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Abstract

In this thesis we model spherically symmetric radiating stars dissipating energy in

the form of a radial heat flux. We assume that the spacetime for the interior matter

distribution is shear-free. The junction conditions necessary for the matching of the

exterior Vaidya solution to an interior radiating line element are obtained. In partic­

ular we show that the pressure at the boundary of the star is nonvanishing when the

star is radiating (Santos 1985). The junction conditions, with a nonvanishing cosmo­

logical constant, were obtained. This generalises the results of Santos (1985) and we

believe that this is an original result. The Kramer (1992) model is reviewed in detail

and extended. The evolution of this model depends on a function of time which has

to satisfy a nonlinear second order differential equation. We solve this differential

equation in general and thereby completely describe the temporal behaviour of the

Kramer model. Graphical representations of the thermodynamical and gravitational

variables are generated with the aid of the software package MATHEMATICA Ver­

sion 2.0 (Wolfram 1991). We also analyse two other techniques to generate exact

solutions to the Einstein field equations for modelling radiating stars. In the first

case the particle trajectories are assumed to be geodesics. We indicate how the model

of Kolassis et al (1988) may be extended by providing an ansatz to solve a second

order differential equation. In the second case we review the models of de Oliveira

et al (1985, 1986, 1988) where the gravitational potentials are separable functions of

the spatial and temporal coordinates.

VI



1 Introduction

General relativity is a global theory of gravitation which is based on a covariant

formalism in four-dimensional, curved spacetime and has as its limiting case New­

ton's theory of gravitation. In general relativity the metric function describes not

only the metric properties of space, as well as its causal properties, but also the

gravitational field. Hence general relativity unifies the matter content of spacetime

to the gravitational field. The geometry of spacetime is represented by the Einstein

tensor which is defined in terms of the Ricci tensor, the Ricci scalar and the met­

ric tensor. Mechanical and electromagnetic systems are described by the symmetric

energy-momentum tensor which is coupled to the gravitational field via the Einstein

field equations. Unlike Newtonian or Maxwellian field equations, the Einstein field

equations are a system of highly nonlinear partial differential equations. Exact so­

lutions to the Einstein field equations are important in modelling astrophysical and

cosmological phenomena in the observable universe. However exact solutions to the

field equations in closed form are in general very difficult to obtain. In this thesis we

model spherically symmetric radiating stars undergoing gravitational collapse with

heat flow within the framework of general relativity.

The study of static spheres is an idealised problem since astronomical obser­

vations indicate that most, if not all gravitating systems are non-static and radiative
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processes are vital mechanisms of energy dissipation in such systems. The surface of

a collapsing star divides spacetime into two distinct regions, the interior region and

the exterior region. Since the star is radiating the exterior spacetime is no longer de­

scribed by the exterior Schwarzschild solution but is now represented by the Vaidya

solution for pure outgoing radiation. The interior matter distribution is described by

a spherically symmetric, shear-free line element for a generalised energy-momentum

tensor with heat flow. By utilising Raychaudhuri's equation (Raychaudhuri 1957) we

can show that the slowest possible collapse is for shear-free matter distributions. The

interior spacetime has to be matched to the exterior spacetime at the boundary of

the radiating star. Hence to obtain a complete picture of the gravitational collapse of

a star it is necessary to adequately describe the interior and exterior spacetimes and

to provide the matching conditions for them. The problem of gravitational collapse

has many interesting applications in astrophysics where formation of compact stellar

objects such as white dwarfs and neutron stars are usually preceded by a period

of radiative collapse. It is well known that during the late stages of gravitational

collapse the temperature inside the star is so intense that production of neutrinos is

possible. Hence the model of gravitational collapse with a neutrino flux is important

in relativistic astrophysics and has been investigated in the past (Glass 1990). The

cosmic censorship hypothesis due to Penrose (Penrose 1978, 1979) which asserts that

a physically realizable collapse of matter which obeys the usual energy conditions

will not lead to the formation of naked singularities, can be investigated using the

theory of gravitational collapse.

Historically the problem of radiative gravitational collapse was first ad­

dressed by Oppenheimer and Snyder (1939) in which they presented a model based
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on a spherically symmetric dust cloud undergoing gravitational collapse. Here the

exterior spacetime is described by the exterior Schwarzschild solution and the interior

spacetime is represented by a Friedmann-like solution for an isotropic and homoge­

neous universe. Vaidya (1951, 1953) derived the line element which describes the

exterior gravitational field of a radiating sphere. Then it became possible to model

the interior of radiating stars by matching such solutions to the exterior Vaidya

spacetime (see for example Glass 1981). Santos (1985) obtained the junction condi­

tions for a spherically symmetric radiating star. He was able to show with the use

of the junction conditions that the pressure on the boundary of a radiating sphere

cannot vanish. This important result has since become a crucial requirement for

spherically symmetric, shear-free radiative collapse. Several physically reasonable

models of radiative spherical collapse with heat flow have been proposed by utilising

the junction conditions derived by Santos (1985). One such approach presented by

Kramer (1992) makes use of a static interior solution in which one of the parameters

is allowed to become a function of time. This solution is then matched to the exte­

rior spacetime described by the Vaidya solution for pure radiation. Another method

is to assume separability of the gravitational potentials into their spatial and tem­

poral components. Such a model was investigated by Kolassis et al (1988) and de

Oliveira et al (1985, 1986, 1988). More realistic models based on anisotropic pres­

sure (Grammenos at al1992) and neutrino outbursts (Glass 1990) have been recently

studied. It is interesting to note that Bonnor (1987) has studied the arrow of time

in a gravitational context by making use of a radiating star undergoing gravitational

collapse.

In chapter 2 we briefly consider differential geometry, curvature and the
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Einstein field equations in the spacetime of general relativity and we derive the junc­

tion conditions across a spherically symmetric hypersurface by matching two different

regions of spacetime. The energy-momentum tensor includes terms corresponding

to heat flow which enables us to model radiating stars. In §2.3 spherically symmet­

ric, shear-free spacetimes are considered in detail as they describe the interior of

radiating stars. The interior Einstein field equations are derived for a sphere under­

going gravitational collapse. In §2.4 we analyse the Vaidya solution (with vanishing

cosmological constant) in null coordinates which describes the exterior spacetime of

the radiating star. The junction conditions matching the interior and exterior space­

times at the boundary of the star are derived in §2.5. We establish the important

result that the pressure does not vanish at the boundary of a radiating star. The

luminosity profile and the surface redshift of the star are briefly considered.

In chapter 3 we investigate the problem of spherically sylmnetric, shear-free

gravitational collapse with heat flow when the Einstein field equations are generalised

to include the cosmological constant. The Einstein field equations, with nonzero cos­

mological constant, for a spherically symmetric shear-free spacetime are derived in

§3.2. The form of the heat flow is not directly affected by the inclusion of the cosmo­

logical constant. In §:3.3 we analyse the Vaidya solution with cosmological constant

for a null fluid and obtain the Einstein field equations for the exterior spacetime.

We present all the relevant details as the Vaidya solution with cosmological constant

is not well known. In §3.4 the junction conditions are obtained for the case with

nonvanishing cosmological constant by matching the generalised Vaidya solution to

the interior spacetime. The results obtained in this chapter generalise the results

obtained earlier in §2.5.
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In chapter 4 we review a radiating model of gravitational collapse pro­

posed by Kramer (1992). A nonstatic model is generated from a known static model

by allowing certain parameters to become functions of time. In §4.2 we consider

the interior spacetime which is described by the interior Schwarzschild solution in

isotropic coordinates. The mass function in the interior Schwarzschild solution be­

comes a function of time. The Einstein field equations, with vanishing cosmological

constant, are derived. In section §4.3 we utilise the junction conditions, derived in

§2.5, to generate an ordinary differential equation which governs the temporal evo­

lution of this model. This equation is nonlinear and of second order. Kramer (1992)

provides a first integral of this equation. We fully integrate this differential equation

in §4.4 and describe completely the temporal behaviour of the model. The physical

properties of the model are investigated in §4.5. Since the forms of the expressions

for the thermodynamical variables and gravitational potentials are complicated we

provide graphical plots of these functions for a chosen interval.

In chapter 5 we investigate two different methods of generating solutions

to the Einstein field equations with vanishing cosmological constant. Firstly we con­

sider in §5.2 the model of Kolassis et al (1988) in which the fluid trajectories of the

collapsing star are assumed to be geodesics. We provide a mathematical justification

for the existence of their solution. In addition we provide an ansatz that generalises

the Kolassis et al (1988) solution. Secondly in §5.3 we review the model investi­

gated by de Oliveira et al (1985, 1986, 1988) in which the gravitational potentials

are separated into spatial and temporal components. The spatial component is di­

rectly related to the initial static configuration of the star which corresponds to a

given perfect fluid solution. The temporal component which governs the nonstatic
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evolution is determined from the junction conditions.

The results obtained in this thesis are briefly reviewed in the conclusion.

The original results obtained are highlighted in particular. We point out areas of

future investigations emanating from the solutions obtained.
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2 Differential Geometry, Field Equations and the

Junction Conditions

2.1 Introduction

In this chapter we consider only those aspects of differential geometry and general

relativity that are relevant to this thesis. For a more detailed account of differential

geometry and tensor calculus the reader is referred to de Felice and Clarke (1990),

Hawking and Ellis (197:3) and Misner et al (1973). In §2.2 we introduce the met­

ric tensor field, connection coefficients, the Riemann tensor and associated tensors.

