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 ABSTRACT 

 

Affordable, efficacious, protective and safe HIV vaccine is the best strategy to end the 

HIV-1 epidemic. A protective vaccine will need to elicit high affinity antibodies and 

long-term B cell immunological memory. CD4+ T cells are critical for the development 

of protective adaptive immune responses. Specifically, the subset termed T follicular 

helper (Tfh) cells are crucial for the establishment of germinal center (GC) reactions, 

the production of high affinity antibodies and the generation of memory B cells and 

long-lived plasma cells. However, the contribution of these cell subsets to the 

development of a vaccine is not well defined, probably due to their heterogeneity, 

susceptibility to HIV-1 infection and most importantly, the difficulty associated with 

access to human lymphoid tissues samples to study them.  

Using a multipronged approach that included flow cytometry, HLA class II tetramers, 

immunohistochemistry (IHC) and immunofluorescence microscopy (IF) assays, 

ELISA, digital droplet PCR, RNA in situ hybridization (ISH) assays and in vitro co-

culture techniques, this study sought to comprehensively characterize lymphoid tissue 

and peripheral blood Tfh cell subsets during clade C HIV-1 infection. We also 

endeavored to define virus persistence in the lymph nodes (LNs) of early treated 

individuals and identify cellular subsets that harbor residual virus in aviremic 

individuals on suppressive antiretroviral therapy (ART), which was initiated during 

hyperacute HIV infection.  

Our studies generated several notable novel findings. Firstly, we showed that HIV-

specific Th1-biased Tfh cells promote the development of Gag-specific antibodies, 
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which in turn reduce set point viral loads during acute HIV-1 infection. We further 

elucidated the function of Tfh cells in the lymph nodes and showed that highly 

functional GCTfh responses are induced in early treated individuals. In addition, these 

cells were superior at inducing B cell class switching and at secreting higher amounts 

of IL-21 compared to GCTfh cells from untreated individuals. 

Secondly, we used IHC, IF and ISH technologies, to show that the persistence of Gag 

p24 antigens and HIV RNA in the GCs of early treated aviremic individuals. Thirdly, 

we also showed that LN viral loads were significantly higher than plasma viral loads. 

Fourthly, we showed that the cumulative plasma antigen load of early treated 

individuals predicted the magnitude of the GC response and the frequencies of GCTfh 

cells at the time of LN excision. Finally, we demonstrated HIV driven induction of 

CXCR3+CCR6+ GCTfh subsets in human LNs and showed that this subset contributes 

to virus persistence in the LNs.  

Overall, the work included in this thesis highlights a cTfh cell subset that could slow 

down HIV replication by enhancing antibody generation and demonstrates that the 

early initiation of ART is beneficial to the development of superior functioning GCTfh 

responses. In addition, our results underscore the inefficiency of ART in eradicating 

persistent viremia in the GCs in secondary lymph nodes. These results will inform 

prophylactic or therapeutic HIV-1 vaccine studies directed at inducing long lasting 

antibody responses and highlights barriers that need to be surmounted to achieve 

sterilizing HIV-1 cure. 
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 CHAPTER 1: INTRODUCTION 

 

1.1 The HIV/AIDS epidemic 

Acquired immunodeficiency syndrome (AIDS), a disease responsible for the deaths of 

millions of people worldwide, is caused by two lentiviruses, human immune deficiency 

virus type 1 (HIV-1) and HIV-2 (UNAIDS, 1999, Sharp et al., 2011). Human infections 

by these viruses originated from multiple cross-species transmissions of simian 

immunodeficiency virus (SIV) from primates to humans (Sharp et al., 2011). Since the 

clinical recognition of the disease in 1981, HIV/AIDS has been a significant public 

health problem all over the world especially in sub-Saharan Africa, the region most 

affected by the epidemic (Hahn et al., 2000). An estimated 37 million people globally 

were reported to be living with HIV in 2016, with almost 70% of that figure living in sub-

Saharan Africa (Figure 1.1) (UNAIDS, 2017a). Although both HIV-1 and HIV-2 have 

similar modes of transmission, replication pathways and clinical consequences, they 

are genetically different viruses with different primate ancestral origins (Van 

Heuverswyn et al., 2007, Motomura et al., 2008, Nyamweya et al., 2013). Furthermore, 

HIV-1 is more widespread globally while HIV-2 is mostly confined in West Africa and 

in few European countries like Portugal and France, mainly because of their socio-

economic links to West African countries (Nyamweya et al., 2013, Campbell-Yesufu 

et al., 2011). The present study was conducted in South Africa where HIV-1 is 

prevalent, thus the focus hereon will be on HIV-1 infection.  
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Figure 1.1: Global adult HIV prevalence in 2016. Source: (UNAIDS, 2016a) 

1.2 Pathogenesis of HIV-1 infection 

1.2.1 Acute HIV infection 

The global spread of HIV-1 is due to its exceptional ability to effectively thwart the 

human immune system and to establish life-long infection (Simon et al., 2006). HIV-1 

transmission in humans occurs primarily through sexual contact via penile, rectal or 

vagina routes, through exposure to HIV-contaminated blood, contaminated needles, 

syringes and surgical items or transmitted vertically from mother to child in-utero and 

post-partum (Simon et al., 2006, Patel et al., 2014, Lavoie et al., 2017, Al-Jabri, 2007). 

Following HIV-1 transmission, there is rapid virus replication mainly at the 

mucocutaneous surfaces of the reproductive tracts or gastro intestinal tract, the virus 

subsequently disseminates into the lymphatic system (Simon et al., 2006, Genesca et 

al., 2010, Cohen et al., 2011).  
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During the initial 1 to 14 days of infection commonly referred to as the window period, 

the infection is asymptomatic and the virus remains undetectable in the plasma by 

standard testing methods (Fiebig et al., 2003, Douek, 2003, Cohen et al., 2011). 

Qualitative or quantitative HIV viral RNA detection or amplification methods are 

typically used for diagnosis and early detection of virus during the window period, 

because HIV antigens or anti-HIV antibodies are undetectable in the blood. Recent 

advancements in nucleic acid amplification technologies have led to the development 

of more sensitive diagnostic assays that can detect low levels of viral RNA down to a 

threshold of 20 copies/ml (Busch et al., 2005, Cobb et al., 2011, Busch, 2015). In 

addition, the development of fourth generation serological tests that detect either 

antigens or antibodies have greatly reduced the window period down to 5 days after 

infection (Busch, 2015).  

The asymptomatic stage of virus replication is followed by seroconversion, which 

denotes the appearance of HIV-1 specific antibodies in plasma (Cohen et al., 2011). 

The step-wise detection of viral markers and antibodies in the blood by different 

assays is used to define the clinical stages of acute HIV-1 infection (Cohen et al., 

2011). The Fiebig staging system of classification, which defines six sequential stages 

of acute HIV infection, was published in 2003 and is widely adopted by HIV 

researchers and public health practitioners worldwide (Figure 1.2) (Fiebig et al., 2003, 

Busch, 2015). The eclipse phase is the period from virus infection to stage I where 

HIV RNA is first detected. Positivity to subsequent tests that detect Gag p24 antigen 

and anti-HIV antibodies defines the remaining stages (Figure 1.2).  
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Figure 1.2: Staging of acute HIV infection. Acute HIV infection classification by the 
Fiebig staging system defines seven successful stages ranging from the “eclipse phase” before 
detectable viremia to progressive Viral RNA detection and subsequent “seroconversion” stages. 
Adapted from Busch (2015).  

1.2.2 Chronic HIV infection 

The clinical symptoms and the rate of HIV-1 disease progression are largely 

determined during the acute stage of infection (Hansasuta et al., 2001, Robb et al., 

2016). Various host and virus factors contribute to the different rates of HIV disease 

progression observed in infected individuals (Pohlmeyer et al., 2013, Naif, 2013, 

Selhorst et al., 2017). The chronic exposure of the immune system in an untreated 

individual to actively replicating virus progressively damages the immune system, 

resulting in a dysregulated immune response (Boasso et al., 2009). The generalized 

perturbation of the immune system by chronic HIV infection, includes but is not limited 

to, impaired B cell responses, excessive antibody production, aberrant T cell 
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activation, T cell exhaustion, senescence and depletion, chronic inflammation and the 

disruption of lymphoid tissue architecture (Ng et al., 2013). Furthermore, the rapid 

depletion of the CD4+ T cells with concurrent high plasma viral loads accelerates 

progression to AIDS (Moir et al., 2011, Naif, 2013). During this stage individuals could 

be susceptible to other opportunistic infection like Mycobacterium tuberculosis and 

Pneumococcus meningitis (Naif, 2013). The progression of HIV-1 disease can 

however, be curtailed through the administration of antiretroviral (ARV) drugs.  

1.3 Therapeutic and preventative strategies for HIV-1 infection 

1.3.1 Antiretroviral therapy 

The inception of ARV drugs in mid 1980s was a breakthrough in the HIV/AIDS 

epidemic, turning an incurable disease into a chronic infection (McElrath et al., 2010). 

Antiretroviral therapy (ART) has since evolved from the administration of single ARVs 

to the combined administration of multiple drugs with different modes of action (Bhatti 

et al., 2016). The combination of ARV agents with different modes of action results in 

rapid virus suppression, minimizes drug resistance and limits treatment failure (Arts et 

al., 2012). The six mechanistic classes of ARV agents currently available are: 

Nucleoside reverse transcriptase inhibitors (NRTIs), Non-nucleoside reverse 

transcriptase inhibitors (NNRTIs), Protease inhibitors (PIs), Integrase inhibitors 

(INSTIs), Fusion inhibitors (FIs) and Chemokine receptor antagonists (CCR5 

antagonists) (Table 1) (Bhatti et al., 2016, Meintjes et al., 2017). Their mechanisms of 

action are summarized in table 1.1. Remarkable progress has been made in the 

simplification of ART to reduce side effects and improve adherence. Single-tablet 

regimens which contains 3 or more active ingredients, improved drug formulations with 

reduced toxicity, and novel dosage forms like slow release drug forms or long-acting 
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injectables and inserts are current innovations in the pipeline (Cihlar et al., 2016, 

HIVandHepatitis.com., 2015, Clark et al., 2015).  

Previous ART initiation guidelines stipulated that HIV-infected individuals had to have 

a CD4 count of below 250 cells/µl, or having co-morbidities like tuberculosis and 

meningitis. With emerging evidence of the benefits of early initiation of ART to the 

immune system (INSIGHT START et al., 2015, TAS et al., 2015), the World Health 

Organization (WHO) guidelines now recommends the immediate initiation of ART for 

individuals that test positive for HIV regardless of the CD4 count (WHO, 2015, Meintjes 

et al., 2017). The global scale-up of ART has contributed greatly to a massive 

reduction in AIDS-related deaths and has significantly reduced HIV transmission rates 

globally (UNAIDS, 2017b, UNAIDS, 2016b). Of important mention is the huge 

investment by the United States President’s Emergency Plan for AIDS Relief 

(PEPFAR) towards increased access to HIV care and treatment across sub-Saharan 

Africa (Chin et al., 2015, El-Sadr et al., 2012).  

In spite of the many benefits of ART in preserving life-expectancy of HIV-1 infected 

individuals, lifelong ART has many drawbacks which include; toxicity, residual chronic 

inflammation, cumulative costs of drugs and increased onset of diseases associated 

with aging (Woldemedhin et al., 2012, Dekoven et al., 2016). Novel interventions are 

therefore required to take people off lifelong ART. The success of these strategies will 

require total eradication of residual virus from sanctuary sites such as lymph nodes, 

the gut and the gastrointestinal tract, which have disparate and suboptimal drug levels 

during ART (Deeks et al., 2016). 
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Table 1.1: Classes of antiretroviral agents 

Class Abbreviation Mechanism of 
action 

Specific action 

Nucleoside and 
nucleotide reverse 
transcriptase 
inhibitors  

NRTIs and 
NtRTIs 

Reverse 
transcriptase 
inhibition 

Nucleic acid 
analogues mimic the 
normal building 
blocks of DNA, 
preventing 
transcription of viral 
RNA to DNA 

Non-nucleoside 
reverse 
transcriptase 

NNRTIs Reverse 
transcriptase 
inhibition 

Alter the conformation 
of the catalytic site of 
reverse transcriptase 
and directly inhibit its 
action 

Protease inhibitors PIs Protease inhibition Inhibits the final 
maturation of stages 
of HIV replication, 
resulting in the 
formation of non-
infective viral particles 

Integrase inhibitors 
(also termed 
integrase strand 
transfer inhibitors) 

InSTIs Inhibition of viral 
integration 

Prevent the transfer 
of proviral DNA 
strands into the host 
chromosomal DNA 

Entry inhibitors - Entry inhibition Bind to viral gp41 or 
host cell CD4+ or 
chemokine (CCR5) 
receptors 

CCR5, C-C chemokine receptor type 5; NRTIs, nucleoside reverse transcriptase inhibitors; NtRTIs, 
nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors; PIs, 
protease inhibitors; InSTIs, integrase inhibitors (integrase strand transfer inhibitors). Adapted from 
Meintjes et al. (2017). 

1.3.2 Pre-exposure prophylaxis 

Despite the relative success of ART in the control of the HIV-1 epidemic and a 

reduction in mother to child transmission events globally, a combination of behavioral, 

biomedical and structural approaches are still required to contain the epidemic (Roxby 
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et al., 2014). Pre-exposure prophylaxis (PrEP) was recently recommended by the 

World Health Organization (WHO) for the prevention of HIV acquisition by high-risk 

individuals in combination with other methods (WHO, 2007, Karim et al., 2010, 

McElrath et al., 2010, WHO, 2013). Currently PrEP is administered orally as a single 

tablet fixed dose of Tenofovir and emtricitabine or Tenofovir only (Coutinho et al., 

2013). Numerous trials have demonstrated the efficacy of PrEP which relies largely 

on adherence to the recommended dosing schedule, with the potential of non-

adherence leading to drug resistance (Landovitz et al., 2009, Eakle et al., 2013). 

Currently PrEP is gaining widespread acceptance and incorporation into health care 

systems globally, alongside WHO guidelines (WHO, 2015) recommending the 

availability of PrEP on demand (Conniff et al., 2016, DoH, 2016, KSA, 2017).  

1.3.3 HIV vaccine 

The HIV research community has pursued the development of a safe and efficacious 

vaccine since the discovery of HIV in the early 1980s. If developed, a preventative 

vaccine for HIV will be the backbone of the integrated HIV prevention strategy 

(Dieffenbach et al., 2011). The expectation is that a vaccine will be able to protect 

against any form of HIV transmission with the ultimate goal of ending the epidemic 

(Dieffenbach et al., 2011, McElrath et al., 2012). Numerous factors, including, the 

broad genetic diversity of HIV-1, mutability of the HIV-1 target epitopes, the structural 

properties of its viral envelope, early establishment of reservoirs, viral evasion of host’s 

immune responses and the limited knowledge of immune correlates of protection are 

obstacles in the development of an effective vaccine (Barry SM et al., 2014, Ahlers, 

2014, Walker et al., 2008).  
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Several vaccine trials have been conducted with minimal to no success (Buchbinder 

et al., 2008, McElrath et al., 2008, Rerks-Ngarm et al., 2009, Gray et al., 2016). Initial 

trials in the 1990s vaccinating with recombinant gp120 induced narrow antibody 

responses specific only for the virus strain in the immunogen, which led to interest in 

immunogens that would induce cross clade responses (Gray et al., 2016). The STEP 

and Phambili trials were T cell based vaccines administered as an Adenovirus 5 (Ad5) 

virus vector but the trials were discontinued after failing the futility test, with increased 

HIV incidence rates observed in certain patient categories (Buchbinder et al., 2008, 

McElrath et al., 2008). The RV144 trial which used a canary pox prime ALVAC-HIV 

and AIDS-VAX booster regimen to vaccinate Thai adults, was the most promising trial 

so far with 31% efficacy (Rerks-Ngarm et al., 2009).    

Recent efforts to build on the RV144 trial and induce long-lasting immune responses, 

redesigned the ALVAC vector with a clade C Env insert and administered it together 

with a bivalent subtype C recombinant gp120 and an MF59 adjuvant (Gray et al., 

2016). The subsequent HVTN 702 phase III and IIb trial is currently in progress in 

multiple sites across South Africa (AVAC, 2016). Additionally, an efficacy study for a 

mosaic vaccine comprising Ad26.Mos4.HIV in combination with Clade C gp140 is 

currently being conducted in multiple sites, including South Africa, Malawi, 

Mozambique, Zambia and Zimbabwe (TAG, 2016, NIAID, 2016).  

Further HIV vaccine efforts are directed at designing immunogens that can induce 

broadly neutralizing antibodies (bNAbs) against HIV (Kwong et al., 2011). HIV-1 

bNAbs are antibodies that have cross-reactive neutralization of a broad array of HIV-1 

strains in vitro (Corti et al., 2010). The proof of concept for designing such a vaccine 

lies in the ability of some people to develop bNAbs during untreated HIV-1 infection 
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(Borrow et al., 2017). In addition, the strength of this approach lies in the ability of 

bNAbs to neutralize multiple viral strains and providing coverage against most 

circulating HIV strains (Ahmed et al., 2017, Corti et al., 2010). Thus, there is 

considerable interest in the development of candidate immunogens as well as 

developing immunization strategies to elicit bNAbs by vaccination (de Taeye et al., 

2016, Moore et al., 2017). Summarily, the consensus in the HIV vaccine research field 

is that an ideal vaccine candidate should induce coordinated B cell, CD4+ and CD8+ T 

cell responses (McElrath et al., 2010). Furthermore, there is a need for new 

immunogens to overcome diversity for T cell responses and to induce durable 

neutralizing antibody responses with great breadth (Haynes et al., 2014). 

1.3.4 Antibody therapy  

Monoclonal antibody therapies are potential approaches to prevent HIV acquisition. 

Studies involving non-human primates and humanized mice have shown that 

passively infusing antibodies to prevent virus infection or reduce levels of viremia have 

been efficacious (Horwitz et al., 2013, Halper-Stromberg et al., 2014). This was further 

supported by evidence from macaque studies. In one such study, the administration 

of α4β7 antibody with ART effectively controlled viremia and reconstituted the immune 

system of SIV infected macaques (Byrareddy et al., 2016). A phase I clinical trial in 

humans demonstrated the safety and tolerance of 3BNC117 antibody monotherapy 

(Caskey et al., 2015). The antibody however had a faster decay rate in HIV-infected 

individuals and induced resistance in some individuals (Caskey et al., 2015). 

Conversely, the 3BNC117 monotherapy enhanced host antiviral immunity in another 

study (Schoofs et al., 2016). Lastly, in a Phase IIa clinical trial, four 30 mg Kg-1 
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infusions of 3BNC117 delayed viral rebound for up to 19 weeks in ART mediated fully 

suppressed HIV-infected individuals (Scheid et al., 2016).  

The efficacy of VRC01 antibody at preventing HIV infection in different target 

populations is currently being tested by the Antibody Mediated Prevention (AMP) 

studies (NIAID, 2016, Clinicaltrial.gov, 2015, HVTN, 2017). Taken together, results 

from these trials will potentially answer important questions relating to antibody-based 

therapy for HIV prevention. Furthermore, combination of antibodies with different 

specificity and potency will be explored in upcoming trials to prevent the development 

of antibody resistance or virus escape and to validate the potency and breadth of 

antibody therapies (Zhang et al., 2016, Julg et al., 2017).  

1.4 Host immune responses to HIV infection 

As with all infections, effective anti-viral responses are required by the host’s immune 

system to control HIV-1 infection and prevent the development of AIDS. Both the 

innate and adaptive immune system; comprising T-cell dependent and humoral 

immune responses, contribute to the partial suppression of HIV (Mogensen et al., 

2010). Importantly, the cytotoxic CD8+ T cell (CTL) response is critical for virus control 

during acute HIV-1 infection (Streeck et al., 2010). Evidence for the role of CTL in HIV 

control include; the association between the initial decline in peak viral load with the 

emergence of CD8+ T cell responses in HIV infected individuals, immune selection 

pressure in autologous viral sequences which manifest in key CTL epitopes resulting 

in abrogation of CTL recognition, and the experimental depletion of CD8+ T cells in 

SIV disease models resulted in increased plasma viral loads (Koup et al., 1994, Walker 

et al., 2012, Jin et al., 1999, Matano et al., 1998).  
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Numerous studies have demonstrated the capacity of cytotoxic CD8+ T cells to kill HIV 

infected cells (Migueles et al., 2008, Streeck et al., 2010). Characteristics like CTL 

proliferation, cytokine production, degranulation and cytolysis of infected cell targets 

have been used to define the quality of the CTL response (Cao et al., 2003, Streeck 

et al., 2009, Ndhlovu et al., 2012). Furthermore, the host genetic determinants of CTL 

responses and antiviral characteristics of CTLs are progressively being described 

(Walker et al., 2012, Ndhlovu et al., 2015, Reuter et al., 2017).  

