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Abstract 

The alarming rate of varying types of cancer diseases in human remains a global burden 

requiring drastic treatment in which, a prominent method of combating it is through enzyme-

based drug design. Metastatic castration-resistant prostate cancer (mCRPC) and triple-negative 

breast cancer (TNBC) are deadly forms of prostate and breast cancers, respectively. The later 

cancerous growth has been linked to non-receptor tyrosine (Src/p38) kinase as a potential 

targeted enzyme for possible chemotherapeutic control while, mCRPC have recently been 

linked to retinoic acid-related orphan-receptor gamma (ROR-γ). 

Most studies on ROR-γ usually relate it as an orphan due to low or zero possibility to identify 

potential inhibitor for this receptor. Amazingly, promising inhibitors of ROR-γ and their 

therapeutic potential were currently identified and evaluated experimentally, among which 

inhibitor XY018 has appreciable bioactivity. However, molecular understanding of the 

conformational features of XY018-ROR-γ complex is still elusive. Herein, we provide the first 

account of conformation details of XY018-ROR-γ using multiple computational approaches. 

Comparative molecular dynamics (MD) simulation of XY018-ROR-γ and hydroxycholesterol 

bound ROR-γ (HC9-ROR-γ) were carried out. This was widened to binding free energy 

calculation (MM/GBSA), principal component analysis (PCA), root mean square fluctuation  

(RMSF), radius of gyration (RoG) and ligand-residue interaction network. In addition, the in 

silico study was optimized to predict toxicity and biological activity of the identified ligand. 

Findings from this study revealed that: (1) hydrophobic packing contributes significantly to 

binding free energy, (2) Ile136 and Leu60 exhibited high hydrogen-bond in both systems, (3) 

XY018-ROR-γ displayed a relatively high loop region residue fluctuation compared to ROR-

γ bound to natural ligand HC9-ROR-γ, (4) electrostatic interactions are potential binding force 

in XY018-ROR-γ complex compared to HC9-ROR-γ, (5) XY018-ROR-γ assumes a rigid 

conformation which is highlighted by a decrease in residual fluctuation, (6) XY018 could 

potentially induce pseudoporphyria, nephritis, and interstitial nephritis but potentially safe in 

renal failure.  

In vivo examination of UM-164 as a bioactive moiety against Src/p38 kinase was recently 

reported in literature. This ligand is a promising lead compound for developing the first targeted 

therapeutic strategy against triple-negative breast cancer (TNBC). However, the 

conformational features of UM-164 in complex with Src remained poorly explored towards the 

rational design of novel Src dual inhibitor. Similar to XY018-ROR-γ investigation, a 
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comprehensive account on the conformational features of Src-UM-164 and the influence of 

UM-164 binding to the Src using different computational approaches was also provided. This 

was carried out through MD simulation, principal component analysis (PCA), thermodynamic 

calculations, dynamic cross-correlation (DCCM) analysis and ligand-residue interaction 

network profile, as well as toxicity testing. 

Analysis of results from this investigation revealed that: (1) the binding of UM-164 to Src 

induces a more stable and compact conformation on the protein structure; (2) UM-164 binding 

to Src induces highly correlated motions in the protein; (3) high fluctuation exhibited by the 

loops in Src-UM-164 system support the experimental evidence that UM-164 binds the DFG-

out inactive conformation of Src; (4) a relatively high binding free energy estimated for the 

Src-UM-164 system is affirmative of its experimental potency; (5) hydrophobic packing 

contributes significantly to the drug binding in Src-UM-164; (6) a relatively high H-bond 

formation in Src-UM-164 indicates enhanced drug-protein interaction; (7) UM-164 is 

relatively less toxic than Dasatinib, therefore, is potentially safer. 

Furthermore, a mutant form of Src was also investigated due to its drug resistivity character. 

Thr91 mutation was found to induce a complete loss of protein conformation required for drug 

fitness in c-Src. Computational studies were carried out on this mutant enzyme in complex with 

UM-164 as described in Src wild-type. A notable observation from binding free energy analysis 

results is that, a reduction in binding affinity up to -13.416 kcal/mol was estimated for this 

mutated candidate compared to the wild-type-UM-164. 

This entire work provides an invaluable contribution to the understanding of dynamics of the 

orphan nuclear receptor (ROR-γ) and non-receptor tyrosine kinase (Src) which could largely 

contribute to the design of novel inhibitors to minimise the chances of drug resistance in 

castrated resistance prostate cancer and triple negative breast cancer, respectively. 
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CHAPTER 1 

1.1 Background  

Cancer constitutes an enormous burden on the society affecting mostly the economically under-

developed countries.1 The population growth and ageing account for the increase in the 

occurrence of cancer cases.1 In addition, increased prevalence of established predisposing 

factors such as smoking, overweight, physical inactivity, dietary habits,1 industrial revolutions 

and water pollution are associated with the scourge of cancer. It is a known fact that cancer 

remain one of the major public health problem worldwide2 and leading cause of death in the 

United States of America3 with 21% and 29% been the estimated new cases of prostate and 

breast cancer among male and female, respectively.3  

Similarly, lung and bronchus cancer ranked the highest leading cause of death from cancer 

among United States citizens in 2016 with estimated 26% and 27% death from female and 

male, respectively.3 However, in 2012  there was an upsurge in the number of cancer cases 

across the world, this according to records from  comprehensive surveillance database 

(GLOBOCAN) about 14.1 million estimated new cases of cancer were recorded out of which 

8.2 million deaths occur worldwide.1,4 This again is complicated by incidences of drug 

resistance and adverse effects of cytotoxic drugs. 

Some of these challenges form the basis of revolutionization of cancer research, hence the need 

for molecular understanding of proteins involved in pathological condition such as cancer, most 

of which are the prospective drug target. 

In recent years, however, computational approach to the process of drug design and discovery 

has immensely complemented the experimental discoveries and to certain extents validates its 

results particularly as it relates to the understanding of complex biological systems. Thus, the 

computational method is an approach used for rational drug design, it involves the investigation 

of relationship between chemical structures and biological activity.5  

In one report, unique strategies was developed to understand the conformational features and 

ligand binding landscape of experimental dual-kinase inhibitor (UM-164) against a target 

receptor (c-Src).6 Similarly, in another report, conformational features and ligand binding 

landscape of orphan nuclear receptor (ROR-γ) 7 in complex with hybrid of compound (XY018) 

was examined, detailed of conformational features and ligand binding landscape of these 

receptors and their known inhibitors were evaluated. The findings of this studies can provide 
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important insights that will assist in further design of novel inhibitors. The unique strategies 

employed include molecular docking, molecular dynamics (MD) and predictive toxicity and 

biological testing. 

Although an array of therapeutic targets has been discovered in cancer cells,8 therapeutic 

effects of approved drugs (chemotherapeutic agents) on some of these targets is hampered 

mainly by mutation9 and metabolic changes in the cells10 resulting to resistance to 

chemotherapy. However, cancer chemotherapy is the mainstay of the treatment of various 

stages of cancer.11 Therefore, resistance to chemotherapeutic agents results in therapeutic 

failure and eventually death.11 In a related development, host related factor such as 

pharmacokinetic resistance11 also contribute to chemotherapeutic resistance, in this case, 

alteration in pharmacokinetic parameters such as absorption, distribution, metabolism and 

elimination (ADME) decrease the bioavailability of oral drugs consequently reduce both time 

and amount of cancer tissues exposed to these drugs.  

Sequel to this, molecular understanding of target proteins is the current focus of cancer 

research, it revealed details of protein conformation, therefore form the baseline for rational 

drug design.12 Herein, effects of mutation on the dynamics of c-Src and ligand binding were 

evaluated to provide deeper insight into the effect of the mutation on the dynamics of c-Src-

UM-164 complex and adding new dimensions to experimental work that has been previously 

conducted.  

A recent study placed UM-164 at an advantage over the current drugs that are clinically used 

in the treatment of triple negative breast cancer (TNBC).6 This is mainly due to its anti-

proliferative mechanism, by binding to the DFG-out inactive conformation of its target 

kinases.6 Resistance to c-Src has been well investigated, in one of the studies, the resistance 

mutations were said to be at the alarming rate and often limit the success of inhibitors used in 

new targeted cancer therapies.13 Mutation in c-Src commonly occur at gatekeeper position in 

the hinged region13 in which small amino acid side chain threonine (Thr) is exchanged for a 

larger hydrophobic residue isoleucine or methionine (Ile or Met),13 this single point mutation 

induces conformational changes in the receptor causing resistance to chemotherapeutic agents.  

Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest mainly 

because metals exhibit unique characteristics, such as redox activity, variable coordination 

modes and reactivity towards the organic substrate.14 These properties become an attractive 

probe in the design of metal complexes14 that will selectively bind to the biomolecular target 
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with resultant alteration in cellular mechanism of proliferation. Several metal-based 

compounds have been synthesized with promising anticancer properties,14 some of which are 

already in use in clinical practice for diagnosis and treatment while some are undergoing 

clinical trials.14 

1.2 Rationale for this study 

Comprehensive knowledge of the structure and functions of retinoic acid related orphan 

nuclear receptor alpha (ROR-γ) is crucial to the development of its potential and effective 

inhibitors. Here, ROR-γ is examined to better understand the conformational features and its 

ligand binding landscape with known inhibitor (XY018). This receptor has been implicated in 

castrated resistance prostate cancer (CRPC) and has remained orphan receptor because of 

unidentifiable inhibitor.  

Recently, ROR-γ inhibitors were identified and their therapeutic potentials were evaluated, 

inhibitor such as XY018 was found to be most successful in the inhibitory profile. Since ROR-

γ is experimentally well characterised, molecular understanding of its conformational features 

and ligand binding landscape of its complex is one aspect that warrants deeper investigation. 

X-ray crystallography does not give adequate information on the general mobility of residues. 

Therefore, it is difficult to infer the precise dynamics features of the enzyme structure. In line 

with this, molecular dynamic simulations provides a robust tool to explore the conformational 

landscape of a biological system.  

Before now, there not been any conformational study on XY018-ROR-γ complex. This is first 

of its kind. Thus, we seek to simulate XY018-ROR-γ complex using molecular dynamics in 

order to provide an atomistic insight into experimental work that has already been done. 

 In this work, we firstly conducted MD simulations to accurately probe the dynamics of 

XY018-ROR-γ complex. Secondly, we examined the impact of binding of XY018 on the 

dynamics of ROR-γ by using numerous post-dynamics tools such as principal component 

analysis (PCA), root mean square fluctuation (RMSF), the radius of gyration (RoG), binding 

free energy calculation, per-residue decomposition analysis and ligand-residue network profile. 

Thirdly, we incorporated predictive toxicity and biological testing to the analysis to predict 

possible toxicity and other biological activities that may be inherent in the XY018. Findings 

from this study should provide an invaluable contribution to the understanding of dynamics of 

ROR-γ in complex with XY018 which could form a baseline for the design of new potential 

ROR-γ inhibitors.    
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Similarly, the role of c-Src in triple negative breast cancer is experimentally well-studied, thus, 

understanding of conformational features of c-Src in complex with dual kinase inhibitor (UM-

164) would provide an atomistic insight to the dynamics of c-Src-UM-164 complex and adding 

new dimensions to experimental work that has been previously conducted. At present, no 

conformational study has been done on this complex. Herein, we examined the conformational 

features of c-Src-UM-164 to provide deeper insight into the dynamics of c-Src-UM-164 

complex and adding new dimensions to experimental work that has been previously conducted. 

We also studied the impact of the mutation on the dynamics of c-Src and ligand binding. 

Therefore, MD simulations, principal component analysis (PCA), dynamic cross correlation 

(DCCR) and residue interaction network (RIN) analysis were used in a report herein to provide 

the molecular understanding of the impact of the mutation on the binding of UM-164. Finding 

from this study would provide deeper insight into the effect of the mutation on the dynamics 

of c-Src-UM-164 complex and adding new dimensions to experimental work that has been 

previously conducted. Therefore, this study can provide important insights that will assist in 

the further design novel dual kinase inhibitor to eliminate the chances of drug resistance in 

triple negative breast cancer.   

Metal-based compounds synthesised recently are products of drug design targeted at achieving 

specific objectives that otherwise could not be achieved by original compounds, due to 

structural modifications that enhanced their pharmacodynamics and pharmacokinetics 

properties. To this end, a comprehensive review on “metal complexes in cancer therapy an-

update from drug design perspective” is included herein to provide an overview of previous 

reviews on the cytotoxic effects of metal-based compounds while focusing more on newly 

designed metal-based compounds and their cytotoxic effect on the cancer cell line, as well as 

new approaches to metal-based drug design in cancer therapy. 

1.3 Aims and objectives 

This study has four major aims: 

1. To investigate the conformational features and ligand binding landscape of ROR-γ complex 

in order to accurately probe into the protein dynamics and the impact of ligand (XY018) 

binding on the protein dynamics. To accomplish this, the following objectives were outlined: 

1.1 To accurately determine the best-docked ligand and conformation using molecular 

docking. 
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1.2  To validate the docking result using MD simulations in order to guarantee that the 

docked complex remain stable in the active site of the protein within a specific time scale. 

1.3 To perform MD simulations of XY018-ROR-γ as well as HC9-ROR-γ (ROR-γ complex 

with natural ligand) in order to compare the conformational features and determine how 

well is XY018 is best fitted to the active site of the receptor 

1.4 To employ the (molecular mechanics) MM/GBSA method and per-residue energy 

decomposition to quantitatively estimating the energy contributions and contributions of 

each active site residue towards the ligand binding. 

1.5 To determine the atomic behaviour of the proteins during simulations using PCA. 

1.6 To compute ligand residue interactions on post dynamic structure in order to establish the 

nature of the reaction and residues involve in the reaction. 

1.7 To employ predictive toxicity and biological testing to determine the inherent toxicity 

and biological activity of the XY018.  

2. To investigate the conformational features and ligand binding landscape of c-Src-UM-164 

complex in order to accurately probe into the protein dynamics and the impact of ligand (UM-

164) binding on the protein dynamics. To accomplish this, the following objectives were 

outlined: 

2.1 To perform MD simulations of Src-UM16, apo and Src-Dasatinib in order to determine 

the protein dynamics. 

2.2 To employ the MM/GBSA method and per-residue energy decomposition to 

quantitatively estimating the energy contributions and contributions of each active site 

residue towards the ligand binding. 

2.3 To determine the atomic behaviour of the proteins during simulations using PCA. 

2.4 To compute ligand residue interactions on post dynamic structure to establish the nature 

of the reaction and residues involve in the reaction. 

2.5 To monitor the hydrogen bond formation during the course of MD simulations. 

2.6 To further examine the conformational changes of receptor upon ligand binding. 

2.7 To employ predictive toxicity and biological testing to determine the toxicity of UM-

164.  

3. To provide the molecular understanding of the impact of the mutation on UM-164 binding 

to c-Src. To accomplish this, the following objectives were outlined: 
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3.1 To perform MD simulations of wild type, apo and mutant in order to determine the 

protein dynamics. 

3.2 To provide a deeper understanding of drug resistance mechanism of mutant protein to 

UM-164 using MM/GBSA, PCA, dynamic cross correlation analysis (DCCs) and 

residue interaction network (RIN). 

4. To provide a comprehensive review on the new approach to metal-based drug design. 

To accomplish this, the following objectives were outlined: 

4.1 We provide an overview of previous reviews of the cytotoxic effects of metal-based 

compounds while focusing more on newly designed metal-based compounds and their 

cytotoxic effect on the cancer cell line.  

1.4 Overview of this work  

This work is divided into 8 chapters, with this one included: 

Chapter 2: This chapter gives a general background on cancer, including global statistic on 

the scourge of cancer. Different types of cancers with a particular emphasis on prostate cancer 

and breast cancer. We also highlighted on drug resistance mechanism and new approaches to 

cancer drug design. 

Chapter 3: This chapter briefly introduces computation chemistry, various molecular 

modeling and simulation techniques including their applications. Attempts are made here to 

explain theoretically some computational methods with highlighted multiple computational 

tools applied in the study of XY018-ROR-γ and c-Src-UM-164 with main the focus on 

molecular dynamic simulations and binding free energy calculation.   

Chapter 4 (accepted) 

This chapter presents results from the study titled “Re-emergence of an Orphan Therapeutic 

Target for the Treatment of Resistant Prostate Cancer – A thorough Conformational and 

Binding Analysis for ROR-γ Protein”.  

 

 

Chapter 5 (submitted for publication) 
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This chapter presents results from the study titled “Emergence of a Promising Lead Compound 

in the Treatment of Triple Negative Breast Cancer: An Insight into Conformational Features 

and Ligand Binding Landscape of c-Src Protein with UM-164”. 

Chapter 6 (submitted for publication)  

This chapter presents results from the study titled “The impact of Thr91 mutation on c-Src 

resistance to UM-164: Molecular dynamics study revealed new opportunity for drug design”  

Chapter 7 (Published)  

This chapter presents a review article titled “Metal Complexes in Cancer Therapy – an update 

from Drug Design Perspective”. 

Chapter 8:  

This chapter is overall the conclusion of entire thesis and future work. 
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CHAPTER 2 

Cancer 

2.1 Introduction 

Cancer is as a progressive abnormal proliferation of any of the different kind of cells in the 

body.1 However, recent studies have revealed that cancers are associated with abnormal 

changes in the body metabolic state,1, 2 this abnormality is linked to changes in the structure 

and function of mitochondrial,2 with genetic implication as the primary focus. The propensity 

to spread and invade (metastasis) related body tissues is the primary cause complications and 

death in most cancer patients. Usually, un restricted cell growth marks the termination of 

biological process of the disease.2 It is a well-known fact that cancers are highly heterogeneous 

these characteristic is driven by two principal factors namely; the genetic alteration and 

phenotypic selection resulting from evolution.3 This are the major reasons for the diverse forms 

of cancer which at present more than 200 types exist,4 while the number of validated cancer 

target remained outside the reach of pharmacological regulation.5 They are either undruggable 

or druggable,5 however, variations in interactive amino acids (molecular network) during 

cancer development necessitate different drug targeting strategy in the early and late phase of 

carcinogenesis.6  

2.2 Current status of global cancer burden 

Cancer constitutes an enamours burden on society7 affecting more the economically less 

developed countries.7 The incidences of cancer are relatively high because of growth and 

ageing of the population,7 as well as an increase in the prevalence of predisposing factors such 

as smoking, overweight, physical inactivity, change in reproductive patterns associated with 

urbanisation and economic development or industrial revolution.7 In 2012, based on 

GLOBOCAN (comprehensive surveillance database managed by an international association 

of cancer registries) estimate, about 14.9 million new cancer cases and 8.2 million cancer 

associated deaths were recorded worldwide.7 However, the burden has shifted more to 

economically less developed countries which currently account for 57% cases and 65% of 

cancer-associated deaths worldwide.7,8 In male, five most common sites of cancer diagnosed 

in 2012 were lungs, prostate, colorectal, stomach and liver, among which lung cancer is the 

leading cause of cancer death in both developed and economically less developed countries.7 

Breast cancer is the leading cause of cancer death among females in less developed countries7, 
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9 compare to developed countries.10,11 Other forms of cancer with high mortality rate in 

developed countries include colorectal cancer among males and female and prostate cancer 

among males. Similarly, the incidence of cancers combined are nearly twice as high in 

developed countries than less developed countries in both males and females, however, 

mortality rates are only 8% to 15% higher in more developed countries.7  

In United State of America, based on the statistical data from the National Center for Health 

Statistics, about 1,685,210 new cancer cases and 595,690 cancer-associated deaths were 

projected to occur in 2016.11 There is relatively stable trend of incidences of cancer in women 

but declining by 3.1% per year in men (from 2009-2012),11 as a result of recent rapid decline 

in the diagnosis of prostate cancer.11 Similarly, cancer associated death has dropped by 23% 

since 1991, translating to about 1.7 million death averted through 2012.11 However, death rates 

are relatively increasing for cancers of liver, pancreas and uterine corpus, therefore, cancer is 

now leading cause of death in 21 state in United states of America.11 

2.3 The quest for better understanding of cancer 

2.3.1 Molecular networks in cancer 

The protein-protein interaction network provides general information about cellular functions 

and biological process.12 The cellular arrangement of proteins is such that some act as a hub, 

highly connected to the others, while some have few interactions.12 The dysfunction of some 

of these interaction results in many pathological conditions such as cancer. Therefore, a good 

understanding of network properties of cancer-related proteins will help to explain their role in 

carcinogenesis.12 Cancer is generally immortal and is said to be the product of complex cell 

transformation process.6 This process usually began with mutation or DNA-rearrangements,6 

which disrupts the original composition of phenotypes in the cell. This results in cell population 

with variable chromatin organisation, gene expression patterns leading to formation of 

interatomic composition.6 These diverse cell population with variable characteristics such as 

increased level of stochastic processes (noise) phenotypic plasticity13, 14 and by an increase in 

network entropy of protein-protein interaction. 

The developmental process of cancer is continuously described as system level, network 

phenomenon,15, 16 where the networks easily adapt to the changes in parameters (network 

evolution) such as network connectivity, edge weights, diameter centrality and motifs or 

modules.17, 18 The identification of these networks changes have predictive potential in 

retrospect and about future development of complex system represented by the network.6 

Therefore, assessment of molecular network changes in the progression of cancer requires a 
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good understanding of time-frames both in clinical sampling and network analysis.6  The 

autonomy of cancer cells is based mainly on the changes in its signalling network,6 formed by 

interconnected signalling pathway and gene regulatory network.19 Thus, changes in expression 

level of signalling proteins in cancer cells may result in activation of cancer-related pathways, 

this may lead to rewiring of the whole signal network as showed in the case of human epidermal 

growth factor.20 Figure 1 depicts the appropriate drug targeting strategies. 

 

 

Figure 1. System level development of cancer that determines the most appropriate drug targeting 

strategy adopted from Dávid et al. 6 

It worth noting that diverse cancer targets have been identified, however, developing drugs that 

will act on these targets have been quite challenging. Changes in residue networks have been 

identified as the major contributing factor, this leads to the development of dual network 

strategy, the central hit strategy and network influence strategy to target various disease 

including cancer.6 In line with this, molecular understanding of cancer is paramount to the 

successful design of anticancer drug.  

2.3.2 Cancer as a metabolic disease 

The initial perception of cancer as a genetic disease is gradually eroding,21, 22 this may be 

attributed to Warburg discovery which states that, cancer is actually caused by a defect in the 

cellular metabolic energy, that is primarily related to the function of the mitochondria.22 This 

understanding has changed the view and perception of scientist about the real cause of cancer. 



13 
 

In the light of foregoing, study have shown that cancer is primarily a disease of metabolic 

disorder associated with energy production from respiration and fermentation.21, 22 These 

disturbances is related to abnormalities in structure and function of mitochondria22, 23 as seen 

in Figure 2 It is assumed the growth and progression can be checked adequate monitoring as 

the body transit from fermentable metabolites to respiratory metabolites23 considering the 

evolutional theory of Charles Darwin.23 This is only true because genetic variation that exist 

among individuals, therefore individualising metabolic therapy as a baseline in cancer 

treatment will require individualising the therapy base on individual body physiological state.23  

 

 

Figure 2. Role of nucleus and mitochondria in the origin of tumour, normal cell depicted in green with 

mitochondrial and nuclear morphology indicative of normal respiratory and gene expression, adopted 

from Thomas et al. 23 

Placing cancer as single type disease rather than a complex form will enhance the 

individualisation of therapy.23, 24, 25  Many scientists have advanced their reasons to consider 

cancer as a metabolic disorder, this was better supported with variations in the nuclear gene 

theory in relation to somatic cells.23 It revealed that tumour growth is suppressed when the 

cytoplasm from non-tumour cells with functional mitochondria interacts with nuclei from 

tumour cells 26 as shown in Figure 2 . Based on this findings, it can be concluded that tumour 

cell grow depends on the availability of functional mitochondrial rather than specific nuclear 

mutation. However, there is enhancement in cell growth when nuclei of none-tumorigenic cells 

are allowed to interacts with with cytoplasm from tumour cells.27,28  

In Warburg theory, the key points to note are: (1) Decrease in respiration mimics tumorigenesis 

consequently cancer.29 (2) There is progressive compensation of energy from respiration by 

energy from glycolysis due to decrease in respiratory energy.29, 30  (3) Continue degradation of 
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lactate in the presence of oxygen.29, 30 (4) Deficiency in respiration ultimately becomes 

irreversible31 as shown in Figure 3 Therefore applying Warburg theory to cancer management, 

one will think that the rational strategy for cancer management is the principal focus of the 

drug that selectively target tumour metabolic pathway.23 This strategy is applicable to the most 

cancers irrespective of tissue origin, since they all exhibit similar metabolic features, restricting 

glucose or targeting glucose is fundamental to the successful management of cancer. 23 This is 

because glucose is the major source of energy in tumour metabolism resulting from 

fermentation.23 Similarly, normal cells in body survive through glucose from glycolytic 

pathway. It is, therefore, important that normal cells are protected from therapies that disrupt 

glycolytic pathway.23   

 

Figure 3. Linking the hall marks of cancer to impaired energy metabolism adopted from Thomas et al.2 

2.3.3 Implication of metabolism for novel therapeutics 

In human system, the presence of glucose and ketones within the prescribed normal range under 

fasting condition that produces anti-angiogenic, anti-inflammatory and pro-apoptotic effects,23 

is termed metabolic management stage.32 The human system when assumed this stage, low 

dose of a variety of drugs can be used to target energy metabolism in any surviving tumour 

cells.33 Cytotoxic drugs such as Imatinib and trastuzumab used in the management of BCR-

ABL leukaemia cells and ErbB2-positive breast cancers derived therapeutic success due to 
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their selective target properties on the glucose signalling pathway.34, 35 In a related 

development, calorie restricted ketogenic diets (KDs) will target any cancer regardless of any 

form of mutation involved.36, 37, 38 It is also been speculated that, dietary management another 

means targeting metabolic pathway with minimal cells toxicity.38 It is important to note that, 

KD is therapeutically effective on restrictive intake, it predispose individual to insulin 

insensitivity when taking in un-restricted form.39 In related development, targeting glutamine 

will result in inhibition of systemic metastatic cancer cells,40, 41 because of presence of multiple 

cellular macrophages,42 , 43 glutamine is the major source of energy for macrophage and cells 

of immune system.44 However, glutamine said to be possess chemo-preventive effect, therefore 

further research is required to establish the role of glutamine in this regard. A study has shown 

that synergistic interactions exist between the KD and hyperbaric oxygen therapy (HBO2T).23 

The presence of KD lead to decrease glucose level necessary for glycolysis and also reduced 

NADPH levels for anti-oxidant potential through the pentose-phosphate pathway.23 The 

increase in reactive oxygen species (ROS) in tumour cells is associated with the presence of 

HBO2T, while ketones have a protective effect on normal cells against ROS damage and 

potential central nervous system (CNS) oxygen toxicity.45, 46 The inability to use ketones and 

the dependency on glucose for energy by the cancer cells make them selectively vulnerable to 

this therapy.23  However, this therapy is only effective against those tumour cells with 

mitochondria, it is unclear at present whether this therapy will be effective on those tumour 

cells with few or no mitochondria.47 Therefore, metabolism in cancer cells is a promising 

research field that required in-depth molecular understanding in our quest to drive cancer from 

being a terminal illness to a treatable condition. 

2.3.4 Mutation in cancer 

The majority of the human tumour are highly heterogeneous, this heterogeneity results from a 

mutator phenotype.48 This rely on premise that normal mutation rate is insufficient to account 

for multiple mutations found in human cancer,48 this mean that cancer cells must have exhibited 

a mutator phenotype early during their initial phase of growth.48 The development of cancer is 

a gradual process particular in human solid tumours, there is usually an interval of 20 years 

from carcinogenic exposure to clinical detection.48 During this period, cancer cells actively 

divide, invade and metastasize.48 The proposal from mutator phenotype states that, phenotypes 

result from mutations in genes that can maintain genetic stability in normal cells. Thus, 

mutations in genetic stability genes can cause mutation in other genes that govern genetic 

stability,48 thereby initiating a cascade of mutations throughout the genome. In the midst of 
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this, some of the mutant will confer a selective advantage(s), allowing the mutated cells to 

expand and achieve clonal dominance.48 Mutations are known to be inheritable changes in the 

nucleotide sequence of DNA which include chromosomal abnormalities. However, new 

evidence emerged challenging the belief that multiple mutations in human cancer were based 

mainly on chromosomal aberrations, 48,49 in this case, multiple abnormal chromosomes are 

found in most solid tumours and are rarely diagnostic of tumour type nor indicative of 

prognosis.48 Although there is an exception one of which involve translocations and 

rearrangement of specific chromosomes that are instrumental in the diagnosis of several 

hematologic malignancies and sarcomas.48 In most tumours, there are different regions that 

exhibits abnormalities in comparative genomic hybridization (CGH),50 a technique that 

measure changes in DNA copy number 48, 50 and spectral karyotyping (SKY).51 Similarly, 

tumours are said to display amplification of a segment of DNA at high frequencies.52 They also 

exhibit loss of heterozygosity as the consequence of deletions in one of the parental 

chromosomes.53 In single cancer cells, there are thousands of mutations suggesting that in the 

human tumour at the time of diagnosis harboured billions of different mutations48. Mutation in 

most gene and regulatory sequence are presence in one or more cell within a tumour.48 

Therefore, when the cells are exposed to chemotherapeutic agents, tumour cells with acquired 

mutation that render them resistance will preferentially proliferate and eventually increase the 

population of the resistant strain.48 This account for the relative ease to which cancer cells 

acquire resistance to drugs.48, 54 

2.3.5 Drug resistance in cancer 

Chemotherapy remains a mainstay in the clinical management of cancer,55 this is however 

faced with a lot of challenges ranging from patient drug intolerance to various forms of drug 

resistance. Drug resistance in cancer is multifactorial, it could be: (1) Pharmacodynamics drug 

and (2) Pharmacokinetics drug resistance.  

2.3.5.1  Pharmacodynamics drug resistance 

In pharmacodynamics resistance, changes in the target sites (receptor) are usually the major 

challenges. The receptors are modified as result of age56 or genetic mutations.57, 58 The re-

modification of the receptor or target site affects drug binding. The orientation of drug in the 

receptor conformational space is absolutely important to bring about the desired pharmacologic 

effect.59 Aging is usually accompanied by a decrease in functionality of vital organs of the 

body60 resulting in changes in quantity and type of amino acids present in these tissues, this 
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affects the amount of receptors available for the binding and receptor conformation space 

required for the drug to bind and elicit it pharmacological effect hence the variation in clinical 

response to chemotherapeutic agents.  

On the other hand, mutational effect premise on the effect of genetic variation on patient drug 

response.57, 61 Mutation affects the drug binding in two ways: (1) By altering the molecular 

interaction between the active site residues and drug atoms.57, 61 (2) By altering protein 

conformations. These changes resulting from mutation are sometimes referred to as intrinsic 

target resistance and are believed to be the cause of exaggerated drug effect. Resistant to 

chemotherapeutic agents can be acquired during treatment of a tumour that was initially 

sensitive and suddenly develop resistant due to mutations arising from drug treatment.62 As the 

knowledge on the molecular biology of cancer advanced, cancer drug design has shifted toward 

agents that target specific molecular alteration in cancer.62  

2.3.5.2 Pharmacokinetics drug resistance 

In pharmacokinetic drug resistance, exposure of cancer to the drug molecule is highly limited. 

This is usually associated with the various mechanism of drug absorption, distribution 

(transport) elimination (metabolism and excretion).  

