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ABSTRACT 
 

Avocado fruit are susceptible to a large variety of disorders. These disorders may be a result of 

an inability of the mesocarp tissue to counteract or tolerate postharvest stress. The C7 sugars 

D-mannoheptulose and perseitol have been reported to form the predominant portion of 

antioxidants in the mesocarp and their presence has been associated with avocado fruit quality. 

It was, therefore, investigated, if mesocarp C7 sugar levels, particularly of D-mannoheptulose 

and perseitol, can be maintained through infusion of these sugars and further, if this C7 sugar 

level is associated with fruit quality and shelf life. Avocado fruit, harvested from ‘Hass’ and 

‘Fuerte’ avocado orchards in the KwaZulu-Natal Midlands in three different season (early, 

middle, and late harvest) were infused with 1.5 mL water, 1.5 mL solution of (9.5 mM/fruit; 

4.75 mM/fruit D-mannoheptulose), a C7 sugar solution (1.5 mL of 9.5 mM/fruit; 4.75 /fruit; 

4.75 mM perseitol/fruit). Fruit quality parameters (firmness, CO2 production, soluble sugar 

concentrations, moisture content, dry matter, and oil content) were determined over the 

postharvest ripening period. Early-harvested fruit displayed more severe ripening 

heterogeneity, with high water loss. The infusion of D-mannoheptulose and perseitol prolonged 

the shelf life of avocado fruit compared to sucrose-infusion and untreated fruit (control) at 

different harvesting stages. Water infusion had a considerable effect on mid- and late-season 

fruit, regarding firmness and respiration rate. Infusion of D-mannoheptulose and perseitol 

improved the fruit quality attributes flesh firmness and fresh mass retention, and resulted in 

higher mesocarp C7 sugar concentrations than sucrose- and water-infusion. Regarding the 

concentration of C7 sugars, water-infused fruit contained the third-highest D-mannoheptulose 

and perseitol concentration. The oil content was not affected by sugar postharvest infusion, but 

noticeable differences in oil content were observed through the harvest seasons. Maintaining a 

certain level of these sugars in the avocado mesocarp tissue seems vital in ensuring a good fruit 
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quality. These C7 sugars could be used as postharvest markers and determining their 

concentration could become a vital tool in the management of avocado postharvest quality. 
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GENERAL OVERVIEW 
 

This study attempted to investigate, if the simulation of the fruit being attached to the tree 

through infusion of water, sucrose and the C7 sugars D-mannoheptulose or perseitol can delay 

the ripening process and if the onset of fruit softening can be delayed by this infusion. In this 

study the two C7 sugars D-mannoheptulose and its reduced polyol form, perseitol, were 

investigated as markers of postharvest quality of ‘Fuerte’ and/or ‘Hass’ avocado fruit. Although 

C7 sugars have been researched intensively in association with avocado postharvest quality, 

no literature has reported on the successfully maintenance of a certain size seven carbon sugar 

pool and its potential correlation with fruit quality. Infusion of C7 sugars into avocado fruit 

and utilization of a destructive method allows the measurement of the actual C7 sugar 

concentration as well as the maturity status of single fruit with respect to a specific parameter, 

and will allow determination of fruit acceptability to the consumer. The carbon 7 sugars found 

in avocado mesocarp tissue are well-known for their antioxidant activity, but the potential of 

these uncommon sugars to serve as biomarkers of postharvest avocado fruit quality has not 

been investigated. This study is divided into four sections, including two experimental chapters 

following the first chapter which reviews the literature available for understanding the role of 

common C6 sugars and the C7 sugars on fruit development and in the softening process. The 

second chapter is the first experimental chapter, evaluating the effect of C7 sugar (D-

mannoheptulose or perseitol) or C6 sugar (sucrose) infusion as well as water infusion on the 

ripening pattern of ‘Hass’ and ‘Fuerte’ fruit of different maturity stages as defined by picking 

seasons (early-, mid-, and late-season fruit). The third chapter is the second experimental one, 

which investigates the effect of C7 sugar infusion on mesocarp sugar concentrations and oil 

content of individual fruit of different maturity stages as defined by picking seasons (early-, 

mid-, and late-season fruit). This is followed by a general discussion and conclusions; finally, 

future research prospects will be suggested. 
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PREFACE 

 

This thesis is a compilation of manuscripts where each individual chapter is an independent 

article introduced disjointedly. Hence, some repetition between individual chapters has been 

inevitable. 
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CHAPTER 1 

1.1 GENERAL INTRODUCTION 

 

The avocado (Persea americana Mill.) is an evergreen tree that develops flowers in spring on 

the previous summer growth tips (Scroeder, 1951; Whiley et al., 1988). Flowering and fruit set 

of ‘Hass’ avocado in the KwaZulu-Natal Midlands takes place during the cooler month of July, 

but earlier cultivars, such as ‘Fuerte’, can start to flower in February, when it is relatively hot, 

with flowering proceeding until July, when temperatures are cooler (Kaiser and Wolstenholme, 

1994). The ‘Hass’ cultivar is a late-maturing cultivar; it is said to have a higher oil percentage 

at maturity and a taste ‘creamier than other cultivars’ (Wood, 1984). As ‘Hass’ skin colour 

changes from green to black (Cox et al., 2004), some of the fruit glossiness is lost; this change 

towards a duller fruit is an indication that the fruit is ready for consumption (Wood, 1984). In 

warmer areas of South Africa, ‘Hass’ matures at the beginning of August. This cultivar can 

resist bruising and withstand rough handling, due to thickness of the exocarp. From a producer 

perspective, ‘Hass’ has the advantage to be able to be ‘stored on the tree’, as the fruit does not 

abscise naturally when the point of commercial harvest, which is dictated by the mesocarp oil 

(or the reciprocal value water) content, is approaching. ‘Hass’ is, therefore, often ‘stored on the 

tree’ until market conditions are favorable (Wood, 1984), since it  may be left on the tree 

without deterioration of fruit quality (Dodd et al., 2010); however, fruit of the newer cultivar 

‘Lamb Hass’ tend to be more prone to post-harvest physiological disorders than ‘Hass’ fruit, 

particularly during the late picking season (Dixon et al., 2008).  

Avocado has a high perishability and a relatively short shelf life (Jeong et al., 2002); shelf life 

depends on cultivar and stage of maturity; harvesting immature avocados can result in 

economic losses due to poor fruit quality, such as shrivel upon storage, with the fleshy 

mesocarp becoming ‘rubbery’ rather than ‘buttery’ and stringy vascular tissue (Kader, 1999; 

Pak et al., 2003). Avocado growers tend, however, to pick fruit early, sometimes too early and 

file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_50
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_50
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_100
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_24
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_100
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_100
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_32
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_31
file:///C:/Users/Yaya/Desktop/GENERAL%20INTRO%20AND%20LITERATURE%20VIEW%20(GWAZA).docx%23_ENREF_49


2 

 

immature fruit are picked in order to reach the early market price advantage (Sudheer and 

Indira, 2007). It is well-known that as long as the avocado fruit is attached to the tree, and the 

flow of inhibitive components from the leaves to the fruit, preventing fruit ripening on the tree 

or until their pedicels are girdled (Schroeder, 1953, Tingwa and Young, 1974, Lee et al., 1983, 

Liu et al., 2002). The rise in avocado popularity has forced avocado growers and importers to 

solve postharvest disorder problems that are related to the control of ripening and the prolonged 

fruit storage (Donetti, 2011). The C7 sugars in avocado are known to play a role in its unusual 

ripening habit, and this sugars are associated with fruit quality (Bertling and Bower, 2005; 

Cowan, 2004). Additionally, the C7 sugars concentration in the fruit mesocarp tends to 

decrease with fruit maturity (Bertling and Bower, 2005), although fruit maturity increases, 

while the fruit remains on the tree. Some biochemical changes occurring during avocado fruit 

development and fruit ripening suggest that the degree of ripening inhibition is also affected 

by fruit maturity (Tesfay et al., 2010). As the harvesting season progresses, dry matter and oil 

accumulate; however, water content, C7 sugars, and mesocarp phenolics decrease (Pearson, 

1975, Tesfay et al., 2010, Tesfay et al., 2011). The pathway regulating ripening seems to extend 

to other pathways, such as ethylene synthesis, which has made the detection of the mode of 

action of ripening rather unclear.  

 

Avocado is known to contain C7 sugars in various plant parts and fruit parts, and commonly in 

greater amounts than the C6 sugars fructose, glucose and sucrose. The heptoses include the 

common Calvin cycle sugar sedoheptulose, as well as the uncommon C7 sugar aldoses 

mannoheptulose and the sugar alcohols perseitol (Häfliger et al., 1999; Liu et al., 2002; Tesfay 

et al., 2010). The C7 sugar mannoheptulose commonly occurs in avocado leaves during 

photosynthesis (Liu et al., 2002); however, the way in which Calvin cycle intermediates are 

starting points for the synthesis of mannoheptulose, or in which compartment of the leaf cell 
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this assembly takes place, is not clear (Tesfay et al., 2010). It has also been suggested that 

postharvest fruit quality is associated with presence of C7 sugars (Bertling and Bower, 2005), 

and it has been demonstrated that the fruit sugar content varies between cultivars and growing 

regions (Kaluwa, 2010; Landahl et al., 2009a). Van Zyl and Ferreira (1995) reported that 

postharvest, avocado fruit are very prone to quality loss, particularly, if exposed to ethylene, 

as raised ethylene production can increase the risk of physiological disorders and, therefore, 

enhance fruit quality loss. Avocado fruit are harvested based on visual attributes (size and 

colour) once they are of a certain oil or water content (Werman and Neeman, 1987). There is a 

lack of a specific physiological ripening parameter in avocado. During softening of many fruit 

the transformation into a palatable product occurs through a multitude of changes in fruit 

composition, such as the accumulation of volatiles, the synthesis and degradation of pigments 

and changes in the concentration of sugars and organic acids (Giovannoni, 2004; González-

Agüero et al., 2016; Obenland et al., 2009). In many fruit species, such as apples, grapes and 

tomatoes, there are organoleptic quality characteristics associated with ripening and softening 

of the fruit (Crisosto et al., 2003; Sweetman et al., 2009). In avocado, although mesocarp oil 

or water content are used commercially as quality parameters, it is not uncommon, to find 

immature fruit being sold, as no physiological maturity parameter seems to exist. It is known, 

however, that mesocarp sugar concentrations change during ripening; but it is still unknown, if 

and how these changes are related to fruit maturity. This study, therefore, intended to determine 

whether the influx of C7 sugars can extend the days to ripening and reduce softening. The focus 

on D-mannoheptulose and perseitol was due to these being the most-abundant sugars and that 

they have been reported to become depleted during avocado ripening (Gamble et al., 2010; 

Tesfay et al., 2010). 
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1.2 RESEARCH HYPOTHESIS  

 

For many fruit, it is difficult to identify the point of horticultural maturity, and avocado is no 

exception. There are no apparent changes in external fruit appearance that mark avocado 

maturity, indicating the time frame when the fruit can be harvested. Moreover, physiological 

mature avocado fruit do not soften on the tree, but such softening occurs only several days after 

being picked (Adato and Gazit, 1974). The time to fruit softening after picking depends on the 

stage of maturity, with less time required as fruit maturity increases (Adato and Gazit, 1974; 

Zauberman and Schiffmann-Nadel, 1972). In avocado, softening is triggered after harvest 

through the breakdown of cell walls by enzymes that cause softening and thereby edibility 

(Colinas-Leon and Young, 1981). While Blakey et al. (2009) reported that a certain fruit water 

content at harvest is critical to initiate the softening process, the authors also found a 70% 

variation in this parameter.  The C7 sugar mannoheptulose compound has been reported as 

major contributor to the antioxidant activity of the mesocarp (Tesfay et al., 2010), followed by 

its isomer perseitol at the time of picking maturity (Tesfay et al., 2010). The C7 sugars, 

particularly D-mannoheptulose could play an important role protecting the mesocarp from 

various postharvest storage disorders. Therefore, the decrease in C7 sugars particularly D-

mannoheptulose, is associated with postharvest losses, artificial supply, via infusing fruit with 

these substances, should maintain high postharvest quality. Therefore, fruit of the early-, mid-

, and late-season were infused, through the pedicel to maintain a high C7 sugar concentration 

within the mesocarp to avoid mesocarp quality deterioration. This study attempts to investigate, 

if simulating that fruit remain attached to the tree (through infusion of water, sucrose or the C7 

sugar D-mannoheptulose or perseitol) can retard fruit softening. The hypothesis is that 

maintaining a physiological D-mannoheptulose or perseitol concentration and water content in 

the fruit mesocarp delays fruit ripening and thereby enhances postharvest life. 
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1.2.1 Research aim 
 

1.2.1.1 The aim of the experiment was to explore the role of C7 sugars (D-mannoheptulose, 

perseitol) and water supply on fruit softening from avocado fruit  harvested in three different 

maturity stages defined by picking seasons (early-, mid- and late-season fruit). 