Until recently, little or no attention was paid to the contribution of HIV-specific CD4+ T 

cell responses and viral control (Streeck et al., 2010). Some of the reasons for the 

paucity of information on this topic include; HIV induced CD4+ T cell loss, the 

domination of T cell responses by CD8+ T cells and lack of sensitive assays to detect 

low frequency HIV-specific CD4+ T cells (Ramduth et al., 2005, Mattapallil et al., 2005, 

Sant et al., 2012). The importance of HIV-specific CD4+ T cell responses for the 

development of robust CTL responses and improved antibody neutralization breadth 

has been described by several studies (Kalams et al., 1999, Ranasinghe et al., 2015, 

Schultz et al., 2016). One such study analyzed HIV-specific CD4+ T cell responses in 

a cohort of HIV-infected controllers with and without neutralization breadth found 

elevated breadth and magnitude of Gag- and gp41-specific CD4+ T cells responses in 

controllers with neutralizing antibodies (Ranasinghe et al., 2015). Additionally, the 

magnitude of Gag-specific responses correlated with the neutralization breadth, 

suggesting a role for these CD4+ T cell responses in the development of neutralization 

breadth (Ranasinghe et al., 2015).  

In multiple studies, IL-21 secretion by HIV-specific CD4+ T cells and the expansion of 

IL21+ CD4+ T cells were associated with enhanced virus suppression by CTLs and 
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lower viral load set points (Porichis et al., 2011, Chevalier et al., 2011a). Furthermore, 

HIV specific CD4+ T cells help to CD8+ T cells was examined in in vitro co-culture 

assays and the expression levels of cytolytic enzymes; granzyme B and perforin were 

elevated in CD8+ T cells co-cultured in that study (Schultz et al., 2016). All these lines 

of evidence demonstrate the importance of HIV specific CD4+ T cells in HIV control 

and with the deployment of more sensitive detection methods for HIV-specific CD4+ T 

cells, their role in HIV control will be better delineated (Laher et al., 2017). This 

information will be critical for HIV vaccine strategies.    

1.5 CD4+ T helper cell subsets and acute HIV infection 

CD4+ T helper cells are important mediators of adaptive immunity through performing 

panoply of functions, including, ’helping’ B cells and CD8+ T cells by producing 

cytokines and chemokines, which coordinate the full array of immune responses to 

infections (Zhu et al., 2008, Luckheeram et al., 2012). Historically, CD4+ T cells were 

classified into T helper (Th) 1 and Th2 cells based on the predominant cytokine, IFN-

γ or IL-4 respectively, produced by each cell type (Eyerich et al., 2014). With the 

emergence of new technologies to study CD4+ T cells, the dichotomous paradigm of 

Th1 and Th2 cells has since evolved to recognize multiple other subsets, which are 

identified by their lineage-defining transcription factor or by the migration marker 

expressed (Eyerich et al., 2014, Luckheeram et al., 2012). These subsets include the 

Th9, Th17, Th22, T regulatory (Treg), and T follicular helper (Tfh) cells (Figure 1.3) 

(Zhu et al., 2008, Luckheeram et al., 2012).  

The polarization of naïve CD4+ T cells into these subsets with distinct effector function 

occurs through an integration of T cell receptor, co-receptor and cytokine receptor 

signaling. In addition, the type of antigen, the priming action of antigen presenting cells 
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(APCs), the member of the signal transducer and activator of transcription (STAT) 

family that is induced or the soluble factors present, also contribute to effector subset 

differentiation (O'Shea JJ et al., 2010, Zhang et al., 2013b, Tangye et al., 2013). The 

transcription factors that drive CD4+ T helper cell differentiation include, GATA-binding 

protein 3 (GATA-3) for Th2, T-bet for Th1, retinoid-related orphan receptor gamma t 

(RORγT) for Th17 and the forkhead box protein 3 (Foxp3) for the Tregs and the B cell 

CLL lymphoma 6 (BCL-6) for Tfh cells (Figure 3) (O'Shea JJ et al., 2010).  

The effector lineages of T helper cells specialize in the following: the Th1 cells secrete 

the cytokines IFN-γ and IL-2 and mediate immune responses against intracellular 

pathogens (Zhu et al., 2008, London et al., 1998), while the IL-4 and IL-10 secreting 

Th2 cells are responsible for immunity against extracellular parasites like the 

helminths (Figure 3) (Zhang et al., 2013b). The Th9 cells which also produce anti-

inflammatory IL-10 and IL-9 are involved in providing defenses against nematodes 

(Mackay, 2000, Schmitt et al., 2014a) and the Th17 facilitate antimicrobial immunity 

and protection at mucocutaneous sites (Bettelli et al., 2008). Treg cells regulate 

immune responses and prevent autoimmunity while the Tfh cells interact with antigen-

specific B cells to support B cell functions (Mackay, 2000). 
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Figure 1.3: T helper cell lineage development and functions. T helper cell 
lineages comprise Th1, Th2, Th17, Treg and Tfh cells that mediate various immune functions. 
Also, the prevailing cytokine environment during the differentiation of activated CD4+ T cells 
reinforces these respective lineages on activated CD4+ T cells. Sourced from Zhang et al. (2013b) 

1.6 T follicular helper (Tfh) cells 

T follicular helper cells are important components of the adaptive immune system, 

whose primary function is to support B cell responses (Nurieva et al., 2010, Ma et al., 

2012).  The role of CD4+ T cell help in the development of T-cell dependent antibody 

responses has long been known but it was only until the early 2000s that Tfh cells 

were identified as a distinct CD4+ T helper subset specializing in helping B cell 

responses (Deenick et al., 2011). Tfh cells are characterized by a high expression of 

the follicle-homing chemokine receptor 5 (CXCR5), the transcription factor B cell 

lymphoma 6 (Bcl6), the inducible T cell co-stimulator (ICOS) and programmed cell 

death protein-1 (PD-1) (Breitfeld et al., 2000, Ma et al., 2012, Tangye et al., 2013).  
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1.6.1 Differentiation of Tfh cells 

Numerous signals including T cell receptor signaling, surface molecules and the 

cytokine milieu contribute to the generation of Tfh cells (Deenick et al., 2011). 

Activated CD4+ T cells upregulate the surface expression of CXCR5 thus promoting 

their migration to the B cell follicles (Figure 1.4).  

 
Figure 1.4: Generation of Tfh cells. TCR dependent interactions between CD4+ T 
cells and dendritic cells (DCs) activate pre-Tfh cells in the T cell zones. Further interactions at the 
T-B border with antigen specific B cells promote their differentiation into matured Tfh cells, which 
upregulate CXCR5 and other Tfh associated markers and in turn facilitate B cells’ affinity 
maturation in the germinal center. Adapted from Deenick et al. (2011). 

Chemotactic signaling by the chemokine CXCL13 which is secreted by B cells and 

follicular stromal cells attract primed CD4+ T cells through the ligand CXCR5 into the 

follicles of the secondary lymphoid tissues (Ramiscal et al., 2013, De Guinoa et al., 

2011). Bcl6 is required for lineage differentiation of primed T cells as Tfh cells (Nurieva 

et al., 2009, Liu et al., 2013). It represses the expression of master transcription 
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factors; GATA-3, T-bet and RORγT of other CD4+ T cell lineages, while promoting the 

expression of CXCR5, IL-21, IL-6 and other Tfh associated factors (Crotty, 2011).  

These cellular and molecular signals mediated by specific cytokines including; IL-4, 

IL-6, IL-10 and IL-21, initiate the Tfh cell program which is enhanced by cell to cell 

interactions between the Tfh and B cells (Vogelzang et al., 2008, Vinuesa et al., 2005). 

Ongoing stimulation of Tfh cells by antigen-presenting B cells upregulates the 

expression of transcription markers, Bcl6 and c-Maf, which promote maintenance of 

the Tfh phenotype in the presence of cognate B cell interaction (De Guinoa et al., 

2011). Thus, Tfh cell lineage differentiation is closely associated with its functional role 

in B cell differentiation and the development of long lived antibody responses (Pissani 

et al., 2014).  

1.6.2 Tfh cells’ help to B cells 

Optimal B cell differentiation, survival, immunoglobulin class switching or class switch 

recombination and the production of long-lasting, high affinity antibodies after infection 

or vaccination requires the cognate help of Tfh cells (Hoffman et al., 2016, Crotty, 

2011, Crotty, 2014). Naïve B cells activated in a T-cell-dependent manner present 

peptide-MHC-II complexes to early Tfh cells (Vinuesa et al., 2005, Vinuesa, 2012, 

Ramiscal et al., 2013). Cognate interactions between B cells and Tfh cells in lymphoid 

tissues at the T cell-B cell border (Mackay, 2000) through ligand-receptor 

engagements promote B cell differentiation and proliferation (Figure 5). Some of the 

B cells differentiate via the extra-follicular route to generate short lived plasma blasts 

that secrete low affinity antibodies while others migrate into the follicles and mature in 

germinal centers (Figure 1.5) (Hoffman et al., 2016). The master regulator of Tfh cells, 
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Bcl6 also modulates B cell differentiation by controlling cell cycle genes, DNA damage 

response genes and the B cell receptor signaling pathways (Crotty, 2011).  

 
Figure 1.5: T follicular helper cell and B cell differentiation. CD4+ T cells 
are primed by DCs in the T cell zones and migrate to the borders of the B cell follicles to interact 
with antigen primed B cells. Cognate interactions between Tfh cells and B cells initiate the germinal 
center reaction, which is maintained by T-B interactions and signaling cytokines like IL-21. Also, B 
cells differentiate in a germinal center dependent or independent manner into memory B cell and 
plasma cells or plasmablasts. Taken from Hoffman et al. (2016). 

Signaling lymphocytic activation molecule (SLAM) family of receptors and SLAM-

associated protein (SAP) adaptors sustain the close interaction of antigen-specific Tfh 

and B cells (Deenick et al., 2011). This interaction is re-enforced by the co-stimulatory 

signals of ICOS, PD-1 and CD40-ligand (CD40-L) and the secretion of soluble 

mediators and cytokines like IL-4 and IL-21 (Bryant et al., 2007, Vogelzang et al., 
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2008, Pissani et al., 2014). The ligation of PD-1 by its ligand PDL-1 expressed on B 

cell, inhibits the suppressive signals of follicular regulatory T cells to promote the GC 

response (Pissani et al., 2014). Importantly, ligation of CD40 by CD40-L induces the 

expression of activation-induced cytidine deaminase (AID), which is a key enzyme that 

regulates somatic hyper mutation and immunoglobulin class switching (Pissani et al., 

2014).  

Tfh signaling by IL-21 is crucial for the formation and maintenance of GCs, which are 

specialized structures within the B-cell follicles of secondary lymphoid tissues for 

affinity maturation or class switching of antibodies (Bryant et al., 2007, Vogelzang et 

al., 2008, Ramiscal et al., 2013). During affinity maturation, pathogen-specific B cells 

acquire random point mutations within the immunoglobulin (Ig) V-region genes which 

changes the specificity of the B cell receptor (Ramiscal et al., 2013). Signals provided 

by Tfh mediate the positive selection of high affinity B cells over low affinity or self-

reactive B cell clones (Vinuesa, 2012, Ramiscal et al., 2013). High affinity B cells may 

either undergo further rounds of affinity maturation, or alternatively develop into long-

lived memory B cells or long-lived plasma cells (Borrow et al., 2017).  

1.6.3 Circulating Tfh cells 

Tfh cells primarily localize to the B cell follicles and in active GCs within lymphoid 

organs, however, recent literature has reported a population of CD4+ T cells in the 

peripheral blood that possess similar phenotypic characteristics to the lymph nodes 

Tfh cells (Breitfeld et al., 2000, Morita et al., 2011, Locci et al., 2013). Circulating blood 

CXCR5+ CD4+ T cells have heterogeneous phenotypic characteristics (Hale et al., 

2015). Unlike bonafide Tfh cells, circulating Tfh (cTfh) cells express lower levels of 

CXCR5, PD-1 and little or no Bcl6 (Pissani et al., 2014). PD-1 expressing cTfh cells 
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generally express ICOS and are activated and majority of cTfh are quiescent cells that 

have a central memory phenotype (Breitfeld et al., 2000, Locci et al., 2013, Schmitt et 

al., 2014b). Furthermore, cTfh cells comprise of Tfh1, Tfh1-17, Tfh2 and Tfh17 

subsets, which are so named due to phenotypic similarities with Th1, Th2 or Th17 

CD4+ T cells (Schmitt et al., 2014b). The functional relevance of these subsets during 

HIV infection is not well understood (Pissani et al., 2014). In addition, because 

peripheral blood samples are easier to assess for research or vaccine monitoring than 

lymphoid tissues, there is interest in characterizing cTfh cells, understanding their 

similarities and differences to lymphoid tissue Tfh cells and defining their function 

during acute HIV infection (Locci et al., 2013, Boswell et al., 2014, Martin-Gayo et al., 

2017).  

1.7 Tfh cells in HIV infection 

The role of Tfh cells in supporting efficient antibody responses has been described in 

the context of various autoimmune diseases and infectious diseases like malaria, 

influenza and HIV. Although Tfh cells are beneficial for the development of B cell 

responses during HIV infection, the regulation of Tfh cell numbers is critical because 

excessive expansion of Tfh cells during HIV infection has been associated with 

dysregulated antibody production and excessive B cell numbers (Lindqvist et al., 

2012).  

1.7.1 Tfh cells and HIV broadly neutralizing antibody responses 

Extraordinarily high mutation rates of HIV-1 enables the virus to evade host antibody 

responses by producing resistant variants to any developing antibody (Nurieva et al., 

2009). Interestingly, the resultant repeated cycles of GC antibody maturation and 
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somatic hyper mutation in some individuals brings about the development of anti-HIV 

broadly neutralizing antibodies (bNAbs). Longitudinal cohort studies following the 

development of bNAbs have allowed in-depth characterization of bNAbs. Structurally, 

HIV-1 bNAbs have a protruding complementarity-determining region (CDR) and H3s 

formed by VDJ recombination or insertions (Doria-Rose et al., 2014). These 

characteristics are acquired due to high levels of somatic hypermutations during the 

affinity maturation process and facilitated by repeated Tfh cells’ interaction with GC B 

cells (Cubas et al., 2013). These characteristics also suggest a constant and 

prolonged activation of the enzyme AID whose activation and phosphorylation 

processes occurs through CD40-CD40L signaling mediated by Tfh cells (Pissani et 

al., 2014). Thus, suggesting that bNAbs are developed due to adequate B cell help 

offered by the Tfh cells within the GCs (Vinuesa, 2012).  

The heightened interest in studying Tfh cells emanates from their critical role in the 

generation of bNAbs (Locci et al., 2013). Furthermore, the possibility that the 

magnitude of Tfh responses after vaccination could be a useful biomarker for 

successful bNAbs induction by the candidate vaccine was proposed (Streeck et al., 

2013, Pissani et al., 2014, Ahlers, 2014). Nevertheless, the magnitude or quality of 

antigen-specific Tfh responses that is beneficial for the development of bNAbs is 

unknown. This knowledge is critical since excessive Tfh expansion has been 

associated with hypergammaglobulinemia; the generation of low quality antibodies in 

chronic HIV and autoimmunity (Lindqvist et al., 2012, Pratama et al., 2014).  

1.7.2 Tfh cells and HIV persistence 

The complete eradication of HIV by ART has not been possible due to HIV persistence 

in the latent reservoir comprising majorly of long-lived memory CD4+ T cells (Murray 
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et al., 2016). Soon after HIV infection, a latent reservoir of HIV is established in the 

human body and these transcriptionally silent cells evade immune recognition or ART 

mediated killing of HIV within these cells (Ananworanich et al., 2016, Murray et al., 

2016).  

Tfh have been implicated in HIV persistence during ART for several reasons (Miles et 

al., 2016a). Studies have shown that Tfh cells are more permissive to HIV infection 

compared to other CD4+ T cells subsets, with further studies indicating that Tfh cells 

harbor a higher percentage of HIV DNA compared to various other cell subsets 

(Perreau et al., 2013, Pallikkuth et al., 2015, Kohler et al., 2016). Particularly with Tfh 

cells being more abundant in lymphoid tissue GCs, which as previously mentioned, 

(Lorenzo-Redondo et al., 2016). Follicular dendritic cells can harbor HIV virions on 

their cell processes for prolonged periods of time and as Tfh are found in close contact 

with these cells, it increases their chances for HIV infection (Alexaki et al., 2008, 

Heesters et al., 2015, Miles et al., 2016a). Moreover, infected Tfh cells evade direct 

killing by immune cells since CTLs and natural killer cells are mostly excluded from 

GCs where Tfh cells interact with B cells (Fukazawa et al., 2015). It is generally 

believed that a distinct subset of GCTfh cells harbors the HIV reservoir and the 

identification of this subset is the focus of active investigations by various research 

groups.  

1.8 Thesis outline  

The need for an HIV vaccine has never been greater, yet this remains an elusive goal. 

Most investigators believe that an effective vaccine will require both broadly 

neutralizing antibodies and effective cytotoxic T cell responses and efforts are 

underway to develop vaccines to induce these responses (McElrath et al., 2010, 
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Haynes et al., 2016).  However, one critical aspect of host immunity that has been 

persistently neglected is vaccine-mediated induction of HIV-specific CD4+ T follicular 

helper (Tfh) cells. There have been concerns that the induction of such responses by 

a therapeutic vaccine would add “fuel to the fire”, since Tfh cells are targets for HIV 

and are cellular reservoirs for HIV persistence in infected persons (Kohler et al., 2016, 

Perreau et al., 2013). We however, hypothesize that these responses are critical to 

any successful preventive or therapeutic vaccine strategy. Moreover, we postulate that 

understanding the ontogeny and function of these responses will accelerate the path 

toward a successful vaccine.  

Studies of primary HIV infection have been critical for understanding the components 

of an effective immune response to HIV-1 infection, that can be translated to vaccine 

studies (Cohen et al., 2001). However, with the recent guidelines specifying the 

administration of ART to all HIV-1 infected persons (WHO, 2015, Meintjes et al., 2017), 

as well as recent efforts to provide pre-exposure prophylaxis to high-risk individuals 

(WHO, 2007, Karim et al., 2010, McElrath et al., 2010, WHO, 2013), it has become 

clear that any candidate prophylactic or therapeutic vaccine will be administered to 

individuals taking ARV drugs. Thus, understanding how early treatment modulates 

immune responses is key to future interventions.  

Over the past five years, our group has developed a unique longitudinal cohort of 

persons with “hyperacute” HIV infection termed FRESH for Females Rising through 

Education, Support and Health. This program at the heart of the HIV epidemic in 

KwaZulu-Natal, South Africa has successfully identified and treated persons at the 

onset of plasma viremia, in some cases, when plasma viral loads are less than 1000 

RNA copies/ml (Dong et al., 2017). In addition to this unique cohort, we established 
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protocols for excisional lymph node biopsies, cell sorting, high-resolution multicolor 

immunofluorescence microscopy and class II tetramer technology and thus, set out to 

perform a detailed characterization of the role of Tfh cells in the setting of controlled 

infection. The overall goal of this project was to define the role of Tfh cells in controlling 

HIV disease progression, to determine how extremely early ART initiation modulates 

Tfh cell function and to define the contribution of Tfh subsets to persistent HIV infection 

during early ART.  

The detailed aims of the present study are as follows:  

Aim 1: To perform a comprehensive phenotypic and functional characterization of 

lymphoid tissue Tfh and peripheral blood Tfh cell subsets during hyperacute and 

chronic HIV-1 subtype C infection. 

Aim 2: To determine the relationship between Tfh cell responses during hyperacute 

HIV-1 infection, and antibody levels or HIV-1 disease progression.   

Aim 3: To define the anatomical localization of Tfh cell subsets in lymphoid tissue in 

relation to B cells and HIV-1 antigens and to define the contribution of Tfh cell subsets 

to virus persistence in the lymph nodes during HIV-1 infection. 

Chapter 1 is the introduction of the thesis. It includes a review of relevant topics and 

defines the aims of the study. 

In chapter 2, we report on the comprehensive phenotypic characterization of 

circulating T follicular helper (cTfh) cell subsets in the context of acute HIV-1 clade C 

infection using flow cytometry and HLA class II tetramers. We screened for plasma 

anti-gp41, -gp120, -p24 and -p17 antibodies using a customized multivariate Luminex 
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assay and further defined the contribution of cTfh subsets to the development of non-

neutralizing antibodies and HIV-1 disease progression.  

Chapter 3 was directed towards characterizing Tfh responses in lymphoid tissue 

samples. Specifically, we defined immune responses in HIV-1 infected individuals 

initiated on ART during the very early stages of acute infection. In addition, the 

phenotype and helper function of Tfh cells were defined ex vivo using flow cytometry, 

HLA class II tetramers, in vitro co-culture assays, ELISA and digital droplet PCR 

techniques. The localization of Tfh cells in situ was also defined using 

immunohistochemistry (IHC) and immunofluorescence (IF) microscopy assays.  

In chapter 4 of the study, we investigated virus persistence in lymphoid tissues and 

determined how this influenced the induction of immune responses during early 

treated HIV-1 infection. The cellular distribution of HIV-1 was defined using IHC, IF 

microscopy, RNA in situ hybridization, digital droplet PCR and flow cytometry 

techniques. 

Chapter 5 is a discussion of the overall implications of our findings and includes future 

directions for the study. 
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Chapter 2 Overview 

From our review of existing literature, we have shown that T follicular helper (Tfh) cells 

are important for the development of efficient antibody responses to HIV-1 infection. 

