
Aspects of trapped surfaces and spacetime

singularities

ABBAS MOHAMED SHERIF



Aspects of trapped surfaces and spacetime

singularities

ABBAS MOHAMED SHERIF

Submitted to the School of Mathematics, Statistics and Computer Science, College of Agriculture,

Engineering and Science, University of KwaZulu-Natal, Durban, in fulfilment of the requirements

for the degree of Doctor of Philosophy.

As the candidate’s supervisors, we have approved this dissertation for submission.

Signed: Professor Sunil D. Maharaj September 2019.

Signed: Professor Rituparno Goswami September 2019.



Abstract

This thesis studies various aspects of black hole and singular spacetimes, as well as the geom-

etry of expansion-free stars. In particular, a theorem on the topological equivalence of marginally

trapped 2-surfaces in locally rotationally symmetric (LRS) class II spacetimes and null normal fo-

liation (NNF) spacetimes has been established. It is shown that, for isolated horizons, this equiv-

alence leaves the surface gravity invariant, while an explicit proof has been provided which shows

that the surface gravity cannot be zero for LRS II and NNF spacetimes. A detailed study is also

carried out on the evolution of black hole horizons, and all of the necessary conditions satisfied

by null, spacelike and timelike horizons are established, extending earlier results. We show that

for there to exist trapping in an expansion-free dynamical star, the star must accelerate and radi-

ate simultaneously. We show in particular that, under the condition of non-zero acceleration and

radiation, these stars are necessarily conformally flat, which severely constrains their existence.

We have studied minimal horizons and it is shown that the energy density completely determines

the geometry of the leaves of minimal horizons in LRS II spacetimes. We show that all minimal

horizons in LRS II have spherical symmetry. This result naturally extends to NNF spacetimes and

is shown to hold for any 4-dimensional spacetime. Also, we have constructed a T2-separable g

boundary, which we denote by g̃ , and established an explicit embedding of g̃ into the a bound-

ary. We provide a counterexample to an earlier conjecture that all boundary constructions of a

certain broad class will necessarily be topologically pathological.
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Chapter 1

Introduction

Einstein’s theory of general relativity (GR) is a geometric theory encoded in the so-called Einstein

field equations (EFEs)

Gµν∝ Tµν, (1.1)

which can best be explained as relating the effect matter has on the geometry of spacetime, and

how the matter evolves with said geometry. The quantity Gµν = Rµν− (1/2)Rgµν (gµν is the sym-

metric metric 2-tensor on the spacetime) is called the Einstein tensor, and codifies the geometry

(the curvature), while Tµν, the energy momentum tensor, carries the matter content. GR, as one

of the two main pillars (the other being quantum mechanics) of theoretical physics that have

shaped our understanding of the universe, has been unpacked over the past one hundred years

to understand some of the profound implications of the theory. Among these implications are

the formation of trapped surfaces in spacetimes and the existence of spacetime singularities, see

Hawking & Penrose (1970) and Hawking & Ellis (1973).
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1.1 Some background

1.1.1 Trapped regions and black hole horizons

Gravity determines the causal structure of spacetime via the deflection of light. As an obvious

consequence, if sufficiently large amount of matter is concentrated in a small enough region in

space, then this may deflect light coming out of this region to such an extent that it is actually

dragged back inwards. This phenomenon can be well explained by the concept of closed trapped

surfaces. Let us consider a spacetime manifold
(
M , g

)
, with the metric ‘g ’, and a Cauchy hyper-

surface ‘σ’ with induced metric ‘h’ and exterior curvature ‘χ’. The formation of a closed trapped

surface in
(
σ,h,χ

)
signals gravitational collapse and generally indicates geodesic incompleteness

of M (and thus existence of spacetime singularities). Trapped surfaces and their properties have

been extensively studied by various authors. Roger Penrose first defined a trapped surface in M

as a closed compact spacelike 2-surface S such that the null expansions orthogonal to S are both

converging (Hawking & Penrose, 1970; Hawking & Ellis, 1973; Joshi & Narlikar, 1982). Stephen

Hawking then introduced the concept of a trapped region (Hawking & Penrose, 1970; Hawking

& Ellis, 1973) and apparent horizons. This became the basis for formally defining a black hole to

include globally hyperbolic spacetimes, defined as a region in M foliated by these surfaces (Joshi

& Narlikar, 1982).

Marginally trapped surfaces (MTS), on which one of the null expansion scalars vanishes, have

been extensively studied as these are used to describe trapping horizons in a spacetime. These

2-surfaces foliate a 3-dimensional submanifold of M . It has been shown in Booth & Fairhurst

(2005), under the assumption that the intrinsic geometry and the normal bundle connection on

the marginally trapped 2-surfaces are fixed, that any such surface serves as a suitable boundary
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in a quasi-local action formulation of general relativity. As such, these 3-submanifolds are suit-

able black hole boundaries and are used to study the local dynamics and evolution of black holes

(Ashtekar & Krishnan, 2002; Ashtekar & Krishnan, 2003; Hayward, 2004). For example, dynami-

cal horizons (DH), spacelike hypersurfaces in a spacetime foliated by MTS have been used in the

local description of boundaries of black holes, see Ashtekar & Krishnan (2002), Ashtekar & Krish-

nan (2003) and Hayward (2004). Weakly trapped surfaces and trapped surfaces have been used

to investigate uniqueness and geometric properties of dynamical horizons (Ashtekar & Galloway,

2005).

The topological properties of these 2-surfaces have also been investigated by various au-

thors, with some authors extending these topological results to higher dimensional black holes

(Hawking & Ellis, 1973; Newman, 1987; Friedman et al., 1993; Galloway, 1995; Galloway et al.,

1999; Jacobson & Venkataramani, 2005; Bengtsson & Senovilla, 2011; Anderson et al., 2015) pro-

ducing some very interesting results. For example, Stephen Hawking theorized (see Hawking &

Ellis (1973)) that cross sections of the event horizon for asymptotically flat and stationary space-

times, satisfying the dominant energy condition, are topological 2-spheres. This is the well known

Hawking black hole topology theorem. Newmann, (1987) was the first to constrain the result of

Hawking by showing that the cross sections have to satisfy certain stability conditions.

A notion of stability of the MTS, analogous to minimal surfaces in Riemannian geometry, has

also been established (Schoen & Yau, 1981; Andersson et al., 2005; Andersson et al., 2008). Scheon

& Yau, (1981) used a blowup of Jang’s equation (Jang, 1978; Andersson et al., 2008; Galloway,

2011) to derive an evolution equation of the null expansion scalar on the MTS. This gave rise

to a functional equation of some smooth function on the MTS. Conditions on the function and

the principal eigenvalue associated with the function determine the stability of the MTS.

Ellis et al. (2014) studied the evolution of MTTs, hypersurfaces foliated by MTS in LRS II
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spacetimes. They introduced conditions on the slope of the tangent to the MTT curves which

determine the nature of the MTT. This led the authors to describe black hole horizons in a real

astrophysical setting and found that an initial 2-surface bifurcates into an outer and inner MTT,

and that the inner MTT was timelike while the outer MTT was spacelike.

The interest in these hypersurfaces (called horizons) as a local description of black holes gave

rise to the formulation of the laws of black hole mechanics and even flux laws locally. Trapping

horizons, introduced by Hayward were first used to formulate dynamical laws of black hole me-

chanics (Hayward, 1994). Ashtekar and Krishnan (2002) and Ashtekar & Krishnan (2003) intro-

duced the notion of an isolated horizon (IH), to characterize the equilibrium states of black holes.

Truly dynamical black holes are characterized by dynamical horizon (DH) (Ashtekar & Krishnan,

2002; Ashtekar & Krishnan, 2003; Hayward, 2004; Bengtsson & Senovilla, 2011). Furthermore, it

has been shown that flux laws can be formulated on DH (Ashtekar & Krishnan, 2002; Ashtekar &

Krishnan, 2003).

The laws of black hole thermodynamics are formulated in the context of the properties of

quantities such as the surface gravity and angular momentum on the horizon (Bardeen et al.,

1973; Brown & York, 1993; Ashtekar et al., 2000; Ashtekar et al., 2001). These are formulated so

that they are intrinsic to the horizon geometry. For example, the notion of surface gravity, which

is closely related to the temperature of a black hole, also plays an important role in the study of

black hole dynamics (Hayward, 1994; Ashtekar et al., 2000; Ashtekar et al., 2000; Ashtekar et al.,

2001).

In this thesis we approach these various aspects of trapped surfaces by interpreting formalisms

in terms of quantities from the 1+1+2 covariant formalism.

The works in chapters 5 and 6 looks at different but related aspects of GR. Chapter 5 deals with

expansion-free stars in an isolated neighborhood. This falls within the scope of stability analysis
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of self-gravitating systems (see May & White, 1966, Wilson, 1971, Santos, 1985, Goswami, 2007

and Joshi & Goswami, 2011).

Models of radiating stars in general relativity are important to describe astrophysical pro-

cesses and to study gravitational collapse. Some recent examples of exact models which are phys-

ically reasonable were obtained by Tewari and Charan (2015), Tewari (2013), and Ivanov (2016a,

2016b, 2019). Anisotropy and dissipative effects have been shown to influence the collapse rate

and temperature profiles in radiating stars by Reddy et al. (2015). It has been demonstrated that

classes of exact solutions exist in general relativity, referred to as Euclidean stars, which regain

Newtonian stars in the appropriate limit (Abebe et al., 2014; Govender et al., 2010; Herrera et al.,

2010). The Lie analysis of differential equations using symmetry invariance has proved to be a

systematic method to produce general categories of exact solutions to the boundary condition

of radiating objects (Abebe et al., 2015; Mohanlal et al., 2016; Mohanlal et al., 2017). An impor-

tant class of radiating stars which are expansion-free was introduced by Herrera et al. (2009).

Expansion-free dynamical models imply the existence of a cavity or void. Matter distributions

with a vanishing expansion scalar have to be inhomogeneous. These physical features have im-

portant astrophysical consequences for spherically symmetric distributions. Studies containing

the description of physical properties of expansion-free dynamical radiating stars are contained

in several treatments (Kumar & Srivastava, 2018a; Kumar & Srivastava, 2018b; Prisco et al., 2011).

Therefore, it is important to study the geometrical properties of expansion-free dynamical stars

and find general conditions for their existence.

Various authors have explored expansion-free models with different considerations. The

central theme of interest in these expansion-free models is the possibility that they could help

explain voids on cosmological scales. Herrera and coauthors (2009) studied such models with

non-zero shear and showed that the appearance of cavity (see reference Peebles, (2001) for more
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discussion), with matter which is anisotropic and dissipative, undergoing collapse is inevitable.

The same authors followed this result (2010) in which they ruled out the Skripkin expansion-free

model (see Skripkin, 1960) - with constant energy density and isotropic pressure - when consider-

ing the expansion-case along with the junction conditions. Herrera et al., (2012), studied models

collapsing adiabatically and showed that the instability was independent of the star stiffness. In

particular, it was shown that the instability is entirely governed by the pressures and the radial

profile of the energy density.

Chapter 6 deals with the geometry of hypersurfaces foliated by minimal 2-surfaces in certain

classes of spacetimes in GR. Minimal surface theory in Riemannian geometry is a well studied and

is a well understood topic (Fialkow, 1938; Takahashi, 1966; Calabi, 1967; Hsiang, 1967; Simons,

1968; Chern et al., 1970; Dwivedi, 2019). Standard results in the literature can thus be evoked,

given certain properties of spacetimes, to study the geometry of these surfaces in spacetimes.

1.1.2 Spacetime singularities

Another subject explored in this thesis is spacetime singularities. The study of spacetime singu-

larities has always proved one of the most contentious subjects in all of GR. This is for the simple

reason that there has always been disagreement on what the definition of a singularity should be.

As these singularities are not interior manifold points, one would need to identify local sets con-

taining them in order to assign them any properties, as is done in any physical theory. However,

to do this would require the definition of what these missing manifold points are. One option to

consider would be in terms of geodesic completeness, i.e. a spacetime being termed singular if it

is geodesically incomplete (failure of extremal curves to terminate at points in the interior of the

spacetime). While geodesic completeness and metric completeness (convergence of every Cauchy

sequence to an interior manifold point with respect to some distance function) are equivalent no-
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tions in the Riemannian case (Kobayashi & Katsumi, 1963), this is not so in the Lorentzian case

(Kundt, 1963) since it is possible to have the spacetime either null, timelike, or timelike geodesi-

cally complete and incomplete in the other two. Geroch’s example (Geroch, 1968a) conformal

to the 2-dimensional Minkowski spacetime illustrates this fact. As such, Hawking & Ellis (1973)

adapted a minimum definition of geodesic completeness as being both timelike and null geodesi-

cally complete. Specifically, the choice of timelike completeness allows for the assignment of a

physical interpretation to singularities as non-existent histories outside the bounds of the proper

time parameter. There is however a caveat that is worth mentioning. Some of these singular

points are only apparently singular and are actually due to the choice of coordinates. It is possible

to choose a set of coordinates that maximally extended the spacetime, where the metric becomes

analytic through these points; eg. the Kruskal embedding (Kruskal, 1960). Truly singular points

are those which maximally analytic extensions cannot remove.

Over the past sixty years, schemes have been developed, (Geroch, 1968b; Schmidt, 1971; Ge-

roch et al., 1972; Scott & Szekeres, 1994), which “capture” these singular points in constructed

boundaries. These boundaries are then attached to the spacetime manifold, a process known as

manifold completion. The resulting manifold is called the manifold with boundary.

An early investigation of geodesic completeness was carried out by Szekeres (1960) using a

power series expansion of the Schwarzschild solution around the coordinate singularity r = 2m to

obtain a transformation under which r = 2m is a regular manifold point (see Ehresmann (1957))

was probably the first to suggest a definition of singular spacetimes). Geroch (1968b) provided the

first boundary construction for singular spacetimes; the g boundary. This involves quotienting

the set of incomplete geodesics in the spacetime under the equivalence that the geodesics limit

to the same point.

Schmidt (1971) provided an alternative construction of singular spacetimes called the b bound-
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ary. This construction maps endpoints of incomplete curves in the bundle of frames of M , L (M)

- generated via Cauchy completion - as additional points of M . It is best known for its applica-

tion by Hawking and others to singularity theorems (Hawking & Penrose, 1970; Hawking & Ellis,

1973) and considers a broader class of curves than the g boundary. However, this boundary con-

struction is fraught with undesirable properties. For instance, a 4-dimensional manifold has a

20-dimensional frame bundle. Though it was shown (Schmidt, 1971) that it is sufficient to con-

sider only the bundle of orthonormal frames - which is 10-dimensional - intuition and computa-

tions are problematic. As a result, only situations with sufficient symmetries to reduce the dimen-

sions can reasonably be approached by this scheme. Furthermore, there is the problem of the b

boundary being non-Hausdorff which means that a b boundary point may be arbitrarily close to

manifold points.

In (1972) Geroch and collaborators constructed the c boundary. This construction is made

solely using the causal structure of the spacetime manifold. It attaches future (respectively, past)

endpoints to every inextensible curve in the spacetime manifold. These endpoints are called ideal

points, and their collection can be interpreted as the boundary at conformal infinity. The attach-

ment is done in such a way that the ideal points only depend on the past (resp., future) of the

curves. These ideal points are represented by terminal indecomposable future (resp., past) sets,

(Flores, 2007), which are the maximal future (resp., past) sets that are not the chronological future

(resp., past) of any manifold point and cannot be represented as the union of two proper subsets,

both of which are open future (resp., past) sets.

As with the other constructions, the c boundary construction is problematic and carries a lot

of complexities. The original topology constructed (Geroch et al., 1972) has topological separa-

tion problems as well as non-intuitive results for certain solutions. As such there have been sev-

eral modifications of the c boundary via the construction of different topologies (Budic & Sachs,

8



1974; Szabados, 1988; Harris, 1998; Harris, 2000; Ashley, 2002; Flores, 2007).

Geroch et al. (1982) constructed an example in which any singular spacetime boundary con-

struction which falls in a certain class (including the g and b boundaries) will exhibit pathological

topological properties. This led to their assertion that this may in general be true; one might al-

ways be able to construct an example for which a particular singular boundary construction fails.

Scott and Szekeres (1994) constructed the abstract boundary or simply the a boundary. Given

the existence of open embeddings φi : M −→ M̂i , the a boundary is constructed by defining an

equivalence relation on the topological boundaries ∂φi M with respect to the M̂i . This construc-

tion stands out as it considers a much broader class of curves relative to the other constructions,

as well as by virtue of being T2 separable, which is a crucial requirement for a physically rea-

sonable spacetime (Barry & Scott, 2011). Its generality means that it is applicable in contexts in

which one has only an affine connection, for example in Yang-Mills and Einstein-Cartan theories

(Scott & Szekeres, 1994). This construction also turns out to be easier to implement in general

compared to the other construction schemes. However, the a boundary is also plagued with its

own shortcomings (see the discussions in Curiel (1999, 2009)). It would be nice to have a causal

characterization of the a boundary, as well as being able to define differentiable and metric struc-

tures on the a boundary, and to establish what (if any) new information can be learned from these

properties on the a boundary.

Curiel (1999, 2009) has argued that the use of curve incompleteness is an adequate definition

in context of singular spacetimes and singular structures as far as existing spacetimes of physi-

cal relevance are concerned. This would seem to suggest that the g , b and a boundaries are all

acceptable boundary constructions in a general relativistic context. This is not necessarily true

outside of this immediate context, and this is where the a boundary - which is more broadly

applicable - becomes the construction of choice. Nevertheless, the ubiquity of the application of

9



the curve incompleteness approach motivates a better understanding of the relationship between

such constructions and the a boundary.

To date, there have been no successful results relating the various boundary constructions,

although there has been some work on relating b-completeness and g -completeness (Hawking

& Ellis, 1973). Moreover, within different boundary constructions, there have been several mod-

ifications to deal with some of the problems faced by these constructions (Budic & Sachs, 1974;

Szabados, 1988; Harris, 1998; Harris, 2000; Ashley, 2002; Flores, 2007). Finally, there does not

seem to be a “natural” and general way to map between different boundary constructions (Ash-

ley, 2002). This is one of the problem addressed in this thesis in chapter 7.

1.2 Structure of thesis

This thesis is structured in the following manner. In chapter 2 we introduce some fundamental

concepts used through out the different chapters.

Chapter 3 is based on the reference Sherif et al., (2018) which is joint work with Rituparno

Goswami and Sunil D. Maharaj. The work considers various geometric properties of marginally

trapped surfaces and topological relationships between the 3-surfaces they foliate in certain classes

of spacetimes. This work extends the work carried out by Ellis et al. (2014) where a formalism was

introduce to study the evolution of black hole horizons in LRS II spacetimes. We also consider sta-

bility of marginally trapped surfaces in LRS II spacetimes in the context of the 1+1+2 semitetrad

covariant formulation of GR.

Chapter 4 is based on the reference Sherif et al., (2019a) which is joint work with Rituparno

Goswami and Sunil D. Maharaj. In this work we consider both topological and causal relation-

ships between certain classes of spacetimes and a general 4-dimensional spacetime. We also

10



study the stability of marginally trapped surfaces and classify the spacelike future outer trapping

horizons in the Robertson-Walker and the Lemaitre-Tolman-Bondi spacetimes. The surface grav-

ity on a black hole horizon was calculated for certain classes of spacetimes (to be specified in the

chapter) as well as a general 4-dimensional spacetime, using the formalism of Booth and collab-

orators (Booth & Fairhurst, 2004; Booth et al., 2005) while adapting the calculations to the 1+1+2

covariant formalism variables.

Chapter 5 is based on the reference Sherif et al., (2019b), which is joint work with Rituparno

Goswami and Sunil D. Maharaj. This work looks at the formation of a “cavity”, in a star with no

expansion. We are interested in the conditions under which such cavity would form and what the

geometry of the star should be for such mechanism to occur.

Chapter 6 is based on the reference Sherif et al., (2019c), which is joint work with Rituparno

Goswami and Sunil D. Maharaj. In this work we study the geometry of horizons foliated by min-

imal 2-surfaces. We evoke well known results from minimal surface theory to determine the ge-

ometry of these 2-surfaces.

Chapter 7 is based on the reference Sherif & Amery, (2019), which is joint work with Gareth

Amery. In this work we formulate a method of constructing a Hausdorff separable g boundary,

which we label as g̃ , and establish a relationship between the g and a boundary constructions of

spacetime.

In chapter 8 we conclude with the summary of the different results from each chapter.
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Chapter 2

Preliminaries

Many different areas of mathematics have been employed to probe the various facets of Einstein’s

theory of general relativity. The foundational setup of the theory by Einstein utilized what was

the then relatively well developed area of Riemannian and pseudo-Riemannian geometry. As the

theory evolved over the decades, different areas of mathematics have been used to study varying

aspects of the theory. Topology, differential geometry and differential topology have been used to

study concepts like black holes and spacetime singularities. This chapter provides the necessary

mathematical background for the concepts used in the subsequent chapters. The notes of sec-

tion 2.1, follow the particular references Greenberg (1970), Tsamparlis & Mason (1983), Mason &

Tsamparlis (1985), Tsamparlis (1992), Clarkson (2007) and Ellis et al. (2014), and the associated

references therein. These notes provide some background for the 1+1+2 semitetrad covariant

formalism. We restrict the notes to the minimum requirements for chapters 3, 4, 5, and 6. We will

mostly follow certain references (Hawking & Ellis, 1973; Munkres, 2000; Lee, 2001; Wasserman,

2004; Kostecki, 2009) for section 2.2 where we introduce definitions primarily used in Sherif &

Amery (2019) of chapter 7. In some cases we will give provisional definitions that subsequently
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lead to those used in the chapter.

2.1 Some notes on the 1+1+2 semitetrad covariant formulation

of general relativity

Given a spacetime M , to covariantly describe M we first make a choice of a unit tangent vector

field, ua , to a defined timelike congruence (Ellis, 2009). Given any 4-vector U a in the spacetime,

the projection tensor h b
a ≡ g b

a +uaub , projects U a onto the 3-space as

U a = U ua +U 〈a〉,

where U is the scalar along ua and U 〈a〉 is the projected 3-vector (the angle bracket denotes the

projected symmetric trace-free part of a vector or tensor). This naturally gives rise to two deriva-

tives:

• The covariant time derivative (or simply the dot derivative) along the observers’ congru-

ence. For any tensor Sa..b
c..d ,

Ṡa..b
c..d ≡ ue∇e Sa..b

c..d .