The general form of the energy-momentum tensor is presented and its coupling to

the Einstein tensor via the Einstein field equations is briefly discussed. In §2.3 we

consider spacetimes which are spherically symmetric and shear-free. The Einstein

field equations are derived in detail under these conditions for an energy-momentum

tensor with heat flow. The Vaidya solution (1951, 1953) is introduced in §2.4 by

transforming the Schwarzschild exterior solution to Eddington-Finkelstein coordi­

nates. The Vaidya solution, or some other radiating solution, must be matched to

an interior line element to model a radiating star. In §2.5 we derive the junction

conditions in detail at the boundary of the radiating sphere by matching the Vaidya

solution to the interior of a radiating star undergoing gravitational collapse because
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of heat dissipation. In particular we obtain the expression for the local conserva-

tion of momentum at the surface. Some physical properties of the radiating star

are briefly considered. Our results in this chapter are valid only for a vanishing

cosmological constant; a generalisation with a nonvanishing cosmological constant is

considered in chapter 3.

2.2 Differential Geometry

The spacetime of special relativity is a four-dimensional manifold which may be cov-

ered by a single coordinate neighbourhood. In general relativity we take spacetime

to be a differentiable manifold with local coordinates (x a
) where XO is timelike and

Xl, x2 , x3 are spacelike. In contrast to special relativity it is not possible to cover all

of spacetime with a single coordinate neighbourhood because of gravitational effects.

For our purposes it is sufficient to assume that spacetime is a four-dimensional, dif-

ferentiable, connected, Hausdorff, oriented manifold. To discuss metrical properties

it is necessary to introduce a differentiable metric tensor field g on the manifold. The

invariant distance between neighbouring points on a curve in the manifold is defined

by the line element

d 2 d ad bS = gab X X

where g is the symmetric, nondegenerate metric field with signature (- + + +). The

metric connection r is defined in terms of the metric tensor field and its derivatives

by

(2.1)

where commas denote partial differentiation.
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The Riemann tensor provides a measure of the curvature of a manifold,

that is, it provides a measure of deviation from flatness of the spacetime of special

relativity. The Riemann tensor is a type (1,3) tensor and is defined as

(2.2)

in terms of the connection coefficients (2.1). In flat Minkowski spacetime we have

that Rabcd = 0 and for a curved spacetime Ra bcd is nonvanishing in general. Upon

contraction of (2.2) we obtain the Ricci tensor

(2.3)

A contraction of (2.:3) yields the scalar

called the Ricci scalar. The Einstein tensor

Gab = R ab - ~Rgab

(2.4)

(2.5)

is defined in terms of the Ricci tensor (2.3) and the Ricci scalar (2.4). The Einstein

tensor G has the property of being divergence-free:

Gab'b = 0, (2.6)

which follows directly from the definition (2.5). This property of the Einstein tensor

is sometimes referred to in the literature as the Bianchi identity and generates the

conservation laws through the Einstein field equations.
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The general form for the energy-momentum tensor T for uncharged matter

is given by

(2.7)

where J-t is the energy density, p is the isotropic pressure, qa is the heat flow vector

and 7l"ab represents the stress tensor. These quantities are measured relative to a

fluid four-velocity u (uaua = -1). The heat flow vector and stress tensor satisfy the

conditions

The energy-momentum tensor (2.7) is coupled to the Einstein tensor (2.5) via the

Einstein field equations

Gab = Tab (2.8)

in appropriate units. We are using units in which the speed of light and the coupling

constant are taken to be unity. The field equations (2.8) relates the gravitational field

to the matter content. This is a system of coupled partial differential equations which

are highly nonlinear. For a more comprehensive discussion of differential geometry

applicable to general relativity and further information on the field equations the

reader is referred to de Felice and Clarke (1990), Hawking and Ellis (1973) and

Stephalli (1990). The case of the Einstein field equations with a cosmological constant

is treated in chapter 3.
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2.3 Shear-free Spacetimes

We consider the particular case of spherically symmetric, shear-free spacetimes. This

is a reasonable assumption when modelling a relativistic star. In this case there

exists coordinates for which the line element may be expressed in a form that is

simultaneously isotropic and comoving. With the coordinates (x a
) = (t, r, 0, </J) the

line element takes the form

(2.9)

where A = A(t, r) and B = B(t,1') are metric functions. It is also possible to include

the effects of shear. However this leads to a more complex model and we neglect the

effects of shear; this is an area for future investigation. For the line element (2.9) the

nonvanishing connection coefficients (2.1) are given by

r 1 _ Br
11- -

B

ro _ Ar
01- -

A

r 1 _ AAr
00 - B2

r 1 _ Bt
01 --

B
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2 Btr 02=­
B

2 Br 1r 12 = -+­B r

r2
33 = - sinO COS 0

r 3
_ Bt

03- -
B

3 Br 1r 13 = - +­B r

r3
23 = cot 0

where subscripts denote partial differentiation. The non-zero Ricci tensor compo-

nents (2.3) take the form

D _ AArr AA Br _ 3Btt 3At Bt ~ AAr
~ I{)O - B2 + r B3 B + A B + r' B2

+B Btt +2 Br 2 _ 2 Brr
A2 B2 B

12

(2.10a)

(2.10b)

(2.10c)

(2.10d)

(2.10e)



for the connection coefficients listed above. Utilising the components (2.10) and the

definition (2.4) we generate the Ricci scalar

_ 6At B t +6 Btt
A3 B B

(2.11 )

for the line element (2.9). On substituting (2.10) and (2.11) in (2.5) we obtain the

nonvanishing Einstein tensor components

2 2 ( 2 ). B t A Brr Br 4 Br
Goo =3--- 2---+--

B2 B2 B B2 r B

1 ( A 2A 2 )+- B 2 +2--!..BB + _--!..B2 + -BB
B2 r A r r A l' r

for the spherically symmetric line element (2.9).

(2.12a)

(2.12b)

(2.12c)

(2.12d)

(2.12e)

In this thesis we consider a model which represents a spherically symmetric,
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shear-free fluid configuration with heat conduction. This is a reasonable approxima-

tion for many applications in relativistic astrophysics (Shapiro and Teukolsky 1983).

An example is the model of gravitational collapse in a radiating star because the star

is losing mass corresponding to outgoing radiation. For our model we take 71"ab = 0

and (2.7) becomes

(2.13)

The fluid four-velocity u is comoving and is given by

a 1 ca
U = -uo

A

The heat flow vector takes the form

qa = (O,q,O,O)

since qaua = °and the heat is assumed to flow in the radial direction on physical

grounds because of spherical symmetry. Then on substituting (2.12) and (2.13) in

(2.8) we obtain the field equations

p = _1_ (_2 Btt _ B? + 2At Bt)
A2 B B2 A B

+_1 ( Br
2 +2Ar Br ~ Ar ~ Br)

B2 B2 A B + r A + r B

14

(2.14a)

(2.14b)

(2.14c)



(2.14d)

for the line element (2.9). This is a system of coupled partial differential equations

in the variables A, B, J-l, P and q. The equations (2.14) describe the interior of a

radiating spherically symmetric star without shear.

If we eliminate p from (2.14b) and (2.14c) we obtain the following partial

differential equation

Arr Brr _ (2Br 1) (Ar Br)-+-- -+- -+-A B BrA B
(2.15)

called the condition of pressure isotropy. It is interesting to observe that if we redefine

the radial coordinate 7' by

then we generate the differential equation

which is a more compact form of (2.15).

2.4 The Vaidya Solution

The Vaidya solution (1951, 1953) represents the exterior gravitational field of a rad-

iating star. It is possible to generate the Vaidya solution directly from the exterior

Schwarzschild solution using an appropriate coordinate transformation. In coordi-

nates (t, r, 0, </» the exterior Schwarzschild solution is given by

15
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where M is a constant. To generate the Vaidya line element from (2.16) we utilise

the Eddington-Finkelstein coordinate transformation in which

v = et + r +2M In (2~ - 1) (2.17)

where v becomes the new coordinate variable. With the help of the transformation

(2.17) we can express (2.16) in the form

To obtain the Vaidya solution we have to make the interpretation that M = m(v).

Then we have that

(2.18)

which is the Vaidya line element. The quantity m(v) represents the Newtonian mass

of the gravitating body as measured by an observer at infinity. This solution was

originally generated using a different approach by Vaidya (1951, 1953). The solution

(2.18) is the unique spherically symmetric solution of the Einstein field equations

(2.8) for radiation in the form of a null fluid. The Vaidya solution is often used to

describe the exterior gravitational field of a radiating star in applications: de Oliveira

et al (1985), Kolassis et al (1988) and Kramer (1992) are some of the authors who

have used the Vaidya solution in applications.