 

1.2.2 Research objectives 

 

The three main objectives of the study were: 

 

1.2.2.1 To determine the amount of mesocarp water content and its effect on the softening 

pattern, if fruit are infused with water, and watery sugars.   

1.2.2.2 To investigate, if pedicel infusion with C7 sugars, can maintain physiological 

concentrations of the C7 sugars D-mannoheptulose or perseitol in the mesocarp tissue 

harvested in three maturing season (early-, mid- and late-season fruit). 

1.2.2.3 To investigate, if the continued supply of D-mannoheptulose or perseitol can delay the 

reduction in mesocarp deterioration and maintain fruit quality if fruit are infused in 

three maturing season (early-, mid- and late-season fruit). 
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1.3 LITERATURE REVIEW 

1.3.1 The alteration of the sugar profile of avocado fruit from fertilization to fruit 

maturity in oil accumulating crops 

Growth and development of avocado fruit has been researched intensively (Blakey et al., 

2009), but the softening process, a vital aspect of fruit ripening, is less well-investigated. In 

order to understand fruit softening, the understanding of early stage of fruit development and 

the associated physiochemical alterations is of paramount importance. Avocado fruit shows 

many unusual characteristics of physiological and morphological nature (Schroeder, 1953). 

One of the distinct features of avocado fruit is the large quantity of oil which accumulates in 

the mesocarp, while concomitantly the fruit water concentration, commonly termed the fruit 

water content, decreases (Bower and Cutting, 1988; Eaks, 1990). 

 Additionally, avocado fruit will not ripen, while attached to the tree; hence, they must be 

detached from the tree to be able to soften and to become edible (Jeong et al., 2002). Avocado 

fruit growth follows a sigmoidal pattern from fruit-set to harvest maturity (Bower and Cutting, 

1988), with the extend of fruit growth determined by successful pollination (Czerednik et al., 

2015), fertilization and embryo development (Lovatt, 1990). Fruit growth, in general, is a result 

of cell expansion and cell division, processes depending on the translocation of carbohydrates 

synthesized in various parts of the plant (Schroeder, 1953). Cell division continues throughout 

fruit development; early fruit size increase can be associated to the seed growth (Mougheith et 

al., 1978). (Blumenfled and Gazit, 1971), reported that numerous cultivars of avocado fruit 

grown in Israel found with high auxin concentration in the seed, tend to have fast mesocarp 

growth, which suggested that auxin as growth hormone regulator influence sink strength of 

growing fruit. Avocado seed is enclosed by an actively dividing mesocarp tissue (Mougheith 

et al., 1978; Kotze, 1979), this tissue accumulates carbohydrates and proteins (Mougheith and 

Abdel-Hamid, 1978), that is second stage of phase 3 (rapid increase in fruit size).  
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Sucrose and symplastic solutes (glucose and fructose) are commonly stored as the polymer 

starch and, in avocado, glucose and fructose are present in nearly equal concentration during 

the early stages of development of the fruit (Cowan et al., 1998), but at the onset of fruit 

ripening sucrose increases which result in an increase of total soluble sugar content (Li et al., 

2017). Tesfay et al. (2012) reported that these common sugars consisting of carbon 6 units, a 

vast amount of C7 sugars, particularly D-mannoheptulose and its reduced polyol form, 

perseitol, are synthesized in the avocado seed and in various parts of the avocado fruit. The C7 

sugar D-mannoheptulose has been postulated to be associated with fruit quality (Liu et al., 

1999; Liu et al., 2002), which has led to the assumption that it might be  the substrate of 

respiration (Cowan, 2004; Bower and Bertling, 2005; Bertling et al., 2007). Glucose, as a 

common sugar, also plays an important role as a precursor of the major antioxidant, ascorbic 

acid, which is found within the avocado exocarp tissue (Tesfay et al., 2010).  

The growth and development of fruit of many tree species can be divided into three phases: (i) 

cell division, (ii) an expansion phase involving cell enlargement and water accumulation and 

(iii) the ripening stage (Luckwill, 1959). During fruit growth and development, texture and 

firmness are closely associated with the cell wall composition, which provides not only rigidity 

and strength, but also a certain cell turgor. Cell wall thickness and strength are the main 

contributors to firmness and are largely determined by genetic factors (Toivonen and 

Brummell, 2008). Cell size and cell number of fruit influence the structural dry matter by 

determining the number of cell walls. This number also plays a role in fruit hardening and in 

many other qualitative characteristics, such as juiciness and shelf life (Czerednik et al., 2015). 

As the fruit develops, changes occur in the cell wall, results in cell enlargement and membrane 

along with the influx of sugars, water, organic acids, and other compounds. These dissociable 

compounds allow the creation of a certain turgor pressure, necessary for fruit cell expansion 

and for keeping the fruit firm as it expands (Génard et al., 2007).  
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To reach maturity, the avocado fruit requires a long developmental period, taking six to twelve 

months or more from flowering to harvest (Scora et al., 2002). For example, in some cool 

avocado growing areas, the ‘Hass’ cultivar takes 14-18 months from flowering to fruit maturity 

(Bergh, 1975). Cell division occurs in most fruit only during the early fruit growth period; 

however, in avocado cell division is not restricted to the early development stage but can 

continue to and even beyond the time when the fruit reaches picking maturity (Bower and 

Cutting, 1988). In avocado, cell division only stops after physical separation of the fruit from 

the tree (Schroeder, 1953), the time when water and nutrient flow into the fruit is withheld. 

Giovannoni (2001) postulated that the mesocarp softening process is only initiated after fruit 

growth has ceased. During ripening fruit become soft-textured due to rapid biochemical and 

structural changes which lead to the loss of fruit firmness and to textural quality changes 

(Payasi et al., 2009). Fruit ripening is a complex developmental process that involves the 

alterations of sugars, volatile substances (aroma) and pigments (Giovannoni, 2001; Gupta et 

al., 2013).  

The latter fruit attributes which involves color, aroma and texture are the result of decline in 

turgor due to respiration, a loosening of cell walls and the disassembly of cellular structures 

that is responsible for intercellular adhesion and providing structural rigidity (Brummell, 

2006). These cell structure breakdowns result in changes in texture, partly due to water loss 

from fruit and due to an increase in osmotic solutes in the intercellular space (Brummell, 2006; 

Toivonen and Brummell, 2008). There are extensive modifications of cell wall polysaccharides 

by ripening-related enzymes that are transported into the intercellular space from the symplast. 

These changes significantly affect the strength and structure of the wall, and ultimately bring 

about fruit softening as part of the ripening process (Toivonen and Brummell, 2008). 
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1.3.2 Accumulation of sugars (storage reserve) photosynthate in tree crops 

The dry mass of tree crops constitutes over 65% carbohydrates, and the sugars produced in 

avocado are the first products of photosynthesis and can immediately be used in tissue sinks 

and other growing organs (Wolstenholme and Whiley, 1997; Cowan et al., 1998). Tesfay 

(2009) revealed that the major transportable carbohydrate in avocado is the seven carbon sugar 

D-mannoheptulose (Tesfay, 2009), with perseitol being less commonly transported (Minchin 

et al., 2012). Whereas (Cowan et al., 1997), reported sucrose as sugar that is translocated out 

of the leaf. Vascular bundles permeate the fleshy mesocarp and sucrose enters the fruit through 

them, and coalesce distally from where sucrose is transported to the major zone of phloem 

unloading in developing avocado fruit (Moore - Gordon, 1997). During the early fruit 

development stages, soluble sugars, such as fructose and glucose, are only mass produced in 

the seedling (Tesfay et al., 2012).  

Tesfay et al. (2012) reported an increase in C7 sugar concentration in shoot and cotyledon, 

with decrease in starch reserves in the cotyledon ‘in the absence of light’ during germination, 

which suggested that the plant then switches over to the C7 metabolism. Therefore, in avocado 

the progression from juvenility to maturity is characterized by a conversion from C6 sugar to 

C7 sugar metabolism. Individual leaves on avocado trees show an alteration from being net 

sinks to being net sources of sugars (carbohydrates). The ability of individual leaves to supply 

carbohydrates to nearby sinks is of paramount importance for yield, fruit size and quality 

(Wolstenholme and Whiley, 1997). Downton et al. (1987) reported that in citrus the availability 

of carbohydrates limits fruit set. Avocado is an evergreen tree that is known for producing more 

carbohydrates among other evergreen trees such as citrus, as it has an ability of converting C6 

sugars to C7 sugars (Chandler, 1958, Tesfay et al., 2012). However, deciduous trees largely 

depend on stored carbohydrates for early growth in spring, whereas in evergreens, such as 

avocado, this dependence is partly reduced by over-wintering leaves (Whiley, 1994). 



10 

 

1.3.3 The seasonal carbohydrate cycle in avocado and its relationship to tree phenology  

Avocado seeds contain starch as a storage carbohydrate; this carbohydrate represent currently 

unutilized, but stored C6 sugar components (Liu et al., 2002); while seedlings contains C7 

sugars mannoheptulose and perseitol (Tesfay et al., 2010). During early endosperm and embryo 

development, carbohydrates are required in vast amount for growth activity, until fruit reach 

maturity (Kozlowski, 1992), but avocado appears to accumulate high carbohydrate reserves 

level that are manufactured during photosynthesis in the leaves as means of adaptation to 

drought and water stress (Whiley and Wolstenholme, 1997). Carbohydrate reserves are 

accumulated before harvest, and form a reserve which is eventually used as energy source for 

the respiratory process postharvest (Kozlowski, 1992), but reserves are easily depleted during 

fruit growth, particularly when there is limited assimilates that are produced during 

photosynthesis (Whiley and Wolstenholme, 1990). 

 One of the major factors that have often been suggested to restrict fruit production are inter- 

and intra-seasonal competition for limited carbohydrate resources (Whiley and Wolstenholme, 

1990; Schaffer et al. 2013). Whiley and Wolstenholme (1997) suggested that the level of starch 

reserve at critical periods can be used in orchard management decisions as they tend to follow 

a seasonal pattern, peaking just before flowering, decreasing rapidly during flowering and fruit 

set, starch remaining low until mid-summer, and increasing through autumn and winter. In 

avocado, the summer growth flush is the main contributor to starch accumulation, but if 

summer flushing is extended in the trees, starch accumulation can be delayed which may 

ultimately affect the potential starch levels for that season (Whiley and Wolstenholme, 1990). 

 

 Whiley and Wolstenholme (1989) proposed a quantitative index as a management tool, which 

integrates the phenological growth model with a starch curve as an orchard management tool. 

It mainly involves phenological events that directly contribute to the carbohydrates reserve 
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concentrations in the leaves and critical periods where competitive sinks have limited sources 

that are produced during photosynthesis. The phenological cycle depicts that, carbohydrates 

(starch) reserves are at a peak when growth demands are lowest, during the prolonged winter 

rest period. During flowering in winter and fruit set starch is required in vast amounts, as a 

result, starch reserves drop rapidly and reach the lowest concentration in the summer fruit drop 

period (Whiley and Wolstenholme, 1990) (Figure 1). Whiley and Wolstenholme (1997) 

reported that greater root growth in avocado contributes to high starch levels which concur 

with Whiley (1994) and Whiley et al. (1996) report on crop failure that was more associated 

with poor flowering, possibly due to inadequate root growth during floral induction. 