• Fully orthogonally projected covariant derivative D with the tensor hab , where the total pro-

jection is on all the free indices. For any tensor Sa..b
c..d ,

De Sa..b
c..d ≡ ha

f hp
c ...hb

g hq
d hr

e∇r S f ..g
p..q .

The kinematical and Weyl quantities associated with the 1+3 splitting is given by the collection

of the quantities ρ, p,Θ, Hab ,Eab ,σab ,πab , qa ,ωa . We have ρ = Tabuaub as the energy density, p =
1
3 habTab is the isotropic pressure,Θ= Daua is expansion, Hab is the gravito-magnetic tensor, Eab
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is the gravito-electric tensor, σab is the shear tensor, πab = π〈ab〉 is the anisotropic stress tensor,

qa = q〈a〉 = −h b
a Tbc uc is the 3-vector defining the heat flux, and ωa is the rotation vector. The

quantity Tab is the energy-momentum tensor. For LRS II spacetimes the Weyl is purely electric

(Clarkson, 2007).

The 3-space can further be split by the choice of a vector field - which we denote by ea -

orthogonal to ua , and the kinematical and Weyl variables described above can be split into an

irreducible set of covariant scalar variables. The vector field ea allows for the introduction of a

projector tensor given by N b
a ≡ g b

a +uaub +eaeb , which projects vectors orthogonal to ua and ea

onto a 2-surface defined as the sheet N a
a = 2. This further splitting introduces two new deriva-

tives:

• The hat derivative is the spatial derivative along the vector ea . For a 3-tensor ψ c..d
a..b ,

ψ̂ c..d
a..b ≡ e f D f ψ

c..d
a..b .

• The delta derivative is the projected spatial derivative on the 2-sheet by N b
a , projected on

all the free indices. For any 3-tensor ψ c..d
a..b ,

δeψ
c..d

a..b ≡ N f
a ..N g

b N c
h ..N d

i N j
e D jψ

h..i
f ..g .

The resulting quantities fully describing a spacetime M are then given by the collection of the

quantities

(
ρ, p, A,Θ,φ,Σ,E ,Π,Q,Ω,Θ,Hab ,Eab ,Σab ,Πab , Aa ,H a ,E a ,Σa ,Πa , q a ,ωa)

.

Some of these quantities, relevant to this thesis, are defined as follows:
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σab =Σ
(
eaeb −

1

2
Nab

)
+2Σ(aeb) +Σab ,

qa =Qea ,

u̇a = Aea + Aa ,

φ= δaea ,

ωa =Ωea +Ωa .

(2.1)

We also have

Eab = E

(
eaeb −

1

2
Nab

)
+2E(aeb) +Eab ,

πab =Π
(
eaeb −

1

2
Nab

)
+2Π(aeb) +Πab .

(2.2)

In (2.1), Aa is the acceleration vector, φ is the sheet expansion, and E ,Π and Σ are the scalars

associated with the electric part of the Weyl tensor, the anisotropic stress and the shear tensor

respectively. The evolution and propagation equations can be obtained from the Ricci identities

of the vectors ua and ea as well as the doubly contracted Bianchi identities. Some of the evolu-

tion and propagation equations relevant to this paper are given below (see Clarkson (2007) which

contains the complete set of equations):

• Evolution:

2

3
Θ̇− Σ̇ = Aφ−2

(
1

3
Θ− 1

2
Σ

)2

− 1

3

(
ρ+3p −2Λ

)+E − 1

2
Π−ΣaΣ

a +ΩaΩ
a

− (2aa − Aa −δa) Aa +2Ω2 +εabα
aΩb −2αaΣ

a −ΣabΣ
ab , (2.3)

φ̇ =
(

2

3
Θ−Σ

)(
A− 1

2
φ

)
+Q +2ξΩ+δaα

a −ζabΣab + Aa (αa −aa)

+(
aa − Aa)(

Σa −εabΩ
b
)

. (2.4)
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• Propagation:

2

3
Θ̂− Σ̂ = 3

2
φΣ+Q +2ξΩ+δaΣ

a +εabδ
aΩb −2Σa aa +2εab AaΩb −Σabζ

ab , (2.5)

φ̂ =
(

1

3
Θ+Σ

)(
2

3
Θ−Σ

)
− 1

2
φ2 − 2

3

(
ρ+Λ)−E − 1

2
Π+2ξ2 +δa aa (2.6)

−aa aa −ζabζ
ab +2εabα

aΩb −ΣaΣ
a +ΩaΩ

a .

The full covariant derivatives of the vectors ua and ea are given by (Clarkson, 2007)

∇aub = −Auaeb +eaeb

(
1

3
Θ+Σ

)
+Nab

(
1

3
Θ− 1

2
Σ

)
−ua Ab +ea

(
Σb +εbmΩ

m)+Ωεab

+(
Σa −εamΩ

m)
eb +Σab , (2.7)

∇aeb =− Auaub +
(

1

3
Θ+Σ

)
eaub +

1

2
φNab −uaαb +

(
Σa −εamΩ

m)
ub +ea ab

+ξεab +ζab ,

(2.8)

where

αa ≡ ėa = Nab ėb ,

εab ≡ εabc ec = udηd abc ec ,

ζab ≡ δ{aeb},

ξ≡ 1

2
εabδaeb ,

aa ≡ ec Dc ea = êa .

The quantities Σ,Σa ,Σab are related to the shear tensor and shear scalar via the relation

σ2 ≡ 1

2
σabσ

ab = 3

4
Σ2 +ΣaΣ

a + 1

2
ΣabΣ

ab . (2.9)

We also have the relation ûa = (1
3Θ+Σ)

ea +Σa +εabΩ
b . The quantity ζab is the shear of ea (dis-

tortion of the sheet), aa is its acceleration, and ξ is the twisting of the sheet (rotation of ea).
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2.2 Topological spaces and their properties

2.2.1 Topological spaces, continuous maps, homeomorphisms and embed-

dings

Definition 2.2.1 (Topological space). Let S be a set and let τ be a collection of open subsets of S

satisfying the following properties:

a both S and ∅ are in τ,

b arbitrary union of elements of τ are in τ,

c finite intersections of elements of τ are in τ.

Then the pair (S,τ) is called a topological space and τ is called a topology on S.

The above definition of a topological space has obvious consequences. For example, the def-

inition can be phrased in terms of closed sets by interchanging the requirement on unions and

intersections: arbitrary intersections of elements of τ (elements of τ are now closed sets) are in

τ, and finite unions of elements of τ are in τ. This complementarity is just a consequence of De

Morgan’s laws. A subset A of S is closed if and only if A = cl (A), where cl (A) denotes the closure

of A (the union of A and all of its limit points).

Every set S is endowed with two topologies, the trivial topology made up of the empty set and

the S itself, and the discrete topology which is the collection of all subsets of S. Besides the trivial

and discrete topologies, the set S may have multiple topologies defined on it. However these will

not be discussed for the purpose of this thesis. Sometimes these topologies are subset related (the

terminology usually used in the literature is τ1 and τ2 are comparable), i.e. one may be the subset
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of the other. Let S be a set and let τ1 and τ2 be two topologies defined on S. If τ1 ⊂ τ2, then we say

that τ1 is weaker (or coarser) than τ2, or that τ2 is finer than τ1.

We will simply name a topological space by the underlying set with the understanding that

we are talking about topological spaces, except otherwise stated. Let S1 and S2 be two topological

spaces. In general, the task of writing down all of the subsets of a topological space S may not be

feasible. One could instead specify a “reasonable” reduced collection of subsets of S from which

the topology can be recovered (or generated). This reduced collection is termed a basis of the

topology. Formally,

Definition 2.2.2 (Basis of a topology). A basis for a topology τ on a topological space S is a collec-

tion B of subsets of S such that

a For any s ∈ S, ∃ an element B ∈B such that s ∈ B.

b If s ∈ B1 ∩B2, for B1,B2 ∈B, then ∃ an element B3 ⊂ B1 ∩B2 of B such that s ∈ B3.

Definition 2.2.3 (Induced, subspace, or relative topology). Let S be a topological space with a

topology τ, and let A ⊂ S. Then the collection

τA = {A∩U |U ∈ τ}

is a topology on A, the induced, subspace or relative topology.

If B is a basis for τ, then the collection

BA = {A∩B |B ∈B}

is a basis for τA.

Definition 2.2.4 (Continuous map). A map f : S1 −→ S2 is called continuous if ∀ open V ⊆ S2,

f −1 (V ) is open in S1.
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The map f : S1 −→ S2 is said to be open if ∀ open U ⊂ S1, the image f (U ) is open in S1.

Definition 2.2.5 (Homeomorphism). A map f : S1 −→ S2 is a homeomorphism if it is bijective,

open and continuous.

The definition 2.2.5 is equivalent to the statement that f is bijective and bi-continuous (both

f and f −1 are continuous). By definition, it is clear that the bijectivity is carried over to the open

sets of homeomorphic spaces. As such, any property of S1, defined entirely in terms of the open

sets of S1 - which are called topological properties - will have a corresponding property in S2. It

is easily checked that homeomorphism is an equivalence relation and as such homeomorphic

spaces are treated as one and the same space.

It is possible to have a case where the map f is injective but only surjective onto a subset

f (S1) = A2 of S2. In this case we say that f is homeomorphic onto its image.

Definition 2.2.6 (Embedding). A map f : S1 −→ S2 is called an embedding (of S1 into S2) if f is

injective and f is a homeomorphism onto its image f (S1).

2.2.2 Some properties of topological spaces

We now look at some of the topological properties of topological spaces mentioned earlier. We

will in particular look at properties such as connectedness, compactness, local compactness, para-

compactness and density.

Let S be a topological space, and let S′ and S′′ be non-empty open subsets of S such that

S′∩S′′ =∅. If S′∪S′′ = S, then the pair
(
S′,S′′) is called a separation of S.

Definition 2.2.7 (Connectedness). A topological space S for which there does not exist a separation

is called a connected space.
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As the definition 2.2.7 is implicitly stated in terms of open subsets of S, connectedness is

clearly a topological property. If S contains a non-empty proper subset S′, then a natural separa-

tion of S is the pair
(
S′,S \ S′). An alternative but equivalent definition of connectnedness that is

sometimes used is the following: a topological space S is said to be connected if and only if ∅ and

S are the only subsets of S that are both open and closed.

Given a closed interval I = [a,b] on the real line, every infinite subset of I has a limit point.

This was a crucial ingredient in proving the maximum value theorem and the uniform continuity

theorem. For an arbitrary topological space, a much stronger formulation was needed and this

was done in terms of open coverings of a topological space which allows us to define the notion

of compactness.

Definition 2.2.8 (Covering (open)). Let S be a topological space, and let A be a collection of open

subsets of S such that
⋃

U∈A
U = S. Then A is called an open covering of S.

Definition 2.2.9 (Compactness). A topological space S is said to be compact if for every open cover

A of S, ∃ a subcollection A ′ of A such that
⋃

U ′∈A ′
U ′ = S.

We state a theorem on compactness which is used in chapter7. The proof can be found in

Munkres, (2000) p.167.

Theorem 2.2.10. Let S1 and S2 be two topological spaces, and let f : S1 −→ S2 be a bijective and

continuous map between them. If S1 is compact and S2 is Hausdorff, then f is a homeomorphism.

Definition 2.2.11 (refinement). Let S be a topological space and let A1 and A2 be two open cover-

ings of S. The covering A2 is called a refinement of A1 if, for every U2 ∈A2, ∃ U1 ∈A1 such that U1

contains U2.
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Definition 2.2.12 (Locally finite open covering). Let S be a topological space and let A be an open

covering of S such that every s ∈ S has a neighborhood intersecting only a finte number of elements

of A . The A is a locally finite open covering of S.

Definition 2.2.13 (Paracompactness). A topological space S such that every open covering of S has

an open refinement that is locally finite is said to be paracompact.

Another important notion of topological spaces is the closeness of points of the topological

space, which is understood in terms of the separation axioms. There are many different separa-

tion axioms (Munkres, 2000). We will mention just one, Hausdorff separability, which is of physi-

cal relevance to the study of spacetimes. In fact, this is a property that is sometimes assumed by

some authors in the definition of manifolds.

Definition 2.2.14 (Hausdorff (or T2) separability). A topological space S is said to be Hausdorff

(or T2 separable) if given any two distinct points s1, s2 ∈ S, ∃ open neighborhoods Us1 and Vs2 of s1

and s2 respectively such that Us1 ∩Vs2 =∅.

With all these definitions out of the way we can now proceed to introduce manifolds, space-

times, extensions and completions.

2.2.3 Manifolds, differentiable and smooth structures, spacetimes

We have briefly introduced topological spaces and some properties relevant to this thesis. We

now introduce manifolds and differentiable manifolds, which are just topological spaces with

additional structure.

Definition 2.2.15 (Chart). Let U be an open subset of a topological space M, and let ϕ : U −→V be

a homeomorphism from U to an open subset V of Rn . The pair
(
U ,ϕ

)
is called a chart.
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Definition 2.2.16 (Atlas). A collection of charts
{(

Ua ,ϕa
)}

a∈I , where {Ua}a∈I covers M and the

transition maps - ϕ2 ◦ϕ−1
1

∣∣∣
ϕ1(U1∩U2)

,ϕ1 ◦ϕ−1
2

∣∣∣
ϕ2(U1∩U2)

for any pair of charts
(
U1,ϕ1

)
,
(
U2,ϕ2

)
in

{
(
Ua ,ϕa

)
}a∈I , where U1 ∩U2 6=∅ - are homeomorphisms is called an atlas.

Definition 2.2.17 (Manifold). An n-dimensional manifold M is a Hausdorff and locally compact

topological space, with second countable basis, that has an atlas placed on it. By definition, it

follows that a manifold is paracompact (Wasserman, 2004).

Definition 2.2.18 (ck -compatibility). Let A = {
(
Ua ,ϕa

)
}a∈I be an atlas. Two charts in A are said

to be ck -compatible if the transition maps are ck (k-times differentiable). If all the charts in A are

pairwise ck -compatible then we say that A is a ck -atlas. (We say the atlas is smooth if k =∞.)

Definition 2.2.19 (Maximal atlas). Let A be an atlas on a manifold M. Let A ′ be any other atlas

on M. If A is such that A ′ contains A implies A ′ =A , then the atlas A is said to be maximal.

A maximal ck -atlas (c∞-atlas) is called a differentiable structure (smooth structure) on M . A

differentiable manifold (smooth manifold) is a manifold endowed with a differentiable (smooth)

structure.

Definition 2.2.20 (Smooth function on a manifold). A function f : M −→ R is said to be smooth

at a point p ∈ M if ∃ a chart
(
U ,ϕ

)
in M, where U is an open neighborhood of p, such that f ◦ϕ−1 :

ϕ (U ) −→ R is smooth at ϕ
(
p

)
. The function f is called smooth on M if f is smooth at all points of

M.

Definition 2.2.21 (Smooth maps between manifolds). Given two manifolds M and N , we say a

map Q : M −→ N is said to be smooth if for every p ∈ M, ∃ charts
(
U ,ϕ

)
at p and

(
V ,ψ

)
at Q

(
p

)
such that Q (U ) ⊂V and ψ◦Q ◦ϕ−1 is smooth.
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Definition 2.2.22 (Spacetime). A spacetime M is a smooth, connected, and orientable Lorentzian

(has a Lorentzian signature) manifold, where by orientable we mean the determinant of the Ja-

cobian of the transition maps are consistently positive for any pair of charts for some atlas on M,

.

Definition 2.2.23 (Extension). Let M be a manifold and let A be a ck -atlas on M. A manifold

M ′ is an extension of M if ∃ a c l≤k -atlas A ′ on M ′ containing A . If A ′ is maximal then M ′ is the

maximal extension of M. Since spacetimes are smooth we simply drop the mention of the differen-

tiability of the atlases.

The containment relation between A and A ′ is simply the notion of embedding, which is a

very important notion for some singular boundary constructions (the abstract boundary of Scott

& Szekeres (1994), and more recently the g̃ boundary of Sherif & Amery (2019) - a modification of

the g boundary of Geroch (1968b) - which is covered in the work of chapter 7). Given a spacetime

M , a primary goal in the study of spacetime singularities is to construct a boundary of M on

which incomplete curves terminate. This boundary is then adjoined to the M in a process known

as spacetime completion. More formally,

Definition 2.2.24 (Spacetime completion). Let M be a spacetime. A manifold M is called a man-

ifold completion if M is dense in M, where M \ M = ∂M is the boundary of M.
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Chapter 3

Marginally trapped surfaces in gravitational

collapse: A semitetrad covariant study

3.1 Introduction

In this chapter we extend the results in Ellis et al. (2014) to a broader class of spacetimes, notated

NNF spacetimes for null normal foliation (to be defined in section 3.2). The NNF spacetime is a

generalization of LRS II spacetimes which in general do not possess all the symmetries of LRS II

spacetimes. The adaptation and interpretation of results in terms of the 1+1+2 splitting provides

a geometric (and therefore intuitive) picture of marginally trapped surfaces as well as the hyper-

surfaces they foliate. We then look at the stability of MTS (Andersson et al., 2005; Andersson et al.,

2008; Galloway & Schoen, 2006; Cai & Galloway, 2001).

In section 3.2 we consider marginally trapped surfaces using this formalism in LRS II space-

time and a certain generalization of LRS II spacetimes, which we notate as NNF spacetimes. Evo-

lution and stability analysis of marginally trapped surfaces are carried out. We then conclude in
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section 3.3.

3.2 Marginally trapped surfaces and their evolution

We start by providing some standard definitions. We recall that a codimension 2 surface S in

a 4-dimensional spacetime
(
M , g

)
(with a Lorentzian signature (−,+,+,+)) can be expressed as

a smooth embedding ϕ : S −→ M of S into M , given by the parametric equation (Bengtsson &

Senovilla, 2011)

xµ = ϕµ
(
λA)

, (3.1)

where {xµ} (with µ ∈ {0,1,2,3}) are local coordinates in M , and {λA} (with A ∈ {2,3}) are local

coordinates in S.

The tangent vectors on S are given by the push forward (the differential of the map ϕ),

ϕ′ (∂λA

)= ∂ϕµ

∂λA
= eµA, (3.2)

while the first fundamental form of S in M is given as the pull back of g by ϕ:

γ=ϕ∗g = g ◦ϕ, (3.3)

whose components are given by

γAB (λ) = g |S (e A,eB ) = gµν
(
ϕ

)
eµAeνB .

Throughout we assume γAB is a positive definitive Riemannian metric. We will also simply write

A,B as a,b where a,b takes the coordinates on S, since there is no ambiguity. We introduce a

quantity called the shape tensor on S, χ which is given as the map

χ :X (S)×X (S) −→X (S)⊥ .
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The sets X (S) ,X (S)⊥ are the sets of smooth vector fields tangent to and perpendicular (normal)

to S respectively. Let n be a normal vector field in X (S)⊥. Then the second fundamental form on

S relative to n is given by

χab |n ≡ ncχ
c
ab = γ c

a γ
d

b ∇d nc .

We note that γ b
a ≡ N b

a , where N b
a is the projection tensor that projects vectors orthogonal to nc

onto S. From now on we will write

χab |n = N c
a N d

b ∇d nc . (3.4)

which, for any normal vector n, is a 2-covariant symmetric tensor field on S. Let kc , lc be two

future pointing (we assume time orientability on S) null vectors that are everywhere normal to S,

given by the relations

kc l c =−1, kc kc = 0, lc l c = 0. (3.5)

The expansion scalars are given as

Θk = N abχab |kc = N cd∇d kc , (3.6)

Θl = N abχab |lc = N cd∇d lc . (3.7)

Definition 3.2.1 (Trapped Surface). A (future) trapped surface is a smooth, connected, closed,

spacelike co-dimension 2 submanifold S of M such that the divergences Θk and Θl of the congru-

ences generated by the null normal vector fields ka and l a (ka is the outgoing null normal vector

field and l a is the ingoing null normal vector field) respectively are everywhere negative on S.
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Definition 3.2.2 (Marginally Trapped Surface). A marginally trapped surface (MTS) is a smooth,

connected, closed, spacelike co-dimension 2 submanifold S of M such that Θk is everywhere van-

ishing on S, andΘl is everywhere negative on S.

Definition 3.2.3 (Marginally Trapped Tube). A marginally trapped tube (MTT) is a co-dimension

1 submanifold H of M which is foliated by MTS.

For more on the above definitions see the following references Ashtekar & Krishnan (2002),

Ashtekar & Krishnan (2003), Hayward (2004), Bengtsson & Senovilla (2011) and Senovilla (1998;

2003; 2003).

3.2.1 Marginally trapped surfaces in LRS II spacetimes

We first start by briefly discussing null normal vectors and null geodesics in LRS II spacetimes.

Given a spacetime M , null geodesics are given as curves γ parametrized by an affine parameter

λ. Tangent vectors to these curves are given by ka . The null vector ka obeys kaka = 0. Since

tangent vectors to null geodesics are parallelly transported along itself we write

kb∇bka = 0, (3.8)

where the derivative kb∇b is a derivative along the ray with respect to the affine parameter.

In LRS II spacetimes there is a preferred spatial direction. If the null geodesics move along

this spatial direction, the sheet components of these null curves are zero. We can also define

the notion of (locally) incoming and outgoing null geodesics with respect to the spatial direction.

Let S be an open subset of M and γ be a null geodesic. Let ka be the tangent to γ. Then γ is

considered to be outgoing with respect to the spatial direction if eaka > 0 and ingoing if eaka < 0.
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This allows us to write the equation of the tangent to the outgoing null geodesics as

ka = Ep
2

(
ua +ea)

, (3.9)

where E is the energy of the light ray. We can similarly define the equation of the tangent to the

incoming null geodesics as

l a = 1

E
p

2

(
ua −ea)

, (3.10)

Without loss of generality we will set the energy E to unity (Ellis et al., 2014; Stewart & Ellis, 1968).

