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ABSTRACT 

 

The current research aimed to produce and expand statistical models in the discipline of 

biostatistics with a focus on childhood anaemia, malaria, and stunting. Malaria, anaemia, and 

stunting together continue to be public health issues worldwide in both industrialised and 

underdeveloped countries, particularly in children younger than 5 years (Osazuwa and Ayo, 

2010; Kanchana et al., 2018). Malaria, anaemia, and stunting are dangerous, mostly in children 

from underdeveloped nations and they still remain the biggest contributor to morbidity and 

mortality. In addition, anaemia, malaria, and stunting are associated, and if not treated on time 

can damage children’s emotional, physical, mental status and poor performance at school 

(Gaston et al., 2022). The current study evaluates the link between anaemia, stunting, and 

malaria simultaneously. Furthermore, the study assessed whether socioeconomic, 

geographical, environmental, and child demographic variables have a significant effect on 

childhood malaria, anaemia, and stunting. This study used a national secondary cross-sectional 

data from Malawi Malaria Indicator Survey (MMIS); Lesotho Demographic Health Survey 

(LDHS); and Burundi Demographic Health Survey (BDHS). The data was collected based on 

multi-stage sampling, stratified, and cluster sampling with an unequal chance of sampling. It 

is for this reason we first used the survey logistic regression model in Chapter 3, which 

accounted for the complexity of sampling design and heterogeneity between observations from 

the same cluster. However, this model includes only the fixed effect and does not have the 

option of adding the random effect to model the correlation between observations. We extend 

the model in Chapter 4, to a generalised mixed additive model (GAMM) to include the random 

effect. The GAMM is also an extension of the generalised linear mixed model (GLMM) and 

enables the parametric fixed effects from GLMM to be modelled as a non-parametric model 

using the additive smooth function. These models were applied to single response variables, 

and we wanted to evaluate the relationship which might exist between anaemia, stunting, and 

malaria. We then explore the multivariate joint model under GLMM in Chapter 5 to 

simultaneously joint either malaria and anaemia or anaemia and stunting. Finally, we introduce 

a structural equation model (SEM) in Chapter 6, to evaluate the complex interrelationships 

between socioeconomics, demographics, and environmental factors, as well as their direct or 

indirect relationship with childhood malaria, anaemia and stunting co-morbidity. The previous 

chapters could not address these interrelationships among the variables of interest. Each model 

used in this study has its weaknesses and strengths which can depend on the goal of the 
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researcher. However, the multivariate model under GLMM and the structural equation model 

were found to be more adaptive and attractive to researchers interested in innovative scientific 

research.  

The findings from this study revealed that the child’s nutrition status, age, the child with fever, 

diarrhoea, altitude, place of residence, toilet facility, access to electricity, children who slept 

under a mosquito bed net the night before the survey, mother's education level, and mother’s 

body mass index have a significant effect on both childhood anaemia and malaria. The age of 

a child, the mother’s educational status, place of residence, wealth index, and child weight at 

birth were the determinants of stunting or malnutrition. The findings also indicated that the 

geographical, geophysical, environmental, household and child demographic factors were 

statistically significant and have either a direct or an indirect effect on childhood co-morbidity 

factors. The geographical factors were statistically significant and had a positive direct effect 

on childhood malaria, anaemia, and stunting. The estimated indirect path for the impact of 

geophysical factors on childhood co-morbidity factors, as mediated by household factors was 

statistically significant and positive. However, the estimated indirect paths for the effect of 

geophysical factors on childhood co-morbidity factors, as mediated by environmental factors 

were statistically significant but negative. 

The child demographic factors revealed a direct statistically significant impact on childhood 

co-morbidity factors. Furthermore, the estimated indirect path effect on childhood co-

morbidity as mediated effect on household factors was statistically significant and negative. 

Moreover, household and environmental factors indicate a positive direct effect on childhood 

co-morbidity anaemia, malaria, and stunting. Finally, the results of this study revealed a 

positive relationship between stunting, anaemia, and malaria. This means that malaria, 

anaemia, and stunting increase or decrease in the same direction. Hence, controlling one or two 

between malaria, anaemia, and stunting can reduce the effect of other(s), which can assist the 

policymakers and government in the allocation of financial resources to fight against childhood 

comorbidity anaemia, malaria, and stunting. Furthermore, understanding the link between 

anaemia, malaria, and stunting other factors associated with them will assist in focusing on 

those areas and go a long way toward achieving the United Nations Sustainable Development 

Goals (SDGs3), known as the complete elimination of under-5 mortality by 2030.  

Keywords: Malaria; Stunting; Anaemia; Children under five years; Multivariate joint model; 

Structural equation model.
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CHAPTER ONE:  

INTRODUCTION   

 

In this chapter, we introduced the background on malaria, anaemia, and malanutrition in 

children younger than five years. The chapter also highlight the problem statement, and the 

objectives of the study. Furthermore, this chapter highlight the significance, and outline of the 

chapters of this study.  

 

1.1. BACKGROUND 

 

The discipline of biostatistics has attracted many researchers and investigators who are 

interested in under-five mortality rates for several reasons. These reasons include general 

assessments of a child’s welfare in a country and the prevalence and distribution of different 

common diseases amongst children (e.g., malnutrition, anaemia, malaria, intestinal parasites, 

schistosomiasis, fever, diarrhoea, kwashiorkor, HIV/AIDS) because biostatistics can provide 

insights to inform interventions to prevent morbidities and mortalities (Nkoka et al., 2019).  

A limitation in this field is that biostatistical modelling often focuses on one health disease, 

which either ignores or does not adequately cover the common phenomena of co-infection of 

children by two or more diseases and, in co-infected instances, the contribution of one or more 

present disease to morbidity or death from another present diseases (Kabaghe et al., 2017; 

McGann et al., 2018; Yimgang et al., 2021). This is particularly evident in the case of 

biostatistical studies on anaemia, stunting (malnutrition), and malaria amongst children 

younger than five years from Malawi, Lesotho and Burundi. Each one of malaria, anaemia, and 

stunting is independently, a significant cause of high morbidity and mortality rates amongst 

under-fives in sub-Saharan Africa but, critically, high morbidity and mortality rates within the 

same age cohort are also known to be due to co-infection with two and, frequently, both 

malaria, anaemia, and stunting.   

Child morbidity and mortality rates are frequently used as a measure of a nation’s overall rate 

of children’s health and nutritional status (WHO, 2007; Gaston et al., 2022). Child morbidity 

rates, in particular, are a focus of health agencies because they indicate potential long-term 

health problems amongst affected children. Notably, the chief cause of morbidity rates is the 

lack of adequate nutrition among many of the affected children, which, in the long term can 

affect their mental, cognitive, and physical development (Kotecha, 2011; Gaston et al., 2018).  
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Malnutrition is the most common cause of mortality and comorbidities in young children under 

the age of five and may influence both susceptibilities to, and manifestations of malaria and 

anaemia (Osterbauer et al., 2012). 

Malnutrition is described as a shortage of adequate nutrition, as a result of a lack of food or 

not eating food with sufficient vitamins, minerals, and other nutrients to maintain a body in 

sound health. The nutrient adequacy of children under the age of five is usually measured based 

on three anthropometric measurements (WHO, 1995, Gaston et al., 2022). The first one is 

height-for-age (HA) or stunting which measures body height in relation to age to determine 

within known parameters whether an infant or child potentially has a low height which can be 

due to genetic factors as well as stunting (impaired physical growth). The second is weight-

for-height (WH) or wasting which measures body weight in relation to body height to 

determine within known parameters whether an infant or child is overweight or underweight. 

Last, is weight-for-age (WA) or underweight which is a composite index, which can reflect 

wasting or indicate stunting? An underweight person is a person whose body weight is 

considered too low to be healthy and whose weight is 15% to 20% below that normal for their 

age and height group (WHO, 1995). 

Anaemia is also defined as a disease that can affect the mental, cognitive and physical 

development of a child. It is caused by the reduction of red blood cells, which can be due to a 

lack of sufficient nutrients in the body as well as certain parasitic infections, like diarrhoea and 

malaria (Benoist et al., 2008; Kotecha 2011; Gaston et al., 2018). Hemoglobin, which is a 

protein molecule found in red blood cells, transports oxygen to cells throughout the body and 

returns carbon dioxide to the lungs. A reduction of the red blood cells in the human body 

reduces the flow and exchange of oxygen and carbon dioxide (and nitric oxide) to and from 

body tissues, thereby threatening the normal metabolism of a body and thus, the reduction can 

lead to illness and death (Simbauranga et al., 2015, Gaston et al., 2022).  

Malaria is defined as a deadly illness caused by the Plasmodium species, and P. falciparum  

which is mainly found in Africa, is considered the most threatening. Other less dangerous 

parasites include P. ovale, P. vivax, P. knowlesi, and P. malariae (WHO, 2015, Gaston and 

Ramroop, 2020). Plasmodium falciparum is Africa’s most prevalent parasite, with 99% of 

malaria cases in 2016 from Sub-Saharan Africa, while P. vivax is the most widespread vector 

in other continents (WHO, 2017; Gaston and Ramroop, 2020). The individuals’ contract 

malaria by the bite of Anopheles mosquito, and symptoms of the illness appear 10 to 15 days 
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after infection (Perkins et al., 2011; Gaston and Ramroop, 2020). Malaria parasites invade the 

red blood cells and decrease the number of blood cells in the person’s body, which can result 

in severe anaemia (Noland et al., 2012; Seyoum, 2018). Malaria is not contagious, yet it is 

possible to contract the disease via blood transfusions or organ transplants (WHO, 2016; 

Gaston et al., 2021). The season of rain, humidity, and high temperature with low altitudes 

favor the breeding and growth of malaria vectors, and malaria is thus common in that season 

(Chirombo et al., 2014; Gaston and Ramroop, 2020).  In light of the aforementioned, we note 

that malaria, anaemia, and stunting can occur together or in sequence in a body and thus they 

represent a considerable health risk generally and amongst children in particular. A child can 

be malnourished, anaemic, and have malaria. A child can suffer from malaria, which in turn 

may lead to anaemia, and together they can accentuate the health challenges of malnutrition. 

Malaria can be the overt cause of death in a child, but the risk of mortality is accentuated by 

the presence of malnutrition and/or anaemia (Shankar, 2000; Gaston et al. 2021, Gaston et al., 

2022).  

Despite the efforts and resources devoted to combat malaria, anaemia, and malnutrition, remain 

a significant global health concern, mostly in emergent nations (Leal et al., 2011; Yang et al., 

2012; Aheto et al., 2015; Kanchana et al., 2018; Gaston et al., 2022). Malaria, anaemia, and 

malnutrition are thought to be interrelated and associated with morbidity and mortality around 

the world, notably in pregnant women and children (Black et al., 2013; Kavosi et al., 2014; 

Aheto et al., 2017; Wanzira et al., 2017).  

In 2017, there were 151 million stunted children under the age of five in the world. The majority 

of these children came from Africa and South-East Asia, which contribute 75% of the total 

number. Globally, approximately 43% of children under the age of five had anaemia in 2011, 

with the highest rates of incidence found in South Asian and African areas (Milman, 2011; 

WHO, 2011; Kejo et al., 2018). Approximately 219 million occurrences of malaria have been 

confirmed in 2017, with 200 million cases arising in Africa (WHO, 2018). Furthermore, the 

WHO stated that there were 43000 malaria-related deaths worldwide, with 93% of those cases 

occurring in Africa. Children under the age of five accounted for 61% of all deaths worldwide 

and 93% of cases were from the African region (WHO, 2018). In 2017, the prevalence of 

malaria, anaemia and stunting in children younger than five years from Burundi was 27%, 61%, 

and 56% respectively (ISTEEBU, MSPLS, and ICF, 2017), while the prevalence of malaria, 

anaemia, and stunting in children younger than five years from Malawi in 2017 was 24%, 63% 

and 37% respectively (NSO and ICF, 2017). These percentages are high and show that 
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anaemia, malaria, and the nutrition status of child remain a health problems. However, a 

challenge for understanding the interaction between malaria, anaemia, and stunting is that there 

exists no study where malaria and anaemia, or anaemia and stunting, or all three together have 

been considered simultaneously in Malawi, Lesotho, and Burundi.   

Consequently, it is difficult for health programme planners to predict the relative contribution 

of malaria, anemia, and stunting to morbidity and mortality amongst children younger than five 

years in a national population. Some models accommodate a combination between those two 

health problem, but their limitations for predicting population health threats have long been 

established (Caulfield et al., 2004; Deribew et al, 2010; Gahutu et al., 2011; Kandala et al., 

2011; Zhao et al., 2012, Throne et al., 2013; Smithson et al., 2015; Shikur et al., 2016; Zgambo 

et al., 2017; Gari et al., 2018).  There have been a few attempts to model malnutrition, anaemia, 

and malaria simultaneously (Ehrhardt et al., 2006; Olney et al., 2009; Osazuwa et al., 2010; 

Osterbauer et al., 2012; Kateera et al., 2015; Maketa et al., 2015).  

Most of these studies used ordinary logistic regression model, they did not consider 

multivariate joint models. The logistic regression model is used only for predicting categorical 

or multinomial outcomes and assumes that all the variables have fixed effects. This model 

cannot predict continuous outcomes and there is no capacity in the model to include random 

effects for binary response (Dey and Raheem, 2016). 

This study confronts the challenge of devising a biostatistical model, which can accommodate 

simultaneously both malaria, anaemia, and stunting. Ideally, the exercise will yield a 

generalisable model for accommodating two or both malaria, anaemia, and stunting 

simultaneously. At the very least, it will provide the statistical science foundations for 

modelling the interaction of anaemia, stunting (malnourished), and malaria co-infection 

amongst children younger than five years, which would assist health programme practitioners 

in predicting and responding to morbidities and mortalities amongst children with one or  both 

malaria, anaemia, and stunting. 

 

1.2. PROBLEM STATEMENT 

 

Biostatistical modelling has become a powerful tool for understanding epidemiological 

patterns of diseases in human populations. However, a limitation of the science of biostatistics 

is the lack of models which can accommodate simultaneously, stunting, anaemia and malaria. 
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Malaria, anaemia, and stunting are known to be strongly correlated with persistently high 

morbidity and mortality rates amongst children younger than five years in developing 

countries. Development of such a model would greatly enhance the capabilities of health 

agencies to predict and, thereby mitigate more effectively than is possible at present, 

morbidities and mortalities amongst children younger than five years in a national population. 

The goal of this research is to devise such a model, and because of the above reason, the study 

seeks a model that can simultaneously evaluate the association between anaemia, malaria, and 

stunting in children younger than five years. This research will also consider other risk factors 

that may be linked to malaria, anaemia, and stunting. 

 

1.3. AIM AND OBJECTIVES OF THE STUDY 

 

The aim of this research was to generate an effective and flexible model that accommodates 

anaemia, malaria, and stunting simultaneously among children younger than five years and 

address the association between malaria, anaemia, and stunting. 

The specifics objectives are: 

 To take full responsibility for the difficulty of the sampling design by fitting the Survey 

Logistic Model (SLM) on anaemia among children younger than five years. 

 To deal with nonlinear effects of continuous covariates by fitting the semiparametric 

generalised additive mixed model to the data and distinguish the key determinants of 

malaria. 

 To develop a model that can combine either malaria and anaemia or stunting and 

anaemia concurrently in children under the age of five. 

 To develop a model that accounts for the complex interrelationships between 

explanatory factors, as well as their direct or indirect relationship with childhood 

malaria, anaemia, and stunting co-morbidity.  

1.4   SIGNIFICANCE OF THE STUDY  

Anaemia, malaria, and stunting are public health problems globally, especially in children 

younger than five years from developing countries (Leal et al., 2011; Aheto et al., 2015). 

Malaria, anaemia, and stunting mostly coexist and affect children under five years in 

developing countries, which include Malawi, Burundi, and Lesotho (McCuskee et al., 2014; 

Ajakaye and Ibukunoluwa, 2020). Research has shown that both malaria, anaemia, and stunting 

jointly contribute to a higher percentage of mortality and morbidity in children younger than 
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five years in these three countries (Osterbauer et al., 2012; Kateera et al., 2015). Furthermore, 

anaemia, stunting, and malaria occur simultaneously due to sharing the risk factors. The 

geographical, demographic, environmental, and socio-economic risk factors of anaemia are 

more likely to be the same as malaria and stunting (McCuskee et al., 2014; Kabaghe et al., 

2017). Hence, there is a need to use a reliable statistical models and methods to explore and 

reveal the extent of various risk factors of anaemia, malaria, and stunting, which are crucial for 

determining and forecasting factors affecting the prevalence of Malaria, anaemia, and stunting. 

In addition, the joint modeling of the two, or both malaria, anaemia, and stunting outcomes 

will offers a variety of possibilities for investigating the causes of malaria, anaemia, and 

stunting, the common contributing factors that will promote, and boost efficiency control 

strategies. 

As a result, the findings of this research will significantly provide useful insights to the 

governments and policymakers in planning, controlling and the elimination of both malaria, 

anaemia, and stunting. Furthermore, the statistical models used in this study will help other 

researchers to compare findings and referencing. 

1.5. OUTLINE OF THE THESIS 

This dissertation is divided into seven chapters, which are arranged as follows. Chapter 1 gives 

an introduction to childhood comorbidity and mortality of anaemia, malaria, and stunting. It 

also indicates the study’s objectives and research problems. Chapter 2 provides the underlying 

characteristics of the data and the data exploratory analysis. It also explains the data collection, 

and area of study and gives an overview of the prevalence of anaemia, stunting, and malaria in 

each country of interest.  Chapter 3 introduces the survey logistic model (SLM) and fits the 

model to childhood anaemia in Lesotho. Furthermore, the chapter explains the model in detail 

and the interpretation of the results. Chapter 4 extends the SLM to a nonparametric generalized 

additive mixed model (GAMM) to investigate childhood malaria as well as other risk factors 

for malaria in Malawi and estimate the nonlinear influence of some explanatory variables. 

Chapter 5 introduces a multivariate joint model under the generalised linear mixed model 

(GLMM) to determine the relationship between anaemia and malaria, and anaemia with 

stunting. Chapter 6 introduces a structural equation model (SEM) to gain a better understanding 

of the complex interrelationship among multifactorial indicators and their direct or indirect 

influence on childhood malaria, stunting and anaemia co-morbidity in Burundi. In addition, we 

assess the association between anaemia, malaria, and stunting. Lastly, Chapter 7 provides a 

discussion and conclusions of the current study. 



7 
 

CHAPTER TWO: 

DATA AND EXPLORATORY ANALYSIS 

 

2.1. STUDY AREA 

 

In this chapter, we describe the datasets used from three Sub-Saharan countries, which are 

Lesotho, Malawi, and Burundi. The selection of the countries was based on the availability of 

information regarding childhood malaria, anaemia, and stunting. Lesotho is one of the world’s 

smallest countries, bordered by South Africa. The country covers an area of 30355 square 

kilometres (Moteetee, 2005; MOHSW and ICF, 2016). Lesotho has a dual legal system based 

on customary and common law, with the Prime Minister as the government leader, and the 

King as the head of state. The country is divided into ten politico-administrative regions, and 

the capital city is Maseru. The country is experiencing a serious HIV/AIDS epidemic, 

widespread poverty, high unemployment, malnutrition, and the burden of various illnesses 

(MOHSW and ICF, 2016; Gaston et al., 2018). In addition, the country is susceptible to climate 

change and natural calamities like droughts, torrential rains, and flooding (Renzaho, 2006; 

Letsie and Grab, 2015). 

 

The second country is Malawi, which is south of the equator and is bordered by Tanzania in 

the north and northeast; Mozambique to the east and southwest; and Zambia to the west and 

northwest (NMCP and ICF, 2018). Approximately 118484 square kilometers make up the total 

area of Malawi, of which 9 4276 square kilometers are land and the rest is Lake Malawi. There 

are 28 districts and three regions in the entire country. There are three districts in the Northern 

region, nine in the Central region, and 13 in the Southern region (NMCP and ICF, 2018). 

 

Malawi has a tropical continental climate with impacts from the sea, including altitude and 

distance from Lake Malawi influencing variations in rainfall and temperature. The anopheles 

mosquitoes thrive in the tropical climate, and their reproductive rate rises during the rainy 

season, which lasts from November until April. The country experiences cold, dry weather 

from May to August, and malaria transmission is lower than during the rainy season (Kazembe, 

2007; Gaston and Ramroop, 2020). Malawi is one of the world's poorest countries, its economy 

is built on agriculture, and its healthcare is inadequate compared to other African nations 

(WHO, 2018; Gaston et al., 2021). 
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The last country considered in the current study is Burundi, with the capital city being 

Bujumbura, and the country covers a total area of 27834 square kilometres, (ISTEEBU, 

MSPLS, and ICF, 2017; Sinzinkayo et al., 2021). The country has a daily temperature variation 

throughout the region and a tropical highland climate. More than 70% of people live in poverty 

in Burundi, and this makes the country to be among the poorest in the world. The 

neighbourhood countries of Burundi are Tanzania to the south and east, in the northern region 

Rwanda, Lake Tanganyika  in the southwest, and to the west the Democratic Republic of the 

Congo (ISTEEBU, MSPLS, and ICF, 2017; Nimpagaritse et al., 2020; Sinzinkayo et al., 2021). 

The morbidity and mortality rates are caused by malaria, anaemia, and stunting in the country, 

especially, among children under the age of five. The majority of the population works in the 

agriculture industry, which is the foundation of the nation's economy (Moise et al., 2016; 

Sinzinkayo et al., 2021). 

2.2. DATA SOURCES  

The current scientific setting used a secondary cross-sectional dataset from the 2014 Lesotho 

Demography and Health Survey (LDHS), the 2017 Malawi Malaria Indicator Survey (MMIS), 

and the 2017 Burundi Demographic and Health Survey (BDHS). The 2014 LDHS dataset usage 

ethical consent was assessed and approved through the Ethics Committee from Lesotho and 

the Ministry of Health Research, with assistance from ICF International's Institutional Review 

Board (MOHSW and ICF, 2016). The ethical approval for the 2017 MMIS dataset was 

reviewed and offered by the Ethics Committee and the Malawian Ministry of Health Research, 

with the endorsement of ICF International's Institutional Review Board (NMCP and ICF, 

2018). Finally, the 2017 BDHS ethical clearance was approved by the Ministry of Public 

Health and the Fight Against AIDS. This was supported by the Institute of Statistics and 

Economic Studies of Burundi (ISTEEBU), the United States Agency for International 

Development (USAID), the United Fund for Childhood (UNICEF), the World Health 

Organization (WHO), The Swiss Agency for Development and Cooperation, and the Belgian 

Cooperation (ISTEEBU, MSPLS, and ICF, 2017). 

2.3. SAMPLING DESIGN AND DATA COLLECTION 

 

The current study used a nationally representative population’ dataset, which was collected 

using multi-stage sampling, stratified and cluster sampling with the unequal likelihood of 

sampling. The first process of sampling involved the selection of clusters from the enumeration 
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areas (EAs) and denote the primary sampling units (PSUs). The second process of sampling 

involved the systematic selection of the households in each cluster or enumeration (MSPLS, 

and ICF, 2017; Gaston et al., 2018; Gaston et al., 2020).  

 

The study used the weighted sample to gain insights that were illustrative of the nation and to 

account for the complex sample design from the data set (Heeringa et al., 2010; MOHSW and 

ICF, 2016; ISTEEBU, MSPLS, and ICF, 2017; NMCP and ICF, 2018). As part of the sampling 

process, each person selected in each area should equally provide equitably the size of the entire 

sample in the area. Most of the time, the regions may have low population density compared 

to others, and this unadjusted representation does not fairly reflect the exact population. 

Consequently, to avoid these problems, the area with a low population is oversampled, as a 

result, the current study used a weighted sample (MOHSW and ICF, 2016; NMCP and ICF, 

2018; Gaston and Ramroop, 2020).   

The calculation of sample size was based on the following formula: 

𝑛 =
𝑧2𝑞(1−𝑞)

𝑐2 , where n is the sample, z shows the number at 90% confidence interval which is 

1.96, q indicates the occurrence of anaemia, and c is the significance level at a 5%. Considering 

the 2014 LDHS dataset, out of 3112 children a weighted sample of 1297 children for stunting 

and 1138 children for anaemia was used. The remaining children were regarded as incomplete 

or missing data and were rejected (MOHSW and ICF, 2016; Gaston et al., 2021).  

The 2017 MMIS used  considered a weighted sample of 2724 children aged  between 6 to 59 

months for both malaria and anaemia out of 2688 children (NMCP and ICF, 2018; Gaston et 

al., 2021). 

Finally, the 2017 BDHS, used a weighted sample of 6493 children between 6 to59 months of 

age from13611 children who were surveyed, and the rest were considered as missing data 

(ISTEEBU, MSPLS, and ICF, 2017).   

In both countries, the interview involved women between 15 to 49 years of age and children 

aged 6 to59 months who remained in or visited the designated households the night before the 

survey. Under the guidance of their parents or caregivers, all children in the survey had their 

height measured and tested for anaemia, and malaria. The children who were less than 6 months 

of age were not included and the system missing value and were consequently ignored 

(MOHSW and ICF, 2016; Gaston et al., 2022). Following national regulations, the children 

who tested positive for anemia, stunting, or malaria received immediate treatment. 
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The results from both anaemia, malaria, and stunting testing were recorded on the Biomarker 

Questionnaire as well as on the handbook left in the household with data on the causes and 

prevention of both malaria, anaemia, and stunting (NMCP and ICF, 2018; Gaston et al., 2021).  

Anaemia blood is collected by puncturing a child’s finger or heel with a spring-loaded sterile 

lancet. A blood sample was placed in a microcuvette, and a HemoCue analyser was used to 

determine the hemoglobin (Hb) level. For hygiene purposes, the lancet, gloves, alcohol swabs, 

and microcuvette were only used once. The children’s results were received in less than 10 

minutes and  children with Hb levels under 7 g/dl were immediately taken to the closest hospital 

for further testing (NMCP and ICF, 2018; Gaston et al., 2021). 

Malaria blood samples were taken from children’s fingertips or heel-prick using the SD Biolne 

Malaria Ag P.f/P, a rapid diagnostic test (RDT). However, microscopy can be used to test for 

malaria.  In this study, the RDT was taken into consideration for its effectiveness in diagnosing 

malaria, being easy to learn and determining the types of plasmodia compared to microscopy. 

(MOHSW and ICF, 201; NMCP and ICF, 2018; Gaston et al., 2021). 

Nutrition status assessment was done by determining the child’s weight using an electronic 

scale, and the child’s height using a tape measure provided by UNICEF. The weight of children 

was determined using a Seca gauging scale that was set to zero. Children were either undressed 

or dressed in light clothing by their parents or guardians. The weight of a child who was unable 

to stand was calculated by deducting the parent's weight from the parent's weight while carrying 

the child. A small board that was flat on either the ground or standing upright was used to 

measure the height of children who did not wear shoes (MOHSW and ICF, 2016; Gaston et al., 

2022). Each child who is less than 87cm was assessed in the prone position, and his/her 

nutritional status was calculated from the child’s weight, height, and age (i.e., weight-for-age, 

height-for-age, and weight-for-height). The weight-for-age (underweight), height-for-age 

(stunting), and weight-for-height (wasting) are measured in z-scores, and children with a z-

scores below -2 standard deviation (SD) are considered malnourished otherwise normal (WHO, 

2007; Gaston et al., 2022). 

2.4. VARIABLES OF INTEREST 

2.4.1. DEPENDENT (RESPONSE) VARIABLES  

The outcome variables of interest in this study were anaemia, malaria, and stunting status 

among children under five years. The response (outcome) variables were recorded as binary 
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exposure since the purpose of the research was to determine whether the child is anaemic or 

not, tested positive for malaria or negative, and stunted or normal. The key factor used to 

categorize children's anaemia is their blood's hemoglobin concentration, which is expressed in 

grams per deciliter (g/dl). A child is regarded as anaemic when his/her hemoglobin 

concentration level adjusted for altitude is lower than 11.0 g/dl, otherwise, the child is not 

(WHO, 2015; Gaston et al., 2018). Stunting was used to assess the child’s nutritional status, 

and all children with z-scores below -2 SD were considered malnourished (stunted), otherwise 

nourished (normal) (Kazembe, 2013; Gaston et al., 2022). To determine if the child has malaria 

(positive) or (negative), the RDT test was used (NMCP and ICF, 2018; Gaston and Ramroop, 

2020). 

2.4.2. INDEPENDENT (EXPLANATORY) VARIABLES  

 

The explanatory variables considered included a variety of demographic, socio-economic, and 

environmental characteristics and were chosen based on those found in the literature to have 

some association with anaemia, malaria, and/or stunting as well as those anticipated to be 

determinants of each outcome (Kotecha, 2011; Bennett et al., 2013; Alegana et al., 2014; 

Caminade et al., 2014; Habyarimana et al., 2017; Kabaghe et al., 2017), among others.  As a 

result, this serves as the theoretical foundation for the current research.  

The socio-economic variables included the type of place of residence (rural or urban); wealth 

quantile; mother’s highest education level; source of drinking water; type of toilet facility; the 

main material of the walls, floor, and roof of the rooms; the household share of toilet facility; 

children under 5 who slept under a mosquito bed net the night before the survey; access to 

information through television, the household access to electricity; whether the child had a 

fever or not; cough or diarrhoea in the two weeks before the survey or not; whether the child 

had received drugs for intestinal worms or vitamin A supplementation in the six months before 

the survey or not.  All these variables were collected at the household level (Buchwald et al., 

2016). The demographic variables included child age; gender; and birth order of the child and 

were gathered at individual level (Ayele et al., 2014a; Zgambo et al., 2017). Finally, the 

environmental variables comprised of the minimum temperature, maximum temperature, 

rainfall, proximity to water, land surface temperature, enhanced vegetation index (EVI), 

aridity, wet days, and travel times.   
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2.5. DESCRIPTIVE STATISTICS 

In this chapter, we used cross-tabulation techniques to assess the association between potential 

explanatory variables and childhood anaemia, malaria, and stunting. The analysis was done 

using the Statistical Package for Social Sciences (SPSS) version 24.0. The Chi-square test was 

used to check whether the independent variables are statistically significantly associated with 

the response variables (anaemia, malaria, or stunting) or not. To account for any possible multi-

collinearity and confounding between the covariates, all variables with a p-value less than 0.2 

are included in the analysis of multivariate models (Schneider et al., 2008, Gari et al., 2017). 

We also used the percentages to determine the category with low or high effect as the number 

of surveyed in each category are not the same and can only be compared using the percentages. 

 

The prevalence of anaemia and stunting in children younger than five years from Lesotho was 

51% and 43% respectively, with 35.2 % of children having both malaria, anaemia, and stunting. 

The frequency distribution, p-values, and percentages of childhood anaemia and stunting with 

their associated factors are indicated in Table 2.1. Childhood stunting and anaemia were both 

related to child age but in opposing directions (i.e., stunting increased with age, while anaemia 

decreased with age). However, stunting itself was further associated with sex, having visited 

healthcare facilities, maternal education, wealth index, access to electricity, drinking water, and 

dwelling characteristics (wall and floor material). Furthermore, anaemia was more specifically 

related to fever in the previous two weeks, recent diarrhoea, and roof characteristics of the 

dwelling. The prevalence of anaemia was higher in children aged between 0-19 months 

(62.7%), and then decreased in children aged 20-39 months (55.0%) and then again in those 

aged 40-59 months (44.4%). The anaemia prevalence was higher in children who experienced 

fever in the last two weeks (62.8%) compared to children who did not (37.2%).  

The prevalence of stunting was lower in younger children (age group 0-19 months, 17.8%), but 

increased in children aged (20-39 months, 33.3%; and 40-59 months, 31.2%). The prevalence 

of stunting was higher in children from mothers with low education (72.7%) and reduced as 

the level of mother’s education increased by primary (31.3%) and post-primary (21.7%), 

respectively. 
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The prevalence of anaemia and malaria in children younger than five years from Malawi was 

56.9 % and 37.2%, respectively with 61.5 % of children having both malaria, anaemia, and 

stunting. Table 2.2 indicates the frequency distribution, p-values, and percentages of childhood 

anaemia and malaria respectively with their associated factors. The results indicated that all 

independent variables were significantly associated with childhood anaemia with the p-value 

less than 0.05, except for the sex of the child, and households who share a toilet.  The results 

also showed that all independent variables were significantly associated with childhood malaria 

with the p-value less than 0.05, except for the sex of the child.  

Table 2.2 shows that the prevalence of anaemia was higher in children from mothers with no 

education (68.9%) and lower in mothers with primary (55.8%) and post-primary (52.2%) 

respectively. The same results indicated a decrease in the prevalence of anaemia in children 

from wealthier classes (55.2%), and an increase in the middle (59.2%), and poorer classes 

(67.7%). The prevalence of anaemia in children from a rural area (63.0%) was higher compared 

to those from an urban area (54.0%). The results also indicated a decrease in the prevalence of 

anaemia as the age of a child increased. The prevalence of anaemia was 78.6%, 58.0%, and 

51.0% among children aged between 6-23, 24-41, and 42-59 months, respectively. 

