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ABSTRACT 

Although the leopard (Panthera pardus) is one of the more successful large carnivores, challenges for 

leopard conservation emulate those of other more endangered carnivores, and they are a model 

species for investigating issues affecting carnivore persistence worldwide. This thesis represents a six-

year study of leopard on the Karongwe Game Reserve, South Africa, which provided a unique 

opportunity to observe various aspects of behavioural ecology in the absence of prey availability 

constraints or human persecution. Small, enclosed reserves such as Karongwe make up 16.8% of the 

total land in South Africa and undertaking sound ecological research in these areas provides valuable 

data for evidence-based conservation and management. The leopard is notoriously shy and difficult to 

study and I used free darting and habituation to enhance visual observation, in order to understand the 

ecological processes influencing leopard reproductive success and survival. My results show that 

leopard in the high prey area studied, consume almost double the number of ungulates as leopard in 

similar habitats elsewhere. This generalist predator improved its hunting success by selecting 

vulnerable prey and selectively hunted in habitats of intermediate density, where preferred prey were 

most abundant. Ample nutrition played a key role in reproductive health and reduced the duration of 

reproductive parameters below that previously recorded in the literature. Any additional nutritional 

input could not translate into increased population growth as females were already reproducing 

optimally. Female territorial size and habitat selection were determined by the availability of riparian 

habitat and resources of their preferred prey. Territoriality however was governed by prey biomass. 

Neighbouring leopards were territorial, sharing little space (average 11% territorial overlap) and 

hunting five times more often in the core than in the rest of their territory. During periods of prey 

richness, females became more territorial and there was a positive “bottom up” effect through 

subadult recruitment. Density-dependent intraspecific and interspecific competition for limited space 

regulated the population around carrying capacity, and constrained population growth. These results 

provide fundamental baseline data about leopard in the absence of human disturbance, or prey 

constraints. They highlight that, although the influence of optimal nutrition is important in the 

reproductive health and territoriality of leopard, habitat quality and quantity are ultimately what 

govern leopard carrying capacity and population size. I provide baseline reproductive, carrying 

capacity and territorial data for agencies developing policy, and for setting priorities in conservation 

and management, as well as habitat protection and restoration, for not only this species but other 

threatened species as well.  
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CHAPTER ONE 

GENERAL INTRODUCTION 

1.1 Carnivores 

Human sentiment towards carnivores is a complex combination of fascination, reverence, fear and 

loathing which has led to a multifaceted situation where they are both protected and persecuted. Large 

carnivores require huge areas of space and often end up directly competing with humans for natural 

key resources (Woodroffe & Ginsberg 1998, Azevedo & Murray 2007, Balme 2009). As human 

populations expand, conservationists throughout the world are increasingly faced with declining 

carnivore populations, as a result of overkill (persecution and hunting) and habitat degradation 

(Caughley & Sinclair 1994, Woodroffe 2001). Globally, 22 of the 30 large carnivore species are 

endangered and all 36 Felidae species, with the exception of the domestic cat (Felis catus), have been 

classified as either threatened or endangered (IUCN 2008). Therefore, in our modern crowded world, 

complex conservation and management strategies are needed if the persistence of large carnivores is 

to be ensured (Mech & Goyal 1995, Linnell et al. 2001). 

 

1.2 Why are carnivores important? 

Large carnivore species are an integral part of a functioning ecosystem, fulfilling a multitude of 

crucial roles, including regulating mesopredators (Crooks & Soulé 1999), provisioning for scavengers 

(Wilmers et al. 2003),  moderating intra-guild competition among similar prey species (Miller et al. 

2001) and top-down regulation of ungulate populations (Hopcraft et al. 2010). Their presence in an 

ecosystem can therefore influence the flora and fauna, and help keep it in a more natural and diverse 

state than areas where there are no predators (Estes 1996, Terborgh et al. 1999). The disappearance of 

large carnivores from an ecosystem can result in a cascade of effects and changes through all trophic 

levels, reducing biological diversity, simplifying ecosystem structure and function, and interfering 

with ecological processes (Pace et al. 1999, Terborgh et al. 2002).  

 

1.3 The importance of collecting baseline data 

Historical data reference conditions against which current changes can be assessed (Dietl & Flessa 

2011); however, this cannot serve as an exact template for restoration in a changing world. Ecologists 

need to be forward thinking, and manage and develop ecosystems that will best function in the ever 

changing, human dominated conditions of the future. The use of relatively undisturbed reference sites, 

with similar historical ecology features to a disturbed site, can be used to create comparative baseline 

data used for gauging progress towards restoration targets and goals (Alagona et al. 2012). This 
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establishes a basis on which to compare the situation before and after an intervention, allowing 

inferences to be made about project efficacy or success (Dietl & Flessa 2011). 

  

Baseline data for large carnivores are severely lacking throughout their ranges. Their naturally low 

densities, and their nocturnal, shy and wide ranging behaviours, make them extremely difficult to 

study (Balme 2009). Without easily accessible research-based evidence, conservation mangers rely on 

limited experience-based information, developed from traditional land management practices (Pullin 

et al. 2004).  

 

1.4 Principal ecological data  

Conservation goals are determined by two main scales, at fine filter (genes, species and population) 

and coarse filter (community, ecosystem and landscape) levels (Schwartz 1999). Fine scale research 

can be expensive and complicated when trying to conserve a multitude of species, and coarse filter 

approaches make it difficult to assess the value of ecosystems for conservation (Hunter 2005).  Using 

flagship and umbrella species, a multi-scale conservation approach of integrating fine and coarse-filter 

designs, can be effective (Hunter 2005). Researching keystone or flagship species is a tool that 

provides conservation protection not only to the study species but numerous co-occurring species as 

well, while concurrently protecting large tracts of land (Roberge & Angelstam 2004). Having 

complete knowledge about the ecological requirements of keystone species as well as ecosystem 

processes has significant implications for ecosystem management and biodiversity enhancement 

(Simberloff 1998, Roberge & Angelstam 2004).  

 

1.4.1 Nutrient requirements 

The study of resource selection is a complex ecological area, because of the range of selection 

decisions reflecting the variation in resources on which each species depends (Sih 1987, Lima & Dill 

1990). What carnivores select to eat determines their fitness (Pyke 1984), population density (Boyce 

1989), reproductive success (Owen et al. 2010) and territoriality pattern. However, disproportionate 

selection pressures by predators can have an alarming impact on both prey biomass, and the system 

as a whole (Johnson 1980, Thaker et al. 2011). 

 

Depending on what prey predators select, and how they respond to changes in prey abundance, the 

effects on prey dynamics may be stabilising or destabilising (Fryxell & Lundberg 1994). Predators 

with a strong preference for specific prey (specialists) can destabilise a predator-prey system 

(Eubanks & Denno 2001), while predators consuming a wide variety of prey (generalists) can be 

generally stabilising (Lidicker 2000). If generalists continue to consume rare species this could lead 

to local species extinction, which has greater risk in small, enclosed reserves where resident prey 
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populations are often at low densities, and where predators can regulate and even limit prey (Power 

2002). It is important to uunderstand the variables that determine how carnivores select and capture 

prey, which can have a dramatic positive or negative influence on community stability and prey 

diversity (Snyder & Wise 2001). 

 

1.4.2 Reproductive systems 

Reproductive mechanisms are little understood in most felids due to their secretive behaviour, and 

difficulty in obtaining visual observations (Holt et al. 2003). Reproductive behaviours and 

mechanisms underlying reproductive success are particularly important because fitness is 

fundamentally a function of fecundity (Purves & Turnbull). The study of reproduction is therefore a 

crucial understanding to conserving species, populations, and indirectly to the vitality of entire 

ecosystems (Holt et al. 2003).  

 

1.4.3 Population ecology 

Population ecology studies the dynamics of species populations and how these populations interact 

with the environment (Kunkel et al. 2005). The rate at which animal populations increase is a result 

of several factors which vary widely among species. Abundance of environmental resources such as 

food, water and space determines how population abundance changes over time, in an inherently 

density-dependent bottom-up process (Sibly & Hone 2002). As populations increase, density-

dependent factors intensify, affecting individuals more strongly by decreasing reproduction and 

increasing mortality in overcrowded populations (Turchin 1999).  

 

Other density-independent, top-down processes e.g. abiotic events, density-independent social 

interaction (e.g. infanticide), natural enemies such as predators, parasites or human- caused mortality 

(Bowers & Harris 1994, Gomez & Zamora 1994, Kissui & Packer 2004, Moore et al. 2010), 

unrelated to population density, can reduce population size before density-dependent resource factors 

become important (Sinclair & Pech 1996). All else being equal, population size generally remains 

stable, close to carrying capacity, through a combination of both density-dependent and independent 

factors (Campbell 1993). 

 

1.4.4 Habitat requirements 

Habitat loss is a major driver of species loss worldwide (Foley et al. 2005). Given this, it is essential 

to establish how much habitat is needed to meet the definitive conservation objectives. The spatial 

extent of a conservation reserve determines its capacity for habitat support (Smallwood 2001). Large 

reserves are favoured because they meet conservation goals for species with large home ranges, are 

more resistant to disturbance and have increased habitat diversity and landscape heterogeneity, 
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thereby reducing the risk of species extinction (Schwartz 1999). Although large reserves provide 

many advantages over small reserves, reserve size does not accurately predict population size or 

diversity, because large, disturbance-prone sites may have lower diversity than smaller, higher quality 

sites (Schwartz 1999). High quality habitat (i.e. suitability) is one in which individuals can experience 

high survival and reproduction and, thus, the population has the potential for a high growth rate 

(Mitchell & Hebblewhite 2012). In a human dominated landscape there are often no alternatives to 

small reserves due to a high degree of habitat loss and fragmentation (Tscharntke et al. 2002). 

Understanding availability of prey resources and habitat selection within these small areas is vital to 

our ability to correlate habitat selection with population processes (Miquelle et al. 1999).  

 

Habitat selection has become the key factor in the life cycle of animals because it can affect most 

components of fitness and relates resources to survival and reproduction (Morrison et al. 2006). 

Understanding all four orders of habitat selection for a species; geographical range, home range, 

usage of habitat components within the home range (i.e., a feeding site), and the procurement of 

elements available within habitat components (i.e., food from the feeding site) provides a broad 

picture for species and ecosystem management and conservation (Johnson 1980).  

 

Carnivore spatial organisation is largely associated with key resource availability (Litvaitis et al. 

1986); however, where these resources are not limiting, the population is controlled by intraspecific 

territorial competition through territorial behaviour, mutual avoidance and aggression (Pierce et al. 

2000, Adams 2001). How organisms establish and use home range, although not a parameter of 

population ecology, is important for managing habitat for populations. Understanding the factors that 

can influence home range size and habitat selection facilitates an understanding of the optimisation 

process that involves habitat selection of food, density of conspecifics, body size and competitors, 

which have important management implications about habitat quality (Morrison et al. 2006).  

 

1.4.5 Resource limitations 

It is important to understand why carnivores live where they do and what resources contribute to and 

which limit their fitness. A limiting resource, or factor, is one in short supply among those that affect 

an organism’s growth, survival and reproduction (Kaiser et al. 1994). A limiting factor, (i.e. nutrition, 

water and space), inevitably has the potential to limit an organism.  However, only one will be the 

active constraint at a given point in space and time, and vital to ecology (Kaiser et al. 1994, Mitchell 

& Hebblewhite 2012). Understanding the functional links between limiting resources and species 

fitness is fundamental in conservation ecology.  
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Although small enclosed reserves offer great opportunities for conservation ecology, there are very 

real concerns about population genetics (Trinkel et al. 2011), dynamics, and risk extinction (Caughley 

& Sinclair 1994). A metapopulation approach will ensure that these can be avoided, and enable 

effective management practices to be implemented (Akcakaya et al. 2007, Kettles & Slotow 2009).  

 

1.5 Challenges of managing small reserves 

Over the past few decades wildlife tourism has increased significantly in South Africa, with the 

establishment of thousands (± 9000) of game-fenced small reserves  (<100 km2) whose primary 

objectives are to use natural resources to generate an income from ecotourism (Barnes 2001). These 

reserves accounts for 20.5 million hectares (16.8 %) of the total land in South Africa (Cousins et al. 

2008). The role of these private reserves could therefore be invaluable to conservation efforts in the 

country.  

 

Reserves that are too small to simulate nature and allow natural processes to function need to be 

managed to maintain a balanced bio-diverse ecosystem, through the regulation of population growth 

(Kettles & Slotow 2009),  genetic integrity (Trinkel et al. 2008) and structure, and balancing predator-

prey relationships (Van Dyk & Slotow 2003), in a financially sustainable way (Grubbich 2001, Riley 

et al. 2002). These challenges are compounded by strict fencing standards, substantially higher 

reproduction rates (Druce et al. 2004) and the immense pressure of tourists’ expectations of seeing the 

charismatic species (Swarbrooke 1999). 

 

An ecosystem has a limit to the number of individuals that it can support, and species need to be 

managed around their carrying capacity in order to address long-term sustainability and avoid 

impacting negatively on the ecosystem and its biodiversity (Sinclair 1989, Kettles & Slotow 2009). 

Especially important in small reserves are the genetic risk factors of inbreeding depression and loss of 

genetic variability (Trinkel et al. 2010), as a result of closely related individuals mating and producing 

offspring with reduced fitness, thereby increasing the population’s risk of extinction (Lande et al. 

1999, Trinkel et al. 2011). Unless numbers and inbreeding of top predators and mega fauna such as 

elephant are controlled, they have the potential to change the habitat and prey community composition 

(Peel & Montagu 1999). 

 

Game fences prevent natural ecological processes, which adversely affects population dynamics 

within a reserve (Lindsey et al. 2012). Practical tools which managers have, to manipulate population 

size and inbreeding, are translocation, culling/ hunting and contraception (Kettles & Slotow 2009). 

Translocation, although difficult due to recent legal changes and expense, is an effective management 

strategy used to regulate numbers, enhance genetics in wildlife populations (Trinkel et al. 2008), and 
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establish new populations (Griffith et al. 1989 428, Trinkel et al. 2008). The primary predator 

population regulation measure used in small reserves is the capture and removal of subadults (usually 

two years old) from the population, with older individuals occasionally being hunted (Vartan 2001, 

Kettles & Slotow 2009, Slotow & Hunter 2010). Having a metapopulation management plan between 

fenced reserves can ensure closed populations stimulate natural conditions in processes such as group 

dispersal (Gusset et al. 2006). Negative aspects of translocation include increased stress and mortality 

of relocated animals, negative impacts on resident animals at release sites, increased conflicts with 

human interests, and the spread of diseases (Chipman et al. 2008). Leopards are not constrained by 

fences, and edge effect from anthropogenic mortalities is high outside of reserves reducing the leopard 

conservation potential of conservation areas (Balme & Hunter 2004, Balme et al. 2010). Conservation 

corridors are needed between isolated populations to ensure safe emigration and immigration (Daly et 

al. 2005). 

 

Culling or hunting, for population control and for balancing male and female ratios, is common on 

wildlife reserves but raises serious ethical issues when directed at endangered and charismatic species, 

setting dangerous precedents when our intention should be to protect living creatures and their habitat 

(Slotow et al. 2008, Kettles & Slotow 2009). Culling at times may be the only option and mangers are 

expected to make these difficult decisions. 

 

Contraception might provide an alternative to culling and a long term solution for limiting numbers on 

Game Reserves (Orford et al. 1988, Delsink & Kirkpatrick 2012). What makes this solution attractive 

is that it is both practical and humane and has been very successful in controlling both lion and 

elephant populations (Orford et al. 1988, Delsink & Kirkpatrick 2012). Furthermore it seems to cause 

less disruption of biological processes, is reversible, and prevents genetic loss – especially useful in 

endangered species (Orford et al. 1988). 

 

Baseline ecological information from small reserves is essential for mangers to be able to assess 

population fluctuation (Lande et al. 1999), prevent inbreeding (Packer et al. 1991, Trinkel et al. 2010) 

and manage genetic flow (Grubbich 2001, Moehrenschlager & Somers 2004, Kettles & Slotow 2009, 

Trinkel et al. 2010). In the absence of historical baseline data, relatively undisturbed sites with similar 

ecological features to disturbed sites can be used as reference sites, providing a control in which we 

can measure human disturbance (Moehrenschlager & Somers 2004), justify recovery and restoration 

programs for endangered species, and recreate conditions that allow for ecological processes to follow 

a similar evolutionary path (Van Andel & Aronson 2006). 
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1.6 Leopard 

The leopard (Panthera pardus) is the most widely distributed and adaptable of the big cats, inhabiting 

much of sub-Saharan Africa and Asia, Middle East and Northern Africa (Nowell & Jackson 1996), 

and is the only large feline occupying habitats from rainforest to desert and all habitats in between 

(Skinner & Smithers 1990, Nowell & Jackson 1996) (Fig 1.1).  

 

 

 

 

 

Figure 1.1. A general geographic distribution of leopard (www.bbc.co.uk/nature/life/Leopard) 

 

They achieve this through highly adaptable generalist habitat (Bailey 1993) and feeding practices 

(Hayward et al. 2006), varying their behaviour according to the habitat occupied (Seidensticker & 

Lumpkin 1991, Bailey 1993).  

 

Despite their incredible ability to adapt, of the nine subspecies of leopard three are listed as “Critical” 

and almost extinct, and two are listed as “Endangered” (IUCN 2008). In 2008, leopard in South Africa 

were classified as “near threatened” by the IUCN (IUCN 2008). Although common in some areas, 

their populations are fragmented and numbers continue to decline outside large government reserves, 

because of persecution (Balme 2009), habitat loss, fragmentation (Wilcove et al. 1986) and 

degradation (Rojas et al. 2011), and may soon be listed as “Vulnerable” if numbers continue to 

decline (Henchel 2008).  

 

Leopards are a top predator and the most adaptable, and hence the most widespread, wild 

representative of the family felidae (Nowell & Jackson 1996). They, are also the most elusive and 
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least studied of all the large African felids, and visual behavioural information essential to their 

effective management and conservation is sorely lacking throughout their range (Daly et al. 2005). A 

large number of studies using non- invasive study methods such as camera traps (Balme & Hunter 

2004, Kawanishi & Sunquist 2004, Soisalo & Cavalcanti 2006), spoor analysis (Schaller & Crawshaw 

1980, Bothma & le Riche 1984, Stander et al. 1997, Kerley et al. 2003) and faecal analysis (Mizutani 

& Jewell 1998, Hayward et al. 2006) have been conducted, and although they provide useful 

information, the diversity of emerging ecological information is nominal.  

 

Because of the difficulties of monitoring species of cryptic nature, inhabiting extensive areas in 

difficult terrain, relatively few studies on leopard have been carried out where continuous visual 

observations were possible (Eibl-Eibesfeldt 1970, Balme & Hunter 2004). Bertram (1982) wrote that 

“the quality and quantity of information obtainable in an ecological study is directly related to sample 

size and the number and regularity of visual observations.” Although these criteria present relatively 

few challenges with predators such as lion (Panthera leo) and cheetah (Acinonyx jubatus), which are 

often unconcerned by vehicles, for example, the locating of the elusive leopard is a daunting task. The 

leopard relies on concealment to survive, and because of its inaccessible habitat, attempts at in-depth 

studies have been avoided, and the management of leopards, especially in small enclosed reserves 

where they have the potential to regulate prey, is often not tackled or tackled without sound baseline 

data. 

 

Like their relative the lion, leopard are capable of realising that vehicles are non-threatening in areas 

where they are only viewed (Hes 1991).Through reduced capture-stress and correct habituation 

techniques, visual observations can be improved (Herrero et al. 2005). The Karongwe Reserve, where 

my study was conducted, supports a healthy population of leopard and many of their key prey species. 

It offers an excellent opportunity to examine leopard ecology and biology in the absence of human 

persecution.  

 

Ongoing habitat fragmentation has led to concerns regarding minimum viable populations, and the 

number of individuals that will ensure the survival of isolated populations is the key factor 

challenging leopard conservation in South Africa (Daly et al. 2005). Leopards are so successful 

because, unconstrained by fences, they move freely, ensuring a metapopulation flow between 

populations (Balme & Hunter 2004, Swanepoel 2008). Unfortunately, while protected in wildlife 

reserves, they continue to be persecuted on the boundaries and outside these sanctuaries by legal 

hunters, poachers, farmers with destruction permits and often by indiscriminate inhumane illegal 

methods (Balme & Hunter 2004).  
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A 2005 population habitat viability assessment of the leopard population in South Africa concluded 

that, although the overall leopard population was likely to persist, it was the small, isolated 

populations, with low genetic flexibility and reduced ability to cope with any additional human-

related mortalities, that were likely to become locally extinct (Daly et al. 2005, Whittaker & 

Fernandez-Palacios 2007). Eliminating illegal hunting would have a significantly positive impact on 

survival of local populations, all of which would then have zero risk of extinction in the next 100 

years (Daly et al. 2005).  

 

The key to ensuring the future of the leopard in this fragmented environment lies in an 

interdisciplinary approach to conservation, requiring the integration of data and information with the 

experience and perspectives of different stakeholders (Marzano et al. 2006). Understanding leopard 

resource requirements, habitat size, quality, and connectivity, along with issues of conflict, land use, 

and the needs of local people, will be vital (Swanepoel 2008).  

 

Leopard conservation challenges mirror those of other more endangered carnivores and are an 

excellent ecological model for understanding the issues that affect the persistence of not only large 

carnivores but felids in general (Cousins et al. 2008). The conservation of carnivores can only be 

effective if protection programs and specific initiatives are based on baseline research information of 

how they utilise, share and compete for available habitat and other resources (Jackson 1996). Even 

though ecological parameters may vary among species in response to different climates, habitats, prey 

densities, and other environmental factors, the detailed results presented in this thesis could assist in 

developing effective world-wide conservation strategies for the long-term survival of carnivores 

(Kerley et al. 2003). 

 

1.7 Research  objectives 

The Karongwe Game Reserve supports a healthy population of leopard, and abundant and diverse 

prey species. The reserve’s extensive road network offered an excellent opportunity to visually 

examine leopard ecology in high quality habitat, in the absence of human disturbance and forage 

limitations. Overall study objectives were to successfully habituate leopards, thereby making it 

possible to visually gather detailed data, and examine aspects of their ecology including feeding, 

reproduction, sociality and territoriality.   

 

1.8 Research questions 

1) How best to go about studying leopard; how to improve visual observations for research purposes; 

and what is the relative effectiveness and efficiency of different techniques? 
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2) How does prey richness influence leopard foraging ecology, and what are the management 

implications in a small, enclosed reserve?  

3) How does prey richness influence leopard reproduction parameters?  

4) How does  prey richness  influence leopard population growth? Is the leopard population able to 

limit itself in the absence of forage limitation and human persecution? If so, what limits the 

population? 

5) How do forage availability and population density influence, territory size and overlap; and does 

territoriality regulate population density? 

 

1.9 Overview of the thesis 

This thesis was divided into nine chapters, an introduction, study site description, description of 

general methods, five data chapters and a general discussion. Chapters 4 to 8 were independent papers 

structured for journal publication. Chapter 6 has already been published. A complete description of 

the study area can be found in Chapter 2. References are available at the end of each section and paper 

chapter. The individual chapters were collated into a comprehensive document of baseline data that 

together answer the questions being asked about leopard conservation and management in a 

fragmented environment. 

 

The objectives of the specific chapters were as follows: 

In Chapter 4, I examined the costs of free darting, collaring / implanting and habituating leopard, I 

assessed the pros and cons of collars and implants and investigated habituation, for the enhancement 

of data collection and management purposes. 

 

In Chapter 5, I investigated how resource richness influenced leopard foraging ecology in a small 

enclosed reserve and the ecological ramifications that affect leopard conservation and management.  

Using belly scores and kill data, I investigated foraging behaviour as follows: (1) I identified the 

principal prey species of leopard and calculated prey biomass removal, (2) quantified kill frequency in 

each habitat, (3) identified leopard prey selection with respect to species, size, age and sex, (4) 

determined habitat selection of principal prey species and (5) ascertained whether leopard hunting-

habitat selection matched the habitat selection of their principal prey. 

 

In Chapter 6, I investigated the reproductive biology of free-roaming leopards. Reproductive and 

copulatory behaviour was studied to understand the mating system of leopards, and how reproductive 

parameters influenced population growth. I examined the different aspects including, copulatory 

behaviour, reproductive rate, seasonality, birthing intervals and natal dispersion.  
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In Chapter 7, I investigated leopard population biology as follows: (1) I calculated population size, 

(2) defined the density-dependent and independent processes that stabilised the population, and 

identified the causes of fluctuation and instability, (3)  identified the bottom-up resources responsible 

for population limitation and (4) ascertained which age groups were most influenced by these 

stabilising or destabilising processes. 

 

In Chapter 8, I investigated prey biomass, population density and seasonal influence on intraspecific 

territorial size and overlap, in order to understand how territoriality regulated population density. I (1) 

calculated home range size and overlap of all adult breeding females, (2) determined how prey 

biomass, population density and season influenced territorial size and overlap and (3) investigated 

prey use within territories. 

 

In Chapter 9, A final chapter to the thesis linked the results from the chapters together, and indicated 

gaps in our knowledge, and directions for further research. 
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CHAPTER 2  

STUDY AREA 

2.1 Location and topography 

Karongwe Game Reserve is 8500 ha in area (Longitude 30°64'; Latitude 24°30') and lies at the foot of 

the Drakensberg Mountains in Limpopo Province, South Africa. Created in 1999, Karongwe consists 

of six farms with common internal fences removed. The landscape combines riverine, undulating 

terrain and rocky outcrops. Elevations range from 480 m above sea level in the northeast, on the 

Makhutswi River, to 520 m at Beacon Rock in the central southern area. Karongwe is drained by the 

perennial Makhutswi River in the north, the annual Mafunyane and Kuvyenami Rivers in the central 

section and the Karongwe and Matumi Rivers in the south. All these rivers flow west to east, with the 

Mafunyane and the Kuvyenami eventually flowing into the perennial Makhutswi, which roughly 

forms the northern boundary of the reserve (Fig 2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Karongwe Game Reserve map, of lodges, residential areas, rivers and reserve boundaries. 
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2.2 Geology and soils 

The soils are predominantly derived from biotic gneiss in the north and coarse grained, quartz rich 

biotite-Muscovite in the south (Peel & Peel 2000). The substratum is characterised by well drained 

inferior nutrient sandy soils in the uplands and high nutrient clayey soils with high sodium content in 

the bottomlands (Low & Rebelo 1998).  

 

2.3 Vegetation 

Karongwe is found within the savannah biome of southern Africa, with mixed Lowveld bushveld 

(Type 19) and Mopane bushveld (Type 10) as the dominant vegetation types (Low & Rebelo 1998). 

Mixed Lowveld bushveld is characterised by a large number of tree species including Combretum 

apiculatum and Combretum zeyheri, Sclerocarya birrea, Acacia nigrescens, and within the scrub 

layer by species such as Cissus cornifolia, Dichrostachys cinerea, Acacia exuvialis and Dalbergia 

melanoxylon. The Mopane Bushveld is characterised by a fairly dense growth of Colophospermum 

mopane trees and mixtures of C. mopane and C. apiculatum (Low & Rebelo 1998). The vegetation is 

classified as sweet woodland savannah (Acocks veld type II) and supports a large variety of ungulate 

species (Acocks 1988). It is characterised by a grassy ground layer and a distinct upper layer of 

woody plants (Low & Rebelo 1998). The tree layer usually consists of a discontinuous crown cover of 

2-10 m, which overlies a grassy layer 0-2 m tall. There may be an intermediate layer of small trees or 

scrubs present, and the grass layer may be temporarily absent or replaced by dicotyledonous herbs 

during drought or other disturbance (Kunstler et al. 2009). Habitat on Karongwe consists of the 

following physiognomic classes: Closed riverine (1.6%) consisting of gallery forests along rivers; 

Open riverine (15.8%) consisting of open canopy forest with thick under story along rivers and 

drainage lines; Closed woodland (54.4% of area) consisting mainly of Combretum and Mopane 

woodlands with closed tree canopies; Open woodland (24.1%) consisting mainly of Acacia with 

separated tree canopies; and Open scrub (4.1%) consisting of old agricultural lands now reverting to 

open scrub habitat. 

 

2.4 Climate 

The area is a characterised by hot, rainy summers and warm dry winters with an annual average 

precipitation of 487 mm. The first rains typically fall in September or October and the majority of the 

reserve’s precipitation occurs during November and March. Annual precipitation recorded during the 

study varied from a low of 170 mm in 1997 / 1998 to a high of 952 mm during 1999 / 2000, an 
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exceptionally wet year (Appendix A-1). The daytime temperatures range from 3 °C in the winter 

months to as high as 40 °C in the summer months (Climate information office, 2000, pers. Comm.1)  

 

 

 

 

 

Figure 2.2 Habitat types of Karongwe Game Reserve  
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2.5 Water 

Water availability is not limited, as animals have access to natural rivers as well as artificial 

waterholes across the whole reserve throughout the year (Fig 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Map of Karongwe Game Reserve indicating the positions of annual and perennial rivers 

and water points.  
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2.6 Fauna found on Karongwe during the study 

Prior to 1999, ungulate species already occurred in large numbers and only 20 zebra were 

reintroduced (Table 2.1). Following the reintroduction of elephant (Loxodonta africana), lion 

(Panthera leo), cheetah (Acinonyx jubatus), spotted hyena (Crocuta crocuta), wild dog (Lycaon 

pictus), serval (Felis serval), white rhino (Ceratotherium simum) and hippopotamus (Hippopotamus 

amphibius), almost all the medium and large mammal species that were historically indigenous to the 

area had been reintroduced (Table 2.2). Leopards were naturally occurring, and none were 

reintroduced. 

 

The following guilds were present on the reserve: 

1. Bulk grazers: white rhinoceros, hippopotamus, zebra (Equus burchelli), waterbuck (Kobus 

ellipsiprymnus), buffalo (Syncerus caffer) (only present in an isolated 150 ha disease free buffalo 

breeding project). 

2. Selective feeders: blue wildebeest (Connochaetes taurinus), red hartebeest (Alcelaphus 

buselaphus), warthog (Phacochoerus aethiopicus), gemsbok (Oryx gazella), eland (Taurotragus 

oryx). 

3. Mixed feeders: impala (Aepyceros melampus), elephant, grey duiker (Sylvicapra grimmia), 

steenbuck (Raphicerus campestris). 

4. Browsers: giraffe (Giraffa camelopardalis), kudu (Tragelaphus strepsiceros), bushbuck 

(Tragelaphus scriptus), nyala (Tragelaphus angasii), klipspringer (Oreotragus oreotragus). 

5. Carnivores: lion, cheetah, leopard (Panthera pardus), black backed jackal (Canis mesomelas), 

side striped jackal (Canis adustus), serval, wild dog, African wild cat (Felis lybica), caracal (Felis 

caracal), spotted hyena, brown hyaena (Hyaena brunnea).  

6. Other smaller species including chacma baboon (Papio ursinus), vervet monkey (Cercopithecus 

pygerythrus), pangolin (Manis temminckii), scrub hare (Lepus saxatilis), greater canerat 

(Thryonomys swinderianus), porcupine (Hystrix africaeaustralis), Cape clawless otter (Aonyx 

capensis), honey badger (Mellivora capensis), African civet (Civettictis civetta), small-spotted 

genet (Genetta genetta), large-spotted genet (Genetta tigrina), yellow mongoose (Cynictis 

penicillata), slender mongoose (Galerella sanguinea), white-tailed mongoose (Ichneumia 

albicauda), water mongoose (Atilax paludinosus), banded mongoose (Mungos mungo), dwarf 

mongoose (Helogale parvula), Aardvark (Orycteropus afer), rock dassie (Procavia capensis), 

lesser bushbaby (Galago senegalensis), and thick-tailed bushbaby (Galago crassicaudatus). 
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2.7 Human activities 

Prior to the removal of internal fences in 1999, the land was principally utilised for game farming and 

hunting and was already well stocked with ungulates. Karongwe was initially established to create a 

reserve large enough to sustain large predators and mega herbivores to enable the reserve to receive 

“Big Five” status. Of the six major landowners and nine minor landowners (1ha stands), only two of 

the major landowners possessed commercial lodges, Edeni Lodge on Nyathi which was 

predominantly hunting, and Wait a Little Lodge, a horseback safaris lodge on Wait a Little. Three 

minor landowners possessed commercial lodges from which landowners received income through 

traversing rights across the reserve (Figure 2.1). 

 

Today, the reserve, with Big Five status, is primarily orientated towards tourism which is its main 

source of income. The Karongwe Game Reserve consists of five main lodges. Ingwe Lodge is capable 

of sleeping 60 people and has game viewing vehicle rights for six ten-seater vehicles, Kuname Lodge 

can sleep 10 people (one vehicle right), Edeni Lodge can sleep 120 (six vehicle rights) and Makutsi 

Lodge can sleep 120 (three vehicle rights). Wait a Little is a horseback safari lodge sleeping eight, and 

traverses the reserve on horseback (fig. 2.1). Driving rights are charged per vehicle, with unrestricted 

travel in the reserve. An individual lodge, such as Edeni Lodge, may put as many vehicles as they 

require on their own farm, Nyathi, however their allocation of vehicle rights means they may only use 

up to six vehicles to traverse the rest of the reserve. Makutsi Lodge specialises in long staying guests 

and uses minibuses to take tourists to local tourist attractions. They only put three vehicles on the 

reserve at any one time. Apart from the lodges Karongwe has 10 residential establishments, in four 

residential areas (Fig. 2.1). Each residential owner receives the right to one non-commercial game-

viewing vehicle, after having undertaken training to become an honorary field guide. In 1999, only 

two commercial game viewing vehicles traversed the reserve. Today (2012) up to 16 such vehicles 

view the wildlife daily, and an additional 10 non-commercial vehicles may be on the reserve, 

particularly on weekends and holidays.  

 

The Karongwe Game Reserve has no 1 km² block without an accessible road (Fig 2.4). The reserve 

utilizes a radio communication system that controls vehicle activity around the vicinity of large 

predators, elephants and rhinoceroses. The vicinity of the animal is defined as an estimated 500 m 

radius area around the location of the individual. A maximum of three vehicles are allowed at the 

sighting, to obtain visual contact, and an additional two vehicles in the vicinity may wait on standby 

to enter the sighting itself at any particular time. As soon as a vehicle leaves the area of visual 

observation another one can enter. The first vehicle at a sighting usually assesses the status and 

direction of movement of the animal before contacting other game drives in the vicinity, and before 
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specifying the direction of approach for the rest of the vehicles towards the sighting, so as not to block 

the animal’s path, or cut off its escape route, or to encircle animals by approaching from all directions 

at once. Off road driving is permitted for a confirmed visual sighting and while following one of the 

Big Five. The main game drive times are during the morning periods between 6:00 and 9:00 and 

during the afternoon periods between 15:30 and 19:30.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Map of Karongwe Private Game Reserve displaying the extensive road network  

 

2.8 Reserve aims 

The reserve’s main aims were to manage and conserve wildlife and their habitat, and enhance the 

wildlife viewing experiences in order to generate enough economic benefits to sustainably run the 

reserve (Swarbrooke 1999). This was achieved by considering all aspects of biodiversity and by 

making balanced decisions derived from practical experience as well as continuous research and 

monitoring. Economic benefit was derived from tourism and game sales, and, in order to increase 

wildlife viewing opportunities, the reserve was restored as far as possible to its natural state. In 
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addition, programmes aimed at rehabilitating the habitat were implemented, for instance the control of 

bush encroachment that had resulted from overgrazing (Smit 2004), and the removal of alien plant 

species (Nel et al. 2004), internal fences and disused buildings. These programmes were a crucial part 

of the process of achieving the reserve goal of providing the desired wildlife viewing experiences to 

visitors.  

 

Management actions in the Karongwe Game Reserve were directed towards maintaining wildlife 

populations and habitats. These included annual aerial game counts (Jachmann 2002), patch mosaic 

burning (Parr & Andersen 2006), elephant impact studies (Guldemond & Van Aarde 2008), 

vegetation surveys (Peel & Peel 2000), ground counts (Hirst 1969) and culling of excess animals 

when necessary.  

 

Annual aerial ungulate counts in September were undertaken using a Bell Jet Ranger helicopter for an 

eight-hour period starting at 8 am. Using a GPS-aided computer to guide the helicopter pilot, 300 m 

wide strips were flown throughout the reserve. A computer-mapping program was used to plot the 

location of the animals, which reduced the chances of replicate counting. Weather conditions, dense 

vegetation, spotting, counting problems and drought can all impact on the accuracy of the game count 

(Jachmann 2002) (Table 2.1). Quarterly ground counts were undertaken in which five circuits of a set 

route were carried out over five days to assess the age and sex ratios of the ungulate population (Hirst 

1969). 

 

Fires are a determining factor in the dynamics and structure of almost all terrestrial ecosystems (Bond 

et al. 2004). Controlled burning was dependent on seasonal rainfall, and the decision to burn was 

made on an annual basis. Patch mosaic burning was undertaken to remove moribund and/or 

unacceptable grass material, eradicate or prevent encroachment of undesirable plants and to create 

fire-breaks, to limit the damage of unplanned fires (Parr & Andersen 2006) (Appendix A-2).  

 

Culling was used to redress any imbalance in the ungulates’ sex ratio, with carcasses being supplied to 

predators in holding pens or sold for meat. Annual vegetation surveys (Peel & Peel 2000) were carried 

out to assess the grazing quality and the ecological carrying capacity of the reserve. Additional 

vegetation surveys were designed to assess the impact elephants were having on the reserve. Daily 

monitoring on selected species: elephant, white rhinoceros, lion, cheetah, leopard, spotted hyaena and 

wild dog were carried out.  
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Table 2.1: Ungulate game count figures undertaken annually on Karongwe from 1999 – 2005,  

 and their mean biomass weights (Bothma 1996). 

 

Species 1999 2000 2001 2002 2003 2004 2005 

Mean 

biomass 

(kg) 

Bushbuck 178 58 96 127 56 14 21 2318 

Common Duiker 32 11 16 18 22 29 17 228 

Eland 4 4 0 0 0 0 0 2200 

Gemsbok 10 3 0 0 0 0 0 1430 

Giraffe 65 85 79 80 90 66 73 57643 

Red Hartebeest 42 21 17 7 4 2 0 1528 

Impala 1816 1953 2140 1782 1252 930 1124 64254 

Kudu 161 183 166 144 140 154 118 20772 

Nyala 27 19 20 27 30 11 15 1547 

Steenbok 8 1 3 2 3 1 2 29 

Warthog 146 244 261 266 119 113 138 5332 

Waterbuck 278 254 231 205 185 149 185 43463 

Blue Wildebeest 289 282 239 321 298 219 203 48073 

Zebra 172 195 171 206 190 159 152 38417 
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Table 2.2: Large predator and large herbivore numbers on Karongwe at the beginning of each study 

year from 1999-2005. 