Figure 1: The growth cycle of avocado, cv Fuerte, with relationships between vegetative and 

reproductive growth and reserve starch in the trunk of trees (Whiley and Wolstenholme, 1990). 

 

1.3.4 Polyols (sugar alcohols) as storage compounds in higher plants  

Polyols also known as sugar alcohol are the reduced form of aldose and ketose sugars (and 

their derivative) to form a straight (acyclic polyols or alditols) or branched chain polyols (cyclic 

polyols or alditols) (Noiraud et al., 2001). The term polyols refers to compounds consisting of 

three or more carbons bearing each of them bearing hydroxyl group (Da Costa et al., 1998). 
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Polyols are produced by plants through photosynthesis, and they undergo direct oxidation to 

sugars, but before oxidation to a sugar phosphate, the preliminary phosphorylation of the polyol 

may also take place (Lewis and Smith, 1967). Plant metabolism is characterized by a major 

role played by variety of other sugars such as stachyose in cucurbits (Pharr et al., 1985; Taji et 

al., 2002). Some are polyols (sugar alcohols), such as perseitol in avocado (Shaw et al., 1980), 

inositol in grains (Loewus and Loewus, 1983), mannitol in apple (Makinen and Soderling, 

1980), and sorbitol in peach (Makinen and Soderling, 1980). In addition to their active 

involvement in photosynthesis and translocation, similar to sucrose but these partitioning 

differences, reveal that polyols also serve as storage compounds (Tesfay et al., 2011), which 

make sugar alcohol to have chemical advantage over C6 sugar (sucrose) as energy stores 

(Lewis, 1984).  

 

However, perseitol is the major polyol in avocado seed, and could be transported from the seed 

into the developing seedling  (Tesfay et al., 2012). Tesfay et al., 2012 reported that D-

mannoheptulose was present in trace amounts in the seed, which suggest that D-

mannoheptulose was released from its reduced form perseitol. Sugar alcohol perseitol and D-

mannoheptulose have been reported to be in all major tissues of avocado plant (Liu et al. 1999), 

showing a key function of these compounds in avocado growth and development. In addition 

to functions for the C7 sugars existing in plants are similar to known functions of C6 sugars 

(Zimmermann and Ziegler 1975; Nadwodnik and Lohaus 2008) include carbohydrate transport 

as a transport form for reduced carbon (Noiraud et al., 2001; Liu et al., 2002). Polyols have 

been also shown to serve as carbohydrate reserves (Oliveira and Priestley 1988) as compatible 

solute synthesized in response to abiotic or biotic stress (Loescher, 1987), or as 

osmoprotectants (Morgan 1984). 

 



13 

 

Sugars plays an important role not only in growth and development of avocado fruit, but are 

also considered to be important during fruit ripening as respiratory substrates (Liu et al., 2002). 

Tesfay (2010) demonstrated the multifunctional roles of avocado carbohydrates as ‘sources of 

energy’, storage and phloem-mobile transport sugars, and D-mannoheptulose as a major fruit 

antioxidant. It is thought that carbohydrate allocation within a tree determines vegetative 

growth, annual fruit set, fruitlet abscission, and fruit growth (Cowan et al., 1997). Tesfay et al. 

(2010) reported vast amounts of the C7 sugars D-mannoheptulose and its reduced form, 

perseitol, in all tissues of the avocado fruit. The high concentration of C7 sugars in avocado 

fruit has led to suggestions that they control ripening (Liu et al., 2002) or may be associated 

with fruit quality (Bertling and Bower, 2005).  

It has also been proposed that the differences in sugar content between the cultivars and 

growing regions could affect the postharvest fruit quality (Foyer and Noctor, 2005; Kaluwa, 

2010). Donetti and Terry (2014) reported that C7 sugars decrease as fruit soften. In avocado 

fruit, the accumulation of oil is a prominent attribute of fruit maturity, the formation of the fats 

depends on the hydrolysis of the carbohydrates to acetate with the subsequent synthesis of fatty 

acids from this acetate. Glycerol is another sugar metabolism product, which combines with 

fatty acids to form fats (Bean, 1958). It has been suggested in various studies that changes in 

carbohydrate (sugar) reserves as well as fruit quality may be directly affected by seasonal 

growth and time of harvest (Whiley and Wolstenholme, 1990; Kaiser and Wolstenholme, 

1993), therefore the correct time of harvest and maturity stage is of paramount importance. 

 

 

1.3.5 The role of cell wall degrading enzymes in fruit softening  

Ripening of avocado is the result of cell wall integrity degradation, resulting in the loss of cell 

to cell cohesion (Platt-Aloia and Thomson, 1981). Avocado cell walls consist of cellulose, 

hemicellulose, and pectin (Goulao and Oliveira, 2008; Scott et al., 1963). Ripening of avocados 
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occur at the same time with softening of the fleshy mesocarp tissue of the fruit, which is 

believed to be caused by the loss of cell to cell cohesion with the cell walls (Platt-Aloia et al., 

1981). Scott et al. (1963) found that the major component of avocado cell walls is cellulose. 

Pesis et al. (1978) reported that during fruit softening cellulase tend to increase, which is the 

process associated with ethylene production peak and high CO2 production. The same authors 

highlighted an increase in cellulase activity, when avocado fruit was placed in an ethylene-rich 

environment. During ripening in avocados, pectinmethylesterase (PME) activity decreases, 

while cellulase and polygalacturonase (PG) activities have been found to increase (Awad and 

Young, 1979). Subsequently, Hatfield and Nevins (1986) identified the enzyme (1-4)-β-D-

glucanase by purifying avocado cellulase. These authors also found that (1-4)-β-glycosyl 

linkages is hydrolysed by (1-4)-D-glucanase  only and not the cellulose polymers found in 

mature avocados, which meant that the breakdown of avocado cell walls could not be solely 

responsibility of cellulase activity.  

 

Hatfield and Nevins (1986) suggested that cellulose fibrils are also hydrolysed, and the 

consistent observations of changes in cellulose fibres, can be seen under microscope. PG 

activity increases after cellulase activity first increases (Awad and Young, 1979), and this 

phenomenon may be due to alteration of hydrogen bonding to other polysaccharides in the cell 

wall, thus disturbing the cell wall matrix and allowing enzymes to break down the 

polygalacturans (Hatfield and Nevins, 1986). The strong correlation between softening and 

cellulase activity suggest that cellulase is the enzyme responsible for the initial stages of fruit 

softening (Hatfield and Nevins, 1986). This is controlled in part by ethylene, while PG seems 

to be responsible for final fruit softening (Bower and Cutting, 1988).  

 

 



15 

 

1.4 DISCUSSION AND CONCLUSION  

In avocado, as in any fruit tree, fruitlet abscission, vegetative growth, annual fruit set, and fruit 

production are determined by the sugar allocation within the avocado tree (Liu et al., 2002). 

These C7 sugars, particularly D-mannoheptulose and its reduced polyol form, perseitol, are not 

only storage compounds in mesocarp tissue, but D-mannoheptulose could also play a vital role 

as antioxidants (Tesfay et al., 2010). Further work on C7 sugars has indicated that these 

compounds may provide protection against stress (Liu et al., 2002). It has also been found that 

a further uncommon C7 sugar alcohol, volemitol, plays a vital role in carbon translocation and 

storage, assimilation, provision of reducing power, and protection against various stresses in 

certain species, such as Primula (Häfliger et al., 1999); volemitol is also found in avocado fruit 

(Cowan, 2004). The putative role played by C7 sugars in ripening and their known antioxidant 

activity have led to this study of the role of C7 sugars in postharvest fruit softening of avocado.   

 

Liu et al. (2002) suggested that C7 sugars could control softening of the fruit by controlling 

the ripening process, acting as ripening inhibitors when still attached to the tree, only allowing 

for the triggering of softening when sugar levels declined after detachment from the tree. 

Further work on C7 sugars has indicated that C7 sugars may provide protection against stresses 

due to their reducing power (Liu et al., 2002). Bertling et al. (2007) proposed that the decline 

in C7 sugars, as the fruit nears harvest maturity, could be related to deterioration in post-harvest 

quality, ultimately affecting the softening process. It has been found that a sugar alcohol, 

Volemitol, plays a pivotal role in carbon translocation, storage and assimilation, and protection 

against various stresses in a certain Primula species (Hafliger et al., 1999), and this sugar 

alcohol has reportedly been found within avocado fruit as well (Cowan, 2004). Ogata et al. 

(1972) studied the C7 sugars content particularly mannoheptulose of four different avocado 

cultivars and reported that unripe mesocarp tissue contained relatively high levels (0.64-2.5%), 
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while ripe mesocarp tissue contained lower levels (0.03-0.5%), which suggest that a decrease 

in C7 sugars eventually triggers softening in avocado fruit. Perseitol is a polyol (sugar alcohol) 

that is known as a storage compound in avocado (Tesfay et al., 2012), and polyols is also 

known to act osmotically, balancing osmotic pressure differences from inside the cell to 

outside,  function as compatible solutes and causing water influx. Such solutes replace water 

molecules by means of their water-like -OH groups and thus participate in the water-enforced 

hydrophobic interactions so critical to biological activity. The equivalent of complete hydration 

of biological polymers is therefore maintained, even with a reduced number of available water 

molecules (Yancey et al., 1982). (Faraji and Lindsay, 2004), have found that certain C6 sugar 

alcohols (sorbitol and mannitol) can act as antioxidants. In the same way, C7 sugar could form 

an important part of the pool of antioxidants in avocado, protecting the fruit from oxidative 

stress, mesocarp deterioration and, certain role in softening process. Therefore, by infusion of 

watery sugars such as mannoheptulose, perseitol and sucrose in the pedicel we are simulating 

the attachment of the fruit from the tree through maintaining a continuous supply of carbon 

sugars with water within the fruit, and investigate their effect in fruit quality. 
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ABSTRACT 
 

 

A clear understanding of avocado (Persea americana Mill.) postharvest physiology is required 

for improved management of this crop. Avocado fruit is very susceptible to a large variety of 

disorders, and these disorders maybe the result of a lack of stress resistance in the tissue 

involved. The C7 sugars D-mannoheptulose and perseitol have been reported to impart 

antioxidant activity to avocado mesocarp tissue and seem, therefore, associated with avocado 

fruit quality. In order to investigate, if the concentration of the prominent C7 sugars, D-

mannoheptulose and perseitol, in the mesocarp can be maintained through infusion of these 

sugars, sugar solutions were infused into commercially mature, non-ripe avocado fruit through 

the fruit pedicel. As controls fruit were either not infused, infused with water or infused with 

9.5 mM/ 4.75 mM sucrose. Fruit firmness, respiration (CO2 production), and fruit internal and 

external quality as well as shelf life were determined over the postharvest ripening period. The 

infusion of the C7 sugars D-mannoheptulose and perseitol, tended to maintain the fruit firmness 

during the postharvest infusion period in fruit infused with these sugars. It was also noted that 

the C7 sugar treatments 9.5 mM D-mannoheptulose, 4.75 mM D-mannoheptulose, 9.5 mM 

perseitol and 4.75 mM perseitol had the lowest of CO2 production; however, the results showed 

that there was a significant difference between infusion treatment means in all harvesting 

seasons for both, ‘Fuerte’ and ‘Hass’ avocados. Firmness of early-harvested fruit tended to 

delay and decrease significantly after 9 days of postharvest infusion, particularly in ‘Hass’. 