In LRS II spacetimes we calculate the second fundamental forms along the outgoing and in-

going null normal directions as

χab |kc = 1

2
p

2
Nab

(
2

3
Θ−Σ+φ

)
(3.11)

and

χab |lc = 1

2
p

2
Nab

(
2

3
Θ−Σ−φ

)
, (3.12)

Upon applying the projection tensor N ab respectively on (3.11) and (3.12) we obtain the outgoing

and ingoing null expansion scalars

Θk = 1p
2

(
2

3
Θ−Σ+φ

)
(3.13)

and

Θl = 1p
2

(
2

3
Θ−Σ−φ

)
. (3.14)

Therefore, to locate a black hole it is sufficient to specify the quantities Θ,Σ and φ. A 2-surface in

LRS II is thus said to be marginally trapped if

2

3
Θ−Σ+φ= 0 and

2

3
Θ−Σ−φ< 0. (3.15)
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Such simplification to locate black holes will have implications in numerical relativity, where

these MTS are used as models for black holes (see for example Smarr et al. (Smarr et al., 1976).

The condition in (3.15) certainly satisfies the standard requirement for a surface to be marginally

(outer) trapped, i.e. Θk = 0,Θl < 0. However (3.15) gives the additional constraint that the 2-sheet

expansion must be positive, i.e φ > 0. This then restricts the class of spacetimes in LRS II space-

times admitting MTS and MTTs as defined in Definitions 4.2.2 and 4.2.3 respectively. The result

implies that spacetimes in LRS II class (and by extension NNF class) with negative or zero sheet

expansion cannot admit marginally trapped surfaces.

In the cases where there is no restriction on Θl , in which case φ sign is unrestricted, the co-

dimension 1 submanifold is called a marginally outer trapped tube (MOTT), and the co-dimension

2 surfaces foliating the MOTT are called marginally outer trapped surfaces (MOTS). For example,

for the time symmetric case with Θ=Σ= 0, we have φ= 0, which implies that in spacetimes with

time symmetries the horizons are MOTTs but not MTTs. This is one of the key advantages of this

approach to studying black holes: it allow us to determine permissible classes of spacetimes for

certain results just by specifying certain geometric quantities. Such distinctions are not usually

possible with other approaches. While subsequent results in the subsequent sections are speci-

fied to MTTs, we stress that these results equally apply to MOTTs.

3.2.2 Marginally trapped surfaces in NNF spacetimes

We start by defining a certain generalization of LRS II spacetimes.

Definition 3.2.4. We will denote by NNF (for null normal foliation) the class of spacetimes for

which there exists horizons foliated by MTS, and where null geodesics (both outgoing and ingoing)

are normal to these MTS. Locally rotationally symmetric (LRS) spacetimes is a subclass of NNF.
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By definition, for NNF spacetimes the outgoing and ingoing null normal vector fields are

given respectively as in (3.9) and (3.10). While generally for NNF spacetimesΩ 6= 0,ξ 6= 0, and the

tensor and vector quantities are nonvanishing, calculating the second fundamental forms along

the outgoing and ingoing null normal directions we obtain exactly the expressions in (3.11) and

(3.12) respectively. Furthermore, calculating the outgoing and ingoing null expansion scalars we

again obtain the exact expressions in (3.13) and (3.14). This leads to the following results.

Lemma 3.2.5. A marginally trapped surface S in an NNF spacetime is topologically LRS II, i.e.

topologically equivalent to a marginally trapped surface S′ in some spacetime M ′ of LRS II class.

Theorem 3.2.6. Let T be an MTT in an NNF spacetime foliated by MTS. Then T is topologically

LRS II.

The statement of theorem 3.2.6 follows from standard topological results: Suppose T is foli-

ated by a collection {Sα}α∈A of MTS. Since Sα are closed, these surfaces are embedded and thus

inherit the induced topology from T (see theorem 5 on page 51−52, (Camaco, 1943)). Let T ′ be

an MTT in LRS II foliated by a collection {S′
β

}
β∈B

, and for a fixed α and β let f : Sα −→ S′
β

be a

diffeomorphism. Then the topology of Sα and Sβ coincide, and since the surfaces S′
β

inherit the

induced topology from T ′, T and T ′ must be topologically equivalent.

To differentiate black holes from white holes, or inner from outer black hole horizons, the

definition of MTT here would not suffice (Booth & Fairhurst, 2005) and for that one requires the

Lie derivative of Θk along the ingoing null normal direction, LlΘk , to be strictly negative. For

now, however, this is immaterial to the result in theorem 3.2.6. This will be briefly discussed upon

in the next section when we discuss the evolution of trapped surfaces.

While in general an MTT may not be associated with the boundary of a black hole, for LRS II

spacetime (and by extension NNF spacetimes), if there is indeed a trapped region and the signa-
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ture of the induced metric is fixed all over the MTT, then the MTT is associated with the boundary

of the black hole. It has been shown in Bengtsson & Senovilla (2011) that in an arbitrary spherical

spacetime, there are closed trapped surfaces penetrating both sides of the MTT. In other words,

there exists a vector na , penetrating the MTT, along which Θk < 0 on both sides of the MTT. For

the nonspacelike case of the vector na , a region that is not trapped now may get trapped later

later, and so there is no problem here. In the spacelike case, the result means that the MTT is a

local maximum forΘk , at the epoch, defined by the spacelike vector na . We show that

Proposition 3.2.7. For an NNF spacetime (and therefore LRS II spacetimes), there can be no space-

like vector na , penetrating the MTT, along whichΘk < 0 on both sides of the MTT.

Proof. : Owing to the coordinate freedom, we can always rotate the [u,e] plane in such a way that

ea lies in the direction of na . Suppose there exists a spacelike vector na , that penetrates the MTT,

and along this vectorΘk < 0 on both sides of the MTT. If the MTT is the local maximum forΘk , at

an epoch, then we must have Θ̂k = 0 and ˆ̂Θk < 0, on the MTT at the given epoch.

Now, for NNF spacetimes, we have

Θ̂k = 3

2
φΣ+Q − 1

2
φ2 +

(
1

3
Θ+Σ

)(
2

3
Θ−Σ

)
−2

3

(
ρ+Λ)−E − 1

2
Π+2ξ (Ω+1)+εab M ab

− (Σab +ζab)ζab + M̃ , (3.16)

where

M ab = (
δa +2Aa +2αa)

Ωb ,

M̃ = (δa −Σa)
(
aa +Σa)−aa (aa +Σa) .
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On the MTT, whereΘk = 0, (3.16) becomes

Θ̂k |Θk=0 = −2

3

(
ρ+Λ)−E − 1

2
Π+Q +2ξ (Ω+1)

+εab M ab − (Σab +ζab)ζab

+M̃ |Θk=0. (3.17)

Setting (3.17) to zero gives

E |Θk=0 = −2

3

(
ρ+Λ)− 1

2
Π+Q +2ξ (Ω+1)+εab M ab

− (Σab +ζab)ζab + M̃ |Θk=0, (3.18)

so that

Ê |Θk=0 = −2

3

(
ρ+Λ)∧

− 1

2
Π̂+Q̂ +2ξ (Ω+1)

∧
+εab M ab
∧

−(Σab +ζab)ζab
∧

+ M̃
∧

|Θk=0. (3.19)

Computing ˆ̂Θk and evaluating on the 2-surface gives

ˆ̂Θk |Θk=0 = −3

2

(
φ̂Σ+φΣ̂)+−1

3

(
Θ̂Σ+ΘΣ̂)+ 4

9
ΘΘ̂

−φφ̂−2σΣ̂− 2

3
ρ̂− Ê − 1

2
Π̂+Q̂ +2ξ (Ω+1)

∧

+εab M ab
∧

− (Σab +ζab)ζab
∧

+ M̃
∧

|Θk=0

= 3

2

(
1

3
Σ+ 4

9
Θ

)
Θ̂k |Θk=0

= 0. (3.20)

Thus in NNF spacetimes at a given epoch, we cannot have trapped surfaces penetrating both

sides of the MTT.
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3.2.3 Evolution of MTTs

We will now consider evolution of leaves of the MTT, a major aim of this chapter. As the MTS

evolves, it traces out the MTT, and so we can study the evolution to determine the causal character

of the MTT. We recall the approach in Ellis et al. (2014). In LRS II spacetimes, the MTS can be

viewed as a curve in the [u,e] plane, defined by Θk = 0. If Θa
k is the tangent vector to the MTS

curve, then the slope of Θa
k , α/β, can be used to study the evolution of the MTS. To determine

such slope, note that the tangent toΘk = 0 can be written as

Θa
k =αua +βea , (3.21)

where α,β are smooth functions on the MTS. Since ∇aΘk =−Θ̇k ua + Θ̂k ea is normal to the curve

Θk = 0 (and thus normal to the MTT), we must haveΘa
k∇aΘk = 0, from which we obtain the slope

as

α

β
=−Θ̂k

Θ̇k
=

2
3

(
ρ+Λ)+E + 1

2Π−Q

−1
3

(
ρ+3p −2Λ

)+E − 1
2Π+Q

, (3.22)

where Θ̇k and Θ̂k are obtained by adding up (2.3) and (2.4), and (2.5) and (2.6) respectively. To

determine the causal character of the MTT, one then takes the square of the tangent vector Θa
k ,

i.e.

|Θa
k |2 =β2

(
1− α2

β2

)
. (3.23)

Therefore, at each point on the MTT, it is timelike if α2/β2 > 1, spacelike if α2/β2 < 1 and null if

α2/β2 = 1.

To generalize the above discussed result to NNF spacetimes, we will first generalize to any 4-

dimensional spacetime. To do this, it becomes immediately clear that the approach used in Ellis

et al. (2014) would not suffice. This is because the splitting of the covariant derivative of Θk has a
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sheet component, and a product of this covariant derivative with the tangent to an MTS gives an

expression, which when set to zero, there is no way to explicitly write out the slopeα/β. However,

we note that ∇aΘk is normal to the MTT, and as such the square can be used to determine the

causal character of the MTT. We will do this explicitly and we will show the limiting cases for NNF

and LRS II.

We start by calculating

Θ̇k = Θ̇k |LRS +T1 +εabRaΩb , (3.24)

and

Θ̂k = Θ̂k |LRS +T2 +εabR
a
Ωb , (3.25)

where we have set

T1 = 3Ω2 −Σ2 +2Ωξ+δa
(
A a +αa)+ (Ra −2aa)A a

+(
aa −A a)

Σa −2αaΣ
a −Σab

(
Σab +ζab

)
,

T2 = 2ξ2 +Ω2 +2ξΩ− (ζab +Σab)ζab +δa
(
aa +Σa)

−(
2aa +Σa)

Σa ,

Ra = A a +αa −aa ,

R
a = δa +2

(
αa +A a)

.

The notation (∗)LRS I I denotes the part of a quantity ∗ restricted to those covariant scalars com-

pletely describing LRS II spacetimes (the covariant scalars completely describing LRS II space-

times are given by the set {ρ, p, A,Θ,φ,Σ,E ,Π,Q}). The covariant derivative of Θk decomposes

as

∇aΘk = −Θ̇k ua + Θ̂k ea +δaΘk ,
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where

δaΘk = Pa +εab Z b .

Here we have set

Z b = 2δb (ξ+Ω)+ΘlΩ
b −2ζbcΩc +4Y b +2Σb (ξ−Ω) ,

Y b = Ωαb −2ξΣb +ΩA b + 1

2
H b −ξab ,

and Pa is given by

Pa = 2δb (Σab +ζab)−ΘlΣa −Πa −Qa −2Ea

−2Σab

(
Σb −εbcΩc +ab

)
+2Ωa (ξ−Ω)−2ζabΣ

b .

Since ∇aΘk is normal to the MTT, the surface will be timelike, spacelike or null if

∇aΘk∇aΘk > 0,

∇aΘk∇aΘk < 0, (3.26)

∇aΘk∇aΘk = 0,

respectively, where

∇aΘk∇aΘk = −Θ̇2
k + Θ̂2

k +δaΘkδaΘk , (3.27)

with

δaΘkδ
aΘk = (

P 2 +Z 2)+2εabP a Z b , (3.28)

where P 2 = PaP a and Z 2 = Zb Z b . We also have

Θ̇2
k = (

Θ̇k |2LRS +T 2
1 +Ω2R2 +2T1

)
+2εabRaΩb (1+T1) (3.29)
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and

Θ̂2
k =

(
Θ̂k |2LRS +T 2

2 +Ω2R
2 +2T2

)
+2εabR

a
Ωb (1+T2) . (3.30)

So for example, the condition for the MTT to be null is given by

Θ̇k |2LRS − Θ̂k |2LRS = −(
T 2

1 −T 2
2

)−Ω2
(
R2 −R

2
)

−2εab{Ra (1+T1)+2εabP a Z b

+R
a

(1+T2)}Ωb +P 2

+Z 2. (3.31)

For NNF spacetimes, (3.28) vanishes and the condition for the MTT to be null reduces to

Θ̇k |2LRS − Θ̂k |2LRS = −(
T 2

1 −T 2
2

)−Ω2
(
R2 −R

2
)

−2εab{Ra (1+T1)

+R
a

(1+T2)}Ωb . (3.32)

The MTT is spacelike and timelike if

Θ̇k |2LRS − Θ̂k |2LRS > −(
T 2

1 −T 2
2

)−Ω2
(
R2 −R

2
)

−2εab{Ra (1+T1)

+R
a

(1+T2)}Ωb (3.33)

and

Θ̇k |2LRS − Θ̂k |2LRS < −(
T 2

1 −T 2
2

)−Ω2
(
R2 −R

2
)

−2εab{Ra (1+T1)

+R
a

(1+T2)}Ωb (3.34)
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respectively.

For LRS II spacetimes, all vector and tensor quantities vanish (Clarkson, 2007), i.e. P = T1 =

T2 = R = R = P = Z = 0. We also have ξ=Ω= 0. Thus

Θ̇2
k = Θ̇k |2LRS ,

Θ̂2
k = Θ̂k |2LRS .

The conditions in (3.26) then reduce to

Θ̂k |2LRS > Θ̇k |2LRS , (3.35)

Θ̂k |2LRS < Θ̇k |2LRS , (3.36)

and

Θ̂k |2LRS = Θ̇k |2LRS , (3.37)

respectively, which recovers the results for the LRS II spacetime in Ellis et al. (2014).

We can now state precisely which MTT are markers of the existence of a trapped region in a

dynamical situation, i.e. a black hole. For NNF spacetimes they are precisely those satisfying the

condition

LlΘk = (
Θ̇k − Θ̂k

)
LRS I I + (T1 −T2)

+εab
(
Ra − R̄a)

Ωb < 0, (3.38)

in addition to the condition (3.33) and for LRS II, they are those satisfying

LlΘk = 1

3

(
ρ+3p

)+2E < 0, (3.39)

in addition to the condition (3.36) (we have setΛ= 0).
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Our emphasis on LRS II and NNF spacetimes is due to the fact that we expect most physically

interesting spacetimes should fall in either class, and therefore have implications for numerical

studies of black hole mergers. NNF spacetimes encompass those with rotation as well as spatial

twist and as such, should include rotating black holes, even those without the symmetries of LRS

II.

3.2.4 Stability of marginally trapped surfaces

In this section, we examine the stability of leaves of the MTT as the leaves evolve, following the

convention in Cai & Galloway (2001). As we have done through out this work, considering and

interpreting results on marginally trapped surfaces in terms of the geometric and matter variables

from the 1+1+2 splitting, we will see how to interpret stability in terms of these variables. We will

focus on stability of MTS (which holds for MOTS) in LRS II spacetimes.

Stability analysis of MTS, analogous to stability analysis in minimal surface theory has been

well formulated (Andersson et al., 2005; Andersson et al., 2008; Cai & Galloway, 2001; Galloway

& Schoen, 2006). An MTS S is said to be stable if, given a deformation St of S, the associated

outgoing null expansion scalar is somewhere positive on St . We start by giving an overview.

Let S be an MTS in an initial data set
(
Σ,h,χ

)
with outward normal vector ea . Consider varia-

tion t 7→ St of S = S0 with the variation vector field

V a = ∂

∂t
|t=0

= Φea , Φ ∈C∞ (S) . (3.40)

Let Θ (t ) be the null expansion of St with respect to ka
t = ua + ea

t (where ea
t is the unit normal
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vector field to St in Σ). Then one has

∂Θ

∂t
|t=0 = L (Φ) , (3.41)

where L is the operator

L : C∞ (S) −→C∞ (S) ,

given by

L (Φ) = {−∆+2X a∇a +F +∇a X a

−Xa X a}Φ, (3.42)

(Andersson et al., 2005; Andersson et al., 2008; Cai & Galloway, 2001; Galloway, 2011; Galloway &

Schoen, 2006) where

F = 1

2
RS −

(
µ+ J aea

)− 1

2

(
χS

)ab (
χS

)
ab ,

µ = 1

2

(
RΣ+

((
χΣ

)a
a

)2 − (
χΣ

)ab (
χΣ

)
ab

)
, (3.43)

J a = ∇b
(
χΣ

)ba −d a (
χΣ

)b
b .

The quantity RS denotes the scalar curvature on S and RΣ is the scalar curvature on Σ. The quan-

tities J a and µ are the local momentum and local energy density respectively.

For LRS II spacetimes the vector field X a becomes

Xa = −lc N b
a∇bkc = 0. (3.44)

Therefore (3.42) reduces to the classical stability operator in minimal surface theory

L (Φ) = − (∆−F )Φ. (3.45)
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The MOTS is said to be stable if there exists a real number λ (called the principal eigenvalue of L)

such that L (Φ) = λΦ (Φ is the associated eigenfunction), λ≥ 0 and Φ is a positive function. Strict

stability requires λ> 0.

Given an initial data set, the dominant energy condition (DEC) is given by

µ ≥
√

J a Ja . (3.46)

In addition to the stability condition, the DEC is usually required to be satisfied.

Explicitly we calculate the following quantities for LRS II spacetimes.

(
χS

)ab (
χS

)
ab = −1

2

(
2

3
Θ−Σ

)2

+ 1

2
φ2,(

χΣ
)ab (

χΣ
)

ab = 1

3
Θ2 + 3

2
Σ2,(

χΣ
)a

a = Θ, (3.47)

J a =
(

3

2
Σ2 − Θ̇

)
ua +

(
1

2
AΣ−Q

)
ea ,

µ = ρ+Λ,

The function F then becomes

F = 1

2
AΣ− 2

3

(
ρ+Λ)−E − 1

2
Π−Q.

The scalar curvature on RS on S given by

RS = 2K , (3.48)

and the scalar curvature RΣ on Σ is given by

RΣ = −2

(
φ̂+ 3

4
φ2 −K

)
, (3.49)

where K is the Gaussian curvature. The DEC in (3.46) reduces to

ρ+Λ ≥
√
−

(
3

2
Σ2 − Θ̇

)2

+
(

1

2
AΣ−Q

)2

. (3.50)
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The square root on the RHS of (3.50) provides the extra condition that

(
1

2
AΣ−Q

)2

≥
(

3

2
Σ2 − Θ̇

)2

. (3.51)

Whenever the spacetime is such that, on the 2-surfaces we have ∆ = 0, then one obtains λ

from λ = F . Let us now present some simple examples. For spherically symmetric spacetimes,

the Laplacian is zero and ρ,Λ,Π,Q are all vanishing. Showing stability of the MOTS then amounts

to solving

(λ+E )Φ = 0. (3.52)

SinceΦ is required to be strictly positive, the solution to (3.52) is

λ = −E . (3.53)

The MTS are then stable if E ≤ 0 and strictly stable if E < 0.

As an example, take the Schwarzschild spacetime with

E = −2m

r 3
.

Since r,m > 0, E < 0, and we have λ > 0. We thus have strict stability. The combination of strict

stability, and noting that the DEC in (3.50) is satisfied for a spherically symmetric case, implies

that the surfaces S are topological 2-spheres (Newman, 1987). In fact we see that the solution in

(3.53) implies that for a spherically symmetric vacuum spacetime E is necessarily less than zero,

since the MTS must be topological spheres.

As another example, consider the case of the Oppenheimer-Snyder collapse. On the inner

horizonΦ is time-dependent only, and the Laplacian is zero. We also have the vanishing of

Σ, A,Q,Π,Λ,E ,
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as well as all of the hat derivatives. Then the stability equation becomes

−2

3
ρΦ = λΦ, (3.54)

which implies λ=− (2/3)ρ. Since ρ > 0, λ is strictly negative and the MTS are unstable.

In the numerical simulation of black holes merger, from the inspiral to the ringdown atate,

one expects λ to initialy have negative values for the indivitual MTS (or MOTS), pass through

λ = 0, and then assume positive values. For simplification, consider the case of non-rotating

black holes with ∆ = 0 on S. then S smoothly evolves so that F goes from negative to positive,

passing through the marginally stable case F = 0.

For a specific example, consider the case where the black holes models are shear-free perfect

fluid spacetimes (Π=Q = Σ= 0). During the inspiral, one has E >−2/3ρ on the individual MTSs

(or MOTSs). We see that this condition holds through out the merger and immediately before the

ringdown state we must have E =−2/3ρ. At the ring down state , E <−2/3ρ.

If the final state is the event horizon of the Schwarzschild vacuum solution, the E must be

less than zero on the MOTS (we specifically use MOTS here since φ = 0 on the horizon for the

Schwarzschild solution) since ρ = 0, which is expected.

We therefore have an idea, in the case considered here, the correlation between the electric

Weyl scalar E and the energy density ρ one is to expect during the three stages of black holes

merger. In effect, one may specify the geometric quantities E and ρ when studying such mergers,

which nicely correlates the three regimes of the merger.