We have also shown that circulating counterparts of lymph node Tfh cells have been 

described. In addition, we have discussed the importance of HIV-specific CD4+ T cell 

responses for natural HIV-1 control. In Chapter 2, we present a study conducted to 

determine if circulating Tfh cells impact HIV-1 disease progression during untreated 

acute HIV-1 infection. In addition, we showed that circulating Tfh cells are 

heterogeneous in phenotype and the various subsets differentially influence the 

development of non-neutralizing antibodies. These results have been published in the 

Journal of Virology. (2018, volume 92, issue 15) 
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2.1 Abstract 

Despite decades of focused research, the field has yet to develop a prophylactic 

vaccine for HIV-1 infection. In the RV144 vaccine trial, non-neutralizing antibody 

responses were identified as a correlate for prevention of HIV acquisition. However, 

factors that predict the development of such antibodies are not fully elucidated. We 

sought to define the contribution of circulating T follicular helper (cTfh) cell subsets to 

the development of non-neutralizing antibodies in HIV-1 clade C infection. Study 

participants were recruited from an acute HIV-1 clade C infection cohort. Plasma anti-

gp41, -gp120, -p24 and -p17 antibodies were screened using a customized 

multivariate Luminex assay. Phenotypic and functional characterizations of cTfh cells 

were performed using HLA class II tetramers and intracellular cytokine staining. In this 

study, we found that acute HIV-1 clade C infection skewed differentiation of functional 

cTfh subsets towards increased Tfh1 (p=0.02) and Tfh2 (p<0.0001) subsets, with a 

concomitant decrease in overall Tfh1-17 (that shares both Tfh1 and Tfh17 properties) 

(p=0.01) and Tfh17 subsets (p<0.0001) compared to HIV negative subjects. 

Interestingly, the frequencies of Tfh1 during acute infection (5.0-8.0 weeks post-

infection) correlated negatively with set point viral load (p=0.03, r=-60) and were 

predictive of p24-specific plasma IgG titers at one year of infection (p=0.003, r=0.85). 

Taken together, our results suggest that the circulating Tfh1 subset plays an important 

role in the development of anti-HIV antibody responses and contributes to HIV 

suppression during acute HIV-1 infection. These results have implications for vaccine 

studies aimed at inducing long lasting anti-HIV antibody responses. 
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2.2 Introduction 

A safe and effective prophylactic vaccine remains the most efficient way of ending the 

HIV/AIDS epidemic which affects over 36 million people worldwide (UNAIDS, 2017a). 

Although studies in non-human primate and animal models have demonstrated the 

efficacy of anti-HIV broadly neutralizing antibodies (bNAbs) in preventing HIV 

infection, human vaccine trials to date have been largely unsuccessful in inducing such 

responses (Rerks-Ngarm et al., 2009, Genesca et al., 2010, Kwong et al., 2011). Thus, 

an improved understanding of the mechanisms that underlie the development of 

functional and durable anti-HIV antibody responses in the context of a natural infection 

will be essential for optimal vaccine design efforts (Martin-Gayo et al., 2017). 

Moreover, with the quality of immune responses in early acute HIV infection predicting 

disease outcome (Pantaleo et al., 1997, Deeks et al., 2004), early acute HIV infection 

is a useful model to identify early correlates of HIV-1 control.  

T follicular helper (Tfh) cells, a lineage of CD4+ T cells that express the chemokine 

receptor CXCR5, are specialized for B cell help and the development of antibody 

responses (Crotty, 2011, Crotty, 2014). Tfh-B cell interactions in the B cell follicles 

promote germinal center (GC) formation, B cell differentiation, B cell survival, antibody 

affinity maturation and class switch recombination (Vinuesa et al., 2005, Crotty, 2011). 

The circulating memory counterparts of bona fide germinal center Tfh cells have been 

recently described (Morita et al., 2011, Hale et al., 2015). These cells display either 

an activated or quiescent phenotype based on the expression of PD-1 and ICOS or 

CCR7 receptors and can be further divided into subsets based on the expression of 

CXCR3 and CCR6 receptors (Schmitt et al., 2014b, Hale et al., 2015). The subsets; 

Tfh1, Tfh2, Tfh17 and Tfh1-17, were named due to their similarities to other T helper 
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cell lineages. Tfh1 cells express CXCR3 like Th1 cells, Tfh2 cells produce IL-4 like 

Th2 cells, Tfh17 cells express CCR6 similar to Th17 cells and Tfh1-17 cells have 

functional properties that are similar to both Th1 and Th17 cells (Morita et al., 2011, 

Schmitt et al., 2014b, Hale et al., 2015). 

From the RV144 vaccine trial, which had a modest efficacy in preventing HIV 

acquisition, we learned that non-neutralizing antibodies (nnAbs) could protect against 

HIV acquisition (Haynes et al., 2012). Consistent with this observation, a recent study 

exploring the efficacy of nnAbs for blocking virus entry, showed that anti-Env nnAbs 

could modulate the transmission of simian HIV (SHIV) in macaques and reduce the 

number of transmitted/founder viruses establishing infection in the animals (Santra et 

al., 2015). Moreover, a humanized mouse model of HIV infection, reported near-

complete clearance of adoptively transferred infected cells within 5 hours of nnAbs 

treatment (Horwitz et al., 2017) further demonstrating the potential for nnAbs in 

preventing HIV infection.  

Specific Tfh subsets have been shown to help the induction of various antibody 

functions. For instance, a recent study correlated the frequencies of CXCR3- cTfh; 

which includes both Tfh2 and Tfh17 subsets, with the development of bNAbs against 

HIV infection (Locci et al., 2013), suggesting a potential role of these subsets as 

correlates for the induction of bNAbs in infection and possibly by vaccines. It is thus 

important to define specific Tfh subsets that contribute to nnAbs development in the 

context of natural HIV infection.  

Here we investigated if the induction of cTfh responses during acute HIV infection 

contribute to initial HIV control and promote the development of anti-HIV nnAbs. We 

examined the role of HIV-specific cTfh cell subsets during acute HIV infection using 
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HLA class II tetramers and multiparametric flow cytometry. HIV-specific antibody 

responses were further measured using a customized multivariate Luminex assay. 

Our results showed that acute HIV infection induces significant expansion of HIV-

specific memory Tfh1 cells (p=0.02), which correlated with lower set point viral loads. 

Moreover, the frequencies of Tfh1 cells during early infection were predictive of p24-

specific IgG titers. These data suggest that circulating Tfh1 cells play a role in 

controlling viral replication during primary HIV infection by enhancing robust anti-HIV 

antibody production, which is desirable for a prophylactic HIV vaccine. 

2.3 Materials and Methods 

2.3.1 Study Participants 

Study participants comprised of 16 acute and 5 chronic HIV-infected ART-naïve 

individuals from HIV Pathogenesis Programme (HPP) Acute Infection cohort, Durban, 

South Africa. Patients were chosen based on availability of acute infection samples. 

Acute infection classification and disease staging in this cohort was previously 

described (Wright et al., 2011). Briefly, at screening, patients had detectable HIV RNA 

but had not yet seroconverted, either by ELISA or Western blotting. The date of 

infection for the study participants was estimated to be 14 days prior to screening as 

previously described (Van Loggerenberg et al., 2008). One acute infection time point 

was selected per patient for the study based on sample availability. The time post-

infection across the patients was a median of 7 weeks (interquartile range-IQR, 5.25-

7.75). The CD4 count, viral load and other patient characteristics are summarized in 

table 1. 
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15 HIV uninfected individuals from the Females Rising Through Education, Support 

and Health (FRESH) cohort (Ndhlovu et al., 2015, Dong et al., 2017), also in Durban, 

South Africa were included as controls. The controls were chosen randomly based on 

sample availability at the time the study was conducted. The University of KwaZulu-

Natal Biomedical Research Ethics Committee (BREC) and the Massachusetts 

General Hospital ethics review board approved the study. All study participants signed 

informed consent for participation in the study. 

2.3.2 Immunophenotyping 

For surface phenotyping, frozen PBMCs were thawed, rested and stained using the 

LIVE/DEAD Aqua dead cell staining kit (Thermofisher scientific, Waltham MA, USA) 

as per manufacturer’s instructions, followed by staining with an antibody panel 

comprising: CD14 Horizon V500 [(HV500) BD Biosciences, San Jose, CA], CD19 

HV500 (BD Biosciences), CD3 Brilliant Violet (BV) 711 (BioLegend, San Diego, CA, 

USA0, CD8 Qdot 800 (Life Technologies, Carlsbad, CA, USA), CD4 Qdot 655 (Life 

Technologies), CXCR5 Alexa fluor (AF) 488 (BD Biosciences), PD-1 BV421 

(BioLegend), CCR6 phycoerythrin (PE) (BioLegend), CXCR3 BV605 (BioLegend), 

CD45RA PE-Cy7 (BioLegend), CCR7 Peridin-chlorophyll (PerCp) Cyanine (Cy) 5.5 

(BioLegend) and CD27 APCH7 (BD Biosciences). For intracellular cytokine staining, 

peripheral blood mononuclear cells (PBMCs) were either left unstimulated or 

stimulated with HIV clade C overlapping peptide (OLP) pools spanning Gag, Nef, or 

Env proteins or staphylococcal enterotoxin B (SEB, 0.5 μg/ml) in the presence of 

GolgiStop and GolgiPlug protein transport inhibitors (BD Biosciences) for 16 hours at 

37°C. Cells were surface stained, washed, fixed and permeabilized using the BD 

Cytofix/Cytoperm kit (BD Biosciences) according to manufacturer’s instructions. Cells 
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were subsequently stained intracellularly with IL-2 PE (BD Biosciences), IL-21 APC 

(BioLegend), TNF-α A700 (BD Biosciences), IL-4 BV605 (BioLegend) and IFN-γ PE-

Cy7 (BioLegend) antibodies. Cells were acquired using an LSRFortessa cytometer 

(BD Biosciences) with FACSDiva™ software and fluorescence minus one controls 

were used to define gates for the different cell subsets. Data was analysed using the 

FlowJo version 10.0.8 (Flowjo, LLC).  

2.3.3 HLA class II tetramer staining 

HIV-specific cTfh responses were measured using HLA class II tetramers. The 

immunodominant Gag C41 epitope (Laher et al., 2017) was interrogated using 

DRB1*11:01 and DRB1*13:01 tetramers produced in the laboratory of Dr Søren Buus 

as previously described (Braendstrup et al., 2013). The design and validation of these 

tetramers by our group have also been described (Laher et al., 2017). Briefly, 

recombinant human DRB1*11:01 or DRB1*13:01 HLA molecules were complexed 

with clade C HIV-1 Gag 41 peptide (YVDRFFKTLRAEQATQDV). For the assay, 

PBMCs were stained for 1 hour at 37oC with APC and PE conjugated HLA class II 

tetramer complexes, washed in 2% fetal calf serum (FCS) in phosphate buffered saline 

(PBS) and then stained with these antibodies: LIVE/DEAD Fixable Blue dead cell stain 

kit (Thermofisher Scientific), CD3 BV711 (BioLegend), CD4 BV650 (BD Biosciences), 

CD8 BV786 (BD Biosciences), CXCR5 AF488 (BD Biosciences), CXCR3 BV605 

(BioLegend), PD-1 BV421 (BioLegend) and CD45RA AF700 (BioLegend); for 20 min 

at room temperature. Cells were washed and acquired on the LSRFortessa (BD 

Biosciences).  
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2.3.4 Customized multivariate Luminex assay 

Plasma HIV-1 specific antibodies were measured using a customized multivariate 

Luminex assay as previously described (Brown et al., 2012). Carboxylated fluorescent 

polystyrene beads (Biorad, Hercules, CA, USA) were coated with HIV-1 specific 

proteins including gp120 clade C of strain ZA.1197MB, gp41 clade C of strain 

ZA.1197MB, C-terminal 6xHis tagged p24 subtype C and p17 HXBc2 (Immune 

Technology, New York, NY, USA). Plasma samples were incubated with antigen-

coated beads in a 96 well plate and unbound antibodies were washed with 0.05% 

Tween-20 in PBS. HIV-1 specific IgG antibodies were detected with PE mouse IgG1 

to IgG4 secondary antibodies. 

2.3.4 Statistical analysis 

Statistical analyses were performed using GraphPad Prism 7.0 (GraphPad Software, 

La Jolla, California, USA). Statistical significance was assessed using Mann-Whitney 

U tests and Kruskal-Wallis H test, or two-way ANOVA with Dunn’s multiple 

comparisons test. The correlations between two variables were done using 

Spearman’s rank correlation. P values were considered significant if less than 0.05.  

2.4 Results 

2.4.1 Circulating CXCR5+ cells in healthy donors have a predominantly central 

memory phenotype.  

Recent studies have focused on characterizing circulating CXCR5+CD4+ T cells (cTfh) 

because of their similarities with germinal center Tfh cells and their potential role in 

the development of bNAbs (Locci et al., 2013, Cohen et al., 2014). The difficulty 
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associated with obtaining bona fide Tfh from lymphoid tissues has also stirred the 

interest in studying cTfh as surrogates. Although the phenotype of cTfh has not been 

clearly defined, the consensus is that they represent circulating memory Tfh (Schmitt 

et al., 2014b). To determine how HIV infection perturbs global frequencies and 

phenotypes of peripheral Tfh we began by establishing baseline characteristics of this 

cell population in our study cohort who are predominantly of the Zulu/Xhosa ethnicity. 

We used CCR7 and CD45RA, well-established memory markers to define four 

memory subsets. Specifically, we defined naïve (N) T cells by gating on CCR7+ and 

CD45RA+, central memory (CM) by CCR7+CD45RA-, effector memory (EM) by CCR7-

CD45RA-, and terminally differentiated effector memory (TEMRA) by CCR7-CD45RA+ 

(Larbi et al., 2014) (Figure 2.1A).  

Phenotypic analysis of total CD4+ T cells from 12 HIV negative donors revealed that 

34.0% (29.1-43.2) were naïve, 21.8% (19.1-28.0) were CM, 33.7% (30.4-44.4) were 

EM and 2.8% (2.1-3.3) were TEMRA (Figure 2.1B). Next, we measured the frequency 

of cTfh (CXCR5+CD4+) cells and found that they comprised 12% (10.1-14.3) of 

circulating CD4+ T cells (Figure 2.1C). Memory phenotyping of Tfh cells showed that 

cTfh cells comprised 37.3% of CM CD4+ T cells, 7.8 % of EM CD4+ T cells and only a 

paltry 2.6% and 2.9% of the naïve and TEMRA CD4+ T cell compartments respectively 

(Figure 2.1D). Consistent with studies in Caucasian populations (Chevalier et al., 

2011b, Boswell et al., 2014), our data show that cTfh constitute a small fraction of 

circulating CD4+ T cells and are predominantly of a central memory phenotype.  
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Figure 2.1: Memory distribution of CXCR5+ cells within circulating CD4+ 
T cell compartment in healthy donors. (A) Representative flow cytometry plot 
showing the gating strategy for CD4+ T cell memory populations. (B) Summary dot plots showing 
proportions of CD4+ T cells that are naïve, central (CM), effector (EM) and terminally differentiated 
(TEMRA) memory cells. (C) Pie chart showing median percentages of CXCR5+ and CXCR5- CD4+ 
T cells.  (D) Representative flow cytometry plots for CXCR5+ and CXCR5- gating within bulk CD4+ 
T cells and summary plots depicting the proportions of CXCR5+ (blue) and CXCR5- (red) CD4+ T 
cells within the CM, EM, naïve and TEMRA memory subsets. Statistical analysis was done using 
Kruskal-Wallis H test (B) and Mann-U Whitney tests (D).  

2.4.2 Perturbation of circulating Tfh cells during acute HIV-1 infection.  

Having established the normal frequencies and phenotypes of circulating Tfh cells, we 

next investigated how acute HIV infection alters the frequency and differentiation 

profiles of these cells. Samples obtained at a median of 6.9 weeks after HIV diagnosis 

were used for these studies (Table 2.1). As shown in (Figure 2.2A), HIV infection did 

not alter the overall frequencies of total circulating memory Tfh.  
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Table 2.1: Characteristics of study participants 

*Data are represented as median (IQR). 

However, memory subset analysis revealed an increase in naïve Tfh (p=0.004) and 

TEMRA Tfh (p=0.02), whereas CM Tfh (p=0.13) and EM Tfh (p=0.16) remained 

unchanged (Figure 2.2B). 

Next, we used CXCR3 and CCR6 chemokine receptor markers to characterize cTfh 

subsets in an effort to identify which subset most influences the generation of anti-HIV 

antibodies during acute HIV infection. CXCR3 and CCR6 chemokine receptor markers 

have been previously used to identify several functional subsets that exhibit distinct B 

cell helper functions namely: Tfh1 (CXCR3+CCR6-), Tfh2 (CXCR3-CCR6-), Tfh1-17 

(CXCR3+CCR6+) and Tfh17 (CXCR3-CCR6+) (Schmitt et al., 2014b). A representative 

flow plot, as seen in Figure 2.2C, depicts the distribution of cTfh subsets in an acutely 

infected donor based on the expression levels of the two respective chemokine 

receptor markers. Interestingly, acute infection skewed the distribution of cTfh subsets 

towards the Tfh1 (p=0.02) and Tfh2 (p<0.0001) phenotypes with significant reduction 

 
HIV negative Acute HIV 

n 12 14 

Male 0 6 

Female 12 8 

CD4 Count (cells/µl)* N/A 463 (422-561) 

Viral load (copies/ml)* N/A 121 000 (8 984-352 000) 

Time post-infection 
(weeks)* N/A 6.9 (5.0-8.0) 
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in the proportions of Tfh1-17 (p=0.01) and Tfh17 (p<0.0001) compared to HIV negative 

donors (Figure 2.2C). 

 

Figure 2.2: Heterogeneity within circulating Tfh compartment during 
acute HIV-1 infection. (A) Representative flow cytometry plots showing the gating strategy 
for bulk cTfh within CD45RA- CD4+ T cells and summary proportions of cTfh cells in HIV negative 
and acute HIV groups. (B) Summary plot comparing the frequencies of naïve, CM, EM and TEMRA 
cTfh cells in HIV negative and acute HIV donors. (C) Gating strategy for Tfh1, Tfh1-17, Tfh2 and 
Tfh17 subsets. The proportions of Tfh1, Tfh2, Tfh1-17 and Tfh17 subsets are compared between 
HIV negative and acute HIV groups. P values are from Mann-U Whitney tests. 
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2.4.3 Frequency of Tfh1 cells during early acute HIV-1 infection correlates 

negatively with set point viral load.  

Having observed a significant expansion of Tfh1 and Tfh2, we next investigated if there 

was a relationship between the expanded cTfh subsets and set point viral load (SPVL), 

which is a reliable predictor of the rate of HIV disease progression. We calculated 

SPVL as the average VL from 3 to 12 months’ post-infection as previously reported 

(Wright et al., 2011) and correlated it to the frequencies of different cTfh subsets. 

Strikingly, Tfh1 frequencies correlated negatively with SPVL (p=0.03,       r=-0.60) 

(Figure 2.3A) but there were no significant associations between Tfh2, Tfh1-17, Tfh17 

or bulk cTfh cells and SPVL (Figures 2.3B, 2.3C, 2.3D and 2.3E). These results 

suggest that Tfh1 cells contribute to viral control during the first year of infection. 

 

Figure 2.3: Tfh1 correlates negatively with set point viral load. Set point 
viral load was plotted against the frequency percentages of (A) Tfh1, (B) Tfh2, (C) Tfh1-17, (D) 
Tfh17 and (E) bulk cTfh cells determined by flow cytometry. Spearman rho (r) values and p values 
are reported. 
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2.4.4 Tfh1 responses during early acute infection correlate with p24 IgG 

responses detected at one year post-infection.  

Numerous studies have associated slower disease progression with higher serum 

levels of HIV-1 Gag-specific IgG antibodies [reviewed in (French et al., 2013)]. We 

next, hypothesized that Tfh1 responses impact SPVL by driving the production of HIV-

specific IgG antibodies. We measured plasma gp41, gp120, p17 and p24-specific IgG 

antibody titers at 12 months after infection for 10 study participants based on sample 

availability. Correlation analysis of IgG titers with SPVL revealed a negative correlation 

between SPVL and p24 IgG (p=0.007 r=-0.81) (Figure 2.4A) or gp41 IgG (p=0.009, 

r=-0.80) (Figure 2.4B) and no significant correlations between SPVL and p17 IgG 

(p=0.09, r=-0.58) (Figure 2.4C) or gp120 IgG titers (p=0.20, r=-0.44) (Figure 2.4D). 

We also examined the correlation of SPVL to the titers of p24 IgG isotypes; IgG1, 

IgG2, IgG3 and IgG4 and found no significant correlations between the p24 IgG 

isotypes and SPVL (Figure 2.4E and data not shown).  

Lastly, we interrogated the relationship between Tfh1 frequencies and antibody titers. 