Moreover, it was noted that during the in early-season some ‘Hass’ fruit turned rubbery, while 

‘Fuerte’ fruit shrank considerably; some early-season fruit never reached fully ripeness. The 

differences between infusion treatments remained significant, even twelve days after 

postharvest days. Similarly, fruit infused with 9.5 mM D-mannoheptulose, 4.75 mM D-

mannoheptulose, 9.5 mM perseitol and 4.75 mM perseitol were the firmest throughout the 
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harvesting seasons, followed by water-infused fruit. Sucrose infusion had a least effect on 

maintaining fruit firmness, and there was no significant difference between water-infused fruit 

and sucrose-infused ones. Firmness of sucrose-infused fruit tended to decrease significantly 

after day 9 of infusion. Late-season fruit took a shorter time to ripen than early- and mid-season 

fruit.  D-mannoheptulose (4.75 mM and 9.5 mM) as well as perseitol (9.5 mM and 4.75 mM) 

infused fruit had a significantly reduced respiration, maintaining the lowest CO2 production 

during all three harvesting seasons. Postharvest disorders (anthracnose and vascular browning) 

were significantly affected by postharvest treatment and the interaction of harvesting season 

(early-, mid- and late-) of ‘Hass’ and ‘Fuerte’. In the early and late-harvest season, control fruit 

had highest postharvest disorder infections, particularly vascular browning, followed by 

sucrose-infused fruit. The high levels of anthracnose incidences were recorded in 4.75 mM 

sucrose infused fruit from the mid-harvest season. Fruit infused with D-mannoheptulose and 

perseitol had no anthracnose incidences and no vascular browning, as well as water-infused 

fruit tends to follow the same pattern. However, vascular browning and anthracnose was 

observed in ‘Fuerte’ and ‘Hass’ from the late-harvest season of water-infused fruit. It is, 

therefore, suggested that a decrease of D-mannoheptulose and perseitol concentration to a 

certain level in the mesocarp at postharvest triggers ripening, while postharvest water-loss and 

the aligned decrease in firmness concomitantly occurs. The C7 sugars D-mannoheptulose and 

perseitol play various important roles in avocado; therefore, achieving and maintaining a 

certain level of these uncommon sugars in the mesocarp pre-and-postharvest is a vital factor in 

ensuring and maintaining good fruit quality.  

Keywords: C7 sugar infusion, ‘Hass’, ‘Fuerte’, D-mannoheptulose, perseitol, sucrose, early-

harvest, mid-harvest, late-harvest, harvesting season, CO2 production, respiration, firmness 

anthracnose, vascular browning 
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2.1 INTRODUCTION 

The production of avocado (Persea americana Mill.) has been increasing rapidly worldwide, 

so that the commodity is amongst the most-commonly sold subtropical fruit in the world, with 

an estimated annual production of more than 4.7 million tonnes (FAOSTAT 2015). Avocado 

is often consumed due to its distinct attributes as a highly nutritious fruit, containing high 

amounts of thiamin, Vitamin E and C, while also being rich in manganese, phosphorus and 

iron (Naveh et al., 2002). The shelf life of avocado is, however, limited due to a very high 

postharvest fruit respiration rate. Fruit ripening is the initial phase of fruit senescence, which 

is characterized with changes in the membrane and composition of the avocado fruit mesocarp 

(Bower and Cutting, 1988; Van Rooyen and Bower, 2005). During avocado ripening, there is 

a loss in cell compartmentation, which activates membrane-degrading enzymes, resulting in 

increased membrane permeability (Ahmed et al., 2010; Platt-Aloia and Thomson, 1981; Van 

Rooyen and Bower, 2005). Huber et al. (2001) define the ripening process ‘as a form of 

programmed organ death which leads to a decline in fruit firmness’ due to an increase in 

activity of polygalacturonase (PG), a burst in ethylene production and signal transduction 

(Bleecker and Kende, 2000; Hershkovitz et al., 2005), and softening (Wakabayashi and Huber, 

2001). Fruit softening is a vital part of the ripening process that is determined by changes in 

the cell wall (Brummell and Harpster, 2001), followed by a high rate of water loss due to the 

high respiration rate, which decreases the time the fruit takes to ripen postharvest (Lallu et al., 

2004). Ripening  as a later developmental stage of the fruit affects several quality factors, such 

as flavour, firmness, colour, shape and texture of the fruit (Cai et al., 2006). The postharvest 

ripening rate is associated with fruit maturity, as fruit harvested at the early harvest of the 

season take longer to get ripen than fruit harvested at late season (Adato and Gazit, 1974). 

During ripening initiation, multiple anabolic changes demanding high-energy input occur, 

resulting in a rapid increase in respiratory activity. Liu et al. 1999  proposed that C7 sugars 
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play various important roles in avocado fruit development, with D-mannoheptulose as the 

source of energy, while Tesfay et al. (2010) found that this sugar alcohol serves as an anti-

oxidant in the avocado mesocarp and perseitol is a storage compound (Tesfay et al., 2012). The 

potential involvement of these C7 sugars in inhibiting or triggering fruit ripening, once the fruit 

is physically separated from the tree, remains unclear. Softening of avocado fruit can only 

occur, once the fruit is removed from the tree (Jeong et al., 2002); however, certain pre-harvest 

factors may result in a variable ripening, which is aligned with uneven softening, creating 

substantial logistical problems, especially when fruit are ripened in pre-packaging facilities 

(Bower et al., 2003). An increase in water stress during postharvest, for example, also reduces 

the normal time to ripen and may lead to high postharvest disorder incidence, particularly of 

anthracnose and mesocarp discoloration (Bower and Cutting, 1988). The cause of ripening 

variation amongst fruit of the same size and origin is still unknown, and flowering period which 

cause a wide variability in fruit age at harvest does not fully explain uneven ripening of avocado 

fruit. 

2.1.1 Research aim 
 

2.1.1.1 The aim of this experiment was to explore the role of C7 sugars (D-mannoheptulose, 

perseitol) and the common C6 sugar sucrose, as well as maintenance of the water supply to the 

avocado fruit on the softening pattern during three maturity stages as defined by picking 

seasons (early-, mid-, and late-season fruit). 

2.1.2 Research objectives 

2.1.2.1 To enhance the postharvest shelf life of ‘Fuerte’ and ‘Hass’ avocado fruit through 

continuous infusion of C7 sugars, sucrose or water. 

2.1.2.2 To investigate, if the continued supply of sugars (D-mannoheptulose, perseitol, 

sucrose) and water can delay the mesocarp deterioration and maintain fruit quality. 
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2.1.2.3 Comparing the effects of such sugar (D-mannoheptulose, perseitol, sucrose) infusion 

on the ripening pattern of ‘Fuerte’ and ‘Hass’ avocado fruit.  

2.2 MATERIALS AND METHODS  

2.2.1 Fruit material and experimental design 

During the 2015 and 2016 avocado growing season fruit were collected from ‘Hass’ and 

‘Fuerte’ avocado orchards from Bounty Farm, Winterskloof, in the KwaZulu-Natal Midlands, 

South Africa (29°28´S; 30°161´E). Avocado fruit were harvested with pedicels and fruit 

selection was based on uniformity of shape, colour and size. Only bruise- and blemish-free 

fruit were used in the experiment. To prevent physical damage, harvested fruit were gently 

placed into crates and immediately transported, in a well-aerated vehicle, to the Horticultural 

Science laboratories at the University of KwaZulu-Natal, Pietermaritzburg. Three (3) separate 

experiments were set up throughout 2015 and 2016, one experiment for each harvesting 

seasons. Avocado fruit within a mass range of 203-243 g (class 1; Government Gazette 37223, 

17 Jan 2014) were harvested during three seasons: ‘early’ (29/04/2016; moisture content 72%, 

equivalent to 28 % DM and 25% oil), ‘mid’ (09/09/2015; moisture content 66%, equivalent to 

34% DM and 26 % oil) and ‘late’ (01/12/2015; moisture 60% moisture, equivalent to 40% DM 

and 31 % oil). For each experiment 96 avocados with 5 cm pedicels were acquired, with 48 

‘Hass’ and 48 ‘Fuerte’ fruit. Fruit were kept at room temperature and randomly divided into 

nine treatments: seven infusion treatments and two controls (fruit with pedicel and fruit without 

pedicel). In each experiment, fruit were assessed for firmness and CO2 production throughout 

their shelf-life, being measured in three (3) day intervals of the postharvest storage period (day 

0, 3, 6, 9, 12, and 15). 
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2.2.2 Treatments 

Silicon tubing of 5 mm length was attached to the pedicel (retained after harvest and re-cut 

prior to treatment to remove any dead tissue) of treated fruit, and sealed with petroleum jelly 

at the base (Bower and Cutting, 1987). According to Bertling et al. (2011), an infusion of 1.5 

mL water, sucrose (C 6): 1.5 mL of 9.5 mM/fruit; 4.75 mM/fruit solution and C7 sugars 

solutions 1.5 mL of 9.5 mM/fruit; 4.75 mM/fruit D-Mannoheptulose, 9.5 mM/fruit; 4.75 

mM/fruit Perseitol solution) was infused to 6 fruit per treatment. Control (fruit with pedicel 

and without pedicel) fruit were untreated.  

 

2.2.3 Postharvest infusion data   

External, visual observations were made before and after postharvest infusion and fruit 

firmness, CO2 evolution, and overall fruit condition were measured and assessed. Fruit were 

visually rated for shrivelling, and diseases infection. After 3 days interval of postharvest 

infusion, fruit firmness, CO2 evolution, postharvest disorder was calculated. Postharvest 

infusion data was collected in 3 days interval until day 15 of postharvest. 

 

2.2.4 Measurement of fruit firmness 

Firmness of each fruit was measured from day of infusion and in three days after infusion, until 

ripening was reached using a hand-held firmness tester (5 mm anvil; Densimeter, Bareiss, 

Oberdischingen, Germany). Fruit firmness, fresh weight loss, respiration was monitored 

according to Tesfay et al. (2010) and Tesfay et al. (2011). The same fruit was measured each 

day, taking two measurements along the equatorial region of the fruit. Fruit was deemed to be 

‘ripe’ when softness measurement reached 6N (Köhne et al., 1998).  
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2.2.5 Measurement of respiration rate 

Fruit respiration rate, as determined by CO2 production, was measured using an infrared gas 

analyser (EGM-1, PP Systems, Hitchin, Hertfordshire, UK) with an error of less than 1% of 

span concentration over the calibrated range. Treated avocado fruit were incubated in 1 litre 

plastic jars for 15 minutes. Net CO2 production per kilogram fruit was calculated by adjusting 

for headspace, ambient CO2 in the jar, fruit volume and fruit mass. Carbon dioxide 

concentration (μl L-1) was determined daily and results calculated as rate of CO2 production 

per hour (ml kg-1 FM h-1).  

. 

 

Figure 2: Carbon dioxide determination: (1) avocado; (2) 1000 ml glass jar containing the 

sample; (3) duct conveying gas into the EGM-4 Environmental Gas Analyzer; (4) EGM-4 

Environmental Gas Analyzer (Kassim et al., 2013). 

The amount of carbon dioxide (ml. kg-1 FM . h-1) released was calculated using the following 

equation: 

 

         (3.1) 
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Where:  

           CO2 = carbon dioxide released from avocado fruit 

    Net CO2 = fruit CO2 – ambient CO2 [ml], 

Headspace = container volume – fruit volume [l], 

              m = fruit mass [g], and 

                t = time of incubation. 

 

2.2.6 Internal Quality Assessment  

Over the ripening period, all six replications per treatment (six fruit) were cut into halves and 

assessed for anthracnose and vascular browning. Internal assessment was made on a scale of 0 

(no visible symptoms) to 5 (extremely severe, area completely infected or discoloured). Fruit 

that ripened to the eating ripe stage with a rating of 0 for all internal disorders and body rots 

(i.e., free from any disorders and diseases). 

 

2.2.7 External Quality Assessment 

The severity of external disorder was rated similarly on a scale of 0 (no blemishes) to 10 (fruit 

surface area entirely blemished). The fruit were visually assessed for external disorder from 

day 0 of postharvest infusion until fruit reach edible ripening.  

