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ABSTRACT 

Meiofauna are an important component within the benthic environment of any aquatic 

habitat. Despite their significance and ubiquitous nature, these organisms are relatively 

poorly studied in Africa. Following a decade long drought period, the St Lucia Estuary 

experienced higher than average amounts of rainfall at the end of 2010. These heavy rainfall 

events replenished the freshwater capacity of the system, raising the water level and 

subsequently reducing salinity throughout the estuarine lake, thus marking the start of a two 

year long wet phase. Meiofauna community dynamics were assessed to determine their 

response to a wet phase and to the disturbance brought on by intense rainfall. Diversity 

indices and a host of multivariate analyses were used to gain an understanding of the 

meiofaunal communities of the system during this wet phase. Meiofaunal density and 

richness tended to be higher during the first year of the wet phase. Meiofauna communities 

within each site became more homogenous in the second year of the wet phase, indicating a 

more established community adjusted to wet conditions. Following a flood disturbance in 

early January 2011, meiofaunal communities at each site differed in terms of primary and 

secondary colonisers. Over time, communities increased in dissimilarity, suggesting 

succession at some level. A successional pattern was observed as the taxonomic composition 

of the communities shifted over time.  The lack of a climax community in St Lucia in the 

medium term was likely due to the uneven impact that the lake experienced with the onset of 

the disturbance, with the northern reaches experiencing a greater degree of impact than the 

southern reaches. The continuity in disturbance occurrences also caused the system to move 

back to a previous successional state. The meiofauna of St Lucia are therefore able to recover 

after disturbances related to a wet phase and maintain some form of resilience. In the long 

term, meiofaunal communities may require a longer time period, than the one considered in 

this study, to reach the levels of abundance previously recorded. 



 

IV 
 

 

 

 

 

 

 

 

Dedicated to my biggest fans:  

Maggie Govender (1919 – 2015) and Henry Naidoo (1940 – 2015) 

  



 

V 
 

ACKNOWLEDGEMENTS 

Firstly, I thank my Lord and Saviour, Jesus Christ for His grace and mercy that has brought 

me thus far and allowed me to complete this research. I would like to thank my family. My 

parents, Brian & Eileen, my grandmother, Sylvia and my brother, Ryan, have been a 

continuous source of motivation and support throughout this time. They have supported me, 

physically, financially and emotionally, for this I am extremely grateful.  

To my friends from campus, Lindile, Thembeka, Jyothi and Michael, thank you for always 

being a source of fun and an escape from work. Sandesh, thank you for being an added 

source of motivation. Thank you Killiann for your assistance and for always keeping me in 

good spirits throughout this time. 

I would especially like to thank the St Lucia survey teams from 2011 and 2012 for the 

collection of samples. I would also like to thank Dr Nicola Carrasco for her support, 

motivation, guidance and assistance. The EMS (Environmental Mapping and Surveying) unit 

at UKZN is also thanked for its assistance with granulometry. 

To my supervisor, Renzo, I consider it a privilege to have worked with you on this project. I 

am grateful for your assistance and guidance in the various stages of this work. To my co-

supervisor Sarah, thank you for always assisting me, from laboratory work to writing, you 

have been a great help. Your assistance with meiofauna identification, valuable advice and 

continuous involvement in my work is greatly appreciated. Your experience with manuscript 

reviewing and assistance throughout the process is greatly appreciated. 

Funding is an important aspect of all research, and has made this work possible. I would like 

to thank the following organisations for providing me with funding to carry out my research. 

Funding for this project was provided by the National Research Foundation (NRF) and the 

University of KwaZulu-Natal (UKZN). 

  



 

VI 
 

Table of Contents 

PREFACE .............................................................................................................................. I 

DECLARATION 1 - PLAGIARISM .................................................................................... II 

ABSTRACT ......................................................................................................................... III 

ACKNOWLEDGEMENTS .................................................................................................. V 

LIST OF TABLES ............................................................................................................ VIII 

LIST OF FIGURES ............................................................................................................... X 

CHAPTER 1: INTRODUCTION .......................................................................................... 1 

1.1 Context ................................................................................................................................. 1 

1.2 Freshwater inflow: Environmental alterations and biological responses ............................ 1 

1.3 Benthic biota: Meiofauna ..................................................................................................... 3 

1.4 The St Lucia estuarine lake .................................................................................................. 4 

1.5 Relevance and study aims .................................................................................................... 8 

1.6 Study Site ........................................................................................................................... 10 

CHAPTER 2: MEIOFAUNAL COMMUNITY CHARACTERISTICS DURING A 

CLIMATICALLY-INDUCED WET PHASE IN THE ST LUCIA ESTUARY, SOUTH 

AFRICA ............................................................................................................................... 12 

2.1 Abstract .............................................................................................................................. 12 

2.2 Introduction ........................................................................................................................ 13 

2.3 Methods.............................................................................................................................. 15 

2.4 Results ................................................................................................................................ 18 

2.5 Discussion .......................................................................................................................... 38 



 

VII 
 

CHAPTER 3: RESPONSE OF MEIOFAUNA TO A FLOOD DISTURBANCE IN THE 

ST LUCIA ESTUARY, ISIMANGALISO WETLAND PARK ......................................... 45 

3.1 Abstract .............................................................................................................................. 45 

3.2 Introduction ........................................................................................................................ 46 

3.3 Methods.............................................................................................................................. 48 

3.4 Results ................................................................................................................................ 50 

3.5 Discussion .......................................................................................................................... 64 

FINAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK ........... 71 

References ............................................................................................................................ 76 

 

  



 

VIII 
 

LIST OF TABLES 

Table 2.1: Mean ± SD of combined environmental variables from 2011 and 2012 for 

summer, autumn, winter and spring, at each site. Minimum and maximum values across all 

phases (Range) are provided. Variables include turbidity (NTU: nephelometric turbidity 

units) and total suspended solids (TSS).  Where no SD is present, only a single reading was 

obtained………………………………………………………………………………………20 

Table 2.2: Sediment characteristics at 5 sites in St Lucia Estuary (Listers Point, Charters 

Creek, Catalina Bay, Esengeni, Mouth), including mean (±SD) microphytobenthos (MPB) 

and percentage sediment organic matter (SOM)……………………………………………..22 

Table 2.3: Spearman’s Rank correlation coefficients of the relationship between 

environmental variables and mean meiofaunal density (N) and taxon richness (d), including 

temperature (°C), salinity, pH, mean total suspended solids (TSS), median particle size 

(MPS), % sediment organic matter (SOM), microphytobenthos biomass (MPB) and rainfall 

(mm). Significant correlations are highlighted in bold ( = 0.05)…………………………...23 

Table 2.4: Results of ANOVAs examining the effects of year (2011, 2012), site (Listers 

Point, Charters Creek, Catalina Bay, Esengeni, Mouth) and season (summer, autumn, winter, 

spring) on density and taxon richness (d) of meiofauna in the St Lucia Estuary. Significant 

results are marked with an asterisk (α = 0.05)……………………………………………….28 

Table 2.5: Mean density (ind.10 cm-2) of identified meiofauna taxa in the St Lucia estuarine 

lake system between 2011(a) and 2012 (b) for summer (Su), autumn (A), winter (W) and 

spring (Sp). * indicates where taxonomic identification were tentative. Unid.: unidentified 

(specimens could not be identified taxonomically e.g. if damaged or 

unknown).……………………………………………………………………..…………….31 



 

IX 
 

Table 2.6: Results of multivariate analysis of similarity (ANOSIM) on community structure 

and composition of meiofauna in the St Lucia Estuary, examining the effects of site and 

season (2-way ANOSIM). The ANOSIM test statistic (R) significance level of 5% 

corresponds to α = 0.05, Clarke & Warwick 2001)………………………………………….36 

Table 3.1: Environmental paramters measured at the St Lucia Estuary from the three 

representative sites from the end of the drought and beginning of the flood phase. Values in 

bold are averages from data sampled around that time. * denotes missing data. Arrows denote 

the onset of the flood phase……………………………………………………….………….52 

Table 3.2: Two-way factorial ANOVA results between site and phase for abundance (N) and 

taxon richness (S). Significant differences are indicated with an asterisk (*)………….……54 

Table 3.3: Tukey post-hoc test results for the interaction effect between site and phase on 

abundance where * denotes subsets in which a particular group falls under; common asterisks 

within a subset indicate homogenous groupings……………………………………………..55  

Table 3.4: Results of permutational multivariate analysis of variance (PERMANOVA) on 

meiofauna in the St Lucia Estuary, examining the relationship between temporal distribution 

and site………………………………………………………………………………………..57 

Table 3.5: Mean density (ind.10 cm-2) of identified meiofauna taxa in the St Lucia estuarine 

lake system between the drought and flood phase…………………………………………...62 

 

 

 

  



 

X 
 

LIST OF FIGURES 

Figure 1.1: Map of the St Lucia estuarine system indicating the sampling stations chosen for 

this study (•), with the geographic position within South Africa……………………………11 

Figure 2.1: Variations in a) sampling depth, temperature and salinity; and b) dissolved 

oxygen and rainfall from quarterly samples collected between February 2011 and November 

2012 at the 5 study sites in St Lucia Estuary (Listers Point, Charters Creek, Catalina Bay, 

Esengeni, Mouth)…………………………………………………………………………….19 

Figure 2.2: Mean percentage composition of grain size classes at 5 sites in St Lucia Estuary 

(Listers Point, Charters Creek, Catalina Bay, Esengeni, Mouth). ‘cs–gravel’ includes 3 size 

classes: coarse sand, very coarse sand and gravel……………………………………………21 

Figure 2.3: Principal Component Analysis (PCA) plot based on the environmental variables 

measured in summer (Su), autumn (A), winter (W) and spring (Sp) at each of the 5 sites in 

2011 (a) and 2012 (b)………………………………………………………………………...25 

Figure 2.4: Spatial and temporal variation in mean (± SD) density (N) and taxon richness 

(Margalef’s index, d) from 4 seasons (summer, autumn, winter, spring) at the 5 study sites 

(Listers Point, Charters Creek, Catalina Bay, Esengeni, Mouth) for a) 2011 and b) 2012. Bars 

that share common letters indicate homogenous grouping (Bonferroni post-hoc tests).…..27 

Figure 2.5: Non-metric multidimensional scaling (MDS) ordination of meiofauna 

communities in 2011 (a) and 2012 (b) and primary environmental variables (right) based on 

BIOENV, showing the distribution and grouping of samples in summer, autumn, winter and 

spring at each site (left). Results from the cluster analysis are superimposed to show groups 

defined at 40 % similarity.……………………………...……………………………………35 



 

XI 
 

Figure 3.1: Rainfall (a) and salinity (b) meaured in the St Lucia region at two week intervals 

for the three sites sampled (Lister’s Point, Charter’s Creek, Mouth) from October 2010 to 

May 2011…………………………………………………………………………………….51 

Figure 3.2: Principal Components Analysis (PCA) plots of environmental characteristics in 3 

sites of the St Lucia estuarine lake: (a) over time; (b) with mean taxon richness; and (c) with 

mean abundance superimposed for each climatic state (where: D = drought and F = flood)..53 

Figure 3.3: Percentage contribution of major taxa at Lister’s Point, Charter’s Creek and the 

Mouth, leading up to and following the flood disturbance. Arrows indicate the flood 

phase………………………………………………………………………………………….56 

Figure 3.4: Temporal variations in mean abundance of the five most important taxa, as per 

SIMPER analysis, in the St Lucia Estuary (Lister’s Point, Charter’s Creek, Mouth) based on 

samples collected during the drought and flood. Arrow indicates the onset of the flood 

phase…………………………………………...……………………………………………..58 

Figure 3.5: Canonical analysis of principal coordinates (CAP) ordinations for meiofauna 

communities over time (weeks), from all three sites, showing the distribution of samples 

following the disturbance. Based on Pearson correlation analysis, taxa deemed as important 

within these communities (> 0.4) are superimposed……………………………………….60 

Figure 3.6: Non-metric multidimensional scaling (MDS) ordinations for copepod 

communities at all three sites, showing the distribution and grouping of samples from 2, 4, 6 

and 20 weeks after the disturbance. Results from cluster analysis are superimposed to show 

groups defined at 50% similarity…………………………………………………………….61 

 



Introduction 

1 
 

CHAPTER 1: INTRODUCTION 

1.1 Context 

Estuaries are among the most dynamic ecosystems that occur in nature (Kennish 2002, 

MacLusky & Elliott 2004), and provide a vast amount of ecological goods and services 

(Costanza et al. 1998). These include habitat provision (França et al. 2009), breeding and 

nursery grounds (Able 2005), nutrient cycling (Corbett 2010) and sediment trapping (Geyer 

et al. 2001). Estuaries are characterised by substantial variability in physico-chemical factors 

(Cyrus et al. 2011, Alves et al. 2013) such as temperature, salinity, dissolved oxygen, nutrient 

levels, turbidity and pH. These variations result in the resident biota being characterised by 

strong spatial and temporal variability (Carrasco & Perissinotto 2011). Spatial variability is 

caused by an estuarine gradient that usually shifts from freshwater at the source to more 

saline water at the mouth, the extent of which is dependent on the state of the mouth and its 

tidal prism (Whitfield 1992). For systems of this nature, climatic variability may cause 

further extreme fluctuations in salinity, as a result of freshwater shortages or floods (Pollack 

et al. 2011), while prolonged wet or dry cycles may cause these systems to move toward 

freshwater or hypersaline states, respectively. Freshwater flow into an estuary is an important 

aspect of estuarine health and function (Milliman & Farnsworth 2011). These include 

moderation of hypersalinity (Elexander & Dunton 2002), habitat provision (Kimmerer 2002) 

and the downstream transport of sediment and nutrients (Findlay et al. 1991, Longley et al. 

1994).  

1.2 Freshwater inflow: Environmental alterations and biological responses  

Salinity plays a fundamental role in the chemical, physical and biological dynamics of 

estuaries (Gibson & Najjar 2000) and is primarily influenced by freshwater pulses (Pollack et 

al. 2011). With increased rainfall, these freshwater pulses become more frequent and with 
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sufficient intensity, the degree of freshening within an estuary increases (Valiela et al. 2012). 

Ecological features that characterise freshwater systems are reflected in many of the changes 

to estuarine functioning that arise from changing flow regimes. For example, the low salinity 

that defines freshwater systems creates a hypotonic environment for aquatic biota. These 

features are relevant to species that have acquired life strategies that are adapted to natural 

flow regimes. As proposed by Elliott and Whitfield (2011), estuarine biota are well adapted 

to the fluctuating nature of these systems; however estuarine functioning is greatly dependent 

on ecosystem connectivity from freshwater, marine and terrestrial systems. All biota within 

estuaries possess some form of salinity tolerance threshold, beyond which they are unable to 

maintain bodily functions and can no longer thrive in such environments. When the tolerance 

to low salinity becomes overwhelmed, mass mortalities are likely to follow, as seen with 

estuarine oysters on the Pacific coast of Panama (Valiela et al. 2012).  

In the case of a prolonged wet phase with increased freshwater inflow, the drop in salinity 

would have multiple effects on the entire estuarine system. Physically, salinity impacts 

density as the less dense freshwater tends to float above more saline water, and hence 

determines circulation and stratification (Simpson et al. 1990). In a case of reduced salinity, 

there may be prevention of nutrient enrichment via upwelling in deeper waters or a 

countering effect, where there is enrichment of surface layers. With regards to chemical 

impacts, a decrease in salinity can cause a decrease in pH (thus increasing acidity), while the 

solubility of organic matter increases (Cai et al. 1998), leading to further biological 

implications in terms of oxygen deficits, for example. Modified salinity patterns, and the 

downstream transport of nutrients and sediments caused by altered freshwater regimes, are 

largely responsible for changes in the composition and abundance of estuarine biota.  

Benthic organisms are useful for studying the ramifications of freshwater flow alterations on 

estuaries because of their rapid response to environmental changes and their sedimentary 
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lifestyle that impedes the ability of escape during episodes of increased flow. They are also 

easily sampled and are found in high densities in estuarine sediments (Coull 1999). 

Meiofauna are commonly used as a proxy for the assessment of variation in aquatic species 

diversity in response to environmental change (Montagna & Kalke 1992, Mees et al. 1993, 

Soetaert et al. 1995, Yamamuro 2000, Adão et al. 2009). Additionally, they have been apt 

models for disturbance studies, characterising the impact of floods and pollutants in estuaries 

over time (Zajac & Whitlatch 1982b, Montagna & Kalke 1992, Schratzberger & Warwick 

1998, Neira et al. 2001, Austen & Widdicombe 2006, Moreno et al. 2008, Anderson 2015)  

1.3 Benthic biota: Meiofauna 

Meiofauna are benthic invertebrates that pass through a 500 µm mesh while being retained on 

a 40 - 63 µm mesh (Coull 1999). For the purpose of this study, two groups of larger 

protozoans that were found amongst the meiofauna (ciliates and foraminiferans) will be 

included in the study (see Giere 2008).Their size range allows for an interstitial lifestyle 

between sand grains while their vermiform body facilitates easy movement through the 

sediment. Within sediment these organisms have indirect involvement in the process of 

bioturbation and the stimulation of bacterial metabolism (Reichelt 1991, Vincx 1996). They 

are also vital constituents within food webs, as a food source for higher level organisms 

(Schlacher & Wooldridge 1996) and as consumers of benthic algae, detritus and bacteria. 

Meiofauna also participate in the mineralisation of organic matter (Gerlach 1978) and are 

used for environmental health monitoring, as their specific life history strategies give rise to 

their use as bioindicators (Kennedy & Jacoby 1999). 