3.3 Conclusion

We have established a topological relationship between marginally trapped surfaces (and the 3-

surfaces they foliate) in LRS II spacetimes and those of a certain generalization of LRS II space-
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times, which we call NNF spacetime, utilizing the 1+ 1+ 2 semitetrad covariant formalism. We

then extended our earlier work on the evolution of MTTs, which was restricted to LRS II space-

times, to NNF spacetimes as well as a general 4-dimensional spacetime. Our approach allows one

to express quantities in terms of well defined curvature variables, which has the added advantage

of providing relative ease in assigning physical interpretation once certain geometric and mat-

ter variables are specified. We have also interpreted the stability analysis of marginally trapped

surfaces in LRS II in terms of the matter and curvature variables using this formalism, and in-

deed established the stability of marginally trapped surfaces in Schwarzschild spacetime and the

instability of those in the Oppenheimer-Snyder collapse. A further study of implications of our

approach is currently being considered to extend stability analysis to NNF spacetimes as these

spacetimes should rotating black hole spacetimes with spatial twist as well as other sheet related

quantities, but not with all the symmetries of LRS II.
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Chapter 4

Some results on cosmological and

astrophysical horizons and trapped surfaces

4.1 Introduction

In this chapter we investigate the evolution of black hole horizons in context of the 1+1+2 co-

variant formalism. The formulation in this chapter allows us to make some very important obser-

vations about black hole horizons. We determine the forms of the horizon function determining

the sign of the intrinsic metric on the horizon for certain classes of spacetimes as well as for the

general case. We use these results to study horizons and trapped surfaces in some well known

spacetimes. We then consider some results concerning surface gravity on the horizon.

The chapter is structured as follow: Section 4.3 looks at the nature of horizons in various

classes of spacetimes and use the results to study properties of horizons and marginally trapped

surfaces in the Robertson-Walker and the Lemaitre-Tolman-Bondi spacetimes. In section 4.4 we

calculate the surface gravity for various classes of spacetimes as well as the general case, and in
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section 4.5 we conclude with discussion of the results.

4.2 Some definitions

Let us now recall some useful notions from the previous chapter (Senovilla, (1998); Ashtekar & Kr-

ishnan, (2002); Ashtekar & Krishnan, (2003); Senovilla, (2003); Senovilla, (2003); Hayward, (2004);

Bengtsson & Senovilla, (2011)). As was mentioned in the Introduction, the authors in (Booth &

Fairhurst, 2005) showed that a 3-surface foliated by marginally trapped 2-surfaces is a suitable

boundary of a black hole under certain conditions. In the definitions and discussions that are to

follow, ka and l a are respectively the outward and inward null normal vector fields to a leaf of

such foliation, while Θk and Θl are the expansions of the congruences generated by ka and l a

respectively.

The definitions that are to follow were introduced in the previous chapter. However, we will

recall them in order to make this chapter self contained.

Definition 4.2.1 (Trapped Surface). A (future) trapped surface (TS) is a smooth, connected, closed,

spacelike co-dimension 2 submanifold S of M such that the divergences, Θk and Θl , of the congru-

ences generated by the null normal vector fields ka and l a respectively are everywhere negative on

S (ka is the outgoing null normal vector field and l a is the ingoing null normal vector field).

Definition 4.2.2 (Marginally Trapped Surface). A marginally trapped surface (MTS) is a smooth,

connected, closed, spacelike co-dimension 2 submanifold S of M such that Θk is everywhere van-

ishing on S andΘl is everywhere negative on S.

Definition 4.2.3 (Marginally Trapped Tube). A marginally trapped tube (MTT) is a co-dimension

1 submanifold H of M which is foliated by MTS.
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In the case that there is no restriction on the sign of Θl , then the co-dimension 1 surface

is called a marginally outer trapped tube (MOTT), and the co-dimension 2 surfaces foliating the

MOTT are called marginally outer trapped surfaces (MOTS). For more on the above definitions

see the following references (Ashtekar & Krishnan, 2002; Ashtekar & Krishnan, 2003; Bengtsson &

Senovilla, 2011; Booth & Fairhurst, 2005; Hayward, 2004; Senovilla, 1998; Senovilla, 2003a; Sen-

ovilla, 2003b, as well as Ellis et al., 2014). In general, the signature of the induced metric on H

will vary over H . There are however cases where the signature is fixed all over H (C is a fixed real

number everywhere on H). In such cases a spacelike MTT is called a dynamical horizon (DH), a

timelike MTT is called a timelike membrane (TLM), and a null and non-expanding MTT is called

an isolated horizon (IH). An MTT is a future outer trapping if and only if LlΘk is everywhere neg-

ative on H and a future inner trapping horizon if and only if LlΘk is everywhere positive on H ,

where Ll is the Lie derivative operator in the direction of the null normal vector field l a . Timelike

implies inner trapped and spacelike implies outer trapped.

We now introduce certain classes of spacetimes to be considered throughout this work. An

LRS spacetime M is a spacetime in which at each point p ∈ M , there exists a continuous isotropy

group generating a multiply transitive isometry group on M (Stewart & Ellis, 1968; Elst & Ellis,

1996; Clarkson & Barrett, 2003; Betschart & Clarkson, 2004; Singh et al., 2016; Singh et al., 2017).

The general metric of LRS spacetimes is given by

d s2 =− A2d t 2 +B 2dχ2 + F̄ 2d y2 +
[(

F̄ D̄
)2 + (Bh)2 − (

Ag
)2

]
d z2

+ (
A2g d t −B 2hdχ

)
d z,

(4.1)

where A2,B 2, F̄ 2 are functions of t and χ, D̄2 is a function of y and k (k fixes the geometry of the

2-surfaces), and g ,h are functions of y . LRS II spacetimes are a subclass of LRS spacetimes with

g = 0 = h.
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The field equations and full covariant derivatives of ua and ea for LRS spacetimes are given by

the vanishing of all tensor and vector quantities in (2.3) to (2.8). For LRS II spacetimes, in addition

to the vanishing of the tensor and vector quantities in (2.3) to (2.8), we also have the vanishing of

Ω and ξ.

LRS II class of spacetimes generalizes spherically symmetric solutions to Einstein field equa-

tions (EFEs). Examples of physically interesting spherically symmetric solutions that fall into the

class of LRS II spacetimes include Schwarzschild, Friedman-Lemaitre-Robertson-Walker (FLRW),

Lemaitre-Tolman-Bondi, Vaidya and the Oppeinheimer-Snyder dust solutions. LRS spacetimes, a

generalization of LRS II spacetimes, include solutions with nonzero vorticity and nonzero spatial

twist. Some of these solutions include the Gödel’s world model, the Kantowski-Sachs models and

the Bianchi models, invariant under the G3 groups of types I, II, VIII and IX.

For LRS II spacetimes, the outward and inward pointing null normal vectors to the MTS -

given as co-dimension 2 smooth embeddings of M - are expressed by

ka = 1p
2

(
ua +ea)

and l a = 1p
2

(
ua −ea)

, (4.2)

respectively (Ellis et al., 2014; Goswami & Ellis, 2011).

The class of NNF spacetimes provides a certain generalization of LRS spacetimes in the sense

that, a spacetime may possess the property that the preferred scalings of the null vector fields in

the spacetime coincide with those of LRS spacetimes, but without all of the symmetries of LRS

spacetimes. In the case of NNF spacetimes, there are nonscalar background quantities, i.e. under

linear perturbations, vector and tensor quantities are not necessarily gauge invariant.

For LRS II spacetimes, the expansionsΘk andΘl are given as

Θk = 1p
2

(
2

3
Θ−Σ+φ

)
and Θl =

1p
2

(
2

3
Θ−Σ−φ

)
, (4.3)
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respectively (Sherif et al., 2018).

Definition 4.2.4 (Hayward). A spacelike future outer trapping horizon (SFOTH) is a spacelike MTT

H of spacetime, such that LlΘk < 0.

Definition 4.2.5 (Regularity). A DH H is regular if

(1). H is achronal (for p, q ∈ H, Ø a timelike curve γ : (a,b) −→ H such that γ (a) = p and γ (b) = q

or γ (a) = q and γ (b) = p).

(2). 2σ2 +Tabkakb 6= 0 on H ∀ null vectors ka , where Tab is the energy momentum tensor.

We next look at evolution of MTTs in LRS II and NNF classes using the prescription in Booth

et al. 2005) in context of the 1+ 1+ 2 splitting (also see Booth & Fairhurst (2004) and Booth &

Fairhurst (2005)).

4.3 On Properties of MTTs

For NNF spacetimes, it transpires that the null expansion scalars take exactly the same form as

(4.3) (Sherif et al., 2018). This result implies topological equivalence of horizon types in these

spacetimes to LRS II. In this section we consider the evolution of MTTs. Specifically, we study the

evolution of MTTs in the LRS II class of spacetimes, the NNF class, then a general 4-dimensional

spacetime. The approach in this work for determining the causal character of an MTT utilizes

the formulation in Booth et al. (2005). We compute a certain smooth function on the MTT deter-

mining its causal character, denoted by C , in terms of quantities from the 1+1+2 decomposition

of spacetime admitting the MTTs (Clarkson, 2007; Ellis et al., 2014). This allows us to phrase the

definition of the causal nature of an MTTs in terms of constraints on the geometric and thermo-

dynamic variables. We will see that the causal character of the MTT is determined by some energy
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condition on the MTT, which is expected as stated in Booth et al. (2005). The comparison of the

three cases considered also provides us with a useful way to determine a certain equivalence un-

der causal properties. Obtaining expressions in terms of these geometric and thermodynamic

variables provides us with useful insights into the nature and properties of MTTs of certain well

studied spacetimes. Interesting statements can be made about MTT and marginally trapped 2-

surfaces in certain cosmological examples provided. We recover some existing results.

4.3.1 Evolution of MTTs

We now describe the procedure for determining the signature of the induced metric on an MTT H ,

following Booth et al. (2005) where the null expansions now are expressed in terms of quantities

from the 1+1+2 splitting. It is worth mentioning that in Booth et al. (2005), the analyses were

restricted to spherically symmetric spacetimes. Consequently, by adapting the calculation of C to

the variables from the 1+1+2 splitting, we can extend to LRS II spacetimes. While it is true that

in general this approach may not be suitable for extensive analysis of the evolution of MTTs, we

will see that the form of C for more general spacetimes provides insight into causal relationships

of MTTs in LRS II spacetimes and more general spacetimes.

Let us first briefly discuss the formalism in Booth et al. (2005). One begins by introducing a

vector field X̄ a which is normal to an MTT H . A tangent vector field X a to H (in the sense that

X a X̄a = 0) is also introduced which is everywhere orthogonal to the foliation. The vector field X a

generates a foliation preserving flow (LX v = f (v), for some function f (v) (v labels the foliation)).

Both X a and X̄ a are assumed to be future pointing in the sense that

X ala < 0, X̄ ala < 0.
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There is a further requirement that

X̄ a X̄a = −X a Xa .

Of course if H is spacelike then X a Xa > 0 and similarly X̄ a X̄a < 0. The vector fields X a and X̄ a

can be written as

X a =α(
ka −C l a)

and X̄ a =α(
ka +C l a)

, (4.4)

respectively, where C is some scalar field on H (C ∈ C∞ (H), whereC∞ (H) is the set of smooth

functions on H) and α ∈ R+. Without loss of generality, we set α = 1, and from the definition of

X a ,

LXΘk =L[k−C l ]Θk = 0, (4.5)

from which we write the explicit expression for the field C :

C = LkΘk

LlΘk
. (4.6)

The proportionality of X a Xa and X̄ a X̄a to C means that the sign of C , at a point of H , can be used

to determine the causal nature of the MTT at the point: If C < 0 the MTT is timelike, if C > 0 the

MTT is spacelike and if C = 0 or C =∞ (LkΘk 6= 0 and LlΘk = 0) the MTT is null. The sign of C

also determines whether the MTT is expanding (C > 0), contracting (C < 0) or unchanging in area

(C = 0 or C =∞). Thus the MTT is timelike if and only if it is contracting and spacelike if and only

if it is expanding.

As an example we can explicitly calculate C for the LRS II class of spacetimes in terms of the

scalars of the 1+1+2 formalism:
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LkΘk = ka∇aΘk

= Θ̇k + Θ̂k

=−(
ρ+p

)−Π+2Q,

(4.7)

and

LlΘk = l a∇aΘk

= Θ̇k − Θ̂k

= 1

3

(
ρ+3p

)+2E ,

(4.8)

which gives

CLRS I I =
−(
ρ+p

)−Π+2Q
1
3

(
ρ−3p

)+2E
. (4.9)

The quantities Θ̇k and Θ̂k are computed using the appropriate linear combination of (2.3) to

(2.6). We note that the Lie derivative is along the null normals and evaluated on the MTS (thus

on the MTT). We now apply (4.9) to some simple cases. For example, consider the case for the

spherically symmetric vacuum spacetimes. In this case, ρ = p =Π=Q = 0 and so the numerator

of (4.9) is zero. Since E 6= 0, H is null, i.e. H is an NEH. Considering Oppenheimer-Snyder collapse,

p = Π = Q = E = 0, and C = −3. Thus H is a TLM and contracting. Some authors argue that

TLMs cannot be associated with the surface of a black hole during its evolution since timelike

curves can traverse the membrane in both directions. However, this is a case where a TLM is

clearly associated with the evolution of the black hole,and in such case can be considered as the

boundary of the black hole.

Since an MTT H is timelike if and only if it is inner trapped (collapsing), i.e. LlΘk > 0, for

the LRS II class of spacetimes we can rephrase this in terms of the matter and scalar variables as

follows:
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Proposition 4.3.1. An MTT in a spacetime in the LRS II class of spacetimes is timelike if and only if

ρ > 3p −6E .

But as the MTT is timelike, C < 0, which implies
(
ρ+p

)+Π−2Q > 0. Suppose we consider an

ideal case like the perfect fluid, we haveΠ=Q = 0. If the weak energy condition (WEC) is satisfied

then the condition for the MTT to be timelike is that ρ > 3p −6E which agrees with the result in

Ellis et al. (2014). Similarly, an MTT in a spacetime in the LRS II class is spacelike if and only if

ρ ≤ 3p −6E .

Analogously, we can compute C for NNF spacetimes. We shall denote by (∗)LRS I I the part of a

quantity ∗ restricted to those covariant scalars completely describing LRS II spacetimes (the co-

variant scalars completely describing LRS II spacetimes are given by the set {ρ, p, A,Θ,φ,Σ,E ,Π,Q}).

LkΘk = ka∇aΘk

= (
Θ̇k + Θ̂k

)
LRS I I + (T1 +T2)+εab

(
Ra + R̄a)

Ωb ,

(4.10)

and

LlΘk = l a∇aΘk

= (
Θ̇k − Θ̂k

)
LRS I I + (T1 −T2)+εab

(
Ra − R̄a)

Ωb ,

(4.11)

where we set

T1 = 3Ω2 −Σ2 +2Ωξ+δa
(
A a +αa)+ (Ra −2aa)A a + (

aa −A a)
Σa

−2αaΣ
a −Σab

(
Σab +ζab

)
,

T2 = 2ξ2 +Ω2 +2ξΩ− (ζab +Σab)ζab − (
2aa +Σa)

Σa +δa
(
aa +Σa)

,

Ra = A a +αa −aa ,

R
a = δa +2

(
αa +A a)

.
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This gives

CN N F =
(
Θ̇k + Θ̂k

)
LRS I I + (T1 +T2)+εab

(
Ra + R̄a

)
Ωb(

Θ̇k − Θ̂k
)

LRS I I + (T1 −T2)+εab
(
Ra − R̄a

)
Ωb

. (4.12)

Suppose we have a case where Ra = R̄a and T1 = T2. Then (4.12) can be written as

CN N F =C LRS I I + C̄ , (4.13)

where the function C̄ is given by

C̄ = 6
T1 +εabRaΩb

ρ−3p +6E
. (4.14)

While not of any physical relevance and no physical motivation for the particular case given here,

from (4.13) we can conclude that, in general, though MTT in NNF are topologically equivalent to

LRS II, the MTTs will evolve differently. We note that the conditions on Ra and R̄a are actually

conditions on εabRaΩb and εabR̄aΩb .

We now provide some useful definitions and theorems. We mention the following theorem

by Ashtekar & Galloway (2005), with proof making use of (4.9):

Theorem 4.3.2. Let M be a 4-dimensional spacetime and let H be a DH in M satisfying the NEC. If

H satisfies the second condition of regularity, then H is a (future) outer trapping horizon (FOTH).

Proof. Condition (2) in definition 4.2.5 implies LlΘk is nowhere vanishing on H (Ashtekar & Gal-

loway, 2005). If H satisfies the NEC, then by the Raychaudhuri equation, we know that LkΘk is

nonpositive on H . Using (4.6), since H is spacelike, LkΘk is strictly negative (LkΘk = 0 implies

H is null). This implies that LlΘk has to be everywhere negative on H (for C to be positive).

Such DH H is the spacelike (future) outer trapping horizon (SFOTH) put forward by Hayward,

and whose existence is an indicator of the presence of a black hole (Ashtekar & Galloway, 2005).

Using (4.7) and (4.8), the signs of LkΘk and LlΘk on an SFOTH H imply the following result:
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Theorem 4.3.3. A DH H in a spacetime M of the LRS II class of spacetimes satisfying the energy

condition

2Q −Π< ρ+p < 4p −6E , (4.15)

is an SFOTH.

Theorem 4.3.3 thus gives us a relatively easy way of detecting the possible existence of a black

hole in LRS II spacetimes. Similar results can be stated for NNF class. For example, a D H in a

spacetime in the NNF class satisfying the condition 2Q −Π−p + (T1 +T2)+εab
(
Ra + R̄a

)
Ωb < ρ <

3p −6E −3(T1 −T2)−3εab
(
Ra − R̄a

)
Ωb is an SFOTH.

Combining the result on topological equivalence between horizon types in the LRS II and

NNF classes, and the case considered in (4.13), we state the following result:

Theorem 4.3.4. Let H ′ be an MTT in the NNF class and let H ′ satisfy the case considered in (4.13).

Suppose H is a null MTT in the LRS II class to which H ′ is topologically equivalent. Furthermore,

suppose H ′ is regular and satisfies the NEC. Then H ′ is an SFOTH if T1 +εabRaΩb < 0 and a TLM if

T1 +εabRaΩb > 0.

This result also follows from the fact that H ′ being regular and satisfying the NEC implies that

LlΘk is everywhere negative on H . From theorem 4.3.4 it is clear that it is entirely possible, in

principle, to have topological equivalence between MTTs satisfying the same energy conditions,

but exhibiting different causal character. We will state this as follows:

Proposition 4.3.5. In general, topologically equivalent MTTs will exhibit different causal character.

This is known and is expected in general as the causal character relies on a much stronger

structure than the topology (see chapter 2 of Dribus (2017)).
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For a general 4-dimensional spacetime, the generators of the outgoing and ingoing null geodesics

to the two surfaces contain a sheet component, i.e. there is a component of ka , l a , denoted τa ,−τa

respectively, projected onto the 2-sheet via Nab . The generators for the outgoing and ingoing null

geodesics are written as

ka = 1p
2

(
ua +ea +τa)

, l a = 1p
2

(
ua −ea −τa)

, (4.16)

respectively. There is a coefficient, τ (the magnitude of ka along ea), of ea for both null normals,

but can be set to unity without loss of generality. We calculate the null expansions in the ka direc-

tion and obtain

Θk = 1p
2

(
2

3
Θ−Σ+φ+W

)
, (4.17)

where W =∇aτ
a = (δa −aa)τa (this decomposition, obtained from the decomposition of the fully

orthogonally projected covariant derivative, D , of a vector orthogonal to ua and ea , can be found

in (Clarkson, 2007)). It is clear that for a general 4-dimensional spacetime, if the sheet component

of the null normal vector fields to the MTS is divergence free, then these MTS are topologically LRS

II (see Sherif et al. (2018)). We therefore have

LkΘk = (
Θ̇k + Θ̂k

)
LRS I I + (T1 +T2)+εab

(
Ra + R̄a)

Ωb +Ẇ +Ŵ +τaδaΘk ,

LlΘk = (
Θ̇k − Θ̂k

)
LRS I I + (T1 −T2)+εab

(
Ra − R̄a)

Ωb +Ẇ −Ŵ −τaδaΘk , (4.18)

so that

C =
(
Θ̇k + Θ̂k

)
LRS I I + (T1 +T2)+εab

(
Ra + R̄a

)
Ωb +Ẇ +Ŵ +τaδaΘk(

Θ̇k − Θ̂k
)

LRS I I + (T1 −T2)+εab
(
Ra − R̄a

)
Ωb +Ẇ −Ŵ −τaδaΘk

. (4.19)

where

Θ̂k = 1p
2

(
2

3
Θ̂− Σ̂+ φ̂+Ŵ

)
, Θ̇k = 1p

2

(
2

3
Θ̇− Σ̇+ φ̇+Ẇ

)
. (4.20)
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4.3.2 A causal classification

We have considered evolution of MTTs for general 4-dimensional spacetimes, NNF and LRS II

spacetimes. The approach used here, where we have combined the formulation in Booth et al.

(2005) coupled with the 1+1+2 decomposition of spacetime allow us to give a particular classifi-

cation of MTTs causally, i.e. classifying causally equivalent MTTs.

Given C , we will assume that the sign of denominator and numerator of C remains fixed by

translation. This then leaves the sign of C and therefore the causal character of the MTT un-

changed (notice that this ensures that causally equivalent MTTs satisfy the same energy condi-

tions). It is also clear that if the support of certain functions is non-empty, C changes sign as well.

This implies that the overall causal character of these MTTs will change at these support points.

It is with these in mind we proceed with the following classification.

4.3.2.1 LRS II and NNF

Suppose we want to look at the particular case in (4.13). For a null MTT H in the LRS II class of

spacetimes, i.e. C LRS I I = 0, we may determine the causal character of the corresponding MTT, H ′,

in the NNF class, which is topologically equivalent to H , by some restrictions on the function C̄ .

For such case as that of (4.13), the evolution of the MTT will be precisely LRS II if T1 =−εabRaΩb .

In fact, in general, MTT in the NNF class satisfying the condition that R̄a = T2 = 0 will be both

causally and diffeomorphically LRS II.

4.3.2.2 NNF and the general case

An MTT in a general 4-dimensional spacetime satisfying one of the conditions below is causally

NNF:
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a. Ŵ =−τaδaΘk .

b. Ẇ = 0 and Ŵ =−τaδaΘk .

c. W = 0 and τaδaΘk = 0.

In the case of the last item c., the MTT is also diffeomorphically NNF.

4.3.2.3 LRS II and the general case

An MTT in a general 4-dimensional spacetime satisfying one of the conditions below is causally

LRS II:

a. Ŵ =−τaδaΘk and T2 = R̄a = 0.

b. Ẇ = 0, Ŵ =−τaδaΘk and T2 = R̄a = 0.

c. W = 0, τaδaΘk = 0 and T2 = R̄a = 0.

d. The case considered in (4.13) and the additional condition that T1 = −εabRaΩb , with Ŵ =

−τaδaΘk , Ẇ = 0 and Ŵ =−τaδaΘk , or W = 0 and τaδaΘk = 0.

