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ABSTRACT

The most commonly used applications of hidden-layer feed forward neural networks are
to fit curves to regression data or to provide a surface from which a classification rule can
be found. From a statistical viewpoint, the principle underpinning these networks is that
of nonparametric regression with sigmoidal curves being located and scaled so that their
sum approximates the data well, and the underlying mechanism is that of nonlinear
regression, with the weights of the network corresponding to parameters in the regression
model, and the objective function implemented in the training of the network defining the
error structure. The aim ofthe present study is to use these statistical insights to critically
appraise the reliability and the precision of the predicted outputs from a trained hidden
layer feed forward neural network.
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Chapter 1

Introduction

Neural networks were developed primarily by engineers to model data which are in

trinsically nonlinear and of high dimension. The main interest was in predictions with

very little attention given to inference. Statisticians started to take note of neural net

works when it became evident that these networks were carrying out functions that

are essentially statistical. For example, hidden-layer feed forward networks are widely

used in classification and regression problems. Excellent reviews of neural networks

from a statistical perspective can be found in Ripley (1993), Ripley (1996), Cheng and

Titterington (1994) and Bishop (1995).

The problem addressed in this thesis is that of setting confidence limits to the

predicted responses of a hidden-layer feed forward neural network. If the neural network

is regarded as a nonlinear regression model, the environment becomes statistical and
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CHAPTER 1

the methodologies from the statistical context can then be adapted and used. Methods

for fitting confidence intervals to predicted responses of a nonlinear regression model

are however not well developed and are therefore investigated in some depth within the

study.

The more specific aim of the thesis is to compare and contrast methods of

obtaining confidence intervals to predicted responses for a single hidden-layer feed for

ward neural network using the linearisation (or Wald), profile likelihood and bootstrap

methods. These methods are applied to two examples. The first example is data on

bean root cells taken from Ratkowsky (1983), which is known to be close-to-linear in

behaviour, and this is used as a benchmark for the second example which consists of

artificial data for a single hidden-layer feed forward neural network.

The thesis is divided into five chapters with Chapters 2, 3 and 4 containing

the main body of the study. Chapter 2 sets the scene for the thesis and contains

an introduction and overview of neural networks, their evolution, the different types

of neural networks developed and the application of these networks. Some statistical

insights into neural networks are also presented there and problems experienced in the

fitting of neural network models described.

In Chapter 3 the nonlinear regression model is introduced and discussed. The

problem of fitting confidence intervals to the predicted response is addressed and the

three methods of applying confidence intervals; the linearisation (or Wald) , profile
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CHAPTER 1

likelihood andbootstrap methods, are examined. Each of these methods is developed

and discussed in turn, specifically with a view to applying the technique to a single

hidden-layer feed forward neural network. In Chapter 4 two examples are introduced,

the methodology of Chapter 3 is applied and the results reviewed. The conclusion to

this study is presented in Chapter 5. In particular a summary of the three methods of

applying confidence intervals to the predicted responses is given and further topics for

investigation are briefly discussed.
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Chapter 2

Neural Networks

2.1 Introduction

The human brain consists of some 1011 to 1012 nerve cells known as neurons which

are interconnected by nerve fibres to form an intricate network. Neurons are the basic

building blocks of the brain and are able to receive, process and transmit impulses

or signals over this network resulting in an overall response. Figure 2.1 is a schematic

drawing of a typical neuron showing its four main components, the nucleus or cell body,

the axon, the dendrites and a synapse. A neuron is very rarely activated by just one

other neuron, but rather acts as a "summing amplifier" for the various input signals

from a number of other neurons. Nerve impulses are conveyed along the dendrites into

the neuron where they are processed by the nucleus. If the sum of the effects of the
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CHAPTER 2

impulses causes the electrical potential of the nucleus to reach a certain threshold a

pulse is conveyed along the axon and the neuron is said to have "fired", i.e. a nerve

impulse is sent along the axon to be transmitted to other connecting neurons. The axon

is a single fibre extending from the nucleus which then divides into smaller branches

at the end of which are the synapses. A synapse is a gap, measuring approximately

1 millionth of an inch, with a small branch of the axon on the transmitting side of

the gap and the dendrite or nucleus of the receiving neuron on the receiving side. It

has been established that nerve impulses cross this gap by means of chemical carriers

(Wooldridge,1963, pp.5-1O; Nathan, 1982, Chapter 9, p.64, Chapter 10, p.72).

t'T--'=~...-- N u c Ie u s

Axon

Synapse

Figure 2.1: A Biological Neuron
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CHAPTER 2

Although certain basic structures of the brain are now understood, many

features such as the ability of the brain to handle cognitive tasks, including pattern

recognition, the understanding of language and the solution of problems by drawing

on previous experiences, remain largely unexplained. This is particularly remarkable

in the sense that basic operations that take the brain milliseconds to compute require

mere nanoseconds by a modern computer. It is the performance of cognitive tasks by

the brain that has stimulated the development of artificial neural networks (ANNs). As

the biological neuron is the basic building block of the brain, so an artificial neuron is

the building block of an ANN. A typical artificial neuron or processing unit is illustrated

in Figure 2.2.

+1

)---------..... 0

X n

Figure 2.2: An Artificial Neuron
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CHAPTER 2

The inputs Xl, X2,"" X n are received from an external source or from a set

of other artificial neurons and are attenuated by corresponding connecting weights

WI, W2,"" W n respectively. The output 0 is obtained by summing the weighted inputs

together with a bias or constant term, Wo, and by applying a transfer or activation func-

tion to the resultant sum. This process can therefore be summarised mathematically

as:

0= f(h) = f(xT w+wo)

where w = (WI, W2, .•. , wnf and x = (Xl, X2, .•. , xnf and f is termed the activation

or transfer function. Commonly used transfer functions include

{

1ifh>O
• the sign function, f (h) =

-1ifh:::;O

• the logistic function, f(h) = (1 + e-h )-l, which produces continuous output

between 0 and 1,

• the linear function, f (h) = h, and

• the Gaussian or radial basis function, f (h) = e-h2 /2, with a continuous output

between 0 and 1.

The logistic function can in fact be reformulated as the tanh function through

the relationship

- eh - e-h. 2 _
tanh(h) = - - = _ - 1 = 2f(2h) - 1

eh + e-h (1 + e-2h )
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CHAPTER 2

where h = h/2 and f(h) is the logistic function as described above, with continuous

output between -1 and 1 (Bishop, 1995, p.127). These transfer functions are illustrated

in Figure 2.3. It should be noted that the functions mentioned above are just a few of

the many transfer functions used in the field of ANNs.

la)

(c)

(b)

(d)

Figure 2.3: (a) the sign transfer function; (b) the logistic transfer function; (c) the

linear transfer function; (d) the Gaussian transfer function.

In an attempt to emulate the massive networking capabilities of the brain, arti

ficial neurons are linked together to form a network. There are a number of commonly

used network structures which can be divided into three broad classes; hidden-layer

feed forward networks, Hopfield networks and self-organising networks and these are

considered briefly below.

10



CHAPTER 2

In 1962 Rosenblatt introduced the simple perceptron, comprising a set of

inputs linked to a single layer of artificial neurons with threshold activation functions

which produced binary outputs, and demonstrated that this perceptron could be trained

to solve a range of input-output problems, specifically classification problems. At the

same time Rosenblatt proved the perceptron convergence theorem (Cheng and Titter

ington, 1994; Bishop, 1995 p.100; Fine, 1999, p.31) which states that the perceptron can

be trained to solve linearly separable problems in a finite number of steps. This proof

was seen as a major breakthrough in the field of ANNs but in 1969 Minsky and Papert

demonstrated that the perceptron could not handle problems such as the "exclusive or"

(XOR) problem which are not linearly separable and this caused the research of ANNs

to stall for close on twenty years. To obviate this difficulty, perceptrons consisting

of more than one layer of neurons with activation functions other than the threshold

function, termed hidden-layer feed-forward neural networks or multilayer perceptrons

(MLPs), were constructed. The architecture of MLPs was appealing but it was not

until 1986, when Rumelhart, Hinton and Williams introduced the backpropagation al

gorithm, that a method for adjusting the weights of the network so that the network

output was in some sense close to a target output was produced. This allowed a greater

flexibility in the modelling of data and indeed MLPs have proved particularly useful in

classification and regression. In particular, given a set of x-data which are provided as

inputs to the MLP, outputs are produced which provide a surface that approximates
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CHAPTER 2

a regression function or provides the basis for a cut-off rule for classification. As an

example consider the situation depicted in Figure 2.4. A set of input data which belong

to one of two classes A or B, represented by x = 0 and x = 1 respectively, has been fed

into an MLP with logistic activation functions. If the output from the network is less

than or equal to the cutoff point of 0.5 then the input is classified as A, Le. close to

x = 0, and if the output is greater than 0.5 then the input is classified as B, Le. close to

x = 1. MLPs have been used in a wide variety of applications including the NETtalk

speech generator, zip-code recognition and recognition of sonar targets and continue to

be used extensively today.