The same results revealed that the prevalence of malaria was higher in children from mothers 

with no education (46.3%) and reduced where mothers had primary (39.6%) and post-primary 

education (16.6%), respectively. The same results indicated that the prevalence of malaria was 

lower in children from the wealthier (21.3%) and increased in the middle (39.6%), and poorer 

(48.0%) classes, respectively. The prevalence of malaria in children from rural areas was higher 

(41.9%); while for those from the urban area it was lower (7.3%).  Table 2.2 also shows that 

the prevalence of malaria increased as the child’s age increased, which was 25.6%, 40.6%, and 

43.4% among children aged between 6-23, 24-41, and 42-59 months, respectively. 
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The prevalence of anaemia, stunting, and malaria in children younger than five years in 

Burundi was 59.1 %, 47.5%, and 35.7 %, respectively. The prevalence of both anaemia and 

malaria was 48.6%, anaemia and stunting 55.9%, and malaria and stunting 60.4%. Table 2.3 

represents the frequency distribution, p-values, and percentages of childhood anaemia, malaria, 

and stunting with their associated variables. The results from Table 2.3 point out that all 

explanatory variables associated with childhood malaria, anaemia, and stunting were 

statistically significant with a p-value less than 0.05, except for the sex of the child, and children 

from households sharing the toilet. The prevalence of malaria in children aged between 6-23, 

24-41, and 42-59 months was 29.5%, 34.6%, and 38.8% respectively. The prevalence of 

stunting in children aged between 6-23, 24-41, and 42-59 months was 34.7%, 50.5%, and 

57.6% respectively. Finally, the prevalence of anaemia in children aged between 6-23, 24-41, 

and 42-59 months was 71.9%, 54.5%, and 54.1% respectively. Based on these results, malaria 

and stunting increase as the child gets older, while anaemia decrease as the child gets older. 

According to Table 2.3, the prevalence of anaemia was higher in children born to mothers with 

no education (63.8%) and lower in children born to mothers with primary (58.5%) and post-

primary (44.0%) education respectively. The prevalence of malaria was higher in children 

whose mothers had no education (40.7%) and reduced in children whose mothers had primary 

(33.9%) and post-primary (13.5%) education respectively. Lastly, the prevalence of stunting 

was higher in children from mothers with no education (53.6%) and lower in mothers with 

primary (47.9%) and post-primary (22.0%) education respectively.  

The same results showed a decrease in the prevalence of anaemia in children from wealthier 

classes (49.2%), and an increase in the middle (61.1%), and lower (67.8%) classes. The 

prevalence of malaria was lower in children from the wealthier (19.3%) and increased to the 

middle (36.0%) and lower (51.6%) classes, respectively. The results also point out the increase 

in the prevalence of stunting in children from lower classes (58.5%) and reduced in children 

from the middle (54.3%) and wealthier (33.1%), classes, respectively. 
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distribution and percentages of childhood anaemia, malaria, and stunting respectively with their 

associated factors. The cross-tabulation techniques were used to analyse the data and 

summarise the results. Pearson’s Chi-square test and p-values were used to investigate whether 

the independent (explanatory) variables were statistically significantly associated with each 

one of the responses (dependent) variables or not and this was done using SPSS version 24.0.  

The prevalence of anaemia and stunting in children younger than five years in Lesotho was 

51% and 43%, respectively with 35.2 % of children having both malaria, anaemia, and stunting. 

The child’s age indicated a significant effect on childhood stunting and anaemia. 

The prevalence of anaemia and malaria in children younger than five years from Malawi was 

56.9 % and 37.2% respectively, with 61.5 % of children having both malaria, anaemia, and 

stunting. The prevalence of anaemia, stunting, and malaria in children younger than five years 

from Burundi was 59.1 % and 47.5%, and 35.7 %, respectively. The prevalence of both 

anaemia and malaria was 48.6%, anaemia and stunting 55.9%, and malaria and stunting 60.4%. 

Based on these results in each country of interest, it can clearly be seen that anaemia, malaria, 

and stunting are still health problems in children younger than five years. These results also 

indicate an association between anaemia, malaria, and stunting. In the next chapters, we will 

fit different models and include all the variables with a p-value less than 0.2 to account for any 

possible multi-collinearity and confounding between the covariate (Schneider et al., 2008; Gari 

et al., 2017; Gaston et al., 2018). 
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CHAPTER THREE: 

SURVEY LOGISTIC REGRESSION MODEL 

 

3.1. INTRODUCTION 

 

In this chapter, we introduce a survey logistic regression model (SLRM), which is a member 

of the generalised linear models to analyse our data. The generalised linear models (GLMs) are 

an adaptable generalisation of ordinary linear regression developed by Nelder and Wedderburn 

(1972).  The GLMs generalise linear regression by accepting the linear model to be related to 

the dependent (response) variable through a link function and enable the magnitude of each 

estimation’s variance to be a function of its predicted value (Jain et al., 2017). 

The generalised linear model can be extended to accommodate models of different numbers of 

classes such as marginal, random effects, and conditional models, in case of correlated 

observations (Diggle et al., 2002). Intending to understand each type of model, different 

distributions are applied, and we can first describe the exponential family distribution (Diggle 

et al., 2002; Aerts et al., 2002). 

The Exponential Family: Assume a random variable 𝒀  has an exponential distribution as 

well as its probability density function to be expressed as follows: 

𝑓(𝑦/𝛿, 𝜃) = 𝑒𝑥𝑝 {
𝑦𝛿−𝜃(𝛿)

𝑏
− 𝑑(𝑦, 𝑏)}.                                                                                               (3.1) 

The functions 𝛿 and 𝑑 are known, while the parameters 𝛿 and  𝑏 are unknown, with 𝛿 called 

the natural or canonical parameter, and  𝑏 the scale or dispersion parameter (Diggle et al., 2002; 

Aerts et al., 2002). In order to obtain the mean and variance of  𝒀, the property of 

∫ 𝑓(𝑦/𝛿, 𝑏)𝑑𝑦 = 1, can be applied, and if we take the first and second derivatives with respect 

to 𝛿 to both sides of equation (3.1) we get the following: 

∫[𝑦 − 𝜃′(𝛿)] 𝑓(𝑦/𝛿, 𝑏)𝑑𝑦  and∫[𝑏−1(𝑦 − 𝜃′(𝛿)) − 𝜃′′(𝛿)] 𝑓(𝑦/𝛿, 𝑏)𝑑𝑦 = 0. Then we have 

𝐸(𝑌) = 𝜇 = 𝜃′(𝛿) and 𝑉𝑎𝑟(𝑌) = 𝜃′′(𝛿)𝑏, with  𝜃′ and 𝜃′′ first and second derivatives of  

𝜃(𝛿) with respect to 𝜃. Thus, the mean and variance are linked by the relation, and can be 

shown as follow 𝜎2 = 𝑏𝜃′′[𝜃′−1(𝜇)] = 𝑏𝜔(𝜇), where 𝜔(𝜇) = 𝜃′′[𝜃′−1(𝜇)]  is referred to as 

the variance function. 
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Binomial random variable: The binomial distribution has a variable 𝒀 representing the 

number of successes in 𝑛 independent trials with a probability of success 𝜋 for every trial, and 

the probability distribution is given by: 

𝑓(𝑦) = (
𝑛
𝑦) 𝜋𝑦(1 − 𝜋)𝑛−𝑦 = 𝑒𝑥𝑝 [𝑦 𝑙𝑜𝑔 (

𝜋

1−𝜋
) + 𝑛 𝑙𝑜𝑔(1 − 𝜋) + 𝑙𝑜𝑔 (

𝑛
𝑦)].                         (3.2) 

Based on equation (3.1), the canonical (natural) parameter is 𝛿 = log (
𝜋

1−𝜋
) and is noted as the 

logit(𝜋), and on the other hand, 𝛿 = log (
𝜇

𝑛−𝜇
) , where 𝜇 = 𝑛𝜋 (McCullagh and Nelder, 1989; 

Diggle et al., 2002). Regarding 𝛿, the probability of success and failure can be expressed as 

follow: 𝜋 =
𝑒𝑥𝑝(𝛿)

1+𝑒𝑥𝑝(𝛿)
 and 1 − 𝜋 =

1

1+𝑒𝑥𝑝(𝛿)
 respectively. Considering the structure of an 

exponential probability density function (p.d.f), 𝜃(𝛿) = −𝑛 𝑙𝑜𝑔(1 − 𝜋) = 𝑛 𝑙𝑜𝑔[1 −

𝑒𝑥𝑝(𝛿)]; 𝑏 = 1 and 𝑑(𝑦, 𝑏) = 𝑙𝑜𝑔 (
𝑛
𝑦). Moreover, the expected value can be defined 

as 𝐸(𝑌) = 𝜃′(𝛿) = 𝑛
𝑒𝑥𝑝(𝛿)

1+𝑒𝑥𝑝(𝛿)
= 𝑛𝜋, and the variance as 𝑉𝑎𝑟(𝑌) = 𝜃′′(𝛿)𝑏 =

𝑛 𝑒𝑥𝑝(𝛿)[1+𝑒𝑥𝑝(𝛿)]−𝑛 𝑒𝑥𝑝(𝛿)𝑒𝑥𝑝(𝛿)

[1+𝑒𝑥𝑝(𝛿)]2 = 𝑛𝜋(1 − 𝜋).  

As a result, in this instance 𝜔(𝜇) = 𝜇 (1 −
𝜇

𝑛
) as 𝜇𝜋 (Diggle et al., 2002; Molenberghs and 

Verbeke, 2005). When the response variable is binary and the number of trials 𝑛 = 1, the 

binomial distribution becomes a special case called the Bernoulli distribution (Molenberghs 

and Verbeke, 2005). 

Logistic and Probit regression for Binary data: The natural link is the logit and if 

𝑌𝑗~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜋𝑗) we have the following equation for the linear model 

𝑙𝑛 (
𝜋𝑗

1−𝜋𝑗
) = 𝑧𝑗

′𝛼, and in covariates context becomes 𝜋𝑗 =
𝑒𝑥𝑝(𝑧𝑗

′𝛼)

[1+𝑒𝑥𝑝(𝑧𝑗
′𝛼)]

. In this case, the natural 

parameter depends on the covariate 𝑧𝑗, and besides the probit link, we can also use the model 

of 𝑏−1(𝜋𝑗 = 𝑧𝑗
′𝛼), and 𝜋𝑗 = 𝑏(𝑧𝑗𝛼), with 𝑏 known as the distribution of a basic normal random 

variable. Regarding a binomial distribution variable, the 𝑌𝑗~𝐵(𝑛𝑗𝜋𝑗) and logit (𝜋𝑗) =

𝑧𝑗
′𝛼 (Molenberghs and Verbeke, 2005). 

Poisson regression for counts: The classic Poisson regression model 𝑌𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑗) 

with 𝑙𝑛(𝜇𝑗) = 𝑧𝑗
′𝛼. By applying the exponent on both sides we get a quantity that is always 
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negative and is given by 𝜇𝑗 = 𝑒𝑥𝑝(𝑧𝑗
′𝛼). The 𝜇𝑗 is the average occurrence rate, and the 

logarithm is the natural link function (Diggle et al., 2002; Molenberghs and Verbeke, 2005).  

Generalised linear models have been used in a wide range of academic subjects, more details 

on GLMs can be found in the studies by McCullagh and Nelder (1989); McCulloch and Searle 

(2004); Molenberghs and Verbeke (2005); and Dobson and Barnett (2018), among others.  

The GLMs are intended to simulate the relationship between binary data and a group of 

response variables. Nevertheless, the standard logistic regression model is unsuitable for 

analysing survey data with clustering and stratification, which may be observable in survey 

designs. The dataset used in this study is from Health Demographic Survey and data are 

collected based on multi-stage sampling, stratified, and cluster sampling with an unequal 

probability of selection. Heeringa (2010) emphasised the importance of accounting for the 

complexity of sampling design in order to avoid underestimating variance and making incorrect 

inferences. Thus, for this reason in this chapter, we used a survey logistic regression model to 

account for the complexity of sampling design, clustering, as well as the possible association 

between observations from the same cluster (Heeringa, 2010; Gaston et al., 2018).   

 

3.2. MODEL OVERVIEW 

The survey logistic regression model (SLRM) has the same properties as the ordinary logistic 

regression models (Heeringa, 2010). However, the SLRM is the best model to analyse the data 

from a complex sampling design to avoid underestimating variance and drawing the wrong 

conclusions (Heeringa, 2010; Agresti, A., 2015). In the survey logistic regression model, the 

first stage from each stratum surveyed is modelled as the primary sampling units (PSUs). Let 

us assume 𝑦𝑗ℎ𝑘 be the response variable such that 𝑗 = 1,2,3, … 𝑚𝑗; ℎ = 1,2,3, … 𝑚𝑗ℎ; and 𝑘 =

1,2,3, … 𝐾, where k is the stratum, h is the cluster, and j is the household and means the 

sampling weight for the 𝑗ℎ𝑘𝑡ℎ observation as 𝑉𝑗ℎ𝑘 and 𝑍𝑗ℎ𝑘 the row vector of design matrix 

related to the 𝑗𝑡ℎ household in ℎ𝑡ℎ PSU, nested in 𝑘𝑡ℎ stratum.  

Suppose that  𝑍𝑗ℎ𝑘 is the row vector of the design matrix related to the 𝑗𝑡ℎ household in ℎ𝑡ℎ 

PSU, nested in 𝑘𝑡ℎ stratum. In addition, we assume that the row 𝑌 denotes 𝑚 = ∑ ∑ 𝑚𝑗ℎ𝑚ℎ
ℎ=1

𝐽
𝑗=1  

Observation of the response variable 𝑌, and the rows of the 𝑍 are 𝑚 observation of 𝑡 

explanatory variables 𝑍1, 𝑍2,𝑍3, … , 𝑍𝑡. We then let 𝑌ℎ𝑗𝑘 relate to the exponential family of 

distributions, with the following sampling distribution: 
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𝑓(𝑦𝑗ℎ𝑘, 𝛿𝑗ℎ𝑘, 𝜃) = 𝑒𝑥𝑝 (
𝑦𝑗ℎ𝑘𝛿𝑗ℎ𝑘−𝑐(𝛿𝑗ℎ𝑘)

𝑏(𝜃)
+ 𝑑(𝑦𝑗ℎ𝑘 , 𝜃)),                                                                      (3.3) 

 where 𝑓(. ) is the density function of 𝑦𝑗ℎ𝑘, and 𝛿𝑗ℎ𝑘 is the natural parameter, while 𝜃 is the 

dispersion parameter. Moreover, we assume a model for the mean vector 𝜇𝑗ℎ𝑘=E[𝑦𝑗ℎ𝑘], which 

can be expressed as 𝜇𝑗ℎ𝑘 = 𝑛(𝑍𝑗ℎ𝑘 , 𝛼), where 𝑛 (. ) is a vector-valued function of 𝑍𝑗ℎ𝑘 and 𝑞 ×

1 vector 𝛼 of unknown parameters. Then the model can be converted to a linear model by 

employing a suitable link function and the mean of the distribution, which gives the association 

between the linear predictors. The linear model of GLM can be written as: 

𝜑𝑗ℎ𝑘 = 𝑔(𝜇𝑗ℎ𝑘) = 𝑍𝑗ℎ𝑘𝛼,                                                                                                                    (3.4) 

where 𝑍𝑗ℎ𝑘  is a covariate vector and 𝑔: ℛ → ℛ indicates the link function for a binary outcome, 

and the link function of a survey logistic regression is 𝜑𝑗ℎ𝑘 = 𝑙𝑜𝑔𝑖𝑡𝑔(𝜇𝑗ℎ𝑘), and the 

generalised logit model becomes: 

𝑙𝑜𝑔𝑖𝑡 (𝜋𝑗ℎ𝑘) = 𝑍′𝑗ℎ𝑘𝛼.                                                                                                                         (3.5) 

In the estimation methods for survey logistic regression parameters and standard error for 

complex survey data, we use two main approaches. The first approach is based on weighted 

least square estimation and was developed by Grizzle et al. (1969). 

 The second approach was developed by Binder (1983) and is based on pseudo maximum 

likelihood (PLME) for fitting logistic regression and other generalised linear models to 

complex sample survey data. For parameter estimates, the PLME approach was combined with 

a linearised estimator of the variance-covariance matrix while considering complex sample 

design and was used in this chapter for that reason. The PLME approach can be expressed as 

follows: 

 l = log (𝛼/𝑦)= ∑ ∑ ∑ 𝜌𝑗ℎ𝑘𝜙ℎ𝑗𝑘 ln 𝑓(𝑦𝑗ℎ𝑘,𝛿𝑗ℎ𝑘, 𝜃)
𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1 ,                                                       (3.6) 

where  𝜌𝑗ℎ𝑘, 𝜙ℎ𝑗𝑘, and 𝑓(𝑦𝑗ℎ𝑘,𝛿𝑗ℎ𝑘) are the weight, frequency, and the probability density 

function for the 𝑘𝑡ℎ individual in the ℎ𝑡ℎ household nested within the 𝑗𝑡ℎstratum, respectively 

(Binder, 1983; Breslow and Clayton, 1993). To calculate the parameters from equation (3.6), 

we have to differentiate the log-likelihood function indicated in equation (3.6) with respect to 

𝛼.  This will give us the gradient function that can be used to calculate the intended results, and 

the new equation will be: 

𝐷 (𝛼) =
𝜕𝑙

𝜕𝑙
∑ ∑ ∑ 𝜌𝑗ℎ𝑘𝜙ℎ𝑗𝑘𝐷𝑗ℎ𝑘

′ Σ′[𝑦𝑗ℎ𝑘 − 𝜇𝑗ℎ𝑘] = 0,
𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1                                                      (3.7) 
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where, 𝐷𝑗ℎ𝑘= [
𝜕𝜇𝑗ℎ𝑘

𝜕𝜏𝑗ℎ𝑘
] 𝐴𝑗ℎ𝑘, 𝐴𝑗ℎ𝑘 is the covariance matrix of explanatory variables, and  Σ is the 

covariance matrix of 𝑦𝑗ℎ𝑘. 

Mostly, there is no closed form of a fast remedy to equation (3.7), and an iterative framework 

is needed to get the maximum likelihood estimates of the unknown parameters 𝛼 (Binder, 1983; 

Wolter, 2007). Generally, no closed version of a fast remedy to equation exists. 

 

3.3. PARAMETERS ESTIMATION 

 

The maximum likelihood estimator is used for survey logistic regression, and we assumed the 

outcome variable of 𝑦𝑗ℎ𝑘 to follow a Bernoulli distribution with a density function and is shown 

in the following equation 

𝑓(𝑦𝑗ℎ𝑘) = 𝜋
𝑗ℎ𝑘

𝑦𝑗ℎ𝑘(1 − 𝜋𝑗ℎ𝑘)
1−𝑦𝑗ℎ𝑘

.                                                                                                    (3.8)                              

The mean of  𝑦𝑗ℎ𝑘  is presented as follow  

𝜇𝑗ℎ𝑘 =
𝑒𝑥𝑝(𝑍𝑗ℎ𝑘

′ 𝛼)

1+𝑒𝑥𝑝(𝑍𝑗ℎ𝑘
′ 𝛼)

 , where 𝛼 = (𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑡)′ is the vector of parameters. 

The variance of 𝑦𝑗ℎ𝑘is given by 

𝜎2 = 𝜇𝑗ℎ𝑘(1 − 𝜇𝑗ℎ𝑘) (Molenberghs and Verbeke, 2005). We can now write the log-likelihood 

function, which is the base for maximum likelihood estimation as 

𝑙 = ∑ ∑ ∑ 𝜌𝑗ℎ𝑘𝜙𝑗ℎ𝑘
𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1 [𝑦𝑗ℎ𝑘𝑙𝑜𝑔(𝜇𝑗ℎ𝑘) + (1 − 𝑦𝑗ℎ𝑘)𝑙𝑜𝑔(1 − 𝜇𝑗ℎ𝑘)].                                  (3.9) 

Then substitute the value of 𝜇𝑗ℎ𝑘 into equation (3.9), to get the following:  

𝑙 = ∑ ∑ ∑ 𝜌𝑗ℎ𝑘𝜙𝑗ℎ𝑘
𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1 [𝑦𝑗ℎ𝑘𝑙𝑜𝑔 (

𝑒
𝑧𝑗ℎ𝑘

′ 𝛼

1+𝑒
𝑧𝑗ℎ𝑘

′ 𝛼
) + (1 − 𝑦𝑗ℎ𝑘)𝑙𝑜𝑔 (1 −

𝑒
𝑧𝑗ℎ𝑘

′ 𝛼

1+𝑒
𝑧𝑗ℎ𝑘

′ )].                  (3.10) 

To obtain the unknown parameters, we should first differentiate the log-likelihood from 

equation (3.10), with respect to 𝛼 to achieve the following equation 

𝜕𝑙

𝜕𝛼
= ∑ ∑ ∑ 𝜙𝑗ℎ𝑘

𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1 𝐷𝑗ℎ𝑘

′ 𝑒
𝑧𝑗ℎ𝑘

′ 𝛼

(1+𝑒
𝑧𝑗ℎ𝑘

′ 𝛼
)

[
𝑦𝑗ℎ𝑘

1−(1+𝑒
𝑧𝑗ℎ𝑘

′ 𝛼
)

−
1−𝑦𝑗ℎ𝑘

1+𝑒
𝑧𝑗ℎ𝑘

′ 𝛼
] 𝑧𝑗ℎ𝑘

′ , 

𝜕𝑙

𝜕𝛼
= ∑ ∑ ∑ 𝜙𝑗ℎ𝑘

𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1 𝐷𝑗ℎ𝑘

′ [𝜎2(𝑦𝑗ℎ𝑘)]
−1

[𝑦𝑗ℎ𝑘 − 𝜇𝑗ℎ𝑘],                                           (3.11) 



24 
 

where 𝐷𝑗ℎ𝑘
′ = 𝜇𝑗ℎ𝑘(1 − 𝜇𝑗ℎ𝑘)𝑧𝑗ℎ𝑘

′ . 

When the fitted model is adequate, the estimators are asymptotically normally distributed with 

the exact value as the mean and the inverse Fisher information matrix as the covariance matrix 

(Binder, 1983; Molenberghs and Verbeke, 2005). Then the Fisher information matrix for the 

parameters of the Bernoulli model is deduced from the second derivative of log-likelihood with 

respect to 𝛼  and can be expressed as follows: 

ℱ = −Ε [
𝜕2𝑙

𝜕𝛼𝛼′
] = 𝑇𝑧𝑗ℎ𝑘

′2 𝑒𝑓−2 [𝑦𝑗ℎ𝑘(1 − 2𝑓−1) − (1 − 𝑦𝑗ℎ𝑘)((1 + 𝑒)
−1

− 3(1 + 𝑒)−2𝑒)], 

where 𝑇 = 𝜌𝑗ℎ𝑘𝜙𝑗ℎ𝑘, 𝑒 = 𝑒𝑥𝑝(𝑧𝑗ℎ𝑘
′ 𝛼), and 𝑓 = [1 + 𝑒𝑥𝑝(𝑧𝑗ℎ𝑘

′ 𝛼)]. 

The final Fisher information is obtained by simplifying the above equation and becomes  

ℱ = ∑ ∑ ∑ 𝜌𝑗ℎ𝑘𝜙𝑗ℎ𝑘
𝑚𝑗ℎ

𝑘=1

𝑚𝑗

ℎ=1
𝐽
𝑗=1 𝐷𝑗ℎ𝑘

′ [𝜎2(𝑦𝑗ℎ𝑘)]
−1

𝐷𝑗ℎ𝑘 .                                                    (3.12) 

3.4. APPROXIMATE COVARIANCE MATRIX 

 

The parameter estimation of the survey logistic regression model is obtained using the 

maximum likelihood method. Nevertheless, evaluating the standard errors of parameter 

estimates is complicated for data derived from complex designs. The complex survey design 

and weighting technique introduced in sampling contributes to the challenges in variability 

assessment. However, sampling information must be included to accurately assess a statistic's 

variance (Park, 2008). The process of weighting and sample designs are primarily useful in 

improving the efficiency of a statistic. Hence, their inclusion in the variance estimation 

methodology is critical and should be explored in detail (Schaefer et al., 2003; Lehtonen and 

Pahkinen, 2004). Therefore, the covariance-covariance matrix can be estimated using different 

techniques, such as Taylor linearisation, Jackknife, bootstrap, balanced replication, and random 

groups (McCarthy, 1969; Miller, 1974; Davison and Hinkley, 1997; Wolter, 2007).  

Taylor approximation procedure 

The Taylor series approximation procedure proposed by Binder (1983) is the most common 

procedure used to evaluate the variance of a linear statistic and covariance matrix of complex 

survey data.  The use of the Taylor linearisation procedure on nonlinear statistics is simulated 

by the linear structure of observation through the application of the first-order terms in a 

suitable Taylor series. Improving the Taylor series could result in the generation of second-



25 
 

order approximations, with an exception of biases in populations estimation. Nevertheless, in 

practice the first-order approximation generally produces a good result (Wolter, 2007). The 

Taylor series expansion is applied to evaluate the variance of the general estimator, by 

considering the population sample 𝑁.  Then we assume 𝑞 to be the dimensional parameter 

vector represented by 𝑍 = (𝑍1, 𝑍2 , … , 𝑍𝑞)
′
, with 𝑍𝑞 indicating total population or means for 𝑞 

various survey properties, while �̂�𝑗 represents the standard estimators of 𝑍𝑗. According to the 

sample size 𝑠 of 𝑛(𝑠), the associated estimator vector of 𝑍 is defined by �̂� =

(�̂�1, �̂�2 , … , �̂�𝑞)
′
(Lehtonen and Pahkinen, 2004; Wolter, 2007). As a result, the estimators 𝑍𝑗 

with 𝑗 = 1,2, … , 𝑞 rely on the sampling design used to produce the sample 𝑠. Assume that a 

nonlinear parameter Φ = g(𝑍) with its reliable estimator is defined by Φ̂ = g(�̂�). 

Consequently, the main goal is to obtain an estimated expression for a designed variance of 

Φ̂ and to build an adequate variance estimator of Φ̂ (Wolter, 2007). Based on a Taylor series 

expression's linear terms, and assume that the function g(𝑍) has a continuous second-order 

derivative, we get the following approximate linearised expression:  

 Φ̂ − Φ = ∑
𝜕𝑔(𝑍)

𝜕𝑍𝑗
(�̂�𝑗 − 𝑍𝑗)𝑠

𝑗=1 ,                                                                                            (3.13)                                                                                      

where 
𝜕𝑔(𝑍)

𝜕𝑍𝑗
 terms are the partial derivative of 𝑔(𝑍) with respect to 𝑍𝑗. 

Considering equation (3.13), we can get the variance approximation of �̂� as follow: 

𝑉(Φ̂) = 𝑉 [∑
𝜕𝑔(𝑍)

𝜕𝑍𝑗
(�̂�𝑗 − 𝑍𝑗)𝑠

𝑗=1 ] =
𝜕𝑔(𝑍)

𝜕𝑍𝑗
×

𝜕𝑔(𝑍)

𝜕𝑍ℎ
× 𝑉(�̂�𝑗 , �̂�ℎ),                                       (3.14) 

where 𝑉(�̂�𝑗, �̂�ℎ) represents the variance and covariance of the estimators �̂�𝑗 and �̂�ℎ 

respectively. As a result, a nonlinear estimator's variance is simplified to a function of variances 

and covariance of 𝑠 linear estimators 𝑍𝑗 (Fuller, 1975; Wolter, 2007). Moreover, substituting 

the variance and covariance estimators �̂�(�̂�𝑗, �̂�ℎ) for the corresponding parameters 𝑉(�̂�𝑗 , �̂�ℎ) 

from equation (3.14), we get the variance estimator 𝑉(Φ̂) (Skinner et al., 1989; Wolter, 2007). 

The achieved variance is defined as the first-order approximation, and by extending the Taylor 

series, second and even higher-order approximations may be obtained. In the practice, the first 

order approximation tends to produce consistent results, except in the case of extremely skewed 

populations (Wolter, 2007). The linearised statistic can be subjected to standard variance 

estimation methods. This indicates that the Taylor linearisation method is commonly utilised 
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and simple in any situation for which an estimator already exists for totals. The Taylor 

linearisation variance estimator, on the other hand, is a biased estimator. Its bias arises from its 

proclivity to underestimate the actual value, which is affected by the sample size and the 

complexity of the estimated statistic (Särndal et al., 2003; Wolter, 2007). However, when the 

statistic is straightforward, such as the weighted sample mean, the bias is statistically 

insignificant for small samples, and becomes zero for large samples. For a complex estimator 

such as the variance, large samples are required before the bias becomes negligible. However, 

it is a reliable estimator in every particular instance (Särndal et al., 2003). 

Jackknife estimator 

The jackknife method was devised by Quenouille (1949) and Quenouille (1956) to split the 

sample into different and distinct sections. Then one portion must be dropped, and the 

remaining portion must be used to recalculate the statistic of interest using the partial sample. 

The removed section is brought back into the sample, and the procedure is carried out gradually 

until every part has been taken out from the original sample. Then to evaluate the proportional 

variance, these duplicated statistics are applied. In basic random sampling, the previously 

described distinct portions could be a single observation, whereas, in multistage cluster 

sampling systems, they could be groups of units. There are several alternative representations 

of jackknife variance depending on how sampling units are input and re-entered into the 

sample. It should also be noted that the jackknife technique for variance estimation is more 

applicable in replacement designs, though it can be used in other situations as well such as 

surveys without replacement when the sampling fraction is low (Wolter, 2007). However, for 

a business survey, this is not always the case. The study by Shao and Tu (1995) revealed that 

the implementation of the jackknife estimator requires an adjustment to account for the 

sampling fractions when the first phase of sampling is done without replacement. 

Regardless of their structure, Jackknife variance calculations appear to be more suitable for 

single or multistage cluster designs, where one cluster is excluded from the calculation in each 

replicate. In the case of large-scale surveys, the calculation of replicate estimates is time-

consuming if the number of discontinuous portions is high, and makes the entire process time- 

consuming (Yung and Rao, 2000). Consequently, various jackknife approaches have been 

developed, where the adjustment of the common jackknife estimator relying on linearisation 

becomes the jackknife linearised variance estimation (Efron, 1982). The fundamental idea 

behind it is that analytical differentiation should be used instead of repeatedly recalculating a 
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statistic. For instance, the adjusted bias of variance formula for a stratified cluster sample with 

replacement becomes 

�̂� = ∑ (𝟏 − 𝒈𝒌)
𝟏

𝒏𝒌.(𝒏𝒌−𝟏)
𝑲
𝒌=𝟏 ∑ 𝒕𝒌𝒉.

𝟐𝒏𝒌
𝒉=𝟏 , where 𝑡𝑘ℎ is the observed value for the ℎ𝑡ℎ cluster in 𝑘 

stratum (Canty and Devison, 1999). The estimation of 𝑡𝑘ℎ depends on the complexity of the 

statistic, and a linear estimator Φ̂ with stratified cluster sampling gives the following formula: 

Φ̂ = ∑ 𝑍ℎ𝑘
′

ℎ𝑘 , where 𝑍ℎ𝑘
′ = ∑ 𝜓𝑗ℎ𝑘𝑘  is the sum of 𝑍𝑠

′  in every cluster ℎ in each stratum 𝑘, and 

𝜓𝑗ℎ𝑘 is the design weight. Then 𝑡𝑘ℎ = 𝑛𝑘𝑍𝑘ℎ
′ . Hence, when two calibrated estimators are 

compared, we get the following equation 𝑡𝑘ℎ =
𝑡𝑘ℎ

𝑦
−Φ̂𝑡𝑘ℎ

𝑧

𝑡𝑇𝑊𝑧
 where Φ̂ =

𝑡𝑇𝑊𝑦

𝑡𝑇𝑊𝑧
 with 𝑦 and 𝑧 as the 

vectors of the dataset's observations, while 𝑡𝑘ℎ
𝑦

 , 𝑡𝑘ℎ
𝑧  and 𝑊 are computed and analysed from 

the data (Canty and Devison, 1999). The fundamental benefit of the jackknife estimator is that 

it requires less calculation while usually maintaining the positive characteristics of the original 

jackknife approach. On the other hand, for a non-linear statistic, it is necessary for the 

derivation of independent equations.  As a result, its applicability for complex sample designs 

or complex analyses of survey data is sometimes restricted (Rao, 1997; Canty and Devison, 

1999; Holmes and Skinner, 2000). 

Bootstrap estimator 

The bootstrap method was developed to apply to different data sets. It was established beyond 

the domain of the survey sampling concept (Efron, 1979; Efron, 1981; Efron, 1982). This 

method was developed for the samples of independent and similar distribution observations. 

However, non-independence between observations when sampling without replacement along 

with other complexities are still concerned to be investigated (Efron, 1982).  

The bootstrap estimator has been the subject of extensive theoretical research, and has gained 

popularity as a method for typical data analysis (Särndal et al., 1992; Shao and Tu, 1995). The 

bootstrap effectively takes a number of separate samples from the observed data. Thereafter, 

employ the same sampling procedure as the one used to select the original sample from the 

entire population and estimate the size of each bootstrap sample (Rao and Wu, 1988). 

Balanced repeated replication method 

The balanced repeated replication (BRR), pseudo-replication method was developed for the 

survey design with a huge number of strata. The method is only restricted to many strata with 
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two parameters per strata and a cluster design with two final stage components. The purpose 

of this method is to select a cluster sample from 2𝑘 stratum population and assess each 

independently, then use those approximate values to draw a biased sample for the variance 

estimator (Judkins, 1990; Särndal et al., 1992). 

The structure of pseudo samples in the BRR procedure begins with 𝑘 strata and a sample cluster 

or primary sampling units (PSUs) per stratum 𝑘 = 2.  Such procedures become replicated when 

there are no cluster or primary sampling units (PSUs) per stratum. The total sample can be 

divided into 2𝐻intersecting half-samples each with 𝐻 as sample clusters. As result, one can 

build an estimate Φ̂𝑗 for every half sample and apply it to estimate the 𝑉(Φ̂) (Judkins, 1990). 