The metric tensor for the Vaidya solution (2.18) is

gab =

- (1 -~)
-1

o
o

16
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o r2 0

00 r2 sin2
()



with inverse

0 -1 0 0

gab = -1 1 _ 2m(v) 0 0r

0 0 r-2 0

0 0 0 r-2 sin-2 ()

The connection coefficients of the Vaidya solution (2.18) are necessary to generate the

field equations and are also used in the junction conditions in §2.5. The nonvanishing

connection coefficients (2.1) for the metric (2.18) are given by

o mr 00 =-2"
r

ro . 2 ()
33 = r sm

r 1 _ rn
01 -­

r2

r2
33 = - sin () cos ()

r0
22 = r

1 1 dm mr 00 = - - - + (r - 2m)-
r dv r3

r1
22 = 2m - r

2 1r 12 =­
r

3 1r 13 =­
r

The Ricci tensor (2.3) for the Vaidya solution (2.18) IS nonvanishing. The only

nonvanishing Ricci tensor componenUs given by

Roo = _! dm
r2 dv

where we have utilised the connection coefficients given above. However the Ricci

17



scalar (2.4) for the line element (2.18) vanishes:

R=O

Consequently the Einstein tensor (2.5) takes the simple form

(2.19)

The energy-momentum tensor for pure radiation is given by Kramer et al (1980):

(2.20)

where k is a null vector (kaka = 0). The quantity <1>2 is the energy density of the

radiation measured relative to the null vector ka • For the Vaidya solution (2.18) the

null vector is given by ka = (1,0,0,0). Thus from (2.19) and (2.20) we have that

(2.21 )

for the energy density of the radiation.

The Vaidya solution (2.18) is completely determined by the mass function

rn(v). In order that the exterior spacetime of the radiating star is not unphysical

the function rn(v) must be a nonincreasing function: ~; ::; O. In other words the

mass of the star is decreasing because of the energy being carried away in the form

of radiation. We briefly consider the luminosity profile of a radiating star at the end

of §2.5.
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2.5 Junction Conditions

In this section we generate the junction conditions to match two spherically sym-

metric spacetimes on a hypersurface :E (BonnOf et al1989, Santos 1985). We only

provide those details relevant for later chapters. In this section the results obtained

are valid for the Einstein field equations (2.8) with a vanishing cosmological constant.

For a comprehensive treatment of junction conditions in general relativity see Israel

(1967) and Lake (1987). We consider a spherical surface described by a timelike

three-space:E. The surface :E divides spacetime into two distinct regions M- and

M+. Let gij be the intrinsic metric to :E so that

(2.22)

The intrinsic coordinates to :E are given by ewhere i = 1,2,3. The line elements in

the regions M± are of the form

(2.23)

The coordinates in M± are ,-1'1 where a = 0,1,2,3. We require that the metrics (2.22)

and (2.23) match smoothly across :E. This generates the first junction condition

(2.24)

We are using the notation ( h; to represent the value of ( ) on :E. Consequently the

coordinates of:E in M± are given by X± = X±(ei ). The second junction condition is

obtained by requiring continuity of the extrinsic curvature of :E across the boundary.

This gives

Kt = K~
1J 1J

19
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where

(2.26)

and n~(X~) are the components of the vector normal to E. We should point out that

the junction conditions (2.24) and (2.25) are equivalent to the junction conditions

generated by Lichnerowicz (1955) and 0' Brien and Synge (1952). Lake (1987)

provides a comprehensive review of the junction conditions for boundary surfaces

and surface layers with applications to general relativity and cosmology.

The intrinsic metric to E is given by

(2.27)

with coordinates ei = (T, (}, </» and R = R(T). Note that the time coordinate T is

defined only on the surface E. In comoving coordinates we take the interior spacetime

M- to be given by the shear-free line element (2.9):

(2.28)

The surface E is the boundary of the interior matter distribution in this case, and is

given by

1(1', t) = r - 1'I; = 0

where rE is a constant, We note that 8~{::' is a vector orthogonal to E which is given

by

81
8X::. = (0,1,0,0)

Hence the unit vector normal to E must be of the form

n;; = [0, B(r'I;, t), 0, 0]

20
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For M- the first junction condition (2.24), for the metrics (2.27) and (2.28), yields

the restrictions

A("E, t)i = 1 (2.30a)

(2.30b)

where dots represent differentiation with respect to T. The extrinsic curvature J(ij

of ~ can be obtained using (2.26), (2.28) and (2.29) after a lengthy and tedious

calculation. The nonvanishing components are presented below

(2.31a)

(2.31b)

(2.31c)

valid on the surface ~.

We take the exterior spacetime M+ to be described by the Vaidya line

element (2.18):

(2.32)

For the exterior spacetime the equation of the surface ~ is given by

f(r,v) = r - rE(v) = 0

Hence we have that the vector orthogonal to the surface ~ is given by

of (drE )
o,;y~ = - dv ' 1,0,0

21



It follows that the unit normal to E is of the form

(
2m drE ) -! (drE )

n+ = 1 - - +2- -- 1 °°add ' , ,rE v v
(2.33)

For M+ the first junction condition (2.24) for the line elements (2.27) and (2.32),

generates the equations

(
1 _ 2rn +2 dr ) = (~)

r dv E v2 E

(2.34a)

(2.34b)

Note that on using (2.34b) we can rewrite the unit normal vector (2.33) in the more

compact form

n;; = (-r,v,O,O) (2.35)

The nonvanishing components of the extrinsic curvature to E can be calculated with

the aid of (2.26), (2.32) and (2.35) after a lengthy calculation. These are given by

valid on the surface E.

K+ = (~_ . m)
TT • V 2

V r E

Kto = (v(r - 2m) + rr)E

+ . 2 +K",,,, = SIll eK(J(J

(2.36a)

(2.36b)

(2.36c)

The first junction condition (2.24) generates th~ equations (2.30) and (2.34).

Collecting these results we have

A(r'E, t)i = 1

22
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r~B(1'~, t) = R(r)

(
2m 2 dr ) _ ( 1 )1--+- --

r dv ~ iJ2 ~

(2.37b)

(2.37c)

(2.37d)

The variable r was defined only as an intermediary and may be eliminated from

these equations. Hence we find that the necessary and sufficient conditions on the

spacetimes for the first junction condition {2.24} to be valid are that

1

(
2m dr~) 2"

A(1'~, t)dt = 1 - - +2- dv
r~ dv

This result is generalised in §:3.4.

(2.38a)

(2.38b)

The second junction condition (2.25) is obtained by equating the appro-

priate extrinsic curvature components (2.31) and (2.36), and we have

(2.39a)

(2.39b)

The junction conditions (2.:39) may be expressed in an equivalent form which is

convenient for applications. We can obtain an equation for m(v) given in terms of

A and B only, from (2.:39b) after eliminating r, rand iJ. Relation (2.39b) can be

23



rewritten, with the help of (2.:30) and (2.34), after lengthy algebra as

(2.40)

We may interpret m(v) as representing the total gravitational mass within the surface

I;. The expression (2.40) corresponds to the mass function of Cahill and McVittie

(1970) (also see Hernandez and Misner 1966) for spheres of radius r inside I;. From

(2.30) and (2.34a) we can write

Using this expression for rE and on substituting (2.40) in (2.39b) we have that

. ( Br Bt)-l
VE = 1 + r'- + r'-

B A E
(2.41)

If we now differentiate (2.41) with respect to T and make use of (2.30a) we can write

x (r' BrBt _ r' Brt + r' AtBt _ r' B tt )]
B2 B A2 A E

Substituting (2.30b), (2.34a), (2.40), (2.41) and (2.42) into (2.39a) we obtain
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On multiplying this equation by 1+l' ( ~ ) +l' ( ~t) and simplifying we obtain the

following result

which is equivalent to

Pr. = (qB)r.

where we have utilised the field equations (2.14b) and (2.14d). This important result

relating the isotropic pressure P to the heat flow q was first established by Santos

(1985). Hence we have established that the necessary and sufficient conditions on the

spacetimes for the second junction condition (2.25) to be valid are that

Pr. = (qB)r,

This result is generalised in §:3.4.

(2.43a)

(2.43b)

The equations (2.38) and (2.43) are the general matching conditions for

the spherically symmetric spacetimes M+ and M-. Relation (2.43b) implies that

the isotropic pressure p is proportional to the magnitude of the heat flow q which is

nonvanishing in general. The pressure Pr. on the boundary can only be zero when

qr. becomes zero. In this case there is no radial heat flow and the exterior spacetime

consequently is not the Vaidya spacetime but is the exterior Schwarzschild spacetime.

Note that the result (2.43b) has been established in general for spherically symmetric,
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shear-free spacetimes without assuming any particular forms for the metric functions.

This result may be summarised as the theorem (Santos 1985): For a spherically

symmetric, shear-free distribution of a collapsing fluid undergoing dissipation in the

form of heat flow, the isotropic pressure at the surface of discontinuity cannot be

zero. In the past authors have erroneously assumed that for isotropic collapsing

fluids with radial heat flow Pr; = O. For an example of a treatment that makes

such an assumption see Glass (1981). We generalise (2.38) and (2.43) to include the

cosmological constant in chapter 3. We should point out that the junction conditions

for shearing spacetimes have been obtained by Tomimura and Nunes (1993). The

case with a nonvanishing electromagnetic field was investigated by de Oliveira and

Santos (1987).

We can give a physical interpretation to (2.43b) by deriving a new rela­

tionship. As the expression (2.40) also gives the total energy for a sphere of radius

r within I: we can write

Differentiating partially with respect to t we obtain

(2.44)

On using the field equations (2.14b) and (2.14d) we can rewrite (arn) as
at r;

(2.45)
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Substituting (2.43b) in (2.4.5) we obtain

(am) p [2 2( Br r )]- = -- r' AB 1 +r- + -BtatL, 2 BA L,

Since the radial coordinate is comoving with respect to I; we can write

(am) = (drn) = (£ dm)at L, dt L, t dv L,

and by considering (2.30a), (2.30b), (2.34a), (2.47) and (2.46) we obtain

The radial flux of momentum of the radiation on both sides of I; is given by

where

-a _ A -1 ca
eO - L, Uo

(2.46)

(2.47)

(2.48)

are the unit tangent vectors in the T-direction of I;. For details of this result see

Lindquist et al (196.5). Then it is easy to show that

so that F+ = F- which is equivalent to the junction condition (2.43b). Therefore

the result (2.43b) corresponds to the continuity of the radial flux of momentum
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of the radiation across the surface E, that is it expresses the local conservation of

momentum.