With regard to the vertical zonation of meiofauna in estuaries, the majority inhabit the upper 

2 – 3 cm of muddy sediment. Their vertical distribution is largely limited by the redox 

potential discontinuity (RPD), below which sediments become anoxic and oxygen-sensitive 
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meiofauna, such as harpacticoid copepods, drastically decrease in abundance (Grego et al. 

2014).  Coull and Bell (1979) found meiofauna to be restricted to the upper layers of mud 

when oxidised sediments were laden with detritus. Another factor controlling the vertical 

zonation of meiofauna is desiccation. Pore water content is pivotal as meiofauna are sensitive 

to desiccation stress in intertidal sediments, regardless of sedimentary oxygen content 

(Jansson 1968). 

The most important abiotic factors that control meiofaunal distribution are salinity, grain size 

and temperature (Coull 1999). The general trend in typical estuaries that have freshwater in 

the upper reaches and shift to more marine salinities at the mouth is for abundance and 

diversity to increase toward the lower reaches. Of greater importance to meiofaunal 

distribution, is periodic salinity change. As previously mentioned, sudden changes have 

multiple cascading effects on other physical aspects and can affect meiofaunal survivorship. 

Sediment grain size is a highly influential factor for meiofauna, as these burrowing organisms 

are more abundant in sediments that have a mean particle size of >125µm as it provides the 

optimum interstitial space required for movement (Higgins & Thiel 1988, Carvalho & Santos 

2013). With regards to temperature, meiofaunal community observations have revealed 

seasonal changes in diversity and abundance (Dye 1983, Santos et al. 1996, Meurer & Netto 

2007). As proposed by Coull (1999), this is likely a direct cause of temperature trends or 

temperature-dependent factors such as food quantity or anoxic sediment depth. Within the St 

Lucia system, the meiofauna component has been the least studied (Bownes & Perissinotto 

2012) despite their significance within sediments. 

1.4 The St Lucia estuarine lake  

The St Lucia estuarine lake system is the largest of its type in Africa and forms part of the 

iSimangaliso Wetland Park, on the north-east coast of South Africa (Begg 1978). The lake 
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has been recognised both as a Ramsar Wetland of International Importance (1989) and is a 

crucial part of South Africa’s first UNESCO World Heritage Site (1999), due to its rich 

diversity of habitats and ecosystems that comprise a multitude of rare, endemic and 

threatened species (Porter & Blackmore 1998).  

In the past, the Mfolozi River and the St Lucia Estuary used to flow into the St Lucia Bay 

before exiting to the sea via a common mouth (Cyrus et al. 2010). St Lucia received 

approximately 30% of its input from the neighbouring Mfolozi River, which drained through 

the vast Mfolozi swamps to the sea (Vivier & Cyrus 2009). In 1952, the Mfolozi River was 

deliberately separated from the St Lucia system, due to its swamp areas being drained and 

canalized as a result of sugarcane farming (Begg 1978, Whitfield & Taylor 2009), while the 

subsequent freshwater diversion from the St Lucia Estuary avoided the threat of siltation. 

This reduced freshwater inflow to the system eventually interfered with its natural mouth 

dynamics (Carrasco et al. 2009). These factors, combined with below average rainfall 

conditions during the 2001 – 2010 period, led to the closure of the St Lucia Estuary mouth for 

the greater part of the last decade. Without the Mfolozi linkage, St Lucia lacked its main 

source of freshwater during periods of drought (Whitfield & Taylor 2009). 

The large size and shallowness of the lakes cause it to be vulnerable to the influence of 

climatic conditions as well as large-scale fluctuations in physico-chemical conditions, which 

are a characteristic feature of this system (Owen & Forbes 1997). The St Lucia estuarine lake 

experiences alternating dry and wet phases, which may each persist for a period of 4 to 10 

years (Begg 1978). During the previous dry phase (2001 – 2010), St Lucia experienced low 

freshwater input and below average rainfall, which resulted in the formation of a persistent 

inverse salinity gradient, with significantly higher salinities (40 – 200) in the upper reaches 

than in the lower reaches and mouth (10 – 15) (Taylor 2006, Cyrus et al. 2010). The lack of 

freshwater also caused a 90 % desiccation of the lake (Stretch et al. 2013), which resulted in 
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the system being compartmentalised during the drought (Pillay & Perissinotto 2009). From 

the end of 2010 to early 2011, heavy rainfall was experienced in the St Lucia region due to 

the commencement of the latest La Niña event, marking the end of the dry phase. The higher 

than average rainfall that the catchment received in this period resulted in an influx of 

freshwater into the lake (Taylor et al. 2013). Consequently, salinity was drastically reduced, 

shifting the system out of the extreme hypersaline state that had persisted during the drought. 

Additionally, water levels in the lake increased and the different basins of the system became 

connected once again. Furthermore, the Mfolozi River and the St Lucia Estuary were recently 

linked via an artificial canal (beach spillway) in July 2012. Despite this provision of 

freshwater and inconsistent marine inflow when the Mfolozi mouth is open, to date the St 

Lucia Estuary maintains closure from the Indian Ocean (Taylor et al. 2013). 

From 2011 to 2013, the amount of annual rainfall experienced in the St Lucia area increased 

drastically to well above average levels, resulting in a wet phase. These heavy rains and flood 

periods were not seasonal occurrences, but rather a climatic phase that St Lucia was 

experiencing at that stage. Currently the situation has reversed back to drought and the lake 

has been rapidly desiccating since 2014. With this shift in climatic conditions from a long-

term dry phase to a wet phase and back to a drought, the system underwent drastic changes in 

physico-chemical conditions which are likely to have caused significant changes in the 

meiofauna community structure. The Mfolozi-St Lucia reconnection was partly responsible 

for the recent freshwater dominance in the St Lucia Estuary. The effects of the reconnection 

were evident in the lower reaches, where inflow from the Mfolozi aided in the dispersal of 

organisms into St Lucia (van Elden et al. 2014). The additional intermittent connection with 

the sea has led to marine organisms moving into the mouth region. This provides an 

additional factor of significance for the meiofauna community of the St Lucia estuarine lake 

system. Despite the system moving back into a drought phase since 2014, experiencing 
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desiccation and fragmentation, the wet phase meiofauna communities have remained 

unstudied. Chapter 1 of this thesis will therefore focus on the meiofaunal communities of the 

St Lucia Estuary during the first two years of the wet phase, by analysing seasonal 

differences in the community structure and composition at five representative sites along the 

estuary. It is hypothesised firstly, that there are spatial and seasonal differences in meiofauna 

community structure and composition between sites along the St Lucia Estuary following the 

increase in freshwater flow. Secondly, that meiofaunal community differences between sites 

varied between seasons and years during the wet phase.  

Pickett and White (1985) defined disturbance as “a discrete event in time that disrupts 

ecosystem, community or population structure and changes resources, substrate availability, 

or the physical environment”. These events are key structuring forces for ecological systems 

and their various communities (Cristoni et al. 2004) that alter environmental conditions, 

making new areas available for colonisation, thus starting a successional process (Ritter et al. 

2005). Succession, as defined by Trueblood et al. (1994), is a “directional change in the 

species composition of a community over time”.  Succession is also the manner in which a 

community recovers after disturbance. This recovery is based on both direct and indirect 

factors. Direct factors include recruitment based on life history traits and migration into the 

disturbed area, while competition may act as an indirect factor in community structuring 

(Widdicombe & Austen 2005). The community recovery model suggested by Pearson and 

Rosenberg (1978) uses the concept of r- and K-selected species, where primary colonisers 

would typically be classified as r-selected species and have life history traits that involve a 

short life span, rapid development and reproduction and some form of pelagic dispersal. 

These organisms would colonise a disturbed area once conditions became more favourable. 

Over time the r-selected species would be succeeded by K-selected species, which have a 

longer life span and slower growth; thus creating a successional pattern. 
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Patterns of succession may not necessarily be predictable but they are ultimately driven by 

external environmental fluctuations (Platt & Connell 2003). This type of succession is known 

as allogenic succession (Tansley 1920). Environmental perturbations in the form of floods are 

a characteristic example of an allogenic change. The intense rainfall event that occurred in 

the St Lucia system at the beginning of 2011 provided an apt example of a disturbance-

causing event, as floods cause drastic salinity changes and these reductions are highly 

influential for benthic communities (Montagna et al. 2002). Organisms such as meiofauna 

have a relatively short generation time, are excellent monitoring communities and are able to 

rapidly reflect environmental changes; they therefore provide suitable models for succession. 

By following the community changes before and after the disturbance, the effect of a flood 

can be examined. Additionally, by analysing the short term changes in benthic community 

structure, the meiofaunal succession pattern can be established. Chapter 2 therefore examines 

the short to medium term successional patterns of the meiofauna of the St Lucia Estuary, at 

three representative sites with varying salinity ranges, following a flood disturbance. It is 

hypothesised firstly, that there would be differences in meiofaunal community structure and 

composition between sites and climatic phases (drought and flood) and secondly that there 

would be differences in meiofauna community structure and composition at each site over 

time following the flood disturbance. 

1.5 Relevance and study aims 

With climate change and further anthropogenic activities altering coastal habitats, estuarine 

systems have become heavily influenced and vulnerable to disturbance.  It is predicted that 

global temperatures will increase by 1.4 to 3 °C by the year 2050 (Rowlands et al. 2012). 

Information regarding the structure and composition of meiofaunal communities, as well as 

their recovery potential from climatic-related stress, is important as climate change is 



Introduction 

9 
 

expected to bring about more frequent incidents of stress on these communities, such as 

droughts and floods. Additionally, knowledge of the meiofauna diversity in the St Lucia 

Estuary will also be of great value since very little is known about this functional group in 

South Africa (Griffiths et al. 2010, Barnes et al. 2011), and there is very limited literature on 

the meiofauna of this region. The information and knowledge gained from this study can be 

added to current data sets and be utilized as support for future management strategies which 

can be implemented towards the long-term sustainability of the St Lucia system. 

The main aims of this study were as follows: 

1. To analyse the meiofauna community structure and composition within the St Lucia 

Estuary during the wet phase of 2011 – 2012. 

2. To determine the effect of a flood disturbance and the short-term succession patterns in its 

aftermath on the meiofauna community of St Lucia following a heavy rainfall event.  
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1.6 Study Site  

The St Lucia estuarine lake is located on the eastern coast of South Africa, in the KwaZulu-

Natal province. This region typically experiences summer rainfall, with inter-annual variability 

experienced in the form of droughts/floods caused by southward shifts of the Intertropic 

Convergence Zone and El Niño Southern Oscillation (Rautenbach & Smith 2001). Mean 

annual precipitation from the systems 45 subcatchments is 787 mm  (Perissinotto et al. 2013). 

St Lucia has an estimated area of between 300 and 350 km2, depending on water levels (Begg 

1978). The estuarine lake system is subdivided into five regions, including three large, shallow 

interconnected lake basins in the upper reaches, namely False Bay, North Lake and South 

Lake. These lakes connect with the Mouth via a narrow channel, known as the Narrows, which 

then leads to the Indian Ocean (Figure 1.1). For the first chapter of this study, five 

representative sites were sampled in the St Lucia Estuary, namely Lister’s Point, Charter’s 

Creek, Catalina Bay, Esengeni and the Mouth, forming a gradient from head to mouth. With 

regards to salinity however, St Lucia has an inverse salinity gradient. Lister’s Point is located 

in the northern lake and is predominantly hypersaline, Charter’s Creek and Catalina Bay are 

located in the southern lake which has typical estuarine salinities and Esengeni is permanently 

freshwater and located in the Narrows. For the second chapter, three representative sites were 

chosen, namely Lister’s Point, Charter’s Creek and the Mouth.  
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Figure 1.1: Map of the St Lucia estuarine system indicating the sampling stations chosen for 
this study (•), with the geographic position within South Africa. 

 



Chapter 2 

12 
 

CHAPTER 2: MEIOFAUNAL COMMUNITY CHARACTERISTICS DURING 

A CLIMATICALLY-INDUCED WET PHASE IN THE ST LUCIA ESTUARY, 

SOUTH AFRICA 

2.1 Abstract 

Following a decade long drought with hypersaline conditions, at the end of 2010 the St Lucia 

Estuary moved into a two year wet phase. The wet phase began with higher than average 

rainfall that lowered salinities throughout the system. Environmental data and meiofauna 

samples were collected from five representative sites along the estuary during quarterly 

surveys conducted in each season. Diversity indices suggest that 2011 experienced a 

generally greater meiofaunal density and taxon richness when compared to 2012. Community 

analyses revealed that meiofaunal communities differed between sites and seasons as a result 

of the estuarine gradient and seasonal variation in environmental parameters. The initial 

meiofaunal communities showed no distinction based on spatial or temporal differences. 

However, the increase in similarity of site specific communities in 2012 is indicative of a 

distinction between sites that was generally absent in 2011. The increase in site specific 

similarities, lower levels of variation and a greater level of homogeneity in 2012, suggest that 

communities had become more established within this phase. The two year transitional state 

in which these communities were studied suggests the possibility of a lag time for any change 

to become evident and may be the result of the drastic change that the system experienced, as 

the lake filled and the basins were once again connected. The overall meiofaunal dynamics 

during the two year wet phase were variable, but appeared to show potential for long term 

improvement in terms of increased overall diversity. 
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2.2 Introduction 

Marine and coastal environments provide a vast amount of ecosystem goods and services and 

are important at ecological, social and economic levels. In addition to anthropogenic 

influences that disrupt coastal ecosystems, these environments are threatened by global 

climate change,  which has the ability to disrupt their composition, diversity and function 

(Cardoso et al. 2008). Changes in sea-level, temperature and rainfall can drastically alter the 

functioning of these ecosystems. Globally,  average temperatures are expected to increase by  

1.4 to 3 °C by 2050  (Rowlands et al. 2012), while precipitation extremes may intensify 

conditions in particular areas (Trenberth 2011). Floods and droughts are the typical definition 

of hydrologically extreme events.  The increasing climate variability leading to precipitation 

extremes and the climatic shifts between these hydrological extremes have been a focus of 

interest in the past two decades (Katz & Brown 1992, Trenberth & Hoar 1996, Meehl et al. 

2000, Pollack et al. 2011). These changes will inevitably impact coastal ecosystems, such as 

estuaries, deltas and wetlands (Kjerfve et al. 1994). 

The St Lucia Estuary is the largest estuarine lake in Africa, a Ramsar Wetland of 

International Importance since 1989 and forms part of the iSimangaliso Wetland Park, a 

UNESCO World Heritage Site since 1999. The St Lucia system is regulated by wet and dry 

cyclical periods, each lasting between 4 and 10 years (Begg 1978).  From 2001 until 2010, 

the lake system experienced below average rainfall (Cyrus et al. 2011). These drought 

conditions were further intensified by the freshwater diversion of the Mfolozi River away 

from the St Lucia Estuary, as a measure of prevention against the threat of siltation (Whitfield 

& Taylor 2009). During this time, the system exhibited extremely low water levels, or near 

desiccation in the northern basins (Pillay & Perissinotto 2009), causing a disconnection 

between the upper and lower reaches. As a result, a persistent reversed salinity gradient 
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developed, where the upper reaches of the lake exhibited higher salinity levels than the lower 

reaches and the mouth area (Taylor 2006).  

From the start of the rainfall season in October 2010 to January 2011, the St Lucia Estuary 

received 925 mm of rainfall (Taylor 2011).  This vast increase in freshwater input raised the 

water levels in the lake by more than 0.5 m by the end of January 2011. The various 

compartments of the lake were re-connected as water levels throughout the system rose. The 

increase in rainfall and subsequent dilution of salinities throughout the system signalled the 

beginning of a new wet phase.  

Within the St Lucia system, most communities have been studied extensively, however the 

meiofauna group remains relatively poorly studied (Pillay & Perissinotto 2009, Bownes & 

Perissinotto 2012). These organisms are essential within sediment; they are involved in 

processes such as bacterial metabolism stimulation and bioturbation  (Bonaglia et al. 2014), 

and play a crucial role within benthic trophic interactions, as both consumers and prey 

(Schmid‐Araya & Schmid 2000, Pusceddu et al. 2014). Their ecological characteristics, 

namely small size, high abundance, benthic lifestyle and rapid regeneration time, enable these 

communities to be more advantageous monitoring communities than macrofauna 

(Schratzberger et al. 2000, Austen & Widdicombe 2006, Alves et al. 2013).  

As a result of climate change, the region of the St Lucia estuarine lake is expected to become 

warmer and wetter towards 2100 (Vaeret & Sokolic 2008). Having an understanding of the 

effects of a climatically induced wet phase on the meiofauna community could prove 

important in predicting responses of the system to natural perturbations in the future. This 

study therefore aimed to determine the meiofauna community structure as a result of 

environmental forcing from a new climatic state, and how it varied between sites along the 

estuary over time. 



Chapter 2 

15 
 

To achieve this, a temporal (seasonal) and spatial comparison was conducted between the 

meiofauna communities of the St Lucia system, in terms of their density, taxonomic structure 

and composition during the two year wet phase that followed the decade long drought. The 

following hypotheses were tested: 1) There are spatial and seasonal differences  in meiofauna 

community structure and composition between sites along the St Lucia Estuary following the 

increase in freshwater flow. 2) Meiofaunal community differences between sites varied 

between seasons and years during the wet phase. 

