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ABSTRACT 

The formation of pitch deposits is a major problem in the pulp and paper industry as it results 

in reduced production levels, higher operating costs, increase in equipment maintenance costs 

and reduced quality of product. Lipophilic compounds responsible for pitch problems are fatty 

acids, fatty alcohols, resin acids, hydrocarbons, steroids, triterpenoids and triglycerides. 

Different lipophilic extractives may cause pitch problems along the entire pulping and 

bleaching process depending on their chemical nature and the pulping process used. Traditional 

methods of controlling pitch have included seasoning of logs (storage of logs in the mill before 

pulping) and addition of chemicals such as alum, talc, ionic dispersants and polymers for the 

adsorption or dispersion of pitch particles. The drawbacks of applying these techniques are 

decreased pulp brightness and yield due to uncontrolled action of microbes during prolonged 

storage of logs, greater environmental pollution due to the addition of chemicals and higher 

cost. The application of enzymes offers an environmentally friendly and efficient alternative to 

chemical reagents and has shorter treatment times and higher specificity in the removal of wood 

components compared to microbial inoculation, thus providing an excellent prospective 

solution to alleviate the risk of pitch formation.  

 

Evaluation of the chemical composition of four Eucalyptus wood species (E. dunnii, E. grandis, 

E. nitens and E. smithii) indicated substantial variation among them. E. grandis and E. 

smithii would have less severe problems related to the presence of wood resin, as they contained 

smaller amounts of fatty acids and sterols than E. dunnii and E. nitens species. E. nitens 

contained high lipophilic content, indicating a greater potential for wood resin problems during 

pulping and subsequent processing of the pulps. In addition, E. nitens had the highest amounts 

of klason lignin (6.6%) and acid-insoluble lignin (5.6%). Highest pulp yield (54.1%) was 

obtained for E. grandis and the lowest (50.3%) for E. smithii. The low pulp yield for E. smithii 

correlates with the low viscosity (547.17 ml/g) and glucose concentration (87.7%) obtained for 

this species. However, E. smithii pulp had the lowest kappa number of 8.25, implying that less 

chemicals would be required during bleaching. Of the four wood species evaluated, E. grandis 

would be ideal for the production of dissolving wood pulp based on high viscosity (570.37 

ml/g), pulp yield (54.1%) and glucose concentration (89.8%), and low klason lignin (4.5%), 

acid-soluble lignin (4.4%) and high carbohydrate concentration (90.1%). 
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As a matter of interest, the chemical characterization of wood from three popular eucalypt 

species [E. nitens, E. grandis, and E. dunnii (of different site qualities)] and their pulps was 

performed. The effects of storage at -20°C (for 6 months) of wood was investigated by 

examining their chemical composition and indigenous microflora, as storage at this temperature 

is believed to halt any chemical and microbiological changes. Fatty acids were the main 

lipophilic compounds among E. dunnii (SQ3 and SQ4) and E. grandis wood extractives. The 

wood of E. nitens displayed the lowest amounts of these pitch-forming compounds, and 

therefore poses the lowest risk for pitch deposit formation, making it the most suitable 

Eucalyptus sp. for pulping. Storage of wood chips at -20°C had a similar effect as the traditional 

method of seasoning (storage of wood outdoors prior to pulping) used for the reduction of 

lipophilic extractives. Additionally, site quality of the Eucalyptus plantation had considerable 

influence over chemical composition of the wood material. The total extractive content was 

higher for E. dunnii (SQ3) (13.2%) compared to E. dunnii (SQ4) (7.7%), however, cellulose 

and acid-insoluble lignin contents of E. dunnii (SQ4) were higher at 44.8% and 27.5%, 

respectively. This indicates that greater pulp yield may be achieved with E. dunnii (SQ4) but at 

a greater risk of pitch formation and retention of insoluble lignin. Variations in bacterial and 

fungal communities were observed after storage, and should be taken into consideration when 

conducting laboratory scale trials, as degradation of wood components during storage would 

influence the outcome of experiments. It is therefore recommended that if storage of wood chips 

is necessary, they should be retained for a maximum of 3 months at -20°C under laboratory 

conditions. The findings from this study have potential to greatly influence storage practices in 

the pulping industry, thus improving current measures employed in dealing with wood resin 

components and pitch formation in the pulp and paper industry. 

 

This study also aimed to assess lipolytic enzymes produced by microflora indigenous to 

Eucalyptus wood by screening bacteria for lipases and esterases, and fungi for laccases. Phenol 

red agar plates supplemented with 1% olive oil or tributyrin were ascertained to be the most 

favourable method of screening for lipolytic activity. Maximum lipolytic activity of the various 

enzymes was 45-61 U/ml at temperature and pH optima of 30-35°C and pH 4.0-5.0, 

respectively. pH influenced the substrate specificity of the enzymes tested. The majority of 

enzymes examined showed activity towards long aliphatic acyl chain substrates such as 

dodecanoate (C12), myristate (C14), palmitate (C16) and stearate (C18), indicating that they could 

be characterised as potential lipases. Prospective esterases with specificity towards acetate (C2), 

butyrate (C4) and valerate (C5) were also detected. Enzymes retained up to 95% activity at the 



vii 

optimal pH and temperature for 2-3 h. Fungal species isolated from the same Eucalyptus wood 

chip piles, were screened for laccase activity, reported to assist in the degradation of wood resin 

components and pitch formation. Laccase activity of up to 3.1 U/ml was observed in 

Paecilomyces formosus and Phialophora alba. These fungal isolates also demonstrated high 

substrate specificity towards dodecanoate at 35°C and 30°C, respectively. 

 

Furthermore, the genomic DNA of two isolates that were positive for lipolytic activity were 

used as templates for amplification of esterase genes. Enzymes were heterologously expressed 

and evaluated for their ability to degrade lipophilic compounds in pulp. Activity assays using 

partially purified enzymes from isolates and clones, and p-nitrophenyl esters as substrates, 

yielded high activities ranging from 60-148 Units/ml for a broad range of esters. Enzyme 

activity varied with substrates at different pH and temperature, and were generally higher than 

those reported in the literature. This study highlights the importance of determining substrate 

specificity of lipolytic enzymes at various pH and temperatures, as part of the characterization 

process. The influence of pH and temperature in relation to substrate specificity of enzymes is 

significant and is generally overlooked. Optimal enzyme activity was observed an acidic pH of 

4.0-5.0, moderate temperatures of 30-35°C, stability up to 3 h, and lipophilic compound 

reductions of 63% and 78% with recombinant acetyl esterase and carboxylesterase, 

respectively. This indicates that the enzymes are excellent candidates for treatment of wood 

resin components and pitch during pulping under the acidic conditions of acid-bisulphite 

pulping used to produce dissolving pulp.  

 

Response surface methodology (RSM) was used to determine the optimum combination of 

enzymes and various parameters such as dosage, pH, and reaction times for significant 

reduction in lipophilic content of pulp samples. Pyrolysis gas chromatography with mass 

spectrometry (Py-GC-MS) was conducted on the treated and untreated pulp samples to 

determine the profile of lipophilic extractives. Based on the RSM optimization, large laboratory 

scale pulping trials were performed and the quality of the treated pulp was evaluated. The 

application of the characterized enzymes to dissolved wood pulp resulted in dramatic 

differences in the lipophilic and lignin content of the pulp. The results showed that lower pH 

and dosage produced the greatest response in the reduction of lipophilic content. However, the 

reaction time did not affect the response. Reduction in lipophilic content was optimal in E. 

dunnii pulp at an enzyme dosage of 3 U/ml treated for 4 h at pH 4.0, whereas in E. grandis 

pulp, optimal treatment was at pH 5.0, for 4 h with an enzyme dosage of 6 U/ml. The enzymatic 
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pretreatment of pulp resulted in 8.4% reduction in kappa number of the pulp, showing 

significant delignification with the enzyme treatment applied. Increases in pulp viscosity were 

also observed, contributing to improvement of the pulp properties. This is the first report 

describing the combined application of lipases, esterases and laccases in the treatment of 

dissolving pulp for the reduction of wood resin components that contribute to the formation of 

pitch. Use of lipolytic-xylano-lignolytic combinations for future applications in the pulping 

industry will assist in making the process eco-friendly and economical. This treatment strategy 

could potentially improve the quality of pulp produced and mitigate the amount of chemicals 

currently being added to the dissolving pulp process to reduce wood resin components and the 

risk of pitch deposit formation and improve brightness of the pulp.  
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CHAPTER ONE 

 

INTRODUCTION 

___________________________________________________________________________ 

 

1.1 Introduction 

The forestry and forest products sector plays an important role in the South African economy 

providing a R3.8 billion turnover and livelihood support to 652 000 people of the country’s 

rural population (Sappi, 2017). Paper Manufacturers Association of South Africa (PAMSA) 

reported a contribution of R28 billion value-added to the economy annually for 2015 and a R5 

billion direct contribution to the balance of trade. The forestry-paper contribution to total South 

African GDP (Gross Domestic Product) was 0.5%, whilst the forestry-paper contribution to 

manufacturing GDP was 4.2% and the forestry-paper contribution to agricultural GDP was 

23.3%) (PAMSA, 2016). Hence, pulp and paper production is an important industry in South 

Africa and manufacture of dissolving wood pulp (DWP) is a major enterprise of this country. 

Indeed, South Africa is the world’s largest producer of dissolving pulp, producing 1.13 million 

tons per annum (tpa) and is expected to increase capacity by 100 000 tpa in 2017 (Sappi, 2017). 

Dissolving pulp is sold globally for use in textiles such as viscose fibres or rayon, and has a 

sustainable future as it originates from wood fibre grown in sustainably managed forests, 

compared to the fibres produced from limited sources such as fossil fuels. Products from 

dissolving pulp can be used in a wide range of applications such as; cigarette filters, fillers in 

fat-free yoghurt, tablets and washing powders, cellophane wrap, rheological modifiers in 

lipsticks, micro crystalline cellulose and ethers (Christov et al., 1998; Sappi, 2017). The 

continually growing DWP market means that there is an increasing demand for dissolving pulp, 

and global production is expected to double in the next 20 years (Lê et al., 2016).  

 

Since DWP is used in high end products, its manufacture requires extensive cleaning operations 

to ensure high purity of the product. As a result, efficient operation of mills is essential as any 

downtime in mill operations severely impedes production, resulting in millions of rands in 

revenue being lost every year. A major challenge in this industry is the formation of pitch 

caused by the release of lipophilic extractives (resins) from wood material during pulping. The 

resins can coalesce to form sticky black spots in the pulp (reducing quality) and accumulate in 
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machinery, causing interruptions and increased maintenance (del Rio et al., 2000; Gutiérrez et 

al., 2009).  

 

In addition, mills need to improve on the sustainability of the pulping process. Chemical 

pulping is a highly water intensive process, and the recycling of wastewater would be 

beneficial, especially since Eastern and Central South Africa are currently facing the worst 

drought since 1992 (South African Sugar Industry Directory, 2017). Based on the sustainability 

report from 2016, 88% of water utilized is returned to the environment or reused in the process. 

However, wood resins contaminate process waters and require removal before being fed back 

into the system so as not to compound the pitch problem (Sappi, 2016). By addressing this 

issue, the reuse of process water may be increased to 100%, creating a closed system with no 

wastewater generated and would reduce the amount of fresh water drawn by this industry. 

 

Lipophilic compounds responsible for pitch problems in the paper and pulp industry are fatty 

acids, fatty alcohols, resin acids, hydrocarbons, steroids, triterpenoids and triglycerides 

(Gutiérrez et al., 2010). The predominant compounds found in Eucalyptus dissolving pulp are 

sitosterol, ketositosterol and steroid ketone. Different lipophilic extractives may cause pitch 

problems along the entire pulping and bleaching process depending on factors such as type of 

wood material, chemical nature of the pitch and the pulping process used (Ekman and 

Holmbom, 2000; Gutiérrez et al., 2001). Currently, there are two processes implemented for 

the production of dissolving pulp, the sulphite and prehydrolysis kraft processes (Sixta, 2006), 

as illustrated in Figure 1.1. Both methods generate low pulp yield as the intent is to produce a 

high purity DWP that is comprised of mainly cellulose (>95% cellulose). Acid-sulphite pulping 

is used in up to 70% of the total world production of dissolving pulp. This pulping process 

allows for high recovery rates of inorganic cooking chemicals, higher reactivity of pulp, better 

bleachability and total chlorine free bleaching. However, this is at the cost of varied molecular 

weight distribution of cellulose and inflexibility of type of raw material used compared to kraft 

pulping (Christoffersson, 2005; Sixta, 2006). In addition, the prehydrolysis kraft process does 

not utilize the hemicellulosic by-products (Håkansson et al., 2005; Mendes et al., 2009), hence 

the sulphite method is preferred. The use of total chlorine-free methods are known to increase 

the severity of pitch problems due to the low reactivity of the bleaching agent with pulp lipids 

(Freire et al., 2006). Pitch deposit formation reduces production levels, increases operating and 

equipment maintenance costs and reduces quality of product (Bajpai, 1999).  
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Although wood resin occurs in low concentrations in wood, its adverse effects however, are 

quite extensive (Back and Allen, 2000). As a result, considerable amount of time, effort and 

money are spent to reduce the impact of the resin components and pitch deposits. Traditional 

methods of controlling pitch include seasoning of logs (storage of logs in the mill before 

pulping) and addition of substances such as alum (Hubbe, 2000), talc (Allen et al., 1993), ionic 

dispersants (McLean et al., 2011) and polymers (Maher et al., 2005) for the adsorption or 

dispersion of pitch particles. The drawbacks of applying these techniques are decreased pulp 

brightness and lower yield due to uncontrolled action of microbes during prolonged storage of 

logs, greater environmental pollution due to the addition of chemicals and higher cost (Bajpai, 

1999a). The application of enzymes offers an environmentally friendly and efficient alternative 

to chemical reagents and has moderate reaction conditions, non-destructive alterations to the 

polymer surface, and higher specificity in the removal of wood components responsible for 

pitch formation compared to microbial inoculation (Pallesen, 1996; Mai et al., 2004).  

 

Currently, a number of biocatalysts such as lipases, esterases, laccases, ligninases, and 

xylanases from both bacteria and fungi are being used in the pulp and paper industry to enhance 

specific biological reactions (McMillen, 1998; Periyasamy et al., 2017). McMillen (1998) 

patented a multi-enzymatic microbial biostimulant that overcame environmental limits on 

enzyme activity and improved the rate of activity, directing biological treatment to minimal 

stable levels, thus lowering the rate of sludge build-up, and removing filamentous bulking and 

unpleasant odours from effluent treatment plants (McMillen, 1998). However, there have been 

no investigations into identifying lipolytic enzymes from microorganisms indigenous to the 

wood material being pulped for use in control or reduction of wood resin components and pitch 

deposits, as well as the combined effect of such enzymes on Eucalyptus pulp, which is the 

major wood material used in the South African pulping industry (Meadows, 1999). Enzymatic 

hydrolysis is usually identified as a limitation factor in the biocatalytic process due to the 

excessive cost of commercial enzymes and/or low efficiencies. To address these issues three 

approaches are generally employed. To reduce the cost of hydrolysis, enzymes may be 

manufactured on-site, and used as crude extracts compared to purified commercial extracts 

(Falkoski et al., 2013). Genetic modification of microorganisms to heterologously produce 

specific enzymes is another approach frequently used to improve enzyme production. The third 

technique involves developing a more complete enzyme cocktail by combining enzyme 

extracts with complementing activities to achieve a more comprehensive hydrolysis selection 

for degradation of hemicelluloses, lignin and lipophilic extractive fractions (Hu et al., 2011). 
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An alternative option which has been overlooked would be the combination of crude enzyme 

extracts. This method has huge potential as no activities are eliminated during purification or 

concentration preparations. Combinations of crude enzyme extracts provides enzyme synergy, 

resulting in higher enzyme activities and consequently enhanced hydrolysis efficiencies 

(Gottschalk et al., 2010). This concept of enzyme synergy is exceptionally complex and 

potentially reliant on various factors such as substrate effect and experimental factors (Kostylev 

and Wilson, 2011; Visser et al., 2013). Combining enzyme extracts is usually developed by 

combining those which complement each other. In biomass processing there is a variation of 

this method known as the minimal enzyme cocktail concept which involves finding the 

minimal number, the minimal levels, and the optimal combination of the top performing key 

enzymes. There are two hypotheses behind this concept: i) the crude cellulolytic and/or xylan 

degrading enzyme preparations are not optimal for degradation of cellulose in pre-treated 

lignocellulosic biomass nor for degradation of heteroxylans in hemicellulose-rich product 

streams; ii) it would be viable to substitute crude multienzyme preparations with designed 

combinations of the minimal number of essential enzyme activities for biomass processing 

(Meyer et al., 2009). In the present study enzyme cocktails were developed by combining 

minimal amounts of crude cellulase-free enzyme extracts targeting lipophilic extracts as well 

as hemicelluloses and lignin fractions of Eucalyptus wood pulp. 
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Figure 1.1: A comparison of the pulping processes used for the production of dissolving pulp. Reproduced from Sappi (2017). https://cdn-

s3.sappi.com/s3fs-public/Sappi-FAQs-Dissolving-wood-pulp.pdf. 

Sulphite pulping process yields dissolving wood pulp 

Prehydrolysis Kraft (PHK) pulping yields 

dissolving wood pulp 

https://cdn-s3.sappi.com/s3fs-public/Sappi-FAQs-Dissolving-wood-pulp.pdf
https://cdn-s3.sappi.com/s3fs-public/Sappi-FAQs-Dissolving-wood-pulp.pdf
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1.2 Problem Statement 

Reduced production levels, higher operating and equipment maintenance costs and reduced 

product quality are some of the negative effects of pitch deposit formation in the pulp industry  

(Back and Allen, 2000; Gutiérrez et al., 2010). Due to the negative aspects of traditional 

methods (Bajpai, 2012a,b), the application of enzymes offers an environmentally friendly and 

efficient alternative to chemical reagents currently being used. In addition, enzymes have 

shorter treatment times and higher specificity in the removal of wood components compared 

to microbial inoculation. Previous studies have focussed on the application of individual 

enzymes for treatment of pitch (Farrell et al., 1993; Farrell et al., 1997; Bajpai, 1999a; Dubé, 

2008; Gutiérrez et al., 2010; Bajpai, 2012).  However, due to the complex nature of these 

deposits, this approach is not very effective.  For example, lipase will only target glycerides 

and not other pitch causing components such as sterols, fatty acids, etc.  A combination of 

lipolytic enzymes would be a more practical approach as it would target most of the pitch 

causing components that have diverse chemical structures. This is a novel aspect of the 

dissertation.  The effective treatment of pitch problems is only possible if the nature of the 

wood resin components that cause pitch deposits is understood. Profiling the lipophilic content 

of various Eucalyptus species will assist in the development of strategies for the efficient 

removal or control of pitch components.  The results will be used to develop a combination of 

lipolytic enzymes to target the compounds. 

 

1.3 General Aim of the Study 

This study aimed to investigate the potential of microflora, indigenous to Eucalyptus species, 

to produce enzymes that would assist in the removal of lipophilic extractives in DWP. The 

variation of lipophilic content in Eucalyptus species is an important consideration with regard 

to targeted treatment of wood resins and pitch deposits, as tree species and type of pulping 

process are known to influence the nature of the pitch deposits. Therefore, in this project, 

profiles of the lipophilic content of four major Eucalyptus species in South Africa were studied, 

as well as the chemical composition of their respective pulps. In addition, enzyme cocktails 

were developed using response surface methodology (RSM) for the efficient removal of pitch 

causing compounds. The effects of storage on Eucalyptus species wood material were also 

investigated.  

 

Metagenomics was initially used as a primary tool to determine the spectrum of lipophilic 

enzymes present in the bacterial metagenome isolated from the wood chips of the Eucalyptus 
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species. Ideally, identification of substrate specific lipophilic enzymes would have enabled the 

development of a recombinant bacterial strain capable of producing enzymes that target pitch-

causing compounds. The direct application of these enzymes to the pulping process, would 

circumvent the issue of pitch deposit formation. This study encompassed techniques currently 

applied in this area of research in chemistry, however, the microbiological aspect of evaluating 

indigenous microflora of Eucalyptus wood species appears to be novel. This study also aims to 

identify key lipases and esterases involved in the degradation of wood resin components and 

pitch deposits. 

 

1.3.1 Specific objectives and aims 

The following specific objectives were set to achieve the general aim of the study: 

1. To mine a bacterial metagenome and laboratory culture collection, both obtained from 

commercial Eucalyptus wood chip piles, for lipolytic enzymes using selected gene sequences 

and screening techniques, respectively.  

 The BLAST program (NCBI) was used to search for applicable enzymes and the 

metagenome sequenced from the wood chip piles was mined for specific lipolytic 

enzymes using CLC-Bio. SEQ MATCH TOOL was used to compare sequences with 

the Ribosomal Data Base Project and sequences in GenBank.  

 

2. To clone enzyme genes into appropriate hosts for expression and to characterize recombinant 

enzymes.  

 Enzyme specific primers were designed and synthesized based on sequences obtained. 

Primers were used to amplify genes encoding for the specific enzymes from the 

metagenome and pure isolates selected from culture collection. Amplified genes were 

cloned and expressed in an appropriate host.  

 

3. To determine baseline lipophilic profiles of four major Eucalyptus species and identify the 

major contributors to pitch formation.  

 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) was used evaluate 

lipophilic content. The effects of storage on lipophilic content of the wood was also 

investigated. 
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4. To determine the effects of various combinations of enzymes on the lipophilic content of 

pulp using Py-GC-MS and Response Surface Methodology (RSM).  

 Statistical analyses of the model were assessed and optimized conditions were then 

applied for large scale trials to validate the model.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

 

2.1. Eucalyptus species in South Africa and Internationally 

Eucalypts are an essential supply of material for the South African pulp and paper industry as 

well as other countries such as Brazil, South-Western Europe, Japan and South America. 

Eucalyptus is the most valuable and most extensively planted variety of plantation forest tree 

species in the world (>20 million ha) due to its extremely fast growth rate (average annual 

growth rates up to 100 m3/ha/year), broad adaptability, good form and excellent wood and fibre 

properties. Eucalypts are also recognized as fast-growing, short-rotation, renewable biomass 

crops for energy production (Myburg et al., 2006). The predominant Eucalyptus species are: 

E. dunnii, E. nitens, E. fastigata, E. grandis, E. microcorys, E. macarthurii, E. saligna, E. 

smithii, and E. viminalis as well as a number of hybrids such as E. urophylla, E. tereticornis, 

and E. camaldulensis. The introduction of Eucalyptus species into South Africa did not occur 

in vast numbers as it did in Brazil and Europe. However, the breeding of eucalypts for industrial 

plantations advanced quickly in South Africa as well as Brazil, Portugal and Chile (Grattapaglia 

and Kirst, 2008). E. grandis, E. dunnii, E. saligna, E. smithii, E. tereticornis, E. nitens and E. 

europhylla species are commonly utilized by the South African pulp and paper industry. 

Virtually all pulping mills utilize a mixture of wood species, despite generally available 

advanced forest technology in the country (Foelkel, 2008). The genetic differences amongst 

these Eucalyptus species gives rise to variations in the resistance and hardiness of these trees. 

E. grandis and its hybrids, tailored to areas lower than 1400 metres altitude, are the greatest 

valued genetic material in the South-African silviculture. Above this altitude species more 

tolerant of cold or frost such as E. dunnii, E. nitens, and E. macarthurii, are grown (Foelkel, 

2008). 

 
2.2. Wood Characteristics of Eucalyptus Species 

The major hardwood species grown in South African plantation forests include: E. dunnii, E. 

grandis, E. nitens, E. smithii and a range of hybrids, as well as wattle (Acacia mearnsii). 

Recently, E. dunnii has become more popular globally because of its high wood density, 

adaptability to a range of site conditions, naturally good form, and tolerance to pests and 
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diseases in temperate planting regions (Sappi, 2012). This species is characterized as mildly 

drought tolerant, but susceptible to wind, frost and snow damage. It is suited to sites in the 

summer rainfall regions of South Africa with average temperatures higher than 15.5°C and 

average annual rainfall in the range 822-925 mm for optimum growth. Sappi, the largest pulp 

manufacturer in South Africa, has a breeding programme with probably one of the most 

extensive collections of E. dunnii material, comprising more than 700 individual families from 

20 different regions in Australia. This priceless resource gives Sappi breeders the genetic 

freedom to determine the most appropriate material for end-uses of pulp in terms of growth 

and fibre properties. This gene pool also permits for some protection against pests and diseases 

that could challenge the species in the future (Sappi, 2012). Species of Eucalyptus are selected 

for pulping based on the pulping process to be implemented and the end products generated 

(Foelkel, 2007). 

 
2.3. Pulping Process: Kraft vs. Acid-Bisulphite Pulping 

Wood materials used in the production of pulp are comprised of four key components: cellulose 

fibres (essential for paper production); hemicelluloses (shorter branched carbohydrate 

polymers); lignin (glues cellulose fibres together); and wood resin (lipophilic extractives) or 

pitch deposits. Dissolving pulp is considered to be a low-yield chemical pulp with low 

hemicellulose and lignin content and high cellulose content (Kumar and Christopher, 2017). It 

is used in the manufacturing of cellulosic materials such as acetates, cellophane, rayon, 

cellulose ethers and esters, graft and cross-linked derivatives (Kumar and Christopher, 2017; 

Sappi, 2017). The manufacturing entails derivatization and solubilization of highly purified 

cellulose. Dissolving wood pulp (DWP) is produced via acid pulping of wood; however, the 

process is plagued with problems due to residual hemicellulose and wood resin compounds in 

pulp. Thus residual hemicelluloses and wood resin compounds are problematic issues in the 

manufacture of DWP. These problems can be addressed by pulping under alkaline conditions 

as in the pre-hydrolysis kraft process (Sithole and Allen, 2002), during which, hemicelluloses 

are removed by pre-treatment of the wood chips with water at high-temperatures. The wood 

chips are then subjected to kraft pulping under alkaline conditions for removal of lignin and 

wood resin components. The resulting pulp is then bleached to produce relatively pure cellulose 

similar to DWP. During downstream processing of dissolving pulp, hemicelluloses such as 

xylans, can accumulate on the cellulose micro-fibrils so causing operational and quality issues, 

and thus need to be removed in the pulping process (Sixta, 2006). Also, hemicellulosic 
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contaminants trigger colour and haze in the product. High caustic loadings and specific pulping 

conditions are used for their removal, the latter is restricted to sulphite pulping and the former 

to acid-pretreated kraft pulping. Hemicelluloses removed from this process are a beneficial 

source of hexose and pentose sugars (Amidon et al., 2008; Chambost et al., 2008; Amidon et 

al., 2009; Canilha et al., 2012), that can be converted into valuable products such as polymers, 

ethanol, and other chemicals (van Heiningen et al., 2005). This pre-hydrolysis kraft dissolving 

pulp production process therefore naturally fits into the forest bio-refinery concept. 

 
Paice and Jurasek (1984) first proposed the use of xylanase for purifying cellulose. It was 

reported that complete enzymatic hydrolysis of hemicelluloses within the pulp is complex. 

Even with very high enzyme loading, only a moderately small amount of xylan could be 

removed (Verardi et al., 2012; Álvarez et al., 2016). However, in the last 30 years 

hemicellulose removal from lignocellulosic material has greatly improved (Valls et al., 2010; 

Bajpai, 2011; Martín-Sampedro et al., 2012; Leu and Zhu, 2013; Hutterer et al., 2017; Zhao et 

al., 2017; Cebreiros et al., 2017). Even with these advances, complete removal of residual 

hemicelluloses seems impossible, possibly due to the inaccessible sites of the substrate. 

Nonetheless, xylanase treatment may facilitate xylanase extraction from kraft pulps or reduce 

the chemical loading required during the caustic extraction. 

 
2.4. Pitch Composition and Formation 

Pitch, also known as wood resin or lipophilic extractives, accounts for only about 0.5-5% of 

wood material, and varies with wood species. However, pitch causes production and 

runnability problems, the impact of which far exceeds their concentrations in the wood (Back 

and Allen, 2000). Additionally, the extractives also contribute to environmental pollution and 

complicated waste remediation (Kontkanen et al., 2004; Wang and Jiang, 2006). These 

extractives are a collection of diverse substances with unpredictable chemical behaviour which, 

in theory, may be arranged into two main groups; lipophilic and hydrophilic, based on their 

hydrophobicity and solubility in mill process waters (Nguyen, 2006). Several compounds have 

been identified as the major contributors of pitch, including triglycerides, waxes, steryl esters 

and fatty acids (Gutiérrez et al., 1999; del Río et al., 2000; Gutiérrez et al., 2001; Freire et al., 

2005; Valto, 2011) with triglycerides being the most problematic (Back and Allen, 2000). Pitch 

is released during the pulping process. As wood is pulped, the lipophilic extractives in the 

parenchyma cells and softwood resin canals are released, forming colloidal pitch (Sjöström, 
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1993). These colloidal particles can coalesce into larger droplets that deposit on pulp or 

equipment, forming the so-called pitch deposits, or may remain suspended in the process waters 

(Hubbe et al., 2006). 

 
Various softwood, hardwood and non-woody species are used as raw material in the pulp and 

paper industry. Wood extractive composition may differ depending on tree species and age, 

season of harvesting and other genetic and environmental elements (Back and Allen, 2000). 

The resin components of softwoods, such as Norway spruce (Picea abies) and Scots pine (Pinus 

sylvestris), are typically represented by triglycerides, resin acids, fatty acids and steroids which 

are frequently linked to pitch formation (Table 2.1) (Ekman and Holmbom, 2000, Kontkanen, 

2006). Lipophilic profiles of soft- and hardwoods vary considerably, with different initiators of 

pitch deposits (Allen, 1988; Breuil et al., 1997; Sithole et al., 2013). 

 
Due to the increasing use of fast-growing Eucalyptus species by the paper and pulp industry, 

recent information on the composition of lipophilic extractives has come from this hardwood. 

Table 2.1 highlights the variable nature of pitch amongst Eucalyptus species. Careful 

consideration needs to be taken when pulping various species of Eucalyptus to avoid combining 

those with high lipophilic extractive content which could lead to pitch formation. Pitch is 

generated from pulp fibres at different points of the process particularly when there is a change 

of pH and/or temperature (Bajpai, 1999; Dai and Ni, 2010). Tackiness of pitch deposits is 

generally attributed to chemical and physical characteristics associated with the pitch 

compounds. These qualities are influenced by pH (Strand et al., 2011), temperature, calcium, 

magnesium, resins and oils (Berglund, 2012). 



 

 

Table 2.1: Composition (mg/g) of lipophilic extractives from pine, spruce, birch, poplar and various eucalypt wood (Gutiérrez and del Rio, 2001; 

Rencoret et al., 2007). 

 

Softwoods    Hardwoods    

 Pinus 
sylvestris 

Picea 
abies 

Betula 
verrucosa 

Populus 
tremula 

Eucalyptus 
globulus 

Eucalyptus 
globules 

Eucalyptus 
nitens 

Eucalyptus 
maidenii 

Eucalyptus 
grandis 

Eucalyptus 
dunnii 

Free fatty acids 1.73 0.78 - 1.06 0.28 0.33 0.45 0.21 0.32 0.44 

Resin acids 6.65 2.85 0 0 0 0 0 0 0 0 

Hydrocarbons 0.74 0.19 0.40 1.14 0.17 31.3 30.5 22.2 19.4 26.6 

Waxes or sterol esters 0.83 0.87 1.96 3.07 0.57 0.25 0.83 0.43 0.21 0.29 

Monoglycerides 0.18 0.55 2.24 1.18 0.02 0.12 0.12 0.05 0.059 0.067 

Diglycerides 0.32 0.55 1.72 0.58 0.02 - - - - - 

Triglycerides 8.74 1.94 8.10 10.37 0.13 11.2 21.0 38.1 15.7 28.0 

Higher alcohols or sterols 1.39 1.00 1.56 2.40 0.68 0.27 0.54 0.36 0.36 0.27 

Oxidized compounds 0.43 1.36 2.94 1.53 0.22 - - - - - 

 

 

The technique used in this study for the characterization of the extractive content of wood and pulp was Pyrolysis-Gas Chromatography 

and Mass Spectoscopy (py-GC-MS). The use of py-GC-MS is very useful in tracing the origin of deposits. A detailed review on Py-GC/MS 

and its applications in analysis and characterization of pitch components is available (Sithole, 2000). Several studies have successfully 

implemented the use of py-GC-MS to evaluate the nature of pitch deposits in pulp (del Río et al., 2000; Gutiérrez and del Río, 2005; Sithole 

and Watanabe, 2013; Melo et al., 2017). 
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2.5. Traditional Methods to Control Pitch 

Traditionally, logs were debarked (or chipped) and stored for prolonged periods of outdoor 

storage before pulping (known as seasoning), to naturally reduce wood resins and pitch deposits 

(Allen and Ouellet, 2007). Storage reduces the extractives content due to their hydrolytic or 

oxidative conversion by plant enzymes and the activity of indigenous microflora. These natural 

reactions have been researched in many wood species such as eucalypt, pine, spruce, aspen and 

birch (Ekman, 2000; Silvério et al., 2008). Drawbacks of seasoning include high expense, 

reduced pulp brightness and yield caused by uncontrolled growth and action of indigenous 

microorganisms. As a result, commercial mills may not incorporate or extend a period of 

seasoning. Chemical approaches became popular in the early 1990’s and involved adsorption 

or distribution of pitch elements by the addition of talc, alum, cationic polymers, ionic or non-

ionic dispersants, and other varieties of additives (Rojas and Hubbe, 2004). 

 
2.6. Biological Control Methods 

As an alternative to conventional natural methods, biological man-made strategies can be used 

to expedite and control wood seasoning. Accumulation of wood extractives can be managed 

with enzymes or microorganisms to reduce the risk of pitch formation to a satisfactory level 

(Fischer and Messner, 1992; Fujita et al., 1992; Bajpai, 1999; Ramos et al., 1999; Gutiérrez et 

al., 2006; Bajpai, 2011). This strategy reduces defects on paper as well as the frequency of 

cleaning pitch deposits in the paper machine. At the same time, it also offers other advantages, 

such as an eco-friendly and nontoxic technology, improved pulp and paper quality, reduction 

in bleaching chemical consumption, reduction of effluent load, and space and cost saving in a 

mill wood yard by using unseasoned logs. By reducing the outside storage time of logs, this 

method reduces wood discoloration, wood yield loss, and the natural wood degradation which 

occurs over longer storage time (Bajpai, 2011). 

 
2.6.1 Microorganisms for removal of pitch components 

Several studies have examined the deresination of wood by treatment of wood chips with a 

fungus capable of metabolizing lipophilic wood extractives (Blanchette et al., 1992; Brush et 

al., 1994; Su et al., 2011; Bajpai, 2012). This technique reduces extractive levels and shortens 

the seasoning period for fresh wood species such as, southern yellow pine (Brush et al., 1994), 

lodgepole pine (Chen et al., 1994), and aspen (Rocheleau et al., 1999). Ophiostoma species are 

reportedly useful in metabolizing wood extractives. This fungus is a saprophyte that 
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proliferates through parenchyma cells, tracheids, and resin ducts, metabolizing available 

nutrients such as sugars and lipophilic extractives. Cartapip 97 is a colourless strain of 

Ophiostoma piliferum, which was developed for the treatment of aspen wood chips to control 

seasoning (Hoffman et al., 1992). It degrades extractives and inhibits the growth of other 

microorganisms on the wood chips if applied to fresh chips (Josefsson et al., 2006). Treatment 

with Cartapip was successful in deresinating fresh aspen chips (Rocheleau et al., 1999). 

Concerns were raised as to the ability of Cartapip to grow on wood chips prepared from aged 

logs, as wood sometimes remains at the felling site for longer periods of time before reaching 

the pulping mill. Even though it is generally used for pines, Cartapip is capable of reducing 

resins in wood with high and low extractive content. Up to 50% of eucalypt extractives may be 

eliminated by using Cartapip, however, it does not reduce the amount of pitch as the compounds 

responsible for the pitch (a fraction of the extractives) are not effectively degraded (Gutiérrez et 

al., 2001). Other fungi have shown potential to degrade considerable amounts of pitch 

(Gutiérrez et al., 2011). Fischer and colleagues proposed C. subvermispora to be the best 

biopulping fungus which removed as much as 30% of the extractives compared to the control 

(Fischer et al., 1994). Concurrently Farrell and colleagues treated wood chips with fungal 

spores to promote the seasoning of wood; theirs was the first report of wood pre-treatment to 

control pitch (Farrell et al., 1997). Application of microorganisms may be a better strategy than 

conventional seasoning of wood, but it does have its disadvantages, such as; decrease in yield 

and brightness, lower efficiency in winter (temperature too low for growth of organism), long 

storage time, large area required for pre-treatment and the potential health threat due to airborne 

fungal spores (Farrell et al., 1997). 

 
2.6.2 Enzymes for pitch removal 

Enzyme catalyzed pitch reduction is an exceptionally effective biotechnological method (Irie 

and Hata, 1990; Fujita et al., 1992; Jegannathan and Nielsen, 2013). Numerous benefits arising 

from this include: (i) the reduction of paper defects, (ii) eco-friendly and non-toxic technology, 

(iii) reduction in chemicals used in bleaching, (iv) enhanced pulp and paper quality, (v) 

reduction of effluent load, and (vi) economic use of space and expenses in a commercial wood 

yard by utilizing logs that have not been seasoned. Reduction in outdoor storage of logs reduces 

wood yield loss, wood discoloration, and wood degradation by indigenous microorganisms 

occurring over longer storage periods (Bajpai, 2011). 
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In the past, the application of enzymes was not thought to be technically or economically 

practical in the pulp and paper industry. This was mainly because there were no appropriate 

enzymes easily accessible, except for restricted application in starch modification for paper 

coatings (Cui, 2005). A focussed effort by scientific institutions and enzyme manufacturers, 

targeting the development of industrially relevant enzymes, has meant that the application of 

enzymes to promote bioprocessing in pulp and paper manufacturing has developed 

exponentially since the mid 1980’s (Bajpai, 1999; Lin, 2014). 

 
Consideration of enzyme application for the control of wood resins and pitch in pulp and paper 

manufacturing began in Japan in the 1980’s. Red pine wood was an essential material for 

groundwood pulp in Japan. It was used in the production of newsprint and light-weight papers. 

However, this type of pulp had a high amount of pitch. To gain a better understanding of pitch, 

research was carried out by Irie and Hata (1990) who discovered that pitch was triggered by 

triglycerides in the resinous material of the wood material. They then went on to develop the 

first lipase enzyme from Candida cylindracea for the control of pitch. By the early 1990’s this 

technique was routinely applied in commercial pulping processes, and was the first case in 

history to apply an enzyme directly to the pulping process (Fujita et al., 1992; Fujita et al., 

1991). 

 
Nippon Paper Industries (Japan) established a pitch management technique that utilizes a lipase 

from Candida rugosa capable of hydrolysing 90% of the wood triglycerides (Sharma et al., 

2001). Research continued in supplementary mill trials with the application of an enhanced 

lipase formula marketed by Novozymes (Bagsvaaerd, Denmark, previously known as Novo 

Nordisk) under the trademark Resinase®, a lipase (recombinant) expressed in Aspergillus 

oryzae (Fujita et al., 1992; Fujita et al., 1991; Sarmiento et al., 2015). Resinase® applied to pine 

(Pinus densiflora) mechanical pulp, hydrolysed approximately 95% of the triglycerides 

present. Furthermore, Resinase® decreased the amount of pitch deposits, the quantity of holes 

and spots in paper, facilitated decreases in the dosage of talc to manage pitch and enabled the 

use of greater quantities of fresh wood (Gutiérrez et al., 2001). 

 
The potential application of a characterized sterol esterase from the saprophytic fungus 

Ophiostoma piceae (Calero-Rueda et al., 2002b) in pitch control during pulp manufacturing 

has been examined and patented for its ability to hydrolyse triglycerides and sterol esters 
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(Calero-Rueda et al., 2002a; 2004). The activity of sterol esterases is restricted to substrates 

such as sterol esters and glycerides, and they are incapable of degrading other extractives that 

make up pitch (Gutiérrez et al., 2001). Resinase A 2X, manufactured by Novozymes, is a 

commercially available recombinant lipase expressed in Aspergillus oryzae (Gutiérrez et al., 

2001). It is capable of hydrolysing approximately 95% of the triglycerides in the mechanical 

pulp of pine wood (Pinus densiflora). A variant of Resinase A 2X called Resinase HT has an 

optimum temperature range of 70-85°C, and is employed in mills in China, Japan, the USA, 

Canada and other countries in the Far East (Gutiérrez et al., 2009). 

 
In the following years, numerous commercial pulp and paper mills in China and Japan have 

established lipase-based pitch management methods in mechanical pulping while pilot-scale 

experiments for pitch management in softwood sulphite pulp utilizing Resinase® in Europe 

have yielded favourable results (Hata et al., 1996; Sarmiento et al., 2015). More recently other 

commercial lipases, for instance Lipidase 10000 (American Lab. Inc.), Candida and 

Aspergillus lipases, have been explored for their potential in pitch management (Romo- 

Sanchez et al., 2010; Singh and Mukhopadhyay, 2012). These lipases were able to hydrolyse 

triglycerides efficiently. However, only partial hydrolysis of steryl esters was achieved (Viikari 

and Lantto, 2002; Vaquero et al., 2015a). 

 
While application of lipase enzymes in the reduction of pitch may be valuable, the activity of 

these enzymes is limited to triglycerides and they do not assist in the breakdown of other 

extractives that contribute to pitch formation (Dubé et al., 2008). Lipases hydrolyse 

triglycerides to free fatty acids and glycerol. Glycerol is water-soluble and therefore poses no 

threat. Free fatty acids however, precipitate at temperatures below their melting points, causing 

deposits on paper and blockages of pipes (Sithole and Allen, 2002). Fatty acids are also 

dependent on pH as well as chain length and number of double bonds. At high pH levels, they 

are surface active and act as soaps (Strand et al., 2011). 

 
Hence, enzymes operating on a wider variety of substrates are being considered, and assorted 

populations of organisms are being screened for novel enzymes. Sterol esterases are a less 

popular group of hydrolases, and have potential application in pitch management as sterol 

esters are frequently at the source of pitch deposits, due to their elevated tackiness and 

challenges in kraft pulping (Calero-Rueda et al., 2002a; Kontkanen, 2006). Esterases are also 
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used in the control of ‘stickies’, which are formed during the processing of recycled paper. The 

glue, adhesives, binders and coatings in the paper aggregate, causing paper tears and holes 

which reduces the quality of the final product and causes obstruction of machinery (Patrick, 

2004; Sarja, 2007; Bajpai, 2011). Traditional removal of pitch deposits involves chemical and 

mechanical cleaning of machinery which requires electricity, steam and solvent expenditures. 

