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Abstract

In this thesis, the symmetry properties and the conservation laws for a number of well-known

PDEs which occur in certain areas of mathematical physics are studied. We focus on wave

equations that arise in plasma physics, solid physics and fluid mechanics. Firstly, we carry out

analyses for a class of non-linear partial differential equations, which describes the longitudinal

motion of an elasto-plastic bar and anti-plane shearing deformation. In order to systemati-

cally explore the mathematical structure and underlying physics of the elasto-plastic flow in a

medium, we generate all the geometric vector fields of the model equations. Using the classical

Lie group method, it is shown that this equation does not admit space dilation type symmetries

for a specific parameter value. On the basis of the optimal system, the symmetry reductions

and exact solutions to this equation are derived. The conservation laws of the equation are

constructed with the help of Noether’s theorem

We also consider a generalized Boussinesq (GB) equation with damping term which occurs in

the study of shallow water waves and a system of variant Boussinesq equations. The conser-

vation laws of these systems are derived via the partial Noether method and thus demonstrate

that these conservation laws satisfy the divergence property. We illustrate the use of these con-

servation laws by obtaining several solutions for the equations through the application of the

double reduction method, which encompasses the association of symmetries and conservation

laws.

A similar analysis is performed for the generalised Gardner equation with dual power law

nonlinearities of any order. In this case, we derive the conservation laws of the system via

the Noether approach after increasing the order and by the use of the multiplier method. It

is observed that only the Noether’s approach gives a unified treatment to the derivation of

viii



conserved vectors for the Gardner equation and can lead to local or an infinite number of

nonlocal conservation laws. By investigating the solutions using symmetry analysis and double

reduction methods, we show that the double reduction method yields more exact solutions;

some of these solutions cannot be recovered by symmetry analysis alone.

We also illustrate the importance of group theory in the analysis of equations which arise during

investigations of reaction-diffusion prey-predator mechanisms. We show that the Lie analysis

can help obtain different types of invariant solutions. We show that the solutions generate an

interesting illustration of the possible behavioural patterns.
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Introduction

Towards the end of the 19th century a Norwegian mathematician, Sophus Lie introduced the

theory of continuous groups, now known as Lie group theory. In the literature, symmetry

analysis is one of the most powerful techniques widely used for finding closed form solutions

of differential equations [51, 62, 61, 31, 33]. Investigations of these differential equations plays

an important role in understanding physical phenomena. A symmetry has the very important

property of invariance such that mapping a differential equation from one form to another

leaves its fundamental properties unchanged. In the case of scalar ODEs, symmetries are used

for reduction of order [9]. With PDEs it is desirable to reduce the PDE to an ODE or at least

reduce the number of independent variables. This can be achieved by constructing invariants

of the symmetries which will in turn be used to reduce the underling system of PDEs to ODEs

which if solved, could yield an exact solution to the PDE.

In the mid 1980s, Peter G. L. Leach and his student, Fazal M. Mahomed [49] introduced

Lie group theory to South Africa. Thereafter, researchers from different disciplines in which

differential equations play an important role started developing an interest in this area of

study. Lie group theory has vast applications in fluid mechanics, solid-state mechanics, modern

physics, biological and physical systems, to name a few. Recently, many applications of Lie

group theory to DEs have been performed in various fields of natural sciences and engineering.

These includes generating new solutions from known ones, linearization of ODEs and PDEs,

construction of equivalence groups, solving group classification problems, reductions of PDEs

(by invariant or similarity solutions), construction of generalised local symmetries and nonlocal

symmetries, solving initial and boundary value problems, approximate symmetries, symmetries
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of stochastic differential equations, symmetries of integro-differential equations, symmetries of

difference equations, symmetries of functional differential equations, symmetries of geodesic

equations, construction of conservation laws, construction of invariants of algebraic and differ-

ential equations and so on.

Quite often, one may obtain a set of symmetries admitted by a PDE and face some inde-

cisiveness as to which symmetries or linear combinations thereof to use for reduction of the

original equation. We may proceed first by finding the commutator relation on the span of

symmetries of the Lie algebra and based on non-abelian subalgebras we proceed to an “optimal

subalgebra”. An optimal system assists in this regard as it provides a (non-unique) list of all

possible combinations of Lie subalgebras partitioned into disjoint classes [61]. This list contains

conjugacy inequivalent subalgebras of the Lie algebra g corresponding to the Lie symmetries

[63] such that every Lie subalgebra of g is equivalent to a unique member of the list and no

two Lie subalgebras in the list are equivalent to each other.

The popular methods for constructing optimal system of one dimensional subalgebras include

the use of a global matrix of adjoint transformations as suggested by Ovsiannikov [62] and the

use of adjoint representation table presented by Olver [61]. In [63], a detailed analysis of the

classification of the optimal system for all two-, three- and four-dimensional real algebras are

provided.

In the analysis of differential equations, conservation laws play a significant role, particularly

with regard to integrability and linearisation, constants of motion, analysis of solutions and

numerical solution methods. The existence of a large number of conservation laws for a PDE

indicates its integrability [9]. We also note that without these conserved vectors (integrals of

motion), an understanding of the problem would be incomplete [25]. Different methods for

obtaining conservation laws of PDEs have been developed. One such method is Noether’s the-

orem which provides an elegant and constructive way of finding conservation laws for a system

of PDEs which has a Lagrangian formulation [5]. The central problem in the calculus of vari-

ations is the determination of a Lagrangian, so that the differential equation is regarded as an
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Euler-Lagrange equation. This problem is regarded as the inverse problem in the calculus of

variations [59, 18].

There are also methods to obtain conservation laws without making use of a Lagrangian.

The direct method introduced by Laplace [42, 4] is used to construct conserved quantities.

The multipliers approach involves writing a conservation law in characteristic form, where the

characteristics are the multipliers of the differential equations [67]. A recent method for con-

structing conservation laws without the use of a Lagrangian was provided by Ibragimov [67, 32].

Another way of constructing conservation laws for a system of PDEs without the existence of

Lagrangians is via the partial Noether approach, introduced by Kara and Mahomed [35]. It

works like the Noether approach for differential equations with “ a partial Lagrangian”.

It is well known that for variational systems a conservation law is associated with a Noether

symmetry. Recently, this idea of associating conservation laws with Noether symmetries was

extended to Lie-Bäcklund symmetries [36] and non-local symmetries [69]. The association of

symmetry with a conserved vector leads to the idea of double reduction theory for PDEs [68].

The fundamental basis of this method is that when a symmetry is associated with a conserved

vector, a double reduction transformation exists. The association of symmetry with the con-

served vector firstly reduces the number of independent variables and secondly reduces the

order of the differential equation. It is worth noting that the double reduction theory yields a

new way of finding invariants and exact solutions of PDEs which may not be obtained using

classical symmetry analysis [55].

Motivation

Numerous real-world models are formulated in terms of partial differential equations (PDEs).

The complexity of these models is always increasing, either due to addition of new parameters,

arbitrary elements or functions which may not be straight forwardly determined. Quite often

these complexities contribute to added difficulty in solving the partial differential equations of
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the models. In such situations, the ability to obtain physical information into the real features

of the models becomes the sole test for a comprehensive technique suitable for solving the

complicated systems.

Methods often employed to analyse these differential equations include symmetry analysis,

dynamical system analysis and conservation laws. Although these approaches have different

emphases and directions of investigation, but in some cases they should not be regarded as

completely independent as they complement each other.

It is well known that differential equations have a number fundamental structures, that is,

symmetries and conservation laws. The existence of infinitely many generalized symmetries

is of great important, especially in situations of physical and mathematical interest, where

symmetries are used to reduce the number of unknown functions. Therefore, understanding

the symmetry structure of physical systems is important. Conservation laws play a key role

in the analysis of differential equations, particularly in studies of existence, uniqueness and

stability of solutions.

Aims and objectives of thesis

The objectives of the thesis are firstly, to derive the Lie point symmetries and conservation

laws of some classes of nonlinear PDEs that arise in physics. The importance of studying

these categories of equations, are due to their appearance in different branches of science and

engineering including plasma physics, fluid dynamics, quantum theory and solid state physics.

Secondly, to investigate the integrability of these nonlinear PDEs via symmetry analysis, con-

servation laws and double reduction theory.

Thirdly, to illustrate the significance of group theory in the analysis of mathematical models in

ecology.

The outline of the thesis

The thesis is structured as follows:
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In Chapter 1, we introduce the basic concepts, definitions and theorems that are needed to

tackle our investigation.

In Chapter 2, we present and classify all the geometric vector fields of a class of nonlinear

partial differential equations, which describes the longitudinal motion of an elasto-plastic bar

and anti-plane shearing deformation. Symmetry reductions of the underlying equation are

performed to obtain invariant solutions. The conservation laws associated with Noether sym-

metries of the equations are constructed.

In Chapter 3, we consider a generalised Boussinesq (GB) equation with damping term and

a system of variant Boussinesq (VB) equations. As the GB equation is not derived from a

variational principle we construct its conservation laws using the partial Noether method. The

derived conserved vectors are adjusted to satisfy the divergence condition. These conservation

laws are utilised to obtain a double reduction of the equation. As a result, some invariants and

exact solutions are found. A similar analysis is performed for the system of VB equations to

obtain exact solutions of the system.

In Chapter 4, we investigate and analyse the symmetry and conservation laws of a Gard-

ner equation with dual power law nonlinearity of any order which has applications in quantum

field theory, solid state, plasma and fluid physics. We derive the symmetry generators of the

equation in terms of its arbitrary parameters and used them to obtain symmetry reductions

and exact solutions. Furthermore, the conservation laws of the equation are constructed via the

Noether approach after increasing the order and by the use of the multiplier method. Noether

approach gives rise to some local and an infinite number of nonlocal conservation laws. The

importance of these conservation laws in finding exact solutions is proved via double reduction

theory, which involves the conserved vector and its associated symmetry.

In Chapter 5, we investigate the dynamical complexity of a diffusive Caughley prey - predator

model, which describes the interaction between elephants and trees within a space domain. A

one dimensional optimal system of Lie subalgebras is constructed via symmetry analysis. We
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use the optimal system to reduce this system of nonlinear PDEs to different systems of PDEs.

Using the fact that the commutator relation contains information about further reduction, we

further reduce these equations to systems of ODEs. Stability analysis of great biological signifi-

cance is given for the travelling wave of the reduced model. Effects of diffusion on the structure

and form of tree-elephant ecosystems are studied.

The conclusions are summarized in Chapter 6.
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Chapter 1

Preliminaries

In this chapter, we present the basic notations, definitions and theorems of the fundamental

concepts that will be used throughout this thesis. Let xi, i = 1, 2, . . . n, be n independent vari-

ables and uα, α = 1, 2, . . .m, be m dependent variables. The collection of kth-order derivatives,

k ≥ 1, is denoted by u(k). Subscripts denote partial derivatives. The summation convention

is adopted in which there is summation over repeated upper and lower indices. We denote A

to be the universal vector space of differential functions. The basic operators defined in A are

stated below.

Definition 1.1. The Euler-Lagrange operator is defined by

δ

δuα
=

∂

∂uα
+
∑
s≥1

(−1)sDi1 . . . Dis

∂

∂uαi1...is
, α = 1, . . . ,m. (1.1)

The operator (1.1) is sometimes referred to as the Euler operator, named after Euler (1744)

who first introduced it in a geometrical manner of the one-dimensional case. It is also called the

Lagrange operator, bearing the name of Lagrange (1762) who considered the multi-dimensional

case and established its use in a variational sense (see for example, [24] for a history of the

calculus of variations). Following Lagrange, equation (1.1) is frequently referred to as a vari-

ational derivative. In the modern literature, the terminology Euler-Lagrange and variational

derivative are used interchangeably as (1.1) usually arises in considering a variational problem.
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Definition 1.2. The Lie-Bäcklund operator is given by

X = ξi
∂

∂xi
+ ηα

∂

∂uα
ξi, ηα ∈ A. (1.2)

The operator is an abbreviated form of the following infinite formal sum

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+
∑
s≥1

ζαi1...is
∂

∂uαi1...is
, (1.3)

where ζαi1...is are defined by

ζαi = Di(η
α)− uαjDi(ξ

j) (1.4)

ζαi1...is = Dis(ζ
α
i1...is−1

)− uji1...is−1Dis(ξ
j), s > 1. (1.5)

The Lie-Bäcklund operator (1.3) in its characteristic form is

X = ξi
∂

∂xi
+Wα ∂

∂uα
+Di(W

α)
∂

∂uiα
+DiDj(W

α)
∂

∂uαij
+ . . . . (1.6)

In (1.6), Wα are the Lie characteristic functions given by

Wα = ηα − ξjuαj , α = 1, 2, . . . ,m. (1.7)

Definition 1.3. The Noether operator associated with a Lie-Bäcklund operator X is defined

by

N i = ξi +Wα δ

δuiα
+
∑
s≥1

Di1 . . . Dis(W
α)

∂

∂uαii1...is
, i = 1, . . . , n (1.8)

where the Euler-Lagrange operator δ
δuαi

is given by

δ

δuαi
=

∂

∂uαi
+
∑
s≥1

(−1)sDj1 . . . Djs(W
α)

∂

∂uαij1...js
, i = 1, . . . , n, α = 1, . . . ,m. (1.9)

and similarly for the other Euler-Lagrange operators with respect to higher order derivatives.

The operator (1.8) is named the Noether operator and was given in recognition of Noether’s

contribution.

8



1.1 Noether Identity

Theorem 1.1. The Euler-Lagrange, Lie-Bäcklund and Noether operators are connected by the

operator identity

X +Di(ξ
i) = Wα δ

δuα
+DiN

i. (1.10)

Here, Di(ξ
i) is a differential function which is a sum of functions obtained by total derivations

Di of differential functions ξi. That is, Di(ξ
i) is a divergence of the vector ξ = (ξ1, . . . , ξn), in

other words, divξ whereas, DiN
i is an operator obtained as a sum of products of operators Di on

N i, that is, it is scalar product of vector operators D = (D1, . . . , Dn) and N = (N1, . . . , Nn).

The identity (1.10) is called the Noether identity because of its close relation to Noether’s

theorem.

1.2 Lie point symmetries

Consider a kth order system of partial differential equations of independent variables x =

(x1, x2, . . . , xn) and r dependent variables u = (u1, u2, . . . , ur)

Eα(x, u, u(1), u(2), . . . , u(k)) = 0, α = 1, . . . ,m. (1.11)

The variables u(1), u(2), . . . , u(k) denote the collections of all first, second, . . ., kth− order partial

derivatives, respectively, that is

ui
α = Di(u

α), uαij = DjDi(u
α), . . . , (1.12)

with the total differentiation operator with respect to xi given by,

Di =
∂

∂xi
+ uαi

∂

∂uα
+ uαij

∂

∂uαj
+ . . . , i = 1, . . . , n. (1.13)

The Lie point symmetry of equation (1.11) is a generator X of the form (1.3) that satisfies

X [k]E|E=0
= 0, (1.14)

where X [k] is the kth prolongation of X defined by

X [k] = ξi
∂

∂xi
+ ηα

∂

∂uα
+ ζα

∂

∂uαi
+ . . .+ ζαi1...ik

∂

∂uαi1...ik
. (1.15)

This means that equation (1.11) is invariant under the action of the generator X.
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1.3 Conservation laws

Definition 1.4. A conserved vector of (1.11) is n-tuple T = (T 1, . . . , T n),

T j = T j(x, u, u(1), u(2), . . . , u(k)) ∈ A, j = 1, ..., n such that

Di(T
i) = 0 (1.16)

is satisfied for all solutions of (1.11) .

Remark: When Definition 1.4 is satisfied, (1.16) is called a conservation law for (1.11).

1.3.1 Approaches to construct conservation laws

In this section various approaches used to construct conservation laws in this work are discussed.

Noether’s approach

An elegant and constructive way of finding conservation laws is by means of Noether’s theorem

[5].

Definition 1.5. If there exists a function L = L(x, u, u(1), u(2), . . . , u(l)) ∈ A, l ≤ k, such that

(1.11) are equivalent to
δL

δuα
= 0, α = 1, . . . ,m, (1.17)

then L is called a Lagrangian of (1.11) and (1.17) are the corresponding Euler-Lagrange differ-

ential equations.

Definition 1.6. A Lie-Bäcklund operator X of the form (1.3) is called a Noether symmetry

corresponding to a Lagrangian L ∈ A if there exists a vector B = (B1, . . . , Bn), Bi ∈ A, such

that

X(L) + LDi(ξ
i) = Di(B

i). (1.18)

If in equation ((1.18)), Bi = 0, i = 1, . . . , n, then X is referred to as a strict Noether symmetry

corresponding to a Lagrangian L ∈ A.
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Theorem 1.2. For each Noether symmetry generator X associated with a given Lagrangian

L ∈ A, corresponding to the Euler-Lagrange differential equations, there corresponds a vector

T = (T 1, . . . , T n), T i ∈ A, with defined by T i

T i = N i(L)−Bi, i = 1, . . . , n, (1.19)

which is a conserved vector for the Euler-Lagrange differential equations (1.17), that is, Di(T
i) =

0 on the solutions of (1.17).

In the Noether approach we find L = L(x, u, u(1), u(2), . . . , u(l−1)) and then (1.18) is used for

the determination of the Noether symmetries. Finally (1.19) yields the corresponding Noether

conserved vectors. The characteristics Wα of the Noether symmetry generator are the charac-

teristics of the conservation law.

1.4 Partial Noether approach

If the standard Lagrangian does not exist or is difficult to find, then we may be able to write its

partial Lagrangian and derive the conservation laws by the partial Noether approach introduced

by Kara and Mahomed [35]

Definition 1.7. Suppose that the kth-order differential system (1.11) can be written as

Eα ≡ E0
α + E1

α = 0, α = 1, . . . ,m. (1.20)

A function L = L(x, u, u(1), u(2), . . . , u(s)) ∈ A, s ≤ k is called a partial Lagrangian of system

(1.11) if it can be written as δL/δuα = fβαE
1
β provided that E1

β 6= 0, L for some β.

Here fβα is an invertible matrix.

Definition 1.8. The operator X defined in (1.6) satisfying

X(L) + LDi(ξ
i) = Wα δL

δuα
+Di(B

i), i = 1, 2, . . . n, α = 1, 2, . . .m (1.21)

is a partial Noether operator corresponding to the partial Lagrangian L.
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If the Bi’s are identically zero, then the Lie-Bäcklund operator X is called a strict partial

Noether operator.

Theorem 1.3. The conserved vector of the system (1.11) associated with a partial Noether

operator X corresponding to the partial Lagrangian L is determined from (1.19).

Here also Wα ∈ A are the characteristics of the conservation law. We can use the partial

Noether approach for equations that have Lagrangian formulations.

1.5 Characteristic method

A conservation law can be written in characteristic form [61, 67] as

DiT
i = QαEα (1.22)

where Qα are the characteristics. The characteristics are the multipliers which make the equa-

tion “exact”.

1.6 Symmetry and conservation law relation

The fundamental relation between the Lie-Bäcklund symmetry generator X and the conserved

vector T for a differential equation is governed by [36]

X(T i) + T iDk(ξ
k)− T kDk(ξ

i) = 0, i = 1, ..., n. (1.23)

The joint conditions (1.23) together with (1.16) are used to find conserved vectors T i.

1.6.1 Double reduction of PDEs

Here we give some basic theorems and definitions on double reductions.

Theorem 1.4. Suppose that X is any Lie Bäcklund symmetry of equation (1.11) and T i, i =

1, ..., n are the components of its conserved vectors. Then [10]

T ∗i = (T i, X) = X(T i) + T iDjξ
j − T jDjξ

i, i = 1, ..., n, (1.24)
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constitute the components of a conserved vector of (1.11), i.e, DiT
∗i|(1.11) = 0.

In general, we can transform a conservation law to canonical form via a mapping of its symmetry

into canonical term.

Definition 1.9. Consider a scalar pde F = 0 with n = 2, (x1, x2) = (t, x) which admits a

symmetry X associated with a conserved vector (T t, T x). In terms of the canonical variables

r, s obtained by mapping X to Y = ∂
∂s

, the conservation laws can be expressed as [68]

DrT
r +DsT

s = 0, (1.25)

with T r and T s given as

T r =
T tDt(r) + T xDx(r)

Dt(r)Dx(s)−Dx(r)Dt(s)
, (1.26)

T s =
T tDt(s) + T xDx(s)

Dt(r)Dx(s)−Dx(r)Dt(s)
. (1.27)

This now allows for a double reduction of the PDE.