2.3 Methods 

2.3.1 Environmental variables 

All samples were taken from the nearshore water’s edge, with the exception of Esengeni 

where samples were collected by boat from the channel. A YSI 6600 multiprobe was used to 

measure temperature (°C), depth (m), salinity, dissolved oxygen (mg l−1), pH and turbidity 

(nephelometric turbidity units, NTUs). At shallow depths, the probe was placed horizontally, 

ensuring that all sensors were submerged. In deeper sites where measurements were taken 

from both top and bottom waters only the latter was used. For the measurement of total 

suspended solids (TSS), three replicate 250 ml water samples were collected.  Each TSS 

sample was filtered through pre-weighed, combusted GF/F filters using a Millipore filtration 

system. Filters were dried and weighed to measure TSS (mg/L). Cumulative rainfall data for 

the month prior to each quarterly sampling was obtained from 3 stations closest to the study 

sites (South African Sugarcane Research Institute (SASRI) weather website) as per Bownes 

and Perissinotto (2012). For microphytobenthos (MPB) sampling, three replicates of the first 

1 cm of sediment were collected using a Perspex corer (internal diameter 20 mm). Cores were 

added to 30 ml 90% acetone and incubated for 48 to 72 hours for the extraction of 

chlorophyll-a. Microphytobenthic samples were measured fluorometrically with a Turner 
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Designs 10-AU fluorometer, to establish the chlorophyll-a biomass in units of mg chl-a eq 

m−2.  For sediment organic matter (SOM), samples were collected by combining two cores of 

the upper 1 cm per sample, with 3 replicates per site per sampling occasion. Sediment was 

dried at 40 °C in a drying oven, weighed, combusted at 500°C for 6 hours and re-weighed to 

determine the percentage organic matter. Grain size composition for each site and season was 

measured from triplicate 100 ml sediment samples. Sediment was dried at 40 °C in a drying 

oven and analysed with a dry sieving method using analytical sieves with pore sizes ranging 

from 2000 µm to < 180 µm (c/o Environmental Mapping and Surveying). 

2.3.2 Meiofauna 

A perspex twin-corer (internal diameter: 20 mm) was used to collect 3 replicates of the upper 

1 cm of sediment. Samples were fixed using 10 % formalin with Phloxin-B. In the laboratory, 

each sample was washed through a 500 and 63 µm mesh sieve, in order to separate the 

meiofauna fraction from the sample. Meiofauna were extracted by centrifugation with Ludox 

HS-40, following the procedure of Bownes and Perissinotto (2012). Sediment checks were 

conducted to ensure extraction efficiency by examining a portion of the sediment in search of 

any organisms that were not extracted. Samples were sorted under a dissecting microscope 

and all meiofauna were identified to the lowest possible taxonomic level.  

2.3.3 Statistical analysis 

Univariate statistics were conducted using IBM SPSS vs. 21 and Statistica 12. Community 

indices of meiofauna density and taxon richness were obtained for each sample with the use 

of Primer v6. A three-way factorial analysis of variance (ANOVA) was used to test for 

differences in density and richness between years, sites and seasons. Bonferroni post-hoc 

tests were conducted for comparisons between all pairs. The ANOVA assumptions of 

homogeneity of variances (Levene’s test; density: p = 0.138 and richness: p = 0.562) and 

normality (One-sample Kolmogorov-Smirnov test, p = 0.532 for density and p = 0.698 for 
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richness) were satisfied in all cases. Spearman’s Rank correlations were performed to 

examine the relationships between environmental variables and univariate indices for each 

year. A principal component analysis (PCA) was conducted on normalised environmental 

data. 

Multivariate statistics were conducted using Primer v6 software. All data were square-root 

transformed to weight the contributions of common and rare species in the multivariate 

representation (Clarke & Warwick 2001). Comparisons of meiofauna community structure 

among samples were examined using a permutation-based hypothesis testing Analysis of 

Similarities (ANOSIM), based on Bray-Curtis similarity (Clarke & Warwick 2001, Clarke & 

Gorley 2006). Two-way ANOSIMs were conducted to analyze meiofauna community 

composition between sites and season for each year separately. The generated R statistic 

ranged from 0 (identical assemblages) to 1 (dissimilar assemblages) and indicated the 

probability (p) that the various assemblages came from the same distribution, based on a 

significance value of 5% ( = 0.05). 

Non-metric multidimensional scaling (MDS) was used to display the relationships among 

meiofauna assemblages between sites and seasons, with a superimposed cluster analysis 

showing 50 % similarity. This was done for each year separately, to accurately depict any 

changes that occurred between years. To determine which taxa were most important in 

distinguishing significant spatio-temporal patterns in community structure for each year, data 

were analysed using similarity percentage (SIMPER) analysis. The BIOENV procedure was 

applied to meiofauna data to determine whether the measured environmental variables 

correlated with community structure. Environmental data were normalised prior to analysis.  



Chapter 2 

18 
 

 

2.4 Results  

2.4.1 Environmental variables  

The temperature observed during the study period showed seasonal trends that were 

consistent in both years (Figure 2.1a). Salinity varied between sites, with mean salinity at 

Lister’s Point of 53.9 ± 6.62 and 59.6 ± 26.9, in 2011 and 2012 respectively. These levels 

were higher than those of all other sites, where salinities ranged from 1.14 to 16.83 in 2011 

and 1.26 to 14.42 in 2012. Rainfall generally peaked in summer and spring for all sites, with 

lower rainfall being recorded in autumn and winter (Figure 2.1b). Turbidity was greatest at 

Lister’s Point, Charter’s Creek and the Mouth, peaking in spring 2011 (Table 2.1). Lowest 

turbidities were observed at Catalina Bay and Esengeni. TSS was much higher at Lister’s 

Point throughout the study period (302 – 1116 mg.L-1); while at all other sites it remained 

lower than 400 mg.L-1.  
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Figure 2.1: Variations in a) sampling depth, temperature and salinity; and b) dissolved 

oxygen and rainfall from quarterly samples collected between February 2011 and November 

2012 at the 5 study sites in St Lucia Estuary (Listers Point, Charters Creek, Catalina Bay, 

Esengeni, Mouth).  

a b 
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Table 2.1: Mean ± SD of combined environmental variables from 2011 and 2012 for 
summer, autumn, winter and spring, at each site. Minimum and maximum values across all 
phases (Range) are provided. Variables include turbidity (NTU: nephelometric turbidity 
units) and total suspended solids (TSS).  Where no SD is present, only a single reading was 
obtained. 

Site Season Turbidity (NTU) TSS (mg.L-1) 

   2011 2012 2011 2012 
     
Listers 
Point 

Summer 21.4 ± 5.9 144.6 ± 23.2 302.0 ± 25.9 1116.5 ± 484.4 

Autumn 234.1 270.4 ± 171.6 716.7 ± 67.5 342.6 ± 19.8 

 
Winter 180.0 ± 9.9 257.5 ± 17.7 554.7 ± 179.3 93.5 ± 7.8 

 
Spring 590.8 220.0 532.2 ± 77.0 453.2 ± 111.7 

 

Range 17.2 - 590.8 128.2 - 391.8 283.7 - 764.5 88.0 - 1459.1 

   
Charters 
Creek 

Summer 98.8 ± 4.2 191.9 ± 1.6 309.4 ± 12.6 185.7 ± 42.2 

Autumn 106.0 308.6 ± 10.5 192.3 ± 11.5 376.6 ± 17.2 

 
Winter 125.5 ± 36.0 129.6 ± 16.9 93.6 ± 24.0 243.9 ± 32.9 

 
Spring 315.3 ± 25.3 133.1 ± 0.3 191.0 ± 30.7 249.8 ± 0.5 

 

Range 95.9 - 333.2 117.7 - 316.0 76.6 - 318.3 155.8 - 388.8 

  
Catalina 
Bay 

Summer 9.0 ± 0.0 119.0 ± 165.2 89.8 ± 30.0 174.2 ± 2.5 

Autumn 41.3 2.9 ± 1.5 129.5 ± 3.9 10.6 ± 0.8 

 
Winter 13.3 ± 6.7 124.3 ± 5.3 23.7 ± 2.0 154.7 ± 8.2 

 
Spring 26.0 ± 6.5 0.7 31.3 ± 1.4 9.6 ± 0.8 

 

Range 8.6 - 41.3 0.7 - 235.9 22.2 - 132.3 9.0 - 175.9 

Esengeni Summer 101.5 112.3 78.4 ± 25.2 88.1 ± 15.4 

 
Autumn 221.5 64.8 133.1 ± 1.5 67.9 ± 5.5 

 
Winter 86.6 164.5 40.4 ± 4.2 108.8 ± 55.2 

 
Spring 409.5 106.6 ± 29.7 69.9 ± 4.1 137.4 ± 108.7 

 

Range 86.6 - 409.5 64.8 - 164.5 37.4 - 134.2 60.5 - 214.3 

Mouth Summer 23.3 18.7 86.2 ± 23.7 39.5 ± 4.3 

 
Autumn 8.8 26.0 122.0 ± 7.8 33.9 ± 0.5 

 
Winter 10.3 26.0 12.6 ± 2.2 23.8 ± 0.8 

 
Spring 21.1 202.0 ± 52.3 30.8 ± 1.3 54.8 ± 34.0 

  Range 8.8 - 23.3 18.7 - 239.0 11.1 - 127.6 23.3 - 78.9 
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Sediments at Lister’s Point and Esengeni consisted largely of silt and mud (63 and 85 %, 

respectively), with a median particle size of 49 ± 5 µm in 2011 and 131 ± 81 µm in 2012 at 

Lister’s Point and 48 µm at Esengeni (Figure 2.2) over the two year period. Charter’s Creek 

and Catalina Bay were predominantly composed of fine and medium sands (median particle 

size of 230 ± 50 µm and 245 ± 13 µm, respectively). The Mouth was composed mainly of 

medium sands (median particle size of 305 ± 22 µm) and very low silt content, compared to 

all other sites. Microphytobenthos was generally greater in 2011 than 2012 and varied 

seasonally between sites in both years with summer and spring having the highest chlorophyll 

a biomass levels (Table 2.2). Average organic content was low at Charter’s Creek, Catalina 

Bay and the Mouth (between 0.1 and 0.8%) and higher at Lister’s Point (3.26 – 12.25 %) and 

Esengeni (4.29 – 8.69 %).  

 

Figure 2.2: Mean percentage composition of grain size classes at 5 sites in St Lucia Estuary 
(Listers Point, Charters Creek, Catalina Bay, Esengeni, Mouth). ‘cs–gravel’ includes 3 size 
classes: coarse sand, very coarse sand and gravel.  
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Table 2.2: Sediment characteristics at 5 sites in St Lucia Estuary (Listers Point, Charters 
Creek, Catalina Bay, Esengeni, Mouth), including mean (±SD) microphytobenthos (MPB) 
and percentage sediment organic matter (SOM).  

Site Season MPB (mg chl-a eq m−2) SOM (%) 

  
2011 2012 2011 2012 

    
Listers 
Point 

Summer 83.0 ± 24.0 52.7 ± 4.9 7.00 ± 1.7 8.76 ± 3.2 

Autumn 80.5 ± 15.6 7.8 ± 1.9 9.28 ± 2.8 9.185 

Winter 25.2 ± 4.8 7.3 ± 0.6 12.25 ± 2.6 6.83 ± 0.5 

Spring 33.3 ± 12.9 2.0 ± 0.2 3.26 ± 1.7 4.32 ± 2.6 
  
Charters 
Creek 

Summer 5.3 ± 1.6 40.4 ± 3.9 0.76 ± 0.3 0.31 ± 0.2 

Autumn 12.0 ± 1.9 9.3 ± 1.0 0.68 ± 0.2 0.295 

Winter 18.2 ± 5.9 10.5 ± 1.3 0.81 ± 0.1 0.66 ± 0.3 

Spring 63.9 ± 37.2 0.8 ± 0.8 0.50 ± 0.6 0.25 ± 0.1 
  
Catalina 
Bay 

Summer 40.1 ± 7.8 29.0 ± 8.3 0.53 ± 0.1 0.27 ± 0.1 

Autumn 7.0 ± 4.5 8.0 ± 1.2 0.57 ± 0.1 0.23 

Winter 20.1 ± 3.5 8.4 ± 1.0 0.65 ± 0.1 0.29 ± 0.0 

Spring 24.2 ± 10.7 3.0 ± 0.7 0.26 ± 0.0 0.24 ± 0.0 
 
Esengeni Summer 7.7 ± 2.5 6.1 ± 0.9 8.69 ± 0.1 5.92 ± 0.6 

Autumn 4.9 ± 1.2 1.9 ± 0.1 6.14 ± 0.6 5.935 

Winter 7.3 ± 1.5 1.4 ± 0.3 6.25 ± 0.3 6.56 ± 0.3 

Spring 8.5 ± 1.1 1.3 ± 0.1 6.11 ± 0.3 4.29 ± 0.5 
    
Mouth Summer 54.7 ± 30.8 4.4 ± 0.8 0.33 ± 0.0 0.27 ± 0.0 

Autumn 7.3 ± 4.8 1.7 ± 0.0 0.26 ± 0.0 0.205 

Winter 22.8 ± 5.5 3.5 ± 2.7 0.50 ± 0.1 0.19 ± 0.1 

Spring 14.1 ± 1.0 0.6 ± 0.4 0.12 ± 0.0 0.21 ± 0.0 

Correlations between environmental variables can be seen in Table 2.3. Significant 

correlations pertaining to meiofauna include meiofauna taxon richness, which was positively 

correlated with MPS in both years (Table 2.3) and negatively correlated with SOM in 2012. 

Density was only positively correlated with MPS and negatively correlated with SOM in 

2012



Chapter 2 

23 
 

Table 2.3: Spearman’s Rank correlation coefficients of the relationship between environmental variables and mean meiofaunal density (N) and taxon 
richness (d), including temperature (°C), salinity, pH, mean total suspended solids (TSS), median particle size (MPS), % sediment organic matter 
(SOM), microphytobenthos biomass (MPB) and rainfall (mm). Significant correlations are highlighted in bold ( = 0.05). 

Year Variable Temperature Salinity pH TSS MPS SOM MPB Rainfall 
  2011 

 
 

N 0.30 0.14 0.02 0.03 0.50 -0.10 0.41 -0.02 
  d 0.02 0.25 0.09 0.04 0.58 -0.40 0.37 0.42 
  Temperature 1.00 0.04 0.34 0.28 -0.16 -0.14 0.28 -0.04 
  Salinity 

 
1.00 -0.09 0.75 0.02 0.18 0.34 -0.21 

  pH  
 

1.00 -0.09 -0.06 -0.24 -0.01 0.46 
  TSS   

 
1.00 -0.52 0.51 0.20 -0.34 

  MPS    
 

1.00 -0.77 -0.01 0.11 
  SOM     

 
1.00 0.01 -0.37 

  MPB      

 
1.00 0.44 

  Rainfall      
  

1.00 
  N -0.01 -0.30 0.27 -0.06 0.44 -0.60 0.24 0.12 
  2012 d -0.22 -0.30 -0.07 -0.30 0.72 -0.81 -0.25 0.27 
  Temperature 1.00 0.10 0.46 0.28 0.03 0.15 0.25 0.61 
  Salinity 

 
1.00 0.10 0.32 0.13 0.27 0.21 -0.22 

  pH 
  

1.00 0.23 0.18 -0.03 0.58 0.15 

  TSS 
   

1.00 -0.38 0.46 0.38 -0.05 
  MPS 

    
1.00 -0.90 -0.12 0.33 

  SOM 
     

1.00 0.35 -0.41 
  MPB 

      

1.00 -0.38 
  Rainfall 

       
1.00 
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Principal component analysis showed slight separation of sites according to their location 

along the lake where four groups were observed in 2011: Lister’s Point, Esengeni, the 

remaining three sites, and samples collected during spring (Figure 2.3a). The first two PCs 

accounted for 51.5% of the variance of the environmental data among the 20 sampling 

occasions and grouped these along spatial and seasonal divisions. The exceptions were 

Lister’s Point and spring that did not group together and were not grouped with each site.  PC 

1 was a measure of differences in turbidity, SOM, and grain size (Eigenvalue = 3.54). 

Samples that loaded high on PC 1 (Catalina Bay and the Mouth) had lower SOM and 

turbidity, and larger grain size than samples that loaded low on PC 1 (Lister’s Point and 

Esengeni), while samples with intermediate loadings on PC 1 (Charter’s Creek) had low 

SOM, high turbidity and large grain size.  PC 2 was a measure of differences in dissolved 

oxygen and rainfall (Eigenvalue = 2.53) and samples that loaded high on PC 2 (summer, 

autumn and winter samples from Lister’s Point) had lower rainfall and higher dissolved 

oxygen content than samples that loaded low on PC 2 (spring samples and Esengeni 

samples).  

The PCA for 2012 produced three different groups, similar to those based on site in 2011 

(Figure 2.3b). The first 2 PCs accounted for 54.8 % of the environmental data variability. The 

only exception was the sampling occasion during summer at Lister’s Point, which did not 

group with any other samples. PC 1 was a measure for differences in salinity and TSS 

(Eigenvalue = 3.93), and samples that loaded high on PC 1(southern lake sites, Esengeni and 

Mouth) had lower salinities and TSS than those with lower loadings. PC 2 measured 

differences in SOM (Eigenvalue = 2.63) and sites that loaded high on this PC (southern lake 

sites) had lower SOM. Although pH was found to be an important environmental factor 

(PCA), the variation between sites and seasons was minor. 
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Figure 2.3: Principal Component Analysis (PCA) plot based on the environmental variables 
measured in summer (Su), autumn (A), winter (W) and spring (Sp) at each of the 5 sites in 
2011 (a) and 2012 (b). 

 

 

b                 2012 

a               2011 
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2.4.2 Meiofaunal density and richness 

Average densities for all seasons varied among sites, and were 562 ± 639 and 103 ± 152 ind. 