A major component of ‘stickies’ is polyvinyl acetate (PVAc). Application of an esterase would 

assist in controlling ‘stickies’ by hydrolyzing the PVAc to a less adhesive alcohol form which 

is simpler to suspend in water (Hubbe et al., 2006). This would reduce energy utilized during 

recurring production breaks and solvent use, thus saving on energy and solvents (Jones, 2005; 

Skals et al., 2008). 

 
On the other hand, the application of esterases alone is not sufficient to reduce wood resins or 

control pitch deposits. Esterases enhance the level of carboxylic acid groups in the tacky 

substance, therefore, esterases combined with highly charged cationic polymers may assist in 

achieving the desired results (Hubbe et al., 2006). Other considerations for the application of 

enzymes include the properties of the enzyme (e.g. pH and temperature range) and deciding at 

which stage of the pulping process they should be added for greatest effect. Every enzyme has 

a specific range of pH and temperature requirements for maximal activity. Therefore the 

parameters of a particular stage in a process needs to be considered when selecting enzymes 

for use in pulp and paper production. 

 
There is a range of pulp and papermaking processes currently being used worldwide. The main 

ones involve mechanical, chemical, and recycled pulping. Mechanical pulping entails 

mechanical treatment of wood to effect fibre separation. Thermomechanical pulping used to be 

a popular choice in the pulping industry and involved producing wood pulp from pre-steaming 

wood chips at temperatures of about 125°C. However, further research revealed that refining 

at this temperature exceeded the glass transition point of lignin (above this point lignin fibres 

become hardened and resistant to further breakdown during subsequent refining) which had 

negative effects on the quality of pulp (Roffael et al., 2001). In addition, mechanical pulping is 

was reported to only slightly affect the composition of extractives (Gutiérrez et al., 2009). 

 
Chemical pulping on the other hand is able to saponify triglycerides, whereas sterol and 

triterpenol esters are much less affected (Gutiérrez et al., 2001). Chemical pulping can be done 
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by sulphate (kraft) and sulphite pulping. Sulphite pulping is carried out at 130-140°C (retention 

time of 6-8 h) under acidic conditions (pH range of 1.5 to 5.0), which is the cause of their higher 

extractives content compared to kraft pulps. The predominant lipophilic extractives in sulphite 

processes are fatty acids, glycerides and sterols (Sithole et al., 2010). Although some 

triglycerides are hydrolyzed to glycerol and free fatty acids, no saponification occurs as with 

kraft pulp because of the very weak acidic conditions in the process. The unchanged fatty and 

resin acids are insoluble under acidic conditions. Since many parenchyma cells remain intact 

during the process, more triglycerides and sterol esters are passed along in the pulp with the 

potential to cause serious pitch problems (Young and Akhtar, 1998). Kraft pulping is an 

alkaline process and is performed at 170°C (retention time of 3-4 h) and pH of 13.0-14.0 

(Colodette et al., 2002). Mild chemical cooking can also be done in the neutral semi-sulphite 

chemical pulping (NSSC) process that occurs under neutral conditions. During kraft pulping 

the polymerized aliphatic hydrocarbons found are primarily unsaturated fatty acids and 

alcohols that undergo condensation reactions. A study found that the more double bonds the 

hydrocarbons had, the faster the condensation reactions took place (Ohtani and Shigemoto, 

1991). Fatty acids were also polymerised faster than fatty alcohols. Such extensive 

polymerisation of aliphatic hydrocarbons are not soluble in organic solvents (Scheepers, 2000). 

Generally, sodium salts of wood resin are harmless in kraft systems due to their high solubility, 

however, high ionic concentrations of these salts radically reduces their solubility. Studies have 

shown that 0.75 mmol/L of NaCl results in the insolubility of sodium soaps of oleic and abietic 

acids, resulting a new variety of deposition (Sithole and Allen, 2002). Recycled pulps are 

produced by re-pulping of mechanical or chemical papers. Mechanical, sulphite, and recycled 

(mechanical) pulps contain significant amounts of lipophilic extractives as they are made under 

non-alkaline conditions that do not facilitate removal of the extractives (Marques et al., 2010). 

 
Enzymes that would be considered for application in these pulping processes would be either 

acidophilic or alkalophilic and thermophilic. Mirza and colleagues (2006) evaluated the effect 

of a lipase (Buzyme 2517) on extractive composition in a Themo-mechanical pulping process 

(TMP). The lipase was applied at the removal of the disc filter moving into the TMP storage 

tank where it remained for 8-12 h at a temperature of 65°C. A 45-53% reduction in triglycerides 

in the TMP mainline was observed, however, reduction in triglyceride levels was only detected 

12 h after the enzyme treatment began (Mirza et al., 2006). 
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Noteworthy bacterial lipase producers include Bacillus, Pseudomonas, and Burkholderia, 

whilst Aspergillus, Penicillium, Rhizopus and Candida represent the fungal producers (Singh 

and Mukhopadhyay, 2012; Gupta et al., 2004). Bacterial lipases usually have an optimum 

temperature range of 30 to 60°C (Canet et al., 2016), however, there have been reports of 

lipases with both lower and higher optima (Latip et al., 2016). Amongst bacteria, thermophilic 

Pseudomonas spp. produce lipases which are stable at 70°C (Royter et al., 2009; Devi et al., 

2015). Other bacteria producing thermostable lipases include Bacillus pumilus, Burkholderia 

multivorans, Geobacillus sp., B. stearothermophilus, and Thermoanaerobacter 

thermohydrosulfuricus and Chromobacterium viscosum (Li and Zhang, 2005; Gupta et al., 

2007; Antranikian, 2008; Ahmed et al., 2010; Chaiyaso et al., 2012). Lipases produced by 

Aspergillus niger and Rhizopus japonicas and are stable at 50°C and the thermotolerant fungus 

Humicola lanuginosa secretes a lipase stable at 60°C (Kreilgaard et al., 1999; Osman et al., 

2014). The production of thermophilic lipolytic enzymes from extremophiles such as Bacillus 

thermoleovorans (Castro-Ochoa et al., 2005), Thermus thermophiles (Dominguez et al., 2005) 

and Geobacillus sp. (Li and Zhang, 2005) is therefore not surprising. Ikeda and Clark (1998) 

cloned the Pyrococcus furiosus esterase gene in E. coli and the expressed enzyme was found 

to be thermostable with a half-life of 50 min at 126°C and thermoactive with an optimum 

temperature of 100°C. Generally lipases have a broad pH range of 4.0-11.0, with a high activity 

range of 5.0-9.0 and maximum activity between pH 6.0 and 8.0 (Gupta et al., 2004). Lipases 

from A. niger, R. japonicas and C. viscosum however, are active at low pH levels and P. 

nitroreductans and Pseudomonas spp. produce lipases functional at pH 11.0 (Mehta et al., 

2017). 

 
In the past decade, the application of laccases together with compounds operating as redox 

mediators has become popular in bleaching of various wood pulps and in recent times has been 

successfully applied for the reduction of lipophilic compounds at different steps of the pulping 

process, irrespective of the type of process, wood material or nature of the extractives present 

(Gutiérrez et al., 2006; Grönqvist, 2014; Fillat et al., 2017). Lignin-derived phenols can also 

function as laccase mediators in the reduction of lipophilic extractives in paper pulp. Gutiérrez 

et al. (2006) treated unbleached kraft pulp with laccases and obtained over 90% removal of 

conjugated and free sitosterol with syringaldehyde as laccase mediator. Pycnoporus 

cinnabarinus was reported to be effective in eliminating conjugated and free sterols from 



24  

Eucalypt kraft pulp, as well as sterols, resin acids and triglycerides from spruce (Molina et al., 

2008). 

 
For efficient reduction of pitch deposits, the lipophilic extractives at the source of pitch 

formation need to be determined. Once this has been established, targeted degradation of the 

lipophilic compounds may be achieved with specific enzymes. Therefore, for the development 

of targeted approaches to prevent pitch formation, a detailed understanding of enzyme substrate 

specificity is required. Lipases and esterases are the two key lipolytic enzymes used for the 

treatment of wood resin components and pitch deposits (Toktay, 2004). In the next section 

various lipolytic families are reviewed and their differences highlighted, followed by an 

examination of their functioning and potential applications of lipases and esterases. 

 
2.7. Lipolytic Enzyme Families 

The three-dimensional configuration of esterases and lipases displays the characteristic α/β- 

hydrolase fold (Martínez-Martínez et al., 2013) and a stable order of α-helices and β-sheets. 

Bacterial lipolytic enzymes are classified into eight families (Families I – VIII) based on 

variances in their amino-acid sequences and biological characteristics (Cavazzini et al., 2017). 

Of the eight different lipolytic families, Family I (‘true’ lipases- interfacial activation and 

presence of a lid is characteristic of this family) is the largest and is further divided into six 

subfamilies. Carboxyl esterases along with various other lipases are grouped into the other 

seven families, e.g. Family II (also called GDSL [sequence motif] family), Family III, Family 

IV (also called HSL [hormone sensitive lipase] family), Family V, Family VI, Family VII, and 

Family VIII (Lee, 2016). 

 
2.7.1 Lipolytic Family I 

Lipolytic family I is the most prevalent family and is divided into seven subfamilies, with an 

estimated total of 27 members. Lipases of this family share a Gly-Xaa-Ser-Xaa-Gly consensus 

sequence (Messaoudi et al., 2010). Family I include the ‘true’ lipases, e.g. lipases produced by 

Gram-negative Pseudomonas and Gram-positive bacteria, such as Bacillus, 

Propionibacterium, Staphylococcus and Streptomyces (Arpigny and Jeager, 1999). The 

expression of active lipases belonging to subfamilies I.1 and I.2 is dependent on a chaperone 

protein called lipase-specific foldase (Lif). Two aspartic residues are implicated in the Ca- 

binding site found at homologous positions in all sequences and the two cysteine residues 
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forming a disulphide bridge are conserved in most sequences. These four residues are believed 

to be important in stabilizing the active site of these enzymes (Kim et al. 1994). An example 

of such a lipase (LipC12) (Ogierman et al. 1997) belongs to family I.1, which has a chaperone- 

independent folding, is calcium ion dependent and has no disulphide bridges. LipC12 is stable 

between pH 6.0 to 11.0 and is active from pH 4.5 to 10.0, with higher activity in the alkaline 

pH range. Stability is observed up to 3.7 M NaCl environments and temperatures ranging from 

20 to 50°C, with highest activity at 30°C over a 1-hour incubation period. The purified enzyme 

had specific activities of 1767 U/mg and 1722 U/mg with pig fat and olive oil, respectively 

(Glogauer et al., 2011). 

 
Bacillus lipases are generally classified under two subfamilies, I.4 and I.5 (Messaoudi et al., 

2010). Several Bacillus lipases are known to have a common alanine residue that replaces the 

first glycine in the conserved pentapeptide: Ala-Xaa-Ser-Xaa-Gly. However, Bacillus pumilus, 

Bacillus subtilis and Bacillus licheniformis lipases from the I.4 subfamily are the smallest true 

lipases (approx. 19-20 kDa) and they share minimal similarity at the amino acid level (approx. 

15%) with the other Bacillus and Staphylococcus lipases (Arpigny and Jaeger, 1999). 

Temperatures above 45ºC result in decreased activities for subfamily I.4 lipases, however, they 

display high activity at basic pH (between 9.5 and 12.0) (Guncheva and Zhiryakova, 2011). 

Some exceptions include the lipases of Bacillus thermocatenulatus which have a molecular 

mass of about 43 kDa and display maximal activity at approx. 65°C and pH 9.0 (Carrasco- 

Lopez et al., 2009). Another Bacillus sp. known as B. stearothermophilus, also produces a 

lipase with a molecular mass of 67 kDa and optimal activity at pH 11.0 and 55ºC (Bacha et al. 

2015). Massadeh and Sabra (2011) reported maximal lipase activity of 90.57 U/ml from B. 

stearothermophilus at 45°C and pH 8.0. Other examples of lipases in this family are produced 

by staphylococcal isolates. They produce larger lipases than Bacillus sp. (approx. 75 kDa) that 

are secreted as precursors and cleaved in the extracellular medium by a specific protease, 

generating a protein of approximately 400 residues. The pro-peptide (207±267 residues) 

seemingly operates as an intramolecular chaperone and assists in translocation of the lipase 

across the cell membrane (Priji et al., 2016). 

 
2.7.2 Lipolytic Family II 

Lipolytic family II has five members that have been characterized and reported. Enzymes 

categorized as Family II do not demonstrate the usual pentapeptide (Gly-Xaa-Ser-Xaa-Gly) but
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exhibit a Gly-Asp-Ser-(Leu) [GDS(L)] motif comprising the active-site serine residue 

(Sangeetha et al., 2011). This residue is situated closer to the N-terminus in these proteins than 

in other lipolytic enzymes (López-López et al., 2014). Unlike conventional lipases, GDSL 

enzymes do not possess a nucleophile elbow, which is a region containing a beta-beta-alpha 

structural motif and holds the nucleophilic and the oxyanion hole amino acid residues that form 

the catalytic site in a variety of enzymes. The nucleophile (Ser, Asp or Cys) appears as a distinct 

turn, hence proposed as the nucleophile elbow. They are known to have flexible active sites 

that are able to modify their structure in the presence of specific substrates, thus increasing the 

substrate specificity range (Anobom et al., 2014). Included in this family are esterases of 

Salmonella typhimurium, Streptomyces scabies, Pseudomonas aeruginosa, Photorhabdus 

luminescens, Vibrio mimicus, Escherichia coli, Aeromonas hydrophila (Montella et al., 2012; 

Nakamura et al., 2017) and lipases of A. hydrophilia, Vibrio parahemolyticus, Xenorhabdus 

luminescens and Streptomyces rimosus (Borrelli and Trono, 2015). An example of an 

extracellular lipase from this family was isolated from P. aeruginosa with a molecular weight 

of 30 kDa. The lipase was stable up to 45°C and maintained activity in the alkaline pH range 

(Sharon et al., 1998). The enzyme was found to be highly stable in the presence of methanol 

and ethanol, and cationic surfactants, such as Triton X-100 and Tween-80, substantially 

increased activity. The presence of a calcium-binding site in this Pseudomonas lipase is 

predicted as its activity was stabilized considerably by Ca2+ and the inhibitory effects of EDTA 

was suppressed by subsequent CaCl2 treatment (Sharon et al., 1998). 

 
2.7.3 Lipolytic Family III 

Family III is comprised of three characterized members so far. These enzymes possess the 

conserved consensus sequence Gly-Xaa-Ser-Xaa-Gly. Members of this family are very closely 

related (Lee, 2016). They exhibit the canonical fold of α/β-hydrolase, including the 

characteristic catalytic triad. High activities at low temperature (less than 15°C) were believed 

to originate from conserved sequence motifs of these enzymes (Rauwerdink and Kazlauskas, 

2015). However, distinct sequence similarity between esterases from psychrophilic (Moraxella 

sp. Psychrobacter immobilis), mesophilic (Alcaligenes eutrophus, E. coli) and thermophilic 

(Alicyclobacillus acidocaldarius, Archeoglobus fulgidus) microorganisms suggest that 

temperature variation is not responsible for such considerable sequence conservation (Arpigny 

and Jaeger, 1999). A comparative study of these enzymes would be beneficial in resolving the 

unique properties of this hydrolase family. An example of an enzyme from this family is the 
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extracellular lipase from Serratia marcescens, ECU1010, with a molecular mass of 65 kDa, 

pH and temperature optima of 8.0 and 45°C, respectively, and a pI of 4.2 (Zhao et al., 2008). 

 
2.7.4 Lipolytic Family IV 

Family IV, otherwise known as the hormone-sensitive lipase (HSL) lipolytic family, due to 

their high sequence similarity to the mammalian HSL (Hausmann and Jaeger, 2010), has six 

characterized members. The hydrolysis reaction of triacylglycerols in adipose tissue is 

catalyzed by HSL, in addition to being a rate-limiting enzyme in the exclusion of fatty acids 

from stored lipids (Lass et al., 2011). This family has two highly conserved consensus motifs, 

the common GXSXG and HGG, which plays a role in the oxyanion hole formation (Mohamed 

et al., 2013). Enzymes are known to exhibit an α/β-hydrolase fold (Ngo et al., 2013). Enzymes 

from this family have been identified in Pseudomonas sp., A. eutrophus, Moraxella sp. A. 

acidocaldarius, E. coli and A. fulgidus (Manco et al. 2000; Manco et al., 2001; Feller et al., 

2009). An esterase from Pyrobaculum calidifontis is considered as a member of the HSL 

family. Specific activities reported for this enzyme are similar if not higher than previous 

reports with 1050 U/mg at 30ºC and 6410 U/mg at 90ºC (Manco et al., 2000; Rashid et al., 

2001; Hotta et al., 2002). 

 
2.7.5 Lipolytic Family V 

Six characterized enzymes make up this family to date. Some of them originate from 

mesophilic (Acetobacter pasteuriannus, Pseudomonas oleororans, Haemophilus influenza), 

psychrophilic (Sulfolobus acidocaldarius) and thermophilic microorganisms (Arpigny and 

Jaeger, 1999). Typically, this family possesses the conserved motif GXSXG, as well as the 

other common motif PTL (Nacke et al., 2011). A lipolytic enzyme (EstV) from Helicobacter 

pylori has been isolated, cloned, purified and classified as a Family V hydrolase. This enzyme 

was predominantly active with short-chain substrates (p-nitrophenol acetate, p-NP butyrate, p- 

NP valerate) and did not display interfacial activation, but was stable and had a maximum 

activity at 50°C and pH 10.0 (Ruiz et al., 2007). 

 
2.7.6 Lipolytic Family VI 

There are five well characterized members that are classified as family VI lipolytic enzymes 

based on their size. This family is comprised of the smallest esterases, with a molecular mass 

of 23±26 kDa. The subunit has the α/β-hydrolase fold and a traditional Ser-Asp-His catalytic
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triad. A carboxylesterase from Pseudomonas fluorescens is an example of such an esterase 

(Pesaresi et al., 2005). This enzyme hydrolyses a wide range of small ester-containing 

compounds and demonstrates no activity towards long-chain triglycerides (Lu et al., 2010a). 

In another example, an extracellular alkaline lipase produced by P. fluorescens AK102 was 

stable between pH 4.0 and 10.0 with an optimal pH between 8.0 and 10.0 and an optimum 

temperature of 55°C (Kojima et al., 1994). This enzyme could have a potential application in 

the pulping industry for the reduction of wood resins and pitch deposits. There is limited 

information on other enzymes in this family. Interestingly, esterases from this family show 

40% homology at the amino acid level to eukaryotic lysophospholipases (Bornscheuer, 2002), 

which are responsible for the liberation of fatty acids from lysophospholipids (Quach et al., 

2014). 

 
2.7.7 Lipolytic Family VII 

Family VII is a small family with only three well known members. They have an estimated 

size of ±55 kDa, and share substantial amino acid sequence homology (30% identity, 40% 

similarity) with eukaryotic acetylcholine esterases and intestine/liver carboxylesterases 

(Arpigny and Jaeger, 1999). This family has the classical triad G-X-S-X-G pentapeptide. The 

esterase from Arthrobacter oxydans is classified under this family and is specifically active 

against phenylcarbamate herbicides by hydrolysing the central carbamate bond (Hayatsu et al., 

2001). The esterase is plasmid-encoded and thus has the potential to be more easily transferred 

to other strains or species. Interestingly, the esterase of B. subtilis is capable of hydrolyzing p- 

nitrobenzyl esters, and may be applied in the final removal of p-nitrobenzyl ester utilized as a 

protecting group in the synthesis of β-lactam antibiotics (Ding et al., 2015). Another esterase 

isolated from a Bacillus strain was found to be thermostable and had maximum activity at 60°C 

and maintained 100% activity at 75°C for 30 min (Andualema and Gessesse, 2012). These 

characteristics would be appropriate for application in the reduction of pitch during the pulping 

process (high process temperatures) where glyceride lipids may be targeted. 

 
2.7.8 Lipolytic Family VIII 

Family VIII consists of three characterized members. Theses enzymes are approximately 380 

amino acids in length with similarity to many class C β-lactamases. A 150 amino acid fragment 

(from positions 50 to 200) showed 45% similarity at the amino acid level to an Enterobacter 

cloacae ampC gene product (Galleni et al., 1988). AmpC codes for resistance to cefazolin,
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cefoxitin, cephalothin, most penicillins, and beta-lactamase inhibitor-beta-lactam combinations 

(Jacoby, 2009). This trait indicates that the active site (Ser-Xaa-Xaa-Lys) conserved in the N- 

terminal, belongs to class C β-lactamases (Patel and Richter, 2015). Contrary to this, the 

esterase/lipase consensus sequence (Gly-Xaa-Ser-Xaa-Gly) of the P. fluorescens esterase was 

proposed to be involved in the active site of β-lactamases (Kim et al., 1994; Arpigny and Jaeger, 

1999). Esterases from Streptococcus chrysomallus also possess this motif; but, it is not 

conserved in the Arthrobacter globiformis esterase. Also, the motif is situated in close 

proximity to the C-terminus of the P. fluorescens and S. chrysomallus enzymes with an absence 

of the histidine attachment (amino acid used in the synthesis of proteins). This demonstrates 

the unconventional nature of these enzymes as the Ser-Asp-His residue sequence is conserved 

throughout the entire superfamily of lipases and esterases. Site-directed mutagenesis studies 

have demonstrated that the Gly-Xaa-Ser-Xaa-Gly motif does not play a significant role in 

enzyme functioning of an esterase (EstB) from Burkholderia gladioli (Petersen et al., 2001). 

 
A number of genera, such as Pseudomonas and Streptomyces, are known to produce hydrolases 

which are classified into different families (Figure 2.1). Arpigny and Jaeger (1999) first 

classified bacterial lipolytic enzymes into the eight families according to their amino acid 

sequences and biological properties. This became the reference point for classification of novel 

lipolytic enzymes to a family. However, unique families are being discovered through the use 

of metagenomics (Lee et al., 2006; Kim et al., 2009; Fu et al., 2011). Table 2.2 summarizes 

the different classes of lipolytic enzymes currently described. 
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Figure 2.1: Phylogenetic tree based on a novel amino acid sequence of EstCS2 and closely 

related proteins. Protein sequences for previously identified families of bacterial lipolytic 

enzymes retrieved from GenBank (http://www.ncbi.nlm.nih.gov). The units at the bottom of 

the tree indicate the number of substitution events (adapted from Kang et al. 2011). 
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Table 2.2: Current classification of bacterial lipolytic enzymes. Description of bacterial 

lipolytic families I-VIII in the Arpigny and Jaeger classification, and new families and 

subfamily discovered by functional metagenomics (*) (adapted from Arpigny and Jaeger, 

1999; Lee et al., 2006; Kim et al., 2009; Fu et al., 2011). 

 

Family Description 

I Group of true lipases subdivided into six subfamilies: Pseudomonas lipases 
and relatives (subfamilies I.1, I.2 and I.3), Bacillus and Staphylococcus lipases 

and relatives (I.4 and I.5) and other lipases (I.6). 

II Modified pentapeptide motif around the active serine: Gly-Asp-Ser-(Leu) 

[GDS(L)]. 
Secreted and membrane-bound esterases 

III Extracellular lipases and esterases. 

EstA* Related to family III but different conserved motifs (pentapeptide GHSMG). 
Discovered from surface seawater. 

IV Many members of this family show sequence similarity to mammalian 

hormone-sensitive lipase (HSL). 

Typical motif HGG. 
Lipolytic enzymes from psychrophilic, mesophilic and thermophilic origins. 

EstB*: New subfamily in family IV with second active site glutamate (conserved 

sequence EXLLD) instead of the aspartate. 

(DPLXD) of the representative members of family IV. It was discovered in 

surface sea water. 

V Conserved motif HGGG upstream of the pentapeptide motif GDSAG. 

Sequence similarity with non-lipolytic enzymes: epoxide hydrolases, 

dehalogenases and haloperoxidases. 
Esterases from psychrophilic, mesophilic and thermophilic origins. 

EstF* Related to family V but with a modified pentapeptide, GTSXG, and different 

flanking regions around the HG motif and their own unique conserved 

sequence motifs. 
Isolated from deep sea sediments. 

VI The smallest esterases known (23–26 kDa). 
Sequence similarity to eukaryotic lysophospholipases. 

VII Large bacterial esterases (55 kDa). 
Sequence homology with eukaryotic acetylcholine esterases and intestine\ 

liver carboxylesterases. 

VIII Similarity to several class C β-lactamases. 

LipG* Presence of an Arg-Gly sequence in oxyanion hole instead of His-Gly, a 

signature sequence distinctive of filamentous fungal lipases. 
Isolated from tidal flat sediments. 

LipEH166* Comprise newly discovered lipase LipEH166 of psychrophilic origin, and 

three putative open reading frames. 
Isolated from intertidal flat sediments. 

EstY* Derived from pathogenic bacteria. First possible lipolytic virulence factors that 

do not belong to the GDSL family. 
  Isolated from surface river water.  
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2.8. Lipases 

Lipases (e.g. triacylglycerol hydrolase, EC 3.1.1.3) hydrolyse long-chain acyl groups (C7-C10) 

to acylglycerols and fatty acids (Ollis et al., 1992; Verger, 1997; Bornscheuer, 2002; Canet et 

al., 2016). Lipases can be differentiated from esterases by the occurrence of interfacial 

activation, which is only observed in lipases, whilst esterases obey classical Michaelis-Menten 

kinetics. Structural analysis showed that interfacial activation is a result of the hydrophobic 

domain (lid) covering the active site of lipases – only in the presence of a minimum substrate 

concentration, i.e. only in the presence of triglycerides or hydrophobic organic solvents, does 

the lid move apart, making the active site accessible (Rehm et al., 2010; Stauch et al., 2015). 

Therefore, lipases have altered properties from esterases, which have an acyl binding pocket 

(Bornscheuer, 2008). 

 
Microbial lipases specifically have unlimited potential in commercial applications, such as 

additives in fine chemicals, wastewater treatment, food processing, cosmetics, detergents, 

pharmaceuticals, degreasing formulations, paper manufacture and accelerated degradation of 

fatty wastes and polyurethane (Li et al., 2012; Liu et al., 2012; Brabcova et al., 2013; Lailaja 

and Chandrasekaran, 2013; Nerurkar et al., 2013; Whangsuk et al., 2013; Zhang et al., 2013; 

Adulkar and Rathod, 2014; Gerits et al., 2014; Li et al., 2014b; Saranya et al., 2014; Fulton et 

al., 2015; Rodrigues et al., 2016; Speranza et al., 2016; Shu et al., 2016). Even though a large 

number of lipases have been described in the literature, a limited number of enzymes belonging 

to a few species have proved their stability and biosynthetic activity amenable to use in organic 

solvents, and thus their consideration as industrially applicable enzymes (Kumar et al., 2016). 

Their biotechnological potential is dependent on their capacity to catalyze not only the 

hydrolysis of triglycerides, but also their synthesis from glycerol and fatty acids (Mehta et al., 

2017). Lipases are known to hydrolyse up to 90% of triglycerides in pitch to fatty acids and 

glycerol/monoglycerides, which are considerably less sticky and more hydrophilic (simple to 

remove) than the triglycerides (Andualema and Gessesse, 2012). 

 
2.8.1 Classification of lipases 

Classification of lipolytic enzymes as ‘true’ lipases requires the fulfilment of two criteria: (i) 

they should be activated by the presence of an interface, i.e. their activities should dramatically 

increase as soon as the triglyceride substrate forms an emulsion. This occurrence is termed 

“interfacial activation”; (ii) they should also contain a “lid”, which is a surface loop of the
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protein covering the active site of the enzyme that moves away on contact with the interface 

(Cheng et al., 2012). The ‘true’ lipase family (Family I) covers the 6 subfamilies which 

predominantly catalyze the hydrolytic reactions of substrates with long acyl chains (Messaoudi 

et al., 2011). 

 
2.8.2 Mechanism of action of lipases 

Lipases take effect on ester bonds occurring in acylglycerols to release free fatty acids and 

glycerol in a liquid medium (Borrelli and Trono, 2015). In limited liquid environments, these 

enzymes are capable of reversing this reaction (esterification), via acidolysis, 

interesterification, and alcoholysis (Rajendran et al., 2009). Elucidation of their structures 

showed that the interfacial activation observed is attributable to a hydrophobic domain (lid) 

covering the active site of lipases, and that high levels of activity was observed in minimum 

substrate concentration only (Khan et al., 2017). 

 
2.8.3 Microorganisms producing lipases 

Lipases have originated from animals, plants and microorganisms. However, bacterial lipases 

are the most versatile, stable and reactive in organic medium (Andualema and Gessesse, 2012). 

Numerous microorganisms are known to produce lipases when incubated with lipid substrates 

(Basheer et al., 2011; Sethi et al., 2013; Veerapagu et al., 2013). The majority of bacterial 

lipases originate from Gram-negative bacteria, the most valuable being Pseudomonas which 

includes at least seven lipase-producing species, which are P. aeruginosa (Tielen et al., 2013; 

Prasad, 2014), P. cepacia (Badgujar et al., 2016; Cao et al., 2016; Sasso et al., 2016), P. 

alcaligenes (Chen et al., 2014a; Patel et al., 2014), P. glumae (Knapp et al., 2016), P. 

fluorescens (Xun et al., 2012; Guldhe et al., 2015; Lima et al., 2015), P. fragi (Santarossa et 

al., 2005; Dey et al., 2014) and P. putida (Fatima et al., 2014). 

 
2.8.4 Heterologous production of lipases 

Lipases from Pseudomonas species require the functional assistance of about 30 different 

cellular proteins prior to recovery from the culture supernatant in an enzymatically active state, 

demonstrating that folding and secretion are highly specific processes that generally do not 

function properly in heterologous hosts (Rosenau et al., 2004; Maffei et al., 2017). 

Extracellular enzymes, such as lipases, must be translocated through the bacterial membrane 

to a suitable location to fulfil their function. Gram-positive bacteria secrete enzymes which
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cross a single cytoplasmic membrane. These proteins generally contain a signal sequence, 

directing translocation via the secretion machinery (Fekkes and Driessen, 1999). The TAT 

pathway is a second translocation pathway found in lipase secreting Gram-negative and Gram- 

positive bacteria (Heravi et al., 2009; Shruthi et al., 2010). Proteins utilizing this pathway 

contain a unique twin arginine translocation motif in their signal sequence (Berks, 2015). In 

general, active expression of lipases from Pseudomonas and Burkholderia requires the 

presence of a chaperone protein known as the lipase-specific foldase (Lif), for precise folding 

of the lipase (Quyen et al., 2012; Wu et al., 2012). A text book example would be that of the 

cold-active lipase gene isolated from Psychrobacter sp. which was expressed in E. coli BL21 

yielding a specific activity of 66.51 U/mg. When the recombinant plasmid was co-expressed 

with a ‘‘chaperone team’’ the lipase displayed a specific activity of 108.77 U/mg (Cui et al., 

2011). Other expression hosts, such as Bacillus species, have also been explored. A lipase 

isolated from P. vulgaris was expressed in B. subtilis WB800, with a high lipase activity of 

356.8 U/ml after a 72-hour induction with sucrose (Lu et al., 2010b). Lipolytic genes have also 

been isolated from metagenomes and expressed in different host strains (Liaw et al., 2010). A 

lipase from a metagenome has been cloned in Streptomyces lividans with maximal activity of 

4287 U/mg towards p-nitrophenyl butyrate at 60°C and pH 8.5 (Cote and Shareck, 2010). 

 
2.9. Esterases 

Esterases retain significant applications in various biotechnological processes due to their 

stability in organic solvents, extensive substrate specificity, stereoselectivity, regioselectivity, 

and lack of requirement for cofactors (Fazary and Ju, 2008). Esterases (EC 3.1.1.1) hydrolyse 

the ester bonds of water-soluble fatty acid esters with short-chain acyl groups (C2-C8) (Ollis et 

al., 1992; Verger, 1997). Several methods have been developed to screen and isolate novel 

esterases (Elend et al., 2006; Kim et al., 2006; Kumar et al., 2012; Seo et al., 2014; Gu et al., 

2015), including metagenomic techniques (Gao et al., 2016; Popovic et al., 2017; Pereira et al., 

2017). A range of esterase characteristics have been described, primarily in molecular biology, 

targeted synthesis, purification, quantitation, production, and distribution (Faulds, 2010; Biely, 

2012; Montella et al., 2012; Martínez-Martínez et al., 2013; López-López et al., 2014). 
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2.9.1 Mechanism of action of esterases 

Esterases boast a diversity of substrate specificities; however, they typically possess a catalytic 

triad composed of Ser, His, and Asp/Glu in the polypeptide chain (Ollis et al., 1992; Verger, 

1997; Bornscheuer, 2002). The active site Ser residue is integrated at the centre of the 

conserved pentapeptide sequence motif, Gly-Xaa-Ser-Xaa-Gly (Ollis et al., 1992). The motif 

is usually positioned in the sharp turn between a β-strand and α-helix, known as the nucleophilic 

elbow (Verger, 1997). Ester bond hydrolysis is mediated by the nucleophilic attack of the active 

Ser on the carbonyl of the substrate in a charge-relay system with the two other amino acid 

residues (His and Asp/Glu) (Ollis et al., 1992). Ester formation or hydrolysis is fundamentally 

identical for lipases and esterases and involves four phases. Initially, the substrate is attached 

to the active serine, generating a tetrahedral intermediate which is stabilized by the catalytic 

His and Asp residues. Next, the alcohol is liberated and an acyl- enzyme complex is produced. 

A nucleophile is then attacked and forms a tetrahedral intermediate again, which following 

resolution generates the product (an acid or an ester) and free enzyme (Sayali et al., 2013). In 

some cases, esterases may appear to function in vitro as esterases, however they may end up 

functioning as transferases in vivo. An ideal example is that of the O-acetyl peptidoglycan 

esterase 2 (Ape2) protein in Neisseria gonorrhoeae, which was thought to be an O-acetylPG 

esterase but instead functioned as a PG O-acetyltransferase (Moynihan and Clarke, 2010). This 

may prove to be a major obstacle in the implementation of enzymes for biotechnological 

applications. 

 
2.9.2 Microorganisms producing esterases 

Esterases are produced by an array of organisms such as; Streptomyces sp. (Uraji et al., 2014), 

Pseudomonas sp. (Prim et al., 2006; Tserovska et al., 2006), Bacillus sp. (Metin et al., 2006; 

Ding et al., 2014), Lactobacillus sp. (Xu et al., 2017), Thermoanaerobacterium sp. (Moriyoshi 

et al., 2013), Micrococcus sp. (Morales et al., 2010), Ophistoma sp. (Calero-Rueda et al. 

2002b), Pencillium sp. (Atta et al., 2011), Aspergillus sp. (Damásio et al., 2013), Humicola sp. 

(Htzakis et al., 2003), Myceliophthora sp. (Katsimpouras et al., 2014), Saccharomyces sp. 

(Kwolek-Mirek et al., 2011), Candida sp. (Ge et al., 2011), plant (Vanholme et al., 2013) and 

animals (Finer et al., 2004) and may be applied in valuable biological processes. The efficient 

hydrolysis of both triglycerides and sterol esters using sterol esterase from O. piceae has been 

successfully applied for pitch control in the pulp and paper industry (Calero-Rueda et al., 

2002b; Gutiérrez-Fernández et al., 2014; Coloma et al., 2015). Steryl and cholesteryl esterases
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from Pseudomonas sp. (Vaquero et al., 2016; Wicka et al., 2016), C. viscosum (Kontkanen et 

al., 2004) and C. rugosa (Barriuso et al., 2016) are also reported to provide valuable assistance 

in the reduction of pitch deposits during pulp and paper manufacturing. 

 
2.9.3 Heterologous production of esterases 

Numerous studies have reported on the cloning and expression of microbial esterases (Ro et 

al., 2004; Brod et al., 2010; Huang et al., 2010; Terahara et al., 2010; Kim et al., 2012; Liu et 

al., 2013). When considering heterologous expression one needs to investigate the type of 

expression system to be applied as this could have a significant effect on the level enzymes 

produced. For instance, O. piceae produces a sterol esterase with high activity in the hydrolysis 

of triglycerides and sterol esters, however, once expressed in Pichia pastoris, greater activity 

was observed due to higher solubility (Cedillo et al., 2012). This is due to the alteration in the 

N-terminal sequence of the protein expressed in P. pastoris, which included 4-8 additional 

amino acids which ultimately modified its aggregation performance (Vaquero et al., 2015b). 

 
In 2004, Choi and colleagues discovered a novel esterase gene (estI). The amino acid sequence 

revealed that it may be classified as a novel member of the GHSMG family of lipolytic 

enzymes. E. coli BL21 (DE3)/pLysS containing the estI gene expressed a unique 67.5 kDa 

protein linking EstI in an N-terminal fusion with the S-tag peptide. The optimal pH and 

temperature of the purified enzyme were 7.0 and 37°C, respectively. The highest specificity 

was towards p-nitrophenyl-caprylate (C8) with Km and kcat values of approximately 14 µM 

and 1,245 s-1, respectively (Choi et al., 2004). 

 
Moukouli et al. (2008) successfully cloned a Type C feruloyl esterase (FAE) in S. cerevisiae, 

transcriptionally controlled by the alcohol oxidase (AOX1) promoter and integrated into P. 

pastoris X-33 to validate FAE activity. A recombinant protein with a molecular weight of 62 

kDa and a pI of 6.8 was produced. When incubated together with the xylanase from 

Trichoderma longibrachiatum in de-starched wheat bran, ferulic acid (FA) was effectively 

liberated. The esterase showed stability over a wide pH range rendering it applicable for 

alkaline pulp treatments (Moukouli et al., 2008). 

 
The axe gene which codes for an acetylxylan esterase from Thermobifida fusca NTU22, has 

been cloned, sequenced and expressed in E. coli. The optimum pH and temperature of the
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purified esterase was 7.5 and 60°C, respectively. A significant increase in xylooligosaccharide 

production was observed when oat-spelt xylan was treated with a combination of the 

recombinant xylanase and acetylxylan esterase compared to independent treatment with 

xylanase or acetylxylan esterase (Huang et al., 2010). A sterol esterase from O. piceae was 

expressed in two hosts; S. cerevisiae and P. pastoris. The highest activity of 42 U/ml was 

produced by P. pastoris at 28°C, however low activity was observed in S. cerevisiae. The 

heterologous expression of a functional fungal esterase in yeast is quite an accomplishment and 

opens up an opportunity to develop more robust enzymes (Vaquero et al., 2015a). 

 
2.10 Prospecting for Novel Enzymes 

Over the past four decades, enzymes have been successfully developed for the production of 

specialty chemicals, complex drug intermediates and chemicals in the food, pharmaceutical 

and chemical. Advancements in high-throughput technologies, cloning technologies, 

proteomics and genomics have promoted the generation of innovative enzymes and 

bioprocesses. In the past decade, directed evolution has been an effective tool in the 

improvement of enzyme properties, even without information on the enzyme structure and 

mechanisms (Valetti and Gilardi, 2013). The practice of directed evolution has been examined 

on a number of occasions by various researchers (Kaur and Sharma, 2006; McLachlan et al., 

2009; Martínez and Schwaneberg, 2013; Currin et al., 2015; Porter et al., 2015). In lipase 

exploration, directed evolution has been engaged for the construction of enantioselective 

catalysts for organic synthesis. This was initially achieved with a bacterial lipase from P. 

aeruginosa (Jaeger et al., 2001). The lipase evolved towards a model substrate, 2- 

methyldecanoic acid p-NP ester, to produce a lipase mutant with >90% enantiomeric excess, 

in contrast with 2% for the wild-type lipase (Liebeton et al., 2000). This group also exploited 

a B. subtilis lipase as a catalyst in the asymmetric hydrolysis of meso-1,4-diacetoxy-2- 

cyclopentene, with the creation of chiral alcohols (Jaeger et al., 2001). Numerous studies have 

also been conducted on the cloning, over-expression and characterization of lipases and 

esterases from various Bacillus strains (Ewis et al., 2004; Soliman et al., 2007; Abdel-Fattah 

and Gaballa, 2008; Chis et al., 2013). The majority of the studies mentioned above involved 

isolation of a lipase/esterase genes from thermophilic Bacillus spp. and over-expression in 

E.coli. The isolation of novel lipolytic genes from extreme microorganisms will assist in a 

number of bioprocessing areas due to the inherent ability of the encoded proteins to withstand 

extreme environments. 
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Principally there are two different strategies to identify novel enzyme genes, viz., sequence- 

based screening used in public or commercial DNA-databases such as the National Center for 

Biotechnology Information (NCBI) or the ERGOTM bioinformatics suite provided by 

Integrated Genomics Inc. These databases constitute a steadily expanding source of gene 

sequences easily screened by computer tools. The one major drawback of this strategy is that 

it is only possible to identify genes homologous to already known sequences. However, 

activity-based screening in culture collections and the metagenome is possible. Enormous 

libraries of wild type strains or recombinant expression strains are screened for desired enzyme 

activities. Genetic selection is the most sophisticated and powerful way to identify the ‘unique’ 

one (Drepper et al., 2006). 

 
2.10.1 Metagenomic approach 

Microbial diversity is a vital resource for biotechnological processes and products. The 

biosphere is dominated by microbes, however, the majority of microorganisms in nature have 

not yet been investigated (<1% identified) due to the limiting method of isolating pure cultures 

(Stewart, 2012). An alternative method is to exploit the genetic diversity of microbes in a 

particular environment in its entirety (known as the “metagenome”) to encounter original or 

enhanced genes and gene products for biotechnological targets (Chen et al., 2014b; Culligan et 

al., 2014; Morris and Marchesi, 2016). Sequencing of sizeable metagenomic DNA fragments has 

led to the discovery of a multitude of open reading frames, several of them coding for enzymes 

such as lipase, esterase, xylanase, chitinase, DNase, amylase, protease, etc. (Yeh et al., 2011; 

Bayer et al., 2013; Grunwald, 2014). Henne et al. (2000) screened environmental DNA 

libraries from diverse soil samples for genes encoding lipolytic activity and identified four 

clones possessing esterase and lipase activities. In 2002, Bell et al. illustrated a PCR method 

suitable for the identification of lipase genes directly from environmental DNA, using primers 

constructed from lipase consensus sequences (Bell et al., 2002). 

 
In silico searches for novel lipase and sterol esterase sequences from the metagenomes of 

environmental fungi have been performed (Barriuso et al., 2013). Six putative enzymes were 

elected and their substrate specificity and kinetic properties and were considered based on their 

similarity with formerly classified sterol sterases/lipases with recognized structures. This 

strategy combined examination of conserved motifs, sequence homology, phylogenetic and 

protein model analyses, allowing the identity of six candidate sequences (Barriuso et al., 2013). 
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The search for novel lipases is relentless as demonstrated by the recognition of new families of 

microbial lipases generally by metagenomic approaches (Nagarajan, 2012). Among the 

multitude of sequences coding for lipases discovered through metagenomic studies, it is 

remarkable that unique sequences are often reported. A novel alkali-stable lipase from a 

metagenome assembled from marine sediments was found to impart a characteristic and 

pleasant flavour and aroma in milk fat flavour manufacturing (Peng et al., 2014). Lee et al. 