Theorem 1.5. A PDE of order with two independent variables, which admits a symmetry X

that is associated with a conserved vector T , can be reduced to an ODE of order, namely T r = k,

where T r is defined in (1.26) [10].
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Chapter 2

An analysis of nonlinear PDE arising

in elasto-plastic flow

In the present chapter, we use the group analysis and the Noether’s approach to study the

generalised fourth order nonlinear partial differential equation arising in elasto-plastic flow

[83, 3]

utt + αuxxxx − γ(unx)x = 0, (2.1)

where α, γ are constants, uxxxx is the dispersive term and n > 0. The equation (2.1) describes

the propagation of the wave in the medium with the dispersive effect. It is used to study

longitudinal motion of elasto-plastic microstructure models [3]

The instability of its special solution and ordinary stain solution were studied in [3]. The

sufficient conditions for the nonexistence of the solution of equation (2.1) for n = 2 were given

in [84, 14]. Yan [81] studied the equation (2.1) with the viscous damping term, by using

the direct reduction method. They show that this equation is not integrable under the sense

of Ablowitzs conjecture and found four families of exact solutions. The work of Yan [81] was

extended by Wu and Fan [80] via the same method and presented the solutions for the equation

for n ≥ 3. However, none of these studies categorizes analytic, exact or invariant solutions or

studies the underlying symmetries and conservation laws of the equation (2.1). The nonlinear

equation (2.1) has extensive physical applications, any additional exact solutions could be of

interest.
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Here, we will investigate symmetry and conservation law classification of the generalised non-

linear equation (2.1). We will show that the particular case n = 1 is special as it is the only case

that the dilation symmetry in time and space are lost. Furthermore, we shall study the equa-

tion (2.1) for integrability and for exact solutions using a combination of Lie classical method

and several other methods including Extended tanh method.

The chapter is organized as follows. In Section 2.1, we present all of the vector fields of (2.1),

which split into two different cases namely: n 6= 1 and n = 1. In Section 2.2, the optimal

system of one dimensional subalgebras of (2.1) is constructed. Using the optimal system of

subalgebras, symmetry reductions and exact group invariant solutions are obtained. A similar

analysis is presented in Section 2.3 for the special case of n, that is n = 1. In Section 2.4,

variational conservation laws are obtained using Noether Theorem. A brief discussion and

conclusion is given in the last Section.

2.1 Lie point symmetries

In this section, we present the Lie point symmetry generators admitted by equation (2.1). The

Lie point symmetries admitted by equation (2.1) are generated by a vector field of the form

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
(2.2)

and we need to solve for the coefficient functions ξ1(t, x, u), ξ2(t, x, u), η(x, t, u).

X must satisfy Lie’s symmetry condition (1.14), i.e,

X [4] [utt + αuxxxx − γ(unx)x = 0, ]
∣∣
(2.1)

= 0, (2.3)

where X [4] is the fourth prolongation of the operator X defined by

X [4] = X + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζtt

∂

∂utt
+ ζxx

∂

∂uxx

+ ζxxx
∂

∂uxxx
+ ζxxxx

∂

∂uxxxx
(2.4)

and the coefficients ζt, ζx, ζtt, ζxx, ζxxx and ζxxxx are given by

ζt = Dt(η)− utDt(ξ
1)− uxDt(ξ

2),
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ζx = Dx(η)− utDx(ξ
1)− uxDx(ξ

2),

ζxx = Dx(ζx − uxtDx(ξ
1)− uxxDx(ξ

2),

ζtt = Dt(ζt)− uttDx(ξ
1)− utxDx(ξ

2),

ζxxx = Dx(ζxx)− uxxtDx(ξ
1)− uxxxDx(ξ

2),

ζxxxx = Dx(ζxxx)− uxxxtDx(ξ
1)− uxxxxDx(ξ

2).

Here Dx, Dt denote the total derivative operators defined by

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · · , Dx =

∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ · · · . (2.5)

Expansion and separation of (2.3) with respect to the powers of different derivatives of u yields

an over determined system in the unknown coefficients ξ1, ξ2 and η

ηu =
ξ1
t (n− 3)

2(n− 1)
, ηx = 0, ηtt = 0, ξ1

u = 0,

ξ1
x = 0, ξ1

tt = 0, ξ2
t = 0, ξ2

u = 0, ξ2
x =

1

2
ξ1
t . (2.6)

Solving the overdetermined system (2.6) for ξ1(t, x, u), ξ2(t, x, u) and η(t, x, u), we obtain

ξ1(t, x, u) = C1 + tC5, (2.7)

ξ2(t, x, u) = C2 +
1

2
xC5, (2.8)

η(t, x, u) =
1

2

(
n− 3

n− 1

)
uC5 + C3 + tC4, (2.9)

C1, · · · , C5 are constants. From the governing equations (2.9), it can be observed that there

are two cases appearing: Case (i) n 6= 1 and Case (ii) n = 1.

2.1.1 Case (i) n 6= 1

The Lie point symmetry generators of (2.1) for this case is a five-dimensional Lie algebra

spanned with the following basis

X1 =
∂

∂t
,X2 =

∂

∂x
,X3 =

∂

∂u
,X4 = t

∂

∂u
,

X5 =
1

2
x
∂

∂x
+ t

∂

∂t
+

1

2
µu

∂

∂u
, (2.10)
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where µ = n−3
n−1

. The commutation relation between these five operators (2.10) is presented

in Table 2.1, where each entry, Aij, constitutes the Lie Bracket [Xi, Xj] of two infinitesimal

generators from (2.10) for 1 ≤ i, j ≤ 5.

2.1.2 Case (ii) n = 1

This case gives rise to the linear wave equation of (2.1)

utt + αuxxxx − γuxx = 0, (2.11)

which admits four Lie point symmetries. These are X1 and X2 of Case (i) and X3 = u ∂
∂u

as

well as an infinite symmetry X4 = F1(t, x) ∂
∂u

, where F1(t, x) is a solution of equation (2.11)

and hence called the solution symmetry. This symmetry always arises in the event that the

equation in question is linear and is not used to reduce the original PDE. The commutation

relations satisfied by these four operators are presented in Table 2.4.

Obviously, from equation (2.10) when n = 1, the dilations in space and time are lost. This

seems outstanding and distinguishes the symmetry structure of (2.1) for n = 1 from any other

values of n.

2.2 Symmetry reductions and group-invariant solutions

for equation (2.1)

In the previous section, we present the symmetry classification of the fourth order nonlinear

equation (2.1). In this section, by using the optimal system, we give some group-invariant

solutions.

2.2.1 One-dimensional optimal system of subalgebras

It is well known that the Lie group theory method plays an important role in finding exact

solutions of differential equations. Any linear combination of symmetry generators is also a
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symmetry generator, there are always infinitely many different symmetry subgroups for a dif-

ferential equation. Therefore, a method determining which subgroups would give basically

different types of solutions is necessary and significant for a complete understanding of the list

of invariant solutions.

In this section we discuss in brief an optimal system of one-dimensional subalgebras of the

symmetry group admitted by equation (2.1) which was proposed by Olver [61]. This optimal

system shall be used in the next section for reduction and construction of invariant solutions.

Firstly, we find the optimal system of the Lie algebra possessed by equation (2.1) for n 6= 1.

In constructing one dimensional optimal system of symmetry group 〈X1, X2, X3, X4, X5〉,

admitted by equation (2.1), we consider the general operator

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5, (2.12)

where ai are arbitrary real constants and try to simplify as many of the coefficients ai as possible

through application of adjoint actions to (2.12) to obtain a new simpler operator. The adjoint

representation of the Lie algebra is defined as

Ad(eεXi)Xj = Xj − ε[Xi, Xj] +
1

2!
ε2[Xi, [Xi, Xj]]− · · · . (2.13)

Using equation (2.13) together with the commutator Table 2.1 we obtain all the adjoint repre-

sentation of Lie algebra of equation (2.1) presented in Table 2.2.
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Table 2.1: The commutation relations satisfied by symmetries of (2.1).

[,] X1 X2 X3 X4 X5

X1 0 0 0 X3 X1

X2 0 0 0 0 1
2
X2

X3 0 0 0 0 1
2
µX3

X4 −X3 0 0 0 1
2
(µ− 2)X4

X5 −X1 −1
2
X2 −1

2
µX3 −1

2
(µ− 2)X4 0

Table 2.2: Adjoint representation of generators for (2.1).

Ad X1 X2 X3 X4 X5

X1 X1 X2 X3 X4 − εX3 X5 − εX1

X2 X1 X2 X3 X4 X5 − 1
2
εX2

X3 X1 X2 X3 X4 X5 − 1
2
µεX3

X4 X1 + εX3 X2 X3 X4 X5 − 1
2
(µ− 2)εX4

X5 eεX1 e
1
2
εX2 e

1
2
µεX3 e

1
2

(µ−2)εX4 X5

In what follows, after some calculations, it turns out that the optimal system of one dimensional

subalgebras of (2.1) is

X2, X3 + εX2, X1 + εX2, bX1 + aX2 +X4, X5, (2.14)

where ε = ±1, and a, b are arbitrary real constants.

2.2.2 Symmetry Reduction and Invariant Solution

In the present subsection, we employ the optimal system of one-dimensional subalgebras to

reduce equation (2.1) to ordinary differential equations and find their exact solutions. The

canonical variables and the group invariants corresponding to the subalgebras (2.14) are deter-
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mined and presented in Table 2.3.

Invariance under X2

The substitution of the group invariant solution of X2 into (2.1) gives rise to an ordinary

differential equation whose general solution is the linear function in t,

u(t, x) = c1t+ c2, (2.15)

where c1, c2 are constants.

Invariance under X3 + εX2

Similarly, in this case the group invariant solution corresponding to the symmetry generator

X3 + εX2 leads to the linear solution in t and x variable,

u(t, x) = c1t+
x

ε
+ c2, (2.16)

where c1, c2 are constants.

Invariance under X1 + εX2

The group invariant solution of the subalgebra X1 + εX2 reduces (2.1) to

ε2w′′(z) + αw′′′′(z)− nγw′(z)n−1w′′(z) = 0. (2.17)

The ode (2.17) possesses the following solutions:

Case 1 Exact solution by integration: Integrating the above ode (2.17) once with respect

to z and setting the constant of integration to zero yields the nonlinear ode

ε2w′(z) + αw′′′(z)− γw′n(z) = 0. (2.18)

Substituting w′(z) = J(z) in (2.18), multiplying by J ′(z) and then once more integrating with

respect to z, taking the constant of integration to zero, we obtain

J(z) =

(
(n+ 1)ε2

2γ
sec2(

(n− 1)ε

2
√
α

z)

) 1
n−1

, α > 0 (2.19)
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J(z) =

(
(n+ 1)ε2

2γ
sech2(

(n− 1)ε

2
√
α

z)

) 1
n−1

, α < 0. (2.20)

Integrating (2.19) and (2.20), we obtain the solutions of (2.1) in terms of Hypergeometric

function given respectively as

u(t, x) =

(
(n+1)ε2

2γ

) 1
n−1

2
√
α sin

(
(n−1)ε(x−εt+c)

2
√
α

)
2F1

(
1
2
, n+1

2(n−1)
; 3

2
; sin2

(
(n−1)ε(x−εt+c)

2
√
α

))
(n− 1)ε

,

α > 0

(2.21)

and

u(t, x) =

(
(n+1)ε2

2γ

) 1
n−1

2
√
α sinh

(
(n−1)ε(x−εt+c)

2
√
α

)
2F1

(
1
2
, n+1

2(n−1)
; 3

2
;− sinh2

(
(n−1)ε(x−εt+c)

2
√
α

))
(n− 1)ε

,

α < 0,

(2.22)

where c is a constant.

Case 2 Exact solution by extended-tanh method: In this case, we seek solutions of

equation (2.17) by extended-tanh method proposed by Fan [20]. The method mainly consists

of the following steps:

• Assuming the solution of (2.17) can be expressed as

w(z) = A0 +
m∑
i=1

Gi−1(z)
(
AiG(z) +Bi

√
R +G2(z)

)
, (2.23)

and the new variable G = G(z) satisfies the following first order nonlinear ode:

G′(z)− (R +G2(z)) = 0, (2.24)

which admits several types of solutions

G(z) = −
√
−R tanh(

√
−R)z, G(z) = −

√
−R coth(

√
−R)z, R < 0,

G(z) = −1

z
, R = 0, (2.25)

G(z) =
√
R tanh(

√
−R)z, G(z) = −

√
−R cot(

√
−R)z, R > 0.
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The parameters A0, Ai, Bi, i = 1, 2, ...,m and R are constants to be determined later,

and m is a positive integer. Letting w′(z) = J(z), in (2.17) and integrating it once with

respect to z while setting the constant of integration to zero, results in

ε2J(z) + αJ ′′(z)− γJ(z)n = 0. (2.26)

On balancing the term with the highest-order derivative, J ′′(z) with the nonlinear term

J(z)n appearing in (2.26), we get m = 2
n−1

. Since m is not an integer for any value of

n > 0, we make the following transformation

J(z) = v(z)
2

n−1 , (2.27)

then substitute (2.27) into (2.26) and obtain

(n− 1)2v(z)2(ε2 − γv(z)2) + α(2(3− n)v′(z)2

+2(n− 1)v(z)v′′(z)) = 0.
(2.28)

Now balancing v(z)4 and v(z)v′′(z) we find that m = 1. So we assume that

J(z) =
(
A0 + A1G(z) +B1

√
R +G(z)2

) 2
n−1

. (2.29)

• Substituting (2.23) into (2.28) and using (2.24), collecting all terms with the same powers

of Gk and Gk
√
R +G2 together, and equating each coefficient of them to zero, yield a set

of the following algebraic equations for A0, A1, B1 and R:

22



(i) (n− 1)2
(
−6A2

0B
2
1γR + A2

0c
2 + A4

0(−γ) +B2
1c

2R−B4
1γR

2
)

+ 2α(3− n)
(
A2

1R
2
)

+ 2α(n− 1)
(
B2

1R
2
)

= 0,

(ii) (n− 1)2
(
−12A1A0B

2
1γR + 2A1A0c

2 − 4A1A
3
0γ
)

+ 2α(n− 1) (2A0A1R) = 0,

(iii) (n− 1)2
(
−6A2

0B
2
1γ − 6A2

1B
2
1γR + A2

1c
2 − 6A2

0A
2
1γ +B2

1c
2 − 2B4

1γR
)

+ 2α(n− 1)
(
2A2

1R + 3B2
1R
)

+ 2α(3− n)
(
2A2

1R +B2
1R
)

= 0,

(iv) (n− 1)2
(
−12A0A1B

2
1γ − 4A0A

3
1γ
)

+ 2α (2A0A1) (n− 1) = 0,

(v) 2α(n− 1)
(
2A2

1 + 2B2
1

)
+ 2α(3− n)

(
A2

1 +B2
1

)
+ (n− 1)2

(
−6A2

1B
2
1γ + A4

1(−γ)−B4
1γ
)

= 0,

(vi) (n− 1)2
(
2A0B1c

2 − 4A3
0B1γ − 4A0B

3
1γR

)
+ 2α(n− 1) (A0B1R) = 0,

(vii) (n− 1)2
(
2A1B1c

2 − 12A2
0A1B1γ − 4A1B

3
1γR

)
+ 2α(n− 1) (3A1B1R) + 2α(3− n) (3A1B1R + 2A1B1R) = 0,

(viii) 2α(n− 1) (2A0B1) + (n− 1)2
(
−4A0B

3
1γ − 12A0A

2
1B1γ

)
= 0,

(ix) 2α(n− 1) (4A1B1) + 2α(3− n) (2A1B1) + (n− 1)2
(
−4A3

1B1γ − 4A1B
3
1γ
)

= 0.

(2.30)

Solving the resultant algebraic equations (2.30), we obtain the following results:

Subcase 1:

A0 = ± ε
√
γ
,A1 = 0, B1 = 0. (2.31)

This case leads to the following linear solution

u(t, x) = ±ε(x− εt)√
γ

. (2.32)

Subcase 2:

A0 = 0, A1 = 0, B1 = ±

√
2α(n+ 1)

γ(n− 1)2
, R =

ε2(n− 1)2

4α
. (2.33)
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From (2.24) and (2.33), we deduce the travelling wave solutions of (2.1) as follows:

u1(t, x) = ±

(
(n+1)ε2

2γ

) 1
n−1

2
√
α sin

(
(n−1)ε(x−εt+c)

2
√
α

)
2F1

(
1
2
, n+1

2(n−1)
; 3

2
; sin2

(
(n−1)ε(x−εt+c)

2
√
α

))
(n− 1)ε

,

α > 0,

u2(t, x) = ±

(
(n+1)ε2

2γ

) 1
n−1

2
√
α cos

(
(n−1)ε(x−εt+c)

2
√
α

)
2F1

(
1
2
, n+1

2(n−1)
; 3

2
; cos2

(
(n−1)ε(x−εt+c)

2
√
α

))
(n− 1)ε

,

α > 0,

u3(t, x) = ±

(
(n+1)ε2

2γ

) 1
n−1

2
√
α sinh

(
(n−1)ε(x−εt+c)

2
√
α

)
2F1

(
1
2
, n+1

2(n−1)
; 3

2
;− sinh2

(
(n−1)ε(x−εt+c)

2
√
α

))
(n− 1)ε

,

α < 0,

u4(t, x) = ±

(
(n+1)ε2

2γ

) 1
n−1

2
√
α cosh

(
(n−1)ε(x−εt+c)

2
√
α

)
2F1

(
1
2
, n+1

2(n−1)
; 3

2
; cosh2

(
(n−1)ε(x−εt+c)

2
√
α

))
(n− 1)ε

,

α < 0.

(2.34)

Invariance under aX2 + bX1 +X4

The group invariant solution arising from the subalgebra aX2 +bX1 +X4 results to the following

nonlinear ordinary differential equation

1

b
+
(a
b

)2

w′′ + αw′′′′ − nγw′n−1w′′ = 0. (2.35)

Integrating (2.35) yields a third order equation

z

b
+
(a
b

)2

w′ + αw′′′ − w′n = c, (2.36)

where c is a constant of integration. Further reduction of (2.36) using its symmetry
∂

∂w
gives

r

b
+
(a
b

)2

ψ + αψ′′ − ψn = c, (2.37)

where ψ is a function of r.
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Invariance under X5

The substitution of the group invariant solution of the symmetry X5 into (2.1) yields the

following nonlinear ordinary differential equation

1

4
µ (µ− 2)w − 1

2

(
µ+

3

2

)
zw′ +

1

4
z2w′′ + αw′′′′ − nγw′n−1w′′ = 0. (2.38)

The reduced nonlinear Ode (2.37) and (2.38) are quite challenging to solve analytically. The

numerical investigation of the reduced equations might be of great importance in understanding

the complex dynamics in elasticity and plasticity.

Table 2.3: Subalgebras, Canonical variables and Group

invariants for the subalgebras (2.14).

Subalgebra Canonical variable Group invariants.

X2 z = t u = w(z)

X3 + εX2 z = t u = w(z) + x
ε

X1 + εX2 z = x− εt u = w(z)

aX2 + bX1 +X4 z = x− a
b
t u = w(z) + 1

2b
t2

X5 z = x√
t

u = w(z)t
µ
2

2.3 Symmetry reductions and group-invariant solutions

for special case, n = 1

The infinite symmetry, X4 obtained in this case is not used to reduce the original PDE. There-

fore, we consider the symmetries X1, X2, X3, for the reduction. Without the infinite symmetry,

X4 , we observed from the commutator Table 2.4, that the Lie algebra for this special case,

n = 1, forms an Abelian subalgebra, hence, we consider a linear combination dX1 + kX2 + lX3,

where l, k and d are constants.
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Table 2.4: The commutation relations satisfied by symmetries of (2.1) for n = 1.

[,] X1 X2 X3 X4

X1 0 0 0 X4

X2 0 0 0 X4

X3 0 0 0 −X4

X4 −X4 −X4 X4 0

Invariance under dX1 + kX2 + lX3

This subalgebra gives rise to the group invariant solution

u(t, x) = w(z)e
lt
d , (2.39)

where z = dx− kt. Equation (2.39) reduces (2.11) to the following fourth order linear ordinary

differential equation

l2w − 2kldw′ + d2(k2 − γd2)w′′ + αd6w′′′′ = 0. (2.40)

Solving the above equation (2.40) and applying condition (2.39) results in

u(t, x) = e
lt
d

4∑
i=1

Cie
λi(dx−kt), (2.41)

where Ci are constants and λi are the roots of the polynomial in y given by

αd6y4 + d2(k2 − γd2)y2 − 2kldy + l2 = 0, i = 1, ...4.