10 cm-2 at Lister’s Point, 449 ± 216 and 198 ± 37 ind. 10 cm-2 at Charter’s Creek, 346 ± 344 

and 932 ± 583 ind. 10 cm-2  at Catalina Bay, 154 ± 205 and 59 ± 45 ind. 10 cm-2 at Esengeni, 

and 324 ± 210 and 163 ± 127 ind. 10 cm-2 at the Mouth, with an overall average of 367 and 

291 ind. 10 cm-2, for 2011 and 2012 respectively. Meiofaunal density was generally higher in 

2011 than in 2012, with the exception of Catalina Bay (Figure 2.4). There were no general 

trends in density observed between sites and seasons for 2011. However, there appears to be 

clear site differences for both years, with the lowest overall density at Esengeni in both 2011 

and 2012, and the highest at Lister’s point and Catalina Bay in 2011 and 2012, respectively. 

Meiofaunal density showed significant differences for the main effects of year and site (p < 

0.05; ANOVA), with a significant interaction between year, site and season (Table 2.4). 

Mean meiofauna density at Lister’s Point, Charter’s Creek and Catalina Bay, were 

significantly higher than those found at Esengeni (107 ± 153 ind. 10 cm-2) and the Mouth 

(243 ± 188 ind. 10 cm-2) (Figure 2.4). Meiofauna densities were significantly higher in 2011 

than 2012 at all sites except Catalina Bay. The three-way interaction suggests that the 

interaction between year and site varied across seasons. Seasonal variation between years was 

observed in all seasons at particular sites. At Lister’s Point, density varied significantly 

between summer 2011 and 2012 and autumn 2011 and 2012. Catalina Bay experienced 

significant differences in density between years during autumn, winter and spring.   
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Figure 2.4: Spatial and temporal variation in mean (± SD) density (N) and taxon richness 
(Margalef’s index, d) from 4 seasons (summer, autumn, winter, spring) at the 5 study sites 
(Listers Point, Charters Creek, Catalina Bay, Esengeni, Mouth) for a) 2011 and b) 2012. Bars 
that share common letters indicate homogenous grouping (Bonferroni post-hoc tests). 

 

 

 

 

 

a b 
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Table 2.4: Results of ANOVAs examining the effects of year (2011, 2012), site (Listers 
Point, Charters Creek, Catalina Bay, Esengeni, Mouth) and season (summer, autumn, winter, 
spring) on density and taxon richness (d) of meiofauna in the St Lucia Estuary. Significant 
results are marked with an asterisk (α = 0.05).  

Factors SS df MS F p 
Density 

    
  

Intercept 12991845 1 12991845 305,7440 < 0.001 
Year 171659 1 171659 4,0398 0.048* 
Site 3679514 4 919878 21,6480 < 0.001* 
Season 341706 3 113902 2,6805 0.052 
Year x Site 3744916 4 936229 22,0328 < 0.001* 
Year x Season 486711 3 162237 3,8180 0.013* 
Site x Season 2621551 12 218463 5,1412 < 0.001* 
Year x Site x Season 4616406 12 384701 9,0534 < 0.001* 
Error 3399404 80 42493 

 
  

Taxon Richness (d) 
    

  
Intercept 167,6129 1 167,6129 1023,990 < 0.001 
Year 0,6314 1 0,6314 3,857 0.053 
Site 24,5916 4 6,1479 37,559 < 0.001* 
Season 9,9425 3 3,3142 20,247 < 0.001* 
Year x Site 6,8067 4 1,7017 10,396 < 0.001* 
Year x Season 0,7224 3 0,2408 1,471 0.229 
Site x Season 8,0034 12 0,6669 4,075 < 0.001* 
Year x Site x Season 3,7011 12 0,3084 1,884 0.049* 
Error 12,2765 75 0,1637 

 
  

Patterns of taxon richness were less variable between years. Sites that differed between years 

were Lister’s Point and Catalina Bay, which decreased and increased respectively. In 2011, 

taxon richness was generally highest at Charter’s Creek and the Mouth compared to other 

sites (Figure 2.4). In 2012, taxon richness was higher at the Mouth than at all other sites. 

Esengeni possessed the lowest taxon richness for 2011 and Lister’s Point for 2012. 

Seasonally, the highest taxon richness was observed in spring and the lowest in summer 

(Figure 2.4).  

Taxon richness showed significant differences for the main effects of site and season (p < 

0.001), with a significant interaction between year, site and season, as determined by 

ANOVA (Table 2.4). The three-way interaction suggests that the interaction between year 
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and site varied across seasons. Seasonal variation between years was observed at all sites 

during autumn, winter or spring. At Lister’s Point and Esengeni, richness varied significantly 

between winter 2011 and 2012. Charter’s Creek experienced differences in richness between 

years in autumn and spring, while Catalina Bay experienced significant differences in 

richness between years during autumn, winter and spring.  Richness at the Mouth varied 

between years during autumn and winter. 

2.4.3 Meiofaunal taxa 

A total of 63 taxa were identified at various taxonomic levels (Table 2.5). The SIMPER 

analysis identified the important groups for distinguishing sites. In both 2011 and 2012, 

communities at all sites exhibited high dissimilarity to one another (60 - 92%). In 2011, 

Catalina Bay was the most similar to all other sites and Charter’s Creek and Esengeni showed 

more dissimilarity between each other than any other sites. In 2012, the degree of 

dissimilarity increased (61 – 80 % in 2011 to 60 – 91 % in 2012) with slight similarity only 

evident between the southern lake sites, Charter’s Creek and Catalina Bay. The important 

taxa at Lister’s Point in 2011 were nematodes, harpacticoid copepods (Cletocamptus 

confluens) and soft walled foraminiferans (Allogromidae). In 2012, the important taxa were 

ostracods, hard walled foraminiferans (Ammonia spp.) and bivalve larvae. During 2011, 

nematodes, harpacticoid copepods (Nitocra taylori and Ectinosomatidae) and naupliar larvae 

were the important discriminatory taxa at Charter’s Creek, while Catalina Bay was 

characterised by nematodes. In 2012, these two southern lake sites were both distinguished 

by nematodes and gastropod larvae, which were either lower in abundance or not found at 

other sites. Nematodes were the pivotal group at Esengeni throughout, whereas the 

communities of the Mouth were mainly influenced by nematodes and turbellarians 

(Macrostomida and Proseriata). Euryhaline taxa, such as particular nematodes and 

harpacticoid copepods, were found at all sites. The communities from 2012 tended to 
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converge and showed greater distinction of sites when compared to 2011 (Figure 2.5). This 

increase in similarity within sites is primarily caused by the greater similarity in the relative 

abundance of dominant taxa between seasons within each site in 2012 (Table 2.5), e.g. 

gastropod larvae, ostracods and nematodes (SIMPER). 
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Table 2.5: Mean density (ind.10 cm-2) of identified meiofauna taxa in the St Lucia estuarine 
lake system between 2011(a) and 2012 (b) for summer (Su), autumn (A), winter (W) and 
spring (Sp). * indicates where taxonomic identification were tentative. Unid.: unidentified 
(specimens could not be identified taxonomically e.g. if damaged or unknown). 

Major groups and taxa Lister's Point Charter's Creek Catalina Bay Esengeni Mouth 
a) 2011   Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp 
1. Foraminifera 

                    
  

Calcareous forams 
                    

  

Miliolidae Ammonia group - 2 27 - 7 2 13 49 - 1 - 2 - 7 - - - - - - 

Bolivinitidae Bolivina spp. - - - - - - - - - - - - - - 1 - - - - - 
Monothalamous 
forams 

                    
  

Allogromiidae 
 

98 83 16 1 - 5 6 6 - - - - 213 1 - 3 1 3 1 - 

Saccamminidae 
 

- - 2 - - - 2 2 - - - 1 - - - - - 8 - - 

2. Ciliophora 

                    
  

Tracheliidae  
 

101 - - - - - - - - - - - - - - - 11 - - - 

Frontoniidae*  
 

- 331 - - - - 2 - - - - - - - - - - - - - 

Ciliate C 
 

- 196 - - - - - - - - - 1 - - - - - - - - 

Unid. Ciliates Unid. ciliates - 1 - - - 1 - - - - - - - - - - - - - - 

Platyheminthes 

                    
  

3. Turbellaria 
                    

  

Macrostomida  Macrostomida A - - - - - - 10 5 - - 4 17 - - - - - 16 61 67 

  Macrostomida E 1 - - - - 19 4 2 - - - 5 - - - - - - 12 29 

Proseriata sp.  Proseriata - - - - - - 2 1 - - - 17 - - - - - 4 51 22 
Rhabdocoela 

sp.  Rhabdocoela - - - - - - 1 1 - - - 1 - - - - - - 5 2 
Unid. 

Turbellarians Turbellarian type D - - - - - 3 1 1 - - - - - - - - - - 6 - 
Unid. 

Turbellarians Turbellarian type H - - - - - - - 1 - - - 2 - - - - - - 3 1 
Unid. 

Turbellarians Unid. Turbellarians - - - - - 10 - - - - - - - - - - - 15 6 2 

4. Nemertea 

                    
  

Nemertea Nemertea - - - - - - 1 - - - 2 4 - - - - - 4 4 4 

5. Nematoda 

                    
  

Unid. Nematodes Unid. Nematodes 124 720 8 5 91 174 115 123 84 47 133 480 252 20 59 17 84 135 38 80 

6. Kinorhyncha 

                    
  

Echinoderidae 
Echinoderes 
maxwelli - - - - - 3 11 46 - - - 1 - - - - - - - 2 

7. Rotifera 

                    
  

Lecanidae Lecane cf. grandis 3 - - - - - - - 111 - - - - - - - 5 - - - 

Annelida 

                    
  

8. Oligochaeta 
                    

  

Naididae* Naididae sp. 1  - - - - - - - - - - - 1 - - - - - - - - 

  Naididae sp. 2  - - - - - - - - - - - 4 - - - - - - - - 

  Naididae sp. 3  - - - - - - - - - - - - - - - - - - - 1 

Lumbriculidae Lumbriculidae sp. - - - - - - - - - - - 1 - - - - - - - - 

Aeolosomatidae Aeolosomatidae sp.  - - - - - - 1 - - - 1 - - - - - 1 - 2 2 

Unid. Larvae Oligochaete larvae - - - - - - - - 12 - - - - - - - 5 - 62 19 
Unid. 

Oligochaetes Unid. Oligochaetes - - - - - - - - - - - - - - - - - - 2 - 

9. Polychaeta 
                    

  

Capitellidae Capitella capitata - - - - - - - 1 - - - - - - 1 - - 2 - - 

  Mediomastus spp.* - - - - - - - - - - - - - - - - - 2 - - 

  Unid. Capitellids - - - - - 4 1 3 - - - 1 - - - - - - - - 

Nereidae Nereidae spp. - - - - - - 2 2 - - - - - - - - - 5 1 - 

Protodrilidae* Protodrilidae sp. - - - - - - - - - - - - - - - - - - - - 

Sabellidae Desdomona ornata - - - - - - - 4 - - - - - - - - - - - - 
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Table 2.5 cont. 
  Lister’s Point Charter’s Creek Catalina Bay Esengeni Mouth 
  Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp 
Spionidae Polydora group - 3 - - - - - - - - - - - - - - - - - - 

  Prionospio spp. - - - - - - - - - - - - - - - - - 1 - - 

  Unid. Spionids. - - - - - - - - - - - 2 - - - - - - - 1 

Unid. postlarvae 
Polychaete 
postlarvae - - - - 7 4 - 2 - - - - - - - - 5 - - - 

Arthropoda 

                    
  

Crustacea 
                    

  

10. Amphipoda Amphipods - - - - 5 - 2 - - - - - - - - - 2 8 11 1 

11. Cumacea 
                    

  

Pseudocumatidae Pseudocumatids - - - - - - - 2 - - - - - - - - - - 2 - 

12. Copepoda 
                    

  

Harpacticoida 
Cletocampus 
confluens 26 36 - 2 - - 2 1 - - - - - - - - - - - 5 

  
Ectinosomatidae sp 
1 - - - - - - 12 2 - - - - - - - - - - 4 - 

  
Ectinosomatidae sp 
2 42 - 11 - 120 - 7 14 27 - - - - - - - - - 154 - 

  Nitocra taylori 5 - - 1 - - 17 12 - - - - - - - - - - - - 

  
Mesochra cf. 
wolskii - - - - 38 - 21 - - - - - - - - - - - 32 - 

  Copepodites - - - - - - - 3 - - - - - - - - - - - - 

  Unid. harpacticoids 201 1 8 11 138 21 37 14 135 2 2 1 - 1 4 - 2 11 87 13 

Cyclopoida Cyclopoids - - - - - 3 - 2 - - - - 5 - - - - 1 - - 

Calanoida 
Pseudodiaptomus 
stuhlmanni - - - - - - - - - - - - - - - - - - - 5 

  Unid. Calanoids - - - - - - - 2 - - - - - - - - - 3 6 - 

13. Ostracoda 
 

1 - - 1 - 49 - 62 - - - 86 - - 4 5 - 11 25 2 

14. Tanaidacea 
                    

  

Apseudidae Apseudes digitalis - - - - - - 1 - - - - - 1 1 10 6 - - - - 

Unid. Tanaid Tanaid sp. 1 - - - - - - - - - - - - - - - - - - 1 - 

15. Naupliar larvae 
 

157 6 - - 99 57 14 20 12 - 1 7 - - - - - 3 19 5 

Hexapoda 
                    

  

16. Diptera 
                    

  

Ceratopogonidae  
Ceratopogonid 
larvae - - - - 55 - - - - - 5 - - - - - - 12 2 1 

Chironomidae  Chironomid larvae - 5 4 - 4 1 - 1 71 - - - - - - - 1 - 1 - 

Unid. Diptera 
Unid. Dipteran 
larvae - - - - - - - - - - - - - - - - - - 1 - 

17. Chelicerata 
                    

  

Acaridae 
Tyrophagus 
putrescientiae - 1 - - - - - - - - - - - - - - - - - - 

Uropodidae Uroobovella sp. - - - - - - - - - - - - - - - - - - - - 

Halacaridae Copidognathus sp. - - - - - - - - - - - - - - - - - - - - 

Unid. Mites Unid. mites - 1 - - - - - - - - - - - - - - - 1 - - 

Mollusca 
                    

  

18. Bivalvia Bivalve postlarvae - - - 2 - - 4 8 - - - - 1 - - - 4 3 5 15 

19. Gastropoda 
                    

  

Assiminidae Assiminia spp. - - - - - 2 - 10 - - - - - - - - - - - - 

  Gastropod larvae - - - - - 62 8 113 - - - 99 - - - - 1 33 - - 

Other 

 
- - - - - - - 2 - - - - - - - - 2 - 2 - 

Total meiofauna   759 1388 76 23 566 421 299 518 451 50 149 735 472 31 80 32 125 282 608 280 
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Table 2.5 cont. 
Major groups and taxa Lister's Point Charter's Creek Catalina Bay Esengeni Mouth 

b) 2012   Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp 
1. 

Foraminifera 

                    
  

Calcareous 
forams 

                    
  

Miliolidae Ammonia group 1 1 5 3 - 1 3 - 22 6 2 - - - - - - - - - 
Bolivinitida

e Bolivina spp. - - - - - - - - - - - - - - - - - - - - 

Monothalamous forams 
                   

  

Allogromiidae 
 

- 3 - 36 1 - 4 - 1 5 - 1 2 - - - - - - 5 

Saccamminidae 
 

- - - - - - - - - - - 1 5 - - - 31 - - 1 

2. Ciliophora 

                    
  

Tracheliidae  
 

- - - - - - - - - 4 - - - - - - - - - - 

Frontoniidae*  
 

- - - - - - - - - - - - - - - - - - - - 

Ciliate C 
 

- - - - - - - - - - - - - - - - - - - - 

Unid. Ciliates Unid. ciliates - - - - - - - - - - - - - - - - - - - - 

Platyheminthes 

                    
  

3. Turbellaria 
                    

  

Macrostomida  Macrostomida A - - - - - - 5 11 5 14 11 3 - - - - 2 15 4 7 

  Macrostomida E - - - - 1 3 2 2 - 7 11 15 - 5 - - 7 10 - 50 

Proseriata sp.  Proseriata - - - - 1 - 5 1 - - 23 - - - - - 14 16 8 5 

Rhabdocoela sp.  Rhabdocoela - - - - - - - - - - - 2 - - - - - - - 2 
Unid. 