We are now in a position to discuss the luminosity of the star. Lindquist

et al (1965) define the total luminosity for an observer at rest at infinity by

(2.49)

An observer with four-velocity VU = (v, r, 0, 0) located on E has proper time r related

to the time t by dr = Adt. The energy density that this observer measures on E is

and the luminosity observed 011 E is

which is not the same as (2.49). The boundary redshift z~ of the radiation emitted

by the star is given by

dv
1 +z~ =­

dr

which generates the formula

Equation (2.50) relates the luminosities L~ to Loo.
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3 Heat Flow with Cosmological Constant

3.1 Introduction

In this chapter we seek to model a radiating star when the field equations (2.8)

are generalised to include the cosmological constant. In the previous chapter we

considered a spherically symmetric, shear-free star undergoing gravitational collapse

because of heat loss. Also note that this model may be generalised to include the

effects of shear and the electromagnetic field. Tomimura and Nunes (1993) and

de Oliveira and Santos (1987) have proposed models with nonvanishing shear and

the electromagnetic field respectively. We generalise the results of the preceding

chapter by taking into consideration the cosmological constant. We believe that this

is an original result. In §:3.2 we present the Einstein field equations with nonzero

cosmological constant for a spherically symmetric, shear-free matter distribution

which is a generalisation of the equations in §2.3. The Vaidya solution is generalised

in §3.3 with cosmological constant. Following the procedure set out in §2.5 we derive

the junction conditions at the boundary of the star by matching the generalised

Vaidya solution to the interior spacetime in §3.4. The generalised junction conditions

reduce to those in §2.5 when the cosmological constant vanishes.
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3.2 Interior Spacetime

In this section we consider the Einstein field equations for spherically symmetric,

shear-free spacetimes in which the cosmological constant is taken to be nonzero. This

generalises the results presented in §2.3. The cosmological constant is of importance

in many cosmological scenarios (Misner et al 1973) and in particular is utilised in

theories of the early universe (Maharaj and Beesham 1988). The Einstein field

equations governing the interior spacetime with the cosmological constant are

Gab + Agab = Tab

where A is a constant. The energy-momentum tensor Tab is given by (2.13).

As before the line element for the interior spacetime is described by

(3.1 )

(3.2)

where A = A(t,1') and B = B(t,1') are metric functions. Even though the line

element has the same form as (2.9) we note that A and B are different as the field

equations are now (3.1). The nonzero Gab + Agab components are given by

B 2 A2 ( 2 )t Brr Br 4 Br 2
GOO + Agoo = 3- - - 2- - - + -- - AAB2 B2 B B2 r B
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+_1 (B 2+ 2Ar BB + ~ ArB2+ ~BB) + AB2 (3.3c)B2 r A r r A l' r

Br 2 Arr 2 Br2
2 Brr 2 2+1'- + l' - - l' - + r - + AB l'B A B2 B

(3.3d)

(3.3e)

for the line element (3.2). In the above we have utilised the components of Gab from

(2,12).

Substituting (3.3) and (2.13) into the Einstein field equations (3.1) we

obtain

(3.4a)

p = _1 (_2Btt _ Bt2 +2At Bt)
A2 B B2 A B

(3.4b)
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(3.4c)

(3.4d)

for the spherically symmetric line element (3.2). The equations (3.4) are the Einstein

field equations with cosmological constant A for a spherically symmetric, shear-free

line element. If we set A = 0 then we regain the field equations (2.14) considered in

§2.3. Note from (3.4d) that the cosmological constant A does not directly appear in

the expression for the heat flow q.

3.3 Exterior Spacetime

The Vaidya solution with cosmological constant A is given by

which describes the exterior spacetime of the collapsing fluid. If A = 0 then (3.5) re-

duces to (2.18). The line element (3.5) was derived by Plebanski and Stachel (1968)

by considering the eigenvectors of the Einstein tensor in spherically symmetric space-

times. Note that the Schwarzschild solution and the Reissner-Nordstrom solution

with A =j:. 0 in null coordinates have a similar form to the line element (3.5) (Kramer

et al1980). We present the various quantities associated with the line element (3.5)

as this is not well documented in the literature.
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The metric tensor of (3.5) assumes the form

_ (1 - 2m
r
(v) - ~Ar2) -1 0 0

-1 0 0 0
gab =

0 0 r2 0

0 0 0 r2sin2()

with the inverse

0 -1 0 0

gab = -1 1 _ 2m(v) _ lAr2 0 0r 3

0 0 r-2 0

0 0 0 r-2sin-2()

These equations assist in the calculation of the connection coefficients. The nonzero

connection coefficients (2.1) are given by

o m Arr 00 = --+­
r2 3

1 1 dm ( 2m 1A 2) (m 1A )r 00 = --- + 1- - - - r - - - r
r dv r:3 r2 3

1 1 3r 22 = 2m - r + 3"Ar

2 1r 12 =­
r

3 1r 13 =­
r

r 0 22 = r

1 m 1r 01 = - - -Ar
r2 3

r 2
33 = - sin () cos ()

for the line element (3.5). This generalises the connection coefficients for the Vaidya

solution presented in §2.4. The nonzero Ricci tensor components (2.3) assume the



form

2 dm ( 2m 1 2)Roo = --- - A 1 - - - -Ar
r2 dv r 3

Rot = 0

Rn = 0

2R22 = Ar

(3.6a)

(3.6b)

(3.6c)

(3.6d)

(3.6e)

for the connection coefficients presented above. Utilising the results of (3.6) and the

form of the Ricci scalar given in (2.4) we obtain

R=4A

for the line element (:3.5). This differs from the result in §2.4 where the Ricci scalar

vanishes. Consequently we may write

(3.7)

for the line element (3.5) with cosmological constant A.

The Einstein field equations governing the exterior spacetime with cosmo-

logical constant A are

(3.8)
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where Tab = 4> 2ka kb is the energy-momentum tensor of radiation. With the help of

(3.7) the field equations (3.8) reduce to

2 2 drn
4> = --­

r2 dv

for the exterior spacetime. The form of the above result is similar to (2.21) but note

that m(v) is now related to the line element (3.5) which contains the cosmological

constant.

3.4 Junction Conditions

We generate the junction conditions by matching the line element (3.2) and (3.5)

across a three-dimensional, spherically symmetric hypersurface E which separates

spacetime into two distinct regions M - and M +. In this case we utilise the field

equations (3.4) and 3.8) so that our results generalise those in §2.5. As the derivation

is analogous to §2.5 we do not present all the steps in the proof.

As before the intrinsic metric to E is given by

The defining equation of the interior matter distribution at the surface E is

(3.9)

where 1'~ is a constant. Then the unit vector normal to the hypersurface E assumes

the form

n; = [0, B(1'~, t), 0, 0]
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For M- the first junction condition (2.24), for the metrics (3.2) and (3.9), yields

A(r·I;, t)i = 1 (3.lla)

(3.llb)

where dots represent differentiation with respect to T. With the help of (3.2) and

(3.10) we calculate the nonzero components of the extrinsic curvature (2.26) for the

interior spacetime

(3.12a)

(3.12b)

(3.12c)

on the hypersurface ~.

The equation of the surface ~ for the exterior spacetime M+ is given by

r - rI;(v) = 0

Following the analysis in §2) we can write the unit normal to ~ as

+ ( 2m 1 2 drI; ) - t (drI; )n = 1 - - - -Ar '"' +2- -- 1 0 0
a rI;:3 ~ dv dv' , , (3.13)

The first junction condition (2.24) for the line elements (3.5) and (3.9) yields the

restrictions

(3.14a)

36



(
2m 1 2 dr) ( 1 )1 - - - -Ar +2- =-:-

r 3 dv E v2 E
(3.14b)

for the exterior spacetime M+. Utilising (3.14b) we can rewrite the unit normal

vector in the more compact form

n; = (-r,v,O,O) (3.15)

as for M-. With the help of (3.5) and (3.15) we obtain the nonvanishing components

of the extrinsic curvature (2.26) in M+

. (ii. m 1 .)
]{+ = - - v- + -Arv

TT V r2 3 E

+ . 2 () }~+
]{"'''' = SIll \.00

on the hypersurface L;.

(3.16a)

(3.16b)

(3.16c)

From (3.11) and (:3.14) we generate the first set of junction conditions.

We find that the necessary and sufficient conditions on the spacetimes for the first

junction condition (2.24) to be valid are that

1

(
2m 1 2 drE ) 2"

A(r'E,t)dt = 1 - - - -Ar E +2- dv
rE 3 dv

(3.17a)

(3.17b)

When A = °the junction conditions (3.17) reduce to (2.38) of §2.5. By equating the

appropriate extrinsic curvature components (:3.12) and (3.16) we can calculate the
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second junction condition (2.26):

We rewrite (3.18) so that comparison with our results of §2.5 are easy.