However, assessing those 2𝐻 possible of Φ̂𝑗 at times seems to be difficult to solve. Thus, a 

consistent set of half-samples with a minimum multiple of 4, and larger than 𝐻 needs to be 

selected. 

Therefore, the variance estimator can be shown as follows: 

𝑉(Φ̂) = ∑
(Φ𝑗−Φ̂)

ℎ

2
ℎ
𝑗=1 .                                                                                                       (3.15)                                           

The estimator from equation (3.15) and the estimator obtained from all 2𝐻 half-samples have 

similar asymptotic accuracy. The additional computation required must be weighed against the 

improvement in variance estimate accuracy over simple replication. The accuracy of estimated 

variance over the simple replication can be adjusted to the additional estimation needed (Rao 

and Wu, 1985). The study by Rao and Shao (1996) revealed that the exact asymptotic estimator 

could be attained through repeated division. As a result, using BRR in business surveys is 

problematic since stratification is frequently used, and making the modification with both data 

and software is challenging. The advantage of the BRR method induces strong asymptomatic 

assumptions for smooth and non-smooth functions. Nevertheless, the BRR method is not as 

highly adaptable for a random sample size 𝑛ℎ as the Bootstrap and Jackknife methods (Rao, 

1997). 

Random groups method 

The random groups method was initially implemented to minimise the variance estimation for 

a complex survey design.  The parameter estimation is done by selecting a sub-sample from 

the population. While the estimation of variance is based on the variations from the 
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combination of all sub-samples (Wolter, 2007). However, the survey’s structure should include 

𝑠  independent replicates of the same design to evaluate the variance (Skinner et al., 1989). 

Assume Φ̂ to be an estimator of Φ from the entire sample, and any estimator 𝑠 for the entire 

sample can be determined at each of the 𝑠 replicates yield Φ̂1 , … , Φ̂𝑠.  The estimator Φ̂𝑗 is 

achieved from the 𝑠𝑡ℎ random cluster with Φ̂′ = ∑
Φ̂𝑗 

𝑠

𝑠
𝑗=1 . Thus, the variance estimator can be 

calculated as 𝑉(Φ̂′) =
1

𝑠(𝑠−1)
∑ (Φ̂𝑗 − Φ̂′)

2
.𝑠

𝑗=1  Then, Φ̂ can be calculated based on 𝑉(Φ̂′) 

where  

𝑉(Φ̂) =
1

𝑠(𝑠−1)
∑ (Φ̂𝑗 − Φ̂)

2𝑠
𝑗=1 (Wolter, 2007). The random group’s procedure can be 

categorised into two groups considering the sub-samples are independent or otherwise. When 

the sub-sample is independent, the random group’s technique gives unbiased linear estimators, 

even if bias may arise in the evaluation of non-linear survey data. However, with dependent 

random groups, the results will be biased and such bias is negligible in surveys conducted with 

a low sampling percentage (Hansen et al., 1953; Wolter, 2007). In such cases, the homogeneity 

of the fundamental sampling strategy of each sub-sample is needed to guarantee the 

characteristics of variance estimators for a random groups method (Wolter, 2007).  

3.5. MODEL SELECTION 

 

The model selection can be done in different ways; however, the most common methods used 

to select the variables to be included in the model are forward, backward, and stepwise. In the 

forward selection process, we start with the intercept coefficient and add one explanatory 

variable at a time. The backward procedure is often used when the predictor variables are few 

in the model and the process begins with all explanatory variables and subtracts one 

explanatory variable at a time (Hosmer et al., 2000). The only difference between the stepwise 

selection procedure and forward selection is that in stepwise all variables included in the model 

are observed for exclusion when a new variable enters the model. When the study involves 

large data, the stepwise procedure is more advisable as the process reduces the chances of 

keeping unnecessary variables. When all variables in the model reach the criterion to remain 

and no variables outside the model satisfy the criterion to enter, the stepwise selection of 

variables ends. After that one excludes a variable with a nonsignificant effect and assesses the 

contribution of the remaining variables. This process will be repeated until the model has only 

significant effects (Hosmer et al., 2000; Hosmer et al., 2013). 
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3.6. MODEL DIAGNOSTICS 

 

It is always good to check the adequacy of the model after fitting the model to the data. The 

adequacy of the model is known as goodness-of fit, and after checking how well the model fits 

the data, it can be accepted or required to be revised. The most commonly used method to 

assess the goodness-of-fit are the log-likelihood ratio (deviance) and Pearson's Chi-square 

(Fahrmeir et al., 1994; Hosmer et al., 2000; Kutner et al., 2005). To assess the difference 

between the maximum log-likelihood achievable and achieved log-likelihood, the deviance is 

used and can be calculated as follow: 

𝐷 (𝑌, �̂�) = 2{𝑙(𝑦, 𝑦) − 𝑙(�̂�, 𝑦)},  where (𝑦, 𝑦) is the log-likelihood in the maximum achieved 

model or saturated model, while (�̂�, 𝑦) is the log-likelihood in the present model. The target is 

to minimize (𝑌, �̂�) by maximising (�̂�, 𝑦), and we test the goodness-of-fit by setting the null 

hypothesis 𝐻0 = 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒 vs the alternative 𝐻0 = 𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑖𝑛𝑎𝑑𝑒𝑞𝑢𝑎𝑡𝑒. The null 

hypothesis is rejected when > 𝜒𝑛−𝑝,𝛼
2 , with 𝑛 as the observed number, 𝑝 the number of 

parameters in the model, and 𝛼 the level of significance (Hosmer et al., 2000; Jiang, 2001).  

The deviance test is not reliable in measuring the goodness-of-fit when one has ungrouped data. 

In this case, the Hosmer-Lemeshow goodness-of-fit test will be relevant. Then the predicted 

probabilities (�̂�𝑖
′𝑠, 𝑖 = 1,2,3, … , 𝑛) generated from the current model are used to produce 𝑔 

groups with an estimated 𝑔/𝑛 subjects (Hosmer et al., 2000). The grouping techniques are 

based on the percentile strategy developed by Hosmer et al. (2000) as follows. 

The first group subjects are roughly 𝑛/𝑔 subjects, with �̂�𝑖
′𝑠 less or equal to the 100/𝑔𝑡ℎ 

percentile of all �̂�𝑖
′𝑠. In the second group, 10 subjects are roughly 𝑛/𝑔 subjects 𝑛/𝑔 with �̂�𝑖

′𝑠 

more than (1 −
1

𝑔
) × 100𝑡ℎ  percentile of all �̂�𝑖

′𝑠. The last group 𝑘 subject, for 𝑘 =

1,2,3, … , 𝑔 − 1 are approximately 𝑛/𝑔, with �̂�𝑖
′𝑠 greater than the  

𝑘−1

𝑔
× 100/𝑔𝑡ℎ percentile 

and less than or equal to the 
𝑘

𝑔
× 100/𝑔𝑡ℎ of all �̂�𝑖

′𝑠 (Hosmer et al., 2000). When 𝑛 becomes 

larger, the value of 𝑔 = 10 assists in making a consistent conclusion and evaluating the 

observed and expected frequencies of outcome 𝑦 = 0 𝑎𝑛𝑑 𝑦 = 1 for each group.  Therefore, 

the Hosmer-Lemeshow goodness-of-fit 𝜒2 statistic test is achieved by calculating the Pearson 

Chi-square statistic from 2 × 𝑔  tables of observed and expected frequencies. Then, Hosmer-

Lemeshow goodness-of-fit statistic can be expressed as  
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𝜒2 =
(𝑂𝑘−𝑁𝑘�̂�𝑘)

𝑁𝑘�̂�𝑘(1−�̂�𝑘)
, where 𝑁𝑘 is the total frequency of the subject in the 𝑘𝑡ℎ group, 𝑂𝑘 is the total 

frequency of the outcome in the 𝑘𝑡ℎ, and �̂�𝑘 is the estimated average probability for the 

outcome in 𝑘𝑡ℎ, with �̂�𝑘 = ∑ (
𝑛𝑖�̂�𝑖

𝑁𝑘
)𝑖=1  and 𝑛𝑖 is the number of the subject of 𝑧𝑖 and 𝑂𝑘 =

∑ 𝑦𝑘
𝑐𝑖
𝑖=1  as a response between the 𝑐𝑖 covariate patterns. Then, the Hosmer-Lemeshow statistic 

can be compared with the critical value of Chi-square distribution (𝜒2) with (𝑔 − 𝑛) degree of 

freedom, with a specified 𝑛. When the 𝜒2 is non-statistically significant, indicating the model 

goodness-of-fit otherwise, the model is not well fitted (Hosmer et al., 2000; Jiang, 2001). 

Besides the significances tests, the Akaike Information Criterion (AIC), and Schwartz Criterion 

(SC), or Bayesian Information Criterion (BIC) can be used to evaluate goodness-of-model-fit. 

The smaller the AIC and BIC of the full model compared to the corresponding AIC and BIC 

of the reduced model, the better the full model is.  More details of standard criteria for model 

selection such as AIC, BIC among others can be found in studies such as those by Akaike 

(1974); Schwarz (1978); Gameroff (2005); Lumley and Scott (2015) just to name a few.   

3.7. APPLICATION OF THE SURVEY LOGISTIC REGRESSION MODEL TO 

CHILDHOOD ANAEMIA DATA 

 

Assume  𝑦𝑗ℎ𝑘 to be the response variable, anaemia status of child j from the hth cluster and kth 

stratum. The outcome variable is defined as a dichotomous variable such that 𝑦𝑗ℎ𝑘 = 1 if the 

child j is anaemic, and 𝑦𝑗ℎ𝑘 = 0 if the child j is not anaemic. In the present study, we have 

assumed that outcome variable 𝑦𝑗ℎ𝑘 is Bernoulli distributed as 𝑦𝑗ℎ𝑘|𝜇𝑗ℎ𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜇𝑗ℎ𝑘), 

with 𝜇𝑗ℎ𝑘 known as the mean and is defined as  𝐸(𝑦𝑗ℎ𝑘) = 𝜇𝑗ℎ𝑘. It is linked to the independent 

variables  : 

𝑔(𝜇𝑗ℎ𝑘) = 𝑧′
𝑗ℎ𝑘𝛼, where g (.) is the logit link function, and 𝛼 is an m-dimensional vector of 

categorical explanatory variables. 

3.8. DATA ANALYSIS 

The present study used both 2009 and 2014 Lesotho Demography and Health Survey (LDHS) 

data to assess anaemia in children younger than five years. The survey logistic regression model 

was used to account for the complexity of the sampling design and heterogeneity between 

observations from the same cluster, to avoid the underestimation of the variance and wrong 

inference (Schneider et al., 2008; Gari et al., 2017). The analysis was done using proc survey 

logistic from SAS software version 9.4 and did not support a forward, backward, or stepwise 
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variable selection approach. Consequently, one variable was selected from the model at a time 

and the impact of each variable was checked. The model fit was assessed based on the smallest 

Akaike Information Criteria (AIC), and -2 log-likelihood (-2LogL). Any variable that was 

significant at a 5% level of significance was considered otherwise and it was dropped in the 

analysis in both data sets of 2009 and 2014. 

 

3.9. RESULTS AND INTERPRETATIONS 

The results from the 2014 data showed that the full model is the best fit compared to the model 

with Intercept since it is the one with the lowest AIC. In addition, we checked the possible 

interactions and none were statistically significant (Habyarimana et al., 2016; Gaston et al., 

2018). 

Table 3.1 presents the parameter estimate, standard deviation (STD), p-value, odds ratio (OR), 

and confidence interval (CI). The results  revealed that the child’s age group, his/her nutritional 

status (stunting), fever in the last two weeks and the mother’s body mass index were 

significantly associated with anaemia among children under five years in Lesotho. A child 

whose age is less than 19 months was found to be 0.471 (OR: 0.471 (0.323; 0.687)), p-value 

<0.001) times less likely to be anaemic as compared to those in the age group of 40-50 months 

while a child between 20-39 months of age was 0.687 (OR: 0.687 (0.482; 0.977), p-

value=0.037) times less likely to be anaemic than those who were in the age group of 40-59 

months. A child who had a fever in the two weeks before the survey was 1.674 (OR: 1.674 

(1.103; 2.540), p-value= 0.016) times more likely to be anaemic than a child who did not have 

a fever in the two weeks before the survey. It was noted that a stunted child was 1.787 (OR: 

1.787 (1.219; 2.619)), p-value=0.003) times more likely to be anaemic than a child who was 

not stunted. It was also noted that the mother’s BMI was significantly associated with 

childhood anaemia. A child born to an underweight mother was 1.542 (OR: 1.542 (1.024; 

2.321), p-value=0.038) times more likely to be anaemic compared to a child born to normal 

weight or obese mother. 
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In addition, the findings from this study demonstrated that the recent incidence of fever had a 

positive impact on childhood anaemia.  The results showed that a child   who had a fever in the 

two weeks before the survey had a higher likelihood of being anaemic than a child who did not 

have a fever. This is in line with results found in  studies by Santos et al. (2011); Konstantyner 

et al. (2012); Gayawan et al. (2014); Gaston et al. (2018) among others. This may be due to the 

fact that fever is commonly accompanied by a number of diseases and morbidities that are 

known to positively affect anaemia such as diarrhoea, cough and malaria, among others 

(Konstantyner et al., 2012; Gaston et al., 2018). 

The findings from this chapter highlighted that the child’s age and stunting were common risk 

factors for childhood anaemia. It was also found that fever and mother’s body mass index were 

significant factors associated with childhood anaemia in 2014. In addition, the mother’s 

anaemia status was not statistically significant.   

The findings also revealed that the child’s malnutrition status, child’s age, fever, and mother’s 

body mass index were determinants of childhood anaemia in Lesotho. The findings from this 

study may assist public health institutions in Lesotho and policy makers to formulate 

preventative measures and design intervention strategies that target children under five years. 

The survey logistic regression models used in this chapter are powerful tools and fit our data 

well. The model accounted for the complexity of sampling design and heterogeneity between 

observations from the same cluster, to avoid the underestimation of the variance and wrong 

inference. However, the model assumes that all variables have a fixed effect and does not allow 

for the inclusion of random effects. The study used DHS data and had the primary sampling 

units (clusters) variable, which is considered as a random effect. In addition, survey logistic is 

a parametric model. In some cases, the parametric models may struggle with their rigidity when 

simulating complex relationships between the outcome variable and the predictor factors. 

Therefore, in the next chapter we will introduce the generalised additive mixed model 

(GAMM) which will take care of the mentioned issues.  
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CHAPTER FOUR: 

GENERALISED ADDITIVE MIXED MODEL 

  

4.1. INTRODUCTION 

In Chapter 3, we used the survey logistic regression model, which is a parametric model. The 

parametric models produce an effective tool for modeling the association between response 

variables and predictor variables. Nevertheless, these parametric models cannot change the 

parametric fixed effects to be modelled as nonparametric (Hastie and Tibshirani, 1990; Gaston 

and Ramroop, 2020). Hence, the nonparametric models were developed to minimise possible 

modelling biases in parametric models (Hastie and Tibshirani, 1990; Lin and Carroll, 2000). 

The literature on nonparametric models and their applications are reviewed in different studies 

such as those of Hastie and Tibshirani (1990); Davis (1991); Akritas (1996); Holmes et al. 

(1996); Wood (2006); Enjuanes et al. (2016); Silverman (2018) among others. Nonparametric 

approaches aim to adjust a higher set of predictors to minimise the bias in the model. These 

models also enable statisticians to find nonlinear types of models that adequately explain the 

available information. Furthermore, they are useful for parametric nonlinear modelling and 

modelling diagnostics tests (Hastie and Tibshirani, 1990). The models have a large number of 

regression and smoothing techniques. These techniques include kernel-smoothing, spline 

fitting or smoothing, L-smoothing, R-smoothing, M-smoothing, and locally weighted 

scatterplot smoothing and are linked to one another, although each method has unique 

properties that are beneficial in various studies (Härdle, 1990; Wu and Zhang, 2006). However, 

there are some issues with the additive (nonparametric) models such as model selection, 

overfitting, and multicollinearity. 

Numerous studies have investigated potential solutions to nonparametric challenges. Different 

methods have been improved with considerable effort to decrease the complexity of estimators 

with high dimensions and enable slightly parametric modelling (Härdle, 1990; Hastie and 

Tibshirani, 1990). The use of both parametric and nonparametric techniques is complementary 

rather than competitive. Nonparametric methods can sometimes be used to support or 

recommend a parametric model (Wu and Zhang, 2006). In many applications, combining 

nonparametric and parametric models is more powerful than using a single method (Härdle et 

al., 2004; Hastie and Tibshirani, 1990; Ruppert et al., 2003; Wu and Zhang, 2006). 
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Since the relationships between the outcome and covariate variables might have an unknown 

functional form, it has to be indicated in several applications. This inspires the researchers to 

investigate the semiparametric models called generalised additive models (GAM) and its 

extension generalised additive mixed model (GAMM). This was achieved by including a 

nonlinear parametric factor into the additive indicator to the link scale (Hastie and Tibshirani, 

1990; Wood, 2006). 

As a result, this chapter aims to introduce a generalised additive mixed model (GAMM) to 

evaluate childhood malaria and other risk factors associated with malaria using the 2017 

Malawi Malaria Indicator Survey.  

Generalised additive mixed model (GAMM) is an extension of the generalised additive model 

(GAM) that adds the random effect in the model to assess the association among the 

observations (Wang, 1998; Gaston and Ramroop, 2020). The choice of GAMM over GAM is 

because GAM includes only the covariance effect in models without the random effect (Wang, 

1998; Lin and Zhang, 1999; Gaston and Ramroop, 2020). In addition, the generalised additive 

mixed model is an extension of the generalised linear mixed model (GLMM) introduced by 

Breslow and Clayton (1993). By employing the additive smooth function and the GAMM, it is 

possible to express the parametric fixed effects from the GLMM as a non-parametric model 

(Hastie and Tibshirani, 1990; Gaston and Ramroop, 2020). 

4.2. MODEL FORMULATION 

 

The generalised additive model (GAM) is the same as the semiparametric additive model, 

which was developed by Hastie and Tibshirani (1986). The GAM is applied to the data, to 

identify the relationship between the response and covariates variables. The parametric models 

also have powerful tools in modelling the relationship between the response and predictors 

variables when their assumptions for a linear, or some parametric form of the covariate effects 

are not violated. The parametric models in applications such as determining the relationship 

between the response and covariates variables, may have unknown functional form and are 

complicated (Ayele et al., 2014a). The unknown functions may lead to applications of 

semiparametric additive models which are flexible to allow non-normal error distributions. 

Furthermore, semiparametric additive models relax the assumption of normality and linearity 

in linear regression (Lin and Zhang, 1999; Ayele et al., 2014a).  
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The use of a semiparametric additive model may allow the response variable to be modelled 

with Poisson and binomial distribution. Moreover, the nonparametric models are flexible for 

modelling the continuous predictor variables. The GAM extends the generalised linear model 

(GLM) by allowing the predictor function to include the unspecified nonlinear function for 

some or all of the covariate variables (Hastie and Tibshirani, 1990). The linear form was 

replaced with the additive form and hence the general equation for GLM as ∑ 𝑥𝑖
𝑛
𝑖=1 𝛽𝑖 

becomes∑ 𝑓(
𝑛

𝑖=1
𝑥𝑖) in GAM. Thus, the equation of GAM is written as follows: 

          𝑔(𝜇𝑖) = 𝑋𝑖 + 𝑓𝑖(𝑥1𝑖) + 𝑓𝑖(𝑥2𝑖) + 𝑓𝑖(𝑥1𝑖) + ⋯ + 𝑓𝑘(𝑥𝑘𝑖).                                           (4.1) 

From Equation (4.1), 𝑋𝑖 is the designed matrix, 𝑓𝑖 are the smooth functions of covariates, while 

g (.) is the monotonic differentiable function, with  𝜇𝑖 = 𝐸(𝑦𝑖/𝑏) (Wood, 2017). If there is no 

linear component in equation (4.1), the model is known as nonparametric, whilst the models 

whose predictors have both linear and unspecified nonlinear function are semi-parametric. To 

estimate the parameters, the standardised condition of the smooth functions 𝑓𝑖 should be 

satisfied such that E [𝑓𝑖𝑋𝑖] =0, apart from that, each function will have free constants (Hastie 

and Tibshirani, 1990).  

When the data has repeated measurement or correlations, the model includes a random variable, 

and this leads to the extension of GAM. Hence, GAM becomes the generalised additive mixed 

model (GAMM) in the same way as the generalised linear mixed models (GLMM) are an 

extension of GLM (Hastie and Tibshirani, 1990). The GAMM was introduced by Breslow and 

Clayton (1993) to include the random effect in the GAM and model the correlation between 

the observations. 

The equation of GAMM can be expressed as follows: 

          𝑔(𝜇𝑖) = 𝛽𝑖 + 𝑓𝑖(𝑥1𝑖) + 𝑓𝑖(𝑥2𝑖) + ⋯ + 𝑓𝑘(𝑥𝑘𝑖) + 𝑍𝑖𝑏,                                                 (4.2)    

where g (.) is monotonic differentiable link function, 𝑦𝑖, 𝑖 = 1, …, n is outcome variable, k 

covariates 𝑋𝑖 = (1, 𝑥1𝑖 , … , 𝑥1𝑘 )′ associated with fixed effects and 𝑞 × 1 vector of covariates 

𝑍𝑖 associated with random effects. Thus, the given 𝑞 × 1 vector of random effect 𝑏, the 

observations 𝑦𝑖 are assumed to be conditionally independent with means, 𝐸(𝑦𝑖/𝑏) = 𝜇𝑖 and 

(𝑦𝑖/𝑏) = 𝜓𝑣(𝜇𝑖), where v (.) is specified variance function and ψ is a scale parameter. 

Moreover, 𝑓𝑖(. ) is a centred twice differentiable smooth function and the random effects 𝑏 is 

assumed to be distributed as 𝑁{0, 𝐺 (𝜌)} and 𝜌 is a 𝑐 × 1 vector of variance components.  In 
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addition, when 𝑓𝑖 is a linear function, the GAMM reduces to GLMM (Lin and Zhang, 1999; 

Gaston and Ramroop, 2020). 

For a specified variance component, θ the log-likelihood function of (𝛽, 𝑓𝑖 , 𝜃) is expressed by 

Lin and Zhang (1999) in the following equation: 

exp[𝑙{𝑦; 𝛽0,𝑓1(. ), … , 𝑓𝑘(. ), 𝜃} ∝] |𝐺|−1/2 ∫ exp {−
1

2𝜏
∑ 𝑑𝑖(𝑦; 𝜇𝑖) −

1

2
𝑏′𝐺−1𝑏𝑛

𝑖=1 }𝑑𝑏,         (4.3) 

where  𝑦𝑖 = (𝑦1, … , 𝑦𝑛)′ and 𝑑𝑖(𝑦, 𝜇) ∝ −2 ∫
𝑦𝑖−𝜇

𝑤(𝑢)𝑑𝑢

𝜇𝑖

𝑦𝑖
, define the conditional deviance the 

function of (𝛽, 𝑓𝑖 , 𝜃)  given b.  The statistical inference for GAMM on nonparametric function 

𝑓𝑖 requires the estimate of smoothing parameter 𝜏 and the inference on variance component θ. 

The smoother spline estimators and the linear mixed models are closely related (Wang, 1998; 

Green and Silverman, 1993; Lin and Zhang, 1999). Moreover, the natural cubic smoothing 

spline estimators of function 𝑓𝑖 maximise the penalised log-likelihood for the same given 𝜏 and 

θ and give the following equation: 

exp[𝑙{𝑦; 𝛽0, 𝑓1(. ), … , 𝑓𝑘(. ), 𝜃}] −
1

2
∑ 𝜏𝑖 ∫ 𝑓𝑖

′′𝑥2𝑑𝑥
𝑡𝑖

𝑠𝑖

𝑘

𝑖=1
   

                                   = 𝑙[𝑦; 𝛽0,𝑓1(. ), … , 𝑓𝑘 , 𝜃] −
−1

2
 ∑ 𝜏𝑖

𝑘
𝑖 𝑓𝑖

′𝑆𝑖𝑓𝑖 ,                                     (4.4) 

where the 𝑠𝑖  and 𝑡𝑖 indicate the range of 𝑖𝑡ℎ covariate and 𝜏𝑖 are the smoothing parameters that 

manage the trade-off between goodness-of-fit and the smoothness of the estimated functions 

(Lin and Zhang, 1999; Ayele et al., 2014a; Gaston and Ramroop, 2020).  Moreover, 𝑓𝑖(. ) is an 

𝑟𝑗 × 1 unknown vector of the values of 𝑓𝑖(. ), estimated at 𝑟𝑗 ordered values of the 𝑥𝑘𝑗 , where 

𝑘= (1,…, n) and 𝑠𝑗 is the smoothing matrix (Green and Silverman, 1993). By using the matrix 

form, the GAMM given in equation (4.2), can be written as: 

𝑔(𝜇𝑖) = 1𝛽1 + 𝑁1𝑓1 + ⋯ + 𝑁𝑝𝑓𝑝 + 𝑍𝑖𝑏,                                                                               (4.5)    

where 𝑔(𝜇𝑖) = [𝑔(𝜇1), 𝑔(𝜇2), … , 𝑔(𝜇𝑛)],  𝑛 × 1  the vector of ones,  𝑁𝑖 = 𝑚 × 𝑟 matrix, such 

that, the  𝑘𝑡ℎ component of 𝑁𝑖𝑓𝑖  𝑖𝑠 𝑓𝑖𝑥𝑘𝑖  and 𝑍 = 𝑍1, 𝑍2,…,𝑍𝑛. To evaluate the equation (4.6), 

the numerical integration is required. Additionally, calculating the natural cubic smoothing 

spline estimators of 𝑓𝑖 by maximising equation (4.5) is sometimes complicated. Consequently, 

Li and Zhang (1999) resolved this problem by suggesting the double penalised quasi-likelihood 

(DPQL) model as an alternative approach. Hence, the estimation of nonparametric function 𝑓𝑖 
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can be obtained by applying double quasi-likelihood. The function 𝑓𝑖 is re-parameterised in 

terms of 𝛽𝑖 and 𝑎𝑘 in one-to-one transformation as: 

𝑓𝑘 = 𝑋𝑘
∗𝛽𝑘 + 𝛽𝑘𝑎𝑘,                                                                                                                  (4.6) 

where 𝑋𝑘
∗ is 𝑟𝑘 × 1 vector with the 𝑟𝑘 centred and ordered distinct values of the 𝑥𝑘𝑖 (𝑘 =

1,2, … , 𝑛) and 𝛽𝑘=𝐿(𝐿𝑘𝐿𝑘)−1 and 𝐿𝑘 is an 𝑟𝑘(𝑟𝑘 − 2) full rank matrix satisfying 𝑆𝑘 = 𝐿𝐿′ and 

𝐿𝑘
′ 𝑥𝑘

∗ = 0.  Thus, the double penalised quasi-likelihood with respect to (𝛽0𝑓𝑖) and 𝑏  becomes: 

−
1

2𝜏
∑ 𝑑𝑖(𝑦; 𝜇𝑖) −

1

2
𝑏′𝐺−1𝑏𝑛

𝑖=1 −
1

2
𝑎′𝐷−1𝑎,                                                                          (4.7) 

where 𝑓𝑘
′𝑆𝑘𝑓𝑘 = 𝑎𝑘

′ 𝑎𝑘, 𝑎 = (𝑎1
′ , 𝑎2

′ , … , 𝑎𝑘
′ ) and 𝐷 = 𝑑𝑖𝑎𝑔(𝜌1𝐼, 𝜌2𝐼, … , 𝜌𝑘𝐼) with 𝜌𝑘 =

1

𝜏𝑘
 .  

Note that the small values of 𝜌𝑘 = (𝜌1,𝜌2,…,𝜌𝑘) correspond to over smoothing (Breslow and 

Clayton, 1993; Lin and Zhang, 1999; Gaston and Ramroop, 2020). 

 

4.3. MODEL SELECTION AND DIAGNOSTICS 

 

The smoothing parameter value has a significant impact on model fit, and for that reason, the 

selection and goodness fit of an appropriate smoothing parameter is crucial. The Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC) can be used in the 

section and goodness of model fit (Akaike, 1998; Schwarz, 1978). However, the most common 

used are the cross-validation-criterion (CV), and generalised cross-validation criterion (GCV) 

(Hastie and Tibshirani, 1990).  

The AIC procedure proposed first by (Akaike, 1998) is good to use when the model has more 

predictors, as it can prevent data prediction errors by penalizing high model challenges, and 

the small value of AIC the better the model fit. Besides applying a penalty for the addition of 

variables, the AIC considers both the goodness of fit and the number of variables that need to 

be estimated to obtain the degree of fit needed (Akaike, 1998; Everitt, 1998). Assume that a 

parameter estimate is defined as 𝜗, then the AIC can be written as 𝐴𝐼𝐶 = −2[𝑙(�̂�) + 𝑞]. The 

𝑙(�̂�) = 𝑙𝑜𝑔[𝑓(𝑦/𝜗)]  is the maximum log-likelihood value of the model, and 𝑞 is the number 

of estimated parameters used in the model. 

The BIC approach was introduced by Schwarz (1978), and works as AIC, where the small 

value of BIC the better the model fit. However, this approach is good to use when the model 
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has few covariates, while AIC works better with many covariates in the model. The Bayesian 

Information Criterion can be expressed as follow 

𝐵𝐼𝐶 = −2 𝑙(�̂�) + 𝑞 𝑙𝑜𝑔(𝑛), where 𝑙(�̂�) is the maximized value of the log-likelihood function, 

with 𝑞 indicates the number of parameters, and 𝑛 the sample size. The penalty term is 

determined by the sample size, with larger sample size resulting in a larger penalty, and reduced 

as the sample size decreases (Schwarz, 1978). 

The smoothing parameter selected has a significant impact on model fit, and the selection 

criteria can also use cross validation (CV) and generalised cross-validation criterion (GCV). 

The two approaches select the smoothing parameter in such way the smooth function estimate 

𝑓 could be close to the actual 𝑓. Assume that the cross-validation criterion chooses the value 𝜏 

that minimizes the following expression  𝐶𝑉(𝜏) = ∑ [𝑦𝑖 − 𝑓𝑖(𝑥𝑖; 𝑦𝑖)]
2

= ∑
(𝑦𝑖−�̂�𝑖)2

(1−𝑆𝜏,𝑖𝑖)2
𝑛
𝑖=1

𝑛
𝑖  .                                   

 The 𝜏 is the smoothing parameter, and 𝑓 the regression estimator, while the (𝑥𝑖; 𝑦𝑖) and 𝑆𝜏, 𝑖𝑖 

are the 𝑖𝑡ℎ diagonal elements. Then, the generalized cross validation criteria select the 

smoothing parameter 𝜏 that minimises 𝐶𝑉(𝜏) = ∑
(𝑦𝑖−�̂�𝑖)2

(1−
𝑡𝑟(𝑆𝜏)

𝑛
)

2
𝑛
𝑖=1 .  The cross-validation and 

generalised are very similar, however, the GCV has a good attribute property (Wood, 2006). 

4.4. MODEL FITTING 

 

The study used R software to analyse the 2017 Malawi Malaria Indicator Survey (MMIS) data 

with the application of “mgcv” packages. The GAMM was used to model the effect of age and 

altitude non-parametrically, while other covariates were used as parametric. These factors have 

a continuous effect and might have non-linear relationships with malaria (Ayele et al., 2014a). 

The R software has packages with numerous choices for controlling the smoothness in the 

GAMM using splines. Various splines can be used such as cubic smoothing splines, bin 

smoothers, shrinkage smoothers, locally-weighted running line smoothers and kernel 

smoothers among others (Hastie and Tibshirani, 1990; Ruppert et al., 2003). However, this 

study used shrinkage smoothers (splines) to fit the GAM model, due to its advantages such as 

assisting to control the knot placement. Furthermore, the shrinkage smoother is constructed in 

such a way that the smooth terms are rebuffed away all around (Wood, 2006; Gaston and 

Ramroop, 2020). The study also considered the fundamental impact and possible two-way 

interaction effect. The p-value of the individual smooth term and the AIC of each model, 
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together with the inference of smooth were analysed. The selection of the model was based on 

the smallest AIC, the higher value of degree of freedom and high statistical significance. Hence, 

the final model for this study is given in equation (4.8) as follows:  

𝑔(𝜇𝑖𝑗) = 𝛽0 + 𝛽1𝐴𝑛𝑒𝑚𝑖𝑎𝑗 + 𝛽2𝑅𝑒𝑔𝑖𝑜𝑛𝑗 + 𝛽3𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑐𝑒𝑗+𝛽4𝑇𝑜𝑖𝑙𝑒𝑡_𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝑗 +

𝛽5𝑊𝑒𝑎𝑙𝑡_𝐼𝑛𝑑𝑒𝑥𝑗 + 𝛽6𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑗 + 𝛽7𝑀𝑜𝑡ℎ𝑒𝑟𝑠′𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛𝑗 + 𝑓1(𝐴𝑔𝑒𝑗) +

𝑓2(𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒𝑗) + 𝑏𝑜𝑗,                                                                                                                      (4.8) 

where, 𝑔(𝜇𝑖𝑗) is the logit link function, 𝛽′𝑠 are the parametric regression coefficients, 𝑓′
𝑗
𝑠 are 

centred smooth functions, while 𝑏𝑜𝑗 is the random effects, which can be written as 

𝑏𝑜𝑗~𝑁(0, 𝐺(𝜃)). 