We found that Tfh1 frequencies during early infection (5.0-8.0 weeks) were directly 

correlated to the plasma titers of p24 IgG (p=0.003, r=0.85), p17 IgG (p=0.01, r=0.77), 

gp41 IgG (p=0.05, r=0.65) and p24 IgG1 (p=0.04, r=0.66) that were detected at 1 year 

post-infection (Figures 2.4F, 2.4G, 2.4H and 2.4I). There was however, no association 

between gp120 titers and Tfh1 frequencies (Figures 2.4J).  These results suggest that 

the polarization of cTfh responses towards a Tfh1 phenotype can potentially impact 

the development of long-lasting antibody responses. 
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Figure 2.4: Early Tfh1 responses are predictive of p24 IgG responses 
at 1 year of infection. (A) p24 IgG titers, (B) gp41 IgG titers, (C) p17 IgG titers, (D) gp120 
IgG titers and (E) p24 IgG1 titers, at 1 year time-point were determined using a customized 
multivariate Luminex assay and the values were inversely correlated to SPVL. (F) p24 IgG, (G) 
p17 IgG, (H) gp41 IgG, (I) p24 IgG1 and (J) gp120 IgG titers at 1 year time-point were correlated 
to the frequencies of Tfh1 at 6.9 (IQR, 5.0-8.0) weeks of infection. Mean Fluorescence Intensity 
(MFI) and viral load (VL). Spearman rho (r) values and p values are reported. 
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2.4.5 HIV-specific Tfh responses are induced during acute HIV-1 infection. Next, 

we investigated if the expanded cTfh in acute HIV infection were HIV-specific using 

intracellular cytokine staining (ICS) assay and MHC class II tetramers. Although HIV-

specific CD4+ T cells are important for viral control (Porichis et al., 2011), the presence 

of HIV-specific Tfh responses in circulation remains controversial (Locci et al., 2013, 

Morita et al., 2011). Therefore, we interrogated the cytokine expression pattern of cTfh 

cells after stimulation with HIV peptides. Figure 2.5A shows representative flow plots 

of unstimulated controls (top panel), cytokine secreting antigen specific CD4+ cells 

responding to HIV peptide pools (middle panel) or SEB stimulation (bottom panel) in 

an ICS assay. Our group previously showed that most of the HIV-specific CD4+ T cells 

in chronic clade C infection target the HIV Gag protein (Laher et al., 2017). Here we 

found no significant differences in Gag, Nef and Env responses (Figure 2.5B).  

Further interrogation of the cytokine profile of cTfh cells revealed that unlike SEB-

specific cells which abundantly secreted TNF-α and IFN-γ (Figure 2.5C), HIV-specific 

cTfh were biased towards the secretion of Tfh functional cytokines: IL-21 and IL-4, 

with lower proportions of cTfh cells secreting TNF-α and IFN-γ (Figure 2.5D). These 

differences however did not reach statistical significance after correcting for multiple 

comparisons (Figure 2.5D). Comparative analysis with non cTfh cells revealed that 

HIV-specific cTfh cells (blue) secreted more IL-21 (Figure 2.5E i, ii & iv) and IL-4 

(Figure 2.5E ii & iii) whereas non cTfh cells (red) secreted significantly more IFN-γ 

(Figure 2.5E i & iv). 
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Figure 2.5: HIV-specific cTfh measurements using ICS assay. (A) 
Representative flow cytometry plots for cytokine secreting cTfh cells. PBMCs were unstimulated 
or stimulated with SEB or HIV OLP pools for Gag, Nef and Env for 16h in the presence of GolgiStop 
and GolgiPlug transport inhibitors (BD Biosciences), and the intracellular expression of IL-21, IL-
4, TNF-α and IFN-γ respectively was measured. (B) Summary frequency plots for unstimulated, 
Gag, Nef and Env-specific cTfh cells (horizontal line denotes background threshold based on the 
responses in unstimulated control conditions). (C) Summary plots for SEB stimulated cells. (D) 
Total HIV-specific cTfh cells. IL-21+, IL-4+, TNF-α+ and IFN-γ+ cTfh cells were summed up for Gag, 
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Nef and Env. (E) Comparison of the cytokine secretion profiles of cTfh (CXCR5+) and non-cTfh 
(CXCR5-) cells. Frequencies for Gag (i), Nef (ii) and Env-specific (iii) cells were plotted separately 
or totaled (iv). P values are from Dunn’s multiple comparisons test (C & D) and Mann-U Whitney 
test (E). 

2.4.6 Persistence of Gag-specific Tfh responses during HIV-1 infection.  

We further used MHC class II tetramers to confirm the presence of HIV-specific cTfh 

subsets. Samples from seven HIV infected participants (Table 2.2) expressing either 

the DRB1*11:01 (n=6) or the DRB1*13:01 (n=1) class II HLA haplotypes, were 

analyzed.  

Table 2.2: Study participants for tetramer staining assay 

 HIV negative Acute HIV Chronic HIV 

N 3 2 5 

Male 0 0 0 

Female 3 2 5 

CD4 Count 
(cells/µl)* N/A 365 (351-433) 720 (537-1 

022) 

Viral load 
(copies/ml)*  N/A 18 760 (9 642-377 

905) 
2950 (455-30 

975) 

*Data are represented as median (IQR). 

 As shown in Figures 2.6A and 2.6B, dual tetramer positive (Tet++) CD4+ T cells were 

detectable in HIV infected patients but not in class II HLA-matched HIV negative 

controls (p=0.02). Further phenotypic analysis revealed an enrichment of tetramer 

specific CXCR5- CD4+ T cells compared to cTfh cells (p=0.006) (Figure 2.6C).  
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To define tetramer-specific cTfh cell subsets and to track their dynamics over time, we 

used longitudinal samples for one acute HIV participant (patient 1) who had strong a 

response to the Gag C41 epitope restricted by DRB1*11:01 HLA haplotype. An overlay 

of the double tetramer CD4+ population onto CXCR5+CXCR3+CD4+ cTfh showed that 

HIV-specific cTfh cells were predominantly CXCR3+ (Tfh1 and Tfh1-17) cells and were 

detectable at 12, 14, 16 and 20 weeks post-infection (Figure 2.6D). This result was 

mirrored by another participant (patient 2) sampled at 6 weeks and 138 weeks post 

infection (Figure 2.6E). Combined data for the participants revealed significantly 

higher frequencies of Tfh1 and Tfh1-17 tetramer-specific cells compared to Tfh2 and 

Tfh17 tetramer-specific cells (p=0.0007) (Figure 2.6F). Together, these results 

demonstrate that HIV-specific cTfh cells persist during HIV infection. 
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Figure 2.6: HIV-specific cTfh cells’ detection by HLA class II tetramers. 
(A) Representative flow cytometry plots showing gating strategy for tetramer double positive 
(Tet++) cells within CD4+ T cells and CD8+ T cells. (B) Frequencies of Tet++ CD4+ T cells for HIV 
negative and HIV infected donors. (C) Percentages of Tet++ cTfh cells and Tet++ CXCR5- cells 
within CD4+ T cells. (D and E) Overlay plots showing Tet++ cells (red dots) within cTfh subsets. 
(D) HIV-specific cTfh cells are detected at 12, 14, 16 and 20 weeks or at (E) 6 and 138 weeks 
post-infection. CXCR3+CXCR5+ gate (black) and CXCR3-CXCR5+ gate (green). (F) Summary 
plots showing the frequencies of tetramer-specific CXCR3+ (Tfh1 & Tfh1-17) and CXCR3- (Tfh2 & 
Tfh17) cTfh cells. P values are from Mann-U Whitney test. 
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2.5 Discussion 

The extreme genetic diversity of HIV is a significant obstacle in the development of an 

effective anti-HIV vaccine (Ahmed et al., 2017). Even with the identification and 

isolation of several potent bNAbs in recent years, induction of such antibodies in vivo 

by vaccination has been a challenge (Ahmed et al., 2017, McCoy et al., 2017). 

Furthermore, nnAbs have been associated with protection from HIV acquisition and 

could be easier to induce by immunization as compared to bNAbs (Corey et al., 2015). 

This study sheds new light on circulating CD4+ T cell help that can impact the 

development of effective non-neutralizing anti-HIV antibody responses.  

To understand how HIV modulates the frequency and function of circulating HIV-

specific Tfh responses during primary HIV infection, we first established baseline 

frequencies of cTfh cells in HIV uninfected individuals. Comparative analysis between 

HIV infected and uninfected individuals showed there are similar frequencies of total 

memory cTfh cells across both groups. More in depth phenotypic characterization of 

cTfh cells revealed four distinct functional subsets namely Tfh1, Tfh2, Tfh1-17 and 

Tfh17 cells. We next showed that the increased frequency of Tfh1 cells positively 

correlated with p24 IgG antibody responses and negatively correlated with set point 

viral load. These data suggest that the Tfh1 subset plays an important role in the 

induction of anti-HIV antibodies and may contribute to control of HIV replication, 

consistent with murine model studies which have shown that cTfh cells can traffic into 

lymph nodes and interact with B cells in interfollicular zones and in germinal centers 

(Sage et al., 2014). 
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The differential induction of cTfh subsets has been described in the context of other 

infectious diseases. Consistent with our data, the early induction of circulating 

CXCR3+ cTfh, which comprises Tfh1 and Tfh1-17 subsets, correlated with the 

emergence of protective responses to the Influenza vaccine (Bentebibel et al., 2013). 

In a subsequent study, the same investigators further demonstrated that CXCR3+ Tfh 

cells promote the development of high avidity antibody responses to the H1N1 vaccine 

(Bentebibel et al., 2016). The aforementioned studies and our data suggest that Tfh1 

cells might play an important helper role in the production of efficacious antiviral 

nnAbs. However, since studies using in vitro Tfh and B cell co-culture assays, have 

shown that CXCR3+ Tfh cells are effective in providing help to memory B cells but 

deficient at offering naïve B cell help (Morita et al., 2011, Locci et al., 2013), more 

mechanistic work using animal models will be critical to delineating the intricacies of 

circulating Tfh1 cell helper capacity and providing clarity on the functional ability of 

Tfh1 subsets. 

From our results, we also observed an expansion of the Tfh2 subsets during acute 

HIV-1 infection compared to the controls. The CXCR3- subset which comprises Tfh2 

and Tfh17 subsets has been described as having superior helper capacity in vitro  and 

the frequencies during acute HIV-1 infection was predictive of the ability to develop 

bNAbs in one study (Locci et al., 2013). However, another study did not see any 

relationship between this subset and the ability to develop bNAbs (Boswell et al., 

2014). Although, we sought to determine the relationship between the Tfh2 subset and 

bNAbs development in our study, only one study participant developed bNAbs thus, 

we were unable to make any conclusions.  
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Several reports have implicated bulk CD4+ T cells in immune mediated control of 

chronic HIV infection (Porichis et al., 2011, Schieffer et al., 2014, Laher et al., 2017), 

but little is known about the role of HIV-specific cTfh cells in HIV control mainly 

because of their very low frequency in circulation and the paucity of reliable tools to 

study them. Even though there were few numbers of cytokine secreting cTfh cells in 

response to stimulation by HIV peptide as previously shown (Lindqvist et al., 2012), 

our tetramer staining results provided conclusive evidence of the existence of HIV-

specific cTfh cells during primary HIV infection. Notably, unlike bulk HIV-specific CD4+ 

T cells, which mostly target Gag, our data show that cTfh responses during acute HIV 

infection are dynamic and comprise a broad repertoire of cells specific for HIV-1 Gag, 

Nef and Env proteins. Virus-specific cTfh cells targeting different HIV proteins may 

have synergistic antiviral effect via cross-talk through the so-called intrastructural help 

to promote a greater net antiviral effect.  

This concept was first demonstrated in SIVMAC Gag adenoviral vector immunized 

macaques and later validated by a murine model of SIVMAC infection (Liu et al., 2009, 

Nabi et al., 2013). In the initial study, a faster onset and magnitude of antibody-

dependent cell-mediated virus inhibition mediated by Env-specific antibodies, was 

observed in immunized animals compared to controls (Liu et al., 2009, Nabi et al., 

2013). Human studies of cTfh cells comparing the effector profile of cTfh cells having 

different HIV-protein specificity, showed that Env-specific cTfh cells were superior at 

inducing class switching to IgG while Gag-specific cTfh cells were better at inducing B 

cell proliferation and maturation (Schultz et al., 2016). These assays were conducted 

in vitro but the microanatomy of immune responses in vivo might encourage 

interactions between cells of different specificities. Additionally, studies have alluded 

to some degree of promiscuity in Tfh cell help to B cells in the GCs. It has been shown 
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that the Tfh response is polyclonal (Vinuesa et al., 2016), also the egression of Tfh 

cells from their initial colonized GCs and migration into other GCs have been 

documented (Shulman et al., 2013, Vinuesa et al., 2016). These kinds of results argue 

for a less rigid Tfh help and highlight the dynamism of Tfh cell-B cell interactions, which 

are the subject of many studies. 

As previously mentioned, our tetramer staining results give a strong indication that 

cTfh cells persist in circulation well into chronic HIV infection. Although there were 

significantly higher frequencies of Tfh2 cells compared to Tfh1 cells during acute HIV, 

there were higher proportions of tetramer-specific Tfh1 cells. The tetramers we tested 

were directed at the Gag C41 epitope and one possibility is that Tfh2 cells may be 

targeting a different epitope other than the Gag C41 epitope, which we interrogated. 

We however, consider the expansion of the Tfh2 subset as an interesting observation 

that warrants further studies.  

Our data reveals important associations between nnAbs and viral load set point. The 

exact mechanism of how nnAbs influence HIV replication requires further 

investigation. Nevertheless, we speculate that the negative correlation between 

antibody titers and lower viral load set point may be attributable to antibody effector 

functions that have been associated with improved virus control (Ackerman et al., 

2016) and slower HIV disease progression (Wren et al., 2013, Borrow et al., 2017). Fc 

effector functions like antibody-dependent cellular cytotoxicity (ADCC) and antibody-

dependent cellular phagocytosis (ADCP) have been described as important for virus 

control and these functions are mostly attributed to Env-specific IgG antibodies. (Wren 

et al., 2013, Borrow et al., 2017). Additionally, studies investigating the mechanisms 

for virus suppression by Gag-specific antibodies have described the ability of Gag-
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specific antibodies to opsonize antigens and recruit conventional or plasmacytoid 

dendritic cells to phagocytose antibody-coated antigens (Tjiam et al., 2015, French et 

al., 2017, Tjiam et al., 2017). These opsonophagocytic IgG responses were 

associated with lower plasma HIV-RNA levels (Tjiam et al., 2015, Tjiam et al., 2016), 

thus, highlighting another potential mechanism of virus control. Interestingly, Gag p24 

antibodies and gp41 antibodies independently correlated with viral load set point 

whereas gp120-specific antibodies did not. The reason gp41 but not gp120 IgG 

antibodies correlate with set point viral load remains an open question, but it could be 

because functional epitopes for Fc binding antibodies reside in gp41. Alternatively, it 

could be due to the reported differences in the kinetics of the two antibody specificities 

(Tomaras et al., 2008, Liu et al., 2011). 

Early studies investigating the kinetics and magnitude of anti-Gag and anti-Env IgG 

antibodies observed that the decay of Gag-specific antibodies correlated with poorer 

disease outcomes and argued that Gag-specific antibodies are a surrogate for CD4+ 

T cell help to Gag-specific CD8+ T cells (Binley et al., 1997).  CD8+ T cells are 

important for virus control and robust IL-21 mediated Tfh help to CD8+ T cells improves 

CD8+ T cell cytolytic activity (Schultz et al., 2016), but we observed no correlations 

between the frequencies of IFN-γ+ CD8+ T cells and lower set point viral loads among 

our study participants. Additionally, a paper from our group showed that the 

association between Gag p24 IgG and viral control was still maintained even after 

controlling for Gag-specific CD4+ and CD8+ T cell responses suggesting a CD8+ T cell 

independent anti-viral mechanism of these antibodies (Chung et al., 2018). 

A notable limitation of the study is the small sample size due to difficulty in recruiting 

subjects with untreated acute HIV-1 infection in the present era of mass ART induction 
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in all HIV-1 infected patients. Nevertheless, despite the small sample size, we 

generated statistically significant results that provide new insight into the role of cTfh 

cells and their impact on the induction of antibody responses during primary HIV 

infection. Further studies to validate our findings in other acute infection cohorts are 

warranted.  

In conclusion, the present study has identified a circulating Tfh1 subset whose 

frequency during acute HIV infection predicts the development of anti-p24 non-

neutralizing antibodies. We also show that higher p24 IgG titers contribute to the 

control of HIV replication and have a beneficial effect on HIV disease progression. 

These results highlight the important role of HIV-specific cTfh cells in the generation 

of robust anti-HIV antibody responses, which are desirable for an HIV vaccine. 

Additionally, the identification of a cTfh subset that predicts the development of highly 

functional antibody responses might be useful to vaccine trials/studies as a potential 

biomarker to predict the development of robust antibody responses in vaccine 

responders or as a potential cell subset that can be manipulated to enhance vaccine 

responses (Locci et al., 2013).    
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Chapter 3 Overview 

Our results in chapter 2 demonstrate that Th1 biased cTfh cell responses during acute 

HIV-1 infection may be involved in promoting HIV suppression by Gag p24 and gp41 

specific antibodies. In chapter 3 of this thesis we focused our investigations on the 

impact of early ART on the development of immune responses in the lymph nodes. 

These studies are necessitated by the WHO guidelines for test and treat. For instance, 

it is not known if early treatment initiation abrogates Tfh cell responses. To address 

this question, we investigated the impact of extremely early ART initiation on the 

induction and functional qualities of Tfh cell responses. Specifically, we investigated 

the induction of GCTfh and B cells’ responses in early treated individuals and defined 

the functional capacity of GCTfh cells during early treated or untreated HIV-1 infection. 

Our results show that, in early treated individuals, there is a significant expansion of 

GCTfh cells, albeit not to the same level as in untreated infection. Importantly, these 

cells are less exhausted and are highly functional compared to Tfh cells in chronic 

untreated individuals. Our findings highlight the benefits of early ART initiation to the 

development and preservation of GCTfh cell responses.   
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3.1 Abstract 

Germinal center T follicular helper (GCTfh) cells are important for the development of 

anti-HIV antibody responses but the pathologic expansion of GCTfh cells in chronic 

HIV infection is associated with hypergammaglobulinemia and B cell dysfunction. 

Although ART reverses some HIV-induced immune perturbations, it is unclear if early 

treatment restores GCTfh’s B cell helper function. Thus, we investigated the dynamics 

of GCTfh cells in early treated individuals and their ability to stimulate B cell antibody 

production. Paired peripheral blood and lymph node samples were collected from 16 

individuals initiated on ART mostly during Fiebig stage I, 8 HIV negative and 8 

untreated individuals. GCTfh cells and B cells were phenotyped by flow cytometry. 

Immunofluorescence microscopy was used to define the localization of these cell 

subsets in lymph nodes. HIV-specific responses were measured using HLA class II 

tetramers and Tfh’s B cell helper function was assessed using T-B co-culture assay, 

ELISA and digital droplet PCR.  

Higher frequencies of GCTfh cells were observed in early treated individuals 

compared to controls (p=0.05), but significantly lower than in chronic HIV-1 infection 

(p=0.01). The increase in GCTfh cells was directly correlated to the proportions of GC 

B cells (p=0.0003, r=0.9321). Longitudinal analysis of plasma samples in early treated 

patients further revealed the accumulation of gp41 and gp120 specific IgG antibodies 

which peaked at 12 weeks post-infection. Furthermore, GCTfh cells from early treated 

donors stimulated the production of higher amounts of IgG antibodies by co-cultured 

naïve B cells. Together, our results demonstrate that early initiation of ART results in 

the development of highly functional GCTfh cell responses. These results have 
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implications for therapeutic HIV vaccine design strategies seeking to induce durable 

antibody responses in early treated individuals. 

3.2 Introduction 

HIV-1 infection is primarily a disease of the lymphatic system and the induction of 

immune responses against HIV-1 is mainly directed from the secondary lymphoid 

tissue compartments (Estes, 2013). Most of the immune cells, reside in lymphoid 

tissues, and within the lymph nodes (LNs), germinal centers (GCs) are organized 

microanatomical compartments where B cell antibody maturation takes place (Victora 

et al., 2012). A subset of highly specialized CD4+ T cells, known as T follicular helper 

(Tfh) cells interact with B cells at the border of T and B cell zones and migrate into 

GCs to interact with B cells (Hoffman et al., 2016). In addition to promoting GC 

reactions, the interactions between Tfh cells and B cells are critical for B cell 

differentiation, proliferation and survival (Crotty, 2011, Crotty, 2014). Additionally, 

bidirectional signals between Tfh and B cells reinforces the Tfh cell program (De 

Guinoa et al., 2011).  

Numerous transcription factors and signaling pathways come into play in Tfh and B 

cell development amongst which BCL-6 has been identified as the so called “master-

regulator” of the differentiation of GC B cells and GCTfh cells (Shlomchik et al., 2012). 