2.4 The Conservation Laws

A Lagrangian of equation (2.1) is given by

L =
1

2
u2
t −

1

2
αu2

xx −
1

n+ 1
un+1
x . (2.42)

The corresponding Euler equation satisfies

δL

δu
= 0, (2.43)
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where
δL

δu
is defined by

δL

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

t

∂

∂utt
+D2

x

∂

∂uxx
+DxDt

∂

∂utx
. (2.44)

The Noether symmetry operator X = ξ1 ∂
∂t

+ ξ2 ∂
∂x

+η ∂
∂u

+ ζt
∂
∂ut

+ ζx
∂
∂ux

+ ζxx
∂

∂uxx
corresponding

to the Lagrangian of (2.1) according to (1.18) satisfies the equation

X(L) + L
[
Dt(ξ

1) +Dx(ξ
2)
]

= Dt(B
1) +Dx(B

2), (2.45)

where B1(t, x, u) and B2(t, x, u) are gauge functions. Expansion of equation (2.45) with the

Lagrangian (2.42) yields

utζt − αuxxζxx − γunxζx +

(
1

2
u2
t −

1

2
αu2

xx −
1

n+ 1
un+1
x

)(
ξ1
t + utξ

1
u + ξ2

x + uxξ
2
u

)
= B1

t + utB
1
u +B2

x + uxB
2
u. (2.46)

The expansion and separation of (2.46) with respect to different derivatives of u results in

an overdetermined system of equations for ξ1, ξ2, η, B1 and B2. The expansion of (2.46) and

separation by derivatives of u give rise to the set of over-determined linear equations

− ξ1
u

2
= 0,

γnξ1
u

1 + n
= 0,

αξ1
u

2
= 0, 2αξ1

u = 0, 2αξ1
x = 0,

αξ1
xx = 0, αξ1

uu = 0, 2αξ1
xu = 0,

−ξ2
u

2
= 0,

γnξ2
u

1 + n
= 0,

5αξ2
u

2
= 0, αξ2

uu = 0,−ξ2
t = 0, γξ1

x = 0,−αηxx = 0,

2αηxu = αξ2
xx, αηuu = 2αξ2

xu, ηu +
ξ2
x

2
− ξ1

t

2
, γηu =

γnξ2
x − γξ1

t

1 + n
,

αηu =
3αξ2

x

2
− αξ1

t

2
, B1

u = ηt,−γηx = 0,−B2
u = 0, B1

t +B2
x = 0.

(2.47)

The solution of the above overdetermined system (2.47) is

ξ1 = c1, ξ
2 = c2, η = c3 + tc4, B

1 = uc4, B
2 = 0, (2.48)

where c1, c2, · · · c4 are constants. The conserved vectors of (2.1) for the second order La-

grangian (2.42) is determined by (1.19)

T t = B1 − Lξ1 −W ∂L

∂ut
,
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T x = B2 − Lξ2 −W
(
∂L

∂ux
−Dx

∂L

∂uxx

)
−Dx(W )

∂L

∂uxx
, (2.49)

where W = η − ξ1ut − ξ2ux. Equations (2.49) together with (2.48), yield the conserved vectors

and gauge functions for equation (2.1) presented in Table 2.5.

Conservation Laws for the special case, n = 1

In this case, the Lagrangian is given by

L =
1

2
u2
t −

1

2
αu2

xx −
1

2
γu2

x. (2.50)

Similarly, by applying the same procedure, we obtain the strict Noether operators corresponding

to the Lagrangian (2.50) as

ξ1 = c1, ξ
2 = c2, η = c3, B

1 = uc4, B
2 = 0, (2.51)

Hence, by invoking (2.49) we obtain the conserved vectors corresponding to the Noether sym-

metry operators (2.51). These conserved quantities are presented in the Table 2.6.

Table 2.5: The conservation laws of equation (2.1).

Symmetry generator Tx Tt

X1 α(utuxxx − uxxuxt − γunxut) 1
2
(αu2

xx + u2
t ) + 1

n+1
γun+1

x

X2 α
(
uxuxxx − 1

2
uxx

2
)
− 1

2
u2
t − 1

(n+1)
nγun+1

x uxut

X3 −γuxn + αuxxx ut

X4 t(−γuxn + αuxxx) tut − u

Table 2.6: The conservation laws of of equation (2.1) for special case, n = 1.

Symmetry generator Tx Tt

X1 α(utuxxx − uxxuxt − γuxut) 1
2
(αu2

xx + u2
t + γu2

x)

X2 α
(
uxuxxx − 1

2
uxx

2
)
− 1

2
(u2

t − γu2
x) uxut

X3 −γux + αuxxx ut
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2.5 Discussion and Conclusion

In this chapter, using the group methods, and the Noether approach, a nonlinear PDE found in

elasto-plastic flow is studied. We derived all the geometric vector fields of the model equations.

We found that the analysed model does not admit space dilation type symmetries as a result of

the linearity of the equation when n = 1. In addition, on the basis of symmetries, the optimal

system is constructed. Based on the optimal system, some exact solutions are presented.

Meanwhile, more exact solutions, which include soliton solutions are constructed using the

Extended tanh method. Finally, conservations laws are derived. These results can be used to

study deformity in elastic and plastic medium.
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Chapter 3

Exact solutions of a generalised

Boussinesq equation with damping

term and a system of variant

Boussinesq equations via double

reduction theory

In this chapter, we consider two systems of NLEEs found in mathematical physics. The first

one is the generalised Boussinesq (GB) equation with damping term [82, 45]

utt + 2ρuxxt + βuxxxx + γ(un)xx = 0, (3.1)

where ρ, β, γ are constants and n is a nonzero real number. Equation (3.1) is widely used as

a model to describe natural phenomena in many scientific fields such as plasma waves, solid

physics and fluid mechanics [82]. It is to be noted that when ρ = 0, β = −1, γ = 1, and n = 3,

in (3.1) we obtain the modified Boussinesq equation [23]. The modified Boussinesq equation

is used as a model to describe the temporal evolution of nonlinear finite amplitude waves on a

density front in a rotating fluid. Exact travelling wave solutions for (3.1) were studied in [45]

using the extended tanh method [20]. Yan et al. [82] investigated the solitary wave solutions
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of the equation (3.1) for n = 3 using the direct method [16, 15, 46].

The second system is the variant Boussinesq (VB) equations [64, 72]

ut + (uv)x + vxxx = 0,

vt + ux + vvx = 0, (3.2)

described as a model for water waves, where v(t, x) represents the velocity and u(t, x) represents

the total depth. Solitary wave solutions and multi-solitary wave solutions of the system (3.2)

were obtained in [84] using the homogeneous balance method [74]. Fu et al. [22] examined the

system (3.2) for periodic wave solutions using the ansatz method [29]. Conservation laws for

the system were derived by Naz et al. [56] by increasing the order of the equation and using

Noether’s approach.

In this study, the conservation laws of the GB equation (3.1) which are not derived from a

variational principle are constructed for the first time using the partial Lagrangian method.

The GB equation contains an odd order term which consists of mixed derivative i.e. the

derivative of both t and x, getting its standard Lagrangian is not possible and thus Noether

approach is not applicable for finding its conservation laws. The partial Noethers approach

is then used to derive the conservation laws. These conserved vectors constructed by partial

Noether’s theorem failed to satisfy the divergence property. A number of extra terms arise

because of the odd order term which consists of mixed derivative. These extra terms contribute

to the trivial part of the conserved vector and need to be adjusted to satisfy the divergence

property. After construction of conservation laws the solutions of the GB equation are derived

by double reduction theory. A similar analysis is performed for the system of VB equations. A

similar analysis is performed for the system of VB equations (3.2) to obtain exact solutions of

the system. The chapter is organised as follows: In the next Section, the Lie point symmetries

of the GB equation are obtained. In Section 3.2, the conservation laws of the GB equation

are derived. Section 3.3 discusses the double reduction and exact solutions of the GB equation

while Section 3.4 deals with the exact solutions of a system of VB equations using double

reduction theory. Concluding remarks are presented in Section 3.5.
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3.1 Lie Symmetries of the GB equation

The Lie point symmetries admitted by (3.1) are generated by a vector field of the form

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (3.3)

The operator X satisfies the Lie symmetry condition (1.14)

X [4] [utt + 2ρuxxt + βuxxxx + γ(un)xx = 0, ]
∣∣
(3.1)

= 0, (3.4)

where X [4] is the fourth prolongation of the operator X defined by

X [4] = X + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζxt

∂

∂uxt
+ ζtt

∂

∂utt
+ ζxx

∂

∂uxx

+ ζxxx
∂

∂uxxx
+ ζxxt

∂

∂uxxt
+ ζxxxx

∂

∂uxxxx
(3.5)

and the coefficients ζt, ζx, ζtt, ζxx, ζxt, ζxxt, ζxxx and ζxxxx are given by

ζt = Dt(η)− utDt(ξ
1)− uxDt(ξ

2),

ζx = Dx(η)− utDx(ξ
1)− uxDx(ξ

2),

ζxx = Dx(ζx − uxtDx(ξ
1)− uxxDx(ξ

2),

ζtt = Dt(ζt)− uttDx(ξ
1)− utxDx(ξ

2),

ζxt = Dx(ζt)− uxtDx(ξ
1)− uxxDx(ξ

2),

ζxxx = Dx(ζxx)− uxxtDx(ξ
1)− uxxxDx(ξ

2),

ζxxt = Dt(ζxx)− uxxtDt(ξ
1)− uxxxDx(ξ

2),

ζxxxx = Dx(ζxxx)− uxxxtDx(ξ
1)− uxxxxDx(ξ

2),

Here Dx, Dt denote the total derivative operators defined by

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ · · · , Dx =

∂

∂x
+ ux

∂

∂u
+ utx

∂

∂ut
+ · · · . (3.6)

Expansion and separation of (3.4) with respect to the powers of different derivatives of u yields

an over determined system in the unknown coefficients ξ1, ξ2 and η. This system can not be

presented here due to its lengthy calculations, we present only the results and refer the reader

to [61] for details.
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Solving the overdetermined system for arbitrary parameters gives two different cases as follows:

Case (1): Provided ρβγ(n− 1) 6= 0, we have the following three Lie point symmetries:

X1 =
∂

∂t
,X2 =

∂

∂x
,X3 = t

∂

∂t
− u

(n− 1)

∂

∂u
+
x

2

∂

∂x
. (3.7)

Case (2): When ρβγ 6= 0, n = 1, we obtain, in addition to X1 and X2, another symmetry

X4 = u
∂

∂u
and an infinite-dimensional symmetry, X5 = F1(t, x)

∂

∂u
which is expected as (3.1)

is now linear.

3.2 Conservation laws of the GB equation

A conserved vector corresponding to a conservation law of the GB equation (3.1) is a 2−tuple

(T t, T x), such that

DtT
t +DxT

x = 0 (3.8)

along the solutions of the equation.

Conservation laws of the GB equation via partial Noether’s method

As equation (3.1) does not have a standard Lagrangian due to the presence of an odd order

term uxxt hence, is not derivable from a variational principle. We investigate the conserved

quantities via the partial Noether approach using the partial Lagrangian [35]. This study of

the conserved vectors of the equation (3.1) has not been previously conducted. The equation

(3.1) possesses a partial Lagrangian

L =
1

2
u2
t −

1

2
βu2

xx +
1

2
γnun−1u2

x. (3.9)

The associated partial Euler-Lagrange equation is

δL

δu
= 2ρuxxt + γ

1

2
n(n− 1)un−2u2

x, (3.10)

where
δL

δu
is defined by

δL

δu
=

∂

∂u
−Dt

∂

∂ut
−Dx

∂

∂ux
+D2

t

∂

∂utt
+D2

x

∂

∂uxx
+DxDt

∂

∂utx
, (3.11)
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and

Dt =
∂

∂t
+ ut

∂

∂u
,

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
.

The partial Noether operator is given by

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ η

∂

∂u
(3.12)

and satisfies the partial Noether’s operator (1.21)

X [2](L) + L(Dtξ
1 +Dxξ

2) = (η − utξ1 − uxξ2)
δL

δu
+B1

t + utB
1
u +B2

x + uxB
2u, (3.13)

where B1 and B2 are gauge functions. Separating (3.13), after expansion by the of derivatives

of u, with the partLagrangian (3.9) yields the following overdetermined system:

ρξ1 = 0, ρξ2 = 0, ρξ1
u = 0, ρξ1

x = 0, ξ2
u = 0, βξ1

xx = 0, βξ1
uu = 0, βξ2

uu = 0, βξ1
xu = 0,

βηxx = 0,
1

2
n(n− 1)γun−2ξ1 − nγun−1ξ1

u = 0, ηu +
1

2
ξ2
x −

1

2
ξ1
t = 0,−B1

u + ηt = 0,

B1
t +B2

x = 0, β(2ηuu − 4ξ2
xu) = 0,−B2

u + nγun−1ηx = 0,−β(ηu +
3

2
ξ2
x −

1

2
ξ1
t ) = 0,

− nγun−1ξ1
x − ξ2

t = 0, nγun−1ηu −
1

2
nγun−1ξ2

x − nγun−1ξ2
x +

1

2
nγun−1ξt = 0.

(3.14)

The solution of the system (3.14) yields the following partial Noether operators and gauge

functions

ξ1 = ξ2 = 0, η = c1 + tc3 + x(c3 + tc4), B1 = u(c3 + xc4) + F (t, x),

B2 = unγ(c2 + tc4) +G(t, x), Ft(t, x) +Gx(t, x) = 0,
(3.15)

where c1, c2, c3, c4 are constants. Without loss of generality, we set

F (t, x) = G(t, x) = 0 as Ft(t, x) + Gx(t, x) = 0 and obtain the partial Noether operators Xi

of (3.1) presented in Table 3.1. The conserved vectors of (3.1) for the second order partial

Lagrangian (3.9) is determined by

T t = B1 − Lξ1 −W ∂L

∂ut
,

T x = B2 − Lξ2 −W
(
∂L

∂ux
−Dx

∂L

∂uxx

)
−Dx(W )

∂L

∂uxx
, (3.16)
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where W = η − ξ1ut − ξ2ux. Thus, by adoption of (3.16), the conserved quantities correspond-

ing to each of the four partial Noether operators in Table 3.1 are given by: (i) X1 = ∂
∂u
, B1 =

0, B2 = 0, ξ1 = 0, ξ2 = 0, η = 1,W = 1

T t1 = −ut,

T x1 = −γnun−1ux − βuxxx.
(3.17)

The total divergence is

DtT
t
1 +DxT

x
1 = −utt − γnun−1uxx − γn(n− 1)un−2u2

x − βuxxxx,

= −utt − γ(un)xx − βuxxxx,

= 2ρuxxt.

(3.18)

Extra terms emerge that require further analysis. These terms can be absorbed into the con-

servation law by making an adjustment

DtT
t
1 +DxT

x
1 = 2ρDtuxx. (3.19)

This can be written as

Dt(T
t
1 − 2ρuxx) +DxT

x
1 = 0. (3.20)

Hence, the modified conserved vector viz., (T̃ t1, T̃
t
1) that satisfies the divergence property DtT̃ t1 +

DxT̃ t1 = 0 along the equation is given by

T̃ t1 = −ut − 2ρuxx,

T̃ x1 = −γnun−1ux − βuxxx,

= −γ(un)x− βuxxx.

(3.21)

The same applies to the following results below.

(ii) X2 = x ∂
∂u
, B1 = 0, B2 = unγ, ξ1 = 0, ξ2 = 0, η = x,W = x,

with

T t2 = −xut,

T x2 = γun − x(γnun−1ux + βuxxx) + βuxxx,
(3.22)

we obtain

DtT
t
2 +DxT

x
2 = −x(utt + αuxxxx + γ(un)xx),

= x(2ρuxxt).
(3.23)
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This can be adjusted as

DtT
t
2 +DxT

x
2 = Dt2ρxuxx, (3.24)

which simplifies further to

Dt(T
t
2 − 2ρxuxx) +DxT

x
2 = 0,

Dt(−x(ut + 2ρuxx)) +Dx(γu
n − x(γ(un)x + βuxxx) + βuxxx) = 0.

(3.25)

The new form of conserved vector becomes

T̃ t2 = −x(ut + 2ρuxx),

T̃ x2 = γun − x(γ(un)x + βuxxx) + βuxxx.
(3.26)

(iii) X3 = t ∂
∂u
, B1 = u,B2 = 0, ξ1 = 0, ξ2 = 0, η = t,W = t,

the conserved vector is

T t3 = u− tut,

T x3 = −t(γnun−1ux + βuxxx),
(3.27)

and satisfies

DtT
t
3 +DxT

x
3 = −t(utt + βuxxxx + (un)xx),

= t(2ρuxxt).
(3.28)

The adjustment leads to

DtT
t
3 +DxT

x
3 = Dx2ρtuxt, (3.29)

so that

DtT
t
3 +Dx(T

x
3 − 2ρtuxt = 0,

Dt(u− tut) +Dx(−t(γ(un)x + βuxxx + 2βuxt)) = 0.
(3.30)

This gives rise to the new form of the conserved vector

T̃ t3 = u− tut, T̃ x3 = −t(γ(un)x + βuxxx + 2βuxt). (3.31)

(iv) X4 = xt ∂
∂u
, B1 = ux,B2 = tunγ, ξ1 = 0, ξ2 = 0, η = xt,W = xt,

results to the conserved vector

T t4 = ux− xtut,

T x4 = γtun − xt(γnun−1ux + βuxxx) + tβuxxx.
(3.32)
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Table 3.1: The partial Noether operators and gauge terms of (3.1)

Xi operator gauge function

X1
∂
∂u

B1 = B2 = 0

X2 x ∂
∂u

B1 = B2 = 0

X3 t ∂
∂u

B1 = u,B2 = 0

X4 xt ∂
∂u

B1 = xu,B2 = γtun

which gives

DtT
t
4 +DxT

x
4 = −xt(utt + βuxxxx + (un)xx),

= xt(2ρuxxt).
(3.33)

The redefinition leads to

DtT
t
4 +DxT

x
4 = Dx(2ρ(xtuxt − tut)), (3.34)

and further simplifies to

DtT
t
4 +Dx(T

x
4 − 2ρ(xtuxt − tut)) = 0, (3.35)

so that

T̃ t4 = ux− xtut,

T̃ x4 = γtun − xt(γ(un)x + βuxxx + 2ρuxt) + 2ρtut + tβuxxx.
(3.36)

3.3 Double reduction and exact solutions of the GB equa-

tion

When a PDE of order n with two independent variables, admits a symmetryX that is associated

with a conserved vector T , then it can be reduced to an ODE of order n − 1. [10]. Now, we

utilize the relationship between the conservation laws and the Lie point symmetries of equation

(3.1) to obtain its doubly reduced equation which is easily solved to find exact solutions. A Lie
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point symmetry X of the GB equation (3.1) is associated with its conserved vector (T t, T x) if

(1.23)

X
[2]
i

T ti
T xi

+ (Dtξ
1
t +Dxξ

2
x)

T ti
T xi

−
Dtξ

1
t Dxξ

1
t

Dtξ
2
x Dxξ

2
x

T ti
T xi

 =

0

0

 . (3.37)

For each Xi, i = 1, 2 of equation (3.7) and the conserved vectors (T̃ t, T̃ x) of equations (3.21),

(3.26), (3.31) and (3.36), equation (3.37) becomes

X
[3]
i

T̃ t
T̃ x

+ (Dtξ
1
t +Dxξ

2
x)

T̃ t
T̃ x

−
Dtξ

1
t Dxξ

1
t

Dtξ
2
x Dxξ

2
x

T̃ t
T̃ x


= X

[3]
i

T̃ t
T̃ x

+ (0 + 0)

T̃ t
T̃ x

−
0 0

0 0

T̃ t
T̃ x


= 0.

Therefore, the symmetry generators X1 and X2 are associated with the four conserved vectors.

Thus we can perform the double reduction by a combination of the two generators,

X = X1 + cX2 (3.38)

using any one of the four conservation laws. Mapping (4.55) to

Y =
∂

∂s
(3.39)

yields the canonical coordinates

s = t, r = x− ct, w(r) = u. (3.40)

The conservation law T̃ = (T̃ t, T̃ x) is rewritten as DrT
r + DsT

s = 0. By using the formulas

(1.26) and (1.27), a double reduction by T̃1 = (T̃ t1, T̃
x
1 ) results in the reduced conserved form

T r1 = c2wr − 2ρcwrr + γ(wn)r + βwrrr, (3.41)

T s1 = −cwr + 2ρwrr. (3.42)

Since (4.57) does not depend on s, the reduced conserved vector becomes

DrT
r = 0, (3.43)
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which implies that

c2wr − 2ρcwrr + γ(wn)r + βwrrr = k, (3.44)

where k is a constant. Equation (4.59) is a third order ODE which is a double reduction of the

fourth order PDE (3.1). Integrating (4.59) once with respect to r while setting the constant of

integration to zero, results in

c2w − 2ρcwr + γwn + βwrr = 0. (3.45)

We seek solutions of equation (4.60) by the extended

(
G′

G

)
– expansion method [26]. The

method mainly consists of the following steps: Suppose that the solution of (4.60) can be

expressed as

w(r) = a0 +
m∑
i=1

ai

(
G′

G

)i
+ bi

(
G′

G

)i−1

√√√√ν

(
1 +

1

µ

(
G′

G

)2
)
, (3.46)

with the new variable G = G(r) satisfying

G′′(r) + µG(r) = 0, (3.47)

where ′ means
d

dr
.