Relation (3.18b) can be rewritten, with the help of (3.17), as

(3.18a)

(3.18b)

(3.19)

If A = 0 then (3.19) becomes (2.40) so that m(v) represents the generalisation of the

mass function for spheres of radius l' within ~ with a cosmological constant. We now

seek an expression for p at the boundary of the sphere. Utilising (3.11) and (3.14a)

we obtain

Substituting the above expression together with (3.19) into (3.18b) we have that

. ( Br Bt)-l
VE = 1 +1'- +r-

B A E

Differentiating (3.20) with respect to T and utilising (3.11a) we have

(
1' BrBt _ r Brt + l' AtBt _ l' B tt )]

B2 B A2 A E

Substituting (3.11b), (3.14a), (3.19), (3.20) and (3.21) into (3.18a) we obtain
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Br l' Br
2

l' Bt
2

A1'B)]
+B2 + 2 B3 - 2A2 B + -2- I;

On multiplying this equation by 1+ r ( ~ ) + r ( ~t) we obtain the following result

which is the same as

where we have made use of the field equations (3Ab) and (3Ad). This junction

condition has the same form as (2.43b) in §2.5. However note that the pressure PI;

is now given by (3Ab) which includes the cosmological constant.

The expressions for m(v) and P that we have established above are equiva-

lent to (3.18). Hence we have shown that the necessary and sufficient conditions on

the spacetimes for the second junction condition (2.25) to be valid are that

(

1.:
3B 1.

3 1 )
m(v) = --Bt

2
- 1.2 B - -B 2 - - Ar·3 B3

2A2 r 2B r 6
I;

PI; = (qBh

(3.22a)

(3.22b)

The junction conditions (:3.17) and (3.22) generalise the junction conditions (2.38)

and (2.43) of §2.5. If we set A = 0 then we regain the results of §2.5. Hence our equa-
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tions (3.17) and (3.22) are the junction conditions across a spherically symmetric

hypersurface with a cosmological constant. This is an original result and generalises

that of Santos (1985). Even though (3.22b) has the same form as (2.43b) the grav­

itational potential B now has to be a solution of the Einstein field equations (3.4)

with cosmological constant A. Our results are important in the modelling of radiat­

ing spheres when the equations contain a cosmological constant A. As far as we are

aware no exact solutions with a cosmological constant for a radiating sphere have

been presented in the literature. We intend pursuing this problem in the future.
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4 The Kramer Model

4.1 Introduction

Our intention in this chapter is to apply the equations derived in chapter 2 to a

particular model of physical interest. We review the model proposed by Kramer

(1992) for a spherically syrmnetric, shear-free star undergoing gravitational collapse

because of radial heat dissipation. Essentially a nonstatic model is generated from

a static model by allowing certain parameters to become functions of time. The

interior static model is taken to be the interior Schwarzschild solution. In §4.2 we

consider the interior Schwarzschild solution in isotropic coordinates. A parameter

is allowed to become a function of time and the Einstein field equations, without a

cosmological constant, is presented in terms of this time-dependent parameter. In

§4.3 we present the junction conditions for this particular model by matching the

interior spacetime to the exterior spacetime, described by the Vaidya solution, across

a spherically symmetric hypersurface. The junction conditions generate a nonlinear

ordinary differential equation that governs the temporal evolution of this model.

This equation was also derived by Kramer (1992). In §4.4 we completely integrate

the nonlinear equation in terms of elementary and special functions so that the

gravitational behaviour of the Kramer (1992) model is completely specified. Some
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physical properties of this model are investigated in §4.5. Graphs illustrating the

behaviour of the thermodynamic variables and gravitational potentials are presented.

4.2 Interior Spacetime

We generate an exact solution of the Einstein field equations (with vanishing cos-

mological constant) that models the interior of a radiating star. As the spacetime is

spherically symmetric and shear-free we can utilise the results of §2.3. In this chap-

ter we use the technique of Kramer (1992) to generate a nonstatic solution from a

known static model. This is possible because the isotropy condition does not contain

time derivatives. We take advantage of this feature to generate a solution to the

field equations. If we start with a given static perfect fluid solution and allow the

parameters in this solution to become functions of time then the isotropy condition is

immediately satisfied. We apply this procedure to the interior Schwarzschild solution

in isotropic coordinates.

The interior Schwarzschild solution in coordinates (xa ) = (t, r, (), <p) has the

form

(4.1 )

where M is the total mass contained within a sphere of radius R and the constant 110

is the energy density. The isotropic pressure p for the interior Schwarzschild solution

is related to 110 by
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For our application it is necessary to write (4.1) in isotropic form. As the isotropic

form of the Schwarzschild interior solution is not well known we present the transfor-

mation explicitly. This means that we have to introduce a new coordinate P which

replaces the radial coordinate r. The appropriate transformation is given by

M('3) t (M2 )-1r'=- _' __ +p2 P
P03 110 4p06

6M
110 = R3

where Po is a constant. With the assistance of this transformation we are in a position

to rewrite (4.1) as

(4.2)

which is the desired form of the interior Schwarzschild solution in isotropic coordi-

nates. The form of the line element (4.2) agrees with that given by Kramer (1992).

It is possible to write (4.2) in simpler form. To simplify this expression we
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define a new constant

M
y=­

2po

and we introduce dimensionless coordinates by scaling p and t as follows

Then (4.2) takes the following compact form

We utilise the form of the line element (4.:3) to generate a solution to the Einstein

field equations (2.8). As (4.:3) is in isotropic form we make the identification

A 2 = (1 +2yr2 - 2y - 1·
2y2)2

(1 + y)2(1 + y1·2)2

on comparison with (2.9). This means that (4.3) is a special case of (2.9) and we can

utilise the results established in §2.3 and §2.5.

To generate an analytic model with nonvanishing heat flow from the interior

Schwarzschild solution we consider y as a function of time. That is we take y = y(t)

so that the t-dependence of A and B is not specified but the 1'-dependence is given

ab initio. This procedure was first utilised by Kramer (1992) and may be considered

as a particular method to generate exact solutions to the Einstein field equations

(2.8). Since the metric (4.3) is in isotropic form and the isotropy condition does

not contain time derivatives this procedure yields a solution. The isotropy condition

(2.15) is automatically satisfied for a known static perfect fluid solution where the
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parameters in that solution now become functions of time. Then on substituting the

above expressions for A and B in (2.14) we obtain the energy density, the heat flow

and pressure respectively:

12y (dy )2 ( 2yr2 _ 1'2 +3 )2
It = (1 + y)6 +3 dt 1 +2yr2 - 2y _ y2 1'2

41'(1 + Y1·2? dy
q = - (1 + y)4(1 +2y1·2 - 2y - y2r2)2 dt

(4.4a)

(4.4b)

12(1 - 1·2)y2 2(1 + y)(1 + y1·2)(2y1'2 - 1'2 +3) d2y
P = (1 + y)6(1 +2y1·2 - 2y - y2r2) - (1 +2yr2 - 2y - y21·2)2 dt2

_ [4[3(1 +Y1·2)2 -1.
2(1 + y)(2Y1'2 _1.

2+3)] + (2y1·2 - 1.
2+3)2] (dy )2

(1 +2y1·2 - 2y - y21·2)2 dt

(4.4c)

for the line element (4.3). Therefore the equations (4.3) and (4.4) are an exact

solution to the Einstein field equations (2.14) which may be utilised to model the

interior of a spherically symmetric star with heat flow. The gravitational and matter

variables depend on the quantity y. The function y = y(t) is an arbitrary function

of time; the junction conditions will govern the behaviour of y.

4.3 Junction Conditions

The interior spacetime of the radiating star is given by (4.3). The exterior spacetime

describes outgoing null radiation and we take this to be the Vaidya solution (2.18).
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The general conditions for two line elements to match smoothly across a hypersurface

~ have been derived in §2.5. To match the spacetimes (2.18) and (4.3) continuously

across ~ the junction conditions (2.38) and (2.43) must be satisfied. For our model

these become

[
(1+y)3]

P'E. = q 1 + yr,2 'E.

(4.5a)

(4.5b)

(4.5c)

(4.5d)

From equations (4.4) and (4.5) we obtain a second order differential equation that

determines the function y.

Using (4.4b), (4.4c) and the junction condition (4.5c) we obtain

d2y 2(2-y) (dy )2
dt2 + (1 +y) (1 - y) dt

1 dy

(1 + y)3 dt
(4.6)

which is a nonlinear ordinary differential equation. Kramer (1992) presents a first

integral of (4.6) by inspection. As this integration is nontrivial we present the relevant

steps in the integration process. Multiplying (4.6) by (1 +y? / (1 - y) we obtain

(1 + y)3 d2y + 2(2 - y)(l +y)2 (dy )2
1-y dt2 (1-y)2 dt
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which can be rewritten as

.!!- ((1 + y)3 dy ) = _.!!- [In(l _ y)]
dt 1 - y dt dt

which is a simpler form of (4.6). Integrating the above equation we obtain

_dy = _ 1 - Y In _l_-_y:....
dt (1 +y)3 1 - Yo

(4.7)

where In (1 - Yo) is a constant of integration. The result (4.7) is a first integral of the

differential equation (4.6); we have proved that it is the most general first integral.

The nonlinear first order equation (4.7) was also presented by Kramer (1992). He did

not pursue the integration of (4.7) further because of the nonlinearity. By inspection

it seems that it is not posssible to complete the integration of (4.7) in closed form.

