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Abstract

The absolute change in the corrected angle measured immediately after surgery and

after bone healing is a clinically relevant endpoint to judge an osteotomy's stability.

The primary objective of this research is to illustrate the non-inferiority of a novel

screw used for �xation of the osteotomy compared with a standard screw. If the

di�erence in the angles after surgery and after bone healing can be assumed to be

normally distributed, the absolute change follows the folded normal distribution.

The most natural approach to present the clinical study results is using a con�dence

interval to compare two folded normal distributions. We construct a con�dence

interval to compare two independent folded normal distributions using the ratio of

two chi-square random variables, the di�erence of two chi-square distribution, and

the bootstrap method. We illustrate the approaches from a study on hallux valgus

osteotomy. The proposed con�dence intervals permit an investigation of the non-

inferiority for the two treatment groups in clinical trials with end points following a

folded normal distribution. The application to real data results indicates that the

con�dence interval for the ratio of two chi-squares random variable and bootstrap

is straightforward and easy to calculate. Bootstrapping was asymptotically more

accurate than the standard interval obtained from samples that assume normality.

Also, it was an appropriate way to ascertain the stability of the results. Judging

by δ of the bootstrap method, we establish non-inferiority for the new surgical

method. In conclusion, the approaches are promising, and we recommend them

for use to compare other practical data that require the use of the folded normal

distribution.

x



Chapter 1

Introduction

1.1 Background

Absolute measurements occur whenever a deviation or a di�erence is measured,

and the algebraic sign is ignored. We �nd typical examples from clinical trials, in-

dustrial practices, sports, and the insurance sector. In clinical trials, an example is

when blinded data is used for estimation of treatment di�erences and standard de-

viation (Chen and Kianifard, 2003). The absolute di�erence of an e�ect size is use-

ful to estimate the sample size of subsequent trials and adjusting or re-estimating

the sample size of an existing experiment. At the same time, the randomized

treatment codes remain blinded. Other examples are absolute measured levels

of Macrophage Migration Inhibitory Factor (MIF) and mRNA Interleukin-1-β,

used for accurate prediction of antidepressant treatment responses across di�erent

laboratories (Cattaneo et al., 2016). Additionally, the absolute measurements of

Hb levels and serum levels of EPO were important in predicting the response of

Erythropoietin treatment for chronic anemia (Ludwig et al., 1994). The absolute

measurements of post-treatment scores on the HRSD (Hamilton Rating Scale for

Depression) have helped to illustrate and test new methods for integrating pre-

dictive information that aid individual treatment selection and recommendation

(DeRubeis et al., 2014). Measurements of absolute CD4 count cells were used to

determine the relationship of sexual orientation disclosure and immune function-

ing of psychiatric HIV positive patients (Strachan et al., 2007). Finally, Lin et al.
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(1993) used absolute measurement of FEV1(Forced Expiratory Volume) to study

the e�ects of albuterol dose given by either continuous or intermittent administra-

tion when treating acute asthma.

These examples share a common trait of missing algebraic signs. Tallying the

negative values with the positive values is the result of removing the symbol, and

mathematically, this corresponds to folding the negative part of the distribution

to the positive part. If the algebraic values' underlying distribution is normal,

then the absolute value distribution is known as the folded normal distribution.

Leone et al. (1961) introduced the folded normal distribution then, Elandt (1961)

derived the �rst four non-cetral moments, Johnson (1962) derived the mean and

standard deviation using MLE and constructed cumulative sum control charts for

the folded normal variates in 1963. Psarakis and Panaretoes (1990) studied folded

t-distribution, and in their subsequent paper in 2001, they derived a bi-variate

folded normal distribution. Bland (2005) studied the half-normal distribution as

a unique example from folded normal when µ = 0 and applied the �ndings to

measurement error. Kim (2006) considered the ratio of independent folded normal

random variables as important in the sampling distribution of di�erent models, as

Chakraborty and Chatterjee (2013) focused on multivariate folded normal.

Brazauskas and Kleefeld (2011) illustrated the importance of folded t-distribution

model in modeling claims data by incorporating a scale parameter to the model.

Before then, Cooray et al. (2006) had introduced the folded logistic distribution,

which is very accurate in simulated and practical sets of data. Wang and Wang

(2011) presented the statistical ordering of the folded normal random variables

as Mutangi and Matarise (2012) tackled the procedure for �nding the norming

constants for the maxima of a folded normally distributed random variable. Gui

et al. (2013) introduced a folded normal slash distribution which is de�ned by the

quotient of two independent variables; the folded normal variable and the power

of uniform distribution. The authors found this distribution to have higher kur-

tosis compared to the folded normal distribution. Nadarajah and Bakar (2015)

introduced new folded distributions. They include the folded Gumbel, the folded

Cauchy and the folded exponential power. The authors studied the statistical
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properties of each distribution and applied the results to real data. Kim (2016)

introduced a new distribution class for the ratio of two dependent folded normal

random variates, as Chatterjee and Chakraborty (2016) provided a simple value

calculation algorithm for the folded normal distribution. A more recent model

introduced by Nojoumizadeh and Saberi (2019) is the folded Laplace slash distri-

bution to provide a choice in simulating and �tting heavy-tailed and skewed dis-

tribution whose probabilities are heavier than the folded normal slash distribution.

The applications of the folded normal distribution are vast. Johnson (1963) �rst

applied it to the development of cumulative sum charts for folded normal random

variates. Yadavalli and Singh (1995) used folded normally distributed failure rate

random variable in the determination of reliability density. Cherny et al. (1999)

did a quantitative analysis with the folded normal on DNA interactions visualized

by electron microscopy. The known properties of the distribution were used by

Chen and Kianifard (2003) to develop a framework for the estimation of both stan-

dard deviation and treatment di�erence of a blinded data in clinical trials. Naulin

(2003) used this distribution to present the components of electromagnetic trans-

mission and shear �ows in drift-Alfven turbulence. The process capability measures

utilized folded normal to assess the quality loss of manufactured products (Lin,

2005). Younis et al. (2011) used the distribution in modeling the learning-less

vulnerability discovery rate of a software system, Liao (2010) modeled economic

tolerance designs, and (Wang and Wang, 2011) used in primary arc analysis to

direct product manifold. Further, the distribution was useful to model insurance

claim data (Brazauskas and Kleefeld, 2011), body mass index (Tsagris et al., 2014),

and modeling small-scale fading in the line-of-sight condition in wireless commu-

nication (Reig et al., 2019).

Application of the folded normal distribution is uncommon in clinical trials, maybe

because of the nature of outcomes and results from them. A clinical trial is a

prospective study that compares the e�ects and e�cacy of interventions against

a control group in human beings (Friedman et al., 2015). The trials are classi�ed

according to their goals and how they are structured. A clinical trial employs one

or more intervention techniques that can be single or combinations of diagnostic,
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biologics, regimens, devices, procedures or educational approaches, preventive or

therapeutic drugs (Friedman et al., 2015). Trials which utilizes therapeutic drug

interventions provide knowledge about optimum treatment of various diseases and

are conducted in phases depending on the purpose and stage of development.

Phase I examines drug tolerance, interactions, and metabolism, while phase II

focuses on therapeutic explanatory studies that explore the e�ects of di�erent

doses. Phase III comprises con�rmatory therapeutic studies that illustrate clinical

applicability and assess the safety pro�le. Final phase IV seeks to identify the

uncommon adverse e�ects of the drug in a broad or unique population (Unnebrink

and Pritsch, 2000).

In clinical trials, treatment e�cacy assessment is one of the most critical activi-

ties in medical research. We evaluate the e�cacy of the treatment in comparison

to the control group. To ensure the internal validity of these comparisons, the

groups must be similar at the beginning of the analysis, and this can be done by

randomizing patients to the medication. It is su�ciently critical to prove the non-

inferiority of the new treatment if we require to show its e�ectiveness (Snapinn,

2000). The goal is to demonstrate that the di�erence between the mean outcome

of experimental and reference treatment does not exceed the non-inferiority mar-

gin and that the new treatment is non-inferior to the current active control group

(Pigeot et al., 2003).

Clinical researchers are interested in the signi�cant di�erence in mean values be-

tween two treatment groups when the outcome is a continuous random variable.

Their goal is to evaluate the null hypothesis, which coincides with the overall

assessment of the treatment di�erences (Simon, 1986). In the case of assessing

the di�erence of two treatment groups that are independent and whose outcome

variables are continuous, absolute, and normally distributed, then the di�erence

between two independent folded normal distributions is considered. The most nat-

ural approach widely preferred by researchers to present results for the comparison

of two independent distributions is the con�dence intervals. Therefore, the con�-

dence interval is useful to present the study results of the di�erence between two

independent folded normal distributions.
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Con�dence intervals have broader use, and they encompass a signi�cant test and

provide an estimate of the magnitude of the e�ect (Ramasundarahettige et al.,

2009). In clinical trials, estimation of the size of the impact is as critical as hy-

pothesis testing because the researchers are concerned in estimating the size of

the di�erence between mean outcomes and not just in examining whether there

is such a di�erence (Simon, 1986). In a way, the observed di�erence in response

levels is our best approximation of the di�erence in the actual response mean.

However, if we take another group of patients, we are unlikely to �nd the very

same di�erence in response level. We, therefore, accept that we do not know the

actual di�erence with certainty. Nonetheless, we can measure an interval that will

represent the actual di�erence with high probability. This threshold is called the

con�dence interval, and the likelihood that the real value lies in it is the con�dence

level (Simon, 1986).

This study seeks to construct con�dence intervals to compare two folded normal

distributions and explore its application to clinical studies where a comparison of

two treatment groups is involved. The designed con�dence interval is useful in

the presentation of the clinical results. The motivation of this study arose from a

practical medical problem where patients involved su�ered hallux valgus, and they

were enrolled in surgery to correct the deformity. They administered two types of

treatments independently, one using biodegradable magnesium compression screw

and the other used standard titanium screw for �xation in the surgical treatment.

The outcome variables to measure the success of the surgery considered were con-

tinuous random variables (HVA and IMA) where their absolute di�erence between

two time periods were assumed to follow a folded normal distribution. Hallux

valgus is described in detail here.

1.2 Hallux valgus

Hallux valgus (HV) is a foot skeleton disorder, where the large toe is misaligned

(Nguyen et al., 2010). It angles itself to the other toes and often displaces them.

Sometimes even the toe shifts above or below each other. This crookedness tends

to cause the ball region of the instep to protrude. A noticeable bulge can be seen
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or felt that alters the weight distribution around the entire foot and causes rolling

of the foot when walking, which often entails a lot of foot pain (Hecht and Lin,

2014). HV is characterized by the medial deviation of the �rst metatarsal, lateral

deviation with or without enlargement of the soft tissue of the �rst metatarsal

head (Ray et al., 2019). It is a complicated deformity of the �rst ray and preceded

by defects in the lesser toe (Chou, 2000). HV will hardly cause any discomfort at

the early stages; however, at the advanced stage, there is di�culty in �tting shoes

as a result of medial eminence, pain over prominence at the MTP joint, and other

symptoms resulting from compression of the digital nerves (Piqué-Vidal and Vila,

2009).