In the cases of the items c. and d., the MTT is also diffeomorphically LRS II.

This classification is by no means exhaustive since just as we proceeded in (4.13) where we

looked at a particular splitting of C , similar conditions can be put on C to obtain further classifi-

cations.

Next we use the expression for C for the LRS II class, (4.9), and investigate the MTTs in some

well known spacetimes. We obtain some known results like the bounds on the equation of state

parameter σ in RW spacetime, which distinguishes timelike, spacelike and null MTTs. We also

investigate the stability of the 2-spheres foliating the MTTs, which is determined by conditions on

σ.
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4.3.3 Relationship between C and the slope to the tangent to the MTT

One of the very first investigations of the evolution of black holes, covariantly, utilizing the 1+1+2

formalism, was carried out by Ellis et al. (2014). This approach was generalized in Sherif et al.

(2018). Since in this paper we utilize the formalism in Booth et al. (2005), but in context of the

geometric and thermodynamic variables from the 1+ 1+ 2 formalism, it would make sense to

show the relationship between the two approaches. While we do this (and provide examples) for

LRS II spacetimes, this extends to the NNF spacetimes.

The approach in Ellis et al. (2014) chooses a tangent vector Ψa = αua +βea , which lies on

entirely on the MTT, defined as the curve Θk = 0 in the [u,e] plane. Since the vector ∇aΘk is

normal to the MTT, thenΨa∇aΘk is zero, which gives the slope, α/β, of the MTT curve

α

β
= −Θ̂k

Θ̇k
. (4.21)

The sign of α/β then determines if the MTT is future outgoing or future ingoing: if α/β < 0, the

MTT is said to be future ingoing, and if α/β> 0 the MTT is said to be future outgoing. Now from

the definition of the function C , lets look at for which values of α/β we can causally characterize

the MTT.

We can write the function C from (4.6) as

C = Θ̇k + Θ̂k

Θ̇k − Θ̂k
.

Dividing the numerator and denominator of by Θ̇k gives the function C in terms of the slope

C = 1−α/β

1+α/β
. (4.22)
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Multiplying (4.22) by
(
1+α/β

)
/
(
1+α/β

)
(for α/β 6= −1) gives

C = 1−α2/β2(
1+α/β

)2 . (4.23)

Then the MTT is spacelike, timelike of null if α2/β2 is less than 1, greater than 1 or equal to 1,

respectively. For α/β=−1, we simply multiply (4.22) by
(
1−α/β

)
/
(
1−α/β

)
and obtain

C =
(
1−α/β

)2

1−α2/β2
. (4.24)

The definitions of spacelike, timelike and null MTT follow as before.

4.3.4 Characterization of MTTs and the stability of MTS in some well known

spacetimes

We here consider the characterization of MTTs in the Robertson-Walker and Lemaitre-Tolman-

Bondi models, as well as the stability of the MTS foliating these MTTs.

4.3.4.1 Robertson-Walker spacetimes

As mentioned earlier, for certain solution types, the form of (4.9), when compared to the expres-

sion for C , allows us to express certain quantities in terms of the geometric and thermodynamic

variables. Consider the case of a timelike perfect fluid. The tangent to the timelike congruence is

given by

ua = Dka + (2D)−1 l a . (4.25)

The function C is expressed as

C = 1

2D2

ρ+p( 1
A

)+p −ρ , (4.26)
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for some function D , Booth et al. (2005), where A is the area of the 2-spheres. The function C is

thus determined by the sign of

ρ+p( 1
A

)+p −ρ . (4.27)

We can directly compare (4.26) to (4.9) and write the area A as

A = 3

ρ
D2 (4.28)

(we note that for such solutions Λ,E = 0). Consider the Robertson-Walker spacetimes which as-

sume an equation of state of the form p =σρ. Substituting (4.28) in the denominator of (4.27) we

obtain

(
1

3D2
+ (σ−1)

)
ρ. (4.29)

For a given solution (or class of solutions), the denominator of C in (4.9) determines D . For

LRS II spacetimes, D = 1/
p

2 (we can check (4.25) against the expressions for ka and l a in (4.2)).

This gives the area A, of the marginally trapped 2-spheres in the case of timelike perfect fluids

as A = 3/
(
2ρ

)
. Inserting this in the condition in proposition 4.3.1 and noting that both E and Λ

vanish, we obtain the results in Booth et al. (2005), i.e. timelike and spacelike MTTs satisfy the

cut-offs ρ−p > 1/A and ρ−p ≤ 1/A respectively.

For the Robertson-Walker spacetimes, we can explicitly write the quantity C in terms of σ,

C = 3(σ+1)

(3σ−1)
. (4.30)

Of course, from (4.30), any real value of σ is supposed to fix C everywhere on the MTT. However,

in Booth et al. (2005) the author showed that in certain cases, for higher values of σ, the value

of C may vary on the MTT, in particular for σ = 2. However, the horizon remains spacelike. We

see that the causal characterization of an MTT corresponds to the following bounds on σ: For a
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timelike MTTs, −1 <σ< 1
3 , a spacelike MTTs, σ> 1

3 or σ<−1, and for null MTTs, σ=−1 or σ= 1
3 .

The approach used here relatively easily obtains these results, which agree with those of Ben-Dov

(2004) and Senovilla (1998).

The formula in (4.30) could have been directly obtained from (4.9): For timelike fluids C be-

comes

C = 3
(
ρ+p

)(
3p −ρ) . (4.31)

With an equation of state of the form p =σρ, (4.31) is reduced to (4.30). Of interest is the form that

A takes. Consider stability of the marginally trapped 2-spheres of the Robertson-Walker space-

times. By stability we mean that if a marginally trapped 2-surface S is deformed outward, the asso-

ciated outgoing null expansion scalar is non-negative and somewhere positive on the marginally

trapped 2-sphere (see chapters 1 and 3, and references therein). Given a functionϕ on S, stability

of S is determined by the sign of the principal eigenvalue of the stability operator L acting on ϕ.

For spherically symmetric spacetimes, this eigenvalue is given by

λ= 8π

(
1

2A
−Tabkal b

)
, (4.32)

(see Booth et al. (2005)). For timelike fluids, we can then write λ as

λ=−8π

(
2

3
ρ+p

)
. (4.33)

Since energy density is positive, for spacetimes in the class of timelike perfect fluids, the MTS are

stable if ρ ≤ −3
2 p and strictly stable if ρ < −3

2 p. We see that stability of the marginally trapped

2-spheres is only obtained under the condition of negative pressure. For the Robertson-Walker

spacetimes, the condition for stability reduces to

σ≤−2

3
. (4.34)
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From (4.34) it is evident that the marginally trapped 2-spheres of null and contracting, spacelike

and expanding MTT, as well as the 2-spheres of MTTs in the dust filled universe are all unstable

(this was also recently considered in Sherif et al. (2018) in context of the 1 + 1 + 2 semitetrad

formalism).

Again, our approach has relatively easily allowed us to completely characterize the marginally

trapped 2-spheres of MTTs in these cosmological models in terms of stability. It is also possible

to identify the SFOTHS in the Robertson-Walker spacetimes. We have that (4.15) reduces to the

condition

−σ< 1 < 3σ. (4.35)

It is clear from (4.35) that the SFOTHs in these models are precisely those spacelike MTTs with

σ> 1
3 , containing unstable marginally trapped 2-spheres.

4.3.4.2 Lemaitre-Tolman-Bondi dust model

By the same token, let us consider the the Lemaitre-Tolman-Bondi (LTB) dust model (Goswami

& Joshi, 2004a; Goswami & Joshi, 2004b; Zibin, 2008), a gravitational collapse model violating the

cosmic censorship conjecture, with interior metric given by the line element

d s2 = −d t 2 + R ′2

1− r 2b0
dr 2 +R2 (

dθ2 + sin2θdφ2) . (4.36)

Here R = R (t ,r ) is the area radius of the collapsing shell and b0 = b0 (r ) is their energy profile.

The only non-zero matter and thermodynamic quantities are ρ and E . Evolution of the MTT in

the LTB model has been considered in Booth et al. (2005). We also consider the evolution of the

MTT in this model, but in terms of the geometric and thermodynamic variable as we have done

throughout this chapter. The function C for the LTB model is given by

C = − ρ
1
3ρ+2E

, (4.37)
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where ρ is given by

ρ =
(
r 3M

)′
R2R ′ , (4.38)

with M =M (r ) being the Misner-Sharp mass (Goswami & Joshi, 2004a; Goswami & Joshi, 2004b;

Zibin, 2008). Thus the condition for the MTT to be spacelike, timelike, or null is given by

ρ <−6E , ρ >−6E , or ρ =−6E ,

respectively.

The scalar λ, whose sign determines the stability of the MTS, is given by

λ = −4π

(
1

3
ρ+2E

)
. (4.39)

From (4.32), stability of the MTS thus requires that

ρ < −6E , (4.40)

on the MTS. This implies spacelike MTTs are necessarily foliated by stable MTS, and the MTS

foliating timelike MTTs are unstable. The null MTTs are marginally stable.

Let us now consider the relationship between stability and shell crossing. For the LTB model,

E is given by

E = 1

3
ρ− r 3M

R3
, (4.41)

where R is given as R = r
(
1−p

M t
)2/3

(Goswami & Joshi, 2004a; Goswami & Joshi, 2004b; Zibin,

2008). The condition for stability can be expressed as a condition on M ′: Upon inserting (4.41)

into (4.40), we obtain the condition for stability (which is also an equivalent condition for the MTT

to be spacelike) as

ρ < 2M(
1−p

M t
)2 , (4.42)

63



and from (4.38), (4.42) can be rewritten as

M ′ <
3r M

p
M

(
1−p

M t
)

3r 2
(
1−p

M t
)
+2tM

, (4.43)

as we move away from the central singularity, (tc < t < ∞), where tc = 1/
p

M is the time for

collapse (comoving time) to zero area (R = 0). The condition for no shell crossing is given by

t ′c =− M ′

2M
3
2

≥ 0,

which requires M ′ ≤ 0. It is clear that stability of the leaves of the MTT ensures no shell crossing.

In the next section we consider surface gravity calculated on the MTT for various classes of

spacetimes.

4.4 Surface gravity of MTTs

Surface gravity is a fundamental notion in the formulation of the laws of black hole mechanics.

As such, understanding their evolution has been of keen interest (Bardeen et al., 1973; Brown &

York, 1993; Ashtekar et al., 2001; Ashtekar et al., 2000). In this section, using the formulation in

(Hayward, 1994; Ashtekar et al., 2001; Ashtekar et al., 2000; Ashtekar et al., 2000) (see also Fairhurst

et al., (2004)), coupled with adapting the calculations to quantities from the 1+1+2 splitting, we

calculate the surface gravity for black hole horizons in the LRS II and NNF spacetimes, as well as

a general 4-dimensional spacetime. Under this formulation we prove a standard result in black

hole mechanics, specifically the third law of black hole thermodynamics, for the LRS II class.

One defines the connection on the normal bundle to the 2 -surface S as

ωa :=− lb∇akb , (4.44)
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with the covariant derivative pulled back to the horizon. For the case of an IH, the surface gravity

is given by the contraction of ωa by the outgoing null normal:

κ = ωaka . (4.45)

Let us first consider the case of the LRS II class of spacetimes. Computing ωa we obtain ωa =

−(
Aua −

(1
3Θ+Σ)

ea
)
, which gives

κLRS I I = 1p
2

(
A+ 1

3
Θ+Σ

)
. (4.46)

In the time symmetric case,
(1

3Θ+Σ)
is zero and the surface gravity proportional to the accelara-

tion A, which is the expected result.

For the NNF, ωa is given by

ωa =
[
−A+

p
2

2

(
Ablb +αblb

)]
ua +

[
1

3
Θ+Σ+

p
2

2

(
Σblb +εb

mΩ
mlb +ablb

)]
ea

+
[
Σa −εamΩ

m −
p

2

2

(
(Ω+ξ)εb

a +Σb
a +ζb

a

)
lb

]

= −Aua +
(

1

3
Θ+Σ

)
ea +Σa −εamΩ

m . (4.47)

The surface gravity on an IH in the NNF class is then given by

κN N F = 1p
2

(
A+ 1

3
Θ+Σ

)
= κLRS I I . (4.48)

In general, the surface gravity on a leaf of the foliation, applicable to different horizon types,

is given by

κν = −lb X a∇a X b , (4.49)

where ν is the foliation label and X a is the vector given in (4.4), which can be expanded as

κν = kaωa +C
(

X alb∇al b − l aωa

)
, (4.50)
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We see that on an isolated horizon (C = 0), (4.50) becomes (4.45). In fact for a slowly evolving

horizon (see Booth & Fairhurst (2005)) for discussions on slowly evolving horizons), (4.50) gives

a splitting of the surface gravity with C being - taken as the evolution rate - sufficiently less than

1, and kaωa is constant. Then a slowly evolving horizon will be interpreted simply as one satisfy-

ing the conditions in Booth & Fairhurst (2005) where ε is replaced by C , and so are simply those

horizons for which C satisfies 0 < |C |¿ 1 along with additional conditions.

From (4.50) it is now obvious that, in general, the surface gravity will not be constant with

C
(
X alb∇al b − l aωa

)
being the evolving component of κν.

For the LRS II class of spacetimes, lb∇al b = 0 and thus, on a leaf, the surface gravity can be

expressed as

κνLRS I I = 1p
2

[
(1−CLRS I I ) A+ (1+CLRS I I )

(
1

3
Θ+Σ

)]
. (4.51)

In the case of an NEH with CLRS I I = 0, (4.51) reduces to (4.46).

As an example of the application of (4.51) to horizons that are not NEHs, we again consider

the OS collapse case. In this case A,Σ are both vanishing and we have

κν∝−2

3
Θ.

Of course since it is known that κ> 0 we therefore expect Θ< 0 and so the horizon in this case is

necessarily collapsing, and thus timelike.

For the NNF class, we have

X alb∇al b = (1+CN N F )

2

(
Σb +εb

mΩ
m + (Ω−ξ)eaεb

a +eaΣb
a −ab −eaζb

a

)
lb

+ (1−CN N F )

2

(
Ab −αb +uaΣb

a −uaζb
a + (Ω−ξ)uaεb

a

)
lb

= 0,
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and

l aω̃a = 1p
2

[
A−

(
1

3
Θ+Σ

)]
.

We therefore have (4.50) reducing to

κνN N F = 1p
2

(
A+ 1

3
Θ+Σ

)
+ 1p

2
CN N F

(
−A+ 1

3
Θ+Σ

)
= 1p

2

[
(1−CN N F ) A+ (1+CN N F )

(
1

3
Θ+Σ

)]
. (4.52)

Let us consider under what condition the horizon of a black hole spacetime in the LRS II class

(and by extension NNF) in general will have a vanishing κν on the horizon. Suppose κνLRS I I = 0 on

H . Then setting (4.52) to zero gives

CLRS I I = A+ (1
3Θ+Σ)

A− (1
3Θ+Σ) . (4.53)

Equating (4.53) to (4.9) we obtain the following constraint equation[
A−

(
1

3
Θ+Σ

)][
−4

3
ρ−Π+2(Q −E )

]
= 0, (4.54)

so either A = (1
3Θ+Σ)

or −4
3ρ−Π+2(Q −E ) = 0. If A = (1

3Θ+Σ)
, then CLRS I I =∞ from (4.53). But

from the definition of κνLRS I I , A = (1
3Θ+Σ)

implies
(1

3Θ+Σ)= 0 (since κνLRS I I is 0). This then further

implies A = 0 which makes CLRS I I indeterminate, and we have a contradiction. We therefore as-

sume A 6= (1
3Θ+Σ)

and consider the second case, −4
3ρ−Π+2(Q −E ) = 0. This condition implies

CLRS I I = 1, which would then imply that (
1

3
Θ+Σ

)
= 0, (4.55)

(from either equation (4.52) or (4.53)). Since A 6= (1
3Θ+Σ)

and
(1

3Θ+Σ) = 0, A 6= 0. We therefore

have that κν = 0 if A 6= 0 andΘ=−φ on the horizon, recalling that on the horizon,

Θk = 2

3
Θ−Σ+φ= 0. (4.56)
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Combining (4.55) and (4.56) gives φ = −Θ and Σ = 1
3φ. But CLRS I I = 1 implies Θ > 0 (expanding).

As the 2-surfaces foliating the horizon are marginally trapped, the expansion scalar in the ingoing

null direction is negative, i.e. Θl = 2
3Θ−Σ−φ< 0. However, we haveΘl = 2Θ. So forΘ> 0, we have

thatΘl > 0, which is a contradiction. We conclude that

Proposition 4.4.1. We cannot have a black hole spacetime in the LRS II class (and by extension the

NNF class) with κν vanishing on the horizon,

which is just the third law of black hole thermodynamics (Bardeen et al., 1973). This is akin to the

statement that the LRS II class of spacetimes admit no extremal black holes.

We now consider these quantities for a general 4-dimensional spacetime. The outgoing null

normal ka in this case is as defined as in (4.16). Using (4.44), ωa is calculated as

ωa = −Aua +
(

1

3
Θ+Σ

)
ea −τaΘk LRS I I + lb∇aτ

b +Σa −εamΩ
m , (4.57)

which gives the surface gravity as

κ = 1p
2

[(
A+ 1

3
Θ+Σ

)
− lb

(
τ̇b + τ̂b + τ̆b

)]
, (4.58)

where the notation ∗̆ is introduced to denote the derivative along the direction τa . So τ̆b =

τa∇aτ
b . From (4.58) we see that the surface gravity on a NEH in a general 4-dimensional space-

time coincides with the LRS II class if lb τ̆
b = −lb

(
τ̇b + τ̂b

)
. The 1+ 1+ 2 decomposition of the

surface gravity on a leaf of a general horizon type is calculated as

κν = 1p
2

[(
A+ 1

3
Θ+Σ

)
− lb

(
τ̇b + τ̂b + τ̆b

)]
+ 1p

2
C

[
−A+

(
1

3
Θ+Σ

)
+ 1

2
(C −3) τ̇blb

]
+ 1p

2
C

[
1

2
(C +3)

(
τ̂b + τ̆b

)
lb +

1

2
τb

(
V b

2 −V b
1

)
+ 1

2
(1+C )V +τb

(
Σb −εb

aΩ
a
)]

= 1p
2

[
(1−C ) A+ (1+C )

(
1

3
Θ+Σ+ 1

2
CV

)]
+ 1

2
p

2

[
C

(
V b

2 −V b
1

)
+

(
Σb −εb

aΩ
a
)]
τb

+ 1

2
p

2

[(
C 2 −3C −1

)
τ̇b − (

C 2 +3C −1
)(
τ̂b + τ̆b

)]
lb , (4.59)
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where

V b
1 = Ab −αb , V b

2 = ab −Σb −εb
cΩ

c , V = 1

2
τ2Θk LRS I I .

Again, when C = 0, (4.59) reduces to the form of (4.58).

In fact the expression for the surface gravity of IH in the LRS II and NNF classes has conse-

quence for the definition of the temperature of the gravitational field as formulated in the gravi-

tational entropy proposal paper by Clifton et. al (2013). Let us define a new one-form ω′
a as

ω′
a = − 1

2π
p

2

(
lb∇akb + lb∇al b

)
= 1

π
p

2

(
ωa + lb∇aeb

)
, (4.60)

where ωa is as defined in (4.44). We can then write the temperature of the gravitational field as

Tg r av = kaω′
a

= 1

π
p

2

(
kaωa + lbka∇aeb

)
=

(
2−p

2

4π

)(
A+ 1

3
Θ+Σ

)
, (4.61)

(also see Acquaviva et al. (2015) for discussion of the temperature of the gravitational field in

context of the 1+ 1+ 2 splitting). The first term in the parenthesis of the second line of (4.61)

is clearly associated with the horizon and as such, in an LRS II spacetime admitting an IH, the

temperature will have contribution from the horizon.

We mention that in general one has to exercise caution when assigning physical meaning to

all these quantities precisely because of the fact that the true values are tied to the scaling of the

vector ka .
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Also we can give the following geometrical interpretation to Tg r av (up to scale): Tg r av is the

sum of the accelerations of the null normal vector fields ka and l a along the null direction ła .

4.5 Conclusion

In this work we have considered various aspects of the dynamics of black hole horizons. Work by

Booth established that the matter content of the horizon determines the causal character of the

horizon (at least for the spherically symmetric case). This work treats this same problem using

the formulation by Booth and coauthors in Booth et al. (2005), but in context of the geometric

and thermodynamic variables from the 1+ 1+ 2 splitting. The form that the function C takes -

whose sign determines the causal character of the horizon - indeed establishes that the matter

content determines the causal character of the horizon. Stated another way, the causal character

of the horizon is determined by the relationship between the matter and thermodynamic vari-

ables, even for more general cases. The form of C in our treatment further allows us to recover

established results and well as provide us with new insights into the properties of the horizon in

a straightforward and relatively simple way. This is demonstrated by the recovery of the bounds

of the equation of state parameter σ, for which horizons in the Robertson-Walker spacetimes

are timelike, spacelike of non-expanding. We have also been able to determine the values of σ

for which MTS in the Robertson-Walker spacetimes are stable as well as classify the SFOTHs. In

particular, it is seen that the existence of stable MTS are possible only if the isotropic pressure

is negative. We then went on to show that for the LTB model, a relationship between the energy

density and electric part of the Weyl curvature E , gives the causal classification of the MTTs. It

was further shown that the MTS foliating the spacelike MTTs are necessarily stable, and that this

stability guarantees no shell crossing.
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The form of the surface gravity obtained in our treatment has provided a useful means to ver-

ify the third law of black hole thermodynamics for a restricted class of spacetimes. We give an ex-

plicit proof of the law for LRS II spacetimes (the proof can also be carried over to NNF spacetimes).