Also, Tfh cells express an array of cell surface receptors like CXCR5, PD-1, ICOS, 

OX-40 and CD40L which are important for Tfh cell migration, Tfh cell priming by 

antigen presenting cells like the dendritic cells or Tfh interactions with B cells (Rolf et 

al., 2010, Crotty, 2011). Cytokines like IL-21 and IL-6 also play a major role in Tfh cell 

helper function to B cells (Crotty, 2011). Though previously overlooked, the 

importance of CD4+ T cells in the control of primary HIV-1 infection has been described 
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(Porichis et al., 2011). In addition, we and others have shown that Tfh cells contribute 

to HIV-1 control through promoting robust non-neutralizing or neutralizing antibody 

responses (Cohen et al., 2014, Baiyegunhi et al., 2018). 

Antiretroviral therapy (ART), has been the best intervention for the care of HIV-1 

infected people worldwide (Cihlar et al., 2016). It has improved the life expectancy of 

HIV-1 infected people through full viremia suppression, a reconstitution of immunity, 

reduced viral reservoirs and improved adaptive immune responses (Cihlar et al., 2016, 

Ananworanich et al., 2016, Dong et al., 2017). With increasing numbers of people 

being initiated on ART daily, the quality of antiHIV immune responses in such very 

early treated individuals remain unknown. These responses will be critical for post-

treatment control of HIV-1.  

To define the effect of early ART initiation on the induction and function of HIV-specific 

GCTfh responses, we recruited 24 HIV-infected individuals [(8 chronic untreated 

(Un Tx), 12 Fiebig stage I early treated individuals, and 2 each of Fiebig stage III and 

Fiebig stage V treated individuals (early Tx)] and 8 HIV negative (HIVneg) controls. 

Excisional LN biopsies and paired peripheral blood samples were obtained. Flow 

cytometry, immunohistochemistry (IHC), immunofluorescence microscopy (IF), HLA 

class II tetramers, T-B co-culture assays, ELISA and digital droplet PCR were used to 

define the phenotype, localization, function and B cell helper capacity of GCTfh cells.  

Longitudinal analysis of HIV-specific antibodies in early Tx donors revealed that 

plasma gp41 and gp120 specific IgG were induced early, peaked at 12 weeks post 

infection and persisted long term. From flow cytometry characterization of cell subsets 

within the LNs, we observed an expansion of GCTfh cells in early Tx individuals 

compared to controls. Also, there was a direct correlation between the proportions of 
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GCTfh cells and GC B cells in these donors (p=0.0003, r=0.93). Although GCTfh cells 

expanded compared to HIV negative controls (p=0.05), the percentages of these cells 

in early treated individuals were significantly lower than chronic untreated individuals 

(p=0.01) and they expressed lower levels of the PD-1 receptor (p=0.05). Furthermore, 

GCTfh cells from early treated donors induced higher levels of IgG and IL-21 when 

co-cultured with naïve B cells. Together, these results document the induction of 

superior functioning Tfh cells in early treated individuals and highlight the importance 

of early treatment for the preservation of Tfh cell helper function during HIV-1 infection. 

3.3 Materials and Methods 

3.3.1 Study population and samples 

The study participants were drawn from the HIV Pathogenesis Programme (HPP) 

lymph node study cohort, which is an on-going protocol that recruits’ HIV-infected and 

uninfected individuals from multiple sites in Durban, South Africa, to freely consent to 

the donation of excisional LN biopsies and blood samples. A total of 32 individuals 

were studied here comprising; 8 HIV-uninfected and 16 early treated females recruited 

from Females Rising Through Education, Support and Health (FRESH) cohort [cohort 

characteristics were described by Dong et al. (2017)], 6 chronic untreated individuals 

recruited from the HPP Acute infection cohort (Wright et al., 2011) and 2 chronic 

untreated patients recruited from Prince Mshiyeni memorial hospital, Durban, South 

Africa. Axillary, cervical or inguinal LNs were excised in addition to 120 ml of peripheral 

blood. Global Clinical and Viral laboratories in Durban, South Africa carried out 

measurements of CD4 counts and viral loads. The University of KwaZulu-Natal 

Biomedical Research Ethics Committee (BREC) and the Institutional review board of 
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Massachusetts General Hospital granted ethics approval for the study. All study 

participants signed inform consent forms for participation in the study. 

3.3.2 Lymph node and blood sample processing 

Biopsied LN were sectioned into two; one section was fixed in 10% formal-saline 

(Sigma-Aldrich, St. Louis, Missouri, USA) for IHC studies, while, the second section 

was macerated to release lymph node mononuclear cells (LMCs) according to the 

method of Schacker et al. (2006). The cells were passed through a mesh screen and 

harvested by centrifugation [1 800 rpm, 6 minutes (min), room temperature (RT)]. 

Peripheral blood mono nuclear cells (PBMCs) were isolated from patient’s blood 

samples by density-gradient centrifugation using Histopaque-1077 (Sigma-Aldrich) 

and cryopreserved in liquid nitrogen (McCoy, 1998).  

3.3.3 Flow cytometry analysis  

Freshly isolated or frozen LMCs and PBMCs were phenotypically and functionally 

characterized using flow cytometry analysis with standardized protocols. Briefly, for 

surface staining, cells were incubated for 30 min at RT in staining buffer [2% fetal calf 

serum (FCS) in Phosphate buffered saline (PBS) buffer] containing the following 

antibodies; LIVE/DEAD Fixable Blue dead cell stain kit (Thermofisher Scientific, 

Waltham MA, USA), CD19 Horizon V500 [(HV500) BD Biosciences, San Jose, CA], 

CD3 Brilliant Violet 711 [(BV711) BioLegend, San Diego, CA, USA], CD8 BV786 (BD 

Biosciences), CD4 BV650 (BD Biosciences), CXCR5 Alexa fluor 488 [(AF488) BD 

Biosciences], PD-1 BV421 (BioLegend), CCR6 phycoerythrin [(PE) BioLegend], 

CXCR3 BV605 (BioLegend), CD45RA AF700 (BioLegend), ICOS PE-Dazzle 594 

(BioLegend), CD38 PE Cyanine-7 [(Cy7) BD Biosciences], IgD Allophycocyanin 
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[(APC) BD Biosciences], CCR7 Peridinin-chlorophyll proteins (PerCp) Cy5.5 

(BioLegend) and CD27 APCH7 (BD Biosciences).  

For intracellular staining of the transcription factor B cell lymphoma 6 (BCL-6), cells 

were fixed and permeabilized using the BD Cytofix/Cytoperm™ kit according to 

manufacturer’s instructions (BD Biosciences) and stained for 30 min, RT.  To sort Tfh 

subsets, cells were stained at RT for 30 min with LIVE/DEAD Aqua dead cell staining 

kit (Thermofisher scientific) as per manufacturer’s instructions, followed by an antibody 

panel comprising: CD3 BV711 (BioLegend), CD8 BV786 (BD Biosciences), CD4 

BV650 (BD Biosciences), CXCR5 AF488 (BD Biosciences), PD-1 BV421 (BioLegend), 

CCR6 PE (BioLegend), CXCR3 BV605 (BioLegend) and CD45RA PE-Cy7 

(BioLegend).  

Stained cells were acquired using an LSRFortessa (BD Biosciences) with FACSDiva™ 

software or sorted using the FACS aria fusion (BD Biosciences). Data was analysed 

using the FlowJo version 10.0.8 (Flowjo, LLC, Ashland, Oregon).  

3.3.4 HLA Class II tetramer studies  

HIV-specific Tfh responses were defined using fluorochrome conjugated HLA class II 

tetramers. Briefly, cells were stained for 1 hour at 37oC with APC and PE conjugated 

HLA Class II tetramer complexes, washed in 2% FCS-PBS and then stained with these 

antibodies: LIVE/DEAD Fixable Blue dead cell stain kit (Thermofisher Scientific), CD3 

BV711 (Biolegend), CD4 BV650 (BD Biosciences), CD8 BV786 (BD Biosciences), 

CXCR5 AF488 (BD Biosciences), CXCR3 BV605 (Biolegend), PD-1 BV421 

(Biolegend) and CD45RA AF700 (Biolegend); for 20 mins at RT. Cells were washed 

and acquired on the LSRFortessa (BD Biosciences).  
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3.3.5 T-B co-culture assay 

Naïve B cells were firstly isolated using the human naïve B cell enrichment kit 

(negative selection) according to manufacturer’s instructions (Stemcell technologies, 

Vancouver, Canada). FACS aria fusion (BD Biosciences) sorted Tfh cells (5 x 104 

cells) were further co-cultured with autologous naïve B cells (5 x 104 cells) in the 

presence of staphylococcal enterotoxin B (SEB, 0.5 μg/ml) (Sigma-Aldrich) in 96-well 

U-bottom plates using AIM V medium (Thermofisher scientific) as previously described 

(Morita et al., 2011). Cells and supernatants were harvested on day 8 and used for 

IL-21 mRNA quantitation by digital droplet PCR and total IgG measurement by ELISA 

respectively.  

3.3.6 Droplet digital PCR 

Total RNA was extracted from co-cultured Tfh and naïve B cells using QIAzol lysis 

reagent (Qiagen, Hilden, Germany) and Qiagen RNeasy kit (Qiagen) according to 

manufacturer’s instructions, and used for cDNA synthesis using the iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA, USA). The cDNA was used as a template for IL-

21 mRNA quantification by Taqman digital droplet PCR assay using a pre-designed 

experiment (ThermoFisher Scientific, Assay ID: Hs00222327) in a two-step digital 

droplet PCR reaction. PCR thermal cycling was conducted following optimized cycling 

conditions: an initial denaturation at 95°C for 10 min, 40 cycles of 30 seconds at 94°C, 

1 min at 60°C, followed by a final incubation at 98°C for 10 min and holding at 4°C 

until reading time. After PCR amplification, droplets were measured in the QX200 

ddPCR Droplet Reader (Bio-Rad), and target gene copy number was analyzed using 

QuantaSoft analysis software (Bio-Rad) and recorded as mRNA copies/20μL. 
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Absolute IL-21 mRNA counts were normalized to the expression of the housekeeping 

gene B2M.  

3.3.7 Total and HIV-specific IgG ELISA  

Plasma HIV-specific IgG antibodies were measured by ELISA as previously described 

with minor modifications (Gach et al., 2014). 96 well plates (eBiosciences, Waltham 

MA, USA) were coated with monoclonal anti mouse IgG (eBiosciences), (10 μg/ml in 

PBS, 100 µl/well) for 16 hours at 4oC. Plates were washed 3 times with wash buffer 

(0.05% Tween-20 in PBS) and incubated with blocking buffer (1% Bovine serum 

albumin in PBS, 200 µl/well, RT) for 1 hour. Plates were washed with wash buffer 

before and after incubation with dilutions of samples and standards in triplicates 

(100 µl/well, 2 hours, RT). Pooled plasma samples from chronically infected HIV 

patients were used to generate the standard curves for HIV-specific IgG antibodies. 

Secondary horseradish peroxidase-conjugated donkey anti-human IgG antibody 

(Jackson ImmunoResearch, West Grove, PA, USA). Horse radish peroxidase 

conjugated secondary antibodies diluted at 1 in 5 000 in reagent diluent (1% BSA in 

PBS, 100 µl/well, 1 hour), followed by o-phenylenediamine dihydrochloride 

(OPD) substrate (Sigma-Aldrich, 100 µl/well) were used to detect IgG antibodies in 

samples and standards. The reaction was stopped by the addition of 2N Sulfuric acid 

(Sigma-Aldrich) and the OD values (490 nm) were measured using a BIOTEC plate 

reader. OD values were imputed into GraphPad Prism 7.0 (GraphPad Software, La 

Jolla, California, USA) to plot standard curves and extrapolate IgG antibody 

concentrations in each sample. 
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3.3.8 Immunohistochemistry with chromogenic detection 

Immunohistochemistry staining was performed on 0.4 µM sections of formalin fixed 

paraffin embedded (FFPE) lymph nodes using the Dako EnVision FLEX Mini kit, high 

pH (Agilent, Santa Clara, CA, USA) according to the manufacturer’s protocol. 

Summarily, target proteins on deparaffinized sections were exposed by heat induced 

epitope retrieval using Dako antigen retrieval solution [Tris/Ethylenediaminetetra 

acetic acid (EDTA) buffer, (pH9)] and treated with Dako peroxidase-blocking reagent 

(10 min, RT), prior to incubation with BCL-6 (Dako), CXCR5 (Abcam, Cambridge, MA, 

USA), CD4 (Dako), Ki67 (Dako), IL-21 (Abcam) or PD-1 (Abcam) primary antibodies.  

Signal amplification was achieved by incubation in Dako EnVision FLEX Linker 

(15 min, RT) prior to incubation with Dako EnVision HRP (20 min, RT) and colorimetric 

detection using diaminobenzidine (DAB) detection system (Agilent). Tissues were 

counterstained with hematoxylin (Sigma-Aldrich) and mounted using DPX (Sigma-

Aldrich). Imaging was done using the Axio Scope.A1 LED (Zeiss) or the Axio Observer 

with TissueFAXS imaging software (TissueGnostics, Vienna, Austria) and images 

were analyzed with the AxioVision Rel 4.8 software (Zeiss) or with TissueQuest 

analysis software (TissueGnostics).   

3.3.9 Immunofluorescence (IF) microscopy 

Multicolor immunofluorescence microscopy staining was conducted using the opal 

4-color fluorescent IHC kit (PerkinElmer, Waltham, MA, USA) according to 

manufacturer instructions with minor modifications. Briefly, following antigen retrieval, 

two blocking steps (2 x 10 min, RT) were performed using the Dako peroxidase-

blocking reagent (Agilent) and Bloxall block (Vector Laboratories, Burlingame, CA, 
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USA). The slide was washed with 0.05% Tween 20 in Tris-buffered saline (TBS-T) for 

5 min, probed with the first primary antibody, BCL-6 [Dako, (30 min, RT)], washed with 

TBS-T (5 min), probed with Opal polymer HRP [20 min, RT (PerkinElmer)], washed 

(TBS-T, 2 X 5 min) and detected using the Opal polymer 520 (10 min, RT). This 

protocol was repeated for the second antibody [(CXCR5, CD4 or PD-1), Dako], 

followed by counterstaining with spectral DAPI (PerkinElmer) and mounting with Dako 

fluorescence mounting medium (Agilent). Images were acquired using the Axio 

Observer with TissueFAXS imaging software (TissueGnostics). Quantitative image 

analysis was conducted using TissueQuest (TissueGnostics). Threshold values were 

set using the negative control slides.   

3.3.10 Statistical analysis 

Statistical analyses were performed using GraphPad Prism 7.0 (GraphPad Software, 

La Jolla, California, USA). Mann-Whitney U tests were used for the comparisons 

between any 2 groups. Variation across multiple groups was assessed using Kruskal-

Wallis H test. Lastly, Pearson or Spearman’s rank correlation was used to define the 

correlation between 2 variables. P values were considered significant if less than 0.05. 

3.4 Results  

GCTfh cells are a key component of the adaptive immune response to HIV-1 infection. 

They provide cognate help to B cells (Crotty, 2011, Crotty, 2014) and CD8+ T cells 

(Chevalier et al., 2011a, Schultz et al., 2016). Massive expansion of GCTfh cells during 

chronic HIV infection is associated with B cell dysfunction and aberrant antibody 

production, but the effect of early ART initiation on GC responses has not been 

described. We thus, characterized GCTfh responses in 16 individuals initiated on ART 
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very early after infection, 12 of which were initiated on therapy in Fiebig stage I, 2 were 

initiated in Fiebig stage II and the other 2 in Fiebig stage V. In addition, 8 uninfected 

and 8 chronic untreated individuals were also studied. All study participants achieved 

full plasma viremia suppression after a median of 17 days on intensive ART. The ART 

regimen used and the clinical characteristics of the study participants are detailed in 

Appendix 2 and Table 3.1. Appendix 3 details the number of patients studied for each 

objective.  

Table 3.1: Patient characteristics 

 
HIV negative Early treated HIV Untreated chronic HIV 

n 8 16 8 

Male 0 0 1 

Female 8 16 7 

Age (years)* 21 
(20-22) 

21 
(19-22) 

24 
(22-31) 

CD4 Count (cells/ul)* NA 885 
(663-1033) 

357 
(355-359) 

Viral load (cps/ml)* NA <20 9000 
(1193-21750) 

Duration on 
treatment (days)* 

NA 346 
(34-466) 

NA 

Time to viremia 
suppression (days)* 

NA 17 
(8-24) 

NA 

* Data are represented as median (IQR). Abbreviations: NA, not applicable. 

3.4.1 GCTfh cells are phenotypically different from nonGCTh cells and cTfh cells  

Due to the paucity of LN Tfh studies in humans in general and the fact that prior to this 

study, no study has described immune responses in LNs in the Zulu/Xhosa population, 

we began by defining the baseline phenotypic and functional characteristics of LN and 

peripheral blood Tfh cell subsets in our cohort. Consistent with other Tfh studies 
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(Lindqvist et al., 2012), we defined GCTfh cells as CXCR5hiPD-1hi,  extrafollicular Tfh 

(nonGCTfh) and circulating Tfh (cTfh) as CXCR5+PD1+ (Figure 3.1A) and determined 

the expression levels of Tfh transcriptional regulator, BCL-6 and some other previously 

described Tfh associated molecules (Nurieva et al., 2009, Pratama et al., 2014).  

In comparison to nonGCTfh and cTfh cells respectively, we observed significantly 

higher median fluorescence intensities (MFI) of BCL-6 (p=0.008, p=0.02), ICOS 

(p=0.0002, p=0.0007) and programed cell death protein-1 (PD-1) (p=0.0002, 

p=0.0007) on GCTfh cells (Figure 3.1B). GCTfh cells did not express CCR7, a 

peripheral migratory receptor, while nonGCTfh and cTfh cells expressed similar levels 

of CCR7 (panel iv, Figure 3.1B). These results highlight previously described 

phenotypical differences between GCTfh, nonGCTfh and cTfh cells.  

Having validated our definition of the different Tfh populations, we next determined the 

baseline GCTfh characteristics in our cohort. GCTfh cells constituted a very small 

population of 2% of total memory (CD45RA-) CD4+ T cells in the lymph nodes while 

nonGCTfh cells were 11% (panel i, Figure 3.1C). Furthermore, cTfh cells comprised 

4% of total memory CD4+ T cells (panel ii, Figure 3.1C). These results demonstrate 

that GCTfh cells are the most differentiated Tfh cell subset and comprise a very small 

proportion of memory CD4+ T cells in the lymph nodes of HIV negative donors. 
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Figure 3.1: Phenotypic and functional characterization of Tfh subsets 
in the lymph nodes and peripheral blood of HIV negative donors. (A) 
Representative flow cytometry plots showing the gating strategy for GCTfh (PD-1hiCXCR5hi), 
nonGCTfh (PD-1+CXCR5+) and cTfh (PD-1+CXCR5+) within CD45RA- CD4+ T cells. (B) Summary 
of median fluorescence intensity (MFI) values for BCL-6 (i), ICOS (ii), PD-1 (iii), and CCR7 (iv), 
markers on GCTfh, nonGCTfh and cTfh cells. (C) Pie charts showing the proportions of Tfh subsets 
within total memory (CD45RA-) CD4+ T cells. Statistical differences were calculated using Mann 
U-Whitney tests. 

3.4.2 Expansion of GCTfh cells in early ART treated individuals   

The dysregulation of Tfh function during chronic HIV-1 infection has been documented 

(Lindqvist et al., 2012, Cubas et al., 2013), but it is known if the scenario of rapid 

viremia suppression in early Tx individuals prevents Tfh cell dysfunction. To address 



 
74 

this question, we first, interrogated how HIV-1 infection affects Tfh cell frequencies 

and found that there was a 4-fold increase in the median frequencies of GCTfh cells 

(6.7%, IQR 39%-7.9%) during chronic HIV-1 infection compared to healthy controls 

(p=0.0002) (Figures 3.2A & 3.2B). The median proportions of GCTfh cells in early 

treated individuals were also higher (2.4%, IQR 1.2%-4.3%) than the proportions in 

uninfected controls (p=0.05). However, the expansion of GCTfh cells in the early Tx 

group was attenuated compared to chronic infection (p=0.01) (Figures 3.2A & 3.2B). 

In contrast, the frequencies of nonGCTfh and cTfh cells were not significantly altered 

during chronic untreated or early treated HIV-1 infection (Figures 3.2A & 3.2B). These 

results show that early treatment initiation results in a mitigated but significant GCTfh 

response.    
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Figure 3.2: Expansion of the GCTfh cells during HIV-1 infection. (A) 
Representative flow cytometry plots showing the proportions of GCTfh (CXCR5hiPD-1hi), 
nonGCTfh (PD-1+CXCR5+) cells and cTfh cells (PD-1+CXCR5+) in HIV negative (HIVneg), early 
treated (Early Tx) and untreated HIV-infected (Un Tx) groups. (B) Summary plots comparing the 
frequencies of Tfh subsets in HIVneg, Early Tx and Un Tx donors. Statistical differences were 
calculated using Mann U-Whitney tests. 

3.4.3 HIV-specific Tfh responses are induced during early treated HIV infection  

Having demonstrated the expansion of GCTfh cells in early treated individuals, we 

next sought to determine if early ART initiation results in the induction of functional 

HIV-specific Tfh responses. We used DRB1*11:01 and DRB1*13:01 class II tetramers 

described in chapter 2 for our characterization of HIV-specific responses. Our tetramer 

staining strategy involved the dual tetramer PE and APC double positive staining 

approach (Figure 3.3A), which our group previously showed excludes non-specific 
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background signals (Laher et al., 2017, Baiyegunhi et al., 2018). We gated on HIV-

specific CD4 T cells and overlaid that population on Tfh cell subsets (Figure 3.3B).  