Absorption of orally administered chemotherapeutic agent goes through normal route like any 

other oral formulation. However, in the presence of permeability glycol-protein (p-gp) also 

known as multi-drug resistance protein (MDR) found in the gastrointestinal tract (GIT) 63,64 

and small intestines (primary site for epithelial absorption).65 Co-administration of 

chemotherapeutic agents leads to over-expression of p-gp thereby decreasing the 

bioavailability of some of these agents including imatinib.66 Variation among individual eg 

genetic polymorphism and change in the body physiological state also play important role in 

the expression of p-gp in GIT.67,68 Thus, causing erratic absorption of some chemotherapeutic 

agents including paclitaxel.66  The presence of food also reduces the GI viscosity thereby 

reducing the rate and the extent of disintegration, dissolution and absorption of drugs from 

GIT. Careful monitoring of drug-food interaction is important in administering 

chemotherapeutics to avoid unwanted effect and achieve sufficient bioavailability.69, 70, 71  

Distribution: Drugs are transported via the plasma to the body tissues, the volume of 

distribution (Vd) which is a hypothetical volume gives a summary of drug distribution into the 

tissues,72, 73 increase in volume Vd mean that more of the drug is distributed into the tissue at a 

relatively lower concentration. Many factors determine drug distribution in the body some 

which include: Body weight, plasma protein and circadian rhythm.63  
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Body weight is an important factor that determines drug dosing and dosage adjustment, cancer 

patients often lose weight as the tumour progresses 74,75 therefore, continuous dose adjustment 

based on current body weight is absolutely important in chemotherapy. 

Plasma proteins are mainly responsible for drug distribution in the body. Within the blood, 

drug exists either as free or are bound to plasma proteins63 and albumin and alpha 1-

glycoprotein are the major binding proteins. Albumins are carriers of acidic drugs, while alpha 

1-glycoprotein (AAG) carries the basic or neutral lipophilic drugs.76, 77, 78 The AAG is an 

important carrier of an anticancer drug, therefore variation in the plasma concentration of AAG 

affects the activity of several anticancer drugs including imatinib.79 Variation in plasma AAG 

also affects the anticancer activity of Gefitinib80 hence institution of therapeutic drug 

monitoring is absolutely important in chemotherapy.  

Circadian rhythm, the cardiac timing system is made up peripheral oscillators found in the 

most tissue of the body and central pacemaker located in the suprachiasmatic nucleus of the 

hypothalamus.81 The circadian rhythm has been implicated in pathophysiologies of several 

diseases,82 drug action83,84 and drug disposition (pharmacokinetics).85 The concentration of 

plasma protein varies with time, minimum concentration reached around 4:00am and at about 

8:00am the concentration begin to increase.86 Age variation also affects the cardiac rhythm, the 

rhythm can be masked in the younger ages,87 and become aggravated with age. Therefore, 

adequate and proper dosage timing is very important in chemotherapy for optimum plasma 

concentration around the tumour sites.  

Elimination: Drugs are eliminated from the body mainly through metabolism and excretion. 

Drug metabolism is a biological strategy of drug detoxification which involves the conversion 

of drugs from active to inactive form through several processes. Similarly, metabolism can also 

reflect the conversion of drugs from inactive to the active form, particularly in pro-drugs. 

Essentially, enzymes are the major players of metabolism. However, some of these enzymes 

can be induced to increase the metabolic activity of decrease the metabolic activity. The 

increase in metabolic activity result in reduction of plasma half-life of the drugs thereby 

exposing the cancer cells to a sub-optimal concentration which eventually lead to drug 

resistance. While the decrease in metabolism prolongs the plasma half-life of the drugs which 

expose the patients to the severe adverse effect of anticancer drugs. This is more reason why 

the therapeutic drug monitoring is recommended for patients with terminal illnesses such 

cancer. 

Excretion: The kidney is the primary organ by which drugs are eliminated from the body, other 

routes include biliary, skin and the lungs. Variation in renal excretion of drugs could be due to 
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gender,88, 89 physiological state of individuals, race and ethnicity.90 Therefore, changes in the 

rate of glomeruli filtration affect the elimination half-life of anticancer drugs with a direct 

consequence of the systemic concentration of the drug. It is important to complete assessment 

of renal and biliary system of patients on anticancer drugs at an interval within the period of 

therapy to allow for dosage adjustment when the need arises.   

2.4  Potential sites of drug target in cancer 

Cancer target sites continue to evolve certainly due to the mutational effect that results in 

modification and re-modification receptor sites that are either at one time sensitive to the 

particular anticancer drug or newly discovered receptor site. Currently, there are over 5000 

targets in cancer 91 out which only few are druggable, this is despite concerted research effort 

to develop therapeutics that can bind to these targets and halt cancer progression. The 

confluence of progress between the cancer research and therapeutic outcome in cancer 

management result in current research focus in cancer. In line with this, most recent cancer 

therapies are focusing on the use kinase inhibitors92 with which deoxyribonucleic acid (DNA) 

repairs are the possible targets.93  

2.4.1 DNA repair pathway as a potential target for cancer therapy 

Deoxyribonucleic acid (DNA) damage is one of the major impact of chemotherapeutic agents 

on cancer cells. However, cancer derived a means of survival through DNA repair pathway, 

therefore inhibitors of specific DNA repair pathway could be very efficacious when used in 

combination with DNA-damaging chemotherapeutic agents.94 Similarly, alteration in DNA 

repair pathway arising during cancer development can make some cancer cells reliant on a 

reduced set of DNA repair pathway for survival.94 Similarly, as the cancer cells become more 

mutagenic, genetic streamlining occur leading to a deficiency in one or more DNA repair 

pathway accompanying by compensatory activities that increase the levels of proteins 

responsible for the DNA repairs in the same pathway or in a different one. 94, 95 Therefore, 

interrupting DNA repair pathway such a way that can shut down the compensatory mechanisms 

pathway can lead to cell death, this is the goal of the research surrounding the DNA repair 

pathway.94 Sequel to this, it is possible to develop an agent that selectively inhibit one of this 

pathway in such cancers and could prove effective as a single regimen therapy.94 The DNA 

damaging agents commonly in use in cancer therapy include: 
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2.4.1.1  Platinum-based complexes in cancer therapy 

 Therapeutic potential of metal complexes which include platinum complexes in cancer therapy 

has attracted a lot of interest mainly because metals exhibit unique characteristics, such as 

redox activity, variable coordination modes and reactivity towards the organic substrate.96 

These properties become an attractive probe in the design of metal complexes 96 that will 

selectively bind to the biomolecular target with resultant alteration in cellular mechanism of 

proliferation. Cytotoxic drugs such as platinum-containing drugs cause DNA damage by 

binding to N7 reactive centre on purine residue thereby inducing changes in DNA leading to 

apoptotic cell death.97 This includes cisplatin, carboplatin, oxaliplatin, satraplatin, ormaplatin 

and iproplatin to mention but few. The major challenge with the use of these compounds is 

their dose-limiting toxicities as well as the development of drug resistance.98  Details on these 

drugs can be found in published article which forms part of this thesis “Metal complexes in 

cancer therapy an up-date from drug design perspective. Structure of some platinum complexes 

used in cancer therapy are represented in Figure 4 

 

Figure 4. 2D structure of selected Platinum compounds with DNA effect 

2.5  Castrated resistance prostate cancer (CRPC) 

Prostate cancer (carcinoma of the prostate) is the development of cancer in the prostate gland. 

It is the fourth most common cause of cancer-associated death 99 and  is third most common 

cause of cancer death in men .99 Prostate cancer can also develop resistance despite androgen-

deprivation therapy (ADT), 100 this is called castrated resistance prostate cancer (CRPC) which 

is usually associated with continuous rise in the serum prostate specific antigens (PSA).100 

Castrated resistance prostate cancer presents in a different form, ranging from rising PSA level 

without metastases or any form of symptom despite ADT to metastases with a significant 

presence of cancer symptoms.100 Prognosis in CRPC is usually associated with so many factors 

including performance status, presence of bone pain, extent of disease on bone scan and serum 

level of alkaline phosphatase.100 In 90% of men with CRPC bone metastases usually occur with 
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high chances of producing significant morbidity such as pain, pathological fracture, spinal cord 

compression and bone marrow failure.100 Others  symptoms include paraneoplastic effects such 

as anaemia, weight loss, fatigue, hypercoagulability and increased susceptibility to infection.100   

2.5.1 Treatment of castrated resistance prostate cancer 

In castrated resistance prostate cancer (CRPC) majority of patients’ diseases condition usually 

progressed to the stage of resisting anti-androgens therapy.101  This limit the available treatment 

options. In the past the prostate cancer was considered unresponsive to the chemotherapy until 

the advent of palliative treatment mitoxantrone combined with prednisolone in the treatment 

of CRPC.101 Docetaxel-based chemotherapy has shown some significant advantage over 

mitoxantrone in patients with metastatic CRPC.101 Cabazitaxel has recently shown to improve 

the survival in patients with metastatic CRPC who progressed after docetaxel-based 

chemotherapy.101 It has also been demonstrated that Sipuleucel-T improved overall survival in 

patients with asymptomatic or mildly symptomatic metastatic CRPC.101, 102 A lot of research 

have been carried on different targets and prospective inhibitors in CRPC, some drugs are 

currently under clinical trial to ascertain their efficacy and safety in the treatment of CRPC. 

Drugs such as Satraplatin are currently in phase III clinical trial, a combination of Satraplatin 

and prednisolone results in significant improvement in radiographic progression-free survival 

(PFS).103, 104 In a related development, a phase II clinical trial of Sunitinib (tyrosine kinase 

inhibitor) in patients with chemotherapy-naïve or docetaxel-refractory CRPC shows ˃50% 

prostate specific antigen (PSA) reduction in one patient per treatment group.105 Several drugs 

are medical domains that are currently used as chemotherapeutic agents in the management of 

CRPC. However, the progression of the disease condition led to the discovery of retinoic acid-

related orphan receptor- γ (ROR-γ) implicated in the CRPC. Receptors such as alpha and beta 

gamma type constitute family of nuclear receptors that function as ligand-dependent 

transcription factor.106 

2.5.2 ROR-γ, a new target in castrated resistance prostate cancer 

In recognition of the role of ROR-γ in prostate cancer, recent studies examined the relationship 

between ROR-γ and prostate cancer.107 Results from immunoblotting analysis of ROR-γ 

protein in cancer and noncancerous cell lines revealed that appreciable level of inhibition of 

growth of androgen-sensitive human prostate adenocarcinoma cells (LNcap) and their CRPC-

derivatives C4-2B cells was achieved when ROR-γ was knocked down by different RORC 

siRNAs.107 Such a high level of growth inhibition was observed in androgen-sensitive and 
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CRPC model,107 as the ROR-γ is knocked down there is resultant induction of apoptosis, which 

is marked by activation of caspase-3 and caspase-7 and the breakdown of poly (ADP-ribose) 

polymerase 1(PARP1), resulting in reduced expression of the protein relevant to oncogenesis, 

proliferation and survival.107 Most recent studies continued to place ROR-γ as an orphan 

because of unidentifiable ligand (inhibitor) suitable for its binding site.108 A most recent study 

identified three different inhibitors of ROR-γ.107 These inhibitors were labelled as XY018, 

SR2211 and XY011 (Figure 5) based on their structural differences and effect on the cell 

line.107 In this regard, the first two inhibitors demonstrated sufficient level of suppression on 

the expression of important proliferation and survival proteins.107 Therefore, the inhibitor 

XY018 is a promising lead compound in CRPC,107 Figure 5 represent the 3D structure of  

XY018 bound to ROR-γ. Detailed discussion on this topic can be found in one of the chapter 

of this thesis. 

 

Figure 5. 2D structure of experimental ROR-γ inhibitors 
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Figure 6. 3D structure of XY018 bound to ROR-γ 

2.6  Breast cancer and potential drug targets 

Breast cancer remains among the most frequently diagnosed and life-threatening cancer in 

women,109 and third leading cause of cancer-associated death among women in the United State 

of America (US). 11, 110 Genetically, breast cancers (BCs) are heterogeneous,111 with respect to 

their gene composition, gene expression, and phenotypes which eventually yield current 

classifications of 5 subtypes.111 The triple negative subtypes are more life threatening due to 

their potential to metastasize and a tendency of local reoccurrence.112 They are usually 

associated with the absence of oestrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor-2 (ErbB2/HER-2).113 They are characterised by classical 

ductal histology, high grade, high mitotic and cell proliferations rates.113 The triple negative 

cancer (TNBC) is firmly associated with poor prognosis, poor disease-free survival (PDFS) 

and cancer-specific survival (CSS).113 The local reoccurrence is marked with increasing 

number of positive lymph nodes,113 this suggest the reason for high risk of reoccurrence in 

patients with TNBC in the first 3 to 5 years after diagnosis.113  



24 
 

Study have shown that only a few therapeutic options and conventional chemotherapy may 

probably be the only effective treatment for patients after surgery.113 A more recent study 

established a relationship between TNBCs and sensitivity to inhibition of c-Src (non-receptor 

tyrosine kinase), in an attempt to identify predictive markers response to chemotherapy.111 In 

this study, a dual kinase inhibitor known as UM-164 was discovered and had profound activity 

against c-Src and p38 kinases,111 as shown in Figure 6. This inhibitor is said to be a promising 

lead compound for developing the first targeted therapeutic strategy against triple-negative 

breast cancer (TNBC).111 c-Src is the cellular homolog of the viral oncogene v-Src114 and an 

archetype member of a family of non-receptor tyrosine kinases that play important roles in a 

variety of signalling pathways that involve proliferation, differentiation, survival, motility, and 

angiogenesis.114 Overexpression of c-Src plays an important role in oncogenic proliferation, 

migration, and invasion of TNBC cell lines.111 This claim is supported by molecular studies 

that continued to show that c-Src plays a significant role in clinically important pathways in 

breast cancer,114 such as steroid and peptide hormone pathway.114 On the basis of these reports, 

c-Src represents an attractive target in TNBC.115, 116 Although previous studies placed more 

emphasis on the use Dasatinib, Bosutinib and Saracatinib particularly as a combination therapy 

in the treatment of TNBC.116  These drugs act by binding the active conformation of the kinase, 

in addition, resistance to Dasatinib has emerged.117 Cumulatively, these factors placed other 

drugs (Dasatinib and Bosutinib) at the disadvantage over dual kinase inhibitor UM-164 (c-

Src/p38 inhibitor) which act in a specific inactive conformation (DFG-out) as shown in Figure 

7  while Figure 8 represent structure of UM-164 and Dasatinib.  

 

 

Figure 7. 3D structure of UM-164 bound to a non-receptor tyrosine kinase (c-Src) 
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Figure 8. 2D structures of Dasatinib and experimental c-Src inhibitor (UM-164) 
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CHAPTER 3 

Introduction to computation chemistry 

3.1  Introduction 

Computational chemistry can be define as the use of computer technique to simulate chemical 

compounds at the atomic or molecular level. It is also referred to as molecular modelling, and 

principally based on the use of theoretical chemistry incorporated into computer system. The 

term includes a diverse range of theories and methods which provide a problem solving tools 

in chemistry.  

3.1  Quantum mechanics 

In 1990 a scientist called Max Plank reported the absorption and spectral activity of compounds 

which was labelled as quantum. This was thought to originate from a Latin word quantu 

meaning how much. Quantum is measure of constrained particle quantities 1-4 this particles are 

said to be influence by gravitational force on the motions, the forces interplay within the object 

is referred to as Mechanics. The nuclei, electrons and protons are the major components of the 

molecules, therefore, quantum chemistry involves the study of influence of electromagnetic 

forces resulting from the activity of nuclear charges. 1-4 The variation in chemical activity is 

attributed to differences in molecular structure, therefore, adequate knowledge of electron 

dynamics in the molecules can only be taped through good understanding of quantum 

chemistry particularly the use of Schrödinger equation.1-5 

3.2  The Schrödinger equation 

The famous Schrödinger equation was proposed and developed by an  Australia physicist 

Erwin Schrodinger in 1926.4 This equation is presented in its simples form as follow: The  

Η𝜓 = Ε𝜓    Eq. 3.1 

From this equation, H represents molecular Hamilton, 𝜓 a wave function and E is the system 

energy.2, 6  From the Eq. 3.1 molecular Hamilton can be derived as: 

Η = Τ +V    Eq. 3.2 

Where T is the kinetic and V potential energy. Considering the kinetic and potential energy of 

electrons and nuclei of molecules, Hamilton can be represented as:  
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H = – 
ħ𝟐

𝟐𝒎𝒆
 ∑ ∇𝒊

𝟐
𝒊  – 

ħ𝟐

𝟐𝒎𝒆
 ∑ 1

𝑀𝐴
∇𝑨

𝟐
𝑨  – ∑A ∑i  

𝑍
𝐴𝑒2

𝑟 𝐴𝑖
 + ∑i ∑j ˃i 

𝑒2

𝑟𝑖𝑗
 + ∑A ∑B ˃A 

𝑍𝐴
𝑍

𝑅𝐴𝐵
  Eq. 3.3 

In this equation, A and B are the nuclei and i and j are the electrons, MA is the mass of the nuclei 

A, me mass of an electron, RAB the distance between the nuclei A and B, rij the distance between 

the electron i and j, ZA is the charge of the nucleus A, rAi the distance between the nucleus A and 

electron i. The complexity associated with Schrödinger equation pose some challenge in 

attempt to use it to solve for a molecular system. However, Born-Oppenheimer 1,7 equation can 

be used to approximation. 

3.3  Born-Oppenheimer approximation 

The variation between nuclei of an atom and the electron can be optimally utilised in separating 

motion associated with nuclei and the electron. This mainly because nuclei is much heavier 

(has slow motion) than electron which move with a faster motion. Therefore, the motions can 

easily separated1,7 this is the assumption in Born-Oppenheimer approximation.8 This equation 

account for the differences in the mass of electron and the nuclei thus electron can easily replace 

nuclei. The equation can be presented as follow: 

H = –  
ħ𝟐

𝟐𝒎𝒆
 ∑ ∇𝒊

𝟐
𝒊  –  ∑A ∑i  

𝑍
𝐴𝑒2

𝑟 𝐴𝑖
 + ∑i ∑j ˃i 

𝑒2

𝑟𝑖𝑗
 + ∑A ∑B ˃A 

𝑍𝐴
𝑍

𝑅𝐴𝐵
    Eq.3.4 

The observed differences between the nuclei and electron allow for the Born-Oppenheimer 

equation be used in reducing the Hamilton and complexity in wave function, given by the 

following equation:  

𝜓 𝑟 (relec) = 𝜓 (relec) (𝑟nucl)        Eq. 3.5 

Eq. 3.1 is re-arranged as:  

𝐻EN 𝜓 (𝑟el) = 𝐸EN𝜓 (𝑟el)        Eq.3.6 

Eq. 3.5 and 3.6 are integrated to form equation Eq. 3.7 as follow:  

(Η𝑒𝑙 + 𝑉𝑁𝑁) ψ (𝑟𝑒𝑙) = 𝐸𝐸𝑁 𝜓 (𝑟𝑒𝑙)        Eq. 3.7 

This equation account for energy from variable sources due to differences that exist between 

the nuclei and the electrons.3   
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3.4  Potential energy surface  

The observed relationship in the geometry of the molecular energy and graphical or 

mathematical equation is termed potential energy surface (PES).3 This determines the 

differences in molecular energy and various energy transition states and the coordinates of their 

nuclei.3, 9, 10  The PES is better explained by Born-Oppenheimer approximation which put into 

consideration the observed difference between the nuclei and the electron motions.8,10 Within 

the this concept, the position of electron becomes flexible can easily adjust to changes due 

nuclei movement, this way PES can be related to the motion of the atoms within molecules.11 

Figure 1 is a graphical representation of two dimensional potential energy surface.  

 

Figure 1. Graphical representation of a two dimensional potential energy surface 11 

The PES exhibits the two main regions; high energy and low energy region respectively. These 

regions provide a clear understanding of the status of nuclear arrangement in a specific 

conformational space. 9, 10 In line with this, association between the electrons resulting from 

prompt response to changes in electron interaction within molecular orbital12 formed the 

foundation in which computational chemistry is built upon.12   
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3.5  Molecular mechanics  

The energies of molecular structure are conveniently calculate using molecular mechanics, it 

involves calculating the relative potential energy molecular system.3, 6, 7 In this case, the 

electrons and it associated nuclei are treated as a single entity, this is better explained by Born-

Oppenheimer approximation as stated earlier  

Molecular mechanics (MM) or better referred to as total potential energy of a molecule is 

described by equation bellow:  

Εtot = Εstr + Εbend + Εtor + Εvdw + Εelec      Eq. 3.8 

From the above, Εtot is the total potential energy, Εstr bond-stretching energy, Εbend bond-angle 

bending energy, Εtor the torsion energy, Εvdw the van der Waals forces and Εelec electrostatic 

forces between atoms that are non-chemically bonded. Energy contributions from special 

treatment of hydrogen bonding and stretch-bend coupling interactions may also be witnessed 

in MM.  

3.5.1 Force field 

The energy of a system largely depends on the coordinates of it particles, this relationship can 

be defined by a set of mathematical equation called force field. Simulation of biomolecules 

involved the use of force field such as AMBER,13 CHARM,14 GROMOS15 and NAMD16. 

These force fields are product of ab initio and are semi-empirically calculated from quantum 

mechanics or obtained from experimental data.17 Force fields exhibits variable properties, 

therefore, they are used for different purpose depending on the complexity of the system 

involve. Herein, AMBER14 force field18 was used, whereby the General AMBER Force field 

(GAFF) parameters were applied for ligand and parameterization and the standard AMBER 

force field for the protein.  

3.6  Molecular dynamics 

The most commonly used computer technique in in the simulation of complex system is 

molecular dynamics (MD). It involved generation of atomic trajectories from of many particles 

in the system using Newton equation of motion.19, 20   

Fi = mi 
𝑑2𝑟𝑖(𝑡)

𝑑𝑡2
        Eq. 3.9 
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Where 𝑟𝑖 (𝑡) = (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡), 𝑧𝑖 (𝑡)) is the (i) particle position vector, Fi is the force 

acting on (i) particle at time t and mi particle mass. Integration of this equation will required 

specifying the forces that are acting on the particles.17 MD is associated with time evolution of 

the system thus position and velocities are transmitted with a precise time interval.21 The locus 

particle in the space is given by 𝑟𝑖 (𝑡) and Vi (t) which defines the system’s kinetic energy and 

temperature. With MD dynamics process can be monitored at atomic level.22  

3.7   Hybrid QM/MM method 

Quantum mechanics (QM) and Molecular Mechanics (MM) are associated with certain 

challenges,23 this necessitate the harmonisation of the two methods to eliminate set back 

involve in the use of individual method and enhance the optimum performance of the hybrid 

type.23 The QM is associated with good descriptive accuracy therefore when combined with a 

low computational cost MM result in outstanding algorithm.23 In hybrid QM/MM the system 

is sectioned with each section or domain describing a particular function of a molecule as 

shown in Figure 3.24 The QM is applied in reactive domain while the MM is applied in non-

reactive domain,25, 26, 27 hence the combination of high precision QM methods with low 

computation enjoyed good acceptance from the users during molecular simulation.28 Figure 2 

is a schematic representation of hybrid QM/MM/MD model. 

 

Figure 2. Schematic representation of hybrid QMM/MM/MD model 

MM methods is not suitable in addressing the relative interaction between ligand and residue 

because of its inability to accurately describe changes in the energy in the course of reaction. 
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In line with this, the hybrid QM/MM play important role in computational drug design and 

discovery. 

3.8   Binding free energy 

The binding free energy calculation is an important thermodynamic method that gives detailed 

information on the interaction between the ligand and protein.29 It provides good understanding 

of mechanism of binding, including contributions from both enthalpy and entropy to the 

molecular recognition.29 Molecular Mechanics/Generalized-Born Surface Area method 

(MM/GBSA)29 are popular methods used to estimate free energy of the binding of small ligands 

to the biological macromolecule,29 the calculation gives detailed information on the interaction 

between the ligand and protein.29, 30 The following equations were used in binding free energy 

calculation: 

∆Gbind = Gcomplex – Greceptor - Gligand   Eq.3.10 

∆Gbind = Egas + Gsol – TS     Eq.3.11 

Egas = Eint + EvdW + Eele     Eq.3.12 

Gsol = GGB +GSA       Eq.3.13 

From the equation above, Egas is the energy of the gas phase, Eint represents internal energy, 

Eele represents coulomb while EvdW are the van der Waals energies. Egas is estimated directly 

from the ff12SB force field. Gsol which is the solvation free energy can be broken down to 

polar and non-polar forms of contribution. The contribution of polar solvation (GGB) is assessed 

by resolving GGB equation and non-polar solvation (GSA) is determined from the solvent 

accessible surface area, this can be estimated from water probe radius of 1.4 Å with temperature 

(T) and total solute entropy (S). The MM/GBSA binding free energy method in Amber 14 was 

used in this study to calculate the energy of interactive forces to the binding of the ligand. In 

addition, the energy decomposition analysis per residue was also computed using the same 

method. 

3.9   Principal component analysis 

Classical molecular dynamics analysis can only give limited insight into dynamic landscape 

framework of large and complex biomolecular systems. Therefore, other computational 
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methods have been developed to handle a large number of explicit degree of freedom.31, 32, 33, 

34 One of such is principal component analysis (PCA), which explore atomic fluctuations 

experienced within the biological system.  

Principal component analysis (PCA) also known as essential dynamics of protein35 analysis, is 

a systematic statistical technique applied to reduce the number of dimensions needed to 

describe the protein dynamics35 through the decomposition process that screen observed 

motions from largest to smallest spatial scale.35 The atomic displacement and conformational 

changes of protein can be defined36 using PCA by extracting different modes of the 

conformation of the protein complex during dynamic simulations such as MD simulation. The 

direction of motion (eigenvectors) and the extent of motion (eigenvalues) for the biological 

system can also be determine using PCA. 

3.10 Residue interaction network (RIN) 

Amino acids are an essential component of biological system with a well-defined network of 

interaction.37 The molecular interactions of these amino acids vary among the body tissues and 

are coded for by the genes, therefore an alteration in the gene sequence affect the network of 

the interaction of amino acid.38 This is particularly true when mutation occur, as a result the 

protein sequence is re-writing and there is an alteration in the network of amino acid. 38 

Mutation can affect protein folding and stability, protein function and protein-protein 

interaction.39 Certain studies have demonstrated that analysis of interactions from the RIN 

provides insight on the vital biological interaction of highly complex molecular systems.40,41  

The RIN analyser software, a java plugin for cystoscape, is used for analysing and visualisation 

RINs in different proteins and biological systems. It also provides insight into structural and 

functional properties or connections in different systems. The 3D protein structure network 

generated by cytoscape can be visualised and explore for a various network of interactions. The 

basic layout of interaction network display network nodes that represents various amino acid 

residues, with edges representing the respective molecular interaction between theses amino 

acids. 

3.11 Prediction of activity spectra for biologically active substance (PASS)  

Most chemical compounds interact with biological targets different from experimentally 

recognised targets, such compounds are said to be promiscuous in nature.42 Compound 

promiscuity depicts the molecular basis of the pharmacological effects, therefore, assessment 

of the extent of promiscuity of compounds at different levels of drug research43 provides a 
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detailed understanding of other properties of the drug that were probably not anticipated. 

Toxicity and biological activity of compounds can be predicted by computer tools. The 

molecular structure in “mol” form is upload into PASS website where the analysis is done and 

the result of prediction is generated within few minutes. It has been shown that the degree of 

reliability of these tools varies from one to another.44,45 However, PASS predicts compound 

toxicity and biological profile with a mean accuracy of prediction of about 89% to 90%.44, 45 

In this study, PASS was used to predict the toxicity and biological effects of experimental 

compounds investigated. 
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Abstract 

Recent studies have linked a deadly form of prostate cancer known as metastatic castration-

resistant prostate cancer (mCRPC) to retinoic acid-related orphan-receptor gamma (ROR-γ). 

Most of these studies continued to place ROR-γ as orphan because of unidentifiable inhibitor. 

Recently identified inhibitors of ROR-γ and their therapeutic potential were evaluated, among 

which inhibitor XY018 was the potent. However, molecular understanding of the 

conformational features of XY018-ROR-γ complex is still elusive. Herein, molecular dynamics 

(MD) simulations were conducted on HC9-ROR-γ and XY018-ROR-γ complexes to 

understand their conformational features at molecular level and the influence of XY018 

binding on the dynamics of ROR-γ with the aid of post-dynamic analytical tools. These include; 

principal component analysis (PCA), radius of gyration (RoG), binding free energy calculation 

(MM/GBSA), per-residue fluctuation (RMSF) and hydrogen bond occupancy. Findings from 

this study revealed that (1) hydrophobic packing contributes significantly to binding free 

energy, (2) Ile136 and Leu60 exhibited high hydrogen-bond occupancy in XY018-ROR-γ and 

HC9-ROR-γ respectively, (3) XY018-ROR-γ displayed a relatively high loop region residue 

fluctuation compared to HC9-ROR-γ, (4) electrostatic interactions are a potential binding force 

in XY018-ROR-γ complex compared to HC9-ROR-γ, (5) XY018-ROR-γ assumes a rigid 

conformation which is highlighted by a decrease in residual fluctuation, (6) XY018 could 

potentially induce pseudoporphyria, nephritis, and interstitial nephritis but potentially safe in 

mailto:soliman@ukzn.ac.za
http://soliman.ukzn.ac.za/
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renal failure. This study could serve as a base line for the design of new potential ROR-γ 

inhibitors.  

Keywords: ROR-γ, Cancer, PCA, Binding free energy and MD. 

1 Introduction 

Nuclear receptors (NR) also known as nuclear hormone receptors,1 are ligand based 

transcription factors that primarily act as a mediator in hormone transcriptional responses.2 It 

directs the activities of distinct target genes by recruiting the host regulatory proteins.2 

Receptors of androgen, oestrogens, glucocorticoid, vitamin D, progesterone, thyroid and 

retinoic acid related orphan receptor are all forms of nuclear receptors.1 They are characterised 

by DNA- binding domains (DBD) and ligand binding domain (LBD).3 These receptors play a 

vital role in the array of biological processes such as reproduction, cell differentiation, 

proliferation and homeostasis, thereby resulting in inflammatory diseases and tumours.1  

Recent studies revealed that a deadly form of prostate cancer known as metastatic castration-

resistant prostate cancer (mCRPC) is linked to retinoic-acid receptor-related orphan receptor 

gamma (ROR-γ).4 This receptor drives androgen receptor expression by recruiting nuclear 

receptor coactivator 1 and 3 (SRC-1 and SRC-3) to an ROR response element (RORE) to 

stimulate androgen receptor (AR) gene transcription.4 In a related development, a subtype of 

nuclear receptor, retinoic acid receptor-related gamma-t (ROR-γt) controls the inflammatory 

activities of T-helper 17 (Th17) cells,1 and its expression is adequate enough to trigger 

transcriptional activation of a ROR-γt reporter.1 The Th17 modulate immune responses, 

inflammatory and tumours by associating with CD4 cells (CD4+ T helper cells) through the 

secretion of certain cytokines IL-17A and IL-17F,5 hence ROR-γt is important for Th17 cell 

differentiation in response to cytokines.6 

However, ROR-γ varies from other NR such as ROR-α and ROR-β with a specific mode of 

expression in the tissues and variable physiological activities. T cells express ROR-β transcript 

variant by using a unique promoter which yields an isoform referred to as ROR-γt with 

structural variation from ROR-γ in its N-terminus.4 Thus, ROR-γ is distinguished from other 

NR for its unique structural features and physiological functions. Its ability to drive the 

expression of androgen receptor in castration-resistant prostate cancer (CRPC) represents a 

milestone in the search for a therapeutic target in CRPC.4  
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In recognition of the role of ROR-γ in prostate cancer, recent studies examined the relationship 

between ROR-γ and prostate cancer.4 Results from immunoblotting analysis of ROR-γ protein 

in cancer and noncancerous cell lines revealed that appreciable level of inhibition of growth of 

androgen-sensitive human prostate adenocarcinoma cells (LNcap) and their CRPC-derivatives 

C4-2B cells was achieved when ROR-γ was knocked down by different RORC siRNAs.4 Such 

a high level of growth inhibition was observed in androgen-sensitive and CRPC model,4  as the 

ROR-γ is knocked down there is resultant induction of apoptosis, which is marked by activation 

of caspase-3 and caspase-7 and the breakdown of poly (ADP-ribose) polymerase 1(PARP1), 

resulting into reduced expression of the protein relevant to oncogenesis, proliferation and 

survival.4 Most recent studies continued to place ROR-γ as orphan because of unidentifiable 

ligand (inhibitor) suitable for its binding site.7 A most recent study identified three different 

inhibitors of ROR-γ.4 These inhibitors were labelled as XY018, SR2211 and XY011 based on 

their structural differences and effect on the cell line.4 In this regard, the first two inhibitors 

demonstrated sufficient level of suppression on the expression of important proliferation and 

survival proteins.4  

In a related development, ROR-γ was targeted with the same antagonist XY018, SR2211 and 

XY011 which effectively subdue the messenger RNA (mRNA) and protein expression of 

complete AR dimension.4 This results in inhibition of androgen receptor (AR) variants, 

including AR-V7, C4-2B and VCap cells4 (cancer cell line). In addition, it was noted that the 

inhibition of AR and its variant is dose-dependent at the level of mRNA and protein4. To assess 

the effect of ROR-γ on AR, the C4-2B cells were treated with 5 µM of SR2211 for 24hrs,4 and 

the results revealed a partial inhibition of AR expression.4 This is an indication that SR2211 is 

not very effective in the suppression of AR expression. A study on ROR-γ antagonist in mice 

revealed that there is sufficient level of inhibition in the growth of AR-positive xenograft 

tumours including those with AR gene amplification and high-level AR variants,4 implying 

that targeting of ROR-γ would form the basis for exploring its clinical importance in prostate 

cancer.4 It is also interesting to note that the expression of AR and its variant is strongly 

subdued when ROR-γ is inhibited,  and consequently elimination of AR genome binding.4 

In all of these studies, the structural properties of retinoic acid receptor-related orphan receptor 

gamma in complex with XY018 still remains elusive. None of these studies demonstrate the 

conformational features and ligand binding of ROR-γ with its inhibitor such as XY018. Thus 

the need for the in-depth conformational analysis of XY018-ROR-γ complex is paramount to 
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the understanding of the role XY018 as an inhibitor in metastatic castration-resistant prostate 

cancer (mCRPC). 