4.5. INTERPRETATION OF RESULTS 

 

Table 4.1 illustrates the parameter estimates for the model, standard error, z-value, odds ratio 

and p-values. The study reported the variables with significant impact on the malaria RDT such 

as anaemia, electricity, region, residence, wealth index, toilet facilities and mother’s education 

status. The study checked all possible interactions. However, the two-way interaction effect 

was not included since it did not add any significant effect to the model with non-significant 

p-values. 

Table 4.1 shows that the children with no anaemia were 0.233 times less likely to test positive 

for malaria using an RDT, compared with anaemic children. The results also revealed that the 

odds of positive malaria results in an RDT for children living in the Central region of Malawi 

were 1.936 times more likely than for those who lived in the North region. Similarly, the odds 

of positive malaria in an RDT for children living in the South region were 1.179 times more 

likely than for those who lived in the North region. The children living in rural areas were 4.318 

times more likely to test positive for malaria in RDT results compared to those living in urban 

areas. The study also showed that the odds of positive malaria results in an RDT test for 

children from a household with no toilet facilities were 2.938 times more likely than those with 

flush toilets. Furthermore, the children from households with pit latrines were 1.389 times more 

likely to test positive for malaria in an RDT, compared to those with flush toilets. The results 

indicated that the children from the middle classes were 0.743 times less likely to test positive 

for malaria using an RDT, compared to those from the poorer classes. In addition, the children 

from the richer classes were 0.571 times less likely to test positive for malaria in an RDT than 

those from the poorer classes. Lastly, the results indicated that the odds of positive malaria 
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Figure 4.1: Smoothing components of malaria RDT test with age and altitude. 

Table 4.2: Approximate significance of the smooth terms . 

Source Degree of freedom (df) Chi squared p-value 

S (age) 2.423 90.420 <0.001 

S (altitude) 2.875 22.340 <0.001 

 

 

4.5. DISCUSSION AND SUMMARY 

 

The present study utilised the generalised additive mixed model (GAMM) to investigate the 

risk factors associated with malaria using the 2017 Malawi Malaria Indicator Survey 

nationwide. The previous studies used the parametric model such as the generalised linear 

mixed model (GLMM) to analyse the malaria RDT data (Ayele et al., 2013; Gaston and 

Ramroop, 2020). The parametric models are useful to model the relationship between a 

response variable and covariance. However, non-parametric models are flexible to allow non-

normal error distributions, modelling continuous predictor variables, and relax the assumption 

of normality and linearity in linear regression (Lin and Zhang, 1999; Gaston and Ramroop, 

2020). The parametric and non-parametric models should complement each other and for this 
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reason, the combination of the two methods is more useful (Wu and Zhang, 2006). Thus, the 

study used the parametric model first to create geographical and socio-economic status such as 

type of place of residence, region, wealth quantile, mother’s highest education level, type of 

toilet facility and availability of electricity.  

The effect of age and altitude was modelled as non-parametric and was statistically significant.  

The interaction effect was not included in the model as it was not statistically significant to 

improve the original model. The results from the parametric part revealed that the probability 

of increasing a positive malaria RDT was lower in the richer and the middle classes compared 

to the poorer classes. These results confirmed that the prevalence of malaria is linked to socio-

economic factors, where the poorer people are more vulnerable (Hay et al., 2004; Chitunhu and 

Musenge, 2016; Gaston and Ramroop, 2020). This is due to the limited access to health care 

and the affordability of treatment (Worral et al., 2003). The study revealed that households 

with access to electricity are less likely to increase the positive malaria RDT rates. Moreover, 

households with no toilet facilities are more likely to increase the positive malaria RDT rates. 

This shows that the households with access to electricity and toilet facilities are not poor. 

Hence, these factors are indicators of socio-economic status, and this is in line with the study 

by Ayele et al. (2014a) and Gaston and Ramroop (2020).  

The results from the study also showed that the probability of increasing a positive malaria 

RDT in a mother’s education reduces as the mother’s children further their education. This 

means that the more the mother becomes educated and the more the children know, the more 

they become aware of malaria and its prevention. Furthermore, this might be linked to socio-

economic status, as educated people are more likely to have a better life. The study was 

consistent with previous studies such as those by Zgambo et al. (2017) and Sultana et al. (2017); 

Gaston and Ramroop (2020).   

The study revealed that households from rural areas are more likely to increase the positive 

malaria RDT rates than those from urban areas. This might be explained by not having access 

to so many things such as good houses, drinking water, access to health care, few educated 

people, and so forth (Jenkins et al., 2015; Kazembe and Mathanga, 2016; Sultana et al., 2017; 

Gaston and Ramroop, 2020).  

The study indicated that the probability of reducing a positive malaria RDT in children with 

anaemia status is very much higher compared to non-anaemic children. This might be 
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explained by the link between anaemia and malaria, as has been shown by previous studies by 

Biemba et al. (2000); Sultana et al. (2017); Gaston and Ramroop (2020). 

The study indicates a large variation among the three regions, where the households from the 

Central region are more likely to show an increase in the probability of having a positive 

malaria RDT. This is because the region is covered by large plains and the low-lying zone 

along the lake. Moreover, the lake might be an area conducive to the breeding of malaria 

vectors (Minakawa et al., 2012; Zgambo et al., 2017; Gaston and Ramroop, 2020). 

The results from the non-parametric model indicate that the probability of a positive malaria 

RDT increases as the child’s age increases. This could be the impact of maternal immunity in 

the child before one year of age.  In addition, children younger than one-year-old are more 

protected and well taken care of and this helps to fight any kind of disease. This reduces as the 

children get older. These results are consistent with the studies by Ayele et al. (2014a); 

Chirombo et al. (2014); and Gaston and Ramroop (2020).  

The study revealed that the risk of having a positive malaria RDT result increases as the altitude 

increases up to 750 metres and starts showing a decrease going higher. This may be explained 

by the very high temperatures at lower altitude as the mosquitos develop in hot areas. In 

addition, as the altitude increases, the temperatures reduce and this reduces the risk of having 

a positive malaria RDT result (Lindsay and Martens, 1998; Chirombo et al., 2014; Gaston and 

Ramroop, 2020). 

The aim of this chapter was to assess the prevalence and factors associated with malaria in 

under five-year-old children in Malawi using GAMM. The findings from this chapter show 

that the government should consider other factors associated with malaria especially in children 

under five years of age such as anaemia, region, residence, toilet facilities, wealth index, use 

of electricity, mothers’ education, children’s age and altitude of the region of residence. The 

findings from this study revealed that malaria is still a major problem and is linked with socio-

economics and geographical location. The government should focus on poorer communities 

from rural and high-altitude areas, especially in the Central region. In addition, children with 

anaemia should be the priority to get all the proper health care and support needed. 

The key findings also show that there is a need to educate the population through workshops, 

mobile clinics and various social media platforms on how to prevent malaria in children under 

five years of age. Moreover, the education of mothers should be considered and supported so 

that they can take care of and protect their children, especially, in their first six months, when 
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they are more likely to be exposed to malaria vectors. The findings from this chapter will help 

the government and donors to control and eliminate malaria in children under five years old. 

The key priority should be in children with anaemia, with consideration of the factors of 

mother’s education level, wealth index, child’s age, altitude of the place of residence, region, 

place of residence, toilet facility and electricity facilities.   

The GAMM fitted our data well but could not join either malaria and anaemia or anaemia and 

stunting simultaneously as there is an association between malaria, anaemia, and stunting 

(Ayele et al., 2014b; Adebayo et al., 2016; Gaston et al., 2021). Therefore, the next chapter 

will resolve this issue by employing a multivariate joint model to assess the correlation between 

malaria, anaemia, and stunting and their predictor’s factors. 
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CHAPTER FIVE:  

MULTIVARIATE JOINT MODELLING 

 

5.1. INTRODUCTION 

 

In this chapter, we used a multivariate joint model within the ambit of the generalised linear 

mixed model (GLMM) to assess the association between anaemia and malaria using the 2017 

Malawi Malaria Indicator Survey (MMIS). The model was also applied to the 2014 Lesotho 

Demographic Health Survey to determine the link between anaemia and stunting (LDHS). In 

previous chapters, we reported on the use of a separated model for childhood anaemia or 

malaria. Although, the model has its advantages but it cannot take into account a potential link 

between malaria and anaemia concurrently. The joint model is required to effectively simulate 

anaemia and malaria or anaemia and stunting to explore the link between them along with 

determining related variables. When compared to single models, the multivariate joint model 

under a GLMM provides reference points, such as the efficient performance of type I errors in 

numerous tests. Apart from that, the multivariate joint model is more effective in terms of 

parameter estimation capabilities and the ability to answer some multivariate issues. Moreover, 

in order to show the association between two or more variables, the GLMM incorporates the 

random effect into the model (Gueorguieva, 2001; Hedeker, 2005; Agresti, 2015; Habyarimana 

et al., 2016; Gaston and Ramroop, 2020). 

Thus, for the above-mentioned reason, in this chapter we aim to concurrently simulate the 

relationship between malaria and anaemia or anaemia and stunting. In addition, we assess the 

factors that might affect childhood malaria, anaemia, and stunting by utilising the joint model 

for a multivariate under generalised linear mixed model (GLMM). 

 

5.2. MODEL OVERVIEW 

 

Assume that you have bivariate response variables, which can be extended to two response 

variables. There are numerous techniques for joint modelling such as Plackett-Dale and the 

Probit normal generalised linear mixed model approaches among others. However, in this 

chapter we decided to use a generalised linear mixed model approach and account for both 

random effect and sequential correlations (McCullagh and Nelder, 1989; Neuhaus et al., 1991). 
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The study by Molenberghs and Verbeke (2005) indicated that a generalised linear mixed model 

can be expressed as follows: 

𝑦𝑗 = 𝛾𝑗 + 𝜖𝑗,                                                                                                                                      (5.1) 

with 

𝛾𝑗 = 𝛾𝑗(𝜃𝑗) = 𝑘(𝛼𝑥𝑗 + 𝑐𝑗𝑧𝑗),                                                                                                         (5.2)                                 

where  𝑐𝑗~𝑁(0, 𝐷) are the P-dimensional random effects. The component of inverse link 

functions 𝑘 may differ depending on the type of the various explanatory variables in 𝑦𝑗. 

Moreover, the variance of 𝜖𝑗 is determined by the mean-variance links of the various dependent 

variable; it also includes a covariance matrix ℛ𝑗(𝛽) and the over-dispersion variable 𝜓. 

Whenever the equation (5.2) has no random variables, it decreases to a marginal model known 

as the marginal generalised linear model (MGLM). Although, when the matrix ℛ𝑗(𝛽) has no 

residual correlations, it reduces to a mainly random effects model or a conditional 

independence model, and both are generalised linear mixed models (Molenberghs and 

Verbeke, 2005). 

The 𝑦𝑗 variance-covariance matrix is derived from a general first-order estimated equation 

given by Molenberghs and Verbeke (2005) as follows: 

𝑉𝑗 = 𝑉𝑎𝑟(𝑦𝑗 ≈ 𝜋𝑗𝑧𝑗𝐷𝑧𝑗
′𝜋𝑗

′ + 휀𝑗),                                                                                             (5.3) 

where 𝜋𝑗 = (
𝜕𝛾𝑗

𝜕𝜃𝑗
) /𝑐𝑗 =0   and 휀𝑗 = 𝜓𝑗

1/2
𝐵𝑗

1/2
ℛ𝑗(𝛽)𝐵𝑗

1/2
𝜓𝑗

1/2
 with 𝐵𝑗 considered as a diagonal 

matrix comprising a variance from a generalised linear classification of 𝑦𝑗ℎ with ℎ = 1,2 , for 

a specified random effect, and 𝑐𝑗 = 0. In addition, 𝜓𝑗 is also considered as a diagonal matrix 

along with the overdispersion variables  across diagonally.  

The variance-covariance in residual error 𝜖𝑗  is expressed by 휀𝑗  and the first term in the right 

hand of equation (5.3) stands for the random effects structure of 𝑘(𝑥𝑗𝛼) + 𝑐𝑗𝑧𝑗. While ℛ𝑗(𝛽) 

is the correlation matrix (Neuhaus et al., 1991; Molenberghs and Verbeke, 2005). Additionally, 

when the dependent variable is normally distributed, the overdispersion variable is 𝜎𝑗
2 and the 

variance coefficient is 1. Moreover, when the dependent variable is binary with logit link, we 

deduce the following expression: 

𝛾𝑗ℎ(𝑐𝑗 = 0)[1 − 𝛾𝑗ℎ(𝑐𝑗 = 0)],                                                                                               (5.4) 
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with  𝑐𝑗 = 0 estimated from a Taylor series extension of the mean value of 𝑐𝑗 = 0. 

If the exponential family requirements for all elements are observed with the canonical link, 

𝜋𝑗 = 𝐵𝑗, then the variance matrix of 𝑦𝑗 can be expressed by 

𝑉𝑎𝑟(𝑦𝑗 ≈ 𝜋𝑗𝑧𝑗𝐷𝑧𝑗
′𝜋𝑗

′ + 𝜓𝑗
1/2

𝜋𝑗
1/2

ℛ𝑗(𝛽)𝜋𝑗
1/2

𝜓𝑗
1/2

),                                                              (5.5) 

and because of conditional independence ℛ𝑗 fades away, and equation (5.5) becomes 

𝑉𝑎𝑟(𝑦𝑗) = 𝑧𝑗𝐷𝑧𝑗
′𝜋𝑗

′ + 𝜓𝑗
1/2

𝜋𝑗
1/2

+ 𝜓𝑗
1/2

𝜋𝑗
1/2

𝜓𝑗
1/2

 .                                                                (5.6) 

When the model has no random variables for the residual, generalised linear model (MGLM) 

can be expressed in the following equation 

(
𝑦𝑗1

𝑦𝑗2
) = (

𝛾1 + 𝜏𝑐𝑗 + 𝛽𝑥

𝑒𝑥𝑝(𝛾2+𝑐𝑗+𝛼𝑥𝑗)

1+𝑒𝑥𝑝(𝛾2+𝑐𝑗+𝛼𝑥𝑗)

) + (
𝜖𝑗1

𝜖𝑗2
) .                                                                                    (5.7) 

Given this, the continuous and categorical responses are assessed on various levels, and 𝜏 is 

the scale parameter added in the continuous random intercept model (McCullagh and Nelder, 

1989; Molenberghs and Verbeke, 2005). Suppose that 𝑧𝑗 = (
𝜏
1

) , 𝜋𝑗 (
1 0
0 𝜔𝑗2

) , 𝜓 = (𝜎2 0
0 1

), 

where 𝜔𝑗2 = 𝛾𝑗2(𝑐𝑗 = 0)[1 − 𝛾12(𝑐𝑗 = 0)]. Furthermore, assuming that Σ is the correlation 

between 𝜖𝑗1 and 𝜖𝑗2, and 𝑧𝑗 on the other hand, it is not a design matrix since it contains unknown 

values. Thus, the variance-covariance matrix of 𝑦𝑗 given in equation (5.1) becomes  

𝑉𝑗 = (
𝜏2 𝜔𝑗2𝜏

𝜔𝑗2𝜏 𝜔𝑗2
2 ) 𝜂2 + (

𝜎2 Σσ√𝜔𝑗2

Σ𝜎√𝜔𝑗2 𝜔𝑗2

) =

(
𝜏2𝜂2 + 𝜎2 𝜔𝑗2𝜏2𝜂2 + Σ𝜎√𝜔𝑗2

𝜔𝑗2𝜏𝜂2 + Σ𝜎√𝜔𝑗2 𝜔𝑗2
2 𝜂2 + 𝜔𝑗2

).                                                                          (5.8)                                         

As a result, the derived estimated marginal correlation function is expressed as follows: 

Σ(𝛼) =
𝜔𝑗2𝜏𝜂2+Σ𝜎√𝜔𝑗2

√𝜏2𝜂2+𝜎2×√𝜔𝑗2
2 𝜂2+𝜔𝑗2

  .                                                                                                (5.9) 

This equation depends on the fixed effects via 𝜔𝑗2, and the model with no random effects 

becomes  
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(
𝑦𝑗1

𝑦𝑗2
) = (

𝛾2 + 𝛼𝑥𝑗

𝑒𝑥𝑝(𝛾1+𝑐𝑗+𝛼𝑥𝑗)

1+𝑒𝑥𝑝(𝛾1+𝛼𝑥𝑗)

) + (
𝜖𝑗1

𝜖𝑗2
).                                                                                                  (5.10) 

Based on the fully marginal classification, equation (5.8) reduces to Σ with an assumption of 

independence, and equation (5.9) reduces to the following function of fixed effects:  

Σ(𝛼) =
𝜔𝑗2𝜏𝜂2

√𝜏2𝜂2+𝜎2×√𝜔𝑗2
2 𝜂2+𝜔𝑗2

  .                                                                                                        (5.11)                                                              

If both equations (5.9) and (5.11) are binary with a constant correlation Σ  but without a random 

effect and no residual correlation, the equation (5.11) becomes  

Σ(𝛼) =
𝜔𝑗2𝜔𝑗2

√𝜔𝑗1𝜂2+𝜔𝑗1×√𝜔𝑗2
2 𝜂2+𝜔𝑗2

 .                                                                                                    (5.12) 

The equation (5.12) can be solved using a random effects design matrices 𝑧𝑖  and for more than 

two factors that are not simply continuous and binary (Neuhaus et al., 1991; Molenberghs and 

Verbeke, 2005). 

In the case where the response variables are both binary, then a generalised linear mixed model 

(GLMM) with correlated random effects can be expressed as follows:  

(
𝑦𝑗1

𝑦𝑗2
) = (

𝑒𝑥𝑝(𝛽1+𝛼1𝑥𝑗+𝑐𝑗1)

1+𝑒𝑥𝑝(𝛽0+𝛼1𝑥𝑗+𝑐𝑗1)

𝑒𝑥𝑝(𝛽2+𝛼2𝑥𝑗+𝑐𝑗2)

1+𝑒𝑥𝑝(𝛽0+𝛼2𝑥𝑗+𝑐𝑗2)

) + (
𝜖𝑗1ℎ

𝜖𝑗2ℎ
),                                                                              (5.13) 

with the random effects  𝑐𝑗1 and 𝑐𝑗2 considered as normally distributed; while the terms 𝜖𝑗1ℎ 

and 𝜖𝑗12 are independent (Faes et al., 2008). The variance of the two independent variables is 

supposed to be 𝑉𝑎𝑟(𝑐𝑗1) = 𝜔𝑗1 = 𝛾𝑗1ℎ(𝑐𝑗1=0)[1 − 𝛾𝑗1ℎ(𝑐𝑗1 = 0)], and 𝑉𝑎𝑟(𝑐𝑗2) = 𝜔𝑗2 =

𝛾𝑗2ℎ(𝑐𝑗2=0)[1 − 𝛾𝑗2ℎ(𝑐𝑗2 = 0)]. For subject 𝑗 and ℎ, the estimated variance-covariance matrix 

of two binary response variables is given by 

𝑉𝑗1 = (
𝜔𝑗1ℎ

2 𝜂1
2 + 𝜔𝑗1ℎΣ𝜂2𝜔𝑗1ℎ𝜔𝑗2ℎ

𝜔𝑗1ℎΣ𝜂2𝜔𝑗2ℎ + 𝜔𝑗2ℎ
2 𝜂2

2+𝜔𝑗2ℎ

) + (
𝜖𝑗1ℎ

𝜖𝑗2ℎ
) (Faes et al., 2008; Habyarimana et al., 2016).    

 Moreover, the correlation between the two response variables can be expressed as   

Σ𝑦1𝑦2 =
Σ𝜂1𝜂2𝜔𝑗1ℎ𝜔𝑗2ℎ

√𝜔𝑗1ℎ
2 𝜂1

2+𝜔𝑗1ℎ×√𝜔𝑗2ℎ
2 𝜂2

2+𝜔𝑗2ℎ

 .                                                                                    (5.14) 
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In case both response variables are continuous, and linear mixed models have a random effect, 

the correlation between the two response variables can be written as follows (Habanabakize, 

2021): 

Σ𝑦1𝑦2 =
Σ𝜂1𝜂2

√𝜂1
2+𝜎1

2×√𝜂2
2+𝜎2

2
 .                                                                                                     (5.15) 

In general, the specification of a full model is not required, when assuming the first outcome 

to be continuous and the second one to be Bernoulli distributed. By using marginal correlation, 

we can still keep the joint moments  measurement to the second, yet the conditional on the 

random effects, as well as normality criteria concerning the random effects are important 

(Molenberghs and Verbeke, 2005; Faes et al., 2008; Habyarimana et al., 2016).  

   

5.3. MAXIMUM LIKELIHOOD ESTIMATION 

 

In GLMM, the maximum likelihood is obtained by integrating the random variables and getting 

the following equation 

In GLMM, the maximum likelihood is obtained by integrating the random variables and getting 

the following equation 

∏ ∬[∏ 𝑔1(𝑦𝑗1/𝑐1𝑗; 𝛼1, 𝜓1)
𝑚𝑗1

ℎ=1
∏ 𝑔2(𝑦𝑗2/𝑐2𝑗; 𝛼2, 𝜓2)

𝑚𝑗2

ℎ=1 ]𝑚
𝑗=1 𝑔(𝑐1𝑗, 𝑐2𝑗; 𝜛)𝑑𝑐1𝑗𝑑𝑐2𝑗.                (5.16)     

Most of the time, the integral (5.16) is unsolvable; hence an analytical, stochastic, or statistical 

approach must be applied (Breslow and Clayton, 1993; Gueorguieva, 2001). 

There are several methods to fit GLMM such as marginal maximisation using Gaussian 

quadrature or Monte Carlo approximation, penalised quasi-likelihood, Monte Carlo EM 

algorithm, Monte Carlo Newton-Raphson algorithm and simulated maximum likelihood 

(Breslow and Clayton, 1993; Fahrmeir et al., 1994; Wolfinger et al., 1994; McCulloch, 1997; 

Booth and Hobert, 1999). In multivariate, all these methods can be used, except in the 

maximum likelihood when the number of response variables is more than three and becomes 

difficult for estimation (Molenberghs and Verbeke, 2005; Habyarimana et al., 2016). However, 

this problem can be resolved by using the extension to higher-dimension order. 
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5.4. EXTENSION TO HIGHER-DIMENSIONAL DATA 

 

Suppose that 𝑛 is the number of response variables to be modelled jointly, and is expressed as  

𝑦𝑗ℎ = 𝑦𝑗ℎ1, 𝑦𝑗ℎ2, … , 𝑦𝑗ℎ𝑛𝑗
, with ℎ = 1, 2, … , 𝑛. The 𝑦𝑗ℎ is a vector of 𝑛𝑗ℎ observations 

performed on subject 𝑗, for outcome ℎ and 𝑦𝑗ℎ is restricted to any response variables, can be 

either continuous or binary or mixed (Faes et al., 2008). 

As a result, all 𝑚 response variable outcomes can be modelled simultaneously by describing a 

joint distribution for the random effects, the same as binary outcomes, but using 𝑝 × 𝑛 

dimensional random effects vector 𝑐𝑗 (Breslow and Clayton, 1993; Habyarimana et al., 2016). 

In application, the conditionally on the random effects 𝑐1𝑗, 𝑐2𝑗, … , 𝑐𝑛𝑗; 𝑦1𝑗, 𝑦2𝑗, … , 𝑦𝑛𝑗 are 

assumed to be independent. Then, the model can be evaluated by considering the variable 𝑐𝑗 of 

all random effects for item  𝑗 to be multivariate normal having a mean of zero and covariance 

Φ as follows: 

𝑐𝑗 = [

𝐶1𝑗

𝑐2𝑗

⋮
𝑐𝑛𝑗

] ~𝑖. 𝑖. 𝑑. 𝑀𝑉𝑁(0, 𝜙) = 𝑀𝑉𝑁 ([

0
0
⋮
0

] [

𝜙11 𝜙12 ⋯ 𝜙1𝑛

𝜙21 𝜙22 ⋯ 𝜙2𝑛

⋮ ⋮ ⋮ ⋮
𝜙𝑛1 𝜙𝑛2 ⋯ 𝜙𝑛𝑛

]) .                          (5.17) 

 

The matrices 𝜙𝑘𝑙 illustrate covariance between 𝑐𝑘𝑗 and 𝑐𝑙𝑗, with  𝑎𝑛𝑑 𝑙 = 1,2, … , 𝑛 . The 

matrix 𝜙 is represented by 𝜙𝑘𝑙 as the input blocks, and the calculation with conclusion relied 

on the vector 𝑦𝑗  as the marginal model of all individual 𝑗 observations (Faes et al., 2008). 

Given that the response variables are expected to be independent with the vector 𝑐𝑗 of random 

variables, the likelihood effect on subject 𝑗 can be expressed as follows: 

𝐿𝑗(Ω/𝑦𝑗1, 𝑦𝑗2, … , 𝑦𝑗𝑛) = ∫ ∏ 𝑔𝑗ℎ
𝑚𝑗

ℎ=1 (𝑦𝑗1ℎ , 𝑦𝑗2ℎ , … , 𝑦𝑗𝑛ℎ/𝑐𝑗; Ω)𝑔(𝑐𝑗/𝜙)𝑑𝑐𝑗
𝑛

ℛ𝑛𝑝                             (5.18) 

where Ω = (𝛼, 𝛽, 𝜙). When the response variables are of a different type, and the 𝑛 increases 

to the 𝑛 × 𝑝-dimensional integral, the calculation of likelihood becomes difficult. Thus, the 

pseudo-likelihood method is introduced to solve this problem, and works like the pairwise 

modelling method introduced by Fieuws and Verbeke (2006). Hence, the pseudo-likelihood 

function substitutes the full likelihood relating to 𝑗 observations, and produces the following 

equation: 
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𝑃𝐿𝑗 = ∏ ∏ 𝐿𝑗𝑟𝑞

𝑛

𝑞=𝑟+1

𝑛−1

𝑟=1

(
Ω

𝑦𝑗𝑟
, 𝑦𝑗𝑞) 

= ∏ ∏ ∫ ∏ 𝑔𝑗ℎ(𝑦𝑗𝑟ℎ, 𝑦𝑗𝑞ℎ/𝑐𝑗
𝑟𝑞

; Ω)𝑔(𝑐𝑗
𝑟𝑞

/𝜙)𝑑𝑐𝑗
𝑟𝑞𝑚𝑗

ℎ=1

𝑛

ℛ2𝑝
𝑛
𝑙=ℎ+1

𝑛−1
ℎ=1  ,                                               (5.19) 

in which the contribution 𝐿𝑗𝑟𝑞 is similar to the multivariate likelihood function for outcomes  𝑟 

and 𝑞. Then, the 𝑛 × 𝑝-dimensional integration issue decreases to 2 × 𝑝-dimensional 

integrations. To achieve this the data must be divided into different groups of outcomes and 

assume that conditional 𝑚 random effects of all associations of 𝑟, 𝑞 groups and subject 𝑗 are 

independent (Molenberghs and Verbeke, 2005; Fieuws and Verbeke, 2006). The assumption 

of Ω focuses on the pseudo-likelihood concept and subject to a sandwich-type robust variance 

predictor (Arnold and Strauss, 1991; Habyarimana et al., 2016). The equation of asymptotic 

multivariate normal distribution for Ω̂ can be written as  

√𝑀(Ω̂ − Ω)~𝑀𝑉𝑁[0, 𝐻(Ω)−1𝑅(Ω)𝐻(Ω)−1],                                                                           (5.20) 

 with 𝐻 = 𝐻(Ω) is the matrix defined as: − ∑ ∑ 𝐸 (
𝜕𝑙𝑛𝐿𝑗𝑟𝑞(Ω/𝑦𝑗𝑟,𝑦𝑗𝑞)

𝜕𝜃𝑠𝜕𝜃𝑡
)𝑛

𝑞=𝑟+1
𝑛−1
𝑟=1  and 𝑅 = 𝑅(Ω) is a 

symmetric matrix given by − ∑ ∑ 𝐸 (
𝜕𝑙𝑛𝐿𝑗𝑟𝑞(Ω/𝑦𝑗𝑟,𝑦𝑗𝑞)𝜕𝑙𝑛𝐿𝑗𝑟𝑞(Ω/𝑦𝑗𝑟,𝑦𝑗𝑞)

𝜕𝜃𝑠                                       𝜕𝜃𝑡  
)𝑛

𝑞=𝑟+1
𝑛−1
𝑟=1 . 

The pseudo-likelihood ratio test is good when a variable has a huge impact on the model 

compared to Wald tests (Geys et al., 1997; Habyarimana et al., 2016). If we wish we can 

conduct a test and assume that the null hypothesis 𝐻0: 𝜆 = 𝜆0, and 𝜆 is an 𝑘-dimensional sub-

vector of the 𝑡-dimensional vector of regression coefficient 𝛼, where 𝛼 is expressed as (𝜆𝑇 , 𝜈𝑇).  

Thus, the pseudo-likelihood ratio test is provided as follows 

𝐹∗2 =
2

𝜏
{𝑃𝐿(�̂�𝑁) − 𝑃𝐿[𝜆0, �̂�(𝜆0)]},                                                                                                    (5.21) 

where 𝐹∗2 is a Chi (𝜒𝑘
2) distribution, and �̂�𝑁 is a pseudo-likelihood parameter estimate of 𝛼, 

while �̂�(𝜆0) is the maximum pseudo-likelihood estimator in the subspace when  𝜆 = 𝜆0. 

Furthermore, �̂� represents the mean of eigenvalue of (𝐻𝜆𝜆)
−1

𝜙𝜆𝜆 and 𝐻𝜆𝜆 is the 𝑘 × 𝑘 

submatrix inverse of 𝐻, while 𝜙𝜆𝜆 describes the submatrix of 𝜙 = 𝐻−1𝑅𝐻−1 (Geys et al., 1997; 

Molenberghs and Verbeke, 2005; Habyarimana et al., 2016). 
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5.5. DATA ANALYSIS 

A number of methods may be employed to calculate the variables in joint models, such as 

numerical approximation, Gaussian quadrature, adaptive Gaussian quadrature, or Laplace 

approximation, or by approximating the data using the pseudo-likelihood method. The pseudo 

approach in a dataset is generated using mean linearisation and is used when evaluating 

variables in residual models and random effects with or without correlation. The quadrature or 

Laplace approximations however can only calculate the variables of conditionally independent 

random effects models (Molenberghs and Verbeke, 2005; Gaston et al., 2021). To determine 

whether the two response variables had identical distribution and link functions, the SAS 9.4 

PROC GLIMMIX technique was used. The PROC GLIMMIX procedure can also use different 

link functions for the two response variables. However, the NLMIXED procedure can also be 

applied, when estimating the parameter using Laplace approximation or Gaussian quadrature 

(Habyarimana et al., 2016; Gaston et al., 2021; Gaston et al., 2022). 

Furthermore, based on the lowest value of the Akaike information criteria (AIC), numerous 

covariance structures were considered, and unstructured (UN) were deemed to be appropriate 

for our assessment. Besides that, we examined the potential interactions and found none to be 

statistically significant (Gaston et al., 2021; Gaston et al., 2022). 

 

5.6. MODEL FORMULATION FOR TWO OUTCOMES 

 

In this chapter, malaria and anaemia status of a child were the two response variables of interest. 

Assume that 𝑦𝑗1 represents the RDT status for malaria, where a value of one (1) indicates a 

positive result and a value of zero (0) indicates a negative result. The second response 

variable 𝑦𝑗2, represents anaemia status, with one (1) being an anaemic child and zero (0) 

representing a non-anaemic child. 

 

The distinguished outcomes are derived using a bivariate Bernoulli distribution, with 𝑝𝑗1 

representing the risk of malaria appearing in a child j and 𝑝𝑗2 representing the probability of 

anaemia occurring in a child j. Thus, the binary generalised linear model may be expressed as: 

𝑦1(𝜇𝑗1) = 𝑋𝑗1𝛼1 + 𝑍𝑗1𝑐1                                                                                                                  (5.22) 

𝑦(𝜇𝑗1) = 𝑋𝑗2𝛼2 + 𝑍𝑗2 𝑐2                                                                                                                   (5.23)                                                                                          
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where 𝛼1 and 𝛼2 are considered as the variables of fixed effects, 𝑐1 and 𝑐2 are the variables of 

the random effects, while 𝑋𝑗1, 𝑋𝑗2, 𝑍𝑗1 and 𝑍𝑖2 are the intended matrices for fixed and random 

effects, respectively. As a result, the following equation for the variance-covariance matrices 

model is written as: 

𝑐 = (
𝑐1

𝑐2
) ~𝑖. 𝑖. 𝑑. 𝑀𝑉𝑁 (0, 𝜙 ) = 𝑀𝑉𝑁 ([

0
0

] , [
𝜙11 𝜙12

𝜙21 𝜙22
]),                                            (5.24) 

where the  𝜙11 and 𝜙22 are the variance determinants of childhood malaria and anaemia 

respectively, while 𝜙12 and 𝜙21 are identical correlation determinants between malaria and 

anaemia. In case the correlation coefficients from equation (5.24), 𝜙12= 𝜙21=0, the 

multivariate joint under generalised linear mixed model becomes a single model (Molenberghs 

and Verbeke, 2005; Habyarimana et al., 2016; Gaston et al., 2021).  