 

  

1999-

2000 

2000-

2001 

2001-

2002 

2002-

2003 

2003-

2004 

2004-

2005 

2005-

2006 

Large Predators        

Cheetahs  5 13 9 15 12 9 8 

Hyaena  - - - 5 7 11 11 

Leopards  13 16 24 25 19 12 4 

Lions - 6 8 10 8 10 8 

Wild dogs - - 4 9 13 4 0 

Large Herbivores        

Elephant  - 10 12 13 15 15 16 

Hippopotamus 3 11 12 15 16 16 17 

Rhinoceros - 5 5 4 4 5 6 

 

- Indicates that the species was not present on the reserve and the year of introduction is 

indicated by the appearance of a number. 
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CHAPTER 3 

STUDY METHODS 

3.1 Introduction 

This thesis is prepared in such a way that each chapter may be read as an independent paper. Methods 

and techniques are described in the relevant chapters (papers). This chapter thus serves as a 

comprehensive methodology, not possible to describe in all chapters due to word restriction for 

publication.  

 

During the first year, all fieldwork was successfully undertaken without the need for a field assistant. 

During the following years field assistance was provided by Keri Research, an ecological research 

organisation operating on the Karongwe reserve where the study was carried out. Sophie Niemann 

joined the project in the second year for one year, when it became evident that an additional assistant 

was required. Sophie was replaced by Ivan Killian who was in turn replaced by Lorna Struthers. On 

Lorna’s departure in 2003, Monika Lehmann, and Brigitte De Coriolis joined the project for the last 

two years, when two field assistants were necessary. From October 2001 four field researchers were 

also provided by Global Vision International, to assist with reproductive data collection. This ensured 

that from 2003 at least three vehicles were on the reserve daily, collecting data. Philip Owen, the 

reserve manager, dedicated a large portion of his time to habituating leopards, and was instrumental in 

ensuring immobilisations were undertaken in a manner that would improve habituation and increase 

wildlife viewing. 

 

3.2 Road map construction 

A map of Karongwe detailing road positions, koppies and waterholes was created using the Cartalinx 

GIS programme (Clark Labs, Clark University, Worcester, USA). Using a Garmin legend GPS datum 

WGS84, linked to a laptop computer, each road on the reserve was driven and recorded via the Global 

Positioning System into a laptop computer. Junctions were marked so that, once the data collection 

was complete, the map could be tidied by snapping the nodes of each road crossing a junction 

together. Koppies, water points and dams were marked as waypoints and labelled while driving. The 

Cartalinx road map and the aerial photograph were brought into the Global Information System 

ArcGIS (ESRI), where rivers and drainage lines were digitized from an underlay of the photograph as 

accurately as possible. 
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3.3 Habituation additional methods 

Karongwe is a tourism destination and it was necessary to ensure that research conduct did not 

conflict with the main income and objectives of the reserve. There are various ways of studying 

leopards, and this chapter highlights methods that could improve the chance of both habituating 

leopards and enhancing visitor’s experience, through sensitive capture and handling techniques, 

discreet tracking devices and a post immobilisation habituation. People can, need to, and are co-

existing in close proximity with leopards. This occurs at a variety of places, with acceptable safety for 

both people and leopards. Maintaining safe environments for leopards and people viewing them 

requires active management, of people and leopards. Managers need to develop plans that specify the 

extent to which leopard-to-people habituation will be encouraged or discouraged. These management 

plans need solid scientific underpinnings and a broad understanding of habituation and other 

processes that may lead leopards to accept people at close distances. This is the first study that I am 

aware of where habituation of a focal species was a management objective. Habituation of wildlife is 

normally considered a management problem (Burger 1981, Henson & Grant 1991, Fernandez & 

Azkona 1993, Holmes et al. 1994, Steidl & Anthony 1996, 2000, Swarthout & Steidl 2001, Mann et 

al. 2002, Swarthout & Steidl 2003, Johnson et al. 2005). In areas that are changing from agriculture to 

nature-based ecotourism, and where wild animals may have been historically persecuted and have 

become secretive, habituation may be critical to the success of commercial ventures. Specific research 

objectives were to describe free darting as a capture method of leopards and highlight elements that 

could influence the ability to habituate leopards. 

 

3.3.1 Capture and immobilisation  

Immobilisation equipment 

The immobilisation darts were reusable, accurate and reliable. Needles were made from stainless steel 

and available in lengths ranging from 20-100 mm with or without collars and barbs. The smallest 

needles (20 mm) without barbs were opted for, as the dart dislodged readily, reducing distress. The 

entry wound was also minimised and no surgery was required to remove the dart. A collared needle 

was used if leopards were darted harder and from a further distance. The flat end of the collar was 

filed-down, making it more rounded and easily dislodged. This ensured that the dart stayed in just 

long enough to inject but did not remain in long, which prevented it from flapping against the 

leopard’s body as the subject fled.  

 

The dart gun had the capacity to fire over a range of 10-60 m for difficult subjects; however, to 

prevent accidents or undue distress, a short distance of 10-20 m and soft penetration were selected. 

Soft penetration was achieved by reducing the pressure on the gun at least 2 bars lower than that 

recommended by the manufacturer. For example, if five bars at 10 m were recommended, then the gas 
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was set to three bars. Darts were fired into the rump or shoulder of the leopard. Visual surveillance of 

the darted leopard was maintained until the drugs took effect and then the vehicle’s engine was 

switched off.  

 

Immobilisation drugs  

All leopards were immobilised with Zoletil 100 (Virbac, Republic of South Africa), a mixture of 

tiletamine hydrochloride, an analogue of ketamine in a 1:1 combination with zolazepam. It was used 

because of its wide margin of safety and dissociative properties (Dr. P. Rogers 2000, pers. comm.2). 

In leopards, 4-6.5 mg/kg were used by intra-muscular injection. Occasionally leopards required an 

additional injection if, for example, a dart syringe failed to discharge properly, if it was deflected by 

the leopard’s movements, if weight was underestimated or if the animal had recently consumed a 

sizeable meal. 

 

Immobilisation procedure 

When leopards were located by researchers or game drive vehicles, Dr. P. Rogers was contacted to 

undertake the darting. Once visual of the leopard was obtained by the veterinarian the time, location 

and odometer reading was recorded. The leopard was followed in a vehicle until an opportunity 

presented itself and the vegetation type was open enough to ensure that the darted leopard could be 

followed and located easily post-darting. When darting without a collared needle the dart was fired 

from 10 m at three bars or less. When darting softly the darter needed to aim higher as the dart 

travelled in a flatter trajectory and lost height more quickly. In order to dart softly, the darter needed 

to be experienced and practice regularly because the dart was slow travelling, and anything from wind 

to a branch could change the course of the dart. If a dart was fired hard and at speed, the dart was 

more likely to bounce out before discharging and a collared dart was then used. Barbed darts were 

avoided because the flapping motion of the dart against the leopard’s body as it ran caused the animal 

to flee further. Once the leopard was immobilised, the time, location and odometer reading were re-

noted. Visual was maintained of the immobilised leopard until the subject became stationary 

(Appendix A-3). Vehicle engines were switched off and noise kept to a minimum until 10 min had 

elapsed and the subject was fully sedated. 

 

Immobilising females consorting with a male 

The same method was used when female leopards were immobilised while mating with a male. Once 

the female was darted, a vehicle was driven between the male and the female to prevent him causing 

injury to her while the drugs took effect. The female was then loaded onto a vehicle and driven a safe 

                                                 
2 Dr. P. Rogers, Wildlife Veterinarian, Hoedspruit. 
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distance away (+/- 1km), where she was processed. The effect the presence of a habituated male had 

on the ease with which a female was immobilised was examined. 

 

Processing immobilised subjects 

An immobilised leopard’s eyes remained open with the pupils dilated and therefore an ophthalmic 

ointment, IC ointment (Virbac, Johannesburg, South Africa) was used to protect the cornea from 

desiccation. The eyes were then covered with a cloth throughout the remaining handling to protect 

them from bright light and dust (Dr. P. Rogers 2000, pers. comm.3). To prevent excess salivation, 0.5 

- 0.75 mg Atropine sulphate (Centaur Laboratories, Mumbai, India) was administered via 

intramuscular injection. An ampoule of Frontline (Pfizer, Johannesburg, South Africa) was applied 

to the skin for the eradication of external parasites. Ampoule sizes 0 - 10 kg = 0.67 ml, 10 - 20 kg = 

1.34 ml, 20 - 40 kg = 2.68 ml, 40 - 60kg = 4.02 ml. An injection of 1 ml / 50 kg body mass of 

Dectomax (Pfizer) was administered subcutaneously for internal parasites. For the treatment of 

stress, 2 - 3 ml of Kyrovite B Co-Super (Kryonlabs, Johannesburg, South Africa) was administered 

intra-muscularly. BovacloxDC (Schering-Plough Coopers, Johannesburg, South Africa) ointment 

4.5 g was inserted into the dart wound and any other small open wounds found on the body to prevent 

infection. If the animal was moved, it was rolled carefully onto a blanket, being sure to support the 

stomach to prevent the intestines twisting. While the subject was sedated the facial, neck and body 

markings were photographed and measurements were taken (Appendix A-4 and A-5).  

 

Measurements taken 

Leopards were examined for the presence of external parasites and general body condition, by looking 

at the state of the fur, body wounds, tooth structure and wear, and muscle fat ratio.  

 

Morphological measurements were taken of the neck and chest circumference, length from nose to 

base of tail, tail length, shoulder height, length of canine teeth and distance between teeth. The 

underside of the paw was measured and any unusual structures on the paw were recorded to help 

identify individuals from their tracks. Length was measured from toe to pad across the longest part. 

The width was measured from toe to toe across the widest part of the paw and the pad was measured 

from the top to the bottom (Appendix A-6). Measurements do vary by a few millimetres depending on 

the person performing the technique and therefore only one person was responsible for measuring at 

each immobilisation. In an attempt to standardise, at least two other individuals observed, and trained 

to measure in the same way should the main measurer not be available. If a leopard was immobilised 

a second time the original measurements were taken to compare with current measurements, to ensure 

                                                 
3 Dr. P. Rogers, Wildlife Veterinarian, Hoedspruit. 
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measurement repeatability. Any changes in measurements were re-measured and checked to ensure an 

actual change rather than human error. 

 

The subject was sexed, reproductive status noted, and an estimate of age based on both body 

characteristics (Turnbull-Kemp 1967) and dentition and tooth wear (Stander 1997) was made. Where 

possible the animal was weighed using a flat surface with digital scales. Weighing was performed 

twice to ensure accuracy. Where it was not possible the weight was estimated by the reserve manager 

by physically lifting the subject and so noted in the data. Larger males were weighed using a net and 

meat scales hung on a pole, the leopard being lifted by two strong people and the scales read 

(Appendix A-4 and A-5). 

 

Leopard age classes 

Four different age classes could be distinguished during the study, namely cubs 0-12 months, 

subadults 12-36 months, mature adults 3-8 years, or old adults >11 years (Stander 1997). These were 

as follows: 

Old leopard would have yellow, badly worn and missing teeth (Stander 1997), tattered ears, facial 

and body scars, and males would have large dewlaps. In the wild, leopard that live ten to eleven years 

are probably old (Turnbull-Kemp 1967). 

Prime adults were smaller with bright coats. Teeth were slightly yellowed and the tips of canines 

only slightly worn (Stander 1997). Females had darkly pigmented nipples longer than 9 mm and 

males had the largest scrotum at this age (Turnbull-Kemp 1967). 

Subadults had a slender delicate appearance with sharply pointed, white teeth (Stander 1997). 

Females had short pink nipples, and males’ behaviour and movements like scent marking, 

vocalisation, territorial expansion and courtship were used in assessing when they become prime 

leopards (Bailey 1993). 

Cubs were usually lighter than 20 kg, lacked permanent teeth (Stander 1997) and still associated with 

an adult female (Turnbull-Kemp 1967). 

 

3.3.2 Telemetry equipment and radio-tracking procedures 

Radio transmitters 

All the radio transmitters originated from Telonics (Arizona, USA) and were constructed into radio 

collars or implants by Africa Wildlife Tracking (Pretoria, South Africa). Continuous signals were 

used, as triangulation locations are more accurate with these than with pulse signals (Sargeant 1980). 

Transmitters needed to be large, with a larger power supply, so as to reduce the interval between 

replacements. Transmitters were replaced every 12 – 18 months to ensure no loss of capacity before 

recapture of all the leopards. The transmitting frequency range chosen for transmitters was 148 – 152 
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MHz, which provided maximum although more variable range and allowed the use of small, easily 

transported antennae (Sargeant 1980).  

 

The model of transmitter used for radio collars was an SB2 transmitter powered by a single D-Cell 

battery. The transmitter and battery were embedded in a waterproof matrix of fibreglass and epoxy 

resin with the antennae running on the inside of the collar belting. A magnetic switch, embedded 

within the transmitter collar, was used to turn it on and off. Belting of 3.5 cm breadth and 0.5 cm thick 

was cut to fit from the original length of 65 cm. The weight of the collar with a single D-Cell was in 

the region of 400 g (0.8%). The transmitter and battery housing were 8.5 cm x 4 cm x 5 cm. The cost 

of a new collar in 2003 was $ 431.25, and the cost to refurbish the collar in 2003 was $ 194.38.  

 

Radio transmitter implants with a single D-Cell battery, weigh in the region of 200 g (0.4%), and are 

14 x 4 cm in size. The cost of a new radio transmitter implant in 2003 was $ 431.25, and the cost to 

refurbish the implant in 2003 was $ 194.38. They were handled with care to prevent damaging the 

inert wax coating. 

 

Fitting radio collars 

A tape measure was placed around the neck and then enlarged so that three or four fingers could be 

inserted comfortably underneath. The tape was then pulled towards the nose over both ears and then 

over each ear individually and it became apparent if a collar would stay on or not. Pop rivets were 

used to secure the collar; as any bracket near the internal antenna may have caused interference in 

very wet weather (Dr. M. Hofmeyer 2000, pers. comm.4). Once a collar was fitted, the head was lifted 

to ensure the collar moved freely but was not too loose. The collar was pulled at an angle over each 

ear and then straight over the head to ensure that it could not be dislodged. As the leopard started to 

awake the collar was checked again.  

 

Radio transmitter implantation 

Once on the operating table the animal was placed dorsal recumbent in a steel cradle for surgical 

implantation by a veterinarian and was given 7 – 8 ml of procaine and benzathamine penicillin 

(Lentrax, Rhone Poulenc) intramuscularly. The leopard’s head was placed in such a way as to 

prevent inhalation of saliva and connected to an intravenous drip containing 800 – 1000 ml ringers 

lactate (Adcock Ingram Critical Care (Pty) Ltd, Johannesburg). Additional anaesthetics were 

administered via this route as required. 

 

                                                 
4 Dr. M. Hofmeyer, 2000, Skukuza Veterinarian, Kruger National Park. 
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The abdomen was shaved from the xyphoid process to the pubis, disinfected and prepared for surgery. 

The peritoneal cavity was entered through the linea alba to reduce bleeding. A 6 cm incision through 

the skin was made caudal to the umbilicus and the muscle layers were parted by blunt dissection until 

the peritoneal cavity was entered. The transmitter was sterilised by submersion in Hibitane (ICI 

Pharmaceuticals, Johannesburg, South Africa) for 15 min prior, and then rinsed thoroughly in sterile 

physiological saline before implantation. The transmitter was inserted through the incision towards 

the ventral abdomen and left to fall into the cavity. Prior to suturing, the wound was filled with 5 ml 

of Lentrax to prevent infection. The peritoneum, individual muscle layers and subcutaneous fascia 

were sequentially sutured using simple interrupted sutures of no.1 chromic gut. Skin wounds were 

closed with loose mattress stitches to prevent the animal from taking them out even when licked. 

Sutured wounds were topically treated with Necrospray  (Bayer, Johannesburg, South Africa). The 

time taken per surgical implant was approximately 1.5 h. The transmitter implants were recovered 

with a similar surgical procedure to the implanting procedure. During sedation, the animal was unable 

to control its body temperature and required monitoring with a thermometer via the rectum.  

 

Post immobilisation recovery 

Noise and bright light were avoided during the recovery stage. Post immobilisation, the leopard was 

always returned to the point of darting to ensure it was returned to its own territory. If it was not too 

cool, the animal was placed lateral recumbent in an open area, under a bush, near the point of darting. 

If it was cold, a high ridge nearest the point of darting was chosen where air temperature was 

observed to be warmer. If it was particularly cold (<5oC) or other large predators were present the 

leopard was allowed to recover fully in a wooden crate (1 m wide x 1.2 m high x 2 m long) and 

released early the following morning or when the leopard was responding normally to stimuli. One 

leopard was allowed to wake up in an open crate however, a vehicle remained present until the 

leopard was responding normally to external stimuli and walked out. If a female was darted out of her 

territory because she was mating with a male, she was returned to her own territory. If she was mating 

with a male and her territory was not known, she was put in a crate or observed until alert. The Global 

Positioning System location of the recumbent leopard was noted. Recovering leopards were observed 

from a vehicle 30 – 40 m away, until they were standing but not yet reacting to external stimuli. The 

following morning the leopard was relocated using the radio telemetry and the distance moved from 

point of recovery was calculated. If a leopard was particularly difficult to get close to during the 

darting, or had undergone an implant operation, meat was left the following day and then every three 

days for nine days to prevent them moving too far or having to hunt. 
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Radio receiving equipment 

The radio receiver used for locating the leopards was a TR4 Telonics portable receiver with a two-

element rubber Yagi antenna connected by a 1.5 m BNC/BNC connection and coaxial cable (Telonics 

Inc, Arizona, USA). Direction of the leopard from the observer was easily determined with a co-

directional hand-held Telonics antenna, and the distance was accurately calculated by using the 

intensity of the signal (squelch) and by reducing the volume. 

 

Transmitter detection  

Measurement of the receiving distance of radio transmitters was undertaken when the animal was 

located recumbent in a flat open area. The vehicle odometer was checked and the GPS point noted at 

the leopard. The vehicle was driven away in a straight line on the same plane and when a signal could 

only just be heard by the person standing on the back of the vehicle the odometer was rechecked and 

the GPS point taken. The GPS points were then entered into ArcGIS (ESRI, California, USA) and the 

distance calculated. After the maximum distance had been measured, the vehicle was driven back to 

the leopard to ensure that it had not changed location during the trial. Each transmitter was checked 

on two different occasions resulting in a total of 28 samples. Average transmitting distance was 

calculated from the resultant data. 

 

Monitoring radio tracked leopards  

Using discontinuous radio tracking, collared and implanted leopards were located twice daily from the 

ground using Toyota Hilux 4x4 vehicles, at discrete time intervals throughout the study period. On 

days where lightning posed a hazard, or if heavy rain resulted in excessively wet conditions that 

would result in researchers becoming stuck, research was not conducted. Research was undertaken by 

1 – 4 vehicles for 8 h a day in the morning from 05:00 – 09:00 and in the afternoon from 16:00 – 

20:00. 

 

Away from the rivers, radio-collared leopards were located by stopping every kilometre and using the 

roof of the vehicle and high elevation points to locate a signal. This method, coupled with continuous 

sweeping (driving with the telemetry on all the time) was used along rivers. The perimeter of the 

reserve was checked daily at kilometre intervals. Once a signal had been located and the direction 

established, the animal was tracked to a distance where the signal indicated that the leopard was 

within visual distance (Cochran 1980). A visual was always attempted: however, when this was not 

possible it was noted that only a signal was possible.  
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Whenever an exact location of the leopard could be determined or a visual obtained, reference was 

made to the following factors to describe the immediate environment around the leopards: 

(1) GPS co-ordinates of the location and the location in words 

(2) Date 

(3) Time observation starts and ends 

(4) Leopard status: 

(a) Visible (V) – one or more leopards visible enabling observation of behaviour 

(b) Audible (A) – no leopard visible but close enough to observer for identification of sounds of 

 feeding and vocalizations produced by the leopard (within a hearing range of 30 m from the 

 observer) 

(c) Not observable (S) – leopard location only confirmed through a clear signal from the 

telemetry equipment 

(5) Estimated distance of leopard from observer in meters using visual assessment, radio telemetry 

 equipment and sounds produced by the leopard 

(6) Number and identity of leopards present at the location 

(7) Other predator species present at the leopard sighting closer than 40 m from the leopard (IG) 

(8) Behaviour, including copulation data and territorial movements  

(9) Feeding behaviour including kill species or any sign of feeding, and belly score between 1 – 5, one 

being the thinnest and five being the fullest (Appendix A-7). 

 

Data were recorded on data sheets and by using a camera and digital video camera to capture leopard 

identities and behaviour. Once the required data were collected, the subject was left. Each radio-

tracked leopard was generally located twice a day every day during the study. Observation periods 

following location lasted between 15 min and 24 h of continuous following, depending on the activity 

of the animal and how many other subjects still needed to be located that day. If leopards were 

engaged in interesting unusual behaviour, the researcher remained with them for as long as it took to 

acquire all the data. All-night observations were also undertaken when leopards were located 

copulating (Chapter 6).   

 

3.3.3 Habituation 

Habituation is defined as a process whereby continual exposure to a neutral situation such as people in 

vehicles viewing them in a non-threatening manner results in a muting of the subject’s reactions 

(Herrero 1985, Aumiller & Matt 1994, Whittaker & Knight 1998). Consequently, the target individual 

gradually relaxes to viewing from a close distance. The distance at which an animal reacts to a person 

is called a flight initiation distance (Runyan & Blumstein 2004). When approached within this 

distance stress related overt reactions occur, which include change in body position, staring at the 



40 
 

 
 

approaching vehicle, changing course or moving away and on occasion attacking (Herrero et al. 

2005). Overt reaction describes behaviour that can be observed, yet does not preclude the possibility 

that important, unobserved internal reactions may occur without overt response. This has been 

demonstrated using heart-rate telemetry in bighorn sheep (Ovis canadensis californiana) and studying 

their heart rate change in response to potential stressors such as dogs and helicopters (MacArthur et 

al. 1982). Energetically costly increases in heart rate often occurred before any overt reaction from the 

bighorns. Hence we surmise that leopard may be stressed without overt response to a person. This 

implies a conservative approach distance to leopard, and stopping before an overt reaction would be 

anticipated during the habituation process is imperative (Blumstein et al. 2003). Habituation of 

leopard to people is not an all-or-none response and may vary widely among individuals (Herrero et 

al. 2005). It will occur to the extent that the benefits of not reacting outweigh the perceived risks 

(costs) to the leopard. If, however, the leopard is wrong in its assessment, it may be injured or killed. 

(Herrero et al. 2005). For the purpose of this study, habituation was measured as the amount of time it 

took a leopard to relax sufficiently to allow a vehicle to approach to 20 m and remain in view for 20 

min without showing an overt reaction (Swarthout & Steidl 2001). This distance was necessary due to 

the dense nature of the leopard’s habitat, and a visual was often not possible at a further distance. 

 

Initially, visual observations from the road of recently immobilised leopards in the bush were only 

attempted at the onset of darkness. The tracking vehicle was driven along the road towards the 

strengthening signal. When the vehicle was within 80 m, the leopard was approached at about 10 km/ 

h. If the leopard concealed itself in the grass, the vehicle would drive past slowly on the road without 

stopping. This method of viewing continued until the leopard remained relaxed when the vehicle was 

driven past without stopping, and the leopard remained in view and showed no overt reaction. Once a 

leopard showed confidence when being viewed with the vehicle driving past, the vehicle was stopped 

on the road and the leopard viewed. The leopard’s behaviour indicated the distance that it was 

comfortable being viewed from. Worked slowly and sensitively, the viewing distance became shorter 

with time, and the leopard relaxed enough to be followed. Initially the leopard was only followed 

along the road at a distance of 40 m, or a distance that did not elicit an overt reaction (look around, 

move forward at a quicker pace or leave the road due to pressure from the vehicle). If the leopard left 

the road, the vehicle would stop until the leopard re-emerged and resumed its natural behaviour. If the 

leopard became stationary or stopped to mark its territory, the vehicle would approach slowly trying 

to get to 20 m, watching for any overt reaction. At the slightest sign of an overt reaction, the vehicle 

would stop and the engine would be switched off.  

 

Once the leopard was comfortable with being followed on the road it could be followed off road. The 

vehicle always approached in low range 4 x 4 at an oblique angle, aiming at a point to the leopard’s 

side, and thereby drawing closer, being sure not to break large branches or make excessive noise. 
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Engaging 4 x 4 low range ensured the vehicle moved slowly but kept the engine beat at a steady rate. 

If the subject moved a short distance and settled, the vehicle would follow slowly. Often, when 

located in the open, the leopard would move to an elevated point such as a termite mound. Once 

located visually the leopard was approached to a distance that did not illicit an overt reaction. When 

the observer was ready to leave a sighting, the vehicle was started and allowed to idle for 15 – 20 s 

before the vehicle reversed out slowly. At no point during a reverse-out manoeuvre did the vehicle get 

closer than its initial position. If the subject moved a considerable distance through the bush, it was 

not followed. Instead, the vehicle returned to the road, and waited with the engine switched off at the 

expected point of exit from the bush onto the road.  

 

Distance of visual observations depended on the individual. On every occasion, the behaviour of the 

leopard was observed, and when the leopard showed any overt reaction because of the observer, the 

vehicle was switched off and the subject observed from that position. Once the subject relaxed, it was 

often possible to move closer or alter positions. Females with cubs could be aggressive and were 

given a wider berth. Apart from the consideration accorded to the mother, it was essential that the 

cubs be given very particular treatment during the early months.  

 

Use of a habituated male to habituate females 

Once the resident male leopard was habituated, he was used to habituate females (n = 5) during the 

copulatory period. The pair were followed continuously on and off-road, trying to maintain visual 

observation until the pair split after 2 – 4 days (Chapter 6). Whenever the pair were mobile along a 

road or in open habitat, the vehicle remained in the comfort zone of the female. When the pair were 

stationary, the vehicle approached to a distance of 20 m and switched off. If the female was reluctant 

to approach the male, the vehicle pulled back to a distance that permitted the female to approach 

comfortably and mate. If the male became mobile the vehicle was not started until the female was out 

of sight and then the pair were relocated using telemetry. In thick bush the vehicle followed the male, 

maintaining visual observation. As soon as purring was heard or the female began to wasp in front of 

the male the vehicle was switched off to allow the female to approach the male and mate without 

being disturbed by the vehicle. 

 

Measuring the effect different elements of the immobilisation have on habituation 

In order to assess the effect the different elements of the darting had on the ease of habituation the 

following were recorded and ranked against the number of hours taken to habituate individual 

leopards. The darting experience (hard or soft), type of recovery (open, crate or in a crate with the 

door open), type of transmitter used, age of the leopard and the habitat type in each leopard’s territory 

(riverine, open or a combination of both). 

 



42 
 

 
 

3.4 Reproduction 

3.4.1 Data collection 

Radio tracked leopards were located twice daily using radio telemetry techniques and directly 

observed from a 4 X 4 vehicle in the standard way used in other predator studies (Schaller 1972) 

(Chapter 4). When leopards were located copulating, a vehicle was dedicated to the leopard pair and 

remained with them 24 hours a day until the end of the copulatory period when the pair separated. 

This allowed two vehicles to carry out daily monitoring of other leopards. The vehicle dedicated to 

the copulating leopards would check for the presence of other predators and therefore assisted the 

general data collecting researchers with locations of other radio tagged subjects.  

 

3.4.2 Reproductive data 

Females with radio transmitters were visited twice daily for a minimum of 15 min to establish if they 

were close to or consorting with a male. Vocalisation (a sawing call) was an indication of the onset of 

oestrus (Smith & McDougal 1991) and usually began several days prior to association with a male. 

Males replied with the same call, which is also used when patrolling their territory (Hancock 2000). 

During copulatory periods, six researchers were required to enable 24-h surveillance of copulating 

pairs throughout the courtship period. At the beginning of the study, each shift during a copulatory 

period lasted 4 h. The shifts were later extended to 6 h to reduce the number of researchers needed, as 

there was sufficient time between shifts to sleep. Each shift required two researchers, one to drive and 

operate the spotlight at night and the other to operate the stop clock and record time, observational 

and Global Positioning System information. 

 

Copulatory data collected during nineteen copulatory periods studied 24 hours a day 

From 2001 to 2003, intensive copulatory data were recorded during 2449 h (24 h a day) on eight adult 

leopards (seven females and one male) located copulating in 19 copulatory periods. Five copulatory 

periods which were interrupted when females were immobilised were not included, and entailed a 

further 58 h of study.  

 

Once a male and female were close to each other, monitoring was intensified and researchers 

remained with them 24 hours a day until the pair separated 2-4 days later. It was possible to determine 

when mating had begun even when visual observations were not possible, as the post-copulatory roar 

was audible (See copulatory definitions below).  

 

During the copulatory period, the following were noted: the number of copulations in the copulatory 

period, initiator of the copulation, the length of each copulation from the purr and the time of 
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mounting, start and end times of the roar, and whether the female rolled post-copulation. Additional 

comments about the mating included post-mating aggression, unusual vocalisation such as snarls and 

calls (Hancock 2000), false copulations, distances moved after copulation and any other interesting 

behaviour. Interruptions to the mating were also recorded as human related (immobilisations), as due 

to other female leopards when copulation took place in another female’s territory, or as due to other 

predators. One adult male (M1) undertook all the copulations on the reserve and covered all seven 

adult females. M1, the only breeding male on the reserve, was therefore deemed to be the father, of all 

the cubs. There were no other behavioural data to suggest non-resident males ever fathered cubs. 

 

Copulatory data collected during regular monitoring times  

A further 27 copulatory periods were studied less intensively from 2003 until M1 died in August 

2004. The leopard pair were located twice a day, in the morning and evening during regular 

monitoring times (Chapter 4). Information was only collected on the start and end of the copulatory 

period, and on the identity of the male. 

 

3.4.3 Definitions of copulatory terminology 

Start purr:     As the female approaches a male to initiate copulation, she begins to purr 

while wasping. The male joins in the purring as he mounts the female. 

This purring continues until the end of the post-copulatory roar, 

undertaken by the male. 

Wasping:     The female moves back and forth in front of the male, enticing him to 

mate. 

Lordosis:     The female is crouched down with her tail up and forward towards her 

face 

Time of mounting:   The point where the male climbs onto the female in lordosis. 

Copulation:   The male would perform a series of penetrating thrusts with his pelvis, 

during which he bared his teeth and gently grabbed the back of the 

female’s neck. 

Post-copulatory roar:     The roar occurs just prior to the male dismounting the female post-

copulatory. 

Dismount:   Males have a barbed penis which causes pain to the female when the 

male dismounts (Apps 2000). The female is therefore usually aggressive 

during the dismount, and the male will jump clear of the female, who 

rolls onto her back swiping at the male with her front paws. 

Post-copulation roll:    Once the male has dismounted the female, post-copulatory, the female 

may roll on her back. 
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Post-mating aggression:  After the dismount is over the female may snarl, hiss or swipe the male 

with her paw.  

False copulation:  The male mounts the female as usual but climbs off without penetration 

or a post-copulatory roar. 

Copulatory period:     A period of time that male and female leopards are together copulating, 

from when they meet until they part several days later. This is during the 

female’s oestrus period and may also be described as oestrus association. 

Inter-copulatory interval: The period of time in between consecutive copulations. 

 

3.4.4 Reproductive parameters 

Litters 

The birth date of cubs was estimated as the day after the female became localised for a period longer 

than a week, approximately 90 days after the last oestrus with no further matings (Smith & McDougal 

1991). The average was 95.5 days (SE = 0.9, range 89 - 98, n = 10) in this study. The female would 

leave and return regularly to the same location, ruling out death or a kill. Data on litter size and 

survival were obtained by daily monitoring of the females and their cubs (Chapter 4). From 

approximately two months old, cubs began to move with their mother and tracks of females with their 

offspring were monitored. It often took repeated observations to determine the litter size, which was 

approximated as the number of cubs first seen unless their tracks suggested otherwise or more cubs 

were seen at a later date. Cubs were sexed as they matured. It was decided against searching the den 

when the females were away so as not to precipitate cub mortality or to force a female to move her 

cubs to a less favourable den. On a single occasion, the reserve manager searched the area where a 

female was presumed to have her cubs. He found nothing (Bailey 1993) and, on her return, the female 

moved her cubs. 

 

Inter-oestrus intervals 

Leopard are polyestrous (Bailey 1993) and in this study inter-oestrus intervals were measured from 

the last day of copulation to the first day of the next copulation period. 

 

Gestation period 

Gestation length was measured from the second to last day of mating to the day the female became 

localised. This was not a precise estimation of gestation as it cannot be established which copulation 

in the copulatory period resulted in conception. The first day cannot be considered because mating 

need not continue once a leopard has conceived. Nor can the last date of mating be used as the starting 

point of the gestation period, because it would take at least 24 to 36 h for the fertilisation physiology 

to function and to produce the behavioural reaction in the leopard female (Herron 1986). If the 
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average of copulatory periods was taken as a fixed date, this too would be unrealistic as the oestrus 

period ranges from 4 – 96 days (Bailey 1993) during which time the pair may split and resume 

copulation days later, and no female would tolerate a male for 10 to 12 days once she has become 

pregnant (Herron 1986). I therefore considered the date of fertilisation to be a day before mating 

ceased. This date was satisfactory as it included the short copulatory periods of two days. 

Associations within five days of a previous copulation were not included in the calculations as the 

females were likely to be entering into oestrus but not yet receptive to mating.  

 

Reproductive success 

Reproductive success were calculated as the number of courtship associations until conception. 

Human interrupted copulations (when a female was darted during copulation) were not included in the 

calculations. Lion (Panthera leo) and other leopard did disturb courtships, and these natural 

disruptions were included. Inter-birth intervals was calculated as the number of days between 

consecutive births. Inter-birth intervals were only calculated for those litters where cubs dispersed, 

and not when cubs died prematurely.  

 

Reproductive success 

Females typically have their first litter at three years old (Bailey 1993) and are reproductively active 

until 8.5 years (Eaton 1977) in a captive population, or up to 19 (Bailey 1993) years in a wild 

population. Assuming the females in this study are reproductively active for nine years from 3–12 

years (Eaton 1977) of age, total lifetime productivity can be calculated. Reproductive success is the 

number of cubs that survived to dispersal or one year of age (Clutton-Brock 1988). Youngsters that 

disappeared prior to 10 months old were assumed dead. Reproductive success was calculated by 

dividing the number of cubs born to each female by the number of months between their first litter 

and either the end of the project in September 2005 or the date that they died.  

 

Seasonal influences 

For seasonal analysis, the year was divided into spring (September & October), summer (November 

to February), autumn (March & April) and winter (May to August). Copulatory periods that fell over 

two months, were scored as the month with the greater number of copulatory days in it. On this basis 

the number of copulatory periods, conceived copulatory periods and births were plotted according to 

the month in which they occurred.   

 

Probability of encounter with other predators 

To assess the impact other predators had on litter mortalities, data concerning other predator-

population dynamics and distance from the leopards was recorded. The probability of leopards 

encountering other predators was calculated from the combined location data (n = 551 days) of three 
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leopards (M1, F1 and F2). This was only undertaken on three of the four radio tracked leopards as F3 

encountered no other predators when researchers were with her during the study. An encounter with 

another predator was recorded if there was visual observation of another predator species in the same 

location as the leopard, and the leopards’ behaviour was affected by, or the leopard moved away from 

the approaching predator. 

 

3.5 Population 

3.5.1 Population dynamics 

A leopard database was maintained from 1999 – 2006. The females were numbered in the order that 

they were either captured or discovered consorting with M1 and a positive identification could be 

made. Individuals were identified by the spot pattern on the face and neck as well as facial features 

such as scars and ear tears. Video footage and photographs were used to assist in the accurate 

construction of identikits. In the database an identity number, name, sex, age, date of birth, date of 

death, the origin of each leopard and translocation details if leopards were removed was recorded 

(Chapter 7) . The sire of cubs was assigned to the resident male present on Karongwe during this 

study (i.e. the male observed copulating) (Chapter 6), while the age of the cubs (Chapter 4) and their 

association with a female were used to determine their mother if she was not known.  

 

Method for population estimate 

We used the minimum count method with recognizable individuals. The most accurate density 

estimates of large carnivore populations are obtained when individuals can be recognized either 

through natural markings or unnatural marking such as ear tags or radio collars. Using a combination 

of territory mapping using radio telemetry, natural markings and tracks it was possible to calculate the 

total population. 

 

3.5.2 Data collection 

Ecotourism guides, trackers and researchers monitored the roads for tracks to obtain additional 

information about leopard that were not radio tagged. Due to the high vehicle activity a large majority 

of the roads were traversed daily, and any fresh leopard tracks located by trackers on game viewing 

vehicles were reported to the researchers via the radio. Researchers would then relocate and measure 

the tracks. Tracks were only measured in firm soil with a light covering of dust, anything softer and 

the spoor size appeared to be larger than it actually was, and was not measured. Only those tracks that 

could be identified as a front or back foot, and left or right, were measured. This allowed the same 

tracks (e.g. front-left track) of any two leopards to be compared. Length was measured from toe to 

pad across the longest part. The width was measured from toe to toe across the widest part of the paw 
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and the pad was measured from the top to the bottom using callipers accurate to a millimetre. The 

pugmarks of an adult male could be distinguished from those of adult females by their size and their 

rounder shape and greater spread of the toes (Liebenberg 1990). The pugmarks of a subadult were 

smaller than those of an adult, and they were sometimes either with or near those of a female 

(Liebenberg 1990). It was often possible to identify individuals who had already been darted and had 

their paws measured. Any unknown spoors were placed into a database of sizes, in an attempt to 

identify any regular patterns. Since the study population was small and relatively isolated we seldom 

had problems identifying tracks of specific leopards. 

 

Young leopards 

There was reluctance by the reserve manager to collar or implant young leopards, which were likely 

to leave the confines of the reserve. If they dispersed with the collar they may be choked as they 

matured. It was found that the collars on a young leopard needed to be made larger after a year and a 

half. An implanted tracking device retained in the peritoneal cavity for an extended period could wear 

over time at the corners, leaking battery acid into the animal, causing death (pers. comm, Martin 

Haupt 2000, 5) advice from manufacturers and Dr. Henk Bertschinger 20016). The majority of 

subadult leopards were therefore identified from natural markings and subsequent encounters 

involved re-sighting, track identification, or recovery of dead animals.  

 

Mortalities 

Leopard mortality was divided into two categories; confirmed and suspected. Mortality was 

confirmed with the recovery of a carcass, radio tracking device or remains of a leopard. When cubs 

younger than eight months disappeared they were also classified as confirmed mortality. Mortality 

was suspected when old leopards were never seen again or adult females that had been seen regularly 

and copulated previously ceased to be seen or to re-copulate with the resident male. Adult males and 

subadults of both sexes were always assumed to have emigrated rather than to have been killed, unless 

there was a confirmed mortality. 