The mCRPC is a global phenomenon8 and source of concern because even in the presence of 

the most effective anti-androgen drugs (AR-pathway targeted therapy)9 there is evidence of 

disease progression in some patient.9 These drugs are becoming completely ineffective in the 

treatment of mCRPC10 and may not form primary agent in the future treatment, should a 

scourge of mCRPC emerge in the absence of known inhibitors to ROR-γ. Previous studies have 

attributed the absence of good clinical outcome to some anti-androgens to lack of 

understanding of the role ROR-γ in CRPC.4 An attempt was made in a study to elucidate the 

complex structure of ROR-γ with natural ligand (hydroxycholesterol),7 whereby, the binding 

domain of the natural ligand and the role of pocket residues in ligand binding7 was validated. 

Hydroxycholesterols, the derivatives of cholesterol, are endogenous ligands that have high 

affinity for RORα.7 They actively promote coactivator recruitment by ROR-γ and are said to 

be agonists of the same receptor.7 They promote ROR-γ – Coactivator interactions via a 

conserved charge clamp7 and are known to be potent ROR-γ agonists.7 Similarly, 

hydroxycholesterols modulate RORγ-dependent biological processes.7 This observation has 

attracted a lot of interest in the quest to identify suitable inhibitors for orphan receptor.  

Therefore, a good understanding of conformation features and ligand binding landscape of 

ROR-γ is crucial to the development of potential and effective inhibitors of ROR-γ. 

Attempts to elucidate the molecular basis of ROR-γ have been previously carried out.1,4,7,11 

However, findings from such studies suggest that for a good understanding of the dynamics of 

ROR-γ in the presence of XY018, a long time scale molecular dynamics (MD) simulations of 

the XY018-ROR-γ complex are required to provide an atomistic insight to conformational 

features and ligand-binding landscape of this complex.12 Figure 1 represent structure of ROR-

γ inhibitors investigated experimentally and hydroxycholesterol. 
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Figure 1. 2D structures of experimental ROR-γ inhibitors and natural ligand (XY018, XY011, 

SR2211 and HC9). 

Numerous post-dynamics techniques have been used to provide molecular understanding of 

molecular dynamics. The principal component analysis (PCA), also known as essential 

dynamics analysis, is one of the most popular post-dynamics techniques13 that is widely used 

to understand the dynamics of biological systems.13 Principal component analysis eliminates a 

wide-range of translational and rotational motions in MD trajectory and correlated motions in 

atomic simulations of proteins.13,14 It is an important technique that defines the atomic 

displacement in a collective manner,15,16 it can detect major conformational dynamics between 

the structures15 and has been used in many studies to determine the difference in motion of 

protein complexes of different compounds. In this study, we aim to provide a better 

understanding of conformational features and ligand binding landscape of ROR-γ in complex 

with XY018 and contributing to the value of the experimental work that has been previously 

conducted. To achieve this, MD simulations of ROR-γ in complex with a natural ligand 

(Hydroxycholesterol) and ROR-γ in complex with XY018 were performed to further inspect 

the effect of XY018 binding on the dynamics of ROR-γ. To prepare for the process of MD 

simulations, hydroxycholesterol was first docked into ROR-γ. Three other known inhibitors 
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(XY018, SR2211 and XY011) (see Figure 1) were also docked into ROR-γ and the inhibitor 

with the best docking score was used for MD simulation. A 100ns MD simulations were 

conducted, followed by binding free energy calculations and PCA to understand the effect of 

XY018 binding to the dynamic state of the subject protein.17 Such tools are known to enhance 

the process of drug discovery.18 Herein, conformational and structural properties of ROR-γ in 

complex with XY018 are demonstrated. Such properties may form the basis for which other 

therapeutics targeting the ROR-γ could be developed. Figure 2 shows a complex of ROR-γ 

and hydroxycholesterol (HC9).  

 

Figure 2. 3D structure of ROR-γ showing the binding position XY018 and hydroxycholesterol studied 

in this work. 

1  Computational methods  

1.1  System preparation and molecular docking 

The steepest descent method and MMFF94 force field in Avogadro19 software were used to 

optimize XY018, SR2211 and XY011 for energy minimization. Hydrogen atoms were deleted 

using UCSF chimera,20 in preparation for docking. The X-ray crystal structure of ROR-γ in 

complex with hydroxycholesterol was obtained from protein data bank (PDB) with code 

(3L0J),7 and prepared in UCSF chimera.20 Water molecules were deleted, hydroxycholesterol 

was separated from the protein structure, with addition of hydrogen atoms to the protein. 

Figure 3 shows the workflow adopted in this study.  
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Figure 3. Schematic representation of MD workflow used in the current study. 

1.2   Molecular docking 

For docking calculations, AutoDock Vina was used.21 Gasteiger partial charges21 were 

allocated during docking. AutoDock Graphical user interface provided by MGL tools was used 

to outline the AutoDock atom types.22 The grid box was determined with grid parameters being 

x = 30 Å, y = 36 Å and z = 36 Å for the dimension while x = -23.546 Å, y = -4.134 Å and z = 

-24.05 Å for the centre grid and exhaustiveness =8, covering the entire residence of 

hydroxycholesterol which is at the active site of the receptor7. The Lamarckian genetic 

algorithm23 was used to generate docked conformations in accordance with their docking score 

(DS) in a descending order. 

1.3   System preparation for MD 

The docked complex of XY018-ROR-γ and HC9-ROR-γ were used for simulations in this 

study. These complexes were visualised using UCSF chimera,20 ligand and receptor were 

modified with aid of UCSF chimera20 and Avogadro19 software.  
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1.4   Molecular dynamics simulations 

Simulations of XY018-ROR-γ and HC9-ROR-γ system were performed using graphics 

processor unit (GPU) version of Particle Mesh Ewald Molecular Dynamics (PMEMD) package 

with Sander module of Amber14.24,25 The Amber force field FF12SB26, 27 was applied to 

describe the protein.24 The ligand parameters were set using Gasteiger charges in Avogadro,19 

and Antechamber module with the aid of GAFF (generalised Amber force field)28  The LEaP 

module implemented in Amber1424 was used to add hydrogen atoms to the protein and to add 

counter ions for system neutralization.24 Each system is enclosed in the TIP3P water box29 with 

the protein atoms located 10 Å between the protein surface and the box boundary. The cubic 

periodic boundary conditions were implemented in all the systems. Long-range electrostatic 

interactions were treated with particle-mesh Ewald method30 with a nonbonding cut-off 

distance of 12 Å. Two minimization steps were adopted, partial minimization and full 

minimization. The initial energy minimization step of the systems were carried out with a 

restraint potential of 500 kcal mol-1 Å-2 applied to the solute, for 1000 steps. Unrestrained 

conjugate gradient minimization for 1000 steps was conducted for the entire system, with the 

aid of SANDER module of Amber 14 program.  A canonical ensemble (NVT) MD simulations 

were performed for 50 ps and the system was gradually heated from 0 to 300 K, with harmonic 

restraints of 5 kcal mol-1 Å-2 for solute atoms with the aid of Langevin thermostat31 with a 1ps 

random collision frequency. The systems were equilibrated at 300 K with a 2 fs time scale in 

NPT ensemble for 500 ps without any restraint. The Berendsen barostat32 was used to maintain 

the pressure at 1 bar. The SHAKE33 algorithm was used to constrain the bonds of hydrogen 

atoms in the system. In the absence of restraints, a production run of 100 ns MD was conducted 

in an isothermal-isobaric (NPT) ensemble using a Berendsen barostat at a pressure of 1 bar and 

a 2 ps pressure coupling constant. For every 1ps time interval, the coordinates were saved and 

the trajectories were analysed. Post-MD analysis performed include root mean square 

fluctuation (RMSF), root mean square deviation (RMSD), the radius of gyration (RoG), 

hydrogen-bond formation and principal component analysis (PCA) using CPPTRAJ modules 

in Amber 14, as well as ligand-residue interaction profile. Visualization of trajectories was 

conducted in Chimera.20 The results were analysed and plots were generated using Origin34 

and Bio3D35 software.   
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2  Post-dynamic analysis 

There are several methods applied in analysing protein dynamics, depending on the desired 

information needed to describe changes that occur within the structure of the protein during 

simulations.  

2.1   Thermodynamic calculations 

The binding free energy calculation is an important end point method that gives detailed 

information on the interaction between the ligand and protein.36 It provides insight into 

mechanism of binding, including both enthalpic and enthropic contributions to the molecular 

recognition.37 Molecular Mechanics/Generalized-Born Surface Area (MM/GBSA) methods36 

are popular approaches to estimate the free energy of the binding of small ligands to biological 

macromolecules.36 They are based on MD simulations of receptor-ligand complex and are 

therefore intermediate in both accuracy and computational effort between the empirical scoring 

and alchemical perturbation method.36 They have been successfully applied to a large number 

of systems,36 thus can be used in the present study. For a 100ns trajectory, 1000 snapshots were 

considered during the calculation of binding free energy, the following set of equations 

describes the binding free energy calculation: 

∆Gbind = Gcomplex – Greceptor - Gligand     (1) 

∆Gbind = Egas + Gsol – TS       (2) 

Egas = Eint + EvdW + Eele       (3) 

Gsol = GGB +GSA       (4) 

From the equation above, Egas is the energy of the gas phase, Eint represents internal energy, 

Eele represents coulomb while EvdW are the van der Waals energies. Egas is estimated directly 

from the ff12SB26 force field. Gsol which is the salvation free energy can be broken down to 

polar and non-polar forms contribution. The contribution of polar solvation (GGB) is assessed 

by resolving GGB equation and non-polar solvation (GSA) is determined from the solvent 

accessible surface area. This can be estimated from water probe radius of 1.4 Å with 

temperature (T) and total solute entropy (S). The MM/GBSA binding free energy method in 

Amber 14 was used to calculate the contribution of each residue to the binding free energy 

between the XY018, HC9 and the receptor (ROR-γ). In addition, the interaction energy 

decomposition analysis per residue was also computed using the same method. 
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2.2   Principal component analysis 

The essential dynamics analysis38 also known as principal component analysis (PCA) is an 

important method that describes the dynamic nature of proteins. The atomic displacement and 

conformational changes of a protein can be defined by PCA by extracting different modes of 

the conformation of the protein complex during dynamic simulations. The eigenvectors (the 

direction of motion) and the eigenvalues (extent of motion) for the biological system can also 

be determined using PCA.39  In this study, the trajectories of the complexes from 100 ns MD 

were stripped of the solvent molecules and the ions using the CPPTRAJ module in Amber 14.24 

This was conducted prior to MD trajectory processing for PCA. PCA was performed on C-α 

atoms on 1000 snapshots at 100 ps time interval using in-house script. The first two principal 

components (PC1 and PC2) were computed and a 2X 2 covariance matrices were generated 

using Cartesian coordinates of Cα atoms. PC1 and PC2 correspond to first two eigenvectors of 

a covariant matrices. Origin software34 was used to construct PCA plots. 

3 Result and discussion  

3.1  Docking and validation 

Docking of a ligand to the protein active site is one of the commonly used methods in molecular 

modelling to determine the preferred orientation of one molecule (ligand) to another (receptor) 

when bound together. However, in some instances results from docking studies could be 

unreliable. This is because even the best-docked conformation may drift away from the active 

site of the protein within a short time interval of MD simulations. Therefore, to improve the 

reliability of docking results, we embarked on MD simulations to guarantee that the docked 

complexes remain stable in the active site of the protein within a specific time scale. In line 

with this, four ligands (SR2211, XY018, XY011 and hydroxycholesterol) were docked into 

ROR-γ (PDB 3L0J)7 the following docking scores were recorded:  
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Table 1. Docking scores of the compounds on ROR-γ 

Serial Number Compound Docking scores 

1 HC9 -11.1 

2 XY018 -10.7 

3 SR2211 -10.1 

4 XY011 -9.9 

 

 

Figure 4. A 3D depiction of docked XY018-RORγ and HC9-RORγ superimposed to validate docking. 

A docked complex of ROR-γ with XY018 and ROR-γ with HC9 were superimposed (Figure 

4) to validate the orientation of the docked ligands on the active site of the receptor. The docked 

complexes were further subjected to 100 ns MD simulations. It is important to note that due to 

unavailability of  the XY018-ROR-γ complex in the protein data bank (PDB), we used crystal 

structure of ROR-γ complexed with a natural ligand (hydroxycholesterol) with PDB code 

3L0J.7 

3.2   System stability and MD simulations 

Prior to MD trajectory analysis, root mean square deviations (RMSD) and potential energy 

fluctuations were monitored throughout the 100 ns of MD simulations. This was to guarantee 

the systems stability through-out a simulation. RMSD was calculated to assess the stability and 

convergence of the respective systems and the results are presented Figure 5. Systems 

stabilisation and convergence with fluctuations between 0-10000 ps, 15000-20000 ps and 

40000-60000 ps (maximum RSMD fluctuation of 1.9 Å) were observed. However, after 

approximately 60000 ps, the systems converged and fluctuations rested below 1.6 Å for both 

systems throughout the simulation. The average RMSD of XY018-RORγ system is 1.08 Å 
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while HC9-RORγ has an average RMSD of 1.00 Å. These account for system stability since a 

standard parameter defining a stable system is an average RMSD of 2 Angstrom and below.40 

These results show that although slightly, RORγ-XY018 exhibit more flexibility and deviation 

compared to RORγ-HC9 within the fluctuation regions and claims stability after 60000 ps 

during MD simulations. 

 

Figure 5. A comparative RMSD plot of XY018-RORγ (red) and HC9-RORγ (black) systems. 

3.3    Post MD analysis 

3.3.1 Root mean square fluctuation (RMSF) 

A protein is made up of a specific sequence of amino acids41 that allow it to assume a particular 

conformation.41 Changes to the protein conformation occur when there is chemical action or 

mechanical events.41 Therefore, direct interactions with the protein active site can alter its 

function. More specifically, the conformational changes that occur as a result of ligand-induced 

motion during ligand binding.42 Understanding of ligand-induced conformational changes in 

the protein is critical to structure-based rational drug design.43 RMSF is a measure of average 

atomic mobility of backbone atoms (N, Cα and C) during MD simulation. To understand and 

explore the structural dynamics (fluctuations) that take place upon the ligand binding, RMSF 

of both complexes (XY018-RORγ and HC9-RORγ) was calculated. 
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Figure 6. A comparative RMSF plots of RORγ-XY018 (red) and RORγ-HC9 (black) systems 

The core of the protein appears to be more rigid compared to the loops (solvent exposed) as 

shown by RMSF fluctuation in Figure 6. Comparatively, the average RMSF value for the two 

systems does not show significant differences. A lower average RMSF value of 0.92 Å for 

HC9-RORγ compared to 0.98 Å for XY018-RORγ. This indicate a firmer structure and 

decreased capacity to fluctuate in HC9-RORγ system and a relatively increased capacity to 

fluctuate in XY018-RORγ system. The highest residue fluctuation is observed in XY018-

RORγ system, particularly in the loop region which comprises residues Asn34, Ile35, Ser37, 

Lys47 and Ser48 with an RMSF value of 2.5 Å. This is could be due to flexibility of loops that 

open and accommodate the ligand. The presence of the ligand in the binding region and 

formation of ligand–residue interaction stabilizes the complex. Subsequent to complex 

stability, a decrease in flexibility and capacity of hydrophobic active site residues (Gln22, 

Leu23, His59, Leu60, Glu62, Phe113, Phe114, Glu115, Phe124, Ile136) in a XY018-RORγ 

system to fluctuate is observed. The binding of XY018 is likely to be responsible for the 

biochemical changes in the receptor (ROR-γ) 4 owing to the conformational dynamics induced 

on residues beneath the active site, relative to the binding of the natural ligand (HC9) where 

the fluctuation is minimal. However, between Gln22, Leu23, Cys56, His59, Glu62 and Gln65, 

there is notable rigidity. This may be due to the presence of a phenyl group that is interacting 
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with these residues. This further explains the role of the phenyl group in the inhibitory activity 

of XY018.  

Similarly, residues lying between 99 and 125 (Val99, Met101 and Phe124)  with an RMSF 

value of 0.75 Å do not exhibit noticeable fluctuation, the reason being the presence fluoride 

groups which contributed to the conformational changes that accompany the binding of XY018 

to the ROR-γ. 

3.3.2 Radius of gyration (RoG)     

The radius of gyration is the distribution of component of an object around the axis,44 it has 

been used to gain an insight into molecular stability in the biological system during MD 

simulations.    

 

Figure 7. RoG plot of Cα atoms of the XY018-RORγ (red) and HC9-RORγ (black). 

In this study, RoG of XY018-RORγ and HC9-RORγ systems were examined. The XY018-

RORγ system shows a lower average RoG value of 18.73 Å compared to 18.75 Å of HC9-ROR 

system Figure 7. This observation can be used to draw a correlation between the two systems 

with relatively no significant difference in their RoG. However, slight increase in RoG is 

observed between 50000-60000 ps and 90000-95000 ps of MD simulation for HC9-RORγ, 

which reflects changes associated with the protein expansion within this period, thereby 

creating windows of opportunity for the solvent molecules to infiltrate the hydrophobic sites. 

This results in elevated hydrophobicity of the protein surface thus allowing the ease of residue 

fluctuation around these sites.  



63 
 

3.3.3 Binding free energy and energy decomposition analysis  

Molecular Mechanics/Generalized-Born Surface Area (MM/GBSA) methods36 is a popular 

approach use to estimate the free energy of the binding of small ligands to biological 

macromolecules.36 To assess the various energy contribution to the binding of XY018 and HC9 

to RORγ, post-dynamic calculations of binding free energy using MM/GBSA method were 

performed for the studied systems. 

Table 2. MM/GBSA-based binding free energy profile of RORγ-HC9 and RORγ-XY018. 

Complex ∆Gbind ∆Eele ∆EvdW ∆Ggas ∆Gsol 

HC9-RORγ -57.21±0.32 -12.02±0.32 -59.81±0.26 -71.84±0.36 14.63±0.19 

XY018-RORγ -56.66±0.45 -43.98±1.30 -54.41±0.51 -98.40±1.02 41.73±1.00 

Notes: ΔEele, electrostatic energy; ΔEvdW, van der Waals energy; Gbinding, predicted total binding free energy; sol, 

solvation energy. 

Energy decomposition analysis (Table 2) revealed that the estimated binding free energy is 

higher in HC9-RORγ (-57.2 kcal/mol) compared to XY018-RORγ (-56.66 kcal/mol). The 

difference in binding affinity (-0.55 kcal/mol) between the two systems is not significant 

enough to affect drug binding rather shows that HC9 could be better binded to receptor than 

the drug (XY018). However, the van der Waals contribution to the total binding free energy is 

higher in HC9-RORγ (-59.81 kcal/mol) with a lower electrostatic energy contribution (-12.02 

kcal/mol). The electrostatic energy contribution (-43.98 kcal/mol) from XY018-RORγ to the 

total binding free energy is more than threefold the total electrostatic energy (-12.02 kcal/mol) 

contribution from HC9-RORγ to the total binding free energy of the system. Based on these 

results, electrostatic interactions are the potentially important binding forces between XY018 

and ROR-γ. Hydrophobic packing contributes significantly to binding free energy owing to 

large amount of aromatic and hydrophobic rings within the conformational space, as well as 

set of hydrophobic residues around the binding pocket. This is evident in the binding free 

energy contribution, where vdW contribution is relatively higher than the electrostatic 

contribution as shown in Table 2. 

3.3.4 Per-residue energy decomposition analysis 

In order to assess the energy contribution of individual active site residues to the total binding 

free energy, and to provide a more detailed understanding of the impact of protein dynamics 

on the degree of different binding forces. The binding free energy was decomposed into the 

unit contributions of each active site residue of XY018-RORγ and HC9-RORγ. Table 3 shows 

that the major contributors in the XY018-RORγ system were His59, Gln22, Phe114, Phe113, 
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Leu60 and Leu23 with energy contributions of -2.195, -2.009, -1.959, -1.907, -1.886 and -1.088 

kcal/mol respectively. While in HC9-RORγ system the major contributors were Leu60, 

Met101, Phe124, Ile133, Ala63 and Cys56 with energy contribution of -2.810, -2.244, -1.894, 

-1.364, -1.353 and -1.264 kcal/mol respectively. There is a variation in per residue energy 

contribution of the active site residues from the two system. The active site residues in XY018-

RORγ system, exhibit relatively lower individual energy contribution to the total binding free 

energy compared to HC9-RORγ. This may be attributed to the steric effect of XY018 and 

hydrophobic active site residues. In XY018-RORγ system it was observed that residue Glu62 

contributes more to the electrostatic interaction (-5.504 kcal/mol) and has the least van der 

Waals energy (-0.404 kcal/mol). Similarly, residue Gln22 and Glu115 were also associated 

with low van der Waal energy (-0.929 and -0.702 kcal/mol respectively) and relatively high 

electrostatic contribution (-3.008 and -1.721 kcal/mol respectively) to the total binding free 

energy (Figure 8 and 9). The electrostatic contribution is associated with the formation of a 

hydrogen bond between a nitrogen atom of Glu115 and oxygen atom XY018 (Figure 12). 

However, in the case of residue Ile136, Phe124 and Leu23 electrostatic contributions of -0.135, 

-0.063 and -0.059 kcal/mol were observed respectively. These residues contribute the least 

electrostatic energy in the XY018-RORγ system with relatively low van der Waal energy 

contribution (-0.635, -0.906 and -1.019 kcal/mol). 
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Table 3. Decomposition of the relative binding free energies on a per-residue basis for XY018-ROR-γ 

and HC9-ROR-γ 

Residues ∆Evdw ∆ele ∆Gpolar ∆Gnon-polar ∆Gbinding 

XY018-RORγ 

Gln22 -0.929±0.616 -3.008±1.280 2.090±0.648 -0.163±0.040 -2.009±0.650 

Leu23 -1.019±0.392 -0.059±0.101 0.022±0.103 -0.150±0.62 -1.088±0.416 

His59 -2.602±0.651 -2.771±1.580 3.487±1.205 -0.308±0.052 -2.195±1.178 

Leu60 -1.818±0.348 -0.214±0.134 0.334±0.132 -0.187±0.043 -1.886±0.345 

Glu62 -0.404±0.816 -5.504±7.215 5.102±5.980 -0.097±0.051 -0.903±1.084 

Phe113 -1.144±0.461 -2.940±1.806 2.319±1.003 -0.142±0.037 -1.907±0.880 

Phe114 -1.677±0.408 -0.927±0.910 0.726±0.446 -0.081±0.051 -1.959±0.849 

Glu115 -0.702±0.440 -1.721±0.872 1.948±0.905 -0.095±0.073 -0.570±0.647 

Phe124 -0.906±0.316 0.063±0.142 0.136±0.128 -0.100±0.046 -0.808±0.325 

Ile136 -0.635±0.227 -0.135±0.122 0.145±0.138 -0.070±0.029 -0.695±0.240 

HC9-RORγ 

Trp53 -0.866±0.282 -0.083±0.040 0.786±0.187 -0.069±0.024 -0.233±0.226 

Cys56 -1.612±0.371 -0.184±0.080 0.652±0.177 -0.120±0.032 -1.264±0.315 

His59 -1.357±0.318 -0.090±0.113 0.846±0.492 -0.145±0.033 -0.747±0.407 

Leu60 -2.712±0.397 -0.015±0.269 0.234±0.056 -0.316±0.184 -2.810±0.316 

Ala63 -1.028±0.114 0.054±0.097 0.235±0.467 -0.143±0.074 -1.353±0.412 

Met94 -0.400±0.141 -0.037±0.023 0.128±0.064 -0.047±0.024 -0.357±0.140 

Val97 -1.164±0.134 -0.062±0.312 0.057±0.238 -0.097±0.012 -1.266±0.251 

Met101 -2.274±0.378 0.067±0.065 0.169±0.195 -0.204±0.031 -2.244±0.391 

Val112 -1.216±0.067 0.011±0.109 -0.346±0.231 -0.090±0.074 -1.641±0.431 

Phe114 -1.365±0.337 -0.004±0.039 0.645±0.172 -0.127±0.030 -0.842±0.303 

Phe124 -1.987±0.295 0.785±0.391 1.005±0.193 -0.127±0.021 -1.894±0.459 

Ile133 -1.235±0.292 -0.176±0.093 0.168±0.090 -0.120±0.029 -1.364±0.314 

His215 -0.743±0.206 0.029±0.044 0.722±0.346 -0.075±0.027 -0.068±0.373 

Notes: ΔEele, electrostatic energy (kcal/mol); ΔEvdW, van der Waals energy (kcal/mol); ΔGpolar, polar solvation 

energy (kcal/mol); ΔGnonpolar, nonpolar solvation energy (kcal/mol); ΔGbinding (kcal/mol), total binding free energy 

From this analysis, it can deduced that electrostatic energy is pivotal for the binding of residues 

in XY018-ROR-γ system compared to HC9- ROR-γ. The result from this analysis will provide 

a guide to the design of potential ROR-γ inhibitors keeping in mind the electrostatic 

contribution of an individual residue to the total binding free energy. 
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Figure 8. The per-residue decomposition analysis graph of XY018-RORγ. 

 

Figure 9. The per-residue decomposition analysis graph of HC9-RORγ. 

3.3.5 Principal component analysis (PCA) 

A key feature which defines biological function is protein conformation.45 PCA is one of the 

principal tools used in determining the behaviour of each atom during a simulation.46 Here we 

adopt a clustering method of PC because of its ability to describe different conformational 

states sampled during a simulation by grouping molecular structure into a subset based on their 
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conformational similarities.17 This method of PCA was used to assess the flexibility of ROR-γ 

during MD simulations. In order to assess conformational motions of XY018-ROR-γ and HC9-

ROR-γ. The two systems were projected along the first two principal components or 

eigenvectors (PC1 vs PC2) direction. The percentage variability or total mean square 

displacement of atom’s positional fluctuation captured in each dimension is characterised by 

their corresponding eigenvalue.47. Figure 10 shows a plot of XY018-ROR-γ and HC9-ROR-γ 

waves of conformation in important subspace along the three principal components. 

 
Figure 10. PCA projection of C-α atoms motion constructed by plotting the first two principal 

components (PC1 and PC2) in conformational space. 

A distinct separation of motion was observed with XY018-ROR-γ system displaying a higher 

correlated motions along PC1 and PC2 compared to HC9-ROR-γ system which displays much 

more lower correlated motions along PC1 and PC2. It is obvious from the PC plot that XY018-

ROR-γ system appears to be more compacted, meaning that the binding of XY018 to the 

residues in the active site of the receptor induces residue dynamics that results into 

conformational rigidity, thereby enhancing ligand residue interaction.  
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3.3.6 Hydrogen bond formation between amino acid residues 

Hydrogen (H-bonds) are indispensable in nature and play important role in biological system 

and maintenance of the protein structural integrity,48 protein-ligand interaction and catalysis.48 

Therefore, the formation of hydrogen bond between amino acid residues is key to the 

monitoring of protein conformation. H-bonding is known to be a facilitator of protein-ligand 

binding,49 thus we investigate hydrogen bond formation during the course of the simulation of 

XY018-ROR-γ and HC9-ROR-γ systems. Figure 11 shows hydrogen bond formation over 

time during simulation of respective systems. It was observed that more hydrogen bonds are 

formed in XY018-ROR-γ system compared to HC9-ROR-γ system. Reduction in hydrogen 

bond formation leads to structural imbalances and conformational dynamics which eventually 

affects drug binding.48 

 

Figure 11. Number of hydrogen bond formation during a simulation over time between XY018- 

ROR-γ and HC9- ROR-γ. 

3.3.7 Ligand-Residue Interaction Network Profile 

Interaction of active site residues with the XY018 was examined to gain an insight into ligand-

residue interaction. It was observed that the ROR-γ orientation formed a direct hydrogen bond 

with active site residue Glu115 and Gln22, Figure 12 (A). The interactive OH group XY018 

that formed a hydrogen bond with Glu115 is essential for the binding of XY018 to ROR-γ. The 

phenyl group of XY018 interacts with glutamine (Gln22) by accepting a hydrogen through a 

hydrogen-bond formation. The fluoride atom also interacts with Ile133 as observed in Figure 
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12 (C). This explained the significance of these residues to ligand-receptor binding. Essentially, 

two binding pockets (P) were identified from the fully-minimised XY018-ROR-γ complex, P1 

and P2 as observed in Figure 12 (B). The residues Glu62, Gln22, Leu23 and Gln115 

accommodates P1, while residues Ile133, Leu127, Met93 and Cys56 accommodates P2. 

Figure 13 shows the hydrophobic active site residues and hydrogen bond interaction between 

ligand and residues. 

 

Figure 12. 2D structure of XY018 showing Hydrogen Bond formation with GLN 22 and GLU 115. 

(B) The binding pocket of ROR-γ from the fully-Minimized complex. (C) The interaction of Fluoride 

atom of XY018 with Ile133. (D) A network of ligand-residue interaction 
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Figure 13. 2D residue-ligand interactions network from fully-minimised complex of XY018-ROR-γ 

and HC9-ROR-γ using ligplot analysis. 
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3.3.8 Hydrogen-Bond distance and occupancy 

Table 4. Hydrogen Bond Occupancy of the interacting residues of XY018-ROR-γ and HC9-ROR-γ 

H-bond 

acceptor 

H-bond donor Number of 

Frames 

Occupancy 

(%) 

Average 

distance (Å) 

Average angle 

(degree) 

RORγ-XY018 

Leu60@O Ile64@H 866626 86 2.83 160 

Leu23@O Arg103@HH12 79963 79 2.82 155 

Ile136@O Ser140@HG 89628 89 2.73 162 

Gln22@OE1 XY018@H50 71927 71 2.75 154 

Phe113@O XY018@H40 49668 49 2.85 156 

Phe114@O His59@HE2 42527 42 2.83 156 

His59@O Ala63@H 29107 29 2.90 158 

Glu115@0E1 Arg55@HE 25286 25 2.84 160 

Phe124@O Gly128@H 18875 18 2.85 150 

RORγ-HC9 

Leu60@O Ile64@H 83129 83 2.84 160 

His215@NE2 Tyr238@HH 1 12 2.94 135 

Ile133@O Phe137@H 63886 63 2.88 162 

Trp53@O Ala57@H 54311 54 2.87 158 

Cys56@O Leu60@H 69650 69 2.87 161 

Gln22@OE1 HC9@H01 64067 64 2.74 162 

Met94@O Leu98@H 52645 52 2.88 157 

Leu127@O Trp53@HE1 36207 36 2.86 155 

Phe124@O Leu127@H 17631 17 2.90 158 

Note: No = Number of frames; Å = Angstrom; % = Percentage. 