1.2.1 Epidemiology

This disorder is one of the popular foot problems in the elderly population, with an

incidence rate of about 35% in those older than 65 years worldwide and more often

in women than men (Nguyen et al., 2010). Worldwide statistics indicate that 70%

of people with the disorder have a family history that can be associated with in-

trinsic and extrinsic risk factors (Park and Chang, 2019). Intrinsic factors include

a hereditary predisposition, cerebral palsy, ligamentous laxity, and second toe de-

formity. Other examples are pes planus, convex metatarsal head, and increased

distal metaphyseal articular angle (DMAA). They weaken the connective tissues,

thus increasing the risk of HV as the foot is susceptible to become deformed easily

(Yamada et al., 2014). Extrinsic risk factors include wearing thin, pointed shoes,

and high heels. (Park and Chang, 2019). Furthermore, studies have also shown

that wearing socks for years presses the toes together and alters the natural shape

of the foot (Hecht and Lin, 2014). HV is associated with certain types of diseases

and infections particularly in�ammatory types such as rheumatoid arthritis, gouty

arthritis and psoriatic arthritis (Roddy et al., 2008).

1.2.2 Diagnosis

Diagnosis of HV uses imaging, where a standard series of X-rays are taken with

the foot weight. Di�erent views, such as Anteroposterior, LAT, and oblique, are

taken (Ray et al., 2019). We generally measure angles to classify HV into three
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categories mild, moderate, or severe (Hecht and Lin, 2014) as portrayed in Figure

1.2. HVA, IMA, and DMAA are important angles for radiological assessment of

HV as shown in �gure 1.1.

Figure 1.1: Angles for radiological assessment of HV (Robinson, 2005).

(a) Normal (b) Mild

(c) Moderate (d) Severe

Figure 1.2: Classi�cation of HV (Society for Foot and Ankle Surgery, 2020)
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HV is classi�ed mild when HVA is 15°-20°, and IMA is 9°-11°. The moderate

disorder is when HVA is 29°-31°, IMA is 12°-17°, and DMAA is 11°-14°. Severe

HV is with HVA greater than 40°, IMA greater than 18°, and DMAA greater than

15°.

1.2.3 Treatment

1.2.3.1 Conservative treatment

Conservative treatment for HV focuses on non-operative treatments meant to re-

lieve symptoms, but not to correct the real deformities. This care is considered

mainly for patients with ligamentous laxity, general hypermobility, or neuromus-

cular disorders. The treatment varies from changing footwear, shoe adjustment,

rest, and the use of ice (Ferrari, 2006). Physical therapy and exercises promote

free movement of the big toe in all directions. The use of night splints straight-

ens the misaligned toe at the same time, reducing pressure of the big toe to the

adjacent toes(Park and Chang, 2019). Insoles, orthotics, and special shoes allow

plenty of room for �exibility to minimize friction and in�ammation (Fuhrmann

et al., 2017). Pain medication such as acetaminophen, ibuprofen, and in�amma-

tory drugs relieves pain resulting from the disorder. When the pain continues and

becomes severe, surgical correction may always be necessary.

1.2.3.2 Surgical treatments

There are more than 100 di�erent HV surgeries proposed in the literature. The

surgeries have various e�ects at present where age, activity level, lifestyle, and

health of the patient holds a vital role in the operation to be chosen (Ray et al.,

2019). The surgical approaches are selected and designed to address a range of mal-

adies that may be linked to HV. They work towards a common goal of treatment

by removing the enlarged abnormal bone of the 1st metatarsal, realignment of the

�rst metatarsal bones, and straightening of the large toe relative to adjacent toes

(Pinney et al., 2006). Surgical corrections apply di�erent techniques such as soft

tissue procedure that aims to correct incongruent MTP joint (Schneider, 2013),

osteotomies for mild deformities, and fusion procedures for advanced deformities
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(Ray et al., 2019). Post-operative dressing of the big toe accompanies the surgical

correction (Fraissler et al., 2016). Post-operative images are taken periodically un-

til the patient achieves osseous healing. The discussions for the primary surgical

treatments are next.

Chevron surgery

Here, saw cuts are made on the bone to change its axis. The bone is moved around

the head and �xed with a small screw (Rossi and Ferreira, 1992). It is suitable for

mild deformities, and healing takes several weeks, about 4-6 weeks.

(a) Anteroposterior view (b) Lateral view

Figure 1.3: Chevron surgery (Society for Foot and Ankle Surgery, 2020).

Scarf procedure

(a) Anteroposterior view (b) Lateral view

Figure 1.4: Scarf procedure (Society for Foot and Ankle Surgery, 2020).
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Here, a z-shape cut is made on the shaft of 1st metatarsal, and its position is

corrected (Deenik et al., 2007). The procedure is appropriate for correction of

moderate to severe HV, and healing takes several weeks, up to 6 weeks.

Chevron-Akin procedure

Chevron Akin is a double surgery, a combination of chevron and akin procedure.

It involves making a chevron osteotomy, and the metatarsal head is shifted later-

ally, then osteotomy �xed with a smooth pin (Ray et al., 2019). In Akin surgery,

a medial longitudinal opening is made along with the 1st proximal phalanx, and

removal of a small wedge bone is done (Larholt and Kilmartin, 2010). The proce-

dure allows the big toe to swivel in the right direction, and the severed bone �xed

with a screw.

(a) Chevron procedure (b) Akin procedure

Figure 1.5: Chevron-Akin procedure (Society for Foot and Ankle Surgery, 2020).

1.3 Research Objectives

� To construct valid con�dence intervals that compares two independent folded

normal distributions.

� To apply the constructed con�dence intervals to the real data and judge

non-inferiority.
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1.4 The Data

The data used was gratefully obtained from Doc. Dr. O. Kose from the University

of Health Sciences Antalya Training and Research Hospital. A total of 31 patients

underwent a surgery called Modi�ed Distal Chevron Osteotomy to correct HV

disorder between August 2014 and December 2017. Headless Mg compression

screw �xation applied on 17 feet of 16 patients and headless Ti compression screw

on 17 feet of 15 patients. Hospital database, medical reports, and patient charts,

as well as follow-up notes and operation notes, were a useful source of extracting

clinical �ndings and demographic information. The PACS was a crucial source

of imaging and radiological �ndings for the patients. At the same time, both

AOFAS-MTP-IP and VAS scale evaluated the clinical results. The HVA and IMA

angles were measured before and after surgery. Osteotomy union time and any

other complications after surgery were noted. We group patients according to the

type of screw; thus, the Mg and the Ti group. There were a total of 25 variables

collected and categorized into demographic, clinical, and radiological variables.

1.4.1 Data description

All the patients who underwent surgery were followed up for at least 12 months

and were averagely aged 48 years with more females than males (13% male, 87%

female). About 65% of the patients had moderate to severe HV disorder. We note

that the oldest patient was 68 years from the Mg group and 72 years from the Ti

group, with the youngest patient aged 17 years from both groups. Table 1.1 gives

a comparative summary for the Mg and the Ti groups for absolute measurements

of the di�erence between early post-operation and late follow up for HV Angles.

Figure 1.6 is a violin plot comparing the distribution of the Mg and Ti group

for absolute measurements of the di�erence between early post-operation and late

follow up for HV Angles. The shape of the distribution indicates that the values for

the Ti group highly concentrate around the median compared to the Mg group. We

note that the Mg group has a bimodal distribution. In contrast, the Ti group has

multimodal distribution, with the median of the Mg group being more pronounced

than for the Ti group.
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Table 1.1: Comparative summary statistics for the Mg and the Ti group for
absolute HV Angles.

Statistic Mg Ti

Mean 2.412 2.000

St.Deviation 2.599 2.699

Median 1.000 1.000

Maximum 9.000 10.000

Minimum 0 0

0

5

10

Mg Ti

Group

A
b

s
o

lu
te

 H
V

A

Figure 1.6: A comparative violin plot between the Mg and the Ti group for
absolute HV Angles.
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1.5 Thesis Outline

The remaining part of the thesis is detailed as follows; Chapter 2 is about the

theory of the folded normal distribution, its fundamental properties, and features.

Chapter 3 extensively discusses the methods to construct con�dence intervals.

In Chapter 4, we illustrate these methods' application to real data, present and

discuss the results. We present a general conclusion and recommendation for the

overall thesis in Chapter 5, after which the References and Appendices are given.
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Chapter 2

Folded normal distribution

2.1 Introduction

The folded normal distribution is related to normal distribution arising when the

symbol of the random variable is positive (Johnson, 1962). Given a random vari-

able X that is normally distributed with mean µ and variance σ2, then the random

variable Y= |X| is folded normal distribution. According to Tweedie et al. (1957),

the normal distribution has been emphasized before as perhaps the most crucial

density in probability, and it has been very helpful in modeling an incredible vari-

ety of random phenomena. It holds an honored role in statistics due to the central

limit theorem, a theorem that bridges two subjects (Peng, 2009).

2.2 Probability Density Function

To derive the pdf of folded normal, we �rst consider the pdf of a normal distribu-

tion. The Random variable X ∼ N (µ, σ2) for −∞ < X < ∞ has a pdf,

f(x) =
1√
2πσ2

e−
1

2σ2 (x−µ)2 (2.1)
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Thus according to Leone et al. (1961) suggestion, the pdf of a univariate folded

normal distribution for Y ≥ 0 becomes,

f(y) =
1√
2πσ2

e−
1

2σ2 (y−µ)2 +
1√
2πσ2

e−
1

2σ2 (y+µ)2 (2.2)

Equation (2.2) can be rewritten in a more attractive form by introducing cosine

hyperbolic function (Tsagris et al., 2014).

f(y) =
1√
2πσ2

[
e−(y−µ)2/2σ2

+ e−(y+µ)2/2σ2
]

=
1√
2πσ2

[
e−(y

2+µ2)/2σ2
(
eyµ/2σ

2

+ e−yµ/2σ2
)]

=
4√
2πσ2

[
e−(y

2+µ2)/2σ2
(
eyµ/2σ

2

+ e−yµ/2σ2
)
/2
]

=

√
2

πσ2

[
e−(y

2+µ2)/2σ2

cosh
(µy
σ2

)]
(2.3)

Further, expanding cosh of equation (2.3) via Taylor series gives an in�nite series

which eases the study of certain functional properties, such as asymptotic behavior.

f(y) =

√
2

πσ2

[
e−(y

2+µ2)/2σ2
] ∞∑

n=0

(−1)n

(2n)!

(µy
σ2

)2n
(2.4)

2.2.1 Mean

It is impossible to evaluate the mean in a closed-form, hence it is given in terms of

Φ, the cumulative distribution fuction for the standard normal distribution (Leone

et al., 1961). Let Y =| µ+ σW | where W ∼ N (0, 1). Then the mean of Y is the

same as, E(Y ) = E (| µ+ σW |), which when expanded further we obtain,

E (Y ) = E (µ+ σW ; µ+ σW ≥ 0) + E (−µ− σW ; µ+ σW < 0) .