 
Figure 3.3: Detection of HIV-1 specific Tfh cells using HLA class II 
tetramers. (A) Gating strategy for identifying double-positive tetramer specific (Tet++) CD4+ T 
cells with minimal background staining on CD8+ T cells. (B) Overlay plots of Tet++ CD4+ T cells 
(red dots) on Tfh subsets. (C) Summary plot comparing proportions of Tet++ Tfh subsets in early 
treated (Early Tx) and untreated HIV-infected (Un Tx) individuals.  

Summary data from the analysis of 4 early treated and 2 untreated donors within our 

cohort expressing the class II DRB1*11:01 and DRB1*13:01 alleles, revealed that 

tetramer-specific GCTfh, nonGCTfh and cTfh cells were detected in our chronic un Tx 

and early Tx participants at similar frequencies (Figure 3.3C). These results show that 
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HIV-specific Tfh responses are induced in early treated subjects at comparable levels 

to untreated HIV infection.  

3.4.4 Early ART initiation modulates the expression of Tfh related molecules on 

Tfh subsets  

Having demonstrated that early treatment attenuates excessive HIV-1 induced GCTfh 

expansion, we next interrogated if there was an alteration in Tfh functional 

characteristics during early ART. As previously mentioned, BCL-6 is the master 

transcription factor that regulates Tfh differentiation and BCL-6 expression is up 

regulated with Tfh development (Liu et al., 2012), thus, we evaluated if BCL-6 

expression on GCTfh cells is altered. Our results showed that, BCL-6 was 

constitutively expressed on GCTfh cells regardless of disease condition or treatment 

status (Figure 3.4A). However, BCL-6 expression in nonGCTfh and cTfh cells was 

increased during HIV-1 infection and significantly attenuated by early treatment 

(Figure 3.4A).  

The inducible T cell co-stimulator (ICOS) is an important costimulatory molecule for 

Tfh differentiation and migration, among other functions (Crotty, 2014). We next, 

showed that ICOS expression on both GCTfh and nonGCTfh cells remained 

significantly higher during HIV-1 infection regardless of treatment status (Figure 3.4B). 

In peripheral blood, early treatment resulted in reduced expression of ICOS on cTfh 

cells compared to untreated infection (p=0.0006) (Figure 3.4B).  
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Figure 3.4: Expression of Tfh functional molecules by Tfh subsets. 
Samples from HIV negative (HIVneg), early treated (Early Tx) and untreated HIV-infected (UnTx) 
individuals were characterized by flow cytometry. (A to C) Representative histograms and 
summary plots of median fluorescence intensity (MFI) for BCL-6 (A), ICOS (B), and PD-1 (C) on 
GCTfh (grey), nonGCTfh (pink) and cTfh (blue) cells. Statistical differences were calculated using 
Mann U-Whitney tests.  

Although PD-1 is important for Tfh function, high expression of PD-1 is associated with 

Tfh impairments during chronic HIV-1 infection (Cubas et al., 2013), so we also 

interrogated if early treatment modulates PD-1 expression on Tfh cell subsets. Our 

results showed that while, PD-1 expression on GCTfh (p=0.0005), nonGCTfh 

(p=0.0019) and cTfh (p=0.0007) cells was higher in the chronic un Tx group compared 

to controls, PD-1 expression on GCTfh (p=0.05) and cTfh (p=0.0006) cells from early 

treated individuals was lower compared to untreated individuals (Figure 3.4C). Taken 

together, these results demonstrate that the phenotype of nonGCTfh and cTfh cells 
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more closely resembles GCTfh cells during HIV-infection and that early treatment 

modulates the expression of PD-1 receptor on GCTfh cells.  

3.4.5 Cumulative exposure to viremia drives lymph node germinal center (GC) 

responses in early treated individuals 

In an effort to define the distribution of GCTfh cells in early treated individuals, we 

conducted immunohistochemistry studies on FFPE LNs of 17 study participants based 

on sample availability. Firstly, we defined GCs by immunostaining serial sections with 

BCL-6 and Ki67 markers (Figure 3.5A) (Goteri et al., 2011). Next, we quantified the 

mean percentage area staining for BCL-6 or Ki67 GC clusters in each image using the 

AxioVision Rel 4.8 software (Zeiss). We observed a strong positive correlation 

between the area percentages of BCL-6 and Ki67 (Figure 3.5B), demonstrating that 

both markers identified GCs with similar accuracy but we chose to use BCL-6 for our 

subsequent studies because in our hands, it was cleaner with minimal background 

staining. 
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Figure 3.5: In situ localization of Tfh cells in the lymph nodes using IF 
microscopy. (A) Representative micrographs showing chromogenic detection of intranuclear 
BCL-6 and Ki67 staining. (B) Correlation between average area percentage staining of BCL-6 and 
Ki67 in GCs. Area percentages were quantified using AxioVision Rel 4.8 software. (C) Lymph node 
sections were stained with BCL-6 (green) to define germinal centers (GCs) and stained with (i) 
PD-1 (red), or (ii) CD4 (red) and (iii) CXCR5 (yellow) to localize Tfh cells. (D) Summary plots 
showing the distribution of PD-1 and BCL-6 expressing cells in the GCs. TissueQuest 
(TissueGnostics, Vienna) was used to compute the cell frequencies. 

Fluorescent multiplex IHC assays provide a unique advantage of in situ 

characterization and quantification of immune cell interactions. Thus, we employed 

this method to localize Tfh cells to GCs, by multiplexing the BCL-6 marker with either 

PD-1 or CD4 (Figure 3.5C, top and middle panels). We also combined CXCR5, CD4 

and BCL-6 markers to confirm co-localized membrane staining of both receptors on 

Tfh cells (Figure 3.5C, bottom panel). The expression levels and the overlapping mean 

intensities for BCL-6 and PD-1 markers defined as PD-1+BCL-6+ or BCL-6 only (PD-

1-BCL-6+) or PD-1 only (PD-1+BCL-6-), were calculated using TissueQuest software 
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(TissueGnostics). We observed a trend of higher BCL-6+ cells in chronic untreated 

LNs by IF (Figure 3.5D). This result confirms our flow cytometry data showing the 

expansion of Tfh cells during chronic HIV infection.  

3.4.6 HIV-1 induced changes in lymph node B cell subset distribution  

One of the cardinal functions of Tfh cells is to promote B cell differentiation, antibody 

class switching and antibody affinity maturation. To determine if Tfh cell helper 

capacity to B cells was impacted by the early initiation of ART, we first, characterized 

the frequencies of B cell subsets across the study groups (4 HIVneg, 9 Early Tx and 

4 Un Tx) and the induction of class switched antibodies in the early treated study 

participants. We used CD38 and IgD markers to define four subsets within total CD3-

CD19+ B cells and naïve B cells were defined as CD38lo/-IgD+ cells, pre-GC B cells 

were CD38+IgD+, GC B cells were CD38+IgD- and plasmablasts/ plasma cells were 

CD38hiIgD- (Figure 3.6A). The frequencies of naïve and pre-GC B cells were not 

significantly impacted by HIV-1 infection (Figures 3.6B & 3.6C), however, the 

proportions of GC B cells and plasmablasts/plasma cells were significantly higher 

during chronic untreated HIV-1 infection compared to controls (Figures 3.6D & 3.6E).  

We next conducted independent correlation analysis of the different B cell subsets and 

GCTfh cells and found a strong positive correlation between the percentage of GC B 

cells and GC Tfh cells only (p=0.0003, r=0.9321) (Figure 3.6F and results not shown). 

Taken together, these results demonstrate that similar to the GCTfh compartment, 

chronic untreated HIV-1 infection induces a significant expansion of B cell subsets, 

which is blunted by early treatment. Also, the induction of GC B cells is associated 

with GC Tfh cell numbers in early treated individuals. 
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To further interrogate B cell responses in the early treated participants, we investigated 

if HIV-specific class switched antibodies are produced especially since 

plasmablasts/plasma B cell responses were significantly expanded in early treated 

individuals compared to controls. Plasma HIV-1 gp41 and gp 120 envelope 

glycoprotein-specific IgG titers were determined in early treated donors at baseline 

and at weeks 1, 12, 24, 36, 48, 60, 72, 96 and 108 post-diagnosis of HIV infection. We 

found that plasma gp41 (Figure 3.7G) and gp120 (Figure 3.7H) antibodies were 

induced early and peaked at approximately 12 weeks post-infection in most 

participants. Although gp120 IgG rapidly declined to almost undetectable levels by 60 

weeks post-infection, gp41 IgG remained higher than the threshold of detection in 

more than half of the participants tested. These results demonstrate the persistent 

production of gp41- and to a lesser degree, gp120-specific class switched antibodies 

in early treated donors despite rapid plasma viremia suppression after a median of 17 

days on ART. 
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Figure 3.6: B cell responses are induced in early treated individuals 
and correlate with Tfh responses. (A) Representative flow cytometry plot showing the 
gating strategy for B cell subsets in the lymph nodes. (B to E) Summary plots comparing the 
proportions of naïve B cells (B), pre-GC B cells (C), GC B cells (D) and plasmablasts/plasma cells 
(E) within total CD19+ B cells from HIV negative (HIVneg), early treated (Early Tx) and untreated 
HIV-infected (Un Tx) donors. (F) Correlation between the frequencies of GC B cells and GCTfh 
cells in Early Tx donors. (G & H) Titers for gp41 IgG (G) and gp120 IgG (H) antibodies were 
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determined at baseline and at weeks 1, 12, 24, 36, 48 and 60 post-infection for Early Tx donors. 
P values from the Mann-U Whitney test (B to E) and Pearson rho (r) and p values (F) are reported.  

3.4.7 Early initiation of antiretroviral therapy is associated with superior GCTfh 

helper capacity  

Lastly, we directly interrogated GCTfh help to naïve B cells in an in vitro co-culture 

assay. To increase cell numbers for the assay, we sorted total LN CXCR5+ CD4+ T 

cells and co-cultured them with autogous naïve B cells in quadruplicates. Co-cultures 

for early treated individuals yielded 2-fold higher concentrations of total IgG (Figure 

3.7A) and 3-fold higher IL-21 mRNA trancripts (Figure 3.7B) than co-cultures using 

cells from chronic untreated individuals. These results demonstrate that Tfh responses 

in early treated individuals are more efficient at supporting IgG production by secreting 

high amounts of the cytokine IL-21 than Tfh cells from chronic untreated individuals. 

 
Figure 3.7: Tfh cells from early treated donors provide more efficient 
B cell help than Tfh cells from donors with untreated HIV infection. (A) 
Sorted CXCR5+ CD4+ T cells were incubated with purified naïve B cells, in the presence of 
Staphylococcal enterotoxin B for 8 days. IgG concentration was determined in day 8 culture 
supernatants by ELISA. (B) IL-21 mRNA was quantified in co-cultured CXCR5+ CD4+ T cells and 
naïve B cells using digital droplet PCR. Early treated, Early Tx; untreated HIV-infected, Un Tx. 
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3.5 Discussion 

A therapeutic vaccine for HIV-1 infection would need to induce robust anti-HIV immune 

responses in ART suppressed individuals to mediate post-treatment viral control. Tfh 

cells are critical for the induction of effective T cell-dependent antibody responses, but 

there is a paucity of LN Tfh studies especially in early treated HIV-infected individuals. 

Since lymphoid tissues are the primary sites for the induction of anti-HIV T cell-

dependent immune responses in vivo, the present study used paired peripheral blood 

and LN samples from well-characterized cohorts of hyperacute and chronic HIV-1 

infection to phenotypically and functionally define and localize HIV-induced GCTfh 

responses.  

We have previously shown that the total circulating Tfh cell compartment described, 

as total memory cells CXCR5+ CD4+ T cells are a heterogeneous population with many 

subsets (Baiyegunhi et al., 2018). To focus our studies here on cells with similar 

phenotypic characteristics to bona fide GCTfh cells, we restricted our definition of cTfh 

cells to PD-1 expressing CXCR5+ cells. Consistent with previous studies, our results 

revealed that GCTfh cells are phenotypically distinct from their extrafollicular and 

circulating counterparts by the high expression of key functional molecules like BCL-6, 

ICOS, PD-1 and CCR7 (Morita et al., 2011, Locci et al., 2013, Lindqvist et al., 2012). 

In addition, we showed that HIV-1 infection resulted in the upregulation of BCL-6, 

ICOS and PD-1 on cTfh cells, suggesting that cTfh cells acquire an effector ‘GCTfh-

like’ phenotype during HIV-1 infection.   

It is assumed that the rapid withdrawal of HIV antigens by early ART could completely 

abrogate GCTfh responses in the LNs. Hence, there is a notion that early treated 

individuals would be unable to develop affinity matured antibody responses against 



 
86 

HIV. Using several lines of evidence, we demonstrated the induction of GC responses 

in early treated individuals. Firstly, we observed significant expansion of bulk GCTfh 

cells in early treated donors compared to HIV negative controls. Using HLA class II 

tetramers, we demonstrate the induction of HIV-specific GCTfh cells in early treated 

individuals. Thirdly, active GCs were visualized in these participants using IF 

microscopy techniques and plasma HIV-specific antibodies persisted up to 60 weeks 

post infection. Lastly, we observed significantly increase in plasmablasts and plasma 

cells in early treated individuals compared to uninfected controls. Together these 

results demonstrate a robust induction of GC responses in early treated individuals.  

One of the underlying mechanisms of Tfh dysfunction during chronic HIV-1 infection 

is the high expression of PD-1, whose ligation by PD-L1 or PD-L2 on B cells results in 

decreased IL-21 and ICOS production by Tfh cells (Miles et al., 2016b, Cubas et al., 

2013). Of note we reported significantly lower expression levels of the PD-1 receptor 

on GCTfh and cTfh cells from early treated individuals compared to chronic untreated 

individuals. The role of PD-1 on Tfh function is controversial. Some studies associate 

PD-1 expression with Tfh dysfunction while other studies show that, PD-1 signaling 

impacts IL-21 production by Tfh cells and plasma cell differentiation by B cells (Victora 

et al., 2012). Our data suggest that the balance between over expression and optimal 

expression of this receptor might be a determining factor for Tfh dysfunction or 

qualitative Tfh function.  

Using evidence from in vitro co-culture assays, to answer the question of Tfh 

functionality in early treated individuals, we showed that Tfh cells could induce IgG 

production by naïve B cells than Tfh cells from untreated individuals. The impaired 

capacity of GCTfh cells from untreated individuals to support B cells’ IgG production 
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in vitro has been previously described (Cubas et al., 2013). In that study, IgG 

production in the co-culture was rescued by the addition of exogenous IL-21. Which is 

reflected with our results that showed there was increased IL-21 production in co-

cultures of cells from early treated individuals. IL-21 is a key cytokine that drives 

germinal center formation and antibody class switch recombination (Pissani et al., 

2014, Morita et al., 2011). Thus, impaired IL-21 production by Tfh cells during chronic 

HIV infection contributes to the dysregulation of the GC response and the excessive 

production of low affinity antibodies during chronic HIV infection.   

Another factor that contributes to a dysregulated GC response during untreated 

chronic HIV infection or an impaired GC response to vaccination, is very high GCTfh 

cell numbers (Miles et al., 2016a). It has been described that Tfh cell numbers need 

to be tightly regulated in the GCs so that the B cell affinity maturation process can be 

optimal (Pratama et al., 2014). Our study shows that early treated individuals have 

superior functioning Tfh cells, which could be attributable to a more mitigated Tfh 

response. These data suggest that early treated individuals have the potential to 

respond more robustly to prophylactic HIV vaccination.  

The persistence of Tfh cells and anti-HIV antibody responses in aviremic early treated 

individuals’ warrants further investigation. We however, speculate that there is 

persistent low-level viremia within the lymph nodes, which is driving these responses. 

Our hypothesis is based on reports that the concentrations of many antiretroviral drugs 

are lower in tissue sites like the LNs than in peripheral blood (Fletcher et al., 2014). 

Thus, lower drug concentrations will lead to slower clearance of HIV in LNs hence 

promoting ongoing GC reactions. Future investigations on this cohort will be directed 

at interrogating virus persistence in the lymphoid tissues. A major limitation of our 
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study is limited sample availability to interrogate IgG responses in untreated 

individuals and to conduct in vitro co-culture assays for the direct evaluation of Tfh cell 

helper function in all our study participants. However, the results from the few 

participants tested together with evidence from flow cytometry characterization of Tfh 

and B cell subsets make a compelling case on the benefits of early induction of ART 

to the Tfh compartment. In conclusion, our results here demonstrate that early ART 

preserves the function of Tfh and B cells, which has implications in the overall immune 

function of HIV infected individuals in response to other pathogenic infections or 

vaccinations.  
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Chapter 4 Overview 

In chapter 3 of this thesis, we reported results outlining phenotypic and functional 

differences between cTfh cells and GCTfh cells. We also showed that early ART 

initiation results in the induction of highly functional HIV-1 specific Tfh responses and 

these responses have a potent helper effect on B cell responses and antibody 

production. Several studies have implicated Tfh cells in HIV-1 persistence in people 

taking ART because of their proximity to follicular dendritic cells that carry potentially 

infectious virions on their surfaces. The limited tissue penetration of antiretroviral 

drugs in GCs coupled with exclusion of cytotoxic CD8+ T cells from this site further 

support the notion that GCTfh cells may be more vulnerable to HIV-1 infection during 

ART. Moreover, the few studies that have looked at persistent infection have mainly 

been conducted in individuals who initiated therapy in chronic infection and tend to 

have a larger HIV reservoir. Therefore, studies in chapter 4 of this thesis were aimed 

at determining if there is persistence of virus in the lymph nodes of people who initiate 

therapy extremely early, mostly in Fiebig stage I. The studies describe the architectural 

and cellular localization of persistent virus infection in lymph nodes and report on the 

impact of persistent infection on CD4+ T helper function and B cell responses.  
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4.1 Abstract 

One of the major barriers to achieving HIV remission through combination 

antiretroviral therapy (ART) is the persistence of virus in reservoirs and tissue 

sanctuaries. B cell follicles and germinal centers (GC) within lymph nodes (LNs) are 

immune privileged sites with the potential to support low-level virus replication. 

However, the persistence of virus within this tissue compartment in individuals who 

initiated ART during hyperacute HIV-1 infection is not well described. Here, we used 

excised LNs and paired peripheral blood samples from 18 HIV-1 infected subjects 

from the well-characterized FRESH cohort who mostly initiated ART during Fiebig 

stage I, 8 chronic untreated and 8 HIV negative individuals, to investigate virus 

persistence and to identify cell subsets that harbor residual virus during early ART. LN 

viral load was quantified using the Cobas AmpliPrep HIV-1 test and HIV-infected cells 

in LNs were detected by staining for Gag p24 capsid protein using 

immunohistochemistry (IHC), immunofluorescence (IF) microscopy and RNAscope in 

situ hybridization (ISH) techniques. LN cell subsets were also phenotyped by flow 

cytometry.  

Viral load assessment after a median of 403 days on treatment revealed a significantly 

higher median viral load in the LNs compared to plasma (p=0.02). IF imaging and 

RNAscope ISH showed the presence of Gag p24 protein and gag-pol RNA 

predominantly in the GCs even after 228 days of ART mediated viral suppression. 

Phenotypic analysis of GCTfh cell subsets by flow cytometry showed an expansion of 

CXCR3+CCR6+ GCTfh cells which harbored higher levels of Gag p24 antigen 

compared to other subsets. Together, our results demonstrate that despite early 

initiation of ART, HIV persists in the LNs, in sufficient quantities to drive persistent GC 
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reactions. This study demonstrates the huge difference in viral load decay kinetics 

between peripheral blood and LNs during early ART and underscores the need for 

future interventions directed at eliminating residual virus in tissue sanctuaries.  

4.2 Introduction 

Antiretroviral therapy (ART) does not eradicate HIV largely because of virus 

persistence in cellular and tissue reservoirs (Murray et al., 2016, Puertas et al., 2016, 

Chun, 2013). Although, the exact nature and size of the reservoir is not precisely 

determined, memory CD4+ T cells and other cell subsets like macrophages (Abbas et 

al., 2015, Rose et al., 2016), T follicular helper (Tfh) cells (Kohler et al., 2016, 

Pallikkuth et al., 2015), regulatory T cells (McGary et al., 2017) and CD32a positive 

CD4+ T cells (Descours et al., 2017), have all been implicated in virus persistence 

during suppressive ART (Miles et al., 2016a, Abdel-Mohsen et al., 2018). More so, 

peripheral lymphoid tissues have been implicated in virus persistence, specifically, in 

microanatomical structures termed germinal centers (GCs), which have been 

described as immune privileged or virus sanctuary sites.  