(2006) isolated and characterized a novel family of bacterial lipase from tidal flat sediments. 

Hårdeman and Sjöling (2007) also isolated a unique low temperature active lipase from 

uncultured bacteria of marine sediment, of which the conserved regions, in addition to the 

putative active site and catalytic triad, were found to be comparable to the culturable lipases. 

 
In a study by Selvin et al. (2012) functional screening of a marine sponge fosmid metagenomic 

library revealed a novel halotolerant lipase. The activity and stability over a broad salinity, 

temperature and pH range, and presence of metal ions and organic solvents indicates the 

potential application of this enzyme in a selection of manufacturing processes. Lipases have 

been isolated and characterized by Glogauer et al. (2011), Chow et al. (2012), Fu et al. (2013), 

and Ngo et al. (2013) from numerous metagenomic libraries showing unique features, such as 

activity at low temperatures, thermal stability, organic solvent tolerance and alkaline stability; 

making them prospective candidates for industrial use (Bashir et al., 2014). A novel esterase 

was cloned from the thermophilic fungus Thermomyces lanuginosus DSM 10635 and 

heterologously expressed in Escherichia coli. Highest activity was observed with p-nitrophenyl 

butyrate (C4) and displayed maximum activity at 60°C and pH 8.5 (Li et al., 2014a). 

 
Protein engineering methods are being applied to enhance activity of lipolytic enzymes in 

diverse industrial applications, in a coordinated process for the search of novel enzymes. 

Characteristics that require improvement are substrate specificity, activity at higher 

temperatures and pH, and stability. Improving enzymatic activity at high temperatures is vital 

in mechanical pulping as the pulp is treated with the enzyme at a temperature of ~80°C (Calero- 

Rueda et al., 2002a). Similarly, enzymes functioning at elevated pH and temperature levels 

would be attractive as a biocontrol agent in pitch management during chemical pulping 

processes. 
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2.11 Applications 

Enzymes are currently being applied in multiple industries. The flexibility of enzyme properties 

enables application in a number of degradation and synthesizing processes such as the 

detergent, food, textile, beverage, animal feed, pulp and paper, organic synthesis and leather 

industries (Table 2.3). A global platform for industrial biotechnology has provided a niche for 

the development of innovative enzymes, particularly in the production of biofuels and 

bioenergy. Based on current projections, global crude oil reserves will be depleted in less than 

50 years, therefore an alternative to crude oil is desperately needed (Tanksale, 2017). Biofuels 

produced from biomass is considered an ideal substitute. The production of second and third 

generation bioethanol from plant residues appears to be the way forward, as it provides a dual 

function of providing biofuels and eliminating waste generated from crops (Ozdingis and 

Kocar, 2017). However, there are limitations of using second and third generation biofuels that 

need to be overcome, such as; complexity of biomass, production process, harvesting, 

transporting less-dense biomass to biorefineries, environmental and technological issues 

(Thomas et al., 2017). As a result, enzymes need to be designed based on the limiting 

parameters of processes, and their stability and effectiveness in catalyzing specific reactions. 

 
Lipases in biofuel production, as well as various industries have enormous potential due to their 

availability, enantioselectivity toward the substrate and stability in organic media (Sharma and 

Kanwar, 2014; Choudhury and Bhunia, 2015; Contesini et al., 2017). Application of lipases in 

medicine and the dairy industry has become invaluable in esterification and transesterification 

processes (Gopinath et al., 2013; Anbu et al., 2017). Renewable lipases have become popular in 

the food industry for processing and synthesis of aroma ester acetate to improve food flavours 

(Memarpoor-Yazdi et al., 2017). Less popular esterases, on the other hand, also show great 

potential in industry applications and processes. Feruloyl esterases have multiple applications 

in the synthesis of bioactive compounds (Fazary and Ju, 2008; Christakopoulos et al., 2014; 

Antonopoulou, 2017; Kang et al., 2017), improvement of feed digestibility and hydrolysis of 

ester bonds in complex crop fibre (Silva et al., 2017). Esterases are also known to hydrolyse 

ester bonds between lignin and hemicelluloses to promote access to cellulose and 

hemicelluloses (Silva, 2017). 

 
As mentioned previously, the application of lipases in the pulp and paper making industry is 

vital in the control of pitch formation. Esterases on the other hand are used to break down the
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polyvinyl acetate in glues present in recycled paper processing (Jegannathan and Nielsen, 

2013). In the recycling of newspaper, the paper needs to be deinked prior to production of 

newsprint and white paper (Bajpai, 2013). When the ink is composed of vegetable oil, lipases 

are often used to break down the lipophilic components of the ink (Hasan et al., 2006; Zedong 

et al., 2017). Yang and his colleagues (1994) patented a specific combination of parameters 

and ratio of cellulases, xylanases and lipases for the removal of ink from various paper samples 

whilst preserving the quality of the salvaged pulp. 

 
Recent advances in metagenomics and proteomics have supported the discovery of novel 

enzymes and genetic engineering of microbes (Adrio and Demain, 2014). Future applications 

of enzymes from microbial, plant and animal resources will ensure a more feasible approach 

to bioprocessing, as well as reducing the amount of waste generated and overall impact on the 

environment. 
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Table 2.3: Enzymes used in various industrial processes and their application (adapted from 

Vijayalakshmi et al., 2011; Imran et al., 2012; Sarrouh et al., 2012; Gurung et al., 2013; 

Hasunuma et al., 2013; Nigam, 2013; Elleuche et al., 2014; Choi et al., 2015; Anbu et al., 

2017; Mishra et al., 2017). 

 

Industry Enzyme Application 
 Protease Protein stain removal 
 Amylase Starch stain removal 

Detergent Lipase Lipid stain removal 
 Cellulase Cleaning, colour clarification 
 Mannanase Reappearing stains 
 Amylase Starch liquefaction and saccharification 
 Amyliglucosidase Saccharification 
 Pullulanase Saccharification 

Starch and fuel 
Glucose isomerase Glucose to fructose conversion 

Cyclodextrin-glycosyltransferase Cyclodextrin production 
 Xylanase Viscosity reduction 
 Protease Protease (yeast nutrition – fuel) 
 Lipase Synthesis of lipase-catalyzed biodiesel 
 Protease Milk clotting, flavour 
 Lipase Improvement of food texture 

Food 
Lactase Lactose removal (milk) 

Pectin methyl esterase Firming fruit-based products 
 Pectinase Fruit-based products 
 Transglutaminase Modify visco-elastic properties 
 Amylase Bread softness and volume 
 Xylanase Dough conditioning 
 Lipase Dough stability and conditioning 

Baking 
Phospholipase Dough stability and conditioning 

Glucose oxidase Dough strengthening 
 Lipoxygenase Dough strengthening, bread whitening 
 Protease Biscuits, cookies 
 Transglutaminase Laminated dough strengths 
 Phytase Phytate digestibility 

Animal feed Xylanase Digestibility 
 Β-Glucanase Digestibility 
 Pectinase Depectinization, mashing 
 Amylase Juice treatment, low calorie beer 

Beverage Β-Glucanase Mashing 
 Acetolactate decarboxylase Maturation (beer) 
 Laccase Clarification (juice), flavour (beer) 
 Cellulase Denim finishing, cotton softening 
 Amylase Desizing 

Textile 
Pectate lyase Scouring 

Catalase Bleach termination 
 Laccase Bleaching 
 Peroxidase Excess dye removal 

Pulp and paper 
Lipase Pitch control, contaminant control 
Protease Biofilm removal 
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 Amylase Starch coating, deinking, drainage improvement 
 Xylanase Bleach boosting 
 Cellulase Deinking, drainage improvement, fibre modification 

Fats and oils 
Lipase Transesterification 

Phospholipase Degumming, lysolecithin production 

Organic 

synthesis 

Lipase Resolution of chiral alcohols and amides 

Acylase Synthesis of semisynthetic penicillin 

Nitrilase Synthesis of enantiopure carboxylic acids 

Leather 
Protease Unhearing, bating 

Lipase Depickling 
 Amyloglucosidase Antimicrobial 

Personal care Glucose oxidase Bleaching, antimicrobial 
 Peroxidase Antimicrobial 

Environmental 

application 

 Degradation of lipid wastes 

Lipase Removal of solid and water pollution by hydrocarbons, 
  oils and lipids  

 

Since structural adaptations for the endurance of lipases and esterases at high temperatures or 

extreme pH levels are not well established, random mutagenesis approaches could be combined 

with site-directed mutagenesis to generate lipolytic enzymes with enhanced abilities for 

application in the pulp and paper industry. Thus, new generations of designer lipolytic enzymes 

with improved adaptability to inconsistent pitch problems in various paper and pulp 

manufacturing processes could be accessible in the near future. Mining of genetically 

untouched resources for lipases and esterases of specific characteristics using culture- 

independent metagenomic techniques has demonstrated its potential for biotechnological 

evolution. 
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CHAPTER THREE 

 

CHEMICAL COMPOSITION OF FOUR Eucalyptus WOOD SPECIES USED IN 

PULP AND PAPER INDUSTRIES 

___________________________________________________________________________ 

 

3.1 Abstract 

Eucalyptus wood species are an invaluable forest crop in the pulp and paper industry for the 

production of high-grade cellulose pulp. The presence of wood resin (lipophilic extractives) and 

pitch deposit formation during pulping is a challenge faced by many pulp mills, especially so 

for dissolving wood pulp mills. This highlights the need to better understand the chemistry of 

the Eucalyptus wood species used in pulping. In this study, the wood chemistry of four 

Eucalyptus wood species typically used in South African mills (E. dunnii, E. grandis, E. nitens 

and E. smithii) and their acid-bisulphite pulps were investigated. Substantial variation in 

extractive content was observed among the wood species. E. grandis and E. smithii contained 

lower levels of fatty acids and sterols than E. dunnii and E. nitens implying that the problems 

related to the presence of wood resin would be less severe. E. nitens contained high lipophilic 

content, indicating a greater potential for problems during pulping and subsequent processing 

of the pulps. In addition, E. nitens had the highest amounts of klason lignin (6.6%) and acid-

insoluble lignin (5.6%). Highest pulp yield of 54.1% was obtained for E. grandis and the lowest 

(50.3%) for E. smithii. The low pulp yield for E. smithii correlates with the low viscosity 

(547.17 ml/g) and glucose concentration (87.7%) obtained for this species. However, E. smithii 

pulp also had the lowest kappa number of 8.25, thus would require smaller amounts of 

chemicals during bleaching. Of the four wood species evaluated, E. grandis would be ideal for 

the production of dissolving pulp based on high viscosity (570.37 ml/g), pulp yield (54.1%) and 

glucose concentration (89.8%), and low klason lignin (4.5%), acid-soluble lignin (4.4%) and 

carbohydrate concentration (90.1%). This information would be invaluable in the commercial 

pulping industry as it would help circumvent potential pitch deposit problems. 

 

Key words: Eucalyptus, chemistry of wood and pulp, dissolving pulp 
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3.2 Introduction 

Of the 700 species of identified eucalypts worldwide, only a select few are suitable for use in 

the pulping industry (Rockwood et al., 2008). Eucalyptus globulus is considered to be the ideal 

raw material for kraft pulp manufacturing, producing especially high pulp yields. The 

composition of E. globulus wood has been comprehensively described (Gutiérrez et al., 1998; 

Freire et al., 2002; del Río et al., 2005; Miranda et al., 2013), however other eucalypt species 

such as E. nitens, E. maidenii, E. smithii and E. dunnii used in the pulping industry, have not 

been as extensively characterized.  

 

Profiling of organic extractives in wood and the dissolving pulping process has been explored, 

however, research was based on only two Eucalyptus species, viz., E. grandis and E. dunnii 

(Kilulya et al., 2014). More than 15 Eucalyptus species (including hybrids) are currently used 

in commercial pulping mills worldwide (ENCE, 2009). Lipophilic extractives, naturally present 

in wood materials, have the potential to form pitch deposits during pulping, which disrupts 

operation of machinery and reduces pulp quality (Back and Allen, 2000; Gutiérrez et al., 2001). 

This highlights the importance of identifying the chemical composition of the wood materials 

prior to pulping. 

 

In addition, a South African study reported an increased lipophilic extractive content of 

Eucalyptus trees in sites with elevated compositions of clay soil and organic matter (Kilulya et 

al., 2014). Knowledge of the chemical composition of wood materials enables the evaluation 

of potential wood species for pulp and paper manufacturing. Therefore, investigations into 

Eucalyptus species grown on plantations in South Africa would provide a more accurate 

representation of the chemical composition (particularly lipophilic extractive content) and 

pulping characteristics of Eucalyptus wood species currently being used in local and 

international mills for the production of dissolving pulp.  

 

Three key features define the potential of wood in the dissolving wood pulp (DWP) industry; 

pulp yield, kappa number and viscosity. In this study, the chemical composition profile, 

lipophilic extractive content and the key pulping characteristics of four popular Eucalyptus 

wood species, E. dunnii, E. grandis, E. nitens and E. smithii used in South Africa and 

internationally, were evaluated. These results will provide a baseline profile and comparison of 

and potential ranking of the acid-bisulphite pulping potential (for the production of dissolving 

pulp) of these species. 
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3.3 Materials and Methods 

3.3.1 Wood material 

Wood was obtained from the following Eucalyptus species trees: E. dunnii, E. grandis, E. nitens 

and E. smithii from a plantation in KwaZulu-Natal (South Africa). Logs from approximately 

10-year old trees were chipped to an average dimension of 12 mm × 5 mm × 2 mm. Chip 

samples were collected and milled to coarse sawdust using a Brabender Wiley-mill. The 

sawdust was then passed through a 0.40 mm (40 mesh) screen and used for analyses according 

to standard methods (T257 cm-12). The remainder of the wood chips were dried at room 

temperature for 2 weeks, pulped according to the acid-bisulphite process and then washed for 

chemical analyses.  

 

3.3.2 Water-soluble extractives (hot water extraction) 

Hot water (water-soluble) extractives were determined by weighing out five grams of sawdust 

(moisture content noted) in a 400 ml conical flask and slowly adding 100 ml of hot deionised 

water. The contents of the conical flasks were stirred to prevent the sawdust from floating. The 

conical flask was placed on a pre-heated hot plate and left to stand for 3 h. The initial level of 

the contents was kept constant by the addition of hot deionised water. A pre-weighed number 3 

crucible (Pyrex) and a vacuum pump were used to filter the saw dust which was washed with 

200 ml of hot deionised water and dried at 60ºC overnight (T207 cm-08). 

 

3.3.3 Extractives (solvent extraction)  

The Soxhlet extraction method was used to determine solvent (water-insoluble) extractives in 

the sawdust samples. Four grams of hot water extracted sawdust (moisture content noted) was 

weighed into an extraction thimble and placed in a Soxhlet apparatus that was attached to a pre-

weighed 500 ml round-bottomed flask containing 300 ml toluene-ethanol (2:1). The solvent 

was allowed to cycle through the system six times over 4 h. The extractives were rotary 

evaporated to dryness, cooled in a desiccator and weighed (T204 cm-07). 

 

3.3.4 Pulping and analyses 

Pulping was performed according to the acid-bisulphite process currently implemented at 

Dissolving Wood Pulp (DWP) mills. Pulp quality was determined by assessing viscosity (T203 

om-94), final pulp yield, kappa number (T236 om-60), alpha cellulose, and acid-insoluble lignin 

(T222 om-02). The carbohydrate content of pulp was characterized by High Performance 

Liquid Chromatography (HPLC) for quantification of cellulose and hemicelluloses (glucose, 
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mannose, arabinose, xylose, and galactose) (T249 cm-85; Wallis et al., 1996; Wright and 

Wallis, 1996). 

 

3.3.5 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis 

Py-GC-MS was employed for characterisation of lipophilic compounds in the sawdust and pulp 

samples. Samples of approximately 0.2 mg were weighed out and five microliters of 

tetramethylammonium hydroxide (TMAH) (Sigma Aldrich, USA) was added directly to the 

sample as a derivatizing agent to increase detection of fatty acid compounds (Fukushima et al., 

2009). A multi-shot pyrolyzer, EGA/PY-3030 D, (Frontier Lab, Japan) attached to an ultra-

alloy capillary column (30 m x 0.25 mm, 0.25 μm) was used. The samples were pyrolyzed at 

550°C for 20 s and the interface temperature was fixed at 350°C. The chromatographic 

separation of the volatile components released by pyrolysis was performed using an ultra-alloy 

column. The injection temperature was set to 280°C and the column flow rate was set to 1.0 

mL/min with helium used as a carrier gas. The temperature was programmed as follows: 50°C 

for 2 min; rate 3°C/min up to 200°C and held for a further 4 min. The ion source and interface 

temperatures were set to 200°C and 300°C, respectively. The scan range used for mass selective 

detector was 40-650 m/z. The pyrolysis products were identified by searching the NIST mass 

spectrum library (modified from Sithole and Watanabe, 2013).  

 

3.4 Results and Discussion 

The extractive contents of the Eucalyptus species were evaluated to assess the suitability of the 

species for production of dissolving pulp (Tables 3.1). E. dunnii and E. grandis had the higher 

amounts of hot water extractives, 3.3 and 3.7%, respectively, compared to E. nitens and E. 

smithii. Other studies have reported similar or slightly higher amounts of extractives (Klash et 

al., 2010; Rencoret et al., 2012; Neiva et al., 2014). The toluene-ethanol extracts (lipophilic 

extractives) ranged from 0.70-1.9% compared to 2.7-3.7% for the water-soluble extracts, 

indicating that the greater fraction of extractive content, viz. the hydrophilic extractives (water-

soluble) would be removed during the washing step of the pulping process, which would be 

beneficial to downstream processing of the pulp. The solvent extractives (lipophilic extractives) 

therefore pose a greater threat as these compounds will remain during and after pulping, thus 

contributing to pitch deposition. E. nitens wood exhibited the lowest lipophilic content (0.8%), 

which in theory marks it as most suitable for pulping. In contrast, E. smithii showed the highest 

amount of lipophilic extractives (1.9%), more than double than that of E. nitens (0.8%). The 

smallest increase in lipophilic extractive content exacerbates the risk of wood resin and pitch 
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deposit formation (Richardson et al., 2012). Based on the results in Table 3.1, E. smithii would 

not be considered suitable for pulping, particularly in combination with other Eucalyptus 

species of similar or higher lipophilic content. However, the nature of the lipophilic compounds 

present also needs to be considered as only certain types of compounds contribute to pitch 

deposit formation.  

 

Table 3.1: Water and toluene-ethanol-soluble extractives of fresh wood chips. 

 

 Water-Soluble Extractives  Solvent Extractives 

Sample 
Moisture Content (%) 

±SD 

Extractives 

(%) ±SD 

Moisture Content (%) 

±SD 

Extractives 

(%) ±SD 

E. dunnii 36.81±0.18 3.26±0.15a 14.64±0.24 1.49±0.27 a 

E. grandis 37.64±0.12 3.65±0.20 a 49.22±0.14 1.36±0.31 b 

E. nitens 45.75±0.24 2.76±0.17 a 35.81±0.23 0.79±0.19 a 

E. smithii 46.82±0.21 2.87±0.32 a 27.80±0.33 1.89±0.16 a 

*Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

Lipophilic profiles of the different Eucalyptus spp. and the effect of pulping on the lipophilic 

extractives were generated by Py-GC-MS analysis of the wood chips and their respective pulps. 

Typical pyrograms of the total wood lipophilic extracts as represented by E. nitens in Figure 

3.1A (additional chromatograms for the other species in Appendix 3A) and the major wood 

resin components identified are listed in Table 3.2. In hardwoods steroids, sterols, fatty alcohols 

and fatty acids are the main contributors of pitch formation (Gutiérrez and del Río, 2001; Freire 

et al., 2006; Rencoret et al., 2007).  

 

E. dunnii and E. nitens had similar lipophilic extractive profiles, but varied with respect to the 

ratios of the various components (Figure 3.1). Fatty acids and fatty alcohols were the 

predominant groups present in wood extractives followed by sterols, and smaller amounts of 

long-chain hydrocarbons, steroid hydrocarbons and ketones (Table 3.3). The main fatty acids 

were represented by hexadecanoic, 9,12-octadecadienoic, 9-octadecenoic and octadecanoic 

acids. The variations in the amounts and types of lipophilic extractives can be explained by the 

differences in tree physiology (due to genetic variability among species) and soil composition 

(higher organic matter content implies higher fertility and clay soil affects water availability). 

Sterols were the second main group dominated by sitosterol and stigmastanol, with small 

amounts of campesterol and stigmasterol. Other components that were detected in small 

quantities were steroid hydrocarbons (mainly stigmasta-3,5-diene) and steroid ketones (mainly 
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stigmasta-3,5-dien-7-one and stigmast-4-en-3-one). The main fatty alcohol components were 

1-octadecanol and 1-hexadecanol, followed by 1-nonadecanol, 1-eicosanol and 1-tricosanol. 

 

The types and amounts of lipophilic extractives was higher in E. nitens than in E. dunnii, E. 

grandis and E. smithii species. Reports in literature show varying amounts of lipophilic 

extractives obtained from total extractive content of wood and pulp. This implies that the 

amount of solvent extractives detected is not reflective of the amount of lipophilic compounds 

contributing to the risk of pitch formation (Silvério et al., 2007). Kilulya et al. (2014) 

ascertained that a Eucalyptus species found to have the lowest total acetone extractives, in fact 

contained the highest amount of lipophilic extractives.  

 

E. grandis and E. smithii had the lowest free and conjugated sterol levels, while E. nitens had 

the highest amount of these unfavourable lipophilic compounds (704.5 mg/kg). Although this 

species contained the lowest amount of solvent extractives compared to the other Eucalyptus 

species, the composition of the extractives was predominantly sterols. Nevertheless, E. nitens 

will continue as a major feedstock for the pulp industry as they are a hardy species known for 

their high tolerance to snow and cold environmental conditions (Swain et al., 2013). The 

drawback associated with wood resin content in pulps may be alleviated by pulping a 

combination of potentially “high risk” species such as E. nitens (704.5 mg/kg) with lower sterol 

and fatty acid containing species such as E. smithii (365.2 mg/kg) or E. grandis (485.5 mg/kg). 
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Table 3.2: Names and structures of a selection of extractives identified in the Eucalyptus pulp 

samples. 

 

Name Trivial Name Structure 

Fatty acids 

Tetradecanoic acid CH3(CH2)12COOH  Myristic acid 
OH

O

 

9-Hexadecanoic acid 

(CH3(CH2)5CH=(CH2)7COOH  
Palmitelaidic acid 

OH

O

 

Hexadecanoic acid CH3(CH2)14COOH  Palmitic acid 
 

Octadecanoic acid CH3(CH2)16COOH Stearic acid 
OH

O

 

Eicosanoic acid CH3(CH2)18COOH Arachidic acid OH

O

 

Sterols 

β-sitosterol (C29H500)
  

 

Stigmastanol 

 

Campesterol 

 
Triglycerides 

Tripalmitin 

 
 

 

 

 



 
 

88 

 

Table 3.3: A profile of extractives in E. nitens wood. 

 

Compound name Types 

Oxalic acid Acid 

Acetic acid Acid 

2-Piperidinecarboxylic acid Acid 

Glutaric acid, nonyl 2,4,6-trichlorobenzyl ester Acid 

Kaura-9(11),16-dien-18-oic acid, (4.alpha)- Acid 

Dehydroabietic acid Acid 

1,2,3,5-Cyclohexanetetrol, (1.alpha.,2.beta.,3.alpha.,5.beta.)- Acid 

Pimaric acid Acid 

3-(4,7-Dimethoxy-2H-1,3-benzodioxol-5-yl)prop-2-enoic acid Acid 

4-(2,6,6-Trimethyl-cyclohex-1-enyl)-butyric acid Acid 

Dehydroabietic acid Acid 

3.beta.-Acetoxy-5-cholenic acid Acid 

L-Erythro-Hexonic acid, 2,4,6-trideoxy-3-O-.beta.-D-glucopyranosyl-, ethyl ester, 

pentaacetate 

Acid 

Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester Acid 

4-(2,6,6-Trimethyl-cyclohex-1-enyl)-butyric acid Acid 

Citronellyl tiglate Acid 

Ergosta-4,6,22-trien-3.alpha.-ol Acid 

5.alpha.-Cholestan-22(26)-epoxy-3,16-dibenzoxy Acid 

Ethanol Alcohol 

Androsta-3,5-diene-3,17-diol, 17-acetate 3-(heptafluorobutanoate), (17.beta.)- Alcohol 

Nonanal Aldehyde 

2-Undecenal Aldehyde 

(E)-Tetradec-2-enal Aldehyde 

Tetradecanal Aldehyde 

7-Oxabicyclo[2.2.1]heptane Alkanes 

2-Dimethylsilyloxytridecane Alkanes 

erythro-9,10-Dibromopentacosane Alkanes 

Heneicosane Alkanes 

erythro-9,10-Dibromopentacosane Alkanes 

Dotriacontane, 1,32-dibromo- Alkanes 

Dotriacontane, 1,32-dibromo- Alkanes 

1-Nonadecene Alkene 

Pregnane-3,17,20-triol, (3.alpha.,5.beta.,20S)- Alkene 

Metharbital Amide 

8-Methyl-6-nonenamide Amide 

5.alpha.Androst-16-ol, 17-ethylidene-3,5-dedihydro-6-methoxy-, pivalate Amides 

Oxazolidine, 2,2-diethyl-3-methyl- Amine 

5.alpha.-Cholestan-6.beta.-amine, N,N-dimethyl- Amine 

o-Cymene Aromatic 

Benzoic acid Aromatic 

Ethanone, 1-(7-amino-5-phenyl-[1,2,5]oxadiazolo[3,4-b]pyridin-6-yl)- Aromatic 

Benzaldehyde, 3,4,5-trimethoxy- Aromatic 

Benzaldehyde, 2,4,5-trimethoxy- Aromatic 

1,4-Methanonaphthalene,1,4-dihydro-9-((1-methylethylidene)- Aromatic 

p-Phenylenediurethane Aromatic 
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5-(Phenyl-p-tolyl-methyl)-3H-[1,3,4]oxadiazol-2-one Aromatic 

5-(Phenyl-p-tolyl-methyl)-3H-[1,3,4]oxadiazol-2-one Aromatic 

5-(Phenyl-p-tolyl-methyl)-3H-[1,3,4]oxadiazol-2-one Aromatic 

5-(Phenyl-p-tolyl-methyl)-3H-[1,3,4]oxadiazol-2-one Aromatic 

2,4,6-Triisopropylphenetole Aromatic 

5-(Phenyl-p-tolyl-methyl)-3H-[1,3,4]oxadiazol-2-one Aromatic 

2,3-Diazabicyclo[2.2.1]hept-2-ene, 4-methyl-1-(pent-4-en-1-yl)- Cycloheptene 

1H-Cycloprop[e]azulene, decahydro-1,1,7-trimethyl-4-methylene- Cycloheptene 

Cycloheptasiloxane, tetradecamethyl- Cycloheptene 

1H-Cycloprop[e]azulene, 1a,2,3,5,6,7,7a,7b-octahydro-1,1,4,7-tetramethyl-, [1aR-

(1a.alpha.,7.alpha.,7a.beta.,7b.alpha.)]- 

Cycloheptene 

alpha.-Phellandrene Cyclohexene 

1,3-Cyclohexadiene, 1-methyl-4-(1-methylethyl)- Cyclohexene 

beta.-Phellandrene Cyclohexene 

1,3-Cyclopentadiene Cyclopentene 

Diethylmalonic acid, di(2-(3,3-dimethyl-2,4-oxacyclopentyl)ethyl) ester Ester 

Hexanoic acid, 2-ethyl-2-propyl-, methyl ester Ester 

l-Phenylalanine, N-butoxycarbonyl-, undec-10-enyl ester Ester 

Succinic acid, 2-methylpent-3-yl dec-4-en-1-yl ester Ester 

Tripalmitin Ester 

9-Octadecenoic acid (Z)-, hexadecyl ester Ester 

4-Fluoro-2-methoxyphenol, 3-methylbutyl ether Ether 

1-Triethylsilyloxyheptadecane Ether 

Furan, 3-methyl- Furans 

Furan, 2,5-dimethyl- Furans 

2,5-Furandione, 3-methyl- Furans 

2-Furancarboxaldehyde, 5-methyl- Furans 

2-Furancarboxylic acid, 2,2-dimethylpropyl ester Furans 

5-Hydroxymethylfurfural Furans 

Furfural Furfural 

Chloromethane HD Aliphatic 

Acetone Ketone 

2-Propanone, 1-hydroxy- Ketone 

1-Nitro-2-propanone Ketone 

4-Cyclopentene-1,3-dione Ketone 

1,2-Cyclopentanedione Ketone 

7-Tridecanone Ketone 

Cyclohexanone, 2,3,3-trimethyl-2-(3-methylbutyl)- Ketone 

Propan-2-one, 1-cyclododecyl- Ketone 

2-Propanone, 1-(4-hydroxy-3-methoxyphenyl)- Ketone 

2,6-Dimethoxybenzoquinone Ketone 

Cholest-7-en-3-one, 4,4-dimethyl-, (5.alpha.)- Ketone 

Cyclopentasiloxane, decamethyl- Other 

Cyclohexasiloxane, dodecamethyl- Other 

5.alpha.-Androstane, 17-ethyl-1,3-dihydroxy-, (1.beta.,3.beta.)- Other 

Cholest-2-eno[2,3-b]indole, 5'-methoxy- Other 

Cholestan-3-ol, acetate, (3.beta.,5.alpha.)- Other 

1-Phenanthrenemethanol, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-

methylethyl)-, 1-acetate, (1R,4aS,10aR)- 

Other 
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Colchicine, N-desacetyl-N-[(2',2',5',5'-tetramethyl-N'-oxy-pyrrolid-3'-yl)carbonyl]- Other 

Phenol Phenol 

Phenol, 2-methoxy- Phenol 

Creosol Phenol 

Catechol Phenol 

3-[3-Bromophenyl]-7-chloro-3,4-dihydro-10-hydroxy-1,9(2H,10H)-acridinedione Phenol 

1,2-Benzenediol, 3-methoxy- Phenol 

4-Hydroxy-2-methylacetophenone Phenol 

Phenol, 2,6-dimethoxy- Phenol 

Phenol, 2,6-dimethoxy- Phenol 

Benzaldehyde, 3-hydroxy-4-methoxy- Phenol 

4-Hydroxy-2-methoxybenaldehyde Phenol 

1,4-benzenediol, 2,5-dimethoxy- Phenol 

3,5-Dimethoxy-4-hydroxytoluene Phenol 

3,5-Dimethoxy-4-hydroxytoluene Phenol 

3,4,5-Trimethoxyphenol Phenol 

Benzaldehyde, 4-hydroxy-3,5-dimethoxy- Phenol 

Ethanone, 1-(4-hydroxy-3,5-dimethoxyphenyl)- Phenol 

Desaspidinol Phenol 

stigmast-4-en-3-one Phenol 

4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- Pyran 

erythro-9,10-Dibromopentacosane Solvent 

Stigmasta-3,5-diene Sterols 

beta.-Sitosterol acetate Sterols 

3,5-Cyclo-6,8(14),22-ergostatriene Sterols 

beta.-Sitosterol acetate Sterols 

21-Hydroxyprogesterone, trimethylsilyl ether, bis(O-methyloxime) Sterols 

Ergosta-4,6,22-trien-3.alpha.-ol Sterols 

3Beta,21alpha-diacetoxy-18,22,22-trimethyl-17,27,29,30-tetranor-c-homoolean-14-ene Sterols 

3-Heptafluorobutyriloxypregna-3,5,16-trien-20-one Sterols 

Cholestan-3,22,26-triol, 16-[2-thiohydroxyethyl]-, 3,26-diacetate Sterols 

1-Androsten-3,17-dione, di-trimethylsilyl Sterols 

Cholestan-3,22,26-triol, 16-[2-thiohydroxyethyl]-, 3,26-diacetate Sterols 

Dedihydroxypseduosarsasapogenin, 3,27-diiodo- Sterols 

4-Campestene-3-one Sterols 

Stigmastan-7-one Sterols 

Stigmasta-3,5-diene Sterols 

Pregnane-3,20-diol, bis(trifluoroacetate), (3.beta.,5.alpha.)- Sterols 

Stigmasta-3,5-diene Sterols 

beta.-Sitosterol acetate Sterols 

1-Phenanthrenemethanol, 1,2,3,4,4a,9,10,10a-octahydro-1,4a-dimethyl-7-(1-

methylethyl)-, 1-acetate, (1R,4aS,10aR)- 

Sterols 

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-3-methoxy-

10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,1 

Sterols 

Stigmast-5-en-3-ol, oleate Sterols 

Stigmasta-3,5-dien-7-one Sterols 

Stigmastan-7-one Sterols 

3Beta,21alpha-diacetoxy-18,22,22-trimethyl-17,27,29,30-tetranor-c-homoolean-14-ene Sterols 

Stigmast-4-en-3-one Sterols 
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Stigmast-4-en-3-one Sterols 

Stigmasta-3,5-dien-7-one Sterols 

Stigmasta-3,5-dien-7-one Sterols 

Thiositosterol disulphide Sterols 

Stigmast-5-en-3-ol, oleate Sterols 

Stigmast-5-en-3-ol, oleate Sterols 

gamma.-Sitostenone Sterols 

Stigmast-4-en-3-one Sterols 

4,25-Secoobscurinervan-4-ol, 22-ethyl-15,16-dimethoxy-, diacetate (ester), 

(4.beta.,22.alpha.)- 

Sterols 

Cholest-7-en-3-ol, 2,2-dimethyl-, (3.beta.,5.alpha.)- Sterols 

24-Norursa-3,12-diene Sterols 

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-3-methoxy-

10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,1 

Sterols 

Stigmasta-5,22-dien-3-ol, acetate, (3.beta.)- Sterols 

Digitoxose Sugar 

D-Allose Sugar 

1,6-Anhydro-.alpha.-d-galactofuranose Sugar 

gamma.-Terpinene Terpine 
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 Figure 3.1: Chromatograms of the total lipids extract from Eucalyptus nitens. A- wood; B- pulp. 
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A summary of the lipophilic extractives in the different Eucalyptus species is shown in Table 

3.4. Sterols were present in highest concentrations in all the Eucalyptus spp. examined. They 

ranged from 704.5 mg/kg (E. nitens) to 365.2 mg/kg (E. smithii) in the wood samples and were 

notably lowered in the pulp to 325.2 mg/kg in E. nitens and 188.4 mg/kg in E. smithii. Acid-

bisulphite pulping drastically reduced the fatty acid, fatty alcohol and steroid ketone content for 

all Eucalyptus species. Similar results were seen in a study by Kilulya et al. (2012) where the 

lipophilic fraction was almost completely removed towards the end of the bleaching process. 

Fatty acid esters are generally saponified during the sulphite pulping process, whilst terpenes, 

terpenoids and flavonoids are partly dehydrogenated, and resin components are sulfonated, thus 

increasing their hydrophilicity rendering them soluble in the liquor. Fractions of the resins are 

consequently removed during sulphite cooking (Sjöström, 1993).  

 

Table 3.4: Composition of lipophilic extractives from different Eucalyptus species and their 

pulps (mg/kg). 

 

Compounds 
E. dunnii E. grandis E. nitens E. smithii 

Wood ±SD Pulp ±SD Wood ±SD Pulp ±SD Wood ±SD Pulp ±SD Wood ±SD Pulp ±SD 

Fatty acids 
43.5±0.12 a 13.9±0.43 a 50.2±0.28 a 13.1±0.81 a 38.4±0.63 b 15.0±0.18 a 45.7±0.23 a 14.9±0.17 a 

Fatty 

alcohols 15.4±0.23 3.2±0.24 12.7±0.31 4.1±0.25 16.2±0.33 7.8±0.39 15.8±0.41 3.6±0.30 

Sterols 658.2±0.28 a 320.1±0.31 a 485.3±0.22 a 210.7±0.36 b 704.5±0.24 a 325.2±0.60 a 365.2±0.21 a 188.4±0.41 a 

Steroid 

ketones 
121.4±0.19 12.3±0.14 98.7±0.30 7.8±0.47 114.5±0.30 9.2±0.74 101.3±0.25 11.7±0.37 

*Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

Properties of unbleached pulp 

Results for E. dunnii, E. grandis, E. nitens and E. smithii (yield, viscosity, kappa number, lignin 

content, cellulose and hemicelluloses) are shown in Tables 3.5 and 3.6. Pulp viscosity was 

highest for E. grandis (570.37 ml/g), followed by E. nitens (568.92 ml/g), E. dunnii (548.63 

ml/g) and E. smithii (547.17 ml/g) (Table 3.5). Viscosity of pulp indicates the average degree 

of polymerization of cellulose, indirectly providing information on the degradation of cellulose 

resulting from the pulping and/or the bleaching process (Bodhlyera et al., 2015). The viscosity 

of Eucalyptus pulp produced on a lab-scale is generally in the range of 400-550 ml/g (Vehmaa, 

2013). The degree of delignification of the pulp can be surmised from the Kappa number 

(Danielewicz and Surma-Ślusarska, 2006). E. dunnii and E. smithii pulps had low kappa 

numbers, demonstrating improved pulp brightness implying that reduced amounts of chemicals 

would be required during bleaching. Unbleached pulp has an initial kappa range of 8-14 that is 
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reduced during bleaching stages to 2.8 after the oxygen stage, 0.9 after ECF bleaching, with a 

final kappa number of <0.5 (Vehmaa, 2013). Klason lignin contents were at desirable levels of 

4-6% for all Eucalyptus species. This indicates bleaching of these pulps will be easier and that 

milder bleaching conditions (lower temperatures and chemical dosages) will be adequate to 

attain suitable kappa numbers (Dutt and Tyagi, 2011). Dissolving pulp yields obtained were 

within the range for conventional pulping, viz., 43.5-51.5% (Clarke, 1995; Gardner, 2001). 

However, it is important to note that following elemental chlorine-free (ECF) bleaching, pulp 

yield is expected to decrease to 35-39% (Flickinger et al., 2011; Gominho et al., 2015). Glucose 

levels recorded were high ranging from 87.7-89.8 (Table 3.6), indicating high cellulose content 

of the pulp (cellulose content values as high as 96% are desirable).  

 

Maximum removal of hemicelluloses is desirable in the manufacture of DWP. The presence of 

sugar monomers xylose, mannose and galactose is indicative of hemicellulose content. The 

results in Table 3.6 indicate that E. grandis is ideal for DWP due to its lowest content of 

hemicellulose sugars among the four Eucalyptus species studied.  

 

Table 3.5: Characteristics of pulp produced from Eucalyptus wood chips. 

 

 
Pulp Yield (%) 

±SD 

Viscosity (ml/g) 

±SD 

Kappa number 

±SD 

Klason lignin 

(%) ±SD 

Acid-Soluble 

lignin (%) ±SD 

E. dunnii 52.4±0.28 548.63±0.24 a 9.95±0.16 a 6.12±0.27 a 5.15±0.82 

E. grandis 54.1±0.47 570.37±0.2 a 11.54±0.24 b 4.48±0.58 a 4.36±0.57 

E. nitens 51.1±0.12 568.92±0.31 a 10.49±0.19 b 6.62±0.23 a 5.56±0.09 

E. smithii 50.3±0.14 547.17±0.17 a 8.25±0.30 a 5.68±0.22 a 4.35±0.15 

*Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

Table 3.6: Quantification of pulp cellulose and hemicelluloses using HPLC (%). 

 
 Arabinose ±SD Galactose ±SD Glucose ±SD Mannose ±SD Xylose ±SD Sum ±SD 

E. dunnii 0.15±0.19 0.33±0.34 89.34±0.54 0.52±0.36 4.37±0.14 94.51±0.04 

E. grandis 0.04±0.17 a 0.40±0.28 a 89.76±0.41 a 0.35±0.21 a 0.81±0.10 a 90.06±0.14 a 

E. nitens 0.05±0.21 0.32±0.30 88.52±0.59 0.76±0.11 1.86±0.31 91.51±0.19 

E. smithii 0.03±0.39 0.22±0.11 87.69±0.28 0.61±0.24 2.59±0.24 90.14±0.27 

*Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

3.5 Conclusions 

The eucalypt species in this study had similar types of lipophilic extractives but the amounts of 

various compounds differed. The variations observed appeared to be influenced by tree species. 
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Amongst the Eucalyptus wood species tested, E. nitens contained the highest concentrations of 

lipophilic compounds, signifying that DWP from this species are more likely to result in pitch 

formation during pulping. Py-GC-MS analyses revealed that free sterols, sterol esters and fatty 

alcohols were present at highest concentrations. By pulping a combination of Eucalyptus spp. 

with low and high lipophilic contents, this would assist in reducing the overall concentration of 

lipophilic extractives in the pulp, thus reducing the risk of pitch deposit formation. Comparison 

of pulp properties for the four Eucalyptus species revealed E. grandis to be a superior wood 

species producing the highest amount (pulp yield- 54.1%) and best quality (viscosity- 570.37 

ml/g; glucose concentration- 89.8%) of pulp. In addition, the total lignin content was lowest for 

E. grandis (8.8%), signifying lower chemical requirements during bleaching. Pulp of E. smithii 

was of the lowest quality and yield, however, the kappa number was the lowest compared to 

the other Eucalyptus species. Xylose was the major component in the hydrolysates of the 

carbohydrate fraction, with arabinose, mannose and galactose present in small amounts. The 

information on the chemistry of eucalypt wood provided by this study contributes towards the 

knowledge of this valuable crop and will assist in optimizing selection of eucalypt species for 

pulping. 

 

3.6 Acknowledgements 

This work was supported by the National Research Foundation (NRF) and the Biorefinery 

Industry Development Facility (BIDF) at the Council for Scientific and Industrial Research 

(CSIR), Durban, South Africa. 

 

 

 

 

 

 

 

 



 
 

94 

 

3.7 References 

Back, E.L. and Allen, L.H. 2000. Pitch control, wood resin and deresination. Tappi Press, 

Atlanta, pp. 170-174. 

 

Bodhlyera, O., Zewotir, T., Ramroop, S. and Chunilall, V. 2015. Analysis of the changes in 

chemical properties of dissolving pulp during the bleaching process using piecewise linear 

regression models. Cell. Chem.Technol. 49: 317-332.  

 

Clarke, C.R.E. 1995. Variation in growth, wood, pulp and paper properties of nine eucalypt 

species with commercial potential in South Africa. PhD thesis, University College of North 

Wales, Bangor. 

 

Danielewicz, D. and Surma-Ślusarska, B. 2006. Oxygen delignification of high-kappa 

number pine kraft pulp. Fibres Text. East. Eur. 14: 89-93. 

 

del Río, J.C., Gutiérrez, A., Hernando, M., Landín, P., Romero, J. and Martínez, A.T. 

2005. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-

GC/MS. J. Anal. Appl. Pyrolysis. 74: 110-115. 