0.5 +-----------...,1

o .b==:::::::=:.:-~=====_+-======;::_;_---.J
A ------- .. B

Figure 2.4: An input is classified as type A if the network output is less than 0.5 and

as type B if the network output is greater than 0.5
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CHAPTER 2

Situations in which the brain uses its perceptive and associative skills are

poorly represented by MLPs. In 1982 Hopfield, an American physicist, developed an

associative memory ANN termed the Hopfield Network which is widely used today. The

success of this network led to a revival of interest in the field of neural networks in the

1980's. The basic Hopfield network comprises interconnected neurons with threshold

activation functions. The network is "trained" by feeding into the network a set of p

correct patterns, S(J-L), f-L = 1, ... ,p, known as exemplars, each comprising n elements,

S (J-L) - {S(J-L) S(J-L) S(J-L)} h S(J-L) - ±1 . - 1 Th t d t- 1, 2 , ... , n , were i - , '/, - , ... , n. ese vec ors are use 0

calculate the weights according to the formula

W .· = ~ f- S~J-L)S\J-L)
tJ ~ t J' Wii = 0 ,

n J-L=l
i,j=l, ... ,n. (2.1)

The scheme (2.1) is often referred to as the "Hebb rule". To achieve the association

of an unknown pattern x with a particular exemplar, the vector x is input into the

network and the neurons of the network are updated asynchronously, Le. one at a

time, in a deterministic or a random manner according to the scheme

n

Si = sign(L WijSj) i = 1, ... , n.
j=l

This process continues until no further updating can take place and the output of the

network, specifying an exemplar, is taken as the pattern which is, in some sense, most

closely associated with the input x. The underlying workings of the Hopfi~ld network
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can be explained by invoking an energy function given by

It can be shown that the exemplars correspond to local minima of H, often referred to as

"basins of attraction", and that the updating process results in a decrease in H so that

at termination a local minimum is reached (Hertz, Krogh and Palmer, 1991, pp.21-23;

Cheng and Titterington,1994). A problem with Hopfield Networks is the existence of

spurious states corresponding to local minima of the energy function H which do not

coincide with the given exemplars but various procedures for remedying this situation

have been developed. The Hopfield network was seen as an important advance in neural

network research and has led to many further developments as for example Boltzmann

machines (Hertz, Krogh and Palmer, 1991, Section 7.1, p.163; Ripley, 1993; Ripley,

1996, pp. 279-283).

Multilayer perceptrons and Hopfield networks undergo "supervised" learning

in the sense that the network is trained using data sets comprising inputs and target out-

puts. Self-organising networks are not given target outputs but rather detect features

or patterns inherent in the input data, thus displaying a degree of self-organisation.

This type of learning is termed "unsupervised" learning. There are two main types of

self-organising networks, those that use the Hebbian learning rule and those that use

the competitive "winner takes all" rule. Consider a network with n input and m output

nodes. In the case of Hebbian learning input vectors x(p.) , J-l = 1, ... ,p, are fed into the

14
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network one at a time and the weights, Wij, i = 1, ... n, j = 1, ... ,rn, are adjusted in

such a way that the vector of weights, Wj, is just the jth eigenvector corresponding to

the jth eigenvalue of the matrix C where C = L~=l x(I-L)X(I-L)T. The output 0 therefore

represents the first rn principal components of the input data x and the networks are in

effect performing principal component analysis (Hertz, Krogh and Palmer, 1991, Chap

ter 8, p.197). Cluster analysis and Kohonen feature mapping are just two of the appli

cations of competitive or "winner takes all" learning. The simplest competitive learning

network comprises a set of binary-valued outputs, 0 = (01, ... , Om), where OJ represents

the jth category, j = 1, ... , rn, each fully connected through the network to the input

vector x. Only one output node, the ''winner'', can be on at a time, and is determined

as the node with the largest net output hj, where hj = f(L~=l WijXi), j = 1, ... , rn,

and Wij represents the weights of the connections between the ith input and jth output

units. The winning output unit has its output set to 1, and is said to have "fired",

while the other output units are set to O. The input x is then deemed to be classified as

belonging to the jth category. Similar inputs should be classified in the same category

and hence should "fire" the same output unit (Hertz, Krogh and Palmer, 1991, Chapter

9, p.217; Ripley, 1993).

The networks mentioned above are just some of the many types of networks

that have been developed in the rapidly advancing field of ANNs. The present study

will focus on the hidden-layer feed forward neural network or multilayer perceptron.
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2.2 Multilayer Perceptrons

2.2.1 Definition

An MLP consists of layers of neurons which are connected by forward links, i.e. there

are no feedback loops. Typically such networks consist of an input layer of processing

units which accept the individual input values, a number of hidden layers comprising

units with the number and the activation functions defined by the user, and an output

layer of units corresponding to the required responses. Each link between the neurons

has an associated weight. When specifying the number of layers present in the network

the input layer is not counted. A typical example of a single hidden-layer MLP is

displayed in Figure 2.5 and the output of this network can be developed explicitly as

follows. Suppose that there are n input units, h hidden units and m responses. Let

aij, i = 1, ... , n, j = 1, . .. , h, represent the associated weight between the ith unit in

the input layer and the jth unit in the hidden layer. Similarly let {3jk, j = 1, ... , h,

k = 1, ... , rn, represent the associated connection between hidden layer unit j and

output layer unit k. The output of the jth hidden layer unit is obtained by first

forming a weighted linear combination of the n input values and a bias term, denoted

n n

aj = aOj + LaijXi = LaijXi with Xo = 1, j = 1, ... , h.
i=l i=O
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B i as '-"'_--=
x,

Input Layer Hidden Layer

t----_. o ,

+---_0.
o U'put Layer

Figure 2.5: A single hidden-layer Multilayer Perceptron (MLP)

The activation or transfer function of the jth hidden unit is applied to this sum to give

the output

Zj = h (aj), j = 1, ... , h.

The outputs of the network are produced in a similar manner. Specifically the kth

output unit has output

17
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where bk is the weighted linear combination of the outputs of the hidden units and a

bias term (30k, and is given by

h h

bk = (30k + L(3jkZj = L(3jkZj with Zo = 1, k = 1, ... ,rn.
j=l j=O

Overall the output can be summarised as

h n

Ok = 9k(L(3jk!j(LO'.ijXi)), k = 1, ... ,rn.
j=O i=O

(Bishop, 1995, pp. 118-119; Neal, 1996, p. 10; Ripley,1996, pp.143-144; Tibshirani,

1996).

The training data consists of p data sets of the form {x(J.L), y(J.L)} , J.L = 1, ... ,p

where the {x(J.L)} terms are the input values and the {y(J.L)} terms are the associated

responses or target outputs. The network is presented with one such set of data at a time

and the weights of the network are updated such that an objective or error function

is minimised. It is this updating of the weights that is interpreted as "training" or

"learning". The most commonly used error functions are the sum of squares error

function given by
p m

E = L L(or) - yr»)2
J.L=lk=l

(2.2)

(Hertz, Krogh and Palmer, 1991, p.117; Cheng and Titterington, 1994; Bishop, 1995,

Section 6.1, p.195; Ripley, 1996, p.148) and the cross-entropy error function given by

(2.3)
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(Cheng and Titterington, 1994, p.21; Bishop, 1995, Section 6.9 p.237; Ripley, 1996,

p.149). The minimisation of the error function with implied updating of the weights is

achieved through the use of one of the many optimisation algorithms that are generally

available. The selection of the optimisation method is ultimately dependant on the user

and includes steepest descent, conjugate gradients, quasi-Newton methods and simu

lated annealing. Most of these methods are dependant on evaluating the derivatives

of the error function and it is the algorithm for finding these derivatives that Bishop

(1995, p.140) defines as back-propagation due to the fact that the errors are propagated

backwards through the network in order to evaluate the derivatives which are then used

to adjust the weights. Once the optimal weights have been established and the error

function minimised the network is considered trained. The final test of the network is

generalisation, i.e. given new inputs can the network produce good predictions? Good

generalisation ultimately means that the network is able to model the true underlying

function describing the input data while simultaneously accommodating the noise in

herent in the data set. The answer to this question poses several additional questions.

These include how to find the optimal architecture of the neural network such that

good generaliation is achieved, how to validate and test the network and how to define

the training, validation and testing data sets. The optimal architecture of the neural

network is covered briefly in the next section. Discussions regarding the formation of

the training, validation and testing data sets can be found in Bishop (1995, p.372) and
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Fine (1999, pp. 243-245) and will not be mentioned further in this thesis.

A key feature of MLPs is that of the universality property (Bishop, 1995,

p.130; Ripley, 1996, p.174) which states that under mild regularity conditions any

continuous mapping can be accurately approximated by a network having two layers

and logistic activation functions, provided the number of hidden units is sufficiently

large. This lends strong theoretical support to the use of MLPs for modeling regression

and classification data.

2.2.2 The Bias-variance Dilemma and Overfitting

The main goal of using a neural network is to learn from a given data set and to use

this information to generalise to new inputs. Poor generalisation js a product of an

inadequate network and is commonly due to the fact that it is extremely difficult to

establish the ideal number of units in each of the hidden layers in an MLP. Rosenblatt's

perceptron is an example with no hidden units and this leads to its inability to fit

nonlinearly separable functions. At the other extreme is the case of an MLP with a

very large number of hidden units which can lead to an almost exact fitting of the

training data, known as overfitting, but very poor generalisation properties (Bishop,

1995, p.332). Thus a compromise number of hidden units is sought in order to determine

the structure of the MLP that attains the best generalisation possible. The bias

variance dilemma offers an insight into the complexity of this problem.
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Bias is a measure of the average "distance" between the true value of a func

tion and its estimate. In the case of neural networks this amounts to a measure of the

difference between the true output or target values and that provided by the network.

Obviously the closer the network output is to the true target values the smaller the

bias will be and conversely the further away they are, the larger the bias will be. Vari

ance, on the other hand, is a measure of the average "distance" between an estimated

function and its expected value. In the context of neural networks this is equivalent to

the distance between the network output and the expected output of that particular

network. Variance is therefore extremely sensitive to the particular data set undergo

ing training. It is usually very unlikely that a network will exhibit a small bias and a

small variance. These two quantities are complementary in the sense that a small bias

usually results in a large variance and vice-versa. Thus a compromise is sought so that

both the bias and the variance are reasonably small. This is known as the bias-variance

dilemma. Geman, Bienenstock and Doursat (1992) quantified this dilemma by showing

that the error as in (2.2) or (2.3) can be decomposed into the bias squared plus the

variance. In particular, suppose the true value of the underlying nmction generating

the data set is h(x). Suppose further that y is modelled using an MLP as y = o+t and

that the estimated output from this model is 8(x). Then the mean square error of the

estimated responses can be expressed as

ED[(h(x) - 8(X))2] = ED[8(x) - (ED[8(x)])2] + {ED[8(x)] - h(x)}2 (2.4)
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where the subscript D refers to the expectation with respect to the MLP model. The

first term on the right hand side of (2.4) is the variance of the estimated response and

the second term is the bias of the expected value of that response squared (Bishop, 1995,

Section 9.1, pp. 333-335). From expression (2.4) it can be seen that decreasing the bias

results in an increase in variance and vice-versa. Variance, and hence the expected

error, can be reduced by removing some hidden units of the network, but there is the

danger that this will increase the bias which in turn will result in the expected error

increasing. In order to alleviate this dilemma more data points should be added to the

training set but this is not always possible.