The parameters ai, bi (i = 1, 2, ...,m) and a0 are constants to be determined, such that µ 6= 0.

The positive integer m can be determined by considering the homogeneous balance between

the highest order derivatives and nonlinear terms appearing in ODE (4.60).

Balancing wrr with wn in (4.60), we obtain an irreducible fraction, m =
2

n− 1
, for some n.

Therefore we make the following transformation

w(r) = h(r)
2

n−1 , (3.48)

and then substitute (3.48) into (4.60) to obtain

(n− 1)2(c2h(r)2 + γh(r)4)− 4ρc(n− 1)h(r)h′(r)

+β(2(3− n)h′(r)2 + 2(n− 1)h(r)h′′(r)) = 0. (3.49)
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Now balancing h(r)4 and h(r)h′′(r) we find m = 1. Thus, we assume that

h(r) = a0 + a1

(
G′

G

)
+ b1

√√√√ν

(
1 +

1

µ

(
G′

G

)2
)
. (3.50)

Substituting (3.50) into (3.49) and using (3.47), collecting all terms with the same powers of(
G′

G

)k
and

(
G′

G

)k√√√√ν

(
1 +

1

µ

(
G′

G

)2
)

together, and equating each coefficient of them to

zero, yield a set of algebraic equations for a0, a1, b1 and µ:

(i)

(
G′

G

)0

: a2
0(n− 1)2

(
6b2

1γv + c2
)
− 2βa2

1µ
2(n− 3) + 4a1a0ρcµ(n− 1) + a4

0γ(n− 1)2

+ b1
1(n− 1)v

(
2βµ+ b2

1γ(n− 1)v + c2(n− 1)
)

= 0,

(ii)

(
G′

G

)1

: 2(n− 1)
(
a1a0

(
2βµ+ 6b2

1γ(n− 1)v + c2(n− 1)
)

+ 2ρc
(
a2

1µ+ b2
1v
)

+ 2a1a
3
0γ(n− 1)) = 0,

(iii)

(
G′

G

)2

:
1

µ
a2

1µ
(
8βµ+ 6b2

1γ(n− 1)2v + c2(n− 1)2
)

+ 6a2
0γ(n− 1)2

(
a2

1µ+ b2
1v
)

+ 4a1a0ρcµ(n− 1) + b2
1v
(
2b2

1γ(n− 1)2v + 4βµn+ c2(n− 1)2
)

= 0,

(iv)

(
G′

G

)3

: (n− 1)
(
a0a1

(
βµ+ a2

1γµ(n− 1) + 3b2
1γ(n− 1)v

)
+ ρc

(
a2

1µ+ b2
1v
))

= 0,

(v)

(
G′

G

)4

:
1

µ2
2a2

1µ
(
3b2

1γ(n− 1)2v + βµ(n+ 1)
)

+ a4
1γµ

2(n− 1)2 + b2
1v
(
b2

1γ(n− 1)2v

+ 2βµ(n+ 1)) = 0,

(vi)

(
G′

G

)0

√√√√ν

(
1 +

1

µ

(
G′

G

)2
)

: 2b1(n− 1)
(
2a1ρcµ+ a0

(
βµ+ 2b2

1γ(n− 1)v + c2(n− 1)
)

+2a3
0γ(n− 1)) = 0,

(vii)

(
G′

G

)1

√√√√ν

(
1 +

1

µ

(
G′

G

)2
)

: 2b1

(
a1

(
2b2

1γ(n− 1)2v + βµ(n+ 3) + c2(n− 1)2
)

+2a0ρc(n− 1) + 6a1a
2
0γ(n− 1)2) = 0,

(viii)

(
G′

G

)2

√√√√ν

(
1 +

1

µ

(
G′

G

)2
)

: b1(n− 1)
(
2a1ρcµ+ a0

(
βµ+ 3a2

1γµ(n− 1)

+b2
1γ(n− 1)v)) = 0,

(ix)

(
G′

G

)3

√√√√ν

(
1 +

1

µ

(
G′

G

)2
)

: a1b1

(
a2

1γµ(n− 1)2 + b2
1γ(n− 1)2v + βµ(n+ 1)

)
= 0.

Solving the resultant algebraic equations, we obtain the following results:
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Case 1:

b1 = 0, a0 = ±

√
−c2

4γ
, a1 = ± 4(n+ 1)ρ

(n− 1)(n+ 3)

√
−1

γ
, µ = −(n+ 3)2(n− 1)2c2

64(n+ 1)2ρ2
,

β =
8ρ2(n+ 1)

(n+ 3)2
. (3.51)

Since µ < 0, from equations (3.48), (3.50) and (3.51), when β =
8ρ2(n+ 1)

(n+ 3)2
the GB equation

(3.1) has the following solution:

u1 =

(
±

√
−c2

4γ

(
1± A cosh(

√
−µ(x− ct)) +B sinh(

√
−µ(x− ct))

B cosh(
√
−µ(x− ct)) + A sinh(

√
−µ(x− ct))

)) 2
n−1

, (3.52)

where A, B are arbitrary constants.

Case 2:

a0 = ±

√
−c2

4γ
, a1 = ± 2(n+ 1)ρ

(n− 1)(n+ 3)

√
−1

γ
, b1 = ±

√
c2

4νγ
, µ = −(n+ 3)2(n− 1)2c2

16(n+ 1)2ρ2
,

β =
8ρ2(n+ 1)

(n+ 3)2
.

(3.53)

This case leads to the following solution

u2 =

(
±

√
c2

4γ

(
i± iA cosh(

√
−µ(x− ct)) +B sinh(

√
−µ(x− ct))

B cosh(
√
−µ(x− ct)) + A sinh(

√
−µ(x− ct))

+

√
1−

(
A cosh(

√
−µ(x− ct)) +B sinh(

√
−µ(x− ct))

B cosh(
√
−µ(x− ct)) + A sinh(

√
−µ(x− ct))

)2
 2

n−1
(3.54)

Case 3:

a0 = a1 = ρ = 0, b1 = ±

√
−(n+ 1)c2

2νγ
, µ =

(n− 1)2c2

4β
. (3.55)

From (3.55), the solutions of (3.1) are as follows:

u3 =

(
−(n+ 1)c2

2γ

(
1−

(
A cosh(

√
−µ(x− ct)) +B sinh(

√
−µ(x− ct))

B cosh(
√
−µ(x− ct)) + A sinh(

√
−µ(x− ct))

)2
)) 1

n−1

,

β < 0,

(3.56)

u4 =

(
−(n+ 1)c2

2γ

(
1 +

(
A cos(

√
µ(x− ct))−B sin(

√
µ(x− ct))

B cos(
√
µ(x− ct)) + A sin(

√
µ(x− ct))

)2
)) 1

n−1

,

β > 0.

(3.57)
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Remark: These results are a generalisation of those covered in [82, 45]. In particular, the cases

A = 0, B 6= 0 and A 6= 0, B = 0, with 2ρ = α, µ = −(n+ 3)2(n− 1)2c2

4(n+ 1)2α2
in (3.52)–(3.57),

contain the results of Chen et al. [45], who applied the extended-tanh method developed by

Fan [20] to explore some exact solutions of the GB (3.1) equation.

Further, if n = 3, A = 0, B 6= 0, 2ρ = α, µ = −(n+ 3)2(n− 1)2c2

4(n+ 1)2α2
, then (3.52) becomes

u1 = ±

√
−c2

4γ

(
1± tanh(

√
−µ(x− ct))

)
. (3.58)

This is a form of solitary wave solution of the GB equation (3.1) obtained by Yan et al. [82],

who used both the direct method by Clarkson and Kruskal [16, 16] and the improved direct

method by Lou [46].

3.4 Double reduction and exact solutions of a system of

VB equations

The conservation laws of the system (3.2) are given by [22]

(T t1, T
x
1 ) = (v, u+

1

2
v2) (3.59)

(T t2, T
x
2 ) = (v, uv + vxx) (3.60)

(T t3, T
x
3 ) = (uv,

1

2
u2 + uv2 − 1

2
v2
x + vvxx), (3.61)

with the corresponding multipliers

Q1 = [0, 1]

Q2 = [1, 0]

Q3 = [v, u].
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We apply the double reduction to the conserved vector T 3 in equation (3.61) to investigate

exact solutions of the system. Equation (3.2) admits the four Lie point symmetries

X1 =
∂

∂t

X2 =
∂

∂x

X3 = t
∂

∂x
+

∂

∂v

X4 =
1

2
x
∂

∂x
+ t

∂

∂t
− u ∂

∂u
− 1

2
v
∂

∂v
.

(3.62)

It can be easily shown that X1 and X2 are associated with the conserved vector T3 = (T t3, T
x
3 ) in

equation (3.61). We consider a linear combination X = X1 + cX2 and transform this generator

to its canonical form via

r = x− ct, s = t, q(r) = v, w(r) = u. (3.63)

The components of the reduced conserved form are given by (1.26), (1.27)

T 3
r = cwq − 1

2
w2 − wq2 +

1

2
q2
r − qqrr (3.64)

T 3
s = −wq, (3.65)

where the reduced conserved form satisfies

DrT
r
3 = 0. (3.66)

Thus, the double reduced equation is given as

cwq − 1

2
w2 − wq2 +

1

2
q2
r − qqrr = k1, (3.67)

where k1 is a constant. Differentiating (3.67) implicitly with respect to r results in

cwrq + cwqr − wwr − wrq2 − 2wqqr − qqrrr = 0. (3.68)

Since the multipliers of the conserved vector (3.61) are q1 = v and q2 = u, we can also obtain

a reduced conserved form for the equation

v(ut + vux + vxxx)− u(vt + uux − vvx) = 0. (3.69)
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The above equation, (3.69), in the canonical variables (3.63) is given as

cqwr − q2wr − qqrrr − cwqr + wwr = 0. (3.70)

Substituting for qrrr from (3.68) into (3.70) yields the first order ODE

cqr − wr − qqr = 0. (3.71)

Integrating (3.71) with respect to r results in

w = cq − 1

2
q2 + k2, (3.72)

where k2 is a constant of integration. The substitution of (3.72) into (3.67) gives

qqrr −
1

2
q2
r −

3

8
q4 + cq3 − 1

2
q2
(
c2 − k2

)
+

1

2
(k2

2 + 2k1) = 0. (3.73)

Using further symmetry analysis, this ODE (3.73) can be reduced to the quadrature∫
dq√

1
4
q4 − cq3 + q2(c2 − k) + k3q + k2

2 + 2k1

= r + k4, (3.74)

where k3, k4 are constants of integration.

3.5 Discussion

The double reduction theory based on the association of Lie point symmetries and conservation

laws was utilised to construct new exact solutions of the GB equation and a system of VB equa-

tions. Firstly, the GB equation was considered and the conservation laws were computed via

the partial Noether’s approach. The derived conserved vectors failed to satisfy the divergence

relation due to the presence of the mixed derivative term. The conserved vectors were then

adjusted to absorb the extra term. As a result new forms of the conserved vectors satisfying

the divergence condition were found. To the best of our knowledge, these conserved vectors

have not been reported in the literature.

The importance of these conservation laws was illustrated by finding several exact travelling

wave solutions for the GB equation through the application of the double reduction method.
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The solutions obtained behave as solitary and periodic waves for different values of special

parameters involved. The important kink solitary waves, bell shaped solitary waves and periodic

travelling waves can be obtained from the solutions (3.52), (3.56) and (3.57) respectively as

shown in Figure 4.1. We have shown that our results were not only a generalisation of the work

previously done by some authors but also contain some new exact solutions.

A similar analysis is carried out to obtain new exact solutions for a system of VB equations. It is

worthy to note that the solutions of the system of VB equations presented in [74] using the (G
′

G
)

– expansion method can also be obtained from the resultant reduced equations of the system

found here via double reduction theory. Note, however, that our approach is simpler than

that used in [73]. Hence, the double reduction method is an effective and convenient method

which allows us to solve certain complicated nonlinear differential equations in mathematical

physics. The new solutions presented in this paper may be used to study disturbance or wave

propagation problems in fluid mechanics and space plasma physics.
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(a) (b)

(c)

Figure 3.1: (a) Kink shaped solitary wave solution for u1, with n = 3, c = 2, γ = −1, µ =

−1, ρ = 3
4
, β = 1

2
, A = 1, B = 2; (b) Bell shaped solitary wave solution of u3, with n = 5, c =

1, γ = −3, µ = −1, ρ = 0, β = −4, A = 1, B = 2; (c) Periodic wave solution of u4, with

n = 1
2
, c = 1, γ = −3

4
, µ = 1, ρ = 0, β = 1

16
, A = B = 1.
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Chapter 4

A group theoretic analysis of the

generalised Gardner equation with

arbitrary order nonlinear terms

In this chapter, we consider a nonlinear evolution equation (NLEE) that is widely used in various

branches of physics, such as solid-state physics, plasma physics, fluid physics and quantum field

theory and which describes a variety of wave phenomena in plasma and solid state. This is the

generalised form of the Gardner equation with nonlinear terms of any order given by [22] [45]

ut + (a+ bun + cu2n)ux + kuxxx = 0. (4.1)

The profile u(t, x) is the amplitude of the relevant wave mode and variables x and t represent

spatial and temporal variables respectively. The term ut is the evolution term while b and c rep-

resent the coefficients of the dual-power law nonlinearities. Then a and k are the coefficients of

dispersion terms. The parameter n ≥ 1 represents the power law nonlinearity parameter. This

nonlinearity is introduced in a generalised setting that could represent the regular Korteweg-de

Vries (KdV) equation or the modified Korteweg-de Vries (mKdV) depending on the values of

n and the constants of the equation. For example, when n = 1, b 6= 0, c 6= 0, we get the famous

combined KdV-mKdV equation [22] given by,

ut + (a+ bu+ cu2)ux + kuxxx = 0. (4.2)
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When n = 1, b 6= 0, c = 0, we obtain the KdV equation [77],

ut + (a+ bu)ux + kuxxx = 0, (4.3)

and when n = 1, b = 0, c 6= 0 yields the mKdV equation

ut + (a+ cu2)ux + kuxxx = 0. (4.4)

The Gardner equation (4.1) has been investigated as a generalised KdV-mKdV equation with

high-order nonlinear terms [45] and the Benjamin-Bona-Mahoney (BBM) equation, with dual-

power law nonlinearity [6]. Different versions of equation (4.1) have been studied for exact

solutions [7], [52], [76], [75].

Most of these studies are based on the “travelling wave” type solutions via some well known

substitutions. Here the solutions will be obtained via the Lie symmetry approach and a dou-

ble reduction which involves the association of symmetries with conservation laws. As such

association is not limited to the travelling wave symmetries, there exist some possibilities of

additional solutions different from travelling wave solutions. This will be investigated with the

scaling symmetries which might lead to new exact solutions. Finally it is worth noting that

the improved generalised Riccati equation mapping method leads to important singular soliton

solutions.

The organization of the chapter is as follows: In the next Section, we present a Lie symmetry

analysis of the Gardner equation (4.1). In Section 4.2, the conservation laws of the equation are

derived. In Section 4.3 the exact solutions of the equation are discussed. Concluding remarks

are presented in Section 4.4.

4.1 Lie Symmetries of the Gardner equation

The Lie point symmetries admitted by (4.1) are generated by a vector field of the form

X = ξ1(t, x, u)
∂

∂t
+ ξ2(t, x, u)

∂

∂x
+ η(t, x, u)

∂

∂u
. (4.5)

The operator X satisfies the Lie symmetry condition [61], [9]

X [3]
[
ut + (a+ bun + cu2n)ux + kuxxx

] ∣∣
(4.1)

= 0, (4.6)
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where X [3] is the third prolongation of the operator X defined by

X [3] = X + ζt
∂

∂ut
+ ζx

∂

∂ux
+ ζxxx

∂

∂uxxx
. (4.7)

Expansion and separation of (4.6) with respect to the powers of different derivatives of u yields

an over determined system in the unknown coefficients ξ1, ξ2 and η. Solving the overdetermined

system for arbitrary parameters gives the 2-dimensional trivial Lie algebra spanned by the vector

fields of translation with respect to the independent variables

X1 =
∂

∂t
, X2 =

∂

∂x
. (4.8)

The Lie algebra is extended in the following three cases:

Case (1) n 6= 1, c = 0, b 6= 0, k 6= 0. This condition reduces (4.1) to the generalised version

of the KdV equation

ut + (a+ bun)ux + kuxxx = 0. (4.9)

The additional operator obtained in this case is

X3 = −3nt
∂

∂t
− (2ant+ nx)

∂

∂x
+ 2u

∂

∂u
. (4.10)

Case (2) n 6= 1, c 6= 0, b = 0, k 6= 0. In this case (4.1) becomes the generalised MKdV

equation

ut + (a+ cu2n)ux + kuxxx = 0. (4.11)

The additional operator is

X3 = −3nt
∂

∂t
− (2ant+ nx)

∂

∂x
+ u

∂

∂u
. (4.12)

Case (3) n = 1, c 6= 0, b 6= 0, k 6= 0. This case corresponds to the combined KdV-mKdV

equation given in (4.2). The additional operator is

X3 = −6ct
∂

∂t
+ (b2t− 4act− 2cx)

∂

∂x
+ (b+ 2cu)

∂

∂u
. (4.13)

The Lie symmetry algebra for Cases (1) and (2) exhibits the same commutative property. The

commutator table for both these cases are presented in Table 4.1 while the commutator table

for Case (3) is given in Table 4.2.
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Table 4.1: Commutator table of symmetry operators of (4.1)for Case 1 & Case (2)

[,] X1 X2 X3

X1 0 0 −3nX1 − 2anX2

X2 0 0 −nX2

X3 3nX1 + 2anX2 nX2 0

Table 4.2: Commutator table of symmetry operators of (4.1)for Case (3)

[,] X1 X2 X3

X1 0 0 (b2 − 4ac)X2 − 6cX1

X2 0 0 −2cX2

X3 6cX1 − (b2 − 4ac)X2 2cX2 0

4.2 Conservation laws of the Gardner equation

A conserved vector corresponding to a conservation law of the Gardner equation (4.1) is a

2−tuple (T t, T x) , such that

DtT
t +DxT

x = 0 (4.14)

along the solutions of the equation. The Gardner equation (4.1) is a third order partial dif-

ferential equation and its conservation laws cannot be computed directly by the Noether or

partial Noether approach. Hence, the conservation laws for (4.1) will be derived by two meth-

ods namely (i) the multiplier approach and (ii) Noether approach (after increasing its order by

one).

(i) The multiplier approach: Consider the multiplier Λ of order up to two, viz., Λ =

(t, x, u, ux, ut, uxx, uxt, utt) for (4.1). The conserved vector (T t, T x) of (4.1) satisfies the diver-
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gence relation

DtT
t +DxT

x = Λ(ut + (a+ bun + cu2n)ux + kuxxx) = 0. (4.15)

Moreover, we have

δ

δu
Λ(ut + (a+ bun + cu2n)ux + kuxxx) = 0. (4.16)

After a lengthy calculation, we observe that Λ is of order zero or two in derivatives with respect

to u. The obtained forms of Λ = Λi are

Λ1 = 1, (4.17)

Λ2 = u, (4.18)

Λ3 =
c

k(2n+ 1)
u2n+1 +

b

k(n+ 1)
un+1 + uxx. (4.19)

For n = 1, we obtain in addition to the three multipliers (4.17)−(4.19) above the following

multipliers

Λ4 = (2cu+ b)(ta− x+ tu(b+ cu) + 6cktuxx,

Λ5 = − 1

36k
(6c2u5 + 15bcu4 + 12acu3 + 10b2u3 + 24cku2uxx

− 12ckuu2
x + 18abu2 + 24bkuuxx − 6bku2

x − 36kutx),

Λ6 = − 1

144c2k

(
40c4u7 + 140bc3u6 + 144a5c3u+ 174b2c2u5 + 264c3ku4uxx+ 85b3cu4

−48c3ku3u2
xb+ 360abc2 + 528bc2ku3uxx − 72bc2ku2u2

x + 144a2c2u3 + 252ab2cu3

+10b4u3 + 432ac2ku2uxx + 288b2cku2uxx − 36b2ckuu2
x + 432c2k2uu2

xx − 144c2k2u2
x

−144c2ku2utx + 216a2bcu2 + 18a2b3u2 + 288c2kuutux + 432abckuuxx + 24b3kuuxx

−6b3ku2
x + 216bck2u2

xx − 144bckuutx + 144bckutux − 36b2kutx + 432ckutt
)
.