Turbellarians 
Turbellarian type 
D - - - - - - 6 2 1 - - - - - - - 1 3 - 4 

Unid. 
Turbellarians 

Turbellarian type 
H - - - - - - - - - - - - - - - - - - - - 

Unid. 
Turbellarians 

Unid. 
Turbellarians - - - - - - - - - - - - - - - - - - - - 

4. Nemertea 

                    
  

Nemertea Nemertea - - - 8 - 1 - - - - - - - - - - - 1 - 3 

5. Nematoda 

                    
  

Unid. Nematodes Unid. Nematodes - 2 - 4 86 46 81 38 97 1149 939 111 103 32 14 2 34 62 21 84 

6. Kinorhyncha 

                    
  

Echinoderidae 
Echinoderes 
maxwelli - - - - 10 10 18 13 - - 1 2 - - - - - - - - 

7. Rotifera 
                    

  

Lecanidae 
Lecane cf. 
grandis - - - - - - - - - - - - - - - - - - - - 

Annelida 

                    
  

8. Oligochaeta 
                    

  

Naididae* Naididae sp. 1  - - - - - - - - - 3 - - - - - - - - - 1 

  Naididae sp. 2  - - - - - - - - - 3 - - - - - - - - - - 

  Naididae sp. 3  - - - - - - - - - - - - - - - - - - - - 

Lumbriculidae 
Lumbriculidae 
sp. - - - - - - - - - 1 - 5 - - - - - - - - 

Aeolosomatidae 
Aeolosomatidae 
sp.  - - - - - - - - - 1 3 - - - - - - - 3 - 

Unid. Larvae 
Oligochaete 
larvae - - - - - 1 - 1 - 7 - 3 - - - - - - - - 

Unid. Oligochaetes 
Unid. 
Oligochaetes - - - - - - - - - - - - - - - 1 - - - - 

9. Polychaeta 
                    

  

Capitellidae 
Capitella 
capitata - - - - - - - - - - - - - - - - - - - - 

  
Mediomastus 
spp.* - - - - - - - - - - - - - - - - - - - - 

  Unid. Capitellids - - - - - - - - - - - - - - - - - - - - 

Nereidae Nereidae spp. - - - - - - - - 3 2 1 4 - - - - - - - - 

Protodrilidae* Protodrilidae sp. - - - - - - - - - - - - - - - 1 - - - 1 

Sabellidae 
Desdomona 
ornata - - - - - - 1 - - - - - - - - 1 - - - - 
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Table 2.5 cont. 
  Lister’s Point Charter’s Creek Catalina Bay Esengeni Mouth 
  Su A W Sp Su A W Sp Su A W Sp Su A W Sp Su A W Sp 
Spionidae Polydora group - - - 2 - - - - - - - - - - - - - - - - 

  Prionospio spp. - - - - - - - - - - - - - - - - - - - - 

  Unid. Spionids. - - - 1 - - - - - - - - - - - - - - - 1 

Unid. postlarvae 
Polychaete 
postlarvae - - - - - - - 2 - 1 - 5 - - - 1 - - - 4 

Arthropoda 

                    
  

Crustacea 
                    

  

10. Amphipoda Amphipods - - - - - 4 1 2 3 - - - - - - 1 - - - - 

11. Cumacea 
                    

  

Pseudocumatidae Pseudocumatids - - - - - - 3 2 - - - - - - - - - - 1 - 

12. Copepoda 
                    

  

Harpacticoida 
Cletocampus 
confluens - - - - - - 6 - - - - 1 2 - - 5 - - - 4 

  
Ectinosomatidae 
sp 1 - - - - - - - - 3 - - - - - - - 12 14 1 5 

  
Ectinosomatidae 
sp 2 - - - - - - - - - - - - - - - - - - - - 

  Nitocra taylori - - - - - - - - - - - - - - - - - - - - 

  
Mesochra cf. 
wolskii - - - - - - - 2 - - - 3 - - - 1 - - 3 32 

  Copepodites - - - - - - - - - - - - - - - - - - - - 

  
Unid. 
harpacticoids 2 5 - - - 20 4 - 2 2 2 6 3 3 - 4 - 8 2 40 

Cyclopoida Cyclopoids - - - - - - - - - - - - 1 - - - - - - 2 

Calanoida 
Pseudodiaptomus 
stuhlmanni - - - - - - - 4 2 - - 2 - - - - 1 - 2 3 

  Unid. Calanoids - - - - - - - - - - - - - - - - - - - - 

13. Ostracoda 
 

16 188 6 74 - 4 10 7 - 44 388 42 - 1 11 3 - 4 - 2 

14. Tanaidacea 
                    

  

Apseudidae 
Apseudes 
digitalis - - - - 1 1 - - - - - 1 5 1 7 15 - - - - 

Unid. Tanaid Tanaid sp. 1 - - - - - - - - - - - - - - - - - - - - 

15. Naupliar larvae 
 

- - - - - 2 3 3 - - 41 4 - 1 - - - - 4 76 

Hexapoda 
                    

  

16. Diptera 
                    

  

Ceratopogonidae  
Ceratopogonid 
larvae - - - - - - - - - 3 1 - - - - - - 4 - - 

Chironomidae  
Chironomid 
larvae - - - - - - - - - 4 - 21 - - 1 - - - - 2 

Unid. Diptera 
Unid. Dipteran 
larvae - - - - - - - - - - - - - - - - - - - - 

17. Chelicerata 
                    

  

Acaridae 
Tyrophagus 
putrescientiae - - - - - - - - - - 1 - - - - - - - - - 

Uropodidae Uroobovella sp. - - - - - - - - 1 - - - - - - - - - - 1 

Halacaridae 
Copidognathus 
sp. - - - - - - - - - - - - - - - - - - 1 - 

Unid. Mites Unid. mites - - - - - - - - - - - - - - - - - - - - 

Mollusca 
                    

  

18. Bivalvia 
Bivalve 
postlarvae - 25 - - - 1 3 - 131 1 3 2 - - - 1 6 6 1 5 

19. Gastropoda 
                    

  

Assiminidae Assiminia spp. - - - 3 1 - - - 17 - - - - - - - - - 1 - 

  Gastropod larvae - - - 22 115 84 82 66 409 - 4 100 - - - - - - - - 

Other 
 

- - - - - - 3 - 1 - 1 4 - - - 2 - 1 - - 

Total meiofauna   19 225 12 155 216 178 242 157 699 1259 1432 342 122 44 33 39 108 144 54 344 
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Figure 2.5: Non-metric multidimensional scaling (MDS) ordination of meiofauna 
communities in 2011 (a) and 2012 (b) and primary environmental variables (right) based on 
BIOENV, showing the distribution and grouping of samples in summer, autumn, winter and 
spring at each site (left). Results from the cluster analysis are superimposed to show groups 
defined at 40 % similarity. 
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2.4.4 Community structure 

Two-way ANOSIM of the effects of site and season on meiofauna community structure 

within each year showed that both factors had a significant effect. In both 2011 and 2012, a 

highly significant difference was observed between sites (R = 0.789, p = 0.001; R = 0.769, p 

= 0.001, respectively) and between seasons (R = 0.767, p = 0.001; R = 0.543, p = 0.001, 

respectively) (Table 2.6). Pairwise comparisons revealed that communities at each site were 

distinct and differed significantly from each other (Table 2.6). Similarly, the communities of 

each season were all significantly different from each other.  

Table 2.6: Results of multivariate analysis of similarity (ANOSIM) on community structure 
and composition of meiofauna in the St Lucia Estuary, examining the effects of site and 
season (2-way ANOSIM). The ANOSIM test statistic (R) significance level of 5% 
corresponds to α = 0.05, Clarke & Warwick 2001). 

Two-way ANOSIM (site and season)       

  2011 2012 
Site R Sig. (%) R Sig. (%) 
Global test 0.789 0.1 0.769 0.1 
Pairwise tests 

   
  

Listers Point, Charters Creek 0.75 0.1 0.743 0.1 
Listers Point, Catalina Bay 0.843 0.1 0.691 0.1 
Listers Point, Esengeni 0.703 0.1 0.704 0.1 
Listers Point, Mouth 0.852 0.1 0.807 0.1 
Charters Creek, Catalina Bay 0.926 0.1 0.907 0.1 
Charters Creek, Esengeni 0.861 0.1 0.917 0.1 
Charters Creek, Mouth 0.981 0.2 0.935 0.1 
Catalina Bay, Esengeni 0.537 0.1 0.944 0.1 
Catalina Bay, Mouth 0.917 0.3 0.972 0.1 
Esengeni, Mouth 0.722 0.1 0.843 0.1 

Season 
   

  
Global test 0.767 0.1 0.543 0.1 
Pairwise tests 

   
  

Summer, Autumn 0.919 0.1 0.345 1.2 
Summer, Winter 0.978 0.1 0.646 0.2 
Summer, Spring 0.756 0.1 0.674 0.1 
Autumn, Winter 0.763 0.1 0.563 0.1 
Autumn, Spring 0.704 0.1 0.615 0.1 
Winter, Spring 0.652 0.1 0.593 0.1 
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There were slight differences observed in 2011 between sites for each season (Figure 2.5a), 

with the Mouth and Charter’s Creek generally being most similar to each other (autumn, 

winter and spring), and the lake sites (Lister’s Point, Charter’s Creek and Catalina Bay) being 

similar to each other during summer. Apart from this, there was no distinct separation 

between seasons. In 2012 (Figure 2.5b), there was distinct separation of communities by site, 

with season not influencing the clusters significantly. For 2011 and 2012, environmental 

variables correlated with spatial variability in meiofaunal communities (BIOENV, R = 0.903, 

p = 0.01 and R = 0.897 p = 0.01, respectively). Salinity, turbidity, MPB, SOM and rainfall 

were most important in collectively explaining the variability in 2011. Based on overlays of 

environmental variables, salinity and MPB were found to best explain the communities of 

2011 (Figure 2.5a). Communities at Charter’s Creek, Catalina Bay and the Mouth which 

experienced intermediate salinities were more closely clustered, while communities that 

experienced salinity extremes during summer and at Lister’s Point and Esengeni were 

grouped amongst each other. Similar trends were observed with MPB. Temperature, depth, 

SOM and grain size were most important in collectively explaining the variability in 2012. 

Environmental variable overlays found depth and SOM to be important in separating the 

communities of 2012 (Figure 2.5b). Meiofaunal communities at the deeper sites (Esengeni 

and the Mouth) were separate from those of the shallower sites (Lister’s Point, Charter’s 

Creek and Catalina Bay). Communities at Lister’s Point and Esengeni experienced higher 

SOM than Charter’s Creek, Catalina Bay and the Mouth which experienced vastly lower 

SOM in comparison. The results of the BIOENV procedure were generally consistent with 

that of the PCA ordination.  
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2.5 Discussion 

The wet phase that began in 2011, when salinity was drastically reduced following above 

average rainfall, led to a substantial alteration of the physical environment and the meiofauna 

communities of the system. The varying degrees of meiofaunal community changes between 

sites along the estuary are an indication of the inverse estuarine gradient and associated 

environmental variables, with site-specific community structure and composition creating 

spatial distinctions. Further differences between site specific communities may be attributed 

to seasonal effects. 

Low salinities were noted in all sites (below 20 in the lower reaches), except Lister’s Point, 

where levels remained hypersaline (40-97), regardless of the higher amount of rainfall 

experienced in the weeks leading up to each sampling occasion (with the exception of autumn 

and winter 2012) (Figure 2.2b). This is possibly due to the significant amount of salt that had 

been bound up in the sediments of the lake-bed, causing salinity to remain high despite the 

increase in freshwater inflow (Taylor 2011), with this inflow also being balanced by 

evaporative loss. Different ecological salinity states (as per Venice system (1958)), were 

dominant in different parts of  the system during this study. An oligohaline state occurred 

predominantly at Esengeni where nematodes dominated, and was also the only site where 

Apseudes digitalis was found. The presence of this mud-dwelling tanaid was also observed in 

Eastern Cape estuaries of South Africa during similar states (Teske & Wooldridge 2004). 

Catalina Bay was hyposaline for the majority of the study and was characterised by 

nematodes, gastropod larvae and ostracods. Charter’s Creek and the Mouth were 

predominantly low hyposaline and were characterised by nematodes, gastropod larvae, 

turbellarians, and copepods. Lister’s Point varied between hyperhaline and extreme 

hypersaline states. During these states the site was characterised by ciliates, ostracods, 
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nematodes, foraminiferans, naupliar larvae, bivalve larvae and copepods (Cletocamptus 

confluens). It is important to note the presence of a vital core group of euryhaline organisms, 

mainly certain nematodes and harpacticoid copepods (Gilles & Pequeux 2014), in the varying 

salinity states experienced during the two years of this study, with at least one taxon being 

numerically significant at each site. Certain taxa possessed high salinity tolerances, namely 

gastropods (up to 40), chironomid larvae and mites (up to 60), Cletocamptus confluens 

(above 60) and ostracods (above 95), while others, such as kinorhynchs and turbellarians, 

required more favourable conditions before becoming successful. Four of the five important 

taxa in this study (nematodes, foraminiferans, ostracods and copepods) are also key 

taxonomic groups for predicting global climate change (Zeppilli et al. 2015).  

Equally important environmental factors in the structuring of meiofauna communities are 

sediment characteristics, namely grain size and organic matter. Generally, meiofauna burrow 

in sediment with MPS of  > 125 µm, as finer sediments have very small interstitial spaces 

that are not conducive for meiofauna to inhabit (Coull 1999). As a result, sediment 

characteristics have the ability to determine what organisms are likely to be present at a site 

(Fenchel 1978), and may therefore be a contributing factor to the differences in community 

structure and composition between sites. MPS had strong positive correlations with 

taxonomic richness during both years, suggesting that larger grain sizes are associated with 

higher levels of taxonomic richness. Similar findings were observed by Fonseca et al. (2010). 

Taxa such as turbellarians, nemerteans, kinorhynchs, oligochaetes and gastropods were more 

prevalent at sites with larger grain size. SOM was found to be negatively correlated with 

meiofaunal density and taxonomic richness, suggesting that high SOM reduces density and 

taxon richness. Gambi et al. (2003) also found that high levels of organic matter had a 

negative influence on meiofauna assemblages. In sediments of optimum grain size for 

meiofauna, SOM may limit the available space for meiofauna to inhabit or smother these 
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organisms, while decaying organic matter may lead to hypoxic conditions (Gray et al. 2002). 

According to Dell'Anno et al. (2002), large amounts of SOM are typically low in nutritional 

value and are therefore not an optimal food source for meiofauna. The negative correlation 

between SOM and MPS is indicative of larger grain sizes having a smaller surface area for 

organic adsorption (Alves et al. 2009, Parsons et al. 2013). 

An additional environmental factor of great importance during this study is 

microphytobenthos. Estuarine microphytobenthos is usually dominated by benthic diatoms 

(Sanilkumar et al. 2009), which meiofauna are known to feed on (Daudi et al. 2013). The 

positive correlation between microphytobenthos (MPB) and meiofaunal density observed in 

2012 suggests that a decrease in MPB biomass will have a negative impact on meiofauna due 

to reduced food availability. Organisms that were found to fluctuate with MPB include 

nemerteans, ostracods and tanaids.  

Meiofaunal density and taxonomic richness were found to be significantly different between 

sites and seasons in both years. The general trend for estuaries is for meiofaunal density and 

richness to increase towards the mouth, as a result of the salinity gradient ranging from 

freshwater at the head to marine at the mouth (Alves et al. 2009). At St Lucia however, where 

a reverse salinity gradient prevailed during the study, the highest density and richness were 

observed at Lister’s Point and Catalina Bay in 2011 and 2012, respectively. These sites also 

had the shallowest depths. During summer 2012, Lister’s Point exhibited extremely high 

temperature, with a peak in salinity and a drop in dissolved oxygen which resulted in very 

low meiofaunal density and taxonomic richness. Lister’s Point appeared to be the most 

vulnerable site, as any change in environmental conditions had deleterious effects on 

meiofaunal density and richness. Esengeni remained in a near freshwater state throughout the 

drought and wet phase. This may be a potential factor accounting for the continuously 
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reduced density and richness observed at this site (Alves et al. 2009, Bownes & Perissinotto 

2012).  

Average densities found in this study were lower than those observed following a sea-

induced breaching event during the previous drought, which exhibited an overall average of 

457 ind. 10 cm-2 (Bownes & Perissinotto 2012). In other estuaries that have received 

freshwater inflow, such as the Upper Rincon Bayou in Texas, USA, meiofauna densities 

averaged 1200 ind. cm-2 (Montagna et al. 2002). Southern European estuaries such as the 

Mira and Mondego in Portugal, have meiofaunal densities of 583 and 441 ind. 10 cm-2, 

respectively (Alves et al. 2009). Thus, compared to other estuaries around the globe, the 

densities recorded at St Lucia during the wet phase are relatively low. Although no marine 

meiofauna were identified during this study, van Elden et al. (2014) recorded the occurrence 

of marine zooplankton that were previously absent from the system since the late 1970s. This 

suggests that recruitment into St Lucia from both the sea and the Mfolozi River via the beach 

spillway is possible and may be observed in the meiofauna communities beyond 2012. Of the 

various possibilities that may account for low meiofaunal densities there are three that are 

most applicable to this system. Firstly, meiofauna density decreases may be the result of 

vertical migration as a response mechanism to unfavourable conditions (Steyaert et al. 2001). 

Secondly, increased water levels that reconnected the various compartments of St Lucia may 

have allowed for the migration of juvenile fish through the system, thereby increasing the 

predation pressure on meiofauna. Lastly and most importantly for this study, flooding had 

washed away surface sediment and resident biota (Grilo et al. 2011). Although these 

explanations may seem to be more applicable to sudden perturbations, the drastic changes 

that the physical environment had been subjected to ensured that these organisms would be 

predisposed to instability as the system adjusted. Salinity throughout the study was 

consistently low (< 20), in the greater part of the system in 2012 and the consistently low 
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density observed at this time may be a consequence of this.  Furthermore, low densities may 

be indicative of the drastic change from the dry phase and the relatively short wet phase 

studied, and a potential lag time for meiofaunal community response (Palmer et al. 2002). 

Since the initial changes in environmental variables in 2011, meiofaunal communities have 

shown no distinction based on site or season between the major parts of the system, with 

Lister’s Point and the Mouth being the only sites that exhibited some level of similarity. 