 

5.6. RESULTS AND INTERPRETATION FOR JOINING MODEL TO ANAEMIA AND 

MALARIA 

 

The results shown in Table 5.1 indicate the parameter estimates, standard error (SE), odds ratio 

(OR), and p-values. The study reported only the exploratory variables with statistically 

significant impact on malaria and anaemia (p <0.05).  The variables with a significant effect 

on both malaria and anaemia were the child’s age, mother’s education level, availability of 

electricity, toilet facilities, and children under five who slept under a mosquito bed net the night 

before the survey. The residence of the household and altitude of residence had only a 

statistically significant effect on malaria. 

The results in Table 5.1 indicate that children aged 6-23 months were 0.367 (OR: 0.367, 95% 

CI: 0.274; 0.490) times less likely to test positive for malaria using an RDT when compared 

with those in the reference group (42-59 months). In contrast, the children aged 6-23 months 

were 4.289 (OR: 4.289, 95% CI: 3.418; 5.382) times more likely to have anaemia compared 

with those in the age group 42-59 months.  

The same results showed that children from mothers with post-primary levels were 0.505 (OR: 

0.505, 95% CI: 0.305; 0.835) times less likely to have malaria compared to those from the 

mother with no education. The children from mothers with primary school education were 

0.710 (OR: 0.710, 95% CI: 0.506; 0.997) times less likely to have anaemia compared with 

those in the reference category group. The results revealed that the odds of testing positive for 
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malaria in an RDT for children from households with no access to electricity were 2.296 (OR: 

2.296, 95% CI: 1.415; 3.745) times more likely than those from households with access to 

electricity. The same results indicated that children from households with no access to 

electricity were 1.279 (OR: 1.279, 95% CI: 1.005; 1.732) times more likely to have anaemia 

compared to those from households with access to electricity. 

The study also revealed that children from a household with pit latrines were 0.625 (OR: 0.625, 

95% CI: 0.401; 0.975) times less likely to test positive for malaria than those with no toilet 

facilities, while those from households with flush toilets were 0.470 (OR: 0.470, 95% CI: 

0.271; 0.815) times less likely to have malaria compared to those with no toilet facilities. 

Furthermore, children from households with flush toilets were 0.580 (OR: 0.580, 95% CI: 

0.369; 0.913) times less likely to have anaemia, compared to those with no toilet facilities. 

The results indicated that the odds of testing positive for malaria in an RDT was 1.586 (OR: 

1.586, 95% CI: 1.045;2.406) times more likely in households where children did not sleep 

under a mosquito bed net the night before the survey, compared to households where all 

children slept under a mosquito bed net. However, the odds of anaemia in some children who 

slept under a mosquito bed net the night before the survey, were 1.439 (OR: 1.439, 95% CI: 

1.064; 1.946) times more likely than all children who slept under a mosquito bed net. 

Table 5.1 shows that children living in rural areas were 3.611 (OR: 3.611, 95% CI: 2.111; 

6.178) times more likely to test positive for malaria compared to those living in urban areas. 

The same results indicate that children who live in a residence at an altitude of more than 1000 

metres were 0.421 (OR: 0.421, 95% CI: 0.244; 0.725) times less likely to have malaria than 

those living in a residence at an altitude between 501 and 1000 metres. However, the children 

living in residences in rural and at-altitude areas were not statistically significant to anaemia; 

hence, we did not interpret the results. 
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this indicated that the association between the prevalence of malaria and anaemia was highly 

significant. In addition, the odds ratio (2.014) also confirmed that anaemia and malaria are 

highly associated. The results from the present study are in line with the study by Seyoum 

(2018); and Gaston et al. (2021). 

Table 5.2: Variance components and covariance between anaemia and malaria in Malawi. 

Variables Estimates Odds Ratio (OR) 95% CI (Lower, 

Upper) 

P-value 

Variance (Malaria) 1.014 2.757 [0.610;1.418] <0.001 

Variance (Anaemia) 0.118 1.125 [0.020;0.216] 0.009 

Correlation between Anaemia and 

Malaria 

0.700 2.014 [0.333;1.067] <0.001 

 

 

5.7. DISCUSSION AND SUMMARY FOR JOINING MODEL TO ANAEMIA AND 

MALARIA 

 

In this chapter, we used the joint model for a multivariate generalised linear mixed model 

(GLMM) to simultaneously model the association between malaria and anaemia and identify 

factors associated with malaria and anaemia. The study indicated that anaemia and malaria are 

highly associated. This means that malaria and anaemia move in the same direction, where any 

increase in malaria in children, will also result in an increase in anaemia. This finding is 

consistent with existing literature (Noland et al., 2012; Zgambo et al., 2017; Gaston et al., 

2021). The same change can be in an opposite direction; where the number of children with 

malaria reduces, so does anaemia. Therefore, the change between both malaria and anaemia 

can be interpreted to mean that controlling malaria can result in effectively reducing anaemia 

(Reithinger et al., 2013; Hershey et al., 2017; Yimgang et al., 2021; Gaston et al., 2021). In 

addition, controlling anaemia in the area with a high prevalence of malaria can result in a 

reduction in deaths related to malaria (Korenromp et al., 2004; Seyoum, 2018; Gaston et al., 

2021). 

The findings from this study revealed that children from mothers with primary and post-

primary education levels were less likely to have both malaria and anaemia compared to those 

from mothers with no education. This shows that the risk of having malaria or anaemia reduces 

as the education levels of their mothers increases. This might be connected to socio-economic 

position, since educated individuals live better lives than uneducated ones. Additionally, 

educated individuals have a better understanding of health-related concerns and can readily 
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buy malaria prevention tools. The findings from this study are aligned with the studies by 

Adebayo et al. (2016); Seyoum (2018); and Gaston and Ramroop (2021). 

The results indicated that children from households with no access to electricity are at higher 

risk of having malaria and anaemia. Furthermore, households with no toilet facilities are more 

likely to see increased rates of positive malaria RDT and anaemia. Access to electricity and 

toilet facilities are indicators of socio-economic factors. Therefore, households with good 

access to facilities such as the above are more likely to be able to  access healthcare, eat healthy 

food and can easily afford medical treatment (Ayele et al., 2014b; Gaston and Ramroop, 2021). 

The findings from the present study also indicated that children who did not sleep under a 

mosquito bed net the night before the survey were at greater risk of having malaria and 

anaemia. This might be due to the fact that children who sleep under mosquito bed nets are 

more protected from being bitten by Anopheles mosquitoes which is the cause of malaria 

(Gaston and Ramroop, 2020; Gaston et al., 2021). The same results were found in previous 

studies, such as those by Ayele et al. (2014b); Zgambo et al. (2017); and Gaston et al. (2021). 

The research shows that children living in high-altitude residences are less likely to have 

malaria. This is due to the markedly higher temperatures in lower altitude residence areas, 

which favour the growth of mosquitoes (Chirombo et al., 2014; Teh et al., 2018; Gaston and 

Ramroop, 2020; Gaston et al., 2021). The results also revealed that children from rural areas 

are more likely to test positive for malaria in an RDT. The findings from this study are in line 

with the studies by Adebayo et al. (2016); Gaston and Ramroop (2020).  

The findings from this study revealed that the probability of being positive for malaria 

increased as the child’s age increased. The children aged 6-23 months were less likely to test 

positive for malaria. These results are in contrast with the results found in the study by Seyoum 

(2018). However, the results are in line with the findings in studies by Zgambo et al. (2017); 

Gaston and Ramroop (2020); Gaston et al. (2021); Yimgang et al. (2021); and Gaston et al. 

(2021). 

In contrast, the probability of having anaemia reduced as the child’s age increased. Children 

aged 6 -23 months were more likely to have anaemia.  This might be because anaemia is also 

associated with other factors such as nutritional deficiencies, disease infections such as HIV, 

intestinal worms, intake of iron, folate, vitamin B12 deficiency, and other parasitic infections 

(Ayoya et al., 2013; Gaston et al., 2018; Gaston et al., 2021). Furthermore, the immune system 

of young children is not strong enough to fight against different diseases but becomes stronger 
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as they grow older. Thus, for this self-same reason young children are at high risk of getting 

anaemia, and this reduces as they grow older. The results from this study are consistent with 

the studies by Hershey et al. (2017); Kuziga et al. (2017); Gaston et al. (2018) ; Gaston et al. 

(2021); and Yimgang et al. (2021). 

The main objective of this cross-sectional study was to examine the association between 

malaria and anaemia using a multivariate joint model under the GLMM in children 6-59 

months of age in Malawi. The current scientific setting also checked other factors which might 

be associated with both malaria and anaemia. Finally, we examined all possible interaction 

effects between the exploratory variables, and these were not included in the results since none 

were statistically significant.   

The findings from this study indicate that there is an association between anaemia and malaria 

and any change in one disease has a similar effect on the other disease. This means that as 

malaria increases so does anaemia and vice versa. Therefore, the study suggests that any policy 

change to malaria will impact on anaemia. Furthermore, malaria and anaemia are associated 

with socio-economic, demographic, and geographical factors, which makes malaria and 

anaemia a persistent and a current problem. 

Based on the findings from this study, there is a need for educating the population, particularly 

those from rural areas, on how to prevent malaria and anaemia in children under five years of 

age. The policy makers and Malawian government should focus on improving toilet facilities, 

access to electricity, and providing more mosquito bed nets, mostly for the individuals who 

live in rural areas and at low altitudes. In addition, the education of the mothers should be 

prioritised so that they can treat and take care of their children, especially those in the age group 

6-23 months, as they are more vulnerable. Understanding the relationship between anaemia 

and malaria together with other factors associated with malaria and anaemia can provide useful 

insights to the government and policymakers in planning, controlling, and eliminating both 

malaria and anaemia. In addition, the statistical model used in this study will help other 

researchers to compare findings and references.  
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Education level 

Ref:No education                               

Primary 

 Post Primary 

 

- 

-1.473 

-1.841 

 

- 

0.229 

0.159 

 

- 

[0.049;1.064] 

[0.121;2.933] 

 

- 

0.060 

0.020 

 

- 

0.772 

-0.519 

 

- 

0.462 

0.595 

 

- 

[0.094;2.270] 

[0.121;2.933] 

 

- 

0.342 

0.524 

OR= odd ratio; CI=confidence interval 

The variance components and covariance between anaemia and stunting are presented in Table 

5.4 below. The covariance coefficient estimate of 1.000 indicated a positive relationship 

between anaemia and stunting, meaning that changes in either nutrition or anaemia in a 

child impacts the likelihood of both anaemia and stunting. In addition, the odds ratio of 2.718 

confirmed that anaemia and stunting are highly associated. The overall fitted model was highly 

significant as the coefficient of covariance parameter indicated the p-value <0.001. Hence, 

including the random effect in the model was shown to be very important (Molenberghs and 

Verbeke, 2005; Zhang and Lin, 2008; Gaston et al., 2021; Gaston et al., 2022). 

The test covariance parameters based on pseudo-likelihood rejected the null hypothesis of zero 

correlation with Pearson chi-squared test =2644.470 and p-value <0.001. This revealed that the 

association between anaemia and stunting was significant and not zero (Tuerlinckx et al., 

2006). Furthermore, the results from the fitted statistics for conditional distribution indicated 

the Pearson chi-squared =2123.070 with 0.94 degrees of freedom. This is an indication of a 

good variability in the dataset and residual over-dispersion was not present (Molenberghs and 

Verbeke, 2005; Gaston et al., 2021; Gaston et al., 2022). 

Table 5.4: Variance components and covariance between anaemia and stunting in Lesotho. 

Variables Estimate; SE OR 95% CI P-value 

Variance (stunting) 0.104; 0.010 1.110 1.088; 1.132 0.149 

Variance (anaemia) 0.314; 0.170 1.369 0.981; 1.910 0.033 

Covariance between anaemia and stunting 1.000; 0.141 2.718 2.063; 3.582 0.001 

 
 

5.9. DISCUSSION AND SUMMARY FOR JOINING MODEL TO ANAEMIA AND 

STUNTING 

 

This cross-sectional study used secondary data from the 2014 LDHS.  To our knowledge, this 

was the first study to simultaneously model the association between anaemia and stunting in 

children less than five years of age in Lesotho. The study utilised a multivariate joint model 

under the scope of GLMM to associate both anaemia and stunting and explore their associated 

socio-economic and demographic factors. Anaemia and stunting show a significant positive 

association confirming that anaemia and stunting should be considered interrelated health 
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problems in children where anaemia and stunting are more likely to coexist and inter-influence 

their manifestations. Thus, coordinated interventions aiming to improve both stunting and 

anaemia are likely to produce synergetic effects on child health. The association between 

anaemia and stunting can be interpreted as an indication of chronic malnutrition which might 

cause iron deficiency. Similar results were described in studies by Yang et al. (2012); Gari et 

al. (2017); Mohammed et al. (2019); Rahman et al. (2019); Rivadeneira et al. (2020); Gaston 

et al. (2022). Our findings also indicate that child age has a significant effect on both anaemia 

and malnutrition but impacts different age groups. The chance of having anaemia or stunting 

reduced as the children grew older.   

This may be explained by the fact that the immune systems of children are still weak and need 

more nutrients to support rapid body growth. In addition, many children at an early age are not 

breastfed which makes them more susceptible to exposure to various illnesses. Some of these 

illnesses reduce the hemoglobin level in the blood which may lead to anaemia and stunting. 

Furthermore, when older children are introduced to foods and eat a greater variety of foods, 

this reduces the risk of them being anaemic or stunting. Similar results were found in previous 

studies (Anticona and Sebastian, 2014; Gari et al., 2017; Gaston et al., 2018; Kejo et al., 2018; 

Adhikari et al., 2019; Rahman et al., 2019 Gaston et al.,2022). However, the studies by 

Anticona and Sebastian (2014); and Oliveira et al. (2015) showed that stunting increased as the 

children grew older. 

The findings from this study revealed that the risk of anaemia was related to having experienced 

recent fever and diarrhoea. This may be because fever and diarrhoea are commonly 

accompanied by a number of diseases and morbidities which are associated with anaemia. This 

has also been previously described (Habyarimana et al., 2016; Gaston et al., 2018; Rivadeneira 

et al., 2020; Gaston et al., 2022). The probability of being stunted is reduced with increasing 

levels of maternal education. This might be linked to socio-economic status, where educated 

individuals are more likely to have a better standard of living, and knowledge of balancing 

food. In addition, educated individuals can easily access and improve their nutritional status as 

most of them have a monthly income.  This is also in line with findings from previous studies 

such as those by Kavosi et al. (2014); Aheto et al. (2015); Adebayo et al. (2016); Aheto et al. 

(2017); Adhikari et al. (2019); Gaston et al. (2022). Child birth weight significantly impacts 

stunting in children, with a lower risk in children born with a higher weight (≥2500g).  This 

connection can be explained by the fact that children with low birth weight are more likely to 

have other co-morbidity illnesses that might be associated with stunting. Similar findings were 
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found in studies by Yang et al. (2012); Habyarimana et al. (2016); Kejo et al. (2018); Gaston 

et al. (2022).  

We found that children living in rural areas have a lower risk of stunting, an effect that is 

debated in the field. This might be explained by the fact that some individuals in rural areas are 

educated and they eat fresh food and fruits with more nutrients. Also, individuals from rural 

areas may be breastfed for long periods, which can contribute to fighting stunting at an early 

age.  Some studies have described similar results, such as the study by Kavosi et al. (2014); 

Gaston et al. (2022), while others have described contrasting results Yang et al. (2012); El 

Kishawi et al. (2015).  

Lastly, children living within families from the middle and top tertile wealth index have a lower 

risk of malnutrition. This confirms that malnutrition is linked to socio-economic factors, where 

the children from the lower end of the wealth index cannot afford the proper food, maintain 

hygiene and access to health care services. Similar results were found in previous studies such 

as those by Gari et al. (2017); Mohammed et al. (2019); Rivadeneira et al. (2020); Gaston et 

al. (2022).  

This study aimed to determine the association between anaemia and stunting in children less 

than five years of age in Lesotho using the multivariate joint model under GLMM. The study 

also assessed the association of socio-economic and demographic factors with anaemia and 

stunting. Lastly, we evaluated possible interaction effects between independent variables, but 

none passed the significance threshold. We found a significant positive association between 

anaemia and stunting which indicates that when malnutrition increases in children less than 

five years, anaemia also increases and vice-versa. Thus, a change in childhood stunting can 

have a significant impact on anaemia status. In addition, several socio-economic and 

demographic factors impact both malnutrition and anaemia such as family wealth, maternal 

education, urban vs. rural living environments. In addition, children that were of low 

birthweight or who have recently experienced fever, or diarrhoea should be prioritised for 

intervention.  

Knowledge on the relationship between anaemia and malnutrition together with other 

determinants can provide useful insights to policymakers, donors, and government in planning 

and fighting to improve childhood anaemia and stunting through tailored public health 

messages and interventions. 
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This chapter revealed the association between anaemia and malaria, also anaemia and stunting. 

Anaemia, malaria, and stunting are correlated and are the most dominant health problem in 

children younger than five years. However, we could not fit anaemia, malaria, and stunting 

simultaneously. In addition, in this chapter, we could not address the complex interrelationships 

between explanatory factors, as well as their direct or indirect relationship with childhood 

malaria, anaemia, and stunting co-morbidity. Thus, for that reason in the next chapter, we 

employ a structural equation modelling to resolve the issues. 
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CHAPTER SIX:  

STRUCTURAL EQUATION MODEL 

 

6.1. INTRODUCTION 

In this chapter, we introduce a structural equation modelling (SEM) to evaluate the complex 

interrelationships between socio-economics, demographics, and environmental factors, as well 

as their direct or indirect relationship with childhood malaria, anaemia, and stunting co-

morbidity in Burundi. The previous chapters could not address these interrelationships among 

the variables of interest. 

Structural equation modelling has become a general method in science for analysing and 

understanding multivariate relationships among the variables of interest. The analysis of 

covariance using structural equations, also known as latent variable analysis, is a new area of 

statistics. However, this method has been applied in econometrics and psychometrics for a long 

time (Gould and Golob, 1997; Golob, 2003; Lowry and Gaskin, 2014). The SEM usually is a 

multivariate model that links an attribute and unmeasured latent variables (Bollen, 1989, Fan 

et al., 2016; Caraka et al., 2021). The structural equation model can assess complex 

interrelationships between different variables and related unobserved and observed variables. 

The assessment can be done by calculating the sample covariance matrix of the observed 

variables and the population covariance matrix produced by the SEM framework (Bollen, 

1989; Austin and Wolfle, 1991; Kaplan, 2008; Byrne, 2013; Fan et al., 2016). The SEM is very 

important in its extension for calculating measurement errors via latent variables. Structural 

equation modelling allows the evaluation of numerous sets of observed variables to define the 

non-measurable variable (latent or construct variables) and allows these latent variables to be 

related to each other (Bollen and Hoyle, 2012; Schumacker and Lomax, 2016). The SEM 

integrates several variables, which are not measured directly but along their effects or 

indicators. Furthermore, the SEM methodology involves multivariate data analysis tools that 

merge features of multiple regression and factor analysis to simultaneously calculate the series 

of interrelationships between variables and relations of dependency that permit the 

methodology of directly including measurement error in the model (Ditlevsen et al., 2005; 

Byrne, 2013; Ainur et al., 2017). The theoretical model of SEM can be demonstrated by 

applying mathematical equations and graphs (path diagrams), to summarise a set of hypotheses 

(Bollen and Hoyle, 2012; Caraka et al., 2021).  
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Moreover, SEM methodology can accommodate both observed and unobserved (latent or 

constructed) variables, which is one of the most important distinctions between structural 

equation modelling and other statistical modelling tools (Bentler, 1990; Byrne, 2013). In 

addition, the SEM can define the reciprocal effect, when the two variables are affecting one 

another through the feedback loop (Bollen, 1989; Byrne, 2013; Schumacker and Lomax, 2016).  

 

6.2. MODEL FORMULATION 

 

The application of structural equation modelling includes different steps such as the 

development of the theoretical model; conceptual model; specification of the mathematical 

model; determination of the model’s evidence; and determining the model fit and evaluation 

of the goodness-of-fit the model (Byrne, 2013; Fan et al., 2016). 

6.3. THEORETICAL CONCEPTUAL AND PATH MODELS 

The latent (constructs) variables cannot be measured directly and are known as theoretical 

concepts. The latent variable is measured by observed (indicator) variables, and they assist the 

expansion and estimation of casual relationships in SEM (Chavance et al., 2010; Fan et al., 

2016). The latent variable related to each other in the model must be indicated first, and the 

impact that these variables apply to each other is categorised as exogenous and endogenous 

(Kaplan, 2008; Byrne, 2013).  

 

 

 

 

 

 

 

 

 

Figure 6.1: Graphical path of a structural model. 
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In the model 𝐹𝑖 are the latent endogenous variables; 𝑇𝑖 the latent exogenous variables; 𝑧𝑖  are 

the observed endogenous variables; 𝑦𝑖 the observed exogenous variables; 𝑒𝑖 is the measurement 

errors, 𝐸𝑖 are structural errors; 𝑐 is the coefficient correlation between the latent exogenous 

variable, while 𝑃𝑖, 𝑄𝑖, 𝐽𝑖, and 𝑁𝑖  are the coefficients. 

The exogenous (predictive) variables are not manipulated by the effect of other variables in the 

model and are measured without error. However, the endogenous (dependent) variables are 

influenced by the effect of other variables included in the model (Schumacker and Lomax, 

2016).  

Structural equation modelling offers the unique capacity to describe latent or unobserved 

variables in a linear model, in contrast to other statistical approaches where observed variables 

in a specific data set are employed for statistical analysis (Bollen, 1989; Fan et al., 2016; Grace 

et al., 2010; Ainur et al., 2017).  

The SEM includes the measurement and structural models which can be written as follow:  

                𝜑 = 𝛼𝜑 + 𝜏𝛿 + 𝜖,                                                                                                   (6.1) 

where 𝜑 denotes a vector 𝑚 × 1 of latent endogenous variables, 𝛿 denotes a vector of 𝑘 × 1 

latent endogenous variables, 𝛼 represents an 𝑚 × 𝑚  matrix of coefficients connecting the 

latent endogenous variables to each order, 𝜏 denotes an 𝑚 × 𝑘 coefficients of the matrix that 

links the endogenous variables to the exogenous variables, and 𝜖 denotes an 𝑚 × 1 vector of 

the structural disturbances or errors. The main diagonal components of 𝛼 are often zeros with 

 𝛿 𝑎𝑛𝑑 𝜖 viewed as mutually independent and normally distributed (Jöreskog and Sörbom, 

1982; Kaplan, 2008; Schumacker and Lomax, 2016). The measurement model, which is 

theoretically described independently for the endogenous and the exogenous variables, links 

the observable and latent variables together and is expressed by: 

𝑌 = 𝜋𝑦𝜑 + 𝜇 , and 𝑋 = 𝜋𝑥𝛿 + 𝜃,                                                                                                       (6.2) 

where 𝜋𝑦(p×m) and 𝜋𝑥(q×k) are coefficient matrices illustrating the relationship between 

latent endogenous and exogenous factors and the observable variables, respectively. 

Consequently, 𝜇 𝑎𝑛𝑑 𝜃 are p×1 and q×1 vectors of measurement errors in Y and X respectively.  

To generate a scale for the related latent variables, each column of the 𝜋 matrices normally has 

a value that is set to one. As an alternative, this can also be accomplished by setting the 
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variances of the latent exogenous variables in a matrix defined as 𝛾, the matrix corresponding 

to the exogenous variable's covariance matrix, to zero. Furthermore, the measurement model's 

fit to the confirmatory factor analysis (CFA) application, which identifies the latent 

components must be addressed (Kaplan, 2008; Byrne, 2013; Fan et al., 2016).  

The CFA examines the theoretical measurement model and determines whether the 

hypothesised measurement model produces a variance-covariance matrix that is identical to the 

sample variance-covariance matrix. Based on equation (6.2), the measurement errors 𝜇 and 𝜃, 

each having a multivariate normal distribution, are considered to have zero expectations.  

The errors presume independent of each other, independent of latent endogenous variables 𝜑, 

latent exogenous variables 𝛿, and independent of the disturbances 𝜖. Additionally, it is assumed 

that the latent exogenous variables have a multivariate normal distribution and that the 

observations are independently sampled. However, for the endogenous variables that are 

accurately measured, this assumption is irrelevant (Kaplan, 2008; Byrne, 2013).  

The structural errors 𝜖, on the other hand, are unaffected by the latent exogenous variables 𝛿 

and have zero expectation with a multivariate normal distribution. The observed indicators X 

and Y in this case exhibit a multivariate normal distribution and can be expressed as follows: 

                      (
𝑋
𝑌

)  ᷉𝑁𝑝+𝑞(0, 𝜌),                                                                                                   (6.3) 

where 𝜌, is the indicators’ population covariance matrix, which is a function of the model’s 

parameter 𝜙 = 𝛼, 𝜏, 𝜋𝑥, 𝜋𝑦, 𝜂, 𝜆𝛿 , 𝜋𝜆𝜖 , 𝛽, 𝜉 and can be calculated as: 

 𝜌 = (
𝜌𝑥𝑥 𝜌𝑥𝑦

𝜌𝑦𝑥 𝜌𝑦𝑦
) = (

𝜋𝑦(1 − 𝛼)−1(𝜏𝛾𝜏′)[(1 − 𝛼)−1]′𝜋′
𝑦 + 𝜆𝜇   𝜋𝑦(1 − 𝛼)−1𝜏𝛾𝜋′𝑥

𝜋𝑦𝛾𝜏′[(1 − 𝛼)−1]′𝜋′𝑦 𝜋𝑥𝛾𝜋′𝑥 + 𝜆𝜃
),            (6.4) 

where 𝛾, indicates a k×k covariance matrix of the latent exogenous variables 𝛿, 𝜏 denotes the 

m×m covariance matrix of the disturbance term, 𝜆𝜇and 𝜆𝜃 represent the covariance matrices of 

the measurement errors μ and θ.  

 

6.4. MODEL ESTIMATION 

 

To obtain the matrix 𝜌, related to the confirmatory factor analysis (CFA) of equation (6.4), it 

should be expected that 𝛼 = 0; 𝜏 = 0;  𝛾 = 0; 𝜋𝑦 = 0; and 𝜆𝜇 = 0 (Ditlevsen et al., 2005). In 

any given model, the restriction is essential in certain components of the matrix 𝜌, which 
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incorporates setting a few parameters to zero. With adequate limitation, the maximum 

likelihood estimates (MLE) might be achieved for the parameters of the model, and the log-

likelihood related to the model can be portrayed as a function of the model’s parameters of 𝜌 

and 𝑇, as the sampling covariance matrix between the observable variables. In the structural 

equation model, this method focuses on estimating the parameters 𝜙, in order to minimise the 

inconsistency of function 𝐹(𝑇, 𝜌). The inconsistency function 𝐹(𝑇, 𝜌) is a scalar that estimates 

the distance between the examining covariance 𝑇 and the adjusted covariance matrix �̂� (Marsh 

and Hocevar, 1985; West et al., 2012; Ainur et al., 2017). In structural equation modelling, the 

MLE and generalised least squares (GLS) are the most commonly used estimation methods. A 

brief discussion and the required criteria for using MLE and GLS techniques can be found in 

the study by Bollen (1989); Raykov and Marcoulides (2012); Fan et al. (2016); Ainur et al. 

(2017). The MLE methods are characterised for parameters so that the two matrices 𝑇 and �̂� 

are pretty much as close as could really be expected, for the likelihood logarithm estimates the 

vicinity between the two matrices. The asymptotic standard errors are calculated from the 

square root of the matrix diagonals, in the parameter estimates. It is also, expected that the 

structural relationship between the latent endogenous variables 𝜑 and the latent exogenous 

variables 𝛿 are linear, as they are the interrelationships exuding between the indicator variables 

and the latent constructs. 

 

6.5. MODEL IDENTIFIABILITY 

 

A principal stage in model evaluation is to check the model's identifiability of latent variables, 

which is a complicated task in SEM without a straightforward answer (Golob, 2003; West et 

al., 2012). The model can be reported as nonidentifiable when the system of equations cannot 

be solved. The counting rules for identifiability is generally the number of free parameters in 

the model, and must not be more than the number of variance and covariance between the 

observable variables, and can be shown as 

                        
(𝑘+𝑙)(𝑘+𝑙+1)

2
,                                                                                              (6.5) 

where, 𝑘 represents the number of endogenous variables and 𝑙 represents the number of 

exogenous variables in the model (Kline, 2015; Schumacker and Lomax, 2016). 

However, the counting rule is not generally enough condition, as the condition can be quickly 

achieved while still resulting in a non-identifiable model. Hence, more conditions that allow a 
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model to be identified, such as when measurement errors are not correlated when at least two 

exclusive indicators exist for each of the latent variables when a single indicator for latent 

variables equally assumed without error is possible, and when the structural model includes 

only observed variables (Byrne, 2013; Fan et al., 2016). The SEM is not stable with a small 

sample size, and the minimum sample size depends on the involvement of the model, the degree 

of freedom, and the size effect (Byrne, 2013; Schumacker and Lomax; Fan et al., 2016). 

 

6.6. MODEL DIAGNOSTICS 

 

In the structural equation model, the verification of the model fit is based on various goodness-

of-fit-model criteria and is created to assess the model under several assumptions. In addition, 

the verification of the goodness-of-fit is not a direct process as accessible in other multivariate 

techniques (Kaplan, 2008; Schumacker and Lomax, 2016). The chi-square (𝜒2) test is widely 

regarded as the only statistical test of significance that is commonly used to evaluate the 

theoretical model in SEM. The insignificant results indicate a resemblance between the original 

sample variance-covariance matrix and the variance-covariance matrix estimated by the model. 

Although, the application of 𝜒2 is very difficult when the sample size is big, and rejecting the 

null hypothesis becomes hard (Kline, 2015; Ainur et al., 2017). When the chi-square has a zero 

value, means there is a good fit or no difference between the values in the sample covariance 

matrix and the model-suggested covariance matrix (𝜌) generated based on a theoretical model. 

However, in structural equation modelling, it is recommended that various goodness-of-fit 

criteria be used in conjunction with overall fit measurements (Bentler, 1990; Kock and Lynn, 

2012; Schumacker and Lomax, 2016). As a result, the measurement indices range from poor 

fit to perfect fit, and various structural equation modeling programmes report a range of the 

most common model fit as follows:  

Goodness of fit index (GIF) =1-
𝜒𝑚𝑜𝑑𝑒𝑙

2

𝜒𝑛𝑢𝑙𝑙
2  , where 1 indicates perfect fit. 

Root mean-square error of approximation (RMSEA) =√
𝜒𝑚𝑜𝑑𝑒𝑙

2 −𝑑𝑓𝑚𝑜𝑑𝑒𝑙

〈𝑁−1〉𝑑𝑓𝑚𝑜𝑑𝑒𝑙
, as a value less than 

0.05 indicates the model’s good fit. 

Comparative fit index (CFI) =1-
𝜒𝑚𝑜𝑑𝑒𝑙

2 −𝑑𝑓𝑚𝑜𝑑𝑒𝑙

𝜒𝑛𝑢𝑙𝑙
2 −𝑑𝑓𝑛𝑢𝑙𝑙

, where the good fit the value greater than 0.9 is 

expected. 
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Tucker-Lewis index (TLI)=[(
𝜒𝑚𝑜𝑑𝑒𝑙

2

𝜒𝑛𝑢𝑙𝑙
2 ) − (

𝜒𝑚𝑜𝑑𝑒𝑙
2 −𝑑𝑓𝑚𝑜𝑑𝑒𝑙

𝜒𝑛𝑢𝑙𝑙
2 −𝑑𝑓𝑛𝑢𝑙𝑙

) − 1], 

Incremental fit index (IFI)=
𝜒𝑛𝑢𝑙𝑙

2 −𝜒𝑚𝑜𝑑𝑒𝑙
2

𝜒𝑛𝑢𝑙𝑙
2 −𝑑𝑓𝑚𝑜𝑑𝑒𝑙

, and  

Normal fit index (NFI) = 
𝜒𝑛𝑢𝑙𝑙

2 −𝜒𝑚𝑜𝑑𝑒𝑙
2

𝜒𝑛𝑢𝑙𝑙
2 . 

These mentioned above goodness-of-fit criteria are based on differences in variance-covariance 

matrices between observed (original, 𝑇) and model-implied (replicate, 𝜌) (West et al., 2012; 

Kock and Lynn, 2012; Schumacker and Lomax, 2016; Ainur et al., 2017).  

 

6.7. APPLICATION OF MODEL  

 

Initially, we evaluated a theoretical model for individual variables (household, environmental, 

child demography, and geophysical factors) to guarantee that the theoretical relationships 

between the observable variables and their corresponding factors were upheld by the data.  

The CFA was used to evaluate whether the measurement model and relationship between all 

the latent, and manifest variables are relevant. Numerous model fit indices were used in the 

analysis of this study, however, the common techniques for assessing model fit are 𝜒2, and 

should not be significant for a good model (Bagozzi and Foxall, 1996; Schumacker and Lomax, 

2016). The model fit indices and their conditions incorporates the use of CFI, GFI, IFI, TLI 

and NFI which should be greater than 0.90 for good model (Kock and Lynn, 2012; West et al., 

2012; Ainur et al., 2017).   