2.2.8 Statistical Analysis  

 

The data were analyzed in each treatment combination consisted of six fruit, each fruit 

constituting a single replication. Analyses of variance was performed using GENSTAT (edition 

17th; VSN International, Hemel Hempstead, UK). Standard deviations (SD) were calculated 

and differences among treatments were separated by a significant difference (LSD) test at p≤ 

0.05. 
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2.3 RESULTS   

2.3.1 Firmness 

Fruit firmness differed significantly between treatments and over the postharvest infusion 

period for all harvesting seasons for both, ‘Fuerte’ and ‘Hass’ avocados. As expected, fruit 

firmness decreased with an increase in postharvest storage days. Harvesting seasons also had 

a significant effect in fruit firmness (p ≤ 0.05), with mid-, and late-harvest fruit firmness being 

significantly higher than in early-harvest fruit. Particularly fruit infused with 9.5 mM D-

mannoheptulose I, with 12, 056 N as difference between  two mean values and 9.5 mM 

perseitol I, with 11, 074 N as difference between two mean values at LSD (p≤ 0.05)  = 6.447 

(Figure 2). From the early harvest showed a tendency towards delayed softening and a 

significant decrease after 9 days of postharvest infusion; this was particularly visible in ‘Hass’ 

fruit (Figure 1). It was also noted that some early-season ‘Fuerte’ fruit turned rubbery, while in 

‘Hass’ fruit shriveling was noticed, and some early-season fruit never reached full ripeness 

(Figure A1 C&D). In generally, it was observed that fruit harvested during the early season 

showed more uneven ripening than mid- and late season fruit. Fruit firmness decreased, 

however, significantly after 6d of postharvest infusion in fruit from the mid-, and late-

harvesting seasons (Fig 3- 6). Fruit with the pedicel attached retained firmness better than fruit 

without pedicels but there was no significant difference regarding firmness particularly in late-

season ‘Fuerte’ fruit with 7.968 N as difference between mean values in pedicel attached fruit 

and 5.967 N as difference between mean values in fruit without pedicel, with LSD (p≤ 0.05) = 

10.485 (Fig 4). The differences between infusion treatments remained significant, even on day 

twelve of postharvest days. Similarly, C7 sugar (9.5 mM D-mannoheptulose I, 4.75 mM D-

mannoheptulose II, 9.5 mM perseitol I and 4.75 mM perseitol II) -infused fruit were the firmest 

throughout the harvesting seasons, followed by water infused fruit. Both sucrose (9.5 mM and 

4.75 mM) infusions retained the least fruit firmness, lower than the controls, in all harvesting 
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season for both cultivars. Water infusion retained firmness and reduced the ripening 

heterogeneity in mid- and late-season fruit. Late season fruit took a shorter time to ripen than 

early and mid- season ones (Fig 2- 6). According to Blakey et al. (2009), water infusion through 

the pedicel decreases the ripening heterogeneity in mid- and late-season fruit. The present 

findings also concur with the observation, that early-season fruit have a lower water content, 

resulting in faster fruit ripening, possibly due to water stress and higher fruit ABA biosynthesis 

that stimulates ethylene production, which triggers ripening (Bower and Cutting, 1988).  

 

2.3.2 Respiration rate (CO2 production) 

Fruit infused with carbon-7 sugars (9.5 mM of D-mannoheptulose, 4.75 mM of D-

mannoheptulose, 9.5 mM perseitol and 4.75 mM perseitol) had a significantly reduced CO2 

production (p≤ 0.05), maintaining the lowest CO2 production in all three harvesting seasons 

(Fig 7- 12). In all harvesting seasons, the respiration rate of control fruit was higher than water 

infused fruit. There was significance difference in control fruit and sucrose- infused fruit from 

day 0 to day 6 of postharvest infusion, with 9.242 ml. kg-1 FM . h-1 as difference between mean 

values in pedicel attached fruit and 8.924 ml. kg-1 FM . h-1 as difference between mean values 

in sucrose- infused fruit, with LSD (p≤ 0.05) = 11.848 (Fig 8). After 6 days of postharvest 

infusion, control fruit and sucrose-infused fruit showed an increased respiration in mid-, and 

late-harvest season fruit, reaching a peak on day 9 of the postharvest infusion (Fig 9- 12); 

sucrose infusion, on the other hand,  showed no effect on maintaining fruit quality. Water 

infusion had a considerable effect on mid- and late harvested fruit (Fig 9- 12), but not on early-

harvested fruit. The CO2 production of fruit increased during the postharvest observation 

period, peaking on day 6; thereafter a decreasing trend was noted until fruit were fully ripe. 

The CO2 production of both ‘Hass’ and ‘Fuerte’ was lower in C7 sugar (D-mannoheptulose 

and perseitol) -infused fruit, during mid-harvest, respiration decreased significantly towards 
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the end of the observation period. In the mid-harvest, sucrose-infused fruit, however, showed 

a similar trend in respiration as water-infused fruit, reaching a respiratory peak after 6 days of 

postharvest infusion (Fig 9- 10). 

 

2.3.3 Internal and External Quality Assessment  

The two major postharvest problems detected (anthracnose and vascular browning), were 

significantly (p≤0.05) affected by the interaction of postharvest infusion and harvesting season 

(early, -mid; and late-harvest) of ‘Hass’ and ‘Fuerte’. Results showed that, in early and late-

harvest season, control fruit of both cultivars had the occurrence of vascular browning (Figure 

1A), followed by sucrose-infused fruit (Fig 13- 14). Lower levels of anthracnose incidence 

were recorded in 4.75 mM sucrose-infused fruit of mid-harvest season (Fig 16), than control 

fruit (fruit with pedicel and fruit without pedicel) of Fuerte late-harvest season (Fig 15). Fruit 

infused with D-mannoheptulose and perseitol had no anthracnose incidence and vascular 

browning; water-infused fruit tended to show low postharvest problems (Fig 13-15). High 

incidences of vascular browning and anthracnose were however, observed in ‘Fuerte’ and 

‘Hass’ during the late-harvest season (Fig 13- 16). 

 

2.4 DISCUSSION  

As in any climacteric fruit, the ripening behavior of avocado is characterized by a rise in 

respiration rate during the onset of ripening followed a quick decline (Millerd et al., 1962; Liu 

et al., 1999). In avocado, the ripening process is aligned with fruit softening; hence, firmness 

readings of avocado fruit are indicative of both, its maturity and the stage of postharvest 

ripening (Peleg et al., 1990). During growth and development of avocado, C7 sugars are stored; 

however, immediately after harvest these sugars are utilized for postharvest physiological 

process, such as respiration, through enzymatic activity that metabolizes these C7 sugars 

(Kader and Yahia, 2011). The present study concurs with these findings, as there was a 
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significant increase in CO2 production after nine days of fruit infused with 9.5 mM sucrose, 

4.75 mM sucrose and control (fruit with pedicel and without pedicel) (Figure 7 -12). The rise 

in CO2 production after nine days may also indicate the reduction in mesocarp C7 sugars. 

Avocado is a highly perishable agricultural commodity, with a short shelf-life due to its high 

respiration rate (Saltveit, 1996); the fruit is unique in that the main respiratory substrates are 

C7 sugars instead of C6 sugars (Liu et al., 1999; Bower and Bertling, 2005; Meyer and Terry 

2008). The respiration over time of avocado fruit is inversely related to shelf-life, because 

respiration directly relates to the breakdown in quality parameters, e.g. sugar content, flavor 

and aroma compounds and firmness (Kaluwa, 2010). A high CO2 evolution indicates a high 

respiration rate; therefore, fruit are deteriorating quickly and, therefore, fruit quality decreases 

(Wills et al., 1989; Kaluwa, 2010). Fruit infused with D-mannoheptulose and perseitol were 

much firmer and had a lower respiration rate than non-infused, water- infused and sucrose 

infused fruit of ‘Hass’ that was harvested mid-season (Fig 1-12). Fruit infused with this C7 

sugars, in mid-harvest were firmer than late-harvested fruit, which suggests that D-

mannoheptulose could be the ‘ripening inhibiting factor’, concurring with findings by Liu et 

al. (1999) that there was high amount of C7 sugars in the mesocarp, which act as antioxidant 

during ripening. In mid-season firmness of mid-harvest ‘Fuerte’ decreased significantly faster 

than that of fruit from other season, which may indicate that in September, ‘Fuerte’ was already 

at the ripening stage at the mid-harvest picking, but not at the early harvest, as previously 

suggested (Adato and Gazit, 1974; Cowan and Bornman, 2004). This suggests that D-

mannoheptulose could be the elusive ‘ripening inhibiting factor’ (Tesfay et al., 2012). The 

normal plant cell metabolism is maintained through utilization of energy compounds, the rate 

of CO2 production is an estimate of the amount of energy used (Nilsen and Orcutt, 1996). The 

fast water loss, in early-harvested fruit (Fig 1-2), compared with mid-harvest fruit (Figure 3-

4), which then resulted in shriveling of some fruit and an increase in postharvest disorder 
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incidences (Figure 13-15), such as mesocarp discoloration and anthracnose; these results 

coincide with previous reports (Bower and Cutting, 1988). The fruit physical changes during 

ripening are also related to fruit maturity, as early-season tended to shrivel (Figure A1D) and 

takes longer time to get ripen, unlike fruit harvested mid- season (Zauberman and Schiffmann-

Nadel, 1972). Maintaining the presence of D-mannoheptulose and its reduced form, perseitol 

seemed to have slowed down the rate of respiration in late-harvested fruit (Figure 11-12). Fruit 

maturity at harvest is an important factor determining storage-life and the final fruit quality 

(Kader, 1999). Late-season fruit took a shorter time to ripen than early- and mid-season fruit 

(Figure 5-6); this may be result of the more advanced fruit development, as fruit hung longer 

on the tree (Cutting and Wolstenholme, 1992). This phenomenon of quicker ripening of late-

harvested fruit is a result of dramatic increase in rate of respiration, and also accelerated by 

ethylene synthesis (Paul and Pandey, 2014) resulting in CO2 release and faster ripening. These 

results concur with Munzhedzi (2016), in that harvesting-season could affect the ripening of 

avocado fruit. Increasing the time of exposure to an inoculum, increases the rate of infection 

(Saranada et al., 2004); hence, in fruit from the late season, control, water- and sucrose-infused 

fruit had a high incidence of postharvest infections due to the increased time of exposure to 

inoculum, while hanging on the trees. Bower and Magwaza (2004) suggested that late-season 

fruit could also be more prone to postharvest disorder, such as chilling injury, due to the low 

moisture content at time of fruit harvest. The high rate of water loss after harvest increases the 

incidence of rots by 5 – 15 % (Bower and Cutting, 1988; Lallu et al., 2004). Postharvest 

infusions with D-mannoheptulose and perseitol seemed to be most beneficial in suppressing 

respiration. Comparing untreated fruit, with those remaining pedicel tended to maintain better 

fruit quality, concurring with Landahl et al. (2009), who found higher amounts of D-

mannoheptulose near the pedicel of the fruit.  
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2.5 CONCLUSION   

The heterogeneity of avocado ripening is a result of the fruit’s intricate physiology, pre-harvest, 

and postharvest factors. Avocado does not ripen while hanging on the tree; this phenomenon 

allows fruit of very different ages to hang in close vicinity in a tree, making it difficult to predict 

postharvest ripening. The findings of this study show that postharvest quality parameters of 

'Hass' and ‘Fuerte’ avocado are significantly affected by the continuous supply of C7 sugars 

and water. As continuous infusion of D-mannoheptulose, and its reduce polyol form perseitol, 

reduces fruit respiration and retains firmness of avocado fruit, these findings confirm earlier 

assumption by Bertling and Bower (2006) that the C7 sugars found predominately in the 

mesocarp tissue play an important role in avocado fruit quality. Infusion of C7 sugars as 

postharvest treatment, seem to contribute severely to the synchronization of avocado ripening. 
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FIGURES 

 
Figure 2: The interaction effect of C7 sugars postharvest infusion, on firmness of Early-season 

‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. Vertical 

bars represent ± SEM (n=48) LSD (P (0.05) = 5.907  

 

 
Figure 3: The interaction effect of C7 sugars postharvest infusion, on firmness of Early-season 

‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. Vertical 

bars represent ± SEM (n=48). LSD (P (0.05) = 6.447 
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Figure 4: The interaction effect of C7 sugars postharvest infusion, on firmness of Mid-season 

‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. Vertical 

bars represent ± SEM (n=48). LSD (P (0.05) = 8.671 

 

Figure 5: The interaction effect of C7 sugars postharvest infusion, on firmness of Mid-season 

‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. Vertical 

bars represent ± SEM (n=48). LSD (P (0.05) = 7.883 
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Figure 6: The interaction effect of C7 sugars postharvest infusion, on firmness of Late-season 

‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. Vertical 

bars represent ± SEM (n=48). LSD (P (0.05) = 9.741 

 
Figure 7: The interaction effect of C7 sugars postharvest infusion, on firmness of Late-season 

‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. Vertical 

bars represent ± SEM (n=48). LSD (P (0.05) = 10.489 
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Respiration  

 
Figure 8: The interaction effect of C7 sugars postharvest infusion, on Net CO2 production of 

Early-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM (n=48). LSD (P (0.05) = 9.796 

 
Figure 9: Interaction effect of C7 sugars postharvest infusion and net CO2 production of Early-

season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM (n=48). LSD (P (0.05) = 10.849 
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Figure 10: Interaction effect of C7 sugars postharvest infusion, on net CO2 production of Mid-

season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM (n=48). LSD (P (0.05) = 7.445 

 
Figure 11: The interaction effect of C7 sugars postharvest infusion, on Net CO2 production of 

Mid-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM (n=48). LSD (P (0.05) = 8.211 
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Figure 12: Interaction effect of C7 sugars postharvest infusion, on net CO2 production of Late-

season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM (n=48). LSD (P (0.05) = 12.341 

 
  

Figure 13: Interaction effect of C7 sugars postharvest infusion, on net CO2 production of Late-

season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM (n=48). LSD (P (0.05) = 11.654 
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Internal Quality Assessment  

 

Figure 14: Effect of C7 sugars infusion and their interaction effect, on vascular browning of 

‘Hass’ fruit from different harvesting seasons (early-, mid-, and late- season). Vertical 

bars represent ± SEM (n=48). LSD (P (0.05) = 3.662 

 

Figure 15: Effect of C7 sugars infusion and their interaction effect, on vascular browning of 

‘Fuerte’ fruit from different harvesting seasons (early-, mid-, and late-season). Vertical bars 

represent ± SEM (n=48). LSD (P (0.05) = 2.841 
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External Quality Assessment  

 
 

Figure 16: Effect of C7 sugars infusion and their interaction effect, on anthracnose infestation 

in different harvesting seasons (early-, mid-, and late-season) of ‘Hass’ fruit. Vertical 

bars represent ± SEM (n=48).  LSD (P (0.05) = 2.111 

 

Figure 17: Effect of C7 sugars infusion and their interaction effect, on anthracnose infestation 

in different harvesting seasons (early-, mid-, and late-season) of ‘Fuerte’ fruit. Vertical 

bars represent ± SEM (n=48). LSD P (0.05) = 1.872 
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ABSTRACT 

 

Avocado (Persea americana Mill.) is an important tropical fruit that is sought after due to its 

distinct attributes; it is highly nutritious, containing high amounts of thiamin, Vitamin E and 

monounsaturated fatty acids. Over the past decade it has been discovered that two heptoses, D- 

mannoheptulose and perseitol, that are found in vast amounts in the mesocarp tissue and that  

act as antioxidants. Although the functions of these sugars in plants remain unclear, there are 

many indications that these compounds contribute to fruit quality. Therefore, increasing the 

amount of the C7 sugar pool in avocado mesocarp was explored through simulation of a 

continuous sugar flow by attaching a silicon tube to the pedicel and infusing these sugars. The 

effect of C7 sugar infusion on fruit sugar concentrations, and the relationships between 

individual sugars, and oil content during fruit ripening were determined. ‘Fuerte’ and ‘Hass’ 

fruit were harvested from Bounty Farm, Winterskloof, KwaZulu-Natal Midlands, South Africa 

at three- picking seasons (early-, mid-, and late-harvest). Mesocarp tissue analysis was carried 

out after infusion of C7 sugars (D- mannoheptulose and perseitol) or the C6 sugar (sucrose). 

Infusion of C7 sugars (D- mannoheptulose or perseitol) positively influenced mesocarp 

mannoheptulose and perseitol levels at both infusions, while water-infusion and C6 sugar 

(sucrose) infusion had no influence on maintaining the levels of these C7 sugars. Similar trends 

of low mannoheptulose and perseitol concentrations were observed when fruit were infused 

with the C6 sugar (sucrose) and those that were not infused, whereby non-infused fruit during 

the late-harvest, showed a low level of C7 sugars concentration. For fruit harvested during the 

early-season, D-mannoheptulose and perseitol concentrations declined rapidly six days after 

postharvest infusion in C6 sugar (sucrose) infused fruit  and control fruit (fruit with pedicel and 

fruit without pedicel) particularly in Hass. It was also noted that dry matter and oil content 

increased with fruit maturity, while moisture content decreased, resulting in faster ripening. 
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Firstly, C7 sugar infusion was a means to improve the mesocarp C7 sugar concentration; while, 

secondly, to investigate the effect of C7 sugar infusion on the concentration of fruit sugars at 

three different harvesting season. The C7 sugars seem to play a vital role in maintaining fruit 

quality and serve as an important source of energy in avocado fruit. The rapid decrease of these 

sugars may be an indication that maintaining a high level of these sugars is necessary to 

minimize postharvest losses through postharvest physiological disorders.  

 

Keywords: C7 sugar, C6 sugar, postharvest infusion, ‘Hass’, ‘Fuerte’, D-mannoheptulose, 

perseitol, harvesting-season, fruit quality, concentration, maturity, oil content, early-harvest, 

mid-harvest, late-harvest, moisture content, dry matter, mesocarp tissue. 
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3.1 INTRODUCTION 

Avocado is an oil-accumulating fruit that is highly susceptible to qualitative and quantitative 

postharvest losses (Bill et al., 2014). The decision to harvest fruit, is based mainly on the oil 

content (Young and Lee, 1978). Tesfay et al. (2010) reported a decline in C7 sugars in the 

mesocarp during postharvest storage, in line with the previous suggestion that these uncommon 

sugars are associated with fruit quality (Bertling and Bower, 2005). Avocado mesocarp has 

large quantities of C7 sugars, particularly D-mannoheptulose, and its reduced polyol form 

perseitol (Liu et al., 1999), as well as volemitol (Cowan and Bornman, 2004). Oil content is a 

key part of the sensory quality of avocado (Dreher and Davenport, 2013). During avocado fruit 

maturation, oil and dry matter accumulate (Ozdemir and Topuz, 2004). As the oil accumulates 

in the mesocarp, its water content declines, by the same amount so that the total percentage of 

oil and water content remains constant during fruit life (Gaydou et al., 1987). The biosynthesis 

of lipids in oily fruit has been reviewed, and acetyl-CoA has been confirmed to be the precursor 

for de novo fatty acid biosynthesis (Salas et al., 2000). Several treatments have been employed 

as means to achieve successful fruit quality maintenance postharvest. Blakey et al. (2009) 

reported the infusion of aqueous ABA solution and water into avocado resulting in faster flesh 

softening, reducing the spread of days to ripening. Avocado growers are faced with severe 

logistic problems due to the inconsistent fruit quality aligned with the ripening physiology of 

avocado fruit (Rose, 2003). By supplementing the ‘sugar pool’ of the fleshy mesocarp with C7 

sugars, which act as antioxidants (Tesfay et al., 2010) and, possibly, as respiratory substrates 

(Tesfay et al., 2012), ripening might be inhibited. The reduction of these uncommon C7 sugars, 

particularly D-mannoheptulose and perseitol below a threshold of  ≈20 mg.g-1 DM could be a 

physiological prerequisite for fruit ripening (Liu et al., 2002). This may indicate that the 

ripening process is associated with catabolism of C7 sugars, but it is equally possible that the 

C7 sugars themselves may be controlling the ripening process. The potential involvement of 
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these C7 sugars in inhibiting ripening when the fruit is detached from the tree is, however, still 

not clear. This study attempts to investigate, if the simulation of the fruit being attached to the 

tree (by providing a constant flow of CHOs through infusion of water, sucrose or the C7 sugar 

D-mannoheptulose or perseitol) can inhibit ripening. The hypothesis is that maintaining a 

physiological D-mannoheptulose or perseitol concentration and mesocarp water content in the 

fruit mesocarp delays fruit ripening. 

 

3.1.1 Research aim 
 

The main aim of this experiment was to investigate the effect of postharvest C7 sugars infusion 

on the changes in mesocarp sugar concentration and the relation between individual sugars and 

oil content during ripening for the three maturity stages as defined by picking seasons (early-, 

mid-, and late-season fruit). 

 

3.1.2 Research objectives 

 

3.1.2.1 To investigate, if infusion of the C7 sugars D-mannoheptulose and perseitol through 

the pedicel can maintain physiological concentrations of the C7 sugars D-

mannoheptulose and perseitol within the fruit. 

3.1.2.2 To investigate the effect of mesocarp moisture content in relation to C7 sugars 

concentration during postharvest ripening. 

3.1.2.3 To investigate, if the continued supply of D-mannoheptulose, perseitol and water can 

delay mesocarp deterioration and maintain fleshy fruit mesocarp. 

3.1.2.4 To investigate the effect of C7 sugars infusion on the oil content of individual fruit 

harvested at three different maturity stages as defined by picking season (early-, mid- 

and late-season fruit). 
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3.2 MATERIALS AND METHODS  

3.2.1 Fruit material and experimental design 

The research was carried out in the 2015 and 2016 avocado growing season, using 

physiologically mature ‘Hass’ and ‘Fuerte’ fruit. During these seasons fruit were collected from 

mature ‘Hass’ and ‘Fuerte’ avocado orchards of Bounty Farm, Winterskloof, in the KwaZulu-

Natal Midlands, South Africa (29°28´S; 30°161´E). Fruit were harvested with about 5cm 

pedicels retained and selected based on uniformity of shape, colour and size. Only bruise- and 

blemish-free fruit were used in the experiment. To prevent physical damage, harvested fruit 

were gently placed into crates and immediately transported, to the Horticultural Science 

laboratories at the University of KwaZulu-Natal, Pietermaritzburg. Three separate experiments 

were carried out during the 2015 and 2016 season, in an early, mid- and late- harvesting season. 

Avocado fruit within a mass of 203-243 g (class 1; Government Gazette 37223, 17 Jan 2014) 

were harvested on 29/04/2016 (‘early’, moisture content 72%, equivalent to 28% DM and 25% 

oil), on 09/09/2015 (‘mid’, moisture content 66%, equivalent to 34% DM and 26 % oil) and on 

01/12/2015 (‘late’, moisture 60% moisture, equivalent to 40% DM and 31 % oil), representing 

the early-, mid- and late-harvesting season, respectively. For each experiment a total number 

of 96 avocados with 5 cm pedicel were acquired, consisting of 48 ‘Hass’ and 48 ‘Fuerte’ fruit. 

Fruit were randomly divided into nine treatments, seven infusion treatments (C7 sugars 

solutions 1.5 mL of 9.5 mM/fruit; 4.75 mM/fruit D-Mannoheptulose, 9.5 mM/fruit; 4.75 

mM/fruit Perseitol solution) was infused to 6 fruit per treatment. The C6 sugar solutions of 

sucrose with 9.5 mM/fruit; 4.75 mM/fruit were infused in 1.5 mL pedicel. Water of 1.5 mL 

was infused in six fruit and two untreated fruit categories consist of six fruit each, one with 

2cm pedicel and one without pedicel). 
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3.2.2 Chemicals 

 

All chemicals were obtained from Sigma-Aldrich®, Saarchem®, Fluka® or Glycoteam 

GmbH. 

 

3.2.3 Treatments 

Silicon tubing was attached to the pedicel (re-cut to about 2cm prior to treatment to remove 

dead tissue) of fruit, and sealed with petroleum jelly at the base (Cutting and Bower, 1987). 

According to Bertling et al. (2011). An amount of 1.5 mL water or sucrose (C 6 sugar) or 9.5 

mM or 4.75 D-mannoheptulose or perseitol was infused into six fruit per treatment. Control 

fruit (with and without pedicel) remained untreated.  

