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Abstract

Small-scale Distributed Photovoltaic Generation (DPVG) continues to grow with increasing operational

challenges for electricity utilities and Distribution Network (DN) operators. In Low Voltage (LV) DNs,

there are well researched potential issues that arise with high Photovoltaic (PV) penetration. These include:

feeder voltage rise, voltage fluctuations and reverse power flow. Among these, the most important issue is

voltage rise at the LV distribution feeder. In a broader perspective, to this point in time, there has not been

more detailed research on small-scale DPVG interconnections in the LV networks in South Africa (SA) and

in the KwaZulu-Natal (KZN) region. There is a great need for research in this field for ensuring network

efficiency, reliability and future regulatory standards. Other network systems have been studied around the

world were conditions, environment, network characteristics and electricity customer loads will be different;

e.g in the North-West of England, Germany, and Queensland, Australia. Hence, the main objective of this

research study is to analyze the mentioned problems, identify and test the appropriate mitigation solutions,

in the event of high DPVG. This study was carried out on a typical SAn LV DN model, which represents

an existing housing development estate at eThekwini Municipality. Consequently the aim is to identify

solutions suitable for networks in SAn or of similar architect and characteristics. As a result, a specific

application is undertaken at the KZN region, which is also representative of network characteristics of SAn

networks. A voltage rise, voltage fluctuation and network power loss issues were analyzed at different PV

penetration levels and varying customer loads. An innovative approach of utilization of a standard central

On-Load-Tap-Change (Off-LTC) transformer for voltage regulation with high DPVG was tested. Usage

of this technique has not been reported in the literature to date. National standards in SA were used as

a basic guide in this study and stated the possibility of grid voltage control of distributed PV inverters.

Assessment of the typical LV network showed that there is indeed voltage rise and hence possible voltage

fluctuation, when PV system output power varies. The Off-LTC transformer was able to maintain network

voltages within the allowed operational range and reduced the magnitude of voltage rise. This implies that

there is a possibility of avoiding expensive upgrades of the existing and widespread Off-LTC transformers

technology.

vi



CONTENTS

1 Introduction 1

1.1 Background to the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Problems to be investigated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Purpose of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Plan of development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Distributed generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Voltage stability issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Voltage rise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Voltage drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Voltage fluctuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.4 Voltage unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



2.4 Voltage regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Active Power Curtailment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Droop-based APC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Reactive Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Central Transformer Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Other Dispatch Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Current Industry Standards 16

3.1 International Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Grid Voltage Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 South African Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Grid Voltage Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Voltage Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Methodology 20

4.1 LV network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Residential Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 PV System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Line Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Customer Distribution Unit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



4.6 Off-LTC Transformer Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 NRS 097-2-3 Simplified Connection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Results 27

5.1 Typical PV generation and residential load profile . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Case study assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Normal operational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Performance of feeder cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.2 Results for Feeder Cables and VR . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.3 Power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Off-LTC Transformer voltage control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.2 Evaluation of voltage rise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5.3 Feeder power losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.6 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Evaluation and Discussion of Results 40

6.1 Discussion of results in the context of research questions . . . . . . . . . . . . . . . . . . 40

6.1.1 RQ1: Do challenges exist once DPVG is connected on the case study DN? . . . . 40

ix



6.1.2 RQ2: What is the degree of these problems? . . . . . . . . . . . . . . . . . . . . . 41

6.1.3 RQ3: What are suitable mitigation measures for the case study network? . . . . . 41

6.1.4 RQ4: Is the high uptake of DPVG realizable in SA, and KZN? . . . . . . . . . . . 41

6.2 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Research summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Conclusions and Future Work 43

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A Additional Files and Schematics 44

A.1 Tabular Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.2 Graphics and Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 DPF Model Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.3.1 Residential Load Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.3.2 Solar PV System Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.3.3 Line Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.3.4 CDU Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Additional Results 50

C Publications 52

x



LIST OF FIGURES

2.1 Two-bus distribution circuit used for VR analyses [14]. . . . . . . . . . . . . . . . . . . . 8

2.2 One line diagram for voltage drop analysis [22]. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 One line diagram with distributed PV generation. . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Illustration graph of the active power vs voltage droop control strategy [27]. . . . . . . . . 12

2.5 Complex power diagram for PV inverter, showing reactive power control range [31]. . . . 14

4.1 CMS one line diagram model showing the 33 kV voltage level input stage [12]. . . . . . . 20

4.2 CMS 11 kV stage with the case study LV network connection point at the Mini Substation

transformer Tr6 [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Case study 0.4 kV LV network model, with CMS connection point on LV side of transformer

Tr6, in DIgSILENT PowerFactory [11, 12]. . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Off-LTC transformer basic circuit model with tap changer modeled on the LV side. . . . . 25

4.5 Off-LTC transformer per phase feeder 1 (F1) connection system diagram and overall case

study LV DN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Typical LV residential load profile vs real solar energy generation profile in Summer (December):

Westville, Durban. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Actual average day solar irradiance (GHI) profile in winter (June); Durban - Westville. . . 29

A.1 Off-LTC transformer data entry dialogs in DIgSILENT PowerFactory 2016, and used in

this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

xi



A.2 A detailed diagram of the CMS 11 kV stage with the case study LV network connection

point at the Mini Substation transformer Tr2. . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Dissertation project flow chart showing major phases, tasks and activities. . . . . . . . . . 46

A.4 Load flow parameters for LV residential customers in DSP SP5 2016. . . . . . . . . . . . 47

A.5 Load flow parameters for a solar PV system in DSP SP5 2016. . . . . . . . . . . . . . . . 47

A.6 Line data entry dialogs in DSP SP5 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.7 Terminal (CDU) data in DPF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1 Data for LV loads, at eThekwini Municipality distribution network, in winter and summer

seasons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.2 GHI profile data in summer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xii



LIST OF TABLES

4.1 Customer CDU distances from transformer bus terminal (T). . . . . . . . . . . . . . . . . 23

4.2 Table map of Off-LTC Transformer TPs and LV side voltage magnitude. . . . . . . . . . . 26

4.3 NRS 097-2-3 SCC parameters for the case study DN. . . . . . . . . . . . . . . . . . . . . 26

5.1 ADMD standard for different urban categories. . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Beginning and end of feeder voltages (VT0 and VT9 ) with discrete variable loads. . . . . . . 30

5.3 LV cable ratings utilized in this study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Beginning and end of feeder voltages (VT0 &VT9 , nominal tap) with no solar PV generation

[11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 Beginning and end of feeder voltages (VT0&VT9 , nominal tap) at 50% PV penetration [11]. . 32

5.6 Beginning and end of feeder voltages (VT0&VT9 , nominal tap) at 100% PV penetration [11]. 33

5.7 Feeder active power losses (nominal tap) at 0% PV penetration [11]. . . . . . . . . . . . . 33

5.8 Feeder active power losses (nominal tap) at 50% PV penetration [11]. . . . . . . . . . . . 34

5.9 Feeder active power losses (nominal tap) at 100% PV penetration [11]. . . . . . . . . . . . 34

5.10 T1 and T9 voltages at 0% PV penetration [3]. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.11 T1 and T9 voltages at 50% PV penetration [3]. . . . . . . . . . . . . . . . . . . . . . . . . 36

5.12 T1 and T9 voltages at 100% PV penetration [3]. . . . . . . . . . . . . . . . . . . . . . . . 37

5.13 Feeder power losses with no PV penetration (Rounded to the nearest kilowatt) [3]. . . . . . 37

xiii



5.14 Feeder power losses at 50% PV penetration (Rounded to the nearest kilowatt) [3]. . . . . . 38

xiv



1. INTRODUCTION

Solar Photovoltaic (PV) is the most environmentally friendly and efficient electrical energy resource. There

have been significant focus on solar PV around the world in terms of research and development. This

dissertation details a comprehensive practical assessment of Distributed PV Generation (DPVG) integration

on an existing radial Low Voltage (LV) Distribution Network (DN), in South Africa (SA). In particular, an

investigation on technical issues, associated with DPVG, was carried out on a case study LV DN. Thereafter,

existing and innovative solutions were investigated and proposed, suitable for the considered case study

network, in order to adequately address these challenges. This chapter describes the background (chapter

1.1) and objectives of the research (chapter 1.2), the context for the research (chapter 1.3), the plan of

development (chapter 1.4) and finally the dissertation structure (chapter 1.5).

1.1. Background to the study

Currently, the world experiences high amount of electric power production from solar PV systems, and

will see more in the coming years [1]. A main driver of this production is climate change and increasing

energy demand. In recent years, the solar PV sector growth has been showing signs of stagnation in its

most mature markets and more growth opportunities in emerging markets [2]. In particular, SA, as one

of emerging markets, has challenges in the electricity sector of providing adequate power supply to meet

rapidly increasing and unpredictable electricity demand [3]. In addition, population growth and illegal

connections have increased grid connectivity and power demand, respectively. Moreover, economic growth

fuels energy consumption and have often led to frequent load shedding in order to meat global demand [4].

There is high probability of load shedding, by Eskom, in the near future due to depleting coal stockpile

and ever increasing electricity demand. Hence, alternative energy resources have been considered by

municipalities and Eskom to address load shedding and high power demand.

A challenge to produce additional power, in line with environmental compliance to clean energy to reduce

CO2 emissions and minimize reliance on fossil fuels; led to the South African electricity utility, Eskom,

establishing a Renewable Energy Independent Power Producers Procurement Programme (REIPPPP) [4,

5, 6]. However, the scope of the REIPPPP is limited to utility-scale Renewable Energy (RE) installations.

Alternatively, Eskom and most municipalities planned independent small-scale RE projects, and have been

inundated with consumer applications to connect Distributed Generation (DG) resources (mainly solar PV

systems) to low and medium voltage DNs.

1



CHAPTER 1. INTRODUCTION 1.2. OBJECTIVES OF THIS STUDY

Solar PV panels generate electricity by using PV technology, and are an integral part of solar PV systems.

Solar energy, from the sun, is stored and converted into electric energy by PV panels. Increased solar

PV generation would reduce the burden on conventional coal power stations. Germany is currently the

world leader with 7.6 GW of newly installed PV capacity. The most important factors driving the market

growth is that, it reduces CO2 emissions and saves coal and natural gas reserves. As a result, electricity

utilities support installation of solar PV systems through regulations, tax rebates and feed-in-tariffs plans.

Distributed PV market share currently increases at a rapid rate [7]. These systems are by large installed as

rooftop or ground mounted PV systems. The main focus of this study is to assess and address challenges

introduced by high distributed solar PV generation on radial LV DNs; mainly in SA. There exist well

researched problems that arise with large-scale integration of DG onto the grid. These will be assessed in a

typical radial DN, situated in the region of KwaZulu-Natal (KZN), SA.

1.2. Objectives of this study

1.2.1. Problems to be investigated

Traditional DNs in SA were designed such that electricity flow from the transmission subsystem onto the

DN, and finally to end consumers. When rooftop PV (and other DG forms) are connected onto a DN,

there is a possibility of a change in direction of power flow and DN becoming active. A main problem

arise when PV generation capacity is greater than load demand, on the DN. This results in net power flow

toward central transformer and in circulation on the DN, which existing power networks were not designed

to manage, and may raise voltage levels beyond acceptable operational limits [8]. Consequently, a Voltage

Rise (VR) phenomenon occurs and may lead to failure of DN equipment and customer home appliances.

Most electricity customers require financial compensation for power exported onto the grid. Nonetheless,

eThekwini Municipality has made an effort to address this through exploration of a pilot Net-Metering

Programme to motivate costumers to invest in PV systems [4]. DG schemes (landfill gas, wind, solar)

integration in DNs, considering energy losses and voltage stability (including VR), has attracted attention

of electricity suppliers, and is an issue to be investigated [8].

Grid connection of any form of modular generation introduces a disturbance in normal grid operation.

Distributed solar PV systems are no exception and more likely to cause problems for utilities, due to

intermittent nature of solar irradiance. These problems include; VR, voltage fluctuation, power losses

and Reverse Power Flow (RPF), and are investigated as part of this study, on an existing radial LV DN. The

DPVG forms considered in this work are conventional rooftop and ground mounted PV systems. The main

questions of interest are:

• Do challenges (VR, RPF . . . etc.) exist once DPVG is connected on the case study DN?

• What is the degree of these problems?

• What are suitable mitigation measures for the case study network?

• Is the high uptake of DPVG realizable in SA, and KZN?

2



CHAPTER 1. INTRODUCTION 1.3. SCOPE AND LIMITATIONS

1.2.2. Purpose of the study

Rising energy costs, growing public concern about environmental impacts of fossil fuel energy generating

resources and energy constraints of utilities across the globe have increased the relevance and need for

alternative RE resources. Residential solar PV market growth introduces technical and economic concerns

for municipalities and electricity utility network operators. In SA, there is strong interest, from electricity

suppliers and customers, on grid-connected DPVG, in contrast to utilization of expensive conventional

energy storage and generation devices. Electricity utilities (including Eskom and municipalities), have

concerns over DG interconnection, partially because of a lack of intensive published studies, and therefore

do not feel able to guarantee reliability and quality to customers once they allow connection of DG without

strict requirements. Part of this research aim is to address these concerns through a simulation and experimental

study of a case study local DN, at eThekwini municipality. Among challenges, the most important limiting

issue is over and under voltage in LV DNs, in the presence of DG [9].