To investigate the stability of XY018-ROR-γ and HC9-ROR-γ systems, hydrogen bond 

distance and occupancy of the active site residues in the respective systems were monitored 

throughout the course of simulations (Table 4). In XY018-ROR-γ system, His59 exhibits 

maximum H-bond distance (2.90 Å) while Ile136 exhibit the minimum H-bond distance (2.73 

Å) with highest H-bond occupancy of 89%. Similarly, Leu60 has the highest H-bond 

occupancy of 80%, while Gln22 has the least H-bond distance of 2.74 Å in HC9-ROR-γ 

system. Interestingly, His215 with the highest H-bond distance of 2.94 Å in HC9- ROR-γ 

system show only 12% H-bond occupancy. Variation in H-bond occupancy and H-bond 

distance was observed in the respective systems with XY018-ROR-γ having the highest H-

bond occupancy compared to HC9-ROR-γ. Therefore, the findings from previous experimental 
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studies4 that form basis of our study support the quality of simulations conducted on the two 

systems.  

3.3.9 Predicted toxicity and biological activity  

Chemical compounds may interacts with biological targets different from experimentally 

recognised targets, such compounds are said to be promiscuous in nature. Compound 

promiscuity depicts the molecular basis of the pharmacological effects,50 it is important to have 

a detailed assessment of these compounds to establish the extent of promiscuity among 

compounds at different level of drug research,50 thus, predicting toxicity and biological activity 

of the compounds provides a detailed understanding of other properties of the drug that were 

probably not anticipated. 

Toxicity and biological activity of compounds can be predicted using computer programme. It 

has been shown that the degree of reliability of these programmes varies from one to 

another.51,52 In this study, we use “prediction of activity spectra for biologically active 

substance” (PASS) 51, 52 to predict possible toxicity and other biological activities that may be 

inherent on the XY018. The PASS predicts compound toxicity and biological profile with mean 

accuracy of prediction of about 89% -90%.51, 52 Table 5 shows the predicted toxicity and 

biological activity of XY018. 
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Table 5. Predicted toxicity and biological activity of XY018 using PASS 

Pa Pi Activity 

Predicted toxicity 

0.794 0.004 Pseudoporphyria 

0.649 0.015 Nephritis 

0.635 0.009 Interstitial nephritis 

0.558 0.045 Coma 

0.512 0.056 Allergic dermatitis 

0.508 0.053 Keratopathy 

0.420 0.004 Papillary necrosis 

0.413 0.140 Consciousness alteration 

0.348 0.117 Respiratory failure 

0.370 0.119 Anaemia 

0.358 0.139 Euphoria 

0.314 0.154 Allergic contact dermatitis 

0.270 0.131 Spermicide 

0.303 0.156 Gastrointestinal haemorrhage 

0.303 0.156 Gastrointestinal disturbances 

0.284 0.192 Hepatotoxicity 

0.259 0.221 Drowsiness 

0.249 0.214 Nephrotoxic 

Predicted biological activity 

0.720 0.005 Atherosclerosis treatment 

0.542 0.051 Benzoate-CoA ligase inhibitor 

Note: Pa probability of compound being active, Pi probability of compound being inactive.    Pa ˃ 0.7 indicates 

probability of toxicity or biological activity, Pi ˂ 0.5 the compound is unlikely to exhibit toxicity or biological 

activity, 0.5 ˂ Pa ˂ 0.7 the compound is likely to exhibit toxicity or biological activity but the probability is less 

and Pa ˂ 0.5 the compound is unlikely to exhibit the activity on experiment. 

The result of predicted toxicity test showed that XY018 is likely to cause Pseudoporphyria, 

nephritis and interstitial nephritis, but less likely to cause conditions such as allergic dermatitis, 

keratopathy, papillary necrosis, respiratory failure, anaemia, euphoria and allergic contact 

dermatitis. The drug is potentially safe in hepatic and renal failure. It lacks any adverse effect 

on male reproductive organ (spermicide) and not likely to cause any gastrointestinal 

disturbances or haemorrhage, therefore can be formulated for oral intake. It lacks tendency to 

cause central nervous system effects such as drowsiness and consciousness alteration but may 

cause a coma if administered in higher doses. 

However, the predicted biological activity of XY018 showed that it is highly indicated in the 

treatment of atherosclerosis and could also serve as benzoate CoA ligase inhibitor. This is one 
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of the high point discovery of this study, as we suggest that further studies in this regard be 

expanded. 

4  Conclusion 

Since the implication of an infant receptor ROR-γ in the castrated resistant prostate cancer, 

there is a lack of understanding of conformational features of the protein. Herein different 

computational approaches aimed at providing an in-depth understanding of conformational 

features of ROR-γ and the influence of XY018 binding to the protein conformation were 

explored. These approaches include MD simulations, principal component analysis, radius of 

gyration, binding free energy calculations, hydrogen bond formation and ligand-residue 

interaction network profile. Findings from this study revealed that; the two systems are 

relatively stable throughout the period of simulations; hydrophobic packing contributes 

significantly to binding free energy owing to large amount of aromatic and hydrophobic rings 

within the active site residues; the energy decomposition analysis revealed that electrostatic 

interactions are the potentially important binding forces between XY018 and ROR-γ, while 

van der Waals contributions are more prominent in HC9-ROR-γ system; Ile136 and Leu60 

exhibited high hydrogen-bond occupancy in XY018-ROR-γ and HC9-ROR-γ respectively, 

therefore plays an important role in stabilizing the protein.  

Similarly, His59 gives a higher energy contribution to the total binding free energy in XY018-

ROR-γ while in HC9-ROR-γ, Leu60 contributed more to the total binding free energy. Analysis 

of principal components revealed that the binding of XY018 to ROR-γ may be responsible for 

structural rigidity and decrease in motion observed in the system compared to HC9-ROR-γ. 

The two system are closely correlated with relatively no significant difference in their RoG. 

There is a relatively high fluctuation of residues particularly at the loop region of a XY018- 

ROR-γ system compared to HC9-ROR-γ system as revealed by RMSF. It was also observed 

that interactive OH group of XY018 that formed a hydrogen bond with Glu115 is essential for 

the binding of XY018 to ROR-γ. The phenyl group of XY018 interacts with glutamine (Gln22) 

by accepting a hydrogen through a hydrogen-bond formation. Findings from estimated toxicity 

and biological testing suggest that XY018 is likely to induce pseudoporphyria, nephritis, and 

interstitial nephritis but potentially safe in renal failure. However, XY018 is potentially 

indicated in the treatment of atherosclerosis, one of the most important findings from this study. 

Based on the information revealed from our study, the gate to the rational design of potential 

inhibitors of ROR-γ is opened. We believed that some current methods such as structural and 
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pharmacophore based virtual screening could be used to explore the properties of known 

inhibitor (XY018) for the design of new potential inhibitors of ROR-γ. 
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Abstract 

UM-164, a potent Src/p38 inhibitor, is a promising lead compound for developing the first 

targeted therapeutic strategy against triple-negative breast cancer (TNBC). However, a lack of 

understanding of conformational features of UM-164 in complex with Src serves a challenge 

in the rational design of novel Src dual inhibitors. Herein, we provide first account of in-depth 

insight into conformational features of Src-UM-164 and the influence of UM-164 binding to 

the Src using different computational approaches. This involved molecular dynamics (MD) 

simulation, principal component analysis (PCA), thermodynamic calculations, dynamic cross-

correlation (DCCM) analysis and ligand-residue interaction network profile, as well as toxicity 

testing. Findings from this study revealed that: (1) the binding of UM-164 to Src induces a 

more stable and compact conformation on the protein structure; (2) UM-164 binding to Src 

induces highly correlated motions in the protein; (3) high fluctuation exhibited by the loops in 

Src-UM-164 system support the experimental evidence that UM-164 binds the DFG-out 

inactive conformation of Src; (4) a relatively high binding free energy estimated for the Src-

UM-164 system is affirmative of its experimental potency; (5) hydrophobic packing 

contributes significantly to the drug binding in Src-UM-164; (6) a relatively high H-bond 

formation in Src-UM-164 indicates enhanced drug-protein interaction; (7) UM-164 is 

relatively less toxic than Dasatinib, therefore, is potentially safer. The finding of this study can 

provide important insights for further design of novel Src inhibitors.  

mailto:soliman@ukzn.ac.za
http://soliman.ukzn.ac.za/
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1  Introduction 

Breast cancer remains among the most frequently diagnosed and life-threatening cancer in 

women,1 and third leading cause of cancer-associated death among women in the United State 

of America (US).1,2  Genetically, breast cancers (BCs) are heterogeneous3 with respect to their 

gene composition, gene expression, and phenotypes which eventually yield current 

classifications of 5 subtypes.3 The triple negative subtypes are more life threatening due to their 

potential to metastasize and a tendency of local reoccurrence.4 They are usually associated with 

the absence of oestrogen receptor (ER), progesterone receptor (PR) and human epidermal 

growth factor receptor-2 (ErbB2/HER-2).5 They are characterised by classical ductal histology, 

high grade, high mitotic and cell proliferations rates.5 The triple negative cancer (TNBC) is 

firmly associated with poor prognosis, poor disease free survival (PDFS) and cancer specific 

survival (CSS).5 The local reoccurrence is marked with increasing number of positive lymph 

nodes,5 this suggest the reason for high risk of reoccurrence in patients with TNBC in the first 

3 to 5 years after diagnosis.5 Study have shown that only a few therapeutic options and 

conventional chemotherapy may probably be the only effective treatment for patients after 

surgery.5 

However, other studies have shown that chemotherapeutic agents (neoadjuvant) such as 5- 

fluorouracil (5-FU), anthracycline, cyclophosphamide, taxanes and platinum compounds  used 

in the treatment of TNBC have a low success rate.6 This may partly be due to lack of acceptable 

predictive biomarkers,3 safety concerns and resistance to some of the compounds.6 Similarly, 

a study conducted to define the molecular basis of TNBC classified TNBC as ER, PR and 

HER-2. These molecular markers provide understanding of the potential targets in the course 

of therapy,7 while the prognostic markers such as HER1, ALDH1, LOXL2, Ki-67, SNCG and 

LDHB are important in providing prognostic information.7 This is, however, contrary to the 

initial belief that the major challenge in treatment of TNBC is a lack of validated molecular 

target in the tumour.8 

A study set to determine the influence of tissue inhibitor of metalloproteinases-1 (TIMP-1) on 

TNBC9 revealed that TIMP-1 is a biomarker indicative of poor prognosis in TNBC diseased 

individuals.9 TIMP-1 may provide attractive therapeutic intervention specifically for TNBC.9 

The relative disposition to TNBC biomarkers such as ER, PR and ErbB2/HER-2 have provided 

tremendous advances in the treatment of breast cancer in the last 3 decades,3 this is especially 
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true in patients whose tumour overexpressed ErbB2 and or hormone receptor.3 Most of the 

therapies targeted at TNBC are not effective3 because of lack of ER, PR and HER-2, however, 

efforts have been made to surmount these challenges in the last 3 decades, some of which have 

resulted in a drastic improvement in patient survival3. The relative heterogeneity nature of 

TNBC among breast cancers made it challenging for FDA-approved targeted therapies and 

cytotoxic agents remain the backbone of chemotherapy in TNBC.10 

The understanding of clonal evolution and heterogeneity of breast cancer3 revealed by previous 

clonal evolution study provide only limited information on the genomic diversity of tumours.11 

Burdened by these challenges, a recent study on clonal evolution used a whole genome and 

exome single cell sequencing approach11 to determine heterogeneity and evolution of breast 

cancer. The result from this study shows that triple negative breast cancer has an increased 

mutation rate compared to ER+ tumour cell which did not show any form of mutation.11 

Findings from this study challenged the belief of single pathway target in the treatment of breast 

cancer.3,11 To this extent, there is increasing interest in the inhibition of  multiple pathways 

given that TNBC is heterogeneous in nature.3  

A more recent study established a relationship between TNBCs and sensitivity to inhibition of 

c-Src (Src), in an attempt to identify predictive markers response to chemotherapy.3 In this 

study, a dual kinase inhibitor known as UM-164 was discovered and had profound activity 

against Src and p38 kinases.3 This inhibitor is said to be a promising lead compound for 

developing the first targeted therapeutic strategy against triple negative breast cancer (TNBC).3 

Src is the cellular homolog of the viral oncogene v-Src12 and an archetype member of a family 

of non-receptor tyrosine kinases that play important roles in a variety of signalling pathways 

that involve proliferation, differentiation, survival, motility, and angiogenesis.12 

Overexpression of Src plays an important role in oncogenic proliferation, migration, and 

invasion of TNBC cell lines.3 This claim is supported by molecular studies that continued to 

show that Src plays a significant role in clinically important pathways in breast cancer,12 such 

as steroid and peptide hormone pathway.12 On the basis of these reports, Src represents an 

attractive target in TNBC.13, 14 Although previous studies placed more emphasis on the use 

Dasatinib, Bosutinib and Saracatinib particularly as a combination therapy in the treatment of 

TNBC.14 These drugs act by binding the active conformation of the kinase, in addition, 

resistance to Dasatinib has emerged.15 Cumulatively, these factors placed other drugs 

(Dasatinib and Bosutinib) at the disadvantage over UM-164 (Src/p38 inhibitor) which act in a 
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specific inactive conformation (DFG-out). Structure of UM-164 and Dasatinib are presented 

in Figure 1. 

 

Figure 1. 2D structures of Dasatinib and experimental Src inhibitor (UM-164). 

Dasatinib is a potent Src kinase inhibitor,8 available as oral medication and can be used as a 

single agent in the treatment of TNBC 8 and other forms of cancer including leukaemia.16 Phase 

II clinical trial assessment of Dasatinib as a single agent in TNBC revealed a significant 

efficacy and safety in patients with advanced TNBC. Structurally, the addition of fluorinated 

benzene ring to UM-164 marked the major differences between the two, such differences have 

translated to improve efficacy and safety of the analogue (UM-164) against the original drug 

Dasatinib. 

Approximately 15% of invasive breast cancer is triple negative.17,18 This huge population is a 

global phenomenon19 and a source of concern because women with TNBC experience the peak 

risk of recurrence within 3 years of diagnosis,17 and increased mortality rate 5 years post 

diagnosis.17 Therefore, the discovery of UM-164 (an analogue of Dasatinib) could be termed 

as a popular breakthrough in absence of superior therapies in the management of TNBC. 

It is known that all clinically used Src inhibitors act by binding the active conformation of the 

kinase.3 However, it was hypothesised that inhibiting Src in a specific inactive conformation 

(DFG-out) would have improved efficacy against TNBCs.3 Therefore, inhibiting a kinase in 

the DFG-out inactive conformation can have dramatic effects on the non-catalytic functions of 

the kinase.3 Fortunately, experimental results revealed that UM-164 act by binding on the DFG-

out inactive conformation of Src.3 Figure 2 shows DFG-out inactive conformations of Src 

complex with UM-164. 
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Figure 2. 3D structure of Src DFG-out inactive conformation showing the binding site of UM-164. 

In the wake of the emergence of drug resistance in TNBC,15 and the burden of TNBC among 

people living with breast cancer17 across the globe. The need for an in-depth molecular 

understanding of conformational features and ligand binding landscape of UM-164 complex 

with Src is key to successful management of TNBC cases. This is especially more important 

because of growing population of TNBC among the invasive breast cancer. Therefore, a good 

understanding of conformational features and ligand binding landscape of Src is crucial to the 

development of new potential and effective inhibitors of Src. 

Currently, no conformational studies have been carried out on Src complex with UM-164, thus 

a detailed analysis of conformational features of Src complex with UM-164 will require long 

time-scale molecular dynamic simulations that will provide adequate information on the 

dynamics of the protein. Therefore, to have an atomistic insight to experimental work20 that 

have already been conducted on UM-164-complexed Src, we conduct MD simulations to 

broaden the knowledge on the subject matter. 

Various post dynamic techniques have been used to provide a molecular understanding of 

molecular dynamics. The principal component analysis (PCA), also known as essential 

dynamics analysis,21 is one of the most popular post-dynamics techniques 21 that is widely 

applied to understand the changes in biological systems.21 PCA eliminates translational and 

rotational motions in molecular dynamic (MD) trajectory and correlated motions in atomic 

simulations of proteins.22 It defines the atomic displacement in a collective manner,21 and can 

detect major conformational changes between the structures23 and has been used in many 

studies to determine the difference in motion of protein complex of two different compounds.21 

In this study, our objective is to provide insight into the conformational features and ligand 
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binding landscape of Src in complex with UM-164 and contributing to the understanding of 

experimental work that has been previously conducted. To achieve this, we performed 

molecular dynamic simulations of Src complex with UM-164 (Src-UM-164), Src complex with 

Dasatinib (Src-Dasatinib) and apo to further inspect the effects UM-164 binding on the 

dynamic state of Src. To facilitate the process of MD, Dasatinib was first docked into Src and 

the docked conformation was used for MD simulations respectively (see Figure S1 and Table 

S1 of the supplimentary Material). Herein, we perform 150 ns of MD simulations, PCA, 

dynamic cross-correlation and binding free energy calculations were also conducted to 

understand the effect of UM-164 binding to the dynamic state of the protein.23 These tools are 

known to enhance the process of drug discovery,24 therefore, provide a platform for the 

discovery of novel therapeutics.24 Finding from this study would demonstrate the 

conformational and structural properties of Src in complex with UM-164, such properties may 

form the baseline for which other potential therapeutics targeting Src can be developed. 

2  Computational methods 

2.1   System preparation 

The X-ray crystal structure of Src in complex with UM-164, PDB code 4YBJ25 was obtained 

from Protein Data Bank (PDB). This is a static (inactive) conformation of Src structure exist 

as a homodimer with two chains (A and B), however, only chain A was used for simulation in 

this study to reduce the computation cost. Chimera26 and Avogadro software package27 were 

used to modify and visualise ligand and receptor respectively. 

2.2   Molecular dynamic simulations  

Simulations of bound Src-UM-164, Src-Dasatinib complexes as well as unbound apo were 

performed using graphic processor unit (GPU) version of Particle Mesh Ewald Molecular 

Dynamics (PMEMD) package with Sander module of Amber14.28, 29 The AMBER force field 

ff12SB30, 31 was applied to describe the protein.31 The ligands parameters were set using 

Gasteiger charges in Avogadro,27 and Antechamber module with the aid of GAFF (generalised 

Amber force field).32 The LEAP module implemented in Amber1433 was used to add hydrogen 

atoms to the protein and to add counter ions for the system neutralization.33 Each system is 

enclosed in the TIP3P water box31 with the protein atoms located 10 Å between the protein 

surface and the box boundary within the period of simulations. The cubic periodic boundary 

conditions were implemented in all the systems, long-range electrostatics interaction was 

treated with particle-mesh Ewald method31 implemented in Amber14 with a nonbonding cut-
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off distance of 12 Å.  Two minimization steps were employed, partial minimization and full 

minimization. The initial energy minimization step of the systems was carried out with a 

restraint potential of 500 kcal mol-1 Å-2 apply to the solute, for 1000 steps. Unrestrained 

conjugated gradient minimization for 1000 steps was conducted for the entire system with aid 

of SANDER module of Amber 14 program. A canonical ensemble (NVT) MD simulations 

were performed for 50 ps and the system was gradually heated from 0 to 300 K, with harmonic 

restraints of 5 kcal mol-1 Å-2 for solute atoms with the aid of Langevin thermostat34 with a 1ps 

random collision frequency. The systems were equilibrated at 300 K with a 2fs time step in 

NPT ensemble for 500 ps without any restraint and Berendsen barostat34 was used to maintain 

the pressure at 1bar. The SHAKE35 algorithm was used to constrain the bonds of hydrogen 

atoms in the system. The 2fs time scale and SPFP precision model were used for MD runs. To 

achieve sufficient sampling and ensure systems convergence, we performed a 150 ns of MD 

simulations in the absence of restraints, using NPT ensemble at a target pressure of 1 bar and 

a 2 ps pressure coupling constant. For every 1ps time interval, the coordinates were saved and 

the trajectories were analysed every 1ps.  

Post MD analysis performed include root mean square deviations (RMSD), root mean square 

fluctuations (RMSF), the radius of gyration, hydrogen-bond occupancy, dynamic cross-

correlation and principal component analysis (PCA) using CPPTRAJ36 modules in Amber 14, 

as well as ligand-residue interaction profile and predicted toxicity test. Visualisation of 

trajectories was conducted in the chimera.26 The results were analysed and plots were generated 

with aid of Origin37 and Bio3D38 software respectively.  

2.3 Thermodynamic calculations 

The binding free energy calculation is an important thermodynamic method that gives detailed 

information on the interaction between the ligand and protein.39 It provides good understanding 

of mechanism of binding, including contributions from both enthalpy and entropy to the 

molecular recognition.39 Molecular Mechanics/Generalized-Born Surface Area method 

(MM/GBSA)39 is a popular method used to estimate free energy of binding of small ligands to 

the biological macromolecule,39 the calculation gives detailed information on the interaction 

between the ligand and protein.39 The binding free energy of Src-UM-164 and Src-Dasatinib 

systems were calculated using MM/GBSA.39 For a 150 ns trajectory, 1000 snapshots were 

considered during the calculation of binding free energy. The following equations described 

binding free energy calculation:  
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∆Gbind = Gcomplex – Greceptor - Gligand    (1) 

∆Gbind = Egas + Gsol – TS      (2) 

Egas = Eint + EvdW + Eele      (3) 

Gsol = GGB +GSA        (4) 

From the equation above, Egas is the energy of the gas phase, Eint represents internal energy, 

Eele represents Coulomb while EvdW is the van der Waals energies. Egas is estimated directly 

from the ff12SB30 force field. Gsol which is the solvation free energy can be broken down to 

polar and non-polar forms of contribution. The contribution of polar solvation (GGB) is assessed 

by resolving GGB equation and non-polar solvation (GSA) is determined from the solvent 

accessible surface area, which can be estimated from water probe radius of 1.4 Å with 

temperature (T) and total solute entropy (S). The MM/GBSA binding free energy method in 

Amber 14 was used to calculate the contribution of each residue to the total binding free energy.  

2.4 Principal component analysis 

Principal component analysis (PCA) also known as essential dynamics of protein21 analysis is 

a multivariate statistical technique applied to systematically reduce the number of dimensions 

needed to describe the protein dynamics21 through the decomposition process that screen 

observed motions from largest to smallest spatial scale.21 The atomic displacement and 

conformational changes of proteins can be defined23 using PCA by extracting different modes 

of the conformation of the protein complex during dynamic simulations. The direction of 

motion (eigenvectors) and the extent of motion (eigenvalues) of the biological system can also 

be determined using PCA. Herein, 150 ns of MD trajectories were stripped of the solvent 

molecules and the ions using the CPPTRAJ module in Amber 14.36 This was done prior to MD 

trajectory processing for PCA. Principal component analysis was performed on C-α atoms on 

1000 snapshots at 100 ps time interval each. The first two principal components (PC1 and PC2) 

were computed and 2 X 2 covariance matrices were generated using Cartesian coordinates of 

Cα atoms. PC1 and PC2 correspond to first two eigenvectors of a covariant matrix. Origin 

software was used to construct the PC plot. 37 
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2.5 Dynamic cross-correlation matrices (DCCM)  

The cross-correlation is a 3D matrix representation that graphically displays time correlated 

information among the residues of the proteins.40 Residue-based time correlated data can be 

analysed using visual pattern recognition.41 To better understand the dynamics of apo, Src-

UM-164 and Src-Dasatinib systems, a DCCM was generated to determine cross-correlated 

displacements of backbone Cα atoms in the trajectories, using the following equation 

Cij  =   ˂ ∆ri * ∆rj ˃ / (˂ ∆r2
i ˃ ˂ ∆r2

j ˃)1/2      (5) 

Where, i and j represent ith and jth residues and ∆ri and ∆rj corresponds to the displacement 

of ith and jth atom from the mean respectively. The coefficient of cross-correlation Cij, varies 

between the range -1 to +1, where the upper and lower limits correspond to strong correlated 

(+) and anti-correlated (-) motions within the period of simulations. The DCCM analysis was 

conducted using CPPTRAJ module in Amber 14.36 Matrices were generated and analysed using 

Origin software.37, 38 

3 Results and discussion 

3.1 System stability MD simulations  

In preparation for MD trajectory analysis, RMSD and potential energy fluctuations were 

monitored throughout the MD simulations. RMSD was calculated to assess the stability and 

convergence of the respective systems and the results are presented Figure 3. Systems 

stabilisation and convergence with maximum fluctuation of 4.25 Å between 0-12500 ps in apo 

system was observed, whereas in the Src-Dasatinib system, the highest fluctuation observed 

was 3.25 Å, at 12500 ps, after which the fluctuation rested below 2.00 Å (Figure 3). However, 

after approximately 50000 ps, the RMSD trajectories converged and the fluctuation rested 

below 2.00 Å for all the systems. Similarly, in Src-UM-164 system the peak RMSD of 3.5 Å 

was reached at about 9000 ps. The average RMSD of 1.58 Å and 1.52 Å was observed in Src-

UM-164 and Src-Dasatinib systems respectively, while the apo system has an average RMSD 

of 1.46 Å. These account for system stability since a standard parameter defining a stable 

system is an RMSD of 2 Angstroms and below.42 These results show that Src-UM-164 and 

Src-Dasatinib systems, exhibit more flexibility and deviation compared to the apo system 

which appears to be most stable sequel to average RMSD of 1.46 Å. 
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Figure 3. The RMSD plot of apo (black), Src-Dasatinib (red) and Src-UM-164 (green) respectively. 

3.2 Root mean square fluctuation (RMSF) 

An aggregate of a specific sequence of amino acids make up a proten43 and play a vital role in 

conformational features of the protein.43 Changes to the protein conformation occur when there 

is a chemical reaction or mechanical events.43 Therefore, direct interactions of the protein 

active site residues with a ligand may induce conformational changes in protein structure and 

alter its function. More specifically, the conformational changes that occur as a result of ligand-

induced motion during ligand binding.44 Understanding ligand-induced conformational 

changes in the protein structure are critical to structure-based rational drug design.45 RMSF is 

a measure of average atomic mobility of backbone atoms (N, Cα and C) during MD 

simulation.46 To understand and explore the structural dynamics that take place upon the ligand 

binding, RMSF of the subject systems was calculated from MD trajectories and the plot is 

presented in Figure 4. The core of the protein appears to be more rigid compared to the loops 

(solvent exposed) as shown by RMSF plot.  
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Figure 4. The Cα RMSF plots of apo (black), Src-Dasatinib (red) and Src-UM-164 (green) 

respectively. 

The highest fluctuations were observed in the loop region involving residues Ala171, Arg172, 

Gln173, Lys176, Pro178 and Lys180 in the respective systems. Similarly, the loop region with 

His2, Met3, Gln4, Gln6, Lys10, Trp13 and Pro16 also exhibits maximum residue fluctuations 

with the Src-UM-164 system being the highest amongst the respective systems. In a related 

development, the loop region involving residues Lys51, Pro52, Met55 and Pro57 exhibit 

maximum fluctuations in the Src-UM-164 system compared to Src-Dasatinib and apo systems. 

These loops are called activation loops, 47 when phosphorylated becomes rigid and contribute 

to the switch from inactive to an active conformation.47  Therefore, high fluctuation exhibited 

by the loops in Src-UM-164 system support the experimental evidence that UM-164 binds the 

DFG-out inactive conformation of Src.3 Ligand–residue interaction relatively stabilises Src-

UM-164 and Src-Dasatinib systems, thus resulting in a slight decrease in flexibility and 

capacity of atomic fluctuation of the active site residues in the respective systems. The active 

site residues exhibit a certain level of rigidity, particularly residues Glu18, Leu20, Arg21 and 

Leu22 in the Src-UM-164 system. While a more prominent rigidity was observed in residue 

Gly126, Ala128, Ala143, Leu146 and Ile145. This could be attributed to the presence of 

multiple phenyl rings of UM-164 resulting in steric hindrance of residues in the vicinity. 



91 
 

Similarly, a slight decrease in fluctuation was also observed in residues Leu70, Leu75 and 

Val76 of Src-UM-164 system. This decrease may be associated with the presence of fluorinated 

phenyl group that limit the capacity of residues in the vicinity to fluctuate, consequently 

resulting in their rigidity. The observed residual fluctuations in Src-UM-164 relative to the Src-

Dasatinib system may probably account for the experimental potency of UM-164 on the 

xenograft model.3 Generally, apo system appears to be more flexible than Src-Dasatinib 

system, while the Src-UM-164 exhibits less fluctuation (except at the loops) compared to the 

two systems, therefore, appear to be more stable.  

3.3 Radius of gyration (RoG)     

The radius of gyration (RoG) is defined as a moment of inertia of Cα atoms from their centre 

of mass.48 It has been applied to gain insight into molecular stability in the biological system 

during molecular dynamic simulations. The RoG of Src-UM-164, Src-Dasatinib and apo 

systems were evaluated and presented in Figure 5.   
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Figure 5. Radius of gyration plot of Cα of the apo (black), Src-Dasatinib (red) and Src-UM-164 

(green) respectively. 

In this study, we evaluate RoG of apo, Src-Dasatinib and Src-UM-164 systems. There is no 

remarkable difference in the average RoG of the three systems, as observed in Figure 5. The 

Src-UM-164 system exhibits a lower average RoG of 19.47 Å, whereas Src-Dasatinib and apo 

systems had an average RoG of 19.72 Å and 19.56 Å respectively. The asymmetric flexibility 

of residues in Src-Dasatinib and apo, and the tendency of residues in these systems to remain 

relatively flexible during the period of simulation, destabilise the mass centre of Src-Dasatinib 

and apo which results in an increase in average RoG and fluctuation.  

3.4     Principal component analysis (PCA)  

The protein conformation has been recognised as key features in the determination of biological 

function,49 and PCA is one of the principal tools used in determining the flexibility of each 

atom during a simulation.50 Here, clustering method of principal components (PC) was adopted 

because of its ability to describe different conformational states sampled during a simulation 

by grouping molecular structure into a subset based on their conformational similarities.23 This 

method of PCA was used to assess the flexibility of apo, Src-Dasatinib and Src-UM-164 

systems during 150 ns MD simulations. In order to gain insight into motions associated with 

the conformational behaviour of the subject systems, the systems were projected along the first 
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two principal components (PC1 vs PC2) or eigenvectors direction. The percentage variability 

or total mean square displacement of atom’s positional fluctuation captured in each dimension 

is characterised by their corresponding eigenvalue.38 Figure 6 represents PCA plots of the 

subject systems (apo, Src-UM-164 and Src-Dasatinib systems) in this study. 

 

Figure 6. PCA projection of Cα atoms motion constructed by plotting the first two principal 

components (PC1 and PC2) in conformational space, apo (black) Src-Dasatinib (red) Src-UM-164 

(green) respectively. 

The PCA plot shows different and detailed waves of conformation in important subspace along 

the two principal components as evident in Figure 6. A distinct separation of motion was 

observed with apo, Src-UM-164 and Src-Dasatinib systems. However, a more correlated 

motion was observed in the Src-UM-164 system (see Figure 6 A) along the two principal 

components PC1 and PC2 compared to Src-Dasatinib and apo systems with relatively less 

correlated motion along PC1 and PC2 respectively. The apo system appears to be more flexible 

than Src-Dasatinib and Src-UM-164 systems, suggesting that the binding of the respective 

drugs, Dasatinib and UM-164, to the active site of the protein induces conformational dynamics 

which is reflected by the PCs as a wave of motion. Similarly, Src-UM-164 is more compacted 
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than Src-Dasatinib, meaning that the binding of UM-164 to the protein induced a more 

correlated motion compared to Src-Dasatinib and apo.   