The RMSEA ≤ 0.05 indicates a best-fit model, however, the values between 0.05 and 0.08 

show a reasonable fit model (Bentler, 1990; Kock and Lynn, 2012; Kline, 2015). The validity 

of the structural model used a cross-validation method, which includes categorising the data 

into two different sample sizes (Byrne, 2013; Kline, 2015). The first sample was considered an 

adjustment sample, while the second one was the validation sample. We first tested the SEM 

on the adjustment sample and analysed the goodness-of-fit model, once the model reaches a 

good fit for the adjustment sample, the model can be assessed on the validation sample (Bentler, 

1990; Byrne, 2013). The validity of the model is obtained, when the covariance structure of the 

model reaches the best fit in both the adjustment and validation sample. The maximum 

likelihood estimation techniques are used for full structural equation modelling in the 

calibration sample. In general, the less the value of 𝜒2, the better goodness of the fit to the data. 
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However, we cannot depend only on 𝜒2, as the test statistics are sensitive when the sample size 

is big, and tend to reject the model (Bentler, 1990; Carpentier et al., 2012; Schumacker and 

Lomax, 2016). Therefore, other indices which are not dependent on the sample size, are 

included. These indices and their cut-off indicating a good fit are NFI ≥ 0.95, CFI ≥ 0.95, AGFI 

≥ 0.90, and RMSEA ≤0.07 (Hooper et al., 2008; Fan et al., 2016; Byrne, 2013; Ainur et al., 

2017). In addition, to check the validity and reliability of the internal consistency between 

various items, Cronbach’s alpha (coefficient alpha) method was used in this study. The 

Cronbach’s alpha coefficient vary between 0 and 1, and the acceptable coefficient is ≥ 0.7 (Bell 

and Bryman, 2011; Bonett and Wright, 2015; Bujang et al., 2018). 

In the theoretical model, we used the household factors (residence, wealth index, source of 

drinking water, type of toilet facility, the household share of toilet facility, mother’s educational 

attainment, mother’s access to information through television, household access to electricity, 

household’s main roof, floor, and wall material) are directly or indirectly related to childhood 

co-morbidity of malaria, anaemia, and stunting. The geophysical factors including 

geographical regions of the children, travel times, and nightlight composites directly and 

indirectly influence childhood susceptibility to the co-morbidity of malaria, anaemia, and 

stunting through the mediating effects of household factors.  

 The environmental factors (rainfall, proximity to water, land surface temperature, enhanced 

vegetation index (EVI), aridity, wet days, and cluster) directly or indirectly influence childhood 

co-morbidity with respect to malaria, anaemia, and stunting. The child demographic factors 

(child’s age, gender, and whether child slept under a mosquito net) directly and indirectly 

influence childhood co-morbidity to malaria, anaemia, and stunting. 

Relying upon those assumptions, the conceptual framework can be defined by latent variables, 

which are deduced through observable variables because they cannot be directly measured, to 

assess their impact on childhood malaria, anaemia, and stunting co-morbidity. In a full SEM, 

the latent factors are then normalised on other factors based on the theory, empirical research, 

and suitable observed indicators (Schumacker and Lomax, 2016). 

In order to assess the model fit and evaluate the variables of interest (child demography, 

household-level, environmental, and geophysical factors), we used the two approaches of 

equations (6.1) and (6.2) by conducting a confirmatory factor analysis (CFA) to test the 

hypothesised associations among these variables. We then created a conceptual path model 

diagram (Figure 6.1) that comprised the endogenous and exogenous variables to represent the 
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causal structure shown in the figure and define all of the conceptual relationships between these 

factors with respect to childhood co-morbidity. Thereafter, we evaluate the estimation model 

with all latent and observed factors included in the full model. The association between the 

direct and indirect variables, together with the childhood co-morbidity of malaria, anaemia, 

and stunting was assessed using structural techniques. The model to be accepted or rejected we 

perform a goodness of fit test using IBM SPSS AMOS 27 version software (Bentler and Wu, 

2005; Carpentier et al., 2012). 

6.8. RESULTS AND INTERPRETATIONS 

Figure 6.2 below indicates the results of the full model, after deleting some items in the model 

for the best fit. The household constructs had an 11 factor higher order construct comprising 

residence, wealth index, source of drinking water, type of toilet facility, the household share of 

toilet facility, mother’s educational attainment, and mother’s access to information through 

television, household access to electricity, household’s main roof, floor, and wall material. The 

Cronbach’s 𝛼 score was acceptable after deleting one variable from the model, and 10 items 

were left as indicated in Figure 6.2.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Graph for full structural model results. 
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The environmental factors include rainfall, proximity to water, minimum and maximum 

temperature, land surface temperature, enhanced vegetation index (EVI), aridity, wet days, and 

cluster. The Cronbach’s 𝛼  score was acceptable after deleting two variables from the model, 

leaving seven items. The geophysical factors resulted in a higher order of three factors in the 

model comprising geographical regions of the children, travel times, and nightlight composites 

and the Cronbach’s 𝛼  score was acceptable. 

 The environmental factors (rainfall, proximity to water, land surface temperature, enhanced 

vegetation index (EVI), aridity, wet days, and cluster) are directly or indirectly influencing 

childhood co-morbidity of malaria, anaemia, and stunting. The child demographic factors 

(child’s age, gender, and whether the child slept under a mosquito net), also have an acceptable 

Cronbach’s 𝛼  score (Bentler and Wu, 2005; Hooper et al., 2008). 

The non-significant Bollen-Stine p statistic, together with the underlying model statistics, 

demonstrated that the model was a good fit for the data in each testing model case, illustrating 

factor validity (Bentler and Wu, 2005; Kline, 2015). The Cronbach’s 𝛼  score in every case 

was above the recommended cut-off of 0.75, which is an indication of good scale reliability 

(Kline, 2015). Then we improved the CFA model in order to get a better model with the highest 

goodness-of-fit as indicated in Table 6.1. The results presented in Table 6.1 also indicate that 

GFI=.969, CFI=.976, IFI=.926, TLI=.912, and RMSEA=.004 in a full model favoured the fit 

of the model (Kock and Lynn, 2012; Ainur et al., 2017). 

The calibration sample model fit results showed that there is no point in changing the model; 

standardised regression weights for this model were all significant at 95% confidence intervals 

(CI). 

Table 6.1: The goodness-of-fit indices in the two models (CFA and SEM). 

Model 𝝌𝟐/𝒅𝒇 GFI CFI IFI TLI NFI RMSEA 

 

Conceptual CFA model 

 

732.025 

 

0.651 

 

0.645 

 

0.640 

 

0.545 

 

0.648 

 

0.046 

Full structural model 435.020 0.968 0.976 0.926 0.912 0.913 0.04 

 

The full path results of SEM are indicated in Figure 6.2, where both the direct and indirect 

effects of geophysical, and child demography factors are statistically significant on childhood 

co-morbidity (p<0.001). 
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The direct and indirect interrelationships between contextual factors and their impact on co-

morbidity of childhood malaria, anaemia, and stunting are summarised in Tables 6.2 and 6.3. 

In this chapter, the testing for the partial mediation effect assumed the estimation of two phases.  

The direct effect was used in phase one to estimate the effect of predictors (household, child 

demographic, environmental and geophysical factors) on childhood co-morbidity of malaria, 

anaemia, and stunting. The direct path coefficient from both geophysical and child demography 

factors on malaria, anaemia, and stunting co-morbidity was statistically significant and 

revealed a negative direct effect on childhood co-morbidity as indicated in Table 6.2. The 

direct path coefficient from both household and environmental factors on malaria, anaemia, 

and stunting co-morbidity was statistically significant and revealed a positive direct effect on 

childhood co-morbidity. There was a positive direct association between geophysical and 

household factors (β=0.889, p=0.034), and a negative direct association between geophysical 

and environmental factors (β=-0.217, p=0.008). Finally, we observed a negative direct 

association between child demographic and household factors (β=-0.087, p=0.004).  

In the second phase, we involve the testing of the indirect relationship between geophysical 

factors on co-morbidity, and child demography on co-morbidity. The geophysical factors had 

a positive indirect association with childhood co-morbidity via the mediating effect of the 

household. However, the indirect association between geophysical factors and childhood co-

morbidity via the mediating effect of environmental factors was negative. Lastly, the child 

demography factors had a negative indirect association with childhood co-morbidity factors 

via the mediating effect of household factors. 

Table 6.2: Standardised direct and indirect effects of factors on childhood co-morbidity of 

malaria, anaemia, and stunting. 

Factors Total effect Direct effect Indirect effect 

Geophysical factors → Household  0.889* 0.889*  - 

Geophysical factors → Environmental  -0.217** -0.217** - 

Geophysical factors →Co-morbidity  0.231* -1.006*  1.237* 

Household factor→Co-morbidity 1.394* 1.394* - 

Child demography factor→Co-morbidity -0.271* -0.150* -0.121* 

Child demography factor→Household -0.087*** -0.087*** - 

Environmental → Co-morbidity  0.014**  0.014** - 
The *   on the numbers indicates the P values.  p*≤0.05; p**≤0.01, and p***≤0.001 
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statistically significant determinants of childhood malaria, anaemia, and stunting, and have a 

direct and indirect effect on childhood co-morbidity factors. The estimated indirect path for the 

effect of geophysical factors on childhood co-morbidity factors, as mediated by household 

factors were statistically significant and positive.  

However, the estimated indirect paths for the effect of geophysical factors on childhood co-

morbidity factors, as mediated by environmental factors were statistically significant but 

negative. The child demography factors such as child’s age, child’s gender and child sleeping 

under a mosquito net, were statistically significant predictors of childhood co-morbidity 

factors. The estimated indirect path effect on childhood co-morbidity factors via the mediating 

effect of household factors was statistically significant and negative. 

The household factors comprising residence, wealth index, source of drinking water, type of 

toilet facility, the household share of toilet facility, mother’s educational attainment, mother’s 

access to information through television, household access to electricity, household’s main 

roof, floor, and wall material were also statistically significant predictors in childhood co-

morbidity factors. The study also indicates that environmental factors such as rainfall, 

proximity to water, land surface temperature, enhanced vegetation index, aridity, wet days, and 

cluster were statistically significant predictors of childhood co-morbidity factors. 

The SEM model was good to fit the data and indicated the complex interrelationships between 

geographical, child demography, household, and environmental factors, as well as their direct 

or indirect relationship with childhood co-morbidity factors in Burundi. In addition, the SEM 

indicates a positive association between anaemia, malaria, and stunting.  
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CHAPTER SEVEN: 

DISCUSSION AND CONCLUSION 

 

The main purpose of this study was to investigate the association between stunting, anaemia, 

and malaria, along with other factors related to them in children younger than five years. 

Despite the efforts and resources committed to overcoming malaria, anaemia, and stunting 

continue to be a major public health concern around the world, particularly in low-income 

countries. Malaria, anaemia and stunting coexist and are associated with both mortality and 

morbidity, notably in children younger than five years. In Malawi, the incidence of anaemia 

and malaria in children younger than five years was 56.9% and 37.2%, respectively, with 

61.5% of children having both anaemia and malaria. In Lesotho, the prevalence of both 

anaemia and stunting was 51% and 43%, respectively, with 35.2% of children suffering from 

both anaemia and stunting. Furthermore, in Burundi, the rate of anaemia, stunting, and malaria 

in children under the age of five was 59.1%, 47.5%, and 35.7%, respectively. Whereas anaemia 

and malaria were both prevalent at 48.6%, anaemia and stunting were prevalent at 55.9%, with 

malaria and stunting prevalent at 60.4%. Based on the above percentages anaemia was more 

prevalent than malaria and stunting in all three countries. Lesotho has a lower prevalence of 

anaemia and the country is considered malaria-free. This might be due to a higher prevalence 

of anaemia among malaria-infected children (Brabin et al., 2004; Gaston et al., 2021). As a 

result, controlling malaria with caution can lead to a decrease in anaemia. 

In this study, we employed a national secondary data set from Malawi Malaria Indicator Survey 

(MMIS), Lesotho Demographic Health Survey (LDHS), and Burundi Demographic Health 

Survey (BDHS). In our analysis, we took into account a wide range of covariates such as 

socioeconomic, geographical, environmental, and demographic factors. These factors have 

been previously proposed in the literature depending on either theoretical analysis or statistical 

findings. The exploratory data analysis in Chapter 2 facilitated an understanding of the trends 

between the covariates factors and childhood anaemia, malaria, and stunting. Furthermore, 

exploratory data analysis provides evidence for integrating more reliable and innovative 

statistical techniques. The cross-tabulation method was used to summarise the data and the chi-

squared test was used to investigate whether the exploratory variables were statistically 

significantly associated with each response variable or not. The results indicate that the 

socioeconomic, geographical, environmental, and demographic factors were statistically 

associated with childhood anaemia, malaria, and stunting. The findings from this study are in 
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line with the previous studies (Alegana et al., 2014; Caminade et al., 2014; Habyarimana et al., 

2017; Kabaghe et al., 2017; Zgambo et al., 2017). The data for this study was gathered through 

stratified, and cluster sampling with an uneven chance of being chosen. Heering (2010) 

emphasised the importance of accounting for the complexity of sampling design to prevent 

misrepresenting variance and making incorrect inferences. As a result, we first employed the 

Survey Logistic Regression Model (SLRM), in Chapter 3, which took into consideration the 

intricacy of the sampling process as well as variability between data taken from the same 

cluster. The SLRM was applied to assess the relevant factors linked with anaemia in children 

under the age of five from Lesotho. 

 The findings from Chapter 3 revealed that the age of a child has a substantial influence on 

childhood anaemia and childhood anaemia decreases as the child gets older. Similar results 

were found in studies by Dey and Raheem (2016); Kuziga et al. (2017); Yimgang et al. (2021); 

among others. The findings also indicate a statistically significant effect between stunting or 

chronic malnutrition and anaemia, and this indicates the association between stunting and 

anaemia. This is in line with existing studies (Yang et al., 2012; Gari et al., 2017; Rahman et 

al., 2019). The findings showed a significant association between a mother’s body mass index 

and childhood anaemia. This means that a child delivered to a mother who is either underweight 

or overweight has a greater chance of being anaemic and has a higher likelihood of being 

anaemic. The results from this study are consistent with those from other studies (Fonseca et 

al., 2016; Habyarimana et al., 2017). Furthermore, the findings showed that anaemia is more 

prevalent in children with a fever. This might be attributed to the fact that fever is often coupled 

with a variety of illness and morbidity that are known to positively affect anaemia such as 

diarrhoea, cough, and malaria among others. The findings from this study are in line with these 

from the studies by Santos et al. (2011); Konstantyner et al. (2012); Gayawan et al. (2014). In 

addition, the findings highlight that there is a higher chance of anaemia in children born to an 

anaemic mother. Same results we found in previous studies (Ngnie-Teta et al., 2007; Yang et 

al., 2012; Pita et al., 2014). 

The survey logistic regression model used in Chapter 3 is robust and well-suited to our data. 

To avoid underestimation of variance and incorrect inference, the model accounted for the 

difficulties of sampling techniques along with the variation between the data from the same 

cluster. However, this model assumes that all variables have a fixed effect and does not enable 

random effects to be included. The DHS data used in our study has the primary sampling units 

(clusters) variable, which is considered as a random effect. 
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 In addition, SLRM is parametric, and cannot be modified to a model with non-parametric fixed 

effects. As a result, in Chapter 4, we addressed these issues using the generalised additive 

mixed model (GAMM). 

The generalised additive mixed model (GAMM) was used to examine potential factors linked 

with malaria using Malawian national malaria survey data. The GAMM is a generalised linear 

mixed model (GLMM) extension that allows the GLMM's parametric fixed effects to be 

modelled as a non-parametric model using the smooth additive function. To model the 

relationship between a response variable and covariance, parametric models are useful.  

However, non-parametric models are more adaptable, allowing for non-normal error 

distributions, modeling continuous predictor variables, and relaxing the assumption of 

normality and linearity in linear regression. Hence, combining the parametric and non-

parametric models is more effective since they should enhance one another. In this Chapter 4, 

we first modelled the type of place of residence, region, wealth quantile, mother’s highest 

education level, type of toilet facility, and availability of electricity factors as parametric. Then, 

age and altitude were modelled as non-parametric. We also checked the interaction effect, 

which might exist between the covariates factors and was statistically insignificant. 

The findings from the parametric part revealed that the likelihood of increasing a positive 

malaria RDT was lower in children from the middle and top tertile wealth index. This 

confirmed that the prevalence of malaria is related to socioeconomic status, where children 

from within the lower levels of the wealth index are more susceptible. This is due to limited 

access to health care and the generally high cost of treatment. Similar results were found in 

previous studies (Hay et al., 2004; Chitunhu and Musenge, 2016; Zgambo et al., 2017). 

The results also indicate that households with access to electricity and toilet facilities are less 

likely to experience increases in positive malaria rates. This shows that the households with 

access to electricity and toilet facilities factors are the indicators of socio-economic status. The 

findings from this study are in line with the studies by Ayele et al. (2014b); Chitunhu and 

Musenge (2016); Zgambo et al. (2017). The findings also highlighted a decrease in the positive 

malaria rate among the children whose mothers have a higher level of education. This suggests 

that the children of educated mothers, have a better life and can access health care easily which 

can help in reducing malaria. Similar results were found in the studies by Adebayo et al. (2016); 

Sultana et al. (2017); Zgambo et al. (2017). Children from rural areas indicated a high chance 

of having positive malaria. This might be explained by the lack of access to decent houses, 
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clean water, medical care, and other necessities. These results are consistent with previous 

studies (Jenkins et al. 2015; Kazembe and Mathanga, 2016; Sultana et al., 2017).  

In addition, the parametric results indicate a significant difference between the three regions, 

with households in the Central region more likely to have positive rates of malaria. This is 

because the region is dominated by large plains and a low-lying zone along the lake, which are 

breeding grounds for malaria vectors. Similar results were found in previous studies 

(Minakawa et al., 2012; Zgambo et al., 2017). The non-parametric results indicate that the 

probability of positive malaria in children increases as a child gets older. This could be the 

result of children younger than one year being more protected, their maternal immunity aids in 

the fight against the disease. These results are in contrast with the study by Seyoum (2018). 

However, the same results are in line with the studies by Chirombo et al. (2014); Zgambo et 

al. (2017); and Yimgang et al. (2021). The findings also revealed children in lower altitude 

areas are more likely to have malaria, which reduces as the altitude increases. In higher altitude, 

the temperature reduces and the risk of getting malaria decreases in low temperatures. These 

findings are consistent with previous studies (Chirombo et al., 2014; The et al., 2018). The 

GAMM fitted our data well; however, the model applied to a single disease, and could not join 

two or both malaria, anaemia, and stunting simultaneously. Hence, in Chapter 5, we employed 

a multivariate joint model under GLMM to assess the correlation between either anaemia, 

malaria, or anaemia and stunting and their predictor factors. 

In this Chapter 5, we used a multivariate joint model within the ambit of the generalised linear 

mixed model (GLMM) to assess the link between malaria and anaemia using the 2017 Malawi 

Malaria Indicator Survey (MMIS). The model also was used to examine the relationship 

between stunting and anaemia, and was applied to the 2014 Lesotho Demographic Health 

Survey (LDHS). The joint model is required to concurrently model two or both anaemia, 

malaria, and stunting to address their association and identify associated factors. The 

multivariate joint model under a GLMM has key elements compared to a single model, as an 

example, enhanced control of type I error degrees in the different tests and increased the ability 

of parameter estimate. In addition, to model the association between two or more variables, the 

GLMM introduces the random effect into the model. 

The findings from this Chapter indicated a positive relationship between anaemia and stunting. 

The same results were found in previous studies (Zhao et al., 2012; Khan et al., 2016; Gari et 

al., 2018; Mohammed et al., 2019). In addition, the findings revealed a positive relationship 

between anaemia and malaria, and this shows that anaemia, stinting, and malaria are related, 

which was the key factor of our study. This means that malaria, anaemia, and stunting progress 
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in the same manner: where malaria and stunting increase or decrease so does anaemia. The 

findings from this study are in line with the studies by Adebayo et al. (2016); McCuskee et al. 

(2014); Ajakaye and Ibukunoluwa (2020). This implies that any change in policy regarding 

stunting or malaria will affect anemia.  

The findings also indicate that children from mothers with advanced levels of education, 

especially those with access to electricity, toilet facilities, and sleeping under mosquito bed 

nets are less likely to have malaria, anaemia, and stunting. This means that educated mothers, 

with access to electricity and toilet facilities, can easily access healthcare, eat healthy food and 

afford treatment for their children. Similar results were found in study by Aheto et al. (2015); 

Adebayo et al. (2016); Ajakaye and Ibukunoluwa (2020); Yimgang et al. (202). 

The results also show that children living in low altitudes and from rural areas are more exposed 

to malaria and least prone to stunting. This is a result of the noticeably higher temperatures in 

the residential area at lower altitudes, where the mosquitoes breed. The results from this study 

are consistent with the previous studies (Kavosi et al., 2014; Teh et al., 2018;). 

The findings also highlight that fever, diarrhoea, and birth weight of a child were statistically 

significant on childhood anaemia and stunting. Similar results were found in studies by 

Konstantyner et al. (2012); Gayawan et al. (2014); Kejo et al. (2018); Rivadeneira et al. (2020). 

Moreover, the findings from Chapter 5 indicated that the chances of developing malaria 

increase with age, while anaemia and stunting decrease. The same results were found in 

previous studies (Kuziga et al., 2017; Zgambo et al., 2017; Yimgang et al., 2021). 

This Chapter revealed a positive relationship between anaemia, stunting, and malaria, which implies 

that they are the most significant health concern in children younger than five years. However, we could 

not address the complex interrelationships between explanatory factors, as well as their direct or indirect 

relationship with childhood malaria, anaemia, and stunting co-morbidity. Thus, for that reason in 

Chapter 6, we employed a structural equation modelling (SEM) to investigate the complex 

interrelationships between dependent variables as well as their direct or indirect relationship with 

childhood malaria, anaemia, and stunting co-morbidity. The structural equation model can assess 

complex interrelationships between different variables and related unobserved and observed variables. 

The assessment can be done by calculating the sample covariance matrix of the estimated parameters, 

as well as the population covariance matrix produced by the SEM framework. The finding from Chapter 

6 highlights a positive association between anaemia, malaria, and stunting which confirmed the results 

from Chapter 5. The geographical factors were statistically significant and had a positive direct effect 

on childhood malaria, anaemia, and stunting. These results are in line with the previous studies 

(McCuskee et al. 2014; Kateera et al., 2015; Ajakaye and Ibukunoluwa, 2020). 
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The estimated indirect path for the effect of geophysical factors on childhood co-morbidity 

factors, as mediated by household factors was statistically significant and positive. However, 

the estimated indirect paths for the effect of geophysical factors on childhood co-morbidity 

factors, as mediated by environmental factors were statistically significant but negative. The 

child demographic factors revealed a direct statistically significant impact on childhood co-

morbidity factors. Furthermore, the estimated indirect path effect on childhood co-morbidity 

as a mediated effect on household factors was statistically significant and negative. Moreover, 

household and environmental factors indicate a positive direct effect on childhood co-

morbidity anaemia, malaria, and stunting. The current study revealed that anaemia, malaria and 

malnutrition are related. 

 Furthermore, the study indicated the factors associated with childhood anaemia, malaria, and 

stunting. Hence, understanding the link between anaemia, malaria, and stunting, and associated 

factors will assist the donors and policymakers to support and focus on those areas. 

Furthermore, this will contribute to achieving the United Nations Sustainable Development 

Goals (SDGs3), known as the complete elimination of under-5 mortality by 2030. To reduce 

anaemia, malaria, and stunting in children younger than five years, effective prevention 

measures must be established. Hence, we recommend that the policymakers and the state work 

together to educate each household about malaria, anaemia, and stunting. We further 

recommend enhancing medical care, sanitation amenities, distribution of mosquito bed nets, 

and nutrition status mainly in children from rural settings with diarrhoea, fever, and low birth 

weight. Moreover, children from uneducated mothers within the low quartile index, and high 

altitude should be considered and supported. This may be accomplished through a variety of 

channels, including social media, television, radio, promotional events, and even rural 

seminars. 

This research contributes to the literature by modelling anaemia, stunting, and malaria in 

children younger than five years using a multivariate joint model within the framework of a 

generalised linear mixed model (GLMM). To our knowledge, no study assessed the connection 

between anaemia, malaria, and malnutrition in children younger than five years. Few studies 

attempted to model either malaria and anaemia, or anaemia, and stunting or both malaria, 

anaemia, and stunting simultaneously using logistic regression which does not account for the 

random variable in the regression model. Furthermore, a further novel advantage is the use of 

the structural equation model (SEM)  to determine the factors which may directly or indirectly 

have an impact on childhood co-morbidity of anaemia, malaria, and stunting.  
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There is no study without limitation; hence, the present study could not use a multivariate 

spatial model to account for the spatial variability for anaemia, malaria, and malnutrition 

between the regions. This variation of health problems in districts could have helped in 

identifying the districts at high risk and informed allocation of resources and other support that 

can go directly to those districts at risk. 

The study also used stunting as a measure of nutrition status, while wasting and underweight 

can be used as the measure of nutrition. Furthermore, the data set used in this research was 

cross-sectional survey data, and this means that a causal relationship cannot be addressed.  

In addition, the current research considered the anaemia status of a child as a binary response 

variable (anaemic or non-anaemic child). However, the status of anaemia in children can be 

summarised as severe, moderate, mild, or non-anaemic. 

Further research can use longitudinal data to address the causal association between the 

response variables, and account for the spatial variability of multiple diseases between the 

regions. 
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APPENDIX 

 

B. CODES 

 

Survey Logistic Regression Codes Using SAS Software (Chapter 3) 

 

 

Proc surveylogistic data=T; 

 

class stunting (ref=’no’)  Fever (ref=’no’)  BMI (ref=’less than 18.5’) age (ref= ’40-59’)/ 

param = reference; 

 

model anaemia (descending)= stunting  Fever  BMI   age; 

 

strata Strata; 

 

cluster Cluster; 

 

weight SamplingWeight; 

run; 

 

================================================================ 

 

Generalized Additive Mixed Model (GAMM) codes Using R software (Chapter 4) 

 

library (foreign) 

library (lattice)  

install.packages ("R2jags") 

library (R2jags) 

library (nlme) 

library (lme4) 

library (mgcv) 

library (gamm4) 

library (gam) 

library (Hmisc) 

library (ggplot2) 

library (splines2) 

setwd ("C:/Users/T/Desktop/Gamma") 

data= read.spss("malaria.sav",to.data.frame = TRUE) 
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data 

region = data$HV024 

residence = data$HV025 

malaria = data$fHML35 

gender = data$fHC27 

education = data$education 

floor = data$floor_material 

wall = data$fwall_material 

roof = data$froof_material 

toilet = data$fToilet 

wealth = data$fWealth_Index 

anemia = data$fAnemia  

water = data$drinking_water 

sleep_under_net = data$Child_sleeping_under_net 

ITN= data$HML10 

LLIN= data$HML20 

TV = data$HV208 

Radio = data$HV207 

electricity = data$HV206 

family_size = data$HV009 

total_rooms = data$HV216 

age = data$HC1 

altitude = data$HV040 

sleep_under_net = data$HML2 

number_bed_net = data$HML1 

family_size = data$HV009 

gender = data$gender 

number_of_rooms = data$HV216 

number_of_rooms = data$fHV216 

Wealth_Index = data$Wealth_Index 
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gam7< gamm4 

(malaria~anemia+gender+region+water+electricity+LLIN+education+Wealth_Index 

toilet+wall+residence+radio+wall+roof+sleep_under_net+s (age, bs = "ps”) +s (altitude, bs = 

"ps”), random =~ (1|HV001), family = "binomial", data = data) 

summary (gam7$gam) # working, keep adding and see ones which are significance 

plot (gam7$gam,pages=1) 

 

 

 

 

Joint model under GLMM codes Using SAS software (Chapter 5) 

 

data   T; 

length dist $11; 

set FG; 

response= (Malaria=1); 

dist = &quot;binary1&quot; 

output; 

response = (Anemia=2); 

dist = &quot;binary2&quot; 

output; 

keep Wealth_Index Toilet floor_material wall_material roof_material 

Residence Child_age Region Education Sleeping Altitude share_toilet 

Electricity Water response HV021 Gender dist; 

run; 

ods html; 

proc freq; 

tables response dist; 
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run; 

ods html close; 

ods html; 

ods graphics on; 

proc glimmix data= T asycov asycorr odds ratio ORDER=DATA MAXOPT=200 

METHOD= quad (qpoints=25)/* plots=all*/; 

class HV021 dist Residence Gender Wealth_Index Toilet floor_material 

wall_material roof_material Child_age Region Education Sleeping Altitude 

share_toilet Electricity Water; 

model response= dist dist*Residence dist*Gender dist*Wealth_Index 

dist*Toilet dist*floor_material dist*wall_material dist*roof_material 

dist*Child_age dist*Region dist*Education dist*Sleeping dist*Altitude 

dist*share_toilet dist*Electricity dist*Water / dist = byobs(dist) solution; 

random dist/ subject =HV021 type = unr; 

covtest/cl wald classical est; 

run; 

ods graphics off; 

ods html close; 

=============================================================== 

B. PUBLICATIONS 

 

 

 

 

 

 

























African countries in 2015, while in 2016 the figure was estimated as
91%. Moreover, 70% of all those who died in 2016 were children under
five years old (WHO, 2015; WHO, 2016).

Malaria was the fourth highest cause of mortality in Sub Saharan
Africa, accounting for 10% of children's deaths. This is the equivalent
of approximately one child in Sub Saharan Africa dying of malaria every
two minutes (WHO, 2015). In Malawi, as one of the Sub Saharan Africa
countries, where malaria is endemic throughout the country, the disease
remains a health problem. In this country, malaria most often affects
individuals who live in the rural areas, which are hotter, wetter, more
humid and tend to be low lying, rather than those who live in the dry,
urban, highland areas (Kazembe et al., 2006; Dzinjalamala, 2009; Chi
rombo et al., 2014; Kazembe and Mathanga, 2016).

In 2013, malaria in Malawi was the leading cause of hospital ad
missions and death in children under five years of age and pregnant
women. The disease accounted for 20% of all deaths of children under
five (WHO, 2016). The prevalence of malaria in Malawi has decreased
from 43% in 2010 to 33% in 2014 and 24% in 2018 (NMCP and ICF,
2010; NMCP and ICF, 2014; NMCP and ICF, 2018). This reduction was
due to the efforts of the Malawian government and the international
sponsors who put more resources into fighting the burden of malaria
among children under five years of age (Mathanga et al., 2012). In 2010,
the Malawian government introduced indoor residual spraying (IRS) in
various districts around the country as one of the methods of reducing
malaria. In 2012 to 2014, the government of Malawi and the sponsors
distributed free long lasting insecticide treated nets (LLIN) to the chil
dren and pregnant women in the whole country (Mathanga et al., 2012;
Chanda et al., 2016). Although there has been a great reduction in ma
laria in Malawi, the disease remains a health problem, especially in
children under five (NMCP and ICF, 2012; NMCP and ICF, 2018).

The study by Zgambo et al. (2017) used the 2012 and 2014 Malawi
Malaria Indicator Surveys (MMIS) to compare the prevalence of and
factors associated with malaria parasitaemia in children under five years
of age in Malawi. Their findings showed that the prevalence of malaria
had increased from 28% in 2012 to 33% in 2014. This reveals that ma
laria is still a health problem in the country and more research is needed
using different methods to identify the risk factors associated with the
disease, especially for children under five years of age in Malawi.

Post 2000 research about malaria in Malawi such as that by Buchwald
et al. (2016); Chitunhu and Musenge (2016); Kazembe et al. (2006);
Lazzerini et al. (2016); Hershey et al. (2017); Kabaghe et al. (2017); and
Parvin et al. (2018) have used different parametric methods, such as
logistic regression, generalized linear mixed models and other statistical
models. These models are an amazing asset in modelling the relationship
between the outcome variable and covariates. However, in numerous
applications, this relationship between the outcome and some con
founding covariates may have an unknown function form (Ayele et al.,
2014a, b). Therefore, along these lines, with such kinds of parameters, it
is very important to estimate non parametrically. This prompted an
investigation into non parametric methods, which include semi
parametric additive models. Thus, the current study used the generalized
additive mixed model (GAMM) to overcome these challenges. The
GAMM is an extension of the generalized additive model (GAM), which
includes the random effect. The random effect is used to model the cor
relation between observations. The GAM does not include random effect,
only the model covariate effect (Wang, 1998; Lin and Zhang, 1999). The
GAMM is also an extension of the generalized linear mixed model
(GLMM) which is a parametric model introduced by Breslow and Clayton
(1993). The GAMM enables the parametric fixed effects from GLMM to
be modelled as a non parametric model using the additive smooth
function (Hastie and Tibshirani, 1990).

According to our knowledge, researchers have not used the general
ized additive mixed model (GAMM) nation wide to identify the factors
associated with malaria in children under five years of age in Malawi.
The study by Chirombo et al. (2014) used structured additive regression
models, which include GAMM and the geo additive model in their

research in Malawi for children under five years of age, using the 2010
MMIS data set. However, it must be stressed that the data set used is
different from the 2017 MMIS data set used in the current study.

Therefore, this study aims to investigate the prevalence of and factors
associated with malaria in children under five years old, using the MMIS
for 2017 with the application of GAMM. The study also investigates the
risk factors for malaria and whether or not they had remained the same
after the study by Chirombo et al. (2014).