Small-scale residential solar PV projects have been implemented in LV DNs, and there are plans for large-

scale future projects at a municipal level. However, there are well known researched technical issues

(chapter 1.2) associated with large-scale connection of DG on the electricity grid. These have been reported

and need to be assessed thoroughly and independently on existing electricity DNs [10]. In this approach all

the challenges would be well understood prior commissioning of solar PV projects [3, 11]. This work aims

to assess in detail and address the mentioned issues (chapter 1.2.1) in a typical radial DN in SA. This work

is applicable to other networks with similar architectures and characteristics.

1.3. Scope and limitations

A case study residential LV DN of eThekwini Electricity [12] was used in this project, to study potential

issues of grid-connection of solar PV systems on a typical radial SAn network. In addition, mitigation

measures, utilizing network resources and PV systems, were tested. Only radial LV DN are considered in

this study with LV reticulation standards used in eThekwini Electricity, SA. Mitigation techniques using

SAn standards, network equipment and PV inverters were evaluated on the case study DN. The main focus

was on the LV network part of the overall MV-LV DN [12], and was modeled in DigSILENT PowerFactory

(DP) Service Pack 5 2016. A subset of issues associated with DG was considered in this study, and include:

VR, voltage fluctuation, RPF and electrical power losses. Other issues have been studied in the literature and

can be assessed in this specific case study network as future work. Only single phase home PV systems and

customers are considered in this research. A three phase customer (commercial, industrial . . . etc.), with

a dedicated feeder, was incorporated in the LV network with no connected local PV system. Customers

referred to in this work are electricity distribution customers.
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1.4. Plan of development

In order to study and analyze DPVG problems, it was critical to model an existing LV network. A PhD

study by Dr. Sewchurran [12], focused intensively on the modeling and analysis of the case study DN. At

this point in time, is the only existing model that has been successfully implemented and tested in DP, in the

SA context. The network had to be modified to suit this specific application of DPVG, in DPF. A project

flow chart is included in Appendix A - Fig. A.3, and shows a broader process that was followed to arrive at

the conclusions of this dissertation. Following is a summary tool-set of this project:

• DP SP5 2016

• Desktop workstation running DP

• Existing LV network model - for appropriate modification and simulation analysis

• Eskom Smart Grid lab - University of KwaZulu-Natal (UKZN), Westville

Part of these resources are available in the research facility, Eskom Center of Excellence (CoE) in HVDC

and FACTS, at UKZN - Westville Campus. An existing network model was obtained from Dr. Sewchurran

work [12], whom is a principal engineer at eThekwini Municipality, Durban, SA. DP is a high-quality

power systems simulation tool; it includes features specifically designed for analysis of complex electrical

systems, and individual components. DP was readily available and licensed at the Eskom CoE in HVDC

and FACTS, UKZN.

1.5. Report outline

This report is structured as follows:

• Chapter 2: presents the field of solar PV RE, and introduces concepts of VR, VD, voltage unbalance

and fluctuation. Furthermore, mitigation techniques are detailed. The chapter provides an overview

of relevant research in the solar PV field and thus provides a context for, and identifies research

challenges related to the dissertation.

• Chapter 3: provides an overview of goal-based and prescriptive regulation concepts, and introduces

the international and SAn regulatory standards applicable in this field.

• Chapter 4: introduces research methods typically used for assessment of DPVG. It outlines the

research design applied in the research and details network component models and study assumptions.

• Chapter 5: presents the most important findings and results of the research. All contributions from

the papers (P1-P2, Appendix C) are described in this chapter.

• Chapter 6: the research results are discussed in the context of DPVG and contributions presented in

the previous chapters. A short discussion and summary of the potential applicability of the research

results is provided.
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• Chapter 7: in this chapter, research results are summarized, the main conclusions are presented and

some prospects for future work are briefly outlined.
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2. LITERATURE REVIEW

2.1. Background

Implementation of major changes in existing electric power DNs, requires ascertainment of key issues, with

respect to technical performance of the network, and include [13]:

• Voltage fluctuation

• Voltage regulation

• Electrical power losses

• DN loading and utilization

Kothari [13], reported voltage instability as a main driving factor for utility network collapses, in USA,

France, Belgium, Sweden and Japan. Therefore it is critical to conduct detailed analyses of grid voltage

stability, with renewable DG integration onto the grid. Voltage control is also receiving great interest

from power system analysts and researchers [13]. This dissertation aims to address the mentioned issues,

particularly for DPVG, in radial LV DNs. Subsequent sections detail reported literature.

2.2. Distributed generation

Currently, the DG market continue to advance with increasing operational challenges for DN operators

(DNOs) [11]. The market is largely dominated by solar PV small-scale systems[14]. DG can be defined

as generation of electric power in small scale generation units, close to the point of consumption or to the

customer side of the meter [7]. It can only be connected to a single DN [15]. Consequently, it was stated

that the main technology for DG from renewable sources is solar PV [7].
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2.3. Voltage stability issues

2.3.1. Voltage rise

VR phenomenon is one of the foremost concerns for DNOs [16]. A VR problem results in grid voltage

fluctuation in residential homes. This section detail reported work on VR.

According to [17] - a scenario where distributed PV system injects power to the grid, a VR occurs at

the electricity Customer Distribution Unit (CDU)1 or PV node. Traditional DNs were not designed for

bidirectional power flow. Hence, RPF mainly results in VR on customer load buses [16], and DN rendered

as active. Consequently, bus voltage rises and fluctuate as a function of PV power and customer location

(from a central MV/LV distribution transformer).

A main cause of a VR can also be framed on PV active power injection at unity power factor (PF), where

connected load demand is exceeded [18]. In [19], a root cause of a VR phenomena was identified as high

PV penetration, particularly, in Low and Medium Voltage (LV & MV) DNs. Demirok et al. [20] further

emphasized that high PV penetration may lead to violation of grid voltage regulation limits (VR). Tonkoski

[9] reported that low load and high PV generation coincidence (at noon) is more likely, than not, to result in

RPF. This operating region occurs when PV power generation peaks (due to high available solar irradiance,

on a sunny day), and house load consumption at minimum.

A further study in [1], detailed an analyses of impacts of solar PV active and reactive power on steady state

grid voltage stability. This was achieved through a study of PV power supply effect on distribution System

Loadability2 (SL). Active power was more helpful in improvement of DN SL, than reactive power, and

high PV penetration resulted in RPF; hence VR in the distribution feeder. Solar irradiance fluctuation (due

to cloud movements on a semi-cloudy day) directly lead to PV system output power fluctuation and VR,

which may lead to bus voltage values beyond acceptable operational limits [16].

Therefore, in this work, DG mainly refers to solar PV systems; however, it does not have to be always so.

The amount of DG (wind, solar, hydropower biomass etc.), feeder configuration and DG location, determine

the magnitude of VR on the customer points of service or CDU. The research work that has been conducted

and reported up to this point, indicates and emphasizes importance of addressing the VR problem prior

to any major DPVG project. Moreover, the basic root cause of VR on the DN can be attributed to RPF

phenomena, as in [19], where it was used as a basic quantity for the research work. It is clear that the

mismatch between customer load and PV generation is more likely to cause problems for customers and

DNOs.
1SAn equivalent [11] for electricity customer service point, where PV generator and load are connected.
2Amount of load that can be supplied by a DN before a collapse of grid voltage magnitude bellow minimum regulation limit [1].
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Impact of voltage rise

A significant volume of current literature have reported on the impacts of VR on the distribution system.

This section looks at the analyses and impacts of VR due to PV generation in LV DNs. A high uptake of

solar PV generation potentially leads to over-voltages and failures in a DN and customer power equipment.

In the event where PV output terminal voltage exceeds set standard operational limits (±∆V = maximum

allowed voltage change), connected load appliances may be subjected to voltages for which they were not

designed to operate under. Sensitive electrical equipment may malfunction or deteriorate in lifespan. As a

result, solar PV maximum capacity which can be supported by a specific DN is largely constrained by the

VR problem [10].

In [14], the VR impact was analyzed on a modified traditional 2 bus system shown in Fig. 2.1 (without

shunt capacitor), where:

Figure 2.1: Two-bus distribution circuit used for VR analyses [14].

• DS = distribution system

• OLTC = On/Off load tap changer, substation transformer

• Vs = sending end voltage

• Vr = receiving end voltage

• P,Q, I = active and reactive power supplied by PV generation/DG and line current

• Pl ,Ql = load active and reactive power demand

• Ppv,Qpv = PV system active and reactive power generation output

• R+ jX = feeder line impedance, where R and X are the resistance and reactance, respectively.

A mathematical analysis of the VR phenomenon and maximum DG capacity that can be connected without

violating voltage limits was calculated along with VR mitigation techniques [14].

The VR can be defined as follows [14, 7]:

∆V =Vr−Vs ≈
RP+XQ

Vr
(2.1)

where P = Ppv−Pl and Q = (±Qpv−Ql) are net active and reactive power magnitudes, respectively. From

Eq. (2.1), it can be seen that the VR is affected by net customer CDU power and feeder line characteristics.
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Sensitive electrical and electronic customer equipment incurs a reduction in life time span due to voltage

fluctuations. Sub-transmission and transmission systems are both affected by the high penetration of

renewable DGs [22]. Therefore, the VR analyses can be extended to the transmission system and studies

individually or with sub-transmission system.

2.3.2. Voltage drop

Grid integration of small-scale renewable generation on a DN has an impact on the feeder voltage drop

(VD). In order to understand how DG affects the VD, a study in [22], provided a mathematical relationship

between line VD and DG on a modified one line diagram, similar to Fig. 2.1, shown in Fig. 2.2.

Figure 2.2: One line diagram for voltage drop analysis [22].

From Fig. 2.2, the added parameters are: the line current I, and the MV primary voltage VDS. The VD

derivation is undertaken below [22]: The line current I is a function of the load; S = Pl + jQl , and load

terminal voltage Vr =
S
I = Pl+ jQl

I

Therefore, I =
S
Vr

=
PL + jQL

Vr
(2.2)

The mathematical expression for the line voltage drop is given by:

Vs−Vr = I(R+ jX) =
(RPl +XQl)− j(RQl−XPl)

Vr
(2.3)

The imaginary part was ignored on grounds of high R/X ratio of DNs, as in [23]. The VD calculation:

∆V =Vs−Vr, was simplified and approximated as follows:

∆V =
RPl +XQl

Vr
(2.4)

A second diagram with renewable DG connection on the feeder, is shown in Fig. 2.3.

Figure 2.3: One line diagram with distributed PV generation.

The VD expression at the end of the line with respect to the beginning of the feeder line, with DPVG can
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be approximated as [22, 23]:

∆V =Vs−Vr =
R(Pl−Ppv)+X(Ql−Qpv)

Vr
(2.5)

Based on (2.5), it was concluded that DG reduces the VD. If generator power is greater than feeder or local

customer load, the system will inject excess power onto the grid and a VR will emerge. Moreover, is the DG

absorb/inject reactive power, it can either decrease/increase line VD [22]. Since the VD is directly related

to electrical power losses, PV generation can contributed in reduction of network losses.

2.3.3. Voltage fluctuation

Additionally, a sub-portion of the broad voltage fluctuation phenomena, is a voltage dip problem, which

occurs due to passing clouds under high DPVG on a distribution network. In [24], voltage dip issue was

found to be significant and subsequently required more specific investigation. Naturally, solar irradiance is

intermittent, and as a result, voltage fluctuation and VR are highly expected when DG is connected onto a

DN. In [25], voltage fluctuation was defined as a change in voltage from a prescribed value. Movement of

clouds is the primary source of induced voltage fluctuation in the grid [25].

2.3.4. Voltage unbalance

Small-scale RPVS or residential PV systems and mismatch in customer load profiles can cause voltage

unbalance (VU) in the LV DN. A study in [26], addressed voltage unbalance due to RPVSs and customer

loads on a more practical perspective. It was implicitly stated that VU mainly result from different load

demand curves between houses, random PV locations and power ratings. As a result, the PV percentage on

each phase may be unknown [26].

2.4. Voltage regulation

Current literature have reported on a number of strategies for LV DN power quality improvements through

distribution feeder voltage control. This has been achieved through clustered solar PV inverters and utility

side management. In 2009, Demirok [20] undertook a comprehensive study and review of grid voltage

control techniques for power quality improvements, at that point in time. The study investigated problems

arising due to a bilateral interaction between the distributed PV inverters and LV DN. Two major control

strategies; power curtailment and reactive power control ; for voltage control were analyzed. Both control

methods were found to be insufficient and the study stressed more research on intelligent control strategies.

Power curtailment resulted in unfair PV inverter scaling among individual connected customers and reactive

power method was not suitable for networks with high R/X ratio (LV DNs).

Power curtailment and reactive power control strategies were compared in PSCAD simulation tool. Power

curtailment control resulted in limited 59:72% total generation capacity injected into the feeder, and reactive
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power control method allowed an increases of this capacity - with constrained inverter reactive power

support. It was further found that these two control methods can be used together to optimize active power

and the operating range can be raised efficiently on different R/X ratio networks [20]. Potential solutions

for voltage regulation were identified as:

• Output power limitation

• Reactive power control capability

• Storage system

• DVR, STATCOM, SVC addition to the network [20]

Ref. [14], suggested resistance reduction voltage control approach, to mitigate VR. It was based on the

direct proportional relationship between VR and feeder line resistance; ∆V ∝ R, where V is grid voltage

and R is line resistance [14]. Therefore, to reduce the VR, the line cable size should be increased and

possible reconstruct the DN. However, it is stressed that this operation can be costly, and DNOs should

consider the value of increasing the cable size and for increasing DG hosting capacity (HC) and reducing

voltages [14].