 

Dutt, D. and Tyagi, C.H. 2011. Comparison of various Eucalyptus species for their 

morphological, chemical, pulp and paper making characteristics. Indian J. Chem. Technol. 18: 

145-151. 

 

ENCE. 2009. Sustainable forest management and Eucalyptus. Grupo Empresarial ENCE, pp. 

7. 

 

Flickinger, P., Lammi, L. and Ernerfeldt, B. 2011. Dissolving pulp. TAPPI PEERS 

Conference, 2-5 October 2011, Portland, Oregon, USA. 

 

Freire, C.S.R., Pinto, P.C.R., Santiago, A.S., Silvestre, A.J.D., Evtuguin, D.V. and Neto 

C.P. 2006. Comparative study of lipophilic extractives of hardwoods and corresponding ECF 

bleached kraft pulps. Bioresources 1: 3-17. 

 



 
 

95 

 

Freire, C.S.R., Silvestre, A.J.D. and Neto, C.P. 2002. Identification of new hydroxy fatty 

acids and ferulic acid esters in the wood of Eucalyptus globulus. Holzforschung 56: 143-149. 

 

Fukushima, M., Yamamoto, M., Komai, T. and Yamamoto, K. 2009. Studies of structural 

alterations of humic acids from conifer bark residue during composting by pyrolysis-gas 

chromatography/mass spectrometry using tetramethylammonium hydroxide (TMAH-Py-

GC/MS). J. Anal. Appl. Pyrolysis. 86: 200-206. 

 

Gardner, R.A.W. 2001. Site-species interaction studies with cold tolerant eucalypts at high 

altitudes in South Africa. In: Proc. of IUFRO Working Group 2.08.03 Conference on 

developing the eucalypt of the future, Valdivia, Chile, 10-15 September 2001. 

 

Gominho, J., Lourenço, A., Neiva, D., Fernandes, L., Amaral, M.E., Duarte, A.P., Simões, 

R. and Pereira, H. 2015. Variation of wood pulping and bleached pulp properties along the 

stem in mature Eucalyptus globulus trees. BioResources 10: 7808-7816. 

 

Gutiérrez, A. and del Río, J.C. 2001. Gas chromatography-mass spectrometry demonstration 

of steryl glycosides in eucalypt wood, kraft pulp and process liquids. Rapid Commun. Mass 

Spectrom. 15: 2515-2520. 

 

Gutiérrez, A., del Río, J.C., González-Vila, F.J. and Martin F. 1998. Analysis of lipophilic 

extractives from wood and pitch deposits by solid-phase extraction and gas chromatography. J. 

Chromatogr. A. 823: 449-455.  

 

Gutiérrez, A., Romero, J. and del Río, J.C. 2001. Lipophilic extractives from Eucalyptus 

globulus pulp during kraft cooking followed by TCF and ECF bleaching. Holzforschung 55: 

260-264. 

 

Kilulya, K.F., Msagati, T.A.M., Mamba, B.B., Ngila, J.C. and Bush, T. 2012. Study of the 

fate of lipophilic wood extractives during acid-sulphite pulping process by ultrasonic solid-

liquid extraction and gas chromatography mass spectrometry. J. Wood Chem. Technol. 32: 253-

267. 

 



 
 

96 

 

Kilulya, K.F., Msagati, T.A.M., Mamba, B.B., Ngila, J.C. and Bush, T. 2014. Effect of site, 

species and tree size on the quantitative variation of lipophilic extractives in Eucalyptus woods 

used for pulping in South Africa. Ind. Crops Prod. 56: 166-174. 

 

Klash, A., Ncube, E., du Toit, B. and Meincken, M. 2010. Determination of the cellulose and 

lignin content on wood fibre surfaces of eucalypts as a function of genotype and site. Eur. J. 

Forest Res. 129: 741-748. 

 

Miranda, I., Gominho, J., Mirra, I. and Pereira, H. 2013. Fractioning and chemical 

characterization of barks of Betula pendula and Eucalyptus globulus. Ind. Crops Prod. 41: 299-

305. 

 

Neiva, D.M., Araújo, S., Lourenço, A., Gominho, J. and Pereira, H. 2014. Chemical 

composition and kraft pulping potential of 12 eucalypt species. Ind. Crops Prod. 66: 89-95. 

 

Rencoret, J., Gutiérrez, A. and del Rio, C. 2012. Chemical composition of different 

Eucalyptus wood species used for paper pulp manufacturing. International symposium on 

paradigms for the pulp and paper industry in the XXI Century: opportunities for a sustainable 

future. Seville, Spain, 24-27 June. 

 

Rencoret, J., Gutiérrez, A. and del Rio, J.C. 2007. Lipid and lignin composition of woods 

from different eucalypt species. Holzforschung 61: 165-174. 

 

Richardson, D., Lee, R., Stack, K., Lewis, T. and Garnier, G. 2012. Process factors affecting 

colloid stability and deposit formation in manufacture of newsprint from TMP and recycled 

fibre. Appita J. 65: 323-330. 

 

Rockwood, L.D., Rudie, W.A., Ralph, S.A., Zhu, Y.J. and Winandy, E.J. 2008. Energy 

product options for Eucalyptus species grown as short rotation woody crops. Int. J. Mol. Sci. 9: 

1361-1378. 

 

Silvério, F.O., Barbosa, L.C.A., Maltha, C.R.A., Silvestre, A.J.D., Pilo-Veloso, D. and 

Gomide, J.L. 2007. Comparative study on the chemical composition of lipophilic fractions 



 
 

97 

 

from three wood tissues of Eucalyptus species by gas chromatography and mass spectrometry 

(GC–MS) analysis. J. Wood Sci. 53: 533-540. 

 

Sithole, B. and Watanabe, C. 2013. Using Py-GC/MS to detect and measure silicone 

defoamers in pulp fibres and mill deposits. J. Anal. Appl. Pyrolysis. 103: 8-16. 

 

Sjöström, E. 1993. Wood chemistry: fundamentals and applications, Academic press, New 

York, USA pp.115, 124-137. 

 

Swain, T.-L., Verryn, S.D. and Laing, M.D. 2013. Genetic characterization of a Eucalyptus 

nitens base breeding population in South Africa. Southern Forests. J. Forest Sci. 75: 155-167. 

 

Vehmaa, J. 2013. Manufacturing of dissolving hardwood and softwood pulp with continuous 

cooking and novel fiberline technology. Andritz Pulp and Paper. 6th International Colloquium 

on Eucalyptus Pulp, Colonia, Uruguay, November 24-27, 2013. 

 

Wallis, A.F.A., Wearne, R.H. and Wright, P.J. 1996. Chemical analysis of polysaccharides 

in plantation eucalypt woods and pulps. Appita J. 49: 258-262. 

 

Wright, P.J. and Wallis, A.F.A. 1996. Rapid determination of carbohydrates in hardwoods. 

Holzforschung 50: 518-524. 

 

List of Standards 

TAPPI T203 om-94. 1997. Viscosity of pulp (capillary viscometer method).  

TAPPI T204 om-88. 1997. Solvent extractives of wood and pulp. 

TAPPI T207 cm-08. 2008. Water solubility of wood and pulp. 

TAPPI T222 om-02. 2002. Acid-insoluble lignin in wood and pulp. 

TAPPI T236 cm-85. 1993. The kappa number of pulp.  

TAPPI T249 cm-85. 1997. Carbohydrate composition of extractive-free wood and wood pulp 

by gas-liquid chromatography. 

TAPPI T257 cm-12. 2012. Sampling and preparing wood for analysis. 

 



98 

 

CHAPTER FOUR 

 

THE EFFECTS OF WOOD STORAGE ON THE CHEMICAL COMPOSITION AND 

INDIGENOUS MICROFLORA OF EUCALYPTUS SPECIES USED IN THE 

PULPING INDUSTRY 

___________________________________________________________________________ 

 

4.1 Abstract 

Lipophilic extractives naturally occurring in wood tend to coalesce during pulping to form 

pitch deposits, which have distinctively undesirable effects on the pulping process and quality 

of pulp produced. The production of dissolving pulp (high-grade cellulose pulp), in particular, 

employs an acidic pulping process which aggravates the formation of these pitch deposits. A 

baseline profile of the lipophilic extractive content of popular Eucalyptus species [E. nitens, E. 

grandis, and E. dunnii (of different site qualities)] used in the pulping industry would assist in 

management strategies to reduce pitch formation. This study determined the effects of storage 

of wood chips at -20°C (for 6 months), by the examining the wood chemical composition and 

indigenous microflora. The lipophilic extractive profiles of these Eucalyptus species were 

studied using pyrolysis gas chromatography-mass spectrometry. Fatty acids were the main 

lipophilic compounds among E. dunnii (SQ3 and SQ4) and E. grandis wood extractives. 

Unexpectedly, E. nitens wood displayed the lowest and E. grandis the highest amount of these 

pitch-forming compounds. This may be due to the handling of the wood logs prior to chipping. 

Storage of wood chips at -20°C had a similar effect as the traditional seasoning methods 

(storage of wood outdoors prior to pulping) used for the reduction of lipophilic extractives. The 

site quality of the Eucalyptus plantation had considerable influence on chemical composition 

of the wood material. The total extractive content was higher for E. dunnii (SQ3) (13.2%) 

compared to E. dunnii (SQ4) (7.7%), however, cellulose and acid-insoluble lignin contents of 

E. dunnii (SQ4) were higher at 44.8% and 27.5%, respectively. This indicates that greater pulp 

yield may be achieved with E. dunnii (SQ4) but at a greater risk of pitch formation and high 

insoluble lignin content. After storage, variations in bacterial and fungal communities were 

observed, and need to be taken into consideration when conducting lab scale trials, as 

degradation of wood components during storage would influence the outcome of experiments. 

It is therefore recommended that if storage of wood chips is necessary, they should be retained 

for a maximum of 3 months at -20°C under laboratory conditions. 
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4.2 Introduction 

The South African pulp and paper industry relies heavily on Eucalyptus wood material as a 

resource for the production of pulp and paper (Sappi, 2017). The major hardwood species 

grown in South African plantation forests include several Eucalyptus spp. including: E. dunnii, 

E. grandis, E. nitens, E. smithii and a range of hybrids (Sappi, 2012). The Eucalyptus species 

are used in the production of various grades of pulp such as dissolving pulp. Dissolving pulp 

is almost pure cellulose (91-98%), as it contains minimal amounts of lignin and hemicelluloses, 

and is used for the production of cellulose derivatives such as microcrystalline cellulose, rayon, 

cellulose acetates and cellulose nitrates (Kumar and Christopher, 2017; Sappi, 2017). 

 

All plant materials are made up of three major components, cellulose, hemicelluloses and lignin 

and a small component of lipophilic extractives (wood resin) (McKendry, 2002). Cellulose 

molecules link together to form microfibrils which form the framework of the cell wall and are 

responsible for the strength of wood. Hemicelluloses are a group of compounds made up of 

different sugars and combine with lignin, which provides rigidity, to form the glue that holds 

the cells together. Extractives make up the minor fraction of wood but have the greatest 

potential to cause problems (Leskinen et al., 2015). The extractive content of wood is highly 

variable amongst species (Moodley, 2011; Yang and Jaakkola, 2011), therefore careful 

selection of Eucalyptus species for pulping is required and currently not taken into 

consideration in commercial pulping operations (Personal communication, 2016).  

 

The lipophilic fraction of wood extractives are responsible for the formation of pitch deposits 

during pulp production (Sjöström, 1993; Kontkanen et al., 2004; Wang and Jiang, 2006), 

resulting in poor pulp quality and gumming up of machinery (Hillis and Sumimoto, 1989; 

Patrick, 2004; Sarja, 2007). The extractives in the different wood species and pulping process 

employed are directly related to the composition of the wood resin components in pitch 

deposits (Back and Allen, 2000; Holmbom, 2000). Traditionally, wood resin components are 

reduced by seasoning logs and wood chips (outdoor storage of wood prior to processing) (Allen 

et al., 1991; Back and Allen, 2000). Storage reduces the extractive content by hydrolytic or 

oxidative conversion by plant enzymes and the activity of indigenous microflora. The reduction 

of extractive content occurs much faster in woodchips rather than log form, as the oxidation 
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processes proceed more easily and rapidly (Gutiérrez et al., 1998; Burnes et al., 2000). 

Temperature is also known to have an effect on the degradation of lipophilic compounds 

(Silvério et al., 2008). It has been reported that during winter the hydrolysis of wood esters, 

which forms part of the pitch, is drastically reduced compared to the summer months (Almeida 

and Silva, 2001). Thus, the ester fraction of the pulp is greater in winter, leading to an increase 

in the hydrophobicity and viscosity of pitch (Olm, 1984). In industry, seasoning wood at 

ambient temperatures usually significantly reduces the lipophilic content in the wood. 

However, care has to be taken as prolonged seasoning could lead to uncontrolled action of 

microorganisms and insects (Bajpai, 1999; Gutiérrez et al., 2001). The activity of such 

organisms could lead to cellulose and hemicellulose loss in the wood, which would ultimately 

result in the loss of pulp quality (Burnes, 2000). Similarly, care has to be taken when storing 

wood for scientific investigations. Under laboratory conditions, wood chips are usually stored 

at -20°C to prohibit any natural degradation of the lipophilic extractives, contamination by 

foreign organisms and to preserve the original state of the wood (Venn, 1980; Petäistö, 2006).  

 

The lipophilic extractives of E. globulus and certain hybrids have been extensively 

characterized (del Río et al., 1998; Gutiérrez et al., 1998; Gutiérrez et al., 1999; Gutiérrez et 

al., 2001; Freire et al., 2002; Freire et al., 2006; Prinsen et al., 2012), however, there is a lack 

of information on the extractive content of E. grandis, E. urograndis (Freire et al., 2006), E. 

urophylla, E. camaldulensis (Silvério et al., 2007), E. nitens, and E. dunnii (Rencoret et al., 

2007). In addition, only limited information on the effect that site quality plays on extractive 

content of Eucalyptus species is available. Incorporating the knowledge on the lipophilic 

content of different Eucalyptus species when selecting wood for pulping, will go a long way 

towards reducing the overall lipophilic content of pulp, consequently reducing the risk of pitch 

formation. In the present study, the chemical composition of the wood and pulp of three 

Eucalyptus species, E. grandis, E. nitens, E. dunnii and two site qualities for E. dunnii [E. 

dunnii SQ3 and E. dunnii SQ4] were evaluated. Furthermore, the effects of storage at -20°C 

on the chemical composition of different Eucalyptus spp. and their indigenous microflora was 

investigated. 

 

4.3 Materials and Methods 

4.3.1 Samples 
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E. grandis, E. nitens, E. dunnii (SQ3) and E. dunnii (SQ4) were obtained from a commercial 

pulping mill in Umkomaas, located on the south coast of South Africa. Wood chips from 

individual wood species were collected as they were being chipped in the wood yard. Samples 

were transported back to the laboratory and stored at -20°C. It is important to note that the 

wood material obtained here may not have been as fresh as the material in chapter three. The 

logs spent an indeterminate period in the woodyard prior to chipping. Chip samples of the 

different wood species were milled to coarse sawdust using the Brabender Wiley-mill (Triad 

Scientific, New Jersey, USA). The saw dust was then passed through a 0.40 mm (40 mesh) 

screen and used for chemical analyses (T257 cm-12). The following analyses were conducted 

on the milled wood chips before and after storage at -20°C for 6 months. Wood chips were also 

pulped and evaluated for changes in quality.  

 

4.3.2 Hot water extraction 

Hot water (water-soluble) extractives (waxes, fats, some resins, photosterols, non-volatile 

hydrocarbons, low molecular weight carbohydrates, salts, and other water-soluble substances) 

were evaluated by placing 5 g of sawdust (moisture content recorded) in a 400 ml conical flask 

and slowly adding 100 ml of hot deionised water. The contents of the conical flasks were well 

stirred to prevent the sawdust from floating. The conical flask was placed on a pre-heated hot 

plate for 3 h. The initial level of the contents was noted and kept constant by the addition of 

hot deionised water. A pre-weighed number 3 crucible (Pyrex, Massachusetts, USA) and a 

vacuum pump were used to filter the sawdust, which was washed with 200 ml of hot deionised 

water and dried at 60ºC overnight (T207 cm-08). The experiments were performed in triplicate. 

 

4.3.3 Solvent extraction 

The Soxhlet extraction method was used to evaluate the solvent (water-insoluble) extractives 

in the wood samples. Four grams of hot water extracted sawdust (moisture content recorded) 

were weighed into an extraction thimble, which was placed in a Soxhlet apparatus that was 

attached to a pre-weighed 500 ml round bottomed flask containing 300 ml toluene-ethanol 

(2:1). The heating mantle was adjusted such that the solvent cycled through the system six 

times over 4 h. The extractives were rotor evaporated to dryness, cooled in a desiccator, and 

weighed (T204 om-88). The experiments were performed in triplicate. 
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4.3.4 Chemical analyses 

The chemical characteristics of the wood chips were evaluated by acid-insoluble lignin (T222 

om-88), extractive analyses such as near infra-red reflectance analyser (NIRA) for the rapid 

quantification of wood chemical components and high performance liquid chromatography 

(HPLC) for quantification of cellulose and hemicelluloses (glucose, mannose, arabinose, 

xylose and galactose) (T249 cm-85; Wallis et al., 1996; Wright and Wallis, 1996).  

 

4.3.5 Pyrolysis-gas chromatography-mass spectrometry (GC-MS) 

Pyrolysis GC-MS was utilised to profile lipophilic extractives. A multi-shot pyrolyzer, 

EGA/PY-3030 D, (Frontier Lab, Fukushima, Japan) attached to an ultra-alloy capillary column 

(30 m x 0.25 mm, 0.25 μm) was used for analysis. The samples were pyrolysed at 550°C for 

20 s and the interface temperature was set at 350°C. The chromatographic separation of the 

volatile components released by pyrolysis was performed using an ultra-alloy column. The 

injection temperature was set to 280°C, and the column flow rate was set to 1.0 mL/min, with 

helium used as a carrier gas. The temperature was programmed as follows: 50°C for 2 min; 

rate 3°C/min up to 200°C, and hold for 4 min. The ion source and interface temperatures were 

set to 200°C and 300°C, respectively. The scan range used for mass selective detector was 40 

to 650 m/z. Pyrolysis products were identified by comparing their mass spectra with the mass 

spectrum NIST library attached to the instrument (modified from Sithole and Watanabe, 2013). 

 

4.3.6 Pulping 

Pulping was performed according to the acid-bisulphite process currently implemented in 

dissolving wood pulp (DWP) mills. Pulp quality was determined by assessing viscosity (T203 

om-99), screened pulp yield, kappa number (T236 om-06), copper number, alpha cellulose, S8, 

S10 (T235 om-60) and hemicelluloses (Forestry and Forest Products Research Centre, CSIR, 

Personal Communication, 2014). 

 

4.3.7 DNA isolation and polymerase chain reaction (PCR) 

DNA was extracted from 0.2 g of milled chips using a kit as per the manufacturer’s 

specifications (Soil DNA Extraction Kit, Zymo Research, California, USA). Ribosomal genes 

were amplified from microbial genomic DNA using 16S and ITS region of 18S rRNA genes 

with the universal primer sets: 63F/1387R (Marchesi et al., 1998) and ITS5F/ITS4R (White et 

al., 1990), respectively. Each amplification reaction (50 μl) contained 1.25 mM MgCl2, 0.125 
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μM forward and reverse primers, 0.2 mM deoxynucleoside triphosphate (dNTPs), 0.25 U 

SuperTherm Taq DNA polymerase (Southern Cross Biotech, Cape Town, South Africa), and 

20 to 200 ng of template DNA. PCR was performed using the GeneAmp PCR System 9700 

(Applied Biosystems, California, USA). For amplification of 16S rRNA, PCR conditions were 

as follows: initial denaturation at 95°C for 5 min, 30 cycles of denaturation annealing and 

extension at 95°C for 1 min, 55°C for 1 min, 72°C for 1.5 min and a final extension at 72°C 

for 5 min. The 18S rRNA amplification conditions were: initial denaturation at 95°C for 2 min, 

25 cycles of 95°C for 30 sec, 53°C for 45 sec, 72°C for 1 min and a final extension at 72°C for 

8 min. The amplicons were analyzed by electrophoresis on 1% agarose (SeaKem) gels in 1× 

TAE running buffer at 90 V for 45 min. After electrophoresis, the gels were stained in 0.5 

μg/ml ethidium bromide and visualized using the Chemi-Genius 2 BioImaging System 

(Syngene, Cambridge, UK). Upon confirmation of 16S and 18S amplicons, the products were 

purified using a GeneJET™ PCR purification kit (Fermentas, Massachusetts, USA) and re-

amplified in a touchdown thermal profile program using nested PCR and primers with GC 

clamps. PCR for 16S rRNA genes were initially performed using two primer sets: 338F-GC 

with a GC-clamp: 5´-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG-

3´ and 518R 211 (237-bp fragment) (Handschur et al., 2005); 933F-GC with a GC-clamp: 5´-

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGG-3´ and 1387R (500-bp 

fragment) (Ji et al., 2004). The composition of the reaction mixtures was the same as that used 

for the first PCR. For amplification of 16S rRNA, PCR conditions were as follows: initial 

denaturation at 95°C for 5 min, 30 cycles of denaturation annealing and extension at 95°C for 

1 min, 55°C for 1 min, 72°C for 1.5 min and a final extension at 72°C for 5 min. The 18S rRNA 

amplification conditions were: initial denaturation at 95°C for 2 min, 25 cycles of 95°C for 30 

sec, 53°C for 45 sec, 72°C for 1 min and a final extension at 72°C for 8 min. (Schabereiter-

Gurtner et al., 2001).  

  

4.3.8 Denaturing gradient gel electrophoresis (DGGE)  

DGGE was performed using the D-Code Universal Mutation Detection System (BioRad, 

California, USA), and an optimized method (Ramnath et al. 2013) modified from Muyzer and 

Smalla (1998). PCR samples were loaded onto vertical perpendicular polyacrylamide gels (6% 

acrylamidebisacrylamide [37.5:1]) in 1× TAE buffer prepared using 30% and 60% denaturant 

(100% denaturant corresponds to 7 M urea and 40% formamide). Gradients of 30% and 60% 

were optimal for bacterial amplicons (~237 bp) and 25% and 50% gradients were used for 
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fungal amplicons (~316 bp). A pre-run was performed at a constant voltage of 150 V at 60°C 

for 30 min, following which, DGGE profiles were generated at a constant voltage of 60 V in 

1× TAE buffer at 60°C for 16 h. After electrophoresis, gels were stained in 0.5 μg/ml ethidium 

bromide for 60 min, destained in the same volume of 1× TAE buffer for 30 min and visualized 

using the Chemi-Genius 2 BioImaging System (Syngene).  

 

4.4 Results & Discussion 

A comparison of the samples before and after storage at -20°C revealed a general decrease in 

hot water and solvent extractives (Figure 4.1). Hot water extraction is an efficient technique 

for the removal of hemicelluloses from wood chips prior to preparing dissolving pulp (Li et al., 

2010). The highest hot water extractive content was observed for E. dunnii SQ3 (11.2%). 

Extractive contents vary from tree to tree and considerably from species to species (Hillis, 

2014). Surprisingly, E. nitens did not follow the trend observed in the previous chapter, as it 

displayed the lowest amount of lipophilic extractives and E. grandis the highest. This variation 

may be due to the storage of E. nitens logs in the woodyard for a longer period than E. grandis 

logs, which may have influenced the lipophilic content of the wood in the process referred to 

as seasoning. Alternatively, E. nitens may exhibit a better response to seasoning in terms of 

reduction of lipophilic content than the other Eucalyptus species. E. dunnii SQ3 exhibited 

higher hot water extractive (11.2%) and solvent extractive (2%) content compared to SQ4 (6% 

and 1.7%, respectively) – a striking variation in chemical characteristics (more especially the 

hot water extractives) amongst Eucalyptus wood of the same species but different site qualities. 

This result is supported by Kilulya et al. (2014) who also observed that variations in lipophilic 

content are influenced by tree species and site qualities. It is also worth mentioning that storage 

may also affect the analysis of the extractives. It has be reported that some components undergo 

oxidation and radical reactions during storage, which result in modified components that are 

either more difficult to extract or identify (Bialczak et al., 2011). 

 

The study of Kilulya et al. (2014) also validated the present finding of higher amounts of total 

lipophilic extractives in E. dunnii compared to E. grandis. Cohen and Mackney (1951) 

observed that wood chips with hot-water-soluble contents exceeding 7% retained higher levels 

of lignin in the pulp.  They postulated that the delignification process was not optimal due to 

competition between extractives and lignin for the active cooking chemicals during pulping. 

Consequently, higher amounts of active alkali were required to achieve efficient delignification 
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with the negative outcome of increased cost and quantity of waste generated (Cohen and 

Mackney, 1951).  A similar result was observed in this study, however, the trend was only true 

for E. dunnii (SQ3 and SQ4) where only 7.6% and 9.2% reduction, was observed, respectively. 

The hot water extractive content for E. grandis (9%) and E. nitens (7%) was in the range 

reported to be inhibitory to delignification (≥ 7%), yet total lignin was reduced by 33% and 

40%, respectively during pulping. Extractives may cause liquor decomposition, also resulting 

in higher chemical requirements per ton of pulp produced (Hillis, 2014). A comparison of the 

two site qualities revealed that cellulose and acid-insoluble lignin contents of E. dunnii (SQ4) 

were higher at 44.8% and 27.5%, respectively. This indicates that greater pulp yield may be 

achieved with E. dunnii (SQ4) but at a greater risk of pitch formation and insoluble lignin. 

Overall, E. grandis had the highest amount of cellulose, followed by E. nitens, before storage.  

 

 

 

 

 

 

Figure 4.1: Wet chemistry of wood chips of different Eucalyptus spp. before and after storage 

at -20°C. HWE – hot water extractives, SE – solvent extractives, AIL – acid-insoluble lignin. 

 

High performance liquid chromatography (HPLC) was used to quantify hemicelluloses 

(glucose, mannose, arabinose, xylose and galactose) in the wood chips before and after storage. 

There was an increase in xylose content after storage for all Eucalyptus species, attributed to 

the natural degradation of glucuronoxylan during storage (Table 4.1). Pentosans, abundant in 

hardwoods, are mostly glucuronoxylan. The bonds between xylose units in glucuronoxylan are 

easily hydrolysed (Testova et al., 2009), highlighting the potential of natural degradation 

during storage. Galactose and arabinose levels decreased for all Eucalyptus spp. after storage, 

with the greatest decrease observed in E. nitens. This decrease during storage may be attributed 

to microbial degradation. Previous studies have shown that during the initial stages of fungal 

degradation, the carbohydrates most modified were sugars derived from the primary walls and 

middle lamella (galactose and arabinose) (Skyba et al., 2013; Rytioja et al., 2014). These 
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molecules are the building blocks of hemicelluloses and/or arabinogalactan proteins in the 

primary wall (Skyba et al., 2013). The effects reported here are contrary to most reports that 

maintain that storage of wood chips at -20°C retards seasoning (Promberger et al., 2004; Hildén 

and Persson, 2007). 

 

The mannose content of the wood material decreased by 24%, 21% and 9% for E. dunnii (SQ3), 

E. grandis and E. nitens, respectively, after storage. This decrease in mannose content may be 

caused by the activity of hemicelluloytic enzymes produced by microorganisms indigenous to 

the wood, particularly in E. dunnii (SQ3) and E. grandis. This activity may have occurred 

during the freeze thaw cycles or during sample preparation. Wood treated with specific 

enzymes enable the extraction of high molecular weight materials, whilst non-specific enzymes 

were found to degrade hemicelluloses to a large extent (Azhar, 2015). Thus, the increase in 

sugars observed in this study was attributed to non-specific hemicelluloytic activity of 

indigenous microflora found in the wood material. 

 

Table 4.1: Carbohydrate content of the wood chips before and after storage at -20°C. 

 

*Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

Py-GC-MS analyses provided insight into the organic content of the samples. The Py-GC-MS 

profiles in Figure 4.2 show that the samples contained mainly lignin (3’,5’-

dimethoxyacetophenone) and lipophilic (octadecanoic acid and hexadecanoic acid) 

degradation products due to pyrolysis. Storage at -20°C had a discernible effect on the 

lipophilic content of the wood. The hexadecanoic and octadecanoic fatty acids observed are an 

indication of polymerised lipids. Polymerisation is the cause of incomplete removal of lipids 

by extraction (Tao et al., 2010). A reduction in these fatty acids was observed for E. dunnii 

(SQ4), E. nitens and E. grandis. This reduction may lead to a decrease in pitch deposit 

 Arabinose % ±SD Galactose % ±SD Glucose % ±SD Xylose % ±SD Mannose % ±SD 

 Before After Before After Before After Before After Before After 

E. dunnii 

(SQ3) 
0.41±0.11 0.32±0.23 a 1.43±0.30 1.15±0.25 a 49.40±0.12 48.09±0.47 9.05±0.39 10.68±0.26 1.31±0.14 1±0.19 a 

E. dunnii 

(SQ4) 
0.27±0.69 0.19±0.04 a 0.95±0.48 0.70±0.18 a 49.18±0.36 49.84±0.20 10.82±0.21 11.24±0.45 1.44±0.28 1.51±0.36 b 

E. grandis 0.27±0.32 0.16±0.21 a 1.04±0.63 0.79±0.32 a 50.62±0.21 49.24±0.44 7.83±0.4 9.97±0.33 1.74±0.20 1.37±0.47 a 

E. nitens 0.16±0.41 0.09±0.33a 0.65±0.08 0.37±0.24a 50.37±0.11 51.5±0.17 9.87±0.31 11.35±0.69 1.69±0.48 1.54±0.14 a 
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formation and is considered a positive effect. These results confirm that storage at -20°C 

resulted in degradation of pitch components, as previously reported in Aspen wood chips 

(Allen et al., 1991). However, if the wood chips are being stored for future experimental use, 

any changes from the original state of the wood is not favourable. E. grandis (Figure 4.2D) 

contained significant amounts of higher molecular weight lipophilic extractives (hexadecanoic 

and octadecanoic fatty acids), compared to the other wood species. These compounds were 

present in the other samples but at much lower levels, reflecting the inherently greater lipophilic 

content of E. grandis. Extractives were slightly lower than what has been reported for 

Eucalyptus species, which may indicate that samples were not fresh and that extractives may 

have transformed into higher molecular weight lipids (Kilulya et al., 2014). The phthalate and 

siloxane observed in E. dunnii (SQ3) are contaminants and are not part of the wood. Traces of 

phthalates and siloxane are frequently found in most industrial samples and inevitably form 

part of the surface composition (Fardim and Durán, 2003).  
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Figure 4.2: Lipophilic profiles of different Eucalyptus species, before and after storage at -

20°C. A- E. dunnii, B- E. dunnii (FFP), C- E. nitens, D- E. grandis. 

 

The pulp produced from the wood chips before and after storage was evaluated by measuring 

basic pulp chemistry: kappa number, viscosity, pulp yield, alpha cellulose, S10 and S18, and 

copper number. The kappa number provides an estimate of the amount of chemicals required 

during bleaching of wood pulp to achieve a pulp with a specified degree of whiteness. 

Therefore, the amount of bleach required is correlated to the lignin content of the pulp. The 

kappa number can be used to determine the effectiveness of the lignin-extraction phase of the 

pulping process. It is approximately relative to the residual lignin in the pulp (Costa and 

Colodette, 2007). The total lignin content of the pulp produced from wood chips before storage 

was reduced for all the Eucalyptus species after storage (Table 4.3). Greater lignin removal 

may have been possible due to the opening up of the wood structure just before or after storage 

by enzymes produced by the indigenous microflora present. The pulp produced after storage 

had a lower kappa number than the starting material, but had a relatively low pulp viscosity 

(Table 4.2). Since hemicelluloses shield the cellulose chain from alkaline hydrolysis 

(Lindström and Teder, 1995), the low pulp viscosities after storage are possibly due to the 

removal of protective hemicelluloses (Azhar, 2015). Pulp viscosity (degree of polymerization 

of cellulose fibres) reveals the relative consistency of the cellulose fibres after pulping. The 

pulp viscosity varied between the different Eucalyptus species from 28.01 to 131.7 cP. A 

general decrease in the viscosity was observed for all samples after 6 months of storage. 
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Viscosity values for E. dunnii (SQ3) were very low and may be explained by the degradation 

of cellulose fibres by cellulase-producing microorganisms in this species (Ramnath et al., 

2013). A considerable decrease in viscosity of 41% and 66% in E. grandis and E. nitens pulp, 

respectively, was observed after storage. This may be attributed to endoglucanase activity, 

which causes random cleavage of cellulose chains leading to lower degrees of polymerization 

and therefore lower viscosity. The retention of long cellulose fibres is essential for producing 

dissolving pulp (high-grade cellulose pulp). Cellulase activity results in cellulose degradation, 

thus these enzymes need to be eliminated or minimized from crude enzyme cocktails.  

 

After storage, glucose levels varied between 80.9 and 86.2% and xylose from 5.3% to 6.4% 

(Table 4.3). This result provides an approximate indication of the cellulose to hemicellulose 

ratio in the different species (Neiva et al., 2014). E. dunnii (SQ3) and E. dunnii (SQ4) displayed 

the lowest and highest ratio of glucose/xylose, respectively. These results support the notion 

that site quality has an effect on the chemical composition of the wood. The hemicelluloses 

content in E. dunnii (SQ4) pulp was higher than in the other Eucalyptus species examined. A 

general increase in xylose content was observed for all Eucalyptus pulp samples (Table 4.3). 

Fišerová et al. (2013) found that xylose content of hydrolysed beech and oak wood samples 

increased with increasing wood weight loss. Hence the increase in xylose was attributed to 

wood weight loss during storage, which may be caused by wood decaying fungi that became 

activated once thawed. Wood decaying fungi have acquired a range of hydrolytic enzymes 

including cellulases, hemicellulases and oxidative enzymes that breakdown of lignocellulose 

into free monomers such as xylose, mannose, glucose, galactose and arabinose (Álvarez et al., 

2016). In another study, greater xylose levels were observed when Eucalyptus and rice straw 

materials were pretreated with a culture supernatant of Trichoderma reesei than with traditional 

steam explosion as a pretreatment step (Álvarez et al., 2016). This emphasizes the xylan-

hydrolyzing potential of T. reesei to release xylose oligomers and other soluble sugars 

(Jørgensen et al., 2007), and may explain the higher xylose concentrations documented in this 

study. In addition, xylanases may assist in the pulp bleaching process, by removing xylan. This 

effect facilitates bleaching of the cellulose fibres, therefore consuming less bleach and energy 

(Garg et al., 2011). This partial degradation of xylan could also assist in the degradation of 

lignin by other microorganisms present, which is essential because lignin also impedes pulp 

bleaching (Subramaniyan and Prema, 2002). 
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Prior to storage, pulping of E. nitens wood resulted in the highest pulp yield of 50.8%. 

However, after storage the yield was reduced to 44.8%, the lowest level amongst the 

Eucalyptus spp. examined. After storage, E. dunnii (SQ3) generated the highest pulp yield of 

48.7%. Considering the pulping characteristics of the different species without the effect of 

storage, E. nitens is the most suitable for pulping as it generated the greatest pulp yield (50.8%) 

and highest pulp viscosity (131.7%). Integrating the effects of storage, E. dunnii (SQ4) is the 

most suitable for pulping as minimal effects on pulp yield and viscosity were observed for this 

species. Although the handling of the material may have varied from the previous chapter, the 

effects of storage on the wood chips can be seen with an increase in simple sugars and decrease 

in lipophilic extractives indicating degradation of the material.
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Table 4.2: Characteristics of the pulp produced from wood chips before and after storage. 

 
 

SPY (%) ±SD Viscosity (cP) ±SD K-number ±SD S10 ±SD S18 ±SD 
Alpha cellulose (%) 

±SD 
Copper number ±SD 

 Before After Before After Before After Before After Before After Before After Before After 

E. dunnii 

(SQ3) 
49.68±0.28 48.65±0.52 a 28.01±0.41 27.98±0.12 a 4.06±0.47 3.76±0.36 9.77±0.48 9.78±0.25 7.08±0.17 6.93±0.11 91.56±0.21 91.57±0.12 a 3.15±0.31 3.15±0.04 

E. dunnii 

(SQ4) 
49.96±0.36 48.02±0.15 a 90.26±0.85 81.56±0.23 a 4.39±0.15 3.34±0.01 10.04±0.62 10.54±0.52 7.95±0.32 7.23±0.32 91.29±0.99 90.08±0.26 a 2.93±0.32 3.04±0.10 

E. grandis 49.46±0.25 47.54±0.18 a 74.04±0.25 43.73 ±0.32 a 4.58±0.62 3.85±0.15 11.04±0.21 9.85±0.22 8.20±0.26 6.29±0.15 90.38±0.51 91.67±0.52 a 3.06±0.26 2.61±0.32 

E. nitens 50.78±0.48 44.77±0.11 a 131.7±0.42 44.77±0.30 a 5.04±0.65 2.31±0.28 10.06±0.55 11.36±0.56 7.36±0.12 6.09±0.22 91.01±0.22 90.81±0.21 a 2.47±0.35 2.53±0.11 

SPY – screened pulp yield. Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

Table 4.3: Quantification of lignin and hemicelluloses of the pulp produced from wood chips before and after storage. 
 

Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

 
Glucose (%) ±SD Xylose (%) ±SD Mannose (%) ±SD Klason lignin (%) ±SD 

Acid-insoluble lignin (%) 

±SD 
Total lignin (%) ±SD 

 Before After Before After Before After Before After Before After Before After 

E. dunnii SQ3 90.76±0.56 84.69±0.36 a 2.82±0.21 5.27±0.41 b 1.49±0.45 0.83±0.18 2.24±0.22 2.02±0.32 1.69±0.42 1.61±0.32 3.93±0.33 3.63±0.15a 

E. dunnii SQ4 91.07±0.25 86.19±0.24 a 5.37±0.22 6.44±0.15 a 1.15±0.52 0.77±0.28 2.63±0.14 2.14±0.12 1.82±0.15 1.91±0.21 4.46±0.10 4.05±0.11 a 

E. grandis 90.35±0.21 81.02±0.14 a 3.63±0.48 5.72±0.01 a 2.55±0.5 1.47±0.63 1.96±0.30 1.68±0.15 1.78±0.54 1.28±0.14 4.91±0.25 2.96±0.14 a 

E. nitens 90.94±0.11 80.85±0.32 a 4.97±0.35 5.93±0.32 a 1.35±0.21 0.95±0.85 1.25±0.08 1.04±0.52 1.82±0.22 2.02±0.11 4.59±0.23 3.06±0.10 a 
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Following successful DNA isolation and PCR, DGGE analysis of the bacterial communities 

revealed that there was a significant increase in the diversity and abundance of bacteria present 

in the wood samples after 6 months of storage (Figure 4.3). The microbial community of 

harvested crops is transformed during storage and is particularly dependent on the water 

content of the samples (Barry Kay et al., 2009). The microorganisms were identified using a 

molecular weight marker of known microbial species previously isolated from Eucalyptus 

wood chips. Bacillus thuringiensis and B. cereus were prevalent in all of the samples after 

storage, except for E. dunnii (SQ4). The bacterial community detected in E. dunnii (SQ4) after 

storage was minimal compared with the other Eucalyptus species. Following storage of E. 

grandis, DGGE analysis revealed the presence of Bacillus thuringiensis, Klebsiella sp., 

Pantoea ananatis, Micrococcus luteus and Inquilinus limosus, while Prauserella and 

Saccharomonospora spp. were lost. E. nitens lost the Inquilinus limosus population and gained 

Lecleria sp., Saccharomonospora sp. and B. cereus populations. 

 

Fungal diversity amongst the different Eucalyptus species was evident. For all Eucalyptus 

species, various fungal species observed prior to storage showed an increase in the intensity of 

their populations after storage. This was observed for the following fungal species; 

Phialophora alba (E. dunnii SQ3 and E. grandis), Brachyalara straminea, Loddermayces 

elongisporus (E. dunnii SQ4), Aspergillus fumigatus (E. grandis) and Basidiomycota sp. (E. 

nitens). In addition, fungal species such as Paecilomyces variotii, Curvularia sp. and Pichia 

scolytii were discovered only after storage in E. dunnii (SQ3), E. dunnii (SQ4) and E. grandis, 

respectively. This may seem anomalous, as at temperatures of -10°C to -12°C, microbial 

growth is minimal. However, some microorganisms remain inactivated during storage and then 

continue growing once thawed, leading to microbial degradation of the thawed product (Hui 

and Sherkat, 2005). Freezer storage of material may eliminate the risk of microbial activity 

during the storage period, but wood material is still at risk during cooling and thawing 

processes (Hansen, 1990). Petäistö (2006) found that the growth of grey mould, such as Botrytis 

cinerea which is commonly found in soil, on Norway spruce progressed at the beginning and/or 

thawing phase of cold storage at -3°C. Temperatures above zero before and after the cold-

storage phase may intensify the threat of grey mould damage although the optimum 

temperature for B. cinerea is approximately 20°C (Petäistö, 2006).  
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Low concentrations of extractives in wood are associated with low resistance to decay, as 

extractives may function as a fungicide (Haupt et al., 2003; Latorraca et al., 2011; Severo et 

al., 2016). The increase in microbial populations and diversity may have been facilitated by 

the lower extractives content observed in the tested samples. The microorganisms identified 

here have been described in other studies on hardwood chips, including Paecilomyces sp., 

Phialophora sp., Bacillus sp., Pseudomonas sp. and Micrococcus sp. (Adair et al., 2002; Rajala 

et al., 2010; Kropacz and Fojutowski, 2014; Zhang et al., 2014; Szulc et al., 2017). The 

microorganisms detected in the wood chips of different Eucalyptus species have the potential 

to produce cellulolytic, hemicellulolytic and xylanolytic enzymes (Schmidt, 2006; Seo et al., 

2013; Nandimath et al., 2016), which would affect the chemical composition of the wood 

material. E. dunnii (SQ4) exhibited the lowest diversity of indigenous microorganisms, which 

supports the idea of minimal degradation of cellulose fibres as evidenced by the high pulp yield 

and viscosity levels obtained for this species, making it the most suitable species for pulping. 

 

Some of the bands on the gels were not associated with known species, so the microbial 

diversity may be underrepresented. However, the principle of DGGE that one band represents 

one genus/species is not always correct as a single point mutation occasionally results in two 

bands (Muyzer and Smalla, 1998; Miller et al., 1999; Adil, 2015). Therefore, there is the 

possibility of multiple bands for a single species due to single base pair mutations in their DNA.  
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Figure 4.3: DGGE profiles of bacterial (A) and fungal (B) communities present in different Eucalyptus species before and after storage at -20°C. 

