens length; Section (5) of Ch. (6)

m: S.l. unit

N: number of terms included in finite Fourier series.
Or-and O -effects; Section (2) of Ch. (7).

P: power to which Lanczos sigme-factor is raised.

dn: charge to mass ratio of particle.

r: cylindrical polar coordinate.

5: 8.1 lunihs

S: ratio of Einzel saddle potential to kinetic energy of particle

S(r): spherical aberration; Eq. (7.4).
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t: time variable.

v: velocity.

Vre: radial speed of particle at exit plane.
z: cylindrical polar coordinate

zg: focal distance; Section (2.2) of Ch. (2).
z¢: focal length; Fig. (2.1).

Zons n=th zero of Jy

Zpt principal plane position, see Fig. (2.1)

AJ: longitudinal spherical aberration.

€p: permittivity of free space.

€: tTruncation error.

m: numerical constant, 3,1415...

p: volume charge density.

o: surface charge density.

i: angle between i=th ray BT exiT, and optical axis; Fig. (2.1)
: electric potential.

nabla operator

la = o

App. (5) 285



A BLRLUELND X 6

SUMMARY

The feasibility of utilizing Fourier-Bessel functions and Fourier techni=
ques in the analysis and design of electrostatic electron optical systems
with rotational symmetry, is investigated. Various approaches are fols=
lowed, and open systems as well as systems closed off by one or Two plane

conducting foils, are included in the study. it is assumed that rela=

tivistic effects may be disregarded, and that the systems are free of space

charge.

In one approach the electron optical properties of various "fundamental"

fields are investigated, and syntheses found (superpositions of relatively

small numbers of fields) which show reduced spherical aberration. Such
syntheses correspond to lenses which are closed off by two plane foils.
A steepest descent optimization method is also suggested, which can opti=

mize two-foil lenses i.r.o. zonal as well as paraxial focal properties.

Fourier-Bessel series representations are given for the potential and
electric intensity fields of open and one-foil configurations, and it is
also shown how tThe toftal amount of computing can be reduced by defining

auxiliary Fourier-Bessel series which are derived by means of the mcdel

of electrostatic images.

Fourier-Bessel series can .lso be found which represent the surface
charge densities on electrodes in the system, and as an application an
analysis is given which relates the behaviour of various classes of

one-foil lenses to the charge distribution induced on the foil.
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A discussion is given of Fourier-Bessel series which approximate a given
axial potential function ¢(0;z). There are infinitely many approximate
solutions to such an inverse interior Dirichlet boundary value problem,
and the roles played by various parameters in the solution are investi=
gated. It is shown that certain piece-wise linear axial functions can
be expected to render fields ¢(r;z) that have interesting electron optical
properties, and ray tracing results are given for some one-foil lenses of

this type.

The solutions to the inverse problem can represent two-foil, one-foil and
open systems, and an optimization method is suggested which is applicable

to all three these categories of lenses.

A few outstanding features of the Fourier-Bessel approaches discussed are
the high precision with which electric potential, intensity and charge
distributions can be calculated (resulting in the precise determination

of focal properties), the modest computer memory requirements, and the

ease of programming.

App. (6)
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