For an isolated horizon, we have an expression that allows us to give a geometric interpretation of

the temperature of a gravitational field.
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Chapter 5

Properties of expansion-free dynamical stars

5.1 Introduction

The aim of this chapter is to investigate the conditions under which there can be trapping in a

relativistic expansion-free star. This analysis falls within the scope of stability analysis of self-

gravitating systems (Goswami, 2007; Joshi & Goswami, 2011; May & White, 1966; Santos, 1985;

Wilson, 1971). We will consider the conditions on the acceleration and radiation quantities that

allows for trapping in such stars. It is also an interesting exercise, with all the different quanti-

ties acting on such stars, to determine the geometry as these structures evolve. We will make use

of the equivalent forms of the field equations from the 1+ 1+ 2 semi-tetrad covariant formula-

tion of general relativity (Greenberg, 1970; Tsamparlis & Mason, 1983; Mason & Tsamparlis, 1985;

Tsamparlis, 1992; Clarkson, 2007; Ellis et al., 2014). The semi-tetrad formalism has been a useful

approach in displaying geometrical features in a transparent fashion which are difficult to find

using other approaches.

Various authors have explored expansion-free models with different considerations. The cen-
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tral theme of the interest in such models is the possibility that they could help explain the exis-

tence of voids on cosmological scales. Herrera et al. (2009) studied such models with non-zero

shear and showed that the appearance of a cavity, with matter which is anisotropic and dissipa-

tive, undergoing explosion is inevitable (see Peebles (2001) for more discussion). Herrera et al.

(2010) in which they ruled out the Skripkin expansion-free model (Skripkin, 1960) - with constant

energy density and isotropic pressure - when considering the expansion-free case along with the

junction conditions. In another study Herrera et al. (2012) studied models collapsing adiabati-

cally, and showed that the instability was independent of the star’s stiffness. In particular, it was

shown that the instability is entirely governed by the pressures and the radial profile of the energy

density.

In section 5.2 we give a short overview of the 1+1+2 semi-tetrad formulation. In section 5.3

we present the results of the chapter. We conclude with a discussion of the results in section 5.4.

5.2 Preliminaries

To keep track of the actions on the equations, we shall rewrite the field equations here for the LRS

II spacetimes. The evolution and propagation equations are given as

• Evolution (LRS II):

2

3
Θ̇− Σ̇ = Aφ−2

(
1

3
Θ− 1

2
Σ

)2

− 1

3

(
ρ+3p

)+E − 1

2
Π, (5.1)

φ̇ =
(

2

3
Θ−Σ

)(
A− 1

2
φ

)
+Q, (5.2)

Ė − 1

3
ρ̇+ 1

2
Π̇ = −3

2

(
2

3
Θ−Σ

)
E − 1

4

(
2

3
Θ−Σ

)
Π+ 1

2
φQ

+1

2

(
ρ+p

)(2

3
Θ−Σ

)
. (5.3)
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• Propagation (LRS II):

2

3
Θ̂− Σ̂ = 3

2
φΣ+Q, (5.4)

φ̂ =
(

1

3
Θ+Σ

)(
2

3
Θ−Σ

)
− 1

2
φ2 − 2

3
ρ−E − 1

2
Π, (5.5)

Ê − 1

3
ρ̂+ 1

2
Π̂ = −3

2
φ

(
E + 1

2
Π

)
− 1

2

(
2

3
Θ−Σ

)
Q. (5.6)

• Propagation/Evolution (LRS II):

Â− Θ̇ = −(
A+φ)

A+ 1

3
Θ2 + 3

2
Σ2 + 1

2

(
ρ+3p

)
, (5.7)

Q̂ + ρ̇ = −Θ(
ρ+p

)− (
φ+2A

)
Q − 3

2
ΣΠ, (5.8)

p̂ + Π̂+Q̇ = −
(

3

2
φ+ A

)
Π−

(
4

3
Θ+Σ

)
Q − (

ρ+p
)

A. (5.9)

The ∗̂ and ∗̇ denote the spatial derivative along ea and the covariant time derivative along an

observer’s congruence, respectively.

The outgoing null expansion, whose vanishing necessitates trapping, has been calculated

(Ellis et al., 2014; Sherif et al., 2018) as

Θk = 1p
2

(
2

3
Θ−Σ+φ

)
. (5.10)

The equation of the outgoing null expansion scalar here corresponds to equation (32) of Ellis et

al. (2014), but we have unitized the energy function for our choice of the outgoing null normal

vector field ka , whose divergence gives Θk . It is clear from (5.10) that, even with the vanishing of

Θ, it is still possible to have trapping. This is the main focus of this work and is investigated in the

next section.
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When acting on a scalar ψ, the dot (̇ ) and hat (̂ ) derivatives satisfy the commutation relation

(Clarkson, 2007)

ˆ̇ψ− ˙̂ψ=−Aψ̇+
(

1

3
Θ+Σ

)
ψ̂. (5.11)

This is a useful relation that will be utilized often in our calculations.

5.3 Results

In this section we state and prove the results of the chapter.

5.3.1 Dynamics of expansion-free stars

We state and prove the following theorem.

Theorem 5.3.1. An expansion-free dynamical star must accelerate and radiate simultaneously.

Proof. We establish this by fixing both the acceleration and the heat flux to zero, and then by fixing

either of the acceleration or the heat flux to zero.

5.3.1.1 Case 1

First, suppose A = 0 and Q = 0. From (5.7) we have the algebraic constraint equation

0 = 3

2
Σ2 + 1

2

(
ρ+3p

)
. (5.12)

Here we note that since Σ2 > 0, (5.12) implies that the strong energy condition must be violated,

i.e. ρ+3p < 0. For A =Θ= 0, (5.11) is simply

ˆ̇ψ− ˙̂ψ=Σψ̂. (5.13)
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Taking the hat derivative of (5.2) and the dot derivative of (5.5) we obtain respectively

ˆ̇φ = 1

2
φ̂Σ+ 1

2
φΣ̂

= −
(
φ2 + 1

2
Σ2 + 1

3
ρ+ 1

2
E + 1

4
Π

)
Σ (5.14)

and

˙̂φ = −2ΣΣ̇−φφ̇− 2

3
ρ̇− Ė − 1

2
Π̇

= −
(

1

2
φ2 +Σ2 + 1

6
ρ− 1

2
E + 3

2
p

)
Σ. (5.15)

Using the commutation relation on (5.14) and (5.15), we obtain[
1

4
Π+ 3

2
Σ2 + 1

2

(
ρ+3p

)]
Σ= 0. (5.16)

So either Σ= 0 or

1

4
Π+ 3

2
Σ2 + 1

2

(
ρ+3p

)= 0.

If Σ= 0 then the star must be static (Θ=Σ= 0), so we assume that Σ 6= 0 and that

1

4
Π+ 3

2
Σ2 + 1

2

(
ρ+3p

)= 0. (5.17)

From (5.12), (5.17) implies thatΠ= 0. Now if we take the dot derivative of (5.12) and substitute for

(5.1) and (5.8), we obtain the evolution of p

ṗ = (
Σ2 +2E

)
Σ. (5.18)

Taking the hat derivative of (5.18) and the dot derivative of (5.9) we obtain respectively

ˆ̇p =
(
−9

2
φΣ2 −6φE + 2

3
ρ̂

)
Σ (5.19)

and

˙̂p = 0. (5.20)
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Using the commutation relation on (5.19) and (5.20) we obtain the propagation of ρ

ρ̂ = 9φ

(
3

4
Σ2 +E

)
. (5.21)

Now taking the hat derivative of (5.1) and the dot derivative of (5.4), we obtain respectively

ˆ̇Σ = ΣΣ̂− Ê

= −3

2
φΣ2 − Ê (5.22)

and

˙̂Σ = −3

2

(
φ̇Σ+φΣ̇)

= −3

2
φE . (5.23)

Using the commutation relation on (5.22) and (5.23) we obtain

Ê = 3

2
φ

(
Σ2 −E

)
, (5.24)

which upon substituting in (5.6) we obtain

ρ̂ = 9

2
φΣ2. (5.25)

Comparing (5.21) and (5.25) we get

φ

(
E + 1

4
Σ2

)
= 0. (5.26)

Therefore we must have either φ= 0 or

E =−1

4
Σ2. (5.27)

We show that either case yields Σ = 0, in which case the star is static. First, suppose φ = 0. Then

(5.5) gives the constraint equation

Σ2 =−2

3
ρ−E , (5.28)
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and comparing (5.12) and (5.28) we obtain

E =−1

3

(
ρ−3p

)
. (5.29)

Taking the dot derivative of (5.29), using (5.3) and (5.18) we obtain

Σ

[
Σ2 + 1

2

(
E +ρ+p

)]= 0. (5.30)

Again, assuming Σ 6= 0 we must have

Σ2 =−1

2

(
E +ρ+p

)
. (5.31)

Taking the dot derivative of (5.31) and using (5.1) we obtain

ṗ =Σ(
4E −2Σ2) . (5.32)

and upon comparing to (5.18) we obtain

Σ
(
2E −3Σ2)= 0. (5.33)

Since Σ 6= 0 we have

E = 3

2
Σ2, (5.34)

which, upon using (5.12) and (5.29) we obtain

ρ =−5

3
p. (5.35)

Taking the dot derivative of (5.35) we have ṗ = 0. Setting (5.18) to zero, while using (5.34) to

substitute for E gives Σ2 = 0 which gives Σ= 0.

Next assume φ 6= 0 and that (5.27) is satisfied. Now taking the dot derivative of (5.27), and

using (5.3), (5.1) and (5.27) to simplify we obtain[
3

4
Σ2 +ρ+p

]
Σ= 0, (5.36)
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Assume Σ 6= 0. We must have

3

4
Σ2 +ρ+p = 0, (5.37)

Using (5.12), (5.37) simplifies to

ρ =−14

5
p. (5.38)

Finally taking the dot derivative of (5.38) we have ṗ = 0, which upon comparing to (5.18) and

substituting for E using (5.27) we obtain Σ2 = 0 which gives Σ= 0.

5.3.1.2 Case 2

Let us next consider the case A 6= 0 and Q = 0. The commutation relation (5.11), now becomes

ˆ̇ψ− ˙̂ψ=−Aψ̇+Σψ̂. (5.39)

Taking the hat derivative of (5.3) and the dot derivative of (5.6), we obtain respectively

ˆ̇Σ = −Âφ− Aφ̂+ΣΣ̂+ 1

3
ρ̂+ p̂ − Ê + 1

2
Π̂

= A2φ+ 3

2
Aφ2 −3φΣ2 − 1

3
Aρ− 3

4
φΠ− 1

2
φρ

−3

2
φp + AE − 1

2
AΠ− Ap + 3

2
φE (5.40)

and

˙̂Σ = −3

2

(
φ̇Σ+φΣ̇)

= 3

2
AΣ2 − 3

2
φΣ2 + 3

2
Aφ2 − 1

2
φρ− 3

2
φp (5.41)

+3

2
φE − 3

4
φΠ. (5.42)

Using the commutation relation on (5.40) and (5.41) we obtain

AΣ2 = 0. (5.43)

Since A 6= 0, we must have Σ= 0, and thus the star is static.

79



5.3.1.3 Case 3

Finally, we consider the case A = 0 and Q 6= 0. From (5.7) we have the constraint equation as

(5.12). The commutation relation in this case is (5.13). Taking the hat derivative of (5.2) and the

dot derivative of (5.5), we obtain respectively

ˆ̇φ = 1

2
Σ̂φ+ 1

2
Σφ̂

= −φ2Σ− 1

2
φQ − 1

2
Σ3 − 1

3
Σρ− 1

2
ΣE − 1

4
ΣΠ

+Q̂ (5.44)

and

˙̂φ = −2ΣΣ̇−φφ̇− 2

3
ρ̇−

(
Ė + 1

2
Π̇

)
= −Σ3 − 1

6
Σρ− 5

4
ΣΠ+ 1

2
ΣE + 1

2
Σp − ρ̇. (5.45)

Using the commutation relation on (5.44) and (5.45) we obtain[
3

2
Σ2 + 1

2

(
ρ+3p

)]
Σ = φQ, (5.46)

which, upon using (5.12) reduces to

φQ = 0. (5.47)

Since Q 6= 0, we must have φ= 0. But from (5.2), this gives Q = 0.

From the three cases considered, we therefore must have A 6= 0 and Q 6= 0 to have an expansion-

free star that is evolving.

5.3.2 Geometry of expansion-free stars

We state and prove the following theorem on the geometry of expansion-free dynamical stars.
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Theorem 5.3.2. An expansion-free dynamical star must be conformally flat.

Proof. We prove this by checking for additional constraints from the field equations with A 6= 0

and Q 6= 0. The commutation relation in this case is given by (5.39). Taking the hat derivative of

(5.1) we obtain

ˆ̇Σ = A2φ+ 3

2
Aφ2 −3φΣ2 + AΣ2 − 1

2
φρ− 3

2
φp

+2

3
Aρ+ 1

2
AΠ− 3

2
ΣQ + 3

2
φE + 3

4
φΠ+ p̂

+Π̂, (5.48)

and taking the dot derivative of (5.4) we have

˙̂Σ = 3

2
AΣ2 − 3

2
φΣ2 − 3

2
ΣQ + 3

2
Aφ2 − 1

2
φρ

−1

2
φp + 3

2
φE − 3

4
φΠ−Q̇. (5.49)

Taking the difference of (5.48) and (5.49) and employing the commutation relation (5.39), we ob-

tain

−AΣ̇+ΣΣ̂ = A2φ− 3

2
φΣ2 − 1

2
AΣ2 + 3

2
φΠ

+2

3
Aρ+ 1

2
AΠ+Q̇ + p̂ + Π̂, (5.50)

which upon using (5.9) and simplifying gives

AE = 0. (5.51)

Since A 6= 0, we must have E = 0 so that the electric part of the Weyl tensor is vanishing. Fixing

E = 0 in the field equations for A 6= 0,Q 6= 0, all other commutation relations on pairs of evolution

and propagation equations return identities.
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5.4 Discussion

The expansion-free condition in general relativity has received considerable attention in recent

years and has been applied to describe physical features of radiating stars. We have utilized the

1+1+2 semi-tetrad covariant formalism to study such stars in general in spherical symmetry. The

analysis shows that expansion-free dynamical stars are severely constrained, and can only exist

under very particular conditions. From the set of field equations, we have explicitly shown that a

necessary condition for a star with zero expansion to evolve is that the star has non-zero radiation

and acceleration. With further analysis of the field equations with A 6= 0 and Q 6= 0, it is shown that

the star is necessarily conformally flat. Proving these results amount to the analysis of the field

equations via commutation relations, via which we obtain additional constraints, which further

give us additional evolution equations that can be matched against the original set of equations.

These results add to the literature on expansion-free dynamical stars, which have been developed

over the last decade and half, most notably through works of Herrera and co-authors.
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Chapter 6

Geometric results for minimal hypersurfaces

in generalized LRS II spacetimes

6.1 Introduction

This chapter considers the geometry of minimal 2-surfaces foliating hypersurfaces in spacetimes.

This is carried out in a covariant setting where the formulation of the following references (Sen-

ovilla 1998; Senovilla 2003; Senovilla 2003; Bengtsson & Senovilla 2011) defines the various quan-

tities associated with the 2-surfaces. The results by Chern et al., (1970) are employed to prove our

results (Fialkow, 1938; Takahashi, 1966; Hsiang, 1967; Calabi, 1967; Simons, 1968; Dwivedi, 2019.)

Section 6.2 gives some preliminaries notes used in this work as well as introduction of defi-

nitions. In 6.3 we state and prove the main results of this chapter. We then conclude in section

6.4.

83



6.2 Preliminaries

In this section we briefly discuss the notion of a co-dimension 2-surface S and define various

quantities on S which are used to study the trapping of S. We follow the reference Bengtsson &

Senovilla (2011).

We start by defining a co-dimension two surface S in a given spacetime manifold
(
M , g

)
. In

practice, these surfaces will be the “leaves” that foliate local horizons in the spacetime when they

are considered later in the text.

Let M be a 4-dimensional spacetime, and let g be a pseudo-Riemannian metric on M with

Lorentzian signature (−,+,+,+). A two-surface S in M is a connected submanifold of M which

can be represented by an embedding

Φ : S −→ M

via the parametric equations pµ =Φµ (
λA

)
, where {pµ} are local coordinates in M (µ,ν= 1,2,3,4)

and {λA} are local coordinates in S (A,B = 1,2). Pull-back and push-forward operations define the

metric tensor and tangent vector fields respectively in S, as seen on M . The metric on S is just the

projection tensor N ab .

The second fundamental form relative to a normal vector field n on S is given by

χab |n = N c
a N d

b ∇d nc . (6.1)

If n is a null vector field normal to S, the null expansion scalar, along n, is given by the projection

of (6.1) by N ab :

Θn = N abχab |n . (6.2)

84



The mean curvature vector of S in M (relative to the null normal vector field n) is then given by

H c = N abχ c
ab , (6.3)

where χ c
ab is the shape tensor which takes a pair of vector fields to a normal vector to S.

For the LRS II class the two null normals to S, called the outgoing and ingoing null normal

vector fields, are respectively given by

kc = 1p
2

(uc +ec ) , lc = 1p
2

(uc −ec ) . (6.4)

See for example Ellis et al. (2014) and references therein for more details. Explicitly computing

these quantities we obtain the outgoing and outgoing expansion scalars as (Sherif et al., 2018;

Sherif et al., 2019a)

Θk = 1p
2

(
2

3
Θ−Σ+φ

)
and Θl =

1p
2

(
2

3
Θ−Σ−φ

)
, (6.5)

while the mean curvature vector is given by

Hc = −
(

2

3
Θ−Σ

)
uc +φec . (6.6)

Definition 6.2.1. A surface S is said to be minimal if both the outgoing and ingoing null expansions

vanish on S. This is equivalent to the requirement that both the uc and ec components of the mean

curvature vector vanish everywhere on S, i. e.

−uc Hc = 0 and ec Hc = 0 (6.7)

on S. We will denote these surfaces by MMTS for minimal marginally trapped surface.

Definition 6.2.2. An MTT will be called minimal if the MTS foliating MTT are minimal, and will

be called a minimal marginally trapped tube (MMTT).

We now consider the geometry of leaves of the MMTT in these spacetimes.
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6.3 Geometry of MMTS in LRS II and NNF spacetimes

The Gaussian curvature of MMTS in LRS II spacetimes is given by (Ellis et al., 2014)

K = 1

3
ρ−E − 1

2
Π− 1

4
H 2, (6.8)

where H 2 = H c Hc is the squared norm of the mean curvature vector, and the derivatives of K in

the ea direction and along the observer’s congruence are given respectively by

K̇ = −uc Hc K ,

K̂ = −ec Hc K . (6.9)

Clearly for MMTS (and therefore MMTTs) we have K̇ = K̂ = 0. The Gaussian curvature is then

K = 1
3ρ−E − 1

2Π and is constant by the vanishing of the two derivatives. Therefore, the sign of K

determines the geometry of the MMTS.

The set of field equations on the leaves of the MMTT is then

• Evolution (LRS II):

2

3
Σ̇− Θ̇ = −1

3

(
ρ+3p

)+E − 1

2
Π, (6.10)

φ̇ = Q, (6.11)

Ė − 1

3
ρ̇+ 1

2
Π̇ = 0. (6.12)

• Propagation (LRS II):

2

3
Θ̂− Σ̂ = Q, (6.13)
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φ̂ = −2

3
ρ−E − 1

2
Π, (6.14)

Ê − 1

3
ρ̂+ 1

2
Π̂ = 0. (6.15)

• Propagation/Evolution (LRS II):

Â− Θ̇ = −A2 +Θ2 + 1

2

(
ρ+3p

)
, (6.16)

Q̂ + ρ̇ = −Θ(
ρ+p +Π)−2AQ, (6.17)

Q̇ + p̂ + Π̂ = −A
(
ρ+p +Π)−2ΘQ. (6.18)

We note that the condition for minimality is to be satisfied at all times on the leaves, and

therefore taking the dot derivatives of the two equations in (6.7) also holds. Thus φ= 0 implies

Q = 0 (6.19)

and

−2

3
ρ−E − 1

2
Π = 0, (6.20)

from (6.11) and (6.14) respectively. From (6.20) we therefore have that the Gaussian curvature

K = ρ. Since K = ρ = const ant , this allows us to conclude that the energy density completely

determines the intrinsic geometry of MMTS in LRS II spacetimes.

Theorem 6.3.1. In LRS II spacetimes, if the MMTT is geometrically S3, then the MMTS foliating the

MMOTS are S2.

87



Proof. The shape tensor on the leaves of the MMTT in LRS II spacetimes can be calculated as

χabc = −1

2
Nab

[(
2

3
Θ−Σ

)
uc −φec

]
, (6.21)

and is zero identically on every leaf of the MMOTS, under the minimality condition. Thus we have

the squared norm as

χabcχ
abc = 0. (6.22)

We have χabcχ
abc < 2 = di m(S) (where S denotes a leaf of the MMTT), and therefore S must be

isometric to the totally geodesic S2. Since K = const ., the scalar curvature R = 2K is constant (Ellis

et al., 2014). This is due to a more general results (Chern et al., 1970), which may be summarized

as: if a closed minimal surface of dimension n of constant scalar curvature is immersed in the

n +1 dimensional sphere, and if the squared norm of the shape operator χabcχ
abc is less than or

equal to n, then either χabcχ
abc = 0, in which case the surface is isometrically S2 or χabcχ

abc = n,

in which case the surface is isometrically a Clifford torus.

This result actually shows that all MMTTs in LRS II spacetimes foliated by minimal 2-surfaces

will have S3 geometry, i.e. are spherically symmetric. It is not difficult to see that the leaves of

MMTTs in NNF spacetimes would necessarily assume the geometry of those of LRS II space-

times which follows from standard results in foliation theory that a diffeomorphism f between

two manifolds M and N with respective foliations F and F ′, induces an isomorphism from F to

F ′ given by L′ = f (L), for leaves L ∈F and L′ ∈F ′.

Since the MMTT in NNF spacetimes are diffeomorphically LRS II, we have an isomorphism

of foliations. Their leaves are therefore diffeomorphic.

We note, however, that while in the first case we explicitly showed that the Gaussian curva-

ture is constant and ρ-dependent only, which allowed us to classify the geometry, the converse

88



may not necessarily be the case. That we know the geometry does not necessarily mean that the

Gaussian is constant and/or ρ-dependent, and this might require a full analysis of the general

field equations.