Lanes: 1- time zero E. dunnii (SQ3); 2- after storage E. dunnii (SQ3); 3- time zero E. dunnii (SQ4); 4- after storage E. dunnii (SQ4); 5- time zero 

E. grandis; 6- after storage E. grandis; 7- time zero E. nitens; 8- after storage E. nitens. 
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4.5 Conclusions 

Storage of wood chip samples at -20°C influenced the chemical nature of Eucalyptus wood, 

particularly the lipophilic extractives. This effect was similar to that seen with traditional 

methods of seasoning used for the reduction of lipophilic extractives. In addition, changes in 

bacterial and fungal communities were observed after storage, which should be taken into 

consideration when conducting lab scale trials. It is therefore recommended that if storage is 

necessary under laboratory conditions, it should be not be for more than a period of 3 months 

at -20°C.  
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CHAPTER FIVE 

 

IDENTIFICATION OF LIPOLYTIC ENZYMES ISOLATED FROM BACTERIA 

INDIGENOUS TO Eucalyptus WOOD SPECIES FOR APPLICATION IN THE 

PULPING INDUSTRY 

__________________________________________________________________________ 

 

5.1 Abstract 

This study highlights the importance of determining substrate specificity at variable 

experimental conditions. Lipases and esterases were isolated from microorganisms cultivated 

from Eucalyptus wood species, then concentrated (cellulases removed) and characterized. 

Phenol red agar plates supplemented with 1% olive oil or tributyrin was ascertained to be the 

most favourable method of screening for lipolytic activity. Lipolytic activity of the various 

enzymes were highest at 45-61 U/ml at the optimum temperature and pH of between 30 and 

35°C and pH 4-5, respectively. Change in pH influenced the substrate specificity of the 

enzymes tested. The majority of enzymes tested displayed a propensity for longer aliphatic acyl 

chains such as p-nitrophenyl dodecanoate (C12), myristate (C14), palmitate (C16) and stearate 

(C18) indicating that they could be characterised as potential lipases. Prospective esterases were 

also detected with specificity towards acetate (C2), butyrate (C4) and valerate (C5). Enzymes 

maintained up to 95% activity at the optimal pH and temperature for 2-3 h. It is essential to test 

substrates at various pH and temperature when determining optimum activity of lipolytic 

enzymes, a method rarely employed. The stability of the enzymes at acidic pH and moderate 

temperatures makes them excellent candidates for application in the treatment of pitch during 

acid-bisulphite pulping, which would greatly benefit the pulp and paper industry.  

 

Key words: Lipase, esterase, substrate specificity, pitch, pulp and paper 
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5.2 Introduction 

Lipase and esterase are two major classes of hydrolase enzymes (Kulkarni et al., 2013). Lipases 

(triacylglycerol acylhydrolases, EC 3.1.1.3) catalyse the hydrolysis of long chain 

triacylglycerol substrates (>C8) (Verger, 1997), whereas esterases (EC 3.1.1.x) catalyse the 

hydrolysis of glycerolesters with short acyl chains (<C8) (Bornscheuer, 2002). The three-

dimensional (3D) structures of both enzymes exhibit the characteristic α/β-hydrolase fold (Ollis 

et al., 1992) a definite order of α-helices and β-sheets. The catalytic triad is comprised of Ser-

Asp-His (Glu instead of Asp for some lipases) and typically also a consensus sequence (Gly-

x-Ser-x-Gly) is found around the active site serine (Kazlauskas, 1994; Dodsen and Wlodawer, 

1998). These lipolytic enzymes have been isolated from plants, animals, and microorganisms 

(Kulkarni et al., 2013; Sharma and Kanwar, 2014), however, microbial lipolytic enzymes are 

reported to be more robust in nature than plant or animal enzymes (Ramakrishnan et al., 2013; 

Thomas and Kavitha, 2015). They are also appealing due to ease of manipulation and their low 

production cost (Kulkarni et al., 2013). Some microbial species reported to produce these 

enzymes include Bacillus sp. (Tehreema et al., 2011; Lailaja and Chandrasekaran, 2013; 

Nerurkar et al., 2013); Pseudomonas sp. (Kiran et al., 2008; Padhiar et al., 2011; Dey et al., 

2014; Guldhe et al., 2015); Burkholderia sp. (Lau et al., 2011; Knapp et al., 2016); Candida 

sp. (Padhiar et al., 2011; Mouad et al., 2016); Aspergillus flavus (Padhiar et al., 2011); 

Thermomyces lanuginosus (Fernández-Lafuente, 2010) and Rhizopus oryzae (Rodrigues et al., 

2016). Due to the versatility of lipases and esterases, they have various applications in 

industries such as detergents, starch and fuels, food, baking, pulp and paper, fats and oils, 

organic synthesis, leather and environmental application (Kirk et al., 2002; Margesin et al., 

2002; Chang et al., 2004; Cavicchioli and Siddiqui, 2004; Ramteke et al., 2005; Vijayalakshmi 

et al., 2011; Imran et al., 2012; Gurung et al., 2013, Nigam, 2013).  

 

In the pulp and paper industry, the presence of wood extractives plays a vital role. During 

pulping, pitch particles (composed of extractives such as triglycerides, fatty acid esters, 

glycosides, free and conjugated sterols) (Back and Allen, 2000) tend to coalesce to form black 

pitch deposits in the pulp and on machinery which has a negative impact on the process and 

quality of pulp (Gutiérrez et al., 2009a; 2010). Sulphite pulps (acidic) in particular retain 

greater amounts of extractives in relation to kraft pulps (alkaline), as the alkaline method 

disbands and dissolves the wood resin (Sithole et al., 2010). The production of dissolving pulp, 

which is a high-grade cellulose pulp, is generated using the acid-bisulphite method.  
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Traditional methods for the control of pitch include seasoning and the addition of chemicals 

such as alum, talc, ionic or non-ionic dispersants and cationic polymers (Allen et al., 1993; 

Maher et al., 2005; McLean et al., 2011). The biotechnological approach of using enzymes for 

pitch control is an alternative choice, especially for removal of glycerides. The treatment of 

pulp with lipases has been effective in reducing triglycerides (TG), however, steryl esters (SE) 

are frequently at the source of pitch formation (Gutiérrez et al., 2009b). As seen in Figure 5.1 

the removal of fatty acids, resin acids and sterols surrounding the TG and SE compounds, 

would be necessary to help destabilize the pitch particle for degradation. Nonylphenol 

ethoxylates (NPEs) are the best chemicals for removing pitch components in chemical pulping. 

NPE is an amphipathic compound, meaning they have both hydrophilic and hydrophobic 

properties, allowing them to surround non-polar substances such as pitch compounds, thus 

isolating them from water and allowing easy removal. Unfortunately, their use is frowned upon 

due to their estrogen mimicking effects. Indeed, their use has been banned in North American 

and European chemical pulp mills as pulp handlers in European markets are reluctant to handle 

pulps treated with NPEs (Sithole and Pimentel, 2009; Sithole et al., 2010). Also, the residual 

NPE in sulphite pulps are undesirable since the pulps are commonly used in pharmaceutical 

and food applications. Based on a mill study conducted by Sitholé et al. (2010) it was suggested 

that the inclusion of an enzyme to target residual steryl esters could deliver a strategic solution 

to removing the extractives present in sulphite pulps.  

 

 

 

 

 

 

 

 

Figure 5.1: Sterically stabilized pitch particle. SE; steryl esters, TG; triglycerides. FA; fatty 

acids, RA; resin acids, S; sterols (Adapted from Sundberg et al., 1996; Qin et al., 2003). 

 

Oxidative enzymes such as laccases have also been implemented in the degradation of various 

lipophilic extractives such as triglycerides, free and conjugated sterols, fatty acids and resin 

acids (Bajpai, 1999). Laccases are typical for white-rot fungi and have been described as prime 

lignin degraders. Treatment of wood or pulp with these enzymes could offer a dual advantage 
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in the company of redox mediators (Paice, 2005; Dube et al., 2009). Redox mediators facilitate 

laccase removal of residual lignin, in conjunction with extensive degradation of extractives 

(Gutiérrez et al., 2006). A decrease in kappa number and improved pulp brightness can also 

observed (Gutiérrez et al., 2006; Gutiérrez et al., 2009b; Gutiérrez et al., 2011).  

 

The enzymes characterized in this study are for application in the pulp and paper industry, for 

reduction or elimination of pitch deposit formation during pulping. Previous studies have 

reported the incomplete degradation of pitch by lipases (Gutiérrez et al., 2009b; Sitholé et al., 

2010), hence we are confident that the inclusion of esterases will assist in targeting the side 

groups that are theoretically present once the longer chain acyl chains (triacylglycerides) have 

been degraded by lipases. Lipases, esterases  and laccases were included as part of this study 

and were selected based on their stability and activity at temperatures and pH levels employed 

during the acid-bisulphite pulping of Eucalyptus wood species. To our knowledge, the lipolytic 

enzymes produced by microorganisms indigenous to Eucalyptus sp. wood have not been 

previously investigated. The results of the present study will provide more information on the 

characteristics of these enzymes and their potential for reduction of pitch components in pulps. 

For this study it was important to include different types of enzymes that could benefit the 

pulping process. Therefore purification of the enzymes of interest was not necessary, as a 

cocktail of enzymes (excluding cellulases) is required and ideal in this study for the removal 

or degradation of all unwanted compounds (excluding cellulose). Combinations of 

hemicellulases, ligninases and other accessory enzymes are known to be essential for 

hydrolysis of plant biomass (Robl et al., 2016). It was also important to test the effects of 

various conditions on substrate specificity as most researchers focus only on the pH and 

temperature optima of the enzyme and thereafter test substrate specificity at optimum 

conditions. Neglecting to investigate the effects of pH and temperature on substrate specificity 

of enzymes could have drastic implications for its efficiency and effectiveness. Therefore, the 

aim of this study was to screen indigenous microflora from Eucalyptus species for lipolytic 

activity and to determine the effects of pH and temperature on the hydrolysis of different 

substrates of these lipolytic enzymes (lipases, esterases and laccases).  

 

5.3 Materials and Methods 

5.3.1 Isolation and identification of bacterial and fungal cultures 
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Five grams of wood chips from a commercial wood chip pile (composed of E. dunnii, E. nitens, 

E. grandis, E. smithii, E. globulus, E. macarthurii and a few hybrids) and individual Eucalyptus 

spp. were thoroughly washed by vortexing with 5 ml of phosphate buffer (pH 8.0) for 5 min. 

The washings were serially diluted and spread onto nutrient agar (NA) and potato dextrose agar 

(PDA) (Merck, South Africa) and incubated at 37°C and 40°C for 1 and 5 days, for the growth 

of bacteria and fungi, respectively. Colonies were selected based on morphological features; 

size, shape, pigmentation, margin, consistency and elevation, and sub-cultured till pure isolates 

were obtained (Ramnath et al., 2014). DNA was extracted from isolates and 16S rRNA and 

18S rRNA for bacteria and fungi, respectively, were amplified according to Ramnath et al. 

(2014). Following PCR, the amplicons were sequenced (Inqaba Biotech, South Africa), and 

the sequences edited and entered in the Basic Alignment Search Tool (BLAST) algorithm 

(Altschul et al., 1990) for identification of microorganisms. 

 

5.3.2 Optimization of plate screening assays for lipolytic activity 

There are a number of methods currently available for the screening of lipases and esterases. 

However, they vary in sensitivity, cost and ease of preparation. In this study a few methods 

were tested and evaluated (Table 5.1). 

 

Table 5.1: Screening methods implemented for the detection of lipases and esterases. 

 

Screening Method Enzyme Activity Principle Reference 

Basal media agar 

supplemented with 

tributyrin 

Esterase 

Degradation of tributyrin is visualized by 

zones of hydrolysis represented by clear 

halos around the point of inoculation. 

Kaiser et al. (2006) 

Rhodamine B agar 

supplemented with 

olive oil 

Lipase 

Enzyme activity detected by the presence 

of luminous orange halos around the 

point of inoculation under UV at 350 nm. 

Fluorescence is due to complexes of 

rhodamine B with the free fatty acids 

released from the olive oil by lipases. 

Kouker and Jaeger 

(1987) 

Phenol red agar 

supplemented with 

olive oil or 

tributyrin 

Lipase/esterase 

Drop in pH of the media from 7.3 to a 

more acidic pH results in a colour change 

from red to orange/yellow. Increase in 

acidity is due to release of fatty acids 

following lipolysis. 

Singh et al. (2006) 

Tween 20 or Tween 

80 agar 
Lipase/esterase 

Hydrolysis of tween releases fatty acids 

which binds with the calcium in the 

medium and precipitates as calcium salt, 

which is visualized as insoluble crystals 

around the point of inoculation. 

Kumar et al. (2012a) 
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All strains were pre-cultivated in Luria-Bertani (LB) medium and malt extract broth for 

bacteria and fungi, respectively. For detection of esterase activity, a basal medium containing 

0.5% (w/v) peptone, 0.3% (w/v) yeast extract and 2% bacteriological agar (pH 7.0) 

supplemented with 1%, 2% and 5% tributyrin was used. Five millimetre wells were bored into 

the agar plates and inoculated with 50 µl of pure bacterial cultures. Plates were incubated at 

37°C for 48 h. After incubation the isolates were observed for zones of hydrolysis (clear halos) 

around the colonies. Lipase activity was screened for on olive oil/rhodamine B agar plates. 

Rhodamine B (1 mg/ml; Sigma Chemical Co., Munich, Germany) was dissolved in distilled 

water and filter-sterilized. The agar plates contained 8 g nutrient broth, 4 g sodium chloride, 10 

g agar (per litre) (pH 7.0). After autoclaving the medium was cooled to 60°C, 31.25 ml olive 

oil and 10 ml of Rhodamine B solution (0.001% [wt/vol]) was added and stirred vigorously for 

1 min. The medium was allowed to stand for 10 min to reduce foaming before pouring into 

sterile petri dishes. Lipase production was detected by irradiating plates with UV light at 350 

nm (Kouker and Jaeger, 1987). Due to difficulty encountered with reading the screening plates 

using the above mentioned methods, two additional screening methods were tested, viz., assay 

with phenol red and tween agar plate screenings. Phenol red olive oil/tributyrin agar plates 

were prepared as follows (g/L); 0.01% (w/v) phenol red, 0.1% (w/v) CaCl2, 1% (v/v) substrate, 

2% (w/v) agar and pH adjusted to 7.3-7.4 with 0.1 N NaOH (Salihu et al., 2011). Organisms 

were inoculated onto the phenol red agar plates supplemented with 1% substrate and incubated 

at 37°C for 2-4 days. The principle behind this assay is that a slight drop in pH from 7.3 (end 

point of the phenol red dye) to a more acidic pH will result in a change of colour from red to 

orange. The increase in acidity is due to the release of fatty acids following lipolysis (Rai et 

al., 2014). A precipitation test using Tween 20 and Tween 80 agar plates was carried out to 

confirm lipolytic activity. Tween substrate plates were prepared as follows (g/L); 10 g peptone, 

5 g NaCl2, 0.1 g CaCl2.2H2O, 20 g agar and 10 ml (v/v) Tween 20/80 (Kumar et al., 2012a). 

This method is based on the principle of calcium salt precipitation. The hydrolysis of Tween 

releases fatty acids which bind with the calcium in the medium to form insoluble crystals 

around the point of inoculation. Tween 80 is used for the detection of lipases as it contains 

esters of oleic acid, whilst Tween 20 is used for esterases as it contains esters of lower chain 

fatty acids (Kumar et al., 2012a). The organisms were inoculated onto the plates and incubated 

at 37ºC for 2-4 days. A white precipitation around the boundary of the colony was indicative 

of lipase activity (Rai et al., 2014). To establish cellulase activity, substrates specific for the 

detection of exoglucanase (1% (w/v) avicel) and endoglucanase (1% (w/v) carboxymethyl 
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cellulose (CMC)) were used to screen isolates on NA and PDA agar plates for bacteria and 

fungi, respectively. All screening assays were performed in duplicate. 

 

Fungal isolates were screened for laccase activity on PDA plates supplemented with 0.2% 

bromophenol blue (Singh and Singh, 2010) (Merck, South Africa). Plates were incubated at 

40°C for 5 days, and then visually examined to evaluate the decolourizing ability of the fungal 

enzymes. To establish cellulase activity, substrates specific for the detection of exoglucanase 

(1% (w/v) avicel) and endoglucanase (1% (w/v) carboxymethyl cellulose (CMC)) were used 

to screen isolates on NA and PDA agar plates, for bacteria and fungi, respectively. All 

screening assays were performed in duplicate. 

 

5.3.3 Enzyme assays 

Lipolytic activity was determined spectrophotometrically by measuring the release of p-

nitrophenol. p-Nitrophenyl (p-NP) esters with various lengths of aliphatic acyl chains were 

used to determine esterase: p-NP acetate (C2), p-NP butyrate (C4), p-NP valerate (C5) and 

lipase: p-NP octanoate (C8), p-NP dodecanoate (C12), p-NP myristate (C14), p-NP palmitate 

(C16), and p-NP stearate (C18) activity. The substrate mixture consisted of 0.5 mM p-NP 

substrate in methanol, 50 mM Tris-HCl buffer (pH 8.0) and 0.1% Triton X-100. The standard 

assay mixture contained 200 μl of substrate mixture and 20 μl of the crude supernatants, which 

were incubated at 37°C for 1 hour. The enzyme activity was determined by measuring the 

release of p-NP at an absorbance of 405 nm. One unit (U) of enzyme activity was defined as 

the amount of enzyme required to release 1 nM of p-NP per min under the assay conditions. 

Lipase/esterase and laccase activity was calculated from the formula derived from the Beer-

Lambert Law:                   

𝐸𝑛𝑧𝑦𝑚𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈. 𝑚𝑙−1) =  
∆𝐴𝑉

𝜀𝑡𝑣
 

 

where, U is the unit of enzyme activity; the ΔA is the change in absorbance over time; V is the 

total volume of reaction mixture (ml); ε is the molar extinction coefficient in nM-1.cm-1; t is the 

incubation time in minutes, and v is the volume of the enzyme in the assay mixture (ml) (Desai 

et al., 2011). The appropriate extinction coefficient for each substrate under these assay 

conditions was used to calculate activity (Hu et al., 2010). 
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Laccase activity was determined based on the oxidation of syringaldazine substrate according 

to a protocol from Sigma-Aldrich (USA) (Ride, 1980). The assay mixture (1 ml) contained 733 

µL of acetate buffer (100 mM, pH 4.0/5.0) and 167 µL of laccase enzyme extract. The reaction 

vessels were equilibrated to 37°C and absorbance monitored at 530 nm until constant. 

Thereafter, 100 µL of 0.216 mM syringaldazine was added to the assay (to begin the reaction), 

followed by immediate mixing by inversion. The assays were incubated for 10 min and the 

increased absorbance was recorded using a UV-1800 Shimadzu UV Spectrophotometer 

(Japan). Production of the corresponding quinone was monitored at 530 nm (ε530 = 65 000 M-

1.cm-1). One enzyme unit is defined as the amount of enzyme that will oxidise 1 µmol of 

syringaldazine per min, under the assay conditions (Wang et al., 2010). The dinitrosalicylic 

acid (DNS) assay was used to determine cellulase activity by detecting reducing sugars which 

are liberated by the hydrolytic action of endo and exo-glucanase on different cellulose 

substrates (avicel and carboxymethylcellulose) (Bailey et al., 1992).  

 

5.3.4 Effects of temperature and pH on lipase/esterase activity and stability 

The effect of temperature on enzyme activity was determined by conducting assays at 

incubation temperatures ranging from 25 to 50ºC (with 5°C increments) and various p-NP 

esters as substrates (Bülow and Mosbach, 1987). Temperature stability of partially purified 

enzyme was determined by incubating the enzyme at various temperatures (25 to 50ºC) and 

estimating residual enzyme activities after incubation for 30 min, 1, 1.5, 2, 2.5, and 3 h. The 

effect of pH on enzyme activity was determined by assaying enzyme activity over a pH range 

of 3.0-12.0 using p-NP esters as substrates (Bülow and Mosbach, 1987). Citrate–phosphate 

buffer (pH 3.0 to 6.0), Tris–HCl buffer (pH 7.0 and 8.0), Carbonate–bicarbonate buffer (pH 

9.0 and 10.0) and sodium-bicarbonate and sodium-phosphite buffer (pH 11.0 and 12.0) were 

used as buffer systems. Stability of the purified enzyme over a range of pH was also determined 

by measuring the residual activity after incubating 200 μl of the enzyme in 1800 μl of the above 

mentioned buffer systems (pH 3.0 to 12.0) for 3 h at the optimum temperature. Absorbance 

was read at 405 nm (Lailaja and Chandrasekaran, 2013). 

 

5.3.5 Production of crude enzyme extracts 

The selected bacterial isolates were grown in basal medium containing 0.5% (w/v) peptone and 

0.3% (w/v) yeast extract supplemented with 1% tributyrin. Flasks were incubated at 37°C for 

24 h at 180 rpm. Cells were harvested by centrifugation at 7850 x g for 10 min. The cell pellet 
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was then resuspended in lysis buffer (20 mM Tris-HCl, 0.5 M NaCl, pH 8.0) and disrupted by 

ultrasonic treatment for 10 min in 10 second intervals. The cell lysate was centrifuged at 7850 

x g for 10 min at 4°C, and the supernatant was recovered to test intracellular activity. To test 

extracellular activity the cell-free supernatant was collected and concentrated 10-fold by 

ultrafiltration with an Amicon system (Millipore, Massachusetts, USA) using first a 3 kDa cut-

off membrane, after which a 50 kDa cut-off membrane was used on the concentrated sample 

to remove proteins larger than 50 kDa.  

 

5.3.6 Native-PAGE and SDS-PAGE 

Protein sizes were determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) as outlined by Judd (1996). Samples were electrophoresed by Native-PAGE (no 

SDS included) and SDS-PAGE in 12% polyacrylamide gels according to the method of 

Laemmli (1970). Protein concentration was determined using the Bradford assay (Bradford, 

1976).  

 

Native SDS-PAGE was utilized to confirm removal of potential cellulases. To identify endo 

and exo-glucanases, 12% native-PAGE gels containing 1% avicel and carboxymethylcellulose, 

respectively, (prepared in 50 mM phosphate buffer pH 7.0) were prepared. Following 

electrophoresis at 100 V for approximately 90 min at room temperature, the gel slab was cut in 

two halves; one half was stained using 0.5% Coomassie Brilliant Blue R250 (Sigma-Aldrich, 

Germany) to determine the size of the proteins and the other portion was used to detect enzyme 

activity. The gel for activity staining was washed with 50 mM phosphate buffer (pH 7.0) for 5 

min, followed by staining in Congo-Red solution (0.1%, [w/v]) for 15 min. The gel was then 

destained with 1 M NaCl to visualise the clearing zone of hydrolysis, and then fixed with 0.5% 

(v/v) acetic acid (Govender et al., 2009). 

 

5.3.7 Statistical analysis 

Results shown here are the means of three independent determinations. Standard deviations for 

each of the experimental results were calculated using Microsoft Excel software and 

represented as error bars.  
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5.4 Results and Discussion 

Identification of isolated bacteria and fungi 

A total of ten different bacterial strains were isolated using the traditional culture and 

identification method using 16S rRNA sequencing: three Bacillus spp., three different P. 

aeruginosa isolates, Inquilinus sp., Micrococcus sp., Pantoea sp., Klebsiella, Streptomyces sp. 

and Cellulosimicrobium sp. (Table 5.2) (all with a similarity index of more than 97%). Bacillus 

spp. were the predominant bacterial species (33%). Some of these genera such as Bacillus, 

Pantoea, Klebsiella and Pseudomonas have previously been identified in other woods (Bagley 

et al., 1978; Li et al., 1992; Clausen, 1996; Van Zyl, 1999; Castro et al., 2014; Miguel et al., 

2016), whilst others such as Inquilinus and Mucilaginibacter have not been observed in woods. 

The two fungal isolates described in this study were identified as Paecilomyces formosus (F4) 

and Phialophora alba (X) using 18S rRNA sequencing. Both these fungal isolates had not 

previously been identified in Eucalyptus spp. wood. 

 

Optimization of plate screening assays for lipase and esterase activity 

From the different concentrations tested, one percent tributyrin (esterase activity) was optimal 

for bacteria isolated from the mixed wood sample (Table 5.2), however, 2% was optimal for 

bacteria from individual wood species (Table 5.3). Slight halos were observed for a few of the 

bacterial isolates in 5% tributyrin plates. Plate screening assays for lipase activity revealed 

minimum lipase activity for isolates from mixed wood species; however, for bacteria isolated 

from individual Eucalyptus species, 1% substrate concentration was optimal. Sixty-seven 

percent, 28% and 28% of the isolates displayed activity on 1%, 2% and 5% tributyrin plates, 

respectively. B. firmus was capable of hydrolysing all three concentrations of tributyrin, but 

largest halos were observed at 1% substrate concentration. Micrococcus luteus, P. aeruginosa, 

and C. cellulans were also identified as esterase producers. Eight percent, 63% and 22% of the 

isolates displayed activity on 1%, 2% and 5% tributyrin plates, respectively. Curtobacterium 

flaccumfaciens, B. thuringiensis, B. cereus, Pantoea agglomerans and P. vagans produced the 

greatest zones of hydrolysis indicating esterase activity, with a halo zone of 2-5 mm (Figure 

5.2). Other studies have also had some degree of success with the use of tributyrin and olive 

oil/rhodamine B as substrates and methods for screening for lipolytic activity (Shu et al., 2009; 

Sirisha et al., 2010; Reyes-Duarte et al., 2012; Kumar et al., 2012b; Niyonzima and More, 

2013; Veerapagu et al., 2013). 
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Figure 5.2: Plate screening assays for the detection of lipolytic activity using tributyrin and 

olive oil. A- tributyrin (1%) plate screening assays for the detection of esterase activity of pure 

bacterial isolates from Eucalyptus wood species, B- olive oil/rhodamine B (1%) plate screening 

assays for the detection of lipase activity of pure bacterial isolates from Eucalyptus wood 

species. 

 

Due to difficulty encountered with visualization and of the clearing zones, additional assays 

such as phenol red and tween agar plate screenings were also performed to validate the results 

obtained. Both assays confirmed the results, however, the phenol red agar plate assay was more 

sensitive than the other assays. Distinct clearings for the phenol red plates and precipitation 

zones for the tween plates were observed (Figure 5.3). The phenol red screening plates were 

used to quantify activity (Tables 5.2 and 5.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Plate screening assays for the detection of lipolytic activity using Tween 80 and 

tributyrin. Tween 80 (1%) agar plates (left) and tributyrin phenol red (1%) agar plates (right) 

for the detection of lipase and esterase activity, respectively, of pure bacterial isolates from 

Eucalyptus wood species. 
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Table 5.2: Lipase and esterase activity of bacteria isolated from a mixed Eucalyptus wood chip 

pile. 

 

 
Species 

Accession 

Number 

Esterase 

1% Trb 

Esterase 

2% Trb 

Esterase 

5% Trb 

Lipase  

1% Oil 

Lipase 

2.5% Oil 

B1 Pseudomonas aeruginosa JX945659 + + - - - 

B2 Pseudomonas aeruginosa JX945660 ++ - - - - 

B4 Bacilllus firmus JX945657 + + - + + 

B5 Micrococcus luteus JX945661 + + - + - 

B6 Bacillus sp. JX945662 ++ - - + - 

B7 Inquilinus limosus JX945663 +++ - + - - 

B9 Pantoea sp. JX945664 ++ - - + - 

B10 Klebsiella sp. JX945665 + - - - - 

B12 Bacillus ginsengihumi  JX945658 ++ ++ + + - 

B14 Streptomyces costaricanus JX945666 - - - - - 

B15 Pseudomonas aeruginosa JX945667 - - + - - 

B16 Cellulosimicrobium cellulans  JX945668 - - - + + 
Key: + = slight halos (1-2 mm), ++ = medium halos (2-5 mm), +++ = large halos (>5 mm), Trb= tributyrin, Oil= olive 

oil, ̶  = no halos 

 

Table 5.3: Lipase and esterase activity of bacteria isolated from different Eucalyptus spp. 

 

Species 
GenBank 

Number 

Esterase 

1% Trb 

Esterase 

2% Trb 

Esterase 

5% Trb 

Lipase 

1% Oil 

Lipase 

2.5% 

Oil 

 E. dunnii  

DF1 Mucilaginibacter sp. JF999998.1 - - + - - 

DF2 Unidentified - - ++ + - + 

DF3 Curtobacterium flaccumfaciens HE613377.1 - ++ + - - 

DF5 Pantoea vagans CP002206.1 - - + + - 

DF6 Unidentified - - ++ + + - 

DF7 Bacillus thuringiensis FN667913.1 - ++ + + + 

DF8 Unidentified - - + + - - 

 E. grandis 

G1 Pantoea agglomerans FJ11844.1 - ++ + - - 

G2 Curtobacterium flaccumfaciens JF706511.1 - ++ - - - 

G3 Pantoea vagans CP002206.1 - ++ + + - 

G4 Unidentified - - - + - - 

 E. nitens 

N1 Bacillus cereus JF758862.1 ++ ++ + - - 

N2 Pantoea sp. JN853250.1 - - + - + 

N3 Curtobacterium sp. HQ219967.1 - +++ + - - 

N4 Bacillus cereus JQ308572.1 - - + - + 

N5 Bacillus cereus EU621383.1 - - + - - 

N6 Bacillus sp. EU162013.1 - ++ + - + 

N7 Bacillus thuringiensis FN667913.1 - ++ + - - 
Key: + = slight halos (1-2 mm), ++ = medium halos (2-5 mm), +++ = large halos (>5 mm), Trb= tributyrin, Oil= olive 

oil, ̶  = no halos 

 

A 
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Lipases and esterases have been identified by screening microorganisms on various types of 

agar plates such as phenol red, rhodamine B, Tween 20/80 and Nile blue (Lanka and Latha, 

2015). However varying degrees of success have been reported with the different methods of 

screening. An extracellular lipase isolated from a psychrotrophic Pseudomonas strain was 

discovered by screening on olive oil agar plates. Some researchers have found success with the 

rhodamine B dye method developed by Kouker and Jaeger (1987) (Lee et al., 1999; Kumar et 

al., 2012a; Robbani et al., 2013; Bakir and Metin, 2015; Laptip et al., 2016). However, others 

encountered difficulties in preparing the media, as well as visualizing activity of weaker lipases 

(Thomson et al., 2006). Based on the results from this study, the recommended method of 

screening for lipolytic activity would therefore be, phenol red agar plates supplemented with 

1% olive oil or tributyrin. 

 

In addition, isolates were also screened for cellulase activity. In the pulp and paper industry, 

the presence of cellulases has undesirable effects on the quality of pulp generated, particularly 

in the production of dissolving pulp (high grade cellulose pulp, >98% cellulose content). 

Potential cellulases would hydrolyse the cellulose fibres resulting in a decrease in alpha 

cellulose, thus impacting yield (Christov et al., 1999; Sindhu et al., 2006). Consequently, the 

detection and elimination of cellulase activity is important. Both the qualitative (screening 

plates) and quantitative (DNS assay) revealed negligible cellulase activity except for C. 

flaccumfaciens (Table 5.4). This was addressed by using spin columns with specific cut-off 

sizes to eliminate the larger proteins (>50 kDa) which were potential cellulases.  

 

Native and SDS-PAGE 

Native PAGE gels supplemented with carboxymethylcellulose and avicel were used to ensure 

that the minimal endoglucanase and exoglucanase activity observed was eliminated. Samples 

concentrated with the 3 kDa spin column were thereafter passed through a 50 kDa spin column 

to remove the larger proteins, presumably thought to be cellulases (Figure 5.4 and 5.5). 

However, it is important to note that most fungal laccases are also larger than 50 kDa. 

Nevertheless, it was imperative that the enzyme extracts characterized here, contain no 

cellulase activity that may degrade the cellulose fibers. All other accessory enzymes such as 

xylanases, laccases, and ligninases that may be present will positively contribute to the 

production of high quality cellulose pulp. Bacterial lipases and esterases generally have an 

expected protein size of between 15 and 45 kDa (Sharma et al., 2001). Proteins larger than 50 
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kDa were regarded as potential cellulases. Cellulases have a negative impact on the final pulp 

by reducing cellulose chains. An esterase as small as 1.57 kDa from Bacillus 

stearothermophilius has been described by Simoes et al. (1997). Bacillus thuringiensis has 

been reported to produce a 38 kDa phospholipase (Kupke et al., 1989). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Concentration of isolates and removal of non-essential proteins. A (before 

concentration): 1-BT (Bacillus thuringiensis), 2-DF7 (Bacillus thuringiensis), 3-DF3 

(Curtobacterium flaccumfaciens), 4-B9 (Pantoea sp.), 5-X (Phialophora alba), 6-F4 

(Paecilomyces formosus), 7-marker. B (after concentration): 1-X, 2-F4, 3-BT, 4-DF7, 5-B9, 

6-DF3, 7-marker.  
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Figure 5.5: Native PAGE gels supplemented with carboxylmethylcellulose (CMC) to confirm 

removal of any potential endoglucanases. A: SDS-PAGE of crude enzymes, 1- DF7 (Bacillus 

thuringiensis), 2- DF3 (Curtobacterium flaccumfaciens), 3-BT (Bacillus thuringiensis). B: 

Native PAGE of crude enzymes, 1- BT, 2-DF3, 3- DF7. C: Native page of crude enzymes after 

partial purification, 1- BT, 2- DF3, 3- DF7. 

 

Lipase and esterase activity 

Upon evaluation of the preliminary screenings, the following isolates were selected for further 

study, DF3- C. flaccumfaciens, DF7- B. thuringiensis, B9- Pantoea sp. and BT- Bacillus 

thuringiensis. In addition to the bacterial isolates selected, two fungal isolates F4- 

Paecilomyces formosus and X- Phialophora alba were chosen based on similar preliminary 

plate screenings (data not shown) as well as previous studies on laccase activity (Gokul, 2014). 

The effect of initial pH on the extracellular and intracellular lipase/esterase activity of the 

selected isolates was investigated at pH 8.0 and 37°C with acetate and butyrate as substrates 

(generally selected for initial investigations). The results in Table 5.4 show a higher enzyme 

activity in the extracellular fractions of BT, DF7, and DF3, whilst B9 demonstrated higher 

activity in its intracellular fraction. Therefore, the appropriate fractions were used for further 

characterization of these enzymes. Fungi are known to produce extracellular enzymes to 

degrade polymers that cannot be absorbed (Sunesson, 1995), therefore it was not unexpected 

that the intracellular fraction yielded no enzyme activity. 
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Table 5.4: Lipase/esterase and cellulase activity (endoglucanase and exoglucanase activity 

using the DNS assay) and protein concentrations of the intracellular and extracellular fractions 

from the different isolates. 

Ext – extracellular, Int – intracellular. Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

Effects of temperature and pH on enzyme activity 

Specificity of lipases are directed by a variety of properties such as type of substrate, position 

of esters fatty acids, stereospecificity and a combination of all four (Table 5.5). These include 

factors that alter the binding of the enzyme to the substrate, the molecular properties of the 

enzyme, and structure of the substrate (Jensen et al., 1983). Therefore, in the work reported 

here, it was vital to institute an experimental design to test the effects of pH and temperature 

on the hydrolysis of a range of substrates. A majority of reported studies elect to determine pH 

and temperature optima and then test the substrate specificity of the optimal expressed enzyme 

(Jung et al., 2002; Borkar et al., 2009; Gökbulut and Arslanoğle, 2013; Prasad, 2014); less 

detailed studies have demonstrated some effect of pH on substrate specificity of lipases and 

esterases (Ghatora et al., 2006; Ertuğrul et al., 2007). Ertuğrul and colleagues found that at pH 

6.0, lipases from a Bacillus strain demonstrated highest activity towards the long chain 

triglyceride trimyristin (C14), however, at pH 9.0, the shorter chain triglycerides such as 

tributyrin (C4) and triacetin (C2) provided higher esterase activity compared to the longer chain 

triglycerides (C8-C14) (Ertuğrul et al., 2007). This behaviour has also been reported for acetyl 

esterases from Thermomyces lanuginosus where no activity was observed against pNP-acetate 

at pH 9.0, however, activity at pH 4.0 was recorded (Ghatora et al., 2006). This reveals the 

varying degrees of lipase and esterase activity depending on the pH of the medium, which may 

be attributed to the presence of isoenzymes. Results of our study indicate that substrate 

specificity is affected by changes in pH and temperature.  

 

   
Acetate  

(U/ml) ±SD 
Butyrate (U/ml) ±SD Protein Conc. (μg/ml) ±SD 

Endogluca

nase 

Activity 

(U/ml) ±SD 

Exoglucana

se Activity 

(U/ml) ±SD 
   Ext. Int. Ext. Int. Ext. Int. 

BT 
Bacillus 

thuringiensis 
5.55±0.32 5.24±0.01 9.75±0.41 5.78±0.45 212.9±0.24 1.57±0.28 0.057±0.50 0.043±0.32 

DF7 
Bacillus 

thuringiensis 
10.71±0.15 a 5.16±0.11 10.98±0.85 a 4.34±0.41 414.3±0.11 1.84±0.35 0.021±0.32 0.013±0.22 

B9 Pantoea sp. 5.12±0.35 6.75±0.52 a 2.82±0.54 5.27±0.25 a 1.69±0.18 25±0.54 0.012±0.24 0.015±0.11 

DF3 
Curtobacterium 

flaccumfaciens 
10.35±0.14a 4.09±0.48 10.70±0.33 a 3.44±0.22 62.86±0.21 1.88±0.22 0.203±0.14 0.121±0.01 

F4 
Paecilomyces 

formosus 
7.78±0.21 a ─ 18.89±0.12 a ─ 51.43±0.51 ─ 0.019±0.47 0.029±0.33 

X Phialophora alba 2.18±0.22 b ─ 30.11±0.24 a ─ 98.57±0.47 ─ 0.034±0.41 0.041±0.20 
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Table 5.5: Types of specificity (Jensen et al., 1983). 

 

Types of Specificity 

1. Substrate 

Different rates of 

lipolysis of TG, DG 

and MG by the same 

enzyme 

Separate enzymes 

from the same 

source for TG, DG 

and MG 

 

2. Positional 
Primary esters 

 

Secondary esters 

 

All three esters 

or nonspecific 

hydrolysis 

3. Fatty acid 
Preference for similar 

fatty acids 
 

4. Stereospecificity 

Faster hydrolysis of 

one primary ester as 

compared to the other 
 

5. Combinations of 1 to 4 
 

 
Key: TG- triacylglycerols, DG- diacylglycerols and MG – monoacylglycerols 

 

The enzymes in this study show a preference for acidic conditions which is fairly uncommon 

amongst bacterial lipases. The majority of lipases are known to display their highest activities 

at a neutral or alkaline pH (Watanabe et al., 1977; Lesuisse et al., 1993; Wang et al., 1995; Lin 

et al., 1996; Choo et al., 1998; Abramić et al., 1999; Fojan et al., 2000; Kumar et al., 2005; 

Amoozegar et al., 2008; Sirisha et al., 2010; Guncheva and Zhiryakova, 2011). However, there 

are reports of the production of acidic lipases from bacteria although with varying amounts of 

activity. Ramani et al. (2010) described the production of an acidic lipase by Pseudomonas 

gessardii which had a maximum activity of 156 U/ml at a pH of 3.5. On the lower end of the 

scale, an acidic lipase produced by Aeromonas sp. demonstrated optimal activity of 0.7 U/ml 

at a pH of 6.0 (Liu et al., 2007).  

 

The highest hydrolysis rates were obtained with potential lipases isolated from B. thuringiensis 

(BT and DF7) on p-NP-valerate (C5), p-NP-octanoate (C8), p-NP-dodecanoate (C12), and p-

NP-myristate (C14), indicating the enzymes’ propensity for longer acyl chain lengths (Figure 

5.7). The p-NP esters of palmitic and stearic acids were also good substrates, however the 

shorter acyl chain esters such as acetate, butyrate and valerate were hydrolysed at a lower rate 

but with relatively comparable activity to the longer chain acyl chain substrates. This suggests 

that the enzymes from both B. thuringiensis isolates could potentially produce both lipases and 

esterases. Lipases from Bacillus species such as Bacillus stearothermophilus have been 

reported to hydrolyse synthetic substrates with acyl group chain lengths between C8 and C12 
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with optimal activity on C10 p-NP-caprate (Sinchaikul et al., 2001). On the other hand, a lipase 

isolated from B. stearothermophilus had a wide substrate specificity towards triglycerides with 

C4 to C18 (Kambourova et al., 2003).  

 

Initially, when the enzymes were tested at pH 8.0, greater activity was observed with p-NP 

acetate and p-NP butyrate (data not shown). However, at the optimal pH of 4.0 and 5.0, greater 

activity towards dodecanoate, myristate and palmitate was noted (Table 5.6). This suggests that 

changes in pH have an influence on the substrate specificity of the enzyme. These findings may 

be explained by the phenomenon of induced fit model. This model claims that the substrate 

may cause substantial transformation in the three-dimensional link of the amino acids at the 

active site and these modifications in protein structure initiated by a substrate will bring the 

catalytic groups into a suitable orientation for reaction (Koshland, 1958). Post and Ray (1995) 

showed that conformational changes can enhance the specificity of an enzyme with suboptimal 

catalytic efficiency.  

 

The enzymes isolated from the other microorganisms (DF3, F4, X) showed a preference for 

dodecanoate, palmitate, myristate, octanoate and stearate substrates. The enzymes’ specificity 

in relation to lipids with fatty acid residues of C8-C18 chain length compellingly suggests that 

the enzymes described in this study could be true lipases. Enzymes isolated from Pantoea sp. 