3.2.4 Data collection and sample preparation 

Avocado fruit are highly heterogeneous, so in order to minimize sampling variation, two core 

samples (2.5 ml each) were taken along the equatorial region of the fruit using a 15 mm 

diameter cork-borer (Meir et al., 1991); sampled areas on each fruit were immediately  sealed 

with petroleum jelly to prevent mesocarp oxidation. For each experiment as defined by 

harvesting season fruit were assessed on sugars content, moisture content and oil content, 

throughout shelf-life. Samples of both cultivars, ‘Hass’ and ‘Fuerte’, were sampled and 

measured in three (3) day intervals of (day 0, 3, 6, 9, 12, and 15) during the C7 postharvest 

infusion; two core tissue samples were immediately lyophilized and stored at -20 °C until 

further analysis.  
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3.2.5 Determination of soluble sugar concentration 

Freeze-dried, ground material (0.05 to 0.10 g DM) was mixed with 10 mL 80 % (v/v) ethanol 

and homogenized for 60 s. Thereafter, the mixture was incubated in an 80 ºC water bath for 60 

min and kept at 4 ºC overnight according to Tesfay et al. (2010). After centrifugation at 12,000 

x g for 15 min at 4 ºC, the supernatant was filtered through glass wool and was taken to dryness 

in a Savant Vacuum Concentrator (SpeedVac, Savant, New York, USA). Dried samples were 

re-suspended in 2 mL ultra-pure water, filtered through 0.45 μm nylon filters and analysed 

using High-performance liquid chromatography (HPLC) (LC – 20AT, Shimadzu Corporation, 

Kyoto, Japan) system to which a refractive index detector (RID-10A, Shimadzu Corporation, 

Kyoto, Japan) was attached. The elution was isocratic, using ultrapure water as the mobile 

phase. Individual sugars were identified by co-elution with standards of sucrose (Sigma-

Aldrich, St Louis, Missouri, USA), mannoheptulose and perseitol (Glycoteam, Hamburg, 

Germany). Sugars were quantified by using a standard curves for each sugar. Samples were 

analysed twice and the mean taken. 

 

3.2.6 Percentage mesocarp moisture content (MC) and dry matter (DM) 

The MC was determined by measuring the difference in mass of the sample taken from the 

equatorial region of the fruit before and after lyophilisation. Thereafter, the % moisture content 

was determined as follows:  

Moisture content (%) = (M0-M1/M0) ×100 

Where: 

M1 = Final mass of the dried sample  

M0 = Initial mass of the fresh sample 
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Dry matter (DM) was determined by freeze-drying a sample at 60 ºC to a constant mass. The 

final and initial mass difference was used to calculate dry matter percentage, taking a 

representative sample of mesocarp of avocado tissue as described by Meyer and Terry (2008). 

 

3.2.7 Measurement of mesocarp oil content  

Mesocarp oil content was measured from ground, lyophilised sample material and quantified 

using the method described by García et al. (2009), with slight modifications. Hexane (9.0 mL) 

was added to 300 mg lyophilised mesocarp tissue in a test tube which was placed into an ultra-

sonic bath for 10 min. The sample was filtered under vacuum and another 6 mL hexane added 

to the test tube. This solution was left to stand for 5 min and the tube emptied into the Buchner 

funnel. The test tube was then rinsed with 3 mL hexane. The 18 mL of hexane was combined 

and dried using a GeneVac® concentrator (SP Scientific, Genevac Limited, IPSWICH ENG.). 

The recovered oil was weighed and the percentage oil content was calculated using the 

following equation and expressed as [% (w/w)]. 

 

Oil content (% w/w) = dry matter (%) x oil mass (g) (1) 

                                          dry pulp mass (g) 

3.2.8 Statistical analysis  

Data were analyzed in the form of a factorial design, where each treatment combination 

consisted of six fruit, each fruit constituting a single replication. Analyses of variance were 

performed using GENSTAT (edition 17th; VSN International, Hemel Hempstead, UK). 

Standard deviations (S.D.) were calculated and differences among treatments were separated 

by a significant difference (LSD) test, with P ≤ 0.05 regarded as significant. The following 

parameters were used to evaluate the change in the quality of the avocados during ripening: 

soluble sugar concentration, mesocarp moisture content (MC), % dry matter (DM), and oil 

concentration. 
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3.3 RESULTS   

 

3.3.1 Sugar Analysis- Mannoheptulose and Perseitol  

 

There were significant differences (P < 0.005) in infusion treatment means with regard to the 

concentrations of D-mannoheptulose and perseitol (mg g-1) in the mesocarp tissue of ‘Fuerte’ 

and ‘Hass’ avocado fruit harvested in three different season (i.e., early-, mid-, and late-harvest). 

Fruit infused with C7 sugars (D-mannoheptulose and perseitol) had the highest concentration 

of these sugars; mannoheptulose was the predominant sugar in fruit from the early harvest, 

followed by mid-harvest; endogenous mesocarp concentrations, however, declined throughout 

the progress of postharvest infusion (Fig 1-4). Infusion of C7 sugars was able to maintain the 

initial levels of these sugars (D-mannoheptulose and perseitol). Water infusion had an effect in 

maintaining C7 sugars during postharvest infusion, by maintaining the mesocarp 

mannoheptulose concentration levels, but the difference to sucrose infusion was not significant 

during day nine, since there was, 7.642 mg g-1 as difference between mean values of water 

infused fruit and 7.729 mg g-1 as difference between mean values of sucrose- infused fruit, with 

LSD (p≤ 0.05) = 13.642 (Fig 6). Control fruit had the lowest mesocarp D-mannoheptulose (Fig. 

1-6) and perseitol (Fig. 7-12) concentrations. The effect of harvest-season on C7 sugars was 

found to be significant (LSD (p≤ 0.05) = 1.621), the mannoheptulose trends (Fig. 1-4) illustrate 

a high amount of mannoheptulose in early-harvest and mid- harvest fruit, which seems to 

indicate that C7 sugars play a major role during this part of fruit development. During the late 

season, however, the perseitol concentration was higher than that of D-mannoheptulose, 

suggesting that this sugar alcohol is related to fruit storability; this is also supported by the fact 

that the ‘Hass’ mesocarp had significantly higher concentration of perseitol than the mesocarp 

tissue of ‘Fuerte’ (Fig. 11-12) and the postharvest quality of ‘Hass’ is known to outperform 

that of ‘Fuerte’ (Bill et al., 2014). Following six days of postharvest infusion, D-

mannoheptulose and perseitol concentrations seemed to drastically decrease in mesocarp 
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tissue. The D-mannoheptulose concentration on storage day nine was similar to, and in some 

cases lower than, that of perseitol, suggesting that, during postharvest storage, D-

mannoheptulose is utilised more readily as a carbohydrate than perseitol. Even at day 12, C7 

sugars (D-mannoheptulose and perseitol) dominated over the C6 sugars (data not presented), 

indicating a lesser importance of this sugar in avocado. It was also noted that the concentrations 

of glucose increased after 6 days of postharvest days of infusion, while sucrose declined 

slightly during ripening. D-mannoheptulose and perseitol, as well as glucose and sucrose, were 

consistently present during ripening in all harvesting seasons.  

 

3.3.2 Moisture Content (MC) and Dry Matter (DM)  

Infusion treatment and harvesting season significantly affected avocado MC and its reciprocal 

value, DM. Dry matter increased with a decrease in moisture content, while the postharvest 

infusion was performed on fruit of three different seasonal pickings (i.e., early-, mid-, and late-

harvest, Fig. 13-18). A comparison of the different postharvest infusion treatment means 

indicated that the decrease in the MC occurred at a slower rate during day 0, 3, and 6 of early 

harvested fruit. In terms of mesocarp MC, trends tend to decrease with postharvest days (Fig. 

13-18). A general reduction in the MC was observed in all avocado fruit for both, ‘Hass’ and 

‘Fuerte’ fruit.  Mesocarp MC dropped from 77.0 to 66.0% from early- to mid-harvest, and 71.6 

to 64.0% from mid- to late-harvest in ‘Fuerte’, whereas in ‘Hass’ it dropped from 78.0 to 67.0% 

from early- to mid-harvest, and 75.6 to 65.2% from mid- to late-harvest season. Likewise, 

mesocarp dry matter content also increased with every harvest from early to late-season. Dry 

matter increased with increasing fruit maturity in both cultivars, ‘Hass’ and ‘Fuerte’ (Fig. 13-

18). 
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3.3.3 Oil content  

Harvesting season had a significant effect on the concentration of oil in fruit (P<0.005), and 

the interaction between infusion treatment and days postharvest was significant. The oil 

concentration increased slowly from early- to mid-season, but faster mid- to late season (Fig. 

25-29). Early-harvested fruit had the lowest oil concentration, particularly in ‘Hass’ fruit (Fig. 

3.25). These is probably due to the higher percentage moisture content at that sampling time. 

Overall, in the three harvesting season (i.e., early- mid- and late-harvest), D-mannoheptulose 

and perseitol infusions resulted in the highest mesocarp oil concentrations; however, after 12 

days of postharvest infusion, there significant difference between C7 sugars and C6 sugar. 

Sucrose-infused fruit tended to contain a high amount of oil during early days of infusion.  

 

3.4 DISCUSSION   

3.4.1 C7 sugars in plants with special reference to mannoheptulose and perseitol 

C7 sugars have various roles in plant (Rolland et al., 2002; Liu et al., 1999), with rather diverse 

functions in avocado (Richings et al., 2000; Tesfay, 2009). The individual sugar concentration 

in the avocado fruit can be influenced by the type of cultivar and the type of fruit tissue 

(Landahl et al., 2009). As glucose and fructose concentrations remain at a low level throughout 

ripening (data not presented), it is suggested that the two predominant heptoses are utilised 

during the ripening process. Landahl et al. (2009) reported a significant difference in D-

mannoheptulose and perseitol concentrations in different mesocarp sections. The reduction of 

C7 sugars, as maturity increases, led to the suggestion that these peculiar C7 structure can 

represent the main energy source in avocado fruit (Liu et al., 1999). The drastic reduction of 

the C7 sugar concentration appears after postharvest storage and ripening (Blakey et al., 2009). 

Similar to the present study Bertling and Bower (2006), reported ‘Hass’ mesocarp tissue to 

have a higher concentration of D-mannoheptulose than ‘Fuerte’, with concentrations in both 
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cultivars decreasing with fruit maturity. Furthermore, C7 sugar concentrations also differ with 

cultivar (Bertling and Bower, 2005) and both, maturity and a cultivar affect postharvest fruit 

quality (Bertling and Bower, 2006). Tesfay et al. (2010) reported a higher concentration of 

mannoheptulose in the mesocarp tissue of ‘Hass’ avocados than perseitol at the time of harvest, 

as was found in this study after three days of postharvest (Fig. 1-12). Perseitol has been 

postulated as the C7 sugar storage compound (Tesfay, 2009); the present results during late 

season concur with this, as there was high levels of perseitol during 3 days of postharvest 

infusion. 

 

This may also suggest that there was high amount of perseitol at harvest. Only the infusion of 

C7 sugars had a significant influence on fruit mannoheptulose and perseitol sugar levels. The 

results indicate a significant loss in mannoheptulose during the late-harvest infusion and this 

may be due to conversion of mannoheptulose to perseitol (Tesfay, 2009) or this C7 sugar 

alcohol after conversion is stored as a storage compound in the avocado cotyledon (Tesfay et 

al., 2011). However, this may also suggest that during the late harvest stage there is a 

disturbance of sugar solutes transportation from the seed through the seed coat into the fleshy 

mesocarp, due to senescence of the seed coat (Cowan et al., 1997), and this concurs with the 

present results as it was observed a significant decline of D-mannoheptulose after 9 days of 

postharvest infusion during late-harvest (Fig. 5-6). Confirming Liu et al.’s (1999) findings that 

C7 sugars are forming a more important group of carbohydrates in avocado than C6 sugars. 

Sucrose declined slightly during ripening (data not presented), which is suggested to relate with 

an increase in cellulase activity breaking down cell walls and forming glucose. As expected, 

due to a continuous supply of C7 sugars during postharvest through pedicel infusion, resulted 

in a subsequent reduction of metabolic rate activity that results in suppression of ripening. A 

phenomenon previously reported by Bertling and Tesfay, (2011) in ‘Hass’ avocados. These 
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data confirm that mannoheptulose and perseitol are the dominant sugars present during 

ripening.  