2. Methodology and material

2.1. Study area

Malawi is a Sub Saharan African country situated south of the equator
and is bordered by Tanzania in the north and northeast; by Mozambique
to the east and southwest; and Zambia to the west and northwest (NMCP
and ICF, 2018). The total area is approximately 118 484 square kilo
metres, in which 9 4276 square kilometres are land and the remaining
area consists of Lake Malawi. The country is split into three regions and
twenty eight districts. The Northern region has six districts, the Central
region nine and the Southern region comprises thirteen districts (NMCP
and ICF, 2018). Malawi has a tropical continental climate with sea in
fluences, where the variation of rain and temperature depends on alti
tude and proximity to Lake Malawi. The tropical climate is favourable for
the breeding of Anopheles Mosquitoes and the breeding of Anopheles in
creases in the rainy season from November to April. The weather in
Malawi becomes cool and dry from May to August and the transmission
of malaria is not as high as in the rainy season (Kazembe, 2007; NMCP
and ICF, 2012). The economy of Malawi is based on agriculture and it is
one of the poorest countries in the world. Healthcare is poor compared to
other African countries (WHO, 2016; Team, 2018).

2.2. Data sources

The study used secondary data from the 2017 Malawi Malaria Indi
cator Survey (MMIS) and was collected between 15 April and June 2017.
The MMIS was implemented by the Malawi National Malaria Control
Program (NMCP) through support from the President's Malaria Initiative
(PMI). The United States Agency for International Development (USAID)
provided financial support through the President's Malaria Initiative
(PMI). They also funded the project by offering technical assistance in the
implementation of population and health surveys as they do in countries
worldwide (NMCP and ICF, 2018). The governing body of Malawi pro
vided staff, office space and strategic help. Thereafter, the ICF provided
technical support through the Demographic and Health Survey (DHS)
program.

The 2017 MMIS data interviewed all residents or visitors who stayed
in the selected households the night before the interview. The survey
was population based on a household cluster survey. The data sampling
followed the two stage sampling method. The first stage included a
selection of 150 clusters from the enumeration areas (EAs) demarcated
in the 2008 population and housing census. Out of the 150 clusters, 60
clusters were from urban and 90 from rural areas. The second stage
sampling involved the systematic selection of a sample of 3 750
households. Out of the 3 750 households, 25 households were selected
from each enumeration area (EA). All women aged 15 49 years who
were living in or had visited the selected household the night before the
survey were eligible to be interviewed. The children aged 6 59 months
in these households were tested for malaria infection with the consent
of their parents or guardians. The study used a total number of 2 724
children as a weighted sample in order to ascertain a national level
representation (NMCP and ICF, 2018). The survey sample of this
study is representative at the national and regional level, as well as for
urban and rural areas.

In the sampling process, the number of women surveyed in each re
gion should contribute to the size of the total sample in proportion to the
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size of the region (NMCP and ICF, 2018). However, some regions may
have small populations, and this unweighted distribution does not
represent the exact population. To resolve this problem, regions with
small populations are oversampled. Thus, the weighted sample used in
the study to get statistics that are representative of the country and to
account for the complex sample design from MMIS data set (NMCP and
ICF, 2018). The SD BiolineMalaria Ag P.f/P, a rapid diagnostic test (RDT)
was used to collect a blood sample from children's finger or heel prick.
This test is appropriate in detecting the histidine rich protein II (HRP
II), an antigen of Plasmodium falciparum and common Plasmodium
lactate dehydrogenase (pLDH) of Plasmodium species in human blood
(NMCP and ICF, 2018) The diagnostic test incorporates an expendable
sample tool that comes in a standard package. A tiny volume of blood is
caught on the instrument and placed in the well of a testing device. The
RDTs for malaria offers the possibility to expand the arrangement of
exact malaria diagnosis to the region where microscopy services are not
accessible; for example in a remote area or after standard laboratory
hours (Wongsrichanalai et al., 2007). Microscopic diagnosis does have
some limitations such as insufficiently trained microscopists, lack of
quality control; the chance of misdiagnosis because of low parasitaemia
or blended diseases, and in some cases itis hard to determine the types of
plasmodium (Ohrt et al., 2002). In the field, laboratory technicians were
trained to use the RDT and results were available in 20 min. The children
who tested positive were givenmedication by trained nurses according to
the national guidelines (NMCP and ICF, 2018).

3. Data analysis

3.1. Dependent variable

The prevalence of malaria in children under the age of five years was
detected using results from the RDT. Hence, the response variable
(outcome of interest) was binary, where the child tested either positive
(had malaria) or negative (did not have malaria).

3.2. Independent variables

The independent variables considered in this study include a number
of socio economic, demographic, and environmental or geographic fac
tors. The demographic factors associated with the malaria status in
children were the age of the child, the gender of the child and family size.
These variables of interest were collected at an individual level (Ayele
et al., 2014a; Zgambo et al., 2017).

The socio economic variables were: type of place of residence; wealth
quintile; mother's highest education level; source of drinking water; type
of toilet facility; the main material of the walls, floors and roofs of the
rooms; the total number of rooms inhabited; the total number of nets in
dwellings; if mosquito nets were used for sleeping and if there had been
antimalarial spraying. These were collected at the household level
(Buchwald et al., 2016).

The environmental variables were the temperature; altitude; rainfall
and humidity; the life cycle of the parasite in the mosquito, and the
breeding and feeding habits of the vector (Bennett et al., 2013; Alegana
et al., 2014).

4. Statistical analysis

The present study used bivariate procedures to show the association
between independent variables and childhood malaria. The analysis for
the bivariate method used cross tabulation techniques with an applica
tion of SPSS version 2.50. The p value and Chi squared test were used to
check whether the independent variables are significantly associated
with childhoodmalaria or not. The variables from bivariate results with a
p value less than 5% level of significance were included in multivariate
GAMM analysis (Gaston et al., 2018).

4.1. Model formulation

The generalized additive model (GAM) is the same as the semi
parametric additive model, which was developed by Hastie and Tib
shirani (1986). The GAM is applied to the data to identify the relation
ship between the response and covariates variables. The parametric
models also have powerful tools for modelling the relationship between
the response and predictors variables, when their assumptions are not
violated. The parametric models in applications such as determining the
relationship between the response and covariates variables, may have
unknown functional form and are complicated (Ayele et al., 2014a). The
unknown functions may lead to applications of semiparametric additive
models, which are flexible to allow non normal error distributions.
Furthermore, the semi parametric additive model relaxes the assumption
of normality and linearity in linear regression (Lin and Zhang, 1999;
Ayele et al., 2014a). The use of a semiparametric additive model may
allow the response variable to be modelled with Poisson and binomial
distribution. Moreover, the nonparametric models are flexible for
modelling the continuous predictor variables. The GAM extends the
generalized linear model (GLM) by allowing the predictor function to
include the unspecified nonlinear function for some or all of the covariate
variables (Hastie and Tibshirani, 1990). The linear form for the condi
tional expectation expressed as follow:

ðY =X1; x2;…; xkÞ β0 þ β1x1 þ β2x2 þ…βkxk : (1)

Eq. (1) was replaced with the additive form and hence, the general

equation for GLM as
Pn
i 1

xiβi becomes
Pn
i 1

f ðxi) in GAM. Thus, the equation

of GAM is written as follows:

gðμiÞ θXi þ fiðx1iÞþ fiðx2iÞþ fiðx1iÞþ…þ fkðxkiÞ: (2)

From Eq. (1), μi EðYiÞ and Xβ distributed some exponential family
distribution, Xi is the designed matrix, while θ is the corresponding
parameter vector and fi are the smooth functions of covariates, while g (.)
is the monotonic differentiable function (Wood, 2017). If there is no
linear component in Eq. (2), the model is known as nonparametric, whilst
the models whose predictors have both linear and unspecified nonlinear
function are semiparametric. To estimate the parameters, the standard
ized condition of the smooth functions fi should be satisfied such that E
[fiXi] 0, apart from that, each function will have free constants (Hastie
and Tibshirani, 1990).

When the data has repeated measurement or correlations, the model
includes a random variable and this leads to the extension of GAM.
Hence, GAM becomes the generalized additive mixed model (GAMM) in
the same way as the generalized linear mixed models GLMM are an
extension of GLM (Hastie and Tibshirani, 1990). The GAMM was intro
duced by Breslow and Clayton (1993) to include the random effect in the
GAM and model the correlation between the observations.

The equation of GAMM can be expressed as follows:

gðμiÞ βi þ fiðx1iÞþ fiðx2iÞþ…þ fkðxkiÞ þ Zib; (3)

where g (.) is monotonic differentiable link function, Xi

ð1; x1i;…; x1k Þ
0
are n covariate associated with fixed effects and q� 1

vector of covariates Zi associated with random effects. Thus, the given
q� 1 vector of random effect b, the observations yi are assumed to be
conditionally independent with means Eðyi =bÞ μi and variance,
ðyi =bÞ ψvðμiÞ, where v (.) is the specified variance function and ψ is a
scale parameter. Moreover, fið:Þ is a centred twice differentiable smooth
function and the random effects b is assumed to be distributed as
Nf0; G ðρÞg and ρ is a c� 1 vector of variance components. In addition,
when fi is a linear function, the GAMM reduces to GLMM (Lin and Zhang,
1999).

For a specified variance component, θ the log likelihood function of
ðβ; fi; θÞ is expressed by Lin and Zhang (1999) in the following equation:
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matrix satisfying Sk LL
0
and L

0
kx

*
k 0. Thus, the double penalized

quasi likelihood with respect to ðβ0fiÞ and b becomes:

1
2τ

Xn

i 1

diðy; μiÞ
1
2
b
0
G 1b

1
2
a
0
D 1a; (8)

where f
0
kSkfk a

0
kak, a ða0

1; a
0
2;…; a

0
kÞ and D diagðρ1I; ρ2I;…; ρkIÞ

with ρk
1
τk
. Note that the small values of ρk ðρ1; ρ2; …;ρkÞ correspond

to over smoothing (Breslow and Clayton, 1993; Lin and Zhang, 1999).

5. Results

The present study used survey weighted data in order to ascertain a
national level presentation (NMCP and ICF, 2018). The results from
cross tabulation analysis are summarized in Table 1. The results indi
cated that all independent variables were significantly associated with
childhood malaria (p value<0.05). The age of child and altitude were
categorized, however, in multivariate GAMM are considered as contin
uous. The results from Table 1 indicated that the prevalence of malaria
was 25%, 40.6%, and 43.4% among children aged between 6 23, 24 41
and 42 59 months respectively. The prevalence of malaria in terms of the
sex of the child was 36.5% for a male child and 35.8% for a female child.

It was observed that the prevalence of malaria was higher in the
Central Region (39.8%), followed by the South Region (38.7) and lastly
the North Region (20.8%). The results also showed that the prevalence of
malaria was higher in children from poorer households (48.0%), middle
income households (39.6%) and wealthy households (21.3%) respec
tively. It was found that the prevalence of malaria among the children
with anaemia (45.6%) was higher compared to those without anaemia
(26.1%). The results also showed that the prevalence of malaria in chil
dren living in rural areas is higher (41.9%) than in children living in
urban areas (7.3%). The prevalence of malaria was highest in children
from mothers with no education (46.3%), followed by those whose
mothers had primary (37.5%), secondary (17.4) and tertiary education
(3.6%) respectively.

5.1. Model fitting

The multivariate study used R software to analyze the data with the
application of “mgcv” packages. The GAMMwas used to model the effect
of age and altitude non parametrically, while other covariates were used
as parametric factors. These factors have a continuous effect and might
have non linear relationships with malaria (Ayele et al., 2014a). The R
software has packages with numerous choices for controlling the
smoothness in the GAMM using splines. The various splines can be used
such as the cubic smoothing splines, Bin smoothers, shrinkage smoothers,
locally weighted running line smoothers, kernel smoothers, among
others (Hastie and Tibshirani, 1990; Ruppert et al., 2003). However, this
study used shrinkage smoothers (splines) to fit the GAM model, due to
advantages such as assisting to control the knot placement. Furthermore,
the shrinkage smoother is constructed in such a way that the smooth
terms are rebuffed away all around (Wood, 2006). The study also
considered the fundamental impact and possible two way interaction
effect. The p value of the individual smooth term and the AIC of each
model, together with the inference of smooth were analyzed. The se
lection of the model was based on the smallest AIC, the higher value of
degree of freedom and high statistical significance. Hence, the final
model for this study is given in Eq. (9) as follows:

where, gðμijÞ is the logit link function, β
0
s are the parametric regression

coefficients, f
0
j s are centred smooth functions, while boj is the random

effects, which can be written as boj � Nð0;GðθÞÞ.

5.2. Interpretation of results

The results in model (9) are presented in Tables 2 and 3 and in
Figure 1. Table 2 indicates the parameter estimates for the model, stan
dard error, z value, odds ratio and p values. The study reported the
variables with significant impact for malaria using a RDT such as
anaemia, electricity, region, residence, wealth index, the toilet facilities
and mother's education status. The study checked all possible in
teractions. However, the two way interaction effect was not included,
since it did not add any significant effect to the model with non
significant p values.

Table 2 shows that the children with no anaemia were 0.233 times
less likely to test positive for malaria using a RDT as compared with
anaemic children. The results also revealed that the odds of positive
malaria results in a RDT for children living in the Central Region were
1.936 times more likely than for those who lived in the North Region.
Similarly, the odds of positive malaria in a RDT for children living in the
South Region were 1.179 times more likely than for those who lived in
the North Region. The children living in rural areas were 4.318 times
more likely to test positive for malaria in terms of RDT results compared
to those living in urban areas. The study also showed that the odds of
positive malaria results in a RDT test for children from a household with
no toilet facilities were 2.938 times more likely than those with flush
toilets. Furthermore, the children from households with pit latrines were
1.389 times more likely to test positive for malaria in a RDT, compared to
those with flush toilets. The results indicated that the children from the
middle class were 0.743 times less likely to test positive for malaria using
a RDT, compared to those from the poorer classes. In addition, the chil
dren from the wealthier classes were 0.571 times less likely to test pos
itive for malaria in a RDT than those from the poorer classes. Lastly, the
results indicated that the odds of positive malaria in a RDT for children
from households with access to electricity were 0.435 times less likely
than those from households with no access to electricity. Table 3 shows
that the age of a child and the altitude of their region of residence has a
significant impact on malaria using a RDT.

The letter S in Table 3 represents the smooth term and the number in
parentheses shows the estimated degree of freedom (edf). The test sta
tistics for child age and altitude of the region of residence (22.340;
90.420 respectively) together with their p value (0.000; 0.000) shows
that there is no linear trend associated either for child age or for altitude.
This is confirmed in Figure 1, where the trend shows that the effect of
malaria results in a RDT increases with age up to approximately 35
months and thereafter remains constant with no sign of decreasing. The
same results indicate that the effect of malaria results in a RDT increases
with the altitude of their region of residence up to approximately 750 m
above sea level and above that starts decreasing.

6. Discussion

The present study utilized the generalized additive mixed model
(GAMM) to investigate the risk factors associated with malaria using
nationwide malaria survey data from Malawi. The previous studies had
used the parametric models such as the generalized linear mixed model
(GLMM) to analyze the malaria results using RDT (Ayele et al., 2013;

g
�
μij
�

β0 þ β1Anemiaj þ β2Wealt Indexj þ β3Regionj þ β3Toilet facilityj þ β5Electricityj þ β7EducationJ þ β8Residencej þ f1
�
Agej

�þ f2
�
Altitudej

�þ boj; (9)
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Musenge, 2016). This is due to the limited access to healthcare and the
affordability of treatment (Worrall et al., 2002). The study revealed that
the households with access to electricity are less likely to increase the
positive malaria RDT rates. Moreover, the households with no toilet fa
cilities are more likely to increase the positive malaria RDT rates. This
shows that the households with access to electricity and toilet facilities
can more easily access the healthcare and afford the treatment (Hay
et al., 2004). Hence, these factors that are indicators of socio economic
status are consistent with the study by Ayele et al. (2014a).

The results from the study also showed that the risk of malaria is
lower in children from mothers with higher education. This might be
linked to socio economic status, as educated individuals are more likely
to have a better standard of living and better understand health related
issues. Furthermore, the individuals with higher levels of education can
more easily access healthcare and afford the use of mosquito nets, indoor
residual spray and other preventive measures for malaria. These results
were consistent with previous studies such as those by Snyman et al.
(2015); Zgambo et al. (2017) and Sultana et al. (2017).

The study revealed that the households from rural areas have a higher
prevalence of testing positive to malaria compared to those from urban
areas. This may be explained by the individuals living in rural areas not
having the same access to the many things that their urban counterparts
have; such as proper formal houses, drinking water, education opportu
nities, access to health care and so forth. The individuals living in rural
areas often drink water from rivers which may attract mosquitoes, as
river water is often dirty. Moreover, it takes longer to pass through the
bush to reach these rivers, which may increase susceptibility to mosquito
bites and therefore contracting malaria. In addition, most of the in
dividuals living in rural areas live in poor housing conditions. A partic
ular issue could be holes in the walls of the houses where the Anopheles
Mosquitoes could enter the houses increasing the chance of malaria
transmission through its bite (Lwetoijera et al., 2013; Jenkins et al.,
2015; Kazembe and Mathanga, 2016; Sultana et al., 2017).

The study indicated that children without anaemia have a lower
prevalence of testing positive to malaria compared to that of anaemic
children. This might be explained by the link between anaemia and
malaria, as has been shown by previous studies, such as those of Biemba
et al. (2000) and Sultana et al. (2017).

The study indicates a large variation among the three regions, where
the households from the Central Region being most likely to test positive
for malaria. This is due to the fact that the region is covered by a large
plain of land and the low lying zone along the lake. Moreover, the lake
might be an area conducive to the breeding of malaria vectors (Mina
kawa et al., 2012; Zgambo et al., 2017).

The results from the non parametric model indicate that the proba
bility of a positive malaria RDT increases as the child's age increases. This
could be due, in part, to the impact of maternal immunity in the child
before one year of age. In addition, the children younger than one year
old are more protected and well taken care of and this helps to fight any
kind of disease. This reduces as the children get older. These results are
consistent with the studies by Ayele et al. (2014a) and Chirombo et al.
(2014).

The research reveals that the risk of having a positive malaria RDT
result increases as the altitude increases, up to 750 m, and starts showing
a decrease as altitude increases thereafter. This may be explained by the
very high temperatures at lower altitudes as mosquitos develop in hotter
areas. As the altitude increases, the temperatures decrease and this re
duces the risk of having a positive malaria RDT result (Lindsay and
Martens, 1998; Chirombo et al., 2014).

7. Conclusion

The aim of this study was to assess the prevalence of and factors
associated with malaria in children under the age of five years in Malawi

using GAMM. The current findings show that the government should
consider other factors associated with malaria especially in children
under five years of age; such as anaemia, region, residence type, toilet
facilities, wealth index, the use of electricity, mothers' education, child
ren's age and the altitude of the region of residence.

The findings from this study revealed that malaria is still a major
problem and is linked to socio economic factors as well as geographical
location. The government should focus on poorer communities from rural
and low altitude areas, especially in the Central Region, as their target
group of individuals to educate, support and help change mindsets. In
addition, children with anaemia should take priority in receiving the
necessary health care and support. The key findings also show that there
is a need to educate the population through workshops, mobile clinics
and various social media platforms on how to prevent malaria in children
under five years of age.

Moreover, the education of mothers should be considered and sup
ported so that they can take better care of and protect their children,
especially after the child's first six months from birth, as they are more
likely to be exposed to malaria vectors.

The studywill help the government and donors to control and possibly
eliminatemalaria inchildrenunderfiveyearsofage.Themainfocusshould
be on children with anaemia, mother's education level, wealth index,
children's age, the altitude of the place of residence, region, place of resi
dence, toilet facility and electricity facilities. Furthermore, themodel used
in this study will help other researchers to compare findings.

Future research could use the joint model to model malaria and
anaemia simultaneously in order to examine the possible correlation
between the two diseases, as there is a link between them (Ayele et al.,
2014b; Adebayo et al., 2016).

8. Limitation

The current data set was cross sectional and consequently cannot
address causality. It would have been ideal to have a longitudinal data set
to study the change in factors and prevalence over time.
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malaria becomes higher when the climate is wet, hot and more humid
(Chirombo et al., 2014; Gaston and Ramroop, 2020).

The World Health Organization (WHO) estimated approximately 219
million cases of malaria in 2017, with 200 million from Africa (World
Malaria Report, 2018). In addition, the WHO reported the total number
of 43 000 deaths from malaria globally in 2017, and 93% of cases were
from the African Region. Children under five years accounted for 61% of
deaths globally and 93%were from Africa (World Malaria Report, 2018).
In 2013, malaria in Malawi accounted for 20% of children under five
years who died in hospital, and the prevalence of malaria is still high
(WHO, 2016; NMCP and ICF, 2018; Gaston and Ramroop, 2020).

The World Health Organization defines anaemia as a reduction of
hemoglobin in blood cells, which causes the body tissues to not have
enough oxygen. In women, men or children, anaemia can be categorized
as mild, moderate, and severe. In children 6 59 months of age, when the
hemoglobin concentration level is less than 11 g/dl, the child is consid
ered anaemic (Korenromp et al., 2004; WHO, 2015; NMCP and ICF,
2018). However, in the case of malaria related anaemia, the cutoff for the
hemoglobin concentration level is below 8 g/dl (NMCP and ICF, 2018).

Globally, approximately 1.62 billion people are affected by anaemia
and this accounts for more than 24.8% of the world population, around
43% from developing countries, and 47.4% of these are children (McLean
et al., 2009; Kanchana et al., 2018). InMalawi, the prevalence of anaemia
in children was 63% and this shows that anaemia remains a health
problem and more care is needed in the country (NSO and ICF, 2017).
Anaemia is detrimental to a child's health in that it can affect children's
physical and mental development which can also affect socio economics
(Abegunde and Stanciole, 2006; Magalhaes and Clements, 2011; WHO,
2011; Gaston et al., 2018).

The main causes of anaemia are nutritional deficiencies and infection
diseases such as HIV, intestinal worms, intake of iron, folate, vitamin
B12, malaria and other parasitic infections (McCuskee et al., 2014;
Gaston et al., 2018). However, in the region of malaria endemic, the
main contributor to anaemia is malaria (Brabin et al., 2004; Crawley,
2004; World Malaria Report, 2018). It is known that malaria is the major
contributor to anaemia, and a huge amount of mortality and morbidity is
caused with both malaria and anaemia (Bjorkman, 2002; Carneiro et al.,
2006; Wanzira et al., 2017). In the area of high prevalence of malaria,
anaemia is held accountable for about half of malaria related deaths
(Korenromp et al., 2004; Adebayo et al., 2016; Seyoum, 2018). These two
diseases are associated and this means that controlling malaria can
reduce anaemia, and controlling anaemia can results in reduction of
deaths related to malaria (Korenromp et al., 2004; Noland et al., 2012;
Reithinger et al., 2013; Hershey et al., 2017). The study by McLean et al.
(2009) revealed that more than half of the reduction in malaria resulted
in a reduction of 60% in the risk of having anaemia. This confirms that
anaemia and malaria are correlated diseases, which can increase mor
tality and do more damage in children if no actions are taken timeously
(Gaston et al., 2018).

There are very few studies on modelling both childhood anaemia and
malaria simultaneously as many studies showed that the young children
are more vulnerable to both (Hershey et al., 2017; Kuziga et al., 2017;
Yimgang et al., 2021). In addition, the health of a child should be
prioritized as they are the posterity of the country (Gaston et al., 2018).
Hence, in light of the aforementioned reasons, the current study focused
on the modelling of anaemia and malaria in children 6 59 months of age
in order to understand the link between the two conditions diseases so
that they can be controlled and eliminated. Furthermore, it assists in
policy making and planning of interventions strategies from different
donors. In Malawi, many researchers were interested in modelling the
prevalence of anaemia and malaria in children separately (Chitunhu and
Musenge, 2015; Mathanga et al., 2015; Calis et al., 2016; Kabaghe et al.,
2017; Ntenda et al., 2017; Zgambo et al., 2017; Hajison et al., 2018;
Nkoka et al., 2019). The separated model has its benefits but cannot
address the possible association between the two diseases jointly. The
joint model is needed to simultaneously model anaemia and malaria to

address the association between the two diseases along with identifying
factors associated with the diseases. The multivariate joint model under a
GLMM has focal points when compared to separate models, for instance,
better control of type I error rates in the various tests. Besides this, the
multivariate joint model is better for expansion in the capability of the
parameter estimate and the ability to address distinctively multivariate
questions. Furthermore, the GLMM includes the random effect in the
model in order to model the correlation between two or more observa
tions (Gueorguieva, 2001; Hedeker, 2005; Agresti, 2015; Habyarimana
et al., 2016; Gaston and Ramroop, 2020).

Relevant literature reveals that numerous researchers proposed
different statistical models to analyze the association between malaria
and anaemia in children (Safeukui et al., 2015; Adebayo et al., 2016;
Seyoum, 2018).

In Malawi, the study by Kabaghe et al. (2017) used a year repeated
cross sectional survey from a rural area in Malawi to analyse the short
change in anaemia and malaria under five years’ children. The study by
McGann et al. (2018) also used the 2015 DHS data set to describe the
prevalence and distribution of inherited blood disorders among young
children in Malawi and explore their associations with malaria and
anaemia. The recent study by Roberts and Zewotir (2020) used Geo
spatial maps to visualize the relationship between malaria and anaemia
in Malawi, Uganda, Tanzania and Kenya. In addition, the study by
Yimgang et al. (2021) evaluated the population attributable fraction of
anaemia due to malaria in children between 5 15 years in Southern
Malawi. However, according to our knowledge, no study in literature
utilized the generalized linear mixed model (GLMM) to simultaneously
join malaria and anaemia in children 6 59 months of age in Malawi and
this highlights the novelty of the current research. In addition, the data
set used is different in comparison to the 2017 Malawi Malaria Indicator
Survey (MMIS) data set.

Therefore, the current study aimed to simultaneously model the as
sociation between malaria and anaemia and identify factors associated
with the two diseases by utilizing the joint model for a multivariate
generalized linear mixed model (GLMM) using the 2017 MMIS.

2. Methodology and material

2.1. Study area

Malawi is one of the African countries and is among the Sub Saharan
African nations located south of the equator and surrounded by Tanzania
in the North and Northeast; by Mozambique toward the East and
Southwest; and Zambia toward the West and Northwest (NMCP and ICF,
2018). Malawi is divided into three regions and twenty eight districts;
with the Northern region split into six districts, whilst the Central region
consists of nine districts, and the Southern region has thirteen districts.

The country has a tropical climate that is conducive for the breeding
of Anopheles mosquitos and the mosquitos increase in the rainy season
from November to April. The climate is cool and dry from May to August
during which the transmission of malaria reduces compared to the rainy
season (Kazembe, 2007; Zgambo et al., 2017). The economy of the
country is based on agriculture and is among the poorest countries in the
world with poor healthcare in comparison with other African countries
(WHO, 2016).

2.2. Data sources

The study utilized secondary cross sectional data set from the 2017
Malawi Malaria Indicator Survey (MMIS). The data was gathered be
tween 15 April and June 2017 and executed by the Malawi National
Malaria Control Program (NMCP) through help from the President's
Malaria Initiative (PMI). The United States Agency for International
Development (USAID) offered money related help through the Presi
dent's Malaria Initiative (PMI). They likewise supported the undertaking
by offering specialized help with the administration of community and
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wellbeing studies as they do in nations around the world (NMCP and ICF,
2018). The overseeing group of Malawi gave staff office space, and key
assistance. From there on, the ICF offered specialized help through the
Demographic and Health Survey (DHS) program. The ethical approval
was evaluated and granted by the Malawian Ministry of Health Research
and Ethics Committee with the support of the Institutional Review Board
of ICF International.

2.3. Data sampling and design

Women between 15 49 years of age and children from 6 59 months
who stayed in or visited the selected households the night before the
survey were included in the interview. The 2017 MMIS was a population
based on a household cluster survey and the sampling survey followed
the two stage sample design. Furthermore, the 2017 survey enables as
sessments of key malaria indicators for the nation as a whole, for urban
and rural areas independently, and for all of the three administrative
territories in Malawi: Northern, Central, and Southern.

The first stage of sampling comprised a selection of 150 clusters from
the enumeration areas (EAs) outlined in the 2008 Population and
Housing Census. Among the 150 clusters, 60 were from urban and 90
from rural areas. The second stage of sampling involved the systematic
selection of a sample of 3 750 households. Of these households, 25
households were selected from each enumeration area (EA) (NMCP and
ICF, 2018).

The study used a total weighted number of 2 724 children 6 59
months of age to establish a national level portrait (NMCP and ICF,
2018). The study used the weighted sample to gain insights that were
illustrative of the nation and to account for the complex sample design
from the data set. In the sampling procedure, the individuals surveyed in
each region should contribute proportionally to the size of the total
sample in the region. In any case, some regions may have small pop
ulations, and this unweighted appropriation does not represent the exact
population. Therefore, the region with a small population is oversampled
to overcome these issues and is, for this reason, the weighted sample used
in this study (NMCP and ICF, 2018; Gaston and Ramroop, 2020).

2.4. Blood collection and laboratory method

Children aged 6 59 months were tested for both anaemia and malaria
with the parents' or guardians’ consent. Trained nurses were responsible
for the testing and the children who tested positive were given medica
tion on the spot, according to the national rules.

2.4.1. Anaemia testing
Blood samples were collected from each child aged 6 59 months

using a spring loaded, sterile lancet to make a finger or heel prick. The
drop of blood was collected in a microcuvette, and the Haemoglobin level
analysed using a portable HemoCue analyzer. The results were available
within 10 min and were given to the child's parent or guardian verbally
and in writing (NMCP and ICF, 2018). Parents were encouraged to take
the children with haemoglobin level less than 8 g/dl to the nearest health
care facility for the follow up. The parents were given a referral letter
with the haemoglobin examination to show the staff at the health care
office. The results from the anaemia test were captured on the Biomarker
Questionnaire and on the handout left in the household that contained
information on the causes and prevention of anaemia (NMCP and ICF,
2018).

2.4.2. Malaria testing
The blood sample was collected from children's finger or heel prick

using the SD Biolne Malaria Ag P.f/P, a rapid diagnostic test (RDT).
Malaria testing can be done using microscopy or rapid diagnostic test;
however, in this study the RDT was considered.

Microscopic diagnosis is helpful in testing malaria, although it does
have some limitations; these include inadequately trained microscopists,

lack of quality control, the chance of misdiagnosis because of low para
sitemia or blended diseases, and in some cases it is hard to determine the
types of plasmodium. Moreover, microscopy services are not accessible,
for example, in a remote area or after standard laboratory hours (Ohrt
et al., 2002; Wongsrichanalai et al., 2007; Gaston and Ramroop, 2020).
Thus, for that reason, the RDT is used and is relevant in the detection of
the histidine rich protein II (HRP II). Furthermore, the RDT detects an
antigen of Plasmodium falciparum and common Plasmodium lactate
dehydrogenase (PLDH) of Plasmodium species in human blood (NMCP
and ICF, 2018). The diagnostic test incorporates an expendable example
tool that arrives in a standard bundle. A tiny volume of blood is captured
on the applicator and placed in the well of the testing device. All field
laboratory experts were upskilled to use the RDT in the field as per the
producer's directions. The RDT results were accessible quickly and
recorded as either positive or negative, with blackout test lines viewed
positive. Likewise, with the anaemia testing, malaria RDT results were
given to the child's parent or guardian in oral and composed structure
and were recorded on the Biomarker Questionnaire. Moreover, children
who tested positive for malaria were provided with a full course of
medication as indicated by the standard system for uncomplicated ma
laria treatment in Malawi (NMCP and ICF, 2018).

3. Data analysis

3.1. Dependent variable

The present study considered two response variables or dependent
variables. The first one was anaemia status for children 6 59 months of
age. The anaemia status in children is determined based on the hemo
globin concentration level in the blood measured in grams per deciliter
(g/dl). When the hemoglobin concentration level adjusted for altitude is
less than 11 g/dl, the child is reviewed as anaemic, otherwise not
anaemic (WHO, 2015; NMCP and ICF, 2018). The second one is malaria
status using RDT to check if the child has malaria (positive) or not
(negative).

3.2. Independent variables

The exploratory covariate or independent variables used in this study
were also used in previous literature and involved a number of socio
economic, demographic, and geographic factors (Bennett et al., 2013;
Alegana et al., 2014; Buchwald et al., 2016; Zgambo et al., 2017). The
present study used independent variables assumed to be linked with
malaria and (or) anaemia such as the child's age in months; the sex of the
child; the type of residence; region of the dwelling; wealth quantile;
mother's highest education level; source of drinking water; type of toilet
facility; household sharing the toilet; household using electricity or not;
children under 5 slept under a mosquito bed net the night before the
survey; the main material of wall, floors; roofs of the rooms and residence
altitude. In Malawi the studies which modelled anaemia and malaria also
used the same independent variables found in the present study (Kabaghe
et al., 2017; McGann et al., 2018; Yimgang et al., 2021). However, these
studies did not include some variables assumed to be associated with
anaemia and (or) malaria (Gaston and Ramroop, 2020). The independent
variables which were not included in their studies are source of drinking
water; type of toilet facility; household sharing the toilet; household
using electricity or not; children under 5 slept under a mosquito bed net
the night before the survey; the main material of wall, floors; roofs of the
rooms and residence altitude.

4. Statistical analysis

The present study used Statistical Package for the Social Sciences
(SPSS) to clean the data. In addition, the analysis of bivariate method was
done in SPSS, with the application of cross tabulation techniques. Pear
son's chi square test and p values were used to investigate whether the
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are associated with socio economic, demographic, and geographical
factors, which makes these diseases a persistent and a current problem.