(B9) could potentially be classified as esterases due to their specificity towards butyrate and 

valerate. The criteria used to differentiate esterases from lipases, is that esterases do not 

hydrolyse esters containing an acyl chain length of longer than 10 carbon atoms (Rhee et al., 

2005). It is unusual for isolate B9 to prefer pNP-butyrate over pNP-acetate, such specificity is 

uncommon in nature, however, novel esterases from Lactobacillus casei and E. coli have 

previously demonstrated such catalytic preference (Choi et al., 2004; Rhee et al., 2005; Ghatora 

et al., 2006). C. flaccumfaciens (DF3) displayed highest activity of 60 U/ml at 30°C with 

substrate specificity towards palmitate. C. flaccumfaciens- an endophytic bacteria associated 

with crops such as rice, potato, yam, tobacco, and cucumber- is capable of producing lipases 

(Araújo et al., 2008). This could be the first report of a characterized lipase from C. 

flaccumfaciens isolated from Eucalyptus wood.  
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Table 5.6: Optimized reaction conditions for lipolytic enzymes from bacteria and fungi 

 

Isolate 
Optimum 

pH 

Optimum 

Temperature 
Substrate Specificity 

BT 5.0 30°C Dodecanoate, Myristate, Octanoate, Acetate 

DF7 4.0 35°C Dodecanoate, Octanoate, Valerate, Butyrate 

B9 4.0 35°C Valerate, Dodecanoate, Butyrate, Octanoate 

DF3 4.0 30°C Palmitate, Dodecanoate, Myristate, Octanoate 

F4 4.0 35°C Dodecanoate, Palmitate, Octanoate, Myristate 

X 5.0 30°C Dodecanoate, Stearate, Myristate, Octanoate 

 

Low activities were obtained for laccases (Figure 5.6), and this is expected as extracellular 

laccases from basidiomycete fungi are known to be produced in low amounts (Octavio et al., 

2006). It is recognized that when fungi are grown in a medium of pH 5.0, laccases will be 

produced in excess, however most studies show that a pH range of 3.6 to 5.2 is suitable for 

enzyme production (Thurston, 1994; Ghatora et al., 2006; Madhavi and Lele, 2009). Optimal 

temperatures for laccase activity can vary significantly amongst organisms. There are reports 

of activities in the range of 25 to 80°C, with most enzymes having an optimum at 50 to 70°C 

(Snajdr and Baldrian, 2007). In this study the optimum temperatures of the lipases and esterases 

were 30 and 35°C, respectively. Therefore, laccase activity and stability were tested at these 

temperatures as the final application of this study would be to create an enzyme cocktail to 

treat pulp for effective removal of lipophilic extractives. Nevertheless, there was minimal 

variation in activity from the optimal pH and temperature of isolates F4 and X. Isolate F4 

displayed 6.8% and 9.7% more activity at the optimal conditions of 40°C and pH 5.5, 

respectively. Isolate X showed 15.3% more activity at 50°C, whilst the optimal pH remained 

the same. Our results are comparable to another study where the maximum production of 

laccase from Trichoderma harzianum was observed at 35°C and pH 5.0 after 6 days (Abd El 

Monssef et al., 2016). 
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Figure 5.6: Activity and stability of laccases from fungal isolates F4 and X. A: activity at 30°C, 

35°C, pH 4.0 and pH 5.0; B: enzyme stability at 35°C and pH 4.0 for F4 and 30°C and pH 5.0 

for X.  

 

In addition to demonstrating laccase activity (up to 3.1 U/ml) (Figure 5.6), P. formosus (F4) 

and P. alba (X) also demonstrated high substrate specificity towards dodecanoate at 35 and 

30°C, respectively. Limited information has been published on the enzymes produced by P. 

alba, however, previous work indicate that xylanases from this microorganism were 

characterized with activity of up to 420 IU/ml (Mosina, 2013). The presence of enzymes from 

this microorganism could greatly assist in the reduction of pitch formation as well as the 

breakdown of xylan which will reduce the amount of chemicals used in the downstream 

processing of pulp (Gübitz et al., 1997; Dhiman et al., 2008; Gallardo et al., 2010; Brodeur et 

al., 2011). Laccases also have the ability to degrade both phenolic and non-phenolic 

compounds. Plant phenols released by hardwoods during pulping may have an inhibitory effect 

on enzyme activity (Upadhyay et al., 2016), therefore the inclusion of fungal laccases in this 

study could mitigate the inhibitory effects of phenolic compounds. 
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Figure 5.7: Effect of temperature (at optimum pH 4.0 or 5.0) on the activity of esterases/lipases from isolates DF3 (pH 4.0), DF7 (pH 4.0), B9 

(pH 4.0), F4 (pH 4.0), BT (pH 5.0) and X (pH 5.0) on p-NP esters (C2-C18). 
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Effects of temperature and pH on stability of enzymes 

In the pulp and paper industry, the enzyme pre-treatment of pulp is a tricky affair. When 

considering the addition of enzymes to pulp, a number of variables such as dosage, incubation 

period, temperature, pH and combination of enzymes needs to be taken into account. Time is 

money, so a minimal amount of time for enzyme pre-treatment would be optimal. Therefore, 

when determining enzyme stability, a shorter range for the incubation period was selected. 

Stability was however tested at 18 h to establish a broader range for incubation time. However, 

in industry, pre-treatment times of up to 18 h are not economically feasible. 

 

The enzymes from the various microorganisms appear to be relatively stable over a period of 

18 h at their optimal temperature. Enzymes from DF3, DF7, and X maintained their lipolytic 

activity over a period of 3 h with minimal loss in activity and retained at least 60% activity 

after 18 h (Figure 5.8). Enzymes isolated from BT, X, F4, DF3 and DF7 were fairly stable up 

to 2 h and thereafter a 30-40% decrease in activity was observed. More than 90% of the original 

activity was retained after 18 h for DF3 with dodecanoate and palmitate as substrates. Enzymes 

from DF7 and F4 retained more than 75% activity after 18 h with butyrate and valerate as 

substrates, respectively. B9 on the other hand, initially demonstrated high stability after 1 hour 

of incubation followed by a drop in activity to 70% after 3 h of incubation. These results fare 

well in comparison to other studies under similar conditions. For example, in a study by Eggert 

et al. (2001) a variant of an esterase (LipB, EC 3.1.1.1) from B. subtilis was found to be stable 

at pH 5.0 and 45°C for 1 hour.                        

 

Specificity of enzymes from DF3, DF7, F4 and X towards both the shorter and longer aliphatic 

acyl chains over the 18 hour incubation period indicates the broad range of substrates these 

enzymes are able to act upon. The stability of these enzymes is a desirable characteristic and 

would offer an advantage in potential industrial applications. However, for the purpose of this 

study the addition of these enzymes to pulp as a pre-treatment step would be optimal up to 2-3 

h. Similar results were reported by Massadeh and Sabra (2011) where a lipase isolated from 

Bacillus stearothermophilus remained stable at a pH range of 7.0 to 9.0 after incubation for 1 

hour at 30°C, with a residual activity remaining above 50% for pH 7.0, 8.0 and 9.0. However, 

extremophilic organisms are capable of producing hardier lipases. A thermostable lipase from 

Geobacillus thermodenitrificans IBRL-nra was found to have an optimal temperature of 65°C, 

at which it retained its initial activity for 3 h. Its highest lipase activity was reported at pH 7.0 
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and stable for 16 h at 65°C (Balan et al., 2012). Borkar et al. (2009) reported a lipase from a 

P. aeruginosa strain which was found to be completely stable at 55°C after 2 h at pH 6.9. A 

lipase from a psychrotolerant P. fluorescens strain was active at a temperature range of 15 to 

65°C, however, it exhibited maximum activity at 45°C and pH 8.0. This enzyme demonstrated 

high stability, retaining 100% and 70% of its activity after an incubation period of 45 and 100 

min, respectively, at 45°C and pH 8.0. This particular lipase also showed a broad substrate 

specificity acting on p-nitrophenyl esters with C8-C18 acyl groups as substrates (Gökbulut and 

Arslanoğlu, 2013).  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5.8: Stability of esterases/lipases from DF3 (A); DF7 (B); B9 (C); F4 (D); BT (E) and 

X (F) at optimum temperature and pH. 
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Many researchers elect to clone genes, coding for enzymes of interest in order to increase 

activity and improve production (Abdel-Fattah and Gaballa, 2008; Brod et al., 2010; Cedillo 

et al., 2012; Chriş et al., 2013; Lehmann et al., 2014). However, in industry this may not be a 

practical approach as screening of clone libraries involves conventional agar plate-based 

methods, which would require approximately 10 000 petri plates, each containing 10 000 

clones. This is time-consuming and would greatly increase expenditure (Mathur et al., 2005). 

The enzyme activities observed in this study are comparable to, if not higher, than those of 

lipases and esterases which have not been modified or cloned (Table 5.7). The activities 

recorded in this study (up to 60 U/ml) could be invaluable in the reduction of pitch formation 

in the pulp and paper industry. In addition, the enzymes described here are indigenous to 

Eucalyptus wood species and have not been modified in any way, thus making them feasible 

and ideal for industrial applications. This is particularly the case for the acid-bisulphite pulping 

process used to produce dissolving pulp, as this process involves acidic pH process conditions 

which would be suitable for the enzymes described in this study. 
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Isolate Enzyme pH Temperature (°C) Enzyme Activity (U/ml) Reference 

Bacillus thuringiensis Lipase 5 30 62 This study 

Bacillus THL027 Lipase 7 70 8.3 Dharmsthiti and Luchai (1999) 

Bacillus sp. strain MC7 Lipase 8.5 60 3 Emanuilova et al. (1993) 

Bacillus coagulans BTS-3 Lipase 8.5 55 1.16 Kumar et al. (2005) 

Bacillus thermoleovorans ID-1 Lipase 7.5 65 0.52 Lee et al. (1999) 

Geobacillus zalihae sp. Lipase 6.5 65 0.15 Rahman et al. (2007) 

Pseudomonas aeruginosa LP602 Lipase 8 55 3.5 Dharmsthiti and Kuhasuntisuk (1998) 

Pseudomonas aeruginosa KM110 Lipase 7-10 45 0.76 Mobarak-Qamsari et al. (2011) 

Pseudomonas gessardii Lipase 3.5 30 156 Ramani et al. (2010) 

Burkholderia multivorans Lipase 7 30 58 Gupta et al. (2007) 

Burkholderia multivorans V2 Lipase 8 37 14 Dandavate et al. (2009) 

Burkholderia cepacia RGP-10 Lipase 7 50 60 Rathi et al. (2001) 

Burkholderia sp. ZYB002 Lipase 8 65 22.8 Shu et al. (2012) 

Enterococcus durans NCIM5427 Lipase 4.6 30 207.6 Vrinda (2013) 

Streptomyces exfoliates LP10 Lipase 6 37 6.9 Aly et al. (2012) 

Salinivibrio sp. strain SA-2 Lipase 7.5 50 5.1 Amoozegar et al. (2008) 

Pantoea sp. Esterase 4 35 53 This study 

Anoxybacillus gonensis A4 Esterase 5.5 60-80 0.8 Faiz et al. (2007) 

Bacillus sp. strain DVL2 Esterase 7 37 5.2 Kumar et al. (2012a) 

Bacillus licheniformis Esterase 8-8.5 45 12 Alvarez-Macarie et al. (1999) 

Geobacillus sp. AGP-04 Esterase 8 60 3.62 Ghati and Paul (2014) 

Geobacillus sp. DF20 Esterase 7 50 27.9 Özbek et al. (2014) 

Lactobacillus brevis NJ13 Esterase 8 50 48.12 Kim et al. (2013) 

Acaligens faecalis Esterase 8 30 0.27 Poornima and Kasthuri (2016) 

Burkholderia fungorum A216 Esterase 6.5 37 0.014 Jiao et al. (2014) 

Achromobacter denitrificans strain SP1 Esterase 8 50 89.5 Pradeep et al. (2015) 

Janthinobacterium lividum Esterase 7 30 0.00568 Park et al. (2001) 

Pseudomonas sp. KWI-56 Esterase 7.5 22 51.6 Sugihara et al. (1994) 

Table 5.7: Comparison of optimal temperature and pH of some lipases and esterases isolated from different bacteria. 
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5.5 Conclusions 

In the present work, a cellulase-free cocktail of lipolytic and other enzymes was obtained from 

microorganisms indigenous to South African Eucalyptus wood chips. Lipases and esterases 

showed optimal activity at moderate temperatures (30 and 35°C) and acidic pH range (pH 4.0 

and 5.0). The enzymes’ stability and activity on a broad range of lipophilic substrates could 

lead to potential biotechnological applications in the removal of lipophilic components that 

cause pitch problems in the manufacture of high purity chemical pulps such as dissolving wood 

pulp. The inclusion of laccases have the potential to assist in further degradation of these 

problematic lipophilic compounds. Considering that the purpose of the study was not to purify 

the extracts, in so reducing activity and increasing the cost of production, the ability of the 

crude extract was evaluated as is, since the end application would be to produce and apply the 

enzyme extracts on-site at commercial pulping mills. The application of these enzymes 

produced by indigenous microflora will aid in reducing cost and is a greener alternative to 

chemical treatments. Future work will focus on applying these enzymes directly to the pulped 

wood chips and evaluating their potential to reduce the agglomeration of lipophilic compounds 

that cause pitch formation during pulping.  
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CHAPTER SIX 

 

HETEROLOGOUS EXPRESSION OF ESTERASES AND LIPASES FROM 

BACTERIA INDIGENOUS TO Eucalyptus spp. WOOD CHIPS USING CULTURE-

DEPENDENT AND INDEPENDENT APPROACHES 

__________________________________________________________________________ 

 

6.1 Abstract 

Culture-independent metagenomic approaches are novel methods that eliminate the use of 

limiting culture-dependent techniques. This study investigates both methods to clone and 

express lipolytic enzymes for application in the pulping industry to reduce pitch formation. The 

recombinant esterases characterized in this study belong to Carbohydrate Esterase Family 1 

(CE1), based on sequence analysis. The acetylesterase activity was 147.8 U/ml with p-

nitrophenyl valerate (C5) at pH 4.0 and 30°C. Optimal carboxylesterase activity of 127.1 U/ml 

was seen with p-nitrophenyl butyrate (C4) at pH 4.0 and 35°C. A significant increase in 

acetylesterase relative activity from 160 to 203% occurred in the presence of agents such as 

CTAB and K+ ions. Preliminary pulping trials revealed a notable decrease in lipophilic 

extractives such as fatty acids and sterols that contribute to pitch formation. An overall 

lipophilic reduction of 63% and 78% was observed for pulp pre-treatments with acetylesterase 

and carboxylesterase, respectively. The recombinant enzymes were optimally active in the 

acidic pH range, remained relatively stable for up to 3 h, and were capable of reducing the 

lipophilic content of the pulp considerably, making them suitable candidate biopulping 

catalysts.  

 

Key words: Cloning, esterases, biopulping, substrate specificity 
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6.2 Introduction 

The number of microorganisms cultured to date represents only a small fraction (1%) of all 

microorganisms on earth, therefore a constant increase in the number of novel enzymes is 

expected (Rastogi and Sani, 2011; Nikolaivits et al., 2017). The metagenomic approach has 

been found to be a resourceful method for the isolation of novel and functional genes directly 

from environmental DNA libraries (Park et al., 2007; Banik and Brady, 2010; Lam et al., 

2015). Some of these novel enzymes exhibit properties that make them attractive candidates 

for application in biotechnological and pharmaceutical industries (Alma’abadi et al., 2015; 

Coughlan et al., 2015; Thies et al., 2016; Krüger et al., 2017; Ribeiro et al., 2017). Enzymes 

that are active and stable in extreme conditions of pH, temperature or salinity are a valuable 

resource in industry (Barroca et al., 2017; Madhavan et al., 2017; Poli et al., 2017). They have 

various applications in biotechnology for food processing; production of paper, oil, detergents; 

and the medical and fine chemical industries (Haki and Rakshit, 2003; Lokko et al., 2017; 

Mishra et al., 2017). Most metagenomic studies have been correlated to community structure 

(Nealson and Venter, 2007; Mackelprang et al., 2011; Delmont et al., 2012), however with 

high throughput and next generation sequencing technologies, it is now possible to efficiently 

identify genes encoding enzymes for several bioconversion processes (Lee et al., 2008; Mardis, 

2008; DeAngelis et al., 2010; Kim et al., 2013).  

 

The discovery of unique enzymes from environmental samples can be achieved by screening 

metagenomic libraries using two main strategies: function-based or sequence-based screening 

(Li et al., 2009; Culligan et al., 2014; Lam et al., 2015; Jameson et al., 2017). A major 

drawback of function-based screening arises when heterologous host systems are used in the 

production of the enzyme (Padmanabhan et al., 2011; Rossum et al., 2013; Liebl et al., 2014; 

Rosano and Ceccarelli, 2014). In some instances, no protein is produced due to variation in 

codon usage or unstable mRNA secondary structure (Angov, 2011; Gaspar et al., 2013; Pasotti 

and Zucca, 2014). This technique may also be limited due to problems in identifying 

appropriate screening methods for the various enzymes (Banerjee et al., 2010), thus the 

sequencing method is preferred. Sequencing involves searching protein databases for similar 

sequences to those obtained from the metagenome in order to determine the enzyme which the 

sequence encodes (Tringe et al., 2005; Pearson, 2013; Sharpton, 2014). Due to complex 

microbial species present in natural environments, there are obstacles to acquiring full length 

gene sequences, termed contigs, which need to be large enough to contain complete open 
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reading frames (ORFs) coding for catalytic enzymes (Allgaier et al., 2010; DeAngelis et al., 

2010). 

 

Lipolytic enzymes such as lipases (EC 3.1.1.1, triacylglycerol hydrolases) and esterases (EC 

3.1.1.3, carboxyl ester hydrolases) are known to catalyze both the hydrolysis and synthesis of 

ester compounds (Jaeger and Eggert, 2002; Bornscheuer, 2002; Gupta et al., 2004). Lipases 

and esterases are found in plants, animals and microorganisms (Barros et al., 2010; Andualema 

and Gessesse, 2012). Pseudomonas and Bacillus spp. are well-known bacterial sources of 

lipases and esterases (Gupta et al., 2004; Ramani et al., 2010; Gurung et al., 2013; Veerapagu 

et al., 2013; Kumar et al., 2016). Bacterial lipases are classified into six families, with Family 

1 (true lipases) further divided into six subfamilies (Jaeger et al., 1999; Guerrero et al., 2013). 

Carbohydrate esterases are currently classified in 15 families in the Carbohydrate-Active 

Enzyme (CAZy) database based on their amino acid sequence and structural folds (Lombard 

et al., 2014). Carbohydrate Esterase Family 1 (CE1) include acetylxylan esterases (EC 

3.1.1.72), feruloyl esterases (EC 3.1.1.73), carboxylesterases (EC 3.1.1.1), S-formylglutathione 

hydrolases (EC 3.1.2.12), diacylglycerol O-acyltransferases (EC 2.3.1.20) and thehalose 6-O-

mycolyltransferases (EC 2.3.1.122) (Nakamura et al., 2017). Lipases and esterases are 

important in the pulp and paper industry to reduce or eliminate pitch deposit formation caused 

by the agglomeration of lipophilic compounds released from the wood material during pulping 

(Sithole, 2000; Jegannathan and Nielsen, 2013). These pitch deposits cause black spots in the 

pulp, reducing pulp quality and gumming up the machinery, resulting in increased mill 

shutdowns for cleaning and maintenance (Gutiérrez et al., 2010). 

 

Several factors, such as toxicity of proteins to heterologous hosts and a requirement for 

chaperone proteins to achieve correct folding and functional lipase expression are reported to 

complicate lipase/esterase gene expression (Rosenau et al., 2004; Pauwels et al., 2006; Liu et 

al., 2013). Also, the low homology detected between different lipase genes renders PCR and 

cloning a complex process. One strategy for obtaining new lipase genes is to construct a library 

from a lipase-producing organism and screen recombinant hosts expressing a functional lipase 

(Zuo et al., 2010; Selvin et al., 2012; López-López et al., 2014; Yan et al., 2017). The 

recombinant clones producing lipases can be identified by direct detection of lipid hydrolysis 

(Li et al., 2009; Gricajeva et al., 2016; Sun et al., 2016) or fluorescent indicators such as 

Rhodamine B (Kouker and Jaeger, 1987; Lanka and Latha, 2015). Novel lipase and esterase 
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genes have previously been isolated using this method (Ferrer et al., 2005; Elend et al., 2006; 

Kim et al., 2006; Zheng et al., 2013; Peña-García et al., 2016). 

 

In this study a two prong approach was implemented in the search for lipases and esterases. 

Initially a bacterial metagenome, obtained from Eucalyptus spp. woodchips was screened for 

genes encoding lipases and esterases. CLC Genomics Workbench (version 4.0.3; CLC Bio, 

Cambridge USA) was used for primer design followed by PCR for amplification of putative 

lipases/esterases using metagenomic DNA as template, ligation into a suitable vector, cloning, 

and screening for activity of recombinant enzyme. The second approach involved the 

screening, isolation, cloning and expression of a lipase and two esterases from Bacillus sp. 

(isolated from Eucalyptus spp.) for potential future application in the pulp and paper industry. 

 

6.3 Materials and Methods 

The culture independent and dependant techniques were implemented in this study (Figure 

6.1). The culture independent technique involved analysis of next generation sequencing data 

and mining of the bacterial metagenome for potential lipolytic enzymes. The culture dependent 

technique on the other hand involved traditional microbiological and molecular techniques.
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Figure 6.1: Schematic outline of the two approaches used to clone esterase genes and characterisation of the recombinant esterases produced. 
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6.3.1 Assembly and analysis of metagenomic data 

Reads were assembled using the following default parameters on the CLC Genomics 

Workbench (version 4.0.3; CLC Bio, Cambridge USA): mismatch cost 2, insertion cost 3, 

deletion cost 3, length fraction 0.5 and similarity 0.8 (Nnadozie, 2017, unpublished). 

Assembled nucleotide sequences were submitted using the BLAST search and retrieval system 

on the National Center for Biotechnology Information (NCBI) database. Those identified as 

lipases/esterases were further analysed. Open Reading Frames (ORFs) with the conserved 

catalytic domain GXSXG were located on specific contigs. Primers were designed using the 

CLC Bio program.  

 

6.3.2 Features of the bacterial metagenome  

Of the 4 183 586 sequences (totaling 828 041 196 bps), 96.3% were predicted to be protein 

features, of which 67.8% of features have been annotated using at least one of the M5NR 

protein databases, 32.2% have no significant similarities to the protein database (orfans) and 

76.2% were assigned to functional categories. A total number of 1 854 727 (368 588 439 bases) 

raw reads were obtained, averaging 199 bp per read. An average length of 600 bp was obtained 

for 98 495 contigs. Approximately 510 bacterial species were discovered, and the predominant 

phyla were Proteobacteria (>80%), Bacteriodetes (>10%), Acidobacteria (>5%) and 

Actinobacteria (>5%).  

 

6.3.3 Bacterial isolates 

6.3.3.1 Culturing and DNA extraction 

Five grams of wood chips from a commercial wood chip pile and individual Eucalyptus spp. 

were thoroughly washed by vortexing with 5 ml of phosphate buffer (pH 8.0) for 5 min. The 

washings were serially diluted and spread onto nutrient agar (Merck, South Africa) incubated 

at 37°C for 36 h (Merck, South Africa). Colonies were selected and purified from the spread 

plates based on size, shape, pigmentation, margin, consistency and elevation then purified 

(Ramnath et al., 2014). Genomic DNA was isolated from the pure bacterial isolates using the 

ZR Fungal/Bacterial DNA Kit (Zymo Research, United Sates) and the manufacturer’s 

instructions. 
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6.3.3.2 Identification of isolates 

Ribosomal RNA genes were amplified using the genomic DNA of pure cultures as template. 

The universal 16S primer set and amplification conditions are described in Table 6.1. 

Amplification reactions (50 µl) contained 1.25 mM MgCl2, 0.125 µM forward and reverse 

primers, 0.2 mM dNTPs, 0.25 U SuperTherm Taq DNA polymerase (Southern Cross Biotech, 

South Africa), and approximately 200 ng of template DNA (measured with a NanoDrop 1000 

Spectrophotometer, Thermo Scientific, USA). PCR was performed using the GeneAmp PCR 

System 9700 (Applied Biosystems, United States). The amplicons were electrophoresed on 1% 

agarose gels (SeaKem, United States) in 1× Tris-Acetate EDTA running buffer at 90 V for 45 

min stained in 0.5 µg/ml ethidium bromide, visualized using a Chemi-Genius 2 BioImaging 

System (Syngene, United States) and positive amplicons sequenced (Inqaba Biotech, South 

Africa). The edited sequences were entered into the BLAST algorithm (Altschul et al., 1990) 

for identification of microorganisms. 

 

6.3.3.3 Primer design, PCR and cloning  

Several lipase and esterase gene sequences from Bacillus spp. and other strains identified from 

the metagenomic data were downloaded from the NCBI database and aligned using CLC Bio. 

Primers were then designed based on the consensus sequence and tested in silico to determine 

their effectiveness in amplifying specific regions. Lipolytic genes were amplified with B. 

thuringiensis genomic DNA (lab culture collection) and metagenomic DNA as template and 

synthesized primers and amplification conditions listed in Table 6.1. Amplification reactions 

(50 µl) contained 1.25 mM MgCl2, 0.125 µM forward and reverse primers, 0.2 mM dNTPs, 

0.25 U SuperTherm Taq DNA polymerase (Southern Cross Biotech, South Africa), and 

approximately 20-200 ng of DNA template (NanoDrop 1000 Spectrophotometer, Thermo 

Scientific, USA). PCR was performed using the GeneAmp PCR System 9700 (Applied 

Biosystems, United States) and the amplified product was examined by electrophoresis. The 

amplicons were excised and purified with GeneJET Gel Extraction kit (Fermentas) and ligated 

into pJET 1.2/blunt cloning vector (Thermo Scientific). Heat shock transformations were 

performed and the recombinant plasmid DNA restricted to confirm insert and then sequenced. 

Nucleotide and protein sequence analysis was performed with the BLAST program, and 

homology alignments were performed with CLC Bio software. A three-dimensional model of 

the recombinant proteins was generated with the software used by the automated protein 

homology-modelling server SWISS-MODEL (Swiss Institute of Bioinformatics) (Kiefer et al., 
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2009). The acetylesterase from B. cereus (PDB code 2qm0.1) and carboxylesterase from B. 

cereus (PDB code 2h1i.1) with sequence identities of 85% and 96%, respectively to the 

acetylesterase and carboxylesterase in this study, were used as templates during model 

building. 

 

6.3.3.4 Expression and purification of recombinant esterases 

Positive clones were inoculated into LB/amp broth and incubated overnight at 37°C, 200 rpm 

and plasmid DNA isolated using the Plasmid MiniPrep Kit (Fermentas). Inserts were then 

ligated to pET 22b and transformed into chemically competent E. coli BL21 (DE3) cells for 

expression. The transformants were grown in LB broth containing 50 μg/ml ampicillin at 37°C 

and 180 rpm. When the culture density reached 0.5 at OD600, 1 mM IPTG (isopropyl-D-1-

thiogalactopyranoside) was added, incubated again and sampled every hour over 6 h. Cells 

were harvested by centrifugation at 7850 x g for 10 min, resuspended in lysis buffer (20 mM 

Tris-HCl, 0.5 M NaCl, pH 8.0) and disrupted by ultrasonic treatment for 10 min in 10 s 

intervals. The cell lysate was centrifuged at 7850 x g for 10 min at 4°C, the supernatant was 

recovered and used as the crude enzyme extract. 
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Primer Sequence PCR Conditions 

Metagenomic DNA 

BPhyLip forward primer TTGCTCTTGACCAATGTACCTTTG Initial denaturation step at 94°C for 

5 min, 30 cycles at 95°C for 1 min, 

annealing at 60°C for 1 min, and 

extension at 72°C for 2 min and the 

final extension at 72°C for 5 min, 

and preservation at 4°C 

BPhyLip reverse primer CTAGAAGTTGTTCCCCAGCATCCG 

BGluHp forward primer CTGATGCGCTCGACGCGG 

BGluHp reverse primer TCATGCTGCCTGCTCCTCATCG 

Bacterial DNA 

B. thuringiensis carboxylesterase forward primer ATGAAATTAGCATCTCCG 

Initial denaturation step at 95°C for 

5 min, 30 cycles at 95°C for 1 min, 

annealing at 50°C for 30 sec, and 

extension at 72°C for min and the 

final extension at 72°C for 5 min, 

and preservation at 4°C 

B. thuringiensis carboxylesterase reverse primer TTACCAATCTAGTTGCTCCA 

B. thuringiensis serovar kurstaki carboxylesterase forward primer ATGATGAAACATGTTTTTCA 

Initial denaturation step at 95°C for 

5 min, 30 cycles at 95°C for 1 min, 

annealing at 47°C for 30 sec, and 

extension at 72°C for 1 min and the 

final extension at 72°C for 5 min, 

and preservation at 4°C 

B. thuringiensis serovar kurstaki carboxylesterase reverse primer TCACCCATCGTTAATTGA 

B. thuringiensis BMB171 acetylesterase forward primer ATGAGTCAAACAATAGGGA 

B. thuringiensis BMB171 acetylesterase reverse primer TCAGTCTGCCAATATTTCC 

B. thuringiensis acetylesterase forward primer ATGAGAATAAAACAGTTAAAAC 

B. thuringiensis acetylesterase reverse primer TTAGAAATTTAAGAACTTGG 

B. thuringiensis serovar thuringiensis str. IS5056 thioesterase forward primer ATGCAGAAGACTAAACTTT 

B. thuringiensis serovar thuringiensis str. IS5056 thioesterase reverse primer CTATTTCTTCAATATTTTCATTT 

B. thuringiensis HD-771 thioesterase forward primer ATGCAGAAGACTAAACTT 
Initial denaturation step at 95°C for 

5 min, 30 cycles at 95°C for 1 min, 

annealing at 44°C for 30 sec, and 

extension at 72°C for 1 min and the 

final extension at 72°C for 5 min, 

and preservation at 4°C 

B. thuringiensis HD-771 thioesterase forward primer TTAATTTTCCTATAATACTCT 

Table 6.1: Primers and PCR conditions. 
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6.3.4 Screening for lipolytic activity 

All clones were pre-cultivated in LB broth supplemented with ampicillin (100 μg/ml) and 

induced with IPTG (final concentration of 1 mM). For detection of esterase and lipase activity 

phenol red screening plates were used. Phenol red olive oil/tributyrin agar plates were prepared 

as follows (g/L); 0.01% (w/v) phenol red, 0.1% (w/v) CaCl2, 1% (v/v) substrate, 2% (w/v) agar 

and pH adjusted to 7.3-7.4 with 0.1 N NaOH (Salihu et al., 2011). The media was supplemented 

with 1% tributyrin or olive oil for esterase and lipase, respectively (Rai et al., 2014). 

Untransformed E. coli was used as a control. Plates were inoculated with 20 µl of crude enzyme 

extract followed by incubation at 37°C for 48 h. 

 

6.3.5 Enzyme assays 

The lipolytic activity of the recombinant enzymes was quantified spectrophotometrically by 

measuring the release of p-nitrophenol from p-nitrophenyl (p-NP) esters at 405 nm. Various 

aliphatic acyl chain lengths were used to determine esterase [p-NP acetate (C2), p-NP butyrate 

(C4), p-NP valerate (C5)] and lipase [p-NP octanoate (C8), p-NP dodecanoate (C12), p-NP 

myristate (C14), p-NP palmitate (C16), and p-NP stearate (C18)] activity. The substrate mixture 

consisted of 0.5 mM p-NP substrate in methanol, 50 mM Tris-HCl buffer (pH 8.0) and 0.1% 

Triton X-100. The standard assay contained 200 μl of substrate mixture and 20 μl of the enzyme 

extract, which was incubated at 37°C for 1 h. One unit (U) of enzyme activity was defined as 

the amount of enzyme required to release 1 nM of p-NP per min under the assay conditions. 

Lipase/esterase activity was calculated from the formula derived from the Beer-Lambert Law 

(Desai et al., 2011). The appropriate extinction coefficient for each substrate under these assay 

conditions was used to calculate activity (Hu et al., 2010). All assays were conducted in 

triplicate. 

 

6.3.6 Effects of temperature and pH on lipase/esterase activity and stability 

The effect of temperature on enzyme activity in the crude extract and purified enzymes was 

determined by conducting assays as described previously at different temperatures ranging 

from 25 to 50ºC (with 5°C increments) and various p-NP esters as substrates (Bülow and 

Mosbach, 1987). Temperature stability of purified enzyme was determined by incubating the 

enzyme at various temperatures (25 to 50ºC) and estimating residual enzyme activity after 

incubation for 1, 2, 3 and 18 h. The effect of pH on enzyme activity was determined by assaying 

enzyme activity over a pH range of 3.0 to 12.0 in the appropriate buffers: citrate–phosphate 
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buffer (pH 3.0 to 6.0), Tris–HCl buffer (pH 7.0 and 8.0), carbonate–bicarbonate buffer (pH 9.0 

and 10.0) and sodium-bicarbonate and sodium-phosphite buffer (pH 11.0 and 12.0) (Bülow 

and Mosbach, 1987). Stability of the purified enzyme over a range of pH was also determined 

by measuring the residual activity after incubating the enzyme in the above mentioned buffer 

systems (pH 3.0 to 12.0) for 18 h at the optimum temperature (Lailaja and Chandrasekaran, 

2013). All assays were conducted in triplicate. 

 

6.3.7 Effects of additives on enzyme activity 

To determine the effects of additives on esterase activity, the enzymes were treated for 30 min 

with various additives which included 1 mM metal ions (Ca2+, Co2+, Cu2+, K+, Mg2+, Mn2+, 

Na+, and Zn2+), 30% (v/v) organic solvents [acetone, butanol, dimethyl sulfoxide (DMSO), 

ethanol, glycerol, isopropanol, and methanol], 1% (v/v) detergents [cetyl trimethylammonium 

bromide (CTAB), sodium dodecyl sulphate (SDS), Tween-20 and Tween 80], and 1 mM 

enzyme inhibitors [ethylenediaminetetraacetic acid (EDTA) and 2-mercaptoethanol]. Residual 

activity was determined by measuring the enzyme activity under the standard assay conditions. 

All assays were conducted in triplicate. 

 

6.3.8 Protein analysis 

Protein concentrations were determined using the Bradford method with bovine serum albumin 

(Sigma) as the standard (Bradford, 1976). Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and native PAGE were performed using the method of Laemmli 

(1970). PageRulerTM Plus Prestained Protein Ladder was used as the molecular weight standard 

(10 to 250 kDa) (Thermo Fisher Scientific) and proteins were visualized after staining with 

Coomassie brilliant blue R-250 and decolorized with Coomassie destaining solution.  

 

6.3.9 Laboratory-scale pulp treatment trials 

The acid-bisulphite pulp of two Eucalyptus species, E. dunnii and E. grandis, was used in lab-

scale enzyme treatment trials. Approximately 0.5 g of washed pulp was combined with a total 

volume of 3 ml of liquid (buffer and enzymes) in a test tube and incubated at 37°C for 4 h. 

Following treatment, pulp samples were freeze dried overnight for Pyrolysis-gas 

chromatography-mass spectrometry (Py-GC-MS) analyses. 
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6.3.10 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis 

The lipophilic compounds in the pulp were characterized using pyrolysis-GC-MS. A multi-

shot pyrolyzer, EGA/PY-3030 D, (Frontier Lab, Japan) attached to an ultra-alloy capillary 

column (30 m × 0.25 mm, 0.25 μm) was used for analysis. The samples were pyrolysed at 

550°C for 20 s and the interface temperature set at 350°C. The chromatographic separation of 

the volatile components released by pyrolysis was performed using an ultra-alloy column. The 

injection temperature was 280°C and the column flow rate 1.0 mL/min with helium used as a 

carrier gas. The temperature was programmed as follows: 50°C for 2 min; rate 3°C/min up to 

200°C and held for a further 4 min. The ion source and interface temperatures were set to 200°C 

and 300°C, respectively. The scan range used for mass selective detector was 40-650 m/z. The 

pyrolysis products were identified by comparing their mass spectra with the mass spectrum 

NIST library attached to the instrument (modified from Sithole and Watanabe, 2013). 

 

6.3.11 Statistical analysis 

Results shown here are the means of three independent determinations. Standard deviations for 

each of the experimental results were calculated using Microsoft Excel software and 

represented as error bars.  

 

6.4 Results and Discussion 

The features of the bacterial metagenome used in this study are comparable to other similarly 

small metagenomic studies, where the metagenome is of low complexity, the targeted 

microbiome is small or insufficient sequence data is available (Lorenz and Schleper, 2002; 

Tringe et al., 2005). The limitations of metagenomic sequencing and assembly are the 

differences in the abundance of each species in the community and the size of their genomes. 

This has an influence on sequencing coverage and results in under representation of less 

abundant species and over representation of abundant species. As a result, coverage of 

assemblies produced is significant, and can be used to determine quality of the data in terms of 

species abundance. 16S rRNA-based techniques are also known to be restricted by short read 

lengths, sequencing errors (Quince et al., 2011), problems in evaluating operational taxonomic 

units (OTUs) (Huse et al., 2010), and variances resulting from diverse regions 

selected (Youssef et al., 2009). The members of the bacterial community were similar to those 

reported in other microbial community studies under different environmental conditions 

(Foong et al., 2010; Romero et al., 2014; Pascual et al., 2016; Won et al., 2017). Numerous 
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metagenomic studies have reported on the production of lipases and esterases from 

Proteobacteria (Martínez-Martínez et al., 2013), Bacteriodetes (Holmes et al., 2011), 

Acidobacteria (Faoro et al., 2012; Kielak et al., 2016) and Actinobacteria (Jiménez et al., 

2014). 

 

Mining the metagenome for lipolytic enzymes 

Twenty-one and 62 putative lipase and esterase sequences, respectively, were identified from 

the metagenome. A phylogenetic tree of the lipases and esterases mined from the metagenome 

was constructed to determine the relatedness of the identified enzymes (Figure 6.2). 

InterProScan 5.0 was used to confirm identities of the enzymes, resulting in the use of 14 and 

55 lipases and esterases, respectively, in the construction of the trees. The 14 lipases clustered 

into two clades – one consisting only of the GDSL lipase from Zymomonas mobilis and the 

sister clade comprising the other 13 lipases including six phospholipases- enzymes that assist 

in the breakdown of phospholipid components of cell membranes (Alberts et al., 2002). The 

lipases of Rhodococcus sp. and Streptomyces himastatinicus clustered with the phospholipases 

from several species: Chryseobacterium gleum, Burkholderia sp., Acinetobacter ursingii, 

Halobacillus sp., Terriglobus roseus and Lentisphaera araneosa. The identified GDSL lipase 

of Zymomonas mobilis appears not to be closely related to all the other lipases, indicating that 

the lipases could belong to families other than the GDSL family. A similar observation was 

made for the esterases. Two clades derived from a common ancestor – ferulolyl esterase of 

Burkholderia sp. H160 and B. gladioli BSR3 in one clade and all other esterases in the sister 

clade. A number of branches offered bootstrap values of 100, indicating good support and 

reliability of the phylogenetic tree (Figure 6.2B). Some of the closely related enzymes with 

good support include; the esterase and phosphodiesterase of Chryseobacterium gleum, 

phosphodiesterase of C. gleum and sialate O-acetylesterase of Sphingobacterium sp., esterase 

of C. gleum and enterochelin esterase of Klebsiella sp.. Phosphodiesterases of other species 

represented in the tree are widely distributed, indicating that diverse mutation events, caused 

by habitat/substrate, gave way to enzyme evolution with subsequent in variation and 

divergence of their DNA sequences (Castro-Fernandez et al., 2017).  
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Figure 6.2: Phylogenetic trees of lipases 

and esterases from the bacterial 

metagenome. Constructed by the 

neighbor-joining method using CLC Bio 

Workbench, version 7. The numbers 

associated with the branches refer to 

bootstrap values (confidence limits) 

resulting from 1,000 replicate re-

samplings. The scale represents the 

number of amino acid substitutions per 

site. A- Preliminary phylogenetic tree of 

lipases identified in the bacterial 

metagenome isolated from Eucalyptus 

wood chips. B- Preliminary phylogenetic 

tree of esterases identified in the bacterial 

metagenome isolated from Eucalyptus 

wood chips. 
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Of the 21 lipases and 62 esterases, two lipases and 11 esterases were confirmed by using 

BLAST on the NCBI database (Table 6.2). These contigs were then examined for large open 

reading frames (ORFs) for the genes encoding the lipase/esterase of interest. None of the 

confirmed lipase and esterase gene sequences identified through the BLAST program have 

been previously characterized. Thioesterases from Chryseobacterium gleum and Ralstonia 

picketti were selected for further study as these organisms are able to grow in a wide pH range 

and at high temperatures, respectively. Thioesterases exhibit esterase activity (splitting of an 

ester into acid and alcohol, in the presence of water) specifically at a thiol group, resulting in 

the degradation of lipolytic compounds present in wood and pulp. A lipase identified from 

Burkholderia sp. was also identified as an enzyme of interest, as it may have a temperature 

range of 30 to 40°C and a pH range of 4.5-6.5. The feruloyl esterase identified from 

Burkholderia gladioli, belongs to the family of hydrolases, and specifically acts on carboxylic 

ester bonds.  
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Table 6.2: Identification of putative esterases and lipases from the bacterial metagenome derived from Eucalyptus spp. wood chips. 

 

 

 
No. Contig Length Microorganism Enzyme 

Previously 

characterized 
Properties of microbe 

E
st

er
as

e 

1 1043 211 Acinetobacter ursingii  

Esterase  

SGNH Hydrolase-type 

esterase domain  

No 

30 and 37°C, utilization of: citrate, glutarate, 

L-aspartate, azelate, D-malate, 4-

hydroxybenzoate, ethanol  

2 1444 127 Chryseobacterium gleum  Thioesterase  No 
Grows luxuriously at pH 9.0 and tolerates up 

to pH 12.0, 30°C  

3 2065 252 Acinetobacter ursingii  Hypothetical protein  No Refer to 1  

4 2327 403 Pantoea sp. At-9b  Putative esterase  No 30-37°C, pH7.0  

5 330 119 Pantoea sp. At-9b  
Protein-glutamate 

methylesterase  
No 30-37°C, pH7.0  

6 3301 472 Sphingobacterium sp. 21  Sialate-O-acetylesterase  No 30°C, pH 6.5-7.0  

7 4536 265 Pseudomonas sp. TJI-51  Acyl-CoA thioesterase  No 37°C, pH 6.5  

8 4582 191 Kosakonia radicincitans  Esterase YqiA  No Not available   

9 463 153 Burkholderia gladioli  Feruloyl esterase  No 30°C-40°C (depending on sp.)  

10 5104 145 Ralstonia picketti DTP0602  Thioesterase  No 15-42°C, saline solution  

11 5611 388 Klebsiella variicola  Putative esterase   30°C, pH 7.0  

L
ip

as
e 1 5472 347 Burkholderia sp. Ch1-1  Lipase GDSL 2  No 30°C-40°C (depending on sp.), pH 4.5-6.5  

2 6226 244 Roseburia sp. CAG:45  Lipase, class 3  No 37°C  
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The NCBI database was searched for complete gene sequences for lipases and esterases from 

various bacterial species mined from the metagenome. Based on sequence alignments of these 

genes, primers were designed (BPhyLip and BGluHp) and the metagenomic DNA isolated 

from bacteria indigenous to Eucalyptus sp. was used as a template in PCR. Successful 

amplification with the primer set BPhyLip resulted in an amplicon of approximately 1350 bp, 

potentially encoding a polypeptide with an inferred molecular mass of 50 kDa (Figure 6.3). 

The band of interest was excised and purified for further processing. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Amplification of lipase gene from bacterial metagenomic library using designed 

BPhyLip primer set. 