2.5. Active Power Curtailment

The most basic over-voltage mitigation technique is the active power curtailment (APC). This method

reduces PV system power below operating point, and is mostly implemented on the PV inverter device.

There have been significant work on the basic APC method and improvements, as detailed in this section

of the literature.

A study in [27] reviewed the most common APC strategies for distributed renewable energy resources. The

most referenced APC techniques were investigated and tested on a 2 bus and more realistic DNs, namely

27:

a) Generator trip or disconnection APC

• Disconnects generator when overvoltage condition is reached at generator terminals

• This basic strategy has disadvantage in terms of energy loss, since a generator is disconnected

close to maximum generation point

• An advantage is that it is simple and has potential as a solution for generators with low intermittency

b) Fixed APC

• Limitation of maximum power fed into the grid

• Features in most inverters for prevention of overloading

• A power limiter controller is activated when a pre-set active power set-point is reached
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• Offers more benefits compared to generator disconnection strategy

1. Active power vs voltage droop (W/V) control

• Only active power which results in network congestion is curtailed (Fig. 2.4)

Figure 2.4: Illustration graph of the active power vs voltage droop control strategy [27].

2. Generation of fixed portion of available generation

• Applies fixed production set-point based on available power generation

• Large amounts of power curtailment (energy losses) compared to the other strategies

• Can be applied seasonally, during periods of high power production [27]

The W/V control approach resulted in high hosting capacity3 for smaller active power curtailments and

recommended for PV plants [27].

2.6. Droop-based APC

A research study in [28] proposed a constant adaptive droop-based active power APC, based on adaptive

dynamic programming (ADP), for mitigation of overvoltage in LV DN.The methodology was tested on a

typical North American LV DN with high PV penetration. It was implemented on a one house model,

and reduced energy losses (power curtailment), from traditional APC method, by 25% while maintaining

voltages within standard limits. Nonetheless, there was more future work suggested to apply the method on

all DN houses and verify overvoltage prevention and power curtailment minimization [28]. This strategy

have not been fully applied practically and is currently work in progress.

3Amount of generation that can be connected in a distribution network without any problems [27].
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2.7. Reactive Power Control

In order to control voltage at the PV inverter terminals, reactive power have been studied in literature to in

an attempt to control the grid voltage. Research studies have focused on basic principles of reactive power

control to advanced flexible approaches. Ref. [21] of 2008, studied effects of distributed high solar PV

penetration on the distribution voltage control and reactive power flow on the power network on a feeder

with residential and commercial characteristics. PV penetration levels (5,10,30,50)%, and RPF impacts

on feeder voltage profile and network voltage control equipment, respectively, were studied. This study

found that reactive power capabilities of PV inverters improve the voltage profile and coordinated control

of network equipment and DG can improve overall performance. Implementation used a representative

distribution feeder, with on load tap changer (OLTC) transformer, step voltage regulator (SVR) and a

capacitor bank voltage regulation equipment to analyze feeder voltage profile and power flow (P & Q).

Feeder primary voltage control is achieved by coordinated and uncoordinated control between distribution

voltage regulation equipment and oversized (S = 110%) PV inverters. Two extreme scenarios, peak load and

maximum RPF, were simulated in order to study the feeders voltage performance under different conditions

[21].

In 2013, Malekpour [29] proposed a dynamic reactive power control strategy (var injection) to reduce

grid voltage variations due to intermittent solar irradiance caused by fast moving clouds, in a second by

second time resolution. Using the capability of smart inverter-based PVs at residential level, traditional

and oversized inverter deployment were utilized to investigate the effectiveness of the proposed approach.

It was found that oversized inverters reduce the voltage variations significantly and has better control over

IEEE 1547 (2003) [30] and traditional inverter control approaches. Most recently [23] (2017), Malekpour

proposed and presented a novel dynamic smart PV inverter reactive power control strategy, for mitigation

of PV power volatility effects, increasing of PV penetration levels and efficient use of rooftop PV systems,

in various weather conditions. The proposed strategy considered three PV system operational states:

• normal state associated with reactive power control in slow PV ramping period (sunny or overcast

state, in which loss reduction is the main objective)

• fluctuating state accommodating fast ramp-up or ramp-down PV power, during intermittent cloudy

periods, with the objective to smooth out overall feeder voltage profile

• contingency state experienced when PV terminal voltage deviates from the normal operating range

(low load high generation or high load low generation) [23].

Each operational state (determined from PV active power and inverter terminal voltage variations) control

goal is to eliminate or reduce over or under voltage in the LV grid [23].

PV inverter power oversizing is the main driver of grid voltage control through local reactive power injection/absorption.

A diagram showing the relationship between PV inverter power variables is shown in Fig. 2.5. A study in

[31] (2010) compared an optimal global and suboptimal local reactive power control strategies on a specific

unique distribution circuit. PV inverter oversizing reduced network losses and improved power quality for

both strategies. However, the global method was more complex (required significant communication and
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Figure 2.5: Complex power diagram for PV inverter, showing reactive power control range [31].

coordination) in contrast to the simple local algorithm [31].

2.8. Central Transformer Voltage Regulation

The OLTC distribution transformer have been reported significantly in literature, with a focus its real-time

response, in terms of tap changing, to network variations and increasing of distributed PV hosting capacity,

as in [32, 33]. A comprehensive study of the Off-load tap-change (Off-LTC) distribution transformer voltage

control, under distributed PV interconnections, has not been reported in the current literature. This work

also addresses this gap in the literature by analyzing impacts of the Off-LTC transformer voltage control

under high DPVG. Off-LTC transformers are largely used on the grid downstream from the main generating

plants, where there are smaller electricity grids.

Ref. [34], suggested an over-voltage prevention strategy of adjustment of the transformer tap to reduce

secondary voltage magnitude. An assumption was made that the transformer tap is not changed frequently.

However a practical test of this hypothesis was and has not been conducted.

2.9. Other Dispatch Algorithms

Apart from APC and RPC voltage control strategies, there have been a number of studies recently proposing

new novel solutions. As a first instance [16], proposed an efficient distributed renewable resource dispatch

algorithm (based on population games), which utilizes cyber connectivity between power devices. In this

way, mass integration of renewable resources is facilitated while mitigating VR. The algorithm further
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aims to minimize dependency of the local LV DN on the main grid for sustainable system operation [16].

However, this algorithm is more suitable for more advanced network architects, which mostly do not exist

in developing economies.

Ref. [19], presented an index-based assessment method for quantifying impacts of high PV penetration on

VR, with a focus on reverse power flow and VR issues. Indices which link these two phenomena and their

impact on the feeder voltage profile are defined. Voltage control strategy consists of derivation of acceptable

range and safe margins for the proposed indices. This strategy was then compared with basic APC with no

constraint method. Application of this method is only valid for three phase balanced networks (MV/LV).

This paper concluded that the IBA methodology was better than the basic APC methodology, and can be

applied in large networks in combination with other VR mitigation techniques [19].

Ref. [35], detailed a coordinated control of consumer controllable load - Heat Pump Water Heater (HPWH)

- to regulate grid voltage within normal operating limits, for future Japan DNs with large PV penetration

levels. A central controller at the distribution substation regulates node voltages by altering HPWH power

consumption. However, voltage violations were not completely suppressed at feeder end nodes, under

proposed methodology. Nonetheless, this study showed that there is a high possibility of mitigating voltage

violations in future DNs [33]. Coupling of LV feeders under a common or different distribution transformers,

through a distribution STATCOM device, for voltage quality (VR, VD, unbalance & fluctuation) improvement,

has been proposed in [26]. The distribution STATCOM voltage control was tested on the network with

varying PV generation and consumer loads. A techno-cost analysis was not undertaken as these devices

were not commercially available in high numbers, hence the methodology was still under development

[26].

2.10. Conclusion

This chapter presented a comprehensive review of current research on DPVG integration in radial LV

DNs. Potential issues identified and associated with DPVG connection on LV DNs are: RPF, VR, VU,

voltage fluctuation etc. In this work, these problems will be investigated on an existing LV case study

DN, and confirmation thereof. Mathematical equations and circuit diagrams were utilised for VR and VD

analysis. These equations can be used for VD reduction, system loading improvement and VR reduction by

changing parameters, however this is outside the scope of this dissertation. The most important issue to be

investigated is VR phenomenon under high DPVG. Each network need to be investigated for the issues in

question independently [19].
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3. CURRENT INDUSTRY STANDARDS

3.1. International Standards

3.1.1. Grid Voltage Limits

In Canada, a study in [34], described normal and extreme grid voltage operating limits, which are adopted

by most Canadian utilities. The steady-state normal and extreme voltage limits were described as 0.917 and

1.042 pu & 0.88 and 1.058 pu, respectively.

3.2. Voltage Control

In the United States of America (USA), there was an amendment of the international standard, developed by

the IEEE, IEEE 1547 (2003) [30] in 2014 [34], and has resulted in more literature works on distributed PV

inverter reactive power control for grid voltage support and regulation. The IEEE 1547 - 2014 Amendment

I [36] details reactive power control strategies in order to maintain power quality levels or provide ancillary

services to the LV DN [23].

According to [34], [37] ”specifies the electrical requirements for inverter-based micro-distributed resource

systems interconnection to LV grids in Canada”. This standard does not allow small-scale distributed

generator to control grid voltage through reactive power, unless in agreement with the utility. However,

the inverters may operate with a power factor between±0.85, the standard does not provide any restrictions

in the APC method [34].
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3.3. South African Standards

3.3.1. Grid Voltage Limits

3.3.2. Voltage Control

In South Africa, the NRS 097 standard specifies grid requirements for interconnection of distributed generation

on LV DNs. This standard consists of the following parts under the broad framework title: Grid Interconnection

of Embedded Generation.

1. Part 1: Distribution standard for the interconnection of embedded generation

• This part specifies minimum technical requirements for grid connection of embedded generation

in high voltage HV and MV DNs

2. Part 2: Small-scale embedded generation

• The specification details technical requirements for the utility interface, the distributed generator

and the utility DN with respect to distributed generation, connected in LV DNs

It is to be noted that the embedded generation is equivalent to DG in the research literature. In this report,

only Part 2 (NRS 097-2) is applicable for grid interconnection of distributed solar PV, and consists of

two sections [38, 39] which are referenced in this work. Section 1 [38] specifies the following, for grid

connection of DG:

1. the distributed generator should not control the voltage, unless agreed to by the utility

2. a distributed generator should not inject reactive onto the grid, and reactive power absorption should

be limited to a power factor of 0.9. This limits apply, unless agreed otherwise with the utility

3. the embedded or distributed generator shall automatically disconnect from the grid in an event of

abnormal conditions:

• network voltage or frequency out of bounds condition

• loss-of-grid; condition in which supply from the utility network is interrupted for whatever

reason

4. the distributed generator should be equipped with a disconnection function to disconnect the distributed

generator from the grid in an event of either of the above abnormal conditions

5. the distributed generator should trip when the nominal voltage is out of the continuous operating

range of 85%≤V ≤ 110% [38]

From this specification requires PV systems to absorb limited reactive power (at a PF = 0:9), to support

voltage regulation in the LV feeder. This can also assist in the reduction of voltage fluctuations and VR in the
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LV feeder. However, this limit can be exceeded in agreement with the network utility operator. The reactive

power injection functionality is available in an agreement with or of the utility. Therefore detailed and

thorough network studies are needed to assess performance and impacts of PV inverter voltage regulation

and reactive power injection on the grid, particularly in the SAn networks. Moreover, a protection scheme

shall be integrated in the PV system connection plan to disconnect when the voltage limits are violated.

This required feature is in line with widespread international practice.

Specifications in the subsequent Section 3 of NRS 097-2, with respect to distributed solar PV generation -

Simplified utility connection criteria for low-voltage connected generators, are as follows:

• If the the connection criteria in this section is not met, it does not mean that the DG cannot be

connected, but detailed network studies are required to assess if the generator can be connected

• utilities may modify or add additional criteria, to meet their specific requirements regarding their

network characteristics

• DG connected to the LV network should be 25% of the MV/LV distribution transformer rating

• the total generation (i.e. shared LV generation and dedicated LV generation) supplied by a MV/LV

transformer should be less than 75% of the MV/LV transformer rating

• the maximum change in LV voltage (due to voltage drop/rise in the MV/LV transformer and LV

feeders) due to embedded generators is limited to 3%

• VR on LV feeders should be limited to a maximum of 1% for dedicated LV feeders

• the maximum VR due to all generators connected to an LV network should not exceed 3%

• The maximum individual generation limit in a shared LV feeder is approximately 25% of the customers

NMD, up to a maximum of 20 kVA. This generation limit will typically support a penetration level

(percentage of customers that install a generator) of 30% to 50%, which is considered a reasonable

and acceptable compromise between restricting individual generator sizes versus restricting penetration

levels [39].

This specification provided a basic Simplified Connection Criteria (SCC) for interconnection of DG in LV

DNs, without a need for detailed network studies. Accordingly, it was stated that potential network issues

(VR, reverse power flow etc.) can be avoided if this connection criteria is followed properly.