3.5 Dynamic cross-correlation matrices (DCCM) analysis 

To further examine the conformational changes of Src protein upon the binding of UM-164 

and Dasatinib, DCCM analysis was conducted on the positions of the Cα atoms throughout the 

simulations to determine the presence of correlated motions and the results are presented in 

Figure 7. 

 

Figure 7. Cross-correlation matrices of Cα atoms fluctuations in apo (A), 

Src-Dasatinib (B) and Src-UM-164 (C). 

The correlated motions (highly-positive) of specific residues are represented as a yellow-red 

(colour) region, whereas, anti-correlated (highly-negative) movement of specific residues are 

represented as blue-black (colour) regions. The three systems herein exhibited overall 

correlated residual motions relative to anticorrelated motions. DCCM analysis revealed that 
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binding of UM-164 and Dasatinib alter the structure conformation of Src as reflected by 

changes in the correlated motions and dynamics. In apo conformation (Figure 7 A), Met94 

correlates with Ser95, while Ala156 slightly correlates with Val155 and Asp157. Anti-

correlated residual motions in apo conformation occur between residues 200 - 280 compared 

to the Src-UM-164 system and Src-Dasatinib system with variable correlated and anticorrelated 

motions. The Src-UM-164 system exhibits two prominent correlated regions (Figure 7 B), 

namely; residue 1-95 strong correlated region, whereas 122-160 slight correlated region. These 

regions are among the most dynamic regions in the protein and the majority of hydrophobic 

active site residues reside within these regions. Upon Dasatinib binding, correlation strongly 

increases relative to the apo conformation suggesting that ligand binding induced residue 

dynamics that may have resulted in conformational changes in the protein. Anti-correlated 

motions are more prominent between residues 180-280 of the Src-Dasatinib system and such 

residues are located distal from the active site of the protein. Similarly, the Src-UM-164 system 

(Figure 7 C) also exhibit two prominent correlated regions namely; residues in region 1-100 

representing strongly correlated residues and residue in region 120-160 represents slightly 

correlated residues. Higher correlated motions was observed among the residues of Src-UM-

164 than Src-Dasatinib, this may probably be due to the conformational changes induced by 

UM-164 binding to Src relative to those induced by Dasatinib. Therefore, UM-164 impact a 

more significant conformational changes on the protein compared to Dasatinib, hence 

experimentally more potent than Dasatinib.  

3.6 Hydrogen bond formation between amino acid residues 

Hydrogens (H-bonds) are unique and universal in nature, they play a central role in biological 

systems and maintenance of the protein structural integrity,51 protein-ligand interaction and 

catalysis.51 H-bonds are reported to promote ligand binding affinity by displacing protein-

bound water molecules into bulk solvents.51 They are facilitators of protein-ligand binding,51, 

52 therefore, the formation of hydrogen bond between amino acid residues is key to the 

monitoring of protein conformation. In line with this, we investigate hydrogen bond formation 

during the course of the simulations. Figure 8 shows a hydrogen bond formation over time 

during simulations of the respective systems.  
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Figure 8. Number of hydrogen bond formation during simulation over time between 

Apo (black), Src-Dasatinib (red) and Src-UM-164 (green). 

The apo system exhibited relatively lower average hydrogen bond formation during a 

simulation (144.978). However, the average number of H-bond formed in Src-Dasatinib 

(146.312) system is relatively higher than the value obtained in apo system. In a related 

development, average H-bond in Src-UM-164 system (148.584) is higher than the values in 

apo and Src-Dasatinib systems, this can be correlated to the system stability. Meaning that Src-

UM-164 with higher average H-bond is more stable than the Src-Dasatinib and apo, it is evident 

that this result corroborate the result in RoG. Higher H-bond formation enhance receptor-ligand 

interaction53 while a decrease in hydrogen bond formation leads to structural imbalances and 

conformational dynamics which eventually affect drug binding.51  

To investigate the stability of Src-UM-164, Src-Dasatinib and apo systems, hydrogen bond 

distance and occupancy of the active site residues in the three systems were monitored 

throughout the course of simulations and the results are presented in Table 1.  
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Table 1. Hydrogen Bond Occupancy of interactive active site residues of UM-164, 

Src-Dasatinib and apo. 

H-bond 

acceptor 

H-bond donor Frames (No) Occupancy 

(%) 

Average 

distance (Å) 

Average angle 

(degree) 

Src-UM-164 

Ala46@O Thr91@H 129860 88 2.83 161 

Val34@O Leu26@H 128546 85 2.81 155 

Met94@O UM-164@H56 102854 68 2.84 153 

Leu146@O Lys154@H 94939 63 2.87 162 

Glu63@O Met67@H 79596 53 2.87 162 

Lys48@O Ile89@H 56321 37 2.90 161 

Val155@O Val76@H 40569 27 2.90 156 

Leu26@O Leu163@H 37529 25 2.87 161 

Src-Dasatinib 

Met94@O UM-164@H23 132566 88 2.82 159 

Leu146@O Lys154@H 119204 79 2.85 162 

Ala46@O Thr91@H 118906 79 2.86 162 

Val34@O Leu26@H 116780 77 2.81 154 

Lys48@O Ile89@H 59240 39 2.90 161 

Val155@O Val76@H 52682 35 2.89 156 

Ser95@O UM-164@H32 26359 17 2.83 159 

Glu63@OE2 Lys48@HZ2 8463 5 2.77 157 

Apo 

Val34@O Leu26@H 106510 70 2.84 153 

Thr91@O Ala46@H 83764 55 2.88 161 

Lys48@O Ile89@H 77496 51 2.88 162 

Glu63@O Met67@H 72287 48 2.87 162 

Val155@O Val76@H 61045 40 2.88 158 

Asp157@O Asn144@H 54932 36 2.84 165 

Leu26@O Arg172@HH12 34006 22 2.82 154 

Met94@O Gly97@H 8882 5 2.91 151 
Note: No = Number of frames; A = Angstrom; % = Percentage 

The Src-UM-164 system brings into play active site residues with the H-bond that can be 

monitored within the course of system simulation. These residues include Lys48 and Val155 

which exhibit maximum average H-bond distance of 2.90 Å each and Val34 with a minimum 

average H-bond distance of 2.81 Å. However, Ala46 and Val34 shows the highest occupancy 

of 88% and 85% respectively, demonstrating the importance of this residue in the Src-UM-164 

system. Similarly, Met94 form H-bond with UM-164 and exhibit H-bond occupancy of 68% 

with a short average distance of 2.84 Å. The decrease in the distance marked the strength of 

the bond between Met94 and UM-164. In a related development, Met94 in Src-Dasatinib 

system exhibit highest occupancy of 88% with a lower average bond distance of 2.82 Å 
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compare to the Src-UM-164 system. This implies that Met94 formed a stronger H-bond with 

Dasatinib than with UM-164. Leu146 and Leu46 in Src-Dasatinib system exhibit the same H-

bond occupancy of 79% and distances of 2.85 Å and 2.86 Å respectively, while Val34 shows 

the minimum average distance of 2.81 Å in the Src-Dasatinib system. In general, the H-bond 

occupancy in the Src-UM-164 system is slightly higher than the Src-Dasatinib system. The apo 

system has Met94 with maximum average H-bond of 2.91 Å and the least H-bond occupancy 

of 5% while Val34 had a minimum average H-bond distance of 2.84 Å and highest occupancy 

of 70%. In all three systems, the apo system shows the least H-bond distance and occupancy.  

3.7   Residue Interaction Network Profile 

Structural modification to improve bioavailability, enhance pharmacokinetic and dynamics 

(reduce adverse effects) of a drug molecule is one of the objectives of drug design. The 

mechanism of drug action involves the interaction of receptor specific active site residue with 

the specific groups in the drug molecule, this result in signal transduction and consequently 

induction of specific reaction interpreted as drug action. Therefore, it serves a purpose to 

examine the drug-receptor interaction to gain insight into the role and the type of interaction 

that is common to residues. Here, it was observed that most of the active site residues form the 

hydrophobic interaction with the ligand in Src-Dasatinib and Src-UM-164 systems (Figure 9 

A and B). The UM-164 orientation formed the hydrogen bond with the active site residue 

Met94 and Thr91 (Figure 9 B). Similarly, Dasatinib oriented position formed the hydrogen 

bond with the active site residues Met94 and Lys96 (Figure 9 A). The interactive OH group of 

UM-164 and Dasatinib formed a hydrogen bond with Met94 and Lys96, therefore, these 

residues are essential for the binding of the UM-164 and Dasatinib to the active site of Src. The 

fluorinated phenyl group of UM-164 interacts with hydrophobic residues Asp157 and Met67 

of Src. This interaction is completely missing in the Src-Dasatinib system. This may probably 

explain a high experimental potency exhibited by UM-164. Generally, UM-164 interact with 

more hydrophobic active site residues compare to Dasatinib this may probably be due to the 

presence of additional benzene ring in the structure of UM-164. However, hydrophobic 

interaction is the major interaction between the drug and active site residues in the two systems.  
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Figure 9. 2D Ligand-residue interactions network from fully-minimised complex of 

Src-Dasatinib (A) and Src-UM-164 (B). 

3.8 Binding free energy and energy decomposition analyses  

Molecular Mechanics/Generalized-Born Surface Area (MM/GBSA) method39 is a popular 

approach used to estimate the binding free energy of small ligands to biological 

macromolecules.39 This method was used to estimate the total binding energy of UM-164 and 

Dasatinib to Src and the results were presented in Table 2. 
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Table 2. MM/GBSA based binding free energies profile of Src-UM-164 and Src-Dasatinib. 

∆Gbind ∆Eele ∆EvdW ∆Ggas ∆Gsol 
Src-UM-164 

-82.293±4.320 -121.874±13.653 -83.311±3.332 -205.184±13.836 122.890±12.879 

Src-Dasatinib 

-52.610±4.282 -86.520±13.911 -56.780±3.099 -143.301±14.909 90.691±13.276 

Notes: ΔEele = electrostatic energy; ΔEvdw = van der Waals energy; Gbind = calculated total binding free energy; 

Gsol = solvation free energy. 

It was revealed that the estimated binding free energy is higher in Src-UM-164 (-82.293 

kcal/mol) compared to Src-Dasatinib (-52.610 kcal/mol). The difference in binding free energy 

(-29.683 kcal/mol) between Src-UM-164 and Src-Dasatinib systems is quite significant, 

meaning that the force of interactions contributes higher energy in the binding of UM-164 to 

c-Src compare Dasatinib. The Src-UM-164 system also exhibited a relatively higher 

electrostatic energy (-121.874) contribution to the total binding free energy compared to the 

Src-Dasatinib system with maximum electrostatic energy contribution of -86.520 kcal/mol. 

However, van der Waal contribution to the total binding free energy was higher in Src-UM-

164 (-83.311 kcal/mol) compare to Src-Dasatinib with van der Waal contribution of -56.780 

kcal/mol. Hydrophobic packing contributes significantly to binding free energy in Src-UM-

164 owing to a large amount of aromatic and hydrophobic rings within the conformational 

space, as well as a set of hydrophobic residues around the binding pocket. This is evident in 

the binding free energy contribution of the Src-UM-164 system, where vdW contribution is 

relatively higher than the total binding free energy as shown in Table 2. 

3.8.1   Per-residue energy decomposition analysis 

Binding of the ligand to the active site of the receptor is associated with a certain amount of 

energy contributed by individual residues involve in the interaction. To assess the energy 

contribution of individual active site residues to the total binding free energy, and to provide a 

molecular understanding of the impact of protein dynamics on the degree of different binding 

forces, per-residue energy decomposition analysis was conducted and the result presented in 

Table 3 
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Table 3. Decomposition of the relative binding free energies on a per-residue basis for 

Src-Dasatinib and Src-UM-164 systems. 

Residues ∆Evdw ∆ele ∆Gpolar ∆Gnon-polar ∆Gbinding 
Src-UM-164 

Met94 -1.244±0.612 -6.662±0.838 4.548±0.616 -0.070±0.020 -3.718±0.575 

Thr91 -1.670±0.471 -2.174±0.702 1.106±0.303 -0.147±0.022 -2.885±0.684 

Lys48 -2.438±0.450 8.176±1.417 -8.449±1.847 -0.159±0.018 -2.871±1.269 

Phe158 -2.330±0.398 -0.294±0.398 0.277±0.293 -0.120±0.029 -2.467±0.488 

Asp157 -2.425±0.509 -9.667±0.923 9.924±1.031 -0.207±0.023 -2.374±0.548 

Leu146 -2.077±0.258 0.724±0.132 -0.825±0.115 -0.174±0.023 -2.353±0.279 

Met67 -2.137±0.340 -0.388±0.416 0.400±0.260 -0.176±0.031 -2.301±0.402 

Tyr93 -2.418±0.381 -1.580±0.950 1.872±0.760 -0.169±0.041 -2.296±0.556 

Leu26 -2.169±0.414 -0.371±0.258 0.644±0.316 -0.242±0.067 -2.139±0.406 

Gly97 -1.456±0.343 -0.042±0.527 -0.089±0.454 -0.137±0.026 -1.724±0.555 

Src-Dasatinib 
Met94 -1.043±0.643 -6.386±0.968 3.534±0.567 -0.066±0.019 -3.962±0.569 

Thr91 -1.609±0.452 -1.495±1.025 1.052±0.313 -0.150±0.024 -2.201±0.968 

Leu26 -2.217±0.451 -0.385±0.301 0.724±0.385 -0.318±0.051 -2.195±0.435 

Tyr93 -2.459±0.393 -1.268±0.820 1.736±0.712 -0.183±0.049 -2.174±0.488 

Leu146 -1.675±0.349 0.725±0.139 -0.751±0.134 -0.114±0.036 -1.813±0.383 

Gly97 -1.471±0.227 0.134±0.501 0.065±0.414 -0.137±0.029 -1.409±0.338 

Val34 -0.946±0.234 -0.306±0.161 0.183±0.145 -0.069±0.024 -1.138±0.247 

Ala46 -1.417±0.259 0.263±0.239 0.138±0.217 -0.111±0.020 -1.127±0.295 

Val76 -0.866±0.275 0.388±0.097 -0.460±0.162 -0.046±0.019 -0.983±0.230 

Glu92 -0.576±0.126 -13.331±0.628 13.042±0.510 -0.010±0.011 -0.874±0.335 

Notes: ΔEele = electrostatic energy (kcal/mol); ΔEvdW = van der Waals energy (kcal/mol); ΔGpolar (kcal/mol) = polar 

solvation energy (kcal/mol); ΔGnonpolar (kcal/mol) = nonpolar solvation energy (kcal/mol); ΔGbinding (kcal/mol) = total 

binding free energy (kcal/mol). 

The binding free energy was decomposed into the unit contributions of each active site residue 

of Src-UM-164 and Src-Dasatinib systems. The major energy contributors in Src-UM-164 are 

Met94, Thr91 and Lys48 with -3.718, -2.885 and -2.871 kcal/mol respectively. While in Src-

Dasatinib system, the major energy contributors are Met94, Thr91 and Leu26 contributing -

3.962, -2.201 and -2.195 kcal/mol respectively. Met94 exhibits exemplary contributions to the 

total binding free energy in the two system by contributing highest binding free energy to the 

system making it an important residue the binding of UM-164 and Dasatinib their respective 

proteins. This result corroborate the result of H-bond formation where met94 exhibit high H-

bond occupancy and strength. However, other active site residues in Src-UM-164 systems 

(Figure 10) show significantly higher binding free energy contribution relative to their 

contribution in Src-Dasatinib systems, a probable reason for a high potency of UM-164 over 
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Dasatinib in c-Src inhibition. Lys48 in UM-164 is associated with low electrostatic contribution 

to the total binding free energy (8.176 kcal/mol) and relatively higher van der Waals energy (-

2.438 kcal/mol). Similarly, Asp157 had the highest electrostatic contribution of -9.667 

kcal/mol and high van der Waals energy contribution of -2.425 kcal/mol to the total binding 

free energy in Src-UM-164 compared to other active site residues in the same system. This 

may be due to its interaction with a fluorinated phenyl group in UM-164. Therefore, Met94 

and Asp157 are the key residues in Src-UM-164 system contributing major electrostatic forces 

to the total binding free energy. In contrast to Src-UM-164 system, the per-residue energy 

contributions from active site residues in Src-Dasatinib exhibit variable electrostatic energy 

contribution to the total binding free energy. Met94 though contributes the highest electrostatic 

energy (-6.386 kcal/mol) in Src-Dasatinib system, its contribution is relatively higher in Src-

UM-164 system compared to Src-Dasatinib system. The high electrostatic energy contribution 

from Met94 and Asp157 may probably place UM-164 at advantage over Dasatinib in Src 

inhibitory profile. 

 

Figure 10. The per-residue energy decomposition analysis graph of Src-UM-164 (A) and Src-

Dasatinib (B) system respectively. 

3.9    Comparative toxicity test of UM-164 and Dasatinib 

Most chemical compounds interact with biological targets different from experimentally 

recognised targets, such compounds are said to be promiscuous in nature.54 Compound 

promiscuity depicts the molecular basis of the pharmacological effects, therefore, assessment 

of the extent of promiscuity among compounds at different levels of drug research55    provides 

a detailed understanding of other properties of the drug that were probably not anticipated. 
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Toxicity and biological activity of compounds can be predicted by computer tools. It has been 

shown that the degree of reliability of such tools varies from one to another.56,57 In this study, 

the “prediction of activity spectra for biologically active substance” (PASS) 56, 57 programme 

was employed to compare the possible toxicity of UM-164 and Dasatinib. The PASS predicts 

compound toxicity and biological profile with a mean accuracy of prediction of about 89% to 

90%.56, 57 Table 4 shows the predicted toxicity and biological activity of UM-164 and 

Dasatinib. 

Table 4. Comparative predicted toxicity and biological activity of UM-164 and Dasatinib using PASS. 

Pa Pi Activity Pa Pi Activity 

Predicted toxicity for UM-164 Predicted toxicity for Dasatinib 

0.781 0.006 Optic neuritis 0.861 0.009 Asthma 

0.765 0.009 Optic neuropathy 0.834 0.004 Optic neuropathy 

0.730 0.005 Myocarditis 0.828 0.003 Optic neuritis 

0.645 0.037 Stomatitis 0.831 0.016 Stomatitis 

0.597 0.044 Thrombophlebitis 0.805 0.004 Myocarditis 

0.582 0.050 Asthma 0.758 0.013 Thrombophlebitis 

0.464 0.052 Cholestasis 0.756 0.019 Hepatitis 

0.485 0.106 Hepatitis 0.667 0.038 Tachycardia 

0.479 0.123 Conjunctivitis 0.638 0.015 Cholestasis 

0.313 0.223 Tachycardia 0.645 0.027 Broncho constrictor 

0.315 0.211 Thrombocytopenia 0.626 0.031 Agranulocytosis 

0.330 0.212 Consciousness alteration 0.626 0.053 Conjunctivitis 

0.346 0.164 Broncho constrictor 0.600 0.052 Thrombocytopenia 

0.350 0.177 Inflammation 0.542 0.048 Tremor 

0.360 0.121 Agranulocytosis 0.391 0.143 Ocular toxicity 
Note: Pa probability of compound being active, Pi probability of compound being inactive.    Pa ˃ 0.7 indicates 

probability of toxicity or biological activity, Pi ˂ 0.5 the compound is unlikely to exhibit toxicity or biological 

activity, 0.5 ˂ Pa ˂ 0.7 the compound is likely to exhibit toxicity or biological activity but the probability is less 

and ˂ 0.5 the compound is unlikely to exhibits the activity on experiment. 

The predicted toxicity value revealed that UM-164 can induce optic neuritis, optic neuropathy 

and myocarditis, and is likely to cause conditions such as stomatitis, thrombophlebitis and 

asthma. These effects are likely to occur at a relatively high dose. The drug is unlikely to cause 

cholestasis, hepatitis, conjunctivitis, tachycardia, thrombocytopenia, consciousness alteration 

and bronchoconstriction, therefore potentially safe. Similarly, Dasatinib can induce asthma, 

optic neuropathy, optic neuritis, stomatitis, myocarditis, thrombophlebitis and hepatitis. 

Comparatively, UM-164 is likely to exhibit lower side effects compared Dasatinib. PASS 

revealed that Dasatinib is likely to predispose patients to hepatitis, bronchoconstriction, 

myocarditis, cholestasis, thrombocytopenia and consciousness alteration these effects are 
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unlikely to be induced by UM-164 thus, UM-164 may be superior to Dasatinib in terms of 

safety.   

4 Conclusion 

The discovery of a novel Src inhibitor, UM-164, has given hope to the discovery and designing 

of potent Src/p38 inhibitors for the treatment of TNBC. However, understanding of 

conformational features of Src induced by UM-164, which could open alternative avenues in 

the treatment of TNBC, are untapped. Herein, different computational approaches aimed at 

providing an in-depth understanding of the influence of UM-164 binding to Src and the 

resultant conformational features were explored. Herein, comparative MD simulations of Src-

UM-164 and Src-Dasatinib with post-MD analytical approaches including PCA, RoG, 

thermodynamic calculations, DCCM, ligand-residue interaction network profile and predictive 

toxicity assessment, were conducted. Findings from this study revealed that the subject systems 

were relatively stable throughout the simulations with no remarkable difference in their average 

RoG. The binding of UM-164 to Src induces a more stable and compact conformation of the 

protein structure, compared to Dasatinib. UM-164 binding induces a more correlated motion 

in Src relatively to Dasatinib suggesting that ligand binding may have induced residue 

dynamics that results in conformational changes in the protein. High fluctuation exhibited by 

the loops in Src-UM-164 system support the experimental evidence that UM-164 binds the 

DFG-out inactive conformation of Src. The estimated binding free energy is higher in Src-UM-

164 compared to Src-Dasatinib, this reflects the relative higher binding capacity of UM-164 to 

the Src. Hydrophobic packing contributes significantly to binding free energy in Src-UM-164 

owing to a large amount of aromatic and hydrophobic rings within the conformational space, 

as well as a set of hydrophobic residues around the binding pocket of the system. Within the 

context of this study, Met94 was found to exhibits exemplary contributions to the total binding 

free energy in the Src-UM-164 and Src-Dasatinib systems by contributing highest binding free 

energy making it an important residue for the binding of UM-164 and Dasatinib. Src-UM-164 

was also found to exhibits higher average H-bond formation making it a more stable system 

compared to Src-Dasatinib and apo systems. Met94 formed H-bond with UM-164 and 

Dasatinib with relatively higher occupancy in Src-Dasatinib compare to Src-UM-164. The 

orientation of UM-164 in the active site of Src allows for hydrophobic interaction with a 

fluorinated phenyl group, thus may contribute to high potency reported experimentally. The 

interactive OH group of UM-164 and Dasatinib forms a hydrogen bond with Met94 and Lys96, 
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implying that these residues are essential for the binding of the UM-164 and Dasatinib to the 

receptor active site. 

UM-164 is potentially safer than Dasatinib regarding the toxicity, thus superior to Dasatinib in 

both its clinical efficacy and safety. Considering the overall findings from this study, the 

conformational features of Src-UM-164 system provided in this study can serve as a base-line 

in the design of novel Src inhibitors with dual inhibitory properties.  
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Abstract 

The emergence of drug resistance non-receptor tyrosine kinase (c-Src) in triple-negative breast 

cancer (TNBC) remains a prime interest in relation to the burden of TNBC among people living 

with breast cancer and drug development. Thr91 mutation was found to induce a complete loss 

of protein conformation required for drug fitness. Herein, we provide the first account of the 

molecular impact of the Thr91 mutation on c-Src resistance to experimental drug UM-164 

using various computational approaches, including molecular dynamics simulation, principal 

component analysis (PCA), dynamic cross-correlation matrices (DCCM) analysis, hydrogen 

bond occupancy, thermodynamics calculation and residue interaction network (RIN). Findings 

from this study revealed that Thr91 mutation leads to steric conflict between the UM-164 and 

side chain of methionine (Met91); the mutation distorts the UM-164 optimum orientation on 

the conformational space of mutant c-Src compared to wild-type; decreases the overall 

hydrogen bond formation between the residues in the mutant protein; decreases UM-164 

binding energy in mutant by -13.416 kcal/mol compared to wild-type; decrease the residue 

correlation mutant; induces a change in the overall protein structure conformation from inactive 

to active conformation; distorts ligand atomic interaction network and distorts the residue 

interaction network. This report provides important insights that will assist in the further design 

of novel dual kinase inhibitors to minimise the chances of drug resistance in triple negative 

breast cancer.  
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1    Introduction 

Breast cancer is ranked the most frequently diagnosed and life-threatening cancer in women1 

and leading cause of cancer death among women.1 In the United States of America however, 

breast cancer is the third leading cause of cancer death.2  Breast cancers (BCs) are genetically 

heterogeneous3 with respect to their gene composition, gene expression, and phenotypes thus, 

are currently classified into 5 subtypes.3 The triple negative subtypes are more life threatening 

because of their potential to metastasize and tendency of local reoccurrence.4 They are usually 

associated with the absence of oestrogen receptor (ER), progesterone receptor (PR) and human 

epidermal growth factor receptor-2 (ErbB2/HER-2).5 They are characterised by classical ductal 

histology, high grade, high mitotic and cell proliferations rates.5 The triple negative cancer 

(TNBC) is highly associated with poor prognosis, poor disease-free survival (PDFS) and 

cancer-specific survival (CSS).5 Positive lymph nodes are usually observed in the local 

reoccurrence,5 this perhaps is the reason for high risk of reoccurrence in a patient with TNBC 

in the first 3 to 5 years after diagnosis.5 The current studies suggests that chemotherapy remains 

the most effective treatment after surgery.5 However, other studies have shown that 

neoadjuvant chemotherapy such as 5- fluorouracil (5-FU), anthracycline, cyclophosphamide, 

taxanes and platinum compounds  used in the treatment of TNBC have low success rate6 mainly 

due to lack of acceptable predictive biomarkers,3 safety concerns and resistance to some of the 

compounds.6 On molecular basis, TNBC has been classified as ER, PR and HER-2 and these 

molecular markers provide an understanding of the potential targets during the course of 

therapy.7 The prognostic markers such as HER1, ALDH1, LOXL2, Ki-67, SNCG and LDHB 

are important in providing prognostic information.7  

In a related development, the influence of tissue inhibitor metalloproteinases-1 (TIMP-1) on 

TNBC8 revealed that TIMP-1 is a biomarker indicative of poor prognosis in TNBC diseased 

individuals.8 Hence TIMP-1 may be an indication of the need for therapeutic intervention 

specifically for TNBC.8 Most of the therapies targeted at TNBC are not effective3 because of 

a lack of ER, PR and HER-2. However, efforts have been made to overcome these challenges 

in the last 3 decades, some of which have resulted in a drastic improvement in patient survival3. 

In line with this, cytotoxic drugs remain the backbone of chemotherapy in TNBC9 even as FDA 

approved targeted therapies are challenged by the relative heterogeneity of TNBC.   

Recently, the clonal evolution study used the whole genome and exome single cell sequencing 

approach10 to determine heterogeneity and evolution of breast cancer. Findings from this study 
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show that triple negative breast cancer has an increased mutation rate compared to ER+ tumour 

cell which did not show any form of mutation.10 These findings are very important in the 

process of diagnosis, treatment and evolution of chemoresistance in breast cancer.10 A more 

recent study established a relationship between TNBCs and c-Src (Src), in an attempt to 

identify predictive markers response to chemotherapy.3 In this study, a dual inhibitor (UM-164) 

was found to have a profound activity against Src and p38 kinases.3 Src is the cellular homolog 

of the viral oncogene v-Src11 and a prototypical member of the family of non-receptor tyrosine 

kinases that play important role in a variety of signalling pathways that involve proliferation, 

differentiation, survival, motility, and angiogenesis.11 Overexpression of Src is known to play 

an important role in oncogenic proliferation, migration, and invasion of TNBC cell lines.3 

However, the emergence of a resistance mutation in Src is limiting the success of inhibitors 

used in new targeted cancer therapies11,12 such as dasatinib, an inhibitor of both c-Src and abl 

protein.11 The most common mutations occur at the gatekeeper position in the hinge region12 

in which small amino acid chain (Threonine) is exchanged for larger hydrophobic residue 

(Isoleucine or Methionine),12 as shown in Figure 1. 

Mutation in cancer is a global phenomenal and source of an obstacle to the success in drug 

design and the treatment of patients with any form of cancer. This is more so because 

continuous residual network changes in protein impacted by mutation have challenged the 

potency and efficacy of most effective experimental drug such as UM-164. Therefore, UM-

164 could become completely ineffective as primary TNBC treatment in the future, should 

resistance to UM-164 emerge in the absence of other chemotherapeutic agents with more 

superior pharmacological effects.  
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Figure 1. The 3D structure of Src protein showing the position of mutation (red) Thr91, studied in 

this work  

Mutational resistance in Src have been previously studied12, however, such studies were 

developed using X-ray crystal structure of Src with variable ligands.12 Similarly, attempt was 

made to obtain molecular understanding on how mutation confers resistance to kinase 

inhibitors.12, 13, 14 However, findings from these studies revealed molecular changes in the 

protein (changes from inactive conformation to active conformation resulting from mutation) 

that require prolonged timescale molecular dynamic (MD) simulations of Src structure.13, 14  

Therefore thorough understanding of conformational features of mutant Src in complex with 

UM-164 is crucial to the design of potent, effective and relatively less toxic dual kinase 

inhibitors (Src/p38). Although, detailed conformational features of the Src-UM-164 complex 

have been conducted and reported in our previous study, however, conformational features of 

Src mutant and its potential resistance to UM-164 have not been examined. The lead compound 

against Src inhibition (UM-164) is represented in Figure 2.  
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Figure 2. The 2D structure of UM-164 the lead compound in Src in inhibition. 

The molecular dynamics calculation and analysis have not been conducted on the Src-UM-164 

mutant. Herein, we aim to provide deeper insight into the effect of the mutation on the dynamics 

of Src and adding new dimensions to experimental work that has been previously conducted. 

To achieve this, we perform MD simulations of Src-UM-164 (wild type), Src-UM-164-mutant 

(mutant) and apo. Principal component analysis (PCA), dynamic cross-correlation (DCCA), 

residue interaction network (RIN) and binding free energy calculations were also conducted to 

understand the effect of mutation on the binding of UM-164.15 Findings from this study can 

provide important insight into the conformational dynamics of mutant complex that will assist 

in the design of novel Src inhibitors with good pharmacological properties on mutant protein.   

Various post dynamic techniques have been used to provide a molecular understanding of 

molecular dynamics. The principal component analysis (PCA), also known as essential 

dynamics analysis,16 is one of the most popular post-dynamics techniques 16 that is widely used 

to understand the changes in the biological system.16 PCA eliminates spectrum of translational 

and rotational motion in molecular dynamic (MD) trajectory and correlated motions in atomic 

simulations of proteins.17 It defines the atomic displacement in a collective manner,16 and can 

detect major conformational changes between the structures15 and has been used in many 

studies to determine the difference in motion of protein complex of two different compounds.16 

We believe that computational and molecular modelling tools as adopted in this study would 

provide the necessary information on the subject matter. These tools are known to enhanced 

the process of drug discovery,18therefore, provide a platform for the discovery of novel 

therapeutics.18  
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1   Computational methods 

1.1    System preparation 

The X-ray crystal structure of Src in complex with UM-164, PDB code 4YBJ19 was obtained 

from Protein Data Bank (PDB). This is an inactive conformation of c-Src structure deposited 

in PDB as a homodimer with two chains (A and B), in this study, only chain A was used for 

simulation to reduce the computation cost. In silico mutation was carried out to mutate 

threonine (Thr) at position 91 to methionine (Met) as shown in Figure 1. Similarly, Chimera20 

and Avogadro software package21 were used to modify and visualise ligand and receptor 

respectively. 