However we are in a position to fully solve (4.7) and determine the behaviour of

y = y(t) in general. This is pursued in the next section.

4.4 General Behaviour of y = y(t)

It is possible to integrate (4.7) in general in terms of elementary functions and special

functions. We rewrite (4.7) as

(1 + y? (In 1 - y ) -1 dy = -dt
1 - y 1 + Yo

where the variables y and t have separated. This enables us to integrate by parts to

obtain
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(1 + y)3 In (In 1 - y)
1 - Yo 1 - YQ

- 3 [1 In (In 1 - Y ) dy + 21y In (In 1 - Y ) dy
1 - Yo 1 - Yo 1 - Yo

(4.8)

where Yl is the second constant of integration. To complete the solution we need to

evaluate the three remaining integrals on the left handside of (4.8). We consider the

integrals separately for clarity.

Integrating by parts we obtain

1In (In 1 - Y ) dy = (1 - Yo) [ 1 - Y In (In _1_-_Y )
1 - Yo 1 - Yo 1 - Yo

-(1 - yo)Li ( 1 - y )]
1 - Yo

for the first integral. Again integrating by parts we obtain the second integral

1y In (In 1 - Y) dy = ! (1 - y? In (In 1 - Y )
1 - Yo 2 1 - Yo

_ (1 - Yo)3 Li ( 1 _ y ) 2

2 1 - Yo

To evaluate the remaining integral we use integration by parts to obtain

1y21n (In 1 - y) dy = !(1 - y? In (In_
1

_-_Y)
1 - Yo 3 1 - Yo
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_ (1 - YO)4 Li ( 1 _ Y )3
:3 1 - Yo

In these expressions Li represents a special function. The Li function is defined by

the integral

Here the constant n takes on three values n = 0,1,2 which correspond to the three

integrals that arise in equation (4.8). For the properties of the Li function the reader

is referred to Gradshteyn and Ryzhik (1994) and Lebedev (1972). It is interesting

to note that the logarithmic integral function Li(z) is widely utilised in the study

of the distribution of primes in number theory (Wolfram 1991) and here we find it

useful in relativistic astrophysics.

On substituting the above three integrals into (4.8) we generate the follow-

ing solution

3 ( 1 - Y ) [ (1 - Y ) ( 1 - Y )]t+Yl=(l+y)'ln In +12 (l-y)ln In -(l-Yo)Li
1 - Yo 1 - Yo 1 - Yo

-6 [(1 _ y)2ln (In 1 - Y) _ (1- Yo)3Li (1 - Y)2]
1 - Yo 1 - Yo

'3 ( l-Y) (1_y)3+(1 - y), In In - (1 - Yo)4Li
1 - Yo 1 - Yo

(4.9)

Thus (4.9) represents the general solution of the nonlinear, first order differential

equation (4.7). The general solution depends on the special function Li. As far

as we are aware result (4.9) is new and has not been published previously. We

have succeeded in fully describing the temporal behaviour of the model proposed
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by Kramer for a radiating star. Thus the general solution of the field equations is

given by (4.3) and (4.4), where yet) is governed by (4-9), in the [(ramer model for a

radiating star.

4.5 Physical Properties

In this section we briefly consider some of the physical properties of our radiating

model. The matter variables J-L, p and q may be expressed in terms of y only with

the help of (4.4) and (4.7):

12y (1 - y)2 ( 1 _ y ) 2 ( 2y1·2 _ 1.
2 +3 ) 2

J-L= +3 h1--
(1+y)6 (1+y)6 1-yo 1+2y1·2 -2y- y21·2

(4.10a)

(4.10b)

_ 12(1 _1·2)y2 2(1 + y)(1 + y1·2)(2yr2 - r 2 + 3)
p - (1 + y)6(1 + 2Y1·2 - 2y - y21·2) + (1 + 2y1·2 _ 2y _ y21.2)2 X

1 - y 1 - y ( (2 - y) 1 - y )
---'--6 In 1 +2 In --
(1 + y) 1 - Yo 1 + y 1 - Yo

_[(4[3(1 + Y1·2? - 1,2(1 + y)(2Y1,2 - r 2 + 3)] + (2y1·2 - r 2+ 3)2)
(1 +2yr,2 - 2y - y2r·2)2

[( )2( ) 2]1-y 1-y
(1 + y)6 In 1 - Yo
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The behaviour of y is completely determined by (4.9). Then the general solution of

the Einstein field equations (2.14) for the line element (4.3) is given by (4.9) and

(4.10).

We observe from (4.1 Oa) that the energy density is positive if y > 0 for the

interior matter distribution. From (4.10b) (or (4.4b)) we must have ~~ < 0 which

ensures that q > 0 and that the heat flow is directed outwards. The behaviour of

the pressure p in (4.1 Oc) is complicated and has to be plotted graphically. Note that

the pressure may become negative. The positive constant Yo may be given a physical

interpretation. The constant of integration Yo gives the initial value of the function

yet) for t --+ -00 when the solution approaches the static Schwarzschild limit. From

(4.5d) we obtain

_m_(v_) = y + (Ill _1_-_Y_) 2

27'0 1 - Yo

which yields the mass parameter m(v) in the Vaidya solution (2.18) When y = Yo

this expression becomes

rn
-2 =Yo

7'0

which coincides with the interior Schwarzschild mass M. The requirement that

~~ < 0 and the singularity in the metric at y = -1 places the following restriction

on yet):

Yo 2: y > -1

for a consistent model.

In general relativity the heat flow vector q is related to the temperature T
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by

qa = -Khab(T'b +TUb;cUC)

where K is the thermal conductivity and hab is the projection tensor defined by

hab = gab + uaub (Stephani 1990). For the line element (4.3) the magnitude of the

heat flow is

q = - (:~2) (TA)r

In principle it is possible to determine the temperature T from the above expression

since A, Band q are known. However the integration process is difficult for this

particular model and we hope to pursue this aspect in future work. We should

point out that the Kramer solution presented above belongs to the general class of

conformally flat solutions with heat flow derived by Maiti (1982) and Banerjee et al

(1989).

We note that it is not trivial to determine the radial and temporal evolution

of the gravitational and thermodynamical variables from an inspection of (4.3) and

(4.10). Even though an analytic treatment is difficult it is possible to obtain a

graphical description of the behaviour of the various functions for the Kramer (1992)

model. With the aid of the software package MATHEMATICA Version 2.0 (Wolfram

1991) we provide the following graphical plots for the thermodynamical variables,

gravitational potentials and the behaviour of the function y(t):

• Figure a: Plot of Energy Density versus Radial and Temporal Coordinates

• Figure b: Plot of Pressure versus Radial and Temporal Coordinates
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• Figure c: Plot of Heat Flux versus Radial and Temporal Coordinates

• Figure d: Plot of the Gravitational Potential A(t, r) versus Radial and Tem­

poral Coordinates

• Figure e: Plot of the Gravitational Potential B(t,1') versus Radial and Tempo­

ral Coordinates

• Figure f: Plot of the behaviour of y(t)

The graphical plots indicate that this model is well-defined for the chosen intervals of

rand t. We should point out that there exists other intervals for which this solution

is well-behaved. We have included the MATHEMATICA code that was written to

generate the figures a-f. The figures a-f show that the matter variables and the

gravitational potentials are well-behaved over the interval plotted. The behaviour of

y(t) is complicated and difficult to interpret. Figure f illustrates that there exists a

finite interval for which the behaviour of y(t) is reasonable. From figure f we observe

that y(t) is a decreasing function of time over the chosen interval. This implies that

the mass of the radiating star decreases with increasing time which is physically

reasonable. Clearly there are other intervals for which this is true. Our treatment

here is a verification that the Kramer (1992) solution is a physically reasonable model

for a radiating star.



Figure a: Plot of Energy Density versus Radial

and Temporal Coordinates

o:::; y(t) :::; 0.25
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Figure b: Plot of Pressure versus Radial and

Temporal Coordinates

o:s; y(t) :s; 0.25



Yigure c: plot of lleat ylu)C. -verSus Radial and
'fetnpora\ coordinates

o~ y(t) ~ 0:25
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Figure d: Plot of the Gravitational Potential

A(t, r) versus Radial and Temporal Coord~nates

o.::; y(t) .::; 0.25
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Figure e: Plot of the Gravitational Potential

B(t, r) versus Radial and Temporal Coordinates

o~ y(t) ~ 0.25
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y(t)

Figure f: Plot of the Behaviour of y(t)

o:::; y(t) :::; 0.065
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(*Mathematica package that generates the plots for the
gravitational potentials, thermodynamical variables
and the behaviour of y(t)*)

ClearAII[yO,y,x,mu,q,p,a,b,c,d];

yO =0.25;

(* We define frequently used expressions a,b,c,d *)

a[y.J:= (1-y)/(1+y)"3; .....

b[y.J := Log[(1-y)/(1-yO)];

c[x_,Y.J := 1 + 2y x - 2y - y"2 x;

d[x_,y.J := 2y x - x + 3;