 

3.4.2 Moisture Content and Dry Matter analyses 

The inverse relationship that exists between the moisture content and the mesocarp oil 

concentration of avocado (Slater et al., 1975), was confirmed in the present study (Figure 13-

24). This decline in mesocarp moisture content have been previously observed (Osuna-Garcia 

et al., 2010; Yousef and Hasseine, 2010). During fruit maturation, there is an accumulation of 

dry matter and oil concentration in the fruit, while moisture content decreases, resulting in the 

overall increase in palatability (Osuna-Garcia et al., 2010). Water content has been considered 

as the easiest factor to measure in avocado (Bower, and Cutting, 1988). In South Africa, 

mesocarp moisture (water content) is used as a tool for maturity indexing, and also for the 

determination of the commencement of the picking period from start, indicating the time from 

which onwards fruit ripen normally, becoming palatable without shrivelling. This 

recommended mesocarp moisture content lies in the range of 69 to 75%, depending on the 

cultivar (Mans et al., 1995; Hofman et al., 2002). Bower et al. (2007) also found that water 

was the single most important factor in the variation of ripening of avocado fruit. However, 

untreated fruit depicted a significant decrease in MC, particularly in early-harvested which 

agrees with Munzhedzi, (2016) findings that ‘Fuerte’ fruit had low moisture content in early-

harvest and this may be due to low dry matter content and the inverse relationship between oil 

content and moisture content (Kruger et al., 1995).   
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3.4.3 Oil content  

The mesocarp oil content of freshly harvested fruit remained fairly constant during the early- 

and mid-season and only showed a significant increase during the late-season, possibly this 

indicate an increased cell wall degradation leading to oil accumulation (Mostert et al., 2007; 

Meyer and Terry, 2008), since C7 sugars may be possible precursor for fatty acid synthesis. 

This may result in a reduction in antioxidant D-mannoheptulose. However, oil content 

differences in avocado fruit depends on several factors, such as the type of the cultivar (Dodd 

et al., 2010; Orhevba and Jinadu, 2011) and fruit development stage (Ozdemir and Topuz, 

2004; Villa-Rodriguez et al., 2011), as demonstrated by the present findings, with late-

harvested fruit had high oil content followed by middle-harvested fruit, whereas Hass had high 

oil concentration in middle-harvest compared to Fuerte (Figure 28 - 30), possible this indicate 

the importance of the C7 sugars for internal quality and palatability of the fruit. The postharvest 

infusion had significant effect on oil content. The results concurs with Lee et al., 1983, reports 

that oil mesocarp concentration does not change with time after harvest, but this variation has 

been observed across harvest season. Sucrose-infused fruit tended to contain a high amount of 

oil during early postharvest days after infusion. This may suggest that it contributes 

significantly to oil synthesis as it consists of glucose that is indirectly involved in fatty acids 

synthesis through by-product of glycolysis. This is why, there was no lower oil content since 

9.282 % as difference between mean values of water infused fruit and 6.973 % as difference 

between mean values of sucrose- infused fruit, with LSD (p≤ 0.05) = 4.374, (Fig 30).  

 

3.5 CONLUSION   

In conclusion, the continuation of the D-mannoheptulose, perseitol and water supply through 

the pedicel infusion influences ripening and maintains a high concentration of these sugars in 

the mesocarp. Study concurs with Blakey et al. (2009), who reported fruit water content can 
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influence ripening, and C7 sugars to be a major carbon source and antioxidant in avocado fruit 

(Tesfay et al., 2010). Indeed, C7 sugars may be a critical factor in avocado ripening physiology, 

and an important energy source (Liu et al., 1999). Fruit maturity serves as a major determinant 

of final fruit quality (Kader, 1999). The season of picking influences the C7 sugar pool in 

mesocarp tissue, it has been confirmed that there is reduction in C7 sugars as picking is delayed. 

From the present findings, MC and DM are related to C7 sugars accumulation; it is, therefore, 

suggested that an increase in C7 sugars and water loss during ripening trigger the decline in the 

size of the C7 sugars pool. Fruit use up the C7 sugars which are antioxidants (important to 

avoid browning), then they are also precursors, maybe for the oil synthesis, so are needed for 

proper ‘creaminess’ of the fleshy mesocarp. It might also be, that water loss directly impacts 

on the transporting ability of the sugars, meaning as soon as fruit reach a certain level of dry 

matter, the sugars stay in the relevant fruit tissues and cannot be moved to other fruit parts. The 

maintenance of these C7 sugars during postharvest storage, to limit the loss of these sugars, is 

of paramount importance to reduce the risk of fruit not achieving eating ripeness and 

developing internal disorders. It should also be examined, if and how the depletion of C7 sugar 

levels postharvest can be reduced, and if the levels of the sugars can be manipulated before 

harvest to commence fruit ripening postharvest with a high C7 sugar pool to hopefully achieve 

high fruit quality. 
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FIGURES 

Sugar profile (D-mannoheptulose) 

 

Figure 1: Effect of C7 sugars postharvest infusion treatment, on mesocarp D-  mannoheptulose 

concentration of Early-season ‘Hass’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 8.793 

 

 
 

Figure 2: Effect of C7 sugars postharvest infusion treatment, on mesocarp D- mannoheptulose 

concentration of Early-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 7.936 
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Figure 3: Effect of C7 sugars postharvest infusion treatment, on mesocarp D- mannoheptulose 

concentration of Mid-season ‘Hass’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 10.11 

 

Figure 4: Effect of C7 sugars postharvest infusion treatment, on mesocarp D- mannoheptulose 

concentration of Mid-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 11.002 
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Figure 5: Effect of C7 sugars postharvest infusion treatment, on mesocarp D- mannoheptulose 

concentration of Late-season ‘Hass’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 12.73 

 

Figure 6: Effect of C7 sugars postharvest infusion treatment, on mesocarp D- mannoheptulose 

concentration of Late-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 13.642 
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Sugar profile (Perseitol) 

Figure 7: Effect of C7 sugars postharvest infusion treatment, on perseitol mesocarp 

concentration of Early-season ‘Hass’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 8.694 

 

Figure 8: Effect of C7 sugars postharvest infusion treatment, on perseitol mesocarp 

concentration of Early-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 7.865 
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Figure 9: Effect of C7 sugars postharvest infusion treatment, on perseitol mesocarp 

concentration of Mid-season ‘Hass’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 10.501 

 

 

Figure 10: Effect of C7 sugars postharvest infusion treatment, on perseitol mesocarp 

concentration of Mid-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 10.009 
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Figure 11: Effect of C7 sugars postharvest infusion treatment, on perseitol mesocarp 

concentration of Late-season ‘Hass’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 12.741 

 

Figure 12: Effect of C7 sugars postharvest infusion treatment, on perseitol mesocarp 

concentration of Late-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe 

softness was reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 13.121  
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Mesocarp moisture content (%MC)  

 

Figure13: Effect of C7 sugars postharvest infusion treatment, on moisture content (MC) of 

Early-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 5.462 

 

 

Figure 14: Effect of C7 sugars postharvest infusion treatment, on moisture content (MC) of 

Early-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 6.432 
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Figure 15: Effect of C7 sugars postharvest infusion treatment, on moisture content (MC) of 

Mid-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 4.662 

 

 

Figure 16: Effect of C7 sugars postharvest infusion treatment, on moisture content (MC) of 

Mid-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 5.167  
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Figure 17: Effect of C7 sugars postharvest infusion treatment, on moisture content (MC) of 

Late-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 8.960 

 

 

Figure 18: Effect of C7 sugars postharvest infusion treatment, on moisture content (MC) of 

Late-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 8.002 
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Dry matter (%DM) 

 

Figure 19: Effect of C7 sugars postharvest infusion treatment, on dry matter (DM) of Early-

season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 9.807 

 

Figure 20: Effect of C7 sugars postharvest infusion treatment, on dry matter (DM) of Early-

season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 8.103 
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Figure 21: Effect of C7 sugars postharvest infusion treatment, on dry matter (DM) of Mid-

season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 7.347 

 

Figure 22: Effect of C7 sugars postharvest infusion treatment, on dry matter (DM) of Mid-

season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 6.981 
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Figure 23: Effect of C7 sugars postharvest infusion treatment, on dry matter (DM) of Late-

season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 7.615 

 

Figure 24: Effect of C7 sugars postharvest infusion treatment, on dry matter (DM) of Late-

season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was reached. 

Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 7.534 
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Mesocarp Oil Content  

 

Figure 25: Effect of C7 sugars postharvest infusion treatment, on mesocarp oil concentration 

of Early-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 10.117 

 

 
Figure 26: Effect of C7 sugars postharvest infusion treatment, on mesocarp oil concentration 

of Early-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 12.073 
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Figure 27: Effect of C7 sugars postharvest infusion treatment, on mesocarp oil concentration 

of Mid-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 4.6.895 

 

 
 

Figure 28: Effect of C7 sugars postharvest infusion treatment, on mesocarp oil concentration 

of Mid-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 6.842 
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Figure 29: Effect of C7 sugars postharvest infusion treatment, on mesocarp oil concentration 

of Late-season ‘Hass’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 5.410 

 

 
 

Figure 30: Effect of C7 sugars postharvest infusion treatment, on mesocarp oil concentration 

of Late-season ‘Fuerte’ avocado fruit from day of infusion until eat-ripe softness was 

reached. Vertical bars represent ± SEM. (n=48). LSD (P (0.05) = 4.374 
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GENERAL DISCUSSION, CONCLUSION AND OUTLOOK 

 

 

 

There are many postharvest destructive methods that can be employed to determine compounds 

associated with fruit maturity. Although C7 sugars have been researched intensively in 

association with avocado postharvest quality, there are no reports that successfully maintaining 

C7 sugar pools in the mesocarp tissue can ensure good fruit quality. The overall results of this 

study suggest that infusion of a watery sugar solution (containing mannoheptulose and 

perseitol) allow for a better maintenance of the limited pool of C7 sugars found in the mesocarp 

tissue. This pedicel infusion method significantly reduced the decline in C7 sugar pool. This 

maintenance of the C7 sugar pools in the mesocarp may be one of the primary reasons for the 

increase in shelf-life noted under these treatments in a previous study (Bertling and Tesfay, 

2011). Perseitol concentrations did not significantly decrease during the early days of 

postharvest infusion, but did decrease significantly during ripening, which concurs with Liu et 

al. (1999). Thus, as more energy is needed during ripening, it appears that mannoheptulose is 

utilised during storage and then perseitol is converted to mannoheptulose when the pool has 

been depleted. Thus, at the end of the infusion period by the time measurements were taken, 

mannoheptulose concentrations were low and had a minimal effect on fruit quality. There is an 

importance to build up the C7 sugar pool during fruit growth and development, so that the fruit 

can be sustained during postharvest at high quality, as this research has shown that keeping the 

C7 sugar pool high, extends shelf life and fruit quality. This study has therefore, contributed to 

the understanding of avocado postharvest physiology and should aid in better management of 

avocados for improved fruit quality and consumer satisfaction.  
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FUTURE RESEARCH AND COMMERCIAL IMPLICATION 

 
 

The C7 sugars mannoheptulose and perseitol could be used as bio-markers of inherent quality 

characteristics of avocado fruit; therefore, postharvest losses of avocado fruit could be 

minimised, if levels of these sugars can be maintained. It has been shown that C7 sugar and 

fruit water content can influence ripening physiology. While an infusion method to balance or 

maintain fruit water and mesocarp C7 sugars content within a consignment is not possible 

commercially, the experiments have clearly demonstrated that the maintenance of a certain size 

C7 sugar pool is of importance to manage fruit quality postharvest, as it was demonstrated that 

the levels of C7 sugars and water in the mesocarp influence ripening. In South Africa, some 

packhouses use a wet dump, whereby the fruit are dumped into a water bath usually containing 

a fungicide. In such a wet dump technique, fruit may take up some water, particularly laterally 

towards the seed (Lee et al., 2006), thereby allowing for a higher mesocarp moisture content 

that delays ripening. 
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APPENDIX 

 

A (Vascular browning of late-harvested  Fuerte) 

 

B (Vascular browning of late-harvested Hass) 

 

C (Rubbery mesocarp of early-harvested  Fuerte) 

 

D (Shrinkage of early-harvested  Hass) 

 

 

Figure A1: Internal effect of sugars infusion, on (Vascular browning: Fuerte A and Hass B); 

(mesocarp rubbery: C, and exocarp shriveling: D) in different harvesting seasons (early, 

middle, and late season) (Chapter 2). 

 

 