(4.20)

Now, we calculate the corresponding conserved density T t and flux T x by substituting (4.17)−(4.20)

into (4.15). For Λ1 we obtain the obvious conserved vector

T t1 = u,

T x1 =
c

2n+ 1
u2n+1 +

b

n+ 1
un+1 + au+ kuxx. (4.21)
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Λ2 gives rise to

T t2 =
1

2
u2,

T x2 =
c

2n+ 2
u2n+2 +

b

n+ 2
un+2 + kuuxx −

1

2
ku2

x +
1

2
au2, (4.22)

whereas Λ3 results in

T t3 =
1

k(2n+ 1)(2n+ 2)
cu2n+2 +

1

k(n+ 1)(n+ 2)
bun+2 +

1

2
uuxx,

T x3 =
1

2k(2n+ 1)2
c2u4n+2 +

1

k(2n+ 1)(n+ 1)
bcu3n+2 +

1

k(2n+ 1)(2n+ 2)
acu2n+2

+
1

2k(n+ 1)2
b2u2n+2 +

1

2n+ 1
cu2n+1uxx +

1

k(n+ 1)(n+ 2)
abun+2

+
1

n+ 1
bun+1uxx +

1

2
au2

x +
1

2
ku2

xx +
1

2
utux −

1

2
uutx.

(4.23)

We construct (T t4, T
x
4 )− (T t6, T

x
6 ) using the same approach.

(ii) The Noether approach: To apply Noether’s method, we increase the order of equation

(4.1) by one. Let u = Ux , then equation (4.1) becomes

Utx + (a+ bUn
x + cU2n

x )Ux + kUxxxx = 0. (4.24)

A standard Lagrangian for equation (4.24) is

L =
1

2
UtUx +

(
1

2
a+

1

(n+ 1)(n+ 2)
bUn

x +
U2
xn

(2n+ 1)(2n+ 2)

)
U2
x −

1

2
kU2

xx (4.25)

and the associated Euler-Lagrange equation is

δL

δU
= 0,

where
δL

δU
is defined by

δL

δU
=

∂

∂U
−Dt

∂

∂Ut
−Dx

∂

∂Ux
+D2

t

∂

∂Utt
+D2

x

∂

∂Uxx
+DxDt

∂

∂Utx
, (4.26)

and

Dt =
∂

∂t
+ Ut

∂

∂U
,

Dx =
∂

∂x
+ Ux

∂

∂U
+ Uxx

∂

∂Ux
.
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The Lie-Bäcklund operator X defined in (4.5) is a Noether operator corresponding to the

Lagrangian L of equation (4.25) if it satisfies [34]

X(L) + L(Dtξ
1 +Dxξ

2) = DtB
1 +DxB

2, (4.27)

where B1(t, x, U), B2(t, x, U) are the gauge terms. The conserved vectors for the second−order

Lagrangian L (4.25) is given by (1.19)

T t = B1 − Lξ1 − w δL

δUt
−Dt(w)

δL

δUtt
−Dx(w)

δL

δUtx
, (4.28)

T x = B2 − Lξ2 − w δL

δUx
−Dt(w)

δL

δUtx
−Dx(w)

δL

δUxx
, (4.29)

where w = η − Utξ1 − Uxξ2 is the characteristic function.

Substituting (4.25) into (4.27) and solving yields the following Noether coefficient functions

and gauge terms

ξ1 = c1, ξ
2 = c2, η = m(t), B1 = f(t, x),

B2 =
1

2
mt(t) + g(t, x), ft(t, x) + gx(t, x) = 0, (4.30)

where c1, c2, c3 are arbitrary constants and m(t), f(t, x), g(t, x) are arbitrary gauge functions.

We set f(t, x) and g(t, x) to zero as they contribute to the trivial part of the conserved vector.

This yields the following conserved vectors for the Gardner equation (4.1):

T t1 =
1

2
au2 +

1

(n+ 1)(n+ 2)
bun+2 +

1

(2n+ 1)(2n+ 2)
cu2n+2 − 1

2
ku2

x,

T x1 = −1

2

(∫
utdx

)2

−
(
au+

1

(n+ 1)
bun+1 +

1

2n+ 1
cu2n+1 + kuxx

)∫
utdx

+ kutux, (4.31)

T t2 =
1

2
u2,

T x2 =
1

2
au2 +

1

n+ 2
bun+2

x +
1

2n+ 2
cu2n+2

x + kuuxx −
1

2
ku2

x, (4.32)

and for the arbitrary function m(t)

T tm = m(t)u−Dx
1

2

∫
um(t)dx,

T xm = m(t)

(
au+

1

n+ 1
un+1 +

1

2n+ 1
cu2n+1 + kuxx

)
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− mt(t)

∫
udx+Dt

1

2

∫
um(t)dx. (4.33)

Remark: The local conserved vector (4.32) is the same as the conserved vector (4.22) obtained

using the multiplier approach while the nonlocal conserved vector (4.31) and (4.33) cannot be

obtained using the multiplier approach. For m(t) = 1, the nonlocal conserved vector (4.33)

gives a local conserved vector

T t3 = u, (4.34)

T x3 = au+
1

n+ 1
bun+1 +

1

2n+ 1
cu2n+1 + kuxx.

This coincides with the local conserved vector obtained in (4.21). Hence, for arbitrary value of

m(t) infinitely many nonlocal conservation laws exist for the Gardner equation (4.1).

4.3 Exact solutions of the Gardner equation

In this section we will discuss exact solutions of the Gardner equation (4.1) via the Lie

point symmetry approach, double reduction method and improved generalised Riccati map-

ping method.

4.3.1 Symmetry reduction and exact solutions of Gardner equation

(4.1)

A linear combination of the symmetries (4.8): X = X1 + λX2, where λ is a constant can be

used to find travelling wave solutions. The similarity variables for X obtained by solving the

characteristic equation

dt

1
=
dx

λ
=
du

u
(4.35)

are given by

s = t, r = x− λt, w(r) = u. (4.36)
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These similarity variables reduce the Gardner equation (4.1) to the third order ODE

(a− λ)wr + cwrw
2n + bwrw

n + kwrrr = 0. (4.37)

Integrating (4.37) twice with respect to r yields

(a− λ)

2
w2 +

c

(2n+ 1)(2n+ 2)
w2n+2 +

b

(n+ 1)(n+ 2)
wn+2 +

k

2
w2
r

= wk1 + k2,

(4.38)

where k1, k2 are constants of integration. The solution for (4.38) in terms of the original variables

is ∫
du√

λ−a
k
u2 − 2c

k(2n+1)(2n+2)
u2n+2 − 2b

k(n+1)(n+2)
un+2 − 2k1

k
u+ k2

= x− λt+ k3, (4.39)

where k3 is a constant of integration. Setting the constants of integration to zero in (4.39) and

simplifying we obtained the following solutions to the Gardner equation (4.1)

u1(t, x) =


(λ− a)(n+ 1)(n+ 2)sech

(
n
√

λ−a
k

(x− λt)
)

±
√

b2(2n+1)+c(λ−a)(n+1)(n+2)2

2n+1
+ bsech

(
n
√

λ−a
k

(x− λt)
)


1
n

, λ > a,

u2(t, x) =


(λ− a)csch2

(
n
2

√
λ−a
k

(x− λt)
)

2
(

−b
(n+1)(n+2)

±
√

(a−λ)c
(2n+1)(n+1)

coth
(
n
2

√
λ−a
k

(x− λt)
))


1
n

, λ > a,

u3(t, x) =


(a− λ)csc2

(
n
2

√
a−λ
k

(x− λt)
)

2
(

−b
(n+1)(n+2)

±
√

(a−λ)c
(2n+1)(n+1)

cot
(
n
2

√
a−λ
k

(x− λt)
))


1
n

, λ < a.

(4.40)

Symmetry reduction and exact solutions of the special cases of the Gardner equa-

tion (4.1)

In this subsection, we perform the symmetry reductions and construct exact group-invariant

solutions of the special cases of the Gardner equation (4.1) discussed in Section 4.2.

Case (1) n 6= 1, c = 0, b 6= 0, k 6= 0.

1.(a) : X1 + λX2 (Travelling wave solutions): Here the travelling wave solution is obtained by
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setting c = 0 in (4.39) and is given as∫
du√

λ−a
k
u2 − 2b

k(n+1)(n+2)
un+2 − 2k1

k
u+ k2

= x− λt+ k3. (4.41)

Setting the constants of integration k1, k2, k3 in (4.41) to zero gives

u11(t, x) =

{
(λ− a)

2b
(n+ 1)(n+ 2)sech2

(
n

2

√
λ− a
k

(x− λt)

)} 1
n

, λ > a,

u21(t, x) =

{
(a− λ)

2b
(n+ 1)(n+ 2)csch2

(
n

2

√
λ− a
k

(x− λt)

)} 1
n

, λ > a,

u31(t, x) =

{
(λ− a)

2b
(n+ 1)(n+ 2)csc2

(
n

2

√
a− λ
k

(x− λt)

)} 1
n

, λ < a.

(4.42)

1.(b) : X3: The symmetry generator X3 in (4.10) gives rise to the invariants

u(x, t) = w(r)t−
2
3n , r = xt−

1
3 − at

2
3 . (4.43)

Substitution of (4.43) into equation (4.9) results in the ODE

3nkwrrr + 3nwnwr − nrwr − 2w = 0. (4.44)

Case 2 n 6= 1, c 6= 0, b = 0, k 6= 0.

2.(a) : X1 + λX2 (Travelling wave solutions): Here the travelling wave solution is obtained by

setting b = 0 in (4.39) and is given by∫
du√

λ−a
k
u2 − 2c

k(2n+1)(2n+2)
u2n+2 − 2k1

k
u+ k2

= x− λt+ k3. (4.45)

Setting the constants of integration k1, k2, k3 in (4.41) to zero gives

u12(t, x) =

{
±
√

(λ− a)(2n+ 1)(n+ 1)

c
sech

(
n

√
λ− a
k

(x− λt)

)} 1
n

, λ > a,

u22(t, x) =

{
±
√

(a− λ)(2n+ 1)(n+ 1)

c
csch

(
n

√
λ− a
k

(x− λt)

)} 1
n

, λ > a,

u32(t, x) =

{
±
√

(λ− a)(2n+ 1)(n+ 1)

c
csc

(
n

√
a− λ
k

(x− λt)

)} 1
n

, λ < a.

(4.46)
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2.(b) : X3: The symmetry generator X3 in (4.12) gives rise to the invariants

u(x, t) = w(r)t−
1
3n , r = xt−

1
3 − at

2
3 . (4.47)

Substitution of this solution (4.47) into equation (4.11) results in the ODE

3nkwrrr + 3nwnwr − nrwr − w = 0. (4.48)

Case (3): n = 1, c 6= 0, b 6= 0, k 6= 0.

3.(a) : X1 + λX2 (Travelling wave solutions): Here the travelling wave solution is obtained by

putting n = 1 in (4.39) and is given as∫
du√

λ−a
k
u2 − 2c

12k
u4 − 2b

6k
u3 − 2k1

k
u+ k2

= x− λt+ k3. (4.49)

Setting the constants of integration k1, k2, k3 in (4.49) to zero gives

u13(t, x) =
6(λ− a)sech

(√
λ−a
k

(x− λt)
)

±
√
b2 + 6c(λ− a) + bsech

(√
λ−a
k

(x− λt)
) , λ > a,

u23(t, x) =
(λ− a)csch2

(
1
2

√
λ−a
k

(x− λt)
)

2

(
−b
6
±
√

(a−λ)c
6

coth
(

1
2

√
λ−a
k

(x− λt)
)) , λ > a,

u33(t, x) =
(a− λ)csc2

(
1
2

√
a−λ
k

(x− λt)
)

2

(
−b
6
±
√

(a−λ)c
6

cot
(

1
2

√
a−λ
k

(x− λt)
)) , λ < a.

(4.50)

3.(b) : X3: The symmetry generator X3 in (4.13) gives rise the invariants

u(x, t) = w(r)t−
1
3 − b

2c
, r = xt−

1
3 − at

2
3 +

b2t
2
3

4c
. (4.51)

Substitution of this (4.51) into equation (4.2) results in the ODE

3kwrrr + 3cw2wr − rwr − w = 0. (4.52)

Integrating the above equation (4.52) gives

3kwrr + cw3 − rw = k1, (4.53)
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where k1 is a constant of integration. Equation (4.53) is known as the first Painlevé transcen-

dent. Its solutions w = σ(r) are meromorphic in the entire complex plane, but are essentially

new functions that cannot be expressed in any standard form [61].

Remark: It should be noted that the reduced equations (5.13), (4.48), and (4.53) are to some

extent highly nonlinear and hence quite challenging to solve analytically. The next logical step

would be to look at numerical solutions of the reduced equations.

4.3.2 Exact solutions of the Gardner equation by double reduction

theory

For the conserved vectors (4.21), (4.22) and (4.23) we will apply double reduction theory to

obtain the doubly reduced Gardner equation (4.1) which is easily solved to find exact solutions.

A Lie point symmetry X of the Gardner (4.1) is associated with its conserved vector (T t, T x)

if (1.23)

X
[2]
i

T ti
T xi

+ (Dtξ
1
t +Dxξ

2
x)

T ti
T xi

−
Dtξ

1
t Dxξ

1
t

Dtξ
2
x Dxξ

2
x

T ti
T xi

 =

0

0

 . (4.54)

Double reduction via X1, X2

It is observed from (4.54) that only the Lie point symmetries of the Gardner equation given

in (4.8) are associated with the three conserved vectors (4.21), (4.22) and (4.23). Thus we can

perform the double reduction by a combination of the two generators,

X = X1 + λX2. (4.55)

Hence, using the canonical coordinates (4.36), formulas (1.26) and (1.27), a double reduction

by T1 = (T t1, T
x
1 ) results in the conserved form

T r1 = (λ− a)w − 1

2n+ 1
cw2n+1 − 1

n+ 1
bwn+1 − kwrr, (4.56)

T s1 = − 1

2n+ 1
cw2n+1 − 1

n+ 1
bwn+1 − aw − kwrr. (4.57)

Since (4.57) does not depend on s, the reduced conserved vector becomes

DrT
r
1 = 0, (4.58)
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which implies that

(λ− a)w − 1

2n+ 1
cw2n+1 − 1

n+ 1
bwn+1 − kwrr = k1, (4.59)

where k1 is a constant. Equation (4.59) is a second order ODE which is a double reduction of

the third order PDE (4.1). Integrating (4.59) twice with respect to r, leads to following solution

of the Gardner equation (4.1)∫ (
λ− a
k

u2 − 2c

k(2n+ 1)(2n+ 2)
u2n+2 − 2b

k(n+ 1)(n+ 2)
un+2 − 2k1

k
u+ c1

)− 1
2

du

= x− λt+ d1,

(4.60)

where c1, d1 are constants. Similarly, from (1.26) the reduced form of the conserved vector

(3.26) is

T r2 =
1

2
(λ− a)w2 − c

2n+ 2
w2n+2 − b

n+ 2
wn+2 − kwwrr +

1

2
kw2

r (4.61)

and thus the reduced conserved form T r2 = k2 gives

1

2
(λ− a)w2 − c

2n+ 2
w2n+2 − b

n+ 2
wn+2 − kwwrr +

1

2
kw2

r = k2 (4.62)

where k2 is a constant. The solution of (4.62) represented by the original variables forms the

solution of the Gardner equation (4.1) and is given by∫ [
k(n2 + 3n+ 2)

] 1
2
[
(λ− a)n2u2 + 3(λ− a)nu2 − 2cu2n+2 − 2bun+2

+2(λ− a)u2 + 2k2n
2 + 6k2n+ k2kn

2u+ 3k2knu+ 4k2 + 2k2ku+ c2

]− 1
2 du = x− λt+ d2.

For the conserved vector (4.23), we obtain the reduced vector

T r3 = λ

[
1

k(2n+ 1)(2n+ 2)
cw2n+2 +

1

k(n+ 1)(n+ 2)
bwn+2 +

1

2
wwrr

]
− 1

2k(2n+ 1)2
c2w4n+2 − 1

k(2n+ 1)(n+ 1)
bcw3n+2 − 1

k(2n+ 1)(2n+ 2)
acw2n+2

− 1

2k(n+ 1)2
b2w2n+2 − 1

2n+ 1
cw2n+1wrr −

1

k(n+ 1)(n+ 2)
abwn+2

− 1

n+ 1
bwn+1wrr −

1

2
aw2

r +
1

2
kw2

rr + λ
1

2
w2
r + λ

1

2
wwrr.

Hence, a double reduction of the third order PDE (4.1) is

λ

[
1

k(2n+ 1)(2n+ 2)
cw2n+2 +

1

k(n+ 1)(n+ 2)
bwn+2 +

1

2
wwrr

]
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− 1

2k(2n+ 1)2
c2w4n+2 − 1

k(2n+ 1)(n+ 1)
bcw3n+2 − 1

k(2n+ 1)(2n+ 2)
acw2n+2

− 1

2k(n+ 1)2
b2w2n+2 − 1

2n+ 1
cw2n+1wrr −

1

k(n+ 1)(n+ 2)
abwn+2

− 1

n+ 1
bwn+1wrr −

1

2
aw2

r +
1

2
kw2

rr + λ
1

2
w2
r + λ

1

2
wwrr = k3, (4.63)

where k3 is a constant.

Double reduction via the scaling symmetry operator X3

Case (1) n 6= 1, c = 0, b 6= 0, k 6= 0.

We obtain from (1.23)

X
[2]
3

T t1
T x1

− 4n

T t1
T x1

−
 −3n 0

−2an −n

T ti
T xi

 =

 (2− n)u

(2− n)(bun+1 + au+ kuxx)

 ,

where X
[2]
3 is given by

X
[2]
3 = −3nt

∂

∂t
− (2ant+ nx)

∂

∂x
+ 2u

∂

∂u
+ (nux + 2ux)

∂

∂ux
+ (nuxx + 2uxx)

∂

∂uxx
.

Case (2) n 6= 1, c 6= 0, b = 0, k 6= 0.

In the same manner, we obtain

X
[2]
3

T t1
T x1

− 4n

T t1
T x1

−
 −3n 0

−2an −n

T ti
T xi

 =

 (1− n)u

(1− n)(cu2n+1 + au+ kuxx)

 ,

where X
[2]
3 is given by

X
[2]
3 = −3nt

∂

∂t
− (2ant+ nx)

∂

∂x
+ u

∂

∂u
+ (nux + ux)

∂

∂ux
+ (nuxx + uxx)

∂

∂uxx
.

Hence, doubly reducing the Gardner equation (4.1) via the scaling symmetry X3 with the

conserved vector (T t1, T
x
1 ) (4.21) is only achievable when either c = 0, n = 2 or b = 0, n = 1.

This means that the power law nonlinearity term must be quadratic.

Let us consider b = 0, n = 1. We transform the generator X3 to its canonical form Y = ∂
∂s

by

solving

dt

−3t
= − dx

2at+ x
=
du

u
=
dr

1
=
ds

1
=
dw

1
. (4.64)
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The solution of (4.64) yields the invariants of X3 given by

r =
x

t
1
3

− at
2
3 , w(r) = ut

1
3 , s = −1

3
ln(t). (4.65)

Using the above canonical variables (4.65) with the formulas (1.26) and (1.27), we obtained the

reduced conserved vector for (4.21) written as DrT
r
1 +DsT

s
1 = 0 with

T r1 = cw3 + kwrr, (4.66)

T s1 = w. (4.67)

The reduced equation becomes

cw3 + kwrr = k1, (4.68)

where k1 is a constant. The integration of the above equation (4.68) results in∫
dw√

2
3k
wk1 − c

6k
w4

= r + k2, (4.69)

where k2 is a constant of integration.

Remark: The solution (4.60) of the Gardner equation (4.1) obtained by double reduction

is same as the solution (4.39) derived by the Lie symmetry method. The second solution of

Gardner equation (4.1) given in (4.63) cannot be constructed by the Lie symmetry method.

4.3.3 Exact solutions of the Gardner equation using the improved

generalised Riccati equation mapping method

We note that the Lie symmetry and double reduction approach do not lead to the formation

of singular soliton solutions to the Gardner equation (4.1). The singular solitons provide a

possible analytical explanation to the formation of freak or abnormal waves that are a threat

even to large ships and ocean liners. In order to find the singular soliton solutions, we apply

the improved generalised Riccati equation mapping method to the reduced Gardner equation

(4.37).

We seek solutions of reduced equation (4.37) by the improved generalised Riccati equation

mapping method [87]. Our main goal is to derive exact or at least approximate solutions, if
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possible, for the ODE (4.37). We express the solution w(r) of equation (4.37) in the finite series

form

w(r) =
m∑

i=−m

aiψ
i, (4.70)

where the new function ψ = ψ(r) satisfies the Riccati equation

ψ′ = µ+ βψ + (ν − 1)ψ2. (4.71)

The parameters µ, β, ν are constants and both a−m, am are not zero. The positive integer m

can be determined by balancing the highest order derivatives with nonlinear terms appearing

in ODE (4.37). Integrating (4.37) once and setting the constant of integration to zero results

in

(a− λ)w +
1

2n+ 1
cw2n+1 +

1

n+ 1
bwn+1 + kwrr = 0. (4.72)

Balancing wrr with w2n+1 in (4.72), we obtain an irreducible fraction, m = 1
n
, for some n.