1.2 Molecular dynamic simulations  

Simulations of Src in complex UM-164 (wild), Src-mutant (mutant) in complex with UM-164 

and Src (apo) were performed using graphic processor unit (GPU) version of Particle Mesh 

Ewald Molecular Dynamics (PMEMD) package with Sander module of Amber14.22, 23 The 

AMBER force field ff12SB24 was applied to describe the protein.25 The ligands parameters 

were set using Gasteiger charges in Avogadro,21 and Antechamber module with the aid of 

GAFF (generalised Amber force field).26 The LEAP module implemented in Amber1427 was 

used to add hydrogen atoms to the protein and to add counter ions for the system 

neutralization.27 Each system is enclosed in the TIP3P water box25 with the protein atoms 

located 10 Å between the protein surface and the box boundary within the period of 

simulations. The cubic periodic boundary conditions were implemented in all the systems, 

long-range electrostatics interaction was treated with particle-mesh Ewald method25 

implemented in Amber14 with a nonbonding cut-off distance of 12 Å.  Two minimization steps 

were employed, partial minimization and full minimization. The initial energy minimization 

step of the systems was carried out with a restraint potential of 500 kcal mol-1 Å-2 apply to the 

solute, for 1000 steps. Unrestrained conjugated gradient minimization for 1000 steps was 

conducted for the entire system with aid of SANDER module of Amber 14 program. A 

canonical ensemble (NVT) MD simulations were performed for 50ps and the system was 

gradually heated from 0 to 300 K, with harmonic restraints of 5 kcal mol-1 Å-2 for solute atoms 

with the aid of Langevin thermostat28 with a 1ps random collision frequency. The systems were 

equilibrated at 300 K with a 2fs time step in NPT ensemble for 500 ps without any restraint 

and Berendsen barostat28 was used to maintain the pressure at 1bar. The SHAKE29 algorithm 

was used to constrain the bonds of hydrogen atoms in the system. The 2fs time scale and SPFP 

precision model were used for MD runs. In the absence of restraints, a production run of 150 
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ns MD simulations were conducted in an isothermal-isobaric (NPT) ensemble using a 

Berendsen barostat28 at a pressure of 1 bar and a pressure-coupling constant of 2 ps. For every 

1ps time interval, the coordinates were saved and the trajectories were analysed every 1ps. Post 

MD analyses performed include RMSD, RMSF, the radius of gyration, hydrogen-bond 

occupancy, dynamic cross-correlation and principal component analysis (PCA) using PTRAJ 

and CPPTRAJ30 modules in amber 14, as well as residue interaction network (RIN). 

Visualisation of trajectories were done using the molecular modelling tool in chimera.20 The 

results were analysed and plots were generated with aid of origin software31 and Bio3D32 

software respectively.  

1.3 Thermodynamic calculations 

The binding free energy calculation is an important thermodynamic method that gives detailed 

information on the interaction between the ligand and protein.33 It provides understanding of 

the mechanism of binding, including contributions from both enthalpy and entropy to the 

molecular recognition.33 Molecular Mechanics/Generalized-Born Surface Area method 

(MM/GBSA)33 are popular methods used to estimate free energy of the binding of small ligands 

to the biological macromolecule,33 the calculation gives detailed information on the interaction 

between the ligand and protein.33 The binding free energy of wild type and mutant were both 

calculated using MM/GBSA.33 For 150 ns trajectory, 1000 snapshots were considered during 

the calculation of binding free energy. The binding free energy computed by this method can 

be represented by following equations:  

∆Gbind = Gcomplex – Greceptor - Gligand    (1) 

∆Gbind = Egas + Gsol – TS      (2) 

Egas = Eint + EvdW + Eele      (3) 

Gsol = GGB +GSA       (4) 

From the equation above, Egas is the energy of the gas phase, Eint represents internal energy, 

Eele represents coulomb while EvdW are the van der Waals energies. Egas is estimated directly 

from the ffSB24 force field. Gsol which is the solvation free energy can be broken down to polar 

and non-polar forms of contribution. The contribution of polar solvation (GGB) is assessed by 

resolving GGB equation and non-polar solvation (GSA) is determined from the solvent accessible 

surface area, this can be estimated from water probe radius of 1.4 Å with temperature (T) and 
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total solute entropy (S). The MM/GBSA binding free energy method in Amber 14 was used to 

calculate the contribution of each residue to the binding free energy between the inhibitor (UM-

164) and receptors both in wild type and mutant. In addition, the interaction energy 

decomposition analysis per residue was also computed using the same method. 

1.4 Principal component analysis 

Principal component analysis (PCA) also known as essential dynamics of protein16 analysis, is 

a systematic statistical technique applied to reduce the number of dimensions needed to 

describe the protein dynamics16 through the decomposition process that screen observed 

motions from largest to smallest spatial scale.16 The atomic displacement and conformational 

changes of protein can be defined15 using PCA by extracting different modes of the 

conformation of the protein complex during dynamic simulations such as MD simulation. The 

direction of motion (eigenvectors) and the extent of motion (eigenvalues) for the biological 

system can also be determine using PCA. In this study, the trajectories of the complexes from 

150 ns MD simulations were stripped of the solvent molecules and the ions using the CPPTRAJ 

module in Amber 14,30 this was done prior to MD trajectory processing for PCA. Principal 

component analysis was performed on Cα atoms on 1000 snapshots at 100 ps time interval 

each. Using in-house script, the first two principal components (PC1 and PC2) were computed 

and a 2 X 2 covariance matrix were generated using Cartesian coordinates of Cα atoms. PC1 

and PC2 correspond to first two eigenvectors of a covariant matrix. An origin software31 was 

used construct PC plot.  

1.5 Dynamic cross-correlation matrices (DCCM) analysis  

The cross-correlation is a 3D matrix representation that graphically displays time correlated 

information among the residues of the proteins.34 Residue-based time correlated data can be 

analysed using visual pattern recognition. 34, 35 To better understand the dynamics of apo, wild 

type and mutant, a DCCM was generated to determine cross-correlated displacements of 

backbone Cα atoms in the trajectories, using the following equation: 

Cij = ˂ ∆ri * ∆rj ˃ / (˂ ∆r2
i ˃ ˂ ∆r2

j ˃)1/2    (5) 

Where, i and j represent ith and jth residues and ∆ri and ∆rj corresponds to the displacement 

of ith and jth atom from the mean respectively. The coefficient of cross-correlation Cij, varies 

between the range -1 to +1, where the upper and lower limits correspond to strong correlation 

(+) and anti-correlated (-) motions within the period of simulations. The DCCM analysis was 
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carried out using CPPTRAJ module in Amber 14,30 matrices were generated and analysed 

using origin software.31  

2 Results and discussion 

2.1   System stability MD simulations  

In preparation for MD trajectory analysis, RMSD and potential energy fluctuations were 

monitored throughout the MD simulations. RMSD was calculated to assess the stability and 

convergence of the respective systems and the results are presented Figure 3. Systems 

stabilisation and convergence with the maximum fluctuation of 4.25 Å between 0-12500 ps in 

apo system were observed. However, after approximately 25000 ps, the RMSD trajectories 

converged and the fluctuation rested below 2.00 Å. In mutant system, the highest fluctuation 

observed was 2.75 Å, at 15000 ps, after which the fluctuation rested below 2.0 Å. Similarly, in 

wild system the peak RMSD of 3.50 Å was reached at about 5000 ps. The average RMSD of 

1.46 Å and 1.52 Å was observed in apo and mutant systems respectively, while in wild, an 

average RMSD of 1.58 Å was also observed. These account for system stability since a 

standard parameter defining a stable system is an RMSD of 2 Angstroms and below.36  

 

Figure 3. The RMSD plot of apo (black), mutant (red) and wild (green) respectively. 
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2.2    Root mean square fluctuation (RMSF)  

Amino acids are building blocks of proteins37 and play a vital role in conformational features 

of the proten.38 Changes to the protein conformation occurs when there is a chemical reaction 

or mechanical events.38 Therefore, direct interactions of the protein active site residues with a 

ligand may induce conformational changes in protein structure and alter its function. More 

specifically, the conformational changes that occur as a result of ligand-induced motion during 

ligand binding.39 Understanding ligand-induced conformational changes in the protein 

structure are critical to structure-based rational drug design.40 RMSF is a measure of average 

atomic mobility of backbone atoms (N, Cα and C) during MD simulation.41 To understand and 

explore the structural dynamics that take place upon the ligand binding, RMSF of the subject 

systems was calculated from MD trajectories, represented in Figure 4. The core of the protein 

appears to be more rigid compared to the loops (solvent exposed) as shown by RMSF plot.  

 

Figure 4. RMSF plots of apo (apo), mutant (red) and wild-type (green) systems respectively. 
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The highest fluctuations was observed in the loop region “A” involving residues His2, Gln6 

and Ala8, with RMSF values of 4.8 Å, 5.0 Å and 6.0 Å in apo, mutant and wild-type 

respectively. The loop region “B” involving residues Leu26, Leu28 and Cys30 exhibit 

fluctuations with RMSF values of 2.5 Å, 1.5 Å and 3.0 Å in apo, mutant and wild-type systems 

respectively. In loop region “C” involving residues Lys51, Met55 and Glu58 fluctuations was 

observed at RMSF values of 3.5 Å, 2.8 Å and 3.48 Å in apo, mutant and wild-type respectively. 

In a related development, maximum fluctuations were observed in the loop region “D” 

involving residues with Ala161, Gln173 and Cys180 with RMSF values of 5.0 Å, 5.5 Å and 

4.0 Å in apo, mutant and wild-type system respectively. These loops are called activation 

loops42 and are important in the conversion of inactive conformation of Src to the active 

conformation42 after phosphorylation. Therefore, fluctuations exhibited by these loops in apo 

and wild-type reflects on the status of Src, meaning that inactive form of the protein favours 

the binding of UM-164. It is known that UM-164 binds to an inactive conformation of Src3 and 

a switch from inactive conformation to active conformation rigidifies the protein thereby 

reducing the tendency of loop fluctuation.42 Fluctuations in the loops of apo and wild-type 

systems support the experimental evidence which states that UM-164 binds to DFG-out 

inactive conformation of Src.3 However, a decrease in the loops fluctuations observed in a 

mutant structure may be a result of adoption of an active conformation due to a synergy 

between the Thr91 pro-mutation which destabilises the inactive conformation required for UM-

164 binding.  

2.3 Radius of Gyration 

The radius of gyration (RoG) is a moment of inertia of Cα atoms from their centre of mass.43 

It has been applied to gain insight into molecular stability in biological systems during 

molecular dynamic simulations. The RoG of apo, mutant and wild-type systems was evaluated 

and presented in Figure 5. There is no remarkable difference in the average RoG of the three 

systems. The wild-type system exhibits a lower average RoG of 19.47 Å, whereas apo and 

mutant systems had an average RoG of 19.56 Å and 19.71 Å respectively. 

However, the mutant system exhibits a relatively higher average RoG as evident in Figure 5. 

This increase may be a reflection of highly unstable nature of a mutant complex compared to 

wild-type. This agreed with the assumption that a mutation decreases the interaction between 

the amino acids resulting in an unstable moment of inertia.43  



121 
 

 

Figure 5. Radius of gyration plot of Cα of the apo (black), mutant (red) and wild-type (green) protein 

structures respectively. 

2.4    Principal component analysis (PCA)  

Protein conformation has been recognised as one of the important features in the determination 

of biological function,44 and PCA is one of the principal tools used in determining the flexibility 

of each atom during a simulation.45 Figure 6 represents PCA plots of the three systems in this 

study. Herein, a clustering method of principal components (PC) was adopted because of its 

ability to describe different conformational states sampled during a simulation by grouping 

molecular structures into a subset based on their conformational similarities.46 The percentage 

variability or total mean square displacement of atom’s positional fluctuation captured in each 

dimension is characterised by their corresponding eigenvalue.47 This method of PCA was used 

to assess major conformational changes in apo, mutant and wild-type systems during 150 ns 

MD simulations. In order to gain insight into motions associated with conformational 

behaviour of the subject systems, the systems were projected along the first two principal 

components (PC1 vs PC2) or eigenvectors direction. The PCA plot in Figure 6 shows different 

and detailed waves of conformation in important subspace along the two principal components.  
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Figure 6. PCA projection of C-α atoms motion constructed by plotting the first two principal 

components (PC1 and PC2) in conformational space with apo (black), mutant (red) and wild-type 

(green) colours respectively. 

In the PCA plots of the three systems, a distinct separation of motion was observed in the three 

respective systems. However, a more correlated motion is observed in the wild type system 

along the two principal components PC1 and PC2 compared to mutant and apo with relatively 

less correlated motion along PC1 and PC2 respectively. The apo system appears to be more 

flexible than mutant and wild-type, suggesting that the binding of UM-164 to the protein 

induces conformational dynamics reflected in the PCs as a wave of motion. Similarly, the 

binding of UM-164 to the mutant protein impact less dynamic effect on the protein compared 

to a wild-type. A decrease in fluctuation observed in a wild-type system is a mark of UM-164 

impact on the protein. In the mutant system, however, less rigidity was observed compared to 

a wild-type system this could be due to mutation-induced conformational changes. 

2.5 Dynamic cross-correlation matrices (DCCM) analysis 

To further examine the conformational changes of receptor upon mutation, DCCM analysis 

was conducted on the positions of the Cα atoms throughout the simulations to determine the 

presence of correlated motions (Figure 7). The correlated motions (highly-positive) of specific 
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residues are represented as a yellow-red (colour) region, whereas, anti-correlated (highly-

negative) movement of specific residues are represented as blue-black (colour) regions. The 

three systems herein exhibited overall correlated residual motions relative to anti-correlated 

motions. DCCM analysis shows that binding of UM-164 alters the structure conformation of 

c-Src as reflected by changes in the correlated motions and dynamics. In apo conformation 

(Figure 7 A) Met94 correlates with Ser95, while Ala156 slightly correlates with Val155 and 

Asp157. Anti-correlated residual motions in apo occur between residues 200 - 280 compared 

to wild-type and mutant with variable correlated and anti-correlated motions. 

 

Figure 7. Cross-correlation matrices of the C-α atoms fluctuations in apo (A), 

mutant (B) and wild-type (C) 

The wild-type exhibits two prominent correlated regions (Figure 7 C), namely; residue 1-95 

strong correlated region, whereas 122-160 slight correlated region. These regions are among 

the most dynamic regions in the receptor and most hydrophobic active site residues lie within 
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these regions. Similarly, in the mutant system relative to the wild-system, correlated motions 

slightly decreases between residues 1-95 where mutation occurred whereas anti-correlated 

motion increases between residues 180-280. This phenomenon suggests the occurrence of 

mutation induced residue dynamics that may have resulted in conformational changes in the 

protein.  

2.6   Hydrogen bond formation between amino acid residues 

Hydrogens (H-bonds) are universal in nature, they play a central role in biological systems and 

maintenance of the protein structural integrity,48 protein-ligand interaction and catalysis.48 H-

bonds are facilitators of protein-ligand binding,48 therefore, the formation of hydrogen bond 

between amino acid residues is key to the monitoring of protein conformation. Sequel to this, 

we investigate hydrogen bond formation during the course of the simulations. Figure 8 shows 

a hydrogen bond formation over time during simulations of the respective systems. 

 

Figure 8. Number of hydrogen bond formation during simulation over time between 

apo, mutant and wild-type systems. 

The mutant system exhibited a lower average H-bond (142.15) formation during a simulation 

compared to the wild-type and apo systems with average H-bond formations of 148.58 and 
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146.31 respectively. The decrease in H-bond formation observed in the mutant system could 

be a result of H-bond destabilisation caused by the mutation in the mutant system. Threonine 

is a small hydrophilic amino acid which is highly conserved in the core of the protein, it forms 

a H-bond with UM-164. Mutation of this residue to a large hydrophobic amino acid 

(methionine) induces local changes in the conformation of the protein leading to loss of H-

bond between oxygen atom of thrionine91 and nitrogen (N21) of UM-164 as shown in Figure 

10. The reduction in H-bond formation leads to structural imbalances and conformational 

dynamics which eventually affect drug binding.48  

To further investigate the relative stability of wild-type, mutant and apo systems, H-bond 

distance and occupancy of the active site residues in the respective systems were monitored 

throughout the course of simulations and the results are presented in Table 1.  

  



126 
 

Table 1. Hydrogen Bond Occupancy of interactive active site residues of wild-type, mutant and apo 

systems. 

H-bond 

acceptor 

H-bond donor Frame 

number 

Occupancy 

(%) 

Average 

distance (Å) 

Average angle 

(degree) 

Wild type 

Ala46@O Thr91@H 129860 88 2.83 161 

Met94@O UM-164@H56 131304 85 2.84 159 

Val34@O Leu26@H 128546 85 2.81 155 

Leu146@O Lys154@H 94939 63 2.87 162 

Glu63@O Met67@H 79596 53 2.87 162 

Lys48@O Ile89@H 56321 37 2.90 161 

Val155@O Val76@H 40569 27 2.90 156 

Leu26@O Leu163@H 37529 25 2.87 161 

Mutant 

Met94@O UM-164@H56 131304 87 2.82 159 

Val34@O Leu26@H 124614 83 2.80 154 

Ala46@O Met91@H 132292 72 2.87 161 

Leu146@O Lys154@H 82337 54 2.87 162 

Lys48@O Ile89@H 77791 51 2.89 161 

Ser95@O UM-164@H45 64287 42 2.83 159 

Glu63@O Met67@H 40877 27 2.89 162 

Val155@O Val76@H 24961 16 2.91 155 

Apo 

Val34@O Leu26@H 106510 70 2.84 153 

Thr91@O Ala46@H 83764 55 2.88 161 

Lys48@O Ile89@H 77496 51 2.88 162 

Glu63@O Met67@H 72287 48 2.87 162 

Val155@O Val76@H 61045 40 2.88 158 

Asp157@O Asn144@H 54932 36 2.84 165 

Leu26@O Arg172@HH12 34006 22 2.82 154 

Met94@O Gly97@H 8882 5 2.91 151 
Note: A = Angstrom; % = Percentage 

In a wild-type system, Thr91 exhibit highest H-bond occupancy of 88% with an average H-

bond distance of 2.83 Å. This remarkable high H-bond occupancy signifies the importance of 

Thr91 to the conformational state of the protein. Within the same system, maximum H-bond 

occupancy of 85% was observed between oxygen atom Met94 and H56 atom of UM-164. 

Similarly Val34 with an average H-bond distance of 2.84 Å exhibit H-bond occupancy of 85%. 

Lys48 and VaL155 exhibit the highest average H-bond distance of 2.90 Å each with relatively 

low H-bond occupancy of 37% and 27% respectively. The H-bond occupancy and distance 

account for the relative contribution of these residues to the stability of the wild system. 

However, in mutant system Met91 exhibit H-bond occupancy of 72% with an average H-bond 
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distance of 2.87 Å, this is contrary to the position of threonine in a wild-type system. A decrease 

in occupancy and increase H-bond distance in the mutant system may be attributed to the 

hydrophobic nature and steric effect of threonine which may greatly affect drug binding. The 

apo system has Met94 with maximum average H-bond distance of 2.91 Å and the least H-bond 

occupancy of 5%, while Val34 had a minimum average H-bond distance of 2.84 Å and a 

highest H-bond occupancy of 70%. Generally, the wild-type system exhibits highest H-bond 

occupancy compared to mutant and apo demonstrating relative stability of the system.  

2.7 Binding free energy and energy decomposition analysis  

Molecular Mechanics/Generalized-Born Surface Area (MM/GBSA) method49 is a popular 

approach used to estimate the binding free energy of small ligands to biological 

macromolecules.49 This method was used to estimate the total binding energy of UM-164 to 

wild-type and mutant proteins as presented in Table 2.  

Table 2. MM/GBSA-based binding free energy profile of UM-164 bound to wild-type and UM-164 

bound to mutant protein. 

∆Gbind ∆Eele ∆EvdW ∆Ggas ∆Gsol 
Wild-type 

-82.293±4.320 -121.874±13.653 -83.311±3.332 -205.184±13.836 122.890±12.879 

Mutant 

-68.877±4.258 -98.718±13.652 -75.741±3.543 -174.455±14.017 105.577±12.924 

 Notes: ΔEele = electrostatic energy; ΔEvdW = van der Waals energy; Gbind = calculated total binding free energy; 

Gsol = solvation free energy. 

The result of energy decomposition analysis revealed that the estimated binding free energy is 

higher in wild-type (-82.293 kcal/mol) compared to mutant (-68.877 kcal/mol). The difference 

in binding energy (-13.416 kcal/mol) between wild-type and mutant is quite significant, 

meaning that the force of interactions contributes higher energy in the binding of UM-164 to 

Src in wild-type compared to the mutant. Generally, hydrophobic packing contributes 

significantly to binding free energy in wild-type and mutant systems owing to multiple number 

of aromatic and hydrophobic rings (UM-164) within the conformational space, as well as a set 

of hydrophobic residues around the binding pocket. However, a decrease in energy contribution 

of interacting forces in a mutant system compared to a wild-type system signifies a remarkable 

decrease in the potency of UM-164 in the mutant system. Therefore, thr91mutation in Src is 

likely to cause resistance to UM-164. 
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2.7.1 Per-residue energy decomposition analysis 

To assess the energy contribution of individual active site residues to the total binding free 

energy, and to provide a molecular understanding of the impact of protein dynamics on the 

degree of different binding forces, per-residue energy decomposition analysis was conducted 

and the energy values are represented in Table 3.  

Table 3. Decomposition of the relative binding free energies on a per-residue basis for 

Wild-type and mutant systems. 

Residues ∆Evdw ∆ele ∆Gpolar ∆Gnon-polar ∆Gbinding 

Wild-type 
Met94 -1.244±0.612 -6.662±0.838 4.548±0.616 -0.070±0.020 -3.718±0.575 

Thr91 -1.670±0.471 -2.174±0.702 1.106±0.303 -0.147±0.022 -2.885±0.684 

Lys48 -2.438±0.450 8.176±1.417 -8.449±1.847 -0.159±0.018 -2.871±1.269 

Phe158 -2.330±0.398 -0.294±0.398 0.277±0.293 -0.120±0.029 -2.467±0.488 

Asp157 -2.425±0.509 -9.667±0.923 9.924±1.031 -0.207±0.023 -2.374±0.548 

Leu146 -2.077±0.258 0.724±0.132 -0.825±0.115 -0.174±0.023 -2.353±0.279 

Met67 -2.137±0.340 -0.388±0.416 0.400±0.260 -0.176±0.031 -2.301±0.402 

Tyr93 -2.418±0.381 -1.580±0.950 1.872±0.760 -0.169±0.041 -2.296±0.556 

Leu26 -2.169±0.414 -0.371±0.258 0.644±0.316 -0.242±0.067 -2.139±0.406 

Gly97 -1.456±0.343 -0.042±0.527 -0.089±0.454 -0.137±0.026 -1.724±0.555 

Mutant 
Met94 -0.890±0.174 0.595±0.166 -0.606±0.143 -0.005±0.007 -0.906±0.165 

Met91 -2.097±0.417 0.423±0.369 -0.146±0.186 -0.198±0.032 -2.018±0.426 

Lys48 -1.092±0.296 7.093±0.843 -6.902±0.993 -0.133±0.033 -1.034±0.507 

Phe158 -1.804±0.344 -0.345±0.252 0.553±0.161 -0.226±0.049 -1.822±0.363 

Asp157 -1.264±0.205 -7.132±0.781 7.641±0.861 -0.154±0.037 -0.909±0.264 

Leu146 -1.740±0.271 0.221±0.077 -0.269±0.060 -0.162±0.027 -1.950±0.200 

Met67 -1.637±0.346 0.168±0.516 0.095±0.202 -0.180±0.045 -1.553±0.493 

Tyr93 -1.981±0.377 -0.966±0.772 1.646±0.659 -0.143±0.035 -1.444±0.466 

Leu26 -2.297±0.351 0.351±0.119 -0.243±0.095 -0.317±0.036 -2.507±0.365 

Gly97 -0.513±0.087 -0.630±0.064 0.609±0.051 -0.015±0.008 -0.549±0.092 

Notes: ΔEele = electrostatic energy (kcal/mol); ΔEvdW = van der Waals energy (kcal/mol); ΔGpolar (kcal/mol) = polar 

solvation energy (kcal/mol); ΔGnonpolar (kcal/mol) = nonpolar solvation energy (kcal/mol); ΔGbinding (kcal/mol) = total 

binding free energy (kcal/mol). 

The binding free energy was decomposed into the unit contributions of each active site residue 

of wild-type and mutant protein structure, represented graphically in Figure 9. In a wild-type 

structure, all the active site residues listed in Table 4 contribute relatively high binding free 

energy with an exception of Gly97 (-1.724 kcal/mol) which has a less significant contribution 

compared to other active site residues of the wild-type. However, Met94 in a wild-type system 

has the highest binding free energy contribution relative to other active site residues in mutant 



129 
 

and wild-type systems. Therefore, Met94 can be regarded as a very important residue in the 

binding of UM-164 to Src. The presence of multiple benzene rings in UM-164 contributes to 

the observed hydrophobic interaction with active site residue in both wild-type and mutant 

systems as represented in Figure 10. In the mutant system, energy contributions from the active 

site residues were drastically reduced except for Leu26 with a total binding of energy of -2.507 

kcal/mol compared to -2.139 kcal/mol in a wild-type system. Threonine (Thr91) in the wild-

type system exhibits high electrostatic energy of -2.174 kcal/mol and total binding energy of -

2.885 kcal/mol relative to Methionine (Met91) in a mutant system with a relatively low 

electrostatic energy contribution of 0.423 kca/mol and a total binding energy of -2.018 

kcal/mol. However, the van der Waals energy contribution from Met91 (-2.097 kcal/mol) in 

the mutant is relatively more than the contribution from Thr91 (-1.670 kcal/mol) in a wild-type 

system. This may be due to a shift from hydrogen bond interaction of Thr91 to the hydrophobic 

interaction of Met91 in wild-type and mutant systems respectively. 

On a close assessment of per-residue energy contribution, the observed significant decrease in 

total binding free energy from wild-type to mutant is a signal to eminent resistance to UM-164 

in an event that Src undergoes mutation. 

 

Figure 9. The per-residue energy decomposition analysis graph of wild-type (A) and mutant (B) Src. 
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Figure 10. The interactive residues of wild-type (A) and mutant (B) Src complexed with  

UM-164. 

2.8 Residue interaction networks (RINs) 

Amino acids are an essential components of the biological system with a well-defined network 

of interaction. The molecular interactions of these amino acids vary among the body tissues 
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and are coded for by the genes, therefore an alteration in the gene sequence affect the network 

of the interaction of amino acids. This is particularly true when a mutation occurs, as a result 

the protein sequence is re-written and there is an alteration in the network of amino acids. 

Mutation can affect protein folding and stability,50 protein function and protein-protein 

interaction.50 Therefore an investigation of residue interaction network is imperative to the 

understanding of the impact of the mutation on the protein. Herein, residue interaction network 

analysis of protein backbone was used to explore differences in the network of proteins 

including the wild-type and mutant. This way, we investigate the relationship between key 

residues of the wild-type and mutant Src structures by generating residue interaction networks 

using fully-minimised structures from 150 ns MD simulations. RINs plot is presented in Figure 

11. 
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Figure 11. Comparative residue interaction network of wild-type (A) and mutant (B) protein Src 

structures complexed with UM-164 highlighting the changes in residue network interaction at point 

91. 
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On a close examination of RIN, it is evident that the mutation distorted the overall residue 

network in a mutant compared to a wild-type structure. Residues interacting with Thr91 in a 

wild-type system (Figure 11 A) within the network space are different from the residues 

interacting with Met91 in a mutant system (Figure 11 B). In a wild-type, Thr91 interacts with 

Ala46 and Val76, while in a mutant, Met91 interacts with Ala46, His2, Leu160 and Gln4. In a 

related development, it was observed that Thr91 is involved mainly in H-bond interaction, 

while Met91 is involved in multiple van der Waal interactions. These changes in the network 

of interaction affect the drug binding landscape and consequently decrease the potency of UM-

164 in mutant Src protein. 

1   Conclusion  

Currently, molecular understanding of Src resistance to the experimental drug UM-164 is 

lacking in the literature. Herein, we used different computational approaches aimed at 

providing multidimensional insight into Src resistance to UM-164. Molecular dynamic 

simulation, principal component analysis (PCA), dynamic cross-correlation matrices (DCCM) 

analysis, hydrogen occupancy, thermodynamics calculation and residue interaction network 

(RIN) led us to the findings that provide adequate information on the impact of the mutation 

on drug resistance.  

These findings revealed that thr91 mutation decrease the capacity of loops to fluctuate; distort 

the ligand optimum orientation on the conformational space of Src; decrease the hydrogen 

overall hydrogen bond formation in the mutant protein; decrease the drug binding energy of 

UM-164 by -13.416 kcal/mol; decrease the residue correlation in mutant system; change the 

overall protein structure conformation from inactive to active conformation; distort ligand 

atomic interaction network and residue interaction network. These findings agreed with 

reported effect of the Src mutation on the binding of some kinase inhibitors such Imatinib and 

provide atomistic insight into the impact of the mutation on drug binding. These findings can 

provide important insights that will assist in the further design of novel dual kinase inhibitors 

to eliminate the chances of drug resistance in triple negative breast cancer.   
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Abstract 

In the past, metal-based compounds were widely used in the treatment of disease conditions, 

but the lack of clear distinction between the therapeutic and toxic doses was the major 

challenge. With the discovery of cisplatin by Barnett Rosenberg in 1960, a milestone in the 

history of metal-based compounds used in the treatment of cancers was witnessed. This forms 

the foundation for the modern era of the metal-based anticancer drugs. Platinum drugs, such as 

cisplatin, carboplatin and oxaliplatin are the mainstay of the metal-based compounds in the 

treatment of cancer, but the delay in the therapeutic accomplishment of other metal-based 

compounds hampered the progress of research in this field. Recently, however, there has been 

an upsurge of activities relying on the structural information, aimed at improving and 

developing other forms of metal-based compounds, and non-classical platinum complexes 

whose mechanism of action is distinct from known drugs such as cisplatin. In line with this, 

many more metal-based compounds have been synthesized by redesigning the existing 

chemical structure through ligand substitution or building the entire new compound with 

enhanced safety and cytotoxic profile. However, because of increased emphasis on the clinical 

relevance of metal-based complexes, few of these drugs are currently on clinical trial and many 

more are awaiting ethical approval to join the trial. In this study, we seek to give an overview 

of previous reviews on the cytotoxic effect of metal-based complexes while focusing more on 

newly designed metal-based complexes and their cytotoxic effect on the cancer cell lines, as 

mailto:soliman@ukzn.ac.za
http://soliman.ukzn.ac.za/
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well as new approach to metal-based drug design and molecular target in cancer therapy. We 

are optimistic that the concept of selective targeting remains the hope of the future in 

developing therapeutics that would selectively target cancer cells and leave healthy cells 

unharmed. 

Keywords:  Cancer, DNA, platinum, metal complexes, apoptosis, selective target.  

1 Introduction  

Therapeutic potentials of metal-based compounds date back to ancient time.1 During this 

period, the ancient Assyrians, Egyptians and Chinese knew about the importance of using 

metal-based compounds in the treatment of diseases1, such as the use of cinnabar (mercury 

sulphide) in the treatment of ailments.1 The advent of “theoretical science,” by Greek 

philosophers (Empedocles and Aristotle) in 5th and 4th century BC1, boosted the knowledge of 

metal-based compounds as a therapeutic agents. This was supported by the information handed 

down by Pliny and Aulus Cornelius Celsus (Roman physician) on the use of cinnabar in the 

treatment of trachoma and venereal diseases.1 In 9th and 11th century, the contributions of 

ancient scientists such as Rhazes (Al-Razi) and Avicenna (Ibn Sina) was applauded1. This is a 

sequel to the discovery of toxicological effects of mercury in the animals and the use of mercury 

(quicksilver ointment) for skin diseases respectively. 