 

Causes of confirmed leopard mortality were established by direct observation, measuring bite marks if 

death was due to another predator, and evidence collected from tracks around the site and other 

animals with transmitters nearby. Dead leopards (48%) were found within 24 h unless death occurred 

in the thick reeds of riverbeds. In such cases sufficient time was allowed to elapse to ensure that the 

stationary leopard was not on a kill or injured.  

 

 

                                                 
5 M. Haupt, 2000, Africa Wildlife Tracking, Pretoria 
6 Dr. Henk Bertschinger, 2001, Onderstepoort, Pretoria 
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Other immobilisations used only for population data 

As subadult females F8 and F9 of previously habituated females’ matured, they were also collared, 

however, as they were already habituated, they were not included in the immobilisation and 

habituation chapter (Chapter 4). They were also not yet sexually mature and did not mate. F8 was 

immobilised and collared in June 2004 and F9 was immobilised and collared in December 2004. In 

October 2004, two months after M1 died, M4 arrived on the reserve and was immobilised in 

December 2004. F2 was the last remaining adult female and had two two-month-old cubs from M1 

which M4 killed before copulating with her, resulting in two cubs which were still alive at the end of 

the study (Chapter 7, Fig 7.1).  

 

3.6 Territorial behaviour 

How most appropriately to represent an animal’s home range is a persistent problem. The four 

different approaches to the estimation of the home range include the Minimum Convex Polygon 

method, which fits the original definition of home range, while Harmonic Mean method, the Fourier 

Transform method and the Kernel method give an index of use within that (Worton 1989). 

Historically, a prominent method used was convex polygon (Mohr 1947), while the kernel home 

range is the one of the most robust, best-known methods and will be utilised in this study (Seaman & 

Powell 1996, Laver & Kelly 2008). This method calculates utilisation distribution describing the 

relative intensity of an animal’s use of areas within a defined space and then specifies the home range 

boundary by the contour that encompasses a selected percentage of the total space used (Samuel et al. 

1985). Geographical information systems provide a useful tool for preparing and manipulating 

datasets in a spatially explicit manner. 

 

The kernel method is a nonparametric method for smoothing the two dimensional locations. Since the 

method makes no assumption about the utilisation distribution, the various factors, which influence 

the animal, can be investigated and interpreted with ease (Seaman & Powell 1996). The kernel UD 

method is a probability density estimation which calculates the home range of an animal based on the 

relative amount of time that an animal spends in different areas of its range. Nonparametric methods 

typically need at least 30-100 independent locational observations for an animal (Worton 1989). Each 

kernel is a density, and therefore the distribution range estimates that the result is a true probability 

density function. It is possible to investigate and interpret the various factors that influence an animal, 

since this method makes no assumptions about the form of the utilisation distributions (Worton 1989). 

A leopard followed would have several GPS points and often several from the same location. To 

avoid autocorrelation and prevent any errors in the estimation of core and home range, only two GPS 

point were used each day, the first one and the last one of the day.  
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In order for the description of environmental variability and predictability to make sense, it is 

necessary to refer to the range of scales relevant to the organism under study (Worton 1989). A 

manual grid of 20 cells was used to calculate band width as it produced the most accurate home range 

estimate. Kernel estimates are less biased than other estimates of home range, with fixed kernel 

method performing better than adaptive kernel method. The smoothing parameter of 250 m for 

individuals provided the least biased estimate of home range for the volume of data being tested. Most 

studies define the home range as the smallest area containing 95% of the utilisation distribution and 

the area of greatest activity within the home range is known as the activity radius (Seaman & Powell 

1996). Sample sightings smaller than 50, generally lead to an overestimation of the home range size 

(Seaman & Powell 1996). Thus while it is important to include as many individuals as possible for 

statistical purposes, there was a trade off between sample size and accuracy. 

 

Home ranges are estimates of where an animal may be found based on where the animal has been 

seen and these often overlap the borders of the reserve. The reserve is fenced and in reality most of 

the animals did not utilise the area outside the reserve (e.g., tracks did not cross fences, radio-

locations were not detected outside the reserve). The home ranges were therefore clipped for those 

leopards not leaving the confines of the reserve according to the border, and the area of the kernel 

contours recalculated. 

 

The individual animals’ home ranges were plotted on maps of the area in which they were found, 

ensuring all sightings fell within the border. Each GPS point was checked to ensure its accuracy in 

relation to the written location. Suspected errors and duplicate records were deleted. On many 

occasions the vehicle could not get to where the leopard was, so GPS points were taken directly in 

line with the leopard and an estimated distance was given from the vehicle to the leopard. This was 

usually the case when the leopard was on a koppie or in a river or drainage line. The correct GPS 

point was obtained from ArcGIS and corrected on the original data.  
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CHAPTER 4 

METHODS OF RADIO TAGGING AND OBSERVING SECRETIVE  

LEOPARD FOR RESEARCH  

4.1 Abstract 

Studies of secretive and historically persecuted species are difficult and, in particular, direct 

observational data are rare. Radio tagging for location data is commonplace but, in order to obtain 

visual observation, a degree of habituation to enhance scientific research is necessary. We describe 

and cost immobilising and radio tagging leopard (Panthera pardus), and assess factors that promote 

habituation for study. Nine leopards were darted from a vehicle and fitted with radio transmitters. 

The average time it took to dart leopard was 130 ± 46 min and the average cost of immobilising and 

fitting a radio transmitter, costing US$531, was $1060 ± 132 (range = $732 – $2748, n = 15). Five 

adult female and two adult male leopard were habituated, to a predetermined distance and length of 

time (20 m for 20 min), which was achieved after on average 17.3 ± 6.3 h (range 3- 43, n = 7) of 

interaction post immobilisation, spread over 13 ± 5 days (range 1 – 37), and cost on average was 

$593 ± 222 (range = $45 - $1651). Habituation made it possible for researchers to watch key 

behaviours including copulation and kills. Although the habituation of wildlife is usually perceived 

as a management problem, the habituation of wildlife to vehicles, at a safe distance for both the 

researcher and the leopard, is beneficial for research purposes. 

 

4.2 Introduction 

Radio tracking is a widely used tool for efficiently locating and studying free ranging animals. Several 

comprehensive accounts on methods, and the benefits and problems of radio tracking animals have 

been compiled (Sargeant 1980, Bertram 1982, Millspaugh & Marzluff 2001). Because of its wide 

application, radio tracking has transformed field studies, and can provide answers to a multitude of 

behavioural and biological questions. Radio transmitters have been used to track leopards (Panthera 

pardus) in several studies; however, these studies primarily yielded data on territorial movements 

(Schaller & Crawshaw 1980, Norton & Henley 1987, Bothma et al. 1997, Mizuntani & Jewell 1998, 

Marker & Dickman 2005, Simchareon et al. 2008, Grant 2012), feeding (Muckenhirn & Eisenberg 

1973, Mizuntani 1999, Fröhlich et al. 2012), population ecology, and predator human conflict (Myers 

1976, Nowell & Jackson 1996, Balme & Hunter 2004, Swanepoel 2008). Bailey’s (1993) study, the 

most comprehensive to date, undertaken in the Kruger National Park, produced a large quantity of 

data. However, a considerable amount of circumstantial information was collected, as visual 

observations were for the most part not possible. It is clear that radio tracking of leopards has seldom 

been exploited to its full potential in behavioural studies. Such shortfalls may be expected for 
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secretive and persecuted species like the leopard (Schaller & Crawshaw 1980, Sunquist 1983, Jackson 

1996). 

 

When wild animals encounter humans, they may show one of three responses: habituation, attraction 

or avoidance (Knight & Cole 1991). Habituation (a waning of response to repeated, neutral stimuli) 

can be described as the process whereby an animal becomes accustomed to non-threatening 

environmental stimuli and learns to ignore these stimuli, resulting in a muting of reactions (Herrero 

1985, Aumiller & Matt 1994, Thompson & Henderson 1998, Whittaker & Knight 1998). 

Consequently, the target individual gradually relaxes to viewing from a close distance. Attraction is a 

response to positive reward characterized by the strengthening of an animal’s behaviour as a result of 

positive reinforcement, and indicates movement toward stimuli (Knight & Cole 1991, Thompson & 

Henderson 1998). Wildlife attraction is often referred to as food-conditioning, but is equally 

applicable to behaviours that attract wildlife to shelter or security (Knight & Cole 1991). Avoidance 

behaviour is a response exhibited from fear and previously experienced painful stimuli (Brush 1971, 

Davey 1981, Domjan 2003, Rauer et al. 2003).   

 

Capture methods have the potential to cause aversive conditioning by establishing a link between a 

pain and fear-inducing unconditioned stimulus (such as, dart, confinement, leg snare), and some 

environmental cue as the conditioning stimulus (vehicle or human presence) (Hunt 1984). One way of 

improving wildlife viewing for research is through sensitive capture and habituation techniques. 

 

The aim of this study was to capture, attach transmitters to, and habituate leopards as part of an 

extensive behavioural ecology study. The study was designed to use methods with minimal impact on 

study animals. It provides descriptive methods for reducing stress associated with capture and 

research to achieve successful habituation, and highlights the economic costs of darting, radio tagging 

and habituation. This study emphasizes the suitability of habituation for increasing effectiveness and 

efficiency of research at collecting unbiased data. Vegetation and terrain is likely to influence the 

probability of observing leopards and may have a large impact on how quickly and easily each 

leopard is habituated. Our specific objectives were to: (1) describe free darting as a capture method of 

leopard, (2) highlight elements that could influence the ability to habituate leopard, and (3) calculate 

the costs of such immobilisation and habituation.  

 

4.3 Methods 

4.3.1 Study area 

Fieldwork was conducted on the 85 km2 Karongwe Private Game Reserve, Limpopo Province, South 

Africa (24o13’S; 30o36’E). The reserve was formed in 1998 and a 2.4 m electrified game-fence was 
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erected around the reserve perimeter. The triangular shaped reserve is bordered on two sides by 

commercial game farms and by trust lands (a tract of land with associated dwellings, set aside for 

wildlife) on the remaining border. Karongwe falls within the savannah biome (Rutherford & Westfall 

2003) and lies within the Mixed Lowveld Bushveld (Low & Rebelo 1998). The study area is 

characterised by hot, rainy summers and warm dry winters with an average annual precipitation of 

487 mm.  

 

The reserve’s main function is eco-tourism and many animal species are present. Carnivores that were 

reintroduced include lion (Panthera leo), cheetah (Acinonyx jubatus), African wild dog (Lycaon 

pictus) and spotted hyeana (Crocuta crocuta). Twelve ungulate species support them. Leopards occur 

naturally in the area, and persisted during years of heavy persecution preceding the formation of the 

reserve. 

 

4.3.2 Capture method 

The study began in September 1999 and ended in August 2005. The preferred capture method was 

free darting (darting from a vehicle). Eight leopard were free darted (five adult females, three adult 

males) (Table 4.1) and aged as in Owen et al. (2010). Subsequent immobilisations of leopard (six 

leopards) were undertaken on average 500 ± 15 days (range = 476 – 557 days, n = 6) after the initial 

immobilisation for transmitting device replacements. F1 underwent a third immobilisation a month 

later when the dart failed to inject on the second immobilisation (Table 4.1).  

 

Leopards were captured by free darting from a vehicle using a Dan-inject rifle JM Spl.CO2 (Dan-

Inject, ApS Sellerup Skovvej, 116 DK, 7080, Børkop, Denmark) with Zoletil 100 (Virbac), a 

tiletamine hydrochloride in a 1:1 combination with zolazepam at 4-6.5 mg/kg. Needles were 20 mm 

and barbless. Darting was undertaken from 10-20 m at least 2 gas bars lower than that recommended 

by the manufacturer (soft penetration) (exceptions detailed in results) in open habitat to ensure easy 

leopard recovery post darting. Females immobilised during consortship were moved +/- 1 km from 

the male for processing to avoid harassment from the male.   

 

4.3.3 Telemetry equipment  

VHF radio transmitters (SB2 transmitter, Telonics (Arizona)) were constructed by AWF (Africa 

Wildlife Tracking, Pretoria). The weight of the collar powered by a single D-Cell was ~ 400 g. The 

transmitter and battery housing were 8.5 cm x 4 cm x 5 cm. Radio transmitter implants had a single 

D-Cell battery, weight ~ 200 g, and were 14 x 4 cm in size. Implant operations (McKenzie et al. 

1990), both insertion and removal, took ± 90 min. Implantation was used in instances where a collar 
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had previously been removed by the leopard or where it was calculated that the neck was bigger than 

the head, reducing the chance of the collar remaining on. 

 

4.3.4 Post immobilisation  

Post immobilisation, leopards were returned to the location of darting. Females immobilised outside 

their known territory during mating, were returned to their territory. Where the territory was 

unknown, females were placed in a crate or observed until alert. Recovering females were vulnerable 

to attack from territorial owners as they negotiated their way back to their own territory. We observed 

recovering leopards from a vehicle 30 – 40 m away until they were starting to stand (noise and bright 

light were avoided). If a leopard had been implanted and it was particularly cold (< 5 oC), or if other 

large predators were present, the leopard was allowed to recover fully in a wooden crate (1 m wide x 

1.2 m high x 2 m long) and released early the following morning. One leopard was allowed to wake 

up in an open crate.  

 

We noted the location and GPS (Global Positioning System) position of the recumbent leopard. An 

audio distance of 20 m (visual distance) was calculated and recorded for each transmitter using the 

intensity of the signal (squelch) and by reducing the volume on a TR4 Telonics portable receiver with 

a two-element rubber Yagi co-directional hand-held Telonics antenna.  Leopards were re-located the 

following morning and distance moved from the point of recovery was calculated. Leopard that had 

undergone an implant operation, were provisioned with meat the following day, and then every three 

days for nine days to enable visual monitoring and ensure their well-being, and to prevent them 

moving too far or having to hunt. Leopards particularly difficult to get close to during the 

immobilisation, or which remained stationary the day following immobilisation, were provisioned 

with meat to enable a post darting visual to monitor for potential adverse effects.  

 

Using three vehicles and nine researchers, radio tagged leopard were located twice daily (05:00-9:00 

and 16:00-20:00) where possible throughout the study period. Location was recorded to the nearest 20 

m using a handheld GPS (Garmin International, Kansas, USA) or by radio triangulation when close 

approach was not possible. 

 

4.3.5 Habituation  

Post initial immobilisation, five adult females and two adult male leopards were habituated. 

Habituation occurred through daily monitoring and during the concurrently running reproductive 

study where leopards were followed throughout the copulatory period (Owen et al. 2010). For the 

purpose of this study, habituation was measured as the amount of time in hours it took for a leopard to 

relax sufficiently to allow a vehicle to approach to 20 m and remain in view for 20 min without 
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showing an overt reaction (Swarthout & Steidl 2001). This distance was chosen due to the dense 

habitat and a visual observation was often not possible at a further distance whether a collar or 

implant was used. When a leopard is approached, stress related overt reactions occur which include 

change in body position, staring intently at the approaching vehicle, changing course or moving away, 

and if approached too closely the leopard could attack (Herrero et al. 2005). Overt reaction describes 

behaviour that can be observed, yet does not imply that important, unobserved internal reactions may 

occur without overt reactions (Blumstein et al. 2003). Hence, we surmised that leopards may be 

stressed without overt response to a person or vehicle. This implies that during the habituation process 

it was imperative that a conservative approach distance was maintained, and that the approaching 

vehicle stopped before an overt reaction was seen (Blumstein et al. 2003).  

 

When starting habituation, visual observations of recently immobilised leopard in the bush were only 

attempted at the onset of darkness, from the road, using a spotlight with a red-filter. The vehicle never 

stopped or left the road to view the leopard. Once a leopard showed confidence with being viewed, 

the vehicle was stopped on the road for viewing with the engine on. As it moved, the leopard was 

followed along the road at a distance that did not elicit a reaction. If the leopard left the road, or 

became stationary, the vehicle would approach on the road slowly, trying to get to within 20 m, 

watching for any overt reaction. I an overt reaction was observed the vehicle was switched off, and 

the subject observed from that position. Once the leopard was comfortable with being followed on the 

road it could be followed off-road in low range 4 x 4 at an oblique fashion, aiming at a point to the 

leopard’s side. When the observer was ready to leave a sighting, the vehicle was started and allowed 

to idle for 15 – 20 seconds before being reversed out slowly. Habituation time per session was 

calculated from when the signal indicated the leopard was within 50m until the sighting was left. 

Once habituation of the resident breeding male leopard was complete, female (n = 5) habituation was 

undertaken during copulatory periods.  

 

Statistical assessment – We used a Mann – Whitney U – test to determine the relationship between the 

presence of a habituated male leopard during initial immobilisation and the length of time taken to 

immobilise females. Evaluations between initial and subsequent immobilisations were made using the 

Wilcoxon signed ranks test. We assessed the relationship between leopard age and habituation 

time using Pearson’s correlation. 

 

In order to assess the effect different elements of the darting process had on the ease of habituation, 

the following were recorded and correlated with the number of hours taken to habituate individual 

leopards: the darting experience (hard or soft), type of recovery (in the open, closed crate, or in a crate 

with the door open), type of transmitter used (collar or implant), age of the leopard, the habitat type in 

each leopard’s territory (riverine, open or a combination of both) and presence of an habituated male. 
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The time taken to immobilise each individual provided an indication of temperament prior to 

habituation. 

 

We estimated the costs of habituating a leopard to 20 m for 20 min by multiplying the daily cost of 

US $ 44.62 per day ($ 15 salary, and 80 km.day-1 at $ 0.37 km-1, which covers vehicle maintenance 

and fuel) by the number of days spent trying to habituate each leopard. The conversion rate at the time 

of writing was calculated at ZAR 7 to US$ 1. 

 

4.4 Results 

The average overall time taken across all immobilisations combined was 130 ± 46 min (range 15 – 

720, n = 15), and average distance travelled while trying to dart was 1.9 ± 0.6 km (range 0 – 10, n = 

15). Immobilisation results are summarised in Tables 4.2 and 4.3. 

 

Female F1 was the only female darted with a barbed telemetry dart, which had to be fired with a 

higher pressure, resulting in a hard impact (Table 4.4). Female F3 could not be approached closely, 

and after 300 min following was also darted with a higher-pressure setting and a collared dart (Table 

4.4). M1, F2, M3, F4 and F5 were darted with a low-pressure settings (soft immobilizations), and had 

shorter habituation times than the two individuals darted harder, or cage captured (Table 4.4). 

 

F1 and M1 were allowed to recover in closed crates. F1 was given a light dose of Zoletil, and was 

fully alert for many hours in the crate prior to her release; her habituation took longer than expected 

(Table 4.4). F5 was allowed to recover in an open crate; she was habituated quickly (Table 4.4). F2, 

M3, F4 and F5 experienced open recoveries; they all had short habituation times. F3 was allowed to 

recover in the open, but while recovering she began retching, and we had to move closer to check on 

her state, including leaving and returning on two occasions later in her recovery; resulting in her 

habituation taking a longer time (Table 4.4). 

 

Age did not affect habituation time (Pearson Correlation: r = -0.231, n = 6, p = 0.659). The last three 

leopard habituated were amongst the oldest and quickest to habituate.  Whether a collar or implant 

was used did not affect habituation time (Mann-Whitney: z = -1.528, n = 3, P = 0.2).  

 

Vegetation and terrain is likely to influence the probability of observing leopard and should have had 

a large impact on how quickly and easily each leopard was habituated. This, however, was not 

reflected in the results as habituation was accelerated during consortship with the habituated male 

when the pair was followed continuously for up to 4 days (Table 4.4). Leopard in dense riverine 

vegetation were difficult to get close enough to view, while leopards followed in more open habitat 
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were more likely to be seen, as they could be observed from greater distances. However, they were 

more skittish and would initially seek the refuge of drainage lines and thicker vegetation and elevated 

positions like termite mounds. Once relocated, they could be approached slowly and viewed. 

Statistical analysis was not possible as only two of the seven leopards had mainly open vegetation in 

their territories. 

 

Visual observation of leopards was obtained on average 1 ± 0.8 day (range 0 – 6, n = 7) post 

immobilisation. The effort expended to obtain visual was 134 ± 96 min (range 15 – 708, n = 7). 

During habituation, direct observation was achieved on 5 ± 1.4 days (range 1- 12, n = 7) of the 13 ± 5 

days (range 1 – 37, n = 7) that leopards were followed (as described in the habituation method). Direct 

observation of leopards was obtained on average 41 % of the time (Table 4.5). The average time 

(following and viewing) from immobilisation for a leopard to become habituated to being viewed 

from 20 m for 20 min was 17.3 ± 6.3 h (range 3- 43, n = 7) during 13 ± 5 days (range 1 – 37, n = 7) 

(Table 4.5). However, leopard at the beginning of the study which underwent more stressful 

immobilisations took longer to habituate. If F1 and F3 were excluded, the average time to habituation 

was 7.7 ± 1.5 h (range 3 – 11.8, n = 5).  

 

The presence of a habituated male during initial immobilisation had no significant effect on darting 

time (mins) (Mann – Whitney U – test: z = -0.318, n = 5 single and n = 5 with male, p = 0.750). The 

time taken to immobilise a leopard a second time post habituation was significantly lower (Wilcoxon 

signed rank test z = -3.411, n = 5, p = 0.001). The average distance travelled for the second 

immobilisation was half that of initial immobilisations, but this was not significantly different 

(Wilcoxon signed rank test z = -0.177, n = 6, p = 0.860). Leopards tended to be significantly closer to 

the vehicle when darted a second time (Wilcoxon signed rank test z = -3.413, n = 5, p = 0.001). The 

distance that the leopard had moved from its place of recovery post immobilisation to the following 

morning was significantly shorter for second immobilisations (Wilcoxon signed rank test z = -3.071, n 

= 4, p = 0.002). 

 

Veterinary costs of darting leopards was on average $370 ± 132 (range = $43 - $2059, n = 15) (Table 

4.6). This cost depended on the ease with which the leopard was darted (see Table 4.6). The average 

cost to habituate a leopard to 20 m for 20 min was $593 ± 222 (range = $45 - $1651, n = 7) (Table 

4.6).  

 

4.5 Discussion 

Our results illustrate that free darting leopard is achievable, and that it is possible to habituate leopard 

in an area where they were previously persecuted, over a relatively short period. The success of the 
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free darting method was the result of immobilising, radio tagging and habituating the male first. 

Females attracted to males during consortships lasting 68 h (Owen et al. 2010) could then be followed 

using the signal from the male, allowing the pair to remain in view until the vet arrived, and enable a 

soft and quiet immobilisation. The same could be achieved if a female was darted first to capture a 

male. Although the presence of the habituated male had no significant effect on darting time, a crucial 

element was to be able to follow the un-habituated leopard to an open area attempting to get within 20 

m to immobilise softly and safely. This took from 60 - 300 min for females, and 720 min for M3 over 

four separate nights using traditional tracking methods. M2 was quick as he was located in a thicket 

surrounded by open area where he stayed until darted. Free darting can be achieved in a variety of 

conservation areas as well as areas where leopards were previously persecuted. More time and 

patience may be necessary in some areas than others. 

 

To prevent aversion conditioning and to decrease habituation time, it is imperative to avoid any 

negative or painful stimulus during the capture, handling and habituation process (Eibl-Eibesfeldt 

1970, Hunt 1984, Domjan 2003, Rauer et al. 2003, Kloppers et al. 2005). Elements of immobilisation 

that negatively affected habituation were any negative incidents occurring while the leopard was not 

under the disassociative effect of Zoletil (Janovsky et al. 2000). Note that radio tagging is not 

necessary for habituation of leopard, as this has been successfully achieved through regular viewing 

over an extended period in tourism destinations in South Africa without the use of radio tags 

(Hancock 2000). For this research study, radio tagging was essential to allow the concurrent 

ecological study to progress, and to impact minimally while enabling leopards to be followed for 

extended periods. By doing so we were able to not only locate the leopard using the radio signals, but 

could visually observe them continuously, for example over the entire courtship period, thereby 

providing a unique dataset for understanding leopard biology and management (Owen et al. 2010). 

 

Although generalisation of our results is constrained by the small sample sizes and confounding 

variables, our study highlights certain elements that may affect the ease with which habituation 

occurs. The components important to the habituation process included: the capture method, recovery, 

and post-capture monitoring. Habituation of leopard handled sensitively can be achieved in less than 8 

h of follow-up investment. 

 

Wildlife habituation has two facets, the negative, associated with the problems society and wildlife 

accrue, presented in abundant professional and popular literature.  These include human wildlife 

conflict and the dangers associated with habituation (Hunter 1998, Herrero et al. 2005, Michalski et 

al. 2006, Cahill et al. 2012), the effects of recreational activities on wildlife (Burger 1981, Henson & 

Grant 1991, Fernandez & Azkona 1993, Holmes et al. 1994, Steidl & Anthony 1996, Steidl & Anothy 

2000, Mann et al. 2002, Johnson et al. 2005, Steven et al. 2011), the effect increasing tourism has on 
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increased energetic stresses (Bélanger & Bédard 1990, Houston et al. 2011, Thiel et al. 2011), 

changes in activity budgets (Steidl & Anothy 2000, Swarthout & Steidl 2001, Mann et al. 2002, 

Swarthout & Steidl 2003, Johnson et al. 2005, Houston et al. 2011), displacement from preferred 

environments (McGarigal et al. 1991, Velando & Munilla 2011), and reduced productivity through 

abandonment and decreased survival of young (Tremblay & Ellison 1979, White & Thurow 1985, 

Müllner 2004). There is also concern that leopard movements are not restricted by fenced boundaries 

and they rely on their elusive behaviour to survive outside protected areas. The consequence of 

habituation on long-term survival has not been studied, and should be discouraged in threatened or 

endangered leopard populations, such as in high hunting or livestock farming areas (Balme & Hunter 

2004). These aspects are worthy of further investigation. 

 

The positive benefits of habituation are represented by the numerous research studies of animal 

behaviour that have been hugely augmented by the use of habituated wildlife (Packer et al. 1990, 

Clutton-Brock et al. 1999, Stokes & Parnell 2003, Herbst. & Mills 2010). Habituation is often 

beneficial to animals, as it allows them to focus more strongly on stimuli that are associated with 

actual positive or negative effects (Whittaker & Knight 1998). Habituated wildlife promotes viewing 

which, in turn, may promote conservation of their populations, habitats, and ecosystems (Herrero et 

al. 2005, Debruyn and Smith 2009). 

 

When considering an immobilisation and habituation programme wildlife researchers need to assess 

each situation carefully to ensure the conservation and protection of the target species and evaluate 

human safety (Riley et al. 2002, Juarez et al. 2011). With increasing human/wildlife interaction, 

wildlife conflict is becoming a major concern in many countries and wildlife habituation has 

frequently been maligned as dangerous (Herrero et al. 2005, Michalski et al. 2006). Human-wildlife 

conflicts are ascribed to habituation, when in reality, over-habituation and attraction behaviour with 

food conditioning are the causes of most of these predator-human conflicts (Aumiller & Matt 1994, 

Hile 2003, Kloppers et al. 2005). This, combined with humans approaching leopard too closely, 

results in predator-human conflict (Aumiller & Matt 1994, Olliff & Caslick 2003) and occasionally to 

tourists being killed (Hunter 1998, Olliff & Caslick 2003). We do caution against over-habituation 

where the natural barriers between animals and humans are broken, and, for example, contact with 

vehicles occurs. We recommend that where habituation of leopard does take place, a distance no 

closer than 20 m be maintained as the habituation goal to prevent over-habituation. While further 

distance would be preferable, where vegetation is dense this may not be possible. Habituation as such 

is neither good nor bad. Rather, the value (negative or positive) of habituation to both people and 

wildlife depends upon context and perception. The need to capture and habituate wild animals to 

facilitate research can be justified, provided the benefits do not exceed ethical, ecological, social and 

economic costs (Gill 2002, Juarez et al. 2011).  
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Table 4.1. A summary of leopard immobilisations on Karongwe Private Game Reserve 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Initial  

immobilisation 

End of 

subject’s 

study 

ID code          Comments 

Feb-00 Aug-04 M1  Darted and implanted 

Jun-01 Feb-04 F1  Darted and collared 

Aug-01 Aug-04 F2  Darted and collared 

Oct-01 Aug-04 F3  Darted and collared 

Jan-02 Aug-03 F4  Darted but could not find her 

Feb-02 Mar-04 F5  Darted and implanted. Reception poor 

Oct-02 Aug-03 M3  Darted and implanted 

    

Subsequent 

immobilisation 
 ID code           Comments 

Feb-02  F4 Re-darted and collared. She removed her collar 

Jul-02  M1  Re-darted and implanted 

Nov-02  F1  Re-darted, dart failed to inject 

Dec-02  F1  Re-darted and collared 

Dec-02  F2  Re-darted and collared 

May-03  F3  Re-darted and collared 

May-03  F4  Re-darted and implanted 
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Table 4.2. The effort required and the reaction of leopards when first-time free-darting immobilisations were undertaken on the Karongwe Game Reserve 

from February 2001 to October 2002. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First immobilisation M1 F1 F2 F3 M2 F4 F5 M3 
Average  ± 

SE Median 

No. nights spent trying 
to dart  

1 1 1 1 1 1 1 4 1.4 ± 0.4 1 

Distance travelled  
from initial visual until 
immobilisation (km) 

1 1.5 2 3 0 2 1 10 2.6 ± 1.1 1.75 

Time spent following 
leopards until darted 
(min) 

60 120 90 300 15 60 120 720 186 ± 82 105 

Amount of Zoletil used 
(mg) 

250 200 200 250 300 250 250 300 250 ± 13.4 250 

Distance darted from 
(m) 

15 20 20 30 15 20 10 30 20 ± 2.5 20 

Time spent recovering 
subject  post darting 
(min) ª 

0 0 0 0 55 * 0 0 7 ± 7.9 0 

Distance leopard 
moved once darted (m) 

40 100 100 200 100 * 20 100 82.5 ± 21.7 100 

Direction of  leopard 
movement once darted 

S C N S S C* N S - - 

Distance moved post  
recovery to location 
the following day (m) 

900 2500 ? 1000 2000 # * 800 500 962.5 ± 350 950 
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0= visual was maintained and therefore no searching was required 

ª if visual was lost after immobilisation, searching only began after 10 min and the zoletil had taken 

effect  

* Individual could not be located once darted, no further information available 

# distance moved until the collar came off 

Movement: (S) after darting the leopard travelled in the same direction as it was originally travelling, 

(C) circled and came back to the point of darting, (C*) the leopard circled but was never located, (N) 

no movement, ? unknown as the leopard was not located the following day. 



Cailey Owen 

 
 

64

Table 4.3. The effort required and the reaction of leopard during subsequent immobilisations on the Karongwe Game Reserve from February 2002 to May 

2003. Data for F0 were excluded from the table due to dissimilar capture method. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Second immobilisation F4 F4 M1 F1 F1 F2 F3 
Average ± 

SE 
Median 

No. nights spent trying to 
dart 

 1 0.1 ± 1.1 1 1 ٭2 1 1 1 1

Distance traveled  from 
initial visual until 
immobilisation (km) 

1 2 0 0.3 0.1 4 ♦ 1 1.2 ± 0.5 1 

Time spent following 
leopards until darted (min) 

128 60 15 15 60 45 135 65.4 ± 18.5 60 

Amount of Zoletil used 
(mg) 

200 200 300 250 250 250 300 250 ± 15.4 250 

Distance darted from (m) 20 25 10 15 15 12 20 16.7 ± 2 15 

Time spent recovering 
subject  post darting (min) ª 

0 30 0 >  0 0 0 4.3 ± 5 0 

Distance leopard moved 
once darted (m) 

80 130 2 >  100 50 40 57.4 ± 18.7 65 

Direction of  leopard 
movement once darted 

S S N S S K S -  

Distance moved post  
recovery to location the 
following day (m) 

1000 0 # 300 >  1500 N 50 407 ± 331 650 
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 the female was followed for 2 nights as she was not with her cubs and it was the cubs that were ٭

required for veterinary purposes while her collar was changed 

♦ hunting and difficult to get close to but when she caught a wildebeest she was easy to dart 

0= visual was maintained and therefore no searching was required 

ª if visual was lost after immobilisation, searching only began after 10 min and the zoletil had taken 

effect  

# distance moved until the collar came off 

> dart failed to discharge therefore no recovery data available 

Direction: (S) after darting the leopard travelled in the same direction as it was originally travelling, 

(N) no movement, (K) feeding on a kill and therefore no movement. 
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Table 4.4. The effect of the darting process, recovery, territorial habitat type, age of the leopard and transmitter type, on the ease of leopard habituation. Data 

for F0 were excluded from the table due to dissimilar capture method. 

  

   Elements affecting habituation 

Leopard 

Time taken 

during 

immobili-

sation: an 

indication 

of initial 

habituation  

Time taken from 

first visual post 

immobilisation 

to habituation 

(hours) 

Ease of 

habituation 

ranked 

according 

to the no. of 

hours taken 

to habituate 

Type of 

darting 

experienced 

by the 

leopard 

Type of 

recovery 

Habitat 

type 

territories 

located in 

Age 

(years) 

Type of 

radio 

transmitter 

F1 120 43 7 Hard * Crate Riverine 2 Collar 

F3 300 40 6 Hard^ Open � Riverine 5 Collar 

M1 60 11.75 5 Soft Crate ◊ Both 3 Implant 

F2 90 9 4 Soft Open Open 2.5 Collar 

M3 720 9 3 Soft Open Riverine 3.5 Implant 

F4 60 5.5 2 Soft ≠ Open Riverine 3 Implant 

F5 120 3 + 1 Soft 
Crate 

open 
Riverine 4.5 Implant 
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Leopards were ranked by hours to habituation. One hour was the quickest time and seven the longest 

* Telemetry dart used with a barbed needle 

^ Darted with high gas pressure 

≠ Darted three times  

 Vehicle activity while waking up  

◊ Was still under the effect of the drugs while in the crate 

+ F5 was followed for 26 h30 during the reproductive study prior to being darted as the veterinarian 

was unavailable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Cailey Owen 

 
 

68 

Table 4.5. Effort required when habituating seven leopards to 20 m for 20 min post immobilisation on 

the Karongwe Game Reserve 

 

# A value of 0 indicates the individuals were seen on the first day they were followed 

F1 was darted hard with a barbed dart and recovered in a crate 

F3 recovered with a vehicle and people around her 

F4 was darted three times before we could begin habituation 

+ F5 was followed for 26h30 during the reproductive study prior to being darted as the veterinarian 

was unavailable. 

  Leopard   

  F5 F4 M3 F2 M1 F3 F1 
Average 

± SE 

Time spent with the 
leopards to achieve 
habituation (h) 

3 5.5 9 9 11.75 40 43 17.3 ± 6.3 

No. of days spent 
with the leopards to 
habituate post 
immobilisation 

1 2 9 12 7 25 37 13 ± 5 

No. of days followed 
before first visual # 

0 0 1 0 0 6 1 1 ± 0.8 

No. of days visual 
observation was 
obtained during 
habituation 

1 2 4 6 5 8 12 5 ± 1.4 

 
Percentage of those 
days visual 
observation was 
obtained during 
habituation 

100% 100% 44% 50% 71% 32% 32% 41% 
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Table 4.6 Costs of darting, fitting transmitters and habituating leopard on the Karongwe Game Reserve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leopard 

Time to dart 
leopard from 
first visual by 
the veterinarian 
(min) 

Veterinarian 
darting fees 
(a) 

Costs of 
darting and 
consumables 

Darting 
transmitter 
and 
consumables 

Costs of 
darting,  
transmitter,  
consumables, 
implantation (b) 

and post 
operative 
feeding 

Habituation 
costs (c) 

Total cost 

M1 60 $172 $330 $861 $1,325 $312 $1,637 

F1 120 $343 $502 $1,032 - $1,651 $2,683 

F2 90 $257 $416 $947 - $535 $1,482 

F3 300 $858 $1,016 $1,547 - $1,116 $2,663 

M2 15 $43 $201 $732 - - $732 

F4 60 $172 $330 $861 - $89 $950 

F5 120 $343 $502 $1,032 $1,454 $45 $1,498 

M3 720 $2,059 $2,218 $2,748 $3,154 $402 $3,555 

F4 128 $366 $525 $1,055 - - $1,055 

F4 60 $172 $330 $861 - - $861 

M1 15 $43 $201 $732 $1,145 - $1,145 

F1 15 $43 $201 $732 - - $732 

F1 60 $172 $330 $861 - - $861 

F2 45 $129 $287 $818 - - $818 

F3 135 $386 $545 $1,075 - - $1,075 

Average 130 $370 $529 $1,060 $1,769 $593 $1,450 

± SE ± 46 ± 132 ± 132 ± 132 ± 466 ±  222 ± 221 
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a Veterinarian time per hour: $171.60 

b Surgery costs include professional time per hour: $171.60 and surgical consumables: $71.37  

($ 328.77 for an hour and a half surgery) 

Darting consumables (Total = $158.46): Sedative  ($68.50); Dart ($33.33) when not reused; Front line 

($15.44); Dectomax ($0.65); Kyrovite B co  ($3.00); Bovaclox DC ($2.55); Rabies vaccination 

($1.76); Fel-O-Vax ($1.88); Atropine sulphate ($24.38); Eye cream per tube ($5.35); Syringe and 

needle ($1.62).  

Transmitter costs $ 531 

Costs exclude veterinarian travel to the reserve ($0.68 per km: $43.35), travel to and from each 

leopard, actively looking for the leopard in the reserve and staff costs. 

(c) Habituation costs per =$ 44.62 per day and calculated as $ 15 salary, and 80 km a day at $ 0.37 per 

km which covers vehicle maintenance and fuel.  
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CHAPTER 5 

PRINCIPAL PREY OF LEOPARD AND THEIR HUNTING HABITAT SELECTION, 

IN A SMALL ENCLOSED RESERVE 

 

5.1 Abstract 

Foraging ecology is fundamental in determining predator fitness, population density, reproductive 

success, territoriality, and impacts on prey, all of which affect overall ecology, and wildlife 

conservation and management. Here we examine the feeding ecology and hunting habitat selection of 

leopard on Karongwe, a small (85 km2), enclosed game reserve with super-abundant prey. Using 

ungulate kill data (364) from seven leopards, collected over a four-year period, we examine leopard 

prey consumption, prey species selection, and their prey preference. The prey-rich environment 

translated into leopard consuming double the amount of kills, compared with similar habitats 

elsewhere. Although leopards are generalist feeders, they did select for prey vulnerability by species 

(common duiker, bushbuck and warthog), age (juveniles), group size (solitary, pair and small groups) 

and sex (females). Impala, the most abundant prey species on the reserve, were the principal prey 

(53%), but only had a low preference rating.  Leopard on KGR were hunting habitat generalists, 

hunting in all available habitats. Their hunting distribution matched their prey resources; hunting 

preferably in riverine habitat, where prey was most abundant or easier to hunt. Feeding generalists can 

stabilise an ecosystem, but their selection pressure, combined with heavy consumption, is likely to 

reduce species richness in a small, enclosed reserve, and needs to be carefully managed. 