Therefore we make the following transformation

w(r) = h(r)
1
n (4.73)

and then substitute (4.73) into (4.72) to obtain

n2(a− λ)h2 +
1

2n+ 1
n2ch4 +

1

n+ 1
n2bh3 + k(1− n)h2

r + knhhrr = 0. (4.74)

Now balancing h(r)4 and hhrr we find m = 1. Thus, we assume that

h(r) = a−1ψ
−1 + a0 + a1ψ. (4.75)

Substituting equations (4.75) together with (4.71) into (4.74) yields an algebraic equation in-

volving powers of ψ. Equating the coefficients of each power of ψ to zero gives a system of

algebraic equations for a−1, a0, a1 with solution

a0 = a0, a1 =
(ν − 1)a0

β
, a−1 =

µa0

β
, a =

n2λ− k(β2 − 4µ(ν − 1))

2µ
,

b =
k(n+ 1)(n+ 2)β2

n2a0

, c = −k(n+ 1)(2n+ 1)β2

n2a0

. (4.76)
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From (4.76), (4.75), (4.73) and (4.36), we obtain multiple explicit solutions of the Gardner

equation (4.1). We follow [87], [50], [86] and consider four cases. These can be found in Ap-

pendix 4.5.1.

Note that we do not find a Type 4 solution.

It is well known that the presence of dispersion without nonlinearity kills the solitary wave as

different Fourier harmonics start propagating at different group velocities. On the other hand,

introducing nonlinearity without dispersion also destroys the propagation of solitary waves,

since the pulse energy is frequently pumped into higher frequency modes. Thus, in order to

maintain solitary waves both dispersion and nonlinearity must be introduced. We maintained

a delicate balance between the nonlinearity effect of dual power law terms, u2n and un, and the

dispersive effect of uxxx which resulted in solitons or solitary waves of the Gardner equation

(4.1). The solitons are waves that are characterised by retaining their identity upon interacting

with other solitons without change of shape and velocity properties. The type of travelling

wave solutions depends on the values of the physical parameters. Solutions u1, u3, in (4.77),

u6, u7, in (4.78), u8, u10 in (4.79) describe the soliton solution [17]. Figure 4.1 (a) shows the

soliton obtained from solution u8 in (4.79). Solutions u9, u11textandu12 in (4.79) represent exact

singular soliton solutions ( as shown in Figure 4.1 (b)). Solutions u25 and u26 in (4.82) have

the exact solitary wave of kink type [41], graphically represented in Figure 4.1(c). Solutions

u2, u4 in (4.77) and u5 in (4.78) represent the solitary wave solutions of singular kink type (see

Figure 4.1 (d)). The solutions of u13, u15, u18, u19 in (4.80), u20, u22 in (4.81) are periodic wave

solutions. Figure 4.1 (e) shows the periodic travelling wave solution obtained from u13 in (4.80).

Solutions u14, u16, u17 in (4.80) and u21, u23 and u24 in (4.81) describe singular periodic wave

solutions as shown in Figure 4.1 (f).

Note that if µ = 0 in u1, u2, u4 in (4.77), u5, u9, u12 in (4.78) and when µ = 0, with F = 0

in u6 in (4.78), our obtained solutions are identical to those the solutions obtained by Li et al

[45] using the substitution method. Thus their solutions are a subset of our results.
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(a) (b)

(c) (d)
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(e) (f)

Figure 4.1: (a) Soliton shaped solitary wave solution for (4.79), with n = 1, a0 = 1, β =

1, λ = 1, µ = −1, ν = 2. (b) Singular soliton shaped solitary wave solution of u9 in (4.78)

with same fixed values in (a). (c) Kink type solitary wave solution for u26in (4.82) with

n = 1, a0 = 1, β = 1, d = 1, λ = 1. (d) Singular kink type solitary wave solution for u2

in (4.77) with same fixed values in (c). (e) Periodic wave solution of u13 in (4.80), with

n = 1, a0 = 1, β = 1, λ = 1, µ = 1, ν = 2. (f) Singular periodic wave solution of u16 in

(4.80), with same fixed values in (e).
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4.4 Conclusion

In this chapter, using the group method, the third order Gardner equation with dual power law

nonlinearity as a generalised setting was studied. In the sense of geometric symmetry, all the

vector fields of the equation are presented. The Gardner equation possesses only translational

symmetries. These symmetries reduce the nonlinear third order PDE to an integrable third

order ODE and we obtained one independent solution. As the Gardner equation is a third order

PDE hence, not derivable from a variational principle, its conservation laws were discussed via

the multiplier method and Noether approach (after increasing the order by one). We have

shown that there are six local conservation laws when the power law nonlinearity is quadratic

and only the Noether approach leads to a infinite number of nonlocal conservation laws. The

importance of these conservation laws was demonstrated using double reduction theory which is

based on the association of symmetries with conserved vectors. As a result, three independent

solutions were obtained. Furthermore, we derived additional nontrivial conservation laws and

scaling symmetries for some special cases of the Gardner equation. Similar studies are carried

out for these special cases. Moreover, the singular soliton and singular periodic solutions were

extracted for the Gardner equation with the aid of the improved generalised Riccati method.

Certain constraints or compatibility conditions of the parameters of the Gardner equation had

to be satisfied to ensure the existence of these solutions. To understand the behaviour of the

solutions, we plotted the graphs of the solution surfaces for some special parameter values. Most

of the solutions presented have not been reported in literature and many known solutions are

only special cases of these. These solutions include important soliton solutions and nontrivial

solutions in terms of special functions which are meromorphic in the entire complex plane.

Remarkably, such solutions, having special functions together with arbitrary parameters can

be used as a benchmark for solving other related model problems and assessing numerical and

approximate analytical methods for nonlinear equations describing solitons in wave mechanics.

Apart from complementing results in the literature, the solutions are also useful in the analysis

of wave propagation on physical phenomena. This study presents new ways of finding more

exact solutions of PDEs and these solutions may not be obtained from symmetry analysis.
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4.5 Appendix

4.5.1 Explicit solutions of the Gardner equation using improved

generalised Riccati equation mapping method

Type 1 When Ω = β2 − 4µ(ν − 1) > 0, β(ν − 1) 6= 0, (or µ(ν − 1) 6= 0)

u1(t, x) = a
1
n
0

 −2µ(ν − 1)

β
(
β +
√

Ω tanh(
√

Ω(x−λt)
2

)
) + 1− 1

2β

(
β +
√

Ω tanh(

√
Ω(x− λt)

2
)

) 1
n

,

u2(t, x) = a
1
n
0

 −2µ(ν − 1)

β
(
β +
√

Ω coth(
√

Ω(x−λt)
2

)
) + 1− 1

2β

(
β +
√

Ω coth(

√
Ω(x− λt)

2
)

) 1
n

,

u3(t, x) = a
1
n
0

 −2µ(ν − 1)

β
(
β +
√

Ω
(

tanh(
√

Ω(x− λt))± isech(
√

Ω(x− λt))
))

+1− 1

2β

(
β +
√

Ω
(

tanh(
√

Ω(x− λt))± isech(
√

Ω(x− λt))
))] 1

n

,

u4(t, x) = a
1
n
0

 −2µ(ν − 1)

β
(
β +
√

Ω
(

coth(
√

Ω(x− λt))± csch(
√

Ω(x− λt))
))

+1− 1

2β

(
β +
√

Ω
(

coth(
√

Ω(x− λt))± csch(
√

Ω(x− λt))
))] 1

n

,

(4.77)

67



u5(t, x) = a
1
n
0

 −4µ(ν − 1)

β
(

2β +
√

Ω
(

tanh(
√

Ω(x−λt)
4

)± coth(
√

Ω(x−λt)
4

)
))

+1− 1

4β

(
2β +

√
Ω

(
tanh(

√
Ω(x− λt)

4
)± coth(

√
Ω(x− λt)

4
)

))] 1
n

,

u6(t, x) = a
1
n
0

2µ(ν − 1)

β

(
−β +

√
Ω(E2 + F 2)− E

√
Ω cosh(

√
Ω(x− λt))

E sinh(
√

Ω(x− λt)) + F

)−1

+1 +
1

2β

(
−β +

√
Ω(E2 + F 2)− E

√
Ω cosh(

√
Ω(x− λt))

E sinh(
√

Ω(x− λt)) + F

)] 1
n

,

u7(t, x) = a
1
n
0

2µ(ν − 1)

β

(
−β −

√
Ω(F 2 − E2) + E

√
Ω cosh(

√
Ω(x− λt))

E sinh(
√

Ω(x− λt)) + F

)−1

+1 +
1

2β

(
−β −

√
Ω(F 2 − E2) + E

√
Ω cosh(

√
Ω(x− λt))

E sinh(
√

Ω(x− λt)) + F

)] 1
n

,

(4.78)

where E and F are two non-zero real constants satisfying F 2 − E2 > 0,
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u8(t, x) = a
1
n
0

[√
Ω sinh(

√
Ω(x−λt)

2
)− β cosh(

√
Ω(x−λt)

2
)

2β cosh(
√

Ω(x−λt)
2

)
+ 1

+
2µ(ν − 1)

β

(
cosh(

√
Ω(x−λt)

2
)

√
Ω sinh(

√
Ω(x−λt)

2
)− β cosh(

√
Ω(x−λt)

2
)

)] 1
n

,

u9(t, x) = a
1
n
0

[
−
β sinh(

√
Ω(x−λt)

2
)−
√

Ω cosh(
√

Ω(x−λt)
2

)

2β sinh(
√

Ω(x−λt)
2

)
+ 1

−2µ(ν − 1)

β

(
sinh(

√
Ω(x−λt)

2
)

β sinh(
√

Ω(x−λt)
2

)−
√

Ω cosh(
√

Ω(x−λt)
2

)

)] 1
n

,

u10(t, x) = a
1
n
0

[√
Ω sinh(

√
Ω(x− λt))− β cosh(

√
Ω(x− λt))± i

√
Ω

2β cosh(
√

Ω(x−λt)
2

)
+ 1

+
2µ(ν − 1)

β

(
cosh(

√
Ω(x−λt)

2
)

√
Ω sinh(

√
Ω(x− λt))− β cosh(

√
Ω(x− λt)) +±i

√
Ω

)] 1
n

,

u11(t, x) = a
1
n
0

[
−β sinh(

√
Ω(x− λt)) +

√
Ω cosh(

√
Ω(x− λt))±

√
Ω

2β sinh(
√

Ω(x−λt)
2

)
+ 1

+
2µ(ν − 1)

β

(
sinh(

√
Ω(x−λt)

2
)

−β sinh(
√

Ω(x− λt)) +
√

Ω cosh(
√

Ω(x− λt))±
√

Ω

)] 1
n

,

u12(t, x) = a
1
n
0

[
−2β sinh(

√
Ω(x−λt)

4
) cosh(

√
Ω(x−λt)

4
) + 2

√
Ω cosh2(

√
Ω(x−λt)

4
)−
√

Ω

4β sinh(
√

Ω(x−λt)
4

) cosh(
√

Ω(x−λt)
4

)
+ 1

+
4µ(ν − 1)

β

(
sinh(

√
Ω(x−λt)

4
) cosh(

√
Ω(x−λt)

4
)

−2β sinh(
√

Ω(x−λt)
4

) cosh(
√

Ω(x−λt)
4

) + 2
√

Ω cosh2(
√

Ω(x−λt)
4

)−
√

Ω

)] 1
n

.

(4.79)
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Type 2 When Ω < 0, β(ν − 1) 6= 0, (or µ(ν − 1) 6= 0)

u13(t, x) = a
1
n
0

 2µ(ν − 1)

β
(
−β +

√
−Ω tan

(√
−Ω(x−λt)

2

)) + 1 +
1

2β

(
−β +

√
−Ω tan

(√
−Ω(x− λt)

2

)) 1
n

,

u14(t, x) = a
1
n
0

− 2µ(ν − 1)

β
(
β +
√
−Ω cot

(√
−Ω(x−λt)

2

)) + 1− 1

2β

(
β +
√
−Ω cot

(√
−Ω(x− λt)

2

)) 1
n

,

u15(t, x) = a
1
n
0

 2µ(ν − 1)

β
(
−β +

√
−Ω

(
tan(
√
−Ω(x− λt))± sec(−

√
Ω(x− λt))

))
+1 +

1

2β

(
−β +

√
−Ω

(
tan(
√
−Ω(x− λt))± sec(−

√
Ω(x− λt))

))] 1
n

,

u16(t, x) = a
1
n
0

− 2µ(ν − 1)

β
(
β +
√
−Ω

(
cot(
√
−Ω(x− λt))± csc(−

√
Ω(x− λt))

))
+1− 1

2β

(
β +
√
−Ω

(
cot(
√
−Ω(x− λt))± csc(−

√
Ω(x− λt))

))] 1
n

,

u17(t, x) = a
1
n
0

 4µ(ν − 1)

β
(
−2β +

√
−Ω

(
tan
(√
−Ω
4

(x− λt)
)
− cot

(√
−Ω
4

(x− λt)
)))

+1 +
1

4β

(
−2β +

√
−Ω

(
tan

(√
−Ω

4
(x− λt)

)
− cot

(√
−Ω

4
(x− λt)

)))] 1
n

,

u18(t, x) = a
1
n
0

2µ(ν − 1)

β

(
−β +

±
√
−Ω(E2 − F 2)− E

√
−Ω cos(

√
−Ω(x− λt))

E sin(
√
−Ω(x− λt)) + F

)−1

+1 +
1

2β

(
−β +

±
√
−Ω(E2 − F 2)− E

√
−Ω cos(

√
−Ω(x− λt))

E sin(
√
−Ω(x− λt)) + F

)] 1
n

,

u19(t, x) = a
1
n
0

2µ(ν − 1)

β

(
−β −

±
√
−Ω(E2 − F 2) + E

√
−Ω cos(

√
−Ω(x− λt))

E sin(
√
−Ω(x− λt)) + F

)−1

+1 +
1

2β

(
−β −

±
√
−Ω(E2 − F 2) + E

√
−Ω cos(

√
−Ω(x− λt))

E sin(
√
−Ω(x− λt)) + F

)] 1
n

,

(4.80)
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where E and F are two non-zero real constants satisfying E2 − F 2 > 0,

u20(t, x) = a
1
n
0

[
−
√
−Ω sin(

√
−Ω(x−λt)

2
) + β cos(

√
−Ω(x−λt)

2
)

2β cos(
√
−Ω(x−λt)

2
)

+1− 2µ(ν − 1)

β

(
cos(

√
−Ω(x−λt)

2
)

√
−Ω sin(

√
−Ω(x−λt)

2
) + β cos(

√
−Ω(x−λt)

2
)

)] 1
n

,

u21(t, x) = a
1
n
0

[
−β sin(

√
−Ω(x−λt)

2
) +
√
−Ω cos(

√
−Ω(x−λt)

2
)

2β sin(
√
−Ω(x−λt)

2
)

+1 +
2µ(ν − 1)

β

(
sin(

√
−Ω(x−λt)

2
)

−β sin(
√
−Ω(x−λt)

2
) +
√
−Ω cos(

√
−Ω(x−λt)

2
)

)] 1
n

,

u22(t, x) = a
1
n
0

[
−
√
−Ω sin(

√
−Ω(x− λt)) + β cos(

√
−Ω(x− λt))±

√
−Ω

2β cos(
√
−Ω(x−λt)

2
)

+1− 2µ(ν − 1)

β

(
cos(

√
−Ω(x−λt)

2
)

√
−Ω sin(

√
−Ω(x− λt)) + β cos(

√
−Ω(x− λt))±

√
−Ω

)] 1
n

,

u23(t, x) = a
1
n
0

[
−β sin(

√
−Ω(x− λt)) +

√
−Ω cos(

√
−Ω(x− λt))±

√
−Ω

2β sin(
√
−Ω(x−λt)

2
)

+1 +
2µ(ν − 1)

β

(
sin(

√
−Ω(x−λt)

2
)

−β sin(
√
−Ω(x− λt)) +

√
−Ω cos(

√
−Ω(x− λt))±

√
−Ω

)] 1
n

,

u24(t, x) = a
1
n
0

[
−2β sin(

√
−Ω(x−λt)

4
) cos(

√
−Ω(x−λt)

4
) + 2

√
−Ω cos2(

√
−Ω(x−λt)

4
)−
√
−Ω

4β sin(
√
−Ω(x−λt)

4
) cos(

√
−Ω(x−λt)

4
)

+1 +
4µ(ν − 1)

β

(
sin(

√
−Ω(x−λt)

4
) cos(

√
−Ω(x−λt)

4
)

−2β sin(
√
−Ω(x−λt)

4
) cos(

√
−Ω(x−λt)

4
) + 2

√
−Ω cos2(

√
−Ω(x−λt)

4
)−
√
−Ω

)] 1
n

.

(4.81)
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Type 3 When µ = 0 β(ν − 1) 6= 0,

u25(t, x) = a
1
n
0

[
1−

(
d

d+ cosh(β(x− λt)− sinh(β(x− λt)

)] 1
n

,

u26(t, x) = a
1
n
0

[
1−

(
cosh(β(x− λt) + sinh(β(x− λt)

d+ cosh(β(x− λt) + sinh(β(x− λt)

)] 1
n

,

(4.82)

where d is an arbitrary constant.

Type 4 When µ = β = 0, ν 6= 1,

There is no solution to the Gardner equation (4.1) for Type 4
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Chapter 5

A group theoretic analysis and

complex dynamics of a diffusive

Caughley prey - predator model

5.1 Introduction

Elephant is the largest living land mammal, found in tropical regions of Africa and Asia.

Elephants are browsing animals, they consume a large amount of vegetation, and also pull

down very large trees. In Southern Africa, elephants are a major component of game reserves

which are mostly open to the public and tourists. These reserves have only a limited amount

of vegetation and the number of elephants is growing exponentially [12]. This scenario poses

unique problems to reserve managers and conservationists fear that elephant will irreversibly

change the habitat by destroying all the trees. Habitat loss is one of the key threats that is

placing the elephants future at risk. By the 1970s, the decline in elephant numbers across the

continent had provoked serious concern about the long-term survival of the species [43]. In 1976

Caughley proposed a simple predator-prey model for elephant-tree dynamics. The significance

of this model was to show that elephants and trees coexist in a stable limit cycle. The model is

based on the well known predator-prey models developed by Lotka in 1925 and independently

by Volterra in 1927. Caughley’s version is an example of a more realistic predator-prey model,
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but its exact form is unique in the literature. The model is given by the system of differential

equations [13]:

u′ = u

(
a− au

K
− cv

u+ g

)
,

v′ = v

(
−A+

ku

v +B

)
, (5.1)

where u = u(t) is the density of the trees (in trees/km2), v = v(t) is the density of elephants(in

elephants/km2), t is time (in year) and ′ = d
dt

. For the trees, a is the natural rate of increase

(in year−1), K is the tree carrying capacity of the environment (in trees/km2), c is the instan-

taneous rate of elimination of trees by elephant (in trees/(elephant year)) and g determines

the threshold above which tree destruction depends on elephant density alone (in trees/km2).

For the elephants, A is their rate of decrease (in year−1) in the absence of trees, k is the rate

at which this decrease is ameliorated at a given ratio of trees to elephants (in elephant/(tree

year)), and B determines the threshold above which this amelioration depends only on the

density of trees (in elephant/km2). Duffy et al [19] investigated the model (5.1) with real data

and found that it exhibits limit cycle solutions for certain parameter conditions.

The aforementioned study help biologists and ecologists to understand the dynamics that evolve

between elephants and trees temporally without any spatial dimensions. From a biological

perspective, elephants and trees are spread out over a two-dimensional landscape and typically

interact with the physical environment and other organisms in their spatial neighbourhood.

System of partial differential equations (PDEs) will provide more information to explain the

population distribution, the wave speed and the effects of diffusivity of each species over a space

domain.

Solutions of PDEs have contributed tremendously to the understanding of diverse and complex

systems. The travelling wave is one kind of special solutions to the evolutionary systems which

provides information regarding how population densities disperse over space as time evolves [39].

Travelling waves and their spread is beneficial in allocating appropriate number of elephants to

a reasonably space of forest at a particular time to ensure a stable coexistence of both species

[53]. It is a standard approach to consider travelling wave solutions when dealing with diffusive

prey - predator systems [30]. Lie group analysis plays a central role in the analysis of nonlinear
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PDEs, especially in determining their exact solutions. This powerful and prolific method has

been effectively used to construct invariant solutions frequently used as basis for simplification

of numerical and dynamical system analysis [70].

Spatial pattern formation arose from the observation in chemistry by Turing [71] that diffusion

can also destabilize equilibrium solution, a scenario well known as Turing instability. This

phenomenon, known as Turing or diffusion-driven instability, is commonly found across many

fields of study and has been playing a significant role in the mechanism for pattern formation

in numerous embryological and ecological contexts. Presently, the knowledge of patterns and

mechanisms of spatial dispersal of interacting species is an issue of concern in conservation

biology, ecology, and biochemical reactions [60].