  

The amplicon theoretically consists of the complete putative lipase/esterase gene from Bacillus 

sp. and was ligated into the pTZ57R/T vector (InSTA Clone PCR Cloning Kit, Thermo 

Scientific). The obtained recombinant plasmid was propagated in E. coli DH5a, isolated and 

digested with XBal and BamHI and the DNA fragment ligated into the expression vector 

pET14b. Unfortunately, cloning was unsuccessful as the identity of the enzyme was not 

confirmed with sequencing. The failed attempt to clone from a bacterial metagenome isolated 

from Eucalyptus wood may be attributed to the complex microbial species present and chimeric 

genes resulting in the correct gene size but not coding for the predicted protein. This is not 

uncommon, as there are reported shortcomings when heterologous host systems are 

implemented in the production of certain enzymes (Knietsch et al., 2003; Lorenz and Eck, 

2005; Keasling, 2010). These obstacles may be due to variation in codon usage, lack of a stable 

mRNA secondary structure or incorrect conformation (Rai and Padh, 2001; Sørensen and 

Mortensen, 2005; Yin et al., 2007). Further attempts to clone from the metagenomic DNA was 
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abandoned and the study was then focussed on cloning lipases/esterases from pure bacterial 

isolates obtained from Eucalyptus wood chips. 

 

Heterologous expression of esterases and lipases from bacteria indigenous to Eucalyptus 

spp. wood chips 

Amplification of B. thuringiensis acetylesterase and carboxylesterase genes yielded amplicons 

approximately sizes 800 and 600 bp, respectively (Figure 6.4). The fragments were excised, 

purified, ligated into pTZ57R/T and transformed into E. coli DH5α. Following verification of 

the size of putative esterase genes, the genes were sequenced (GenBank accession nos.: 

acetylesterase MF787225, carboxylesterase MF787226). In addition, recombinant clones were 

spotted onto screening plates to confirm esterase activity. Sequencing results revealed a 628 bp 

and 781 bp ORFs encoding the B. thuringiensis acetylesterase and carboxylesterase, 

respectively. These sequences where then compared with esterase sequences from other 

Bacillus spp. downloaded from NCBI and aligned using CLCBio workbench. 

 

 

 

 

 

 

 

 

 

Figure 6.4: Agarose gel of amplicons of B. thuringiensis (N3): Lane 1- B. thuringiensis serovar 

kurstaki carboxylesterase; lane 2- B. thuringiensis BMB171 acetylesterase; B. thuringiensis 

(D7): Lane 3- B. thuringiensis serovar kurstaki carboxylesterase; lane 4- B. thuringiensis 

carboxylesterase; lane 5- B. thuringiensis BMB171 acetylesterase; lane 6- marker. 

 

The recombinant acetylesterase shares 97% similarity with the lipases from B. thuringiensis 

BMB 171 (ADH05901.1) and B. thuringiensis serovar kurstaki str. YBT-1520 (AHZ50187.1), 

96% with B. thuringiensis (OFD04831.1), 95% with B. thuringiensis (OFD11772.1) and 40% 

with B. thuringiensis serovar israelensis (APF32645.1) and B. thuringiensis IBL 4222 

(EEM98798.1) (Figure 6.5). Alignment of the recombinant carboxylesterase with other 

Bacillus spp. esterases revealed 96% similarity with the esterases of Bacillus sp. 
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(WP_030027185.1), B. cereus (WP_000975492.1) and B. thuringiensis (WP_060631851.1), 

95% with both Bacillus spp. (WP_043315358.1 and WP_000975476.1), and 90% with B. 

weihenstephanensis (WP_070144428.1) (Figure 6.6). Both esterases in this study have the 

conserved motif Gly-X-Ser-X-Gly which is observed in CAZy family CE1. The Ser residue of 

this motif is the main feature of the active site for fatty acid-esterification (Zuo et al., 2010). 
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Figure 6.5: Amino acid sequence alignment of acetylesterases from Bacillus spp. The amino 

acid sequence of the recombinant acetylesterase were aligned with esterase sequences of B. 

thuringiensis BMB 171 (ADH05901.1), B. thuringiensis serovar kurstaki str. YBT-1520 

(AHZ50187.1), B. thuringiensis (OFD04831.1), B. thuringiensis (OFD11772.1), B. 

thuringiensis serovar israelensis (APF32645.1), and B. thuringiensis IBL 4222 (EEM98798.1) 

(downloaded from the NCBI database) using the CLC Bio program. The black box highlights 

the conserved catalytic domain (GXSXG). The numbers at the top and in the right column 

indicate the position in the sequence. 
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Figure 6.6: Amino acid sequence alignment of carboxylesterases from Bacillus spp. The amino 

acid sequence of the recombinant carboxylesterase were aligned with esterase sequences of 

Bacillus sp. (WP_030027185.1), B. cereus (WP_000975492.1), Bacillus sp. 

(WP_043315358.1), B. thuringiensis (WP_060631851.1), Bacillus sp. (WP_000975476.1) and 

B. weihenstephanensis (WP_070144428.1). The black box highlights the conserved catalytic 

domain (GXSXG). The numbers at the top and in the right column indicate the position in the 

sequence. 

 

The three-dimensional (3-D) structure of the recombinant acetylesterase and carboxylesterase 

was modelled with the acetylesterase from B. cereus (PDB code 2qm0.1; 85% identity) and the 

carboxylesterase from B. cereus (PDB code 2h1i.1; 96% identity), respectively as templates. 

Modelling revealed the typical helical alpha/beta sheets of α/β hydrolases (Figure 6.7) (Kang 

et al., 2011). Comparison of the recombinant 3-D structures and sequences to the templates 
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revealed that the catalytic triad of the recombinant esterases may consist of Asp222, His255 

and Ser226 for the acetylesterase, and Asp153, His184 and Ser157 for the carboxylesterase. 

These three amino acid residues appear to be located in close proximity to one another, 

suggesting the region of the active site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: Schematic three-dimensional representation of the recombinant (A) acetylesterase 

and (B) carboxylesterase. The putative catalytic triad consists of Ser226, Asp222 and His255 

in acetylesterase and Ser157, Asp153 and His184 in carboxylesterase, as indicated. Models 

built using SWISS-MODEL and Swiss-PdbViewer (Guex and Peitsch, 1997).  

 

High-level expression of up to 147.8 U/ml for recombinant esterases was attained with the 

pET22b expression vector, controlled by a T7 promotor. The target protein was directed to the 

periplasm using the signal sequence leader (pelB) present in the vector. Under standard 

expression conditions, accumulation of the enzymes in the periplasmic space occurred, 

confirmed by sonication of intracellular extracts and the appearance of bands of approximately 

22.2-29.6 kDa in size on SDS-PAGE. The expression of Bacillus lipases/esterases has been 

indicated in the accumulation of inclusion bodies inside E.coli hosts (Jia and Li, 2005; Morabbi 

Heravi et al., 2009). Hence, the formation of inclusion bodies may be attributed to the high 

level of expression under the T7 promoter, as observed with Morabbi Heravi et al. (2009). The 

recombinant esterase was optimally expressed after 4 h of induction at 37°C. Numerous 

attempts to purify the enzymes using a HiTrap Q FF column prepacked with Q Sepharose Fast 

Flow (anion exchange) were unsuccessful. Binding of the proteins to the column may have 
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been affected by the pH of the buffers tested. Another reason would be aggregation of the 

protein, a common occurrence when expressing recombinant proteins (Wang et al., 2010). 

Samples were therefore concentrated and partially purified using spin columns, followed by 

excision and purification of the bands of interest (Figure 6.8). Following purification, specific 

activity increased to 104.77 and 148.91 μmol/mg for acetylesterase and carboxylesterase, 

respectively, with a purification fold of 17.6 for acetylesterase and 1.2 for carboxylesterase. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Purification of the cloned acetylesterase and carboxylesterase using spin columns, 

excision and purification of bands. SDS-PAGE gels of (A) acetylesterase: lane 1- marker; lane 

2- untransformed E. coli; lane 3- induced clone; lane 4- purified clone; and (B) 

carboxylesterase: lane 1- marker; lane 2- untransformed E. coli; lane 3- induced clone; lane 4- 

purified clone. 

 

Extracellular and intracellular lipase/esterase activity of the selected clones were investigated 

at pH 8.0 and 37°C with acetate and butyrate as substrates (commonly used in initial 

investigations). Greater lipolytic activity was observed for the intracellular extracts compared 

to the extracellular (Table 6.3), and were consequently used in further characterization assays. 

Extracts were also tested for the presence of cellulases. Endoglucanase and exoglucanase 

activity was low (<0.035 U/ml) and therefore would not significantly impact the quality of pulp 

in this study.  
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Table 6.3: Enzyme assays for esterase and cellulase activity of crude extract and determination 

of protein concentration of pure enzymes, intracellularly and extracellularly.  

 

Analyses conducted in duplicate. SD – standard deviation. p-value: a <0.05; b >0.05 

 

p-Nitrophenyl esters with various aliphatic acyl chain lengths (C2-C18) were used to determine 

substrate specificity of the recombinant esterases. These results show that the purified enzymes 

are esterases due to their preference for short-chain organic acid esters, consistent with other 

reports for esterolytic enzymes from different sources (Ayna et al., 2013; Chuang et al., 2011; 

Fu et al., 2011). Initially, at the standard assay pH of 8.0, 50°C and 45°C appeared to be the 

optimum temperatures for the carboxylesterase (17.5 U/ml) and acetylesterase (22.2 U/ml), 

respectively (Figure 6.9). However, once the optimum pH was determined at the respective 

temperature optima, the assays were repeated at the optimum pH and various temperatures. 

Tenfold and six fold higher activities were obtained with pH and temperature optima shifts as 

follows: 50°C and 45°C at pH 8.0 for both enzymes to 35°C and 30°C at pH 4.0 for both 

carboxylesterase (127.1 U/ml) and acetylesterase (147.8 U/ml), respectively. This change in 

optimum conditions have been observed in other studies (Ramnath et al., 2017; Ertuğrul et al., 

2007; Ghatora et al., 2006). Kontkanen (2006) reported a pH optimum of 7.0 with longer chain 

esters, and between 5.0-5.5 with shorter chain esters for a steryl esterase from Melanocarpus 

albomyces. The author attributed the difference in pH optima to the effect of the pH on the 

ionisation of amino acids other than catalytic amino acids either within or beyond the active 

site, that influence the stability of the active conformation of the enzyme and interaction 

between the enzyme and different substrates. This highlights the necessity for determining 

optimum pH and temperature using both approaches.  

 

 

 

 

 

 

 
Acetate  

(U/ml) ±SD 
Butyrate (U/ml) ±SD 

Endoglucan

ase Activity 

(U/ml) ±SD 

Exoglucana

se Activity 

(U/ml) ±SD 

Protein Conc. (μg/ml) 

±SD 

 Ext. Int. Ext. Int. Ext. Int. 

B. thuringiensis 

acetylesterase  
2.55±0.25 8.4±0.04 5.75±0.24 87.8±0.11 a 0.035±0.18a 0.030±0.32 a 2.57±0.48 1410.7±0.82 

B. thuringiensis 

carboxylesterase  
5.71±0.14 98.4±0.31 8.98±0.21 127.1±0.17 a 0.031±0.36 a 0.021±0.18 a 3.84±0.33 853.55±0.15 
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Figure 6.9: Effect of temperature and substrate on carboxylesterase (CARB) and acetylesterase 

(BM) activity at pH 8.0.  

 

Acetylesterase displayed highest activity (147.8 U/ml) with valerate (C5) at pH 4.0, followed 

by butyrate (C4) with 87.8 U/ml at pH 3.0 (Figure 6.10). Carboxylesterase demonstrated highest 

specificity towards butyrate (C4) with 127.1 U/ml at pH 4.0, followed by acetate (C2) with 98.4 

U/ml at pH 5.0. These esterases are more active in the acidic pH range from 3.0 to 5.0 and were 

able to maintain activity above ~80 U/ml depending on the substrate. A drastic reduction in 

activity was observed from pH 6.0 to 8.0, and minimal activity from pH 9.0 to 12.0. The 

performance of these esterases are superior to those from other bacterial species under similar 

conditions. The esterase of a Bacillus sp. strain DVL2 showed optimal activity of 5.2 U/ml at 

pH 7.0 and 37°C (Kumar et al. 2012). Faiz et al. (2007) reported on an esterase from 

Anoxybacillus A4 with highest activity of 0.8 U/ml at pH 5.5 and 60°C. A steryl esterase from 

Chromobacterium viscosum exhibited maximum activity of 130 nkat/mg at an acidic pH 4.0 

and 40°C (Kontkanen et al., 2004). The observed pH optimum of 4.0 and 5.0 presented by the 

recombinant esterases in study is not uncommon. A thermostable carboxylesterase EstGtA2 

from Geobacillus thermodenitrificans (AEN92268) has been reported to hydrolyse a broad 

variety of p-nitrophenyl esters of different acyl chain lengths (Charbonneau, 2013), which 

correlates with the behaviour observed for the carboxylesterase (~30 U/ml) with octanoate as 
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a substrate at pH 3.0 to 5.0 (Figure 6.10). The acidic nature of the esterases is beneficial for 

application in the pulping industry, particularly in the acid-bisulphite pulping process, for the 

production of dissolving pulp (Engström et al., 2006). 

 

Sterols, fatty acids (C8-26), including several α and ω-hydroxyfatty acids, and long chain 

aliphatic alcohols, are the main lipophilic extractives in unbleached pulp (Gutiérrez et al., 2001; 

Freire et al., 2005). Medium chain fatty acids typically result from triglycerides degraded 

during pulping (Schönfeld and Wojtczak, 2016). Freire et al. (2005) reported that elemental 

chlorine free (ECF) bleaching of Eucalyptus spp. modified the behaviour of extractives up to 

80%, and that a pre-treatment step would therefore be necessary to achieve complete removal 

of these pitch causing compounds. Approximately 80% of the aliphatic extractives are removed 

from pulp during bleaching, constituting 90% of the long-chain aliphatic alcohols, 70% of the 

fatty acids and 70% of the sterols. The degradation of β-sitosterol by chlorine dioxide causes a 

decrease in sterol, and the high amounts of 24-ethylcholestene-3,5,6-triol identified in the 

bleached pulp is evidence of this (Freire et al., 2006; Silvério et al., 2007a,b). However, the 

lipophilic content (mostly fatty acids and alcohols) may increase during the various stages of 

pulping due to increasing accessibility in the pulp fibre, thus increasing the risk of pitch deposit 

formation (Freire et al., 2005). Esterases have the ability to hydrolyse both water-soluble 

substrates generally comprised of short chain fatty acids, and water-insoluble substrates having 

long chain fatty acids (Kontkanen, 2006). Therefore, the pre-treatment of the brown pulp with 

esterases could substantially accelerate the degradation of pitch compounds present. Reducing 

the total extractives content of the pulp and modifying the composition of the pulp could assist 

in decreasing the risk of pitch formation during bleaching. In addition, this would increase pulp 

strength, improve machine operations, reduce energy requirements and costs related to pulp 

processing (Wang et al., 2007). 
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Figure 6.10: Substrate specificity of acetylesterase (BM) and carboxylesterase (CARB) at various pH levels (A-D). Optimum pH of 4.0 for both 

enzymes, with greatest specificity towards valerate for acetylesterase and butyrate for carboxylesterase. Longer acyl chains yielded minimal 

activities (data not shown). 
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The carboxylesterase activity was relatively stable over a period of 18 h at 35°C and pH 4.0, 

unexpectedly with dodecanoate and stearate as substrates (Figure 6.11). Conversely, the 

carboxylesterase exhibited the greatest reduction in activity over the period tested with its 

optimum substrates, acetate and butyrate. Acetylesterase maintained relatively stable activity 

of >70% at 30°C and pH 4.0 with butyrate as a substrate. The application of these esterases in 

industry would be feasible as shorter treatment times would be favoured (esters were 

completely degraded in 3 h). Triglycerides are reduced to medium chain fatty acids during 

pulping (Gutiérrez et al., 1998; Schönfeld and Wojtczak, 2016). Therefore, the treatment of 

brown pulp with these enzymes as a pre-treatment step prior to bleaching would assist in 

targeting the short to medium chained fatty acids present. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Stability profiles of the carboxylesterase (A) and acetylesterase (B) at optimum 

pH and temperature over a period of 18 h. 

 

A 

B 



200 

 

The effect of organic solvents, surfactants, metal ions and inhibitors on esterase activity were 

examined by determining residual activity of the enzyme solution after incubation for 30 min 

at room temperature (Table 6.4). Acetylesterase activity was enhanced by the presence of 

ethanol (101.1%), methanol (128.5%), acetone (102.9), Ca2+ (128.7%), Mg2+ (124.7%), and 

Na+ (115.6%). Similarly a tributyrin esterase isolated from Lactobacillus plantarum was found 

to be moderately stimulated by Ca2+ and Mg2+ (Gobbetti et al., 1997). Stability in the presence 

of organic solvents such as ethanol, methanol and acetone is an essential and valuable 

characteristic for biotechnological applications (Soliman et al., 2007). The observed effect with 

calcium ions is not unexpected as it is known to stabilize lipolytic enzymes (Cao, 1993). 

Significant increase in activity was observed with CTAB (159.9%) and K+ (202.7%). The 

acetylesterase was able to retain 93% and 91.6% of its original activity when incubated with 

the test inhibitors EDTA and 2-mercaptoethanol, respectively. The minimal influence of EDTA 

on enzyme activity, suggests that this esterase may be a non-metalloenzyme (Brod et al., 2010). 

Strong inhibition effects were observed in the presence of butanol (38.5%), glycerol (42.5%), 

SDS (42.3%) and Tween-20 (36.5%). The activity of carboxylesterase in comparison was less 

affected by the additives. The most significant effects observed were with K+ which increased 

activity to 174.2%. Additives with a significant negative effect on activity were butanol 

(39.2%), glycerol (43.8%), SDS (30.1%) and Tween-20 (28.6%). These results were similar to 

other reports (Ayna et al., 2013; Brod et al., 2010; Castro-Ochoa et al., 2005; Kumar et al., 

2005). BTL-1 and BTL-2 lipases described by Castro-Ochoa et al. (2005) in particular, showed 

increased activity in the presence of methanol, ethanol and acetone. It has been suggested that 

a thin layer of water molecules remains firmly bound to the enzyme acting as a barrier for the 

enzyme allowing it to maintain its native conformation in the presence of inhibitors (Nawani 

et al., 1998). 
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Table 6.4: Effects of organic solvents, surfactants, metal ions, and inhibitors on the activity of 

the recombinant esterases. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                               SD – standard deviation. p-value: a <0.05; b >0.05. 

 

Although the lipid content in all eucalypt wood species is relatively similar and naturally low, 

it is the lipophilic extractive content that causes pitch deposit formation that poses a threat 

(Sithole, 2000). The Py-GC/MS chromatogram of the treated pulp of E. dunnii and E. grandis 

are shown in Figure 6.12 and are the breakdown products of all organic compounds in the pulp 

samples. The major lipophilic compounds identified by Py-GC-MS in E. dunnii and E. grandis 

were sterols, fatty acids, fatty alcohols, glycerides and small amounts of squalene and alkyl 

ferulates (Figure 6.12). Most of these compounds have been identified as major contributors to 

pitch formation as reported by other researchers (Gutiérrez et al., 1999; Rencort et al., 2007; 

Silvério et al., 2007a,b; Prinsen et al., 2012). Usually, fatty acids are detected at shorter 

retention times followed by hydrocarbons, sterols and sterol esters/triglycerides (Rencoret et 

al., 2007; Moodley, 2011). Triglycerides were not detected in either E. dunnii or E. grandis 

pulps as they were probably hydrolysed during bisulphite cooking. This is a common 

occurrence when pulping wood chips (Gutiérrez et al., 1999). The profile of wood resin 

Additives Relative Activity (%) 

 
Acetylesterase 

±SD 

Carboxylesterase 

±SD 

Control 100 100 

Organic solvents (30% [v/v]) 
Acetone 102.9±0.25a 100.2±0.18 a 

Butanol 38.5±0.66 39.2±0.58 

DMSO 77.8±0.31 75.3±0.26 

Ethanol 101.1±0.37 a 97.6±0.10 a 

Glycerol 42.5±0.29 43.8±0.47 

Isopropanol 95.3±0.13 a 90.8±0.23 a 

Methanol 128.5±0.28 a 101.4±0.27 a 

Surfactants (1% [v/v]) 
CTAB 159.9±0.11 a 104.8±0.15 a 

SDS 42.3±0.56 30.1±0.43 

Tween-20 36.5±0.35 28.6±0.29 

Tween-80 49.1±0.25 42.9±0.12 

Metal ions (1 mM)   

Ca2+ 128.7±0.35 a 97.6±0.28 a 

Co2+ 65.1±0.28 60.8±0.19 

Cu2+ 89.1±0.22 78.5±0.24 

K+ 202.7±0.18 a 174.2±0.14 a 

Mg2+ 124.7±0.15 a 101.5±0.11 a 

Mn2+ 63.7±0.21 57.3±0.31 

Na+ 115.6±0.13 a 110.9±0.29 a 

Zn2+ 57.4±0.20 62.5±0.51 

Inhibitor (1 mM)   

EDTA 93.0±0.78 a 94.6±0.81 a 

2-Mercaptoethanol 91.6±0.57 b 98.2±0.46 b 
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components generated after treatment of pulp differed substantially compared to the original 

organic profile of the pulp. Diverse patterns of degradation for the lipophilic extractives were 

noted upon application of the recombinant esterases. A reduction in the sterol ester content was 

observed with synchronized increase in free sterols. A similar effect was observed for pine 

wood treated with Ophiostoma ainoae (Martínez-Íñigo et al., 1999) and eucalypt wood with 

Ceratocystis variabilis (Gutiérrez et al., 1999). The recombinant esterases characterized in this 

study have demonstrated their ability to degrade lipophilic compounds reported to be 

responsible for pitch deposit formation. Fatty alcohols represented a small portion of the total 

extractives analyzed before treatment with the recombinant esterases. Dodecan-1-ol, n-

pentadecanol, tetradecanol and hexadecane-1-ol were the major components in this group. 

Following treatment, a significant amount of the fatty alcohols were removed. The recombinant 

esterases therefore also had an impact on fatty alcohols. Reduction of fatty acids was also 

observed. Short chain fatty acid degradation was anticipated as these esterases demonstrated 

optimal activity with C2-5 esters as substrates. However, it was interesting to note that the 

hexadecanoic acid (C16) present in the untreated E. grandis pulp (0.004 mg) was reduced to 

0.0008 mg and 0.0007 mg when treated with acetylesterase and carboxylesterase, respectively. 

This constitutes a ≥80% reduction in hexadecanoic acid which is a long chain fatty acid. This 

behaviour highlights the flexibility of these esterases when presented with complex substrates. 

Treatment of E. dunnii pulp resulted in an overall reduction of 63.2% and 77.7% when the 

recombinant acetylesterase and carboxylesterase, respectively, were added. Greater reduction 

in lipophilic compounds was observed with the carboxylesterase for E. dunnii treated pulp, 

however, treatment of E. grandis pulp with acetylesterase was found to be more effective with 

a 72.7% reduction compared to the 51.9% observed with the carboxylesterase. 

 

Pulp treated with a combination of these esterases with other suitable lipolytic enzymes such 

as lipases and laccases and the additives that increase the activity of these enzymes, such as 

CTAB and K+ ions, could ensure complete lipophilic compound removal. The enzyme-based 

treatment can be applied post pulping (as tested in this study) or during the bleaching process 

where the pH level is between 3.0 and 5.0 at a suitable temperature. 
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Figure 6.12: Chromatograms of the organic residues after pyrolysis with tetramethylammonium hydroxide (TMAH) as the methylating agent. Pulp before enzyme 

treatment: A- E. dunnii; B- E. grandis. E. dunnii pulp after enzyme treatment with C- acetylesterase and D- carboxylesterase. E. grandis pulp after enzyme treatment 

with E- acetylesterase and F- carboxylesterase. 
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6.5 Conclusions  

The genes coding for an acetylesterase and carboxylesterase from B. thuringiensis were 

successfully cloned and expressed. The acetylesterase exhibited the highest specific activity at 

pH 4.0 and 30°C for p-NP valerate, followed by p-NP butyrate. Activity was considerably 

enhanced by CTAB and K+ and to a lesser extent by methanol, Ca2+ and Mg2+. Notable 

inhibition was observed with butanol, glycerol, SDS and Tween 20. Carboxylesterase exhibited 

highest specificity at pH 4.0 and 35°C for p-NP butyrate, followed by p-NP acetate. Activity 

was significantly increased by K+ and adversely affected by butanol, glycerol, SDS and Tween 

20. The treatment of E. dunnii pulp was most effective with carboxylesterase whilst treatment 

of E. grandis pulp was most effective with acetylesterase. Preliminary results have shown that 

the efficiency of lipophilic extractive removal is dependent on the type of compounds present 

and the specificity of the enzyme applied towards these compounds. Additional structural and 

biochemical characterization is necessary to improve our understanding of these esterases and 

their mechanism of action. Additional research is currently underway to establish the combined 

effects of esterases and lipases on the removal of pitch causing compounds. This would greatly 

benefit the pulping industry if the complete removal of lipophilic compounds was attainable. 
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CHAPTER SEVEN 

 

OPTIMIZATION OF LIPOLYTIC TREATMENT FOR THE CONTROL OF PITCH 

COMPONENTS IN Eucalyptus spp. USING RESPONSE SURFACE 

METHODOLOGY 

___________________________________________________________________________ 

 

7.1 Abstract 

Pitch deposition during pulping is problematic and causes reduction in pulp quality and 

obstruction in the pulp and papermaking equipment. The deposition is caused by coagulation 

of pitch components, also known as wood resin or lipophilic extractives. Dissolving pulp 

requires high purity cellulose fibres, therefore the removal of lipophilic extractives, lignin, and 

hemicelluloses is essential for high-grade dissolving pulp production. In this study the action 

of lipolytic enzymes such as lipases, esterases and laccases, in combination with ligninases, 

xylanases and other accessory enzymes from bacterial and fungal isolates (indigenous to 

Eucalyptus spp.) were evaluated for the reduction of lipophilic content in Eucalyptus dissolving 

pulp. Response surface methodology was used to determine the optimal enzyme combinations 

and reaction conditions for maximal reduction of lipophilic content in E. dunnii and E. grandis 

pulp. Three independent variables, pH (3.0-5.0), enzyme dosage (3-9 U/ml), and reaction time 

(2-6 h) were tested. Lower pH and enzyme dosage gave the greatest response for the reduction 

of lipophilic content. Reaction time, however, had no effect on the response. Reduction in 

lipophilic content was optimal in E. dunnii pulp treated with 3 U/ml enzyme for 4 h at pH 4.0, 

whereas for E. grandis, 6 U/ml enzyme, pH 5.0, and 4 h was optimal. The enzymatic pre-

treatment of pulp resulted in 8.4% reduction in kappa number of the pulp, showing significant 

delignification with this enzyme treatment. Increases in viscosity were also observed, 

contributing to the improvement of the pulp properties. This is the first report describing the 

combined application of lipases, esterases and laccases in the treatment of dissolving pulp for 

the reduction of pitch-causing compounds. Use of this lipolytic-xylano-lignolytic combination 

in the pulping industry will assist in making the process eco-friendly and economical. 

 

Key words: Response surface methodology, lipases, esterases, pitch, biopulping 
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7.2 Introduction 

Sappi Southern Africa Limited is the world’s largest producer of dissolving pulp, which is a 

high-grade cellulose pulp (95-98% cellulose) used to produce microcrystalline cellulose, 

viscose rayon, lyocell, ethers, and cellophane, among many others (Figure 7.1) (Christov et al., 

1998; Sappi, 2017). To generate high-grade cellulose pulp, maximum removal of lignin, 

hemicelluloses and extractives are required during the pulping process (Christov et al., 1998). 

The extractives released during pulping of wood and bleaching of pulp have a negative impact 

on the quality and yield of pulp generated (Ogunwusi, 2012) and on the functioning of the 

machinery, as extractives tend to coalesce to form sticky pitch deposits which gum up the 

machinery and halt production (Farrell et al., 1997). This has major financial implications in 

commercial industries, increasing production time and profits. Tackling and resolving the issue 

of pitch deposit formation would greatly benefit the pulping industry and streamline the 

production of dissolving pulp.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Grades of cellulose pulp and their end uses (Suhonen and Oksanen, 2016). 

 

Pitch components comprise less than 10% of the total weight of wood material, yet they are a 

major challenge in pulping. Pitch components are typically comprised of fatty acids, fatty 

alcohols, resin acids, hydrocarbons, steroids, triterpenoids and triglycerides (Allen, 1975). The 

major pitch components in Eucalyptus kraft pulp are sitosterol, ketositosterol and steroid 

ketone (Table 7.1). Different lipophilic extractives may cause pitch problems along the entire 
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pulping and bleaching process depending on their chemical nature and the process used 

(Holmbom, 2000). The use of total chlorine-free bleaching, which Sappi has implemented, 

increases the severity of pitch problems due to the low reactivity of bleaching materials with 

pulp lipids (Freire et al., 2006). 

 

Table 7.1: Different types of lipophilic extractives present in various pulps (Eucalyptus, spruce 

and flax) (Gutiérrez et al., 2006a,b; Virk et al., 2012). 

 

Fatty and resin acids Myristic acid, palmitic acid, oleic acid, linoleic acid, arachidic acid, 

behenic acid, lignoceric acid, cerotic acid, montanic acid, and abietic 

acid, eicosanic acid, decosanoic acid, tetracosanoic acid, cis-9-

octadecanoic acid, pinolenic acid, eicosatrienoic acid 

Fatty alcohols n-docosanol, n-tetracosanol, n-hexacosanol, n-octacosanol, n-

triacontanol, and n-dotriacontanol, eicosanol 

Sterol, sterol esters, 

sterol glycosides 

Sitosterol, stigmasterol, fucosterol, cholesteryl palmitate, cholesteryl 

oleate, cholesteryl linoleate, sitosteryl 3-β-D glucopyranoside, and 7-

oxositosteryl 3-β-D glucopyranoside 

Alkanes Octadecane 

Triglycerides Triheptadecanoin and trilinolein 

Steroid ketones Stigmastan-3-one, stigmasta 3,5-dien-7-one, and 7-oxositosterol 

 

There are traditional means of addressing pitch-related problems in mills; they include wood 

seasoning (storage of logs outdoors) and the addition of additives such as alum, talc, etc. 

However, biotechnological approaches are preferred due to their non-toxic nature, reduction in 

chemical consumption and waste, and improved pulp quality (Bajpai, 1999). Many studies have 

been conducted on the treatment of wood or pulp with enzymes or microorganisms to assist in 

reducing the compounds that contribute to pitch formation (Bajpai, 1999; Rocheleau et al., 

1999; Calero-Rueda et al., 2002; Jones, 2005; Josefsson et al., 2006; Dubé et al., 2008; 

Gutiérrez et al., 2011). Enzymes used include lipases, esterases, and in recent times, laccases. 

Lipases (EC 3.1.1.3) hydrolyse long-chain acyl groups (Litthauer et al., 2002; Ellaiah et al., 

2004), whereas esterases (EC 3.1.1.1) hydrolyse the ester bonds of water-soluble fatty acid 

esters with short-chain acyl groups (Verger, 1997). The majority of studies have focussed on 

the addition of one of these groups of lipolytic enzymes to remove pitch components. However, 

esterases act on a limited number of substrates such as glycerides and sterol esters, and 

therefore are not effective in the degradation of other components of pitch deposits (Gutiérrez 

et al., 2009). As a result, enzymes acting on a broader range of substrates need to be 

investigated. Another group of enzymes recently associated with the removal of recalcitrant 

lipophilic compounds as well as lignin, are laccases (EC 1.10.3.2) commonly supplemented 



226 

 

with mediators (Zhang et al., 2005; Gutiérrez et al., 2006b; Valls et al., 2009; Virk et al., 2013). 

The use of a laccase-mediator system was reported to be proficient in the removal of lipophilic 

compounds from pulp, regardless of the pulping material used (Molina et al., 2008; Valls et 

al., 2009). The pulping method employed also has an influence on the type of compounds that 

are involved in pitch formation. Sulphite pulping for example, used commercially for the past 

27 years (Grant, 1994), generates higher amounts of extractives compared to kraft pulping. 

This is due to the acidic conditions, whereas alkaline conditions dissolve and degrade wood 

resin (Sithole et al., 2010). In South Africa, the largest producer of dissolving pulp currently 

uses acid-bisulphite pulping and would therefore need solutions to the problem of excessive 

extractive accumulation. The traditional methods of pitch control have become outdated due to 

the space required (seasoning) and toxic nature of chemicals, hence, pulp and paper mills 

around the world are considering more environmentally friendly alternatives.  

 

A successful pitch control strategy using fungi is the application of an albino strain of 

Ophiostoma piliferum (commercially available as Cartapip 97). However, Cartapip 97 was 

unable to efficiently remove free sterols from hardwoods and resin acids from softwoods 

(Martínez-Íñigo et al., 1999; Dorado et al., 2000). Direct application of an enzyme in the 

treatment of pitch has also been achieved with lipases such as Resinase® A2X (Novozymes, 

Bagsvaerd, Denmark). This commercial enzyme has only been successful in controlling pitch 

in mechanical, thermal and sulphite pulping of softwoods (Gutiérrez et al., 2001). Hence, 

enzyme treatments are dependent on type of wood and pulping process employed. There 

remains a gap in the research for effective enzyme treatments for the reduction or elimination 

of pitch deposits in acid-bisulphite pulp of Eucalyptus wood species.   

 

Optimization of treatment conditions is an essential step in creating an efficient and cost-

effective treatment method. Response Surface Methodology (RSM) is commonly used in the 

optimization of biochemical and chemical processes (Bas and Boyaci, 2007). Its popularity is 

due to its capacity to analyse effects of multiple independent variables and their interactive 

influences simultaneously whilst involving a limited number of experiments (Khuri and 

Cornell, 1996). In particular, the Box-Behnken design, which was used in this study, requires 

fewer trials in a 3-factors 3-levels experimental design. Furthermore, being a modified central 

composite experimental, it is an independent, rotatable quadratic design, in which the treatment 

combinations are at the midpoints of the edges of the process space and at the centre (Ragonese 

et al., 2002). The acceptability of the proposed model is then examined using the diagnostic 
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checking tests provided by analysis of variance (ANOVA). The response surface plots, in turn, 

can be applied to analyze the surfaces and determine optimum conditions. A number of studies 

have successfully used RSM to optimize process conditions (Liu et al., 2012; Virk et al., 2013; 

Chauhan et al., 2013; Neiva et al., 2014; Hermawan et al., 2015).  

 

In this study, we propose to treat the pulps of two popular Eucalyptus species with a 

combination of lipases, esterases and laccases to potentially eliminate all lipophilic compounds 

that contribute to the formation of pitch deposits. To our knowledge this would be the first such 

report on pitch control. Optimized treatments of pitch components in Eucalyptus grandis and 

E. dunnii were achieved using RSM. The simultaneous influence of pH, dosage and reaction 

time on lipophilic content of the pulp was evaluated and the quality of the unbleached pulps 

was compared to the control pulp experiments.  

 

7.3 Materials and Methods 

7.3.1 Material 

Eucalyptus wood species E. dunnii and E. grandis were obtained from a plantation in 

KwaZulu-Natal (South Africa). Logs from approximately 10-year old trees were chipped to 

average dimensions of 12 mm x 5 mm x 2 mm and dried at room temperature for 2 weeks. 

Pulping was performed according to the acid-bisulphite process currently implemented at 

Dissolving Wood Pulp (DWP) mills. The unbleached pulp was collected after the washing step 

for experimental trials. Bleaching was not necessary as the effectiveness of potential lignin 

degrading enzymes produced by indigenous bacteria were also considered. 

 

7.3.2 Enzymes 

The following enzymes were selected based on our present study (Chapters 5 and 6). Lipases 

were isolated from bacteria indigenous to Eucalyptus species and the esterases were cloned 

using sequence-based screening and genomic DNA from a bacterial isolate also cultivated from 

Eucalyptus species. Due to the nature of this project, the authors did not wish to purify the 

sample, but only to remove any potential cellulases that may be present. Cellulases would 

negatively impact dissolving pulp, however, the presence of xylanases, ligninases and other 

accessory enzymes would assist in improving the quality of pulp. Enzyme mixtures were 

therefore maintained as cellulase-free, lipolytic, hemicellulolytic and ligninolytic suspensions, 

to improve the overall quality of pulp. Laccases were included based on a study extolling their 

dual benefit of pitch reduction and lignin removal (Virk et al., 2012; Rencoret et al., 2016). 



228 

 

Based on previous screening and activity data from colleagues, two fungal strains expressing 

satisfactory laccase activity were selected. Since the optimum temperatures of the lipases and 

esterases were 30 and 35°C, respectively, laccase activity was tested at these temperatures as 

the final application was to create an enzyme cocktail for effective removal of lipophilic 

extractives from pulp. It is accepted that when fungi are grown at pH 5.0, laccases will be 

produced in excess, however most studies show that a pH range of 3.6 to 5.2 is acceptable for 

enzyme production (Ghatora et al., 2006; Madhavi and Lele, 2009). These fungal strains were 

also tested for the lipolytic abilities. 

 

Table 7.2: Characteristics of enzymes to be used in cocktail mixtures for pulp treatments. 

  

Isolate Enzyme 
Optimum 

pH 

Optimum 

Temperature 
Substrate Specificity 

BT Lipase 5.0 30°C Dodecanoate, myristate, octanoate, acetate 

DF7 Lipase 4.0 35°C Dodecanoate, octanoate, valerate, butyrate 

B9 Lipase 4.0 35°C Valerate, dodecanoate, butyrate, octanoate 

DF3 Lipase 4.0 30°C Palmitate, dodecanoate, myristate, octanoate 

F4 Laccase/Lipase 4.0 35°C Dodecanoate, palmitate, octanoate, myristate 

X Laccase/Lipase 5.0 30°C Dodecanoate, stearate, myristate, octanoate 

BM Esterase 4.0 30°C Valerate, butyrate, myristate, acetate 

CARB Esterase 5.0 35°C Butyrate, acetate, myristate, octanoate 
Abbreviations: BT – Bacillus thuringiensis, DF7 – B. thuringiensis, B9 – Pantoea sp., DF3 – Curtobacterium 

flaccumfaciens, F4 – Paecilomyces formosus, X – Phialophora alba, BM – recombinant acetylesterase, CARB – 

recombinant carboxylesterase. 

 

Based on activity (Table 7.3), the following enzyme cocktails were designed for the pulp 

treatments. Eight treatments comprising enzyme cocktails and individual enzymes were 

applied (Table 7.4). Rationally, the combination of lipases and esterases would yield a greater 

degradation of lipophilic compounds as opposed to lipase or esterase only, since lipases target 

long acyl chains whereas esterases target short acyl chains. As a result they were not tested 

independently. Laccases were tested individually and in combination with lipases and esterases 

to establish their effects. 
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 Table 7.3: Activity and substrate specificity of the enzymes. 

 

 Substrate 1 U/ml Substrate 2 U/ml Substrate 3 U/ml Substrate 4 U/ml 

DF3 Palmitate 62.8 Dodecanoate 56.5 Myristate 49.7 Octanoate 39.9 

DF7 Dodecanoate 51.1 Octanoate 42.8 Valerate 37.9 Palmitate 35.3 

B9 Dodecanoate 42.9 Palmitate 23.5 Butyrate 18.7 Octanoate 18.6 

F4 Dodecanoate 46 Octanoate 26.3 Myristate 25.7 Butyrate 25.1 

BT Dodecanoate 62.4 Myristate 51.1 Octanoate 47.7 Acetate 47.3 

X Dodecanoate 44.4 Stearate 35.1 Myristate 32 Octanoate 30.2 

BM Valerate 147.8 Butyrate 87.8 Myristate 15.1 Acetate 8.4 

CARB Butyrate 127.1 Acetate 98.4 Myristate 34.7 Octanoate 32.7 

F4 Syringaldazine 2.0  -  -  - 

X Syringaldazine 3.1  -  -  - 

 

Table 7.4: Enzymes, producing organisms, and treatment combinations. 

 

Enzymes Isolates Combinations 

Lipase cocktail 1: DF3 and BT and F4 Lipase 1 and Esterase 1 

Lipase cocktail 2: DF7 and X Lipase 1 and Esterase 2 

Lipase cocktail 3: B9 and F4 Lipase 2 and Esterase 1 

Esterase 1: BM Lipase 2 and Esterase 2 

Esterase 2: CARB Lipase 3 and Esterase 1 

Laccase 1: F4 Lipase 3 and Esterase 2 

Laccase 2: X Laccase 1 

  Laccase 2 

 

7.3.3 Experimental design and analyses 

Response surface methodology (RSM) with the Box-Behnken design was used to investigate 

the influence of three variables on the lipophilic content of pulp and to statistically determine 

the optimum combination of enzyme dosage, pH and reaction time. The main, interaction, and 

quadratic effects of the variables on the modification of the pulp by enzymatic treatment was 

also assessed. A 3-factor, 3-level design was applied to investigate the quadratic response 

surfaces and construct second-order polynomial models. Therefore, each variable was coded 

and run at three independent levels:-1, 0, and 1 (Table 7.2). The effects of reaction time (2, 4 

and 6 h), dosage (3, 6 and 9 U/ml) and pH (3.0, 4.0 and 5.0) on the lipophilic content of the 

pulp were determined. The interaction of the three parameters was also examined. The 

nonlinear quadratic model was as follows (Eq. [1]): 

𝑌 = 𝑏0 + ∑ 𝑏𝑖

𝑘

i=1

𝑋𝑖 +  ∑ 𝑏𝑖𝑖

𝑘

i=1

𝑋𝑖
2   ∑ ∑ 𝑏𝑖𝑗𝑋𝑖𝑋𝑗 +  𝜀

𝑘

𝑗=𝑖+1

𝑘

𝑖=1   

 

Y is the predicted response related to each factor level combination, b0 is the interception 

coefficient, bi is the linear coefficient, bii is the quadratic coefficient, bij is the interaction 

… Eq. [1] 
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coefficient, Xi is the independent variable under study, k is the number of factors studied and 

ε is the random error. The analysis of variance (ANOVA) technique was utilized to evaluate 

the competence of the developed model. The significant relationships in the model equations 

were assessed using p-value and F-value; and the degree of fitness of the models were evaluated 

by the R-squared values and the lack of fit test. Response surfaces, residual plots, and the 

optimum conditions were attained through these models. Regression analysis and estimation 

of coefficients as well as all other analyses were achieved using Design Expert v10 (StatEase, 

USA) as well as Statistica software (Version 13, Dell Inc., USA) as a comparison point. 

Optimal treatment conditions from the RSM were validated by treating the pulp at the 

determined optimum enzyme dosage, pH, and reaction time. Statistical considerations 

included; coefficient, standard error and T-value. Coefficient is the regression coefficient of 

the term, which represents the contribution of the term to the variation in the response. Standard 

Error is the standard deviation of the regression coefficient and the T-value is the normalized 

regression coefficient, which is equal to Coefficient/Standard Error (Abdi, 2003). 

 

Table 7.5: Experimental design (Box-Behnken) showing actual values of independent 

variables (dosage, pH and reaction time) tested. 