Arsenic trioxide (ATO) was used as an antiseptic2 and in the treatment of rheumatoid diseases, 

syphilis and psoriasis by traditional Chinese medical practitioners2. Certainly, arsenic trioxide 

was among the first compounds suggested for use in the treatment of leukaemia3 during 18th 

and 19th century, until in the early 20th century when its use was replaced by radiation and 

cytotoxic chemotherapy.3 Therapeutic use of gold and copper can be traced to the history of 

civilization,4 where the Egyptians and Chinese were famous users in the treatment of certain 

disease conditions, such as syphilis.4 The discovery of platinum compound (cisplatin) by 

Barnett Rosenberg in 1960s5 was a milestone in the history of metal-based compounds used in 

the treatment of cancer.6 This forms the foundation for the modern era of the metal-based 

anticancer drug.5 Despite the wide use of the metal-based compounds, the lack of clear 

distinction between the therapeutic and toxic dose was a major challenge. This was so because 

practitioners of ancient time lack adequate knowledge of dose-related biological response.7 The 

advent of molecular biology and combinatorial chemistry pave the way for the rational design 

of chemical compounds to target specific molecules.7  
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Generally, metals are essential components of cells chosen by nature.8 They are frequently 

found in the enzyme catalytic domain9 and are involved in multiple biological processes, from 

the exchange of electrons to catalysis and structural roles.9 They are extensively used in cellular 

activities9. Such metals include gallium, zinc, cobalt, silver, vanadium, strontium, manganese, 

and copper, which are required in trace amounts to trigger catalytic processes.10  To this end, a 

balance between cellular need and the amount available in the body is important for the normal 

physiological state. Comparatively, metals including nickel, cadmium, chromium and arsenic 

can induce carcinogenesis, hence less beneficial to the body10. These limitations have triggered 

a search for platinum-based compounds that shows lower toxicity, higher selectivity and a 

broader spectrum of activity.8,11,12 Platinum(II) complexes such as carboplatin and oxaliplatin 

as well as other platinum analogues are the products of this search (Figure 6). Other metal 

complexes containing ions such as zinc(II), gold, and copper chelating agents have received 

considerable interest as anticancer agents.8,13 Recently, the chemistry of ruthenium and gold-

based compounds have received intensive scrutiny, due to renewed interest in providing an 

alternative to cisplatin, because of their promising cytotoxic and potential anticancer 

properties.4,14,15 

Nevertheless, metal-based compounds, especially transition metals exhibit definite properties 

including their potential to undergo a redox reaction.5 Therefore, metals and their redox 

activities are tightly regulated to maintain normal wellbeing.5-21 

 Recently, there is a growing demand for metal-based compounds in the treatment of cancer. 

This may be due to the scourge of cancer and to the greater extent the level of in vitro cytotoxic effect 

exhibited by metal-based compounds particularly those that are synthesized recently. In addition, 

ligand substitution and modification of existing chemical structures led to the synthesis of a 

wide range of metal-based compounds, some of which have demonstrated an enhanced 

cytotoxic and pharmacokinetic profile. Again, a different approach of cytotoxic drug design is 

recently been adopted. This involves conjugating metallic compounds with bile acid, steroid, 

peptide or sugar to allow direct drugs delivery to the cancer cell thereby circumventing some 

pharmacokinetic challenges. The objective of this review is to provide an overview of previous 

reviews on the cytotoxic effects of metal-based compounds while focusing more on newly 

designed metal-based compounds and their cytotoxic effect on the cancer cell line, as well as 

new approach to metal-based drug design in cancer therapy  
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2 Properties of metal complexes and metal-based compounds  

Transition metals form member elements of the “d” block and are included in groups III-XII 

of the periodic table.22 They form unique properties which include: 

2.1 Charge variation.  

In aqueous solution, metal ions exist as positively charged species. Depending on the existing 

coordination environment, the charge can be modified to generate species that can be cationic, 

anionic, or neutral.23 Most importantly, they form positively charged ions in aqueous solution 

that can bind to negatively charged biological molecules.8  

2.2 Structure and bonding.  

Relative to organic molecules, metal complexes can aggregate to a wide range of coordination 

geometries that gives them unique shapes. The bond length, bond angle, and coordination site 

vary depending on the metal and its oxidation state.23 In addition to this, metal-based 

complexes can be structurally modified to a variety of distinct molecular species that confer a 

wide spectrum of coordination numbers and geometries, as well as kinetic properties that 

cannot be realised by conventional carbon-based compounds.8,24,25  

2.3 Metal – ligand interaction.  

Different forms of metal-ligand interaction exist, however, these interactions usually lead to 

the formation of complexes that are unique from those of individual ligands or metals. The 

thermodynamic and kinetic properties of metal – ligand interactions influence ligand exchange 

reactions.23 The ability of metals to undergo this reaction offers a wide range of advantage for 

the metals to interact and coordinate with biological molecules.8  

2.4 Lewis acid properties.  

Characterised by high electron affinity, most metal ions can easily polarize groups that are 

coordinated to them, thus facilitating their hydrolysis.8,23 

2.5 Partially filled d-shell.  

For transition metals, the variable number of electrons in the d-shell or f-shell (for lanthanides) 

influence the electronic and magnetic properties of transition metal complexes.23  
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2.6 Redox activity.  

Many transition metals have a tendency to undergo oxidation and reduction reaction.23 The 

oxidation state of these metals is an important consideration in the design of the coordination 

compound. In biochemical redox catalysis, metal ions often serve to activate coordinated 

substrates and to participate in redox-active sites for charge accumulation.  

Metal complexes and metal-based compounds possess the ability to coordinate ligands in a 

three-dimensional configuration, thereby allowing functionalization of groups that can be 

shaped to defined molecular targets.8   

3 The scope of metal complexes in the treatment of cancer 

Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest mainly 

because metals exhibit unique characteristics, such as redox activity, variable coordination 

modes and reactivity towards the organic substrate.8 These properties become an attractive 

probe in the design of metal complexes8 that will selectively bind to the biomolecular target 

with resultant alteration in cellular mechanism of proliferation. Table 1 below provides a 

summary of in vitro cytotoxic effect of various metal-based compounds within the period of 

six years with particular reference to their proposed mechanism of action and target. 
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Table 1. An update on the anticancer activities of metal-based complexes (2010-2016) 

Metal complexes Molecular formula Proposed Mechanism  

of Action 

Target enzymes/cell 

lines/Therapeutic 

indications 

IC50 Range (µM) 

Carbene- metal complexes and related ligands 

Novel Gold(I) and 

Gold(III) –N 

Heterocyclic carbenes 

complexes26 

C52H44Au2N12P2F12 

C26H24AuCl2OF6N6P` 

 

Induction of apoptosis 

 

Inhibition of 

Thioredoxin reductase 

(TrxR)26 

 

Induction of  reactive 

oxygen species 

(ROS)26 

Thioredoxin reductase. 

A549, HCT 116, 

HepG2, MCF7 

 

Chemotherapy of solid 

tumours.26 

 

 

C52H44Au2N12P2F12 

5.2 ± 1.5 (A549) 

3.6 ± 4.1 (HCT 116) 

3.7 ± 2.3 (HepG2) 

4.7 ± 0.8 (MCF7)26 

C26H24AuCl2OF6N6P` 

5.2 ± 3.0 (A549) 

5.9 ± 3.6 (HCT 116) 

5.1 ± 3.8 (HepG2) 

6.2 ± 1.4 (MCF7)26 

Caffeine-Based 

Gold(1) N-

Heterocyclic carbenes27 

[Au(Caffeine-2- 

yielding)2][BF4]27 

Inhibition of protein 

poly-(adenosine 

diphosphate (ADP)- 

ribose) polymerase 1 

(PARP-1)27 

DNA 

A2780, A2780R, 

SKOV3, A549 and 

HEK-293T 

0.54 – 28.4 (A2780) 

17.1– 49 (A2780/R) 

0.75 – 62.7 (SKOV3) 

5.9 – 90.0 (A549) 

0.20 – 84 (HEK-293T) 

Ester- and Amide-

Functionalized 

Imidazole of N-

Heterocyclic Carbene 

Complexes28 

 

{[ImA]AgCl} 

{[ImA]AuCl} 

{[ImB]2AgCl 

{[ImB]AuCl 

 

HImACl = [1,3-bis(2-

ethoxy-2-oxoethyl)-1H-

imidazol- 

3-ium chloride] 

 

Inhibition of tyrosine 

by gold(I) NHC 

ligands thereby 

targeting TrxR.28 

CuNHC arrest cell 

cycle progression in 

GI phase.28 

Anticancer activity of 

Ag1NHC is based on 

TrxR.28 

A375, A549, HCT-15 

MCF-7 

 

Human colon 

adenocarcinoma,28 

Leukaemia and breast 

cancer.28 

 

{[ImA]AgCl} 

24.65 (A375) 

22.14 (A549) 

20.32 (HCT-15) 

21.14 (MCF-7) 

{[ImA]AuCl} 

44.64 (A375) 

42.37 (A549) 

41.33 (HCT-15) 
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HImBCl = {1,3-

bis[2(diethylamino)- 

2-oxoethyl]-1H-

imidazol-3-ium chloride} 

highly lipophilic 

aromatic substituted 

carbenes.28 

38.53 (MCF-7) 

{[ImB]2AgCl} 

24.46 (A375) 

16.23 (A549) 

14.11 (HCT-15) 

15.31 (MCF-7)28 

Novel Ruthenium(II) 

N-Heterocyclic 

carbenes29 

[(η6 –p-cymene)2 

Ru2(Cl2)2] NHC 

 

Mimic iron.30 

Interact with plasmidic 

DNA30 

DNA-as target 

Caki-1, MCF-7 

Chemotherapy of solid 

tumour31 

13-500 (Caki-1) 

2.4-500 (MCF-7)29 

Caffeine derived 

Rhodium(I) N-

Heterocyclic carbene 

complexes32 

[Rh(I)Cl(COD)(NHC)] 

complexes 

Inhibition of TrxR.32 

Increase in reactive 

oxygen species (ROS) 

formation.32 

DNA damage.32 

Cell cycle arrest.32 

Decrease mitochondria 

membrane potential.32 

TrXR32 

MCF-7, HepG2 MDA-

MB-231, HCT-116, 

LNCaP, Panc-1 and 

JoPaca-1 

Chemotherapy of solid 

tumour32 

84 (HepG2) 

20 (HCF-7) 

23 (MDA-MB-231) 

35 (JoPaca-1) 

49 (Panc-1) 

80 (LNCaP) 

9.0 (HCT116)32 

 

 

N- Heterocyclic 

carbene- Amine Pt(II) 

complexes33 

NHC (PtX2)-amine 

complexes33 

 

Nuclear DNA 

platination.33 

Target DNA33 

 

KB3-1, SK-OV3, 

OVCAR-8, MV-4-11, 

A2780, A2780/DPP 

 

Chemotherapy of solid 

and non-solid 

tumours33 

2.5   (KB3-1) 

4.33 (SK-OV3) 

1.84 (OVCAR-8) 

0.60 (MV-4-11) 

4.00 (A2780) 

8.5  (A2780/DPP)33 
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2-Hydroxy-3- 

(hydroxyamino)-4-

oxopentan-2 

ylidene)benzohydrazid

e derivatives34 

 

[(HL)Cu(OAc)(H2O)2]⋅H
2O C14H21 N3O9Cu 

 

Bind to DNA34 Target DNA34 

 

HepG2 

 

Chemotherapy of solid 

tumours34 

2.24-6.49 (HepG2)34 

Molybdenum(II) allyl 

dicarbonate 

complexes35 

[Mo(allyl)(CO)2(N-

N)(py)]PF6 

 

DNA fragmentation35 

Induction of 

apoptosis35 

Target DNA35 

 

NALM-6 

MCF-7 

HT-29 

 

Chemotherapy of solid 

and non-solid 

tumours35 

1.8-13 (NALM-6) 

2.1-32 (MCF-7) 

1.8-32 (HT-29)35 

Metal-Arene complexes and other ligands 

Ruthenium(II)-Arene 

complex36 

[(η6- arene)RuII (en)Cl]+ 

 

DNA damage36 

 

Cell cycle arrest36 

 

Induction of 

apoptosis36 

Target DNA 

AH54 and AH63 

Chemotherapy of 

colorectal cancer36 

C15H18ClF6N2PRu 

16.6 (AH54)36 

C16H2OClF6N2PRu 

10.9 (AH63)36 

Novel Ruthenium-

arene pyridinyl 

methylene complexes37 

[(η6-p-cymene)RuCl 

(pyridinylmethylene) 

DNA binding37 Target DNA37 

MCF-7 and HeLa 

Chemotherapy of solid 

tumour37 

07.76-25.42 (MCF-7) 

07.10-29.22 (HeLa)37 
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Multi-targeted 

organometallic 

Ruthenium(II)-arene38 

[(η6 –p-cymene) 

RuCl2]2-poly ADP-

ribose polymerase 

(PARP) and PARP-1 

inhibitors38 

 

DNA binding38 

PARP-1 inhibition38 

Transcription 

inhibition38 

 

Target DNA38 

A549, A2780, 

HCT116, HCC1937 

and MRC-5 

Chemotherapy of solid 

tumours38 

85.1-500  (A549) 

38.8-500   (A2780) 

46.0-500   (HCT116) 

93.3-500  (HCC1937) 

143-500   (MRC-5)38 

Ruthenium(II)-arene 

complexes with 2-

Aryldiazole ligands39 

[(η6- arene)RuX(k2 -N,N-

L)]Y 

 

DNA binding39 

Inhibition of CDK1 

Target DNA39 

A2780, A2780cis, 

MCF-7 and MRC-5 

Chemotherapy of solid 

tumours 

11-300 (A2780) 

11-34  (A2780cis) 

26-300 (MCF-7) 

25-224 (MRC-5)39 

Osmiun(II)-arene 

carbohydrate base 

anticancer compound40 

Osmium(II)-bis 

[dichloride( η6-p- 

cymene) 

 

DNA binding40 Target DNA40 

 

CH1, SW480 and 

A549 

50-746  (CH1) 

215-640 (SW480) 

640        (A549)40 

Ruthenium(II)-arene 

complexes with 

carbosilane 

methallodendrimers41 

Gn-[NH2Ru(η6 –p-

cymene)Cl2]m 

 

Interaction with 

DNA41 

Interaction with 

Human Serum 

Albumin (HSA)41 

Inhibition of 

cathepsin-B41 

Target DNA41 

HeLa, MCF-7, HT-29 

MDA-MB-231 and 

HEK-239T 

Chemotherapy of solid 

and non-solid 

tumours41 

6.3-89    (HeLa) 

2.5-56.0 (MCF-7) 

3.3-41.7 (HT-29) 

4-74 (MDA-MB -231) 

5.0-51.9(HEK-239T)41 

Ruthenium(II) 

complexes with 

aroylhydrazone 

ligand42 

[Ru(η6-C6H6)Cl(L)] 

 

Induction of 

apoptosis42 

Fragmentation of 

DNA42 

Target DNA42 

MCF-7, HeLa, 

NIH-3T3 

Chemotherapy of solid 

tumour42 

10.9-15.8 (MCF-7)42 

34.3-48.7 (HeLa) 

152.6-192 (NIH-3T3) 

Cyclopentadienyl complexes and other ligands 
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Iridium(III) complexes 

with 2-phenylpyridine 

ligand43 

[(η5 -Cp*)Ir(2- (R′-

phenyl)-R-pyridine)Cl 

 

Interaction with DNA 

nucleobases43 

Catalysis of NADH 

oxidation43 

Target DNA43 

A2780, HCT-116, 

MCF-7 and A549 

Chemotherapy of solid 

tumour43 

1.18-60 (A2780) 

3.7-57.3 (HCT-116) 

4.8-28.6 (MCF-7) 

2.1-56.67 (A549)43 

New iron(II) 

cyclopentadienyl 

derivative complexes44 

 

[Fe(η5-C5H5)(dppe) 

L][X] 

Interaction with 

DNA44 

Induction of 

apoptosis44 

Target DNA 

HL-60 

Chemotherapy of non-

solid tumours44 

0.67-5.89 (HL-60) 

 

Ruthenium(II) 

cyclopentadienyl 

complexes with 

carbohydrate ligand45 

[Ru(η5-C5H5)(PP) 

(L)][X] 

 

Induction of 

apoptosis45 

Activation of caspase-

3 and -7 activity45 

HCT116CC, HeLa 

 

Chemotherapy of solid 

tumours45 

0.45 (HCT116CC) 

 

3.58  (HeLa)45 

 

Ruthenium(II) 

cyclopentadienyl 

complexes with 

phosphane co-ligand45 

[Ru(η5-C5H5)(PP) 

(L)][X] 

 

Induction of 

apoptosis45 

 

HeLa 

Chemotherapy of solid 

tumour45 

2.63 (HeLa)45 

OrganoIridium 

cyclopentadienyl 

complexes46 

[(η5-Cpx )Ir (L∧L′ )Z ] 

 

Intercalation of DNA46 

Coordinate with DNA 

guanine46 

HeLa 

Chemotherapy of solid 

tumour46 

0.23 (HeLa)46 
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Several metal-based compounds have been synthesised with promising anticancer properties, 

some of which are already in use in clinical practice for diagnosis and treatment while some 

are undergoing clinical trials. Metal-based compounds synthesised recently are products of 

drug design targeted at achieving a specific objectives that the original compound could not 

achieve and such compounds exhibit a different spectrum of cytotoxicity. Compounds in this 

group include: 

4 Platinum complexes and associated ligands 

Platinum compounds, particular cisplatin, are the heartbeat of the metal-based compounds in 

cancer therapy. Clinical use of platinum complexes as an adjuvant in cancer therapy is based 

on the desire to achieve tumour cell death47 and the spectrum of activity of the candidate drug,47 

Such complexes are mostly indicated for the treatment of cervical, ovarian, testicular, head and 

neck, breast, bladder, stomach, prostate and lung cancer. Their anticancer activities are also 

extended to Hodgkin’s and non-Hodgkin’s lymphoma, neuroblastoma, sarcomas, melanoma 

and multiple myeloma.47 Although resistance to cisplatin emerged, it was the fundamental basis 

that triggered the search for alternative metallic compounds with improved anticancer and 

pharmacokinetic properties. On this basis, alternative platinum compounds were derived. 

Carboplatin, oxaliplatin, satraplatin, omaplatin, aroplatin, enloplatin, zeniplatin, sebriplatin, 

meboplatin, picoplatin, satraplatin, omaplatin and iproplatin are all products of extensive 

research of platinum complexes (Figure 1) 

The united states Food and Drug Administration (FDA) in 1978 approved Platinol,(R) a brand 

of cis-platin as combination therapy in the management of metastatic testicular, ovarian and 

bladder cancer.48 FDA also approved Paraplatin,® a brand of carboplatin as combination 

therapy in the management of ovarian cancer,48 numerous other platinum derivatives have been 

synthesized with established clinical success including oxaliplatin (Eloxatin®) , nedaplatin 

(Aqupla® ) approved for use in Japan and lobaplatin approved for use in China. 

Oxaliplatin branded as Eloxatan® was initially launched in France in 1996 and formally 

available in the countries of Europe in 1999 and launched in United states in 2002.48 This is a 

platinum based drug with oxalate and diaminocyclohexane ligand (DACH). The DACH plays 

major a role in cytotoxicity and protect it against cross-resistance with cis-platin and 

oxaliplatin. It is licenced to be used as a combination therapy with other chemotherapeutic 
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agents in the management of colon cancer and non-small-cell-lung cancer.49 This drug has 

better safety profile than cis-platin as such is used in patients that cannot tolerate cis-platin.48   

Nedaplatin branded as Aqupla®, is a platinum derivative of cis-diamine-glycolate which was 

formally approved in Japan in 1995. The drug is said to have a better safety profile than cis-

platin (Less nephrotoxic)50 and used as combination therapy in the management of urological 

tumours.50 

Lobaplatin is a derivative of the platinum compound, represented as 1,2-diammino-l-methyl-

cyclobutane-platinum(II)-lactate. The antitumour activities of this compound span through the 

human lung, ovarian and gastric cancer xenograft.48 It has non-cross resistance to cis-platin 

particularly human sensitive cancer cells. Lobaplatin was originally approved for use in the 

management of patients with chronic myelogenous leukaemia, small cell lung cancer and 

metastatic cancer.51 Recently, a phase I clinical trial of dose escalation of lobaplatin in 

combination with fixed-dose docetaxel in the treatment of human solid tumour was 

established.52 In this study, the maximum tolerable dose of lobaplatin when combined with 

docetaxel for the treatment of solid tumour known to have progressed after chemotherapy was 

established.52 Positive results from phase I trials prompt researcher to recommend the same 

dosage for the phase II clinical trials.52 
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Figure 1. Evolution of organometallic complexes in cancer therapy 

Picoplatin is a 2-methylpyridine analogue of cis-platin (formerly known as ZD0473) originally 

developed to provide steric cover around the platinum centre thereby providing a steric 

hindrance to the drug and prevents the attack from nucleophiles. It shields it against DNA-

repair pathway that enhanced resistance.53 Preclinical studies54 revealed a promising anticancer 

activities in the resistant cell line to cis-platin.49 However, after the conducted phase II clinical 
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trial, it was noted that picoplatin offers no superior advantage on the targeted cell line except a 

significant decrease in neurotoxicities.49 In a related development, picoplatin is still undergoing 

phase I and II clinical trials as a treatment for colorectal cancer in combination with 5-

flurouracil and leucovorin, also in combination with docetaxel for prostate cancer55  

Satraplatin is the first orally bioavailable platinum drug. This drug is [bis-amino-dichloro-

(cyclohexyl)amine]platinum(IV), exhibits varying pharmacodynamics and pharmacokinetic 

properties relative to other platinum compounds, hence may possess a different spectrum of 

anticancer activities.48 The anticancer activities of satraplatin span through platinum-sensitive 

and resistant cell lines including cervical, prostate, ovaries and lung cancer.55 Non-linear 

pharmacokinetics was one major challenge encountered during the initial studies of satraplatin 

that led to the study being abandoned.55 Satraplatin has undergone several phases of clinical 

trials, phase III clinical trials examined satraplatin and prednisolone combination against 

refractory cancer,55 satraplatin is currently targeted in phase I, II and III trial in combination 

with other drugs such as docetaxel in the treatment of prostate cancer.   

Lipoplatin is a liposomal form of cis-platin designed to enhance the pharmacokinetic safety 

profile and allow dosage manipulation while targeting cancer cells.55 The liposomes are made 

of dipalmitoyl phosphotidyl glycerol, soyphosphatidyl choline cholesterol and 

methoxypolyethylene glycol distreatoyl phosphatidyl ethanolamine.55 The presence of 

liposomes offered a circulatory advantage to the drug. Lipoplatin has undergone phase I, II and 

III clinical trial with main focus on its anticancer activity in small cell lung cancer.55 It is also 

being investigated for breast, pancreatic, head and neck anticancers.  

ProLindac is an oxaliplatin with hydrophilic (hydroxypropylmethacrylamide) polymer bonded 

to the active moiety. This drug is designed to target the solid tumour with enhanced retention 

within the tumour cells.56 Anticancer activities of proLindac have been evaluated in mice with 

ovarian carcinoma and B16 melanoma.55 In this study, an optimum growth inhibitory effect 

was achieved in addition to a decrease in toxicity towards a normal cell and sustained plasma 

concentration. This drug has undergone both phase I and phase II clinical trials with profound 

anticancer activities. It is used as a mono-therapy in advance ovarian cancer resistant to 

platinum therapy.57 The drug is currently undergoing phase III clinical trials in the treatment 

of head and neck cancer.57 
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Platinum drugs discontinued  

In the midst of several challenges on the use of platinum drugs in the management of a spectrum 

of cancers, many platinum compounds have been synthesised and demonstrate good in vitro 

cytotoxic activity. However, the use of these compounds for the treatment of cancers is subject 

to scientific evidence from clinical trials. Such result must reflect; a pharmacokinetic safety 

profile, pharmacological properties of the drugs and at times social-economic factors of 

patients is also considered. In this case, studies of platinum compounds are discontinued either 

due to toxicity or lack of profound anticancer activity on the patient. Many platinum-based 

drugs have been screened through clinical trials in an attempt to find an alternative to cis-platin, 

mainly due to dose-related adverse effects or resistance to cis-platin. The lack of superior 

advantage of these drugs over cis-platin led to the suspension from the study. Platinum drugs 

discontinued from clinical trials include sebriplatin, spiroplatin, cycloplatam, miboplatin, SPI-

077, aroplatin, BBR3464, TRK-710, iproplatin, zeniplatin enloplatin ormaplatin JM 11 and 

NSC 170898. 

5 New platinum complexes as a product of drug design 

Recently, more platinum complexes are being synthesized and their anticancer of activities 

against tumour cell lines are being evaluated. This involves remodelling of the parent 

compound (platinum) by conjugating it with the different ligand to achieve the desired 

outcome. In most cases, pharmacokinetic parameters, spectrum of activity and toxicity profile 

are improved to circumvent those challenges inherent from the parent compound. This 

includes: 

Platinum complexes conjugated with sugar 

Carbohydrate (sugar) conjugation may bring about biological and physicochemical changes to 

the platinum compound.58 The changes may be in the form of improved solubility, a decrease 

in adverse effects and improvement in cellular uptake of the drug.58 Most of the newly 

synthesized platinum compounds have been evaluated for their anticancer activities. Recently, 

compounds such as [PtIICl2(AcGlc-pyta)] have been synthesized and their cytotoxicity profiles 

evaluated in vitro against human cervical tumour (HeLa) and compared with the effect of cis-

platin and the compound shows less cytotoxicity.58 Figure 2 is a typical example of sugar 

conjugated triazole ligand 
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AcGlc-pyta (a) R= Ac 

Glc-pyta (b) R= H 
Figure 2. Sugar conjugated triazole ligands 

In order to deliver the platinum drugs directly into the cells, 2-deoxyglucose conjugated (2-

DG)  platinum(II) (conjugated platinum (II) complex for glucose transporter-1) also known as 

GLUTI-1 was designed to transport the drug to the cancer cells.59 This was possibly due to the 

fact that to maintain cellular homeostasis, growth, and proliferation, malignant cells exhibit a 

higher rate of glycolysis than the normal cells.59,60 GLUTI-1 was evaluated for its potentials to 

transport the drug complex with the aid of  comparative molecular docking analysis using the 

latest GLUTI crystal structure. Molecular dynamics (MD) was used in identifying the key 

binding site of 2-DG as a substrate for GLUTI.59 Findings from docking result revealed that 

the 2-DG conjugated platinum complex can bind to the same binding site as GLUTI substrate.59 

This led to the synthesis of the conjugate and was evaluated for its cytotoxicity. This study 

provides critical information about the potential of 2-DG conjugated platinum(II) compound 

in pharmaceutical research and drug development.59  

In a related development, a recent study on potent glucose platinum conjugate60 revealed the 

potential of novel Glc-pts in cancer therapy. The crystal structure of bacterial xylose transporter 

XyIE recently published was used for the docking,60 and C6-glucose-platinum derivative was  

initially optimized using DFT before docking it to the protein. A good hydrogen bond 

interaction with key glucose binding residues Gln168, Gln288, Tyr298, and Gln17560 was 

revealed. The cytotoxicity studies conducted against ovarian cancer cell line (A2780) shows 

that A2780 cells were the most sensitive to Glc-pts compounds with IC50 value of 0.15-0.22 

μM. 

Chiral platinum complexes 

The biological activities of the chiral compound have attracted a great deal of research. These 

compounds display a high level of selectivity and specificity and are involved in many 

biological events.61 To overcome many challenges with cis-platin and other platinum drugs 

already in clinical use, numerous drug design approaches have been adopted. One of such is 
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metal-drug-synergism,61 which can be achieved by combining a known active organic 

compound with a metal-based complex.61 The structure of DNA and other biomolecules can 

be probed with chiral metallic complexes,61 therefore, biological activities are greatly 

influenced by nature of chiral molecules present in the system.61 In a recent study of chiral 

platinum complexes, the DNA binding characteristic of platinum is combined with chemical 

properties of phosphines and chloroquine.61 The cytotoxicity profile of these compounds 

against cancer cell lines (IC50) is as follows: MDA-MB-231 (200 μM for chloroquine and 2.44 

μM for cisplatin phosphine complex), MCF-7 (82.0 μM  for CQ and 13.98 μM for cisplatin 

phosphine complex), A459 (56.53 μM for CQ and 14.42 μM for CDDP), DU-145 ( 79.50 μM 

for CQ and 2.33 μM for CDDP), V79-4 (29.85 μM for CQ and 21.60 μM for CDDP) and L929 

(25.94 μM for CQ and 16.53 μM for CDDP). In correlation with the biological activities of 

phosphine chloroquine platinum(II) complexes, it was revealed that the compounds display a 

lower biological activities even at relatively higher DNA interaction and higher affinity for 

blood plasma protein.61 Due to high protein affinity exhibited by this compound, the effect on 

DNA is greatly reduced and consequently, the cytotoxic effect is also affected. A desired effort 

is needed to devise means of displacing or reducing plasma binding of these compounds to 

enhance its interaction with DNA. 

Monofunctional platinum(II) complexes 

Some platinum complexes have the ability to bind to DNA only through one coordination site, 

particularly chloride ligand.62 Many of these compounds have been synthesis with only a few 

exhibiting in vitro  cytotoxic effects against a range of cancer cell lines.62 Phenanthriplatin a 

monofunctional platinum complex (Figure 3) exhibited a relatively better cytotoxic effect than 

cis-platin. It was thought that the biological activity of these complexes arises from 

monofunctional adduct. This is a sequel to the failure of antibodies of DNA containing 

bifunctional platinum adduct to recognise the lesion formed by cis-[Pt(NH3)2(Am)Cl]+.  
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Figure 3. Structure of Phenanthriplatin 

This mean that the complexes bind to DNA with a favourable biological effect through a 

monofunctional adduct formation.62 

Platinum(IV) complexes and anticancer activity 

Since the discovery of cis-platin and its clinical use, there has been an effort for the search of 

improved platinum drugs based on classical platinum(II)-diamine pharmacophores. This has 

only yielded few new drugs with a clinical advantage over the parent compound. Therefore 

new methods are being adopted to explore other available platinum-related compounds. This 

is centred around platinum(IV) complexes, whose anticancer properties have been recognized 

since last the decade.62 The stability and expanded coordination sphere serves as an advantage 

of overcoming the challenges inherent from platinum (II) compounds. The platinum(IV) 

complex has six saturated coordination sphere of low spin d6 with octahedral geometries.62 This 

property gives them the kinetic stability over platinum(II) complexes.62 In a study conducted 

to determine the cytotoxicity profile of newly synthesised platinum(IV) complexes on ovarian 

cancer cell line (TOV21G) and colon cancer cell line (HCT-116). Both complexes show dose 

and time dependent cytotoxicity towards the tested cell line63 with highest cytotoxic effects on 

TOV21G. Platinum(IV) complex had a more pronounce cytotoxicity on TOV21G at a lower 

concentration.63 However, platinum(IV) complex and cis-platin have a similar cytotoxic effect 

on  HCT-116 cell line.63  

 

Figure 4. Structure of platinum(IV) complexes under investigation from left to right [PtCl4(bipy)], 

[PtCl4(dach)], cis-[PtCl2(NH3)2] 



156 
 

This study provides an opportunity for exploring cytotoxic properties of platinum(IV) 

complexes in the treatment of colon cancer as an alternative to platinum(II) derived anticancer 

drugs. A good example of compounds under investigation are shown in Figure 4. 

Table 2. Summary of metal-based compounds undergoing clinical trials in human 

Drug name Developers Phase of clinical 

trial 

Indications 

Picoplatin64(JM473) Pionard Phase II Treatment of 

colorectal cancer64 in 

combination with 5-

FU and leucovorin 

LipoplatinTM 

(NanoplatinTM, 

Oncoplatin) 

Regulon Phase II64 & Phase 

III clinical trial in 

cancer cells. 