Based on these discussions above, we consider the extended Caughley model that includes

diffusive effects given by [66]

ut = a1(uxx + uyy) + u

(
a− au

K
− cv

u+ g

)
,

vt = a2(vxx + vyy) + v

(
−A+

ku

v +B

)
, (5.2)

where the tree density and the elephant density are function of space and time:u(t, x, y) and

v(t, x, y) and; parameters a1 and a2 are the diffusion coefficients for the tree and elephant,

respectively. Other parameters are the same definition as those above.

Robert Willie [79] studied the model (5.2) using functional analysis approach and investigated

the stability of the global asymptotic dynamics of the model with varied diffusion. In [66] the

numerical analysis for this model (5.2) are given by methods of an algebraic transformations

together with a spectral method.

In this study we perform symmetry analysis and obtain many reductions of the Caughley

system (5.2). We analyse each reduction and investigate the feasibility of its resulting invariant

solution. This includes the generalised travelling wave solution. Our goal is to extract crucial

information regarding how tree and elephant populations disperse over space. This study is

very vital in taking some control measures to ensure stable coexistence of both species. To

achieve this, we perform the dynamical system analysis of the travelling wave model (5.23)

to investigate its global behaviour along the equilibrium points of the system. Moreover, we
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investigate the necessary conditions for Turing instability and perform extensive numerical

simulations from both the mathematical and the biological points of view in order to examine

the role of diffusion coefficients in pattern formations of the Caughley model. This chapter is

organised as follows. In Section 5.2, the Lie symmetry analysis of the model (5.2) is performed.

The resultant reduced equations are analysed. In Section 5.3, the Turing instability and the

effects of diffusion on emergence of spatial patterns of the diffusive model and the reduced

travelling wave model is analysed. We conclude our work in Section 5.4

5.2 Lie point Symmetries of the Caughley model (5.2)

In this section, we provide classical Lie symmetry analysis of the system (5.2). The Lie point

symmetries admitted by (5.2) are generated by the vector field of the form

X = ξ1 ∂

∂t
+ ξ2 ∂

∂x
+ ξ3 ∂

∂y
+ η1 ∂

∂u
+ η2 ∂

∂v
,

where ξ1, ξ2, ξ3, η1, η2 functions of (t, x, y, u, v) are the infinitesimals of the Lie group of

transformation of (5.2). The operator X satisfies the Lie symmetry condition (1.14)

X [2] (∆1) |∆1=0 = 0,

X [2] (∆2) |∆2=0 = 0, (5.3)

where

∆1 = ut − a1(uxx + uyy)− u
(
a− au

K
− cv

u+ g

)
= 0,

∆2 = vt − a2(vxx + vyy)− v
(
−A+

ku

v +B

)
= 0,

and X [2] is the second prolongation of equation (5.3). Expansion and separation of (5.3) with

respect to the powers of different derivatives of u and v yields an over determined system in
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unknown coefficients ξ1, ξ2, η1, and η2.

a1η
1
v = 0, a2η

2
u = 0, a1ξ

1
u = 0, a1ξ

1
v = 0, a1ξ

2
u = 0,

a1ξ
2
v = 0, a2ξ

1
u = 0, a2ξ

1
v = 0, a2ξ

2
u = 0, a2ξ

1
x + a2ξ

2
t = 0,

2a1ξ
1
t − a1η

1
u = 0, 2a2ξ

2
x − a2η

2
v = 0, η1

u + a1ξ
1
xx − ξ1

t − 2a1η
1
tu + a1ξ

1
tt = 0,

a2ξ
2
v = 0, η2

v + a2ξ
1
xx − ξ1

t − 2a2η
2
tv + a2ξ

1
tt = 0, a2ξ

2
xv = 0,

a2η
2
xx + a2η

2
tt − η2

t +

(
kB

(B + u)2

)
vη1 −

(
A− ku

B + u

)
η2 = 0,

a1η
1
xx + a1η

1
tt − η1

t −
(

cv

g + v
+

2au

K
− a
)
η1 −

(
cg

(g + v)2

)
uη2 = 0

(5.4)

Solving the overdetermined system for arbitrary parameters gives the 4-dimensional algebra

spanned by the following vector fields

X1 =
∂

∂t
, X2 =

∂

∂x
, X3 =

∂

∂y
, X4 = −x ∂

∂y
+ y

∂

∂x
. (5.5)

The symmetries X1, X2 and X3 can be found by inspection as the diffusive Caughley model

(5.2) is independent of t, x and y. The last symmetry, X4 represents Laplacian in x, y space

variables and always arises in the event that the equation in question is diffusive.

The commutation relations between these vector fields are given in Table 5.1, the entry in row i

and the column j representing [Xi, Xj]. From the above commutator table, one can see that the

Table 5.1: Commutator relation for (5.5)

[,] X1 X2 X3 X4

X1 0 0 0 0

X2 0 0 0 −X3

X3 0 0 0 X2

X4 0 X3 −X2 0

operators Xi (i = 1, 2, ..., 4) form a Lie algebra, which is a four dimensional symmetry algebra.
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5.2.1 Optimal system of one dimensional subalgebras

The detailed discussion on optimal system of one dimensional subalgebras can be found in[61,

63] as well as Chapter 2. Here we adopt Olver’s approach and also make use of the well known

study by Patera and Winternitz [63] to obtain optimal system of the Lie algebra admitted by

(5.2).

In finding the optimal system, we consider the commutator relation presented in Table 5.1

together with the adjoint representation given in Table 5.2. We observed from the commutator

Table 5.1 that the generator X1 is an Abelian element that satisfies [X1, Xi] = 0, i = 2, 3, 4.

Hence X1 is identified as the center of the Lie algebra (5.5). Thus the four dimensional Lie

algebra (5.5) is decomposable into a sum of three dimensional subalgebras spanned by the gener-

ators X2, X3, X4 and one dimensional subalgebra spanned by X1. From Patera and Winternitz

classification, Lie algebra (5.5) corresponds to A3,6⊕A1. Based on [61] and [63] techniques, we

obtain an extensive optimal system of one dimensional subalgebras given as

bX1 +X4, X1, eX1 +X2, (5.6)

where b, e are constants.

Table 5.2: Adjoint representation for (5.5)

Ad X1 X2 X3 X4

X1 X1 X2 X3 X4

X2 X1 X2 X3 εX3 +X4

X3 X1 X2 X3 X4 − εX2

X4 X1 cos(ε)X2 − sin(ε)X3 sin(ε)X2 + cos(ε)X3 X4
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5.2.2 Symmetry reductions of the Caughley model (5.2)

In this subsection, we study symmetry reductions of the Caughley model (5.2) using every

element in the optimal system (5.6). Solving associated characteristic equations, we obtain

the representation of an invariant solution. Substituting this representation into the system

(5.2), we obtain the reduced equations which could be solved to obtain the exact or numerical

solutions.

Reduction via the subalgebra bX1 +X4.

The characteristic equation is given as

dt

b
=
dx

y
= −dy

x
=
du

0
=
dv

0
. (5.7)

Solving the above equation (5.7), we obtain the following four invariants:

r = x2 + y2, s = −b tan−1(
x

y
) + t, u = u(r, s), v = v(r, s). (5.8)

In terms of the new variables r, s, ut = ∂u
∂s

∂s
∂x

= us, ux = ∂u
∂r

∂r
∂x

+ ∂u
∂s

∂s
∂x

= 2xur − 1
r
byus, uy =

∂u
∂r

∂r
∂y

+ ∂u
∂s

∂s
∂y

= 2yur + 1
r
bxus, vt = ∂v

∂s
∂s
∂x

= vs, vx = ∂v
∂r

∂r
∂x

+ ∂v
∂s

∂s
∂x

= 2xvr − 1
r
byvs, vy =

∂v
∂r

∂r
∂y

+ ∂v
∂s

∂s
∂y

= 2yvr + 1
r
bxvs. Following this procedure one finds that uxx = 1

r2
[b2y2uss + 2bxyus

+2r(rur + 2x(xrurr − byurs))] ,

uyy = 1
r2

[b2x2uss − 2bxyus + 2r(rur + 2y(yrurr + bxurs))] ,

vxx = 1
r2

[b2y2vss + 2bxyvs + 2r(rvr + 2x(xrvrr − byvrs))] ,

vyy = 1
r2

[b2x2vss − 2bxyvs + 2r(rvr + 2y(yrvrr + bxvrs))] .

In the light of these, the Caughley model (5.2) reduces to second order PDE in two new

independent variables r, s given as,

rus = a1(b2uss + 4r(ur + rurr)) + ru

(
a− au

K
− cv

u+ g

)
,

rvs = a2(b2vss + 4r(vr + rvrr)) + rv

(
−A+

ku

v +B

)
. (5.9)

The above system (5.9) admitted only principal Lie symmetry, ∂
∂s

which gives rise to the

invariants

z = r, u = u(z), v = v(z). (5.10)
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The transformation (5.10) reduces the Caughley system (5.2) to second order ode

4a1(u′ + zu′′) + u

(
a− au

K
− cv

u+ g

)
= 0,

4a2(v′ + zv′′) + v

(
−A+

ku

v +B

)
= 0, (5.11)

where ′ means total derivative with respect to z.

Reduction via the subalgebra X1.

The invariants of this generator are

r = x, s = y, u = u(r, s), v = v(r, s). (5.12)

They reduce the system (5.2) to the following equations:

a1(urr + uss) + u

(
a− au

K
− cv

u+ g

)
= 0,

a2(vrr + vss) + v

(
−A+

ku

v +B

)
= 0. (5.13)

Following similar procedure as done previously, we shall investigate system (5.13) under the

scope of Lie symmetry. It admitted three - dimensional Lie algebra spanned by the generators

v1 =
∂

∂r
, v2 =

∂

∂s
, v3 = −r ∂

∂s
+ s

∂

∂r
. (5.14)

Without the central element, this Lie algebra (5.14) is identical to the Lie algebra admitted by

the Caughley model (5.2) which is given in (5.5). Hence, the optimal system of one dimensional

subalgebras for the Lie algebra(5.14) is given as

v1, v3. (5.15)

Reduction with v1, through its invariants

z = s, u = u(z), v = v(z), (5.16)

gives rise to the equation

a1u
′′ + u

(
a− au

K
− cv

u+ g

)
= 0,

a2v
′′ + v

(
−A+

ku

v +B

)
= 0. (5.17)
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The generator v3, having the invariants

z = r2 + s2, u = u(z), v = v(z), (5.18)

reduced system (5.13) to the same system of equations (5.11).

Reduction via the subalgebra eX1 +X2.

The characteristic equation is

dt

e
=
dx

1
=
dy

0
=
du

0
=
dv

0
. (5.19)

Solving the above system yields the following four invariants

r = ex− t, s = y, u = u(r, s), v = v(r, s). (5.20)

Applying the above transformation to (5.2) we obtain

− ur = a1(e2urr + uss) + u

(
a− au

K
− cv

u+ g

)
,

−vr = a2(e2vrr + vss) + v

(
−A+

ku

v +B

)
. (5.21)

The reduced equation (5.21) posses the symmetries Γ1 = ∂
∂r
, Γ2 = ∂

∂s
, which form an Abelian

group. So we consider a linear combination βΓ1+Γ2 and obtain a travelling wave transformation

z = βr − s, β ∈ < u,= u(z), v = v(z). (5.22)

The functions u = u(z) and v = v(z) represent the travelling wave solution where the variable

z = αx−y−βt is a moving frame with speed β > 0, α = βe. Substitution of the transformation

(5.22) in (5.21) gives the travelling wave system

− βu′ = a1(α2 + 1)u′′ + u

(
a− au

K
− cv

u+ g

)
,

−βsv′ = a2(α2 + 1)v′′ + v

(
−A+

ku

v +B

)
, (5.23)

where ′ means total derivative with respect to z.
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5.2.3 Analysis of the travelling wave solution of the Caughley sys-

tem

We have presented a complete list of invariant solutions for the spatial diffusive nonlinear

PDE system (5.2) and the corresponding reduced systems of ODEs. At times, it is useful

to write down the exact solutions of these reduced systems of ODEs, but often times, some

basic general features of these solutions can be obtained from qualitative analyses. As the

different invariant solutions of subalgebras from the optimal system (5.6) are associated with

fundamentally and qualitatively different physical aspects, their qualitative behaviours can be

similar since they represent the solution of the same physical system of equations (5.2) which

describes the dynamics between elephants and trees. Therefore, it is sufficient to investigate

one of the representatives of the optimal system.

Without loss of generality, we investigate the system (5.23) which represents the travelling wave

of the diffusive system (5.2) using dynamical system analysis.

An important aspect of this approach is to investigate under what conditions will the equi-

librium solutions exist. Ecologically, under what conditions do both elephants and their food

source (trees) maintain mutual symbiosis. If an equilibrium solution exits, an interesting view

of the possible behavioural patterns can emerge from the various types of solutions.

Existence of positive equilibrium solutions (biomass)

We rewrite the system (5.23) as a 4− dimensional system of first order equations, by letting

u1 = u′ and v1 = v′ which becomes:

u′ = u1,

u′1 = − 1

a1(α1 + 1)

(
βu1 + u

(
a− au

K
− cv

u+ g

))
,

v′ = v1,

v′1 = − 1

a2(α1 + 1)

(
βv1 + v

(
−A+

ku

v +B

))
. (5.24)

Model (5.24) has the following equilibrium solutions:

• (i) The trivial equilibrium E0 = (u0, u0
1, v

0, v0
1) = (0, 0, 0, 0),
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• (ii) The predator free equilibrium E1 = (uo, uo1, v
o, vo1) = (K, 0, 0, 0),

• (iii) The steady state of coexistence (interior equilibrium)

E2 = (u∗, u1, v
∗, v1) = (u∗, 0, v∗, 0).

We do not focus on the solutions (i) and (ii), due to their trivial nature. We discuss only

existence of the interior positive equilibrium solution.

Theorem 5.1. There exits an interior equilibrium solution E2 = (u∗, u1, v
∗, v1) = (u∗, 0, v∗, 0)

if and only if the elephant death rate A is less than a threshold value kK
B

, i.e (A < kK
B

), where

u∗ ==
−θ±
√

4KaA2(Bc+ag)+θ2

2aA
and v∗ = ku∗−AB

A
, where θ = aA(g −K) + ckK.

Proof. The interior equilibrium solution E2 = (u∗, 0, v∗, 0) is obtained by setting the left hand

side of (5.24) to zero, i.e.,

a
(

1− u

K

)
− cv

u+ g
= 0,

A(v +B)− ku = 0. (5.25)

The solution of the system (5.25) is

u∗ =
−θ ±

√
4KaA2(Bc+ ag) + θ2

2aA
, (5.26)

v∗ =
ku∗ − AB

A
. (5.27)

Since we are interested in biological meaningful solution, we consider the positive solution

u∗ =
−θ+
√

4KaA2(Bc+ag)+θ2

2aA
. It is clear from (5.27) that v∗ > 0 iff AB < ku∗, which implies that

AB < ku∗ < kK. Therefore, the interior positive solution, E2 exists iff A < kK
B

.

Figure (5.1) shows the region where the positive interior equilibrium of the model (5.24) is lost.
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(a) (b)

Figure 5.1: Nullclines and possible coexistence equilibrium solution E2 of the system (5.24) for

(a) A = 0.05, B = 0.01, k = 0.01, K = 10, a = 0.2, g = 0.3, c = 0.4. (b) A = 0.05, B = 0.01, k =

0.0001, K = 10, a = 0.2, g = 0.3, c = 0.4.

Stability analysis

Here we discuss the dynamics of the system (5.24) in the context of stability and instability

of equilibrium solutions to determine the behaviour of solutions near equilibrium points. The

local asymptotic stability analysis of an equilibrium point is determined by the Jacobian matrix

J obtained by the linearisation of the system (5.24) around the equilibrium point. If all the

eigenvalues of the Jacobian matrix, say JE of system (5.24) evaluated at equilibrium point E

have negative real parts then the equilibrium E is stable, otherwise it is unstable. Analytically,

equilibrium solutions in which the solutions that start “ near” them move toward the equilib-

rium solution are said to be asymptotically stable equilibrium points or asymptotically stable

equilibrium solutions. While equilibrium solutions in which solutions that start “ near” them

move away from the equilibrium solution are said to be unstable equilibrium points or unstable

equilibrium solutions. In other words local stability of equilibrium point E implies that all the

roots of the characteristic polynomial of the Jacobian matrix JE are negative real parts.

The Jacobian matrix of the system (5.24) takes the form

J =


0 1 0 0

M −δ1β
cδ1u
u+g

0

0 0 0 1

− δ2kv
v+B

0 N −δ2β

 , (5.28)

where the constants δ1 = 1
a1(α2+1)

, δ2 = 1
a2(α2+1)

and the functions M = −δ1

[
a(1− 2u

K
)− cv

u+g
+ cuv

(u+g)2

]
,
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N = −δ2

[
ku
v+B
− kuv

(v+B)2
− A

]
.

At equilibrium point E0, the matrix (5.28) becomes

JE0 =


0 1 0 0

−aδ1 −βδ1 0 0

0 0 0 1

0 0 Aδ2 −βδ2

 . (5.29)

The characteristic equation of (5.29) is

p(λ) = λ4 + β(δ1 + δ2)λ3 + (aδ1 − δ2(A− β2δ1))λ2 + (a− A)βδ1δ2λ− aAδ1δ2,

which gives the eigenvalues

λ1,2 =
δ1

(
−β ∓

√
β2 − 4a

δ 1

)
2

, (5.30)

λ3,4 =
δ2

(
−β ∓

√
β2 + 4A

δ2

)
)

2
. (5.31)

Observing from equation (5.30), if β ≥ 2
√

a
δ1

, then λ1 and λ2 are a pair of real negative

eigenvalues. When 0 < β < 2
√

a
δ1

then λ1 and λ2 are a pair of complex conjugate eigenvalues

with real negative part. From the equation (5.31), the eigenvalue λ3 is always negative while

λ4 is always positive. Therefore, system (5.24) is always unstable around E0 which is, in fact,

a saddle point and has the stable manifold which is the plane (u, u1) −→ (0, 0), while unstable

manifold is the plane (v, v1). When 0 < β < 2
√

a
δ1

, the trivial equilibrium E0 is a spiral point

on the stable manifold and such spiral behaviour should not occur with v > 0 [27]. Thus, we

suggest that the biological relevant travelling wave solution with non-negative (u, v) exists and

has the minimum speed of the system (5.24) given by

β ≥ 2

√
a

δ1

. (5.32)

The condition (5.32) justifies the instability of E0 and indicates the presence of elephants (since

the manifold (v, v1) is unstable.) even though trees are absent. Ecologically, this can happen

when there are other sources of food available for the elephants. It follows that the extinction

of both species is difficult in the model (5.24). One can observe from (5.32) that the speed at
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which trees are exhausted by elephants depends heavily on the growth rate and the diffusion

coefficient of the trees. Thus, we establish the following results.

Theorem 5.2. The trivial equilibrium point E0 is a saddle point. The nonnegative solutions of

(5.24) which correspond to travelling wave solutions of the model (5.2) exist with a minimum

speed, β satisfying

β ≥ 2

√
a

δ1

. (5.33)

Theorem 5.3. The predator free equilibrium point E1 is unstable. It is a saddle point if A < kK
B

and β2 ≥ 4
δ2

(kK
B
− A). In addition, if the minimum speed, β of the system (5.24) satisfies

β ≥
√

4

δ2

(
kK

B
− A) (5.34)

then the nonnegative solutions of (5.24) which correspond to travelling wave solutions of system

(5.2) must exist.

Proof. The Jacobian matrix (5.28) in the small neighbourhood of equilibrium point E1 is

JE1 =


0 1 0 0

aδ1 −βδ1
cKδ1
g+K

0

0 0 0 1

0 0 −δ2(kK
B
− A) −βδ2

 . (5.35)

It follows that the characteristic equation of (5.35) is

p(λ) = λ4 + β(δ1 + δ2)λ3 − (aδ1 + δ2(A− kK

B
− β2δ1))λ2

− βδ1δ2(a+ A− kK

B
)λ+ aδ1δ2(A− kK

B
), (5.36)

and the corresponding eigenvalues are given by

λ1,2 =
δ1

(
−β ∓

√
β2 + 4a

δ1

)
2

,

λ3,4 =
δ2

(
−β ∓

√
β2 − 4

δ2
(kK
B
− A)

)
2

.
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We observe that λ2 is always positive and this implies that E1 is unstable. In addition, if

kK
B
< A, the manifold (v, v1) is unstable since λ3 is always negative and λ4 is positive. On the

other hand, if A < kK
B

then λ3 and λ4 are a pair of (i) negative eigenvalues when β2 ≥ 4
δ2

(kK
B
−A)

(ii) complex conjugate eigenvalues with real negative part when 0 < β2 < 4
δ2

(kK
B
−A). Therefore,

following the similar argument for E0, a necessary condition for the existence of non-negative

solutions is β2 ≥ 4
δ2

(kK
B
− A). In this situation the manifold (v, v1) is stable. Consequently, if

A < kK
B

and β2 ≥ 4
δ2

(kK
B
− A) then E1 is a saddle point with unstable manifold (u, u1) and

stable manifold (v, v1).