 

5.2 Introduction 

Foraging ecology of large carnivores explains predator survival and success, and has important 

ecological consequence for other species, making it important for both wildlife conservation and 

management (Bekoff et al. 1984, Kruuk 1986, Sunquist & Sunquist 1989, Glen & Dickman 2005). 

What predators select to eat improves their fitness (Pyke 1984, Steven 2012), determines reproductive 

success (Owen et al. 2010), influences population density (Boyce 1989), and impacts on the life 

histories of their prey (Mills 1992, Gervasi et al. 2012, Mejlgaard et al. 2012). The study of resource 

selection is a complex ecological area because of the range of selection decisions by both predators 

and prey, reflecting the variation in resources on which each species depends (Sih 1987, Lima & Dill 

1990).  

 

Strategies by large carnivores aim to maximise nutrient intake, selecting prey by their size (Hayward 

& Hayward 2009, Ramesh et al. 2012), age, sex, abundance (Sunquist & Sunquist 1997, Mejlgaard et 
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al. 2012), temporal and spatial distribution (Abrams 2007), and anti-predator tactics (Hopcraft et al. 

2005, Balme et al. 2007). Drivers for ungulate habitat selection are meeting resource requirements 

(Ben-Shahar & Skinner 1988, Compton et al. 2002, Shannon et al. 2013), and reducing predation risk 

by avoiding high-risk habitats (Lima 1998, Valeix et al. 2009, Thaker et al. 2011). 

 

Predators have been shown to exert disproportionate selection pressures on prey biomass, and can 

have a disturbing effect on both individual species and the system as a whole (Johnson 1980, Thaker 

et al. 2011). Specialist predators consuming a single prey species are able to improve prey coexistence 

by impacting the abundance of one species, thereby enabling non-target species to exploit the 

available resources (Payton et al. 2002). Generalist predators have a varied and extensive influence on 

ungulate communities (Snyder & Wise 2001). A single generalist acts like a group of specialists in 

enhancing prey coexistence, so long as the predator ignores the prey species which are temporarily the 

rarest (Estes et al. 2001). If rare species are not ignored this could lead to local species extinction, of 

which there is a greater risk in small, enclosed reserves where resident prey populations are often at 

low densities, and where predators can regulate and even limit prey (Power 2002).  

 

Leopards (Panthera pardus) are solitary, generalist, opportunistic predators (Skinner & Smithers 

1990, Nowell & Jackson 1996) and their catholic diet suggests they are largely unselective. However, 

they do select prey species weighing 10–40 kg (Hayward et al. 2006), as well as selecting their 

hunting habitat (Balme et al. 2007). 

 

Spatial distribution in animals is seldom homogenous, and understanding predators’ hunting 

distribution, and their prey’s habitat selection, is crucial in small, enclosed systems where movement 

is restricted. Predators have been shown to select hunting habitats where energy intake requirements 

can be met while expending minimum energy (Balme et al. 2007), while Lima (2002) suggests that 

predator distributions should match their prey’s resources, and prey distributions should reflect their 

habitat riskiness (Hugie & Dill 1994, Sih 1998, Thaker et al. 2011).  

 

Predators fulfill a vital role in influencing prey numbers; however, this needs to be managed on small, 

enclosed reserves where certain species of prey are at low densities and where predators can regulate 

and even limit prey (Power 2002). Large predators fill several crucial roles of regulating 

mesopredators (Crooks & Soulé 1999, Johnson & Vanderwal 2009), provisioning for scavengers 

(Wilmers et al. 2003) and herbivore regulation (Hopcraft et al. 2010), and the disappearance of apex 

predators from an environment can result in trophic cascades (Pace et al. 1999, Sergio et al. 2008). 

 

Karongwe Game Reserve is a small reserve with superabundant resources, and its well-studied 

leopard population (Owen et al. 2010) provides an ideal context to assess predation patterns of large 
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predators. I hypothesized that leopard would select to hunt small, young, vulnerable prey in dense 

vegetation as they are generally perceived as ambush predators. This paper aims to provide insight 

into leopard foraging ecology in a small, enclosed reserve, and the ecological ramifications that affect 

their conservation and management. Our specific objectives were to: (1) identify the principal prey 

species of leopard and calculate prey biomass removal, (2) quantify kill frequency in each habitat, (3) 

identify leopard prey selection with respect to species, size, age or sex, (4) determine habitat selection 

of principle prey species and (5) ascertain whether leopard hunting habitat selection matched selection 

by their principal prey. I hypothesized that leopard would select to hunt small, young vulnerable prey 

in dense vegetation as they are generally perceived as ambush predators. 

 

5.3 Methods 

5.3.1 Study area 

Field work was conducted on the 85-km2 Karongwe Private Game Reserve, Limpopo Province, South 

Africa (24o13’S; 30o36’E) (see Thaker et al. 2011 for a vegetation map and waterholes on the 

reserve). The reserve was formed in 1998 as an ecotourism reserve. A 2.4-m-high electrified 

perimeter fence was erected to contain several charismatic wildlife species such as lion (Panthera 

leo), cheetah (Acinonyx jubatus), wild dog (Lycaon pictus), spotted hyaena (Crocuta crocuta), 

elephant (Loxodonta africana), and 12 ungulate prey species, but was permeable to leopard (Owen et 

al. 2010). Leopard on Karongwe persisted during years of persecution preceding the formation of the 

conservancy in 1999, following which they were fully protected while in the reserve. Karongwe is 

located within the savannah biome (Rutherford & Westfall 2003) and lies within the Mixed Lowveld 

Bushveld (Low & Rebelo 1998). The study area was characterized by hot, rainy summers and warm 

dry winters, and received an average annual precipitation of 487 mm. We used a habitat map of 

Karongwe that consisted of the following physiognomic classes: Closed riverine (1.6% of area), 

consisting of gallery forests along rivers; Open riverine (15.8%), consisting of open canopy forest 

with thick under story along rivers and drainage lines; Closed woodland (54.4%), consisting mainly of 

Combretum and Mopane woodlands with closed tree canopies; Open woodland (24.1%), consisting 

mainly of Acacia with separated tree canopies; and Open scrub (4.1%), consisting of old agricultural 

lands now reverting to open scrub habitat (Thaker et al. 2011).  

 

5.3.2 Ungulate presence 

Ungulate species were censused annually in the dry season September (2001- 2005) by aerial counts 

undertaken in a Bell Jet Ranger helicopter with four observers (including the pilot) and one data 

capturer. Using a GPS-aided computer, 300m wide strips were flown throughout the reserve. Counts 

began in the early morning (between 7:30 and 9:00), and were completed within a day. A data capture 



Cailey Owen 

 
 

79 

program “Capture”, written by Mark Schormann, was used to plot the location of the animals, 

reducing the chance of duplicate counting. Wet season (summer) ungulate presence and distribution 

was determined using road strip census procedures in summer months (Hirst 1969). Each of the five 

drive counts were sampled for five consecutive days: 26 – 30 April 2004, 29 November – 3 December 

2004, 16 – 20 March 2005, 3 – 7 December 2005, 12 – 16 December 2005 (Thaker et al. 2011). 

Ungulate locations were georeferenced, and intersected with the habitat map using ARCGIS 9.3 

(Environmental Systems Research Institute, Redlands, California) (Hooge et al. 1999), thereby 

assigning a habitat to each ungulate location.  

 

Herbivore mean biomass was calculated according to Coe et al. (1976), for the survey years 1999- 

2005.  Karongwe herbivore mean biomass was 4064 kg/ km2 (SE= 938, range 3703- 4532). Mean 

biomass across years was above the Coe et al. (1976) predicted mean for Karongwe (2789 kg/ km2) 

at which the herbivore  biomass should be stocked, and, even at its lowest density, was greater than 

the maximum recommended (3681 kg/ km2) for that area (Coe et al. 1976).   

 

Ungulate biomass killed was calculated using live body mass of prey species obtained from the 

literature (Bothma 1996). The edible percentage of carcass mass was estimated from live prey body 

masses (<50 kg: 80%; 50–150 kg: 75%; 151–250 kg: 70%; 251–500 kg: 65% (Viljoen 1993), and the 

inedible portion subtracted.  Annual biomass consumption was calculated using, edible weight (kg) 

killed per leopard per year (Mills & Biggs 1993). 

 

5.3.3 Field data collection 

We studied seven radio-collared leopard (two adult males and five adult females) over a five-year 

period (October 2001 to October 2005), totaling 1819 field days (Owen et al. 2010). We collected 

diurnal and nocturnal locations for all leopards between 05.30 h and 20.30 with intermittent 

continuous monitoring from 2 – 96 h at a time (Owen et al. 2010). Standard radio telemetry tracking 

methods were used (Mills 1996).  A leopard database, maintained from 1999-2006, identified 

individuals by the spot pattern on their face and neck as well as facial features such as scars and ear 

tears, with each assigned a letter designating sex (F = female and M = male) and a unique number. 

Photographs were used to assist in the accurate construction of identikits. The sire and mother of cubs 

were determined during intensive following (Owen et al. 2010). Un-collared subadults were 

monitored by opportunistic sightings. We used the minimum count method with recognizable 

individuals, in conjunction with territorial mapping in the global information system (ArcGIS 9.3, 

Environmental Systems Research Institute, Redlands, California), tracks, and radio telemetry to 

determine population size (Kunkel et al. 2005, Owen et al. 2010).  
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When a leopard was located feeding on or near a carcass, the species, age class, and gender were 

noted using set ageing and sexing criteria 

determined as birth to one year = fawn; 1 to 2 Years = Sub adult; > 2 = adult. Where a leopard 

(excluding lactating females) remained in the same location for two or more da

observation was not possible, the area was searched for carcass remains once the leopard had moved 

off. We followed leopards to observe hunting behaviour and kills as they occurred (Balme

2007). At each sighting, we recorded belly sco

belly fully distended) to determine when the leopards were due to hunt,

feedings when estimating kill frequency and biomass removal. Kill rate was calculated using a 

spreadsheet of individual leopards daily belly scores and kills. Substantial belly score increases of at 

least one point on the scale, in the absence of a recorded kill, were an indication of a kill having taken 

place (Lehmann et al. 2008). Although small kills wou

indication of the actual number of kills made per annum. We assigned habitat of leopard kill locations 

in ARCGIS as per ungulate locations. 

 

5.3.4 Leopard diet selection 

Leopard diet selection was calculated using

abundance of that species in the total prey population, and r was the 

each species made up of the total leopard kills (Jacobs 1974). 

 

The resulting value ranged from +1

avoidance (-1) (Jacobs 1974 If a species was killed more frequently than its relative abundance, then it 

was considered preferred. Significance of 

determined using χ2 [chi-squared] at P < 0.05. 

normalised when required (Kolmogorov

 

5.3.5 Habitat selection 

We derived habitat use from animal locations

leopard hunting habitat selection were 

riverine, closed woodland, open woodland and open scrub), and year (Y1 to Y5) 
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When a leopard was located feeding on or near a carcass, the species, age class, and gender were 

ng set ageing and sexing criteria (McBride 1984, Karanth & Sunquist 1992)

determined as birth to one year = fawn; 1 to 2 Years = Sub adult; > 2 = adult. Where a leopard 

(excluding lactating females) remained in the same location for two or more da

observation was not possible, the area was searched for carcass remains once the leopard had moved 

to observe hunting behaviour and kills as they occurred (Balme

2007). At each sighting, we recorded belly scores (Ginsberg et al. 1997) (one = very thin, to five = 

belly fully distended) to determine when the leopards were due to hunt, and to correct for missed 

feedings when estimating kill frequency and biomass removal. Kill rate was calculated using a 

et of individual leopards daily belly scores and kills. Substantial belly score increases of at 

least one point on the scale, in the absence of a recorded kill, were an indication of a kill having taken 

. 2008). Although small kills would be missed, it provided a more accurate 

indication of the actual number of kills made per annum. We assigned habitat of leopard kill locations 

locations.  

Leopard diet selection was calculated using Jacobs’ index, where p was the 

abundance of that species in the total prey population, and r was the annual relative proportion that 

each species made up of the total leopard kills (Jacobs 1974).  

 

 

The resulting value ranged from +1 to -1, indicating maximum preference (+1) and maximum 

If a species was killed more frequently than its relative abundance, then it 

Significance of prey preference analyses and all subsequent tests was 

squared] at P < 0.05. Data were tested for the assumptions of normality and 

normalised when required (Kolmogorov– Smirnov and Lilliefors test). 

habitat use from animal locations. Using Jacobs’ index, ungulate habitat selection and 

leopard hunting habitat selection were calculated for each sampling habitat (Closed riverine, open 

riverine, closed woodland, open woodland and open scrub), and year (Y1 to Y5) (Jacobs 1974).

When a leopard was located feeding on or near a carcass, the species, age class, and gender were 

(McBride 1984, Karanth & Sunquist 1992). Age was 

determined as birth to one year = fawn; 1 to 2 Years = Sub adult; > 2 = adult. Where a leopard 

(excluding lactating females) remained in the same location for two or more days, and visual 

observation was not possible, the area was searched for carcass remains once the leopard had moved 

to observe hunting behaviour and kills as they occurred (Balme et al. 

(one = very thin, to five = 

and to correct for missed 

feedings when estimating kill frequency and biomass removal. Kill rate was calculated using a 

et of individual leopards daily belly scores and kills. Substantial belly score increases of at 

least one point on the scale, in the absence of a recorded kill, were an indication of a kill having taken 

ld be missed, it provided a more accurate 

indication of the actual number of kills made per annum. We assigned habitat of leopard kill locations 

Jacobs’ index, where p was the annual proportional 

relative proportion that 

1, indicating maximum preference (+1) and maximum 

If a species was killed more frequently than its relative abundance, then it 

analyses and all subsequent tests was 

Data were tested for the assumptions of normality and 

habitat selection and 

calculated for each sampling habitat (Closed riverine, open 

(Jacobs 1974).  
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5.4 Results 

Kill data from two male (173 kills recorded) and five female (286 kills recorded) leopard included 

361 ungulate kills. Of the 24 species recorded, 12 were ungulate prey species. Seven species (n = 346 

identified carcasses) constituted 99% of the leopards’ ungulate diet (n = 361) (Table 5.1).  Impala 

(Aepyceros melampus) was the most important species, comprising the greatest proportion of their 

diet (52%, n= 187), followed by warthog (Phacochoerus aethiopicus) (13%, n= 48), waterbuck 

(Kobus ellipsiprymnus) (9%, n= 31), bushbuck (Tragelaphus scriptus) (8%, n= 29) and common 

duiker (Sylvicapra Grimmia) (6%, n= 23) (Table 5.1). Impala were consumed significantly more than 

other species (χ2 = 9.9, d.f. = 1, P = 0.001). Ungulates in the reserve occurred in the ratio of 67% 

females to 33% males and 67% adult to 33% juveniles (0-2 yrs). Leopard killed significantly more 

females across species, with 73% of prey being females (n= 228) (χ2= 4.0, d.f. = 1, P = 0.04). Leopard 

selection for juvenile prey was significantly greater than the ratio of juveniles in the population (χ2 = 

8.7, d.f. = 1, P = 0.003), with juveniles making up 41% (n = 133) of kills categorised into an age class 

(n = 327). This skew was the result of a relatively large number of juveniles of some large species 

being killed, with 89% of waterbuck killed (n = 25) being juvenile, 94% wildebeest (Connochaetes 

taurinus) being juvenile (n =15), and 58% kudu (Tragelaphus strepsiceros) being juvenile (n =7) 

(Table 5.1). Ninety-six percent of kills that were accurately categorised in an age class fell within the 

15 to 60 kg range (Table 5.1). 

 

Based on the aerial census figures, the trend was for a sharp decline in leopards preferred prey duiker, 

bushbuck, warthog, waterbuck and impala numbers during 2003 and 2004, when leopard numbers 

were at their peak (Table 5.2). Although leopard made up 40% of the predator population, it should 

be noted that leopard predation was not the only factor affecting prey number decline. A drought year 

with < 247 mm of rain in 2003 (long-term mean rainfall = 482 mm) could have had an important 

effect on ungulate numbers (Table 5.2).  

 

Over the study period, 34 ± 4.3 prey items / leopard / year (range 21– 62, n = 7 leopard) were 

recorded. Average daily biomass consumption was 4 ± 0.7 kg / adult / day (range 1.8 – 7.5, n = 7). 

Calculating consumption using belly scores, only approximately 34% of total kills made were located 

during the study. A more accurate annual prey consumption including missed prey indicated by 

changes in belly scores was estimated at 99 ± 3.6 prey items / leopard / year (range 84 – 116, n = 7), 

with estimated daily biomass consumption using belly scores of 11 ± 1.3 kg / adult / day (range 7 – 

19.4, n = 7).  

 

Jacobs’ index scores for the 12 species killed by leopard highlighted five species selected more than 

expected: common duiker 0.86, bushbuck 0.57, warthog 0.33, waterbuck 0.17 and impala 0.08 (Table 
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5.1). Each ungulate showed a preference for specific habitat types (Fig. 5.1). Impala, kudu and 

bushbuck preferred closed and open riverine. Warthog and duiker selected open scrub with warthog 

also selecting open riverine. Wildebeest and waterbuck selected open woodland with waterbuck also 

selecting closed riverine (Fig. 5.1). In general, the principal prey species of leopard selected riverine 

habitats avoiding open and closed woodland (Fig. 5.1). 

 

Leopard hunting habitat selection matched their preys’, preferring to hunt in riverine habitats, with the 

exception of wildebeest which were hunted in open woodland and duiker and waterbuck which were 

also hunted in closed woodland (Fig. 5.1).  Habitat classes were ranked across the seven principal 

ungulate species from most to least selected. Closed riverine was ranked the highest followed by open 

riverine and open scrub. Open riverine ranked top in leopard hunting habitats followed by closed 

riverine and open scrub.  

 

Leopard generally killed their prey in the proportion that they occurred in the different habitats (χ2 = 

4.08, d.f. = 4, P = 0.4). The percentage of prey killed in each habitat type varied, in declining order of 

carcasses found: closed woodland (42 %), open woodland (24 %), open scrub (14 %), closed riverine 

(10 %) and open riverine (10 %). Leopards killed their three preferred prey species and kudu, in the 

same proportion to that of the habitat they primarily occurred in, while impala (χ2 = 10.71, d.f. = 4, P 

= 0.03), waterbuck (χ2 = 13.49, d.f. = 4, P = 0.009) and wildebeest (χ2 = 17.77, d.f. = 4, P = 0.001) 

were killed in significantly different proportions. Significantly, fewer impala were killed in closed 

riverine and open scrub habitat than expected, and more than expected were killed in open woodlands; 

fewer waterbuck were killed in open woodlands and more killed in closed riverine; fewer wildebeest 

were killed in closed woodlands and more were killed in open riverine (Fig 5.2).  

 

Leopard hunting habitat selection generally matched ungulate habitat selection. Risky habitats 

for each ungulate species were identified as the habitat type where leopards successfully killed a 

greater proportion relative to their availability, and where these prey were more easily captured (Fig. 

5.3). Important habitat for leopard hunting each species were: bushbuck in open scrub, duiker in open 

woodland, waterbuck in closed riverine, warthog in closed riverine, impala in open woodland, 

wildebeest in open riverine, and kudu in open woodland. All ungulates avoided risky habitats except 

warthog and waterbuck who showed a slight preference for closed riverine.   

 

Safe habitats for each species were those habitats where leopard hunted each species at lower than 

expected rate: bushbuck were safer in closed and open riverine, duiker in open scrub, waterbuck in 

open woodland, warthog in open woodland, impala in closed riverine, wildebeest in closed woodland 

and kudu in open scrub (Fig. 5.3). Ungulates generally selected safe habitats with the exception of 

warthog and kudu.     
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5.5 Discussion 

Our results support the hypothesis that prey distribution reflects habitat riskiness, and that predator 

distributions match their prey’s resources (Lima 2002). Ungulate species on Karongwe reduced their 

probability of being killed by avoiding risky habitats and distributing themselves in safer habitats 

(Lima 2002, Balme et al. 2007, Thaker et al. 2011). Risky habitats for cryptic ungulates like bushbuck 

and kudu were more open habitats, while risky habitats for species like waterbuck and wildebeest 

were thicker riverine habitats. Leopard hunted where prey were abundant and preferring to hunt in 

thick riverine habitat (Bailey 1993, Hayward et al. 2006). The spatial patterns of ungulates like 

waterbuck, warthog and kudu which selected risky habitat in spite of its riskiness may be driven by 

the distribution of resources (Thaker et al. 2011).  

 

What predators choose to eat, and their foraging success, influences all aspects of their lives as well as 

those of their prey (Litvaitis et al. 1986). Leopards on Karongwe were feeding generalists, and the 

diversity of prey killed was relatively high (n = 24 species). Our results, however, also corroborate the 

hypothesis that in prey-rich habitats, predators should be selective in maximising available energy 

(Griffiths 1975). Analysis of their diet suggests feeding specialisation, with leopards selectively 

hunting vulnerable individuals who displayed minimal anti-predatory defences (Hayward et al. 2006, 

Balme et al. 2007). Selective feeding was most significant with regard to prey size (Hayward et al. 

2006). Although (male) leopard  were capable of killing large prey (80 kg), the majority of leopard 

prey fell within the predicted weight range, 15-60 kg, with a preference for lighter prey (Hayward et 

al. 2006). Impala were the principal prey species of leopard (52% of kills) in their preferred weight 

range and are an important part of leopard feeding ecology. They were, however, under-represented in 

leopard selection because prey that were solitary or in small groups were preferred (Hayward et al. 

2006).  Leopards also selectively hunted females and juveniles, which could reduce both the breeding 

segment of the population and the future stock of reproductive females, and may disrupt the age 

structure, especially in rarer species (Milner et al. 2011).  

 

Prey richness in the reserve translated into a daily consumption rate double that of leopards studied in 

similar habitats elsewhere (Bothma & le Riche 1986, Bailey 1993, Stander et al. 1997). This may be a 

combination of easy catchability due to high ungulate numbers, and the inability of herds to escape 

predation.  

 

The combination of heavy consumption, selection for vulnerability and the continued removal of rare 

preferred species resulted in a reduction of leopard’s top seven preferred species during the period of 

high leopard density. Leopard, however, were not the only predators, and reductions in prey numbers 

could have been exacerbated by the increasing predator numbers as well as low rainfall. Very intense 
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generalised predation with hunting selection for vulnerability, will almost certainly limited low-

density populations, and reduce species richness, and this could have far- reaching repercussions for 

wildlife conservation and management, especially in small, enclosed reserves (Fryxell et al. 1988, 

Stewart 2006).  

 

Although a large group of generalist predators can have a detrimental effect on an enclosed reserve, 

the removal of apex predator could equally indirectly influence the persistence of species several 

trophic levels removed (trophic cascade), by altering the composition and abundance of both 

ungulates and other predators, leading to shifts in competitive interactions (Ripple & Beschta 2003). 

This may endanger the persistence of inferior prey competitors. An overpopulation of ungulate 

species such as impala and warthog, in the absence of predators, could severely impact the vegetation 

and change the composition of the herbaceous layer (Wentzel et al. 1991). It is also likely that there 

would be a reduction in available carrion, as well as an increase in mesopredators, which large 

predators constrain (Estes et al. 2001). 

 

Large carnivores at the apex of an ecosystem food chain are sensitive indicators of habitat quality 

(Joseph et al. 2007). It is therefore beneficial to investigate their fine-scale foraging ecology as many 

are also keystone species and play an important role in maintaining the health of the ecosystem 

(Crooks & Soulé 1999). Enhancing our understanding of apex predators’ ecological requirements 

enables us to plan for their future conservation in an increasingly fragmented environment, made up 

of small, enclosed reserves which limit the free movement of ungulates.  

 

Predator conservation and management require more and better data than are currently available and 

in-depth investigations into habitat preference, across both predators and their prey, are clearly called 

for. We encourage researchers working with large carnivores to examine the factors affecting hunting 

habitat selection in a range of areas and conditions, especially where rare or threatened prey species 

are concerned.   
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Table 5.1. Leopard (n = 7 individuals) kills in order of utilisation frequency, identifying preferred prey species and age classes targeted during the study 

(2001 - 2005). The top seven species in the table made up 99% of the leopard diet. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

    

  

Herbivore ages killed by 

leopard 

Species 

Number of 

individual 

leopard 

killing each 

species 

Jacobs index 

(± SE) 

Published 

Jacobs index 

Species 

abundance 

(Mean ± SE) 

% of each 

species killed 

of total kills 

Quantity 

killed 

0-1  

years 

old 

1-2  

years 

old 

Adult 

(> 2 

years 

old) 

Impala 7 0.08 ± 0.08 0.36 ±0.08 1571 ± 175 52 187 28 28 118 

Warthog 7 0.33 ± 0.09 -0.20 ± 0.13 184 ± 26.3 13 48 8 5 29 

Waterbuck 7 0.17 ± 0.05 -0.39 ± 0.17 212 ± 16.9 9 31 22 3 3 

Bushbuck 6 0.57 ± 0.07 0.45 ± 0.12 79 ± 22.3 8 29 1 5 17 

Common Duiker 4 0.86 ± 0.03 0.42 ± 0.11 17 ± 4.3 6 23 2 1 14 

Blue Wildebeest 4 -0.31 ± 0.08 -0.77 ± 0.06 264 ± 16.7 5 17 13 2 1 

Kudu 3 -0.19 ± 0.14 -0.31 ± 0.12 152 ± 7.9 4 13 6 1 5 

          

Nyala 2 -0.40 ± 0.26 -0.37 ± 0.23 21 ± 2.6 1 4 0 1 3 

Red hartebeest 1 -0.71 ± 0.20 -0.65 ± 0.11 16 ± 6.1 0 1 0 0 1 

Steenbuck 1 -0.23 ± 0.32 -0.18 ± 0.18 6 ± 2.5 1 2 0 0 2 

Giraffe 1 -0.72 ± 0.11 -0.95 ± 0.05 77 ± 3.5 1 2 2 0 0 

zebra 1 -0.61 ± 0.12 -0.80 ± 0.06 178 ± 7.5 2 6 3 2 1 

              26% 15% 59% 
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+Indicates significantly preferred, - indicates significantly avoided. Details of published Jacobs’s 

index derived from Hayward et al. (2006). Blue wildebeest (Connochaetes taurinus), Kudu 

(Tragelaphus strepsiceros), Nyala (Tragelaphus angasii), red hartebeest (Alcelaphus buselaphus), 

Steenbuck (Raphicerus campestris)), Giraffe (Giraffa camelopardalis), Zebra (Equus burchelli).  

Other latin names can be located in the text.
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Table 5.2. Summary of game count figures and leopard population numbers in Karongwe Game Reserve, South Africa 
  
 
 

 

Species 2000 2001 2002 2003 2004 2005 Average ± SE 

Common duiker 11 16 18 7 0 0 17 ± 4.3 

Bushbuck 58 96 127 56 14 21 79 ± 22.3 

Warthog 244 261 266 119 113 138 184 ± 26.3 

Waterbuck 254 231 205 185 149 185 212 ± 16.9 

Impala 1953 2140 1782 1252 930 1124 1571 ± 175 

Kudu 183 166 144 140 154 118 152 ± 7.9 

Blue wildebeest 282 239 321* 298 219 203 264 ± 16.7 

Leopard population 13 16 24 25 19 12 16 ± 2.6 

 
 
 
*75 additional wildebeest were introduced into the reserve in 2002. 

Leopard population includes young 
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Figure 5.1. Ungulate habitat selection and leopard hunting habitat selection in the Karongwe Game 

Reserve, South Africa. +Indicates significantly preferred, -Indicates significantly avoided.   

 Ungulate habitat preference        Leopard hunting habitat preference. Mean ± SE. 
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Figure 5.2. The proportional prey availability and actual consumption by leopard across different habitat types, indicating in which habitat each species was 

killed above availability. A = Available, K = killed and consumed. Numbers are sample size on which percentage was based. 
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Figure 5.3. The effect of habitat type on predation of different species by leopard, showing the proportion of expected and actual prey consumed by leopard 

across different habitat types. It highlights which species were killed above what was expected in each habitat type, giving an indication of where each species 

is more vulnerable. E = Expected number killed, K = Actual number of kills in each habitat type. Numbers are sample size on which percentage was based. 
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CHAPTER 6 

COPULATORY PARAMETERS AND REPRODUCTIVE SUCCESS OF WILD 

 LEOPARDS IN SOUTH AFRICA 

Published Journal of Mammalogy, 91(5):1178-1187 

 

6.1 Abstract 

Leopards (Panthera pardus) are a poorly understood, solitary felid, and additional study could 

provide novel insights into both evolution and conservation management. We studied the reproductive 

biology of seven adult female and two adult male leopards on Karongwe, South Africa, from 1999 to 

2005.  We intensively researched copulatory biology from 2001 – 2003, during which we observed 19 

consortships and 4,855 copulations (1,809 copulations visually) during 2,449 h of following consort 

pairs. Leopards copulated on average 4 times per hour, with an average of 256 copulations per 

consortship. Conception rate was low, resulting, on average, after 2.3 consortships (SE = 0.4). All 

reproductive parameters except gestation length were shorter than those in published literature, which 

we suspect reflected a facultative response to superabundant resources. Although females produced 

the expected 1.6 cubs per year, lifetime reproductive rates on Karongwe Reserve were approximately 

half that reported elsewhere due to lower female survival resulting from intraspecific factors. These 

results offer encouragement for founding new populations of endangered felids in areas of high prey 

availability and resource abundance, provided factors affecting population regulation can be managed. 

 

6.2 Introduction 

Reproductive behaviour and mechanisms underlying reproductive success are particularly important 

because fitness is fundamentally a function of fecundity.  The study of reproduction is therefore 

crucial to conserving species, populations, and indirectly to the vitality of entire ecosystems (Holt et 

al. 2003). Reproductive mechanisms are little understood in most species, with the exception of 

domestic livestock, a few other vertebrate species, and laboratory animals (Holt et al. 2003). Due to 

the secretive behaviour of large felids and the difficulty in obtaining visual observations, little is 

known of their basic reproductive parameters. Copulatory behaviour of leopards (Panthera pardus) 

has been the subject of little comprehensive research. Published accounts include a single mounting 

(Schaller 1972, Holt et al. 2003), a brief glimpse of a copulating pair (Hamilton 1976), and 13 

copulations during one-half hour in the Serengeti (Laman & Knott 1997). Although reproductive 

parameters (oestrous cycle, gestation, lactational anovulation, and puberty) are better understood, 

published results are restricted to a handful of studies (Schaller 1972, Le Roux & Skinner 1989, 
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Bailey 1993). Several captive studies at zoos have been undertaken (Sadlier 1966, Eaton 1977, 

Schmidt et al. 1979, Shoemaker 1983), but none of these contain sufficient data on reproduction to 

provide conclusive insights into copulation and reproductive output.  

 

It generally is accepted that nine subspecies of leopard exist (Wozencraft 2005). All are considered 

endangered or extinct with the exception of Panthera pardus pardus, which is widespread over nearly 

all of Africa south of the Sahara and over the greater part of southern Asia, including the Malayan 

peninsula and Java. Historically, population declines were due to hunting for the fur trade. Currently, 

hunting of the species continues, and populations are threatened by habitat loss and fragmentation due 

to land conversion for agriculture and urban development (Daly et al. 2005). 

 

Comprehensive reproductive data of this subspecies (P. p. pardus) under changing environmental 

conditions can be used to enhance management and conservation programs designed to maximize 

genetic diversity and minimize inbreeding of critically endangered subspecies (Reed et al. 2002). 

These data would also be useful in developing models of population viability in South Africa and 

developing management plans (e.g., Balme 2009). Here, we provide a comprehensive description of 

the reproductive biology of leopard. Our specific objectives were to (1) understand the mating system 

of leopards, and (2) define the reproductive parameters of a leopard population. 

 

6.3 Method 

6.3.1 Study area 

Field work was conducted on the 85-km2 Karongwe Private Game Reserve, Limpopo Province, South 

Africa (24o13’S; 30o36’E). The reserve was formed in 1998, and a 2.4-m-high electrified game fence 

was erected around the reserve perimeter. Elevation in the reserve varies from 520 m above mean sea 

level in the west to 489 m above mean sea level in the east. Karongwe is located within the savannah 

biome (Rutherford & Westfall 2003) and lies within the Mixed Lowveld Bushveld (Low & Rebelo 

1998). The study area was characterized by hot, rainy summers and warm dry winters, with an 

average annual precipitation of 487 mm. The main function of the reserve is ecotourism, with several 

charismatic wildlife species present. Carnivores that were introduced include the lion (Panthera leo), 

cheetah (Acinonyx jubatus), wild dog (Lycaon pictus), and spotted hyena (Crocuta crocuta), with 12 

ungulate prey species available. The leopard was the only large carnivore species that was not 

introduced to the reserve because it was already present. We calculated the Karongwe ungulate mean 

biomass, according to Coe et al. (1976), as 4,064 kg/km2 (SE = 938, range 3,703 – 4,532) for the 

survey years 1999 – 2005. Mean biomass across years was above the predicted mean for Karongwe 

(2,789 kg/km2) at which the ungulate biomass should be stocked and the predicted maximum (3,681 
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kg/km2) that should not be exceeded (Coe et al. 1976). Even the lowest ungulate biomass on 

Karongwe (2005: 3,703 kg/km2) was above this maximum stocking rate.    

 

6.3.2 Capture methods 

Our study, conducted from June 2001 to July 2003, was part of a larger study on leopard conducted 

over a 6-year period from September 1999 to August 2005. We used the minimum count method with 

recognizable individuals, in conjunction with territorial mapping in the Global Information System 

ArcGIS 9.3 (Environmental Systems Research Institute, Redlands, California), tracks, and radio 

telemetry to determine population size (Kunkel et al. 2005). This was calculated as the sum of all 

marked or recognizable individuals, plus those unmarked animals known to exist (Hamel et al. 2006). 

Through time we were able to acquire an estimate of the total population size using a combination of 

radio telemetry, natural markings, and tracks. Numbers of unmarked animals in the study were 

relatively easy to assess, as both male and female leopards are territorial (Mech 1986, Garshelis 

1993).  

 

Leopards were captured by free darting from a vehicle using a Dan-inject rifle JM Spl.CO2 (Dan-

Inject, ApS Sellerup Skovvej, 116 DK, 7080, Børkop, Denmark). A tiletamine-zolazepam 

combination at 4-6.5 kg/mg (Zoletil, Virbac) was used, and leopards were fitted with Telonics SB2 

VHF transmitters (Telonics, Arizona) constructed by AWF (Africa Wildlife Tracking, Pretoria, South 

Africa) into radio collars weighing approximately 400 g.   

 

During sedation subjects were sexed, reproductive characteristics noted (Mech et al. 1993), age 

estimated by examining body characteristics (Turnbull-Kemp 1967), dentition, and tooth wear 

(Stander 1997), and paws measured. Age also was based on observations; i.e., females with cubs, 

scent marking, and other territorial behaviours associated with adults or newly established subadults. 

Individuals that were not radiocollared were identified by spot patterns on the face and neck and facial 

features, such as scars and tears in the ears (Miththapala et al. 1989). 

 

We distinguished four different age classes, including cubs 0-12 months, subadults 12-36 months, 

mature adults 3-10 years, and old adults >11 years of age (Stander 1997). For example, prior to 

having cubs, females had short pink nipples and thus were estimated at 30-36 months old (Turnbull-

Kemp 1967). Although leopard were aged using recognized aging techniques (Turnbull-Kemp 1967, 

Stander 1997), additional information from territorial movements and known reproductive history 

also were used to obtain an accurate estimation of adult age. Estimated age might have been accurate 

within six months, but we could ensure the identification of the females’ first litter with a high degree 

of certainty in four of seven females. To help age leopards, reproductive characteristics were noted. If 
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it was not possible for the attending veterinarian to assess accurately if females were pregnant during 

sedation, it was established through deduction from copulatory behaviour, pre- and post sedation and 

post sedation signs of localization (female leaving and returning to the same location). 

 

Using callipers accurate to 1 mm, paws of sedated individuals were measured, and any unusual 

structures on the paw were recorded to help identify individuals from tracks. Length was measured 

from toe to pad across the longest part of the paw. Width was measured from toe to toe across the 

widest part of the paw, and a pad was measured from the top to the bottom. A database of tracks and 

locations was used to identify unknown individuals. Ecotourism guides, trackers, and researchers 

monitored roads daily for tracks. Researchers relocated any identified tracks and measured them in 

firm soil with a light covering of dust; anything softer caused track size to appear larger and was not 

measured. Only tracks that could be identified as front or back foot, and left or right, were measured. 

This allowed tracks (e.g., front, left track) of any two leopards to be compared for territorial 

information. Procedures used to handle subjects complied with guidelines established by the 

American Society of Mammalogists (Animal). 

 

Using three vehicles and nine researchers, we attempted to locate each radiocollared leopard twice 

daily (0500-0900 h and 1600-2000 h) throughout the study period to obtain visual observations. 

Location was recorded to the nearest 20 m using a handheld Global Positioning System (Garmin, 

Olathe, Kansas). If a visual observation was not possible, we used the squelch on the telemetry 

receiver to estimate direction and distance, and a second reading was taken directly opposite of the 

estimated position of the animal to improve accuracy. 

 

6.3.3 Copulatory behaviour 

We used visual cues (head rubbing, excessive rolling) and vocalization (sawing call) as an indication 

of the onset of oestrus, which typically began several days prior to association with a male (Smith & 

McDougal 1991). We defined consortship as a male and female associating and copulating (Sadlier 

1966). When telemetry signals indicated that male and female leopards were together and visual 

observation was not possible, we used the postcopulatory roar as an indication that copulation had 

occurred (Hancock 2000). When one of the leopards was not collared the postcopulatory roar was 

used as an indication that copulation had begun, which was confirmed later through visual 

observation. Postcopulatory roars are distinguishable from other leopard vocalizations; males emit the 

roar just before dismounting the female after copulation (Hancock 2000). Postcopulatory roars are 

probably emitted during ejaculation, as they are not emitted during false copulations (i.e., male 

mounts female without penetration). We recorded the number of consortships until conception. 

Copulating leopards were interrupted by humans, other female leopards, and by lions. Human-
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interrupted consortships, when a female was darted during copulation, were excluded when 

calculating the number of copulations to conception.      