Methods for controlling the complexity of the network have been developed in

order to control the problem of overfitting. One such technique is termed regularisation

and involves adding a penalty to the error function (Ripley, 1993; Cheng and Titter-

ington, 1994; Bishop, 1995, p.338-343; Ripley, 1996, p.157; Fine, 1999, p.220). This

penalty function is such that a large number of hidden units will incur a large penalty

whereas a small number of hidden units will result in a small penalty. The simplest

such regulariser is weight decay and involves minimising the composite function

where E is as defined in (2.2) or (2.3) and ~ is a controlling parameter balancing

the fitting of the MLP and the effect of the penalty function. In statistical terms

this approach is equivalent to ridge regression. The technique is also useful in that it
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stabilises the solutions of the optirnisation algorithm numerically. Another commonly

used method for controlling overfitting is that of early stopping where training of the

MLP is stopped at the point where the error is a minimum for a separate validation set

(Bishop, 1995, p.343). Usually the data set under consideration is split into a training,

a test and a validation set which is an inefficient use of data especially when the sample

size is small. This also leads to questions regarding how the data should be split. An

optimal number of hidden units can also be achieved by either growing or pruning a

network (Ripley, 1993; Bishop, 1995, p.353; Ripley, 1996, p.169; Fine, 1999, pp. 232

234). As the names suggest, growing a network is the procedure of starting with a

small number of hidden units and then adding units one at a time, while, in contrast,

pruning is the process in which a complex network is constructed initially and then

connections and units are systematically removed.

A totally different approach is to use Bayesian methods of fitting the under

lying model but these techniques will not be considered in this study.

2.2.3 Statistical Insights

The MLP as discussed above is a framework for fitting a weighted sum of activation

functions of input data, according to the number of hidden units, to produce an ap

proximate model for the training data. To simplify matters the case of an MLP with a

single input and single output unit will be considered in the remainder of this text.
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Consider a single hidden-layer feed forward network with two hidden units.

each with logistic transfer functions used to model regression data of the form {Xi, Yi} ,i =

1, ... ,n. A single input, X, is fed into the network with a bias term and a single output,

0, is produced via a neuron with a linear transfer function. This output can be written

explicitly as

where () = (fh, ()2, ... , ()7 )T is the vector of unknown connection weights. This network

is illustrated in Figure 2.6. If the network is trained by minimising the sum of squares

Bias

Input Layer H iJden Layer

~ o

o Ulput Layer

Figure 2.6: A single hidden-layer MLP containing two hidden nodes with logistic acti-

vation functions.
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error function, S = L.:~1 (Yi - Oi)2, then the process is, in essence, one of fitting a

nonlinear regression model

Yi = 0i + ti, i = 1, ... ,n, (2.5)

where the error terms, ti, are independently and identically distributed with mean zero

and constant variance, a2 , to the data. The connection weights are equivalent to the

parameters in the regression model, the training of the network is analogous to the

iterations in an appropriate optimisation algorithm for minimising the sum of squares

error with respect to the parameters and the generalisation of the network corresponds

to the prediction of new output values. In the context of neural networks the nonlinear

regression function in (2.5) has no real meaning in relation to the data in the sense

that it is the function ° that is approximating the true output and the weights are

just artifacts of this process. Thus the modelling procedure can be viewed as summing

scaled and located logistic functions which together with a constant term approximate

a smooth curve and this in turn approximates the true output. Figure 2.7 illustrates

two logistic curves plus a constant term and the smooth curve that corresponds to their

sum. The flexibility apparent in this model indicates that the underlying model of the

network is ultimately a nonparametric regression model and in fact misspecifies the

true model (Brittain and Haines, 1997).

In general MLP's are widely used to model regression data and in the area of

classification (Ripley, 1993; Cheng and Titterington, 1994; Bishop, 1995, p.116). It is
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Figure 2.7: A represents a logistic function with a positive slope, B represents a logistic

function with a negative slope and C represents the sum of these two functions plus a

constant term

also interesting to note that an MLP with linear activation functions corresponds to a

multiple regression model.

2.2.4 Problems

ANN's have been developed primarily by engineers who use biological concepts to

improve existing and create new models and by neurophysiologists who are investigating

the brain and its computing capabilities. Investigations into ANN's by the engineers
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have tended to ignore the statistical aspects of these networks and have been restricted

to a "black box" scenario. In essence users of ANN's have been concerned with the

output of the network and the ability of the network to generalise. As mentioned above,

there is concern with regards to the overfitting of the model and to the predictive

properties of the network.

Statisticians are interested in inferences and specifically, in the present con

text, in inferences that can be drawn from fitting regression models. In particular

the statistician is concerned with measures of confidence and error for the parameter

estimates and for the predicted responses, but usually places most emphasis on the pa

rameter estimation. The aim of this study is therefore to concentrate on the predicted

responses of an MLP and, in particular, the errors associated with these responses,

since this is an area that has been neglected in the many publications on neural net

works. During the course of this study Hwang and Ding (1997) produced a paper

which investigates linearised confidence intervals for predicted responses from a neural

network as did De Veaux, Schumi, Schweinsberg and Ungar (1998) who also looked at

linearised prediction intervals as well as using early stopping and weight decay as alter

native methods of constructing prediction intervals. The model describing an MLP is

unusual in the statistical context in that it is a sum of scaled logistic functions and as

a consequence is highly overparameterised and possibly exhibits multicollinearity. The

statistical insights provided in this section, particularly those relating to nonlinear re-
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gression, are invoked in order to construct confidence limits for the predicted responses

of an MLP and there is a wealth of tools available in the theory of nonlinear regression

to tackle such a problem. Inferences for predicted responses in an MLP is the topic of

investigation in the remainder of this thesis.
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The N onlinear Regression Model

3.1 Introduction

Much of the work done in the area of nonlinear regression concentrates on parameter

estimation in the nonlinear model, usually due to the fact that these parameters have

a specific meaning for the problem to which the model is applied. Matters of concern

are the estimation of the parameters and the accuracy of the resultant estimates as

measured by their standard errors. A parameter estimate together with its associated

standard error can be used to find confidence limits for the corresponding true parame

ter value. In the case of neural networks the parameters have no meaning and are thus

of no particular interest. The main emphasis of the neural network is to produce an

output which is analogous to the predicted response from a nonlinear regression model.
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Thus a multilayer perceptron (MLP) can be cast as a nonlinear regression model, as

discussed in Chapter 2, and the techniques applicable to nonlinear regression can be

borrowed and utilised to set confidence intervals to the output. These techniques are

the topic of discussion in this chapter.

Consider a nonlinear regression model given by

Yi = 7](Xi' 0) + Ei, i = 1, ... ,n, (3.1)

where Yi is the observed value at Xi, 0 =(81 , 82 , ... , 8p ) is a p x 1 vector of unknown

parameters, 7](.,.) is a nonlinear function and the error terms, Ei, are independently

and identically distributed (LLd.) with mean zero and constant variance, (j2. The most

common method of obtaining the parameter estimates is the least squares method.

Specifically, the least squares estimate of 0, denoted by 9, is obtained by minimising

the error sum of squares,

n

8(0) = L[Yi - 7](Xi, 0)]2
i=l

(3.2)

with respect to O. Using the least squares estimate, 9, in place of 0 in 8(0) above and

dividing by the appropriate degrees of freedom provides an estimate of the unknown

error variance, (j2, as

2 8(9)
s =--.

n-p (3.3)

The minimisation of (3.2) can result in a local instead of the global minimum, 9, and

as a consequence, a large amount of research on parameter estimation has concentrated
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on the algorithms used to minimise (3.2), the mostly commonly used being the Gauss-

Newton technique and its variants. The parameter estimates can also be found by

means of the method of maximum likelihood, resulting in an estimate of the unknown

error variance, (j2, as

A2 8(0)
a =-

n

where 0 is the maximum likelihood estimate of fJ. If it is assumed that the error terms,

ti, i = 1, ... , n, are normally distributed then the maximum likelihood estimator of

fJ is equal to the least squares estimate of fJ. If interest lay solely in the parameter

estimates, then the next step would be to construct confidence intervals for fJ using

either linearisation, likelihood or resampling methods. However, interest here focuses

on a nonlinear function of fJ, the mean predicted response 'T/(xg , fJ) for a particular value

of x, xg , and the concepts relating to confidence intervals for fJ are extended to this case.

There has been surprisingly little research on the problem of constructing confidence

limits for predicted values and indeed only Clarke (1987), Vecchia and Cooley (1987),

Seber and Wild (1989, p. 192 and p. 235) and Tibshirani (1996) have addressed this

problem. The aim in the present study is to concentrate on three specific methods of

constructing confidence intervals for the mean predicted value, namely the linearisation

method, the profile likelihood method and the bootstrap method, each of which is

described in detail in this chapter. The application of these methods to two specific

examples follows in Chapter 4.
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3.2 Linearisation Method

The linearisation method, also known as the Wald or delta method, is probably the most

widely used method for obtaining confidence intervals for the parameters of a model

and for functions of those parameters. A description of this technique can be found in

most textbooks on linear or nonlinear modelling and one of the. most comprehensive

treatments within the nonlinear context is provided by Seber and Wild (1989, p.23 and

p.192).