Theorem 5.4. For A < kK
B

, the steady state E2 is asymptotically stable if α1+α2 > 0, α3α4(δ1+

δ2) + c2
3s

2δ1δ2(α1 + α2) > 0 and δ1 > δ2, where the functions α1 = −au∗
K

+ cv∗u∗g
(u∗+g)2

, α2 =

− ku∗v∗

(v∗+B)2
, α3 = kv∗

v∗+B
, α4 = − cu∗

u∗+g
. Otherwise, it is unstable.

Proof. Similarly, the Jacobian matrix at the equilibrium point E2 takes the form

JE2 =


0 1 0 0

M2 −δ1β
δ1cu∗

u∗+g
0

0 0 0 1

− δ2kv∗

v∗+B
0 N2 −δ2β

 , (5.37)

where M2 = −δ1

[
cu∗v∗

(u∗+g)2
− au∗

K

]
, N2 = δ2

[
ku∗v∗

(v∗+B)2

]
.

The characteristic polynomial associated with (5.37) is given by

p(λ) = d4λ
4 + d3λ

3 + d2λ
2 + d1λ+ d0. (5.38)

The Coefficients d0, d1, d2, d3, and d4 are defined as

d0 = δ1δ2(α1α2−α3α4), d1 = βδ1δ2(α1 +α2), d2 = α1δ1 +α2δ2 +β2δ1δ2, d3 = β(δ1 +δ2) d4 = 1.

Based on the Routh-Hurwitz criteria [40],[58], all roots of the characteristic polynomial (5.38),

which are the eigenvalues of the system (5.37) have negative real parts if and only if dn >

0, d3d2 > d4d1 and d3d2d1 > d4d
2
1 + d2

3d0. Clearly, d1, ..., d4 > 0, for α1 + α2 > 0, δ1 > δ2.

d0 = δ1δ2(α1α2 − α3α4),

= δ1δ2

(
u∗a

K

(
ku∗v∗

(v∗ +B)2

)
+

cku∗v∗

(u∗ + g)(v∗ +B)

(
1− v∗

(v∗ +B)

u∗

(u∗ + g)

))
> 0,

(5.39)
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Thus we show that (i) d3d2 > d4d1 and (ii) d3d2d1 > d4d
2
1 + d2

3d0

(i) d3d2 > d4d1, now

d3d2 − d4d1 = β(α1δ
2
1 + α2δ

2
2 + δ1δ2β

2(δ1 + δ2)),

> 0,
(5.40)

since

δ1 > δ2, α2 < 0 and α1 + α2 > 0, (5.41)

(ii)d3d2d1 > d4d
2
1 + d2

3d0 implies that

d3d2d1 − d4d
2
1 − d2

3d0 = β2δ1δ2

(
(α1δ1 − α2δ2)2

(δ1 + δ2)
(
α3α4(δ1 + δ2) + β2δ1δ2(α1 + α2)

))
> 0

(5.42)

as long as (5.41) holds and α3α4(δ1 + δ2) + c2
3s

2δ1δ2(α1 + α2) > 0, since α3α4 < 0.

5.3 Turing instability and Pattern formation

5.3.1 Turing instability

A steady state is Turing unstable if it is stable as a solution of the temporal system, i.e. the

system without diffusion terms, but unstable as a solution of the reaction-diffusion system

[85, 28, 65]. In other words, the Turing instability implies that the steady state is stable in

the local system and will become unstable due to diffusion of populations. As a result of the

instability of the reaction-diffusion system, spatial pattern formations usually occur.

In this subsection we establish the condition necessary and sufficient for Turing instability to

occur as a result of the introduction of diffusion. Observe that the three biologically meaningful

equilibria of the system (5.24) correspond to the equilibria of the diffusion model (5.2) as well

as the non-diffusive model (5.1) in the first quadrant <2
+, namely

• Total extinction of the two species: E0(0, 0).

• Predator free steady state: E1(K, 0).
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• Coexistence of species with interior equilibrium population: E2(u∗, v∗).

Hence, the conditions stated in theorems of subsection 5.2.3 also apply here. From this point

onwards we focus on the study of the conditions for Turing instability around the positive

interior equilibrium point E2, because of its biological relevance. Next we derive the necessary

and sufficient conditions for Turing instability to occur in (5.2) where the positive interior

equilibrium point E2(u∗, v∗) is stable in the absence of diffusion and unstable due to the addition

of diffusion, under a small perturbation to E2(u∗, v∗). This is achieved by first linearizing the

model (5.2) around E2(u∗, v∗) for both space and time-dependent fluctuations. This is given as

u(t, x, y) = u∗ + ū(t, x, y), ū(t, x, y)� u∗,

v(t, x, y) = v∗ + v̄(t, x, y), ū(t, x, y)� u∗,
(5.43)

with

ū(t, x, y)

v̄(t, x, y)

 =

 β1

β2

 eµt+(ωxx+ωyy)i, (5.44)

where µ is the perturbation growth rate in time t; β1, β2 are the corresponding amplitudes;

ω = (ωx, ωy) is the wave number. Substituting equations (5.43)-(5.44) into (5.2) and neglecting

all nonlinear terms in u and v, one obtains the characteristic equation,

|J − µI − ω2D| (5.45)

where

J =

 cv
(g+u)2

− au
K

− cu
g+u

kv
B+v

− kuv
(B+v)2

 =

α1 α4

α3 α2

 , D =

a1 0

0 a2

 , (5.46)

and I is a 2× 2 identity matrix. The characteristic polynomial of (5.45) is

µ2 + σ1(ω2)µ+ σ0(ω2), (5.47)

where

σ1(ω2) = ω2(a1 + a2)− (α1 + α2),

σ0(ω2) = ω4a1a2 − ω2(α1a2 + α2a1) + α1α2 − α3α4.
(5.48)

The eigenvalues of (5.47) are given by

µ1,2(ω2) =
−σ1(ω2)±

√
(σ1(ω2)2 − 4σ0(ω2)

2
. (5.49)
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In the absence of diffusion (a1 = 0, a2 = 0), the steady state E2 is stable if and only if the real

part of the eigenvalues is negative,

µ1,2(ω2) < 0. (5.50)

This is possible when σ1(ω2) > 0 and σ0(ω2) > 0. From equation (5.48), this implies that

α1 + α2 < 0 and α1α2 − α3α4 > 0. Hence, the conditions for the steady state E2 to be stable

for the non-diffusive model of (5.2) are given by

α1 + α2 < 0 (5.51a)

α1α2 − α3α4 > 0 (5.51b)

With diffusion (a1 6= 0, a2 6= 0) we look for conditions where the steady state E2 will be unstable

for certain ω values. Meaning, that around the steady state E2, we require atleast one of the

real values of the eigenvalues

µ1,2(ω2) > 0, for ω 6= 0. (5.52)

This can only be achieved when σ1(ω2) < 0 or σ0(ω2) < 0 for ω 6= 0, this implies that diffusion-

driven instability occurs when either σ1(ω2) < 0 or σ0(ω2) < 0. Since α1 + α2 < 0 from

equation (5.51) and ω2(a1 + a2) > 0 for all ω 6= 0, σ1(ω2) > 0. So σ0(ω2) < 0 for ω 6= 0 is the

only condition that will give rise to diffusion-driven instability and this happens when

a2α1 + a1α2 > 0. (5.53)

We obtain from the conditions (5.51a) and (5.53):

a2

a1

> −α2

α1

> 1. (5.54)

Thus, we further require

a2α1 + a1α2 > 0, a2 > a1. (5.55)

According to (5.55), we observe that one of the necessary conditions for Turing instability is

a2 > a1 which indicates that diffusivity of the elephant is greater than that of the trees. It
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must be noted that diffusive instability cannot occur for a1 = a2 and also for large diffusion

coefficient of the trees provided the diffusion coefficient of the elephant be large enough. The

inequalities (5.55) are necessary but, however, not sufficient conditions for σ0(ω2) < 0, and we

must require that the minimum of σ0(ω2) be negative for non zero ω. To achieve this, we need

to find the critical wave number (ω2
T ) such that σ0(ω2 = ω2

T ) < 0. This critical value occurs

when

∂σ0

∂ω2
= 0, (5.56)

this when solved for ω2 yields

ω2 = ω2
T =

α2α1 + a1α2

2a1a2

> 0. (5.57)

Therefore, the condition σ0(ω2 = ω2
T ) < 0 turns into

(a2α1 + a1α2)2 − 4a1a2(α1α2 − α3α4) > 0. (5.58)

Finally, we can summarize all the Turing instability conditions obtained from the entire analysis

as follows:

(i) α1 + α2 < 0,

i.e, cu∗v∗

(u∗+g)2
− au∗

K
− ku∗v∗

(v∗+B)2
< 0.

(ii) α1α2 − α3α4 > 0,.

i.e, u∗a
K

(
ku∗v∗

(v∗+B)2

)
+ cku∗v∗

(u∗+g)(v∗+B)

(
1− v∗

(v∗+B)
u∗

(u∗+g)

)
> 0.

(iii) a2α1 + a1α2 > 0, a2 > a1

i.e, a2

(
cu∗v∗

(u∗+g)2
− au∗

K

)
− a1

(
ku∗v∗

(v∗+B)2

)
> 0, a2 > a1.

(iv) a2α1 + a1α2 − 2
√
a1a2(α1α2 − α3α4) > 0, a2 > a1

i.e, a2

(
cu∗v∗

(u∗+g)2
− au∗

K

)
− a1

(
ku∗v∗

(v∗+B)2

)
− 2

√
a1a2

(
u∗a
K

(
ku∗v∗

(v∗+B)2

)
+ cku∗v∗

(u∗+g)(v∗+B)

(
1− v∗

(v∗+B)
u∗

(u∗+g)

))
> 0, a2 > a1.

If the above four conditions (i) − (iv) are satisfied then the spatially homogeneous stable state

E2 becomes unstable to perturbation within the range of wave numbers ω2
1 < ω2 < ω2

2 where
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ω2
1, ω

2
2 are the roots of the equation σ0(ω2) = 0 and are given as

ω2
1,2 =

a1α2 + a2α1 ±
√

(a1α2 + a2α1)2 − 4a1a2(α1α2 − α3α4)

2a1a2

. (5.59)

The Turing-bifurcation curve is obtained by setting (5.58) to zero and is given by the following

equation

P (Γ) =
(Γα1 + α2)2

4Γ
− (α1α2 − α3α4) = 0 with Γ =

a2

a1

. (5.60)

To find an estimate value of the ratio of diffusivity Γc above which the Turing instability occurs,

in Fig 5.2 we plot a graph of (5.60). The parameter values are chosen to satisfy the Turing

instability conditions (i) − (iv) and are given by

a = 0.1, A = 0.5, B = 0.09, k = 0.8, K = 50, g = 0.5, c = 0.1. (5.61)

With this set of parameter values, the coexistence state E2(u∗, v∗) = E2(0.9383, 1.4114). The

above set of parameter values (5.61) should be used in subsequent simulations in this subsection.

The results of figure 5.2 indicate that when Γ > 34.6, the Turing pattern appears to emerge.

In figures 5.3 (a) and (b), we observed that where the ratio of diffusivity Γ is above its critical

value Γc = 34.6, there is a range of values for the wave number ω for which σ0 < 0 and

Re(µ) > 0, i.e, the Turing patterns emerge. Figure 5.3 (c) is plotted for comparison, we see

that σ0 = Re(µ) = 0 at certain range of values for the wave number ω.

Figure 5.2: Emergence of Turing pattern corresponding to equation (5.60)

5.3.2 Pattern structure

Turing spacial patterns for the Caughley model (5.2)

We have demonstrated earlier in the subsection 5.3.1 that the existence and non existence of
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(a)

(b) (c)

Figure 5.3: (a) σ0 (b) Re(µ) (c) σ0 = Re(µ)

Turing patterns are dependent upon the magnitude of diffusion coefficient ratio Γ. In this

subsection 5.3.2, we carry out numerical simulations of the diffusive Caughley model (5.2) in

two dimensional space within the Turing region for different values of the diffusion coefficient

ratio Γ and for different times. The spacial structures developed by trees shown in green

color and that of elephants shown in blown color at different instants of time and for different

diffusion coefficients are exhibited in Figs 5.4a-f and Figs 5.5 a-f. It is interesting to note that

for Γ = 125, the random initial perturbations lead to the formation of labyrinth patterns of

long stripes with spots see figures 5.4 (a), (d) and figures 5.5 (a), (d). However, as the value of

Γ increases from 125 to 250, the number of the spotted area in the space region also increases

and the number of labyrinth decreases see figures 5.4 (b), (e) and figures 5.5 (b), (e). Finally,

if we increase the diffusion coefficient to 500, system (5.2) exhibits a pattern transition from

labyrinth to spotted pattern figures 5.4 (c), (f) and figures 5.5 (c), (f).

Ecologically, spotted patterns are isolated zones with high population densities [21].

Turing wave patterns for the Caughley model (5.2)

To learn more about these dynamical processes in terms of Turing wave patterns, in figures 5.7

and 5.6, we plot the travelling wave profile of system (5.23) for elephant and trees within the

Turing space with different ratio of diffusion. From a realistic biological point of view, we take

93



the non-trivial state for the coexistence of tree and elephant, E2(u∗, v∗) = (0.9383, 1.4114) as

the initial condition. In order to avoid negative population density which is not biologically

sensible, we consider the minimum speed condition (5.32) and choose the minimum speed

β = 2
√
aa1. Other parameters are fixed as in (5.61). In Figs 5.7 and 5.6, we notice that the

patterns formed by the travelling wave system (5.23) are characterised by chaotic waves with

wavelength decreasing as the ratio of diffusion coefficient Γ increases. The waves travel a lesser

distance in space over a given time as Γ increases. One can conclude that the interaction and

distribution of elephants and trees within a two dimensional land scape is being regulated by

ratio of diffusivity. This scenario observed in figures 5.7 and 5.6 due to the change in ratio of

diffusion coefficient Γ can also lead to the existence of isolated zones over a region with high

population population density. Hence, one can interpret that diffusion can lead to clumps of

high tree and elephant populations in areas where respectively, elephant and tree densities are

low as observed in figures 5.4 (c), (f) and figures 5.5 (c), (f).

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Different patterns observed in the diffusion model for elephant and tree when

t = 400 years. (a);(d): Γ = 125, (b);(e): Γ = 250,(c);(f): Γ = 500.
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: Different patterns observed in the diffusion model for elephant and tree when

t = 800 years. (a);(d): Γ = 125, (b);(e): Γ = 250,(c);(f): Γ = 500.
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Figure 5.6: Tree travelling wave profile in (5.23) within the Turing region for various values of

diffusion parameter, Γ.

95



0 50 100 150 200 250 300
1.411

1.4111

1.4112

1.4113

1.4114

1.4115

1.4116

1.4117
Predator traveling wave  profile  for various values of  Γ

z

v

 

 

 Γ=500

Γ=250

Γ=125

Figure 5.7: Elephant travelling wave profile in (5.23) within the Turing region for various values

of diffusion parameter, Γ.

5.4 Conclusion

In this paper, the complex dynamics of a reaction diffusion predator- prey Caughley type model

was investigated through exhaustive analysis and carefully designed numerical simulations.

Using symmetry analysis, an optimal system comprising of a complete set of representations of

invariant solutions for the spatially diffusive Caughley type model (5.2) was proposed. These

representations gave rise to reduction of this system of nonlinear second order PDEs (5.2) into

a number of reduced systems of second order ODEs. The reduced systems provide basis for

further analysis of the model. Through the analysing of one of the reduced systems of the

ODEs we proved the existence of a travelling wave solution thus showing that the coexistence

of both elephants and trees in the system is only possible if the elephant death rate, A is less

than a survival threshold kK
B

. Moreover, a minimum wave speed which regulates the stable

growth of the two species populations was derived.

Furthermore, a detailed study of the effects of diffusion on the stability of the system was

carried out. In subsection 5.3.1, mathematical analysis showed that the diffusion rates can

destabilise the growth around spatially homogeneous solutions of the model which initiates the
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Turing instability leading to different pattern structures. An important observation is noted

when the elephant diffusion rate is large provided the tree diffusion rate is small enough; the

Turing instability is more likely to occur, otherwise when both rates are equal.

Numerical simulations were carried out to support the analysis which confirmed that the sys-

tem (5.2) exhibits a pattern transition from labyrinth pattern to spotted pattern (see Figures

5.4,5.5). The images represent an increase of values of the ratio of the elephant’s diffusion rate

versus the tree’s diffusion rate. The same scenario was observed for the wave patterns obtained

from the numerical solutions of the reduced system (5.23) (Figure 5.7), which reaffirms the

consistency of the obtained invariant solutions with the solutions of the original system (5.2).

However, the results show that the system dynamics exhibits complex pattern transformation

controlled by the diffusion. Therefore, one can predict that the effect of diffusion coefficient can

be considered as an important mechanism for the appearance of different patterns of solutions

of Caughley type predator-prey model, more so ecological models of similar type.

This varied approach presented in this study shows the interplays between the different method-

ologies which provide a comprehensive technique to solving complicated ecological systems.
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Chapter 6

Conclusion

In this study we investigated the fundamental structures and underlining features of some im-

portant systems of PDEs in mathematical physics via symmetry analysis and conservation laws.

Moreover we demonstrated how the use of symmetry analysis in the study of mathematical

models in ecology complements the mathematical techniques (qualitative and numerical anal-

ysis) traditionally used.

We began our investigation by analysing a nonlinear PDE, known as the Kumaroto-Shivinsky

equation which describes elasto-plastic flow in the medium with dispersive effect. We inves-

tigated the symmetry classification of the equation and observed that the equation does not

admit space dilation type symmetries for a specific parameter value. The symmetry reductions

and exact solutions of the equation were obtained using an optimal system. The conservation

laws were derived via Noether approach.

We investigated two important systems of nonlinear evolution equations found in mathematical

physics, namely, the generalised Boussinesq (GB) equation with damping term and the Variant

Boussinesq (VB) equation. The generalised Boussinesq (GB) equation with damping term is

widely used to describe natural phenomena in many scientific fields such as plasma waves, solid

physics and fluid mechanics. This equation is not derivable from a variational principle, and
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hence does not possess a standard Lagrangian. We examined the conserved vectors using the

partial Noether approach.

We discovered that the derived conserved vectors failed to satisfy the divergence relation due

to the presence of the mixed derivative term in the equation. The conserved vectors were then

adjusted to absorb the extra term. As a result new forms of the conserved vectors satisfying

the divergence condition were found. The importance of these conservation laws in finding the

exact solutions were clearly shown via the double reduction method, which involves the rela-

tionship between conservation laws and symmetries. The solutions obtained portray physical

features of the system. A similar analysis is carried out to obtain new exact solutions for the

system of Variant Boussinesq (VB) equations.

We further studied a generalised third order Gardner equation with dual power law nonlinear-

ity widely used in quantum field theory, solid state, plasma and fluid physics. Its conservation

laws were discussed via the multiplier method and Noether approach (after increasing the or-

der by one). We found that there are six local conservation laws when the nonlinear power

law is quadratic. The Noether approach also leads to a number of nonlocal conservation laws.

We investigated the exact solutions using both symmetry generators and the double reduction

technique. We found that the double reduction method leads to more solutions than would be

obtained by symmetry analysis alone.

Finally, the importance of group theory in the analysis of equations which arise during investi-

gations of reaction-diffusion prey-predator mechanisms is illustrated. In this study symmetry

analysis was employed to reduce the system. We showed the existence of a travelling wave

solution thus indicating that the coexistence of both vegetation consuming mammals and the

vegetation in the system is only possible if the mammals death rate is less than a survival

threshold.

Furthermore, a detailed study of the effects of diffusion on the stability of the system was

carried out. The diffusion rates can destabilise the growth around spatially homogeneous solu-
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tions of the model which initiates the Turing instability leading to different pattern structures.

An important observation is that when the mammals diffusion rate is large, provided the veg-

etation diffusion rate is small enough; the Turing instability is more likely to occur, than when

both rates are equal. Based on this analysis, important biological observations were made on

the solutions of the reduced system for varied diffusion parameters.

Future research

The finite difference scheme and the numerical analysis of the models studied in thesis are not

discussed. These fall outside the scope of this work.

The numerical solutions and other solutions of the models via finite difference scheme should

be considered as future investigation, to confirm the consistency or similarity of the obtained

exact solutions.
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[25] U. Göktas, W. Hereman, Computation of conservation laws for nonlinear lattices, Physica

D 123 (1998) 425 -436.
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