3.4. Discussion

In Western countries the PV systems belong to the user usually, or at least an independent third party. Hence

tight regulations about voltage control. There is a current argument about voltage control in SA, and there

is a highly possible future scenario of voltage control of the distributed solar PV systems, to the standard

of no voltage control. At present, Eskom is looking at applications of PV systems that will suit the SAn

environment, and the PV units will be part of the Eskom system. This may make voltage control possible if
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CHAPTER 3. CURRENT INDUSTRY STANDARDS 3.4. DISCUSSION

they are also classed as a static synchronous compensator (STATCOM) device. Therefore, the PV inverters

will be in synchronization and possible interference between adjacent inverters will be avoided.

There is also the issue that as more distributed PV is deployed, there could be an occurrence where a lot of

the houses have PV systems, with different manufacturers. Therefore, if there are voltage regulators on the

PV systems they will contradict each other with reactive power oscillating between the systems.

SAn standards does not restrict APC . Also, limited reactive power absorption can be implemented to avoid

over-voltage in the feeder, in an absence of utility agreement. NRS grid codes [38, 39] may need updates in

future, because more PV inverter functionality will be added in the future [40].
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4. METHODOLOGY

In this chapter, the project design process is detailed and is divided into sections. Firstly, the case study LV

DN of eThekwini Electricity is brie y described with accompanying reference published sources.

4.1. LV network model

Initially, the full DN model, which includes MV & LV networks was developed in a study in [12]. This

network represents an existing network layout of a housing development estate at eThekwini Municipality,

SA, and is utilized in this study for distributed generation simulation. Subsequent published work from

the eThekwini Electricity network can be found in [11]. The LV network section of the overall DN is also

described in this section. In the implementation of the network, LV reticulation standards for South African

LV DNs were used to ensure compliance with standard regulatory practice. The case study LV network is

primarily fed by the existing 33/11 kV Connaught Major Substation (CMS). A one line diagram of CMS,

implemented in DP, is shown in Fig. 4.1. Electrical parameters and characteristics of transformers (Tr1;Tr2)

are included in Table A.1, in Appendix A. The two input transformers have identical characteristics and have

discrete automatic OLTC for LV side voltage regulation. The voltage set-point of the OLTC transformer

was set at a value of 1.03 pu, according to LV reticulation requirements. An external grid is connected to

the 33 kV input busbar, shown in Fig. 4.1.
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11 kV BB Rear

11 kV BB Rear

Figure 4.1: CMS one line diagram model showing the 33 kV voltage level input stage [12].
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CHAPTER 4. METHODOLOGY 4.1. LV NETWORK MODEL

The main 11 kV stage of the substation is shown in Fig. 4.2. The 11 kV BBs are connected to the HV

sides of the mini substations transformers. In turn, the 2-winding transformers step down 11 kV to 0.4 kV

voltage for LV DNs. The case study electrical LV network is connected at the LV side of transformer Tr6.

2

0
0

0
0

00

0
0

0
0

11 kV BB Rear

11 kV BB Front

33/11 kV CMS

Mini Substation

Figure 4.2: CMS 11 kV stage with the case study LV network connection point at the Mini Substation
transformer Tr6 [12].

The LV customers are connected to a grid by shared feeders of 3φ ground cables and grid connected

customer loads, as shown in Fig. 4.3, and represents an existing housing estate at eThekwini Electricity.

Customer loads connected at shared distribution feeders, are identical and single phase. The 3φ 200 kVA

customer represents larger load (Commercial or Industrial) and has a PF of 0.95, and their balancing effect

will be considered under integration of DPVG. Individual LV network feeders consists of 3φ ground cable

lines, interconnecting the CDUs (⇒ Terminals - T1 . . .T9) as shown in Fig. 4.3. Individual CDU distances

from a top reference feeder terminal T0 are detailed in Table 4.1. In total length, the feeders are 0.9 km

each with a CDU situated at every 0.1 km. Also, the cable length connecting the 500kVA Mini Substation

to terminal T0 is 0.1 km in length.
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CHAPTER 4. METHODOLOGY 4.1. LV NETWORK MODEL

Mini Substation

F1 F3F2

customer load

Figure 4.3: Case study 0.4 kV LV network model, with CMS connection point on LV side of transformer
Tr6, in DIgSILENT PowerFactory [11, 12].

A new housing development in Durban was utilized for this case study. The development consisted of

81 new medium/high income homes with requests and potential for PV installations based on the energy

efficiency requirements for this ecological estate. The site was fed from a 500 kVA MS which was dedicated

solely for the development. The electrical layout of the development can be seen in Fig. 4.3. For the purpose

of this case study, the development was modelled to consist of three feeders with 27 consumers per a feeder

and 3 consumers per a CDU. The site was fed from two existing DSS, namely; 192 Underwood Road DSS

and 10 Robin Road DSS. These DSS are fed from the Underwood Road Major Substation and Northdene

Major Substation. Table 4.1 shows the estate internal reticulation which was designed to ensure that all

phases were balanced for the purpose of this study.
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CHAPTER 4. METHODOLOGY 4.2. RESIDENTIAL LOAD MODEL

CDU Number F1 F2 F3
Distance (km) Distance (km) Distance (km)

1 0.1 0.1 0.1
2 0.2 0.2 0.2
3 0.3 0.3 0.3
4 0.4 0.4 0.4
5 0.5 0.5 0.5
6 0.6 0.6 0.6
7 0.7 0.7 0.7
8 0.8 0.8 0.8
9 0.9 0.9 0.9

Table 4.1: Customer CDU distances from transformer bus terminal (T).

4.2. Residential Load Model

Residential electricity customers were modeled using data from eThekwini Electricity LV reticulation

standard. In this standard customer load values and power factor (PF) are considered fixed. Basic parameters

are as follows:

a) Apparent power: 4.6 kVA

b) PF: 0.95 inductive

c) Phase connection: 1φ

DPF load flow entry parameters, in a Graphical User Interface (GUI) for LV loads are attached in Fig. A.4

of Appendix A.

4.3. PV System Model

DPF provides a default graphic and software model for a solar PV system. This model consists of pre-built

solar panels and inverter (controllers) models, which are explained in detail in the User Manual. Initial

basic parameters of PV system for this study are:

• Power rating (minimum) = 1.15 kVA (based on NRS 097-2-3 [39])

• PF = 1

• Phase connection = 1φ phase to earth

• Model = active power input

PV system DSP GUI graphic showing entry parameters is shown in Fig. A.5, of Appendix A.

23



CHAPTER 4. METHODOLOGY 4.4. LINE DATA MODEL

4.4. Line Data Model

Distribution feeder lines were modeled using standard LV cables - 95, 150 & 240 mm2 cables. These cable

sizes are used in LV network reticulation in SA. GUI graphics showing input data for line parameters and

type are shown in Fig. A.6, of Appendix A. Basic line data is as follows:

• Number of customers = 0

• Maximum & Average load = 0

• PF = 1

4.5. Customer Distribution Unit Model

A CDU1 unit distributes power supply among three interconnected 1φ customers using premise service

lines. DSP software represents a real CDU point using a terminal (T) graphics element and data. In this

work, service line length were assumed small in comparison to feeder distribution line length, and hence

negligible for simplification purposes. A DPF GUI dialog is attached in Fig. A.7, of Appendix A.

4.6. Off-LTC Transformer Models

This section details study design models for the central distribution Off-LTC transformer and overall system

connection on the case study LV DN (Figure 4.3). The 11 kV/0.4 kV mini substation LV transformer (Off-

LTC) feeds the whole network, and has the following parameters:

• Off load tap changer: 5 taps, 2.5% per a tap with nominal tap at third tap

• Apparent power: 500 kVA

• Voltage ratio: 11/0.4 kV

• Nominal Frequency: 50 Hz

• Core windings: 2 windings

• Feeder configuration: 3φ 4 wire (Y-connection)

An equivalent circuit used in DIgSILENT PowerFactory simulation is shown with the basic parameters.

The p.u. parameter values used in this study are as follows:

rCu,HV = 0 p.u., resistance on HV side

1Concept for LV distribution network shared feeder power supply point, used in SA.
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rCu,LV = 0 p.u., resistance on LV side

Xσ ,HV = 0.023 p.u., Leakage reactance on HV side

Xσ ,LV = 0.023 p.u., Leakage reactance on LV side

XM = ∞ p.u., Magnetizing reactance

rFe = ∞ p.u., Shunt resistance

uHV = HV side voltage

uLV = LV side voltage

The circuit diagram was obtained from DIgSILENT PowerFactory 2016 user manual under a 2-winding

transformer model. The basic transformer subsystem in Figure 4.4 is incorporated in the overall distribution

system shown in Fig. 4.5. This is for a per-phase circuit since the loads and PV sources are assumed

balanced across the phases, and all feeders identical. More detailed DIgSILENT PowerFactory parameters

of the transformer can be found in the Appendix A. Feeder 2 and 3 denote three phase feeders - F2 and F3,

respectively, of Figure 4.3.

Figure 4.4: Off-LTC transformer basic circuit model with tap changer modeled on the LV side.

Table 4.2 shows the map between tap positions (TPs) and corresponding transformer LV side voltage

magnitude.

Figure 4.5: Off-LTC transformer per phase feeder 1 (F1) connection system diagram and overall case study
LV DN.
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Tap position Voltage (kV) Uk Add. Rat. Factor
1 0.38 4.5 1
2 0.39 4.5 1
3 0.4 4.5 1
4 0.41 4.5 1
5 0.42 4.5 1

Table 4.2: Table map of Off-LTC Transformer TPs and LV side voltage magnitude.

4.7. NRS 097-2-3 Simplified Connection Criteria

In an attempt to simplify network utility connection of distributed generators in LV DNs, the NRS 097

standard [39] was developed and is used by DNO in SA. More details in regards to the description of the

standard can be found in chapter 3. This section details an application of this connection specification

criteria on the case study network for DPVG. A summary of constraints obtained from the NRS SCC are

shown in Table 4.3.

Parameter Value
Max. Generation 125 kVA

Max. Customer Generation 4.6 kVA
Voltage rise limit 6.9 V
Penetration Level 24 to 41 Houses

Table 4.3: NRS 097-2-3 SCC parameters for the case study DN.

4.8. Design Process

The following design process was undertaken in this study.

• Load modeling using ADMD approach

• PV system modeling using static generator concept

• Linear distribution of PV units

• DNO have explicit control of DG location

4.9. Conclusion

In this chapter, the case study LV DN was presented, along with the accompanying MV DN. Network

models for all equipment used in this study were described, including a detailed diagram of the Off-LTC

transformer. The NRS Simplified connection criteria was reviewed and is applied on the next chapter on

the case study DN.
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5. RESULTS

In this chapter, simulation results of practical scenarios with residential solar PV integration in case study

LV distribution networks are detailed and analyzed. Residential solar PV units can be configured in a

number of ways including rooftop or ground mounted PV system setting. More practical scenarios were

obtained from an existing network model of eThekwini Electricity and using technical standards for network

characteristics and PV installations. Consequently, a simulation study was conducted in DSP latest version

and provides more accurate results and practical expectations. This chapter is therefore structured as

follows; Firstly, residential load and PV generation profiles are presented with their practical modeling.

Thereafter, more broad study assumptions are described in Section 5.2. Thereafter, assessment of VR and

feeder line cable mitigation is detailed in Section 5.4. Section 5.5, presents results for network voltage

control using a central MV/LV distribution transformer (Off-LTC transformer). Full papers containing

more detailed descriptions of the results can be found in Appendix C.

5.1. Typical PV generation and residential load profile

To accurately understand challenges introduced by high DG, correlation between solar PV generation and

residential load consumption curves need to be studied. The solar energy and residential load profiles are

shown in Figure 5.1. Residential load profile is characterized by morning (6 am) and evening (9 pm) demand

peaks, as shown in Figure 5.1. Residential load profile is characterized by morning (6 am) and evening (9

pm) demand peaks, as shown in Figure 5.1.
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Figure 5.1: Typical LV residential load profile vs real solar energy generation profile in Summer
(December): Westville, Durban.

In contrast, PV generation profile is characterized by start of power generation from sunrise (5 am) to the

sunset (8 pm), with peak generation around 1 pm. The worst case solar irradiance intensity is shown in

Figure 5.2. A reverse power flow scenario is more likely to occur in summer then winter, and would result

in technical and power quality problems for DNOs. In winter, there may be increased network losses due to

insufficient solar PV power and higher load consumption. The solar data [41] was selected for the months

of December and June 2016, and represents the latest solar patterns and most representative. Residential

customer data was obtained in [39], with a total day consumption of 11.17 kWh. In this paper, the standard

ADMD load modeling method was used in contrast to the resistive method used to obtain the load curve in

Figure 5.1.

The actual PV power generation can be computed using the solar irradiance profiles in Figure 5.1 and

5.2; however, this computation is beyond the scope of this work. The solar generation profile used is for

Westville in Durban, which is the location of the study. Figure 5.1 plots clearly show that there is a mismatch

between solar PV generation and individual customer load demand profile per day, and hence there is more

likely a disturbance on normal grid operation.
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Figure 5.2: Actual average day solar irradiance (GHI) profile in winter (June); Durban - Westville.