Under certain regularity conditions 9 and 82 are consistent estimators of ()

and (j2 respectively (Seber and Wild, 1989, p.564) and if further regularity conditions

are specified then, for large sample sizes, 9 is approximately normally distributed with

mean () and variance

(3.4)

where

g(Xi,O) =8'T/(Xi, 0)/80, i = 1, ... , n

and the subscript 9 denotes evaluation at that point (Donaldson and Schnabel, 1987;

Seber and Wild, 1989, p.24 and p.568). This result is obtained by taking the first

order Taylor expansion of 'T/(Xi' 0) about 9. If the maximum likelihood method is used

to obtain 9 then the same result is obtained by taking the inverse of the expected
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information matrix evaluated at 0,

where l is the log-likelihood function of the relevant normal distribution (Seber and

Wild, 1989, pp.32-34). An asymptotic 100(1 - a)% confidence region for B can be

expressed as
n

~ T" T ~ 2(B - B) [L..,g(Xi' B)g(Xi, B) ]o(B - B) ~ps Fp,n-p,a
i=l

where Fp,n-p,a is the appropriate critical F value with p and n - p degrees of freedom

and s is as defined in (3.3). In addition a 100(1-a)% confidence interval for a particular

parameter, er, is given by

n

Br ± tn-p,~ s{[~g(Xi' B)g(Xi' Bf]~1/2yr
i=l

where tn - p g is the requisite critical t value with n - p degrees of freedom, and the
'2

superscript rr refers to the rth diagonal element of the matrix

n

[~g(Xi' B)g(Xi' Bf]~1/2.
i=l

The construction of a 100(1- a)% confidence interval for "l(x g , B) is based on

a first order Taylor expansion of the nonlinear function "l(.,.) and the approximation of

the variance of the parameter estimates 0 given in (3.4). Specifically for the nonlinear

function "l(xg , 0) the first order Taylor expansion of "l(xg , 0) about B is
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which implies that

where V(O) is as specified in (3.4). Using the fact that 0 is approximately normal with

mean 9 and variance V(O) it then follows that TJ(xg , 0) is approximately normal with

mean TJ(xg , 9) and variance

and hence that an approximate 100(1 - a)% confidence interval for T/(xg ,9) can be

constructed as

n

TJ(xg , O)±tn_PI~S g(xg , 9)]~ [I:g(Xi' 9)g(Xi' 9)T]i1g(xg , 9)]9 (3.5)
i=l

(Ratkowsky,1986, p.186; Bates and Watts, 1988, pp. 58-59; Seber and Wild, 1989, pp.

192-193).

The main advantage to using the linearisation method is that it is a quick

and easy means of obtaining confidence intervals and that these intervals are readily

understood. For this reason the method is the preferred method in many statistical

packages. The main disadvantage is that the linearised confidence limits can be entirely

meaningless if the normal approximation is poor. In the case where the normal approx-

imation is good the distribution of the parameter estimate under consideration will be
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close to symmetric and this will be reflected in the linearised confidence limits which

are themselves symmetric. However, in the case where the normal approximation is

unsatisfactory, the distribution of the parameter estimate may well be asymmetric and

the linearised confidence limits, being necessarily symmetric, will not reflect this asym-

metry. Donaldson and Schnabel (1987) compared confidence intervals constructed by

means of the lack-of-fit (exact), linearisation and likelihood methods empirically using

coverages. Their conclusion was that the intervals calculated using the linearisation

method can perform extremely badly compared with the other two methods. They

cite a particular case where an observed coverage of 75.0% was obtained for a nominal

95% coverage, although they do acknowledge that the linearisation method was by far

the simplest technique to implement. Donaldson and Schnabel (1987) also investigated

how three variants of V(0) influenced the observed coverages of the confidence intervals

determined by the linearisation method. The three variants investigated were

as in (3.4),

where H(O) is the Hessian matrix of S((J) at 0, and

n

1% = 8
2H(O)-lCLJ g(Xi' (J)g(Xi' (Jf)H(0)-1.

i=l

Their conclusion was that there appeared to be no major difference between the three
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variants and hence that (3.4) is a satisfactory estimate of the variance of iJ to use when

constructing confidence regions and confidence intervals as it is "simpler, less expensive,

and more numerically stable to compute" (Donaldson and Schnabel, 1987).

Donaldson and Schnabel (1987) also showed that the measures of curvature

developed by Bates and Watts (1988) are useful for determining when a linearisation

confidence interval will be poor. The solution locus, or expectation surface, for a non

linear model is defined to be the surface generated by the expected responses TJ (Xi, 8) ,

i = 1, ... , n, in n-dimensional space for all possible values of e. Bates and Watts

(1988) defined the intrinsic curvature (IN) as a measure of the degree to which the

expectation surface deviates from planarity as 8 changes near iJ, and is inherent in the

structure of the data together with the model under consideration. A coordinate grid

of 8 values projected onto the expectation surface can be constructed and the parame

ter effects curvature (PE) measures the extent to which this grid is non uniform and

curved. In the case of a linear model both the IN and the PE curvature measures

are zero, while these measures are nonzero in the case of nonlinear functions. The PE

curvature measure is dependent on the parameterisation of the model and can therefore

be reduced through reparameterisation of the model. According to Bates and Watts

(1988) when the PE measure is small compared to the critical value 1/VFp,n-p,Q then

the assumption that the coordinate grid is approximately linear is valid. Similarly if IN

is small compared to 1/VFp,n-p,Q then it can be assumed that the solution locus is close
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to planar. Donaldson and Schnabel (1987) showed that small values of PE indicate a

good approximation by the linearisation method while large values suggest a poor ap

proximation. Hence the curvature associated with a nonlinear model and in particular

the PE curvature measure should be investigated fully before the linearisation method

is used.

3.3 Profile Likelihood Method

Confidence regions obtained by the linearisation method are not always reliable (Don

aldson and Schnabel, 1987) and for this reason likelihood-based confidence regions and

intervals have been extensively investigated. A 100(1- a)% likelihood-based confidence

region for () is defined as all values of () such that

(3.6)

where Fp,n-p,a is the appropriate critical F value with p and n - p degrees of freedom

(Donaldson and Schnabel, 1987; Bates and Watts, 1988, p.201; Seber and Wild, 1989,

p.98). This confidence region is in fact defined by contours of equal likelihood which

are often distorted and ill-defined and cannot, in any case, be visualised when the

number of parameters, p, is greater than 2 (Bates and Watts, 1988, p.204). A set of

100(1- a)% simultaneous confidence intervals, one for each parameter (}r, r = 1, ... ,p,
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can be obtained by the Bonferroni method as

n

Br ± tn-p,~ S {[L g(Xi' O)g(Xi' O)T]~1/2rr,
i=l

where t n - p -'!. is the appropriate critical t value with n - p degrees of freedom (Seber
, 2p

and Wild, 1989, p.192), or more conservatively by Scheffe's method as

n

Bj ± [pFp,n_p,aP/2 S {[Lg(Xi' O)g(Xi' Of]~1/2rr
i=l

(Seber and Wild, 1989, p. 194). Other likelihood methods developed include the profile

likelihood method of determining a confidence interval for a parameter of interest in a

specified model and this approach is used in the present study. The profile likelihood has

generated a substantial amount of interest in the statistical literature and discussions

concerning this method for a single model parameter can be found in Aitken (1982),

Cox and Reid (1987), Ritter and Bates (1993) and Ritter, Bisgaard and Bates (1994).

The profile likelihood of an individual parameter, which is an element of the

unknown parameter vector 8 describing a distribution, is constructed as follows. Con-

sider the joint probability distribution of n observations, x = (Xl, X2, ... ,xn), denoted

by f(x; 8), as a likelihood function denoted by L(8Ix), a function of the unknown

parameters 8 for fixed x. Let l(8Ix) = In(L(8Ix)) denote the log likelihood function.

Suppose that fJ maximises 1= l(8Ix), Le. fJ is the maximum likelihood estimate (m.l.e.)

of 0, and write [ = l(fJlx). A confidence interval for a particular parameter, OJ say, is

obtained by fixing OJ at a specific value OJ and then maximising l(8(_j)IOj, x) with re-

38



CHAPTER 3

spect to BC- j), where BC-j) represents the vector B excluding the fixed parameter Bj .

The estimates of BC-j) so obtained are denoted by oC-j) I Bj. This process is repeated

for values of Bj = ej +m8, where m = ±1, ±2, ... ) and 8 is a selected step size resulting

in a function of Bj expressed as l'(ej ) = l(OC-j) I Bj,x) which can then be plotted against

the Bj values to produce a curve depicting the profile log likelihood. A 100(1 - a)%

confidence interval for Bj is given by all values of ej satisfying

(3.7)

where X2 is the appropriate critical X2 value with p degrees of freedom and the actualp,a

confidence limits are determined by the points of intersection between the curve l (0 C_ j) I

Bj ) and the horizontal line l(0) + s2X~,a' The number of points plotted is dependent on

the step size, 8, and the inequality in (3.7). Cook and Weisberg (1990) suggest using

a step size of 8 = 0.2 x se(Bj ) to start with and then repeatedly halving 8 in cases

where the parameter estimates fail to converge, but they indicate that a fixed step size

is not always ideal. Cook and Weisberg (1990) found that in cases where the profile
~ ~

log likelihood is close to quadratic too many evaluations of l(Bj) = l(8C- j) I Bj) tend

to take place, while in cases where the profile log likelihood is skewed the step sizes

may be too large to observe the true nature of the curve. To remedy this, Cook and

Weisberg (1990) present a method whereby a dynamic step size based on the curvature

of the profile log likelihood function at the current value of Bj can be determined.

The bisection method can be used to determine the points of intersection
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described by the equality in (3.7). An excellent description of the bisection method

and a FORTRAN routine for the algorithm can be found in Press, Flannery, Teukolsky

and Vetterling (1986).

For the normal distribution the log likelihood function is directly proportional

to the error sum of squares and hence, for the nonlinear model (3.1), maximising the

likelihood is equivalent to minimising the error sum of squares S(B), defined in (3.2).

Thus the ideas developed above for the profile log likelihood function can immediately

be adapted to working with S(B) and the derivation developed above is equivalent to

minimising S(BC-j)IBj) with respect to BC- j ), for fixed Bj = Bj, resulting in the parameter
~ ~

estimates BC- j ) IBj, as before, and the corresponding sum of squares S(BC- j ) IBj). When

using the sum of squares approach (3.7) is rewritten as

(3.8)

It is more common to find the sum of squares approach rather than the full likelihood

function being used in the construction of profile likelihoods (Donaldson and Schnabel,

1987; Bates and Watts, 1988, p. 201; Cook and Weisberg, 1990).