 

6.3.4 Reproductive parameters 

Leopard were observed to be polyestrous (cycle regularly until conception), a reproductive 

characteristic also observed in the domestic cat (Felis catus) (Concannon et al. 1989) and lion (Packer 

& Pusey 1983). We measured interestrous intervals from the last day of copulation to the first day of 

the next copulation period. Interestrous intervals of 32.9 days have been recorded (Bailey 1993), and 

females were monitored more intensively for visual copulatory clues prior to the next copulation 

period. Gestation length was measured from the second-to-last day of mating to the day the female 

became localized (female leaves from, and returns to, the same place), suggesting denning behaviour 

(Herron 1986). We calculated interbirth intervals for those litters where >1 cub survived to disperse 

(i.e., 10 – 12 months) as the number of days between consecutive births. We estimated cub birth date 

as the day after the female became localized for a week, approximately 90 days after the last observed 

oestrus, and with no further copulations (Smith & McDougal 1991). We calculated seasonality of 

consortship, conception, and birth. Distribution of conceptions was compared to a random expectation 

of equal occurrence in each month of the year, using a Kolmogorov-Smirnov two-sample goodness of 

fit test (Sokal & Rohlf 1981). 

 

6.3.5 Reproductive success 

We estimated the reproductive rate of a female leopard as mean litter size/mean birth interval (Kerley 

et al. 2003), total lifetime productivity (total number of cubs produced in a lifetime—Sunquist 1981), 

and total number of young surviving their first year (total lifetime reproductive success—Clutton-

Brock 1988). To estimate total lifetime productivity we assumed that female leopards are 

reproductively active for nine years from 3 – 12 years old. 

 

6.3.6 Intensive copulatory behaviour study 

From June 2001 to July 2003 we undertook an intensive study of copulatory behaviour during 19 

consortships. From the onset of the copulatory period a vehicle with two observers remained with the 

consorting leopard 24 h/day, rotating in 6-h shifts until the leopard pair separated 2 – 4 days later. 

During visual observation we recorded number and initiator of copulations, copulation duration from 

purr and from the time of mounting to dismount, start and end times of the roar, whether the female 

rolled postcopulation, postmating aggression, unusual vocalizations such as snarls and calls and 

associated behaviour (Hancock 2000), false copulations, and distance moved after copulation. When 

visual contact was interrupted, the copulatory roar was used as a reliable indicator of copulatory 

frequency. 
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For all animals, we recorded leopard mortality as confirmed with recovery of a carcass, radiotracking 

device, remains of a leopard, or disappearance of cubs younger than eight months of age. Mortality 

was suspected when old leopards were no longer observed or when regularly viewed adult females 

that copulated previously with the resident male ceased to copulate and were no longer observed. All 

Statistical analyses were conducted using SPSS 15 (SPSS inc., Chicago, USA). 

 

6.4 Results 

Population size of leopards varied from 6 to 25 animals (including young) across the years of the 

study, with an average of 16 leopards per 85 km2 (SE = 2.6). Population size increased from 2000 (13 

individuals, 3 territorial females) to 2003 (25 individuals, 6 territorial females). During this time only 

one adult female was suspected to have died from natural causes, as she was no longer seen, and her 

subadult female offspring replaced her as the territorial female. From 2003 to 2006 the population 

declined to 6 individuals (2 territorial females). In 2003 one female died in a snare outside the reserve. 

Between 2004 and 2006 five adult females and two subadult females died. In 2004 two females died 

during same sex territorial clashes and one died from unknown causes. In 2005 one female died 

during same-sex territorial clashes, two females were killed by the new male after a territorial take 

over, and two subadult, recruited females and three cubs also were killed by the same male.  

 

Ten leopards (three adult males, six adult females and one juvenile female) were immobilized; 

however, due to technical complications with radiocollars we report reproductive data on two collared 

adult males, five collared adult females, and two uncollared adult females. The territory of the 

breeding male (M1) encompassed the majority of the 85-km2 area. Any additional subadult and adult 

males within the area were confined to small areas (< 7.5 km2, C. Owen, pers. Obs.) and were in 

constant conflict with the breeding male until they either dispersed or were killed. Three successive 

breeding males occupied the reserve from 1999 to2005. The breeding male (M0) present in 1999 was 

last seen in May 2001 just before the intensive reproductive study began. Three months later a 

resident subadult male (M1) became the breeding male at an estimated age of 3.5 years. M1 died in 

August 2004, and M4, a mature male estimated to be 5.5 years old, entered the reserve (October 2004) 

and became the breeding male. Neither M0 nor M4 were habituated, making reproductive data 

difficult to collect. Additional adult and subadult males also were monitored for reproductive activity. 

 

6.4.1 Copulatory behaviour 

Females regularly came into oestrus and during 13 consortships followed the male out of their own 

territory as he moved around the reserve, while nine times they remained in the females’ territory for 

the duration of the consortship. When M1 was the breeding male two other adult males in his territory 
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(3 - 4 year olds) never were seen copulating within the reserve. On one occasion a female located 

another male outside M1’s territory when M1 was not present. F3 copulated over a period of 86 h 

with M1 in F6’s territory. F6 chased F3 away, and M1 and F6 proceeded to copulate for 26 h, after 

which F3 and M1 resumed copulation over a 3-h period. F6 and M1 then renewed copulation over an 

11-h period until M1 made a kill and F6 searched for M3 (4 years old). Although the pair (F6 and M3) 

remained together for 24 h, no copulations took place despite continued attempts by the female. M3 

had begun scent marking 4 months previously and was sexually mature. M3 was permitted to remain 

only in a small portion of M1’s territory, and the two equally sized males were in constant conflict. 

Competition intensified, and the younger male was chased out of M1’s territory and the reserve four 

months later. 

 

6.4.2 Intensive copulatory study 

During the intensive copulatory study we followed consorting pairs for 2,449 h. We observed 19 

consortships, which included 4,855 copulations (1,809 copulations visually observed; Table 1). 

During consortship pairs walked and copulated, on average, over a period of 68 h (SE = 4.6, range 32 

- 99, n = 19 consortships; 6.1). Females initiated 97% (n = 1531) of the 1585 observed copulations 

where initiator was visible and when the male initiated copulation, he approached a female and she 

presented herself in lordosis. False copulations (n = 33) were identified during 1.8 % of observed 

copulations (2.8 times/consortship, range = 0 – 6). In all cases males mounted females but did not 

penetrate or roar. Females immediately resumed wasping (the female moves back and forth in front of 

the male enticing him to mate) and the males remounted, completing penetration and copulation, 

followed by the mating roar and dismount.  

 

Of 43 consortships, 16 % were interrupted by humans to collar individuals. Of the remaining 36 

consortships, 31 % resulted in conception. Each conception occurred after a mean of 2.7 consortships 

(SE = 0.4, range 1 - 6; Tables 6.1 and 6.2). Natural interruptions of the consorting pairs occurred on 2 

occasions by lions and on 3 occasions by other female leopards. No interruptions were caused by 

other male leopards.  

 

6.4.3 Reproductive parameters 

Mean interestrous period averaged 22.5 days (SE = 1.6, range 10 - 48, n = 28), and gestation averaged 

95.5 days (SE = 0.9, range 89 - 98, n = 10) (Table 6.2). After successfully raising a litter a female 

leopard mated again when cubs, on average, were 10 months old (SE = 0.5, range 9 - 13, n = 10) 

(Table 6.2). Cubs attained independence as determined by detachment from the female at 11.6 months 

(SE = 0.4, range 11 - 13, n = 7; Table 6.2). 
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In three consecutive years of study 100% of females produced cubs and the mean population birth 

rate was 15.8 % per year, with a minimum of 19 cubs born over three years (excluding cubs that died 

before observation). In the third year two females lost litters and re-mated; however, it was not 

possible to calculate how soon it was after losing the cubs that the females mated, as the date cubs 

died was not known (Table 6.2). 

 

Mean interbirth interval of leopards was 14 months (SE = 0.6, range 12 - 16, n = 5; Table 6.2), based 

on 15 litters of seven females from 2001 - 2005. Mean litter size was 1.7 cubs (SE = 0.1, range 1 - 2, 

median = 2, n = 11,) and was determined by the investigators 63.7 days after parturition (SE = 21.4, 

range 12 - 139, n = 6; Table 6.2). Litters were not examined at birth, and therefore litter sizes likely 

were underestimated. Litter sex ratio of the cubs that were sexed was 3 males: 11 females (21% male: 

79 % female) for 10 litters (Table 6.2). Direct observations indicated that litter mortalities were due to 

lions (n = 1), infanticide (n = 4), and other leopards (n = 1; Table 6.2). Adult sex ratios over the study 

period were 22.9 % males and 77.1 % females (1 males ± 0.1: 5 females ± 0.5, n = 6 ± 0.6). 

 

6.4.4 Reproductive success 

Reproductive rate and success were calculated for the four females whose reproductive histories were 

known and whose ages could be calculated with an accuracy of within six months. An error of six 

months in age estimation is unlikely to have an effect on the accuracy of the reproductive calculations, 

as age was used as a measure of the onset of sexual maturity and longevity.  Of the two subadult 

females (F1 and F2), F1 gave birth to her first litter (February 2002) at 38 months of age, and F2 gave 

birth to her first litter (January 2002) at 35 months of age. Of the two females that produced litters 

prior to this study (F3 and F4), F3 (five years old in October 2001) was still associating with two male 

cubs (11 months old). Her first litter (female cub) was born in 1999. F4 (four years old in February 

2002) continued associating with a male and female cub (10 months of age), and this was assumed to 

be her first litter.  

 

Mean reproductive rate was 1.6 cubs/female/year (SE = 0.3), with a mean of 0.8 cubs surviving to 12 

months of age (SE = 0.1; Table 6.3). Assuming females were reproductively active for nine years 

from 3 - 12 years of age, predicted mean total lifetime productivity would be 14.5 cubs (SE = 1.4) 

and predicted mean total reproductive success would be 6.9 cubs (SE = 0.9). Although females were 

reproducing at an average 1.6 cubs/year, average productive life span was 6.6 years (SE = 0.9), which 

was shorter than the expected 12 years for leopards in the wild (Daly et al. 2005; Table 6.3). Of seven 

females monitored in this study, all died at ages < 10 years. The oldest female (F3), who lived to nine 

years, had produced six litters with a total lifetime production of eight cubs as opposed to a predicted 

15 cubs, and had achieved reproductive success of 4 as opposed to a predicted 7 cubs (Table 6.3). 
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Mean reproductive success for all females monitored was 4 cubs / female (SE = 0.81, range 3 - 5, n = 

4).  

 

6.4.5 Seasonality 

Although consortships occurred year round, 62% of consortships (n = 47) occurred from late spring 

to early autumn (October to March), with two peaks in November and January (Fig.1). A similar 

pattern occurred in consortships resulting in conception (n = 15), with 67% occurring between 

October and April with two conception peaks one in late spring/early summer and another in autumn 

(Fig. 6.1). Periods of conception differed from expected (Kolmogorov-Smirnov: z = 1.63, n = 12 

months, P = 0.01), with at least one, and possibly two, peaks. These seven females gave birth in all 

months except May and December, (n = 15 litters), with births most frequent over June and July 

(33%) and January and February (27%; Fig. 6.1). 

 

6.5 Discussion 

Karongwe is a small enclosed reserve with artificially high numbers of ungulates that sustain 

predators and ensure a high number of sightings for ecotourism. Although the game fence was no 

barrier to leopards, ungulates were prevented from leaving the reserve, and this provided a constant, 

year-round food supply for predators that could affect their reproductive parameters and population 

sizes. Higher reproductive rate did not translate into higher lifetime reproductive success for female 

leopard on Karongwe Game Reserve. Although the prey rich environment enhanced reproductive 

measures, adult female survival was lower than expected, reducing the reproductive success of the 

population.  

 

Our observations of leopard mating match previous descriptions (Laman & Knott 1997, Hancock 

2000). However, reproductive parameters, with the exception of gestation length, were shorter than 

described previously, which we believe reflects removal of resource limitation (Rattray 1977, 

Laurenson et al. 1992). Reproductive parameters are affected by nutritional quantity and in food-

abundant populations, reproductive output increases through increased pregnancy rate, rapid 

maturity, and/or higher survival (Sinclair 1985, Mduma et al. 1999). Gestation length of 95.5 days 

agrees with other studies (Sadlier 1966, Hemmer 1976, Eaton 1977, Skinner & Smithers 1990) and 

could be linked less to nutrition than other reproductive parameters. 

 

Interestrous intervals in this study (22.5 days) were shorter than other leopard studies (32.9 days—

Bailey 1993); 45.8 days for captive leopard—Eaton 1977; 25.3 days—Sadlier 1966)) and, we 

believe, are close to the minimum for leopards. Similarly, interbirth intervals were shorter (14 

months) than the published range of 17.1 -28.8 months (Schaller 1972, Le Roux & Skinner 1989, 
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Bailey 1993). Unlike female leopards in other studies (Schaller 1972, Muckenhirn & Eisenberg 1973, 

Bailey 1993), females gave birth annually over three consecutive years, possibly indicating they were 

well nourished. Lynx (Lynx canadensis) in areas of high hare (Lepus americanus) density were more 

likely to breed every year than those in areas where hares were scarce (Sunquist & Sunquist 2002). 

Leopard cubs on Karongwe attained independence at 11.6 months, shorter than published data (13 – 

18 months— Bailey 1993; Le Roux & Skinner 1989, Skinner & Smithers 1990, Seidensticker & 

Lumpkin 1991). Enhanced resource availability can reduce age to sexual maturity (Sadlier 1969).  

The cost of dispersal among asocial species is high (Packer 1986, Wrangham & Rubenstein 1986), 

and the majority of other large felid cubs disperse at around one to two years (Smith 1984, Mondolfi 

& Hoogesteijn 1986, Jackson & Ahlborn 1988). Timing depends on social circumstances and 

resource availability (Sunquist 1983). We believe improved resource availability reduced time to 

maturation, and thus, dispersal in leopard on Karongwe. However, because of small sample sizes, 

generalizations based on our findings should be made cautiously. 

 

Leopards may be responding facultatively to a constant, year-round food supply by incorporating a 

second birth peak in mid winter. Lactation and feeding of young are the most energy-consuming 

activities related to reproduction (Sadlier 1969, Bronson 1989, Clutton-Brock 1991), and females 

typically should not give birth in the winter dry season because of a lack of cover and limited food 

(Bailey 1993). Prey of leopards at Karongwe Reserve, however, move into more risky, thick, 

evergreen vegetation along the rivers in winter where leopard successfully killed a greater proportion 

relative to their availability, and where these prey were more easily captured. Winter births in 

June/July would ensure abundant food for lactating females, as prey congregated in the rivers where 

vegetation remained greener longer. Females were able to hunt easily to feed cubs weaned during the 

birth season of prey in November, and cubs would learn to hunt prey (six-month old cubs can catch 

their own prey—Turnbull-Kemp 1967). The study by Persson (2005) on wolverines (Gulo gulo) 

showed higher reproduction in females supplemented with additional food and suggests that 

reproduction can be limited by winter food availability.  

 

Females living in prey rich environments are expected to grow and reproduce faster, resulting in 

higher population growth rate (Sibly & Hone 2002). This maximum productivity was evident with 

increasing population numbers until 2003, when intraspecific competition stabilized the population 

through effects on reproductive output and mortality rates.  Seven territorial females died, and 

therefore female average life expectancy was shorter than expected, resulting in lower lifetime 

reproductive success. Higher reproductive rate therefore did not translate into higher lifetime 

reproductive success. Shorter life span was compensated for, to an extent, by female recruitment; 

however, males that obtained territories in 2005 killed subadult females and all previously sired cubs. 

Death of cubs through infanticidal killing lowered female reproductive success. These results were 
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mirrored in tigers (Panthera tigris altaica; Kerley et al. 2003), which suffered mainly from human-

related mortalities. If the leopard population was subjected to added human-related mortality, 

population recovery could be affected negatively (Balme & Hunter 2004). 

 

Territories expanded and retracted depending on the number of females; however, even at peak 

population size, the number of territorial females never exceeded six, which suggested a maximum 

number of territories available on the reserve (Lopez-Sepulcre & Kokko 2005). Average female 

territorial sizes of leopards on Karongwe (11.2 km2, SE = 2.0, range 3.7 – 31.1 n = 17; C. Owen, pers. 

Obs.) were comparable to those of other Acacia woodland studies (11.3 km2—Bailey 1993; 14.4 

km2—Hamilton 1976). As regions become dryer (188 km2 – Stander et al. 1997) or more 

mountainous (487 km2 – Norton & Lawson 1985), territory size increases. 

 

Reproductive parameters affect population growth. Knowing the effects of various social and/or 

environmental factors on these parameters can help wildlife managers predict population responses to 

different conditions and enable them to manage effectively. With the exception of P. p. pardus, all 

subspecies of P. pardus are classified as endangered or extinct (Wozencraft 2005). Accurate 

reproductive data available from healthy populations of this subspecies provide valuable information 

for assisted reproductive technologies (i.e., artificial fertilization), and the effective management of 

endangered subspecies in captivity and in the wild. 

 

In addition to providing the first comprehensive description of leopard reproductive biology, our 

results are especially pertinent to conservation management of large predators in prey-rich 

environments. Most reproductive parameters indicated a facultative response of faster reproduction 

when resources are abundant. These results offer encouragement for founding new populations of 

endangered felids in areas of high resource abundance. However, additional work is needed on the 

conservation implications of enhanced resource availability and whether resource availability is a 

primary determinant of adult female mortality or whether high mortality is a product of the leopard 

social system (Balme & Hunter 2004). 
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Figure 6.1. Seasonal variation in oestrus and incidence of conceptions among seven female leopards 

in consortships from 2001-2004. Conceived oestrus resulted in pregnancy, and birth occurred three 

months later. See text for statistical summary. 
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Table 6.1. Mean copulatory output of 7 adult female leopards from 19 consortships (n = 4,855 copulations) on Karongwe from June 2001 to July 2003 
 
 
 
 
 
 
 
 
 
 
 
 
 

Female 

leopard 

Length of 

copulation 

from purr to 

dismount (s) 

Length of 

copulation 

from mount 

to dismount 

(s) 

Inter-

copulatory 

interval 

(min) 

Mean no. of 

copulations 

hour-1 

Mean no. of 

copulations 

day-1 

No. 

Copulations 

consortship-1 

No. of 

consortships to 

conception 

No. of hours 

consorting 

% of times 

female 

rolled 

F1 27.5 11.5 22.2 1.8 44 141 2.6 65.8 65.7 

F2 36.5 9.0 8.8 5.9 142 278 3.5 61.5 76.5 

F3 23.6 8.9 11.2 4.1 98 285 2.8 71.1 56.8 

F4 26.7 9.0 7.8 4.3 104 234 3.0 53.7 40.7 

F5 32.0 11.5 11.9 3.7 88 228 4.0 63.2 33.3 

F6 29.0 9.5 11.3 3.3 79 303 1.0 92.2 47.1 

F7 36.0 12.0 11.2 3.8 91 258 1.0 68.2 62.3 

Mean ± SE 30 ± 1.8 10 ± 0.5 12 ± 1.8 3.8 ± 0.5 92 ± 11 247 ± 20.4 2.7 ± 0.4 68 ± 4.6 55 ± 5.7 
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Table 6.2. Reproductive output of individual female leopards on Karongwe from June 2001 to January 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Female 

leopard 

Litter 

birth 

(year-

month) 

Gestation 

period 

(days) 

No. of 

consort-

ships to 

conception 

Litter 

size 

Outcome 

or cause 

of 

mortality 

in litters 

Cubs' sex 

in each 

litter 

Cub age 

when 

female 

remated 

(Months) 

Cub age at 

independe

nce 

(Months) 

Interbirth 

intervals 

preceding this 

litter 

(months) 

F1 02-Feb 96 5 2 D & R 2 ♀ 10 11 - 

 03-Apr 95 2 2 D & L 2 ♀ 13 13 14 

 # - 1 - - - 13 - 14 

F2 02-Jan 96 4 2 D & R 1 ♂ & 1 ♀ 10 11 - 

 03-Mar 97 2 1 D 1 ♀ 10 11 14 

 04-Jun 89 6 - Died * ≠ - - - 

 04-Oct 90 2 2 Inf* ≠ - - - 

F3 02-Feb 98 2 2 D & Inf 1 ♂ & 1 ♀ 9 11 - 

 03-Jul 97 6 1 Li 1 ♀ - - 16 

 04-Jan 94 1 2 Died� ≠ - - - 

 04-Sep 95 2 - Inf� ≠ - - - 

F4 02-Jun - 3 2 D 1 ♂ & 1 ♀ 11 13 - 

 # - - - - - 11 - 12 

F5 02-Aug - 4 - - - - - - 

F6 02-Jul - 1 2 D 1 ♀ - - - 

 03-Jul - 1 - - - 9 -  

F7 02-Nov - 1 1 D 1 ♀ 9 11 - 

Mean 

n =15 

94.7 2.7 1.7 

 3 ♂ : 11 ♀ 

10.5 11.6 14 

±SE ±0.9 ±0.4 ±0.1 ±0.5 ±0.4 ±0.6 
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-  Data were not available as these individuals were not collared, collars were faulty, or the 

 litter did not reach maturity and were not included in the calculations 

≠ Cubs died before they could be sexed 

#  Female died pregnant, litter data were not available 

L Killed by a leopard 

Inf Infanticidal killing 

Li  Killed by a lion  

D  Cubs reached the age of dispersal and independence from the female 

R  Removed from Karongwe 

(*)  Cubs died at one month old 

(�) Cubs died at four months old 
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Table 6.3. Reproductive output of 4 of the 7 female leopards on Karongwe that could be aged accurately and with known reproductive history from June 

2001 to January 2006. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Female 

leopard 

Date 

immobilized 

Estimated 

age at 

immobilisation 

Date of 

death 

Estimated 

age of adult 

females at death 

(years) 

Lifetime 

productivity (incl. 

cubs from previous 

litters) 

Reprod- 

uctive 

success 

Mean 

litter 

size 

Mean birth 

interval 

(months) 

Repro- 

ductive 

rate year-1 

F1 01-Jun 2 .5 years 04-Jul 5 4 3 2 14 1.7 

F2 01-Aug 2 .5 years 06-Jan 7 6 5 1.7 14 1.5 

F3 01-Oct 5 years 05-Jan 9 8 4 1.7 16 1.3 

F4 02-Feb 4 years 03-Aug 5.5 4 4 2 12 2 

Mean ± SE    6.6 ± 0.90 5.5±1.9 4 ± 0.81 1.9 ± 0.1 14 ± 1 1.6 ± 0.3 
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CHAPTER 7 

TOP DOWN OR BOTTOM UP REGULATION OF A TOP PREDATOR 

 (PANTHERA PARDUS) POPULATION 

7.1 Abstract 

Felids are vulnerable to local extinction, due mainly to low densities, large ranges and conflict with 

humans. Quantifying the effects of density-dependent “bottom-up”, and density-independent, “top-

down”, factors and processes in demography and dispersal remains a major challenge in population 

ecology. Here we examined survival, mortality, and dispersal of a leopard (Panthera pardus) 

population in a prey- rich environment. We provided population estimates as well as density-

dependent and independent influences on separate age groups within the population. The average 

leopard population (0.18/ km2) and adult (0.07/ km2) densities were in line with populations studied 

in similar habitats. The population responded positively to the “bottom up” effect of increasing prey 

density through subadult recruitment. Density-dependent intraspecific competition for space 

regulated the population close to carrying capacity through increased subadult mortality, and an 

increase in subadult dispersal the subsequent year. The population was further limited by top-down 

social behaviours during male territorial take-over (infanticide) and female territorial clashes. This 

study provided evidence of a complex interplay between density-dependent and density-independent 

factors affecting survival and dispersal of the different life stages of this predator in an environment 

not limited by food shortage, and in the absence of human persecution. To avoid over-estimation of 

conservation viability of leopard, or similar solitary territorial species, it is essential to measure the 

local carrying capacity for adult territories rather than simply population size or reproductive success, 

which may increase markedly during favourable years.  

 

7.2 Introduction 

Top-level mammal predators tend to be of conservation concern and face the problems of small 

population size, large home ranges, and human conflict (Woodroffe & Ginsberg 1998, Macdonald 

2010 ). Understanding population dynamics and factors responsible for controlling top predators 

allows us to appreciate how these species interact with their environment, and enable effective 

population management (Kunkel et al. 2005). This information is regrettably lacking due to the 

difficulties of monitoring these species, which are often cryptic, and inhabit extensive areas of 

difficult terrain (Jackson 1996, Soisalo and Cavalcanti 2006).  

 

A useful paradigm for examining population regulation is through top-down versus bottom-up views 

(Hunter & Price 1992, Power 1992, Pierce et al. 2012). Populations can be regulated by bottom-up 
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processes (e.g. resource limitation such as food, water and space) which are inherently density-

dependent, providing an explicit negative feedback mechanism, which regulates the population (Sibly 

& Hone 2002, Navarrete & Manzur 2008). As the population increases, fewer resources are available 

and the growth rate declines through either an increase in mortality (intraspecific competition for 

food, starvation and disease) or a decrease in natality (Piatt & Van Pelt 1997, Mduma et al. 1999, 

Armitage 2012). The rate of increase of a population is negatively related to population density and 

most density-dependent change occurs at high population levels for large mammals (close to the 

carrying capacity) (Fowler & Smith 1981, Murdoch 1994, Turchin 1999, Hammill & Stenson 2011). 

The population is subsequently limited by the essential resource requirements of the species, in a 

bottom-up density dependent process (Hairston et al. 1960), possibly only after a delay (Sinclair et al. 

2006).  

 

The population could also be influenced by top-down processes e.g. abiotic events, density-

independent social interaction (infanticide), natural enemies such as predators, parasites or human 

caused mortality (Kissui & Packer 2004, Schwarz et al. 2013). These are irregular, unpredictable, 

operate independently of density and are unable to regulate the population (Estes 1996, Kay 1998, 

Sinclair & Krebs 2002, Kissui & Packer 2004).  

 

Whether trophic levels are structured from the top down or the bottom up is more than a theoretical 

debate because it influences how we manage the Earth’s ecosystems, especially in reserves and other 

protected areas (Diamond 1992, Estes 1996, Khadka & Vacik 2012). To manage populations we need 

to understand what factors are affecting, and potentially limiting, population size. Although numerous 

inferences have been made about population regulation in carnivores, most studies have been 

hampered by difficulties in accurately estimating food availability, population carrying capacity, 

impacts of interspecific competition, and exposure to natural enemies (Kissui & Packer 2004).  

 

This study aimed to elucidate factors influencing leopard (Panthera pardus) population size and 

demography in a protected, human-modified environment of artificially high prey density. Variation 

in prey biomass over time allowed us to describe the importance of bottom-up relative to top-down 

influences. I predicted that leopard population would be regulated by density dependent limitation for 

space through intraspecific competition as well as density independent social behaviours such as 

infanticide and territorial disputes. Our specific objectives were to (1) calculate population size, (2) 

identify the density-dependent and independent processes that may be responsible for stabilising the 

population and identify the causes of fluctuation and instability, (3) identify the bottom-up resource 

responsible for population limitation and (4) ascertain which age groups were most influenced by 

these stabilising or destabilising processes. 
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7.3 Method 

7.3.1 Study area 

Fieldwork was conducted on the 85-km2 Karongwe Private Game Reserve (KGR), Limpopo 

Province, South Africa (24º139´S, 30º369´E). The reserve was formed in 1998, the main purpose 

being tourism. Karongwe is located within the savannah biome (Rutherford & Westfall 2003) and 

lies within the Mixed Lowveld Bushveld (Low & Rebelo 1998). The study area was characterized by 

hot, rainy summers and warm, dry winters, with an average annual precipitation of 487 mm (Table 

7.1). Animals have access to waterholes and rivers across the reserve, and water is not limiting 

(Thaker et al. 2010). 

 

A 2.4-m-high electrified game fence was erected around the reserve perimeter to contain carnivores 

that were reintroduced, including lion (Panthera leo), cheetah (Acinonyx jubatus), wild dog (Lycaon 

pictus), and spotted hyena (Crocuta crocuta), and 12 ungulate prey species (Thaker et al. 2010). 

Leopards were already present prior to establishment and fencing of the reserve. The fence was 

permeable to leopard and this study focussed on a core area of a much larger persistent leopard 

population. A minimum of two individuals of each predator species, reflecting the bulk of the adult 

populations, were radio collared and studied concurrently with the leopard study (Thaker et al. 2010). 

 

7.3.2 Prey availability 

We used prey availability to assess the impact nutrition had on population growth. A total count of 

ungulate species were censused annually in September by aerial counts undertaken in a Bell Jet 

Ranger helicopter. Using a GPS-aided computer, 300m wide strips were flown throughout the 

reserve. A data capture program “Capture”, written by Mark Schormann, was used to plot the 

location of the animals, reducing the chance of replicate counting. We calculated the Karongwe 

ungulate mean biomass from annual aerial game counts according to Coe et al. (1976). 

 

7.3.3 Population density 

We studied the population ecology of eight radio-collared female, three radio-collared male, six un-

collared female and two un-collared male leopard from 1999 to 2005. Leopard were captured by free 

darting from a vehicle and fitted with radio collars (Owen et al. 2010). Minimum age for collaring 

was 18 months and collars were fitted loosely to allow for growth. A leopard database, maintained 

from 1999-2006, identified individuals by the spot pattern on their face and neck as well as facial 

features such as scars and ear tears, with each assigned a letter designating sex (F = female and M = 

male) and a unique number. Photographs were used to assist in the accurate construction of identikits. 

The sire and mother of cubs were determined during intensive following (Owen et al. 2010). Un-
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collared subadults were monitored by opportunistic sightings. We used the minimum count method 

with recognizable individuals, in conjunction with territorial mapping in the global information 

system (ArcGIS 9.3, Environmental Systems Research Institute, Redlands, California), tracks, and 

radio telemetry to determine population size (Kunkel et al. 2005, Owen et al. 2010). This method is 

widely used in radio telemetry-based research projects for species like black bear (Ursus americanus) 

(Garshelis 1993), grizzly bear (Ursus arctos) (McLellan 1989), wolf (Canis lupus) (Mech 1986) and 

mountain lion (Felis concolor) (Lindzey et al. 1992).  

 

7.3.4 Potential leopard density 

To validate adult population size we determined the potential adult leopard density for Karongwe 

using a model that predicts potential adult leopard density as a function of potential prey abundance 

(Hayward et al. 2007). Prey density (#.km-2) data were converted to biomass (kg.km-2) using 0.75 

times the average female body mass in the population in order to account for subadults and young 

that are preyed upon (Hayward et al. 2007).  The regression equations relate predator biomass to the 

biomass of prey falling within the predators’ preferred prey weight range (Pw; 10 – 40 kg) as well as 

for significantly preferred prey species (Ps; bushbuck (Tragelaphus scriptus), common duiker 

(Sylvicapra grimmia), and impala (Aepyceros melampus)) (Hayward et al. 2006). The regression 

equations for potential leopard abundance = (10 ^ (- 2.248 + (0.405 * (LOG 10 (prey biomass))) * 

(area of reserve)). Prey biomass for each year was used in the equation to predict leopard densities 

the subsequent year, to allow for leopards to respond to changes in prey.  

 

Using three vehicles and nine researchers, we attempted to locate and obtain visual observation of 

each radio-collared leopard twice daily (05:00-9:00 h and 16:00-20:00 h) throughout the study 

period. Location was recorded to the nearest 20 m using a handheld Global Positioning System 

(Garmin, Olathe, Kansas). If a visual observation from the extensive road network was not possible, 

we used triangulation and the squelch on the telemetry receiver to estimate direction and distance. A 

direction was taken from a point closest to the leopard. The second reading was taken from the 

closest point 180 degrees to the first point (opposite) the third point was taken at 90 degrees to the 

first or second point as close as possible thereby providing a smaller area in which to locate a GPS 

reading from the GIS map. Leopard frequented rivers and drainage lines, and where triangulation was 

not possible a second reading was taken directly opposite the estimated position of the leopard to 

improve accuracy. 

 

For the purpose of this study, the study year was considered to start in September, which is the 

typical onset of spring and the first rains. Year one refers to September 1999 to August 2000, and 

subsequent years follow on from that to the end of the study in August 2005. Where a year is 
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stipulated, the second part of the study year is referred to, for example 2002 would refer to 2001 - 

2002 study year.  

 

7.3.5 Population regulation 

Leopard mortality was categorised as confirmed or suspected. Mortality was confirmed with the 

recovery of a carcass, damaged radio-tracking device, remains of a leopard or the disappearance of 

cubs younger than eight months. Mortality was suspected when old leopards were no longer seen, or 

when regularly viewed adult females which had copulated previously with the resident male ceased 

to re-copulate and were no longer seen (Owen et al. 2010). Although they may have emigrated, they 

were considered deceased in terms of the population. Adult males and subadults of both sexes were 

always assumed to have emigrated rather than died, unless mortality was confirmed. 

 

The causes of confirmed leopard mortality were established by direct observation, measuring bite 

marks if death was predator related, and from evidence and tracks around the site, and the other 

individuals with transmitters in the vicinity. Dead leopard were found within 24 h (48%) unless death 

occurred in the thick reeds of riverbeds, when sufficient time was allowed to elapse prior to walking-

in, to ensure that the stationary leopard was not on a kill or injured. When determining the percentage 

of deaths in the population, we assumed that individuals reaching sexual maturity dispersed unless it 

was known that a new male on the reserve was presently harassing and killing sub adults, in which 

case we assessed each individual’s disappearance to determine whether individuals had died or 

dispersed. 

 

We calculated the percentage real mortality and annual percentage mortality. Real mortality is the 

proportion of total mortality that occurs in each life stage (cubs 0-12 months, subadults 13-36 months 

and adult) dx/n0 (dx = the number dead in a category, n0 = the total life stage size) (Bellows et al. 1992). 

This enabled us to identify the life stage with the highest mortality and, comparing each life stage 

over several years, we were able to observe which life stage experienced age specific density-

dependent mortality (which age classes were regulated). Annual percentage mortality was also 

calculated, highlighting the annual losses in the population.  

 

7.3.6 Cause of mortality 

We categorised mortality into interspecific, intraspecific, human related and natural causes, to enable 

us to identify the primary cause of mortality and identify any density-dependent regulatory factors in 

the population. 
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7.3.7 Analyses 

Using linear regression, we tested whether variation in prey biomass and population density 

influenced variance in mortality, density and dispersal in the leopard population life stages. We 

ascertained which life stages were most influenced by these processes, and which life stages were 

regulated by a density dependent negative feedback process. We additionally tested the relative 

influences of previous years’ prey biomass and population density on mortality, density and dispersal 

because of the time required for predators to have offspring and subadults to mature. Changes in 

population in response to prey biomass and population density may not be immediately evident. 

Statistical analysis was performed using SPSS 15 (SPSS Inc., Chicago, Illinois). Means are presented 

with the standard error (±) subsequent to the mean. Normality of variables was tested using the 

Kolmogorov-Smirnov test and data that were not normal were transformed.  

 

7.4 Results 

With minimal management intervention (removal of two cubs) (Table 7.1) the leopard population 

changed markedly over the six-year study, owing to subadult maturation, emigration, immigration and 

mortalities (Fig. 7.1). Leopard population size varied from 6 to 25 animals (including young) across 

the years of study, with an average of 16 ± 2.6 leopard/ 85 km2 (0.18.km-2) (Table 7.2).  This equated 

to 18.8 leopards/ 100 km2 or one leopard/ 5.3 km-2. There were 6 ± 0.6 adult leopard/ 85 km2 (0.07/ 

km2), 7 adult leopards/ 100 km2 or one adult/14 km2. The average number of adult breeding females 

was 5 ± 0.4 (range 2 – 6) (Table 7.2). Adult male numbers ranged from 1 – 2. The breeding male’s 

territory encompassed the majority of the 85 km2 area. Any additional subadult and adult males within 

the area were confined to small areas (< 16 km2). There were three successive breeding males on the 

reserve. The breeding male present from 1999 was last seen in May 2001. Three months later a 

resident subadult male (M1) became the breeding male at an estimated 3.5 years of age. M1 died in 

August 2004 and M4, a mature male 5.5 years old (estimated) entered the reserve (October 2004) and 

became the breeding male (Fig. 7.1).  

 

Karongwe Herbivore mean biomass, was 4 064 kg/ km2 (SE = 938, range 3,703 – 4,532) for the 

survey years 1999 – 2005. Mean biomass across years was above the Coe et al. (1976) predicted mean 

for Karongwe (2 789 kg/ km2) at which the herbivore biomass should be stocked and was greater than 

the maximum recommended (3 681 kg/ km2) for that area (Table 7.1). Predator to prey ratios were 

1:53 (Thaker et al. 2011). Leopard numbers on Karongwe were in agreement with those predicted by 

the model predicting adult leopard numbers (Table 7.1). 

 

There was a significant positive relationship between prey biomass and leopard population size (r2 = 

0.57, n = 6, p = 0.049). Subadult density recruitment responded positively to increasing prey biomass 
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(r2 = 0.65, n = 6, p = 0.029).  There were no other significant correlations with prey biomass and any 

other life stage.  

 

Leopard density only had a relationship with the subadult life stage in the population.  Increasing 

population density resulted in increased subadult mortality (r2 = 0.66, n = 6, p = 0.049). This 

weakened to a non-significant relationship when considering the previous year’s population density 

(r2 = 0.034, n = 6, p = 0.768). There were no significant relationships between population density and 

mortality in the other life stages (cub mortality: r
2 = 0.053, n = 6, p = 0.660; adult mortality: r

2 = 

0.147, n = 6, p = 0.453). There were also no significant relationships between the previous year’s 

population density and mortality in the other life stages (cub mortality: r2 = 0.137, n = 6, p = 0.540; 

Subadult mortality: r2 = 0.034, n = 6, p = 0.768; adult mortality: r2 = 0.403, n = 6, p = 0.250).  

 

Subadult dispersals were highly significantly influenced by previous year’s leopard density (r2 = 

0.911, n = 6, p = 0.003), but not significantly with current year’s density (r2 = 0.292, n = 6, p = 0.211), 

ungulate density (r2 = 0.161, n = 6, p = 0.373)) or previous years ungulate densities (r2 = 0.263, n = 6, 

p = 0.298). Six of the 25 recorded subadults were collared. Of these six subadults, four (three females 

and one male) were recruited into the population during low population density (Fig.7.1). In 2004, the 

year following the highest leopard population density the highest number (seven) of cubs dispersed 

(Fig. 7.1; Table 7.2). 

 

In 2000, no leopard deaths were recorded (Table 7.2). This is likely an erroneous result as the project 

had recently begun, and daily monitoring activities were less thorough. Of the 21 suspected leopard 

deaths during the study, 14 were confirmed (Table 7.3). The primary cause of leopard related 

mortalities was not starvation, disease or human related. Leopard mortality was primarily the result 

of intraspecific encounters (eleven deaths, four of which were of radio-collared adults; 79 %) (Table 

7.3, Fig. 7.1).  

 

Excluding the first year, mean annual mortality was 4 ± 1.1 (range 2 – 7) (Table 7.2). Average 

percentage mortality was 19.3 %, of which adult female mortality accounted for 5.5 % and adult male 

mortality 1.8 % per annum (Table 7.2). The life stage that experienced the largest proportion of 

annual mortality were adults (male, 28.6 %; female, 19.4 %) and 0 – 12 month old cubs (24.2 %) 

(Table 7.2). Adults and cub mortalities were not statistically density-dependent and are therefore 

likely the result of density independent social behaviours during male territorial takeovers and female 

clashes. 