5.2. Case study assumptions

The assumptions used for this case study are discussed below:

• All residential customers are single phase customers

• Three phase customer is grid connected

• Individual home NMD = 4.6 kVA

• All PV installations are single phase 4.6 kW systems (maximum PV installation size as per the

requirements of NRS 097-2-3 [39])

• PV systems operate at standard solar irradiance (1000 W/m2)

• LV customers are balanced across three phases

• Customer share the same load profiles and maximum power demand

• Cable length (< 5 m) between the CDU and the customer meter box can be neglected to simplify this

study

• Electricity consumption of street lighting is assumed negligible

• The NRS 034 Standard [43], is widely used in SA by utilities and consultants for determination of

loads and DG for new developments. This data is used to correctly size the DN components, such as

cables/lines, embedded generation and transformers. Table 5.1 is an extract from the standard (Table

2) and gives the kilovolt-ampere zoning ADMD for urban areas at the transformer LV bus. Since the

dwellings fell under ”Domestic normal”, an ADMD of 4.6 kVA was selected [11, 3].
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Type of Development kVA/stand (individual)
1 Domestic electrification 0.2-1
2 Domestic low income 1-3
3 Domestic normal 3-6
4 Domestic upmarket 6-8
5 Domestic luxury single phase 8-12
6 Domestic luxury three phase ¿ 12

Table 5.1: ADMD standard for different urban categories.

5.3. Normal operational results

A primary base case network operation condition, from Fig. 4.3, without PV system connections on T9,

is used as primary study case. During the network design, LV network reticulation standards used by

eThekwini Electricity were implemented on the DP model. Accordingly, additional assumptions for the

primary base case are as follows:

• House loads are balanced across all feeders

• Tr6 TP is set at nominal tap (Vrms)

• All feeders utilize the 240 mm2 4C PVC underground cable

It should be noted that in the primary base case, cable line L3φ , between Tr6 11/0.4 kV and terminal T0,

in Fig. 4.3, experienced an overload of 168.92% rated current. Moreover, Mini Substation transformer

Tr6 was loaded at 86.61%, slightly above a standard recommendation of maximum 75% loading. Table ??
shows simulation results in DPF with no solar PV connections on the LV network. Current overloading in

line L3φ , between the transformer and T0, occurred at simultaneous load consumption above 50% ADMD,

as indicated in Table 5.2. It is highly unlikely that the LV loads will coincide 100%, as some loads may

be pure resistive. However, it is critical to plan in advance for such occurrence. Next section details a first

LSF VT0 (p.u.) VT9 (p.u.)
0.25 1.01 0.99
0.50 1.00 0.97
0.75 0.99 0.95
1.00 0.98 0.93

Table 5.2: Beginning and end of feeder voltages (VT0 and VT9 ) with discrete variable loads.

step in the grid integration of DPVG using different cables sizes and NRS 097-2-3 [39] SCC specification,

on the case study LV network. NRS 097-2-3 standard strictly states that this simplified approach can be

followed in order to avoid network problems and further detailed network studies, due to grid connection

of embedded generation.
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5.4. Performance of feeder cables

Firstly, this study investigated the most optimal feeder cable size for residential PV intake in a typical

SAn or similar LV networks. A research paper [11], focusing on this section, was published online and

is referenced to acknowledge the published results. Determination of impacts of DPVG and feeder line

cable performance were both assessed from a modified typical SAn LV network, developed by eThekwini

Electricity, and shown in chapter 4.1: Fig. 4.3. A base case network configuration (with no residential

solar PV connections) was compared with step levels of different DPVG Penetration Level(s)1. Three

standard different cable sizes used for each shared distribution feeder (used for LV reticulation at eThekwini

Electricity), and are shown in Table 5.3. Central transformer tap was

fixed at the nominal TP 3 (chapter 4 - Table 4.2), for simulation studies in this Section. LV feeders F1,F2

and F3 were modeled using 95 mm2,150 mm2 and 240 mm2 cable sizes, respectively. Individual cable

current ratings, in amperes, are indicated in Table 5.3. Due to homogeneous properties between the three

feeders, each cable performance represents the other two feeders.

Feeder Cable size (mm2) Cable rating (A)
F1 95 172
F2 150 249
F3 240 370

Table 5.3: LV cable ratings utilized in this study.

5.4.1. Method

The following steps were followed in this case study:

• Network assessment at PV penetration levels of [0, 50, 100]%

• Variation of maximum individual consumer loads (4.6 kVA) at [25, 50, 75,100]% variation steps, for

each PV penetration level

• Evaluate performance of the 95 mm2,150 mm2 and 240 mm2 LV feeder cables, on each feeder

• Investigate load variation effects for each PV penetration level

5.4.2. Results for Feeder Cables and VR

Rooftop PV case study 1: base case: No PV generation

In this study case, LV customers were assumed to have no PV installations in their homes. Table 5.4 shows

the beginning (T0, chapter 4 - Fig. 4.3) and end of feeder (T9 or CDU9) voltages (VT0&VT9 ), respectively.

1Percentage of residential customers with rooftop solar PV system installations.

31



CHAPTER 5. RESULTS 5.4. PERFORMANCE OF FEEDER CABLES

All three feeders share a common voltage value (VT0 ) at the begging of the feeder (Terminal T0), for all load

variations. From Table 5.4, it can be seen that feeders (F1&F2) experience VD (below acceptable limits)

around peak load periods when large current flows through the transformer. Hence, for normal operation

(with no connected PV systems), the optimal operational cable is the larger 240 mm2 cable size. In this

way, all feeder voltages will remain within the acceptable SAn regulatory statutory limits (±10% [42] of

nominal 0.23 kV phase voltage [43]). In this particular case, the cable implementation technical costs will

be minimal, and energy costs reduced, since the Housing Development2, at eThekwini Municipality, is

currently under a planning phase. Alternatively, procurement cost can be reduced by consideration of the

smaller cable sizes and increasing the transformer tap position to offset the VD. It can be assumed that

similar results will be obtained on other local SAn or similar networks.

LSF VT0 95 mm2 150 mm2 240 mm2

0.25 1.02 0.98 1.00 1.01
0.50 1.00 0.94 0.96 0.99
0.75 0.99 0.89 0.92 0.96
1.00 0.97 0.84 0.89 0.93

Table 5.4: Beginning and end of feeder voltages (VT0&VT9 , nominal tap) with no solar PV generation [11].

Case study 2: 50% PV penetration

A second operational state, includes a PV penetration level of 50% in residential homes. Feeder voltages

remained within acceptable±10% limits [42], as shown in Table 5.5. In this case, when the high impedance

feeder cables (95 mm2 and 150 mm2) are utilized, there is no violation of voltage regulatory limits, as shown

in Table 5.5. The Voltage Profile3 improvement is mainly due to total load reduction and local customer

demand offset by residential PV units. At peak load (100% ADMD) (8 pm) there is a significant VD on the

smallest cable size (95 mm2) as expected, due to large grid currents. The VR issue only arises for the smaller

( 95 mm2 and 150 mm2) cables, as can be seen in Table 5.5. In this scenario, the bigger 240 mm2 cable

(as recommended in chapter 5.4.2 for normal operation) demonstrated good performance, and suppressed

the VR problem. Moreover, smaller cables usage still has valid performance with an adjustment of the

transformer tap position. NRS 097 guidelines [39] states that with a limit of 25% of the circuit breaker

rating (80 A single phase), a PV penetration level of (30 - 50)% can be supported by the LV network with

no technical problems.

LSF VT0 95 mm2 150 mm2 240 mm2

0.25 1.03 1.04 1.00 1.01
0.50 1.01 1.06 0.96 0.99
0.75 1.00 0.96 0.97 0.98
1.00 0.98 0.92 0.94 0.96

Table 5.5: Beginning and end of feeder voltages (VT0&VT9 , nominal tap) at 50% PV penetration [11].

2New housing estate development at eThekwini Municipality, Durban, SA.
3A voltage vs. distance (km) graph showing voltage variation against CDU distance from a reference terminal (T0), in this context.
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Case study 3: 100% PV generation

A third case study includes a 100% rooftop PV penetration level, with all houses having a PV unit.

The feeder voltages all remained within the required statutory limits of ±10% [42], similar to previous

case. More so, with use of smaller size feeder cables (95 mm2 and 150 mm2) no voltage violations were

experienced as shown in Table 5.12. As for this instance, the 240 mm2 cable demonstrated acceptable

performance, when the transformer tap is fixed at nominal or neutral tap position. Therefore, to reduce tap

change costs, the 240 mm2 can be installed and its financial cost recovered from the reduced energy losses

and increase in revenue.

LSF VT0 95 mm2 150 mm2 240 mm2

0.25 1.03 1.10 1.07 1.05
0.50 1.02 1.06 1.04 1.02
0.75 1.00 1.02 1.01 1.00
1.00 0.99 0.98 0.98 0.98

Table 5.6: Beginning and end of feeder voltages (VT0&VT9 , nominal tap) at 100% PV penetration [11].

5.4.3. Power losses

Feeder losses: base case: No PV generation

Table 5.7 shows feeder power losses experienced on the LV feeders for different loading conditions with

no rooftop PV connections onto the distribution network. From Table 5.7, it is clear that the network losses

increase in proportion with the load demand, as expected. The 95 mm2 and 150 mm2 cables yield 373%

and 185% losses, respectively, compared to the 240 mm2 cable losses, at 100% ADMD load demand time.

LSF 95 mm2

(kW)
150 mm2

(kW)
240 mm2

(kW)
0.25 0.34 0.21 0.08
0.50 1.06 0.66 0.24
0.75 2.30 1.42 0.50
1.00 4.21 2.54 0.89

Table 5.7: Feeder active power losses (nominal tap) at 0% PV penetration [11].

Feeder losses: 50% PV penetration

Table 5.8 shows results for a PV penetration level of 50%. There exist significant increase in network losses

at minimum 25% ADMD load, particularly for the smallest cable size 95 mm2, as shown in Table 5.8. This

is a result of excess power generation on the network, VR and RPF, as indicated in Table 5.8. However, there

is a drastic reduction in losses, on all three feeders, when the load is at least 50% ADMD. This reduction

is due a decrease in exported PV power and increase in load. Network losses increase at minimum LSF =

0.25, for the 95 mm2 and 150 mm2 LV cables, are 342% and 177%, respectively, compared to the 240 mm2
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LV cable. NRS 097-2-3 Standard [37] guidelines states that with a limit of 25% of the circuit breaker rating

(80A single phase), a PV penetration level of 30 - 50% can be supported by an LV network with no technical

problems.

LSF 95 mm2

(kW)
150 mm2

(kW)
240 mm2

(kW)
0.25 1.37 0.86 0.31
0.50 0.54 0.34 0.13
0.75 0.15 0.09 0.04
1.00 0.12 0.08 0.03

Table 5.8: Feeder active power losses (nominal tap) at 50% PV penetration [11].

Feeder losses: 100% PV generation

Table 5.9 shows that there is an increase in the losses on the network in the study case of 100% PV

generation on the distribution network. This can be attributed to the fact that there is significant excess

generation on the network in comparison with load demand. However, losses are much less in comparison

to the base case, in Table 5.7 with no PV generation. The reduction in losses for the case of 100% of ADMD

load are 12.12%, 12.99% and 13.48% for 95 mm2, 150 mm2 and 240 mm2 LV cable sizes, in comparison

to base case network losses (Table 5.7). The subsequent Section describes simulation study of the central

transformer with 100% of customers having PV system installations, and all LV feeders equipped with the

240 mm2 4C PVC copper cable.

LSF 95 mm2

(kW)
150 mm2

(kW)
240 mm2

(kW)
0.25 1.11 0.74 0.28
0.50 0.62 0.41 0.16
0.75 0.40 0.26 0.10
1.00 0.51 0.33 0.12

Table 5.9: Feeder active power losses (nominal tap) at 100% PV penetration [11].

5.5. Off-LTC Transformer voltage control

In this Section, all LV feeders utilized the 240 mm2 cable, and only results from feeder F1 were recorded,

since all feeders are homogeneous. Existing research publication from this Section can be found in [3], and

is acknowledged and referenced. It is important to note that the tap positions (TPs) 1 & 5 results, from [3],

were swapped to ensure consistency with the voltage magnitude.
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5.5.1. Method

This work proposed Off-LTC transformer voltage control method, under high PV generation, was tested

in the case study LV network, with more details in [3]. This section assesses performance of this specific

transformer with an expansion stage of residential PV systems. The following process was undertaken:

• Assessment at PV penetration levels ((5.1)) of [0, 50, 100]% of local active load, or PV system APC

at the penetration levels

• Assessment of network electrical parameters under [25, 50, 75, 100]% load demand ≤ ADMD, or

LSF = 0.25, 0.5, 0.75, 1.0× ADMD, for each PV penetration level

• Evaluation of impacts and performance of discrete Off-LTC transformer TPs 1,3,5, for each PV

penetration level

• Quantify impacts of bus voltage variations and power losses on the network under different network

loading, transformer taps and PV penetration levels [3].

5.5.2. Evaluation of voltage rise

For all subsequent results, the primary voltage at the point of common coupling of the transformer remained

regulated at 1.03 pu (11.3 kV) for all considered operational scenarios before and after PV connections.

The voltage was regulated by the automatic OLTC transformers at the CMS substation. The transformer LV

side voltage magnitude follows and controlled by off-load tap changes on the primary transformer winding

(chapter 4.6 - Table 4.2). In this Section, the PV system penetration level was de

ned as a percentage of the local maximum active customer load [19] as follows:

PV penetration level = k×ADMD×PF[kW] (5.1)

Index k represents the ratio of maximum PV capacity (kWp) to maximum customer active load, and is

called the maximum PV penetration level [19]. The values of k index have a range of 0 to 1 [3].