Germinal centers primarily function for the maturation of B cell antibody responses 

and this process is initiated and sustained by the cognate interactions of CD4+ T cells 

by T follicular helper cells which also promote B cell differentiation and survival (Crotty, 

2011). Others and we have described phenotypic heterogeneity within the circulating 

Tfh (cTfh) compartment and the relationship between the frequencies of different cTfh 

subsets and the induction of robust antibody responses to HIV infection or vaccination 

(Locci et al., 2013, Martin-Gayo et al., 2017, Baiyegunhi et al., 2018). However, 

heterogeneity of Tfh cells in the lymph nodes (LNs) has not been comprehensively 

evaluated. 
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One of the few studies that have examined the heterogeneity of GC Tfh cells from 

lymphoid tissues was a study of SIV infection in macaques (Velu et al., 2016). In that 

study, there was an expansion of CXCR3+ GCTfh cells within the follicles and these 

cells contained higher amounts of SIV DNA compared to CXCR3- GCTfh cells (Velu 

et al., 2016). Thus, demonstrating that the heterogeneity of GCTfh cells impacts latent 

reservoir accumulation but heterogeneity within human GCTfh cells or its impact on 

active reservoirs or persistent virus production during early ART has not been defined.   

Persistent HIV reservoirs have been widely accepted as a barrier to HIV cure. 

However, there is no consensus on the definition of HIV reservoirs, there are no 

reliable phenotypic markers for the cells that constitute the reservoir and there is no 

consensus as to whether HIV continues to replicate in sanctuary sites during ART 

(Lorenzo-Redondo et al., 2016, Rose et al., 2016, Puertas et al., 2016, Brodin et al., 

2016). For example, a study of simian immunodeficiency virus (SIV) infection in 

macaques found no evidence of virus evolution or de-novo viral replication during ART 

(Oue et al., 2013) but Fletcher et al. (2014) showed that sub-optimal drug penetration 

into the lymphatic sites, allowed for virus replication. This was further corroborated by 

another study using deep sequencing and phylogenetic analysis of lymph node and 

blood samples collected longitudinally at day 0 and after 3 and 6 months of treatment 

(Lorenzo-Redondo et al., 2016). Paradoxically, a more recent study did not find 

evidence of virus evolution during ART (Vancoillie et al., 2017).  

The optimal outcome for an HIV cure would be the complete eradication of all 

replication competent viruses within an individual. The prerequisite to achieving such 

a cure, will be to conclusively determine whether ongoing virus replication occurs 

during ART, define all cellular sources of productive infection during ART and develop 
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strategies to selectively eliminate the cells harboring residual virus (Ryscavage et al., 

2014, Tobin et al., 2005).  

In this study, we set out to investigate the persistence of virus in the LNs of individuals 

initiated on ART during Fiebig stage I and defined the phenotypic features of cells that 

harbor persistent virus infection within GCs. The excisional LNs and paired blood 

samples used for these studies were obtained from 18 early treated, 8 healthy controls 

and 8 chronic untreated HIV-1 infected individuals. Flow cytometry and 

immunofluorescence microscopy (IF) technologies were used to define the phenotype 

and localization of GCTfh subsets respectively and the Cobas AmpliPrep HIV-1 test 

was used to measure LN viral loads. Immunohistochemistry (IHC) and RNAscope 

in situ hybridization (ISH) techniques were further used to define virus persistence and 

cellular distribution of HIV RNA in situ.  

Our results show that LN viral loads were significantly higher than contemporaneous 

plasma viral loads after a median of 403 days on treatment. Despite ART-mediated 

complete plasma viral suppression, HIV Gag p24 capsid protein and gag-pol RNA 

were persistently detectable almost exclusively in the GCs. We further showed that 

GCTfh cells exhibited very high expression of CXCR3 and CCR6 as measured by IF 

microscopy as well as by flow cytometry and these cells together with FDCs harbored 

the detected Gag p24 antigens. These results show that HIV persists in the form of 

Gap p24 protein and as viral RNA in the lymph nodes of early treated individuals. 

These findings highlight the need to target the CXCR3+CCR6+ GCTfh cell subset for 

selective elimination in future HIV-1 cure strategies. 
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4.3 Methods 

4.3.1 Study population and samples 

The study participants were drawn from the HIV Pathogenesis Programme (HPP) 

lymph node study cohort in Durban, South Africa. The lymph node study cohort and 

recruitment procedures were previously described (Chapter 3, section 3.2.1). Briefly, 

excisional lymph node biopsies and blood samples were collected from 8 HIV-

uninfected and 18 early treated (Early Tx) females recruited from Females Rising 

Through Education, Support and Health (FRESH) cohort [cohort characteristics were 

described by Dong et al. (2017)]. In addition, 6 chronic untreated (Un Tx) individuals 

were recruited from the HPP Acute Infection cohort (Wright et al., 2011) and 2 chronic 

untreated patients were recruited from Prince Mshiyeni memorial hospital, Durban, 

South Africa. Axillary, cervical or inguinal lymph nodes were surgically excised and 

120 ml paired peripheral blood was drawn from each participant. Global Clinical and 

Viral laboratories, Durban, South Africa, measured absolute CD4 counts and viral 

loads. The University of KwaZulu-Natal Biomedical Research Ethics Committee 

(BREC) and the Institutional review board of Massachusetts General Hospital granted 

ethical approval for the study. All study participants signed inform consent forms for 

participation in the study. 

4.3.2 Lymph node and blood sample processing 

Biopsied lymph nodes were sectioned into two; one section was fixed in 10% formal-

saline (Sigma-Aldrich, St. Louis, Missouri, USA) for IHC studies, while, the second 

section was macerated to release lymph node mononuclear cells (LMCs) according to 
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the method of Schacker et al. (2006). The cells were passed through a mesh screen 

and harvested by centrifugation (1 800 rpm, 6 min, RT).    

Peripheral blood mononuclear cells (PBMCs) were isolated from patient’s blood 

samples by density-gradient centrifugation using Histopaque-1077 (Sigma-Aldrich) 

and cryopreserved in liquid nitrogen (McCoy, 1998).   

4.3.3 Viral RNA quantification in lymph node mononuclear cells 

Cryopreserved LMCs (10 million cells/ml) were lysed and viral RNA was quantified 

using the Cobas® AmpliPrep HIV-1 test (Roche, Mannheim, Germany) by Global 

Clinical and Viral laboratories, Durban, South Africa using standardized protocols.   

4.3.4 Immunohistochemistry (IHC) with chromogenic detection 

IHC staining was performed on 0.4 µM sections of formalin fixed paraffin embedded 

(FFPE) lymph nodes using the Dako EnVision FLEX Mini kit, high pH (Agilent, Santa 

Clara, CA, USA) according to the manufacturer’s protocol and as previously described 

(Chapter 3, section 3.2.8). Following antigen retrieval, slides were sequentially 

incubated with p24 (Dako), primary antibody (20 min, RT), Dako EnVision FLEX Linker 

(15 min, RT) and Dako EnVision HRP (20 min, RT). The signal was detected using 

the diaminobenzidine (DAB) detection system (Agilent), counterstained with 

hematoxylin (Sigma-Aldrich) and mounted using DPX (Sigma-Aldrich). Imaging was 

conducted using the Axio Scope.A1 LED (Zeiss) or the Axio Observer with 

TissueFAXS imaging software (TissueGnostics, Vienna, Austria) and analyzed with 

AxioVision Rel 4.8 software (Zeiss).  
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4.3.5 Immunofluorescence (IF) microscopy 

IF microscopy staining was conducted using the opal 4-color fluorescent IHC kit 

(PerkinElmer, Waltham, MA, USA) as described in Chapter 3, section 3.2.9. Slides 

were stained with a total of 3 antibodies and counterstained with DAPI (PerkinElmer) 

to make a total of 4 different fluorochromes. Primary antibodies used in these 

combinations included BCL-6 (Dako), CCR6 (Thermofisher Scientific, Waltham MA, 

USA), CD4 (Dako), CXCR3 (Thermofisher Scientific), CXCR5 (Abcam, Cambridge, 

MA, USA), FDC (Dako), Ki67 (Dako), and PD-1 (Abcam). Slides were imaged with the 

Axio Observer and TissueFAXS imaging software (TissueGnostics).  Quantitative 

image analysis was conducted with TissueQuest (TissueGnostics) and negative 

control slides were used to set the threshold values.   

4.3.6 Flow cytometry analysis  

Freshly isolated or frozen LMCs and PBMCs were characterized using flow cytometry 

analysis with standardized protocols. As described in section 3.2.3, cells were stained 

with LIVE/DEAD Fixable Blue dead cell stain kit (Thermofisher Scientific), CD19 

Horizon V500 [(HV500) BD Biosciences], CD3 Brilliant Violet (BV) 711 (Biolegend), 

CD8 BV786 (BD Biosciences), CD4 BV650 (BD Biosciences) CXCR5 Alexa Fluor (AF) 

488 (BD Biosciences), PD-1 BV421 (Biolegend), CCR6 Phycoerythrin [(PE) 

Biolegend], CXCR3 BV605 (Biolegend), CD45RA PE-Cyanine (Cy)-7 (Biolegend), 

ICOS PE-Dazzle 594 (Biolegend), CCR7 Peridinin-chlorophyl protein (PerCp) Cy5.5 

(Biolegend) and CD27 APCH7 (BD Biosciences) for 30 mins at RT, then acquired on 

the LSRFortessa (BD Biosciences, San Jose, CA).   
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4.3.7 RNAscope in situ hybridization (ISH) 

RNAscope ISH was conducted using the RNAscope® 2.5 HD assay kit [Advanced Cell 

Diagnostics (ACD), Newark, CA, USA] and the RNAscope® multiplex fluorescent kit 

v2.0 (ACD) as per manufacturer’s instructions. Briefly, pre-treated samples were 

hybridized with the clade C HIV-1 gag-pol probe at 40oC for 16 hours. Next, the 

samples were incubated with signal amplification probes and horseradish peroxidase 

conjugated secondary antibodies. The signal was detected with either DAB for the 

RNAscope® 2.5 HD assay (ACD) or with opal polymers (PerkinElmer) for the multiplex 

fluorescent assay. Slides were imaged with Axio Observer and TissueFAXS imaging 

software (TissueGnostics).   

4.3.8 Statistical analysis 

All statistical analyses were conducted with GraphPad Prism 7.0 (GraphPad Software, 

La Jolla, California, USA) and p values were considered significant if less than 0.05. 

Specifically, the Mann-Whitney U test was used to compare two groups, the Kruskal-

Wallis H test was used for comparing multiple groups and correlations between 

variables were defined by the Spearman’s rank correlation test.  

4.4 Results 

4.4.1 Identification of hyperacute HIV-1 infection allowed for early ART initiation 

in study participants 

Hyperacute HIV-1 infection was detected in 18 females (Table 4.1) and they were 

initiated on ART (FCD pill plus raltegravir) at a median of 1 day (min:max, 1:3 days) 

after virus detection (see Appendix 2) and treated for a median of 228 days (min:max, 
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11:926 days) before LN excision (Figure 4.1, Appendix 4). All Early Tx patients but 

one had achieved full virus suppression at the time of LN excision (Appendix 4) and 

the cumulative HIV antigen load was calculated for each patient as the area under the 

viral load curve (Appendix 5). In addition to the 18 early treated participants (Early Tx), 

8 HIV negative (HIVneg) and 8 chronic untreated (Un Tx) individuals were studied. 

Most of the study participants were females and other characteristics are detailed in 

Table 4.1. 

Table 4.1: Patient characteristics 
 

HIV negative Early treated 
HIV 

Untreated 
chronic HIV 

n 8 18 8 
Male 0 0 1 
Female 8 18 7 
Age (years)* 21 

(20-22) 
22 

(19-22) 
24 

(22-34) 
CD4 Count (cells/ul)* N/A 919 

(709-1075) 
357 

(355-359) 
Viral load (cps/ml)* N/A <20 9000 

(1193-21750) 
Treatment duration 
(days) 

N/A 228 
(43-440) 

N/A 

* IQR values are reported in parenthesis under median values.  
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Figure 4.1: Kinetics of treatment duration across study participants. 
The number of days on treatment prior to lymph node excision was plotted for each participant in 
the early treated group. 

4.4.2 HIV Gag p24 persists long term in lymph node sections obtained from 

individuals initiated on ART soon after HIV-infection 

The HIV-1 Gag p24 is a capsid protein that constitutes the core of the virus. It is 

produced by cleavage of its precursor, Gag p55 by HIV-1 protease and is essential to 

produce infectious virions. Immunostaining of this antigen in lymph node biopsies has 

been used to define virus persistence (de Paiva et al., 2007). We used the presence 

of Gag p24 protein in lymph node tissues as a proxy for HIV persistence and it was 

undetectable in HIV negative donor samples (Figure 4.2A). However, clusters of Gag 

p24 protein were detected in lymph node sections from a Fiebig stage V treated 

individual after 427 days on ART and a Fiebig stage I treated individual after 502 days 

of treatment (Figure 4.2B). Samples from chronic untreated persons also stained 

positive for Gag p24 antigen (Figure 4.2C).  
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Comparative analysis of Gag p24 staining across the study groups revealed that 

significantly lower Gag p24 was detected in early Tx (n=13) subjects compared to 

UnTx participants (n=6) (p=0.003, Figure 4.2D). Furthermore, the quantified amount 

of Gag p24 antigen detected in the early treated participants directly correlated to the 

Fiebig stage classification at the time of treatment initiation (p=0.0001, r=0.87, 

Figure 4E) but was not associated with the treatment duration (Figure 4.2F).  These 

results demonstrate that Gag p24 protein persists in the lymph nodes of early treated 

individuals with increasing magnitude based on the Fiebig classification of the 

participant. 

 
Figure 4.2: HIV Gag p24 detection in the lymph node of early treated 
HIV-1 infected patients. (A to C) Representative micrographs of Gag p24 staining in lymph 
node (LN) sections. The images in panel i are magnified 1000 times in panel ii. (D) Summary plots 
comparing the average area percentage staining of Gag p24 on LN sections for HIV negative 
(HIVneg), early treated (Early Tx) and untreated HIV-infected (Un Tx) individuals. (E and F) 
Correlation between Gag p24 average area percentage staining in LNs and Fiebig stage (E), or 
days on treatment (F). Mann U-Whitney p values, Spearman rho (r) values and p values are 
reported.  
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4.4.3 HIV Gag p24 persistence occurs almost exclusively in LN GCs of early 

treated HIV-infected individuals  

Since Gag p24 antigen was detected in clusters in the LNs, we reasoned that these 

regions were GCs. To definitvely determine if GCs harboured most of the Gag p24 

antigens, we used BCL-6 as a marker for GCs (Goteri et al., 2011), and multiplexed it 

with Gag p24 antibody. We observed co-localization of HIV Gag p24 antigen with 

BCL-6  (Figure 4.3A). Next, we wanted to determine if the observed GCs were being 

propagated by HIV infection, so we analysed our images using TissueQuest 

(TissueGnostics), which is a high throughput analysis software that allows for FACS-

like analysis of fluorescently labelled samples (Schmid et al., 2015). Firstly, we 

measured the size of GCs across our study groups and we observed significantly 

larger GCs in UnTx (p=0.05) and early Tx (p=0.04) groups compared to the HIVneg 

group (Figure 4.3B). Next, the magnitude of GCs was defined as the cell counts within 

BCL-6+ clusters and we found higher counts of BCL-6+ cells in early Tx (p=0.01) and 

a trend of higher BCL-6+ counts in UnTx (p=0.20) compared to HIVneg group (Figure 

4.4C). These results demonstrate that the size and magnitude of GCs are increased 

during HIV-1 infection.  
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Figure 4.3: Persistence of Gag p24+ cells in BCL-6+ germinal centers 
during early treated and untreated HIV-1 infection. (A) Representative 
immunofluorescence images of multiplexed BCL-6 and Gag p24 staining on lymph node (LN) 
sections. Scale bars represent 200 µm and 50 µm on left and right panels respectively. (B & C) 
Summary plots comparing the area of GCs (B) or the mean GC BCL-6 count (C) in HIV negative 
(HIVneg), early treated (Early Tx) and untreated HIV-infected (UnTx) LN sections. TissueQuest 
(TissueGnostics, Vienna) was used to compute the area of GCs and BCL-6+ cell counts in each 
tissue section. P values were determined using Mann U-Whitney test.  

4.4.4 HIV Gag p24 persistence in lymph nodes is accompanied by active GCs 

Having demonstrated the presence of virus in LN GCs and the abundance of GCs in 

HIV infected individuals, we next investigated if the persistence of HIV Gag p24 in the 

LNs was driving the observed GC reactions. Active GCs were defined by staining for 

Ki67, a well defined proliferation marker. The area percentage staining of BCL6, Ki67 

and p24 were determined in serial sections using the AxioVision Rel 4.8 software 
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(Zeiss). Correlation analysis showed a positive trend between Gag p24 antigens and 

BCL-6 (p=0.07, r=0.57) or Ki67 (p=0.09, r=0.51) area percentages (Figures 4.4A and 

4.4B) which did not reach statistical significance.  

To further validate our hypothesis, we correlated the cumulative antigen load of each 

early treated participant (area under the viral load curve, Appendix 5) to BCL-6+ cell 

counts and the size of GCs determined in section 4.3.3. There was a direct correlation 

between the cummulative antigen load and the BCL-6+ cell counts (p=0.003, r=0.96) 

in early treated individuals (Figures 4.4C). There was also a trend of larger GCs 

(p=0.09, r=0.71) in individuals with high exposure to viremia (Figures 4.4D). Taken 

together, these results suggest that the persistence of HIV Gag p24 was driving the 

observed GC reactions and the proliferation of cells within the GCs.  

 
Figure 4.4: HIV persistence in lymph nodes drives germinal center 
formation and proliferation. (A & B) The area percentage staining intensity of Gag p24 
is correlated to that of BCL-6 (A) or Ki67 (B) for each lymph node (LN) section. (C & D) Correlation 
between viremia copy days and BCL-6+ cell counts in GCs (C) or area of GCs (D) in LN sections 
of early treated individuals. Area percentages were quantified using AxioVision Rel 4.8 software 
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(A & B) and TissueQuest (TissueGnostics) was used to compute the area of GCs and BCL-6 cell 
counts in each tissue section (C & D). Spearman rho (r) values and p values are reported. 

4.4.5 Discordant HIV-1 RNA loads in plasma and lymph nodes  

Having demonstrated the persistence of HIV structural proteins in lymph nodes, we 

next sought to investigate HIV RNA persistence in the lymph nodes by quantifying LN 

viral loads using the Cobas® Ampliprep HIV-1 test. Samples were available for 6 

aviremic early treated study participants and viral load assessment revealed higher 

median viral loads of 1560 (copies/ 10 million LMCs) compared to the plasma viral 

loads which were below the limits of detection (Table 4.2 & Figure 4.5). The 

amplification of viral RNA from LMCs demonstrate the persistence of LN cell 

associated RNA despite early ART. 

Table 4.2: Compartmental viral load analysis for the early treated group 

    
Abbreviations: LN, lymph node; VL, viral load; ID, identification number. 
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Figure 4.5: Viral loads in plasma and in lymph node cells of early 
treated participants. HIV RNA copies/ml were quantified in plasma and in 10 million lymph 
node (LN) cells for 7 early treated participants. Statistical differences were calculated using Mann 
U-Whitney tests and viral loads below the limits of detection were assigned a value of 20. 

4.4.6 HIV RNA+ CD4+ T cells and follicular dendritic (FDC) bound virions are 

detected in the GCs despite early initiation of ART 

We next investigated the localization of viral RNA and FDC bound virions using 

RNAscope ISH approach. Individual HIV virions/viral RNA+ cells were detected in LN 

sections of all our early treated and untreated study participants (Figure 4.6A). 

Productively infected viral RNA+ cells were identified as a densely spherical signal (red 

arrow) whereas, FDC bound virus particles were defined by a diffuse lattice-like 

pattern (green arrowhead) consistent with previous reports (Deleage et al., 2016) 

(Figure 4.6A). Combined RNAscope ISH gag-pol staining with IF staining for BCL-6 

confirmed viral RNA localization in the GCs in early treated participants (Figure 4.6B, 

top panel). Co-localization of viral RNA (green) with CD4+ T cell (red) staining identified 

CD4+ T cells harboring HIV RNA (Figure 4.6B, bottom panel). Taken together, the 
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detection of HIV RNA by ISH confirms the persistence of HIV RNA in the LNs of early 

treated individuals.  

 
Figure 4.6: HIV-RNA+ cells in the lymph node of untreated and early 
treated HIV-1 infected individuals. (A) RNAscope hybridization for HIV gag-pol RNA 
detected using 3, 3’-diaminobenzidene (brown). Representative images for early treated (Early Tx) 
and untreated HIV-infected (Un Tx) lymph node sections. Single RNA transcripts seen as punctate 
dots; and clusters of transcripts are also observed. Red arrows identify HIV RNA+ cells and green 
arrowheads identify virions on follicular dendritic cells. (B) Images showing multiplexed RNAscope 
gag-pol hybridization (green) and IF staining for CD4+ cells (red).  
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4.4.7 GCTfh cells predominantly comprises of CXCR3+CCR6+ cells. 

Having identfied a subset of HIV RNA postive CD4+ T cells in the GC, we next used 

flow cytometry to determine the phenotype of GCTfh cells (Hong et al., 2012, Kohler 

et al., 2016).  We examined the relationship between GCTfh cells and GCs, and found 

a strong positive correlation between the frequencies of GCTfh cells measured by flow 

cytometry and the mean BCL-6 count (p=0.02, r=0.55) or the area of GCs (p=0.01, 

r=0.59) determined using IHC analysis (Figure 4.7B and 4.7C).  