Treatment of locally 

advanced gastric 

cancer / squamous 

cell in different 

cancer cells 

carcinoma of head 

and neck64 

ProLindacTM 

(AP5046) 

Access Pharm Phase I,II & III trial Advanced ovarian 

cancer,64 head and 

neck cancer. 

Satraplatin (JM216) Spectrum Pharm and 

Agennix AG 

Phase I, II and III 

trials 

Treatment of 

colorectal cancer in 

combination with 5-

FU & Leucovorin,64 

in combination with 

docetaxel in 

treatment of prostate 

cancer and treatment 

of a patient with 

progressive or 

relapse NSCLC64 

NAMIA-A  Phase I Metastatic tumour 

(lung, colorecta, 

melanoma, ovarian 

and pancreatic)65 

KP1019  Phase II Advanced colorecta 

cancer65 
64Cu-ATMS  Phase II PET/CT monitoring 

therapeutic progress 

in patient with 

cervica66 
Note: PET positron emission tomography, 64Cu-ATSM 64Cu-diacetyl-bis(N4–methyl thiosemicarbazone), NSCL 

non-small lung cancer, CT computed tomography scan.  
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6 Ruthenium complexes in cancer therapy and drug design 

For the past few decades, the use of metal-bases complexes in the treatment of cancer has been 

dominated by a spectrum of challenges emanating from the use of platinum complexes and 

platinum-derived drugs in clinical practice. Whilst it is virtually impossible to deny the success 

of platinum drugs in chemotherapy,67 it is also important to note that it has its own limitations 

such as drug resistance, limited spectrum of activity and worsening side effects.67 To surmount 

these challenges, efforts have been made to critically consider other metal-based complexes 

with cytotoxic properties, such as ruthenium, gold and iron complexes. Ruthenium compounds 

developed for this purpose are known to cause fewer and less severe side effects.67 Ruthenium 

can form octahedral complexes that give opportunity for exploring more ligands compared to 

platinum(II) complexes that only form square planar complexes.67 The most recent approach 

to ruthenium drug design is the development of a ruthenium organic directing molecule 

(RODM). In this case, the organic molecule binds to the active site of an enzyme and the 

attached ruthenium ion binds to nearby residues of the same enzyme.67 The advantage of this 

approach is that there is a known biological target of a compound from which enzymological 

studies can be performed, such as studies of rate of enzyme inhibition.67 

Other approaches include directed therapy and multinuclear approach. Ruthenium’s ability to 

form multinuclear and supramolecular architecture has also been explored in drug design. This 

includes ruthenium cluster complexes, ruthenium DNA intercalators, and ruthenium-platinum-

mixed metal compounds.67 In directed therapy, ruthenium is chemically attached to an organic 

compound with known biological target that directs the drug to the cells thereby increasing the 

potency of the compound. The peculiarity of ruthenium as one of the least toxic metallic 

complexes is attributed, in part, to the ability of Ru(III) complex to mimic iron binding serum 

protein, thereby reducing the concentration of free plasma ruthenium and increase the 

concentration that reaches the cancer cells compared to healthy cells.68 Plasma bound 

ruthenium complexes possess high affinity to cancer cells with transferrin receptors, this brings 

about diverse pharmacodynamics differences that exist between cancerous and healthy cells,68 

and form the basis of higher cytotoxicity experienced with KP1019 (A) compared to NAMI-

A68(B) see Figure 5.    
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Figure 5. The structure of KP1019 (A) and NAMI-A (B) 

The proposed transport mechanism of ruthenium(III) involves both passive diffusion, and 

transferrin-dependent mechanism.69 In addition, the reduction of Ru(III) complex to Ru(II) 

following the cellular uptake of the former could also play an important role.69 However, 

research evidence has linked the cytotoxic effect of ruthenium to Ru(II) arene complexes.68  

Ru(II) arene complexes incorporated into amphiphilic 1,3,5-triaza-7-phosphaadamantane (pta) 

ligand i.e Ru(η6 – toluene)-(pta)Cl2, RAPTA-T, and Ru(η6 –p-cymene)(pta)Cl2, RAPTA-C, 

(Figure 6) exhibits low toxicity in vivo68 and are not cytotoxic, but demonstrate relevant 

antitumour properties.68 RAPTA-C selectively bind to histone protein core in chromatin,70 

resulting into aquation of chloride ligands68 and translates to mild growth inhibition on primary 

tumours in vivo.71 The combination of RAPT-A compounds gives unique effects, and when 

applied in combination with other drugs, RAPTA-C (Figure 6) produces efficient inhibition of 

tumour growth at very low doses and devoid of toxic side effects68. Anticancer activities of 

ruthenium complexes are summarised in Table 1. 
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Figure 6. RAPTA-C (on the left) and RAPTA-T (on the right) 

Other ruthenium complexes that are recently synthesize and shows the cytotoxic effect on the 

cancer cell lines include: 

Cyclometallated ruthenium compounds 

In an attempt to provide the best alternative to the platinum compounds and other metallo-

tumour drugs, many approaches to the design of anticancer drugs have been adopted. One of 

such approaches is he design of cyclometallated ruthenium compound with cytotoxic 

properties.72 In a recent study, the cytotoxic effect of four Ru(II) dyes incorporated to 

cyclometallated ligand phpy-(deprotonated 2-phenylpyridine) was evaluated against HeLa 

cells.72 In this study, the cytotoxic activity of all the compound was similar to that of cisplan.72 

The activity of compounds were compared, compound [Ru(phpy)(bpy)- (dppn)]+ (4; bpy = 

2,2′-bipyridine, dppn = benzo[i]dipyrido- [3,2-a:2′,3′-c]phenazine) being the most active 

among all, with an activity of about 6-fold higher than the platinum drug,72 and possess the 

ability to disrupt the mitochondria membrane potential.72 Compounds such as 

[Ru(phpy)(biq)2]+ (3; biq = 2,2′-biqinoline), have absorption of 640 nm, which shows a 

profound activity upon irradiation with 633 nm light.72 Based on this finding, it was concluded 

that coordinatively saturated cyclometallated Ru dyes are potential class or family of the new 

metal-based anticancer compounds.72  

Half-Sandwiched Ruthenium(II) Compounds Containing 5-Fluorouracil Derivatives 

Combination of two or more multifunctionality groups bring into play different properties of 

compounds,73 this is a popular strategy adopted in the design of new therapeutics.73 The use of 

5 –Fluorouracil in the treatment of cancer has been associated with strong toxicities to gastric 

system, intestinal mucosa and bone marrow.73 Thus, attempt are made to improve anticancer 

property and minimized its side effects by exploiting other prodrugs.73 In line with this, 

respective advantages of ruthenium(II) compound and 5-fluorouracil74 can be explored and the 

combination results in synergistic action.74 Half sandwich ruthenium arene complexes allow 
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the introduction of numerous biologically active groups,73, 75 this way many ligands can be 

introduced into the drug either to improve the spectrum of activity against the cancer cells or 

to modify the pharmacokinetic profile of the drugs. In a recent study, the two novel 

coordination compounds of half sandwiched ruthenium(II) containing 2-(5-fluorouracil)-yl-N-

(pyridyl)-acetamide were synthesised.73 The result from DNA intercalation binding reveals that 

the compounds exhibit activity on DNA73 which may be interpreted as being the cytotoxic 

effect on cancer cells. 

7 Titanocenes 

Titanocenes are a class of metal-based cytotoxic agents with a distinct mechanism of action 

and spectrum of activity from platinum complexes.76 Studies have shown that titanocenes C 

[bis-(N,N-dimethylamino-2(N-methylpyrrolyl)-methyl-cyclopentadienyl)titanium(IV) 

dichloride] inhibit the proliferation of human tumour cell lines with mean IC50 of 48.3±32.5 

μM. The activity against small cell lung cancer (SCLC) was more profound with a profile 

different from cis-platin.76 Both titanocene C and Y has little or no cross-resistance to cis-platin 

and oxaliplatin invariant HL-60 cell lines. Titanocene C is particularly favoured in the 

induction of cell cycle arrest at  G 1/0-S interphase.76 In a related development, the cytotoxic 

effect, and mechanism of action of titanocene difluoride in ovarian cancer was evaluated.77 In 

this study, three titanocene difluoride compounds were used, two of which bears carbohydrate 

moiety (α-D-ribofuranos-5-yl) and one has no substitution.77 In contrast to the mechanism of 

action of cisplatin that involve DNA damage, activation of p53 protein and induction of 

apoptosis,68 the result from this study shows that the mechanism of action of titanocene 

difluoride derivatives is mediated via the endoplasmic reticulum stress pathway and 

autophagy.77 In conclusion, the author stated that the cytotoxic effects of titanocene difluoride 

are comparable to that of cis-platin and are more effective in cis-platin resistance cell line and 

therefore recommends that these compounds be considered as potential agents in the 

management of cis-platin resistance cases.77  

8 Anticancer properties of copper complexes 

Copper complexes exhibit cytotoxic properties with the mechanism of action different from 

that of the clinically used platinum compound, cis-platin.78 A spectrum of activities varies 

among these compounds, depending on the type of ligand attached to the simple copper 

complex. Cytotoxic effects of copper-based complexes have been investigated based on the 

assumption that endogenous copper may be less toxic for normal cell relative to cancer cells.79 
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The situation is entirely different, copper can undergo redox activity and competitively bind to 

the site that could otherwise be occupied by other metals.79 Copper is an essential cellular 

element necessary for many biological pathways. It is also a cofactor in enzyme catalytic 

processes.79 The role of copper in angiogenesis has been a subject of controversy, generally, 

the role of metals in this process is still under scrutiny.79 However, copper complexes are 

known to mimics superoxide dismutase (SOD),80 an important antioxidant enzymes which 

protect cells from harmful radical superoxide through its dismutation to non-toxic molecules80 

they are  present almost in all living organism.80 The native SOD are natural scavengers of free 

radicals that work very efficiently in the body,80 therefore, in the presence of an imbalance 

between the generation of free radicals and the concentration of dismutation enzymes,80 a low 

molecular weight mimics of antioxidant enzymes especially SOD with good scavenging 

activity is required.80 Copper complexes particularly a low molecular weight are indicated, 

since they are good mimics of SOD.   

It has been reported that a mixture of copper salt with dithiocarbamates (DTCs) and clioquinol 

(CQ) bind spontaneously to cellular copper to form a proteasome and an apoptosis inducer.79 

Recently, copper(II) complex  [Cu(C20H22NO3)2]·H2O was synthesised and cytotoxic activity 

evaluated.81 The complex was investigated for its interaction with calf thymus DNA and BSA 

using spectroscopic methods, the results revealed that the binding mechanism is a static 

quenching process.81 The in vitro cytotoxic evaluation study was conducted using MTT assay 

and the result revealed that a copper complex exhibit enhanced cytotoxicity, high selectivity 

and dose-dependent cytotoxicity.81 

In a related development, four novel mononuclear Schiff base copper(II) complexes were 

synthesised and characterised by X-ray crystallography.82 This include [Cu(L)(OAc)]·H2O, 

[Cu(HL)(C2O4)(EtOH)]·EtOH,[Cu(L)(Bza)]and[Cu(L)(Sal)](HL=1-(2-(2-hydroxypropyl) 

(aminoethyl)(imino)(methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid). 

Antiproliferative effects of these complexes were evaluated, the result showed that all the four 

complexes demonstrated good cytotoxicity against cancer cell lines.82 Complexes that had 

salicylate attached to it as an auxiliary ligand showed better anticancer activity relative to the 

others.82 It was suggested that the enhanced activity of complex with the highest activity may 

be due to the presence of a Schiff base complex and a nonsteroidal anti-inflammatory drug that 

might have contributed to the process of cell death.82  
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9 Gold complexes in cancer therapy 

The cytotoxic property of gold complexes has attracted attention recently. This may not be 

unconnected to the various level of challenges witnessed with clinical use of platinum 

compounds. Gold(III) complexes are an emerging class of metal complexes with potential 

antitumor properties alternative to cis-platin. This is mainly due to their outstanding cytotoxic 

properties exhibited through non-cisplatin antitumor mechanism. The main objective of 

designing these drugs is to have a product that is very effective, less toxic and selectively binds 

to the active site of enzymes.83 The potential of selectivity of gold(III) complexes to thiol-

containing enzymes such as thioredoxin reductase (TrxR), make it an attractive probe in 

designing compounds that can selectively bind to residues in the active site of the enzyme.  

Many forms of gold(III) complexes have been synthesized and the anticancer activity evaluated 

against cancer cell lines. In most cases, the ligands are either Cl, Br, S or P. Other forms of 

gold(III) complexes have also been synthesized with proven cytotoxicity.84 Most of the 

reported cytotoxic gold(III) complexes have a profound effect on cis-platin resistant cell lines.83 

I n a recent study, the cytotoxic effect of an organometallic titanocenes-gold compound [(η-

C5H5)2Ti{OC(O)CH2PPh2AuCl}2] was evaluated in vitro against prostate and renal cell line as 

potential chemotherapeutics in renal cancer.85 The result showed that the compound acts 

synergistically because the resulting cytotoxic effect is more pronounced, when compared to 

monometallic tetanocene dichloride and gold(I) [{HOC(O)RPPh2}AuCl] (R = −CH2− 6, −4-

C6H4− 7)  in renal cancer cell lines.85  

Thioredoxin reductase: a target for gold(III) complex. The binding of inhibitors (drugs) to 

the active site of the enzyme, depends on the type of residues (Amino acids) on the catalytic 

site. The catalytic residues are highly specific for certain compounds. These characteristics 

provide a platform for designing a compound that can specifically target certain residues 

resulting in ligand-residue interaction. Since some enzymes possess more than one binding site 

(binding pocket), such binding sites can be filtered to get the best out of many. The relationship 

termed as “intimacy” exist between the best binding site and the compounds. 

Metal-based compounds bind to specific residues, most of which are involved in enzyme 

catalysis. The binding of metal-based complexes to these residues results in alteration of 

cellular processes and consequently cell death (apoptosis).26 For example, gold(III) complexes 

bind to thioredoxin reductase (TrxR).26 The catalytic residues on this enzyme are located 

between two chains, with each chain contributing to the binding of gold(III) complexes. Other 
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binding pockets have been identified in the same enzyme with less binding affinity. Figure 7 

depicts the catalytic residues in TrxR.   

 
 

 

Figure 7. A 3D structure of the thioredoxin reductase homodimer (PDB entry 2J3N), with two chains 

in green and purple, respectively. The active site residues Cys 59(B), Cys 64(B), His 472(A), and Glu 

477(A), represent the possible binding site for the gold(III) compounds. 

10 Silver complexes in cancer therapy 

Silver complexes have since been known for its antimicrobial activities86 and are widely used 

in the treatment of infected wounds and burn cases.86 In the past, silver complexes did not 

receive much attention compared to other metals,86 although silver complexes also 

demonstrated good cytotoxic activity against many cancer cell lines.86 Recently, cytotoxic 

properties of silver(I) complexes has attracted a great deal of interest, this is because most 

silver(I) complexes have been found to exhibit a greater cytotoxic activity than cisplatin86 with 

relatively low toxicity and greater selectivity towards cancer cells.86 An in vitro study 

conducted to assessed the cytotoxic properties of silver(I) complexes against cancerous B16 

(murine melanoma) and non-cancerous 10T1/2 (murine fibroblast) cells line,86 silver 

complexes containing hydroxymethylene group exhibited greater cytotoxic activity against 
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B16 (murine melanoma) than AgNO3, AgSD and cisplatin.86 These complexes were found to 

exhibit relatively low toxicity against non-cancerous 10T1/2 (murine fibroblast).86 Similarly, a 

study set to determine the anticancer properties of gold(I) and silver(I) N-heterocyclic carbene 

complexes87 revealed that these compounds along with cisplatin exhibited similar anticancer 

activity upon testing on H460 lung cancer cell line.87  

In a related development, silver complexes of 2,6-disubstituted pyridine ligands were 

synthesized,88 Figure 8 the ligands and the complexes were evaluated in vitro with doxorubicin 

(reference compound) in hepatocellular carcinoma (HepG2), lung adenocarcinoma (A549), 

colon carcinoma (HT29) and breast adenocarcinoma (MCF7) using MMT method.88 All the 

synthesized complex exhibited significant activity more than the corresponding ligands,88 and 

most of the prepared silver complexes exhibited outstanding cytotoxic activity against tested 

cancer cell line compared to the doxorubicin.88 All these properties placed silver complexes as 

a promising metal complex to be targeted in future for chemotherapy. 

 

 

Figure 8. Silver complexes with 2,6-disubstituted pyridine ligands 

11 Metallocenes with less attention in cancer therapy 

Despite renewed attention on metal-based compounds in cancer therapy, some other 

compounds have received less attention in the context of cytotoxic effects on cancer cell lines. 

This includes zirconocene, vanadocene, niobocene and molybdocene.31Although, zirconocenes 

demonstrated a good antiproliferative activities against several cancer cell lines,31 such as lung 
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adenocarcinoma, head and neck tumour, anaplastic thyroid cancer, ovarian and colon cancer31 

they need further optimization to be used as anticancer chemotherapy.31 

12 Relative safety issues associated with metal complexes 

The role of metal-based complexes in cancer therapy cannot be over emphasis, because of 

potential chemotherapeutic and diagnostic properties exhibited by metal-based complexes. 

However, since the advent of cisplatin,89 the main goal for drug design and development have 

been modification of toxicity profile89 that reflect relative safety of the drug, circumvention of 

resistant and improvement on the spectrum of activity of the metal complexes.89 Despite the 

major breakthrough with cisplatin in the treatment of cancer, the major challenge still remained 

severe side effects associated with the drug and this include dose-limiting nephrotoxicity, 

neurotoxicity, ototoxicity and emetogenesis.89 This lead to development of carboplatin and 

other platinum-based cytotoxic drugs in response to necessity to reduce the toxic effect of 

cisplatin.89 Unfortunately, some platinum-based drugs developed as a result of short-comings 

emanated from the clinical use of cisplatin are also associated with severe side effects that have 

prevented regulatory authorities from granting their marketing approval.64 Drugs in this class 

include; JM-11 developed by Johnson Matthew company has not been granted marketing 

approval because it lacks better blood and renal clearance compared to cisplatin,64 ormaplatin 

developed by NCI ( USA)/ Upjohn has not been granted marketing approval because of its 

severe and unpredictable cumulative neurotoxicity,64 zeniplatin developed by American 

Cyanamid has not been granted marketing approval because of its serious nephrotoxicity,64 and 

spiroplatin developed by Bristol Myers has not been granted marketing approval because of its 

unpredictable renal failure.64 

Similarly, gold(III) complexes have been found to exhibit toxic effects, the most adverse cases 

of gold complex toxicity are restricted to skin and mucous membrane as reported in case of 

blind clinical trial.90 In a related development, increased ceruloplasmin and copper levels in 

various tissues have been associated to cancer progression.91  Most of these adverse effects are 

dose related and can be circumvented by structural modification of the meta-based complexes 

to enhance selectivity and reduce unwanted effects on normal cell.  

13 Nanoparticles in cancer therapy 

Nanotechnology has greatly enhanced drug delivery system92 and to a large extent provide a 

means of direct drug delivery to the active site thereby reducing the unwanted effects by 

limiting the drug effect to specific site leaving other tissues untouched. In cancer medicine, 
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nanoparticles provides an advanced bioavailability, in vivo stability, intestinal absorption, 

solubility, sustained and targeted delivery and therapeutic effectiveness of several anticancer 

drugs.92 Most potent chemotherapeutic agents used in the treatment of cancer have narrow 

therapeutic index and have been used against several tumour types,92 however, their cytotoxic 

effects affect both normal and cancerous cells.92 This remained a big challenge in the dosing 

of metal-based complexes in cancer therapy. Therefore, the opportunity provided by 

nanoparticles to selectively target cancer cells and leave behind healthy cells untouched has 

gained interest in the design of metal-based cytotoxic drugs. 

Metal-Based Nanoparticles  

Metal-based nanoparticles are of different shapes and sizes and have been investigated for their 

role in diagnosis and drug delivery system,92 most commonly available metal-based 

nanoparticles include nickel, gold, silver, iron oxide, gadolinium, and titanium dioxide 

particles.92 Metal-based nanoparticles provide a large surface area that allowed incorporation 

of large drug dose.92 To improve the specificity in the diagnosis of cancers, various types of 

highly specific and highly sensitive nanoparticle-based (NP) optical imagine platforms are 

being investigated.93 NP-based diagnostic platforms offers a major advantage compared with 

other agents, it can be functionalized to specifically target tumour cells allowing the imaging 

and therapeutic agent to specifically delivered to those cells.93 NP can be multifunctional and 

exhibits optical, magnetic and structural properties that is lacking in single molecule.93 Since 

the tumour specific targeting is achieved by conjugating the surface of NPs with a molecule or 

biomarker that attached to tumour cell receptor, the knowledge of tumour specific receptor, 

biomarkers, homing proteins, and enzymes that permits selective cellular uptake of therapeutic 

and diagnostic agents93 is absolutely important. In tumour targeting and conjugation, some 

molecules and biomarkers are precisely used, this include; peptides, proteins, nucleic acid and 

small molecule ligands.93 It is possible to achieved a synergistic effects by conjugating 

multifunctional NP with different peptides and loading it with multidrug regimens,93 thereby 

by reducing the fraction of each drug in the combination. 

14 Selected targets in anticancer drug design 

Platinum complexes are widely used, anticancer agents. Their use is primarily based on the 

pharmacological properties of cisplatin,94 which act as a model for the design of other metal-

based compounds for use in cancer therapy.94 Since all clinically utilized platinum compounds 

share the same mechanism of action,94 many researchers are now seeking to make increasingly 
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drastic measures to the general molecular framework shared by these compounds to achieve a 

novel mechanism of cell death.68 Most of the research in this field is tailored towards ligand 

substitution method. This way, platinum-based compounds with different rates of substitution 

reactions at the central atom in the biological system can be developed.94 These drugs are 

designed to have superior anticancer activity even in cisplatin-resistant cases and improved 

patient compliance. The current area of interest in cytotoxic drug design include: 

14.1 Sugar targeting. 

One of the major characteristics of the cancer cells is indiscriminate cell division. This occurs 

only in cancer cells relative to normal cells as a result of the continued supply of nutrients 

necessary for its metabolic process, particularly glucose, for survival.95 The need for glucose 

is further aggravated by the altered metabolic states in which many cancer cells exist.96 In line 

with this, a facet of bio-sugar can be exploited for drug targeting because of enhanced uptake 

of glucose by cancer cells.96 For example, 2αα,3-diaminosugars complexes analogous to 

oxaliplatin were investigated and found to have promising activity.51 Several other prospective 

platinum-based compounds complexed with glucose were also investigated with seemingly 

promising results.51  

14.2 Steroidal targeting.  

Sex hormones such as testosterone and estrogen play a vital role in drug targeting. In this case, 

incorporation of steroidal units into non-living group ligand is important, as a result, platinum 

complex is directed by its targeting unit (steroidal unit) to the tissues expressing the similar 

steroidal receptor.51 For instance, estrogen receptor (ER) is a known drug target because of 

high expression of this protein on the surfaces of some cancer cells,  particularly in breast 

cancer.51 With the progression of research in this field, another ER has been discovered in 

addition to a prominent ER, designated as ERα. This estrogen receptor is termed ERβ.97 It has 

been documented that the ERβ may even play a more important role by exhibiting 

antiangiogenic and antiproliferative properties.97 The linkage of steroidal unit capable of 

interacting with the ER to a platinum centre can influence the anticancer activity by interfering 

with biological functions of the receptor or by permitting enhanced uptake of platinum 

complexes.51 This way the DNA platination is increased with resultant higher chance of 

apoptotic cell death.51 Just as ER targets platinum to the cancer cells expressing ER receptors, 

testosterone can target platinum to cancer cells expressing androgen receptor (AR).51,86 
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14.3 Bile acid target. 

Bile acids are steroidal in nature and have been conjugated to platinum complexes51 in an effort 

to deliver compounds directly to the liver cells since a number of transport proteins that take 

up bile salt from blood are expressed on the hepatic epithelial cells.51 Several efforts have been 

made to conjugate platinum complexes to the bile acid in different manners and the resultant 

complex seems to have promising anticancer activity.51 For example, a bile acid chelated to 

dicarboxylate motif bound to a cis-diammineplatinum(II) fragment was explored as an orally 

administered anticancer agent.51 Preliminary in vitro assay revealed activity in cultured murine 

hepatoma cells,51 and further research on a syngeneic orthotopic rat model of hepatocellular 

carcinoma confirmed that the complex had antitumor activity.51  

Related steroid targeting. The translocator protein (TSPO) commonly known as peripheral  

benzodiazepine is known to regulate the transport of cholesterol and synthesis of steroids.98 

This protein has been suggested to be an important target in cancer treatment since it is 

overexpressed in numerous tumour cells.98 Chelated platinum(II) complexes with bidentate 

thiazolylimidazopyridine are reported to interact strongly with this receptor.51  

14.4 Folate targeting. 

Folate is an important carbon source for many cellular pathways including DNA, RNA, protein 

methylation as well as DNA synthesis.99 Cancer cell growth is rapid with enhanced folate 

uptake. The role folate in all these processes could conceivably be used as a baseline for drug 

targeting.99 However, there is a limitation to the use of folate as a targeting agent of platinum 

complex. An early study of the interaction of cisplatin with cellular folates suggests that it 

would not be able to operate as a cytosolic agent in manner analogues to cisplatin.100 However, 

researchers are not relenting in their effort to understand the potentials of folate in the selective 

drug targeting. 

14.5 Peptide targeting. 

Conjugation of platinum(II) complexes to the peptide resulting in the platination of complexes 

with anticancer activity.51 The cyclic peptide c(CNRGC) with Asn-Gly-Arg sequence that 

targets CD13 receptor is over-expressed on the surface of certain cancer cells.101 The target 

complex was more toxic to prostate cancer cells expressing CD13 than non-targeted 

carboplatin,51 and the competition assays confirmed that the complex is taken up via the 

interaction with CD13.51 Many forms of platinum complexes conjugated with peptides have 

been screened against cancer cell lines and a reasonable number of them exhibit a promising 
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anticancer activity. 

15 Conclusion 

Since the discovery of cisplatin, a great deal of research has been conducted in the therapeutic 

application of metal-based complexes. These compounds exhibit ambivalent dispositions some 

are associated with induction and progression of cancers, others have demonstrated efficacy in 

cancer treatment, whilst some displaying both properties. Despite the challenges emanated 

from the clinical use of platinum compounds, there is a growing demand for metal-based 

compounds in cancer therapy. This may be due to the scourge of cancer and to the greater 

extent the level of in vitro cytotoxic effects exhibited by metal-base compounds particularly 

those that have been synthesized recently. There is excitement among some researchers in this 

field, about that cancer cells can directly be targeted using a different approach of drug design 

as highlighted in this study. This development put to rest the fear of toxicity associated with 

many organometallics since the drugs are directly delivered to the cancer cells leaving behind 

healthy cells unharmed. However, the pharmacokinetic profile of most these drugs are yet to 

be ascertained in the human system, but keeping our hope alive that designing an metal-based 

compound to selectively target cancer cells is a major breakthrough in this field of research. 

Another approach in the field of anticancer drug design is the use of nanoparticles to target the 

biomolecules. Such method ensures that drugs are delivered to specific cancer cells. To this 

extent, the concept of selective targeting remains the hope of the future in developing 

therapeutics that would selectively target cancer cells, leaving behind healthy cells unharmed. 
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CHAPTER 8 

General conclusions and future study recommendations 

1  General conclusions 

The major aims of this study were to investigate conformational features and ligand binding 

landscape of orphan nuclear receptor (ROR-γ) complex with the experimental drug (XY018), 

non-receptor tyrosine kinase (c-Src) complex with the experimental drug (UM-164) and to 

provide molecular understanding on how the c-Src mutation confers resistance to UM-164. 

Results from this work confirmed the following conclusions: 

1. Hydrophobic packing contributes significantly to binding free energy owing to a large 

amount of aromatic and hydrophobic rings within the active site residues of ROR-γ. 

2. The energy decomposition analysis revealed that electrostatic interactions are the potentially 

important binding forces between XY018 and ROR-γ, while van der Waals contributions are 

more prominent in HC9-ROR-γ system 

3. Ile136 and Leu60 exhibited high hydrogen-bond occupancy in XY018-ROR-γ and HC9-

ROR-γ respectively, therefore plays an important role in stabilising the protein. 

4. Analysis of principal components revealed that the binding of XY018 to ROR-γ may be 

responsible for structural rigidity and decrease in motion observed in the XY018-ROR-γ 

system. Therefore, XY018 exhibits very high binding affinity to ROR-γ. 

5.  Ligand-residue interaction revealed that interactive OH group of XY018 that formed a 

hydrogen bond with Glu115 is essential for the binding of XY018 to ROR-γ, while phenyl 

group of XY018 interacts with glutamine (Gln22) by accepting a hydrogen through a hydrogen-

bond formation. 

6. Findings from estimated toxicity and biological testing suggest that XY018 is likely to 

induce pseudoporphyria, nephritis, and interstitial nephritis but potentially safe in renal failure. 

However, XY018 is potentially indicated in the treatment of atherosclerosis, one of the most 

important findings from this study. 

7. The binding of the lead drug (UM-164) to Src induces a more stable and compact 

conformation of the protein structure, compared to Dasatinib. 
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8. The UM-164 binding induces a more correlated motion in Src relatively to Dasatinib 

suggesting that ligand binding may have induced residue dynamics that results in 

conformational changes in the protein. 

9. High fluctuation exhibited by the loops in Src-UM-164 complex support the experimental 

evidence that UM-164 binds the DFG-out inactive conformation of Src. 

10. The estimated binding free energy is higher in Src-UM-164 compared to Src-Dasatinib, 

this reflects the relative higher binding capacity of UM-164 to the Src. 

11. The orientation of UM-164 in the active site of Src allows for hydrophobic interaction with 

a fluorinated phenyl group, thus may contribute to high potency reported experimentally. 

12. The interactive OH group of UM-164 forms a hydrogen bond with Met94 and Lys96, 

implying that these residues are essential for the binding of the UM-164 to the protein. 

13. UM-164 is potentially safer than Dasatinib regarding the toxicity, thus may be superior to 

Dasatinib in both its clinical efficacy and safety. 

14. Thr91 mutation in Src decrease the capacity of the loops to fluctuate thereby causing the 

loop rigidity. 

15. Ligand-residue interaction revealed that thr91 mutation distorts UM-164 optimum 

orientation in the conformational space of Src, thus affecting the binding of UM-164. 

16. The mutation also decreases the binding energy of UM-164 by -13.416 kcal/mol. Therefore, 

the mutant Src may be developing resistance to UM-164. 

17. There is a distortion of residue interaction network and an overall decrease in hydrogen 

bond formation between the residues resulting from thr91 mutation.  

2  Future study and recommendations  

The lead compounds which were used in this study demonstrated a good safety profile with 

regards to their toxicity. However, the clinical trial of these compounds is required for the 

rationalisation of their use in the treatment of cancer. A strategic computational technique 

presented in this work could serve as an important tool to enhance novel drug discovery and 

development process. It could provide important insights that will assist in the further design 

of novel inhibitors to minimise the chance of drug resistance in cancer. It could also provide 

an invaluable contributions to the understanding dynamics of orphan nuclear (ROR-γ) receptor 
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and non-receptor tyrosine kinase (c-Src) which would largely contribute to the design of potent 

inhibitor targeting ROR-γ and c-Src respectively. 

  



183 
 

Appendix 

Supplementary materials chapter 5 

 

 

 

 

Figure S1. 3D structure of docked Dasatinib superimposed on UM-164-Src complex. 

 

         Table S1. Docking scores of Dasatinib and UM-164 

 

Compounds  Docking scores 

UM-164 -11.6 

Dasatinib -9.3 
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