PV case study 1: base case: No PV generation

Table 5.10 shows VT0 and VT9 CDU voltage magnitudes on the LV network. From Table 5.10, statutory

voltage limits of ±10% [42] were violated at the feeder end, for load ¿ 75% (LSF = 0.75). This VD results

from the transformer minimum TP. This is largely due to high grid current and low transformer secondary

voltage. Thus, for standard operation, with no PV systems, operation at low TPs may be avoided to ensure

maintenance of feeder line voltages within the regulatory limits, for a nominal 0.23 kV [43]) bus voltage.

Operation at TP 5 may results in over-voltages, in rarer circumstances, where load is less than 25%. It

is clear that the VP is a function of TP, and hence TPs can be tuned in simulation to obtained optimal

operating point. As evidenced in Table 5.10, feeder VP is directly and inversely proportional to transformer
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tap changes and LSC, respectively. Thus in normal operation, the best TP was identified at neutral TP to

avoid under or over voltage [3].

LSF TP 1 TP 2 TP 3
VT1 (p.u.) VT9 (p.u.) VT1 (p.u.) VT9 (p.u.) VT1 (p.u.) VT9 (p.u.)

0.25 0.96 0.95 1.01 1.00 1.07 1.05
0.50 0.94 0.92 1.00 0.97 1.05 1.03
0.75 0.93 0.88 0.98 0.95 1.04 1.01
1.00 0.92 0.87 0.97 0.93 1.03 0.99

Table 5.10: T1 and T9 voltages at 0% PV penetration [3].

Case study 2: 50% PV penetration level

At k = 0.5, all feeder voltages remain within regulatory limits [42], for all TPs, as shown in Table 5.11.

In this case, operation at the minimum tap regulates voltages within statutory limits. However, increasing

tap changes can result in a volatile voltage change and instability. Feeder VP was improved by PV power

generation at customer houses, and reduction in grid power demand. Maximum TP can be avoided to

mitigate instances where load is less than 25%, and voltage upper limit violated. In incorporating the

unconsidered region, load ¡ 25% ADMD, the nominal tap still results in appropriate voltages within range.

Moreover, VR limit (6.9 V, see Table 4.3 in chapter 4.7) [39] is exceeded for a load step change from 50%

down to 25%, in TP 1. In practice, this event is more likely to occur during sunny days, PV generation

constant, and customer loads changing rapidly.

LSF TP 1 TP 2 TP 3
VT1 (p.u.) VT9 (p.u.) VT1 (p.u.) VT9 (p.u.) VT1 (p.u.) VT9 (p.u.)

0.25 1.02 1.02 1.02 1.02 1.08 1.07
0.50 0.96 0.95 1.01 1.00 1.07 1.06
0.75 0.95 0.93 1.00 0.98 1.05 1.04
1.00 0.93 0.91 0.99 0.96 1.04 1.02

Table 5.11: T1 and T9 voltages at 50% PV penetration [3].

Case study 3: 100% PV penetration level

At k = 1.0, i.e. 100% PV penetration (APC = 0), all voltages consistently remained regulated within

statutory limits [42], as more load is supplied from local PV systems, as shown in Table 5.12. In a case

of low load periods, there are no significant changes in voltage levels for all considered k values, i.e. k =

0, 0.5 & 1. Load increase from low to peak demand, results in VD as more reactive current ows on the

feeder line. Ideally, in this scenario, total load seen by the central transformer is pure reactive load. The

VR phenomena occurred at operation of TPs 1 and 3. Maximum tap mitigated VR, however, may result

in overvoltage for load less than 25%. Neutral tap regulated voltages within acceptable range, with a VR

value less then the maximum limit of 3%[37]. Hence, for all PV penetration level, operation at nominal tap

yields best performance, in comparison with other TPs.
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LSF TP 1 TP 2 TP 3
VT1 (p.u.) VT9 (p.u.) VT1 (p.u.) VT9 (p.u.) VT1 (p.u.) VT9 (p.u.)

0.25 0.98 1.00 1.03 1.05 1.09 1.01
0.50 0.97 0.98 1.02 1.03 1.08 1.08
0.75 0.96 0.96 1.01 1.01 1.07 1.07
1.00 0.95 0.94 1.00 0.99 1.06 1.05

Table 5.12: T1 and T9 voltages at 100% PV penetration [3].

5.5.3. Feeder power losses

The next phase of simulation, assess TP performance in terms of network power losses, in three PV case

studies. Energy losses investigated, is the electrical energy dissipated on the feeder line resistance. This

energy loss results in less power delivered to the houses, and revenue losses for the DNOs.

Feeder losses: base case: No PV generation

Table 5.13 shows network power losses per a feeder, for different load demands, with no PV installations.

Feeder losses increased with load demand, for all Off-LTC transformer TPs, as expected. TPs 3 & 5 resulted

in equal and lower losses compared to TP 1, where losses increased by 25%. For normal operation, the

distribution transformer can still be operated at neutral tap to avoid unnecessary power losses and under/over

voltages beyond acceptable limits.

LSF 95 mm2

(kW)
150 mm2

(kW)
240 mm2

(kW)
0.25 0 0 0
0.50 1 1 1
0.75 3 2 2
1.00 5 4 4

Table 5.13: Feeder power losses with no PV penetration (Rounded to the nearest kilowatt) [3].

Feeder losses: 50% PV penetration

In this scenario, the PV penetration level k ((5.1)) is set at 0.5 (APC = 50%), and results are tabulated in

Table 5.14. It can be seen from Table 5.14 that network power losses decreases with the increase in PV

penetration. For load range [0 - 50]%, there are no energy losses, because of load balance by PV system

generation, and high R/X characteristic ratio of DNs [17]. High R/X ratio for radial DN [22, 23] means

that PV active power effects on loadability are very high, as discussed in [1]. In practice, there will be

small, but negligible reactive power losses on the feeder line. Consequently, DN operational expenditures

[44] are reduced and revenue increased. Power losses emerge after LSF = 0.5, where there is a net load and

customers draw active and reactive currents from the transformer. Similar to no SPVG case, TPs 3 & 5 have

lower and equal losses, compared to TP 1 with 100% power loss increase.
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LSF 95 mm2

(kW)
150 mm2

(kW)
240 mm2

(kW)
0.25 0 0 0
0.50 0 0 0
0.75 1 1 1
1.00 2 1 1

Table 5.14: Feeder power losses at 50% PV penetration (Rounded to the nearest kilowatt) [3].

5.6. Summary of results

This chapter presented results of an analysis of DPVG integration on a LV DN representing network

characteristics in SA. Firstly, typical residential customer load and PV generation profiles were analyzed to

identify the source of potential network problems. Indeed, potential issues of VR and RPF, on the DN, were

identifiable from the graphs in Fig. 5.1 (chapter 5.1). In order to begin network analysis, a comprehensive

study was done on the case stuty network without PV generation and results recorded (chapter 5.3). A line

current overload was detected at L3φ for simultaneous high load demand above 50% of individual customer

ADMD (Table 5.4). It was shown that this current overload is reduced by connection of PV units onto the

grid. Consequently, NRS 097-2-3 [39] standard was evaluated and applied on the LV network by scaling

individual solar PV systems rating, connected at customer CDUs.

The NRS 097-2-3 standard clearly states that the SCC, for interconnection of embedded generation in

LV DN, can be used to avoid network issues and further detailed network studies. However, for this

particular case study LV network (Fig. 4.3), it does not address adequately the need for a reduction in

current loading of line L3φ of transformer LV side. Furthermore, there is an unfair generation distribution

between customers. Local customers with PV systems reduce their dependency on the grid and load, and

can generate financial income from exported PV electricity. This means even if there were a power outage,

these customers can still have a power supply locally without islanding. The local generation capacity

limitation to 25% of customer NMD also has disadvantages. It limits customer load offset and potential

financial income, that can be gained by a customer through PV power export, by a large margin. As a

result, it is more than necessary to perform further detailed studies on the specific case study network to

address these shortcomings.

In terms of feeder cable performance, a larger cable (more expensive, 240 mm2) resulted in grid voltages

within regulatory limits of ±10% [42], for all considered number of homes owning and operating PV units

at a time (PV penetration4), and lesser VR (see chapter 5.4). In contrast, smaller cables (cheaper, 150 mm2

and 95 mm2) showed poorer performance resulting in VR (above ±10% for loads ¡ 25% ADMD) and VD

below regulatory limits of ±10% in normal network operation (Table 5.4). Moreover, electrical power

losses were the least for the 240 mm2 cable, for all PV penetration levels. Therefore, weighting of prize,

technical performance and revenue increase for the 240 mm2 cable should be undertaken in practice by

DNO and planning engineers.

Under an assumption that all customers own PV units and using the 240 mm2 cable on all feeders, central

transformer demonstrated adequate voltage control, for all considered local PV penetration levels5. Nominal

4Percentage of residential customers with PV units.
5Percentage generation of local maximum active load at customer premises.
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tap (TP 3) operation resulted in bus voltages within regulatory limits, for all PV penetration levels and

simultaneous load variations (chapter 5.5).

5.7. Conclusion

In this chapter, simulation results of practical scenarios with residential solar PV integration in case study

LV distribution networks were detailed and analyzed. Residential solar PV units can be configured in a

number of ways including rooftop or ground mounted PV system setting. More practical scenarios were

obtained from an existing network model of eThekwini Electricity and using technical standards for network

characteristics and PV installations. There were new findings pertaining to power losses that exist when PV

is feeding in the network, and these are discussed in the next section.
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This chapter details a discussion of relevance and relation, of this study, to existing literature in the area of

DPVG. In this project, a high uptake of DPVG was assessed on a sub-urban LV DN, located in eThekwini

Municipality, Durban - SA. The case study network represents typical characteristics for SAn networks,

which can be similar to other emerging economy countries. The network site is currently under development

for future modification and reinforcements in the city of eThekwini.

Firstly, this chapter discusses the results in the context of the four research questions (RQs) RQ1-RQ4

(chapter 6.1), followed by a broader discussion of the observed results (chapter 6.2), and a discussion of the

results in relation to state of the art (chapter 6.3). Finally, a general reflection on the research context and

the overall results is detailed (chapter 6.4).

6.1. Discussion of results in the context of research questions

This section contains an evaluation of results in the context of RQs. A more thorough discussion of the

results can be found within papers P1-P2 in Appendix C.

6.1.1. RQ1: Do challenges exist once DPVG is connected on the case study DN?

Well known challenges of RPF, VR, VD, voltage fluctuation and power losses; were identified on the case

study network through DP simulations. Research papers P1 and P2, investigated challenges associated with

grid connection of DPVG on the case study radial LV network.

Moreover, research results (chapter 5) confirmed the existence of these technical issues in high solar PV

penetration instances. RPF was the main event for VR at the feeder end, and upstream power losses (PV

generation losses). Am additional severe problem was the line current overload in the Off-LTC transformer

secondary connection line L3φ , as shown in Table 5.2 (chapter 5.3). An unexpected finding in this research

is: existence of power losses, on the distribution feeder line, during RPF operational scenario. As power

flows upstream to the MV/LV transformer during RPF, these losses can be characterized as PV generation

power losses (active power losses).
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6.1.2. RQ2: What is the degree of these problems?

Upon grid integration of DPVG in LV network, challenges would exist due to this change in the network.

A VD, beyond regulatory limits (±10% [42]) was prevalent in usage of small cable sizes (95 mm2 and

150 mm2 with higher losses), in absence of solar PV generation.

6.1.3. RQ3: What are suitable mitigation measures for the case study network?

Publications P1 and P2 of Appendix C, partly addressed mitigation of technical issues associated with

grid connection of distributed solar PV systems. Feeder cable sizing proved to be a valuable tool to

mitigate power losses and reduce RPF and VR. Paper P2 contributed significantly in the current literature

by proposing an innovative standard Off-LTC transformer voltage control approach, under high DPVG

connections on the grid.

6.1.4. RQ4: Is the high uptake of DPVG realizable in SA, and KZN?

Research question RQ4 was answered in the overall dissertation results and findings. A high uptake of

renewable DPVG is feasible with additional network modifications (cables, transformer, loads . . . etc.) and

reinforcements (PV inverters, battery storage. . . etc.).

6.2. Discussion of observed results

Firstly, in chapter 3, international and local standards were evaluated and discussed for purposes of application

and future improvements. Currently, SAn standards have fixed LV grid voltage operational limits of ±10%

[42]. In contrast, international standards [37] have flexible voltage regulatory limits where the voltage

range is partitioned into different states. This can be helpful in practice since network equipment and

customer appliances have difference voltage operational limits and sensitivity. Local standards can be

further improved in this area to prevent network failures and ensure reliability in normal operation and DG

integration.

In chapter 5.3, initial network state with no solar PV was analyzed in DP software. Subsequently, current

overload and V occurred at high load demand scenarios. Feeder VD increased proportionally to customer

load (Pl and Ql) as in Eq. ((2.4)) in chapter 2, for fixed line resistance R and reactance X . Similarly, terminal

T0 voltage dropped proportionally to grid current increase, with respect to Off-LTC transformer secondary

voltage. A low impedance (lower grid losses) cable 240 mm2 was utilized as a base case and compared

with other standard size cables, in an event of DPVG connection onto the grid.