 

Rainfall during 2000, the highest in 12 years (952 mm), resulted in peak in ungulate biomass the 

following year (Table 7.1). The leopard population responded to the environmental improvement 
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through an increase in subadult recruitment. This was reflected in an increase in leopard density from 

1 leopard per 7 km2 to 1 leopard per 3.4 km2 in 2002. Not all these subadults secured territories. Only 

one extra territory was acquired and breeding adult females peaked during 2002 – 2003 (6 breeding 

females (Table 7.2). The ungulate and predator populations stabilised through 2003 when leopard 

reached their resource imposed limitation (space). The high leopard population was regulated through 

subadult mortalities lowering the leopard population in 2004 and further regulated in 2004 by 

subadult dispersal (Table 7.1; Table 7.2). Low rainfall in 2003 resulted in lower ungulate densities in 

2004. In 2005, the leopard population was severely reduced because of a significantly lowered 

ungulate population resulting in reduced subadult recruitment, in combination with the top-down 

influences of a male territorial takeover on all life stages of the population. The result was an all-time 

population low of three adults and three cubs (Fig. 7.1). 

 

7.5 Discussion  

Conservation and management decisions of populations depend critically on what factors drive 

population growth (Sinclair & Krebs 2002). No critical tests of the roles of density-dependent and 

independent factors play in regulating populations of leopards have been obtained, primarily because 

of the difficulty in gathering data simultaneously on large carnivores and their prey (Fryxell et al. 

1999). This data set provided a unique opportunity to evaluate the importance of density-dependent 

and independent regulation on the different life stages of a leopard population in a prey-rich reserve in 

the absence of human persecution. The conclusions drawn are not based on experimental tests and 

should be used with caution. 

 

Three processes could have influenced this leopard population. The first and primary process was the 

bottom-up regulation of carrying capacity through food supply, which sets the upper limit of trophic-

level growth (Bertram 1975, Stander et al. 1997, Sinclair & Krebs 2002). An increase in primary 

producers (plants) through increased rainfall provided more food for primary consumers (ungulates). 

Ungulates showed a numerical response to increased food and increased numbers. Secondary 

consumers (leopards) also showed a numerical response to increased availability of prey through 

subadult recruitment. These cycles vary dependent on environmental conditions, and have a year 

delay because of the time required for ungulates to have offspring (Trostel et al. 1987, Parker et al. 

2009). Mortality was not significantly affected by prey biomass. Density-dependent limitation of prey 

numbers on leopard was not evident; we found no leopards emaciated or diseased. If food shortage 

were the mechanism controlling the population around carrying capacity, then increased infant 

mortality through abandonment (Packer & Pusey 1984, Kelly et al. 1998), starvation in subadults 

(Packer & Pusey 1995, Inman et al. 2012) and lowered reproductive output (Krebs 2010) would be 

strongly apparent.  
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The second, may be a density-dependent regulatory process, limitation of territorial space 

(intraspecific competition), which would stabilise the population prior to food becoming limiting. 

This was seen by the high percentage of subadult mortalities during years of high population 

density. When population numbers were low these subadults would be recruited into the 

population. The assumption is that space or more specifically territories is the limiting factor. 

When resource imposed limitations were reached, a steady density was maintained through social 

behaviour (intraspecific competition, i.e. territoriality, dispersal, subadult mortalities) (Begon et al. 

1996, Sinclair & Krebs 2002). Territorial behaviour could  be the mechanism that limits the number 

of adult leopards that are able to coexist in this particular habitat, have access to food supply, and 

engage in reproductive activities.  

 

Territory size is related to available resources and this could put a limit on the adult population size 

(Hayward et al. 2009). The leopard population was also regulated close to carrying capacity and 

stabilised through increased subadult mortalities and dispersal.  During years of high population 

density subadult mortality was high, as a result of infanticidal killing of subadults unrelated to the 

breeding male. The year following high population number saw high numbers of dispersing subadults 

related to the current breeding male. These density-dependent regulatory processes altered the 

relationship between carrying capacity and population size enabling the population to return to its 

mean level relative to available resources after a disturbance, and thus regulated the local population 

size (Solomon 1949, Holling 1965, Krebs 2002, Sibly & Hone 2002). 

 

The third population limiting factor on Karongwe could be density independent top-down social 

behaviours. These included male territorial takeover, infanticide and female territorial disputes, but 

could equally include non-infectious disease, stochastic disturbance and human related mortalities at 

other times (Le Roux & Skinner 1989, Bailey 1993, Meserve et al. 1999, Balme & Hunter 2004). 

These density-independent processes were uninfluenced by population density, did not determine or 

regulate population densities, but did have an important influence on, and determined the level of 

realised growth and structure in the population (Solomon 1949, Rockwood 2006).  

 

Natural removal of breeding males resulted in higher mortality rates and in an environment where 

these density-independent mortalities are large and variable, they could override density-dependent 

mortalities so that the population fluctuates markedly (Sinclair 1998, Balme et al. 2012). This has 

been shown in populations where human-related removals further destabilise a leopard population 

having a devastating impact on the population and impeding population recovering (Balme & Hunter 

2004, Whitman et al. 2004). There were three different breeding males in six years, and leopards may 
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be similar to lions in that breeding males may only have a 3-4 year tenure, thereby preventing 

inbreeding (Packer & Pusey 1982). 

 

We suggest that bottom-up forces determined the maximum productivity and range of possibilities in 

this ecosystem. The stabilising influence on leopard carrying capacity was density-dependent social 

limitations (territorial space, dispersal and subadult mortalities), which limited the eventual size of the 

adult population. Top-down forces governed details of realized growth and resultant structure 

(Gutierrez et al. 1994, Sinclair & Krebs 2002). The rate of leopard population growth is dependent on 

both the density of prey as well as on the density of conspecifics (Fryxell et al. 1999). Interactions 

between these controls produce the variety of complex, nonlinear effects on population growth 

(Sinclair & Krebs 2002). Rigorous testing of these findings can only come from direct 

experimentation; however it is encouraging that our results are consistent with the documented 

patterns of prey dependence and density dependence (Fryxell et al. 1999).  

  

Ungulate densities on Karongwe were high and the leopard population was reproducing at a high rate 

(Owen et al. 2010), yet this abundant and diverse resource base did not translate into increased 

leopard numbers. The average density was comparable with studies undertaken in similar habitats 

(Hamilton 1981, Norton & Henley 1987, Jenny 1996, Mizutani & Jewell 1998). Studies in areas of 

lower prey abundance (10–60 kg) showed lower leopard densities, e.g., Serengeti (3.5 adults/ 100 km2 

– Schaller (1972)); (4.7 adults/ 100 km2 – Cavallo (1993)); and two forest habitats (4 adults/ 100 km2 

– Rabinowitz (1989); 3.4 adults/ 100 km2 Eisenberg & Lockhart (1972)). In low rainfall areas 

(Kalahari – Bothma & le Riche (1984) and farming areas – Grimbeek (1992)), leopard densities were 

even lower (1.4 adults/ 100 km2). 

 

Bailey’s (1993) study, in similar habitat showed unusually high leopard densities (10-17 adults/ 

100km2) probably due to high impala numbers. This verifies the Hayward et al. (2007) model, which 

suggests leopard numbers are related to their preferred prey within the preferred weight range. Bailey 

(1993) also showed that sixty four percent of leopard deaths were the result of starvation in the early 

dry season, when small leopard territories prevented hunting of widely scattered impala.  

 

The high of 25 individuals on KGR in 2003 were similar to those densities reflected by Bailey (1993), 

and almost certainly reflect the upper limit of carrying capacity. It seems unlikely that leopard 

populations in South Africa can attain densities as high as 1 per km2 (Myers 1976). Predator to prey 

ratios (1:53) were intermediate to the Serengeti (1:82) and the Kruger (1:27) and we believe that the 

decisions driving this leopard population are relevant to other African savannas (Thaker et al. 2010). 
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Although our study suffers from similar limitations to other leopard studies of small population size, 

large home ranges, cryptic nature, difficult terrain and a lack of experimentation and correlative 

assumptions our results are still pertinent to the conservation and management of leopard and other 

solitary territorial species. Understanding population dynamics and factors responsible for controlling 

top predators allows us to appreciate how these species interact with their environment, and enable 

effective population management. Unless it is known which factors drive and limit population growth 

of top-level predators, additional pressure such as hunting, culling and persecution, which alter the 

internal characteristics of a population, may drive the population into a reproductive dead-end 

(Grimbeek 1992, Balme & Hunter 2004). Absolute numbers of leopards in South Africa are difficult 

to determine owing to their secretive habits, together with the nature of the habitat in which they live 

(Norton 1990, Gros et al. 1996). We believe the carrying capacity on Karongwe is close to the 

maximum, and planning should focus on the envisaged spatial-social structure of the population (i.e. 

number of territories of adults that the local environment can support), which could be the ultimate 

limitation on future population size. Reintroduction plans should be formulated around this premise, 

and post-reintroduction monitoring (Kleiman 1989) should be designed to assess this component, 

rather than overall population size or productivity, which can fluctuate widely.  
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Table 7.1. Rainfall, herbivore biomass, ungulate biomass and predators on KGR from 2000-2005. 

Total herbivore biomass includes ungulates, elephant (Loxodonta africana), hippopotamus 

(Hippopotamus amphibious) and white rhinoceros (Ceratotherium simum). 

 2000 2001 2002 2003 2004 2005 

Annual Rainfall (mm) 952 507 478 247 547 523 

Ungulate biomass (15-40kg) 

(kg/km2) 3622 3843 3659 3667 3278 2564 

Total herbivore biomass (kg/km2) 3949 4505 4532 4320 3945 3703 

Leopard numbers 13 16 24 25 (2)* 19 12 

Adult leopard numbers 6 6 7 8 6 5 

Estimate of adult  leopard 

population following (Hayward et 

al. 2007) 7 7 7 7 6 5 

Total large predators2 22 35 50 64 59 46 

 

* () figure indicates annual removals 

2 Includes lion, spotted hyeana, cheetah, African wild-dog. 
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Table 7.2.  The leopard population size, sexes, ages and mortalities of the KGR leopard population from 2000 – 2006. 

 

 

 

 

 

 

 

A. Leopard population information 

  2000 2001* 2002 2003 2004 2005* 2006 

Total over the 

study period (%) 

# 

Average 

± SE 

Population size 13 16 24 25 19 12 6 109 16 ± 2.6 

Males 5 8 11 7 3 1 1 35 (32.1) 5 ± 1.4 

Females 8 8 13 16 12 8 4 65 (59.6) 10 ± 1.5 

Adult males 1 1 1 2 1 1 1 7 (6.4) 1 ± 0.1 

Adult females 5 5 6 6 5 4 2 31 (28.4) 5 ± 0.5 

Adults 6 6 7 8 6 5 3 38 (34.9) 6 ± 0.6 

12-36 months 5 6 7 11 7 2 0 38 (34.9) 5 ± 1.4 

0-12 months 2 4 10 6 6 5 3 33 (30.3) 5 ± 1.0 
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  B. Annual mortality within each life stage of the leopard population (% mortality)     

  
2000 2001* 2002 2003 2004 2005* 

  
Total mortality  

Average 

± SE 

Total mortality 0 2 (12.5) 2 (8.3) 4 (16) 7 (36.8) 6 (50)  21 (19.3) 4 ± 1.1 

Adult males 0 1 (6.3) 0 0 1 (5.3) 0  2 (1.8) 0.4 ± 0.2 

Adult females 0 1 (6.3) 0 1 (4) 3 (15.8) 1 (8.3)  6 (5.5) 1 ± 0.4 

12-36 months 0 0 2 (8.3) 1 (4) 0 2 (16.7)  5 (4.6) 1 ± 0.4 

0-12 months 0 0 0 2 (8) 3 (15.8) 3 (25)  8 (7.3) 2 ± 0.6 
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C. Annual percentage real mortality within each  life stage of the leopard population 

  

 

 

 2001* 2002 2003 2004 2005* 

 

Average % real 

mortality within 

each life stage 

 

Males  12.5 18.2 0.0 33.3 0.0  11.4  

Females  12.5 0.0 6.3 25.0 37.5  12.3  

Adult males  100.0 0.0 0.0 100.0 0.0  28.6  

Adult females  20.0 0.0 16.7 60.0 25.0  19.4  

Adults  33.3 0.0 12.5 66.7 20.0  21.1  

12-36 months  0.0 28.6 9.1 0.0 100.0  13.2  

0-12 months   0.0 0.0 33.3 50.0 60.0  24.2  

 

* New male take over, # totals exclude 2006, which only highlight the number of leopard remaining at the end of 2005 and were not used in calculations 
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Table 7.3. Number of leopard killed and the causes of leopard mortality on Karongwe from 2000 – 

2006 

 

 

Cause of mortality Confirmed Suspected Total 

Intraspecific:    

Same sex clashes 2 - 2 

Male female clashes 2 - 2 

Male kills subadult 2 1 3 

Infanticide 4 - 4 

Subadult kills next litter 1 - 1 

 52% 5% 57% 

Interspecific:    

Lion 1 - 1 

 4.8% - 4.8% 

Human related    

Snare 1 - 1 

Vehicle 1 - 1 

 9.5% - 9.5% 

Natural causes    

Old age - 2 2 

 - 9.5% 9.5% 

    

Unknown - 4 4 

Total 14 7 21 
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Figure 7.1. Reproductive output and population demographics of the leopard population on the KGR 

over six years (1999 – 2005). Points on the left-hand side indicate the date at which the individual 

entered the system while those on the right-hand side are when the individual died, dispersed or was 

translocated. Numbers to the left of each symbol are the studbook numbers. Cubs born are shown 

above their mother, while the dam and sire for each litter are given on the right-hand side of the 

figure. Location within the reserve of adult females is also indicated on the left.  

□ = adult female, ○ = adult male, ■ = female cub, ● = male cub, ? = Sex unknown. X = died,  

♣ killed by another leopard number indicates which leopard,* = what probably happened, ▲ = 

dispersed, R = removed, ◊ = immigrant adult.  
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CHAPTER 8 

SPACE USE REGULATION OF A SOLITARY FELID IN A  

PREY RICH RESERVE 

8.1 Abstract 

Space use and territorial behaviour of individuals can influence species’ population structure and 

dynamics. Key resources that are fundamental for survival and reproductive success of a species are 

critical in determining space use, and ultimately govern population density. We explored the 

relationship between space use and the key resources of seven female and two male radio-tagged 

leopards (Panthera pardus) in a prey- rich reserve in South Africa. The breeding male’s territory 

included the majority of the reserve (78.8 ± 0.5 km2) and overlapped with the home ranges of all the 

females. The territory of the non-breeding adult male was smaller (15 ± 4.7 km2) than the average 

female territory (21.8 ± 3.1 km2; range 9.3 – 51.5 km2). In this reserve, where prey was not limiting, 

habitat was the major driver of the leopard territorial system. Leopard habitat selection within home 

ranges, and range size, was determined by their foraging decisions matching the resources of their 

preferred prey, and by riparian areas, and these were the key limiting resource, regulating population 

density in this reserve. Female leopard were highly territorial, with relatively low overlap between 

females. Territoriality (exclusive use) was governed by ungulate biomass, increasing during years of 

high ungulate density. Our results contribute to the understanding of space use, key resources and 

territoriality that influence population structure and dynamics in prey rich areas. These baseline data 

used alone or in conjunction with historical data provide valuable information to agencies involved in 

habitat protection and restoration, for not only this species but other threatened species as well. 

 

8.2 Introduction 

How species distribute themselves within the landscape and their spatial organisation in core areas, 

home ranges and territories provides us with an understanding of species’ population density, social 

organization, key resource requirements, and the limiting factors that restrict populations (Fretwell & 

Lucas 1969, DuVal 2002). A home range is usually defined as the area in which an animal confines 

its daily activities of gathering food, mating and caring for young (Burt 1943). This excludes 

exploratory ‘forays’ and therefore this is not the entire area traversed during its lifetime (Mizutani 

and Jewell 1998).  

Home range size, spatial utilisation and the degree of territorial overlap vary widely within species, 

because they are strongly influenced by key resource requirements. These resources include prey 
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quality and quantity (Powell et al. 1997), body mass (Litvaitis et al. 1986), prey distribution and 

abundance, population density (Dahle & Swenson 2003), cover for hunting (Lucherini et al. 1995) 

water, denning sites, habitat requirement (Sandell 1989), and possible mates (Marker & Dickman 

2005) among others that are fundamental for survival and reproductive success.  

Home range size is a primary ecological parameter which determines the spatial scale at which 

natural processes operate, and is crucial to our understanding of species’ distribution, and population 

estimates (Wiens 1989). Such appreciation of scale is also essential for many aspects of management 

and conservation planning, as understanding how much space individuals need facilitates an 

estimation of potential carrying capacities (Smallwood 2001, Herfindal et al. 2005).  

The leopard is described as a solitary felid, only coming together to mate and where females have 

dependent cubs (Sunquist & Sunquist 2002). Their spatial organisation shows little overlap between 

neighbouring males. One males range overlaps the range of between four to six females and 

superimposed on that are transient subadult and old adult leopards (Bailey 1993). The spacing 

patterns of female leopard like most felids are determined by food supply and habitat, while males 

ensure access to a number of females in the absence of neighbouring male interference (Bothma et al. 

1997, Mizutani and Jewell 1998, McManus 2009, Grant 2012). 

Large carnivores generally cover great distances to meet their resource needs (Gibson & Koenig 

2012) and, although their home range is traversed during the course of daily activities, the boundaries 

are seldom defended against conspecifics (Gibson & Koenig 2012), and often the home ranges of 

several individuals overlap (Moorcroft & Lewis 2006, Macdonald et al 2010).  

The socio-spatial organisations of leopard are determined by territoriality, where the defended area 

(territory) is usually a smaller area within the home range where a fixed area of limiting resources are 

defended to the exclusion of conspecifics by territorial defence, thereby ensuring access to these 

resources all year round (Adams 2001). A territory is a spatially stable and exclusive area which is 

defended against rivals and territoriality is one of the most important behavioural traits affecting 

spatial organisation of wildlife population (Mizutani and Jewell 1998).  

In territorial species, space use, overlap and ranging patterns are used to identify social systems, and 

provide indirect information and insight about social interactions (Shier & Randall 2004). In 

nocturnal predators, direct territorial interactions are difficult to observe, and territoriality is 

confirmed by the exclusive use of an area (less than 25% overlap between same sex conspecifics) 

(Poole 1995, Ferreras et al. 1997, Azevedo & Murray 2007), often with the highest concentration of 

kills centred in the core area (Poole 1995).  
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We investigated the home range size and intraspecific spatial overlap of leopard (Panthera pardus) in 

a protected reserve with artificially high prey density. By examining territoriality, we aimed to 

understand how this social factor can regulate population density in the absence of forage limitations 

and human disturbance (Maher & Lott 2000). Resource availability may regulate populations (Bailey 

1993), but in small enclosed reserves where ungulate numbers are abundant, carnivore numbers may 

be regulated at a level below that expected from available resources, through territorial competition 

and density dependent social behaviours (Hairston et al. 1960, Trinkel et al. 2010, Chapter 7). Such 

small, enclosed, reserves make up 16.8% of the total land in South Africa, and undertaking sound 

ecological research in these areas will provide valuable data for evidence-based conservation and 

management decisions (Cousins et al. 2008).    

I hypothesise that prey density would be instrumental in determining home range size and that 

leopards would have heavier prey use in the core of their ranges. I also expect territories to be smaller 

with less overlap when population density is high. This study aimed to elucidate key factors limiting 

the population size of leopard in the absence of prey constraints. Our specific objectives were to (i) 

determine home range and territory size, (ii) identify key resources that determine range and territory 

size, (iii) identify key factors responsible for increasing territory overlap, and (iv) understand how 

territory size and overlap influence population size and potentially population regulation. 

 

8.3 Methods 

8.3.1 Study area 

Fieldwork was conducted on the 85 km2 Karongwe Private Game Reserve (KGR), Limpopo 

Province, South Africa (24º139´S, 30º369´E). The reserve was formed in 1998 and is located within 

the savanna biome (Rutherford & Westfall 2003) comprising of Mixed Lowveld Bushveld (Low & 

Rebelo 1998). The study area was characterized by hot, rainy summers (November – April) and 

warm, dry winters (May – October), with an average annual precipitation of 487 mm. Animals have 

access to waterholes and rivers across the reserve, and water is not limiting (Thaker et al. 2010). The 

main function of the reserve is ecotourism, and leopards are protected within the reserve.  

 

8.3.2 Herbivore population assessment 

A total count of herbivore species were censused annually in September by aerial counts, and mean 

herbivore biomass was calculated according to Coe et al. (1976). Wet season (October – March) 

herbivore presence and distribution was determined using road strip census procedures (Chapter 2). 

Herbivore utilisation distributions were georeferenced, and intersected with the habitat map using 

ARCGIS 9, thereby assigning a land cover type to each herbivore location. We produced annual 

utilization distributions (UD) for each ungulate species. The UD layer was converted into a point 
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layer and overlaid on the habitat map using Arc GIS 9.3, producing a UD-weighted estimate of use for 

each ungulate species in each habitat. 

 

8.3.3 Habitat 

We used a habitat map of Karongwe with the following physiognomic classes (Thaker et al. 2010, 

2011): Closed riverine (1.6% of total area), consisting of gallery forests along rivers; Open riverine 

(15.8%), consisting of open canopy forest with thick understory along rivers and drainage lines; 

Closed woodland (54.4%), consisting mainly of Combretum and Mopane woodlands with closed tree 

canopies; Open woodland (24.1%), consisting mainly of Acacia with separated tree canopies; and 

Open scrub (4.1%), consisting of old agricultural lands now reverting to open scrub habitat.  

 

8.3.4 Home range data collection 

The study, conducted from September 2001 to August 2005, was part of a larger study on leopard 

conducted over a 6–year period from September 1999 to August 2005.  We monitored seven female 

and two male leopards, captured by free darting from a vehicle, and fitted with radio collars (Owen et 

al. 2010). We collected diurnal and nocturnal locations for all collared leopard between 05:30 h and 

20:30 h with additional intermittent continuous monitoring of 2 – 96 h duration (Owen et al. 2010). 

To determine population size we used the minimum count method with recognizable individuals 

(Kunkel et al. 2005), in conjunction with territorial mapping in ArcGIS 9.3 (Environmental Systems 

Research Institute, Redlands, California), tracks, and radiotelemetry.  

All home range data were taken from resident collared leopards. Although the small size of the 

reserve restricted the sample size, individuals were followed intensively which provided detailed 

information on social interactions, hunting and movement behaviours. For spatial analyses, we only 

used one morning and one evening location per 24 h period for each leopard to avoid autocorrelation. 

Home ranges were calculated using the Animal Movement Extension (Version 2.04) in ARCGIS 9.3 

(Hooge et al. 1999). The fixed kernel estimator, with contours of 95% (active use) and 50% (core use) 

probability of use, was used to estimate home and core range areas respectively, based on more than 

30 locations per estimate (Seaman et al. 1999). We used Least Squares Cross Validation (LSCV) to 

determine the appropriate smoothing parameter for the kernel estimates (Seaman et al. 1999).  

 

Using these techniques, we produced annual utilization distributions for each individual leopard, 

using only 95% of the UD to decrease likely bias from the UD tails (Anderson 1982, Millspaugh et al. 

2006). The UD layer was converted into a point layer and overlaid on the habitat map using Arc GIS 

9.3, producing a UD-weighted estimate of use for each habitat type for individual leopards. Leopards 
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show individual variation in behaviour and home range habitat selection, and data were therefore not 

pooled.  

 

8.3.5 Prey preference 

The preferred prey of leopards was calculated and a comparison was drawn between habitat use of 

leopard and that of their preferred prey. Diet selection was calculated using Jacobs’ index, where p 

was the proportional abundance of that species in the total prey population, and r was the relative 

proportion that each species made up of the total leopard k

 

 

The resulting values ranged from +1 (maximum prefere

1974). We calculated annual prey selection within the home range of each female. I

killed more frequently than expected from 

it was considered preferred. 

Similarly, we derived habitat use from animal locations

selection and leopard hunting habitat selection were 

riverine, closed woodland, open woodland and open scrub), and study year (Y1 to Y5) 

 

8.3.6 Space use overlap 

 To assess overlap of space use between leopards, and to understand limitations on territorial

spatial use, we calculated the volume of

VI quantified the degree of overlap in shape and location of two individual leopards’ UDs as:

where fˆA is the estimated UD for leopard 

as the closest individual of the same sex. VI scores range from 0 

indicate a high degree of overlap between Uds.

rasters using the VI Index in ArcGIS. Where two or more leopard overlapped, an average percentage 

overlap was taken for each leopard to assess average changes each year. To understan

influence territoriality (i.e. lead to a decrease in overlap), percentage overlap was correlated with key 
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show individual variation in behaviour and home range habitat selection, and data were therefore not 

The preferred prey of leopards was calculated and a comparison was drawn between habitat use of 

ard and that of their preferred prey. Diet selection was calculated using Jacobs’ index, where p 

was the proportional abundance of that species in the total prey population, and r was the relative 

proportion that each species made up of the total leopard kills (Jacobs 1974):  

 

The resulting values ranged from +1 (maximum preference) to -1 (maximum avoidance) 

prey selection within the home range of each female. I

killed more frequently than expected from its relative abundance within that leopard’s territory, then 

habitat use from animal locations. Using Jacobs’ index, both 

selection and leopard hunting habitat selection were calculated for each habitat (Closed riverine, open 

riverine, closed woodland, open woodland and open scrub), and study year (Y1 to Y5) 

To assess overlap of space use between leopards, and to understand limitations on territorial

spatial use, we calculated the volume of intersection (VI) (Seidel 1992, Millspaugh 

degree of overlap in shape and location of two individual leopards’ UDs as:

VI = ∫∫ fˆA(x, y), fˆB(x, y)dxdy 

is the estimated UD for leopard A and fˆB is the UD for leopard B. We identified

as the closest individual of the same sex. VI scores range from 0 – 1, where VI scores approaching 1 

e of overlap between Uds. Percentage overlap was calculated on home range 

the VI Index in ArcGIS. Where two or more leopard overlapped, an average percentage 

overlap was taken for each leopard to assess average changes each year. To understan

influence territoriality (i.e. lead to a decrease in overlap), percentage overlap was correlated with key 

show individual variation in behaviour and home range habitat selection, and data were therefore not 

The preferred prey of leopards was calculated and a comparison was drawn between habitat use of 

ard and that of their preferred prey. Diet selection was calculated using Jacobs’ index, where p 

was the proportional abundance of that species in the total prey population, and r was the relative 

1 (maximum avoidance) (Jacobs 

prey selection within the home range of each female. If a species was 

its relative abundance within that leopard’s territory, then 

. Using Jacobs’ index, both ungulate habitat 

r each habitat (Closed riverine, open 

riverine, closed woodland, open woodland and open scrub), and study year (Y1 to Y5) (Jacobs 1974). 

To assess overlap of space use between leopards, and to understand limitations on territoriality and 

intersection (VI) (Seidel 1992, Millspaugh et al. 2004). The 

degree of overlap in shape and location of two individual leopards’ UDs as:  

. We identified leopard B 

scores approaching 1 

Percentage overlap was calculated on home range 

the VI Index in ArcGIS. Where two or more leopard overlapped, an average percentage 

overlap was taken for each leopard to assess average changes each year. To understand the factors that 

influence territoriality (i.e. lead to a decrease in overlap), percentage overlap was correlated with key 
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resources (prey biomass, habitat type, river length), and with population density, age and season (wet 

and dry).  

To understand if home range plays an important role in determining leopard population dynamics as 

limited by food, we calculated the number of kills in the core area (50% range), and compared this to 

the number of kills in the remaining home range.  To understand the factors responsible for territory 

sizes we ran separate regression analyses to quantify significant effects of each variable on territory 

size (power was too low for GLM approaches). All data were tested for the assumptions of normality 

(Kolmogorov– Smirnov and Lilliefors test) and normalised when required. We conducted all 

statistical tests using SPSS Version 19 (SPSS inc. 233 S, Wacker Drive, 11th floor, Chicago, IL).   

8.4 Results 

Leopard population size on the reserve varied from 6 to 25 animals (including young) across the 

years of study, with an annual mean of 16 ± 2.6 leopard/ 85 km2 (= 0.18 km-2) (Table 8.1). There 

were between four and six breeding territorial females at any one time (Table 8.1). On three separate 

occurrences, territories were taken over by daughters after the mother died (F8 replaced F1, F11 

replaced F4 and F9 replaced F6 (Table 8.1)). In 2002 and 2003, we collared five of the six adult 

breeding females, but due to one collar failure we were able to obtain space use data on only four 

females. In 2004 and 2005, all territorial females were collared.  

The home range sizes of females ranged from 9.3 – 51.5 km2 (mean 21.8 ± 3.1 km2, n = 17).  The 

breeding male’s home range was considerably larger and covered the majority of the reserve, mean 

size 78.8 ± 0.5 km2 (range 77.9 – 79.4, n = 3 years) which encompasses the entire reserve and all the 

territorial females’ home ranges. The non-breeding adult male held a much smaller home range 

(mean 15 ± 4.7 km2 range 10.13 – 24.61 km2, n = 3 years) (Table 8.1). The average core comprised 

about 29 % of females’ home range 6.4 ± 1.2 km2 (range 1.3 – 16.7 km2, n = 17). The non-breeding 

male’s mean core was 5 ± 1.6 km2, about 33% of his home range, while the breeding male’s core was 

35 ± 4.3 km2, about 45% of his home range (Table 8.1).  

Average ungulate biomass was 4,064 kg/km2 (SE = 938, range 3,703 – 4,532) for the survey years 

1999 – 2005. Mean biomass across years was above the predicted mean for Karongwe (2,789 

kg/km2) at which the ungulate biomass should be stocked, and above the predicted maximum (3,681 

kg/km2) that should not be exceeded (Coe et al. 1976). Even the lowest ungulate biomass on 

Karongwe (2005: 3,703 kg/km2) was above this maximum predicted stocking rate (Table 8.1).     

The preferred prey of leopard were duiker (Sylvicapra grimmia), bushbuck (Tragelaphus scriptus), 

waterbuck (Kobus ellipsiprymnus), warthog (Phacochoerus africanus), and impala (Aepyceros 

melampus), with annual principal prey indicated in Table 8.3.  
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All leopard principal prey selected either closed or open riverine if not both as a preferred habitat 

type and actively avoided closed woodlands (exception duiker and wildebeest selected open scrub 

and open woodland respectively) (Table 8.3). 

All female leopard home ranges contained the three most abundant habitats, closed woodland, open 

scrub and open woodland in the greatest proportions (Table 8.4). The utilisation distribution of 

female leopard indicated that they generally used the habitat of their preferred prey and the habitat in 

which they selected to hunt their preferred prey in, in the greatest proportion (Table 8.4).  With few 

exceptions, female leopard utilisation distribution showed closed riverine and open riverine 

(riparian), used in greater proportion to their availability (Table 8.4).  

Significantly important aspects determining the size of female leopards’ home range were river length 

(r = 0.81, SE ± 0.32, P < 0.001, n = 17), closed woodland (r = 0.97, SE ±  3.1, P < 0.001, n = 17),  the 

area of their preferred prey’s habitat (r = 0.80, SE ±  5.7, P < 0.002, n = 17), and area of riparian 

habitat (r = 0.56, SE ±  11, P = 0.02, n = 17) in particular open riverine (r = 0.70, SE ±  9.5, P = 0.002, 

n = 17) within their home range. Home range size was not significantly correlated with closed riverine 

on its own (r = 0.07, SE ± 4.9, P = 0.78, n = 17), but was correlated with the area of preferred prey’s 

habitat, suggesting that leopard primarily used closed riverine for hunting. Territory size reflected 

their prey’s habitat resource. 

Length of river within a home range did not increase significantly with leopard age (r = 0.42, SE ± 

5.6, P = 0.09, n = 17). Three young females inherited their mother’s home range, thereby reducing 

the statistical power of the results. Length of river did not correlate to the area of riparian habitat. 

Length of river was highly significantly correlated with area of closed woodland (r = 0.68, SE ± 4.5, 

P < 0.001, n = 17) and open woodland (r = 0.54, SE ± 5.2, P = 0.03, n = 17). This suggests that river 

length was selected by leopard for the adjacent closed and open woodland used for hunting.  

Although there were seasonal changes in individual home range size, there were no overall patterns 

of seasonal expansion or contraction of their home range, or of their core. Average home range size 

during both wet and dry season was 21.3 km2 (core size 6.19; core range 1.23 – 17.09 km2).  

Overlap of home ranges of adjacent leopards was low, with a mean VI score of 0.11 ± 0.01, median 

0.11 (n = 27, range 0.01 – 0.3), suggesting that same-sex resident individuals established exclusive 

areas (Table 8.2). Percentage territorial overlap of female home ranges increased significantly with 

population size (r = 0.70, SE ± 0.03, P = 0.002, n = 17) and with the number of territorial females in 

the population (r = 0.70, SE ± 0.03, P = 0.001, n = 17). Although overlap increased during years of 

high population density, home range size did not change. Both wet and dry season overlap were the 
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same 0.07 ± 0.02.  An increase in prey biomass, resulted in increased territoriality (less overlap) (r = -

0.69, SE ± 0.03, P = 0.02, n = 17).  

The density of kills in each leopard home range was not equally distributed (Table 8.5). Leopard 

made on average 5 ± 1.1 kills.km-2 in the core, and only 1.2 ± 0.2 kills.km-2 in the remainder of the 

home range. There was no significant seasonal variation in kill distribution, either inside or outside 

the core area (Table 8.5). 

 

8.5 Discussion 

The most important finding from this study was that, in a prey-rich environment, prey abundance did 

not translate into smaller leopard territories and thence increased population size (Swanepoel 2008). 

Leopard territorial habitat selection and size were determined by their foraging decisions, matching 

the resources of their preferred prey, and riparian areas. Closed woodland was the most abundant and 

important prime hunting habitat as well as riparian habitat, used for hunting, also provided shade, and 

its three dimensional structure likely permitted shared use of riverine habitat with lion (Chapter 5). In 

addition, riparian areas are important for connectivity between habitats, especially for animals such as 

leopard, needing to travel large distances over the fragmented landscape (LaRue & Nielsen 2008). 

Both riparian and its associated closed and open woodlands habitat were limiting key resources, 

resulting in average female territorial sizes being larger than that reported for other Acacia woodland 

studies (11.3 km2 - Bailey 1993; 14.4 km2 - Hamilton 1976). This highlights that, even in prey dense 

areas, the availability of quality habitat defined by other characteristics determined territorial size, and 

set the upper population limit (Lima 2002, Chapter 5). This contradicts the reasoning that increased 

prey numbers would result in increased leopard numbers and therefore an increase in leopard hunting 

quota can be made (Swanepoel 2008) 

As with other studies we observed limited intrasexual home range overlap, with leopard using both 

defence and exclusive use of area to determine territorial spacing within their home range (Maher & 

Lott 1995, Mizutani & Jewell 1997, Swanepoel 2008, Grant 2012, Chapter 7). There was evidence of 

territorial influence on prey selection patterns, corroborated by heavier prey use in the core of their 

ranges (Mech 1977, Pierce et al. 2000, Azevedo & Murray 2007, Chapter 5). In contrast, there was a 

high degree of intersexual overlap, suggesting that female distribution influences male spacing 

patterns (Sandell 1989, Odden & Wegge 2005, Swanepoel 2008, Macdonald et al. 2010, Grant 

2012). This was expected for a solitary predator in a mesic area of abundant evenly distributed forage 

(Poole 1995, Mizutani & Jewell 1997). Some studies have revealed considerable intrasexual 

homerange overlap. This is likely in areas of heavy persecution as a result of range expansion by 

immigrants and subadults following the removal of a breeding male (Marker & Dickman 2005). 
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Annual increases in ungulate density did not translate into smaller home ranges as has previously 

been proposed (Smith & Shugart 1987) in birds.  The home range of leopard remained the same size 

as prey density changed. However, the degree of territorial overlap decreased with increasing prey 

density, and leopard became more territorial (spent more time within their defended area rather than 

across their entire range), locating sufficient forage in a smaller area.  

During periods of increasing prey density, adult encounters with sub adults and floaters were lower, 

allowing these transitory individuals to persist in the gaps between territories, and resulting in a 

population increase (Mech 1977, Pierce et al. 2000, Chapter 7).  At the upper population limit, the 

number of territorial females never exceeded six, suggesting this to be the maximum number of 

available territories on the reserve. With decreasing ungulate density, territoriality decreased, with 

females expanding use outside of exclusively defended areas, and across their entire range, resulting 

in increased density dependent intraspecific encounters and increased mortality associated with 

conflict, and, thereby, population decline (Chapter 7). A study undertaken by Marker and Dickman 

(2005) also found a higher percentage overlap in food scarce areas. Both wet and dry season overlap 

were the same, therefore home ranges were large enough to accommodate seasonal shortages in this 

super abundant reserve (Simcharoen et al. 2008). 

As with other large carnivores, territoriality plays an important role in determining leopard 

population dynamics, by limiting the number of adult leopards that are able to coexist in a particular 

habitat, have access to resources, and participate in reproductive activities (Azevedo & Murray 2007, 

Owen et al. 2010, Wehtje & Gompper 2011). The number of territories available to females was set 

by spatial limitations, and the size of each territory was determined by, among other things, available 

key resources and population density (Clutton-Brock & Harvey 1978, Litvaitis et al. 1986, Dahle & 

Swenson 2003, Azevedo & Murray 2007).  

The effective management of wildlife populations depends largely on understanding the relationship 

animals have with their environment, how they are organised in space, and factors affecting spatial 

arrangement (Ben-Shahar & Skinner 1988, Manly et al. 1993, Kernohan et al. 2001, Moore et al. 