(* Here are the three main expressions *)

mu[x_,y.J := 12y/(1 +y)"6 + 3 a[y]"2 b[y]"2 (d[x,y]/c[x,y])"2;

q[x_,Y.J := 4 Sqrt[x] (1 +y x)"2/ «1 +y)"4 c[x,y]"2) aryl b[y];

p[x_,Y.J:= 12(1-x)y"21«1+y)"6 c[x,y]) +
2(1 +y)(1 +y x)d[x,y]/c[x,y]"2 (1-y)/(1 +y)"6 b[y]
(1 +2(2-y)/(1 +y) b[y])-
«4(3(1 +y x)"2-x(1 +y)d[x,y])+d[x,y]"2)/c[x,y]"2
+ 2(3y"2 x"2 - y"2 x + 4y x - x + 3)d[x,y]/c[x,y]"3)
a[y]"2 b[y]"2;

figure a1 = Plot3D[mu[x, y], {x, 0, 1}, {V, 0, .25},
ClipFiII-> None,
ViewPoint->{-2.612, 1.755,1.245},
Boxed-> False, Axes-> False]
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figure a2 = Graphics3D[{Line[{{O, .15, O}, {O, .15, 2H),
Line[{{O, .15, O}, {1, .15, OH),
Line[{{O, 0, O}, {O, .25, OH)}, Boxed->False)

figure b1 = Plot3D[p[x, y), {x, 0, 1}, {y, 0, .25},
ClipFiII-> None,Boxed-> False, Axes-> False,
ViewPoint->{-1.810,2.840,O.335})

figure b2 = Graphics3D[{Line[{{O, .15, O}, {O, .15, 1.5}}),
Line[{{O, .15, O},{1, .15, O}}),
Line[{{O, 0, O}, {O, .25, O}})},Boxed->False)

-
figure c1 =Plot3D[q[x, y), {x, 0, 1}, {y, 0, .25},

ViewPoint->{-1.070,2.987,1.175},
Boxed -> False, Axes->False, ClipFiII-> None)

figure c2 =Graphics3D[{Line[{{O, .15, O}, {O, .15, 1.5}}),
Line[{{O, .15, 0},{1, .15, O}}),
Line[{{O, 0, O}, {O, .25, OH)}, Boxed ->False)

figure d1 = Plot3D[(1 + 2 Yx - 2 Y - x yJ'2)/((1 + y)*(1 + x y)),
{x, 0, 1}, {y, 0, .25}, Boxed -> False,
Axes -> None, ViewPoint->{-1.799,2.491,1.418})

figure d2 =Graphics3D[{Line[{{0, .15, O}, {O,.15, 2}}),
Line[{{O, .15, O}, {1, .15, O}}),
Line[{{O, 0, O}, {O, .25, OH)}, Boxed->False)

figure e1 =Plot3D[(1 + y)J\3/(1 + Yx), {x, 0, 1}, {y, 0, .25},
ClipFiII-> None, Axes-> False, Boxed -> False,
ViewPoint->{-1.406,2.912,0.997})

figure e2 = Graphics3D[{Line[{{O, .15, O}, {O, .15, 2}}),
Line[{{1, .15, O}, {O, .15, O}}), .
Line[{{O, 0, O}, {O, .25, OH)}, Boxed->False)

61



eWe now define y(t)*)

yo = 1/4;

x =(1 - y)/(1 - yo);

t = (1 + y)"3/(1 - yO)*Log[Log[x]] - 3*(x*Log[Log[x]] - (1
- yO)*Loglntegral[x]) - 3/(1 - yO)*((1 - y)"2*Log[Log[x]] -
(1 - yO)"3*(Loglntegral[x])"2) - 1/(1 - yO)*((1 - Y)"3*Log[Log[x]] ­
(1 - yO)"4*(Loglntegral(x])"3);

figure f = ParametricPlot[{t,y},{y,O, O.065}]

62



5 Other Solutions

5.1 Introduction

In addition to the Kramer (1992) approach there are other techniques available

to generate solutions for radiating stars. In this chapter we present two different

methods of generating solutions to the Einstein field equations, with vanishing cos­

mological constant, for radiating spheres undergoing gravitational collapse. These

approaches were originally proposed by Kolassis et al (1988) and de Oliveira et al

(1985, 1986, 1988). Our intention is to show how these models may be constructed

mathematically. A physical analysis of the models proposed here will be undertaken

in the future. In §5.2 we assume that the particle trajectories of the collapsing fluid

are geodesics. We provide a method of solving the junction condition for this partic­

ular model and we show that this solution corresponds to the Friedmann-like model

of Kolassis et al (1988). Furthermore we provide an ansatz which generalises the

Kolassis et al (1988) solution when the particle trajectories are geodesics. In section

§5.3 we assume separability of the gravitational potentials into their spatial and tem­

poral components. In this section we review the results of de Oliveira et al (1985,

1986, 1988). The temporal evolution of the model is determined from the junction

conditions.
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5.2 Friedmann-like Radiating Model

In chapter 4 we analysed a method due to Kramer (1992) to generate a model of

a radiating sphere. We now review a method of generating solutions to the Ein-

stein field equations which was first applied by Kolassis et al (1988). We consider

a spherically symmetric, shear-free collapsing fluid configuration with the interior

spacetime being described by (2.9). We make the simplifying assumption that the

fluid trajectories are geodesics. It is easy to show that this requirement is equivalent

to setting A = A(t). Then using the freedom in the coordinate system we can choose

the temporal coordinate t such that

A = 1

Then the line element (2.9) becomes

and B = B(t,1') is the remaining gravitational potential.

The Einstein field equations (2.14) for this line element simplifies to

= 3B? __1 (2Brr _ Br2 ! Br)
Jl B2 B2 B B2 + l' B (5.1a)

(5.1b)

(5.1c)

(5.1d)
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where we have set A = 1. Also the isotropy condition (2.15) reduces to

(5.2)

The junction condition (2.43b), together with (5.1 b) and (5.1 d), yields

A solution of the isotropy condition (.5.2) and the junction condition (5.3) is required

to fully describe the model.

Integrating (5.2) we obtain

(5.4)

where C1(t) and C2 (t) are constants of integration and b, M are constants. We have

chosen the constant of integration so that comparison with the Kolassis et al (1988)

paper is simplified. On substituting (5.4) in (5.3) we obtain

1

where a = (~) 3" b is a constant and 1'1; is the value of l' at the boundary ~ of

the sphere. In the above equation dots represent differentiation with respect to the

coordinate t. We remark that Kolassis et al (1988) have succeeded in obtaining a

particular solution of (5.5) by inspection. We present an ansatz for generating their

solution. The advantage of our technique of solution is that it may be generalised to
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generate other new solutions. A particular solution of (5.5) can be obtained in the

following manner. Taking the boundary of the star to be 1'E = bin (5.5) we obtain

This is an ordinary differential equation for the two functions Cl and C2 • This

differential equation will have an infinite family of solutions. In particular it will be

satisfied if we set

(5.6a)

(5.6b)

It is convenient to introduce a new variable

Then (5.6b) can be written as

2yy - 5[/ = 0 (5.7)

which contains the single dependent function y. Integrating this equation we obtain

where 'ljJ and "l are integration constants. Hence we have established the relationship

between Cl and C2 :

(5.8)
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Substituting (.5.8) into (5.6a) we obtain

1 2--C2
ab

Even though this is a nonlinear equation it can be written in the linear form

1
--=0

ab

The general solution is given by

1

where C is a constant of integration. On setting 1] = -2 (~) -2" b-3
, 'l/J - 0 and

C = -ab2 we obtain

C - ~b2 [ 1 ] -2/3.12 - • 1 t
.3 (6t) 3"

1 - ab2 exp M

2

Then the relationship C1 b2
- (;2 = [-~(1]t + 'l/J)rr implies that

(5.9)

(5.10)

Therefore the temporal behaviour of the model has been completely determined as

Cl (t) and C2 (t) are known functions.
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Hence the line element for the interior spacetime assumes the form

(5.11 )

The functions Cl{t) and C2{t) are given by (5.10) and (5.9) respectively. This solution

was also found by Kolassis et al (1988) using a different approach. We have provided

a mathematical justification for their solution. By substituting (5.4) into (5.1) we

obtain expressions for the thermodynamical variables in terms of Cl(t) and C2{t):

If we now set the radial heat flux equal to zero (that is a = 0) we obtain

Cl = 0

b2

C - -2/3
2 -"3t

p=O
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(5.12b)

(5.12c)

(5.13a)

(5.13b)

(5.13c)

(5.13d)

(5.13e)



q=O (5.13f)

We obser~e from (5.13) that the collapsing fluid is in the form of dust (p = 0) and

its metric is the k = 0 Robertson-Walker model

This model is also called the Einstein-de Sitter model (Stephani 1990). This result

follows because we required that the particle trajectories should be geodesics. When

q = 0 the pressure p vanishes and the fluid collapses freely. On the other hand when

q =J 0 the pressure has to be nonzero to balance the radial heat flux to continue to

allow the fluid to collapse freely. The luminosity radius of the collapsing fluid can

be calculated from junction condition (2.38b) together with (5.13c) and is given by

(M) t 2/3(1'B)E = 3 (3 t

which is independent of the constant a. Thus the luminosity radius (1'B)E does not

depend on the heat flow q: it has the same functional dependence whether q = 0 or

q =J O. When a = 0 the junction condition (2.43a) yields

m(v) = M

which is the total gravitational mass inside E in which case the exterior spacetime

is the exterior Schwarzschild solution. Hence in the case a = 0 our solution reduces

to that of Oppenheimer and Snyder (1939).