When we add E (−µ− σW ; µ+ σW < 0) in the �rst part of the above equation

then subtract the same in the second part, then factor out the minus we obtain,

E (Y ) = E (µ+ σW )− 2E
(
µ+ σW ; W < −µ

σ

)
15



= µ− 2E
(
µ; W < −µ

σ

)
− 2E

(
σW ; W < −µ

σ

)
= µ− 2µΦ

(
−µ

σ

)
− 2σE

(
W ; W < −µ

σ

)
First consider,

E
(
W ;W < −µ

σ

)
=

∫ −µ
σ

−∞
w

1√
2π

e−w2/2dw

=

∫ µ2

2σ2

∞

1√
2π

e−vdv = − 1√
2π

e−v
∣∣∣ µ2

2σ2

∞

= − 1√
2π

e−µ2/2σ2

Then,

E (Y ) = µ
[
1− 2Φ

(
−µ

σ

)]
+ σ

√
2

π
e−µ2/2σ2

= µY (2.5)

Where, Φ
(
−µ

σ

)
= 1√

2π

∫ −µ
σ

−∞ e−t2/2dt .

2.2.2 Variance

E
(
Y 2
)
= E

(
X2
)
= V ar (X) + (E (X))2 = σ2 + µ2

V ar (Y ) = E
(
Y 2
)
− (E (Y ))2

V ar (Y ) = σ2 + µ2 − µ2
Y

(2.6)

The mean µ and variance σ2 of X of the initial normal distribution is the scale and

location parameter of Y in the folded normal distribution (Leone et al., 1961).

2.2.3 Mode

Mode is the value of Y for which its density function is maximized. The value is

calculated by taking the �rst derivative of the pdf with respect to Y and equated

to zero, dfY
dy

= 0 (Tsagris et al., 2014).

d

dy

[
1√
2πσ2

e−(y−µ)2/2σ2

+
1√
2πσ2

e−(y+µ)2/2σ2

]
= 0

1

σ2
√
2πσ2

[
(y − µ) e−(y−µ)2/2σ2

+ (y + µ) e−(y+µ)2/2σ2
]
= 0
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y
[
e−(y−µ)2/2σ2

+ e−(y+µ)2/2σ2
]
− µ

[
e−(y−µ)2/2σ2 − e−(y+µ)2/2σ2

]
= 0

y
[
1 + e−2yµ/σ2

]
− µ

[
1− e−2yµ/σ2

]
= 0

y
[
1 + e−2yµ/σ2

]
= µ

[
1− e−2yµ/σ2

]
µ− y = (y + µ) e−2yµ/σ2

log

(
µ− y

y + µ

)
= −2µy

σ2

y = −σ2

2µ
log

[
µ− y

y + µ

]
(2.7)

The folded normal distribution converges to the normal distribution.

Tsagris et al. (2014) did a numerical investigation and saw that when µ < 0, the

maximum is met at Y = 0, when µ ≥ σ the maximum is met at Y > 0 and when

µ > 3σ the maximum approaches µ.

2.3 Distribution Functions

2.3.1 Characteristic Function

Characteristic Function gives an alternative way of describing the random variable

by determining the behavior and properties of the pdf of Y (Sasvári, 2000).

φY (t) = E
[
eity
]
=

∫ ∞

0

eityf (y) dy

=

∫ ∞

0

eity
1√
2πσ2

[
e−(y−µ)2/2σ2

+ e−(y+µ)2/2σ2
]
dy

=

∫ ∞

0

eity−(y−µ)2/2σ2

√
2πσ2

dy +

∫ ∞

0

eitye−(y+µ)2/2σ2

√
2πσ2

dy

=

∫ ∞

0

eA√
2πσ2

dy +

∫ ∞

0

eB√
2πσ2

dy

A = ity − 1

2σ2
(y − µ)2 = −(y − a)2

2σ2
− σ2t2

2
+ iµt; where a = 2iσ2 + µ

17



B = ity − 1

2σ2
(y + µ)2 =

(y − b)2

2σ2
− σ2t2

2
+ iµt; where b = 2iσ2 − µ

=

∫ ∞

0

eA√
2πσ2

dy = e−
σ2t2

2
+iµt

∫ ∞

0

e−(y−a)2

√
2πσ2

dy

= e−
σ2t2

2
+iµt [1− P (Y ≤ 0)]

= e−
σ2t2

2
+iµt

[
1− Φ

(
−a

σ

)]
= e−

σ2t2

2
+iµt

[
1− Φ

(
− µ

σ2
− iσt

)]
∫ ∞

0

eB√
2πσ2

dy = e−
σ2t2

2
−iµt

[
1− Φ

( µ

σ2
− iσt

)]
φY (t) = e−

σ2t2

2
+iµt

[
1− Φ

(
− µ

σ2
− iσt

)]
+ e−

σ2t2

2
−iµt

[
1− Φ

( µ

σ2
− iσt

)]
(2.8)

2.3.2 Cumulant Distribution Function

The CDF of a non-negative random variable Y according to (Ziegel, 2001) is de�ned

by;

FY (y) =

∫ y

0

fY (t) dt

FY (y) =
1

2

[
erf

{
(y − µ)√

2σ2

}
+ erf

{
(y + µ)√

2σ2

}]
(2.9)

erf (y) =
2√
π

∫ y

0

e−t2dy

2.3.3 Moment Generating Function

The MGF of a random variable Y is used to calculate the distribution's moments

and is MY (t) = E
[
etY
]
(Mukherjea et al., 2006). The nth moment evaluated at 0

is the nth derivative of the MGF calculated at 0. A vital property of MGF is that

they are positive and log-convex at M (0) = 1. According to (Ziegel, 2001) to �nd

the MGF of a distribution, the relationship of characteristic function and MGF is

useful given as;

MY (t) = φY (−it)
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MY (t) = e
σ2t2

2
+µt
[
1− Φ

(
− µ

σ2
− σt

)]
+ e

σ2t2

2
−µt
[
1− Φ

( µ

σ2
− σt

)]
(2.10)

2.3.4 Cumulative Generating Function

The CGF of a random variable Y is de�ned by the natural logarithm of MGF

(Hald, 2000).

KY (t) = logMY (t)

KY (t) = log

{
e
σ2t2

2
+µt
[
1− Φ

(
− µ

σ2
− σt

)]
+ e

σ2t2

2
−µt
[
1− Φ

( µ

σ2
− σt

)]}
KY (t) =

(
σ2t2

2
+ µt

)
log
{
1− Φ

(
−µ

σ
− σt

)
+ e−2µt

[
1− Φ

(µ
σ
− σt

)]}
(2.11)

2.3.5 Laplace transformation function

Laplace transformation is easily derived from MGF (Tsagris et al., 2014).

E
(
e−ty

)
= e

σ2t2

2
−µt
[
1− Φ

(
− µ

σ2
+ σt

)]
+ e

σ2t2

2
+µt
[
1− Φ

( µ

σ2
+ σt

)]
(2.12)

2.3.6 Fourier Transformation function

Fourier transformation of distribution functions has speci�c properties important

in the probability theory(Lukacs, 1952). The function is closely related to charac-

teristic function (Tsagris et al., 2014).

f̂ = E
(
e−2πitY

)
= ϕY (−2πt)

f̂ = e−
4π2σ2t2

2
−i2πµt

[
1− Φ

(
−µ

σ
− 2iπσt

)]
+ e−

4π2σ2t2

2
+i2πµt

[
1− Φ

(µ
σ
− 2iπσt

)]
(2.13)
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2.3.7 Mean Residual Function

The mean residual is a central concept that is well known for survival analysis and

reliability (Tsagris et al., 2014) is given by;

E (Y − t | Y > t) = E (Y | Y > t)− t

E (Y | Y > t)− t =

∫ ∞

t

yfY
P (Y > t)

dy − t =

∫ ∞

t

yfY
1− F (t)

dy − t

1− F (y) = 1− 1

2

[
erf

(
y − µ√
2σ2

)
+ erf

(
y + µ√
2σ2

)]
∫ ∞

t

yf (y) dy =

∫ ∞

t

y
1√
2πσ2

e−
1

2σ2 (y−µ)2dy +

∫ ∞

t

y
1√
2πσ2

e−
1

2σ2 (y+µ)2dy

=
σ√
2π

e
(t−µ)2

σ2 + µ

[
1− Φ

(
t− µ

σ

)]
+

σ√
2π

e
(t−µ)2

σ2 − µΦ

(
t− µ

σ

)
=

√
2

π
σe

(t−µ)2

σ2 + µ

[
1− 2Φ

(
t− µ

σ

)]

E (Y − t | Y > t) =

√
2
π
σe

(t−µ)2

σ2 + µ
[
1− 2Φ

(
t−µ
σ

)]
1− 1

2

[
erf

(
y−µ√
2σ2

)
+ erf

(
y+µ√
2σ2

)] − t (2.14)

2.4 Parameter Estimation

The Maximum Likelihood Estimation procedure utilizes the concept of maximizing

the likelihood function, and it possesses several properties such as consistency

(series of MLEs converges with the expected value), e�ciency(achieves Cramer-

Rao lower bound), and functional invariance (Myung, 2003). If we have a random

sample Yi = Y1, Y2, ...Yn with assumed pdf that depends on an unknown parameter

θ, then the primary goal is to �nd a good point estimator of θ that maximizes the

likelihood of the distribution (Myung, 2003). Suppose Yi = Y1, Y2, ...Yn has a joint

density function f (Yi; θ), the likelihood of θ based on Yi is L (θ;Yi) = f (Yi; θ)

(Millar, 2011). The MLE θ̂ of θ is L
(
θ̂;Yi

)
≥ L (θ;Yi) for all θ. The MLE

function is;

L
(
θ̂;Yi

)
= max

θ
{L (θ;Yi)}

dL

dθ

∣∣∣
θ=θ̂

= 0 (2.15)
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Alternatively, we �nd MLE by maximizing the log-likelihood function given by;

ℓ
(
θ̂;Yi

)
= max

θ
{l (θ;Yi)}

dl

dθ

∣∣∣
θ=θ̂

= 0 (2.16)

The joint density function of the iid folded normal density of Equation (2.2) is;

f
(
Yi;µ, σ

2
)
=

n∏
i=1

[
1√
2πσ2

(
e−

1
2σ2 (yi−µ)2 + e−

1
2σ2 (yi+µ)2

)]
(2.17)

The likelihood function for Equation (2.2) becomes;

L
(
µ, σ2

)
=
(
2πσ2

)−n
2

n∏
i=1

[
e−

1
2σ2 (yi−µ)2 + e−

1
2σ2 (yi+µ)2

]
(2.18)

The log-likelihood function for Equation (2.18) is;