2013).  A reduced prey base, conflict with livestock farmers, an increased fragmentation, and habitat 

loss have drastically reduced leopard populations (Nowell & Jackson 1996). In South Africa, this has 

resulted in isolated populations which continue to be harvested with little chance of population 

recovery (Balme & Hunter 2004). Characterising species habitat selection, and important resources 

that dictate population persistence in a stable environment, can guide and streamline conservation 

efforts. Determining the effects of habitat loss, degradation and fragmentation on species’ risk of 

extinction can be critical when planning habitat restoration (Myers 1976, MacMahon 1997, 

Simcharoen et al. 2008). To develop long-term conservation plans for large carnivores, it is not 

enough to maintain large numbers of prey; riparian habitat and appropriate hunting habitats are 
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important for leopard to flourish (Hopcraft et al. 2010). Top carnivore populations can fluctuate 

markedly (Chapter 7), and we demonstrate here the importance of not simply knowing population 

numbers, but rather understanding the effective population size (in this case the territorial females).  
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Table 8.1. Annual home range size (km2) of the seven female leopard (F1 to F11), M1 (the breeding male) and M3 (a non-breeding male) for the core range 

(50%) and the overall range (95%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 

Population 
size 

(including 
young) 

No of 
territorial 
females 

F1 
50% 

F1 
95% 

F2 
50% 

F2 
95% 

F3 
50% 

F3 
95% 

F4 
50% 

F4 
95% 

F8 
50% 

F8 
95% 

F9 
50% 

F9 
95% 

F11 
50% 

F11 
95% 

M1 
50% 

M1 
95% 

M3 
50% 

M3 
95% 

2002 24 6 2.4 10.9 7.6 27.1 9.2 37.0 2.4 10.5 - - - - - - 35.07 79.05 4.37 10.13 

2003 25 6 1.3 9.3 10.6 31.5 3.5 18.0 10.8 30.6 - - - - - - 27.91 77.91 2.66 10.67 

2004 19 5 3.0 14.0 16.4 42.1 3.9 14.3 - - - - 2.7 10.7 3.2 13.1 42.66 79.42 8.11 24.61 

2005 12 4 - - 16.7 51.5 2.0 11.1 - - 4.5 14.6 8.1 24.6 - - - - - - 
Mean 
±SE    

2.2 
±0.5 

11.4 
±1.4 

12.8 
±2.2 

38 
±5.5 

4.7 
±1.6 

20.1 
±5.8 

6.6 
±4.2 

20.6 
±10 4.5 14.6 

5.4 
±2.7 

17.6 
±7 3.2 13.1 

35.2 
±4.3 

78.8 
±0.5 

5.0 
±1.6 

15.1 
±4.7 
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Table 8.2. Annual territorial, overlap and habitat information for leopards and their preferred prey from 2002 – 2005 on the Karongwe Game Reserve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leopard 
ID Year 

Average 
VI index 

% 
overlap  

Annual 
Preferred 

prey  

Preferred  
hunting 
habitat  

Preferred 
prey 

habitat 

Abundance 
of preferred 

prey 

Prey 
biomass 

(kg) 

Abundance 
of 

principal 
prey 

Leopards 
population 

size 
(including 

young) 

Length of 
river in 
territory 

(km) 

Area of 
Closed 

woodland 
in each HR 

(km2) 

Area of 
preferred 

prey 
habitat 
(km2) 

F1 2002 12% Duiker OR OS 18 3659 2398 24 7.2 5.9 5.9 

F1 2003 4% Impala OR CR 1252 3667 1619 25 4.8 4.9 4.9 

F1 2004 6% Duiker OR OS 15 3278 1206 19 8.6 7.4 7.4 

F2 2002 19% Duiker OR OS 18 3659 2398 24 8.5 17.3 17.3 

F2 2003 11% Duiker OR OS 7 3667 1619 25 12.9 19.5 19.5 

F2 2004 11% Duiker OR OS 15 3278 1206 19 21.5 24.8 24.8 

F2 2005 13% Duiker OR OS 16 2564 1468 12 21.3 29.2 29.2 

F3 2002 14% Warthog OR CR 266 3659 2398 24 18.7 20.5 20.5 

F3 2003 17% Warthog OR CR 119 3667 1619 25 15.6 9.4 9.4 

F3 2004 15% Bushbuck CR CR 14 3278 1206 19 12.9 5.7 1.1 

F3 2005 18% Bushbuck CR CR 21 2564 1468 12 12.4 4.6 0.9 

F4 2002 10% Bushbuck CR CR 127 3659 2398 24 5.4 5.2 0.6 

F4 2003 12% Bushbuck CR CR 56 3667 1619 25 22 13.5 2.1 

F9 2004 1% Bushbuck CR CR 14 3278 1206 19 8.4 4.3 1.0 

F9 2005 14% Bushbuck CR CR 21 2564 1468 12 18.7 10.6 2.0 

F11 2004 9% Bushbuck CR CR 14 3278 1206 19 6.1 10.6 0.5 

F8 2005 10% Impala OR CR 1124 2564 1468 12 9.5 6.5 6.5 
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CR- Closed riverine, OS-Open scrub, OR- Open river 

VI index- the percentage territorial overlap between adjacent leopards 

Annual preferred prey and hunting habitats - individual leopards’ preferred prey and habitats 

calculated using Jacobs index 

Preferred prey habitats are the preferred habitat of each leopard’s preferred prey calculated using 

Jacobs index 

Prey biomass - the calculated biomass of all prey on the reserve 

Principal prey - the eight most frequently consumed prey  
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Table 8.3. Habitat selection by principal prey of leopard on Karongwe Game Reserve using the Jacobs index of preference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Habitat Impala Waterbuck Warthog Bushbuck Duiker Wildebeest Kudu Rank 

Closed riverine  0.60 0.08 0.14 0.90 -0.30 -0.75 0.52 1 

Closed woodland  -0.16 -0.11 -0.16 -0.67 0.00 0.00 -0.07 4 

Open Scrub -0.08 -0.16 0.20 -0.35 0.23 0.10 -0.11 3 

Open riverine  0.45 -0.06 0.24 0.77 -0.19 -0.72 0.45 2 

Open woodland  -0.21 0.10 -0.12 -0.67 -0.26 0.09 -0.35 5 

 

Values range from +1 (maximum preference) to -1 (maximum avoidance) 

Rank indicates the habitat type with the highest preference rating across all principal prey 
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Table 8.4. Comparing the proportion of habitat in each leopard territory with their UD, relative frequency of occurrence on Karongwe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F1 territory 

habitat 

proportions  

F1  

UD 

F2 territory 

habitat 

proportions 

F2 

UD 

F3 territory 

habitat 

proportions 

F3 

UD 

F4 territory 

habitat 

proportions 

F4 

UD 

F8 territory 

habitat 

proportions 

F8  

UD 

F9 territory 

habitat 

proportions 

F9 

UD 

2001-2002             

Closed riverine 1.6 2.5 0.2 0.4 2.3 1.4 5.5 8.6 - - - - 

Closed woodland 54.0 50.3 64.0 63.2 55.3 58.5 49.4 48.1 - - - - 

Open scrub 24.5 24.4 11.0 13.3 10.8 10.6 12.4 12.0 - - - - 

Open riverine 7.3 11.5 0.9 1.5 2.3 1.6 6.7 8.8 - - - - 

Open woodland 12.2 10.7 23.6 21.4 28.2 27.2 24.7 20.4 - - - - 

2002-2003             

Closed riverine 1.8 3.3 0.3 0.3 3.5 6.7 7.0 8.2 - - - - 

Closed woodland 53.0 44.9 62.0 64.1 52.6 44.5 44.0 43.2 - - - - 

Open scrub 24.1 26.0 10.6 12.7 10.6 13.7 11.6 10.2 - - - - 

Open riverine 8.5 15.1 0.5 0.7 3.5 7.9 6.6 7.1 - - - - 

Open woodland 12.1 10.0 26.3 22.1 28.3 24.9 28.2 28.1 - - - - 

2003-2004             

Closed riverine 1.3 2.3 1.1 0.2 7.7 10.2 - - - - 9.7 12.2 

Closed woodland 52.5 48.3 58.8 62.0 40.3 39.2 - - - - 40.7 41.3 

Open scrub 25.9 26.9 10.4 10.9 11.2 11.6 - - - - 11.4 12.0 

Open riverine 6.0 10.8 1.7 0.4 7.3 11.0 - - - - 6.8 7.7 

Open woodland 14.1 11.1 27.4 26.0 31.0 24.7 - - - - 27.5 21.1 

2004-2005             

Closed riverine - - 2.2 4.3 8.1 10.1 - - 1.3 1.9 8.4 10.8 

Closed woodland - - 56.7 50.9 41.6 40.2 - - 45.0 43.3 43.1 41.5 

Open scrub - - 11.3 10.7 11.6 12.7 - - 27.1 28.2 12.3 11.1 

Open riverine - - 3.3 4.4 8.1 13.0 - - 5.4 7.2 7.9 8.1 

Open woodland - - 25.8 28.1 28.4 21.4 - - 21.0 19.1 25.3 24.2 
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Table 8.5. Leopard kill distribution, number of kills and density of kills inside their core (50% area of territory), density of kills in the remaining portion 

outside the core, and seasonally, on Karongwe Game Reserve from 2002  2005. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Female 
leopard  
ID Year 

Core area 
(50% of 
territory) 

(km2) 

Annual 
number 
of kills 
made in 
the core 

Number 
of kills 
made 

per km2 
in the 
core 
area 

Number 
of kills 
made in 
the core 
during  
the wet 
season  

Number 
of kills 
made 

per km2 
in core 

area 
during 
the wet 
season  

Number 
of kills 
made in 
the core 
during 
the dry 
season 

Number 
of kills 
made 

per km2 
in core 

area 
during 
the dry 
season 

Area of 
the 

territory 
outside 
the 50% 

core 
(km2) 

Annual 
number 
of kills 
made 

outside 
the 50% 

core 

Number 
of kills 
made 

per km2 
outside 

the  50% 
core 

Number 
of kills 
made 

outside 
the core 

area 
during 
the wet 
season  

Number 
of kills 
made 

per km2 

outside 
the core 

area 
during 
the wet 
season 

Number 
of kills 
made 

outside 
the core 

area 
during 
the dry 
season  

Number 
of kills 
made 

per km2 

outside 
the core 

area 
during 
the dry 
season 

F1 2002 2.4 9 3.8 3 1.3 6 2.5 8.5 11 1.3 3 0.4 8 0.9 

F2 2002 7.6 17 2.2 3 0.4 14 1.8 19.5 10 0.5 2 0.1 8 0.4 

F1 2003 1.3 22 16.9 9 6.9 13 10.0 8 7 0.9 3 0.4 4 0.5 

F2 2003 10.6 74 7.0 42 4.0 32 3.0 20.9 60 2.9 28 1.3 32 1.5 

F3 2003 3.5 16 4.6 12 3.4 4 1.1 14.5 7 0.5 5 0.3 2 0.1 

F4 2003 10.8 14 1.3 0 0.0 14 1.3 19.8 16 0.8 0 0.0 16 0.8 

F1 2004 3 11 3.7 8 2.7 3 1.0 11 14 1.3 12 1.1 2 0.2 

F2 2004 16.4 32 2.0 13 0.8 19 1.2 25.7 22 0.9 7 0.3 15 0.6 

F3 2004 3.9 32 8.2 13 3.3 19 4.9 10.4 27 2.6 17 1.6 10 1.0 

F2 2005 16.7 32 1.9 18 1.1 14 0.8 34.8 27 0.8 9 0.3 18 0.5 

F3 2005 2 6 3.0 1 0.5 5 2.5 9.1 6 0.7 4 0.4 2 0.2 

F8 2005 4.5 29 6.4 19 4.2 1 0.2 10.1 6 0.6 6 0.6 0 0.0 

F9 2005 8.1 41 5.1 17 2.1 24 3.0 16.5 27 1.6 19 1.2 8 0.5 

Sum  91 335 66 158 31 168 33 209 240 15 115 8 125 7 

Mean  

±SE  

7  

±1.5 

26 

±5 

5 

±1.1 

12 

±3.1 

2.4 

±0.6 

13 

±2.5 

2.6 

±0.7 

16 

±2.2 

19 

±4 

1.2 

±0.2 

8.8 

±2.2 

0.6 

±0.1 

9.6 

±2.5 

0.6 

±0.1 
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CHAPTER 9 

SUMMARY AND CONCLUSION 

In this concluding chapter I focus on in-situ conservation, highlighting the central points of the study 

which contribute to our understanding of leopard (Panthera pardus) ecological processes on the 

Karongwe Game Reserve. I offer baseline knowledge on what constitutes normal or adaptive 

behaviour for comparison with other reserves, including after ecological perturbations have occurred. 

I discuss the relevance of the results in relation to leopard conservation, which can be applicable more 

broadly for felid conservation in general. I highlight gaps in current knowledge and provide 

recommendations for further research. 

 

9.1  Carnivores 

Large carnivore populations living in our modern human-dominated, fragmented landscape continue 

to decline outside large government reserves, because of conflict (Woodroffe & Ginsberg 1998, Singh 

&  Bagchi 2013),  habitat loss, fragmentation (Wilcove et al. 1986, Dutta et al. 2012) and degradation 

(Rojas et al. 2011). Habitat fragmentation and landscape modification are considered to be severe 

threats to global biodiversity (Sala et al. 2000, Tscharntke et al. 2010), and are key drivers of global 

species loss (Fischer & Lindenmayer 2007), while human conflict compounds these already dire 

circumstances (Swanepoel 2008). 

 

Keystone carnivores at the apex of the food chain play an important role in maintaining the health of 

the ecosystem, and act as sensitive indicators of habitat quality that can be used to determine the 

health of the environment (Joseph et al. 2007). They perform the several crucial roles of regulating 

ungulates (Hopcraft et al. 2010), provisioning for scavengers (Wilmers et al. 2003) and 

mesopredators regulation (Crooks & Soulé 1999, Johnson & Vanderwal 2009). Further, the 

disappearance of apex predators from an environment can result in trophic cascades (Pace et al. 1999, 

Terborgh & Estes 2010).  

 

9.2 Small enclosed reserves  

Over the past few decades we have seen a change in land use from commercial farming to an 

increasing number of small, enclosed wildlife reserves, whose primary objective is to utilise natural 

resources to generate an income from ecotourism (Barnes 2001, Bond et al. 2004, Reyers 2004). 

These natural habitat areas have huge conservation potential, providing good quality resources to 

support threatened-species reintroduction programs (Cousins et al. 2008).  
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Large reserves are favoured to meet conservation goals for species with large home ranges, are more 

resistant to disturbance, and have increased habitat diversity and landscape heterogeneity, thereby 

reducing the risk of species extinction (Schwartz & van Mantgem 1995, Schwartz 1999, Cardillo 

2003).  However, in a human dominated landscape there are often no alternatives to small reserves 

due to a high degree of habitat loss and fragmentation (Tscharntke et al. 2002). Also, reserve size 

alone does not accurately predict population size or diversity. Large, disturbance-prone sites may 

have lower diversity than smaller, higher quality sites (Schwartz 1999) which have the potential for 

exponential growth rate (Mitchell & Hebblewhite 2012). One method of identifying high biodiversity 

areas is to model the habitats of top predators, because these sites are often biodiversity hotspots 

(Schmitz 2003, Sergio et al. 2005). Focusing on the protection of high biodiversity sites is believed to 

be the most effective way of conserving biodiversity globally (Myers 1976, Gavashelishvili & 

Lukarevskiy 2008). Although much of the practical implementation of ecological restoration is 

focused on the species, it is the habitat which is often most important (Miquelle et al. 1999), as this 

study shows. 

9.2.1 Predator re-introduction 

To restore natural ecosystems and increase their appeal to tourists, complex suites of predators (e.g. 

cheetah (Acinonyx jubatus) - Hayward et al. 2007a, lion, (Panthera leo), - Hunter et al. 2007 and wild 

dog, (lycaon pictus) - Gusset et al. 2006) and mega herbivores (e.g. elephant (Loxodonta Africana),- 

Slotow et al. 2005) were reintroduced into these reserves. Leopards are usually naturally occurring, 

but have been reintroduced where populations are low (Hayward et al. 2007a). Where they are 

naturally occurring, tourism observation potential is low because of years of persecution. In addition, 

as a result of the reserves’ small size and enclosed nature, natural processes may be unable to function 

in these reserves, leading to a host of complications which need to be intensively managed to maintain 

a balanced biodiverse ecosystem in a financially sustainable way (Grubbich 2001, Riley et al. 2002, 

Patterson & Khosa 2005).  

 

9.3 Challenges of managing small enclosed reserves  

To ensure successful reintroduction programs, a post release management plan of clearly defined 

aims, in conjunction with ecological monitoring, and adaptive management practices are essential 

(Haney & Power 1996, Pyne et al. 2010). In the absence of ecological monitoring, conservation 

mangers rely on limited experience-based information, developed from traditional land management 

practices (Pullin et al. 2004). 

 

Ecological monitoring provides information which enables managers to adapt and improve strategies 

for integrated sustainable resource and land use, with concomitant biodiversity conservation (Kremen 
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et al. 1994). Ecological monitoring should assess the impact of predators on prey populations in 

small, enclosed areas and the potential for loss of genetic diversity (Hayward et al. 2007a). It should 

also monitor the impact on woody vegetation, for example, of mega herbivores like elephant 

(Loxodonta africana), especially where their movements are confined at moderate to high population 

densities (Guldemond & Van Aarde 2008). Through long-term monitoring, evidence-based 

conservation holds promise for predicting which management actions are likely to be most effective 

in achieving conservation goals (Pullin & Knight 2003). 

 

Where ecological monitoring is not available, and in the absence of historical baseline data, relatively 

undisturbed sites with similar ecological features to disturbed sites can be used as reference sites 

(Economou 2002). Baseline sites represent the expected status of biological communities in the 

absence of stress from human activities and are able to provide a control in which we can measure 

human disturbance (Moehrenschlager & Somers 2004), justify recovery and restoration programs for 

endangered species (Alagona et al. 2012), and recreate conditions that allow for ecological processes 

to follow a similar evolutionary path (Van Andel & Aronson 2006). 

 

Small reserves with restored populations need to be managed to maintain a balanced bio-diverse 

ecosystem, through the regulation of population growth (Kettles & Slotow 2009), genetic integrity 

(Trinkel et al. 2008) and structure, and balancing predator-prey relationships (Van Dyk & Slotow 

2003), in a financially sustainable way (Grubbich 2001, Riley et al. 2002). Small reserve management 

is compounded by strict fencing standards, substantially higher reproduction rates (Druce et al. 2004) 

and pressure from tourist expectations of seeing the charismatic species (Swarbrooke 1999).  

 

9.4 Ecological monitoring and management 

9.4.1 Predator prey balance   

Predator-prey competitive interactions are among the major forces that shape food webs and 

ecological communities (Loladze et al. 2004).  What carnivores select to eat determines their fitness 

(Pyke 1984), population density (Boyce 1989), reproductive success (Owen et al. 2010) and 

territoriality pattern. However, disproportionate selection pressures by predators can have an alarming 

impact on both prey biomass, and the system as a whole (Johnson 1980, Thaker et al. 2011).  

 

9.4.2 Balancing leopards and their prey 

Portrayed as a super generalist, leopard should be able to stabilise a system (Lidicker 2000). However 

my results highlight that leopard are more likely to destabilise small enclosed systems because, in 

order to maximise energy gain, they become selective consumers (Hayward et al. 2006, Balme et al. 
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2007). Leopards’ more preferred prey were not selected according to abundance. Leopards 

selectively preyed on specific species, and females and juveniles, which appeared closely tied to 

vulnerability (Stein & Magnuson 1976, Shultz & Finlayson 2010). Selection pressure by leopard may 

be able to affect micro distribution and behaviour in ungulates while the impact on breeding ungulate 

females might be severe enough to cause extinction in small populations (Stein & Magnuson 1976, 

Shultz & Finlayson 2010).  

 

I showed how leopard continue to hunt preferred species even when they became rare (Balme et al. 

2007) and, combined with their high consumption rate, this is likely to have serious consequences on 

species richness in small enclosed reserves (Chapter 5). Predator-prey interaction needs to be 

monitored carefully (Druce et al. 2004).  Preferred prey populations need to be in sufficient numbers 

to prevent inbreeding, maintain a balance of sex ratios to ensure successful breeding, and sustain 

predator populations (Slotow & Hunter 2010). 

 

The widespread use of buffer species, like impala (Aepyceros melampus) and warthog (Phacochoerus 

africanus), which are both common and cheap, has the aim of reducing predation of more expensive 

and rare species (Cousins et al. 2008). There is evidence that the use of buffer species is ineffective 

(Lehmann et al. 2008) and I show that leopard continue to select preferred prey even where abundant 

buffer species are readily available. Managers armed with this information can ensure that there are 

buffer species and a sufficient preferred prey base to sustain the leopard population, and ensure the 

long term survival of both predators and their less abundant prey. 

 

Leopard habitat selection and territorial size were governed by their foraging decisions. Leopard 

hunted where prey were most abundant, in their preferred prey’s selected habitat and riparian areas 

(Balme 2009). Closed woodland was the most abundant and important prime hunting habitat while 

riparian habitat, used for hunting was both important for other key resources and connectivity 

between habitats (LaRue & Nielsen 2008) (Chapter 8).  

 

Characterising leopard habitat selection, and the important resources in these protected environments 

(source populations) that relate to population persistence, can be used to guide conservation efforts in 

combating the effects that habitat loss, degradation, and fragmentation have on species risk of 

extinction, and for planning habitat restoration (Myers 1976, MacMahon 1997, Simcharoen et al. 

2008). 

 

If the leopard is to be preserved in South Africa, a network of potential habitats that are within the 

species dispersal limits need to be protected (Oppel et al. 2004, Stamps et al. 2005). These source 
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habitats could produce surplus reproduction, which could in turn disperse to sink habitats where 

density is lower.  

 

9.4.3 Population ecology 

Monitoring population birth, growth, reproduction and death identifies the factors that influence the 

success and distribution of populations (Montalvo et al. 1997). Restoration usually establishes a 

relatively small founding population and fences restrict movement, compounding genetic disturbance 

and overpopulation (Montalvo et al. 1997, Hayward et al. 2009). 

 

9.4.4 Inbreeding 

Inbreeding depression and loss of genetic variability (Trinkel et al. 2010), as a result of closely related 

individuals mating and producing offspring with reduced fitness, increase the population’s risk of 

extinction (Lande et al. 1999, Trinkel et al. 2011). Inbreeding has been reported in lion (Packer et al. 

1991, Trinkel et al. 2008), grey wolf (Canis lupis) (Laikre & Ryman 1991) and the Florida panther 

(Puma concolor coryi) (Pimm et al. 2006).  Inbreeding depression in leopard is seen in critically 

endangered sub populations of leopard like the Amur leopard (Panthera pardus orientalis) with 

numbers as low as 25-40 (Perez et al. 2006) and the Far Eastern leopard (Panthera pardus orientalis) 

(Uphyrkina et al. 2002). Isolation and inbreeding results in congenital and reproductive abnormalities 

and has deleterious consequences on all aspects of survival (Trinkel et al. 2010). Although the leopard 

population of South Africa is not at risk of extinction, small fragmented and isolated populations 

could, as a result of stochastic events such as prey deprivation, human depredation, and disease, see 

numbers dropping so low, that they are driven to extinction (Uphyrkina et al. 2002, Daly et al. 2005). 

Conservation efforts should endeavour to save the integrity of small isolated populations; however, as 

a rescue strategy, genetic augmentation/restoration should be carefully considered (Uphyrkina et al. 

2002, Trinkel et al. 2008). 

 

9.4.5 Overpopulation 

Small founding populations (Reading & Clark 1996) on prey rich, fenced reserves, and in the absence 

of threatening processes, have resulted in exponential reproductive rates in top predators and mega 

herbivores (Maddock et al. 1996, Vartan 2001, Hayward et al. 2007b, Kettles & Slotow 2009). A lack 

of post introduction monitoring or management intervention further compounds the problem if 

numbers are allowed to exceed the reserve’s sustainable carrying capacity and impact negatively on 

ungulates and the environment (Slotow et al. 2005, Kettles & Slotow 2009).   

 

Popular thought is that enhanced nutritional quantity translates into higher predator numbers 

(Swanepoel 2008).  Low density founder populations in favourable environments have led to 
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unusually rapid population growth (exponential), as a result of high reproductive output and high 

recruitment (Kettles & Slotow 2009). Rapid population growth rate in small reserves is compounded 

by the lack of environmental stressors like infanticide, disease, intraspecific conflict and starvation 

which limit population growth (Foose & Ballou 1988, Kettles & Slotow 2009, Druce et al. 2011, 

Edwards & Edwards 2011).  

 

Unless numbers of top predators such as lion (Jolley 2006, Kettles & Slotow 2009) and mega fauna 

such as elephants (Biggs et al. 2008, Kerley et al. 2008) are controlled, they have the potential to 

change the habitat and prey community composition (Peel & Montagu 1999, Vartan 2001, Kettles & 

Slotow 2009). High predator numbers impact negatively on the breeding potential of weaker predators 

as well as the underlying prey species (e.g. Power 2002, Slotow & Hunter 2010). High numbers of 

elephant with population eruptions have the potential to have significant environmental consequences 

(Biggs et al. 2008, Kerley et al. 2008, Druce et al. 2011). 

 

Enhanced nutritional quantity on Karongwe did augment leopard reproductive parameters and 

reproductive output through increased pregnancy rate and sub adult maturity (Sinclair 1985, Mduma 

et al. 1999) (Chapter 6). This increased reproductive output however did not translate into increased 

population density. Leopard population density on Karongwe was in line with populations studied in 

similar habitats (Chapter 6), and my study shows that leopard populations in small reserves are self 

regulating because leopard moved across fences and therefore more natural processes affecting the 

population were able to take place, and minimum management intervention for population size or 

inbreeding was required.  

 

Prey density was important and set the upper limit of the population carrying capacity (Bertram 1975, 

Stander et al. 1997, Sinclair & Krebs 2002). However, density-dependent intraspecific competition 

for space regulated the population close to carrying capacity, before food became limiting  thereby 

controlling population numbers naturally (Kettles & Slotow 2009, Edwards & Edwards 2011) 

(Chapter 7).  

 

Territoriality played a fundamental role in determining leopard population dynamics, limiting the 

number of adult leopard that were able to coexist, have access to resources, and participate in 

reproductive activities (Owen et al. 2010, Wehtje & Gompper 2011). Leopard territorial size was 

determined by available resources, and availability of space placed a limit on the adult population 

size (Hayward et al. 2009) (Chapter 8). Any territory that became available was filled by subadults, 

or floaters in the population (Jacquot & Solomon 2004). 
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Annual increases in ungulate density did not translate into smaller territories and more breeding 

adults. Leopard territories remained the same size; however, the degree of territorial overlap 

decreased with increasing prey density and leopard became more territorial by locating sufficient 

forage in a smaller core area (Chapter 8).  During these periods, subadult recruitment (Chapter 7) and 

adult encounters with sub adults and floaters were lower, resulting in a population increase (Chapter 

8, Mech 1977, Pierce et al. 2000). At the upper population limit, the number of territorial females 

never exceeded six, suggesting this to be the maximum number of available female territories on the 

reserve (Chapter 8).  

 

With decreasing ungulate numbers, density-dependent regulatory processes were amplified (Chapter 

7). Territorial overlap increased resulting in increased density-dependent intraspecific encounters 

(Chapter 8), with an increase in subadult mortalities and dispersals (Chapter 7).  This highlights that, 

even in prey dense areas, the availability of quality habitat determined territorial size and set the 

upper population limit (Lima 2002, Chapter 8) suggesting that landscape composition is vital to 

predator prey dynamics, and that prey density alone may not be enough for successful carnivore 

conservation (Balme 2009). 

 

The leopard population was further limited by top-down density-independent social behaviours 

during male territorial take-over (infanticide) and female territorial clashes (Chapter 7). Natural 

removal of breeding males resulted in higher mortality rates in all sectors of the population, and in an 

environment where these density-independent mortalities are large and variable, they could override 

density-dependent mortalities so that the population fluctuates markedly (Sinclair 1998, Balme et al. 

2012). This has been shown in populations where anthropogenic removals further destabilise a 

leopard population, having a devastating impact on the population and impeding population recovery 

(Balme & Hunter 2004, Whitman et al. 2004). My results highlight that the number of territories 

available to females, and the dynamics between predators and their prey, are a function of not only 

the relative abundance of prey, but also population size, key resources and landscape attributes  

(Clutton-Brock & Harvey 1978, Litvaitis et al. 1986, Dahle & Swenson 2003). 

 

I have demonstrated that the intraspecific social system, even in a solitary species, plays a significant 

role in population control. Density dependent measures, which rely on the species’ own density to 

reduce the population, and density independent social influences which have effects on the 

population in the absence of density, were responsible for maintaining leopard population dynamics 

(Sinclair & Pech 1996). In social species (e.g. lion), density dependent influences also play a 

significant role in population control, by regulating reproductive output (Kissui & Packer 2004). 

During low densities, lionesses’ age at first litter was significantly younger, and litters were larger, 

than when the population was close to carrying capacity (Trinkel et al. 2010). This may explain why 
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small populations reintroduced into nutrient rich environments, in the absence of density dependent 

constraints, breed so quickly. 

 

Understanding population densities is important to be able to sustainably manage predator populations 

and set sustainable harvesting quotas (Balme et al. 2010a). A major benefit of exponentially breeding 

populations, especially in endangered species, is that these managed populations can serve as 

reservoirs of genetic material that can be harvested before density dependent factors take effect 

(Foose & Ballou 1988). A metapopulation management scheme, where surplus individuals from these 

exponentially breeding populations are introduced into remnant populations or unoccupied areas, to 

boost not only numbers but improve genetic variation, would be especially beneficial for populations 

which are too far from other dispersing populations (Akcakaya et al. 2007). Leopards, as one of the 

most sought-after big game trophy species in South Africa, are commercially important and emphasis 

on this value could foster farmer tolerance, especially in areas where leopard are heavily persecuted 

(Turnbull-Kemp 1967, Swanepoel 2008). Currently leopards are harvested all over South Africa; 

however, to maximise off-take without further jeopardising population survival or depleting the 

genetic variation, hunting should be confined to the non breeding portions of viable, exponentially 

breeding populations (Balme et al. 2010a).  

 

 Problems with exponential breeding populations arise, however, when there is no more space, and 

supply is greater than demand (Jolley 2006, Grobler et al. 2007). As the boom in wildlife reserves in 

South Africa slows, available land for wildlife has become saturated. Exponential breeding of 

predators and mega herbivores that were once rare have increased. Reserves are no longer able to 

move animals and are looking at alternatives to control populations, like contraception, hunting and 

culling (Orford et al. 1988, Delsink 2006, Kettles & Slotow 2009). 

 

9.4.6 Habituation 

In order to achieve regular and prolonged visual observations the appropriate habituation is 

necessary. The habituation of wildlife was first pioneered by zoologists such as Dian Fossey, for the 

purpose of research (Harcourt et al. 1980). In Chapter 4, I highlight a method for fast and successful 

habituation of leopards, minimizing capture and following stress that does not impact negatively on 

the animal or the reserve’s objectives of having safe wildlife interactions. Free darting, collaring, and 

habituation were intensive, costly processes. However, the payback in terms of behavioural and 

ecological data, invaluable to management, made it viable. Radio tracking is a widely used tool for 

efficiently locating and studying free ranging animals, which although it has transformed field 

studies, is seldom exploited to its full potential in behavioural studies of species like the secretive 
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leopard (Balme & Hunter 2004, Balme et al. 2010b). A combination of radio tracking and habituation 

enabled continuous following, and recording of valuable behavioural ecological data.  

 

Tourism reserves receiving an income from animal viewing are tolerant of predators, placing a 

substantial value on them, especially those which are easily viewed (Shackley 1996). Viewing large 

animals, such as lion, leopard and elephant, on a daily basis may result in over-habituation, 

particularly if there is, for example, only one pride of lion (Cousins et al. 2008). Animals that become 

over-habituated and a danger to humans may need to be destroyed (Schaller & Crawshaw 1980, 

Sunquist 1983, Jackson 1996), and managers need to develop strategies that enhance tourism 

potential without putting long term ecological sustainability at risk (Cousins et al. 2008).   

 

Although it is relatively easy to manage easily-observable reintroduced predators like lion and 

cheetah which are constrained by fences, the management of the naturally occurring leopard is 

fraught with complications because they easily leave the reserve, incurring the risks that they can be 

killed or cause damage to livestock (Swanepoel 2008). Leopard will often live in close proximity to 

humans and, as such, habituation of leopard in areas where they could be persecuted, or constitute a 

danger to humans outside the safety of the reserve, should not be considered. However, in a survey 

on game ranches where predators were persecuted, farmers reported that habituation would increase 

the value of leopard, reducing their likelihood of being killed (Swanepoel 2008). 

 

Habituation itself is neither good nor bad. Rather, the negative or positive value of habituation to both 

people and wildlife depends upon context and perception (Knight 2009). The need to capture and 

habituate wild animals to facilitate research can be justified, provided the benefits do not exceed 

ethical, ecological, social and economic costs (Swanepoel 2008). When considering an 

immobilisation and habituation programme, wildlife researchers need to assess each situation 

carefully to ensure the conservation and protection of the target species, and evaluate human safety, 

especially in a species not constrained by fences (Gill 2002). 

   

9.5 Methods for managing reserves 

Managing large mammals restricted by fences is challenging, and managers can use translocation, 

culling/hunting (Festa-Bianchet 2003) or contraception to maintain a balance between large 

mammals and their environment, control over population and maintain genetic integrity (Orford et al. 

1988, Biggs et al. 2008, Kettles & Slotow 2009, Druce et al. 2011, Delsink & Kirkpatrick 2012). 
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9.5.1  Managing inbreeding and overpopulation 

Translocation can be used to establish new populations (Hayward et al. 2007a), supplement existing 

populations (van Heezik et al. 2009) and for population reduction (Kettles & Slotow 2009). Suitable 

conservation areas, which have re-introduced predators, should adopt a metapopulation management 

program, where periodic translocations among other suitable reserves mimic natural dispersal and 

maintain gene flow (Gusset et al. 2006). Translocation, although difficult due to recent legal changes 

and expense, is an effective management strategy (Trinkel et al. 2008). Negatives of translocation 

include increased stress and mortality of relocated animals, negative impacts on resident animals at 

release sites, increased conflicts with human interests, and the spread of diseases (Teixeira et al. 2007, 

Chipman et al. 2008). The primary predator population regulation measure used in small reserves is 

the capture and removal of subadults (usually two years old) from the population, with older 

individuals occasionally being hunted (Vartan 2001, Kettles & Slotow 2009, Slotow & Hunter 2010). 

Although not a common practice in leopard due to their strong homing instincts (Riley et al. 2002), 

unsuitability for soft release (Hunter 1998), and occasional escape to cause problems in adjacent 

pastoral areas (Hayward et al. 2007a),  juvenile leopards can also be translocated to assist in the 

repopulation of low density areas (Hunter 1998, Moehrenschlager & Somers 2004). The leopard 

population is self-regulating and the removal of sub adults is not necessary for population control 

(Hayward et al. 2007a). However, translocating sub adults from well-populated areas, where they 

would be under pressure as a result of natural density dependent processes (Chapter 7, Trinkel et al. 

2010), can benefit inbred and low density populations, although population disease status and genetic 

compatibility should be carefully considered (Trinkel et al. 2011). 

 

Culling or hunting is used on wildlife reserves for population control and balancing male and female 

ratios. This however raises serious ethical issues when directed at endangered and charismatic 

species, setting dangerous precedents when our intention should be to protect living creatures and 

their habitat (Slotow et al. 2008, Kettles & Slotow 2009). Culling or hunting at times may be the only 

option, but is likely to bring negative publicity upon tourism orientated reserves, and affect them 

financially (Kettles & Slotow 2009). 

 

Contraception might provide an alternative to culling, and provide a long term solution for limiting 

numbers on game reserves (Orford et al. 1988, Delsink & Kirkpatrick 2012). What makes this 

solution attractive is that it is both practical and humane, and has been very successful in controlling 

both lion and elephant populations (Orford et al. 1988, Delsink 2006). Furthermore it seems to cause 

less disruption of biological processes, is reversible, and prevents genetic loss - especially useful in 

endangered species (Orford et al. 1988). Annual decisions can then be made to allow certain females 

to breed, for the well-being of the animals, as well as for tourism (Orford et al. 1988, Delsink & 
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Kirkpatrick 2012). To prevent males inbreeding with their offspring, different bloodlines can be 

swapped between reserves (e.g. Druce et al. 2004, Kettles & Slotow 2009), while older males may be 

hunted (e.g. Festa-Bianchet 2003, Kettles & Slotow 2009, Balme et al. 2010a).  

 

I show that leopard require minimal management intervention and are self regulating and are therefore 

an easy to manage top predator which perform the same regulatory task as other top predators. Where 

management is not possible, larger tracts of land would lessen the intensity of management 

requirements and allow more natural processes to occur.  

 

9.6 Managing a free roaming predator 

9.6.1 Problems facing leopard 

The leopard is a top predator and the most adaptable, and widespread, wild representative of the 

family Felidae. They live in and around human dominated agricultural landscapes, playing a crucial 

role in maintaining the health and well-functioning of the ecosystem (Nowell & Jackson 1996). They 

have a wide habitat tolerance, thrive and adapt to a variety of environmental conditions and are an 

abundant predator in many areas. There is a widely held perception that they are resilient in the face 

of anthropogenic threats and therefore these ‘super-generalists’ need little dedicated conservation 

action (Townsend et al. 2003, Balme 2009, Thapa 2011). Yet this one of South Africa’s  highly 

sought-after ‘Big Five’ continue to decline and are at serious risk of local population extinction due to 

fragmentation, habitat loss (Holling 1992), human activity like hunting (Redford 1992) and 

persecution (Swanepoel 2008), with the likelihood of extensive local extinctions (Balme & Hunter 

2004). 

 

As a free roaming predator leopard move between protected and human dominated environments 

where they come into conflict with humans (Swanepoel 2008). Commercial farmers use 

indiscriminate methods of destruction like trapping and poison (Avenant & du Plessis 2008). Game 

farms of high commercial value that specialize in antelope breeding, contain leopards’ natural prey 

and should be able to sustain leopard. Unfortunately these reserves derive their income from game 

sales and hunting, and these reserves directly compete with and often exclude predators by trapping 

and hunting (Swanepoel 2008).   

 

The removal of a few individual leopards from an area does not deplete or eliminate the population at 

the removal site (Balme et al. 2010a). I show how individual removals resulted in vacant territories, 

which were immediately colonised by younger sub-adults or other immigrants (Bailey 1993). 

However, continued selective shooting of large adult males may distort the sex ratio, causing genetic 

depletion (Ginsberg & Milner-Gulland 1994), and increase infanticide preventing population recovery 



Cailey Owen 

 
 

171 

(Balme & Hunter 2004). Single removals in small isolated populations, with few offspring and 

floaters, may result in vacant territories, a declining effective breeding population, and increased 

extinct risk. Single focused removals (Kettles & Slotow 2009) are preferable to indiscriminate 

trapping and poisoning, which do not target specific individuals or even a particular species. 

 

Conservation areas are not immune to the threats that originate outside their boundaries and are 

vulnerable to legal and illegal hunting in the areas surrounding them (Balme 2009). Leopard are not 

constrained by fences (Balme et al. 2007) and anthropogenic mortality causes an edge effect within 

protected areas through increased infanticide and lowered reproductive outputs, reducing the 

effectiveness of large carnivore conservation in protected areas (Woodroffe & Ginsberg 1998, Balme 

et al. 2010b).  