We now provide a generalisation of the method presented above for inte-

grating (5.5). This may assist in finding new solutions to describe the interior of a
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radiating star when A(t) = 1. Equation (5.5) is satisfied if we set

where g(Cl b2 - C2 ) is an arbitrary function. As before we let

Then (5.14b) can be rewritten as

2jjy - 5iJ2 = -g(y)

We have obtained a differential equation with only one dependent variable, and

consequently our ansatz will lead to a new solution. Integrating this equation we

obtain

y = _y5 J:6 g(y)dy + (y5 (5.15)

where ( is a constant of integration. If the function g(y) is specified then (5.15)

may be integrated in principle to obtain y. Then the equations (5.14) yield forms

for Cl(t) and C2(t). In this way we can generate a number of new solutions to the

Einstein field equations by choosing particular forms for g(y). Note that the case

g(y) = 0 corresponds to the solution of Kolassis et al (1988). Thus we have shown

how solutions of the Einstein field equations for radiating stars may be generated when

the particle trajectories are geodesics. Our ansatz 1'egains the solution of J(olassis et

al {1988} as a special case. We do not pursue solutions to (5.14) since this is outside

the scope of this chapter. It would be interesting to find those functions g(y) which

generate physically reasonable models.
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5.3 Initial Static Configuration

In this section we briefly consider a third method of generating solutions to the

Einstein field equations for radiating spheres which is different from that studied

in chapter 4 and §5,2. This method has been applied by de Oliveira et al (1985,

1986, 1988) in relativistic astrophysics. In this approach the solution has an initial

static configuration before the sphere starts gradually to collapse. We again assume

a spherically symmetric, shear-free line element described by (2.9), In this approach

we require separability of the gravitational potentials into their spatial and temporal

components:

B = BO(7')f(t)

where f(t) is a positive function of t.

Utilising (5.16) the isotropy condition (2.15) can be written as

( AO' Bo')' (Ao' Bo') 2 1 (Ao' Bo') . (Ao') 2-+- - -+- -- -+- +2 - =0
Ao Bo Ao Bo 7' Ao Bo Ao

(5.16a)

(5.16b)

where primes denote differentiation with respect to 7'. The functions AO(7') and BO(7')

must satisfy this isotropy condition for a solution. If Ao and Bo describe a static

perfect fluid then the Einstein field equations (2.14) are satisfied and the energy

density Po and the pressure Po are given by

_ 1 [. (Bo')' (Bo')2 4 Bo']PO---2 2 - + - +--
Bo Bo Bo 7' Bo

71

(5.17a)



__1 [(BO')2 ,Ao' Bo' ~ (AO' BO')]
PO- B 2 B +2 A B +. A +Bo 0 00 1 00

(5.17b)

The above static solution matches with the exterior Schwarzschild spacetime across

a spherical hypersurface E. At this junction the pressure Po vanishes for some finite

radius r = rE:

Note that the pressure P is nonzero in general because of the heat flow. It is only for

the initial static configuration that (Poh = O. The Einstein field equations (2.14)

together with (5.16) and (5.17) yield

1 ( 1 "'2 )P = j2 Po - A
o

2 (2 f f + f )

(5.18a)

(5.18b)

q=
2Ao' j

A0
2 B0

2 j3 (5.18c)

This solution describes a radiating star with an initial static configuration. The

functions AO(1') and BO(1') arise from a static perfect fluid solution. The remaining

function f(t) is determined by the junction condition PE = (qBh.

The junction conditions (2.38) and (2.43) become

PE = (qBofh
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( B' B)-lo 0 .
VE = 1 +7'- +7·-f

Bo Ao E

(5.19c)

(5.19d)

(5.1ge)

(5.l9f)

for the gravitational potentials given in (5.16). Using the junction condition (5.19b)

together with (5.18b) and (5.18c), and taking into account (PO)E = 0, we obtain

2f j +P - 2aj = 0

which governs the behaviour of f. The constant

( AO
')

a = Bo E

is positive because the static solution (Ao, Bo) must match with the

exterior Schwarzschild metric. A first integral of (5.20) is given by

(5.20)

(5.21 )

(5.22)

where the constant of integration is -2ab. Note that PE is nonnegative so on utilising

the result (PO)E = 0, (5.18b) and (5.20) we obtain

j(t) ~ 0

This implies that the only possible evolution of the system is contraction. Then on

using (5.22) and the fact that f(t) is positive we have
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Integrating (5.22) we obtain

(5.23)

where the constant of integration has been absorbed by means of rescaling the time

coordinate as t ---? t + constant.

An analysis of (5.23) shows that the function /(t) decreases monotonically

from its value b2 at t = -00 to zero at t = 0 where a physical singularity is en-

countered. Physically this implies that the collapse starts at t = -00 from a static

perfect fluid sphere with its interior described by the solution (Aa, b2Ba) and whose

energy density and pressure are given by (5.17) provided that the right hand side of

these equations are divided by a factor of b2 • For convenience we set

b=l

The initial mass of the static sphere can be obtained using (5.16) and (5.19d):

(
B '2)1no = - 1.2 Ba' + 1.3 _

0
_

2Bo 1;

where primes denote differentiation with respect to 1'. Its initial 'luminosity radius'

is given by

At t = -00 the exterior spacetime is described by the vacuum Schwarzschild solution

in isotropic coordinates, that is
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We match the static perfect fluid solution to the exterior Schwarzschild solution in

isotropic coordinates, Considering the junction condition (2.24) we obtain

(
mo )2

BOE = 1 + 21'E

We can rewrite a= (Ao') in terms of the initial quantities mo and ro:
Bo E

(5.24a)

(5.24b)

Thus a is determined by the mass mo of the initial static configuration and the

initial luminosity radius ro, For a discussion of the physical properties of the matter

variables and gravitational potentials see Bonnor et al (1989). In this section we

have demonstrated that a radiating star may be modelled by starting with an initial

static configuration.
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6 Conclusion

The research presented in this thesis addresses the phenomenon of gravitational col­

lapse with heat flow in the context of general relativity. The spacetime is spherically

sYlllinetric and the energy-momentum tensor includes heat flow. Our objective was

to seek interior solutions to the Einstein field equations which match to the exterior

Vaidya solution (1951, 195:3). To achieve this we need to satisfy the junction con­

ditions across a spherically sYlllinetric hypersurface. A number of radiating models

were investigated and some original results were obtained.

We now provide an overview of the main results obtained during the course

of our investigations:

• The Einstein field equations, with vanishing cosmological constant, were ob­

tained. The interior line element representing a spherically symmetric space­

time has to be matched to the Vaidya solution which represents directed ra­

diation. The Vaidya line element was derived and we considered some of its

properties.

• The junction conditions necessary for the matching of the interior and exterior

spacetimes at the surface of the star were investigated in detail. We obtained

an expresssion for the total energy contained within a sphere of radius r. In
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particular we succeeded in proving that the pressure at the surface of the

radiating star is proportional to the radial heat flux which confirms the result

due to Santos (1985).

• We also considered the scenario of radiative gravitational collapse with IlOIl­

vanishing cosmological constant. The results obtained generalises the work of

Santos (1985). The results obtained for the case of nonvanishing cosmological

constant are original and to our knowledge have not been published elsewhere.

• We investigated the Kramer (1992) model in detail. In his paper Kramer (1992)

failed to provide a second integral of the nonlinear differential equation govern­

ing the temporal evolution of the model. We integrated this equation in general

in terms of elementary and Li functions and thereby completely specified the

model's temporal evolution. Graphical plots of the thermodynamical and grav­

itational variables were provided and we showed that the Kramer model is a

physically reasonable model for a radiating star.

• Two other different methods of obtaining solutions to the Einstein field equa­

tions were also investigated. The first method is due to Kolassis et al (1988)

in which the particle trajectories of the collapsing fluid are assumed to be

geodesics. We provided a mathematical justification for their solution. Further­

more we presented an ansatz that generalised this method of finding solutions

to the Einstein field equations. In the second method we assumed separabil­

ity of the gravitational potentials into spatial and temporal components and

reviewed the results of de Oliveira et al (1985, 1986, 1988). We found that

given an initial static configuration we can in principle determine the temporal

evolution of the model by utilising the junction conditions.
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In the above we have presented an overview of our results contained in this thesis.

We now consider possible extensions of the work presented in this thesis

for future research. Kramer (1992) succeeded in obtaining a nonstatic solution from

the static Schwarzschild interior solution by allowing the mass parameter to become

a function of time. The isotropy condition is immediately satisfied for this method

and the junction condition PE = (qB)E gives the temporal evolution of the model.

It would be interesting to utilise other existing static solutions in isotropic coor­

dinates for the interior spacetime of the star to generate new models of radiative

gravitational collapse. No specific model for a radiating star with a nonvanishing

cosmological constant has been studied before; the results of chapter 3 will help gen­

erate such models. We may also investigate the problem of radiative gravitational

collapse with nonvanishing cosmological constant and a spherically symmetric elec­

tromagnetic field in the future. This will lead immediately to a generalisation of the

results contained in this thesis. Our ansatz for generating the Kolassis et al (1988)

model should produce other physically reasonable models. This is the subject of

future research. Another possibility is the study of gravitational collapse with heat

flow and anisotropic pressure due to neutrino outbursts (Glass 1990).

We hope that we have succeeded in demonstrating that the problem of

gravitational collapse with heat flow is a fruitful area of research. There are many

outstanding problems pertaining to radiating stars WIiicll des~rve further attention.
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