In fact theorem 6.3.1 generalizes to any 4-dimensional spacetime:

Theorem 6.3.2. In any 4-dimensional spacetime, if the MMTT is geometrically S3, then the 2-

surfaces foliating the MMOTS are S2.

Proof. This generalization follows from the fact that for 4-dimensional spacetime, the shape ten-

sor can be decomposed as (Bengtsson & Senovilla, 2011)

χ c
ab =−kdχabd l c − l dχabd kc ,

where kdχabd and l dχabd are the second fundamental forms. The minimality condition is equiv-

alent to the simultaneous vanishing of kdχabd and l dχabd , which gives χabc = 0.

Next we just need to check that the Gaussian curvature is constant (which would imply the

constancy of the scalar curvature). In general we can write the square of the mean curvature

vector as K as (see the form of Hc in terms of the expansion scalars in reference Bengtsson &

Senovilla (2011))

Hc H c =−2ΘkΘl =− 1

K 2
∇c K∇c K . (6.23)

Thus, the condition of being minimal, equivalent to the condition Θk = Θl = 0, implies the van-

ishing of the gradient of K , which implies that K is constant.

In general the squared norm of the shape tensor can written as

χabcχ
abc =−2kd l sχ d

abχ
ab

s . (6.24)
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Thus, if there is trapping, say Θk = 0 (which would imply that kdχ
d

ab = 0), then (6.24) is zero. Of

course, from (6.23) K is constant. While the results in Chern et al. (1970) has minimality as a

necessary condition, if the result holds when only one of the expansion scalars vanishes, there is

an obvious consequence. Such generalization would then imply that, in an arbitrary spherically

symmetric spacetime, the leaves of a codimension-1 foliation of the boundary of the trapped re-

gion are necessarily topological spheres since in arbitrary spherically symmetric spacetimes, the

trapped region and its boundary, assuming the boundary is non-empty, have spherical symmetry

(Bengtsson & Senovilla, 2011).

6.4 Discussion

In this chapter we have given a complete geometric characterization of cross sections of minimal

horizons in LRS II spacetimes. It is shown that the geometry of the hypersurface in LRS II foliated

by minimal 2-surfaces constrains the geometry of these 2-surfaces. This result generalizes to any

4-dimensional spacetimes. This was achieved by analyzing the equivalent formulation of the field

equations in the 1+1+2 covariant setting, and showing that the energy density alone determines

the geometry of the leaves of these horizons. The fact that the Gaussian curvature K is constant

allows us to use standard results from classical minimal surface theory to classify the minimal

horizons in LRS II spacetimes.

90



Chapter 7

A T2-separable g boundary and its relation to

the a boundary

7.1 Introduction

In this chapter, we construct a modified g boundary that is T2-separable and whose completion

of the spacetime retains separation of regular spacetime points from singular points. We also

explore the relationship between this boundary and the a boundary, which was identified as an

important open problem in the original paper (Scott & Szekeres, 1994) constructing the a bound-

ary. If structures on the g boundary can be carried over to this modified g boundary, then such

relationship could in principle allow us to construct on the a boundary, these various structures

on the g boundary such as differentiable, causal and metric structures.

In section 7.2, we give an overview of the g and a boundaries. Section 7.3 presents our new

construction using notions from the construction of the attached point topology on the a bound-

ary as well as a natural Hausdorff topology on the tangent bundle. In section 7.4, we consider the
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example in Geroch et al. (1982) relative to our construction to determine if this modified g bound-

ary suffers the topological separation problem of the original g and b boundaries. In section 7.5

we summarize our results and anticipate future avenues of research.

7.2 Some notes on the g and a boundaries

In this section we provide some background on the g and a boundary constructions, as well as the

topologies that can be placed on these constructions. We follow the following standard references

Geroch, (1968b), Hawking & Elliis, (1973), Scott & Szekeres, (1994), Ashley, (2002) and Barry &

Scott (2011).

7.2.1 The g boundary

Let M be a geodesically complete spacetime manifold, and let Σ be a co-dimension 1 submani-

fold of M such that M = M1 tΣtM2. In other words, Σ divides M into disjoint subsets M1 and

M2. Suppose one is given one of the subsets, say M1. A natural question arises as to how much

information about Σ can be obtained from what we know about M1. The idea is to use the in-

formation about the incomplete geodesics in M1 - those in M1 which, when extended in M , pass

through Σ - to recover “parts” of Σ. One then groups these geodesics as follows: Let γ be an in-

complete geodesic in M1 and generate a family of geodesics by allowing small variations in the

initial conditions - a point p ∈ γ and a tangent vector at p - of γ. This family of geodesics traces

out a 4-dimensional tube called a “thickening” of γ. Another incomplete geodesic γ′ is said to be

related to γ if γ′ enters and remains in every thickening of γ. However, since finding Σ may not

always suffice, the above construction must be generalized (Geroch, 1968b).

Let G = T M \ {0} be the reduced tangent bundle on a spacetime manifold M , made up of
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the non-zero vectors in T M . The set G ⊂ T M is an 8-dimensional manifold whose elements are

the pairs
(
p,ξα

)
. Each

(
p,ξα

) ∈ G uniquely determines the geodesic γ, satisfying the geodesic

equation, for which γ (0) = p and γ′ (0) = ξα. Such a geodesic satisfies the following properties:

• has one specified end point;

• has been extended as far as possible in some direction from the end point;

• has a given affine parameter; and

• the affine parameter vanishes at the end point and is positive elsewhere on the curve.

The g boundary is constructed from the subset G I ⊂G , where G I is obtained via the construc-

tion of a field ϕ that identifies points of G with the total affine length of the associated geodesics

uniquely determined by those points. Elements of G I are then those points
(
p,ξa

) ∈ G such that

ϕ
(
p,ξα

)
is finite.

One constructs a 9-dimensional manifold H =G×(0,∞). Define the folowing subsets H0 and

H+ of H as

H0 = {
(
p,ξα,d

) |ϕ(
p,ξα

)= d}, (7.1)

H+ = {
(
p,ξα,d

) |ϕ(
p,ξα

)> d}. (7.2)

Then there is a natural mapΨ : H+ −→ M , that assigns to each point
(
p,ξα,d

) ∈ H+ a point p ′ ∈ M

obtained by moving a distance d along the geodesic uniquely associated to
(
p,ξα

)
. One defines

a topology on G I as follows: Let O be an open set of M , and define open subsets S (O) as con-

sisting of those points
(
p,ξα

) ∈ G I such that there exists an open set U ⊆ H containing the point(
p,ξα,ϕ

(
p,ξα

))
of H0, andΨ (U ∩H+) ⊆O.

Given two open sets O1,O2 in M , it can be shown that S (O1)∩S (O2) = S (O1 ∩O2), (Geroch,

1968b). These open sets therefore form the basis of a topology on G I . Equivalence classes of
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elements of G I can now be constructed by requiring that two elements α,β ∈ G I are equivalent

if they always appear in the same open set. The collection of such equivalence classes forms

the g boundary, where the induced topology on the g boundary is the quotient topology, and is

T0 separable (Hocking & Young, 1961; Geroch, 1968b). However, the ideal separation property

would be the T2 separation property. Geroch did provide a recipe for constructing a g boundary

that is T2 separable, but this requires the construction of all T2 separable equivalence relations on

G I , which in general would not be feasible.

A new manifold (called the spacetime with g boundary) can now be constructed from the

disjoint union of the spacetime manifold and the g boundary: A subset of the form (O,U ), where

O is an open set of M and U is an open set of g , will be called open in M∗ if S (O) ⊃U . These open

sets on M∗ form a basis for a topology on M∗. It can be checked that an intersection of two such

open sets is open. If U = S (O), then (O,U ) will be called a full open set of M∗. For more details

and discussions see Geroch (1968b), from which we have also adopted the notation for open sets

of the topology on the manifold completion throughout the rest of the paper.

Geroch’s original construction only considered the set G I of incomplete geodesics, and only

allows for the identification of singular boundary points. Since we are interested in relating the

g and a boundaries, in what follows we will consider the set G which allows one to treat a wider

class of curves, and, hence, of boundary points. This allows for the modification of the g boundary

which we shall exploit in order to establish a relationship with the a boundary (see section 7.3)

7.2.2 The a boundary

The construction of the a boundary relies on the existence of open embeddings into manifolds

of the same dimension, or envelopments, (Scott & Szekeres, 1994). An advantage of the a bound-
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ary construction is that it can be applied to any manifold M and it is independent of both the

affine connection on M and the chosen family of curves in M . If we specify a family of curves C

in M , satisfying the bounded parameter property (to be formally defined in section 7.3) then the

a boundary points can be classified as regular, points at infinity, unapproachable points, or sin-

gularities. This subsection summarizes arguments developed in the reference Scott & Szekeres

(1994), unless otherwise cited.

Let M be a spacetime manifold, and let φ : M −→ M̂ be an envelopment of M into M̂ where

di m (M) = di m
(
M̂

)
.

Definition 7.2.1. A boundary point of M is a point p ∈ ∂φ (M) in the topological boundary of

φ (M) ⊆ M̂. A boundary set is a non-empty subset B of ∂φM, comprised of boundary points.

Let φ′ : M −→ M̂ ′ be a second envelopment of M into M̂ ′, and let B ′ ⊆ ∂φ′M . We define a

covering relation as follows:

Definition 7.2.2. A boundary set B ⊆ ∂φM in M̂ covers a boundary set B ′ ⊆ ∂φ′M in M̂ ′ if for every

open neighborhood U of B in M̂, there exists an open neighborhood U ′ of B ′ in M̂ ′ such that

φ◦φ′−1 (
U ′∩φ′ (M)

) ⊆ U . (7.3)

Definition 7.2.3. A boundary set B is equivalent to a boundary set B ′ if B covers B ′ and B ′ covers

B.

The covering relation defines an equivalence relation on the set of all boundary sets induced

by all possible envelopments of M . An equivalence class [B ] of boundary sets is called an abstract

boundary set.

Definition 7.2.4. An abstract boundary point is an abstract boundary set that has a singleton p

as a representative element. The set of all abstract boundary points is called the abstract boundary

or simply the a boundary.

95



Let O be an open set in M and let B ∈ ∂φM be a boundary set in the topological boundary of

an envelopment φ : M −→ M̂ of M into M̂ . A boundary point p ∈ B (respectively, a boundary set

B) is attached to the open set O of M if for every open neighborhood U in M̂ of p (resp., of B), we

have that U ∩φ (O) 6=∅. For a boundary set to be attached to the open set O, we require at least

one boundary point p ∈ B to be attached to O . An abstract boundary point
[
p

]
is attached to an

open set O ⊆ M if the boundary point p is attached to O (see the reference (Barry & Scott, 2011)

for more details on the attached point topology).

Again, one wants a topology on the union of the spacetime manifold M and the abstract

boundary a: M̄ ≡ M ta. Subsets of M̄ of the form (O ∪B ,C ), where O is a nonempty open set of

M , B is the set of all abstract boundary points which are attached to O, and C is some subset of the

abstract boundary, and where the collection of every C set is the set of all subsets of the abstract

boundary will be called open in M̄ . These open sets form a basis for a topology on M̄ , which was

shown to be Hausdorff (Barry & Scott, 2011). This is known as the attached point topology, and

the open sets of the topology induced on a from the attached point topology are precisely the C

sets.

By construction, the identification of an abstract boundary point
[
p̂

]
, eg. a singularity, is

completely determined by the open set of M to which
[
p̂

]
is attached. This is one of the primary

motivations for boundary constructions. What this means is that one has an envelopment φ of a

manifold M into, say, M̂ , with p̂ ∈ ∂φM and p̂ is attached to O (which implies
[
p̂

]
is attached to

O). Then the image φ (O) extends (in M̂) to p̂ ∈ M̂ . One therefore has knowledge as to an open set

in M that is close to the singularity, and thus a means of locating them.
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7.3 A new construction

As mentioned in the previous section, we intend our construction to be applicable to a wider

class of curves - those satisfying what is called the bounded parameter property - as in the case of

the a boundary. In this section we first briefly discuss the class of curves satisfying the bounded

parameter property, of which geodesics form a subclass. We then proceed to the construction of

the modified g boundary, and its relationship with the a boundary, before concluding with a few

illustrative examples.

7.3.1 The bounded parameter property

The a boundary considers a broad class of curves satisfying the bounded parameter property

(BPP), (Scott & Szekeres, 1994).

Let γ : [a,b) −→ M (with a < b ≤ ∞) be a parametrized and regular (the tangent vector γ̇ is

nowhere vanishing on the interval [a,b)) curve in M , with γ (a) = p as the starting point of γ. A

curve γ′ :
[
a′,b′)−→ M is a subcurve of γ if a ≤ a′ < b′ ≤ b and γ′ = γ|[a′,b′). If a = a′ and b > b′ we

say that γ is an extension of γ′.

Definition 7.3.1 (Change of parameter). A change of parameter is a monotone increasing C 1 func-

tion

s : [a,b) −→ [
a′,b′) ,

which maps a to a′ and b to b′, and d s
dλ > 0 for λ ∈ [a,b). The curve γ′ is obtained from γ via the
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change of parameter s if the following diagram commutes:

[a,b) M

[
a′,b′) .

s

γ

γ′ (7.4)

Definition 7.3.2 (Bounded parameter property (BPP)). A family of parametrized curves C in M is

said to have the bounded parameter property if

• for any p ∈ M, ∃ at least one γ ∈C such that γ (λ) = p for some λ ∈ [a,b);

• if γ ∈C , so is every subcurve γ′ of γ; and

• for any pair γ,γ′ ∈C for which there exists an s such that the diagram in (7.4) commutes, we

have either the parameter on both γ and γ′ is bounded, or the parameter on both γ and γ′ is

unbounded.

Families of curves satisfying the BPP include geodesics with affine parameter, differentiable

curves with generalized affine parameter and timelike geodesics parametrized by proper time.

This generality carries over to the generality of the a boundary construction, as well as our mod-

ification of the g boundary. As with the a boundary, our construction applies to a smooth mani-

fold of any dimension which is endowed with an affine connection and BPP curves. While this is

still modest compared to the a boundary which exists for any manifold independent of an affine

connection and a family of curves, our construction can equally be applied to theories such as

Einstein-Cartan, Kaluza-Klein, Yang-Mills, etc. For the remainder of this paper all curves will sat-

isfy the b.p.p., unless otherwise stated.

We conclude this subsection with several standard definitions of utility in the sequel.

Definition 7.3.3 (Limit point). Let γ : [a,b) −→ M be a curve. A point p̂ is a limit point of γ if there

exists an increasing infinite sequence of real numbers ti ∈ [a,b) with ti → b such that γ (ti ) → p̂.
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This implies that for every subcurve γ′ :
[
a′,b

) −→ M with a ≤ a′ < b, γ (t ) enters every neighbor-

hood U of p̂.

Definition 7.3.4 (Endpoint). Let γ : [a,b) −→ M be a curve. A point p̂ is an endpoint of γ if γ (t ) → p̂

as t → b. For Hausdorff manifolds, p̂ is unique.

Definition 7.3.5 (Approach by a curve). Let φ : M −→ M̂ be an envelopment of M into M̂, and let

γ : [a,b) −→ M be a curve in M. We say γ approaches a boundary set B ∈ ∂φM if there exists a p̂ ∈ B

such that p̂ is a limit point of φ◦γ.

7.3.2 A T2 separable g boundary

In this subsection we define open sets on G making use of the attachment relation from the a

boundary and a natural topology on the tangent bundle. This allows us to define an equivalence

relation on G , and the collection of the associated equivalence classes defines a g boundary which

we shall denote g̃ .

In what follows, all manifolds are assumed to be smooth, Hausdorff, connected and para-

compact.

Given a manifold M , we recall that the tangent bundle on M can be given a natural topology

that is Hausdorff (for example see the reference Curtis & Miller (1985)). This is done as follows:

suppose
(
O1,ϕ1

)
is a chart on M , and let { f i }i∈{1,...,n} be the coordinate functions of ϕ1. Define a

map

ϕ̃1 :π−1 (O1) −→R2n ,

by

ξi ∂

∂ f i

∣∣∣
p
7→ (

f 1 (
p

)
, . . . , f n (

p
)

,ξ1, . . . ,ξn)
,
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where ξi are vector fields in Tp M
∣∣∣
O1

, andπ is the bundle projection. Then ϕ̃1
(
π−1 (O1)

)=ϕ1 (O1)×

Rn is open in R2n , and ϕ̃1 is a bijection with inverse

(
f 1 (

p
)

, . . . , f n (
p

)
,ξ1, . . . ,ξn) 7→ ξi ∂

∂ f i

∣∣∣
ϕ−1( f )

.

Given a second chart
(
O2,ϕ2

)
on M , both of

ϕ̃ j
(
π−1 (O1)∩π−1 (O2)

)=ϕ j (O1 ∩O2)×Rn ,

for j = 1,2, are open in R2n , and the transition map

ϕ̃2 ◦ ϕ̃−1
1 :ϕ1 (O1 ∩O2)×Rn −→ϕ2 (O1 ∩O2)×Rn

is smooth, for π−1 (O1)∩π−1 (O2) 6=∅. We therefore have that ϕ̃i are diffeomorphisms. Thus, we

have a smooth atlas AT M = {π−1 (Oi ) ,ϕ̃i }i∈{1,...,n} on T M , the tangent bundle on M , which makes

T M a smooth manifold, with the topology given by the open sets ϕi (O)×Rn of R2n . It is not

difficult to check that T M endowed with this topology is Hausdorff: any two points in the same

fiber of π will lie in the same chart. Any two points
(
p,ξi

)
and

(
q,ξ j

)
, with p 6= q , lying in different

fibers can be separated by disjoint open neighborhoods π−1 (O1) and π−1 (O2) respectively, by the

choice that neighborhoods O1 of p ∈ M and O2 of q ∈ M are disjoint.

Now let O be an open subset of M and let
(
π−1 (O) ,ϕ̃

)
be a chart on T M . Furthermore let γp

be the curve associated with a point
(
p,ξα

) ∈G ⊂ T M (whenever we write γp associated with the

point
(
p,ξα

)
, we will mean a BPP curve γp : [a,b) −→ M starting at the manifold point γ (a) = p).

Supposeφ : M −→ M̂ is an envelopment from M into M̂ , and let
[
p̂

]
be an abstract boundary point

attached to O, with p̂ in the topological boundary ∂φM . We define open sets on G as follows:
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M̂

Np̂

φ
(
γ′p

)

φ
(
γp

)
φ (O)

p̂

Figure 7.1: Depiction of the open set φ (O) containing φ
(
γp

)
to which p̂ is attached, and the por-

tion γ′p of γp lying in the intersection φ (O)∩Np̂ .

S (O) = {
(
p,ξα

) ∈G | φ(
γp (λ)

) ∈φ (O) ,∀ λ ∈ [a,b) and

φ
(
γp

)⊃φ(
γ′p

)
⊂φ (O)∩Np̂ , for a subcurve φ

(
γ′p

)
of φ

(
γp

)
for all open neighborhoods Np̂ of p̂, over all possible

envelopments φ}. (7.5)

Of course, S (O) is empty if no boundary set is attached to O. It is also easily seen that S (O1)∩

S (O2) = S (O1 ∩O2). We therefore have that the S (O) sets form a basis for a topology on G . (See

figure 7.1 for a depiction of the attachment of p̂ to O and the portion of the curve in the intersec-

tion.)

Definition 7.3.6. Let
(
p,ξα

)
and

(
q,ξβ

)
be points in G. We define an equivalence relation, denoted

E1, on G as follows:
(
p,ξα

) ∼ (
q,ξβ

)
iff the curves associated with

(
p,ξα

)
and

(
q,ξβ

)
approach the

same abstract boundary point.
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The proof that E1 is indeed an equivalence relation follows immediately from the definition

of an abstract boundary point.

We stress that the use of the abstract boundary point in definition 7.3.6 means that we are

considering equivalence classes of boundary sets of envelopment via definition 7.2.3. If two

curves γ1 and γ2 both start at the same point, then from (7.5) it is clear that they will both ap-

proach the same abstract boundary point.

Definition 7.3.7. The collection of all equivalence classes in G under the equivalence relation E1 is

a modified g boundary which we will denote by g̃ .

The g̃ boundary naturally inherits the coinduced topology from G under the continuous

canonical quotient map q from G to g̃ (In section 3.3 we make use of this as part of our dis-

cussion about explicitly embedding the g̃ boundary a boundary) (Munkres, 2000). We emphasize

that our construction relies on the existence of open embeddings. This is not an overly restrictive

requirement as all theories specified via a metric in some coordinate system (eg. general relativ-

ity, Einstein-Gauss-Bonnet, etc.), have an implicit envelopment. (See the discussion in the con

lusion of Scott & Szekeres, 1994.) Geroch noted (Geroch, 1968b) that there is no unique way of

defining the g boundary, and that his particular construction was ad hoc. However, under the

condition that envelopments of the spacetime manifold exist, the a boundary provides us with a

natural way of defining open sets on G . It also allows for the definition of a desired quotient on G

via definition 7.3.7.

Theorem 7.3.8. The modified g boundary, g̃ , is Hausdorff separable in the coinduced topology

from G.

Proof. Let σ1 and σ2 be two points in g̃ , and let

⋃
i∈I

S (Oi ) and
⋃
j∈J

S
(
O j

)
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be open neighborhoods ofσ1 andσ2 respectively. Choose open subsets of M such that Om∩On =

∅, for any pair m,n such that m ∈ I and n ∈ J . Now fix an envelopment φ : M −→ M̂ . Curves

associated with the points σ1 and σ2 approach different abstract boundary points, and therefore

approach different boundary points (or sets) in ∂∂M , say p̂1 and p̂2 attached to Om and On re-

spectively (for fixed m and n), that are not equivalent under the abstract boundary equivalence.

In the topology induced by M̂ on ∂φM , we can always choose disjoint open neighborhoods Np̂1

and Np̂1 of p̂1 and p̂2 respectively. Since Om ∩On =∅, and since curves in Om and On enter and

stay in Om ∩Np̂1 and On ∩Np̂2 respectively, S (Om)∩S (On) =∅. We therefore have that(⋃
i∈I

S (Oi )

)
∩

(⋃
j∈J

S
(
O j

))=∅.