For a linear model, Le. ll(Xi, B) is linear in the parameters B, the sum of

squares function S(B) is a quadratic function in B and it follows immediately that the

function S(B<_j) I Bj ) will be quadratic in Bj . Thus the profile log likelihood curve is

itself a quadratic. In general the profile log likelihood of a parameter in a nonlinear

model such as (3.1) will be expected to deviate from a quadratic curve according to
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the degree of nonlinearity in the model, i.e. the larger the nonlinearity, specifically the

PE curvature, the more skewed the profile log likelihood will appear (Donaldson and

Schnabel, 1987; Bates and Watts, 1988, p. 205; Cook and Weisberg, 1990). There are)

however, exceptions to this and some are detailed in Donaldson and Schnabel (1987)

and Cook and Weisberg (1990).

A related approach to the profile likelihood method is the profile t plot de-

scribed in Bates and Watts (1988, Section 6.1.2, pp. 205-206). A profile t plot of the pa

rameter of interest, ej )comprises a plot of r(ej ) = sign(ej - {}j)JS(O(_j) I ej ) - S(O)/s

on the y-axis and the studentised parameter 8(ej ) = (ej - {}j)/se({}j), where se({}j) is

the standard error of the estimate of the parameter ej, on the x-axis. Bates and Watts

(1988) also incorporate a second set of axes on their profile t plots depicting the nomi-

nal confidence levels on the y-axis and ej values on the x-axis. In this way the nominal

likelihood limits for ej can be read directly from the profile t plot as the points of inter-

section between the horizontal line corresponding to the nominal confidence level and

the profile t plot (Bates and Watts, 1988, pp.206-207). If the model is linear the plot of

r(Oj) versus 8(Oj) is a straight line through the origin with unit slope and so the extent

to which the profile t plot deviates from this straight line gives an indication of the

nonlinearity associated with the particular parameter under investigation. It should

be noted that Cook and Weisberg (1990) have introduced confidence curves which are

essentially a variation on the profile t plots of Bates and Watts.
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The problem of finding a confidence interval for a nonlinear function of the

parameters, g(e), using the profile likelihood method is not straightforward (Cook and

Weisberg, 1990). The procedure amounts to finding estimates by maximising the like

lihood function, or equivalently, in the case of the normal distribution, by minimising

the error sum of squares, subject to a nonlinear constraint i.e. by maximising l(elx)

or minimising S(e) for fixed g(e). This problem has been tackled by very few au

thors. Clarke (1987) and Vecchia and Cooley (1987) offer approximations to the profile

likelihood method for determining confidence intervals for a nonlinear function of the

parameters, g(e), based on finding extreme values of g(e) over a joint confidence region

for e. Clarke and Grau (1995) propose a method for calculating profile likelihoods of

a function of the parameters of a regression model and of a generalised linear model

in which an artificial datum point is added to the sample and the change in the log

likelihood due to this addition is used to create the profile likelihood function. These

techniques are not easy to implement however.

In certain cases it is possible to transform the model so that the nonlinear

function under consideration appears as a parameter in the model. Then the method

described for an individual parameter of a model can be used to determine confidence

limits for the nonlinear function of interest. For the models examined in the present

study, the function ry(x, e) can be transformed so that the predicted response ry(x
g

, e),

where xg is a given value of x, appears as a parameter in the model. This technique
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is particularly effective if at least one of the parameters, say (}1, occurs linearly in the

model and the expected response 1](x, 8) has the form

(3.9)

or the multiplicative form

(3.10)

Hence in order to obtain confidence limits for "1g = 1](xg, 8), model (3.1) can be repa-

rameterised as

if 1](x, 8) is of the form (3.9) or as

if "1(x, 8) is of the form (3.10). Thus 1]g can now be regarded as a parameter in the

model and is of course the parameter of interest. In the case of the nonlinear regression

models describing an MLP and described in Chapter 2, this reparameterisation will

always be possible provided bias terms are included in the network architecture. The

profile log likelihood in the neighbourhood of "1(xg, 8) can then be determined for "1g

using the method described above for an individual parameter. The resultant plot

of 5(8(-1) I "1g) against 1]g is the profile log likelihood graph of the mean predicted

value 1](xg, 8) and the 100(1 - a)% confidence limits correspond to the two values of

"1g that satisfy the equality in (3.8). This technique for constructing profile likelihoods
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for nonlinear functions of the parameters is alluded to by Cook and Weisburg (1990)

but not investigated further. This approach is thus introduced and investigated here.

The advantage of using likelihood over linearisation methods for constructing

confidence intervals is that they are more theoretically sound and are able to capture

features relating to the nonlinearity of the model such as the asymmetry in the dis

tributions of the parameter estimates through asymmetrical confidence intervals. The

linearisation method, on the other hand, assumes the nonlinearity is negligible and

hence produces symmetric results. The disadvantage is however that such methods are

substantially more computationally intensive.

3.4 Bootstrap Methods

The term bootstrap is thought to have originated from Rudolph Eric Raspe's eighteenth

century, Adventures of Baron Munchausen, in which the Baron falls to the bottom of a

deep lake and saves himself by pulling himself up by his own bootstraps. The bootstrap

method was introduced in 1979 by Bradley Efron as an automatic, computer-based

technique used to estimate the standard error of a parameter estimate, Le. se(Bj ),

although the broad idea of resampling had been recognised for some time before then.

The method itself is higWy computer intensive meaning that it is very expensive in

computer time but with the evolution of modern computing power this has become

very much less of an issue.
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There are two general forms of bootstrapping, the parametric bootstrap and

the nonparametric bootstrap. The underlying premise of the bootstrap method is that

an observed data set x = (Xl, X2, ... ,xn ) is generated from an unknown probability

distribution, denoted f(x, 0). The difference between the two forms of bootstrapping

is in how the estimation of f(x, 0) takes place. When using the parametric bootstrap

method f(x,O) is estimated by a parametric model, denoted f(x,8), with the least

squares or maximum likelihood estimate 8 in place of the unknown parameters O.

For example f(x, 0) may be assumed to be the normal distribution with mean 11 and

variancea2 , then f(x, 8) corresponds to a normal distribution with mean x and variance

8
2

, where x and 8
2 are the least squares estimates of 11 and a 2 respectively. The

bootstrap procedure involves drawing B samples of size n from the distribution f(x, 8)

by means of simulation, determining the parameter estimates for each such sample and

then using these estimates to compile the distribution of 8.

Nonparametric bootstrapping makes no assumption regarding the distribution

of f (x, 8) but rather relies on the empirical distribution function (e.d.f.) as an estimate

of f(x, 8). The e.d.f. is such that a probability of 1 is associated with each observed
n

value Xi, i = 1,2,.,., n. As with the parametric method, B samples of size n are

drawn from this discrete distribution, but the samples are drawn with replacement

from the observations Xi, i = 1,2, ... I n to produce B new samples denoted by x*(b) =

( *(b) *(b) *(b)) b .
Xl ,X2 I"" xn , = 1, ... , B. Note that there are nn possIble bootstrap samples
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of size n that can be drawn of which n! of these do not contain any repetitions. As in

the parametric case parameter estimates are established for each new data set and this

information is in turn used to estimate the sampling distribution of O. The parametric

bootstrap is dependent on knowledge regarding the form of the underlying population

distribution while the nonparametric bootstrap is less restrictive. For this reason only

the nonparametric case is considered here.

3.4.1 Bootstrap Sampling

In the regression context, i.e. where the data is of the form (Xi, Yi), i = 1, ... , n, boot-

strapping can take one of two forms; bootstrapping pairs or bootstrapping residuals.

The procedures involved for each of these methods are described below.

Bootstrap Pairs Procedure: Consider a data set (Xi, Yi), i = 1, ... , n with empirical

distribution j(x, 0). The bootstrap pairs method consists of drawing a random sample

of size n with replacement from the data pairs to generate a new data set denoted

by (xi, Yi), i = 1, ... n. This process is repeated B times to produce B new data sets

(
*(b) *(b)) . _ . . . . . .Xi ,Yi ,1, - 1, ... n, b = 1, ... , B (Efron and Tlbshrram, 1993, p.78; Tlbshlram,

1996).
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Bootstrap Residuals Procedure: A data set (Xi, Yi), i = 1, ... ,n, is modelled appropri-

ately using, for example, model (3.1) and an estimate, 0, of the unknown parameters,

(), obtained. Then the normalised residuals are given by

~~ei = [Yi - TJ(Xi, B)] -- i = 1, ... , n
n-p

(3.11)

(Wu, 1986). B random samples of size n are sampled with replacement from this set

of residuals to give B sets of bootstrapped residuals denoted by e;(b), i = 1, ... ,n, b =

1, ... , B. A new set of responses is then constructed by

giving B new data sets denoted by (Xi, y;(b)), i = 1, ... n, b = 1, ... , B (Efron and

b= 1, ... ,B.i = 1, ... ,n,

Tibshirani, 1993, p.l11; Tibshirani, 1996). Note that the explanatory variables are not

bootstrapped, i.e. x;(b) = Xi,

Bootstrapping of the residuals relies on the assumption that the model spec-

ified in (3.1) is correct and that the error terms are interchangeable. This is not always

a valid assumption as is shown by means of an example in Efron and Tibshirani (1993,

Section 9.5, pp. 113-114). The bootstrap pairs method is less sensitive to model as-

sumptions, the only assumption being that the data pairs (Xi, Yi) i = 1, ... ,n are

randomly sampled from some distribution !, and is hence more robust than bootstrap-

ping residuals.
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3.4.2 Confidence Intervals

Efron and Tibshirani (1993) discuss various methods of constructing bootstrap con

fidence intervals for unknown parameters and some improvements to these methods

which they claim give better coverage and stability. In this study only the percentile

method and the extension of the percentile method to the BCa method will be inves

tigated and used. Since the bootstrap technique is an extremely computer intensive

method a matter of concern is the appropriate number of bootstrap samples required for

accurate inference while also maintaining computing efficiency. Accuracy is obtained

through a large number of bootstrap samples but this necessitates an increase in com

puting time. Efron and Tibshirani (1993) investigated this dilemma quite thoroughly

by studying the convergence of the function under investigation for a variety of B values

and concluded that in the case of estimating the standard error of a parameter B = 200

should generally be sufficient (Efron and Tibshirani, 1993, p.52) whereas in the case

of constructing confidence intervals B = 1000 is desirable (Efron and Tibshirani, 1993,

Section 19.3, p.273).