Season played a more significant role in the clustering of communities during summer, winter 

and spring. As suggested by Storey and Williams (2004), physico-chemical parameters may 

have a greater impact during seasons when they shift towards their extremes. The area of 

sampling at each site also plays a pivotal role in the determination of variables such as 

temperature and depth. For all sites, except Esengeni, sampling was conducted at the water’s 

edge, where it is shallow and water temperature may be warmer. Nonetheless, seasonal trends 

for temperature were consistent in both 2011 and 2012. During the second year of the wet 

phase, meiofauna communities showed a higher degree of stability as suggested by the 

clustering based on site. Although there was slight variation within sites, between seasons, 

meiofaunal communities within each site were generally similar throughout the year. This 

convergence may indicate the increased stability of the meiofauna community due to an 

established wet phase community being present as well as the formation of microhabitats 

within the system. Convergence of benthic communities have been observed following a 

dredging disturbance (Bolam et al. 2006), and in a drought phase (Stubbington et al. 2015), 

where communities within each site became more similar over time and eventually resembled 

undisturbed/unaffected sites. In this case, communities resemble each other over time as an 

indication of increased stability rather than suggesting that they represent the same 

community. 
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The drastic salinity change in 2011 was the primary indicator of a wet phase following the 

increased amount of rainfall. The most likely connection between climate variability and the 

changing nature of benthic communities is caused by a strong association between global 

climate signals, precipitation and local salinity patterns (Pollack et al. 2011). Although 

salinity was not correlated with univariate indices, such as meiofauna density or taxonomic 

richness, it was highly influential in defining the wet phase and its communities. As proposed 

by Pillay and Perissinotto (2009), the lack of correlation between indices and salinity could 

be a result of the extremely variable nature of the physical environment, and the meiofaunal 

assemblages. This is mainly due to the large area of Lake St Lucia, which has wide variation 

in salinity between the upper, middle and lower reaches. Additionally, identifications at 

higher taxonomic levels does not allow for changes in species specific abundance to be seen, 

thereby ignoring the potential correlations of these species with environmental variables 

(Nozais et al. 2005). Reduced salinity, which was especially drastic in the northern regions of 

the system (as observed at Lister’s Point between summer and autumn 2012), would have 

caused an elimination of species that were hypersaline or stenohaline, thus selecting for 

organisms capable of survival at lower salinities. 

It is anticipated that global mean temperatures will rise over the next century, with future 

increases in greenhouse gases potentially increasing the intensity of global precipitation. If 

the frequency of stochastic events, such as El Niño/La Niña periods, increase, the incidence 

and severity of droughts and floods are also likely to increase (Timmermann et al. 1999). 

With these climatic extremes and alternations between cyclical wet and dry phases, estuaries 

are subject to vast changes in environmental parameters. All biota will be influenced by the 

onset of such extremes; it is important to have an understanding of their responses and 

community dynamics. It is evident that an increasingly unstable climate will contest the 

resilience and resistance of ecosystems and may have potentially detrimental effects on these 
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environments and their biological communities (Pollack et al. 2011). The interconnected 

nature of estuaries and pelagic zones suggests that this environmental variability is not likely 

to be isolated to any particular area or species (Richmond et al. 2007).  

In conclusion, this study found that the meiofauna communities differed between sites and 

seasons, suggesting that the wet phase and its resulting environmental parameters have 

played a role in the structuring of the meiofauna communities found in this study. The 

fundamental differences between sites can be explained by the variation in factors such as 

salinity, grain size, organic matter and depth. Given the significant role of estuaries and the St 

Lucia Estuary in particular, continuous monitoring of these benthic communities is 

imperative. These communities are understudied, yet are able to provide insight on the health 

of a system. The results of this investigation have provided important information regarding 

the influence of wet phase conditions on estuarine meiofauna and the underlying driving 

factors. Since this area is of great national and global significance, forming part of South 

Africa’s first World Heritage Site, the iSimangaliso Wetland Park, it is imperative that the 

characteristic biota of the St Lucia system be understood and well documented. This 

knowledge will allow for management strategies to be implemented towards the 

sustainability and rehabilitation of this system.   
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CHAPTER 3: RESPONSE OF MEIOFAUNA TO A FLOOD DISTURBANCE 

IN THE ST LUCIA ESTUARY, ISIMANGALISO WETLAND PARK 

3.1 Abstract 

Disturbances are pivotal in the restructuring of biological communities, as they have the 

ability to initiate successional processes. Lake St Lucia is the largest estuarine lake in Africa 

and a crucial component of the iSimangaliso Wetland Park, South Africa’s first World 

Heritage Site. Following a decade long drought (ending in 2010) characterised by low lake 

levels, hypersalinity and reduced biodiversity, the St Lucia system experienced a flood event 

that drastically reduced salinity levels and increased water depths, submerging previously dry 

areas. Due to the rapid regeneration time of meiofauna, these organisms were used to assess 

the effect of the flood event on benthic communities and succession in the estuary following 

this disturbance. Meiofauna samples were collected prior to and after the disturbance, from 

three representative sites along the estuary that exhibited various salinity ranges. Meiofaunal 

communities prior to the disturbance revealed no significant differences over time; however 

significant spatial and temporal differences in meiofaunal communities were present 

following the disturbance event. A distinct pattern of succession was evident throughout the 

system and each site displayed its own species composition changes over time that inferred 

site specific succession was also evident. The multiple peaks and declines in density over 

time are likely indicative of an intermediate frequency of disturbances (each displacing and 

eradicating organisms) that are at play and shape estuarine communities over time. Although 

the meiofauna of the St Lucia Estuary are in constant flux, they appear to maintain some level 

of resilience to flood disturbances. 
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 3.2 Introduction 

Disturbances are important structuring drivers of ecological systems and the communities 

therein (Cristoni et al. 2004). Such events cause interruptions both indirectly and directly, by 

altering environmental conditions and resource abundance, and through eradication or 

displacement of organisms (Snyder & Johnson 2006), thereby creating new areas available 

for colonisation, initiating a successional process (Ritter et al. 2005).   

Succession can be defined as the apparent directional change in the species composition of a 

community over time (Trueblood et al. 1994). Margalef (1968) explained succession to be 

“the occupation of an area by organisms involved in an incessant process of action and 

reaction which in time results in changes in both the environment and the community, both 

undergoing continuous reciprocal influence and adjustment”. Succession is ideally 

characterised by an increase in abundance, diversity, and biomass; this occurs as the 

community shifts into different states (see Rosenberg et al. 2002), and reaches a climax 

community (Widdicombe & Austen 2005, Thompson & Lake 2010). Additionally, 

successional communities shift from opportunistic, r-selected species with rapidly growing 

populations to rarer, slower-growing K-selected species (Zajac & Whitlatch 1982a, 

Widdicombe & Austen 2005). However, succession isn’t necessarily directional, therefore the 

replacement of species may not follow in a specific sequence (Platt & Connell 2003) that is 

characteristic of any successional pattern. Non-directional replacement is likely to be 

observed in areas of non-catastrophic disturbance, where residents are not completely 

removed after disturbance (Platt & Connell 2003). Other key aspects that relate to succession 

are that of resistance (ability to resist change caused by disturbance) and resilience (ability to 

rapidly recover after disturbance) (Grimm 1994). For example, environmental patchiness has 

the ability to affect community structure in a manner that can reduce or strengthen the 
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community’s resistance and to modify the rate and pattern of recovery after a disturbance 

(Peterson & Stevenson 1992). 

The St Lucia Estuary (northern KwaZulu-Natal, South Africa), Africa’s largest estuarine lake 

is a Ramsar Wetland of International Importance and forms a crucial part of a UNESCO 

World Heritage Site, the iSimangaliso Wetland Park. This system characteristically 

experiences cyclical wet and dry phases that may last up to a decade (Begg 1978). However, 

droughts in recent years have been more severe as a result of a range of anthropogenic 

activities that have taken place in the system’s catchment (Lawrie & Stretch 2011). During 

the most recent drought (2001 – 2010), the system became hypersaline and developed a 

persistent reverse salinity gradient with levels in the northern reaches exceeding 200 at times 

in 2010. An intense flood event (250 - 350 mm of rain over a few days) that occurred at the 

beginning of 2011 in the St Lucia region substantially decreased salinity levels and increased 

water depths throughout the lake system. This flood event signalled the onset of a new wet 

phase and provided a unique opportunity to determine the effects of this climatic shift on the 

meiofaunal communities.  

 Drastic changes in salinity are a source of disturbance in estuaries, as they have the potential 

to cause decreases in species abundance, richness and overall diversity (Montagna et al. 2002, 

Harkantra & Rodrigues 2003, Ritter et al. 2005). When measuring disturbance effects over a 

short time period, meiofauna are useful models for succession studies as they have a 

relatively short generation time (Danovaro 2000). Meiofauna are also key constituents within 

aquatic sediments, as they play vital roles with regards to trophic interactions, bacterial 

metabolism and bioturbation (Bonaglia et al. 2014).  

This study aims to compare the meiofaunal communities of the St Lucia estuarine lake during 

the drought and start of the flood phase and to determine the short to medium term 
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successional patterns of the meiofauna in this estuary. This was done by following the 

changes in meiofaunal community structure and composition during the final stages of the 

drought, and after the flood disturbance at two week or monthly intervals. This was extended 

over a longer time period during 2011, in the attempt to follow successional/community 

patterns in the medium term. It is hypothesised firstly, that there would be differences in 

meiofaunal community structure and composition between sites and climatic phase (drought 

and flood phase) and secondly that there would be differences in meiofauna community 

structure and composition at each site over time following the flood disturbance.  

3.3 Methods 

Sampling was conducted on the following dates prior to the disturbance: 07 October 2010, 20 

October 2010, 02 November 2010, 23 November 2010 and 13 December 2010, and on the 

following dates after the disturbance: 24 January 2011, 08 February 2011, 20 February 2011 

and 07 May 2011, where possible. Three representative sites were chosen. Each site exhibits 

varying sensitivity to environmental change: Lister’s Point, which experiences extreme 

salinity changes; Charter’s Creek, which exhibits considerable changes in salinity; and the 

Mouth, which maintains a fairly stable and minor change in salinity (Figure 3.1). 

3.3.1 Environmental characteristics 

A YSI 6600 multi-probe was used to measure physico-chemical variables such as salinity, 

temperature (°C), turbidity (NTU), dissolved oxygen (mg l−1), pH and depth (m). On 

occasions where the YSI was unavailable, salinity, temperature and depth were measured 

individually with the use of a refractometer, a mercury thermometer and a ruler, respectively. 

3.3.2 Field sampling and laboratory processing 

For the sampling of microphytobenthos (MPB), three replicates of the first 1 cm of sediment 

were collected at each site using a Perspex, twin corer (internal diameter: 2 cm). Cores were 
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added to 30 ml 90% acetone and were incubated for 48 to 72 hours for the extraction of chl a. 

Chl a concentrations for MPB were measured fluorometrically with a Turner Designs 10-AU 

fluorometer. Sedimentary organic matter (SOM) samples were made up from 2 cores of the 

upper 1 cm of sediment. These were dried, weighted, combusted and reweighed to determine 

the organic matter content. 

Triplicate meiofauna samples were collected at Lister’s Point, Charter’s Creek and the 

Mouth, whereby the upper 1 cm of sediment was extracted using a perspex twin-corer 

(internal diameter: 2 cm). Samples were fixed and stained with 10 % formalin and Phloxin-B, 

respectively. In the laboratory, the meiofauna fraction was separated from the sample by 

washing it through a 500 µm and 63 µm mesh sieve. Centrifugation with Ludox HS-40 was 

conducted following the procedure of Bownes and Perissinotto (2012) for the extraction of 

meiofauna. Extraction efficiency was ensured with sediment checks from each sample. 

Samples were sorted under a dissecting microscope (x 40) and all meiofaunal taxa were 

identified to the lowest possible taxonomic classification. 

3.3.3 Statistical analysis 

Primer 6 & Permanova + software were used to conduct all multivariate analyses to 

investigate the relationships between environmental variables and temporal distribution of 

meiofauna. Mean temperature, salinity, depth, turbidity and microphytobenthic biomass were 

used in the analysis due to missing data from other variables.  

3.3.3.1 Environmental changes and diversity responses 

Principal Components Analysis (PCA) was utilized on normalised data as an unconstrained 

method of ordination to visualise multivariate patterns in environmental data (Clarke & 

Warwick 2001). This was then superimposed with abundance and taxon richness, obtained 

using the DIVERSE function, to visualise any superficial linkage between environmental data 
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and abundance and taxon richness. Statistica 12 was used to conduct two-way analysis of 

variance (ANOVA) to compare differences in abundance and taxon richness between sites 

and climatic phases (drought and flood). This was done using averages of 3 replicates and 

using each date as a replicate within each climatic phase due to uneven sampling intervals and 

inconsistency between sites. Tukey post-hoc comparisons were used to examine significant 

results. SIMPER analysis was used to distinguish the important taxa that contributed to 

temporal changes in community structure.  

3.3.3.2 Succession 

A permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001) was 

used to test for differences over time between sites. Analyses were based on 999 permutation 

of residuals under a reduced model (Anderson 2001). A canonical analysis of principal 

coordinates (CAP) (Anderson & Willis 2003) was utilised as a constrained arrangement to 

visualise and highlight any meiofaunal patterns over time. Significantly correlated taxa (> 

0.4) from Pearson correlation were superimposed on the CAP ordination to highlight any taxa 

that were responsible for temporal separation. The PERMANOVA and CAP analyses were 

performed using Bray-Curtis similarity matrixes based on square-root transformations, to 

weight the contribution of common and rare species in the multivariate representation (Clarke 

& Warwick 2001). MDS was also used to display harpacticoid copepod communities during 

the flood phase as a visualisation of successional changes within primary coloniser 

communities.   

3.4 Results 

3.4.1 Environmental changes and diversity responses 

Based on the physico-chemical data, it is apparent that during the course of the study the state 

of the system had shifted from a hypersaline state to a diluted state. High rainfall in January 
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2011 (Figure 3.1a) resulted in a drastic reduction in salinity throughout the lake system 

(Figure 3.1b). This reduction was most significant in the northern reaches of the lakes. 

Lister’s Point exhibited the highest salinities during the drought phase. Although salinities 

were lower during the flood, Lister’s Point remained hypersaline with salinities similar to 

those experienced at Charter’s Creek during the drought.  

 

 

Figure 3.1: Rainfall (a) and salinity (b) meaured in the St Lucia region at two week intervals 
for the three sites sampled (Lister’s Point, Charter’s Creek, Mouth) from October 2010 to 
May 2011. 

Sedimentary organic matter (SOM) was greatest at Lister’s Point during the drought (9.63 %, 

Table 3.1), and was generally lower at all sites during the flood phase. Lister’s Point and 

Charter’s Creek both exhibited high turbidity (25 – 591 and 26 – 951 NTU, respectively), 
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regardless of phase. As seen in table 3.1, MPB biomass was highest at Lister’s Point (18 – 

222 mg.m-2) regardless of phase, with Charter’s Creek and the Mouth showing intermediate 

levels (19 – 76 mg.m-2) during the drought. MPB was lower at Charter’s Creek and the Mouth 

during the flood (5 – 54 mg.m-2).  

Table 3.1: Environmental paramters measured at the St Lucia Estuary from the three 
representative sites from the end of the drought and beginning of the flood phase. Values in 
bold are averages from data sampled around that time. * denotes missing data. Arrows denote 
the onset of the flood phase. 

Site Date 
Temperature 

(°C) 
Turbidity 

(NTU) 
Depth 
(m) 

SOM 
(%) 

MPB 
(mg m-2) 

Lister's 
Point 

20-Oct-10 34.76 55.7 0.1 * 220.38 
02-Nov-10 26.6 590.8 0.04 9.63 182.17 
13-Dec-10 32.38 243.85 0.06 9.12 56.78 
24-Jan-11 24.96 25 0.43 2.01 109.72 
08-Feb-11 31.28 25.6 0.45 7.00 81.20 
20-Feb-11 30.27 67.7 0.45 1.75 18.46 

07-May-11 22.77 234.1 0.33 9.28 79.01 

Charter's 
Creek 

07-Oct-10 21.83 125.9 0.14 * 46.59 
20-Oct-10 31.17 25.9 0.11 * 66.27 

02-Nov-10 27.44 951 0.05 * 45.99 
23-Nov-10 28 315.3 0.06 2.46 42.07 
13-Dec-10 30.3 170.8 0.12 2.31 19.36 
24-Jan-11 26.62 84.6 0.2 0.42 5.59 
08-Feb-11 32.25 101.8 0.2 0.76 5.34 
20-Feb-11 31.57 42.5 0.15 1.19 5.42 

07-May-11 25.29 106 0.15 0.68 11.72 
 02-Nov-10 24.31 12.7 0.6 * 9.97 

Mouth 

23-Nov-10 26.5 21.1 0.92 0.46 75.86 
14-Dec-10 26.5 10.6 0.945 0.59 75.86 
24-Jan-11 26.81 31.7 0.05 0.05 11.72 
08-Feb-11 28.7 24 0.35 0.33 54.18 
20-Feb-11 26.62 10 1.02 0.04 19.32 

07-May-11 22.8 8.81 0.78 0.26 7.23 
 

According to Principal Component Analysis (PCA), the first two principal components (PCs) 

accounted for 66.3% of the total variance of the abiotic data among the 23 samples, and 

grouped samples along spatial and temporal group divisions (Figure 3.2a). The only 

exceptions were the drought samples from the Mouth that grouped with the flood samples. 
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These patterns were interpreted as follows. Firstly, PC1 (Eigenvalue = 2.26) was a measure of 

differences in salinity and depth and samples that loaded high on PC1 (e.g. drought 

communities of Lister’s Point and Charter’s Creek) had higher salinities and shallower depths 

than samples that loaded low on PC1 (e.g. flood communities from the Mouth). Secondly, 

PC2 (Eigenvalue = 1.06) was a measure of differences in temperature, and samples that 

loaded high on PC2 had warmer temperatures (e.g. Lister’s Point – 20 October 2010) than 

samples that loaded low on PC2.  
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Figure 3.2: Principal Components Analysis (PCA) plots of environmental characteristics in 3 
sites of the St Lucia estuarine lake: (a) over time; (b) with mean taxon richness; and (c) with 
mean abundance superimposed for each climatic state (where: D = drought and F = flood). 
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Significant differences were observed in taxon richness for the main effects of site and season 

(ANOVA, Table 3.2). Richness at Lister’s Point was significantly lower (8 ± 3) than the other 

two sites (ANOVA, p = 0.003). Taxon richness was significantly lower at Lister’s Point 

during the drought (5 ± 2) compared to the flood. Charter’s Creek had similar richness during 

both drought (14 ± 5) and flood (15 ± 2), and the Mouth had generally higher taxon richness 

during the flood (19 ± 5) than the drought (16 ± 10). Superficial representations of these 

differences in richness can be seen in Figure 3.2b. There was a statistically significant 

interaction between the effects of site and state on abundance, (F2,17 = 12.32, p < 0.001, Table 

3.2). Sites had significant differences, with Lister’s Point having higher abundances than the 

other two sites (804 ± 580 ind. 10 cm-2) (ANOVA, p = 0.045). Lister’s Point also experienced 

greater numbers during the flood (1242 ± 259 ind. 10 cm-2), Charter’s Creek varied in 

abundance regardless of phase (454 ± 389 and 331 ± 233 ind. 10 cm-2), while the Mouth 

experienced higher abundances during the drought (576 ± 148 ind.10 cm-2). Superficial 

differences in abundance are depicted in Figure 3.2c. Post-hoc comparisons between site and 

state for meiofaunal abundance suggest that climatic phase only significantly influenced 

abundance at the Mouth during the drought and at Lister’s Point during the flood, with a 

significant difference observed at Lister’s Point between states (Table 3.3). 