 

Fragmented metapopulation of leopards around the north and northeast of South Africa are safe from 

extinction, even in the face of intense persecution, because they draw from large source populations 

(Kruger National Park, Kgalagadi Transfrontier Park and surrounding countries) for continual 

turnover through immigration (Hubbell 1997, Daly et al. 2005). In the rest of the country the network 

of small patches of leopard have no persistent metacommunity and inadequate dispersal, combined 

with additional persecution and sport hunting, lead not only to local, but regional extinction (Hubbell 

1997, Daly et al. 2005). 

 

9.6.2 How to protect leopard 

In order to promote successful persistence of leopard it is crucial to restore and protect habitat 

(including prey) while simultaneously reducing human removals (Ferreras et al. 1997). Enlarging 

suitable areas and maintaining buffers around sensitive areas (Fischer et al. 2006), will increase 

carrying capacity. Providing areas of suitable habitat within dispersal distance (Morrison 2002), and 

creating conservation corridors between these fragmented habitats, will increase genetic flow (Mech 

& Hallett 2002). Conservation efforts must be based on viewing fragmentation as a range of 

conditions that occur in a landscape mosaic, and management should focus on the mosaics rather than 

focusing solely on reserves. It will take the simultaneous protection efforts of private landowners, 

conservationists and managers, through incentive driven conservation (Swanepoel 2008), traditional 

low-tech husbandry (Ogada et al. 2003), and education, to minimise ecosystem-specific threatening 

processes (Hubbell 1997, Daly et al. 2005) and ensure the future protection of leopards in South 

Africa (Cousins et al. 2008). 
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9.7 Limitations of the study and gaps in current knowledge 

Some of the methods used in this study were unique, as no previous work has studied the process of 

habituation, copulatory behaviour and reproductive parameters of leopard in such detail in the wild. 

The major limitations of the study were that an area of 8500 ha could support a limited number of 

leopards, and, therefore, the number of females that could be collared and studied at any one time 

was relatively small. Small sample size precluded the study of natural population processes such as 

gene flow (there was only one breeding male at a time) and dispersal, which would have provided 

more depth to the study. There were also problems with subjects leaving the reserve, losing a darted 

female, collars not working and the death of many focal animals from a range of causes during the 

study. Not all the leopards were collared at one time, and so only a maximum of seven leopards were 

studied simultaneously, which made statistical analysis difficult. The lack of comparable data from 

open systems made contextualising the results of the study very difficult. Although I attempted to 

gather data both incidentally and systematically, using direct and indirect methods of study, difficult 

logistics, loss of subjects and small sample size hampered efforts. Although this made the study very 

difficult, the results obtained exceeded our expectations. I acknowledge that the study is purely 

correlative which does not mean causation and that the conclusions drawn are not able to be 

substantiated without experimentation. Many of the conclusions drawn are as a result of 

correlative observation and not experimentation and should be used with caution.      

The constraints of my study system highlighted for me some of the missed opportunities to further 

advance understanding: for example, studying a larger population to better understand the influences 

of additional males (Balme 2009), and to understand the reproductive and population implications on 

disruptions and growth from additional male takeovers (Balme et al. 2012). It would also have been 

nice to study the population for longer to witness additional periods of high population density and to 

see if the responses were consistent.  

I would have liked to study the degree to which landscape structure facilitates movement among 

different required habitat types (Palomares et al. 2001), and to understand the trade-off between 

dispersal rate and competitive ability in a fragmented habitat (Palomares et al. 2001). In lynx (Lynx 

pardinus) dispersing individuals used lower quality habitat to avoid resident individuals. I would 

have liked to understand the relationship between dispersing individuals’ survival, habitat 

fragmentation and threatening processes on leopard survival (Palomares et al. 2001). Further in-depth 

investigation into habitat preference, in both predators and their prey, is also called for, because 

understanding the coevolution of habitat-selection strategies in strongly interacting species is 

essential to predicting species distribution (Meynard & Quinn 2007) and interpreting spatial and 

temporal dynamics (Morris 2003). Understanding predator numbers, and what the ecological, and 

ultimately economic, influence of their presence is, are critical, particularly on small reserves.  
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9.8 Conclusion 

Predator conservationists and managers require more and better data than are currently available. In 

order to enhance the role of wildlife ranching within conservation, in situ conservation research is 

imperative to help manage and minimise economic loss within these systems (Slocombe 1993, 

Cousins et al. 2008). The study highlighted that it is possible to safely habituate leopards for research 

purposes, and provides a framework through which to undertake habituation without impacting 

negatively on leopard or the reserve’s objectives. Having habituated leopard allowed me to collect a 

wealth of behavioural and ecological data, some aspects of which had never been studied before in 

the wild. I highlighted how nutrition increases breeding potential, and I emphasised the importance of 

removing excess numbers prior to density dependent regulatory processes, if source populations are 

to be most effectively used to enhance deficient populations. I highlighted that it is not necessary to 

manage leopard populations as intensively as other predator species that are confined by fences. Prey 

numbers set the upper population limitations, while availability of space maintained numbers around 

carrying capacity through density dependent regulation. My results indicated that leopard populations 

may be naturally self-regulating, and regular gene flow (presumed from new males coming into my 

population) ensured that inbreeding is of limited concern for conservationists where populations are 

not severely threatened by anthropogenic disturbance.  

 

To develop long-term conservation plans for leopard, it is not enough to maintain large numbers of 

prey. The conservation of appropriate hunting habitats and riparian habitat are important, as well as a 

complex integration of ecological, economic and social factors in the planning of effective 

conservation strategies (Swanepoel 2008, Hopcraft et al. 2010). Advancing our understanding of 

apex predators’ ecological requirements enables us to plan for their future conservation in an 

increasingly fragmented environment made up of small-enclosed reserves impermeable to ungulate 

movements. Since other members of the cat family are subject to similar persecution as the leopard, 

the results of this study provides a baseline dataset valuable for the conservation of the wider 

carnivore population.  

 

This highlights the necessity of understanding species behavioural ecology in relation to their 

environment when developing conservation initiatives (Slocombe 1993, Cousins et al. 2008). 

Managers can emphasize long-term economic and ecological health by implementing sound 

management practices that maintain their resource base indefinitely and justify a marketing claim of 

being truly sustainable land use (Cousins et al. 2008). My data therefore provides a baseline dataset 

of ecological information for management decisions relevant to the species, and for comparison with 

future research and conservation initiatives. This baseline dataset can be used as a guideline of 

current regional conditions and knowledge of species specific requirements on which to make 
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informed decisions (Morrison 2002, Martins & Martins 2006, Hayward et al. 2007a). Even though 

the ecological parameters may vary among populations of leopards in response to different climates, 

habitats, prey densities, and other environmental parameters, these data may be the only information 

available to managers for making evidence-based decisions. I hope that my study is applied for such 

a foundation, to promote conservation of leopard and threatened large carnivores more broadly. 
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LIST OF APPENDICES 

Appendix A1: Rainfall figures collected on the Karongwe Game Reserve between 1995- 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Yearly rainfall figures       

Month 95/96 96/97 97/98 98/99 99/00 00/01 01/02 02/03 03/04 04/05 

July 0 0 0 2 0 1 0 0 0 3 

August 0 0 0 0 0 0 0 0 0 4 

September 0 8 22 3 0 0 1 16 12 2 

October 20 85 29 42 61 16.5 36.5 10 6 23 

November 101 100 43 110 72 126 168.5 8 36 154 

December 62 100 22 142 79 92 62 50 46.5 62 

January 126 51 37 105 158 7 7 65 68 98 

February 285 128 3 35 258 201 142 45 202 112 

March 73 73 0 125 230 25 5.5 25 92.5 18.5 

April 36 10 14 30 72 26 36 18 78 39 

May 128 25 0 2 5 12 3 5 1 7 

June 15 0 0 2 17 0 16 5 5 0 

Total 846 580 170 598 952 506.5 477.5 247 547 522.5 
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Appendix A2:  Areas of controlled patch mosaic burning on the Karongwe Game Reserve 
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Appendix A3: Individual immobilisations undertaken between October1999 and August 2003 

 

Cage capture 

 

F0 (Sheena)  

The trap was set on the afternoon of the 23rd October 1999 in the Mafunyane River, 100m west of 

Tambotie loop crossing, (24.21324 oS, 30.59470 oE), in a shady area where a young female leopard 

and tracks of an older leopard were seen regularly. On the third night, the 26th October 1999, when the 

impala smelt strongly, a subadult female entered the cage. No other predators entered the trap during 

the time the cage was open. She was discovered at 07h20 and left alone in the trap until 08h15. The 

darting team arrived with sedative, medication and the collar and Mr Owen was the only one who 

approached the cage to dart. Every time the dart gun was placed near the small holes in the cage she 

would swing around aggressively and try to bite it. I approached the opposite side of the cage to 

distract her and she was finally darted at 10h27 and was asleep at 10h30. The collar was fitted at 

10h32 and by 10h46, measurements were taken and drug administration completed.  

 

Recovery 

F0 was left in the shade to recover and monitored from a nearby tree.  

 

Post- handling habituation  

Two days later meat was left near her three times: each time she approached it to within 5m and then 

ran off. The second time, on the 29th October, I approached within 20m of her and dropped off fresh 

meat. She spent two hours watching it before she finally approached the meat and dragged it off. This 

was the second of three visual observations obtained of her and on the 3rd March 2000 her signal 

disappeared and it is assumed she left the reserve.  

 

Immobilisations from a vehicle 

 

M1 (Roelani) 

Darted on the 12th February 2001 at 19h15, just north of Roelani’s gate on the eastern fence, 

(30.64595 oE, 24.28183 oS) 

 

Habituation prior to darting 

At 17 h30 nearly every day M1 could be located on the eastern fence, south of the Karongwe River. 

Having grown up on the fence with cars driving past daily and not stopping, this male was already 

relatively relaxed with vehicles, and habituation to get within darting distance was quick. M1 was 

followed at least four times a week for 2-3 hours a night for a month, before he could be approached 
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close enough to dart softly. He was followed at a distance that did not cause him to turn and look at 

the vehicle or leave the road. If he looked nervous or left the road the vehicle following him would 

pull back and stop. If he resumed his natural behaviour or returned to the road the vehicle would 

continue to follow but a little further away. If M1 became stationary or stopped to mark his territory, 

the vehicle would approach slowly trying to get within 15-20m from him, watching for signs of 

irritation. At the slightest sign the engine was switched off and the vehicle would come to a halt. 

Slowly he became relaxed in the presence of a vehicle travelling 30m behind him and approaching to 

within darting distance (15-20m) whenever he stopped. 

 

Darting procedure 

Using a game drive vehicle with a tracker seat, the reserve manager, Mr. Owen performed the darting. 

The vehicle was driven in the usual manner and every time M1 turned side on to mark a bush the 

vehicle approached to within 15-20m and stopped switched off and allowed the male to continue. This 

was performed a number of times over the period of an hour until at 19h15 a safe shot could be taken 

and he was darted just north of Roelani’s gate on the south eastern fence. He was darted softly in the 

rump. He jumped, ran 15m and then pulled the dart out with his mouth, lay down for about 30 

seconds and chewed the dart. Then he carried on in the direction he was going as if nothing had 

happened. The vehicle remained where it was until M1 was out of sight and then the engine was 

started and we followed at a distance maintaining visual contact. At 19h22 the drug started to take 

effect, the vehicle was switched off and no talking or noise was permitted. At 19h25, M1 started to go 

down and the vehicle approached slowly. Mr Owen was the only one to approach M1 on foot and 

ensure he was asleep and well and at 19h30, M1 was sufficiently asleep to load onto the vehicle and 

was driven to the veterinarian hospital to be implanted.  

 

Recovery 

The operation went well and M1 was allowed to recover overnight near the site where he was darted, 

in a sturdy wooden recovery crate (1m wide x 1.2m high x 2m long) with a layer of dry grass inside. 

The following morning at 05h30, M1 was released by pulling on a rope slung over a tree branch 

attached to the sliding door. He exited with speed but only ran 10m, stopped looked at the vehicle and 

walked off slowly. Once out of sight the vehicle left and the loading of the crate was left until M1 was 

no longer in the area. This was to prevent his associating  humans and vehicles with what happened to 

him. 

 

Postoperative care 

That evening, (13th February 2001) M1 was located and visual observation obtained. He had moved a 

kilometre, and half an impala was dropped off for him to prevent his moving excessively, or having to 
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catch something after the operation. He was located every evening to ensure he was well and that the 

stitches were holding, and he was fed every three days for nine days. 

 

Post-darting habituation  

The night after the darting he was followed for an hour before he could be seen, and he was 

habituated for 11 hours and 45 min over seven days. 

 

F1 (Tashinga)  

F1 was darted on the 14th June 2001 while mating with M1 in the Matumi River in Mundulea 

(30.63859 oE, 24.28359 oS).  

 

Darting procedure 

No pre-darting habituation was carried out. M1 and the very shy female were followed for two hours 

using the telemetry. The female remained with him but always kept out of view. Mr Owen finally 

managed to position the vehicle between M1 and F1 and she sat down and watched uncertain of what 

to do. She turned her head away and was darted in the neck at 18h26. The telemetry dart hit hard and 

she ran 100m in a circle, came back towards the male and ended up 40m from the vehicle, where her 

eyes could be seen by spotlight. It was not necessary to use the telemetry to track the female and the 

vehicle was not started until she was fully sedated which took just eight minutes. F1 was loaded in the 

vehicle and driven a kilometre away and at 19h05 (half an hour) all medication, measurements and 

collar fitting were complete. The male was curious and went looking for her and called. M1 and other 

potentially dangerous predators were continuously checked for, using the telemetry throughout the 

procedure. 

  

Recovery 

F1 was placed in the recovery crate on the highway near the Gravelotte dam. The following morning 

the door was raised in the same manner as with the male 

 

Post- darting habituation  

Habituation was carried out as in general habituation but often no visual contact was possible as F1 

was in the river. The vehicle would go as close as possible to the signal and if no visual contact was 

possible and the signal didn’t move, the engine was switched off and the vehicle would stay with her 

for at least 15 min to get her used to it, and to try and see her in the thick vegetation. Habituation was 

easier when she was copulating with the male as she was lured out of the river and could be followed. 
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F2 (Yanina) 

F2 was darted on the 13th August 2001 at 17h50 on the first road south of Rhino Walk in Mundulea 

(30.62363oE, 24.25655 oS) while mating with M1. 

 

Darting procedure 

No pre-darting habituation was carried out. We started following the pair at 16h20. The male walked 

in the road and the female walked parallel to him in the bush, making it impossible to get a clear shot 

of her. Visual contact was maintained and the vehicle followed at a comfortable distance. The female 

slowly became more relaxed with the vehicle as the male obviously showed no concern towards it. At 

17h50, F2 was darted in the rump after the post-copulatory roll, lying a few meters away from M1. F2 

did not move far and, at 17h53, M1 smelt her and then moved off in a southerly direction and his 

signal was lost. At 18h00 F2 was fully sedated, loaded on to the vehicle and driven to the ridge 200 

meters north. All medication, measurements and collar fitting were completed while she was still on 

the vehicle and at 18h18 she was offloaded and kept covered with blankets until she started to show 

signs of being more alert. 

 

Recovery 

During recovery a vehicle was parked far enough away so that visual contact was still maintained.  

Once the female was seen to be waking up and lifting her head, the vehicle left to prevent any 

association with people and vehicles and the darting. The vehicle then drove around the area checking 

for lions (Panthera leo) and M1. None were present and F2 was left to wake up in peace. At 19h37 

M1 was located one kilometre away near the Mundulea boma, still moving away south. The next day 

M1 was mating with F1 (Tashinga) west of Rocky Crossing. 

 

Post- darting habituation  

Habituation was carried out as in general habituation. 

 

F3 (Shongile) 

F3 was darted on 22nd October 2001 at 23h15 just north east of Beestcamp (30.60037 oE, 24.23928 

oS). 

 

Darting procedure 

At 18h18 the female was located copulating with M1 at Daskop (30.60193 oE, 24. 23354 oS). They 

had killed and almost finished an adult female impala and were mating frequently. It was impossible 

to get close enough to dart the female as she lay safely among the rocks. At 21h10 the kill was 

finished and a brown hyaena (Crocuta crocuta) moved into the area. M1 started moving south and  

visual contact with him was lost at which point the female followed. We followed them through the 
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bush but the female stayed out of darting range. They were moving into thicker vegetation and there 

was concern that they would be lost. At 23h15 a chance was taken and the female was darted from 

40m just north east of Beestcamp. The male’s signal was followed and they were found sitting 

together at 23h25. The female was lying down and the male started moving close and sniffing her. 

The recovery vehicle drove right up to her and the male was reluctant to leave her, circling the vehicle 

in the spotlight. At 23h30 the female was fully sedated and loaded and driven 1km and offloaded. The 

male continued to call looking for the female and someone was made responsible for tracking his 

movements with the spotlight, telemetry and audio. The collar was fitted and all measurements and 

drug administration completed 

  

Recovery 

At 00h00, the female was loaded and driven to the ridge south east of Croc Dam (30.58598 oE, 

24.22787 oS) where she was allowed to recover under a thicket. A vehicle remained with her, 

checking for lions (Panthera leo) and M1, who was moving north. The vehicle left twice to look for 

M1, and returned to check on her. She experience vehicular activity during recovery 

 

Post darting habituation  

The following day (24th October) at 09h00 she was located and had moved south one kilometre and by 

14h42 she was mating again with M1, and was followed for 18 hours continuously.  

 

M2 (Croc Dam male) 

M2 was darted at 19h15 on the 19th December 2001 at Croc Dam (30.58535 oE, 24.22818oS)  

 

Darting procedure 

M2 was located by game drives at the dam at 18h30. The darting crew arrived at 19h00 to find him 

relatively relaxed but lying behind low, thick bushes. At 19h15 he was darted in the chest when he 

turned his head away. He ran in a southerly direction behind some boulders. Another vehicle had 

visual contact for a few more minutes and then visual contact was lost. At 19h25, when he should 

have been fully sedated, the search began. It was dark and everyone looked randomly in the area he 

was last seen, but even with ten people looking with torches he could not be found. It was suggested 

that we start looking in ever-increasing circles, and he was finally located 55 min after darting, at 

20h20. by which time he was starting to lift his head.  A top-up dose was administered so that the 

collar could be fitted, medication administered and measurements taken. At 20h45 he was left with 

one vehicle watching him. 
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Recovery 

During recovery, a vehicle was parked far enough away so that visual contact was still maintained. 

Once he started lifting his head the vehicle left to prevent his associating people and vehicles with 

what had happened to him. The vehicle then checked the area for lions (Panthera leo) and M1. None 

were present and M2 was left to wake up in peace. 

 

The following day 

The collar was located 300m from where he was left to wake up. There were no bite or scratch marks, 

which suggests it was removed fairly easily. 

 

F4 (Amanzi) first darting 

F4 was darted at 19h40 on the 15th January 2002 at Aloe Junction (30.58217 oE, 24.20768 oS). 

 

Darting procedure 

At 17h13, F4 was heard copulating with M1 in the Kuvyenami River. They moved east and, at 18h46, 

visual contact was obtained for the first time at Second River Crossing, as they continued east. 

Although the female was very relaxed there were no opportunities to dart until 19h40, when she was 

darted softly in the rump. Visual contact was retained for only a minute and then she entered a 

drainage line. The male continued in an easterly direction, calling, and at 19h50, when she should 

have been fully sedated, eight people started looking for her.  

F4 (Amanzi) second darting a month later 

F4 was darted at 20h10 on the 9th February 2002 in the spruit north east of the Mafunyane main gate 

(30.56476 oE, 24.22930 oS). 

 

Darting procedure 

M1 and F4 were located at 18h02, east of the Lehmann’s (30.56534 oE, 24.21577 oS) copulating and 

mobile in a westerly direction in the river. At 19h00 they moved out of the river in a south westerly 

direction and the darting team started to follow. At 20h10, F4 was darted softly in the rump and she 

moved away 80m. Visual observation was retained:  at 20h16 she was starting to go down and she 

was fully sedated at 20h20. M1 continued south and, by the time the female’s collar had been fitted, 

his signal could no longer be picked up. The collar was fitted, medication administered and 

measurements taken.  

 

Recovery 

During recovery a vehicle was parked far enough away so that visual contact was still maintained. 

Once she started lifting her head the vehicle left to prevent her associating people and vehicles with 
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what had happened. The vehicle then checked the area for the lions (Panthera leo) and M1. None 

were present and F4 was left to wake up in peace. 

 

The following day 

She had moved one kilometre and, when she hadn’t moved on the second day, the area was walked to 

check on her, but all that was found was the collar. 

 

F4 (Amanzi) 3rd darting 15 months later 

F4 was darted on the 22nd May 2003 at 17h48, 600m north of the junction of Guarry Loop and 

Madash Road (30.61287 oE, 24.24441 oS) 

 

Darting procedure 

The darting team did not want to interrupt the mating of Amanzi and Roelani, and waited until the 

fourth (often the last) day of mating. The team went in at 17h00 to assess the situation but there was 

no visual observation of F4. M1 started moving south and she followed. She appeared only once and 

then visual contact was lost of the pair. M1’s signal was followed for 30mins and it became evident 

that F4 was no longer with him. The team returned to where she was last seen and drove through the 

bush from the original point in the direction M1 had travelled. The team regained visual observation 

of her, however, she was moving fast through the bush away from M1, heading towards her territory. 

She was followed for 30mins during which time visual was lost and regained several times. As she 

started heading into very thick vegetation she stopped for a brief second, and was darted in her rump 

from 30m. She ran into the drainage line and the team drove up and down the road shining, but 

couldn’t locate her. They returned to where she was darted and found the dart, which had discharged, 

then spent 20 min looking for her in the drainage line. It was then decided to walk from where she has 

been darted in a straight line in the direction she had been moving and she was found 130m further 

on, fully asleep. She was loaded and taken to where she would be implanted and measured and have 

drugs administered.  

 

Recovery 

The operation went well and she was left in her territory near Ingwe Bush Dinner where she remained 

until the following morning. No post-operative feeding was done as her implant was very weak, and 

she continued to move east, then north and on the second evening she relocated her subadult cub and 

continued north before going missing for five days. After that she was only located sporadically 

because the implant was not very strong. 
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F5 (Qumbile) 

F5 was darted at 21h03 on the 22nd February 2002 north east of the Mafunyane main gate spruit, 300m 

from the fence (30.56363 oE, 24.22615 oS) 

 

Pre-darting Habituation 

Initially she would lie still in the grass until she was certain she had been seen, whereupon she rushed 

out at the vehicle in a short dash. Then she would stand, ears back and tail flicking, for a few moments 

before turning and trotting off to find a bush in which to hide. It became apparent that we were 

dealing with a leopard that was not nervous with vehicles so much as she disliked having them 

around. After having rushed the vehicle, she would stand looking at it  with irritation, before trying to 

lose it. Pre-darting habituation was carried out as in habituation while mating for 26h30 (?), during 

which time she relaxed enough to dart. 

 

Darting procedure 

At 19h15 on the 22nd February 2002 the darting team arrived and followed the pair in a southerly 

direction. F5 was very difficult to get close to and a shot was not possible for two hours. At 20h30 the 

pair entered a drainage line where they became stationary and began to relax. It was extremely 

difficult driving up the spruit and the vehicle got stuck three times. M1 stayed near F5 and kept her 

relaxed as the vehicle manoeuvred into position. At 21h03 when she approached M1 to copulate she 

was darted softly in the rump and she ran 20m into bush then came back to M1. She started moving in 

the direction they were originally travelling before darting, trying to encourage M1 to follow her. At 

21h08 she lay down and M1 moved towards her to investigate her strange behaviour. The darting 

team waited until 21h13 when she was fully sedated and M1 had to be chased away from her. She was 

loaded onto the vehicle and driven one kilometre away where drugs were administered and 

measurements taken. Her neck was too large for a collar so she was driven to the veterinary surgery to 

be implanted. 

 

Recovery 

The operation went very well and as she was already starting to wake up she was allowed to recover 

in the transport crate with the door open (1.4m x 1.2m x 1.6m). All vehicles and people left her alone 

and checked the area for lions (Panthera leo) and other leopards. 

 

Postoperative care 

On the second night visual contact was obtained in the same area she was dropped off. An impala was 

left for her, to prevent her moving too far or having to hunt. She stayed on the impala for two days 

then disappeared. Her implant signal had only a 300m pick up and after she was located copulating 
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with M1 a month later, her signal was located only once more on the reserve. Using a helicopter she 

was located outside of the reserve and I believe she left the reserve to the north.  

 

M1 (Roelani) 2nd darting 

M1 was darted at 16h47 on the 11th July 2002 north of the Mafunyane spruit 1km east of R36 

fenceline (24.23725 oS, 30.58267 oE) 

 

Darting procedure 

M1 was followed using the telemetry and was found lying relaxed along the R36 fenceline. The 

darting team got within 15m of him with the vehicle and at 16h47 he was darted softly in the rump. 

He jumped up and moved 2m away and then lay down again. The vehicle remained switched off the 

whole time and at 16h55 he was asleep, loaded and moved for surgery. He was weighed for the first 

time, in a net using a block and tackle and meat scales.  

 

Recovery 

It was a very cold night and even though he was covered in three blankets M1’s temperature dropped 

to 35oC while on the operating table. When the stomach is open a lot of heat is lost and once the 

temperature drops it can become life threatening as the animal goes into hypothermia. While still on 

the operating table, hot water bottles were packed around his body (making sure not to put it in direct 

contact with the skin) in an attempt to raise his temperature. Once the operation was complete he was 

driven around in a vehicle with the heater on and warmed up slowly until his temperature stabilised 

and he was beginning to wake up. He was offloaded on a ridge where it was warmer, still covered 

with blankets, and allowed to wake up. 

 

Postoperative care 

The following day M1 had moved 300m and the front of a male impala was left for him. No other 

meat was left for him 

 

M3 (Muhle) 

M3 was darted on the 9th October 2002 at 20h00, east of Barend’s gate (30.54369 oE, 24.17749 oS) on 

the fenceline. 

 

Habituation prior to darting 

M3 was followed for approximately two months as described by general habituation until relaxed 

enough to dart. Over a two-week period the darting team tried to dart M3 on four different occasions 

and each attempt was for about three hours. 

 



Cailey Owen 

 
 

197 

Darting procedure 

On the night he was darted, M3 was located on the fence between CJ’s gate and Barend’s gate at 

17.00h and was followed for three hours. He was moving east, 200m parallel with the fence, into the 

block, and was finally darted in the shoulder from about 30m. He jumped, ran for 30m and then 

stopped. He continued to slink off slowly in the direction he was originally going and moved about 

100m before the sedative started to take effect (eight minutes). He was followed slowly with the 

vehicle and visual contact was retained. After 10 min he was sufficiently sedated to load and be 

moved to be implanted. An implant was chosen because he was a young male with good tourism 

potential, and his neck was very thick and therefore a collar was not an option. 

 

Recovery 

The operation went very well and he was offloaded below Impala Dam as he was starting to wake up. 

After 15 min the vehicle left to check the area for hyenas, (Crocuta crocuta) lions (Panthera leo) and 

other male leopards. 

 

Postoperative care 

The following day he was located a kilometre further south in the Edeni spruit. On the 11th he had 

moved back north into his territory and was given half an impala, which was eaten. It was unsure if he 

had eaten it or if hyenas (Crocuta crocuta) had taken it, so two days later the other half of the impala 

was offloaded for him and wedged into a fork in the tree 2m high, which was also consumed. 

 

A new batch of darts was purchased 

 

M4 (F2’s male cub) 1st and 2nd attempt failed 

27th November 2002 at 04h47 in Monate 300m east of Mundulea boma 100m north of Yanina’s road 

(30.62411 oE, 24.23925 oS). Then Monate Big Dam (30.63070 oE, 24.23849 oS). 

 

Darting procedure 

The darting team started following F2 and her cubs at 04h30, and at 04h47 the young male was darted 

in the rump. The dart did not inject and it was suspected that the dart was not pressurised properly, so 

a second dart was loaded and pressurised. The young male was a little more wary and only at 06h00 

was another shot possible. The young male was darted again in the rump at Monate Big Dam. 

Unfortunately the same happened and the dart failed to inject. The darting was terminated to prevent 

excessive stress on the youngster. 

 

F1 (Tashinga) 2nd darting failed 

28th November 2002 at 19h30, 500m west of Wilderness Camp (24.27153 oS, 30.62444 oE) 
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Darting procedure 

F1 and one female cub were followed in a northerly direction out of the river. F1 was to be 

immobilised first and her collar changed and, at 19h45, F1 was darted from 15m in the rump. She 

jumped and ran in the direction they had been travelling. When the dart was retrieved and checked, it 

had not discharged, the same as the previous day. 

 

F13 (F1’s female cub) 1st darting failed 

28th November 2002 at 20h45, 500m west of Wilderness Camp and 200m north, (24.62439 oS 

30.62439 oE). 

 

Darting procedure 

At 19h50 a new dart was taken, loaded and pressurised and, using the telemetry, F1 was followed for 

an hour but it was not possible to obtain visual contact with her again. At 20h45 the cub was darted in 

the rump from 10m:, she jumped and visual contact was retained as she moved off 30m and sat down. 

The vehicle was kept between her and mother and after 10 min there was still no affect. The dart was 

retrieved and again the dart hadn’t discharged. The darting was abandoned. 

 

The recently purchased batch of darts was taken back to the agent and a new batch obtained.  

 

F13 (F1’s female cub) 2nd Darting successful 

4th December 2002 at 19h15, just south of the Karongwe River 100m west of Spectra Crossing 

(30.62003 oE, 24.27336 oS), F13 was darted and removed from the reserve. 

 

Darting procedure 

F1’s two female 11-month-old cubs were watched and followed for 30 min. One was darted at 19h15 

from 20m in the rump and although she ran 50m visual contact was retained all the time, and the 

vehicle kept her away from the river. The drugs started to take effect after just four minutes. The 

young cub was loaded into a crate and driven away where measurements and drug administration 

were carried out. She was allowed to wake up in the crate during transport to a new reserve. The 

mother was unaware of what was going on as she was occupied with three hyenas (Crocuta crocuta), 

who were trying to steal her kill.  

 

M4 (F2’s male cub) 3rd darting successful  

5th December 2002 at 23h48, 450m north east of Mundulea boma and 150m east of Boma Road 

(30.62097 oE, 24.24037 oS) M4 was removed from the reserve  
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Darting procedure 

F2 was followed from 17h00 for nearly seven hours in the hope that she would link up with her cubs. 

She finally made a kill (impala adult female) and went to fetch her cubs, and brought them in. At least 

an hour was spent trying to dart the female cub but she was too shy, and finally the team darted the 

male cub in the rump at 23h48. He ran 15m and then slowly continued to move away. He stopped, but 

after six minutes, as the drug started taking effect, his sister tackled him and made him run further. F2 

became anxious and followed the cubs. Using the telemetry we followed her, and the cub was located, 

loaded and driven away. F2 was close by but there was no visual observation of her. M4 was 

measured and drugs were administered before he was loaded in a crate to be transported. F2 and her 

remaining cub went back to the kill and the following morning had moved several kilometres north. 

 

F1 (Tashinga) 3rd darting successful  

20th December 2002 at 20h44 North West of central Sickle Bush Road (30.61612 oE, 24.26489 oS). To 

be re-collared. 

 

Darting procedure 

F1 was found mating with M1 in the Karongwe River. They began to move north at 19:54 and the 

darting team began following them in a northerly direction. At 20h44 M1 finally lay in the open and 

F1 approached him. She was darted in the shoulder while they were busy mating so she would assume 

it was the male hurting her and not associate the darting with humans. After mating she jumped up 

and moved off 10 m and lay down. The drug started taking effect after six minutes but the leopards 

continued moving north. The vehicle remained switched off and after 10 min, when the drug would 

have taken full effect, F1 was located 100m away. M1 had moved with her and had to be chased off 

but he refused to leave her and F1 had to be loaded quickly, with the male just a few meters way. She 

was driven 1km away where measurements and the collaring could be undertaken safely. 

 

Recovery 

F1 was placed under a thick bush and the vehicle was parked 500m away. Observers were left to keep 

an eye on her and check for lions (Panthera leo), hyenas (Crocuta crocuta) and M1. Once she started 

to come round the observers left quietly and walked to the vehicle and drove off. 

 

F2 (Yanina) 2nd darting 

27th December 2002 at 22h00 200m north of Rhino Gate 70m east of R36, (30.58497 oE, 24.24871 oS). 

Collar change. 
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Darting procedure 

At 20h30 the darting team arrived. F2 was located in a drainage line and the team waited until she 

came out at 20.45. She moved north and was followed through the block for about a kilometre. It was 

assumed that she was avoiding the darting team: however, when she turned and started zig-zagging 

back south through the block it became apparent that she was hunting. The team withdrew and 

followed on the road and waited 30 min, until the signal became stationary. They drove in and found 

her on a fresh young wildebeest kill. It took a further 20 min to manoeuvre into position. As the bush 

was very thick, Mr Owen had to alight from the vehicle to get a clear shot through the branches. She 

was darted at 22h00 in the rump and ran off. The vehicle was switched off and she was monitored 

with her existing signal. After five minutes Mr. Owen started looking for the dart, which he did not 

locate, and after eight minutes drove the vehicle in and found her 50m away already in a deep sleep. 

She was collared, measured and had drugs administered. 

 

Recovery 

She was moved 200m from the kill under a thick bush and covered with branches and grass. A vehicle 

stayed with her for two hours until she started to come around, then the area was scanned for other 

predators that may be interested in her kill. The following morning she was found feeding on the same 

kill. 

 

F3 (Shongile) 2nd darting 

9th May 2003 at 20h13, 350 m south on Snake Eagle Road from Mafunyane spruit (30.59876 oE, 

24.22196 oS). Collar change. 

 

Darting procedure 

The darting team started following F3 through the bush at 18h00. Although she didn’t move far, she 

moved continuously, trying to flush out a herd of impala. She finally settled down on a termite 

mound, and at 20h13 she was darted in the rump from 25 m. She ran down the other side of the 

mound, the vehicle drove up to the  mound and the engine was switched off. Mr. Owen located the 

discharged dart on the mound and after 10 min the search began. F3 was located 40m away from the 

termite mound in the direction she had originally been travelling. Her collar was changed, drugs were 

administered and measurements taken. 

 

Recovery 

She was left to recover under a bush covered with grass and branches in the area where she had been 

darted. A vehicle waited with her for 40 min until she was lifting her head, then moved further away 

and stayed for another 30 min, and finally pulled out. The following morning she had moved 50m 

down into the spruit. 
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M1 (Roelani) 3rd darting 

13th August 2003 at 16h15, in the Karongwe River 400m east of the fenceline outside the reserve 

(30.65327 oE, 24.25937 oS). Brought back in. 

 

Darting procedure 

The darting was undertaken on horseback because there were no roads and the vegetation was very 

thick. The backup rider held all the equipment, and M1 was quite relaxed because he had been viewed 

before by riders on horse safaris. The horse riders guided him into the open, with an escape route 

down-river. It took 15 min to get a good shot and he was darted from above, softly in the rump from 

about 10m. He roared and ran away about 50m, and vervet monkeys alarmed as he moved down the 

river, which made it easy to follow without the telemetry. He moved 100m in total. The team was 

brought in to move him to the vehicle and he was driven back to Karongwe. 

 

Recovery 

He was driven to the research station and as we arrived he started to wake up, and had to be pulled off 

quickly into the shade and left to wake up fully. 
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Appendix A-4: Measurements taken during the initial immobilisations of female leopards 

 
 
 
 

  Female leopards measurements 

ID number F0 F1 F2 F3 F4 F5 F13 

Age darted (years) 1 2.5 2.5 5 4 5 
10 
(mths) 

Date darted Oct-99 Aug-01 Aug-01 Oct-01 Feb-02 Feb-02 Dec-02 
Weight estimated 
(Kg) 30 35 38 55 42 46 25 
Previous cubs N N N Y Y Y N 
        

Measurements (cm)        

Body Length 100 120 105 125 132 132 112 
Tail length 70 73 73 78 77 78.5 80 

Total length 170 193 178 203 209 210.5 192 

Shoulder height 48 63 63 74 64 70 50 

Chest 55 69 65.5 74 66.5 72.2 56 
Neck 34 46.5 44.5 20 49 46 35 

Canine left 1.4 2.9 2.9 3.2 3 3.1 1.4 

Canine right 1.4 2.7 2.9 3.2 2.9 3.1 1.4 
        

Spoor size  (cm)             
Front right          
Length  

- 7.3 8.5 9 7.5 7.9 8.0 

Width - 5.3 6.5 7 6.5 7 6.0 

Pad - 3.9 4.5 4.5 4.2 4.5 4.0 
        
Front left            
Length  - 7.6 7.3 8 7.6 8 8.5 

Width - 6.8 6.2 7.2 6.5 6.9 6.2 

Pad - 3.9 4 4.3 4.5 4.7 3.7 
        
Back right           
Length  - 7.6 7.6 9.2 7.5 8 - 

Width - 5.0 5.8 6.3 5.7 5.8 - 

Pad - 3.6 3.5 4.6 4 4.3 - 
        
Back left             
Length  - 7.3 7.3 7.6 7.7 8.3 - 

Width - 5.6 5.4 6.2 5.9 6.1 - 

Pad - 3.5 3.6 3.6 4.1 4.4 - 
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Appendix A-5: Measurements taken during the initial immobilisations of male leopards 

 
 

  Male leopards measurements 

ID number M1 M2 M3 M4 

Age darted (years) 5 4 3 11months 

Date darted Jul-02 Dec-01 Oct-02 Dec-02 
Weight estimated (Kg) * 74.5 80 * 71  32 
     

Measurements (cm)     

Body Length 140 152 157 122 
Tail length 89 89 92 74 

Total length 229 241 249 196 

Shoulder height 84 80 80 70 

Chest 86 85 86 62.5 
Neck 60 58 62 42.5 

Canine left 4 3.5 4 1.5 

Canine right 4 3.5 4 1.5 
     

Spoor size  (cm)          
Front right                          
Length 

9 9.4 10 
7.5 

Width 8.5 6.3 8.5 7.0 
Pad 5.5 4.6 6.2 4.5 
     
Front left             Length  10 9.5 10 8.0 
Width 9 7.6 8.5 7.2 

Pad 5.2 4.7 5.8 4.7 
     
Back right           Length  9.2 7.5 8.5 - 
Width 7.1 6.9 7 - 
Pad 5 4.2 5 - 
     
Back left              Length  10 8 9 - 
Width 7.2 7.2 6.9 - 

Pad 5.1 4.6 5.2 - 
 

* indicates actual weight of leopard 
 
 
 
 

 

 

 

 



Cailey Owen 

 
 

204 

Appendix A-6: How to measure leopard paws and tracks 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Length 

Width 

Pad length 
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Appendix A-7: Belly scores are rated between 1 – 5. One being the thinnest and 5 being the fullest 
 
 
 
 
 
 
 
 

 

 
 

   
Belly score 1 Belly score 3 Belly score 5 