 

Trial Dosage (U/ml) pH Time (h) 

1 3 5 4 

2 3 3 4 

3 3 4 2 

4 6 4 4 

5 6 4 4 

6 3 4 6 

7 9 3 4 

8 6 5 6 

9 6 3 2 

10 9 4 6 

11 6 3 6 

12 6 5 2 

13 9 4 2 

14 9 5 4 

15 6 4 4 

 

A total of 120 trial experiments were conducted for each of the Eucalyptus dunnii and E. 

grandis wood species tested.  

 



231 

 

7.3.4 Enzyme treatments 

A method for the treatment of pulp slurry with enzymes, adopted from Bajpai et al. (2003) was 

used. Two millilitres of buffer (at the appropriate pH) was added to 0.5 g oven-dried 

unbleached pulp and vortexed briefly to ensure saturation of the pulp sample. Following the 

Box-Behnken design, different combinations and dosages of enzymes were added to the pulp 

suspensions. The final volume of the enzyme cocktails was one millilitre, bringing the total 

volume of the pulp suspensions to three millilitres per experiment to ensure optimal dispersion 

of the enzymes. Pulp suspensions were incubated at 30°C and 180 rpm for varied periods of 

time. The enzymatic reaction was terminated by boiling for 5 min to deactivate the enzymes. 

The control samples contained no enzymes. Samples were freeze dried overnight to prepare for 

Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analysis. The lipophilic 

profiles of the treated samples were examined and compared to the untreated samples.  

 

Based on the results from the RSM design, the ideal combination of enzymes, pH, dosage and 

incubation period was selected for large scale trials. Five hundred grams of unbleached oven-

dried pulp was set up in three-litre flasks. After addition of the cocktail of enzymes and 

appropriate buffer, the total weight of the pulp suspension reached two kilograms. Flasks were 

incubated at 30°C for 4 h at 200 rpm. Samples were collected and freeze dried overnight for 

Py-GC-MS analysis. The remainder of the treated pulp was drained to remove excess liquid 

and analysed for various parameters as described further on. 

 

7.3.5 Pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) analysis 

Py-GC/MS permits direct analysis of the original natural material, as the pyrolytic unit is able 

to generate volatile fragments, which can then be analyzed using GC/MS (Sithole et al., 2013). 

Py-GC-MS was employed for the characterisation of lipophilic compounds in the pulp samples. 

Samples of approximately 0.2 mg were weighed out and five microliters of 

tetramethylammonium hydroxide (TMAH) (Sigma Aldrich, USA) was added directly to the 

sample as a derivatizing agent to increase detection of compounds (Fukushima et al., 2009). A 

multi-shot pyrolyzer, EGA/PY-3030 D, (Frontier Lab, Japan) attached to an ultra-alloy 

capillary column (30 m x 0.25 mm, 0.25 μm) was used (GCMS-QP2010 SE, Shimadzu, Japan). 

The samples were pyrolysed at 550°C for 20 s and the interface temperature was fixed at 350°C. 

The chromatographic separation of the volatile components released by pyrolysis was 

performed using an ultra-alloy column. The injection temperature was set to 280°C and the 

column flow rate was set to 1.0 mL/min with helium used as a carrier gas. The temperature 
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was programmed as follows: 50°C for 2 min; rate 3°C/min up to 200°C and held for a further 

4 min. The ion source and interface temperatures were set to 200°C and 300°C, respectively. 

The scan range used for mass selective detector was 40-650 m/z. The peaks of the pyrolysis-

chromatograms attained were interpreted with GC-MS Postrun Analysis software (Shimadzu, 

Japan) by pairing each peak with the compound listed in spectral libraries provided by the NIST 

(National Institute of Standards and Technology) library attached to instrument (modified from 

Sithole and Watanabe, 2013). In the majority of the instances quality matches above 85% were 

reported, but in certain cases, lower quality matches (minimum 70%) were considered as the 

degradation fragments seemed more suitable. It is generally accepted, as in other analytical 

studies, that the chromatographic peak area of a compound can be reasoned as linear with its 

quantity and correspondingly, the peak area percentage linear to its composition. Changes can 

therefore be detected in the relative content of products by evaluating the peak area percentage 

of each identified compound (Lu et al., 2011; Carvalho et al., 2015). The compounds of interest 

that corresponded to lipophilic extracts were calculated by dividing the area percentage by 100 

and then multiplying by the mass of the sample (~0.25 mg). The sum of lipophilic compounds 

detected for each sample was then recorded as the response for the RSM design experiments. 

 

7.3.6 Analyses of treated pulps 

Quality of treated pulp was determined by assessing viscosity (T203 om-94), final pulp yield, 

acid-insoluble lignin (T222 om-88), soluble lignin and kappa number (T236 cm-85) (Forestry 

and Forest Products Research Centre, CSIR, Personal Communication, 2014). The 

carbohydrate content of treated pulp was characterized by High Performance Liquid 

Chromatography (HPLC) for quantification of cellulose and hemicelluloses (glucose, 

mannose, arabinose, xylose, rhamnose, and galactose) using the Dionex ICS-5000 plus with a 

CarboPac PA1 column (4 x 250 mm) with pulsed amperometric detection (Thermo Fischer 

Scientific, United States) (T249 cm-85; Wallis et al., 1996; Wright and Wallis, 1996). 

 

7.4 Results and Discussion 

Response surface methodology was conducted using the Box–Behnken design to determine 

optimum enzyme treatment conditions for reduction of lipophilic content in the wood pulp of 

two Eucalyptus species. The relationship between three regulated factors (dosage, pH and 

reaction time) with three levels per factor (-1, 0 and 1) and one variable factor (lipophilic 

content) was determined (Table 7.6). For the experimental design 15 permutations (trials) of 

conditions were tested on the eight enzyme combinations for each wood species, resulting in 
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120 experimental trials per Eucalypt species. Due to the large number of models generated 

from this study, the tables and graphs of one experimental trial of each Eucalypt spp. will be 

represented here. Readers may find the other data outputs in the supplementary files (Appendix 

7A and 7B).  
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Table 7.6: Experimental results of independent variables (dosage, pH and reaction time) on 

the dependent variable (lipophilic content) of selected E. dunnii and E. grandis pulp. 

 

E. dunnii (Lipase 1 vs Esterase 1) 

Trial Dosage (U/ml) pH Time (h) 
Lipophilic 

content (mg) 

1 9 5 6 0.0259 

2 9 5 2 0.0073 

3 3 3 4 0.0081 

4 6 4 6 0.0145 

5 3 4 4 0.0016 

6 9 4 4 0.0055 

7 6 5 4 0.0114 

8 6 3 2 0.0119 

9 3 5 6 0.0200 

10 6 3 6 0.0245 

11 3 5 2 0.0109 

12 6 5 4 0.0132 

13 6 4 2 0.0107 

14 6 5 4 0.0164 

15 9 3 4 0.0208 

E. grandis (Lipase 3 vs Esterase 1) 

Trial Dosage (U/ml) pH Time (h) 
Lipophilic 

content (mg) 

1 9 4 4 0.02520 

2 6 3 2 0.02714 

3 3 4 4 0.02186 

4 6 4 2 0.02952 

5 3 3 4 0.01842 

6 3 5 6 0.02236 

7 6 4 6 0.03044 

8 6 3 6 0.02608 

9 6 5 4 0.01434 

10 6 5 4 0.02260 

11 3 5 2 0.02216 

12 9 5 6 0.02372 

13 6 5 4 0.01990 

14 9 3 4 0.02026 

15 9 5 2 0.01630 
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Interaction effects of variables on modification of the lipophilic content of the pulp 

Model terms (factors) that are significant are required to obtain a good fit for a particular model. 

The results obtained from Eq. [1] were analyzed by ANOVA to assess the “goodness of fit”. 

ANOVA and the probability value (p-value) were used to test the significance of the regression 

model. pH and shorter reaction times significantly reduced lipophilic content as evidenced by 

their p-values: 0.03 and 0.007 for E. dunnii and 0.02 and 0.04 for E. grandis, respectively (p-

value<0.05) (Table 7.7). Dosage and longer reaction times appeared to have less of an effect 

on the lipophilic content. The ‘F-value’ is the ratio of mean regression sum of squares divided 

by the mean error sum of squares, which tells us if the means between two populations are 

significantly different (Williams, 2015). For both Eucalyptus species, pH and time appeared to 

be significantly different. Degrees of freedom for the model is the number of regression 

coefficients for the effects included in the analysis (Williams, 2015). In this case, for both wood 

species two coefficients may be responsible for the main effect which, considering all other 

statistical data, would be expected to be pH and time. Higher R2 values are generally an 

indication of a better fit, as the model is parallel to the observations. Evaluation of R2 should 

be performed with caution as a higher value does not necessarily mean that the model suitably 

expresses the relationship between the predictors and the responses (Neiva et al., 2014). If an 

effect is added to a model, even if it's noise, the R² will increase. Therefore, R² is not necessarily 

a good indicator for the quality of a model, as a model could be built with R²=100% with only 

noise (Alexander et al., 2015). Although the R2 values of 0.9073 (E. dunnii) and 0.8600 (E. 

grandis) were not closer to 100%, the shortfall may have been due to the lack of noise, 

consequently making the obtained R2 values suitable in this study. “Effect” is a measure of 

how much the response value (Y) changes when the value of the corresponding term (factor) 

in the model changes from the low level to the high level (Alexopoulos, 2010). For E. dunnii 

the effect value is negative for pH and time indicating that the high value of the variable is 

better (Figueiredo Filho, 2013). The results from the statistical analyses reveal that efficiency 

of the removal of pitch forming compounds may be addressed by implementing the statistical 

significant parameters mentioned above. 
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Table 7.7: ANOVA and regression coefficients of the response surface quadratic model for 

the response variables of E. dunnii and E. grandis. 

 

E. dunnii Lipase 1 and Esterase 1 

Effect Estimate Effect Std. Err. t(8) p-value Coefficient 
Std. Err. 

Coefficient 

Regression 

Coefficient 

Mean/Interc. 0.013475 0.001162 11.59400 0.000003 0.013475 0.001162 0.123704 

(1) Dosage (L) 0.004725 0.002847 1.65970 0.135556 0.002363 0.001423 0.003482 

      Dosage (Q) 0.002021 0.002095 0.96448 0.363050 0.001010 0.001048 -0.000225 

(2) pH (L) -0.00147 0.002533 -0.58395 0.575346 -0.000740 0.001267 -0.060823 

      pH (Q) -0.00751 0.002378 -3.15785 0.013438 -0.003755 0.001189 0.007510 

(3) Time (L) 0.011025 0.002847 3.87264 0.004724 0.005513 0.001423 -0.006002 

      Time (Q) -0.00437 0.002095 -2.09004 0.070014 -0.002190 0.001048 0.001095 

ANOVA 
Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 
F-value p-value   

(1) Dosage L+Q 0.000060 2 0.000030 1.842422 0.219719   

(2) pH L+Q 0.000162 2 0.000081 4.996204 0.039084   

(3) Time L+Q 0.000314 2 0.000157 9.682822 0.007304   

Error 0.000130 8 0.000016     

Critical Values 
Observed 

minimum 

Critical 

Values 

Observed 

Maximum 
 

   

Dosage 3.000000 7.753608 9.000000     

pH 3.000000 4.049237 5.000000     

Time 2.000000 2.741199 6.000000     

E. grandis Lipase 3 and Esterase 1 

Effect Estimate Effect Std. Err. t(8) p-value Coefficient 
Std. Err. 

Coefficient 

Regression 

Coefficient 

Mean/Interc. 0.023622 0.000852 27.73667 0.000000 0.023622 0.000852 -0.045711 

(1) Dosage (L) 0.000170 0.002086 0.08149 0.937052 0.000085 0.001043 0.003143 

      Dosage (Q) 0.002336 0.001535 1.52140 0.166653 0.001168 0.000768 -0.000260 

(2) pH (L) -0.00293 0.001856 -1.58082 0.152575 -0.001467 0.000928 0.040510 

      pH (Q) 0.005247 0.001743 3.01082 0.016793 0.002624 0.000871 -0.005247 

(3) Time (L) 0.001870 0.002086 0.89642 0.396203 0.000935 0.001043 -0.008581 

      Time (Q) -0.00452 0.001535 -2.94673 0.018518 -0.002262 0.000768 0.001131 

ANOVA 
Sum of 

Squares 

Degree of 

Freedom 

Mean 

Square 
F-value p-value   

(1) Dosage L+Q 0.000020 2 0.000010 1.160652 0.360929   

(2) pH L+Q 0.000115 2 0.000057 6.578181 0.020445   

(3) Time L+Q 0.000083 2 0.000041 4.743397 0.043805   

Error 0.000070 8 0.000009     

Critical Values 
Observed 

minimum 

Critical 

Values 

Observed 

Maximum 
    

Dosage 3.000000 6.054584 9.000000     

pH 3.000000 3.860200 5.000000     

Time 2.000000 3.793332 6.000000     
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For both model equations (Eq. 2 and 3), coefficients with negative signs were observed. For 

the E. dunnii model B, AB and A2 have negative signs whereas A, C, AC, BC, B2 and C2 have 

positive signs. The E. grandis model has negative signs for B, AB, A2 and B2, while A, C, AC, 

BC, C2 have positive signs. A positive sign for the coefficients in the model indicates a positive 

interaction while the negative sign suggests the opposing effect of each factor (Anupam et al., 

2015). Generally the positive effect correlates with an increase in response when the variable 

increases while the negative effect correlates with a decrease in response when the variable 

increases (Brown and Brown, 2012). In this study, a decrease in response when the variable 

deceases would be ideal, as lower dosages and reaction times would be better suited to industry 

conditions. 

 

Model equations: 

E. dunnii 

Lipophilic content = 0,00689583 + 0,00305 A - 0,000739583 B + 0,00532727 C - 0,00275 AB 

+ 0,002375 AC + 0,000740909 BC - 0,00202083 A2 + 0,00751042 B2 + 0,00437917 C2 

E. grandis 

Lipophilic content = 0,0256608 + 0,000380909 A - 0,00146708 B + 0,000625455 C - 

0,00118364 AB + 0,001805 AC + 0,00123818 BC - 0,00233583 A2 - 0,00524708 B2 + 

0,00452417 C2 

Key: A-dosage; B-pH; C-time 

 

The effects plots allow visual assessment of the effects of factors and factorial interactions on 

response. The three-dimensional (3-D) surface graph in this study presents the combined effect 

of dosage and pH on response which represents the lipophilic content of the pulp, as shown in 

Figure 7.2. In this study, enzymes were used to degrade the lipophilic compounds in pulp, 

therefore, a reduction in the lipophilic content would be regarded a positive response. Generally 

with RSM designs, the red coloration of the graph is an indication of optimized conditions with 

greatest response, however, in this study the opposite is true. Areas with green coloration are 

interpreted as optimal conditions for the treatment of pulp as lowest lipophilic content would 

be observed here. Response surfaces corresponding to the experimental results showed that the 

most effective of the independent variables in reducing lipophilic content was pH. For E. dunnii 

pulp, improved reduction in lipophilic content was observed with more acidic conditions (pH 

3.0) and lower enzyme dosages, whereas E. grandis showed greater reduction in lipophilic 

content at pH 5.0 and higher enzyme dosages. Variable optimum reaction periods were 

… Eq. [2] 

… Eq. [3] 



238 

 

observed. The lipophilic content of E. dunnii pulp was dependent on pH and time, indicated by 

the response surface with a steep slope (Figure 7.2A), and displayed lower lipophilic reduction 

potential at higher dosages and longer reaction times. These results show that at lower dosages 

for both wood species the lipophilic reducing potential of the enzyme combination reached the 

highest level with the median reaction time tested. 

 

Depending on the effectiveness of the treatment, the lipophilic content of the pulps ranged from 

<0.01 mg to 0.07 mg in E. dunnii pulp and from <0.01 mg to 0.05 mg in E. grandis pulp. There 

were some differences in the types of lipophilic degradation products observed for both pulps 

which may explain why the same enzyme combinations and conditions yielded different 

responses. Similar observations were made in another study where a distinct difference was 

shown between the dissolving pulp of E. dunnii and a E. grandis x urophylla clone (GU-W) 

(Kilulya, 2012). This may explain why lower dosages of lipases, esterases and laccases were 

sufficient to reduce the lipophilic content of the E. dunnii pulp. E. grandis in contrast, required 

the maximum enzyme dosage for laccase 1 and 2, lipase 1 and 2 and esterase 1 and 2, however, 

the lowest lipase 3 enzyme dose was sufficient to reduce lipophilic content. Overall, across the 

pH range (pH 3.0-5.0), lower dosages of enzymes and shorter reaction times produced the 

greatest reduction in the lipophilic content of the pulp (Figure 7.2). These response surface 

graphs are supported by the t and p values obtained (Table 7.7). The higher the value of t and 

the lower the value of p, the more significant is the corresponding coefficient term 

(Vanderghem et al., 2012). Lipophilic content of the pulp was strongly dependent on pH and 

to a minimal degree on time and dosage. 

 

The general trend of the 3-D contour plot for E. dunnii revealed that longer reaction times, 

higher pH levels and lower dosages were most efficient in reducing lipophilic content of the 

pulp. The increase in pH led to a substantial reduction of lipophilic compounds in the pulp, up 

to 97.7% at pH 4.0, after 4 h and 3 U/ml. The maximum reduction in lipophilic content in E. 

grandis pulp was 70.7% under the following treatment conditions: pH 5.0, 4 h and a dosage of 

6 U/ml. 
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Figure 7.2: Response surface plots showing the effects of enzyme dosage (U/ml), pH and reaction time (hours) on response (lipophilic content of 

Eucalyptus sp. pulp (mg)). A: effect of lipase 1 and esterase 1 on E. dunnii pulp. B: effect of lipase 3 and esterase 1 on E. grandis pulp.  

A 

B 
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The normal plots of residuals, the residuals versus the predicted response, the residuals versus 

experimental trial, and the actual versus predicted responses for E. dunnii and E. grandis 

models are shown in Figure 7.3 and 7.4, respectively. The actual results plotted against the 

predictive results, with the points aligned around the 45° line, implies that the model defines 

the true behaviour of the system and that the errors are evenly distributed, thus supporting the 

aptness of the fit (Yuliwati et al., 2012) and its use for interpolation (Myers and Montgomery, 

1995). In the normal probability plot the model again fits the data well as all points occur on 

the line, following a normal distribution. Some scatter is to be anticipated, however, if there is 

a general lack of fit and the data forms a perceptible pattern around the line, then the variable 

may be transformed should it be used for further analysis. This step was not necessary in the 

current analysis. A close fit of the points to the line was observed for both Eucalyptus species, 

indicating that the model fits the data appropriately. In Figures 7.3A, 7.3B, 7.4A and 7.4B, the 

residuals versus the predicted response and the residuals versus the experimental trials are 

randomly scattered above and below the x-axis with no observable pattern, however, all the 

points lie between ±3.00 and since the sum of the residuals are always zero, this suggests that 

the proposed models are suitable and reliable (Yi et al., 2011). The actual and predicted 

responses in Figure 7.3D and 7.4D demonstrate an almost linear relationship with slight 

deviations. These evaluations validate the association of the model with the experimental data. 

Therefore, the models can be considered satisfactory for prediction as well as optimization of 

the pre-treatment of pulp. In addition, results from the Statistica and Design Expert software 

yielded the same results, however, Design expert had a more user friendly interface compared 

to Statistica. 
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Figure 7.3: Diagnostics and model graphs for lipophilic content reduction of E. dunnii pulp. A: normal 

probability plot of residuals, B: residuals versus predicted, C: residuals versus trial number, D: predicted versus 

actual values of the lipophilic content of treated pulp, E: response surface, and F: contour plot. 
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Figure 7.4: Diagnostics and model graphs for lipophilic content reduction of E. grandis pulp. A: normal 

probability plot of residuals, B: residuals versus predicted, C: residuals versus trial number, D: predicted versus 

actual values of the lipophilic content of treated pulp, E: response surface, and F: contour plot. 
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Optimizing a number of settings for each response may lead to incompatible settings for the 

factors. However, it is possible for a number of responses to be optimized simultaneously. A 

balanced setting has to be found that gives the most suitable values for all the responses, and 

this may be achieved with desirability functions. The relationship between predicted responses 

on a dependent variable and the desirability of responses is called the desirability function 

(Derringer and Suich, 1980; Raissi, 2009). Contour plots show the levels of overall response 

desirability produced in different regions of the plane defined by pairs of independent variables, 

where each region of the plane represents a different combination of the levels of the two 

variables and their effect on the response. This enables one to visualize the influence of changes 

in the levels of each predictor variable on responses of each dependent variable, as well as the 

overall desirability of the responses. This is beneficial when determining how quickly overall 

response desirability changes as the predictor variable changes for each independent variable, 

thus enabling a differentiation between "inert" and "active" factors. A higher desirability of 

reduced lipophilic content in E. dunnii was observed at pH 4.0 and 2-4 U/ml enzyme dosage 

over 2-4 h (Figure 7.5). Desirability was reduced with the combined effects of higher dosages, 

longer incubation times and higher or lower pH levels. For E. grandis highest desirability was 

observed at pH 3.0 and 5.0 either 2 or 10 U/ml enzyme over 4 h. Decline in desirability was 

observed with treatment combinations of pH 4.0, 2 or 6 h of incubation, as well as, 2 or 6 U/ml 

of enzyme.  
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Figure 7.5: Desirability surface/contours of E. dunnii (A, B, C) and E. grandis (D, E, F). Independent variables (pH, time and dosage) and dependent 

variable (lipophilic content) were used in a quadratic fit method. 

A C B 

F E D 



245 

 

Optimization of enzymatic treatment to improve degradation of lipophilic compounds 

present in pulps 

Based on the analyses of the RSM data the optimized combination of enzymes was ascertained 

to be Lipase 1/Esterase 1 and Lipase 3/Esterase 1 for E. dunnii and E. grandis, respectively. It 

was not surprising that Lipase 1 was most effective in reducing lipophilic compounds, since 

this cocktail of enzymes was composed of enzymes that displayed the highest enzyme activity. 

Lipase 1 cocktail comprised of DF3 (lipase), BT (lipase) and F4 (laccase) which demonstrated 

activities of 62.8 U/ml, 62.4 U/ml and 2 U/ml with p-NP palmitate, p-NP dodecanoate and 

syringaldazine, respectively. Esterase 1 is an acetylesterase which demonstrated 147.8 U/ml 

activity with p-NP valerate. It appears the optimal combination of enzymes for the most 

effective degradation of lipophilic extractives in pulp would be the combined action of lipases, 

esterases and laccases. 

 

The optimal enzyme combinations of Lipase 1/Esterase1 and Lipase 3/Esterase 1 for E. grandis 

and E. dunnii, respectively, degraded a substantial amount of the pulp lipophilic extractives 

belonging to the sterol, fatty acid and ester fractions. This was evident from the complete 

elimination of a number of peaks in the pyrograms of both E. grandis and E. dunnii pulp (Figure 

7.6). Pyrograms of all additional trials may be found in Appendix 7C. 

 

Free sitosterol, sitosterol esters and fatty acids, the major lipophilic compounds in the 

Eucalyptus pulps, were entirely eliminated by treatment with the enzyme cocktails. Treatment 

of E. dunni pulp with the enzyme combination Lipase 1 and Esterase 1 removed most of the 

pitch-inducing lipophilic compounds (98%) present. This was due to the substrate specificity 

of the lipases for p-NP palmitate and p-NP dodecanoate and esterase for p-NP valerate, which 

represent the long and short chain esters commonly found in wood resin and pitch formations. 

For E. grandis only 71% of the extractives was removed. Nevertheless, such reductions would 

still be very beneficial in the pulp and paper industry. This study, therefore, demonstrates the 

effectiveness of a combination of lipase, esterase and laccase enzymes to remove lipophilic 

compounds from acid-bisulphite pulp. Similar observations of pulp treatment with lipases 

(Blanco et al., 2009), esterases (Calero-Rueda et al., 2004) and laccases (Gutiérrez et al., 

2006b) have been reported in other studies. However, this study is unique as the actions of all 

three enzymes in the removal of pitch components were investigated. In addition, reduction in 

the lignin content of the pulps was also observed. This would be beneficial to the pulping 
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process as lower amount of chemicals would be required during bleaching, thus reducing cost 

and the amount of waste generated (Virk et al., 2013). 

 

The removal of lipids by the enzyme cocktails resulted in the release of various oxidized 

derivatives that were either absent or present in low quantities in the untreated pulps. 

Regardless, the total lipid content in the pulps was significantly decreased, and the most 

problematic pitch causing compounds (1-dodecanol, n-tridecan-1-ol, 2-propenoic acid, 

tetradecanoic acid, hexanoic acid, n-pentadecanol, 1-tetradecanol, heptadecane and 

heneicosane) were completely eliminated. Similar observations were made by Gutiérrez et al. 

(2009) who used microbial and enzymatic treatments for the removal of pitch.
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Figure 7.6: Pyrograms illustrating chemical composition of treated and untreated pulps of E. dunnii and E. grandis. A: untreated E. dunnii pulp, B: treated E. dunnii 

pulp, C: untreated E. grandis pulp, D: treated E. grandis pulp. 
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Effect of optimized enzymatic treatments on unbleached pulp properties 

Fatty acids and sterols were the dominant lipophilic extractives in the treated pulp samples of 

E. dunnii and E. grandis. Due to unavailability of chlorine dioxide, the authors were unable to 

conduct bleaching of the treated pulp. However, based on the objectives of this study, this was 

not critical.  

 

The optimal enzyme treatment for E. dunnii with Lipase 1/Esterase 1 at pH 4.0 and lower 

enzyme dosage (3 U/ml) for 4 h resulted in an 8% decrease in kappa number, thus increasing 

the brightness for the pulp before bleaching (Table 7.8). For E. grandis on the other hand, the 

optimal enzyme treatment of Lipase 3/Esterase 1 at pH 5.0 for 4 h and intermediate enzyme 

dosage (6 U/ml) resulted in a 2% decrease in kappa number. Kappa number is a measure of the 

amount of residual lignin in the pulp. The higher the kappa number value, the greater the 

amount of bleaching chemicals required to brighten the pulp. The kappa numbers of pulps 

leaving the digester are typically about 30 for softwoods and 20 for hardwoods in kraft mills 

that employ conventional cooking methods (Axegård et al., 2003). The kappa numbers of 

treated pulp in this study were 12.64 and 14.0 for E. dunnii and E. grandis, respectively. These 

kappa numbers were lower than the levels for the control experiments for both wood species 

(E. dunnii- 13.8; E. grandis- 14.29). As a result, enzymatic pre-treatment of unbleached pulp 

reduced the kappa number, consequently reducing the amount of chemicals that would be 

required during bleaching. These results are similar to those obtained by extended cooking of 

wood, which traditionally enables kappa numbers of the pulp to be further reduced (softwoods- 

20 and hardwoods- 14) (Suurnäkki et al., 1995) in the digester, inevitably resulting in reduced 

strength and yield losses. Prior to bleaching, the limiting factor for kappa number reduction is 

the decline of pulp strength (Stratton et al., 2004). The kappa number of dissolving pulp is 

usually <0.5, which is easily achieved during the bleaching process (Vehmaa, 2013) with pulp 

yields between 52.3-54.4%. Similar yields were observed by Seca and Domingues (2006). 

However, subsequent to bleaching, final pulp yields could decrease to 35-49%. Factors that 

influence these values are wood quality (species, moisture, etc.) and dissolving pulp quality for 

end product application (microcrystalline cellulose, rayon, acetate, etc.) (Vehmaa, 2013). 
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Table 7.8: Chemical composition of treated and untreated (control) E. dunnii and E. grandis 

pulp.  

 
 E. dunnii 

Control ±SD 

E. dunnii 

Treated ±SD 

E. grandis 

Control ±SD 

E. grandis 

Treated ±SD 

AIL (%) 5.0±0.56 6.0±0.43a 5.8±0.32 5.4±0.22 a 

ASL (%) 3.6±0.48 5.5±0.37 a 5.5±0.25 5.5±0.35 a 

Kappa No. 13.8±0.42 12.6±0.41 a 14.3±0.48 14.0±0.41 a 

Pulp Yield (%) 52.5±0.53 52.3±0.54 a 54.4±0.12 54.0±0.58 a 

Viscosity (cP) 612.80±0.31 637.02±0.21 a 630.42±0.19 638.59±0.30 a 

Abbreviations: AIL = Acid-Insoluble Lignin, cP = centipoise, SD - standard deviation. Values represented here 

are mean values for duplicate pulping experiments. p-value: a <0.05; b >0.05. 

 

Improvements were also observed for other physical properties of the enzyme-treated pulps. 

Viscosity increased from 612.80 cP to 637.02 cP for E. dunnii and from 630.42 cP to 638.02 

cP for E. grandis (Table 7.8). This gives an indication that intact cellulose chains were better 

preserved in enzyme-treated pulps. Acid-insoluble lignin and acid-soluble lignin increased in 

E. dunnii from 5 to 5.9% and 3.6 to 5.5%, respectively. However in E. grandis slight decreases 

were observed for both acid-soluble and insoluble lignin implying more efficient removal of 

lignin fibres from the E. dunnii compared to E. grandis. This may be attributed to action of 

ligninases and hemicellulases that hydrolyse the linkages between lignin and hemicellulose 

side groups.  

 

Overall, the enzyme cocktail used had a positive effect on the Eucalyptus pulps by enhancing 

viscosity, and lowering the kappa number by removing lignin. The amounts of acid-insoluble 

(klason) lignin, soluble lignin and monosugars measured in the treated and untreated pulp are 

shown in Table 7.8 and 7.9. The pulp produced after the treatment had a lower kappa number 

than the control samples, as well as higher pulp viscosity. Hemicelluloses are known to protect 

cellulose chains (Palme et al., 2016), hence, their removal would improve extraction of 

cellulose fibres, resulting in higher pulp viscosities. The presence of hemicellulases, such as 

xylanases, present in the enzyme cocktail could be assisting in the degradation of 

hemicelluloses. The glucose content was high amongst all Eucalyptus species, indicating 

minimal cellulose degradation during pre-treatment of the brown pulp (Table 7.9). The 

properties of the treated pulp conforms to the standards of high-grade dissolving pulp (Table 

7.10), making this pre-treatment step suitable for the commercial pulping industry.   
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Table 7.9: Carbohydrate composition (as percentage of total sugars (%) of treated and 

untreated (control) E. dunnii and E. grandis pulp. 

 
 E. dunnii 

Control ±SD 

E. dunnii 

Treated ±SD 

E. grandis Control 

±SD 

E. grandis 

Treated ±SD 

Arabinose 0.15±0.24 0 0.04±0.25 0 

Galactose 0.33±0.31 0 0.4±0.28 0 

Glucose 89.14±0.15 88.75±0.15a 88.46±0.13 88.03±0.11 a 

Mannose 0.52±0.21 0 0.35±0.11 0 

Rhamnose 4.27±0.23 2.99±0.12 a 1.57±0.21 1.46±0.26 a 

Xylose 0.15±0.15 0 0.04±0.13 0 

 Std Dev – standard deviation. p-value: a <0.05; b >0.05. 

 

Table 7.10: Properties of dissolving wood pulp (Vehmaa, 2013). 

 
 

Eucalyptus wood 
South American Dissolving Pulp Producer 

Eucalyptus Specifications 

 Lab scale Mill scale Standard Special High grade 

Viscosity 400-550 520 350-599 250-599 500-599 

Extractives <0.2 - <0.2 <0.15 <0.1 

*Alpha Cellulose 94.5-97.4 94.7 94.5-96 95-96 95.5-96.5 

Pentosans 3-4 3 3-4 2.5-3.5 1.5-2.5 

*Alpha cellulose: undegraded, higher-molecular-weight cellulose content in pulp 

 

7.5 Conclusions 

Quadratic models containing three independent variables were found to appropriately define 

the lipophilic content of the pulp material with correlations between the actual and predicted 

values of the response variables having a fairly high R2 value. Statistical modelling using the 

Box-Behnken design and RSM recognised pH and dosage of enzyme cocktail as the most 

influential factors for reducing the lipophilic content of Eucalyptus pulp. The experimental 

results obtained were validated by the predictions of the mathematical models. The optimum 

enzyme cocktail and reaction conditions predicted for maximum reduction of lipophilic 

compounds in E. dunnii pulp comprised of lipases, acetylesterase and laccases at a dosage of 3 

U/ml for 4 h at pH 4.0. E. grandis pulp on the other hand should be treated at pH 5.0, for 4 h 

with an enzyme dosage of 6 U/ml (lipase, acetylesterase and laccase). The results from this 

study suggest that combining various lipolytic enzymes can enhance reduction of lipophilic 

content of Eucalyptus pulps, thus reducing pitch deposit formation. In addition, by utilizing 

partially crude enzyme cocktails, the presence of ligninolytic and hemicellulolytic enzymes 

assisted in the delignification of the pulp.  
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CHAPTER EIGHT 

 

GENERAL DISCUSSION AND CONCLUSIONS 

___________________________________________________________________________ 

 

8.1 General Discussion 

In our current environmental predicament, industries worldwide are focused on reducing their 

carbon footprint and directing their processes towards greener alternatives. The pulp and paper 

industry is no exception. Their processes have been modified by the incorporation of biocontrol 

agents that serve the dual purpose of reducing chemical consumption and the amount of waste 

generated, so too, reducing production costs. One of the key challenges encountered in the 

pulping of wood material is the formation of pitch deposits. These deposits are caused by 

accumulation of lipophilic compounds (triglycerides, fatty acids, fatty alcohols and esters) 

naturally found in wood material and leads to the formation of black pitch deposits, impacting 

the quality of pulp and functioning of machinery (del Río et al., 2000; Freire et al., 2005; Valto 

et al., 2012) as well as affecting the quality of downstream products made from pulps (Back 

and Allen, 2000). Therefore, the creation of an enzyme cocktail that is able to function as both 

a biopulping and deresinating agent would greatly benefit the pulping industry. Various studies 

have investigated bacteria and fungi as potential sources of lipolytic enzymes for the reduction 

or elimination of wood resin components and pitch deposits. However, none have considered 

the indigenous microflora of wood material (particularly Eucalyptus wood species) and their 

ability to produce enzymes targeting the problem of wood resin and pitch deposits. To our 

knowledge pulping mills make use of commercially available enzymes, instead of producing 

them in-house. The exploration of alternative sources for these enzymes, potentially being 

produced on-site, could reduce costs associated with purchasing and transporting chemicals 

and enzymes. In addition, the unique combination of lipolytic enzymes investigated in this 

study marks this study as novel.  

 

This study has revealed considerable variation in lipophilic content amongst the different 

species of Eucalyptus. E. nitens had a higher lipophilic content than E. dunnii which is contrary 

to another study by Kilulya et al. (2014) in which the inverse was reported. In addition, 

variation in chemical characteristics amongst Eucalyptus of different site qualities was 

observed with E. dunnii site quality 3 (SQ3) exhibiting a higher amount of hot water and 
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solvent extractives compared to E. dunnii site quality 4 (SQ4). Kilulya et al. (2014) reported 

similar findings on site quality. The differences in the chemical composition of the trees may 

be attributed to the environmental conditions as well as the soil composition at the plantation 

(Foelkel and de Assis, 1995; Klash et al., 2010). Lipophilic extractives of wood appear to be 

substantially influenced by clay soil and organic matter, therefore sandy sites are recommended 

for the production of Eucalyptus trees with lower amounts of lipophilic extractives (Kilulya, 

2012). Consequently, care needs to be taken when selecting trees for experimental studies, as 

standardized sampling techniques should be maintained within wood species. Another 

important factor to consider is duration of storage of wood material. After 6 months of storage 

at -20°C wood chips exhibited notable degradation in the chemical structure of wood, 

particularly with regard to lipophilic, lignin, xylan and cellulose content. Storage for this period 

of time clearly had negative effect on the integrity of the wood material and would 

inadvertently affect the results of any study. The changes observed in the wood may be 

attributed to the activity of the microorganisms present in the wood. Analysis of the microbial 

communities in the wood revealed subtle changes in some samples and major changes in other 

samples, before and after storage.  

 

Knowledge of the lipophilic profile of Eucalyptus species is vital, as this insight enables the 

development of highly specific enzyme cocktails capable of targeting lipophilic compounds 

present in pulp. In this study, lipases, esterases and laccases were obtained from native strains 

as well as recombinant hosts either as pure enzyme preparations or crude, concentrated extracts 

with the cellulase activities removed. The enzymes were characterized by a somewhat tedious 

process that evaluated substrate specificity in all permeations of the experimental design. 

Changes in pH and temperature were important as they influenced substrate specificity. This 

finding is significant as most studies do not investigate substrate specificity under various 

experimental conditions, and instead optimize pH and temperature conditions by determining 

temperature optima under standard assay pH and then testing pH optima under optimal 

temperature for enzyme activity and thereafter determining substrate specificity under these 

optimized conditions (Gökbulut and Arslanoğlu, 2013; Prasad, 2014). pH is particularly 

important when treating pulp with enzymes, as the acidic nature of bisulphite pulp can 

influence the functioning and specificity of the enzyme applied. Sulphite pulps also contain 

higher amounts of extractives compared to alkaline pulps (kraft), due to the acidic nature of the 

pulping process the resins in the wood are not degraded, unlike with alkaline pulps in which 

the resin is broken down by saponification and hydrolysis (Sithole et al., 2010). Highest 
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lipolytic activity of 45-61 U/ml was observed for enzymes from selected bacteria isolated from 

Eucalyptus species. The results reported here fall within the range of other lipolytic enzymes 

described from environmental microorganisms such as a lipase from Pseudomonas gessardii 

which produced 156 U/ml of activity at a pH of 3.5 and 30°C (Ramani et al., 2010). Faiz et al. 

(2007) reported the esterase activity of an Anoxybacillus gonensis strain with 0.8 U/ml activity 

at pH 5.5 and 60°C. In comparison, the recombinant esterases produced in this study displayed 

much higher activity than the lipases. This is not unexpected as the recombinant E. coli strains 

were induced to over produce these esterases. Optimal activity of 147.8 U/ml was observed for 

the recombinant acetyl esterase at pH 4.0 and 30°C, whereas the recombinant carboxylesterase 

was 127.1 U/ml at pH 4.0 and 35°C. Agents such as CTAB and K+ ions further stimulated 

activity of acetyl esterase. Fungal laccases were also included in this study as a 60-100% 

reduction in lipophilic compounds in wood and pulp has previously been reported (Gutiérrez 

et al., 2006; Molina et al., 2008).  

 

In the application phase of this study various combinations of enzymes were tested on 

unbleached pulp and their ability to reduce the lipophilic content and lignin of the pulp 

evaluated. As the crude enzyme cocktails were rendered to be cellulase-free by the removal of 

cellulases, the presence of other hemicellulolytic and lignolytic enzymes are expected in the 

enzyme cocktails, as they are commonly produced by microorganisms colonizing 

lignocellulosic material such as Eucalyptus wood species. The combined effects of 

recombinant esterases, lipases and laccases significantly reduced the lipophilic content in the 

pulp. A 97.7% reduction was achieved in E. dunnii pulp treated at pH 4.0, dosage of 3 U/ml 

and a 4 h reaction time. At pH 5.0, dosage of 6 U/ml and 4 h, a 70.7% reduction in lipophilic 

content was observed for E. grandis. The enzymes described here maintained up to 95% of 

their activity over 2-3 h thus evidencing this combination of enzymes as suitable for the 

removal of wood resin from acid-bisulphite pulp. Impressive reductions in sterols and fatty 

acids were observed; these materials constitute the most abundant components in wood 

extractives responsible for pitch formation (Valto et al., 2012). In addition, unsaturated 

lipophilic and phenolic compounds would elevate consumption of bleaching reagents. Phenolic 

compounds were present in high concentrations in E. dunnii and E. grandis pulp and are 

reported to be produced by the plants in response to biotic and abiotic stresses, notably water 

stress (Ramakrishna and Ravishankar, 2011), which is typical in Brazil and especially in South 

Africa, which is currently in the midst of a severe drought season. Other pulp properties were 
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also improved, such as; increased viscosity, improved removal of lignin and decrease in kappa 

number, with minimal impact on pulp yield.  

 

8.2 Recommendations 

The most valuable recommendation emanating from this study would be evaluating substrate 

specificity and enzyme activity under different experimental conditions. This will ensure that 

true optimized conditions of the enzyme have been established, ultimately utilizing the enzyme 

to its full potential. The lipolytic enzymes examined displayed variable substrate specificity 

and activity levels depending on the pH and temperature conditions of the treatments. 

Therefore knowledge of the composition of wood resins is vital when selecting enzymes for 

their degradation.  

 

The low amounts of lipophilic extractives present in E. grandis as well as its good kraft and 

dissolving pulp properties supports the widespread use of this species in pulping. E. grandis is 

the most widely planted eucalypt species to date (Sappi, 2012). The pulping properties of other 

species such as E. smithii may not be as desirable as E. grandis, but the lower risk of pitch 

formation makes it favourable for pulping. Consideration of pulping properties and lipophilic 

content of each Eucalyptus species when pulping could potentially reduce the risk of pitch 

formation without the need for pretreatment steps. This may work well in small scale mills, 

however, in a large commercial setting this may not always be feasible, thus additional 

strategies such as enzyme pretreatments are valued.  

 

In addition, changes in bacterial and fungal communities were observed after storage, which 

should be taken into consideration when conducting laboratory scale trials. It is recommended 

that if storage is necessary under laboratory conditions, wood material should be retained for a 

maximum of 3 months at -20°C as per other studies in this area of research.  

 

Prior knowledge of the lipophilic profiles of Eucalyptus wood species assisted in improving 

the selection of lipases and esterases to be used in the enzyme cocktails. Furthermore, the crude 

enzyme cocktails or individual recombinant esterases described here could have potential 

applications in other commercial industries such as the detergent, fuels, and leather industries. 

This combination of enzymes could have substantial impact on various avenues of bioindustry, 

particularly with their ability to function at acidic pH levels and affinity for a broad range of 
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substrates. The implementation of these enzymes is also an environmentally friendly 

alternative to chemicals currently being utilized. 

 

8.3 Future possibilities 

The class of enzymes described in this study exhibit catalytic pliability and robustness which 

makes them highly attractive as potential industrial biocatalysts in various commercial 

processes, particularly the pulp and paper industry. The benefits of using indigenous 

microorganisms has been demonstrated and further research into detailed characterization of 

these microorganisms and their enzymes would provide a wealth of potentially useful 

biocatalysts.  Studies on improving the properties of these individual enzymes by using 

mutation methods, recombinant DNA technology and protein engineering, to develop a 

superior enzyme cocktail would be innovative research. One step further would be to 

incorporate effective lignin degrading enzymes to complement the optimized enzyme cocktail. 

This has the potential to ensure complete removal of residual lignin in the pulp, thus completely 

eliminating the need for the addition of chemicals in the pulping and bleaching process. This 

would go a long way towards achieving ‘greener’ technologies.  
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