Chapter 5 investigated a feeder line cable suitable for the application of high DPVG. Three standard cables,

95 mm2, 150 mm2 and 240 mm2 (chapter 5 - Table 5.3), were considered and are utilized for LV DN
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reticulation in SA and eThekwini Municipality.

6.3. Discussion of results in relation to state of the art

In this research study, a standard procedure to identify important issues in power system modification [13],

was undertaken. Chapter 2.1, stated issues identified and discussed for the case study LV DN. The network

experienced line overloading in the absence of DPVG. However, integration of PV generation helped reduce

the current drawn from the central transformer.

A VR phenomenon as explained in [17, 16], was identified through simulations, for different solar PV

penetration levels and variable loads. Connection of solar PV generation caused a VR at the customer

CDUs, in terms of line and phase voltages, where local load demand was exceeded and PV systems

operating at unity PF [18]. In consideration of network architecture and characteristics, phase voltage

remained regulated within standards statutory limits.

A VD was apparent when distribution load increases, with no solar PV connections. However, with addition

of solar PV generation on the case study DN, the line VD reduced significantly, similar to findings in [22].

This was due to reduction in current drawn from the central transformer by customer loads.

6.4. Research summary

In this study, discrete variable PV penetration and distribution loads were used to quantify well known

technical problems. A VR existed with increasing PV penetration level. A VD was significant when loads

operate at 100% capacity, as line current was at a maximum value. Integration of PV generation contributed

in alleviation of VD, and prevent malfunction of sensitive distribution equipment and customer appliances.

Voltage control was achieved through network modifications and central Off-LTC transformer tap changes.

A largest cable 240mm2 showed better performance, with or without PV generation. In terms of the central

transformer, a nominal tap position maintained voltage within NRS regulatory limits.
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7. CONCLUSIONS AND FUTURE WORK

This chapter summarizes the conclusions provided in the published papers and overall dissertation. The

chapter contains an overview of the main conclusions based on the results presented throughout the dissertation

(Chapter 7.1) and it provides directions for future work (Chapter 7.2).

7.1. Conclusions

Papers P1-P2 in Appendix C provided main conclusions from the results obtained in this work. Therefore

in this chapter, an overview of the most important

findings are provided. As previously described, the main research goal for the dissertation was:

Comprehensive assessment of RPF, VR, VD, voltage fluctuation and power losses issues. Thereafter, evaluation

of suitable mitigation solutions to address the mentioned issues (chapter 1.2) for the typical radial DN found

in SA. Applicable of this work is valid for other networks of similar architecture and characteristics, mostly

in emerging economies.

It was found and confirmed that these challenges exists and can course technical problems for DNOs

(national utilities and municipalities). Mitigation of these issues can be realized using appropriate feeder

cable and central transformer settings. It was further found that a bigger cable size results in less RPF.

Furthermore, a nominal tap setting in the manual Off-LTC transformer avoided problems of RPF and VR,

and minimized power losses.

7.2. Future work

In this work, a subset of solutions associated with DPVG were investigated and applied in practical simulation

of the case study DN. More solutions can be investigated in future to minimize losses and increase HC of

the LV DN.
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A. ADDITIONAL FILES AND SCHEMATICS

A.1. Tabular Data

(a) DigSILENT dialog for transformer tap change data entry.

(b) DigSILENT dialog for transformer model data entry.

Figure A.1: Off-LTC transformer data entry dialogs in DIgSILENT PowerFactory 2016, and used in this
work
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APPENDIX A. ADDITIONAL FILES AND SCHEMATICS A.2. GRAPHICS AND DIAGRAMS

Fig.A.1 and Fig. shows the DIgSILENT PowerFactory (2016 SP5) data entry dialog for the Off-LTC

distribution transformer.

A.2. Graphics and Diagrams
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Figure A.2: A detailed diagram of the CMS 11 kV stage with the case study LV network connection point
at the Mini Substation transformer Tr2.
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Figure A.3: Dissertation project flow chart showing major phases, tasks and activities.
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APPENDIX A. ADDITIONAL FILES AND SCHEMATICS A.3. DPF MODEL FILES

A.3. DPF Model Files

A.3.1. Residential Load Model

Figure A.4: Load flow parameters for LV residential customers in DSP SP5 2016.

A.3.2. Solar PV System Data

Figure A.5: Load flow parameters for a solar PV system in DSP SP5 2016.
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A.3.3. Line Data

(a) Load flow parameters for all LV feeder distribution lines in DPF.

(b) Basic data of LV feeder line type for the 240mm2 line type.

Figure A.6: Line data entry dialogs in DSP SP5 2016.
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A.3.4. CDU Data

Figure A.7: Terminal (CDU) data in DPF.
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B. ADDITIONAL RESULTS

Time (hrs) % Consumption
1 0,0252
2 0,0252
3 0,0252
4 0,0263
5 0,0336
6 0,0547
7 0,0473
8 0,0421
9 0,0473

10 0,0421
11 0,0368
12 0,0336
13 0,0326
14 0,0326
15 0,0326
16 0,0421
17 0,0547
18 0,0526
19 0,0631
20 0,0683
21 0,0631
22 0,0526
23 0,0368
24 0,0294

(a) Summer load consumption data.

Time (hrs) %Consumtion
1 0,0197
2 0,0197
3 0,0197
4 0,0217
5 0,0316
6 0,0513
7 0,0473
8 0,0454
9 0,0493

10 0,0473
11 0,0434
12 0,0394
13 0,0355
14 0,0355
15 0,0355
16 0,0394
17 0,0631
18 0,0552
19 0,0631
20 0,071
21 0,0631
22 0,0473
23 0,0316
24 0,0237

(b) Winter load cunsumption data

Figure B.1: Data for LV loads, at eThekwini Municipality distribution network, in winter and summer
seasons.
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Time (hrs) % Consumption
1 0,000
2 0,000
3 0,000
4 0,000
5 0,000
6 0,000
7 1,247
8 62,947
9 197,919

10 336,185
11 427,884
12 507,724
13 482,698
14 429,155
15 312,914
16 177,742
17 47,033
18 0,197
19 0,000
20 0,000
21 0,000
22 0,000
23 0,000
24 0,000

Figure B.2: GHI profile data in summer.
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C. PUBLICATIONS

In this Appendix the two research papers which contain results presented in this dissertation are included

and attached. These papers are:

• P1: An Assessment of Voltage Rise Phenomenon on Existing eThekwini Electricity Low-Voltage

Distribution Network

• P2: Off-load Tap-change Transformer Impact under High Distributed PV Generation

The research papers are presented in the form they were published.
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Abstract—Distributed solar photovoltaic (PV) generation market 
continues to grow with increasing operational challenges for 
distribution network operators. In South Africa, residential solar 
PV system projects have also been implemented in low voltage 
distribution networks, and there are plans for future projects at 
municipal level. Residential solar PV growth introduces more 
technical and economic concerns in municipalities and electricity 
utility network operators. This paper focusses on a technical 
investigation of a more practical low voltage (LV) distribution 
transformer performance under high distributed solar PV 
connections on eThekwini Electricity distribution network. The 
main network parameters of interest investigated in this paper 
include LV network power flow, line voltage dynamics and 
distribution feeder power losses in steady state. Customer day 
load demand effects on network parameters are also analyzed, at 
discrete levels, with discrete off-load tap-changer positions and 
different solar PV penetration levels. A case study residential LV 
distribution network of eThekwini Electricity is used in this 
paper to assess central transformer performance. 

Keywords—distribution network; feeder losses; transformer; PV 

I. INTRODUCTION 
Global interest in distributed photovoltaic (PV) generation 

has created a need for additional robust and strict network 
regulations for network operators in order to ensure safe and 
reliable operation of electricity distribution networks. Large-
scale grid integration of residential solar PV systems 
introduces challenging power quality issues including, but not 
limited to, power losses, voltage instability and changes in 
power flow, for distribution network operators (DNOs) [1]. 

There are well researched technical challenges associated 
with connection of distributed generation (DG) on to an 
electricity grid. These have been reported and need to be 
assessed thoroughly and independently on existing electricity 
distribution networks [2]. In [3], DG is defined as generation of 
electric power in small scale generation units close to the point 
of consumption or to the customer side of the meter. 
Consequently, the main technology for distributed generation 
from renewable sources is described as solar PV [3]. Therefore, 

in this paper the prominent DG is PV; however, it does not 
have to be necessarily so. 

This paper details an investigation of a typical central 
distribution off-load tap-change (Off-LTC) transformer 
performance on a low voltage (LV) distribution network with 
high DG from solar PV systems. Off-LTC transformers are 
largely used on the grid downstream from the main generating 
plants, where there are smaller electricity grids, as this study 
case. A three-phase case study LV distribution network of 
eThekwini Electricity, South Africa (SA), [4] is used in this 
paper; however, further analysis is carried in with a shift of 
emphasis towards quantifying effects of the tap settings of the 
Off-LTC transformer. This has not been reported in the 
literature to any extent, as opposed to the on-load tap change 
(OLTC) distribution transformer - there have been significant 
work focusing on this specific transformer’s real-time 
response, in terms of tap changing, to network variations and 
increasing of distributed PV hosting capacity, as in [5-6].  

This study evaluates impacts of customer load variations on 
the case study LV network feeder power losses and distribution 
transformer performance under high penetration of small-scale 
distributed PV systems. It is couched in terms of a system in 
the KwaZulu-Natal region of SA to give a specific application. 
Other systems have been studied around the world were 
conditions and loads will be different; for example, in the 
North-West of England [14], Germany [15], and Queensland, 
Australia [16]. Several different aspects of LV systems with 
PV are investigated in these studies. 

II. SIMULATION MODELS 
In this paper, a standard LV reticulation cable (240 mm2 4C 

PVC), was utilized on all distribution feeders, and is used for 
reticulation at eThekwini Electricity [4]. By utilization of an 
actual system in this study, more practical results were 
obtained from simulations. A case study network was 
simulated in DIgSILENT PowerFactory software and is 
illustrated in [4], and [17] for the full network. To summarize, 
the LV side has three parallel 3-phase feeders with single- 
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phase 230 V, 4.5 kVA, 0.95 p.f. loads placed at equidistant 
locations every 100 m. These single phase loads are connected 
through a customer distribution unit (CDU) to the feeder, with 
the CDUs having a rating of 400 V (line) and 370A. The 
interconnecting lines have an impedance of (0.0928 + j0.08) 

/km. Further details are given in [4]. It is also assumed that 
the single phase loads are balanced as well as the PV power 
sources. The main focus of this work is on the transformer; Fig. 
1 shows the transformer equivalent circuit used in DIgSILENT 
PowerFactory simulation. The p.u. parameter values are: 

rCu,HV = 0 p.u., resistance on HV side 
rCu,LV = 0 p.u., resistance on LV side 
Xσ,HV = 0.023 p.u., Leakage reactance on HV side 
Xσ,LV = 0.023 p.u., Leakage reactance on LV side 
XM = ∞ p.u. Magnetizing reactance 
rFe = ∞  p.u., Shunt resistance 
UHV = HV side voltage 
ULV = LV side voltage 

 
Fig. 1.  Case study Off-LTC transformer circuit model with tap changer on 

the LV side. 

The basic subsystem discussed above is incorporated in the 
overall system shown in Fig. 2. This is for a per-phase curcuit 
since the loads and PV sources are assumed balanced across 
the phases, and all feeders identical. More detailed 
DIgSILENT PowerFactory parameters of the transformer can 
be found in the Appendix. 

 
Fig. 2.  Per-phase system diagram of the Off-LTC transformer connection 

and case study LV distribution network 

III. METHODOLOGY 

A. Typical PV Generation and Residential Load Profile 

To accurately understand challenges introduced by high 
DG, correlation between solar PV generation and residential 
load consumption curves need to be studied. The solar energy 

and residential load profiles are shown in Fig. 3. Residential 
load profile is characterized by morning (6 am) and evening (9 
pm) demand peaks, as shown in Fig. 3. In contrast, PV 
generation profile is characterized by start of power generation 
from sunrise (5 am) to the sunset (8 pm), with peak generation 
around 1 pm. 

The worst case solar irradiance intensity is shown in Fig. 4. 
A reverse power flow scenario is more likely to occur in 
summer then winter, and would result in technical and power 
quality problems for DNOs. In winter, there may be increased 
network losses due to insufficient solar PV power and higher 
load consumption. The solar data [7] was selected for the 
months of December and June 2016, and represents the latest 
solar patterns and most representative. Residential customer 
data was obtained in [8], with a total day consumption of 11.17 
kWh. In this paper, the standard After Diversity Maximum 
Demand (ADMD) load modeling method was used in contrast 
to the resistive method used to obtain the load curve in Fig. 3.  

 
Fig. 3.  Typical LV residential load profile vs real solar energy generation 

profile in Summer (December): Westville, Durban. 

The actual PV power generation can be computed using 
the solar irradiance profiles in Figs. 3 and 4; however, this 
computation is beyond the scope of this work. The solar 
generation profile used is for Westville in Durban, which is 
the location of the study. 

 
Fig. 4.  Actual average day solar irradiance profile in winter (June) for 

Westville. 
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Fig. 3 plots clearly show that there is a mismatch between 
solar PV generation and individual customer load demand 
profile per day, and hence there is more likely a disturbance 
on normal grid operation. 