The Percentile Method

Confidence intervals constructed using the percentile bootstrap method are based on

the percentiles of the bootstrap distribution of the parameter of interest. The proce

dure is described in Efron and Tibshirani (1993, pp. 170-171) and is outlined in Box 3.1.
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1. For each bootstrap sample generated by either the pairs or the residuals method

calculate the least squares estimate, e;(b) ,of the parameter of interest in the

specified model.

2. Construct the empirical distribution, C, of the bootstrap estimates, e;(b) ,

calculated in 1.

3. Find the percentiles, C-1(~) and C-1(1 - ~), which then form a 100(1 - a)%

confidence interval for the parameter ()j.

Box 3.1 Percentile Confidence Interval Procedure for an Individual Parameter

The procedure described above can be extended to a nonlinear function of

the model parameters and specifically to the predicted response T/(xg , (J). The amended

procedure is outlined in Box 3.2.

A good confidence interval is one which is accurate in that it should give a

coverage probability close to the nominal probability and correct in that the confidence

limits should be relatively close to the exact confidence limits where these are known

from statistical theory. The percentile interval has some desirable properties such as

being able to pick up the shape of the distribution of the parameter of interest and

being transform respecting, i.e. any transformation applied to the parameters can be

directly applied to the confidence limits. However in practice these intervals tend to

undercover, i.e. observed coverages are always less than or equal to the nominal
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1. For each bootstrap sample generated by either the pairs or the residuals method

. A*(b) ..
calculate the least squares estimates, 0 ,of the parameters III the specIfied

model.

2.
A *(b)

Calculate the bootstrap predicted values, TJ(xg , 0 ), b = 1, ... , B, for a range

of x g values.

3. Construct the empirical distribution, G, of the bootstrap estimates, TJ(x, i/(b)),

calculated in 2.

4. Find the percentiles, G-1(I) and G-1(1 - I)' which then form a 100(1 - a)%

confidence interval for the predicted value TJ(xg , 0).

Box 3.2 Percentile Confidence Interval Procedure for a Predicted Response

coverage and in particular underestimate the tails of the distribution. Refinements

to these intervals to correct for this bias were made resulting in the so-called bias-

corrected and accelerated, abbreviated BCa , confidence intervals and the approximate

bootstrap, called ABC, confidence intervals (Efron and Tibshirani, 1993, p.178). It

can be shown that the BCa method is second-order accurate and second-order correct

while the percentile interval is only first-order accurate and first-order correct (Efron

and Tibshirani, 1993, pp. 321-326). Only the BCa method is considered here.
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The Bea Method

Confidence intervals calculated using the BCa method depend on the two numbers

CL and .la, called the acceleration and bias-correction. The value of CL is calculated in

terms of the jackknife values of the statistic OJ, where ()j, j = 1, ... p, is the parameter of

interest. Specifically for the set of training data with the ith point, (Xi, Yi), i = 1, ... , n,

removed, let OJ(i) represents the parameter estimate calculated by omitting the ith point

and define OJ(.) = L:7=1 OJ(i)/n. The acceleration CL is evaluated by

(3.12)

(Efron and Tibshirani, 1993, pp. 185-188). A discussion and motivation of the deriva-

tion of CL can be found in Efron (1987). The value of .la is a measure of the difference

~*(b) A

between the bootstrapped parameter estimates, ()j ,b = 1, ... E, and ()j, or the median

bias of O;(b) ,b = 1, ... ,E, evaluated on a normal scale. Specifically .la is based on the

number of bootstrap parameter estimates that are less than OJ and is given by

(
~w A ).la = cI>-1 number of (}j ~ (}j, b = 1, ... , E ,

(3.13)

where cI>(.) represents the standard normal cumulative distribution function. If exactly

half the bootstrap estimates are less than or equal to OJ then .la = O. The procedure

then used to construct Bea confidence limits for an unknown parameter ()j is as in Box

3.1 but with step 3 replaced by the following scheme.
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Find the percentiles, C-1(al) and C-1(a2) with al and a2 given by

( z + ze·/2) )
al - <I> i o + 1 _ ;(io + z(a/2») (3.14)

( , + (I-·/2) )Zo Z
(3.15)a2 - <I> i o + 1 _ o'(io+ z(1-a/2»)

where z(a/2) is the 100% th percentile point of a standard normal distribution.

C-1(al) and C-1(a2) thus form a 100(1 - a)% confidence interval for ()j.

Note that when both a and io are equal to zero then al = %and a2 = 1 - %as in step

3 of Box 3.1.

The ideas presented here for an unknown parameter ()j can be extended to

find BCa confidence limits for the predicted value 'TJg = 'TJ(Xg, 8). The value of a is

calculated in terms of the jackknife values of the statistic 'TJ(x, 6) with T](i) representing

the predicted value evaluated at xg using the parameter estimates 6(i) calculated by

omitting the ith data point and given by T](.) = L:?=l T](i)/n. The acceleration a is

therefore reformulated as

~ L:?=l ('TJ(.) - 'TJ(i»)3
a = 6{L:?=1('TJ(.) - 'TJ(i»)2}3/2·

(3.16)

The bias-correction, i o, is evaluated from the number of bootstrap predicted values
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that are less than 'r/(xg , 8) and is given by

Step 4 of Box 3.2 is now replaced by the following procedure.

(3.17)

Find the percentiles C-1(al) and C-1(a2) with al and a2 given by (3.14) and

(3.15) respectively which define a 100(1 - a)% BCa confidence interval for

In Chapter 4 two specific examples are examined by applying the bootstrap

percentile and BCa methods using both the pairs and residuals methods and it is shown

that for the specific model under investigation the bootstrap pairs method performs

poorly in comparison to the bootstrap residuals.
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Applications and Results

4.1 Introduction

The methods discussed in Chapter 3 are now considered for two specific examples.

The first example uses data describing (x, y) measurements made on bean root cells

(Ratkowsky, 1983, p. 88) to which a single logistic model is fitted. This is analogous to

an MLP comprising a single hidden-layer with one hidden unit with a logistic activation

function and no bias term. The logistic model is known to be generally well-behaved

in that it is c1ose-to-linear and is hence used as a reference. The second example

is a synthetic one in which the deterministic component of the model described in

Section 3.1, is represented by the sum of two logistic functions and the requisite data is

simulated. This example represents an MLP with a single hidden-layer with two hidden

54



CHAPTER 4

units with logistic activation functions and a bias term. For each of these two examples

standard errors and 95% confidence intervals for the predicted responses 7](xg , 0) for a

set of given x values, x g , were calculated using the methods described in Chapter 3,

and compared by means of coverage probabilities.

A coverage probability is defined as the probability that a confidence interval

with a nominal probability of 1- a contains the true value of the parameter of interest.

An observed coverage is the actual proportion of confidence intervals, constructed using

a particular method, that contain the true parameter value. If the process producing

the data is repeated a large number of times and the confidence intervals are exact then

the observed coverages will approach the nominal coverages. If the confidence intervals

are approximate, as in this study, the observed coverages will not approach 1 - a

exactly but, if the approximation is reasonably good, the observed coverage should be

close to the nominal value of I-a. Hence comparison of observed and nominal coverage

probabilities provides a useful tool for comparing different techniques for constructing

confidence limits.

In the present study, observed coverage probabilities are obtained by simu

lating a large number of data sets from the true model, setting confidence limits to

the parameter of interest, 7](Xg , 0), and then forming the ratio of the number of these

intervals that contain the true value to the number of simulations. For both of the

examples considered in this chapter 500 data sets were simulated for specified values of
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the parameters fJ and x, in line with the study of Donaldson and Schnabel (1987), and

the coverage probabilities calculated as

number of 'T}(xg1 fJ) E (Li1 Ui )

500
i = 1, ... ,500, (4.1)

where Li and Ui denote the lower and upper confidence limits of a 95% confidence

interval for the predicted response 7](xg , fJ) for the ith data set respectively. The

necessary programming was performed in GAUSS using the CURVEFIT module to fit

the nonlinear models.

4.2 Bean Root Cells Example

The data consist of fifteen (x, y) pairs of measurements on bean root cells where x

represents the distance from the tip of the root in intervals of 1 inch from 0.5 inches to

14.5 inches and y represents the water content in the bean root cell measured at the

point x. The model fitted to the data is of the form

(4.2)

Before const~ucting confidence intervals for 7](xg1 fJ) the PE and IN curvature measures

were evaluated to establish whether the model could be considered close-to-linear. As

stated in Section 3.2 if the PE and IN measures are less than the cut-off value of

1/(2#) = 0.268, where F = Fa,12,O.05 = 3.49, then the confidence intervals constructed
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using linearisation and likelihood methods are expected to be close to exact and the

coverage probabilitites should in turn be close to the nominal 95% level. The measures

of curvature for the bean root data set are PE = 0.372 and IN = 0.107. While

the intrinsic nonlinearity is less than the cut-off value of 0.268 the parameter effects

curvature is not. However, on the basis of simulation studies, Ratkowsy (1983, pp.66

68) claims that the parameter effects curvature in this example is not serious and hence

that the logistic model can be regarded as being close-to-linear.

4.2.1 Linearisation Method

To implement this method the error terms in (4.2) are assumed to be normally dis

tributed with mean 0 and unknown variance (j2. The least squares parameter estimates

for () and (j2 were found to be 8 = (21.51, - 3.957,0.622) and 8 2 = 0.518 respectively.