ℓ
(
µ, σ2

)
= −n

2
log 2πσ2 +

n∑
i=1

log

[
e−

1
2σ2 (yi−µ)2 + e−

1
2σ2 (yi+µ)2

]
(2.19)

= −n

2
log 2πσ2 +

n∑
i=1

log

[
e−

1
2σ2 (yi−µ)2

(
1 + e−

1
2σ2 (yi+µ)2e−

1
2σ2 (yi−µ)2

)]

= −n

2
log 2πσ2 −

n∑
i=1

(y − µ)2

2σ2
+

n∑
i=1

log

(
1 + e−

2µy
σ2

)
(2.20)

The partial derivative for Equation (2.20) are:

∂ℓ

∂µ
=

n∑
i=1

(yi − µ)

σ2
− 2

σ2

n∑
i=1

yie
−2µyi

σ2

1 + e−
2µyi
σ2

=
n∑

i=1

(yi − µ)

σ2
− 2

σ2

n∑
i=1

yi

1 + e
2µyi
σ2

(2.21)

∂ℓ

∂σ2
= − n

2σ2
+

n∑
i=1

(yi − µ)2

2σ4
+

2µ

σ4

n∑
i=1

yie
−2µyi

σ2

1 + e−
2µyi
σ2

= − n

2σ2
+

n∑
i=1

(yi − µ)2

2σ4
+

2µ

σ4

n∑
i=1

yi

1 + e
2µyi
σ2

(2.22)
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Equating the 1st derivative w.r.t. µ of the log-likelihood equation (2.21) to zero

we attain a good relationship;

n∑
i=1

(yi − µ)

σ2
− 2

σ2

n∑
i=1

yi

1 + e
2µyi
σ2

= 0

n∑
i=1

yi

1 + e
2µyi
σ2

=
n∑

i=1

(yi − µ)

2

(2.23)

Equation (2.23) has three solutions; at zero, negative and positive signs. By sub-

stituting equation (2.23) to the 1st derivative of the log-likelihood equation w.r.t.

σ2 equation (2.22) we get an expression for the variance.

− n

2σ2
+

n∑
i=1

(yi − µ)2

2σ4
+

2µ

σ4

n∑
i=1

(yi − µ)

2
= 0

σ2 =
n∑

i=1

(yi − µ)2

n
+

2µ
∑yi−µ

i=1

n

=
n∑

i=1

(yi2 − µ2)

n

=
n∑

i=1

y2i
n

− µ2

(2.24)

We obtain the MLE from the relationship of equation 2.24 through an e�cient

recursive way (Tsagris et al., 2014). The process is to use an initial value of σ2 to

�nd a positive root of µ from equation (2.23) then insert the value in equation 2.24

to obtain an adjusted value of σ2. Repeat the process until there is a negligible

change in the log-likelihood values.

2.5 Related distributions

1. The distribution of Y becomes half normal-distribution when µ = 0 (Bland,

2005). It is a fold with zero mean at the mean of an ordinary normal distri-

bution.

(a) We get the pdf by replacing µ = 0 in equation (2.2),
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1√
2πσ2

(
e−

1
2σ2 y

2

+ e−
1

2σ2 y
2

)
=

√
2

πσ2
e−

1
2σ2 y

2

for Y > 0

(b) The mean of half-normal distribution is,

µY = E (Y ) =

∫ ∞

0

yf (y) dy = σ

√
2

π

(c) The variance of the distribution is,

V ar (Y ) = σ2

(
1− 2

π

)
(d) The cumulative distribution function,

FY =

∫ y

0

1

σ

√
2

π
e−

y
2σ2 dy

= erf

(
y

σ
√
2

)
(e) The median is given by σ

√
2erf−1

(
1
2

)
(f) The unknown parameter σ can be estimated via maximum likelihood

which gives, σ̂ =
√

1
n

∑n
i=1 y

2
i and the bias equals to,

b ≡ E [(σ̂mle − σ)] = − σ
4n

(g) The half-normal distribution corresponds to a zero-mean normal distri-

bution truncated from below at zero.

If Y has a half-normal distribution, then
(
Y
σ2

)
random variable has a

chi-distribution with 1 degree of freedom.

Half-normal distribution is a speci�c example of a generalized gamma

distribution with d = 1, p = 2, a =
√
2σ.

2. If Y has folded normal distribution, then
(
Y
σ2

)
random variable has a non-

central Chi-squared distribution with 1 degree of freedom and non-centrality

parameter being
(
µ
σ

)2
.

3. The folded normal distribution can be perceived as the limit of the folded
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non-standardized t distribution as the degrees of freedom approaches in�nity

(Psarakis and Panaretoes, 1990). The folded non-standardized t distribution

is the distribution of the absolute values of the non-standardized t distribu-

tion of v degrees of freedom.

g (y) =
Γ v+1

2

Γ v
2

√
vπσ2

{[
1 + 1

2
(y−µ)2

σ2

]−v+1
2

+
[
1 + 1

2
(y+µ)2

σ2

]−v+1
2

}
4. The uni-variate folded normal can be extended to bi-variate folded normal

distribution as developed by (Psarakis and Panaretos, 2001) and more gener-

ally to multivariate folded normal distribution introduced by (Chakraborty

and Chatterjee, 2013).
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Chapter 3

Methods of constructing con�dence

intervals

De�nition

In statistics, interval estimation is the use of sample data to calculate an interval

of possible values of an unknown population parameter such as mean and variance

(Neyman, 1937). The most prevalent forms of interval estimation are: con�dence

intervals (a frequentist method), and credible intervals (a Bayesian method). Other

forms include: likelihood intervals (a likelihood Ratio method), pivotal quantity

intervals, and �ducial intervals (a �ducial method). Here, we focus on the con�-

dence interval estimation method.

Let xig denote the di�erence between angle measurements at visit follow-up and

immediately post-operation for all i = 1, 2..., ng and both treatment groups g = 1, 2

for Magnesium and Titanium screws respectively. We assume that xig is normally

distributed with mean µg and variance σ2
g . Since angle di�erences between time

point in either direction are undesirable, the absolute value yig =| xig | or the
squared value y2ig = x2

ig of the xig are the values of interest. Thus we are interested

in two random variable yg, g = 1, 2. The hypothesis of interest is

H0 : E(y2) = E(y1) vs. H1 : E(y2) ̸= E(y1) . (3.1)
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The main aim is the construction of a con�dence interval for the estimand θ =

E(y2)− E(y1) from observed sample data.

3.1 The standard t-test

A standard t-test is a parametric test that compares the means of two indepen-

dent groups to establish whether there is a statistical proof that the associated

population means di�er signi�cantly or not (Watters and Boslaugh). When the

population variances are assumed to be similar σ2
1 = σ2

2, the con�dence interval is

calculated as;

ȳ2 − ȳ1 ± t× sp

√
1

n1

+
1

n2

(3.2)

with df = n1 + n2 − 2 and

sp =

√
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2
.

When the assumption that the population variances are unequal σ2
1 ̸= σ2

2, the

con�dence interval is calculated as;

ȳ2 − ȳ1 ± t×

√
s21
n1

+
s22
n2

(3.3)

with

df =

(
s21
n1

+
s22
n2

)2
1

n1−1

(
s21
n1

)2
+ 1

n2−1

(
s22
n2

)2 .

3.1.1 Limitation of t-test method

The t-test for independent groups requires that within each group, the variable

of interest to be approximately normally distributed (Lumley et al., 2002). The

graphical evaluation to test whether the normality assumption for a folded normal

random variable holds, is possible through a Q-Q plot and a histogram of a stan-
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dardized folded normal random variable. A Q-Q plot assesses the normality of a

random variable by investigating the correlation between a given sample and the

normal distribution. Standardization is the process of placing di�erent values of a

random variable on the same scale. The standardized folded normal random vari-

able is, ystandardized =
yi−µy

σy
. In Figure 3.1, we note that most of the points do not

fall along the reference line; hence we cannot assume normality. Figure 3.2 shows

that the standardized variable of interest portrays a heavily skewed distribution.
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norm quantiles

y

93269
91890

Figure 3.1: A Q-Q plot for a simulated folded normal random variable.
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Figure 3.2: The histogram for a standardized simulated folded normal random
variable.
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It is evident from the graphs that a folded normal random variable violates the

normality assumption. Consequently, it reduces the t test's power, therefore not

reliable to construct the con�dence interval for comparing the means of two in-

dependent folded normal distributions. An R code function for the graphical

presentation is presented in the appendix. We therefore, explore other methods

of constructing an appropriate con�dence interval for comparing two independent

folded normal random variables.

3.2 The Delta method

The delta method approximates means, variances and co-variances of functions of

random variables with known mean and variance. It uses Taylor series expansion

to derive variation around a point (Rothmann and Tsou, 2003). In particular, the

method is helpful in �nding the mean and variance of a test statistic in hypothesis

testing. To derive an asymptotically valid con�dence interval at con�dence level

1−α, the multivariate delta method theorem 4.6 (Ziegler and Vens, 2011) is useful

as stated below.

Multivariate Delta Method theorem

� Consider an estimator β̂ for β0 that is asymptotically normally distributed in de-

tail, β̂
a∼ N

(
β0, var

(
β̂0

))
. We assume that a transformation function ξ = v

(
β̂
)

of β is continuously di�erentiable with respect to β in a neighborhood of β0. The

estimator ξ̂ = v
(
β̂
)
of ξ0 = v (β0) is asymptotically normal, precisely;

ξ̂
a∼ N

(
ξ0,

∂ξ (β0)

∂β′ var (β0)
∂ξ (β0)

′

∂β

)
.

The covariance matrix of ξ is estimated by replacing β0 with β̂.

Proof: If we admit that v (β) can be expanded in a Taylor series around v (β0),

we obtain
√
n
(
v
(
β̂
)
− v (β0)

)
a.s.
= (∂v (β0) /∂β

′)
√
n
(
β̂ − β0

)
. The left side is

thus asymptotically equivalent to a linear function of a random vector of which

we know its asymptotic normal distribution, and the covariance matrix can be
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obtained using standard calculation rules for covariance matrices.

The inversion of the idea of the multivariate delta method leads to the mini-

mum distance estimation (MDE) approach. Speci�cally we consider the case that

β = β (κ) in some function of a parameter vector κ ∈ K ⊂ IRq, q ≤ p. Regularity

conditions include that κ is �rst order identi�able, i.e., β (κ1) = β (κ2) ⇒ κ1
a.s.
= κ2

and that the number of restrictions does not exceed the dimensions of β . �

With the assumption that xig is normally distributed with mean µg and variance

σ2
g then, x̄g ∼ N

(
µg,

σ2
g

ng

)
. We consider an estimator θ for µg that is asymptot-

ically normally distributed with g (θ) as the function of θ. If the MLE of θ is x̄g

then, MLE of g (θ) is g (x̄g). So we let g (θ) =| θ | in order to construct an asymp-

totically con�dence interval at con�dence level 1−α of the estimand | µ2 | − | µ1 |.