Table 3.2: Two-way factorial ANOVA results between site and phase for abundance (N) and 
taxon richness (S). Significant differences are indicated with an asterisk (*). 

  Source df SS F P 
N Intercept 1 5435358 80.348 < 0.001 

Site 2 602317 4.452 0.028* 
Phase 1 298080 4.406 0.051 
Site x phase 2 1667118 12.322 < 0.001* 
Error 17 1150018   

S Intercept 1 3740.817 187.39 < 0.001 
Site 2 268.523 6.726 0.007* 
Phase 1 108.322 5.426 0.032* 
Site x phase 2 63.206 1.082 0.361 
Error 17 339.367   
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Table 3.3: Tukey post-hoc test results for the interaction effect between site and phase on 
abundance where * denotes subsets in which a particular group falls under; common asterisks 
within a subset indicate homogenous groupings. 

Site Phase 1 2 
Lister’s Point Drought *  
Mouth Flood *  
Charter’s Creek Flood *  
Charter’s Creek Drought *  
Mouth Drought * * 
Lister’s Point Flood  * 
 

3.4.2 Community composition 

As seen in Figure 3.3, nematodes dominated at Lister’s Point while all other organisms at this 

site had minor contributions in abundance prior to the disturbance. Charter’s Creek was 

dominated by foraminiferans and nematodes during the drought period. Species composition 

varied widely at the Mouth and no specific trends were observed between phases. After the 

disturbance, ciliates, soft-walled foraminiferans and copepods became more prevalent at 

Lister’s Point, while the dominance of nematodes was greatly reduced. Larvae (crustaceans, 

dipterans, gastropods and bivalves) contributed largely to the post-flood communities at 

Charter’s Creek, and the greatest dominance of copepods was recorded 2 and 4 weeks after 

the disturbance (24/01/2010 and 08/02/2011, respectively) (Figure 3.3). Turbellarians and 

oligochaetes also contributed largely to the communities of the Mouth.  

 



Chapter 3 

56 
 

Pe
rc

en
ta

ge
  c

on
tri

bu
tio

n 

 

 

 
                                       Time (dates) 
Figure 3.3: Percentage contribution of major taxa at Lister’s Point, Charter’s Creek and the 
Mouth, leading up to and following the flood disturbance. Arrows indicate the flood phase. 
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The important organisms highlighted in the SIMPER analysis were plotted separately over 

time (Figure 3.4). Nematode abundance at Charter’s Creek and the Mouth were relatively low 

for the major part of the study, with Charter’s Creek showing higher abundances during the 

drought. Copepods only entered the system in November at Charter’s Creek then the Mouth 

but were absent from drought communities of Lister’s Point. Ostracod abundances peaked in 

December (3 weeks prior to the disturbance) throughout the system.  Foraminiferans were 

prevalent during the drought at Charter’s Creek and the Mouth. Ciliates were most important 

in structuring the communities of Lister’s Point and Charter’s Creek. These two sites 

exhibited opposing trends, as ciliate abundance increased at the former while decreasing at 

the latter station from the end of November onwards. 

3.4.3 Successional patterns  

Meiofauna communities were affected by changes over time at all three sites. The 

composition of assemblages between site and over time were significantly different (F = 

14.019; df = 2; p = 0.01, and F = 5.389; df = 8; p = 0.001; PERMANOVA, Table 3.4). 

Table 3.4: Results of permutational multivariate analysis of variance (PERMANOVA) on 
meiofauna in the St Lucia Estuary, examining the relationship between temporal distribution 
and site. 

Source df SS MS F P 
Site 2 28705 14352 16.251 0.001 
Time 3 15299 5099.7 5.7741 0.001 
Site x time 6 25278 4212.9 4.7701 0.001 
Residual 24 21197 883.2   
Total 35 90478    
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Figure 3.4: Temporal variations in mean abundance of the five most important taxa, as per 
SIMPER analysis, in the St Lucia Estuary (Lister’s Point, Charter’s Creek, Mouth) based on 
samples collected during the drought and flood. Arrow indicates the onset of the flood phase. 
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As seen in the species table (Table 3.5), at 2 weeks Allogromidae foraminiferans and naupliar 

larvae entered meiofauna communities at Lister’s Point; these were previously not observed 

during the drought. Rotifers, oligochaetes, harpacticoid copepods and dipteran larvae were 

introduced at 4 weeks. Other species of harpacticoid copepods became part of the community 

at 6 weeks and polychaetes and Ammonia foraminiferans were the last settlers of this 

community at 20 weeks. Charter’s Creek was occupied by soft-walled foraminiferans and 

oligochaetes at 2 weeks. Chironomid larvae and cumaceans entered after 4 weeks and 

cnidarian larvae, macrostomid turbellarians, Aelosomatidae and ostracods were found after 6 

weeks. Kinorhynchs and Capitellid polychaetes joined these communities at 20 weeks. At the 

Mouth, nemerteans, rotifers, oligochaetes and cumaceans were present at 2 weeks. After 4 

weeks amphipods, naupliar larvae, chironomid larvae, bivalve larvae and gastropod larvae 

had established themselves in the community. Rhabdocoel turbellarians, lumbriculid 

oligochaetes, ostracods, ceratopogonid larvae and Tyrophagus putrescientiae became present 

in the community at 6 weeks. Macrostomid turbellarians, Prionospio and Capitellid 

polychaetes were found in Mouth communities after 20 weeks. Despite the differences in 

settlement times between taxa at each site, the vital taxa that denoted the presence of 

succession were observed at all sites. 

Meiofaunal community succession following the freshwater input into the St Lucia Estuary 

was illustrated with the use of CAP ordinations (Figure 3.5). Of the 35 potential principal 

coordinates, a choice of 12 best principal axes was obtained, correctly assigning 67 % of the 

samples and explaining 97 % of the total variance. Directional change was observed, as there 

was a propensity for samples to cluster together based on time. Distinct temporal distribution 

groupings can be seen after the disturbance. CAP 1 shows 3 distinct groupings. Communities 

at 6 weeks had the lowest loading, communities at 2 and 20 weeks had intermediate loadings 

and communities at 4 weeks had the highest loadings. CAP 2 also shows 3 groupings. 
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Communities at 2 weeks had the lowest loading, those at 4 and 6 weeks had intermediate 

loadings and communities at 20 weeks had the highest loadings. Pearson correlation 

distinguished 12 taxa that separated out primarily by sharing similarities in occurrence across 

all sites, and secondly by having a greater abundance than other taxa. Naididae occurances 

were most similar between sites 2 weeks after the disturbance, while mites also contributed to 

these communities. Naupliar larvae, Mesochra, Ectinosomatidae sp. 2 and unidentified 

polychaetes, harpacticoids and oligochaetes, were found to occur 4 weeks after disturbance. 

These taxa were measures for CAP 1. Mites once again became influential after 6 week. The 

last communities observed were influenced by Macrostomida, Capitellidae, gastropod larvae 

and ostracods, which became prevalent 20 weeks after the disturbance. These taxa, along with 

Naididae and mites were measures of CAP 2.  

 

 
Figure 3.5: Canonical analysis of principal coordinates (CAP) ordinations for meiofauna 
communities over time (weeks), from all three sites, showing the distribution of samples 
following the disturbance. Based on Pearson correlation analysis, taxa deemed as important 
within these communities (> 0.4) are superimposed. 

The ordination of similarities between copepod samples from all 4 sampling periods 

following the disturbance showed that there were clear differences over time (Figure 3.6). 

Copepod communities were distinctly different at all three sites, indicating that the relative 
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abundances of these primary colonisers did vary over time (Table 3.5). Lister’s Point appears 

to have a lag in community response time, as copepods only become more diverse after 4 

weeks; sharing similarities with the communities from 6 weeks. These communities appear to 

become “reset” after 20 weeks, with fewer species and lower abundance being recorded. 

Charter’s Creek had a much more immediate response as copepods were already established 

here after 2 weeks and increased in abundance after 4 weeks. These communities were reset 

after 6 weeks, with low richness and abundance still evident after 20 weeks. At the Mouth, 

copepods were most diverse and abundant after 2 weeks, thereafter they became scarce, with 

a single species being found after 4 and 6 weeks, and another after 20 weeks. Cletocamptus 

confluens was important at Lister’s Point, Nitocra taylori and Mesochra cf. wolskii were 

important at Charter’s Creek, while Ectinosomatidae and Mesochra cf. wolskii were important 

at the Mouth. All communities differed over time, with the exception of those found at 

Lister’s Point and the Mouth 4 and 6 weeks after disturbance.  

 

Figure 3.6: Non-metric multidimensional scaling (MDS) ordinations for copepod 
communities at all three sites, showing the distribution and grouping of samples from 2, 4, 6 
and 20 weeks after the disturbance. Results from cluster analysis are superimposed to show 
groups defined at 50% similarity. 
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Table 3.5: Mean density (ind.10 cm-2) of identified meiofauna taxa in the St Lucia estuarine lake system between the drought and flood phase. 
 
 State Drought - 2010 Flood - 2011 Drought - 2010 Flood - 2011 Drought - 2010          Flood - 2011 

    Lister's Point Charter's Creek Mouth 

 
Dates 

20/ 
10 

02/ 
11 

13/ 
12 

24/ 
01 

08/ 
02 

20/
02 

07/0
5 

07/
10 

20/
10 

02/
11 

23/
11 

13/
12 

24/
01 

08/
02 

20/
02 

07/
05 

02/
11 

23/
11 

13/
12 

24/
01 

08/
02 

20/
02 

07/
05 

Foraminiferans 
Ammonia 
group - - 2 - - - 2 33 34 47 2 75 - 7 1 2 - - 1 - - - - 

 
Allogromiidae - - - 6 98 35 83 35 14 12 94 31 1 - 5 5 - 2 66 1 1 12 3 

 
Saccamminidae - - - - - - - - - - - - 4 - - - - - 2 1 - 1 8 

Ciliates 
 

3 - 50 75 238 504 529 - - 1 - - 1 - - 1 21 315 24 1 12 34 - 

Cnidarians 
 

- - - - - - - - - - - - - - 1 - - - - - - - - 

Turbellarians Macrostomida - - - - 1 - - 7 1 2 - 29 - - 2 19 - - - - - - 16 

 
Proseriata - - - - - - - - 1 7 - 15 - - - - - - 1 16 - 1 4 

 
Rhabdocoela - - - - - - - - - - - - - - - - - - 11 - - 14 - 

 

Unid. 
Turbellarians - - - - - - - 5 - 1 126 58 1 - 1 13 - 3 15 130 - 25 15 

Nemerteans 
 

- - - - - - - - 5 - - - - - - - - - - 13 - 3 4 

Nematodes 
 

341 87 122 1301 124 335 720 42 36 158 480 159 14 91 65 174 132 13 310 91 84 19 135 

Kinorhynchs 
Echinoderes cf. 
maxwellii - - - - - - - - 5 4 - 2 - - - 3 3 1 22 1 1 1 - 

Rotifers 
Brachionus 
rotundiformis 7 - - - - - - - - - - - - - - - - - - - - - - 

 

Lecane cf. 
grandis - - - - 3 2 - - - - - - - - - - - - - - - - - 

 

Testudinella 
obscura - - - - - - - - - - - - - - - - - - - 1 - - - 

Oligochaetes Naididae - - - - 3 - - - - - - - - - 1 - - - - 98 - 2 - 

 
Lumbriculidae - - - - - - - - - - - - - - - - - - 4 - - 16 - 

 
Aelosomatidae - - - - - - - - - - - - - - 13 - - - - 11 - 8 - 

 

Unid. 
Oligochaetes - - - - - - - - - - - - 1 - - - 3 70 1 - 15 - - 

Polychaetes Capitellidae - - - - - - - - - 1 - - - - - 4 - - 5 - - - 4 

 
Nereidae spp. - - - - - - - - - - - - - - 1 - - - 1 1 - 1 5 

 
Unid. Sabellids - - - - - - - - - - - - - - - - - - 21 - - - - 

 
Polydora group - - - - - - 3 - 1 - - 2 2 - - - - - - - - - - 

 Prionospio spp. - - - - - - - - - - - - - - - - - - - - - - 1 

 Unid. Spionids. - - - - - - - - 2 3 - 7 - - - - - - 1 - - - - 
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Table 3.5 cont. 

 
 Lister’s Point Charter’s Creek Mouth 

 
 

20/ 
10 

02/ 
11 

13/ 
12 

24/ 
01 

08/  
02 

20/ 
02 

07/ 
05 

07/ 
10 

20/ 
10 

02/ 
11 

23/ 
11 

13/ 
12 

24/ 
01 

08/0
2 

20/ 
02 

07/ 
05 

02/ 
11 

23/ 
11 

13/ 
12 

24/ 
01 

08/ 
02 

20/ 
02 

07/ 
05 

 

Unid. 
polychaetes - - - - - - - - - - 10 - - 7 - 4 - - 12 - 5 - - 

Cumaceans 
 

- - - - - - - - - - - - - 16 - - - - - 2 - 1 - 

Harpacticoids 
Ectinosomatida
e sp 1 - - - - - - - - - 3 - 153 1 38 - - - - 71 3 - - 11 

 

Ectinosomatida
e sp 2 - - - - 45 6 - - - - - 18 - 71 - - - - - - - - - 

 
Mesochra sp/p. - - - - 10 29 - - 1 18 - 23 36 139 - - - - 5 - 2 7 - 

 
Nitocra taylori - - - - 10 114 - 7 3 3 - 17 5 4 4 - - - - - - - - 

 

Cylindropsyllid
ae sp - - - - - - - - - - - - - - - - - - - 32 - - - 

 
Cop 8 - - - - - - - - - - - - - - - - - - - 7 - - - 

 

Cletocamptus 
confluens 3 - - 5 52 105 36 - - 1 - - - - - - - - - - - - - 

 

Unid 
harpacticoids - - - 1 120 85 1 - - - 167 36 42 86 1 21 - 21 2 - - - - 

Cyclopoids 
 

- - 2 1 - - - - - - - 1 2 - - 3 - - - - - - 1 

Calanoids 
 

- - - - - - - - - - - - 1 - - - - - - 2 - 2 3 

Ostracods 
 

6 23 13 8 - 47 - 1 - 10 2 32 - - 3 49 7 45 86 - - 17 11 

Nauliar larvae 
 

- - - 18 157 34 6 1 - 3 - 173 22 99 11 57 - 1 14 - 5 - 3 

Dipteran larvae 
Ceratopogonid 
larvae - - - - - - - - - - - - - 55 - - - - - - - 5 12 

 

Chironomid 
larvae - - - - 1 - 5 - - 1 - - - 4 - 1 - - - - 1 2 - 

 

Unid. Dipteran 
larvae - - - - - - - - - - - - - - - - - - - - 2 1 - 

Mites 
Tyrophagus 
putrescientiae - - - - - - 1 - - - 1 - - - - - - - - - - 1 - 

 
Uroobovella sp. - - - - - - - - 2 - - - - - - - - - - - - - - 

 

Copidognathis 
africanus - - - - - - - - - - - 3 - - - - - - - - - - - 

 
Unid. Mites - 1 - 5 - 1 1 - - - 6 - - - - - 2 - 3 7 - 6 1 

Bivalve larvae 
 

- - 1 - - - - - 2 - - - - - - - 3 - - - 4 2 3 

Gastropods Assiminia spp. - - - - - - - - 1 5 8 11 8 - 1 2 - - - - 1 - - 

 
postlarvae - - - - - - - - - - - - 2 - 25 62 - - - - - - 33 

  Total 361 111 190 1422 861 1297 1388 133 109 281 898 847 147 619 138 421 172 471 681 420 136 186 282 
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3.5 Discussion 

 
The climatic phase shift, brought on by the intense rainfall event that occurred in January 

2011 in the St Lucia catchments, caused major changes in meiofaunal communities, both 

temporally and spatially. The three sites sampled along the estuary exhibited successional 

changes following the disturbance. Species composition varied between sites during most 

sampling occasions, with significant differences in abundance between phases. Abundance 

generally increased during the flood phase in the upper reaches of the system and for specific 

taxa. 