Approximate 95% confidence intervals were calculated using (3.5) with ti2 = 2.179 and

are illustrated in Figure 4.1 as plots of ±ti28e[1](Xg, 8)] versus X g , where x g E [0.5,14.5].

Observed coverages were obtained by simulating 500 data sets for model (4.2) for se

lected values of X g = 1.5,3.5, ... , 13.5, with () and (j2 equal to the least squares estimates

8 and 8
2 respectively, and these are presented in Table 4.1.
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1115 1
135

117.5 1 9.51 Method

Linearisation 0.954 0.958 0.962 0.962 0.946 0.942 0.948

Profile Likelihood 0.928 0.932 0.932 0.918 0.932 0.938 0.934

Percentile Bootstrap 0.910 0.902 0.908 0.886 0.894 0.890 0.886

Pairs

Percentile Bootstrap 0.932 0.940 0.932 0.932 0.930 0.934 0.944

Residuals

BCa Pairs 0.914 0.908 0.902 0.910 0.884 0.888 0.900

BCa Residuals 0.916 0.918 0.912 0.904 0.904 0.924 0.918

Table 4.1 : Coverage probabilities for the bean root data with a nominal level of 95%

and 500 simulations.

4.2.2 Profile Likelihood Method

The profile likelihood method discussed in section 3.3 requires the calculation of con-

ditional sums of squares S(iJ l77g) for each value, xg, which belongs to a chosen grid of

x-values. These sums of squares are obtained by reparameterising the expected response

(4.2) as
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Confidence
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-1.0

Figure 4.1: 95% Confidence limits for the predicted response for the bean root data

using the linearisation method

where 7]g = 7](xg , (J) is now a parameter in 7](x, (J), and by invoking the GAUSS module

CURVEFIT to minimise the associated error sum of squares, S(O l7]g), with 7]g fixed.

For each x g the resulting profile log-likelihood for 7]g was found to be approximately

quadratic, as illustrated in Figure 4.2 for xg = 5, and the confidence limits correspond-

ing to the two values of 7]g satisfying the equality in (3.8) were readily obtained by

means of the bisection method. A plot of the 95% confidence limits versus xg for a fine

grid of xg values over the interval [0.5,14.5], together with the 95% confidence limits

found using the linearisation method over the same xg values, is shown in Figure 4.3.
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8.667

5.6 6.1

~.

6.6 7.1 7.6

Figure 4.2: The profile likelihood graph for xg =5
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Figure 4.3: 95% Confidence limits for the predicted response for the bean root data

using the profile likelihood method (pink) together with the linearisation method (blue)
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Observed coverages for the profile likelihood intervals were calculated using the same

500 simulated data sets as for the calculation of coverages for the linearisation method

and are given in Table 4.1.

4.2.3 Bootstrap Methods

4.2.3.1 Percentile Method

The procedure described in section 3.4.1 using both the bootstrap pairs and bootstrap

residuals methods, was implemented for the bean root data. In each case 10000 boot-

strap data samples (X;(b), y;(b)), i = 1, ... 15, b = 1, ... ,10000, were generated from

A *(b)
the original data and the least squares estimates 6 and the predicted responses,

A*(b) . [1'TJ(xg ,6 ), for a fine gnd of xg values, xg E 0.5,14.5, obtallled for each such data set.

Approximate 95% confidence limits for TJ(xg , 6) were determined by ordering the boot-

strapped predicted responses in ascending order and selecting the 250th and the 9750th

ordered predicted responses as the lower and upper confidence limits respectively. The

95% confidence limits obtained using the bootstrap pairs method together with the

95% linearisation confidence intervals from section 4.2.1 are illustrated in Figure 4.4

while the 95% confidence limits obtained by means of the bootstrap residuals method

are depicted in Figure 4.5. The observed coverages were again determined from the 500

simulated data sets, as described in section 4.2.1, for both the bootstrap pairs and the

bootstrap residuals methods and these are summarised in Table 4.1.
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Confidence
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Figure 4.4: 95% Confidence limits for the predicted response for the bean root data us-

ing the percentile bootstrap pairs method (pink) together with the linearisation method

(blue)

4.2.3.2 BCa Method

BCa confidence intervals were calculated for the true predicted response, TJ(xg , 8), us-

ing the method described in section 3.4.2 for both the bootstrap pairs and residuals

methods. Specifically 10000 bootstrap samples for each method were taken and the

• • A *(b)
correspondmg predIcted responses, denoted by TJ(xg , 8 ), b = 1, ... 10000, calculated

and arranged in ascending order. The 95% confidence limits for TJ(xg , 8) correspond to

the (lOOaI)th and the (100a2)th percentiles of the distribution of the bootstrap pre-
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Confidence
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Figure 4.5: 95% Confidence limits for the predicted response for the bean root data

using the percentile bootstrap residuals method (pink) together with the linearisation

method (blue)

dieted responses, where C¥l and C¥2 are determined by (3.14) and (3.15) respectively. The

approximate 95% confidence limits obtained by means of the bootstrap pairs method

together with the 95% confidence limits obtained by the linearisation method, both

centred on 1](xg , 0), are shown in Figure 4.6 while Figure 4.7 shows the approximate

95% bootstrap residual confidence limits together with the linearisation confidence lim-

its. Coverages for each of the bootstrap methods were again determined using the 500

simulated data sets from section 4.2.1 and are recorded in Table 4.1.
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C onlidence
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Figure 4.6: 95% Confidence limits for the predicted response for the bean root data

using the BCa pairs method (pink) together with the linearisation method (blue)
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Figure 4.7: 95% Confidence limits for the predicted response for the bean root data

using the BCa residuals method (pink) together with the linearisation method (blue)
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4.3 Sum of Two Logistics Example

The second example comprises an MLP with one hidden layer consisting of two nodes

with logistic activation functions and a bias term and the associated nonlinear model

is therefore of the form

where

Yi = rt(Xi' B) + Ei i = 1, ... n (4.3)

(4.4)

The data were generated from this model assuming normally distributed error terms

{0.5, 0.5,1,-1,0.1,1, 1.5} and the x values were 25 equally spaced values in the interval

[-12,12] which produced a function as depicted in Figure 2.7. The resultant generated Y

values together with the x values are presented in Table 4.2. Interest again focuses on the

construction of 95% confidence intervals for the true predicted response, rt(xg , B), where

X g is a value in the interval [-12, 12], using each of the methods described in Chapter 3.

As for the previous example the curvature measures were investigated before proceeding

with the construction of the confidence intervals. The intrinsic nonlinearity and the

parameter effects curvatures were calculated as IN = 0.1411 and PE = 25.6250. A

curvature measure less than the cut-off value of 1/2v'2.58 = 0.311 renders the model

and data set under consideration close-to-linear. Thus the intrinsic nonlinearity
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x y x y

-12.0 1.5944 1.0 1.5749

-11.0 1.6226 2.0 1.3045

-10.0 1.6215 3.0 1.1668

-9.0 1.6114 4.0 1.1327

-8.0 1.6294 5.0 1.0776

-7.0 1.6492 6.0 1.0825

-6.0 1.6743 7.0 1.0827

-5.0 1.7077 8.0 1.0926

-4.0 1.7634 9.0 1.0846

-3.0 1.8317 10.0 1.1050

-2.0 1.8983 11.0 1.0972

-1.0 1.9395 12.0 1.0956

0.0 1.8281

Table 4.2 : Data for the sum of two lOgIStICS example

curvature is less than the critical value of 0.311 but the parameter effects curvature

is extremely large. According to Donaldson and Schnabel (1987) this should imply

that confidence limits calculated by the linearisation method will have coverages far

from the nominal value whereas confidence limits calculated by the likelihood method
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should have coverages close to the nominal value. Again, the observed coverages for

95% confidence intervals obtained by each of the methods of Chapter 3 were calculated

and used to compare the different techniques used to construct confidence intervals.

4.3.1 Linearisation Method

In order to use this particular technique normality of the error terms, i.e. Ei '" N(O, (J2),

i = 1, ... , n, must be assumed. In this particular example the data were generated such

that this assumption is valid. The least squares parameter estimates for () were found to

be (} =(0.9926,0.5745,1.0562, -1.1189,0.3498,0.7446,1.2593) and s = 0.01 was used as

the estimate of the unknown standard deviation, (J. Confidence limits at the 95% level

were then calculated for the true predicted response, 'T](xg , (J), where x g belongs to a fine

grid of equally spaced values in the interval [-12,12] again using (3.5) with t* = 2.101,

and these are illustrated in Figure 4.8. Coverages were obtained by simulating 500 data

sets from the model (4.3) using the true parameter values and are recorded in Table

4.3.for xg = {-10.0, -7.5, ... , 10.0}.
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Figure 4.8: 95% Confidence limits for the predicted response for the sum of two logistics

example using the linearisation method
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Figure 4.9: 95% Confidence limits for the predicted response for the sum of two logis-

tics example using the profile likelihood method (pink) together with the linearisation

method (blue)
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1-100 !-7.51-50 1-25 [OX

g

1 2.5 [50 1 7.5 1 10.0 I

Linearisation 0.956 0.944 0.948 0.956 0.962 0.942 0.932 0.952 0.938

Profile Likelihood 0.932 0.938 0.948 0.948 0.958 0.954 0.956 0.940 0.952

Percentile Bootstrap 0.890 0.920 0.926 0.954 0.980 0.958 0.928 0.918 0.898

Pairs

Percentile Bootstrap 0.922 0.942 0.928 0.936 0.920 0.934 0.926 0.920 0.914

Residuals

BCa Pairs 0.912 0.930 0.906 0.940 0.928 0.964 0.884 0.908 0.890

BCa Residuals 0.922 0.938 0.920 0.912 0.940 0.924 0.914 0.928 0.936

Table 4.3 : Coverage probabilities for the sum of two logistics example with a nominal

level of 95% and 500 simulations.