If | θ | ≠ 0 we directly apply the delta method as g is di�erentiable at θ (Zhanxiong,

2018). The limiting distribution is

√
n (| x̄g | − | θ |) a∼ N

(
| µg |, σ2 [g′ (θ)]2

)
.

On the other hand if | θ | = 0 we cannot apply delta method because g is not

di�erentiable at 0. A direct calculation is only expedient for xig ≥ 0 (Zhanxiong,

2018).

p
[√

n | x̄g |≤ xig

]
= p

[
−xig ≤

√
n x̄g ≤ xig

]
= p

[√
n x̄g ≤ xig

]
− p

[√
nx̄g < −xig

]
.

If xig < 0 then clearly p [
√
n x̄g ≤ xig] = 0 .

Figure 3.3 clearly shows the discontinuity at 0 of the resultant distribution for the

di�erence of two simulated folded normal random variable. An R code is available

at the appendix for the �gure.

The non-di�erentiability of g at | θ | = 0 is limiting factor of the delta method. We

therefore, consider the method unreliable to derive a valid con�dence interval for

the di�erence of the means of two independent folded normal random variables.
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Figure 3.3: The histogram for the di�erence of two simulated folded normal
random variable.

The exact method might be a better method to consider as described next.

3.3 The Exact Method

3.3.1 The density

We derive the density of the di�erence of two independent folded normal random

variable. Let fY1 (y1) be a distribution function of Y1 for Y1 ≥ 0, and fY2 (y2) of

Y2 for Y2 ≥ 0 . We assume Y1 and Y2 are independent folded normally distributed

random variables. Also, let Z = Y1 − Y2 . The pdf of Z by the CDF technique is,

FZ (z) = P (Y1 − Y2 ≤ z) =

∫∫
Y1−Y2≤Z

fY1,Y2 (y1, y2) dy1dy2

The random variable Z can be positive or negative. The region of integration if

Z > 0, is Y1 ≥ Y2 and if Z < 0, is Y1 < Y2 .
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The CDF of Z becomes,

FZ (z)


∫∞
0

∫ z+y2
0

fY1,Y2 (y1, y2) dy1dy2, if Z > 0∫∞
−z

∫ z+y2
0

fY1,Y2 (y1, y2) dy1dy2, if Z < 0

The pdf of Z, fZ (z) = dFZ(z)
dz

is achieved using Leibniz Rule for di�erentiation

under the integral sign (Flanders, 1973).

Leibniz Rule: It states that for an integral of the form

H (x) =

∫ a(x)

b(x)

g (x, t) dt

where −∞ < a (x) , b (x) < ∞, the derivative is expressible as,

dH (x)

dx
= g (x, b (x))

db (x)

dx
− g (x, a (x))

da (x)

dx
+

∫ a(x)

b(x)

∂g (x, t)

∂x
dt

The pdf of Z is simpli�ed to,

fZ (z) =


∫∞
0

fY1,Y2 (z + y2, y2) dy2, Z ≥ 0∫∞
−z

fY1,Y2 (z + y2, y2) dy2, Z ≤ 0

Since Y1 and Y2 are independent, we simplify fZ (z) using convolution theorem

(Pogány and Nadarajah, 2013).

Convolution theorem: If X1 and X2 are continous, independent, with pdf

fX1 (x1) and fX2 (x2) respectively, and X = X1 − X2 then the convolution for-

mulae is

fX (x) =

∫ ∞

−∞
fX1 (x+ x2)× fX2 (x2) dx2 .

Therefore,

fZ (z) =


∫∞
0

fY1 (z + y2)× fY2 (y2) dy2, Z ≥ 0∫∞
−z

fY1 (z + y2)× fY2 (y2) dy2, Z ≤ 0
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The two independent random variables Y1 ∼ FN (µ1, σ
2
1) and Y2 ∼ FN (µ2, σ

2
2)

are given as,

fY1 (y1) =
1√
2πσ2

1

(
e
−
(y1−µ1)

2

2σ2
1 + e

−
(y1+µ1)

2

2σ2
1

)
(3.4)

fY2 (y2) =
1√
2πσ2

2

(
e
−
(y2−µ2)

2

2σ2
2 + e

−
(y2+µ2)

2

2σ2
2

)
(3.5)

The fZ (z) for Z > 0, follows the steps below.

fZ (z) =

∫ ∞

0

1√
2πσ2

1

(
e
−
((z+y2)−µ1)

2

2σ2
1 + e

−
((z+y2)+µ1)

2

2σ2
1

)
×

1√
2πσ2

2

(
e
−
(y2−µ2)

2

2σ2
2 + e

−
(y2+µ2)

2

2σ2
2

)
dy2

(3.6)

Expanding terms of the exponents to get,

((z + y2)− µ1)
2 = z2+2zy2+y22−2zµ1−2y2µ1+µ2

1, ((z + y2) + µ1)
2 = z2+2zy2+

y22+2zµ1+2y2µ1+µ2
1, (y2 − µ2)

2 = y22−2y2µ2+µ2
2 and (y2 + µ2)

2 = y22+2y2µ2+µ2
2.

We replace the expansions of the terms from exponents to get,

=
1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

1
(z2+2zy2+y22−2zµ1−2y2µ1+µ2

1) + e
− 1
2σ2

1
(z2+2zy2+y22+2zµ1+2y2µ1+µ2

1)
)
×(

e
− 1
2σ2

2
(y22−2y2µ2+µ2)

+ e
− 1
2σ2

2
(y22+2y2µ2+µ2

2)
)
dy2

(3.7)
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Expanding the integral of Equation (3.7) leads to,

=
1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

1
(z2+2zy2+y22−2zµ1−2y2µ1+µ2

1) + e
− 1
2σ2

1
(z2+2zy2+y22+2zµ1+2y2µ1+µ2

1)
)
×(

e
− 1
2σ2

2
(y22−2y2µ2+µ2)

)
dy2 +

1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

2
(y22+2y2µ2+µ2

2)
)
×(

e
− 1
2σ2

1
(z2+2zy2+y22−2zµ1−2y2µ1+µ2

1) + e
− 1
2σ2

1
(z2+2zy2+y22+2zµ1+2y2µ1+µ2

1)
)
dy2

(3.8)

Further, we expand Equation (3.8) to get,

=
1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

1
(z2+2zy2+y22−2zµ1−2y2µ1+µ2

1)
)
×
(
e
− 1
2σ2

2
(y22−2y2µ2+µ2

2)
)

︸ ︷︷ ︸
1st part

dy2+

1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

1
(z2+2zy2+y22+2zµ1+2y2µ1+µ2

1)
)
×
(
e
− 1
2σ2

2
(y22−2y2µ2+µ2

2)
)

︸ ︷︷ ︸
2st part

dy2+

1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

1
(z2+2zy2+y22−2zµ1−2y2µ1+µ2

1)
)
×
(
e
− 1
2σ2

2
(y22+2y2µ2+µ2

2)
)

︸ ︷︷ ︸
3rd part

dy2+

1

2πσ2
1σ

2
2

∫ ∞

0

(
e
− 1
2σ2

1
(z2+2zy2+y22+2zµ1+2y2µ1+µ2

1)
)
×
(
e
− 1
2σ2

2
(y22+2y2µ2+µ2

2)
)

︸ ︷︷ ︸
4th part

dy2

(3.9)

Integrating the parts of Equation (3.9), we get series of solutions,

The �rst part;

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2−2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22−2y2µ1)+σ2
1(y22−2y2µ2)]

σ2
2 (z + y2 − µ1) + σ2

1 (y2 − µ2)

∞

0

=
1

2π

 e−
[
(z−µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z − µ1)− σ2

1µ2


(3.10)
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The second part;

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2+2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22+2y2µ1)+σ2
1(y22−2y2µ2)]

σ2
2 (z + y2 + µ1) + σ2

1 (y2 − µ2)

∞

0

=
1

2π

 e−
[
(z+µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z + µ1)− σ2

1µ2


(3.11)

The third part,

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2−2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22−2y2µ1)+σ2
1(y22+2y2µ2)]

σ2
2 (z + y2 − µ1) + σ2

1 (y2 + µ2)

∞

0

=
1

2π

 e−
[
(z−µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z − µ1) + σ2

1µ2


(3.12)

The fourth part,

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2+2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22+2y2µ1)+σ2
1(y22+2y2µ2)]

σ2
2 (z + y2 + µ1) + σ2

1 (y2 + µ2)

∞

0

=
1

2π

 e−
[
(z+µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z + µ1) + σ2

1µ2


(3.13)

Combining Equations (3.10), (3.11), (3.12) and (3.13) fZ (z) for Z ≥ 0 becomes,

fZ (z) =
1

2π

 e−
[
(z−µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z − µ1)− σ2

1µ2

+
e−
[
(z+µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z + µ1)− σ2

1µ2

+

1

2π

 e−
[
(z−µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z − µ1) + σ2

1µ2

+
e−
[
(z+µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2 (z + µ1) + σ2

1µ2


(3.14)
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The fZ (z) for Z < 0 is given by,

fZ (z) =

∫ ∞

−z

1√
2πσ2

1

(
e
−
((z+y2)−µ1)

2

2σ2
1 + e

−
((z+y2)+µ1)

2

2σ2
1

)
×

1√
2πσ2

2

(
e
−
(y2−µ1)

2

2σ2
2 + e

−
(y2+µ2)

2

2σ2
2

)
dy2

(3.15)

We follow the same steps for integrating Equation (3.6) using the limits (−z,∞).