3.5.1 Phase comparisons 

Lister’s Point was generally characterised by nematodes, ciliates and the dominant 

harpacticoid copepod, Cletocamptus confluens, which became prevalent after the disturbance. 

This species is commonly found in brackish waters and can also endure hypersaline 

conditions (Mielke 2000). Charter’s Creek communities were largely defined by nematodes 

and foraminiferans during the drought, and harpacticoid copepods, nematodes, naupliar 

larvae and gastropod larvae during the flood. The main groups observed at the Mouth were 

turbellarians, oligochaetes, nematodes and harpacticoid copepods (Figure 3.3). Meiofaunal 

communities showed significant spatial and temporal differences, with each site generally 

exhibiting dissimilarity with time for the 5 most important taxa, namely nematodes, 

harpacticoid copepods, foraminiferans, ciliates and ostracods (Figure 3.4). Charter’s Creek 

and the Mouth appeared to share common responses in abundances over time, with Lister’s 

Point occasionally having commonalities with Charter’s Creek.   

Lister’s Point experienced the most extreme fluctuations in salinity. As a result, abundances 

of the few taxa recorded also fluctuated. Nematodes, ciliates and ostracods were the only 

abundant taxa, while a few mites and bivalves were also recorded. The three main taxa 
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showed alternating peaks and lows in abundance, reflecting the effect of extreme salinity 

fluctuations. The presence of ostracods at such extreme salinities is quite interesting, however 

these organisms have been observed in hypersaline conditions (De Deckker 1981). The 

longest monitoring time for drought communities was observed at Charter’s Creek. At this 

site, foraminiferans, turbellarians, nematodes, kinorhynchs, polychaetes, harpacticoid 

copepods, ostracods, naupliar larvae, mites and gastropods were most abundant. Single 

observations of dipteran larvae and ciliates were also recorded. Abundance was also found to 

fluctuate with these more moderate changes in salinity. The most dominant taxa were the 

foraminiferans and nematodes. Hard-walled Ammonia sp. and soft-walled Allogromidae 

foraminiferans appeared to show opposing trends. The former increased from early October 

to early November, then decreased dramatically at the end of November and recovered in 

number in December, while the latter did the opposite. Foraminiferans belonging to the 

Allogromidae family are more successful in fresher water (Saraswat 2015), thus explaining 

their increases in times of lowered salinity.  Nematodes decreased in October, increased in 

November and decreased in December. The Mouth possessed a wider variety of taxa and the 

general trend was for taxa to increase in abundance over time. According to Attrill (2002), 

salinity itself is not the main driver of organism distribution, but rather salinity fluctuations 

that add stress and inhibit organisms from capitalising on their distribution potential. For this 

reason, systems with great seasonal variability in flow (and salinity as a consequence) may 

alternate between salinity states and prevent communities from moving beyond early 

successional states (Teixeira et al. 2008).  

3.5.2 Succession  

Salinity was the primary driver of change as the increase in rainfall led to a climatic phase 

shift, lowering salinity throughout the system. Despite floods being part of a natural 

disturbance regime that these organisms may have adapted to, the observed patterns may also 
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be due to a host of physical and biological factors such as sedimentation or food resources. 

Substratum movement is a form of disturbance for benthic communities during floods 

(Snyder & Johnson 2006). The sudden change in sediment movement caused by the 

disturbance, and subsequent sedimentation, are likely to account for reduced MPB biomass 

(Duggan et al. 2014). It has been noted that meiofauna recruitment may be linked to food 

availability (Pasotti et al. 2014). MPB biomass levels were much lower in the flood phase, 

suggesting that food resources may have been limiting, possibly accounting for any higher 

abundances observed during the drought. The increase in turbidity at the Mouth following the 

disturbance may account for short term flood-induced mortality, however habitat alteration is 

relatively short lived and followed by rapid biological recovery (Resh et al. 1988). 

No specific successional stages were observed in this study, however the progression of 

communities over time denoted the presence of succession. Although each site displayed its 

own characteristic successional pattern with different taxa becoming established at varying 

times, an overall supreme successional trend for the entire system was still evident (Figure 

3.5). Following a disturbance, the primary meiofaunal succession community is usually 

characterised by nematodes and harpacticoid copepods, which are known to be early 

colonisers (Palmer 1988, da Fonseˆca-Genevois et al. 2006) and possess the character traits of 

opportunistic r-selected species (MacArthur 1962), namely rapid colonisation and 

reproduction as well as a high fecundity (Calabretta & Oviatt 2008). These groups were 

present throughout the study at all sites (Figure 3.3). Most meiofaunal taxa are characterised 

by direct development and lack a planktonic larval stage (Montagna et al. 2002). 

Harpacticoid copepods, however, do possess pelagic larval stages. Their dispersal is therefore 

facilitated by water movement (Gonçalves et al. 2010), allowing for these organisms to 

establish themselves in disturbed sediments. Boeckner et al. (2009) also observed passive 

meiofaunal dispersal via currents, sediment suspension and active dispersal into the water 
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column. Certain taxa may also have resting stages (Ricci & Balsamo 2000, Sabatino et al. 

2000), which cater for rapid emergence once conditions become more favourable.  

The successional harpacticoid communities showed spatial distinctions while temporal 

patterns were most interesting, exhibiting increases in taxonomic richness and abundance and 

dramatic decreases indicating small scale disturbances. Due to the wide host of factors that 

may affect succession, no specific climax community was observed during the present study. 

Meiofaunal colonisation patterns do not fit into the classical models of succession (Connell & 

Slatyer 1977), however there does appear to be an indication of species replacement. There is 

prompt establishment of opportunistic species and shifts between important taxa resulting in 

different succession endpoints. These end points are seen where a new organism becomes 

more important in structuring a community; several organisms were found to denote certain 

endpoints. Meiofauna are known to have great recovery potential (Lee et al. 2001). The post-

flood increases in abundance are supported by a combination of resistance and resilience. All 

major taxonomic groups persisted throughout the duration of this study (possibly with use of 

micro refugia) and were able to recover (rapid reproduction) after dramatic decreases. These 

decreases in abundance may be indicative of the meiofauna community being in a constant 

state of disturbance, as a result of sediment resuspension and variations in salinity, as 

proposed by Ritter (1999). It is evident that population dynamics and the physical 

environment exert the greatest influence on successional processes (Zajac et al. 1998). 

Stochastic events related to climate extremes therefore hinder the predictability of these 

community responses (Kreyling et al. 2011). 

The intermediate disturbance hypothesis suggests that the frequency and intensity of 

disturbances are key components in the establishment of community diversity (Widdicombe 

& Austen 2005). It is proposed that maximum species diversity is associated with an 
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intermediate level of disturbance, where competitive exclusion is lessened and co-existence 

of potentially competing species is increased (Connell 1978). This allows for the community 

to be maintained at non-equilibrium. A study conducted by Ritter et al. (2005) over an 8 week 

period, found that Rincon Bayou (Texas, U.S.A) was in a perpetual intermediate state of 

succession due to the ever-changing environmental characteristics of the system, with no 

specific climax community being reached and intermediate communities acting as 

successional end points. An important aspect to consider in the St Lucia estuarine lake (that 

separates it from the previously mentioned Rincon Bayou) is that the system had shifted from 

one climatic state to another; thereby creating a novel environment for colonisation. During 

this study period, the observed environmental fluctuations may have accounted for the lack of 

a specific climax community as proposed by Ritter et al. (2005), with equilibrium species not 

being able to establish themselves, particularly at Lister’s Point. This theory of intermediate 

succession end points is supported by Zajac and Whitlatch (1982a), who state that end point 

communities that exhibit stability and resilience can still be heavily populated by 

opportunistic species in soft bottom habitats. Opportunistic species, such as nematodes and 

harpacticoid copepods, were prevalent in all communities found during this study. Copepods 

reach maturity rapidly, and have generation times of a few weeks. They are able to bear 

dozens of eggs in a clutch, while nematodes generally mature later, and produce fewer eggs 

per clutch (Giere 2008), possibly accounting for a delay in nematode abundance increases. 

These life history traits allow these opportunistic organisms to thrive. Although these 

communities experience an intermediate frequency of disturbance, the entire system is 

subjected to these intermediate disturbances uniformly. For this reason, the community will 

not be maintained at maximum diversity, as each disturbance may reset the diversity to some 

previous succession state and cause the recovery process to begin again (Widdicombe & 

Austen 2005). Meiofauna are sensitive to impacts over short temporal scales and small spatial 
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scales due to their direct benthic development and generation times that can be as brief as a 

month (Montagna et al. 2002). In this study, with sampling being conducted at two week 

intervals, changes may have occurred within these communities without being detected, thus 

hindering the analysis of succession. Due to the response differences observed in this system, 

it is important to be careful when relating general aquatic ecosystem principles and models 

(Milner et al. 2013). 

If ecosystems are to thrive and maintain their functionality they need to possess the inherent 

capacity of adaptation and resilience. Resistance (stability) and resilience (recovery) from 

disturbances and disruptions of vital ecosystem functions are provided by biological 

diversity. The complex linkages between organisms often results in resistance. This may also 

be considered as functional redundancy (Folke et al. 2004), whereby multiple species hold 

similar capabilities, however it ensures optimal functioning by means of providing ecosystem 

stability. With regards to resilience, the diversity of functional groups in a dynamic, changing 

ecosystem, the diversity within populations and species, as well as the diversity of species 

within functional groups are all essential (Chapin et al. 1997, Luck et al. 2003). 

In conclusion, it has been shown that meiofauna in the St Lucia Estuary exhibits some degree 

of resistance and resilience, as they have the ability to recover despite the prevailing 

conditions. During drought conditions these benthic organisms were generally lower in 

taxonomic richness and exposed to harsher conditions, including lower water levels. The 

current study revealed that there is some variability, with meiofauna becoming more diverse 

and abundant during the less saline period. The main reason for this change is that it is likely 

that salinity dropped to more tolerable levels during the less saline conditions. The canonical 

analysis also indicated a variation in the temporal positioning of different communities, 

where there are specific taxa accounting for successional changes. The analysis of meiofaunal 

communities also revealed that salinity changes from freshwater inflow is the driving factor 
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responsible for the successional changes of these communities in the system, either directly 

by influencing the meiofauna themselves, or indirectly by affecting the physical environment 

(e.g. water level increases, food resources, sedimentation). The hypotheses that there would 

be successional changes following the flood and community variation between the drought 

and flood phase are therefore supported. Overall, the success of these organisms and their 

subsequent resistance in the estuarine system can be attributed not only to their remarkable 

tolerance of salinity variations, but also in their ability to recover accordingly.
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FINAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

As predicted by climate experts, global temperatures, and more specifically the temperatures 

experienced in the St Lucia region, are expected to rise by 2100, causing increased 

precipitation as a result (Vaeret & Sokolic 2008, Lumsden et al. 2009). Higher than average 

rainfall will result in an increased inflow of freshwater into the St Lucia system. It is also 

predicted that there will be an increase in the frequency of hydrologically extreme events, 

which will inevitably alter the St Lucia system. During extreme drought conditions Whitfield 

& Taylor (2009) and Cyrus et al. (2010) observed great alterations to the physical 

environments in St Lucia, with vast habitat loss due of low water levels. 

Therefore, taxa which are able to adapt to these changing conditions, such as nematodes and 

harpacticoid copepods, are likely to succeed in the system and become dominant. Less 

environmentally tolerant taxa, such as polychaetes, kinorhynchs and turbellarians, rely on 

favourable environmental conditions to succeed and become dominant. When conditions 

become unfavourable, their distribution is limited to refuge areas in the Mouth region, where 

conditions are more stable. Meiofauna community responses to changing environmental 

conditions have been well documented (Santos et al. 1996, Ingole & Parulekar 1998, 

Montagna et al. 2002, Storey & Williams 2004, Nozais et al. 2005, Pillay & Perissinotto 

2009). There have been no studies conducted on the meiofauna of South Africa that 

incorporate community dynamics during a wet phase. Understanding how these organisms 

respond to climatic phase shifts within the St Lucia Estuary is crucial to our understanding of 

South Africa’s meiofaunal communities and the underlying driving mechanisms of their 

dynamics. 

During the hypersaline drought period and a sea-induced breaching event, Pillay & 

Perissinotto (2009) and Bownes and Perissinotto (2012) documented the changes to 
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meiofauna communities in the St Lucia Estuary and assessed the effect of these conditions on 

meiofauna dynamics. During the drought period, meiofaunal communities in the St Lucia 

areas that were less severely impacted exhibited higher taxonomic richness and diversity, 

compared to areas that were highly impacted (Pillay & Perissinotto 2009). During a sea-

induced breaching event (March-August 2007) that occurred in the middle of the drought 

period, the inflow of marine water into the system led to an increase in water levels. The 

density and diversity of meiofauna increased after the breach, thus indicating a partial and 

temporary recovery. However, conditions deteriorated once again as the drought continued 

(Bownes & Perissinotto 2012). After entering a wet phase, meiofauna communities of the St 

Lucia Estuary showed no initial distinctions in either spatial or temporal configuration; 

however abundance and richness did vary in both regards. Abundance was greater in the first 

year of the wet phase; this may be a reflection of a higher number of r-selected species that 

are able to proliferate under these conditions. After a year, site specific communities had been 

formed; suggesting a more established wet phase community being present where each site 

consisted of a characteristic taxonomic composition regardless of seasonal changes. In this 

time, the observed abundances were relatively low, therefore it is highly possible that the two 

year wet phase that was studied was not long enough for a true reflection of an established 

wet phase community to be presented in terms of abundance and diversity. Meiofauna 

communities were found to be most dependent on salinity, microphytobenthos chlorophyll-a 

biomass, depth and sedimentary organic matter. The hypothesis that there would be structural 

and compositional meiofaunal variation between sites and seasons was therefore supported, 

as well as showing that the wet phase communities show potential long-term improvement. 

Following the isolated flood event that occurred in January 2011, causing the system to begin 

a successional process, meiofauna community structure and composition were drastically 

altered from that of the decade long drought phase. The concluding weeks of the drought 
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exhibited lower richness in the upper reaches of the system, in comparison to the Mouth. 

Drought communities consisted mainly of nematodes and harpacticoid copepods; these being 

the most tolerant taxa and were previously observed by Pillay and Perissinotto (2009). Each 

site exhibited its own characteristic community during this time; likely due to the extreme 

differences in salinity. While the flood communities showed a greater diversity and an 

increase in homogeneity, with taxon specific changes over time indicating a successional 

pattern. Meiofaunal communities persisted in an intermediate stage and no characteristic 

climax community was observed. This is indicative of continuous intermediate disturbances 

that reset these communities to some previous successional state. Salinity was identified as 

the most influential underlying driver of the successional pattern and resultant communities. 

The hypothesis that succession would take place following the flood disturbance was 

accepted. Additionally, changes were evident between the drought and flood communities, 

supporting this hypothesis. 

According to both studies it is evident that from a spatial and temporal perspective, 

meiofauna communities are able to adapt to extreme and sudden environmental changes. Wet 

phase communities were shown to possess greater abundance in the first year and then 

become more established into site specific wet phase communities, facilitating changes in 

their composition according to the environment in which they inhabit. In contrast, 

communities after the disturbance were able to adjust in a shorter time period and other taxa 

had become established over the 20 week successional period. The success of meiofauna in 

the St Lucia system can therefore be attributed to their strong levels of resistance and 

resilience. Under extreme environmental conditions, such as hypersalinity, certain taxa have 

the added advantage of a wide tolerance of different environmental conditions, thus allowing 

them to proliferate in the St Lucia system. With the shift to a freshwater-dominated system, 



Conclusions 

74 
 

meiofauna are predicted to flourish, as a result of environmental conditions becoming more 

favourable. 

Recommendations for future research 

The meiofauna community structure and composition was studied during the 

hypersaline/drought phase (Pillay & Perissinotto 2008) and under the influence of a sea-

induced breaching event (Bownes & Perissinotto 2012). However, no work has been done on 

the intermediate phase between the drought and wet phase (2010). These samples need to be 

analysed so that a more comprehensive understanding of the various meiofauna communities 

can be gained. With respect to successional studies on the meiofauna of St Lucia, sampling 

should be conducted over a longer period of time while maintaining consistency in sampling 

intervals so that a more accurate picture of any successional trends can be identified.  

This study has provided reference conditions and baseline data for the various regions of the 

St Lucia estuarine lake; describing the meiofaunal communities prior to a flood disturbance, 

following the disturbance with successional data and over a medium term wet phase. This 

information can ultimately be used to identify any future changes within these benthic 

communities and aid the description of changes that occur in the St Lucia estuarine lake 

system.  

With the shift to a more freshwater state, the St Lucia community is more likely to be 

dominated by freshwater tolerant organisms. The recovery of these organisms to abundances 

that are similar to those observed in other estuaries will require a longer time frame. As 

previously discussed, the system is prone to great fluctuations in environmental variables; 

thereby acting as intermediate levels of ongoing disturbance. Over time stochastic events 

occur, with the ability to push these communities to a state of reduced abundance and 

diversity, further hindering the St Lucia meiofauna community from reaching such 



Conclusions 

75 
 

abundances. It is therefore imperative that we gain as much information as possible to 

understand the community dynamics of these key benthic organisms. With ongoing 

environmental fluctuations, will the meiofauna of St Lucia be able to reach the abundances 

observed in other systems? If not, will the functionality of this vital component be limited in 

terms of benthic processes?  
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