Our in situ staining revealed that only a small subset of CD4+ T cells were positive for 

HIV RNA and/or HIV Gag p24 protein suggesting that only a subset of GCTfh are 

infected. Also, our prior flow cytometry staining showed that the vast majority of  GCTfh 

cells expressed significantly higher levels of CXCR3 (p<0.0001) (Figure 4.7D) and 

CCR6 (p<0.0001) than circulating Tfh cells (Figure 4.7E). These two chemokine 

receptors have prevously been shown to be highly expressed on circulating Tfh 

subsets but have not yet been assessed on lymph node GCs (Schmitt et al., 2014b). 

Also a study on macaque lymph nodes reported phenotypic heterogeneity among 

GCTfh cells (Velu et al., 2016).  

Therefore, we next investigated the expression pattern of the two chemokine receptors 

(CXCR3+CCR6+) and found that a sigificantly larger proportion of GCTfh coexpressed 

CXCR3+CCR6+ compared to nonGCTfh populations (Figure 4.7F). To our knowledge, 

this is the first description of this subset in human lymph nodes. Also, chronic untreated 

HIV infection had significantly higher frequencies of CXCR3+CCR6+ compared to HIV 

negative LNs (p=0.02) (Figure 4.7G). This phenotype was rarely detected in cells from 

human tonsils excised from HIV uninfected individuals (Figure 4.7H). Together, these 

results identify the CXCR3+CCR6+ GCTfh subset as the predominant GCTfh subset 
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induced in LNs during HIV infection and also highlights phenotypic differences 

between GCTfh cells from LNs and tonsils.  

 
Figure 4.7: Heterogeneity within GCTfh cells. (A) Representative flow cytometry 
plots showing gating strategy for GCTfh (CXCR5hiPD-1hi) cells. (B & C) Correlation analysis of 
GCTfh cell frequencies and BCL-6+ cell counts (B) or area of germinal centers (GCs) (C) calculated 
from IHC studies. (D & E) Expression of CXCR3 (D) and CCR6 (E) chemokine receptors by Tfh 
subsets. (F) GCTfh cells are predominantly CXCR3+CCR6+. The GCTfh gate (red) was overlaid 



 
114 

on CXCR3+CCR6+ CD4+ T cells representative flow plots. (G) Expansion kinetics of 
CXCR3+CCR6+ GCTfh subsets in HIV negative (HIVneg), early treated (Early Tx) and untreated 
HIV-infected (Un Tx) donors. (H) Representative flow plot showing the distribution of tonsil GCTfh 
cells (red) within CXCR3+CCR6+ CD4+ T cells and summary plot comparing the frequencies of 
CXCR3+CCR6+ GCTfh cells in lymph node and tonsil cells. Statistical differences were calculated 
using Mann U-Whitney tests, Spearman rho (r) values and p values are reported for correlation 
analyses. 

4.4.8 HIV p24 antigen persists in CXCR3+CCR6+ GCTfh cells in early treated HIV-

infected individuals 

Next we wanted to invetigate if CXCR3+CCR6+ GCTfh cells was the subset that 

habored most of the persisting virus. Co-localization analysis revealed that Gag p24 

co-localized with PD1+ cells (Figure 4.8, panel i), CD4+ cells (Figure 4.8, panel ii),  

CXCR3+ cells (Figure 4.8, panels iii) and CCR6+ cells (Figure 4.8, panels iv) in early 

treated and chronic untreated LN sections. Gag p24 antigens also co-localized with 

FDCs and CD4+ T cells (Figure 4.8, panel v). These results demonstrate that CXCR3+ 

GCTfh cells contribute to HIV persistence during early ART.  
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Figure 4.8: Anatomical distribution of HIV Gag p24 antigen. HIV Gag p24 
co-localizes with (i) CD4+, (ii) PD1+, (iii) CXCR3+, (iv) CCR6+ and (v) follicular dendritic cells (FDCs) 
in LNs. Representative IF images characterizing HIV Gag p24 positive cells in the GC/follicles of 
early treated (Early Tx) and untreated HIV-infected (Un Tx) donors. 
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4.5 Discussion 

The initiation of ART very early after infection reduces peak viremia (Dong et al., 

2017), and decreases viral reservoirs and HIV DNA set-point (Ananworanich et al., 

2016). It is thus conceivable that early initiation of ART and rapid plasma viremia 

suppression will significantly reduce residual viremia in tissue and cellular virus 

sanctuaries. Additionally, most HIV studies and HIV clinical investigations rely on 

plasma viral load kinetics to define the dynamics of persistence in patients (Deleage 

et al., 2016, Archin et al., 2014), however, viral load kinetics in tissue sites might be 

better indicators of HIV suppression in infected patients.  

Measurement of viral RNA in peripheral blood and lymph nodes using the Cobas® 

Ampliprep test, revealed a discordant pattern of viral RNA detection in plasma and 

LNs of our early treated study participants. Plasma viral loads were below the 

detection limits but readily detectable in the LNs. Although, endpoint reverse 

transcription-PCR tests like the Cobas® Ampliprep test are traditionally used for 

plasma viral load quantification, these assays are also valuable for viral load 

estimation in other sample types for example cervical swab samples (Klein et al., 

2018) and LMCs as we have reported here. 

We further confirmed viral RNA persistence in the LNs using a highly sensitive and 

specific in situ hybridization assay, RNAscope (Deleage et al., 2016, Barton et al., 

2016). Our results are consistent with a previous study in which they detected, 

transcriptionally active viral RNA in the LNs of ART treated patients using the 

traditional RNA in situ hybridization technique (Abdel-Mohsen et al., 2018). Viral RNA 

hybridization signals in the LNs were significantly reduced after 6 to 13 months of ART 

in another study (Popovic et al., 2005).  Since we didn’t collect serial LN samples in 
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this study, we can’t make assertions as to whether ART reduced viral RNA detection 

in our study.  

Our results also describe the persistence of Gag p24 antigen in the GCs of early 

treated individuals even after 926 days of treatment and the cellular distribution of Gag 

p24 within GCTfh subsets. Furthermore, in keeping with the notion that antigenemia 

drives GC formation (Hong et al., 2012), we showed that the total antigen burden was 

directly correlated to the magnitude of the GC response in the early treated individuals. 

It is important to note that the LNs for half of our study participants were obtained after 

a year of complete plasma viremia suppression, thus the correlation between total 

plasma viremia exposure and LN GC responses at the time of LN excision suggests 

that early seeding HIV antigens in the LN leads to long term persistence and slow 

clearance of viral antigens from the GCs. Although, our investigations are directed at 

virus persistence and not at reservoir estimations, these results are consistent with 

reports that the HIV reservoir is seeded in peripheral tissue sites very soon after HIV 

infection and decays slowly (Whitney et al., 2014).  

Our results corroborate reports that the FDC network can trap and retain infectious 

HIV particles for long periods of time with a decay half-life of approximately 2 months, 

thus acting as a long-term source of replication competent virus in the GCs (Smith et 

al., 2001, Hufert et al., 1997, Zhang et al., 2013a). The proximity of Tfh cells to FDCs 

in the GCs increases vulnerability to HIV infection (Miles et al., 2016b, Klatt et al., 

2013). However, although the preferential infection of Tfh cells by HIV has been 

demonstrated ex-vivo (Kohler et al., 2016), and the higher contribution of circulating 

Tfh cells to the HIV reservoir in treated individuals (Pallikkuth et al., 2015), the reason 

for the high permissiveness of Tfh to HIV infection remains unanswered. Tfh cells 
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generally express low levels of the CCR5 co-receptor but our results here demonstrate 

that some GCTfh cells express CCR6, which is an alternate co-receptor for HIV entry 

(Islam et al., 2013) and thus could be contributing to Tfh susceptibility to HIV infection. 

Future investigation on the potential role of CCR6 in HIV persistence is warranted. 

Although we have shown that HIV persists in the LNs despite the initiation of ART 

extremely after infection, it is not clear from our studies if the observed persistent 

viremia is sustained by low-level virus replication and if the ongoing active replication 

leads to virus evolution. These studies are ongoing and are beyond the scope of this 

work. Taken together, our results emphasize the importance of very early initiation of 

ART and highlight the need for novel drug formulations and alternate routes of 

antiretroviral drug administration that will improve the distribution and retention of ART 

within tissue-privileged sites. We are planning to continue to monitor HIV persistence 

in our early treated study individuals for longer periods than we have reported here to 

get a better appreciation of how long HIV RNA transcripts persist in these individuals. 

Ongoing studies will continue to investigate if ART eventually resolves HIV persistence 

in LNs.  

Our characterization of GCTfh subsets in the sanctuary sites of virus persistence, 

revealed a distinct phenotypic signature of dual expression of high levels of CXCR3 

and CCR6, particularly during chronic HIV infection. Among CD4+ T cell lineages, Th1 

cells generally express CXCR3 receptor while Th17 cells majorly express CCR6. 

Heterogeneity of phenotypes or the expression of varied phenotypes among CD4+ T 

cell lineages is a well described phenomenon (Crotty, 2018). Extensive 

characterization of peripheral Tfh cells by our group (chapter 2) and others have 

demonstrated that the circulating Tfh compartment is a heterogeneous collection of 
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Tfh cells, which share the same core Tfh characteristic CXCR5 expression (Crotty, 

2018). Although, heterogeneity among lymphoid tissue Tfh populations has been less 

described in humans, mouse studies have described GCTfh cells as having gene 

expression programs similar to other Th lineages. This was observed during LCMV 

and SIV infection and was attributed to the prevailing Th1/Th2 polarizing conditions of 

these diseases that could be influencing Tfh differentiation patterns (Moukambi et al., 

2015, Moukambi et al., 2017). This is in keeping with our results that showed an 

expansion of CXCR3+CCR6+ GCTfh cells in chronic untreated HIV infection, during 

which there are high levels of inflammatory cytokines produced (Biancotto et al., 

2007). Additionally, the increased expression of the transcription factor T-bet, which is 

important for Th1 transcription was seen in Tfh cells during chronic SIV infection 

(Moukambi et al., 2015, Moukambi et al., 2017).  

In our study, we also observed an absence of the CXCR3+CCR6+ phenotype in tonsil 

GCTfh cells, which highlight compartmental and micro environmental influences on 

Tfh differentiation patterns. The influence of tissue compartmentalization on Tfh 

differentiation dynamics in the spleen and peripheral blood of rhesus macaques has 

been documented in the context of SIV infection (Moukambi et al., 2015, Moukambi et 

al., 2017). Since CXCR3 and CCR6 receptors are very important for migration to 

peripheral inflamed tissue sites (Groom et al., 2011), it is unclear why GCTfh cells 

express these chemokine receptors and will warrant further investigation. In 

conclusion, our results demonstrate that despite ART mediated plasma viremia 

suppression in Fiebig stage I treated individuals, HIV structural proteins and HIV RNA 

persist in the LN GCs on FDCs and intracellularly within productively infected 

CXCR3+CCR6+ GCTfh cells. These results are relevant for HIV cure strategies 

seeking to eliminate infected cell subsets. 
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CHAPTER 5: GENERAL DISCUSSION AND 

CONCLUSION 
 

The HIV-1 epidemic is responsible for up to 1 million deaths worldwide in 2016 

(UNAIDS, 2017a) and is a major global health challenge that still requires remedial 

measures. Two important goals of the global HIV research community are to (i) find 

an effective vaccine and (ii) to develop a cure for HIV. Although, there are enormous 

challenges hindering the achievement of both goals, significant progress has been 

made, and some candidate vaccines are currently being tested in clinical trials (Gray 

et al., 2016, NIAID, 2016, AVAC, 2016). Furthermore, it has become clear that HIV 

remission might be an easier goal to attain than complete HIV eradication (Dieffenbach 

et al., 2011). Key to developing a cure or a preventative HIV vaccine is to improve our 

understanding of host antiviral immune responses in lymphoid tissues. In addition, 

since the landscape of HIV-1 research has been drastically altered by the widespread 

use of ART either for HIV treatment or as pre-exposure prophylaxis, the improved 

understanding of immune responses in early treated individuals would be beneficial to 

future vaccination strategies or HIV cure interventions. 

The FRESH cohort, which has been in existence for more than 5 years, was 

strategically designed to identify early HIV infection by longitudinal follow up and 

frequent testing for HIV acquisition in a high risk HIV negative study population (Dong 

et al., 2017). With the identification of hyperacute infection, these individuals are 

placed on ART very soon after infection and can also be recruited into the lymph node 

study cohort for the definition of immune responses in the lymph nodes. In addition, 
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due to long-term follow-up and longitudinal sampling, clinical characteristics of all 

participants are captured, and are invaluable for defining immune responses at the 

very early stages of HIV-1 infection and treatment initiation. 

T follicular helper (Tfh) CD4+ T cells are important mediators of anti-HIV humoral 

immunity but their potential role in HIV vaccine strategies have been largely 

unexplored due to limited information on their biology, subset distribution and 

localization in difficult to access lymphoid tissues. In addition, whether early initiation 

of ART modulates Tfh cell homeostasis and function is not fully defined. From a HIV 

cure perspective, all cellular and tissue reservoirs of HIV during ART need to be 

identified and eradicated by immunotherapies or other novel strategies. Tfh cells are 

preferential targets for HIV-1 infection and persistence (Perreau et al., 2013, Pallikkuth 

et al., 2015, Kohler et al., 2016), thus, we investigated the dual role of Tfh cells, as the 

prime orchestrator of B cell responses and as a major target of HIV infection in lymph 

nodes.  

Taking advantage of access to the unique FRESH cohort and precious lymph node 

samples from early treated individuals, the current study endeavored to 

comprehensively characterize Tfh cells from lymph nodes and peripheral blood during 

untreated and early treated HIV-1 subtype C infection and defined the contribution of 

Tfh cells to the development of anti-HIV B cell antibody responses and HIV-1 disease 

progression. In addition, this study further described virus persistence in lymph nodes 

during ART and shed light on the phenotype of cells that are more likely to be 

persistently infected with HIV in the lymph nodes.    
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Study implications and future directions 

Overall, our study highlights the usefulness of longitudinal study cohorts for defining 

Tfh cell responses during very early stages of HIV-1 infection and how these 

responses are modulated by early treatment. Our initial studies focused on 

characterizing Tfh responses in peripheral blood and we identified the circulating Tfh1 

subset as a potential biomarker for functional antibody responses. Our results 

demonstrating a correlation between the frequencies of Tfh1 cells and nnAbs imply a 

functional role for Tfh1 cells during HIV-1 infection as potential B cell helpers for nnAbs 

development. We thus, postulate that designing immunogens that induce Tfh1 

responses might be critical in vaccine efforts seeking to induce long-lasting non-

neutralizing antibodies against HIV-1 infection. 

The rest of our investigations focused on characterizing Tfh cells in lymph nodes, 

firstly, evaluating how early treatment modulates their effector functions and secondly, 

characterizing their role in persistent HIV infection during ongoing therapy. Our results 

from Tfh studies in the lymph nodes suggest that early treatment is beneficial for 

improving the quality of the Tfh response. More so, these primed responses have the 

potential to be boosted by a prophylactic vaccine. Although early treatment improved 

the quality of the GC response, it was unable to completely eradicate virus persistence 

in the lymph nodes for the duration that we examined in this study, which was a median 

of 282 days. We thus recommend that the study participants should be followed for 

longer periods of time than we have reported here, to be able to fully define the kinetics 

of full virus suppression in the lymph nodes after early initiation of ART. It’s important 

to note that virus persistence could be influenced by numerous factors like the 

magnitude of the initial viremia burden the individual is exposed to and the time to full 
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plasma viremia suppression. Among other factors, viral characteristics, which were 

not investigated by the present study, could also contribute to HIV persistence in GCs 

and should be investigated by future studies. 

The direct correlation between the total plasma antigen burden and the magnitude of 

the GC response, suggests that the seeding of persistent virus in the lymph node 

occurs soon after infection. The early viral seeding of peripheral lymphoid organs has 

long-term implications on immune responses in the tissues. Thus, public health 

surveillance approaches designed at identifying acute HIV infection at the earliest 

possible time will be very important for patient management and overall immune 

reconstitution in HIV-1 infected individuals. In addition, there is a need for novel 

strategies to improve ART penetration and intensification in sanctuary sites like lymph 

nodes for improved virus clearance. Also, cytotoxic T cells can be engineered to enter 

the GCs to eradicate productive infections. 

One controversial topic in the HIV research field is the question of active virus 

replication during ART. One side of the debate believe that there is no productive virus 

replication during suppressive ART and that the residual virus pool is replenished by 

clonal expansion of long-lived memory pools (Murray et al., 2016). However, since 

GCTfh cells comprise not only central memory cells, which are long lived, but also 

effector memory cells, which have a shorter life span. Productive infection within 

effector memory GCTfh cells challenges the dogma of clonal expansion of long-lived 

cells as the only source of HIV reservoir. Some other studies have made a case for 

ongoing virus replication during ART (Lorenzo-Redondo et al., 2016). Here, we have 

described the cell subsets that contribute to persistent virus in the lymph nodes. More 
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investigations are needed to look for evidence of sequence evolution in this subset 

during ongoing suppressive ART.  

The retention of HIV virions on follicular dendritic cells in the GCs is a well-described 

phenomenon and is a major barrier to HIV eradication from such immune privileged 

sites. Also, the close contact of Tfh cells to follicular dendritic cells increases the 

chances of infection further contributing to virus replication and persistence in these 

sites. There is therefore, a need for interventions to reduce the retention rate of HIV 

virions on follicular dendritic cells. More research directed at understanding the 

formation of immune complexes and the processing of these virus complexes by 

follicular dendritic cells will be invaluable for innovations directed at virus clearance 

within the lymphoid tissue sites.  

Although we defined the qualitative functional characteristics of GCTfh cells in early 

treated individuals compared to untreated individuals, additional information can be 

obtained from a study comparing GCTfh responses in individuals treated in chronic 

infection versus early treated individuals. These results will define if Tfh dysfunction is 

progressive and reversible by ART regardless of the time of ART initiation. Also, future 

studies should be designed to define the transcriptional and epigenetic signatures 

associated with improved GCTfh function, which can be harnessed for vaccine design 

studies desiring to manipulate Tfh cell and B cell interactions in GCs with the aim of 

improving the durability of anti-HIV antibody responses. 

Concluding Remarks 

One key novel observation of this study was the induction of CXCR3+CCR6+ GCTfh 

subsets during HIV-1 infection and the persistence of virus in these subsets. An 
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understanding of why GCTfh cells in the lymph nodes express CXCR3 and CCR6 

receptors will be informative to approaches designed to eradicate persistent virus from 

these subsets. Our demonstration of prolonged persistence of HIV infection in the 

lymph nodes is another important finding that has significant implications on future 

structured treatment interruption strategies. The other important result is the 

identification of a potential biomarker for binding antibody responses. In chapter two 

of this thesis we identified the circulating Tfh1 subset as a potential biomarker for the 

development of anti-HIV antibody responses and antibody mediated suppression of 

HIV. Having a biomarker for immune responses induced in the lymph nodes is critical, 

given that frequent lymph node sampling for research purposes is not feasible. 

In conclusion, the results of this study give important insights into Tfh biology, the 

preservation of Tfh cell function when HIV-1 replication is controlled by effective ART, 

and defined the phenotype of the Tfh subset that harbors persistent HIV-1 infection in 

aviremic patients. Our results support the notion that Tfh boosting strategies should 

be incorporated into novel anti-HIV therapeutic and vaccine approaches with the aim 

of inducing durable and highly functional antibody responses. Furthermore, strategies 

for inducing Tfh subsets that are resistant to viral infection in lymph nodes and 

approaches to eradicate infected cells in the GCs will be important to achieve HIV-1 

cure.   
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Appendix 1: Ethics approval for the study 
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Appendix 2: Detailed patients’ characteristics 

 

*Denotes patients that were studied only in chapter 4 but not in chapter 3. 
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Appendix 3: Study grouping and distribution of participants in Chapter 3 

 
*Group sizes are indicated in each cell. Abbreviations: N/A, not applicable 
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Appendix 4: Kinetics of HIV-1 viral load decay and absolute CD4 counts during 

early combination antiretroviral therapy  

 

DFOPV means day of first positive viral load test. 
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Appendix 5: Area under the viral load curve (AUC) values for participants in 

early treated group. 

Patient ID 

AUC 

(RNA copies*days/ml)  

LN045 54170 

LN049 78305 

LN052 283947 

LN053 744655 

LN054 14260 

LN057 36955 

LN058 219935 

LN063 1575 

LN064 9696000 

LN065 148085 

LN070 10040000 

LN077 255763265 

LN078 29435 

LN087 63275 

LN088 865185 

LN089 639 

LN095 33340 

LN0101 1140750 
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Appendix 6: Tfh phenotyping and localization with respect to HIV antigens using 

immunofluorescence microscopy imaging. 
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Representative IF images characterizing T follicular helper cells in lymph node germinal centers. 
The staining combinations for the images on each row are displayed on the left.  
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