We obtain a series of solutions;

The �rst part;

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2−2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22−2y2µ1)+σ2
1(y22−2y2µ2)]

σ2
2 (z + y2 − µ1) + σ2

1 (y2 − µ2)

∞

−z

=
1

2π

{
1

σ2
1 (−z − µ2)− σ2

2µ1

e
− 1
2σ2

1σ
2
2
[σ2

2µ
2
1+σ2

1(z2+2zµ2
2+µ2

2)]
}

=
1

2π


e
−
[

µ2
1

2σ2
1
+
(z+µ2)

2

2σ2
2

]

σ2
1 (−z − µ2)− σ2

2µ1


(3.16)

The second part;

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2+2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22+2y2µ1)+σ2
1(y22−2y2µ2)]

σ2
2 (z + y2 + µ1) + σ2

1 (y2 − µ2)

∞

−z

=
1

2π

{
1

σ2
1 (−z − µ2) + σ2

2µ1

e
− 1
2σ2

1σ
2
2
[σ2

2µ
2
1+σ2

1(z2+2zµ2
2+µ2

2)]
}

=
1

2π


e
−
[

µ2
1

2σ2
1
+
(z+µ2)

2

2σ2
2

]

σ2
1 (−z − µ2) + σ2

2µ1


(3.17)
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The third part;

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2−2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22−2y2µ1)+σ2
1(y22+2y2µ2)]

σ2
2 (z + y2 − µ1) + σ2

1 (y2 + µ2)

∞

−z

=
1

2π

{
1

σ2
1 (−z + µ2)− σ2

2µ1

e
− 1
2σ2

1σ
2
2
[σ2

2µ
2
1+σ2

1(z2−2zµ2
2+µ2

2)]
}

=
1

2π


e
−
[

µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2

]

σ2
1 (−z + µ2)− σ2

2µ1


(3.18)

The fourth part;

=
e
− 1
2σ2

1σ
2
2
[σ2

2(z2+2zµ1+µ2
1)+σ2

1µ
2
2]

2πσ2
1σ

2
2

−σ2
1σ

2
2e

− 1
2σ2

1σ
2
2
[σ2

2(2zy2+y22+2y2µ1)+σ2
1(y22+2y2µ2)]

σ2
2 (z + y2 + µ1) + σ2

1 (y2 + µ2)

∞

−z

=
1

2π

{
1

σ2
1 (−z + µ2) + σ2

2µ1

e
− 1
2σ2

1σ
2
2
[σ2

2µ
2
1+σ2

1(z2−2zµ2
2+µ2

2)]
}

=
1

2π


e
−
[

µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2

]

σ2
1 (−z + µ2) + σ2

2µ1


(3.19)

Combining Equations (3.16), (3.17), (3.18) and (3.19) fZ (z) forZ ≤ 0 becomes,

fZ (z) =
1

2π

 e
−
[

µ2
1

2σ2
1
+
(z+µ2)

2

2σ2
2

]

σ2
1 (−z − µ2)− σ2

2µ1

+
e
−
[

µ2
1

2σ2
1
+
(z+µ2)

2

2σ2
2

]

σ2
1 (−z − µ2) + σ2

2µ1

+

1

2π

 e
−
[

µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2

]

σ2
1 (−z + µ2)− σ2

2µ1

+
e
−
[

µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2

]

σ2
1 (−z + µ2) + σ2

2µ1


(3.20)
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Re-arranging Equation (3.20) we get,

fZ (z) =
1

2π

 e
−
[

µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2

]

σ2
1 (−z + µ2) + σ2

2µ1

+
e
−
[

µ2
1

2σ2
1
+
(z+µ2)

2

2σ2
2

]

σ2
1 (−z − µ2) + σ2

2µ1

+

1

2π

 e
−
[

µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2

]

σ2
1 (−z + µ2)− σ2

2µ1

+
e
−
[

µ2
1

2σ2
1
+
(z+µ2)

2

2σ2
2

]

σ2
1 (−z − µ2)− σ2

2µ1


(3.21)

Conclusion: The pdf of the di�erence of two independent folded normal random

variable fZ (z), has two distributions for two cases.

fZ (z) =



1
2π

 e−

[
(z−µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2(z−µ1)−σ2

1µ2
+

e−

[
(z+µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2(z+µ1)−σ2

1µ2

+

1
2π

 e−

[
(z−µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2(z−µ1)+σ2

1µ2
+

e−

[
(z+µ1)

2

2σ2
1

+
µ2
2

2σ2
2

]
σ2
2(z+µ1)+σ2

1µ2

 , for Z > 0

1
2π

 e

−

 µ2
1

2σ2
1
+
(z−µ2)

2

2σ2
2
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1(−z+µ2)+σ2

2µ1
+ e

−

 µ2
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1
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2

2σ2
2
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1(−z−µ2)+σ2

2µ1
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1
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2σ2
2


σ2
1(−z−µ2)−σ2

2µ1

 , for Z < 0

(3.22)
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3.3.2 Mean

We obtain the mean in a closed form.

µZ = E (Z) = E (Y1 − Y2)

= E (Y1)− E (Y2)

E (Y1) = µ1

[
1− 2Φ

(
−µ1

σ1

)]
+ σ1

√
2

π
e−µ2

1/2σ2
1 = µY1

E (Y2) = µ2

[
1− 2Φ

(
−µ2

σ2

)]
+ σ2

√
2

π
e−µ2

2/2σ2
2 = µY2

µZ = µY1 − µY2

(3.23)

3.3.3 Variance

σ2
Z = V ar (Z) = V ar (Y1 − Y2)

= V ar (Y1) + V ar (Y2)

V ar (Y1) = σ2
1 + µ2

1 − µ2
Y1

= σ2
Y1

V ar (Y2) = σ2
2 + µ2

2 − µ2
Y2

= σ2
Y2

σ2
Z = σ2

1 + σ2
2 + µ2

1 + µ2
2 −

(
µ2
Y1

+ µ2
Y2

)
(3.24)

3.3.4 Con�dence interval

A valid Con�dence interval for µZ = µY1 − µY2 with variance heterogeneity,

ȳ2 − ȳ1 ± q1−α
2

√
σ̂2
Y1

n1

+
σ̂2
Y2

n2

(3.25)

Assuming variance homogeneity σ2
Y1

= σ2
Y2
,

ȳ2 − ȳ1 ± q1−α
2
σ̂Y

√
1

n1

+
1

n2

(3.26)

Where q is the quantile from the pdf of the di�erence of two independent folded

normal distribution and σ̂ is estimated from the absolute values, i.e.,

σ̂2
Y =

(n1 − 1) σ̂2
Y1

+ (n2 − 1) σ̂2
Y2

n1 + n2 − 2
(3.27)
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It is vital to emphasize that the standard table for quantiles for the pdf of the

di�erence of two independent folded normal is currently unavailable in popular

statistics software. However, it is possible to use empirical quantiles generated

through a simulation of the pdf di�erence. We can consider developing an R soft-

ware package that calculates the quantiles for the pdf of the di�erence between

two independent folded normal random variables as future research work. An R

function code for the pdf and cdf of the distribution di�erence is attached in the

appendix, which can be useful for the package development and empirical quantile

calculation.

3.4 The ratio of two Chi-Square Variables

The simplest approach is to reformulate the hypothesis of Equation (3.1) using the

ratio of the centered squared random variables, i.e.,

H ′
0 :

µ2,2

µ2,1

=
E
(
(x2 − µ2)

2
)

E
(
(x1 − µ1)2

) = 1 vs. H ′
1 :

µ2,2

µ2,1

=
E
(
(x2 − µ2)

2
)

E
(
(x1 − µ1)2

) ̸= 1 , (3.28)

with µ2,g denoting the second central moment of xg of group g. In fact, under the

assumptions from above,

Zg =

ng∑
i=1

(
xig − x̄g

σg

)2

=
1

σ2
g

ng∑
i=1

(
xig − x̄g

)2
is centrally χ2 distributed with ng − 1 degrees of freedom because µg is estimated

by x̄g. Below we use the notation s2g =
1

ng−1

∑ng

i=1

(
xig − x̄g

)2
. The ratio

F =
Z1/(n1 − 1)

Z2/(n2 − 1)
=

1
(n1−1)σ2

1

∑n1

i=1

(
xi1 − µ1

)2
1

(n2−1)σ2
2

∑n2

i=1

(
xi2 − µ2

)2 =
σ2
2

σ2
1

s21
s22

(3.29)

is therefore F n1−1
n2−1 distributed, i.e., F distributed with n1− 1 and n2− 1 degrees of

freedom (Kim, 2006). With ql = F n1−1
n2−1 (α/2) and qu = F n1−1

n2−1 (1−α/2) = 1

F
n2−1
n1−1 (α/2)

denoting the lower and upper quantiles of the F n1−1
n2−1 distribution, hence a 1 − α
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con�dence interval for σ2
2/σ

2
1 is given by:

ql ≤
σ2
2s

2
1

σ2
1s

2
2

≤ qu (3.30)

s22
s21

ql ≤
σ2
2

σ2
1

≤ s22
s21

qu (3.31)

s22
s21

ql ≤
E
(
(x2 − µ2)

2
)

E
(
(x1 − µ1)2

) ≤ s22
s21

qu (3.32)

The con�dence interval can be calculated easily from the var.test function within

the stats package in R. One crucial aspect is the de�nition of the non-inferiority

margin in the case of the two ratios. If the non-inferiority margin is formulated

as E(y2)− E(y1) ≤ δ, there is no direct relationship to the estimand of Equation

(3.32). In addition, the interpretation of a di�erence is generally simpler than

the interpretation of a ratio, in this case, the ratio of two squared functions. A

con�dence interval for the di�erence of two independent χ2 distributions might

therefore be simpler. Finally, a bootstrap approach might be the simplest in terms

of interpretation. Both approaches will be described below.

3.5 The di�erence of two Chi-Square distribution

Klar (2015) provided the density for the di�erence of two independent gamma

distributed random variables, denoted as gamma di�erence distribution (GDD).

In detail, for two independent variables Xg ∼ Γ(αg, βg), g = 1, 2 with αg > 0,

βg > 0 the di�erence Z = X1 −X2 follows a GDD with parameters α1, β1, α2, β2.

With the use of Whittaker's W function, the density of the GDD can be written

as

f(z) =

 c̃
Γ(α1)

z(α1+α2)/2−1e((β2−β1)/2)zW(α1−α2)/2,(1−α1−α2)/2((β1 + β2)z) z > 0 ,

c̃
Γ(α2)

(−z)(α1+α2)/2−1e((β2−β1)/2)(−z)W(α2−α1)/2,(1−α1−α2)/2((β1 + β2)(−z)) z < 0 ,

(3.33)

where Γ(·) denotes the gamma function and
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c̃ =
βα1
1 βα2

2

(β1 + β2)(α1+α2)/2
.

The Whittaker's W function is a special solution to the Whittaker equation. Whit-

taker's equation is a modi�ed version of the hypergeometric con�uent equation to

make the formulas concerning the solutions more symetric (Parmar, 2013). It has

a regular single point at 0 and irregular single point at ∞. It is given by,

d2w

dz2
+

(
−1

4
+

κ

z
+

1
4
− µ2

z2

)
w = 0.

The Whittaker's W function is given by,

Wκ,µ (z) = exp

(
−z

2

)
zµ+

1
2 Uµ−κ+ 1

2
,1+2µ,z

with κ = 1
2
b − a, µ = 1

2
b − 1

2
, U is the Tricomi's function and z are points on a z

plane (−∞, 0) where b, a are points on an x-y plane.

In the application from above, Xg ∼ χ2
ng−1 = Γ(ng−1

2
, 1
2
) so that the density reduces

to

f(z) =


c̃

Γ(
n1−1

2
)
z(n1+n2)/2−2W(n1−n2)/4,(4−n1−n2)/4(z) z > 0 ,

c̃

Γ(
n2−1

2
)
(−z)(n1+n2)/2−2W(n2−n1)/4,(4−n1−n2)/4(−z) z < 0 ,

(3.34)

with c̃ = 21−(n1+n2)/2 .

To determine the 1 − α con�dence interval for Z, the quantile needs to be deter-

mined for the lower and upper α/2 quantile of the distribution of Equation (3.34).

This can be obtained by a point halving algorithm, such as updown from the stats

package, in conjunction with numeric integration, as implemented in integral,

and a pre-de�ned Whittaker W function, as implemented in whittakerW from the

fAsianOptions in R.