Based on the findings from this study, there is a need for educating the
population, particularly those from rural areas, on how to prevent ma
laria and anaemia in children under five years of age. The policy makers
andMalawian government should focus on improving the toilet facilities,
access to electricity and providingmoremosquito bed nets, mostly for the
individuals who live in rural area and at low altitude. In addition, edu
cation of the mothers should be prioritized so that they are able to treat
and take care of their children, especially those in the age group 6 23
months, as they are more vulnerable. Understanding the relationship
between anaemia andmalaria together with other factors associated with
the two diseases can provide useful insights to the government and policy
makers in planning, controlling and the elimination of both diseases. In
addition, the statistical model used in this study will help other re
searchers to compare findings and referencing. Future research could
make use of spatial joint models for malaria and anaemia simultaneously
in order to investigate the correlation between the two diseases by
geographical location.

7. Limitation

The MMIS 2017, under household member dataset, did not provide
the nutritional status of the child, cough and diarrhea effects, which
might be associated with anaemia. It would be helpful to use a dataset
that included those factors. The second limitation is that the dataset was
cross sectional. It would have been ideal to have a longitudinal data set to
study the change in factors and prevalence over time.

8. Recommendations

In order to develop effective intervention strategies to help reduce or
alleviate anaemia and malaria in children aged 6 59 months, it is rec
ommended that the policy makers and government make a concerted
effort in educating the mothers on malaria and anaemia, and improving
health care, toilet facilities and mosquito bed nets, especially for in
dividuals from rural areas. This can be done through various platforms
such as social media, television, radio, roadshows and even rural based
workshops.
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highest percentages also found in the African and South 
Asian regions [24, 30, 47].

In Lesotho, childhood anaemia and malnutrition 
remain a concerning health problem with 51% of chil-
dren being anaemic and 53% malnourished [31]. Improv-
ing both the nutritional and anaemic status in children 
younger than 5 years is critical to ensure high quality of 
life to future contributors and leaders of the country [14].

Anaemia is defined by low blood level of haemoglo-
bin (Hb). According to the World Health Organization 
(WHO), children younger than 5 years are considered 
anaemic when their Hb level, adjusted for altitude, is less 
than 11 g/dl [17, 24], WHO 2015. The cause of anaemia 
is multifactorial and iron deficiency is considered the 
most fundamental cause in about 50% of cases. Insuf-
ficient folate, vitamin B12, protein deficiencies, nutri-
ents and some diseases, such as malaria and diarrhoea 
among others, can also increase the risk of anaemia [12, 
14]. Childhood anaemia can negatively impact cognitive 
development, performance in school, physical growth 
and immunity [14, 25, 40].

Malnutrition develops with either over- or under con-
sumption of food but herein, it is defined as an insuf-
ficient intake of nutrients and/ or other minerals. In 
developing countries, a low nutritional status of a child is 
an indicator of health problems [29]. Childhood malnu-
trition leads to long-term negative effects, such as poor 
performance at school, delayed psychomotor develop-
ment, lower capacity for work and reduced quality of life 
in adulthood [10, 21, 34]. The nutritional status of a child 
is mainly evaluated based on different anthropometric 
indicators in reference to WHO growth standards [31]. 
Stunting (height-for-age) indicates chronic or long-term 
malnutrition, wasting (low-weight-for-height) is linked to 
low food intake and/or illness and is described as acute 
malnutrition, while an underweight child (weight-for-
age) can be either stunted, wasted or both [31]. The study 
examines the association between anaemia and stunting 
as an indicator of long-term malnutrition [3].

According to the WHO, an individual whose z-score 
falls below -2 SD is considered malnourished [46]. Stunt-
ing is categorised as moderate acute malnutrition (MAM) 
when the height-for-age z score (HAZ) is less than minus 
two SD, and severe acute malnutrition (SAM) when HAZ 
is below minus two SD [7, 8, 23, 31]. Literature indicates 
that most studies have evaluated anaemia and stunting 
independently [14, 28, 38, 45]. The independent mod-
els are sufficient in modelling anaemia and stunting but 
are inadequate for addressing the association between 
the two conditions. The generalized linear mixed model 
(GLMM) were extended to evaluate joint trajectories of 
repeated measures [11, 33],where the random effect can 
be used to evaluate the correlation structure between 

several response variables and can better control for 
type 1 error [4, 15, 20]. In addition, the multivariate joint 
model has the ability to address multivariate questions 
[18, 33].

The studies aimed to understand the association 
between anaemia and stunting in children younger than 
5 years are limited [2, 32, 36, 37, 39, 43, 48]. We found 
no study in literature that has utilized the joint model for 
anaemia and stunting in children younger than 5 years of 
age in Lesotho. Therefore, we expanded existing models 
by examining the longitudinal interdependent relation-
ship of anaemia and stunting among children younger 
than 5 years in Lesotho using joint multivariate GLMM. 
Understanding the link between anaemia and stunt-
ing and other factors will help prioritize efforts for pol-
icy-makers and donors that aim to improve global child 
health.

Materials and methods
Study area
Lesotho is small landlocked country with a surface area 
of  30355km2 and a population of about of 2.2 million 
and is surrounded by only South Africa. Lesotho has ten 
politico-administrative districts with Maseru as the capi-
tal city, and is ruled by a King as the head of state and the 
Prime Minister as head of the government. The kingdom 
of Lesotho is known for its abundant water resources and 
high altitude. However, the country has high unemploy-
ment rates, high prevalence of HIV and AIDS, poverty, 
food insecurity, and the burden from other diseases [31]. 
The country is also vulnerable to natural disasters and cli-
mate change such as droughts and heavy rain and flood-
ing (Renzaho 2015).

Data source and sampling techniques
This study was cross-sectional and used secondary data 
from the LDHS, conducted from September to Decem-
ber 2014. The ethical approval for the 2014 LDHS 
was assessed and confirmed by the Lesotho Minis-
try of Health Research and Ethics Committee together 
with support of the Institutional Review Board of ICF 
International.

The 2014 LDHS was representative at national, urban 
and rural areas as well as four ecological zones, and 
each of Lesotho’s 10 districts [31]. The sample was 
stratified and selected in two stages. The stratification 
was executed by separating each district into urban 
and rural areas. The overall of 20 sampling strata were 
designed, and thereafter samples were selected inde-
pendently in each sampling stratum by following a 
two-stage sampling method. The first stage included a 



Page 3 of 11Gaston et al. BMC Public Health          (2022) 22:285  

random selection of 400 clusters from the enumeration 
area (EAs). Out of the 400 clusters, 118 clusters were 
from urban areas and 282 clusters from rural areas. 
The second stage involved systematic sampling of 9942 
randomly selected households covering all EAs. Out of 
these, 25 households were then selected from each enu-
meration area [31].

The 2014 survey included all residents or visitors who 
were in the selected household the night before the 
interview. All women were included in the survey based 
on the condition that they had never been married, not 
currently pregnant, and had not given birth in the pre-
vious 2 months. Children aged between 0–59  months 
from mothers living at or visiting the households the 
night before were included in survey. All surveyed 
children were measured for height and tested for anae-
mia, under the supervision of their parents or guard-
ians. Exclusion criteria, comprised the anomaly in BMI, 
height, and weight-for-age measurements. With respect 
to anaemia testing, all children less than 6 months were 
not included in the survey. The present study used a 
total weighted number of 1138 children for anaemia, 
and 1297 for stunting. The exclusion and system miss-
ing values were considered as missing values and were 
consequently ignored [31].

The calculation of sample size was determined using 
the statistical formula:

where n = sample size, p = prevalence of anaemia, 
z = z-value at 90% confidence (= 1.96), and d = level of 
significance (= 5%). Out of the total weighted of 3112 
children drawn as a sample, only 1292 children were 
used in this study, and 1816 were considered as the 
missing value.

In the sampling procedure, the number of women 
surveyed in each region should present the size of the 
total sample in the proportion to the size of the region 
[31]. However, some regions such as Qacha’s Nek, 
Quthing are less populated, while Maseru and Leribe 
are heavily populated. Since the population in each 
region was not of equally weighting, individuals sur-
veyed in each region should contribute equivalently to 
the total per region. Hence, this unweighted distribu-
tion does not accurately represent the exact population. 
Therefore, the weighted samples were used to infer the 
national status and account for the complex sample 
design from the LDHS data set as well as to account 
for the lack of adequate representation in the sample. 
More details on calculation of sampling size and sam-
pling weight can be found in Lesotho’s report of demo-
graphic and health survey [31].

n =
z2p(1− p)

d2

Anaemia and nutrition assessment
Anaemia testing
All children younger than 5 years surveyed were tested 
for anaemia under the supervision of their parents or 
guardians. Blood collection by finger-or heel-prick was 
performed by professional nurses using a spring-loaded 
sterile lancet. A blood drop was gathered in micro-
cuvette, and the Hb was measured using a HemoCue 
analyser (company, city of equipment). The lancet, micro-
cuvette, gloves and alcohol swabs were used once for 
hygiene safety. Results were obtained within 10 min and 
shared verbally with the children’s parents or guardians 
and recorded as a hard copy, captured on the Biomarker 
questionnaire and indicated on handout that explains 
causes and counteractions of anaemia, which were left 
with the family [31].

All parents or guardians of children with a Hb level less 
than 7 g/dl were told to take the children to the nearest 
healthcare facility for follow-up [31].

Nutrition status assessment
Height was measured with a tape board and weight with 
an electronic balance (model of equipment, city, coun-
try) provided by UNICEF. The weight of the children was 
estimated utilizing a Seca gauging scale (model of equip-
ment, city, country), which aligned to zero. For weight-
ing, parents or guardians unclothed their children or 
keep them in light clothing. For children unable to stand, 
child weight was calculated based on difference in parent 
weight compared to weight of parent holding child. The 
height measurement was carried out using a short board, 
which was lying down or standing on a level ground sur-
face. Children were measured without shoes and head-
gear, standing against a board. Children less than 87 cm 
were measured in supine position. From the children’s 
weight, height and age was calculated their nutritional 
status (i.e. weight-for-age, height-for-age, and weight-for-
height) based on the WHO guidelines [9, 12, 31].

Data analysis
Dependent variable
The two response variables for the study were measures 
of anaemia and stunting. Anaemia in children can be 
grouped as severe anaemia when Hb level is less than 7 g/
dl; moderate anaemia with Hb level between 7 and 8.9 g/
dl; and mild anaemia with Hb level between 9 and 10.9 g/
dl. However, in the scope of this study, a child was deter-
mined as either as anaemic or not (i.e., Hb level above 
or below altitude adjusted threshold of 11  g/dl) (WHO 
2015). Nutrition status of a child cab be described as non-
malnourished; moderate acute malnutrition; or severe 
acute malnutrition. Yet, the second response variable 
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was recorded as binary exposure since the interest of the 
study was to check if the child is stunted or normal [23, 
31].

Independent variables
The independent variables include socio-economic and 
demographic factors, and were used in previous stud-
ies on childhood anaemia or stunting [14, 15, 28, 39]. 
Demographic variables included sex of child (male or 
female),whether the child had fever, cough or diarrhoea 
in the 2 weeks prior to the survey; the birth order of 
the child; the childbirth weight; and the age in months. 
Socio-economic variables included reception of Vita-
min A supplementation in the 6 month prior to the sur-
vey; whether the child visited a health facility in past 2 
weeks prior to the survey; maternal education (no edu-
cation, primary, post primary); place of residence (urban, 
rural); whether a household used electricity; main mate-
rial of floor, wall, and roof; wealth index of the house-
hold; mother’s body mass index (BMI); toilet facility; and 
source of drinking water.

Statistical analysis
Multivariate joint GLMM models were built  to identify 
the correlation between two response variables (anaemia 
and stunting) and assess their association with demo-
graphic and socio-economic  factors. Using Statistical 
Package for the Social Sciences (SPSS version 25.0),  we 
cross tabulated and summarised the data with frequen-
cies and percentages. We then conducted univariate 
analysis to selected variables showing relationship to 
either  responses variables based  having a p-value less 
than 0.2; this selection helps to account for multicollin-
earity and confounders between covariates [12–14].

Selected variables were then included in the multivari-
ate joint GLMM conducted with SAS 9.4 using PROC 
GLIMMIX. This procedure is able to join models with 
two response variables that have similar distribution 
and link function. Based on the convergence criteria, 
the unstructured (UN) convergence was chosen seemed 
to be the best for the analysis. The final multivariate 
joint analysis retained independent variables show-
ing p-value < 0.05. Interactions were evaluated based on 
Akaike information criteria (AIC); but were not signifi-
cant [15, 33].

Model formulation
Two responses variables, stunting and anaemia in chil-
dren less than 5 years of age were examined: the first vari-
able xi1 was stunting, where one (1) indicate the presence 
stunting and zero its’ absence; and the second xi2 allocate 
a one to the presence of anaemia, versus zero (0) for its’ 
absence. We assume the outcome to be from a bivariate 

Bernoulli distribution, with  pi1 as the likelihood of stunt-
ing occurring in a child i and pi2 as the probability of 
anaemia occurring in a child i. Therefore, the binary gen-
eralized linear model can be expressed as follow:

where, θ1 and θ2 are assumed to be the vectors of fixed 
effects, u1 and u2 are the vectors of the random effects. 
In addition,Yi1,Yi2,Zi1 and Zi2 are the designed matrices 
for fixed and random effects, respectively. Hence, the 
model’s equation of the variance–covariance matrices 
for multivariate normal distribution (MVN) is shown as 
follows:

where the σ11 and σ22 , are the variance components of 
stunting and anaemia respectively, while σ12 and σ21 are 
the covariance components between these conditions. 
When the covariance components from Eq. (3), σ12 = σ21
=0, the multivariate joint model becomes standard sepa-
rated generalized linear mixed [19, 33].

Model testing and and goodness‑of‑fit
Covariance structure of the random effects
The test of random effect checks whether specific 
covariates should be included within the random effect 
structure of a model  by testing the model against the 
hypothesis that the variance of population distribution is 
zero. To illustrate, assume that we want to test the vari-
ance parameter σ 2 for a GLMM with a single random 
effect: Since the variance cannot be negative, zero is the 
boundary of the parameter space, and model variance 
can be tested against zero using a one‐sided hypothesis 
[41, 44].

The null hypothesis to be tested is H0 : σ
2 = 0 , against 

H1 : σ
2 �= 0 , and this can tested using the likelihood ratio 

test, the Wald test or the score test. These are asymptoti-
cally comparable under the null hypothesis and follow 
a distribution with a given degree of freedom. In addi-
tion, these tests can determine if the random effects in a 
GLMM contribute [41, 44].

Goodness‐of‐fit tests
The goodness-of-fit can be evaluated by a likelihood ratio 
test against an alternative saturated model, which is the 
most complex model explained by the data. The saturated 
model can be expressed as E(Yni/β , θn) = Yni  for all n 
and i. When the dependent variables are categorical, the 
goodness-of-fit test for the data is Pearson chi-squared 

(1)f1(ψi1) = Yi1θ1 + Zi1u1

(2)f2(ψi1) = Yi2θ2 + Zi2u2

(3)

U =

(
u1
u2

)
∼ i.i.d.MVN (0, σ) = MVN

([
0

0

]
,

[
σ11 σ12
σ21 σ22

])
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test [41]. The Pearson chi-squared test can be written as 
follows:

where ni is the number of participants with the same 
values on the covariates, yij and π̂ij are respectively the 
observed and expected quantity of the participants in the 
group i responding in category j [41].

Results and interpretation
Univariate results
This study included a total weighted number of 3112 
children aged between 0–59  months. The prevalence 
of anaemia and stunting was 51% and 43% respectively, 
with 35.2% of children having both conditions. Tables 1 
and 2 indicate the frequency and percentage of anaemia 
with corresponding independent variables. Childhood 
stunting and anaemia were both related to child age but 
in opposing direction (i.e., stunting increased with age, 
while anaemia decreased with age), while stunting itself 
was further associated with sex, having visited health-
care facilities, maternal education, wealth index, access 
to electricity, drinking water and waste water manage-
ment, and dwelling characteristics (wall and floor mate-
rial); while anaemia was more specifically related to fever 
in last 2 weeks, recent diarrhoea, and roof characteristics 
of the dwelling. The prevalence of anaemia was higher in 
children aged between 0–19  months (62.7%), and then 
decreased in children  aged 20–39  months (55.0%) and 
then again in those aged 40–59  months (44.4%). The 
anaemia prevalence was higher in children who experi-
enced fever in the last 2 weeks (62.8%) compared to chil-
dren who did not (37.2%). The prevalence of stunting 
was lower in younger children (age group 0–19 months, 
17.8%),  The prevalence of stunting was higher from 
mothers with low education (72.7%),  but increased as 
children aged (20–39 months, 33.3%; and 40–59 months, 
31.2%).

The prevalence of stunting was higher in children from 
mothers with low education (72.7%), and reduced as the 
level of mother’s education increased by primary (31.3%) 
and post-primary (21.7%) respectively.

Multivariate results
Table  3 presents the estimation results for the fixed 
effects of the joint GLMM several socio-economic and 
demographics factors showed significant relationships 
with both stunting and anaemia. Child’s age had a sig-
nificant effect on both anaemia and stunting. Children 
aged less than 20  months were less likely to be stunted 
(OR: 0.44, 95% CI: 0.298; 0.638) but did not differ in their 

(4)χ
2 =

I∑

i=1

ni

J∑

j=0

(
yij − π̂ij

)2

π̂ij

risk of anaemia  compared to the reference group (40–
59  months). However, children aged 20–39  months  did 
not differ in their risk of stunting but were more likely 
to be anaemic (OR: 1.7, 95% CI: 1.207; 2.396) compared 
to the reference. Fever and diarrhoea were not linked 
to stunting but were both associated with a higher risk 
of anaemia (OR: 0.491, 95% CI: 0.341; 0.707 and OR: 
0.609, 95% CI: 0.410; 0.905, respectively). High birth 
weight (≥ 2500 g) and living in a rural area were protec-
tive against stunting (OR: 0.24, 95% CI: 0.182; 0.452 and 
OR: 0.52, 95% CI: 0.333; 0.814, respectively) compared 
to lower birthweight children; while the odds of being 
stunted increased with higher levels of poverty (OR: 3.5, 
95% CI: 2.149; 5.703) compared to those from wealthier 
homes. Children from the middle wealth tertile were 2.9 
times more likely to be stunted compared to those from 
the top wealth tertile. Lastly, lower maternal education 
was also associated with stunting.

The variance components and covariance between 
anaemia and stunting are presented in Table 4. The covar-
iance coefficient estimate of 1.000 indicated a positive 
relationship between the two conditions, meaning that 
changes in either nutrition or anaemia in a child impacts 
the likelihood of both diseases. In addition, the odds ratio 
of 2.718 confirmed that the two conditions are highly 
associated. The overall fitted model was highly significant 
as the coefficient of covariance parameter indicated the 
p-value < 0.001. Hence, including the random effect in the 
model was shown to be very important [16, 33], Zhang 
and Lin 2008.

The test covariance parameters based on pseudo-likeli-
hood rejected the null hypothesis of zero correlation with 
Pearson chi-squared test = 2644.470 and p-value < 0.001. 
This revealed that the association between anaemia and 
stunting was significant and not zero [41]. Furthermore, 
the results from the fitted statistics for conditional dis-
tribution indicated the Pearson chi-squared = 2123.070 
with 0.94  ° of freedom. This is an indication of a good 
variability in the dataset and residual over dispersion was 
not present [16, 33].

Discussion
This cross-sectional study used secondary data from 
2014 LDHS. To our knowledge, this was the first study 
to simultaneously model the association between anae-
mia and stunting in children less than 5 years of age in 
Lesotho. The study utilized a multivariate joint model 
under the scope of GLMM to association both diseases 
and explore their associated socio-economic and demo-
graphic factors. Anaemia and stunting show a significant 
positive association confirming that the two diseases 
should be considered interrelated health problems in 
children where these diseases are more likely to coexist 
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and interinfluence their manifestations. Thus, coordi-
nated interventions aiming to improve both stunting and 
anaemia are likely to produce synergetic effects on child 
health. The association between the two conditions can 
be interpreted as an indication of chronic malnutrition 
which might cause iron deficiency. Similar results were 
described in studies by Yang et  al. [48], Gari et  al. [13], 

Mohammed et  al. [32], Rahman et  al. [37] and Rivade-
neira et al. [39]. Our findings also indicate that child age 
has a significant effect on both anaemia and malnutrition 
but impact different age groups. The chance of having 
anaemia or stunting reduced as the children aged.

A possible explanation to this issue is due to the fact 
that the immune systems of children are still developing 

Table 1 Childhood anaemia by categorical variable

Variables Categories Anaemic Not anaemic p‑value

Sex of the child Male
Female

56.2% (301)
52.2% (315)

43.8% (235)
47.8% (288)

0.185

Child’s age in months 6–19
20–39
40–59

62.7% (227)
55.0% (224)
44.4% (164)

33.3% (135)
45.0% (183)
55.6% (205)

0.000

Child’s birth weight  < 2500 g
 ≥ 2500 g

58.5% (48)
53.2% (467)

41.5% (34)
46.8% (410)

0.359

Had fever in last 2 weeks Yes
No

62.8% (120)
52.3% (493)

37.2% (71)
47.7% (449)

0.008

Had diarrhoea recently Yes
No

62.7% (94)
52.8% (520)

37.3% (54)
47.2% (465)

0.024

Had cough in last 2 weeks Yes
No

54.4% (184)
54.0% (429)

45.6% (154)
46.0% (366)

0.883

Received vitamin A in last 6 months Yes
No

54.3% (357)
53.7% (253)

45.7% (301)
46.3% (218)

0.858

Birth order 1st

2–3
4–5
 ≥ 6

53.2% (231)
56.0% (261)
52.1% (85)
51.3% (39)

46.8% (203)
44.0% (205)
47.9% (78)
48.7% (37)

0.728

Mother’s BMI  < 18.5
 ≥ 18.5

56.0% (14)
53.8% (596)

44.0% (11)
46.2% (511)

0.830

Mother’s education level No education
Primary
Post primary

53.8% (7)
51.1% (267)
56.6% (341)

46.2% (6)
48.9% (255)
43.4% (262)

0.193

Visited health facility Yes
No

52.7% (479)
59.4% (136)

47.3% (430)
40.6% (93)

0.069

Wealth Index Poor
Middle
Rich

58.0% (280)
53.1% (127)
50.1% (209)

42.0% (203)
46.9% (112)
49.9% (208)

0.059

Place of residence Rural
Urban

55.5% (457)
50.2% (158)

44.5% (366)
49.8% (157)

0.104

Household with electricity Yes
No

50.0% (150)
55.5% (465)

50.0% (150)
44.5% (373)

0.102

Toilet facility Toilet with flush
Pit latrine
No facility

53.7% (306)
48.3% (87)
57.1% (222)

46.3% (264)
52.7% (93)
42.9% (167)

0.148

Type of drinking water Tap water
Protected water
Unprotected

54.0% (274)
49.1% (109)
57.0% (233)

46.0% (233)
50.9% (113)
43.0% (176)

0.166

Main roof material Thatch/Palm leaf
Corrugated metal
Stick &mud

58.8% (248)
52.3% (335)
42.7% (32)

41.2% (174)
47.7% (306)
57.3% (43)

0.014

Main wall material Wood/Mud
Bricks
Cement /Block

56.6% (233)
51.5% (202)
52.6% (120)

43.4% (179)
48.5% (190)
47.4% (108)

0.270

Main floor material Earth/Sand
Mud block/Wood
Cement/ Block

52.8% (152)
56.6% (233)
52.5% (229)

47.2% (136)
43.4% (179)
47.5% (207)

0.441
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and consequently weak, hence need more nutrients to 
support the rapid body growth. In addition, many chil-
dren at an early age are not breastfeed which makes them 
susceptible to various illness. Some of these conditions 
reduce the haemoglobin level within the blood which 
may lead to anaemia and stunting. Furthermore, as chil-
dren age and are introduced to foods, and are able to 

consume a variety of nutrition, this would aid in putting 
them at less risk of being anaemic or stunting. Similar 
results we found in previous studies [3, 7, 13, 14, 24, 37]. 
However, the studies by Anticona and Sebastian [7] and 
Oliveira et al. [35] showed that stunting increased as the 
children grew older.

Table 2 Childhood stunting by categorical variable

Variables Categories Stunted (Malnourished) No stunted (Nourished) p‑value

Sex of the child Male
Female

30.7% (184)
23.0% (160)

69.3% (416)
77.0% (537)

0.002

Child’s age in months 0–19
20–39
40–59

17.8% (92)
33.3% (136)
31.2% (115)

82.2% (426)
66.7% (273)
68.8% (254)

0.000

Child’s birth weight  < 2500 g
 ≥ 2500 g

50.6% (45)
22.4% (227)

49.4% (44)
78.6% (787)

0.000

Had fever in last 2 weeks Yes
No

21.2% (44)
27.6% (299)

78.8% (164)
72.4% (785)

0.054

Had diarrhoea recently Yes
No

27.2% (44)
26.5% (299)

72.8% (118)
73.5% (830)

0.855

Had cough in last 2 weeks Yes
No

26.1% (97)
26.7% (246)

73.9% (275)
73.3% (674)

0.807

Received vitamin A in last 6 months Yes
No

26.0% (176)
27.2% (166)

74.0% (500)
72.8% (444)

0.633

Birth order 1st

2–3
4–5
 ≥ 6

24.5% (126)
27.0% (145)
29.8% (51)
28.4% (21)

75.5% (388)
73.0%(392)
70.2%(120)
71.6% (53)

0.529

Mother’s BMI  < 18.5
 ≥ 18.5

29.6% (8)
26.3% (333)

70.4% (19)
73.7% (931)

0.702

Mother’s education level No education
Primary
Post primary

72.7% (8)
31.3% (186)
21.7% (150)

27.3% (3)
68.7% (408)
78.3% (542)

0.000

Visited health facility Yes
No

24.4% (257)
35.7% (87)

75.6% (796)
64.3% (157)

0.000

Wealth Index Poor
Middle
Rich

33.8% (184)
30.1% (80)
16.3% (79)

66.2%(361)
69.9%(186)
83.7% (406)

0.000

Place of residence Rural
Urban

27.3% (257)
24.2% (86)

72.7% (683)
75.8% (270)

0.246

Household with electricity Yes
No

18.2% (64)
29.6% (279)

81.8% (288)
70.4% (665)

0.000

Toilet facility Toilet with flush
Pit latrine
No facility

26.4% (170)
19.8% (41)
29.8%(133)

73.6% (473)
80.2% (166)
70.2% (133)

0.027

Type of drinking water Tap water
Protected water
Unprotected

29.9% (173)
19.2% (48)
26.1% (122)

70.1% (406)
80.2% (202)
73.9% (345)

0.006

Main roof material Thatch/Palm leaf
Corrugated metal
Stick & mud

34.4% (165)
23.2% (169)
11.1% (10)

65.6% (314)
76.8% (558)
88.9% (80)

0.000

Main wall material Wood/Mud
Bricks
Cement /Block

33.0% (194)
20.1% (89)
22.6% (60)

67.0% (394)
79.9% (354)
77.4% (205)

0.000

Main floor material Earth/Sand
Mud block/Wood
Cement/ Block

20.9% (72)
33.8% (158)
23.5% (114)

79.1% (272)
66.2% (309)
76.5% (372)

0.000
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The findings from this study revealed that risk of anae-
mia was related to having experienced recent fever and 
diarrhoea. This may be due to the fact that fever and 
diarrhoea are commonly accompanied by the number of 
diseases and morbidity which are associated with anae-
mia. This has also been previously described [14, 19, 39]. 
The probability of being stunted reduced with increasing 
level of maternal education. The aforementioned could 
be linked to socio-economic status, where educated indi-
viduals are more likely to have a better standard of living, 
and knowledge of balanced diet. In addition, educated 
individuals can easily access and improve the nutritional 
status as most of them have a monthly income. This is 

also consistent with previous studies such as Kavosi et al. 
[22], Aheto et al. [5], Adebayo et al. [1], Aheto et al. [6], 
and Adhikari et al. [3].

Childbirth weight significantly impacts stunting in 
children, with lower risk in children born with a higher 
weight (≥ 2500  g). This relationship can be explained 
by the fact that children with low birth weight are more 
likely to have other co-morbidity illnesses that might be 
associated with stunting. Similar findings were found in 
studies by Yang et  al. [48], Habyarimana et  al. [19], and 
Kejo et al. [24].

We found that children living in rural areas have a 
lower risk of stunting, an effect that is debated in the field. 
A possible explanation to this is due to the fact that some 
individuals in rural areas are educated and they eat fresh 
food and fruits with more nutrients. Also, individuals 
from rural areas are breastfeed for a long period of time, 
which can contribute to fighting stunting at an early age. 
Some studies have described similar results, such as the 
study by Kavosi et  al. [22], while others have described 
contrasting results Yang et  al. [48] and El Kishawi et  al. 
[12].

Table 3 Parameter estimates for a joint marginal model for stunting and anaemia

Indicator variables Stunting Anaemia

Estimate; SE OR 95% CI P‑value Estimate; SE OR 95% CI P‑value

Child’s age
 Ref: > 39 months - - ‑ ‑ ‑ ‑ ‑ ‑
 20–39 months 0.226;0.186 1.254 0.870;1.806 0.225 0.531;0.175 1.701 1.207;2.396 0.003

  < 20 months 0.829;0.194 0.436 0.298;0.638  < 0.001 0.096;0.167 0.908 0.655;1.260 0.565

Child had fever
 Ref: Yes - ‑ ‑ ‑ ‑ ‑ ‑ ‑
 No 0.153;0.217 1.165 0.762;1.782 0.482 -0.712;0.186 0.491 0.341;0.707  < 0.001

Child had Diarrhoea
 Ref:Yes ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
 No -0.227; 0.231 0.797 0.507;1.254 0.326 -0.496; 0.202 0.609 0.410;0.905 0.014

Child’s birth weight
  < 2500 g - - - ‑ ‑ ‑ ‑ ‑
  ≥ 2500 g -1.248; 0.232 0.240 0.182;0.452  < 0.001 0.038; 0.230 1.039 0.662;1.631 0.868

Residence
 Ref: Urban ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
 Rural -0.653; 0.228 0.520 0.333;0.814 0.004 0.102; 0.197 1.107 0.753;1.629 0.603

Wealth Index
 Ref: Richer ‑ ‑ - ‑ ‑ ‑ ‑ ‑
 Middle 1.065; 0.247 2.901 1.788;4.707  < 0.001 0.224; 0.199 1.251 0.847;1.848 0.262

 Poorer 1.253; 0.249 3.501 2.149;5.703  < 0.001 0.282; 0.200 1.326 0.896;1.962 0.158

Education level
 Ref:No education ‑ ‑ ‑ ‑ ‑ ‑ ‑ ‑
 Primary -1.473; 0.783 0.229 0.049;1.064 0.060 -0.772; 0.812 0.462 0.094;2.270 0.342

 Post Primary -1.841; 0.787 0.159 0.121;2.933 0.020 -0.519; 0.814 0.595 0.121;2.933 0.524

Table 4 Variance Components and covariance between 
anaemia and stunting

Variables Estimate; SE OR 95% CI P‑value

Variance (stunting) 0.104; 0.010 1.110 1.088; 1.132 0.149

Variance (anaemia) 0.314; 0.170 1.369 0.981; 1.910 0.033

Covariance between 
anaemia and stunting

1.000; 0.141 2.718 2.063; 3.582 0.001
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Lastly, children living within families from the middle 
and top tertile wealth index have a lower risk of having 
malnutrition. This further undergirds the fact that mal-
nutrition is linked to socio-economic conditions, where 
the children from the lower wealth index cannot afford 
proper food, maintain hygiene and access to health care 
services. Similar results were found in previous studies 
such as the study by Gari et  al. [13], Mohammed et  al. 
[32], and Rivadeneira et al. [39].

Strengths and limitation of the study
We used joint modelling to assess the association 
between anaemia and stunting in children less than 5 
years of age. However, the present study has some limita-
tion, the  first being that the dataset was cross-sectional 
and it would be good to assess changes in disease trajec-
tories and associated over time. The study used stunting 
variable as a longer term indicator of malnutrition [37] 
but other variables that reflect nutritional status could 
have also been assessed. Also, it would be interesting to 
use spatial joint models to assess the association between 
stunting and anaemia by geographical location. In addi-
tion, the food records would be mentioned in the study. 
Lastly, the study did not include the maternal anaemia 
levels, which are usually the biggest predictor of child 
anaemia. Hence, all the areas of focus not covered in this 
study, especially those mentioned, are considered limita-
tions that will be addressed in future studies.

Conclusion
This study aimed to determine the association between 
anaemia and stunting in children less than 5 years of 
age in Lesotho using multivariate joint model under 
GLMM. The study also assessed the association of socio-
economic and demographic factors with anaemia and 
stunting. Lastly, we evaluated possible interaction effect 
between independent variables but none passed signifi-
cance threshold. We found a significant positive associa-
tion between anaemia and stunting which indicates that, 
when malnutrition increases in children less than 5 years, 
anaemia also increases and vice-versa. Thus, a change 
in childhood stunting can have a significant impact on 
anaemia status. In addition, several socio-economic and 
demographic factors impact both malnutrition and anae-
mia such as family wealth, maternal education, urban 
vs. rural living environments. In addition, children that 
were low birthweight or who have recently experienced 
fever, or diarrhoea should be prioritized for intervention. 
Knowledge on the relationship between anaemia and 
malnutrition together with other determinants can pro-
vide useful insights to policy makers, donors and govern-
ment in planning and fighting to improve child through 
tailored public health messages and interventions.

Recommendations
To improve anaemia and malnutrition in children less 
than 5 years of age in Lesotho, policy makers, donors and 
government should focus on improving nutrition status 
especially, in children from rural area, with diarrhoea, 
fever, low birthweight, from poorer quantile index house-
hold and uneducated mother.
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