We note that G is not Hausdorff separable in the topology with basis given by the open sets

S (O). This is because any two points
(
p,ξα

)
,
(
p,ξβ

) ∈G will always lie in the same open set since

surves associated to the two points start at the same manifold point and thus remain in the open

set of the manifold containing the point. However, we have shown that g̃ is Hausdorff separable

since under the equivalence relation E1 these points are identified.

Theorem 7.3.9. Let M∗ be the manifold formed by the completion of the spacetime manifold M

with g̃ : M∗ ≡ M t g̃ , and let a basis for a topology on M∗ be given by open subsets of the form(
O,Ũ = ⋃

i∈I
S (Oi )

)
, (7.6)

where Ũ are the open sets of g̃ , coinduced by the open sets on G, and O = Ok for some k ∈ I is an

open set in M. Then M∗ is Hausdorff.

Proof. That M∗ is Hausdorff follows from the fact that disjoint union preserves the Hausdorff
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property: for points p ∈ M and σ ∈ g̃ , open neighborhoods Ok 3 p and

Ũ = ⋃
i∈I

S (Oi ) 3σ

are disjoint.

One may notice that for our choice of basis for a topology on M∗, (7.6), the open set O of M∗

restriction to M is simply required to be a choice of one of the O′
i s defining the open set Ũ of M∗

restriction to g̃ . This may be done because boundary points (sets) attached to all of the Oi s are

identified under the abstract boundary equivalence.

We stress again that, in the entirety of this subsection’s construction we have considered BPP

curves γp associated to
(
p,ξα

) ∈ G . In general they need not be geodesics. However, an explicit

reduction to a construction more similar to that of Geroch is obtained by insisting that they are

geodesics. This restricted case remains a generalization of Geroch’s g boundary in the sense that

we have an additional equivalence relation E1, which is necessary in order to yield T2 separability.

The key notion here is a rephrasing of the a boundary using BPP curves explicitly related to

the tangent bundle. This is what facilitates the understanding of the relationship between the a

boundary and other boundary constructions, in this case, a construction similar to the g bound-

ary. This relationship is considered in more detail in the next subsection.

7.3.3 Relation to the a boundary

In this section we now show how the g̃ boundary can be embedded into the a boundary via ex-

plicit mappings. We first define an equivalence relation on φ (M).

Definition 7.3.10. Let φ
(
p1

)
,φ

(
p2

) ∈ φ (M). The equivalence relation on φ (M), denoted E2, is

defined as follows: φ
(
p1

)∼φ(
p2

)
iff
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a. φ
(
p1

)=φ◦π(
p1,ξα1

)
and φ

(
p2

)=φ◦π(
p2,ξα2

)
, where

(
pi ,ξαi

)
are in open sets of G, and

b1. φ
(
p1

)
and φ

(
p2

)
lie on the same curve, or

b2. φ
(
p1

)
and φ

(
p2

)
lie on curves approaching the same abstract boundary point.

This yields equivalence classes of curves with limit points being the same abstract bound-

ary point, the collection φ (M)/E2, which we shall denote by φ (M)g eo . It is not difficult to show

that E2 is indeed an equivalence relation. Reflexivity and symmetry follow immediately from the

definition. To show transitivity, let φ
(
p1

) ∼ φ
(
p2

)
. Then either φ

(
p1

)
and φ

(
p2

)
lie on the same

curve γ orφ
(
p1

)
andφ

(
p2

)
lie on curves approaching the same abstract boundary point. Suppose

φ
(
p1

)
and φ

(
p2

)
both lie on γ. If φ

(
p2

)
and φ

(
p3

)
lie on γ, then φ

(
p1

)∼φ(
p3

)
. Otherwise, φ

(
p3

)
lies on some curve γ̃ such that γ̃ approaches the same abstract boundary point as γ. Since φ

(
p1

)
lies on γ, this would imply φ

(
p1

) ∼ φ
(
p3

)
. Now suppose φ

(
p1

)
and φ

(
p2

)
lie on curves γ and γ̃

respectively, both approaching the same abstract boundary point. If φ
(
p3

)
lies on either of γ or

γ̃, then φ
(
p3

) ∼ φ
(
p1

)
or φ

(
p3

) ∼ φ
(
p2

)
which would imply φ

(
p3

) ∼ φ
(
p2

)
or φ

(
p3

) ∼ φ
(
p1

)
re-

spectively. Otherwise, φ
(
p3

)
lies on some curve γ̂ (different from γ and γ̃) approaching the same

abstract boundary point as γ and γ̃, which would imply that φ
(
p3

) ∼ φ
(
p1

)
, φ

(
p1

) ∼ φ
(
p2

)
and

φ
(
p3

)∼φ(
p2

)
.

Let the map

q : G −→ g̃ , (7.7)

be the canonical quotient map defined by

(
p,ξα

) 7→ [(
p,ξα

)]
E1

,

which sends points in G to its equivalence class under the equivalence relation E1. Define a map

κ : G −→φ (M)g eo , (7.8)
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by

(
p,ξα

) 7→ [
φ

(
p

)]
E2

,

which maps a point of
(
p,ξα

)
of G to the equivalence class (under the equivalence relation E2)

containing the image of the associated curve under the compositionφ◦π. The map q is a quotient

map and thus has the natural inverse map, q−1, which sends an equivalence class to the set of its

elements. Clearly κ is constant on the set q−1
([(

p,ξα
)]

E1

)
, for

[(
p,ξα

)]
E1

∈ g̃ , since all elements

in q−1
([(

p,ξα
)]

E1

)
are sent to

[
φ

(
p

)]
E2

. The map κ thus induces a map (see Theorem 22.2 of

Munkres (2000))

r : g̃ −→φ (M)g eo , (7.9)

such that r ◦q = κ. Hence, the diagram

G g̃

φ (M)g eo .

κ

q

r (7.10)

commutes. The map r sends points of g̃ to the appropriate equivalence class under the equiva-

lence relation E2.

We now introduce the notion of the limit operator (Goreham, 2004; Flores et al., 2011; Flores

et al., 2010), which allows us to attach limit points/endpoints to curves from φ (M). Let X be any

set and let S (X ) denote the set of sequences in X . Let P (X ) denote the set of parts of X . One

defines the limit operator as a map l : S (X ) −→ P (X ) which sends sequences in S (X ) to their limit

points in P (X ), satisfying the compatibility condition of subsequences: if σ1,σ2 ∈ S (X ), and σ2 is

a subsequence of σ1, then l (σ1) ⊂ l (σ2).

As has been mentioned, all manifolds considered here are metrizable. Let ti be an increasing

infinite sequence of real numbers. Then a curve φ
(
γp

) ∈ φ (M) can be written as the sequence
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φ
(
γp (ti )

)
. The limit operator

L :φ (M)g eo −→φ (M)l
g eo ,

whereφ (M)l
g consists of equivalence classes of limit points of the sequences inφ (M), takes equiv-

alence classes of curves in φ (M)g eo to equivalence classes of limit points in ∂φM under E2. The

equivalence classes are elements of the abstract boundary. The composition

L ◦ r : g̃ −→φ (M)l
g eo (7.11)

given by

[(
p,ξα

)]
E1

7→ [B ] , (7.12)

sending the g̃ boundary point
[(

p,ξα
)]

E1
to the associated equivalence class [B ], for some bound-

ary set B in ∂φM , of limit points in φ (M)l
g eo . As B is a representative set of an abstract boundary

point (from the definition of φ (M)g eo), we can write the composite L ◦ r as the map

L ◦ r : g̃ −→ ā,

defined by

[(
p,ξα

)]
E1

7→ [
p̂

]
, (7.13)

where
[
p̂

] 3 B and ā ⊆ a is some subset of the abstract boundary a. The map L ◦ r is a bijection,

and gives us a desired map from g̃ to a.

Theorem 7.3.11. The composite map L ◦ r is a homeomorphism from g̃ onto its image in a.
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Proof. Clearly, L ◦ r is a bijection onto its image L ◦ r
(
g̃
)
: any two equivalent points in

[
p̂

]
are

endpoints/limit points of curves associated with equivalent points in G (under E1). Since κ is a

quotient map, κ is continuous. By Theorem 22.2 of Munkres (2000) r is also continuous. The

limit operator L can be considered as a map sending collection of points in φ (M) (in this case

those lying on a curve) to a point in the boundary of φ (M) in M̂ (in this case the limit point of the

curve on which those points lie). Then L is a quotient map and therefore continuous. Since the

composition of continuous maps is continuous, L ◦ r is therefore continuous.

Since the boundary of a bounded set is compact, and the spacetime completion can be writ-

ten as the union of M and g̃ , we know that g̃ is compact. We also know that the abstract boundary

a (and every subset of a) is Hausdorff. By theorem (26.6) of Munkres (2000), a continuous bijec-

tion from a compact space to a Hausdorff space is a homeomorphism. We therefore have that

L ◦ r is a homeomorphism, i.e. L ◦ r embeds g̃ into a.

That this embedding might be a proper embedding is an important point to note since there

might also be unapproachable boundary points (Scott & Szekeres, 1994) that are not approached

by any curve. There might also be cases where the image L◦r
(
g̃
)= ā coincides with the a bound-

ary, and future work could consider under what conditions this happens. We stress that this con-

struction can be made for any family of BPP curves (not just geodesics) yielding a generalization

of Geroch’s g boundary.

Via its deep relationship to the a boundary and the manner in which that boundary construc-

tion may be used (given some metric) to classify boundary points as regular/singular/point at in-

finity/unapproachable, our construction similarly allows for the classification of all approachable

boundary points and not just singular ones, which could prove useful for future work where we

might want to look at other boundary constructions built from the tangent bundle structure. We
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emphasize that, for the purposes of this paper, the focus is on maps of the form (7.13) since we

are primarily interested in curves as they approach their associated limit points.

7.3.4 Simple illustrative examples

Simple examples that illustrate the subtle differences between our construction and Geroch’s

original construction include the Schwarzschild spacetime and Misner’s simplified version of the

Taub-NUT spacetime. For the Schwarzschild spacetime, the g̃ boundary is a single point, α, con-

sisting of points in G whose associated geodesics all approach the surface r = 0, which is a point

in the a boundary. By contrast, the g boundary is made up of two parts, each topologicallyS2×R,

for different approaches of the geodesics to r = 0 (Geroch, 1968b).

For Misner’s simplified version of the Taub-NUT spacetime, g̃ consists of just one point, β,

which is the equivalence class consisting of those points in G associated with all geodesics that

approach t = 0. In contrast, the g boundary consists of three points, g̃ , and two circles, C and C ′,

(Geroch, 1968b), with a point on the circles representing those geodesics from both halves of the

cylinder striking the circles at exactly one point.

Consider another simple example. Letφ embed the unit interval (0,1) into R via the inclusion

map. The boundary set B = {0,1} is the boundary set of this envelopment. Now let a second

envelopment, φ′, embed (0,1) in the unit circle via the map θ = 2πt . The boundary points of the

first envelopment are both identified with the boundary point 0 of the second envelopment and

so 0 and 1 of the first envelopment are equivalent (under the equivalence relation defining the

abstract boundary) to 0 of the second envelopment. The boundary set B is disconnected and so

takes the discrete topology. Therefore, the singletons {0} and {1} are open sets containing each of

the boundary points.
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Suppose we are presented with just the envelopment φ. The boundary points 0 and 1 may

wrongly be associated with different equivalence classes in the g boundary. With the knowledge

of the second envelopment, it becomes clear that they are equivalent (since they are both equiv-

alent to 0 in the second envelopment). We thus have 0 and 1 as elements of an equivalence class

in the g̃ boundary.

A subtle point regarding the equivalence classes taken over all possible envelopments is il-

lustrated by the following example from reference (Anonymous referee, 2019). Let L2 be the 2-

dimensional Minkowski space and define the subset M = {
(
x, y

) ∈ L2 : y < 0} of L2. Consider the

inclusion φ : M −→ L2 as an envelopment, and take (0,0) ∈ ∂φM . Let O = I− (0,0)∩M (where I−

is taken in L2), which is an open set. If one is presented with only this envelopment then the set

S (O) is the set of pairs
(
p,ξ

)
with p ∈ O and ξ pointing to (0,0) which is open since all points of

S (O) are identified. In fact the g̃ is made up of one point, ∂φM in L2. This is a very simple example

for which this construction would seem trivial. However, a crucial motivation of this construction

(like that of the a boundary) would be missed. A single envelopment has been considered. Con-

sidering all possible envelopments would produce a richer g̃ boundary, as well as allowing for the

classification of boundary points.

Let us state this in general terms, relative to the above example, an important reason for con-

sidering not just a single envelopment. Suppose we have a manifold M , and let φ,φ′ be two en-

velopments of M . Let ∂φM = B be a regular boundary set (comprise of regular boundary points),

and suppose p̂ ∈ ∂φ′M is a singular boundary point which is equivalent to B under the abstract

boundary equivalence. Then the point
[
p̂

] ∈ g̃ of M contains p̂ and B .

Now, suppose one is only presented with the second envelopment φ′. One might wrongly

conclude that the manifold M is singular. However, since B is regular and B ∼ p̂, by the classifi-

cation of the different types of boundary points, the singularity of p̂ is an artefact of the choice of
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envelopment.

7.4 The g̃ boundary appears robust

There are many potential applications of the relationship between the a and g boundary con-

structions (see the conclusion), and most will involve considerable work. As a first application,

we consider one important outstanding question, namely whether all boundary constructions

are necessarily pathological for a suitably contrived example, such as that presented in Geroch et

al. (1982).

The example spacetime is constructed as follows: in the two dimensional Minkowski space-

time N with the usual 2-metric, let s be the endpoint of a future directed timelike geodesic γp

which starts at p, and let r be a point in N which lies on a future directed null geodesic in N . Take

the cross product of N \ {s} and the 2-dimensional spacelike plane.

Now, let M be a spacetime and let φ : M −→ M̂ embed M into M̂ . Furthermore, let φ (M) =

φ (M)∪∂φMI be a spacetime in which φ (M) is dense, where ∂φMI is a subset of ∂φM containing

points that are endpoints/limit points of incomplete geodesics in φ (M).

Suppose we have a singular boundary construction satisfying the following conditions:

a. For every incomplete geodesic γp associated with a point
(
p,ξα

) ∈ G , there exists a point

p̂ ∈ ∂φMI such that φ
(
γp

)
limits to p̂,

b. the extension exp : Ū −→ φ (M) of the exponential map exp : U −→ φ (M), which take

points of G associated with incomplete geodesics of affine length exactly one to their end-

points/limit points in φ (M), is continuous.

Choosing a sequence of curves from p to r that converge to γp , the authors in Geroch et
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al. (1982) showed that r limits to s and thus any open neighborhood of the singular point s will

contain the regular point r . The justification is also dependent on certain smoothness condition

on open neighborhoods around the “bends” where the sequences of curves are near s. The choice

is to have the open neighborhoods “smooth everywhere except s where it accumulates”.

Now, let us consider the g̃ boundary and this example. Restrict G to points associated with in-

complete geodesics and let the topology on G be that for which the S (O) sets are a basis. Moreover,

let the topology on this subset of G be the induced topology from G . Then clearly our construction

satisfies the above two conditions: of course, by our construction, every point p̂ ∈ ∂φMI is an end-

point/limit point of an incomplete geodesicφ
(
γp

)
. Also, the inverse image of

(
φ (O) ,V

)
- where V

is open in ∂φMI - under exp is just S (O), which is open in G . The T2-separability of the manifold

completion with our construction ensures that there are open neighborhoods of the regular point

r and the singular point s such that r and s remain T2-separated which implies that this exam-

ple is therefore T1 separated. This seems to suggest that the non-T1 separation problem of this

example experienced by the Geroch’s g boundary and the b boundary constructions is inherited

from the topological separation problems inherent in these boundary constructions themselves,

rather than be symptomatic of all boundary constructions satisfying the two conditions.

7.5 Conclusion

The aim of this paper was to construct a T2-separable g boundary, g̃ , and establish a relationship

between this g boundary and the a boundary. This important open problem (Scott & Szekeres,

1994) has been solved. Our construction, in essence, has rephrased the a boundary in terms of the

reduced tangent bundle. We have built a boundary construction using the tangent bundle which

inherits many of the generalizations from the a boundary, i.e. applicability to smooth manifolds
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of any dimension endowed with an affine connection and BPP family of curves. Moreover, we

potentially have a means of generalizing other constructions built from the tangent bundle struc-

ture. Specializing to geodesics we obtain a narrower generalization of Geroch boundary. We have

also shown that regular spacetime points remain separated from points in g̃ upon completing

the spacetime with g̃ . In order to achieve this, properties of the attached point topology on the

a boundary were used to define new open sets on G . It was then shown that the new boundary

g̃ , constructed from equivalences classes defined on the set G , is Hausdorff in this topology. In

the process of obtaining the definition of the equivalence relation for our construction, all other

identifications we attempted were non-Hausdorff.

We also applied our construction to the example of Geroch et al. (1982), and showed that

the g̃ -boundary is free of the topological separation problem experienced by other constructions,

thus refuting their conjecture that such problems are endemic to all boundary constructions of a

certain class. It may be that g̃ is the only pertinent subset of the a boundary with respect to the

two conditions of Geroch et al (1982). If that is the case, this might provide a route to establishing

a relationship between the b and a boundaries.

Now that we have a relationship between the g̃ and the a boundary, there are many further

interesting problems that come to mind. Among these, we identify the following as exciting pos-

sible future work:

1. Can the causal, metric and differentiable structures defined on g (Geroch, 1968b) be ex-

tended to g̃ ?

2. If the answer to 1. is yes, can our construction then provide a way to construct causal, met-

rical and differentiable structures on the a boundary?

3. Again, if the answer to 2. is in the affirmative, what new information, if any, can we obtain
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from these structures on the a boundary?

Finally, an obvious problem to consider is the relationship between the boundaries consid-

ered in this paper to other boundary constructions.
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Chapter 8

Conclusion

We have dealt with general properties of black hole spacetimes and spacetime singularities in

this thesis. We have also considered stars with zero expansion, as well as the geometry of what we

named minimal horizons (as they are foliated by minimal 2-surfaces). We detail the conclusions

of the chapters of the thesis.

In chapters 3 and 4 we substantially extended earlier work (Ellis et al., 2014) on the employ-

ment of the 1+1+2 semitetrad covariant formalism to study a range of properties of marginally

trapped surfaces and the hypersurfaces they foliate in black hole spacetimes. We have estab-

lished a result on the equivalence, up to diffeomorphism, of marginally trapped surfaces (and

the 3-surfaces they foliate) in LRS II spacetimes and a broader class of spacetimes which gen-

eralizes LRS II spacetimes (which we notate as NNF). From generalizing the determination of

the sign of the intrinsic metric on the horizon, we proposed a causal classification scheme, that

relates (causally) 3-surfaces foliated by marginally trapped surfaces in the LRS II, NNF, and a gen-

eral 4-dimensional spacetimes. We then went on to provide a detailed study of stability of the

2-surfaces in terms of well defined geometric and thermodynamic variables, while providing ex-
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plicit examples to demonstrate the usefulness of our approach. We showed that the cross sections

of the event horizon in the Schwarzschild spacetime are stable, and those of the inner MTT in the

Oppenheimer-Snyder dust model are unstable. Stability of these 2-surfaces in the Robertson-

Walker spacetimes is characterized. We also considered the surface gravity κ on the horizon.

For isolated horizons, it is seen that the surface gravity is invariant under the diffeomorphism

between LRS II and NNF spacetimes. This is not the case in general since we do not have a gen-

eral causal equivalence between LRS II and NNF spacetimes (in the nonisolated case the surface

gravity depends on the causal signature of the horizon). The classification scheme, however, does

provide us with a way to determine the conditions under which κ is invariant in general cases.

In chapter 5 we have explicitly shown that a necessary condition for a star with zero expansion

to evolve is that the star has non-zero radiation and acceleration. With further analysis of the

field equations for A 6= 0 and Q 6= 0, it is shown that the star is necessarily conformally flat. The

analyses of the field equations were carried out using the commutation relation of the hat and dot

derivatives, via which we obtain additional constraints, which further give us additional evolution

equations that can be matched against the original set of equations. These results add to the

literature on expansion-free dynamical stars, which have been developed over the last decade

and half, most notably through the works of Herrera and co-authors.

In chapter 6 we studied the geometry of hypersurfaces in LRS II spacetimes and a general-

ization of LRS II spacetimes, the NNF spacetimes, foliated by minimal 2-surfaces, i.e. surfaces

of vanishing mean curvature vector. Resolving the field equations, we showed that the Gaussian

curvature K is just the energy density and that it is constant, This allowed us to classify the 2-

surfaces. Since under the minimality condition the shape tensor is also identically zero on the

2-surfaces, from the result in Chern et al., (1970), we obtain the result that all minimal horizons in

LRS II spacetimes are geometrically S3, i.e. have spherical symmetry. This result extends to NNF
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spacetimes.

In chapter 7 we solved an outstanding problem proposed in Scott & Szekeres (1994), which

has to do with establishing a relationship between the a-boundary and other boundary construc-

tions. The main difficulty was that different approaches are used in constructing the different

boundaries, and therefore relating any two constructions would required relating the approaches.

We also saw this as a very important problem since in many instances each construction has its

own unique benefits of application, and if we could relate any two, these properties could in prin-

ciple be carried over to the other. We went on to construct a proper embedding of a modified

g -boundary, which we denoted by g̃ , into the a-boundary by redefining the open sets forming

the basis of a topology on the reduced tangent bundle, making use of properties of the attached

point topology of the a-boundary. The method of constructing g̃ to embed it into the a-boundary

naturally meant that g̃ was Hausdorff, and this was explicitly proved. Once such relationship is

established we are led to additional follow up questions, and these we setup up as possible future

avenues for research.

1. Can the causal, metric and differentiable structures defined on g (Geroch, 1968b) be ex-

tended to g̃ ?

2. If the answer to 1. is yes, can our construction then provide a way to construct causal, met-

rical and differentiable structures on the a boundary?

3. Again, if the answer to 2. is in the affirmative, what new information, if any, can we obtain

from these structures on the a boundary?

4. Can the method employed here be used to establish relationships between other construc-

tions?
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