The non-inferiority margin can be easily transferred to the con�dence interval

described in this section. The non-inferiority margin is E(y2) − E(y1) ≤ δ. If

the squared of absolute values are considered, it is plausible to assume a squared
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non-inferiority margin, such that E
(
(x2−µ2)

2
)
−E

(
(x1−µ1)

2
)
≤ δ2. If means are

identical, it is reasonable to assume variance homogeneity between study groups

so that the non-inferiority margin increases by the assumed σ, if it has to be

formulated in terms of E(X2)− E(X1) ≤ σδ2.

3.6 Bootstrapping method

Bootstrapping is a test that utilizes random sampling with replacement and assigns

measures of accuracy, such as con�dence interval to sample estimates. We use the

method as an alternative statistical inference when parametric inference requires

complicated formulas to calculate standard errors. We evaluate the parametric and

the non-parametric bootstraps to estimate con�dence intervals for two absolute

di�erences. Since sample sizes may be di�erent for groups g = 1 and 2, we propose

to use a group-speci�c bootstrap. With the notation from the de�nition section,

we perform the non-parametric bootstrap as follows:

Step 1 Set bootstrap counter to b = 1

Step 2 Draw ng subjects with replacement from the original ng subjects. Note

that resampling is done within groups g = 1, 2. This approach leads to boot-

strapped group-speci�c sample sizes identical to the original group-speci�c

sample sizes.

Step 3 Calculate the relevant statistics from the bootstrap sample. These are

1. ȳ
(b)
1 , ȳ

(b)
2 and di�meanabs(b) = ȳ

(b)
2 − ȳ

(b)
1 .

2. s2
(b)

1 =
(

1
n1−1

∑n
i=1

(
di1 − d̄

(b)
1

)2)(b)
, s2

(b)

2 =
(

1
n2−1

∑n
i=1

(
di2 − d̄

(b)
2

)2)(b)
,

which are the empirical variances of the bootstrap samples.

3. ratiovars(b) = s2
(b)

2

/
s2

(b)

1 .

4. di�vars(b) = s2
(b)

2 − s2
(b)

1 .

5. The corrected means, i.e., D̄
(b)
1 = ȳ

(b)
1 − Ê(Y )

(b)
= ȳ

(b)
1 − x̄

(b)
1

(
1− 2Φ

(
−

x̄
(b)
1

s
(b)
1

))
−s

(b)
1

√
2/π exp

(
−x̄2(b)

1

/
(2s2

(b)

1 )
)
and D̄

(b)
2 as well as their di�erence

D̄
(b)
1 − D̄

(b)
2 .
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6. The corrected means under the assumption that the individual means

equal 0, i.e., D̄∗(b)
1 = ȳ

(b)
1 − ̂E(Y ∗)

(b)
= ȳ

(b)
1 − s

(b)
1

√
2/π and D̄∗(b)

2 and

their di�erence D̄∗(b)
2 − D̄∗(b)

1 .

Step 4 Do step 2 and step 3 B times, such as B = 10, 000 in order to obtain the

bootstrap distribution for the relevant statistics calculated in step 2.

Step 5 The non-parametric bootstrap con�dence interval is given by the lower

and upper 2.5% quantiles of the bootstrap distribution for the parameters of

interest, such as di�meanabs and ratiosqdi�abs.

Step 6 The parametric bootstrap con�dence interval is obtained using the stan-

dard form of the con�dence interval. The mean and the variance of the

bootstrapped parameter of interest are obtained, say m and s2, and the

parametric bootstrap con�dence interval is obtained as m ± z1−α/2s for the

parameters of interest.

The use of the bootstrap con�dence interval permits the use of a non-inferiority

margin dependent on the di�erence of the means of the absolute values of the

group-speci�c di�erences.

For simulations, it is important to de�ne the true mean di�erence, and it might

well be appropriate to use the mean from the folded normal as starting point, which

depends on the mean and the variance of the underlying normal distribution and

is provided by,

E (Y ) = µ
[
1− 2Φ

(
−µ

σ

)]
+ σ

√
2

π
e−µ2/2σ2

= µY .

In this thesis, simulation studies assuming true underlying folded normal distribu-

tion parameters are left as a future extension to the work. The focus presently is

to implement the above methods of constructing the con�dence intervals to a real

data set.
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Chapter 4

Application to real data

We present real-life data to illustrate the application and performance of the ratio

of two Chi-square, the di�erence of two Chi-square distribution and bootstrap

methods explored in the previous chapter.

4.1 Results

The results of Table 4.1 depicts that the variance ratio of two chi-square random

variables from group 1 and 2 is 1.5765. The ratio deviates by 0.5765 from 1, which

gives more robust evidence of unequal group variances. However, the p-value of F

test is 0.3721 which is greater than 5% signi�cance level leading to the conclusion

that there is no signi�cant di�erence between the two variances of the groups.

Therefore, we are 95% con�dent that the variance ratio between Magnesium and

Titanium group is between 0.5709 and 4.3533.

Table 4.1: Summary of 95% con�dence level for the ratio of two chi-square
variables.

Method Group Mean Variance Var ratio 95%CI_low 95%CI_up Conf_width p value

2 Chi ratio
Mg 12.1765 426.1544

1.5765 0.5709 4.3534 3.7824 0.3721
Ti 10.7059 671.8456

The Table 4.2, shows both non-parametric and parametric results of the bootstrap
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method. We observe that there is a negligible di�erence of outcomes between the

parametric and non-parametric bootstrap approach. We are 95% con�dence that

the mean di�erence of the two groups is approximately between -2.1 and 1.3. The

bootstrap method permits a non inferiority margin δ of -0.411.

Table 4.2: Summary of 95% con�dence level for bootstrap method.

Method Mean Variance 95%CI_low 95%CI_up Conf_width

Non-parametric � � -2.1176 1.3529 3.4706

Parametric -0.4059 0.8990 -2.1287 1.3169 3.4456

To illustrate the non-reliability of the delta method, we plot a histogram of the real

data for the distributional di�erence of the absolute values of magnesium group

and Titanium group. We note the discontinuity at 0 of the distribution in Figure

4.1, which clearly explains the non-di�erentiability of the function of the estimand

| µ2 | − | µ1 | when the estimator is 0.

abs(Ti) - abs(Mg)
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Figure 4.1: The histogram for the di�erence between the absolute HVA of Mg
and Ti random variable.
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The di�erence of two chi-square distribution is a complex function due to the Whit-

taker's W function, whose solution is a complex number. The expected con�dence

interval, therefore, is of complex numbers. Computing the Whittaker function

of the real data is time-consuming, which a�ects the general performance of the

method.
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Chapter 5

Discussion and conclusion

The thesis constructed four approaches to calculate the con�dence interval to com-

pare two independent folded normally distributed random variables which are ap-

plicable to establish the stability of a surgery for the treatment of Hallux Valgus

and judging the non-inferiority of the two treatments administered. The con�dence

interval for the ratio of two chi-square random variable is straightforward, easy to

calculate and not time-consuming. Bootstrapping method allows a straightforward

way to derive the con�dence interval for the mean of two absolute di�erences and

is asymptotically more accurate than the standard interval obtained from samples

that assume normality (Islam and Begum, 2018). It is an appropriate way to as-

certain the stability of the results. However, the method is time-consuming and

requires large computer storage to perform the computations when the bootstrap

sample and bootstrap repetition B, is immense.

The di�erence between the two chi-square distributions method to obtain a con�-

dence interval is not straightforward, and the computations are computer-intensive

due to the Whittaker function. We did not apply the exact method to the real

data due to the unavailability of satandard quantile table for the pdf of the di�er-

ence of two independent folded normal random variables in the popular statistical

softwares. Additionally, the complexity of the pdf di�erence made it challenging

to come up with the emeprical quantiles. Judging by δ of the bootstrap method,

we establish non-inferiority for the new surgical procedure that uses biodegradable
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magnesium alloy screw compared to the surgical procedure that uses standard tita-

nium screw �xation for the treatment of HV deformity. In conclusion, the methods

are promising, and we recommend them for use to compare other practical data

that require the use of folded normal distribution.

One of the shortcomings of this study was the small sample size of the variable of

interest, which may have produced results biased to small sample sizeed datasets

only. Secondly, the computer intensive computations of the Whitteker W function

for the di�erence of two chi squared RVs approach made it challenging to produce

results of real data application. Closely related to that was the insu�cient com-

puter storage space to carry out immense simulation study for all the methods.

Additionally, some methods such as bootstrapping was time consuming and it re-

quired long awaited hours to produce results. Finally, the uavailability of standard

table for quantiles of the pdf for the di�erence of two independent folded normal

distribution limited the application of exact method.

There is a large potential space to extend research on this study. Simulations

to establish coverage properties of the methods discussed are needed. A great deal

of work needs to be completed on the exact approach to generate the empirical

quantiles. For future research purposes, we can consider developing an R software

package to produce standard quantiles for use when dealing with the distribution

for the di�erence of two independent folded normal random variables. Further,

we can incorporate the ratio of two chi-square and the di�erence of two chi-square

methods into the parametric bootstrapping conducted. More can be done on the

di�erence between the two chi-square distributions based on the complexity of

Whittaker's W function. In addition, if percent changes of the HVA are a reason-

able metric, one can consider analyzing the absolute value data in the log-scale.

Also, If the sign of the di�erence between early post-operation and late followup

for HV angels is also clinically relevant, repeat the analysis without taking ab-

solute values, of course adjusting your analytic approach. This study focused on

one continuous outcome variable HVA utilizing the uni-variate version of folded

normal distribution. Therefore, the model can be extended to be able to incor-

porate another outcome variable such IMA to use the bi-variate version of the
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folded normal distribution. Finally, likelihood based CIs, bayesian approach for

non-inferiority assesment and the BCα (is likely to perform better than the basic

approach) can be considered too for future research.
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Appendix A

R codes

A.1 Exploratory data analysis

#set working directory

setwd("C:\\users\\Shiphrah Sarah\\OneDrive\\R codes\\HV DATA")

# importing the Excel data �le

library(readxl)

mydata = read_excel("HV_Study_Data.xlsx", col_types="numeric",

range=cell_cols("Q:R"))

# Extracting magnesium group data

#Group 1

Mg_data<-as.data.frame(mydata[1:17,], drop=FALSE)

Mg_data

#extracting titanium group data

#Group 2

Ti_data<-as.data.frame(mydata[18:34,], drop=FALSE)

Ti_data

# sample size

n1<-nrow(Mg_data)

n2<-nrow(Ti_data)

# calculating the di�erence of the HVA for both groups

Mg_data_di�erence<-apply(Mg_data, 1, di�)
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Ti_data_di�erence<-apply(Ti_data, 1, di�)

# calculating absolute di�erence of HVA for both groups

Mg_data_absolute<-abs(apply(Mg_data, 1, di�))

Ti_data_absolute<-abs(apply(Ti_data, 1, di�))

# Exploratory data analysis

# descriptive statistics of absolute di�erence for both groups

summary(Mg_data_absolute)

summary(Ti_data_absolute)