4.3.2 Profile Likelihood Method

The profile likelihood for "l(xgl 6) is obtained by reparameterising (4.4) as

where
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and "1g = "1(Xg,0) is a parameter in (4.5) and finding the least squares estimates 8(-5)I"1g

with corresponding conditional sum of squares 8(8(-5)I"1g) where x g is chosen from a

fine grid of x values, xg E [-12,12]. The resulting profile log-likelihood was found to

be approximately quadratic, the confidence limits were obtained as the solutions to the

equality given by (3.8) with t* = 2.101, and the approximate 95% confidence limits

for "1(xg,0) were again calculated through the bisection method for each of the given

x values, xg . The confidence intervals are illustrated together with the corresponding

linearisation confidence limits in Figure 4.9 and the observed coverages calculated from

the 500 simulated data sets used throughout this example are presented in Table 4.3.

4.3.3 Bootstrap Methods

4.3.3.1. Percentile Method

The data Was sampled using both the bootstrap pairs and bootstrap residuals methods

as described in section 3.4.1. For each method 10000 bootstrap samples were taken,

d d ( *(b) *(b»). 25 b 0 d "enote Xi ,Yi , 'L = 1, ... , , = 1, ... 1 000, an the corresponding predicted re-

A *b)
sponses,"1(Xg,O ), calculated for the selected grid of x values. Following the procedure

• .A*b) "
descnbed m Box 3.2, the "1(xg,O ) were placed m ascendmg order for each given x

value, xg , representing the distribution, C, of the predicted responses, and the requisite

95% confidence limits are the 250th and the 9750th percentiles of C. Figure 4.10 com-

pares the 95% percentile bootstrap pairs confidence interval with the 95% linearisation
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confidence interval obtained in section 4.3.1, and Figure 4.11 depicts the 95% per-

centile bootstrap residuals confidence interval together with the relevant linearisation

confidence interval. The above process was repeated for each of the 500 simulated data

sets from section 4.3.1 to determine the coverages of the percentile bootstrap pairs and

the percentile bootstrap residuals confidence intervals and these coverages are presented

in Table 4.3.

Confidence
Lim its

o 0 0 0 0 000

-0.10

Figure 4.10: 95% Confidence limits for the predicted response for the sum of two

logistics example using the percentile bootstrap pairs method (pink) together with the

linearisation method (blue) and the scaled data points (circles)
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Figure 4.11: 95% Confidence limits for the predicted response for the sum of two

logistics example using the percentile bootstrap residuals method (pink) together with

the linearisation method (blue)

4.3.3.2. BCa Method

The BCa method was also implemented using both the bootstrap pairs and the boot-

strap residuals methods. The data set was bootstrapped 10000 times and the bias,

i o, and acceleration, CL, terms calculated according to (3.17) and (3.16) respectively,

A *(b) .
CURVEFIT was used to obtain the least squares estimates B and hence the pre-

dicted responses T/(Xg,il(b») which form the distribution G. The 95% confidence limits

for the predicted response T/(xg,B) are the (100al)th and the (100a2)th percentiles of
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C, al and a2 determined by (3.14) and (3.15) respectively. Figure 4.12 shows the 95%

confidence limits obtained by means of the BCa method using bootstrap pairs together

with the 95% confidence limits obtained using the linearisation method. Figure 4.13

is essentially the same as Figure 4.12 but with the bootstrap residuals method used

to calculate the BCa confidence limits. The coverages were again obtained by means

of the 500 simulated data sets and are presented in Table 4.3 separately for bootstrap

pairs and bootstrap residuals methods.

Confidence

Lim its

0.2

Figure 4.12: 95% Confidence limits for the predicted response for the sum of two

logistics example using the BCa pairs method (pink) together with the linearisation

method (blue)
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Confidence
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Figure 4.13: 95% Confidence limits for the predicted response for the sum of two

logistics example using the BCa residuals method (pink) together with the linearisation

method (blue)

4.4 Comparison of Results

4.4.1 Bean Root Cell Example

As explained earlier the reason for selecting this particular example is the fact that the

logistic model is known to be close-to-linear and should therefore behave similary to a

linear model. The confidence limits obtained by the linearisation method and shown

in Figure 4.1 were used as a reference for the other confidence interval techniques
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considered in this study. Note that these confidence intervals are symmetric. The

model is close-to-linear, confirmed by the PE and IN curvature measures, and thus

the profile likelihood confidence intervals almost exactly mirror those of the linearisation

method as illustrated in Figure 4.3. Table 4.1 contains the observed coverages obtained

from 500 simulations of the bean root cell data for each of the techniques considered

and it is clear that the linearisation method outperforms the other techniques, with

coverages close to the nominal level of 95% over the specified grid of x values. The

profile likelihood method coverages were not as close as expected to the nominal level

of 95% and have a tendency to undercover over the domain of x values. The bootstrap

techniques were however disappointing. Figure 4.4 illustrates the erratic nature of the

bootstrap percentile pairs confidence intervals while Figure 4.5 depicts the bootstrap

percentile residuals method where a distinct displacement at the lower limit is clearly

evident. The coverages for the bootstrap percentile pairs and residuals methods, as

given in Table 4.1, are very low, particularly in the case of the percentile pairs method.

The BCa confidence intervals did not improve the percentile confidence intervals. In

fact the pairs method appeared to become even more erratic and this is illustrated in

Figure 4.6. The BCa residuals method corrected the displacement of the lower limit

but these confidence limits were not as variable as the pairs method as illustrated in

Figure 4.7. The observed coverages for the BCa techniques, presented inTable 4.1, are

again less than the nominal 95% level although perhaps not as severely in the case of
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the percentile residuals. A general trait of the bootstrap confidence intervals appears

to be that the observed coverages tend to be lower than the nominal 95% level over

the entire domain of x values. This is consistent with the figures depicting the various

confidence intervals.

4.4.2 Sum of Two Logistics Example

The observed coverages for the linearisation method, as detailed in Table 4.3, are good,

with a slight undercovering on the upper tail. This is somewhat surprising in view

of the fact that the parameter effects curvature measure is highly significant. Again

the confidence limits, determined by the linearisation method and shown in Figure 4.8,

were used for comparison with the other methods under consideration. The profile

likelihood method also produced observed coverages close to the nominal 95% level and

are presented in Table 4.3, but in contrast to the linearisation method exhibited a slight

undercovering on the lower tail. This is seen quite clearly in Figure 4.9 with the profile

likelihood confidence limits following closely the linearisation limits. Figures 4.10 and

4.11 depict the confidence intervals constucted using the percentile bootstrap pairs and

residuals methods respectively and as with the bean root cell example the pairs method

is erratic while the residuals method again follows the general shape of the linearistaion

limits but with the lower limit systematically displaced. The coverages given in Table

4.3 reflect the poor performance of these limits, again with severe undercoverage over
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the domain of x values. The BCa method did not improve on the percentile method, and

indeed the results from the BCa method were extremely erratic and thus disappointing.

The observed coverages for the BCa methods are detailed in Table 4.3 and are generally

far from the nominal 95% level and exhibit undercovering.

4.5 Summary

Overall the results for the models obtained by using both the linearisation and the

profile likelihood methods were surpisingly good. In fact, to quote Wu (1986) "The

linearisation method is a winner". In contrast the results obtained using the boot-

strapping techniques were poor. The strength of the bootstrap methods is that they

are based on the empirical distribution, C, of the data and do not rely on linear or

other approximations.

The poor performance of the bootstrap pairs method can, to some extent,

be ascribed to the fact that there are only four data points defining the steep slope

of the logistic model. This is shown in Figure 4.10 where the data points have been

appropriately scaledand overlaid onto the percentile bootstrap pairs confidence limits.

Indeed a straightforward calculation shows that

P(at least one of the specified four is missing) = t (~) (25 - i) 25 (_l)i+l = 0.8463
i=l 'I, 25

and thus that the probability of omitting at least one of these points in a bootstrap

77



Chapter 5

Conclusion

In this study a statistical approach to hidden-layer feed forward neural networks or

MLPs has been described and applied. The approach was found to be particularly

powerful in that it allowed the use of statistical theory to develop confidence intervals

for the predicted responses, which correspond to the outputs of a neural network. The

methodology of developing such confidence intervals, which is relatively unexplored in

the literature, is described and tested for two specific examples.

The results obtained for the three methods considered, i.e. the linearisation,

profile likelihood and bootstrap methods, were interesting. The linearisation method

gave good coverages and in addition is quick and easy to use. In comparison the profile

likelihood method is a more sophisticated method than the linearisation method. An

innovative and neat way of calculating the profile likelihood confidence intervals was
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presented and implemented on the two specific examples considered in this study. In

fact the confidence intervals obtained using the profile likelihood method produced very

similar results to the linearisation method, but it is not at all evident that the results

obtained are worth the additional computational effort in producing them.

The third method of constructing confidence intervals used in this study was

the bootstrap method. It was thought that the bootstrap methods would perform well

owing to the fact that bootstrapping is a nonparametric technique that relies on the

empirical distribution of the data. Due to the nonlinear nature of the models under

consideration, particularly in the case of the second example, the bootstrap methods

were thus expected to give good coverages. The results obtained proved otherwise and

the performance of the bootstrap methods was in fact disappointing. In particular

the bootstrap pairs method performed very poorly but this can be attributed to poor

sampling in that when resampling of the data takes place in order to form the bootstrap

samples, there is a high probability of not sampling points that are crucial to the

description of the function under consideration. The performance of the bootstrap

residuals method was better in comparison to the bootstrap pairs method but could

not compete with the likelihood-based methods. The BCa method was implemented

with the aim of improving the bootstrap confidence intervals, and while bias correction

took place in the case of the bootstrap residuals method, the bootstrap pairs method

produced even worse results, particularly in the case of the second example. The
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bootstrap methods are highly computer intensive and time consuming and it is quite

clear that there is no great benefit to be gained from using these techniques.

There are a number of interesting areas for future research emanating from the

present study. The methods described were applied to small data sets and it would thus

be interesting to apply the methods to large data sets. In addition some very interesting

work on the Bayesian approach to neural networks has been produced (Ripley B. D.,

1993; Bishop C. M., 1995; Neal, R. M., 1996; Ripley, B. D., 1996, pp. 163-168)and the

Bayesian approach can be used to set confidence intervals to the predicted responses of

these networks.
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