# violin plot

mg<-rep("Mg", 17) # creating a vector for Mg

ti<-rep("Ti", 17) # creating a vector for Ti

a<-c(mg,ti) # combining the Group vectors

b<-c(Mg_data_absolute, Ti_data_absolute) # a vector of absolute values

absHVA<-cbind.data.frame(a,b) # creating a data frame of absolute values

# renaming the data frame columns

names(absHVA)[1]="GROUP"

names(absHVA)[2]="VALUES"

library(ggplot2)

# creating a data summary for violin plot

dataaa_summary<-function(absHVA){

mean<-mean(absHVA)

yminn<-mean-sd(absHVA)

ymaxx<-mean+sd(absHVA)

return(c(y=mean, ymin=yminn, ymax=ymaxx))

}

# the plott

violin<-(ggplot(data=absHVA, aes(x=GROUP,y=VALUES))

+geom_violin(trim = FALSE)

+geom_boxplot(width=0.1, �ll="white")+stat_boxplot(geom = "errorbar",width=0.1)

+labs(x="Group", y="Absolute HVA"))

violin+theme_classic()+stat_summary(fun.data = dataaa_summary)
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A.2 Properties of a folded normal RV

# generating a random variable

set.seed(110) # for reproducibility

#generating folded normal random variable

y<-abs(rnorm(100000, mean = 0, sd=1))

# Q-Q plot

library("car")

qqPlot(y, ylab = "y")

# standardizing a folded normal random variable

y_mean<-mean(y) # mean of y

y_variance<-var(y) # variance of y

#true mean of y

y_true_mean<-(sqrt(s1)* sqrt(2/pi) * exp(-m12/(2*s1))

+m1 * (1 - 2 * pnorm(-m1/sqrt(s1))))

# true variance of y

y_true_variance<-s1+m12-(y_true_mean)2

#Histogram

# a distributional histogram for y

hist(y, col = "white", xlab="y",)

# standardized absolute values y_standardized<-(y-y_true_mean)/y_true_variance

# a distributional histogram for absolute standardized values

Histo<-hist(y_standardized, freq = FALSE, main = NULL, col="white")

lines(density(y_standardized), lwd=2)

#The resultant distribution for the di�erence of two folded normal RV

set.seed(111)

y_1<-abs(rnorm(10000, mean = 0, sd = 1)) # group 1 absolute random variable

set.seed(112)

y_2<-abs(rnorm(10000, mean = 0, sd = 1)) # group 2 absolute random variable

z<-y_2-y_1 # di�erence between y2 and y1
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hist(z, freq = FALSE, main = NULL, col = "white")

lines(density(z), lwd=2)

A.3 Functions for the di�erence of two indepen-

dent folded normal RV

# pdf

pdf_absdi� <- function(tvalue, mean_y1, meam_y2, sd) {

mean_y1_tidle <- (1 / sqrt(2)) * (mean_y1 - mean_y2) # rotated mean_y1

mean_y2_tidle <- (1 / sqrt(2)) * (mean_y1 + mean_y2) # rotated mean_y2

cy1min <- -tvalue / (sd * sqrt(2)) - mean_y1_tidle / sd

cy2min <- -tvalue / (sd * sqrt(2)) - mean_y2_tidle / sd

cy2plus <- tvalue / (sd * sqrt(2)) - mean_y2_tidle / sd

cy1plus <- tvalue / (sd * sqrt(2)) - mean_y1_tidle / sd

sol <- ifelse(

tvalue > 0,

(1 / (sd * sqrt(2))) * (

pnorm(cy2min) * dnorm(cy1min) - (1 - pnorm(cy1min)) * dnorm(cy2min) +

(1 - pnorm(cy2plus)) * dnorm(cy1plus) -

pnorm(cy1plus) * dnorm(cy2plus) +

dnorm(cy2min) + dnorm(cy2plus)

),

(1 / (sd * sqrt(2))) * (

pnorm(cy2plus) * dnorm(cy1min) + pnorm(cy1plus) * dnorm(cy1min) +

(1 - pnorm(cy2min)) * dnorm(cy1plus) +

(1 - pnorm(cy1min)) * dnorm(cy2plus)

)

)

return(sol)

}
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# mean

mean_absnormal <- function(mean_y1, sd){

return(sd * sqrt(2/pi) * exp(-mean_y12/(2*sigma2))

+ mean_y1 * (1 - 2 * pnorm(-mean_y1/sd)))

}

means_absdi� <- function(mean_y1, mean_y2, sd){

return(mean_absnormal(mean_y1, sd) - mean_absnormal(mean_y2, sd))

}

# Variance

variance_absdi� <- function(mean_y1, mean_y2, sd){

mean_absy1 <- mean_absnormal(mean_y1, sd)

mean_absy2 <- mean_absnormal(mean_y2, sd)

return(mean_absy12 + mean_absy22 + 2*sigma2 - mean_y12 - mean_y22)

}

# cdf

cdf_absdi� <- function(tvalue, mean_y1, mean_y2, sigma) {

mean_y1_tidle <- (1 / sqrt(2)) * (mean_y1 - mean_y2) # rotated mean_x

mean_y2_tidle <- (1 / sqrt(2)) * (mean_y2 + mean_y2) # rotated mean_y

cy1min <- -tvalue / (sd * sqrt(2)) - mean_y1_tidle / sd

cy2min <- -tvalue / (sd * sqrt(2)) - mean_y2_tidle / sd

cy2plus <- tvalue / (sd * sqrt(2)) - mean_y2_tidle / sd

cy1plus <- tvalue / (sd * sqrt(2)) - mean_y1_tidle / sd

sol <- ifelse(

tvalue > 0,

(1 - pnorm(cy1min)) * pnorm(cy2min) + pnorm(cy1plus) * (1 - pnorm(cy2plus))

+pnorm(cy2plus) - pnorm(cy2min),

pnorm(cy1plus) * (1 - pnorm(cy2min)) + (1 - pnorm(cy1min)) * pnorm(cy2plus)

)

return(sol)

}
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A.4 Application to real data

# Ratio of two chi-square RV

# chi square random variable

chi_Mg_data<-(Mg_data_absolute)2

chi_Ti_data<-(Ti_data_absolute)2

chi_Mg_mean<-mean(chi_Mg_data_di�) # mean of group 1

chi_Mg_var<-var(chi_Mg_data_di�) # variance of group 1

chi_Ti_mean<-mean(chi_Ti_data_di�) # mean of group 2

chi_Ti_var<-var(chi_Ti_data_di�) # variance of group 2

# variance test

f_test<-var.test(chi_Ti_data_di�, chi_Mg_data_di�,

alternative = "two.sided", conf.level = 0.95)

# extracting speci�c values

f_test$estimate

f_test$conf.int

f_test$p.value

# Bootstrap method

set.seed(202027)# for reproducibility

B <- 10000 # the number of bootstrap samples

# bootstrap samples

d1<-matrix( sample(Mg_data_di�erence, size = B*n1,

replace = TRUE), ncol = B, nrow = n1)

d2<-matrix( sample(Ti_data_di�erence, size = B*n2,

replace = TRUE), ncol = B, nrow = n2)

# check to make sure they are not empty!

d1[1:5,1:5]

d2[1:5,1:5]

#absolute di�erence of the bootstrap samples

y1<-abs(d1)

y2<-abs(d2)

#check if they are absolute values!
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y1[1:5,1:5]

y2[1:5,1:5]

# calculating relevant statistics from bootstrap samples

# mean of the absolute bootstrap samples

y1_bar<-colMeans(y1)

y2_bar<-colMeans(y2)

y_bar_di�<-y2_bar-y1_bar # mean di� of the means of abs bootstrap samples

# empirical variances of the bootstrap samples

library(resample)

d1_var<-colVars(d1)

d2_var<-colVars(d2)

# variance of the absolute bootstrap samples

D1_varr<-colVars(y1)

D2_varr<-colVars(y2)

# variance ratio of the bootstrap samples and absolute bootstrap samples

d_var_ratio<-d2_var/d1_var

D_varr_ratio<-D2_varr/D1_varr

d_var_di�<-d2_var-d1_var #variance di�erence of the bootstrap samples

# the corrected means of the bootstrap samples

d1_bar<-colMeans(d1)

d2_bar<-colMeans(d2)

Dd1_bar<-y1_bar-(sqrt(d1_var)* sqrt(2/pi) * exp(-d1_bar2/(2*d1_var)) +

d1_bar * (1 - 2 * pnorm(-d1_bar/sqrt(d1_var))))

Dd2_bar<-y2_bar-(sqrt(d2_var)* sqrt(2/pi) * exp(-d2_bar2/(2*d2_var)) +

d2_bar * (1 - 2 * pnorm(-d2_bar/sqrt(d2_var))))

Dd_bar_di�<-Dd2_bar-Dd1_bar

# correlated mean assuming that the means of the bootstrap samples=0

Dstar1_bar<-y1_bar-(sqrt(d1_var)*sqrt(2/pi))

Dstar2_bar<-y2_bar-(sqrt(d2_var)*sqrt(2/pi))

Dstar_bar_di�<-Dstar2_bar-Dstar1_bar

# non-parametric con�dence interval

quantile(y_bar_di�, probs=c(0.025, 0.975))

# parametric con�dence interval
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z=qnorm(0.05/2,lower.tail = F)

m<-mean(y_bar_di�) # mean

s<-sd(y_bar_di�) # sd

lcl.b<-m-z*s # upper limit

ucl.b<-m+z*s # lower limit

cw.b<-ucl.b-lcl.b # con�dence width

# plot for the di�erence of absolute values between group 1 and 2

# the di�erence of absolute values

di�<-Ti_data_absolute-Mg_data_absolute

hist(di�, freq = F, main = NULL, xlab = "abs(Ti) - abs(Mg)",

col = "white", breaks = 7)

lines(density(di�), lwd=2)

# The di�erence of two chi-square distribution

library(fAsianOptions)# to load whittaker function

chi_di�<- ch_Ti_data-chi_Mg_data # The di�erence of 2 chi-square RV

# Whittaker function

W=whittakerW(x=chi_di�, kappa = (n1-n2)/4, mu=(4-n1-n2)/4)

# The p� of the di�erence of two chi square distribution

# distribution for Z>0

chi_dist_di�1<-function(Z){((2(1−(n1−n2)/2))/(gamma((n1-1)/2)))*

Z(((n1+n2)/2)−2)*W*Z}

# distribution for Z<0

chi_dist_di�2<-function(D){(2(1−(n1−n2)/2))/(gamma((n2-1)/2))*

(−Z)(((n1+n2)/2)−2)*W*(-Z)}

library(elliptic) # complex number package

library(pracma) # complex number package

# integrates complex function

# since chi_dist_di� is asymptotic in nature any interval chosen gives quantile

myintegrate(chi_dist_di�1, lower, upper) # upper quantile

myintegrate(chi_dist_di�2, lower, upper) # lower quantile
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