B. Case Study  Assumptions 

Assumptions made based on the grid network in [4] are as 
follows: 

• LV loads are single phase – phase to earth connection 

• All customers own single PV units and connected such 
that are balanced in all three phases 

• Distributed PV systems are single phase 4.3 kWp 
systems, operating at unity power factor (PF) 

• Customer loads are balanced on all three phases and 
distribution feeders 

• Cable length (< 5 m) between the CDU and the 
customer meter box can be neglected to simplify this 
study 

• Electricity consumption of street lighting is assumed 
negligible 

• Customers are 4.5 kVA loads (ADMD) - from Table I, 
(Table II in [9]) 

TABLE I.  DOMESTIC DENSITY CLASSIFICATION [10] 

Domestic Density 
Classification Stand Size [m2] Average Load 

Density [kW/km2] 

Urban 
 
 (AMD min = 0.5 kVA 

AMD max = 4.5 kVA) 

High Density (HD) < 1000 500 to 30000 

Medium Density (MD) 1000 to 4000 300 to 5000 

Low Density (LD) 4000 to 20000 100 to 1500 

Rural > 20 000 0.5 to 250 

 

C. Method 

In order to assess performance of the Off-LTC transformer 
and the LV distribution network with expansion stage of 
residential PV systems, the following process was undertaken: 

• Assessment at PV penetration levels (1) of 0 %, 50 % 
and 100 % of local active load 

• Assessment of LV network electrical parameters under 
25 %, 50 %, 75 % and 100 % load <= ADMD, or load 
scaling factor (LSF) = {0.25, 0.5, 0.75, 1.0} × ADMD, 
for each PV generation level 

• Evaluation of impacts and performance of discrete Off-
LTC transformer tap positions {1, 3, 5} 

• Quantify impacts of line voltage variations and power 
losses on the network under different network loading, 
transformer taps and PV penetration levels 

IV. RESULTS AND DISCUSSION 
For all the simulations reported in this paper, the primary 

voltage at the point of common coupling of the transformer 
remained regulated at 1.03 p.u (11.3 kV) for all considered 
operational scenarios before and after PV connections. The 
transformer LV side voltage magnitude follows and is 
controlled by off load tap changes on the primary winding. 

In this paper, the PV system penetration level is defined as 
a percentage of the maximum active individual customer load 
[11] as follows:  

 PV penetration level = k ×ADMD×PF [kW]           (1) 

k represents the ratio of maximum PV capacity to customer 
active load, and is called the maximum PV penetration level 
[11]. The values of k index have a range from 0 to 1.  

A. PV Case Study 1: Base Case: No PV Generation 

Table II shows the beginning-of-feeder and end-of-feeder 
voltages on the LV distribution network, with no residential 
PV system installations. The beginning-of-feeder and end-of-
feeder voltage magnitudes are computed at the N11 and N91 
nodes, respectively. From Table II, statutory voltage limits of 
±10 % [10] were violated for load > 75 % (LSF > 0.75), when 
the transformer is operated at the maximum tap position. This 
is largely due to high transformer current and low secondary 
voltage. Thus, for standard operation, with no grid connected 
PV systems, operation at maximum tap may be avoided to 
ensure maintenance of feeder line voltages within the 
acceptable regulatory statutory limits, for a nominal 0.23 kV 
[12] phase voltage. The voltage profile is dependent on the 
transformer tap position, and hence in this case, power quality 
issues may be avoided by decreasing tap positions on the 
transformer winding. As evidenced in Table II, network 
voltage profile is inversely proportional to transformer tap 
changes. In normal operation, the best tap position was 
identified at neutral tap position to avoid under or over voltage. 

B. Case Study 2: 50 % PV Penetration Level 

At k = 0.5, all feeder voltages on the customer connection 
points remain within the regulatory limits [10], as shown in 
Table III. In this case, operation at the maximum tap regulates 
voltages within statutory limits. However, increasing tap 
changes can result in volatile voltage variations and instability 
at high LV load levels. Voltage profile improvement is 
primarily due to a portion of local load supplied by local PV 
systems. At low load demand, the voltage values at N11 and 
N91 are almost equal with decreasing grid current. 
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TABLE II.  FEEDER VOLTAGES WITH NO PV UNITS, USING THE 240 MM2 
4C PVC LV RETICULATION CABLE 

C. Case Study 3: 100 % PV Penetration Level 

At k = 1.0, i.e., 100 % PV penetration, all voltages 
consistently remained regulated within statutory limits [10], as 
more load is supplied from local PV systems, as shown in 
Table IV. For low load demand periods, there are no 
significant changes in voltage levels for all considered k values, 
i.e., k = 0, 0.5 and 1. As the load demand rises from low to 
peak demand, voltage levels and profile fall with increasing tap 
positions. Statutory limits were violated for the operating point 
of tap position 5 at maximum ADMD. This is a result of high 
reactive power current and low transformer voltage. A reverse 
power flow phenomenon can be characterized by an instance 
where the voltage at node N91 > N11 voltage, from the results 
tables. 

TABLE III.  FEEDER VOLTAGES AT 50 % PV PENETRATION LEVEL 

TABLE IV.  FEEDER VOLTAGES AT 100 % PV PENETRATION LEVEL 

D. Feeder Losses: Base Case: No PV Generation 

Table V shows network power losses experienced per 
feeder, for different LSFs with no PV connections on the grid. 
Feeder losses increase with the load demand for all transformer 

tap positions, as evidenced in Table V. For normal operation, 
the distribution transformer can be operated at lower tap points 
to avoid unnecessary power losses and voltage drops beyond 
regulatory limits. A transformer setting at the third tap yields 
acceptable performance as the base case. 

TABLE V.  FEEDER LOSSES WITH NO SOLAR PV CONNECTIONS 
(ROUNDED TO THE NEAREST KW) 

LSF 
Tap Position 

1 
[kW] 

Tap Position 
 3 

  [kW] 

Tap Position 
 5 

[kW] 
0.25 0 0 0 
0.50 1 1 1 
0.75 2 2 3 
1.00 4 4 5 

E. Feeder Losses: 50 % PV Penetration 

In this scenario, the PV penetration level k (1) was set at 
0.5, and simulation results are tabulated in Table VI. It can be 
seen from Table VI that at low LSF there are minimum power 
losses. Power losses emerge after LSF of 0.5, where loads 
begin to draw active and reactive currents from the 
transformer, in comparison with the no PV connections base 
case. Reactive power current is negligible for low load and has 
visible effects at high load demand. For this case, there is a 60 
% reduction in peak load network power losses for transformer 
tap position 5, 75 % for tap positions 1-3. NRS 097 guidelines 
[13] states that with a limit of 25 % of the circuit breaker 
rating (80 A single phase), a PV penetration level of 30–50 % 
can be supported by the LV network with no technical 
problems. 

TABLE VI.  FEEDER LOSSES WITH 50 %  SOLAR PV PENETRATION 
(ROUNDED TO THE NEAREST KW) 

LSF 
Tap Position 

1 
[kW] 

Tap Position 
 3 

   [kW] 

Tap Position 
 5 

[kW] 
0.25 0 0 0 
0.50 0 0 0 
0.75 1 1 1 
1.00 1 1 2 

 

F. Feeder Losses: 100 % PV Generation 

Table VII shows a case of 100 % PV generation, i.e. k = 
1.0. Transformer pre-set tap position changes have no effect on 
network power losses for LSF >= 0.75. Reverse power flow 
may occur due to surplus PV generation and loads fully 
supplied locally. In this case, the high excess power lead to 
power losses on the feeder at LSF = 0.25 for all transformer tap 
positions. For tap position 5, the losses are visible at LSF = 0.5 
due to low transformer secondary voltage and high grid 
currents supplied by the transformer. Since the customer load 
is operated at a fixed PF of 0.95, and PV systems designed to 
cover a worst-case scenario of active power demand at k = 1, 
there is a mismatch in total PV system power and load ADMD 

 
 
 

LSF 

Tap Position 
1 

Tap Position 
3 

Tap Position 
5 

N11 
Voltage 

[p.u] 

N91 
Voltage 

[p.u] 

N11 
Voltage 

[p.u] 

N91 
Voltage 

[p.u] 

N11 
Voltage 

[p.u] 

N91 
Voltage

[p.u] 

0.25 1.07 1.05 1.01 1.00 0.96 0.95 
0.50 1.05 1.03 1.00 0.97 0.94 0.92 
0.75 1.04 1.01 0.98 0.95 0.93 0.88 
1.00 1.03 0.99 0.97 0.93 0.92 0.87 

LSF 

Tap Position 
1 

Tap Position 
3 

Tap Position 
5 

N11 
Voltage 

[p.u] 

N91 
Voltage 

[p.u] 

N11 
Voltage 

[p.u] 

N91 
Voltage 

[p.u] 

N11 
Voltage

[p.u] 

N91 
Voltage

[p.u] 

0.25 1.08 1.07 1.02 1.02 1.02 1.02 
0.50 1.07 1.06 1.01 1.00 0.96 0.95 
0.75 1.05 1.04 1.00 0.98 0.95 0.93 
1.00 1.04 1.02 0.99 0.96 0.93 0.91 

LSF 

Tap Position 
1 

Tap Position 
3 

Tap Position 
5 

N11 
Voltage 

[p.u] 

N91 
Voltage 

[p.u] 

N11 
Voltage 

[p.u] 

N91  
Voltage 

[p.u] 

N11 
Voltage 

[p.u] 

N91 
Voltage

[p.u] 
0.25 1.09 1.01 1.03 1.05 0.98 1.00 
0.50 1.08 1.08 1.02 1.03 0.97 0.98 
0.75 1.07 1.07 1.01 1.01 0.96 0.96 
1.00 1.06 1.05 1.00 0.99 0.95 0.94 
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size. A relationship between PV power generation, reverse 
power flow and feeder losses may be investigated in future 
studies. Moreover, dynamic and more practical customer load 
models and variable solar PV generation (continuous) can be 
comprehensively integrated in simulation and studied. 

TABLE VII.  FEEDER LOSSES WITH 100 % SOLAR PV PENETRATION  
(ROUNDED TO THE NEAREST KW) 

LSF 
Tap Position 

1 
[kW] 

Tap Position 
 3 

   [kW] 

Tap Position 
 5 

[kW] 
0.25 1 1 1 
0.50 0 1 1 
0.75 0 0 0 
1.00 0 0 0 

V. CONCLUSION 
Low correlation between a solar PV system power 

generation, resulting from intermittent solar irradiance, and LV 
load consumption profile, results in surplus PV generation 
which may contribute in reduction of network power losses, on 
other hand increase network operational challenges. In this 
study, a voltage rise phenomenon was identified at the feeder 
end node due to excess PV power. This phenomenon may be 
reduced by encouraging customers to shift electric-intensive 
activities and heavy appliances to high solar PV generation 
periods specified in this paper. This entails load shifting of 
appliances such as electric water and air conditioning, to 
achieve efficient harvesting of PV power. Traditional standards 
allow avoidance of power quality issues. However, to increase 
distributed PV load contribution, more detailed and accurate 
studies are needed, hence this paper as reported on an actual 
system. This study also showed that Off-LTC transformer 
operation affects the feeder voltage profile, power losses and 
can maintain feeder voltages within regulatory limits. 
Increased PV penetration, with correct transformer setting, 
reduces the LV distribution network power losses by feeding 
customer loads from local PV systems and less grid current. 
Off-LTC operation at maximum tap resulted in undesirable 
effects hence the neutral tap was identified as the best setting 
for standard operation. Future studies can evaluate OLTC 
technology on the specific network considered in this paper. 

VI. APPENDIX – TRANSFORMER AND DIGSILENT 
POWERFACTORY DETAILS 

Table VIII shows the basic transformer details with Figs. 5 
and 6 showing DIgSILENT dialog entries for the transformer. 

TABLE VIII.  BASIC TRANSFORMER PARAMETERS 

Characteristic/Parameter Value/Description 
Power rating 500 kVA 
Voltage ratio 11 kV/400 V 

Frequency 50 Hz 
Phase configuration 3 phase 
HV side connection Delta  
LV side connection YN 
Number of windings 2 

 
Fig. 5.  DigSILENT dialog for transformer tap change data entry. 

 
Fig. 6.  Transformer data entry dialog. 
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Abstract—Rising energy costs, growing public concern about 
environmental impacts of fossil fuel energy generating resources 
and energy constraints of utilities across the globe have 
increased the relevance and need for alternative renewable 
energy resources at the customers point of use. In South Africa, 
there is a strong interest from electricity suppliers and 
customers in rooftop photovoltaic systems connection onto the 
electricity grid, in contrast to utilization of expensive 
conventional energy storage devices. Specifically, small scale 
projects are being planned for the near future at municipal 
level. However, there are known technical issues associated with 
large-scale connection of rooftop PV systems in low voltage 
distribution networks and need to be studied in detail and 
addressed prior commission. This paper presents results of a 
technical investigation of interconnection of residential rooftop 
PV systems on an existing low voltage distribution network, 
implemented in DIgSILENT PowerFactory, representing a 
housing estate development at eThekwini Electricity. 

Index Terms--eThekwini Electricity; low-voltage distribution 
network; rooftop PV; voltage rise 

I. INTRODUCTION 

The world currently experiences high amount of electric 
power production from photovoltaic (PV) systems and will see 
more in the coming years [1]. In recent years, the solar PV 
sector growth has been showing signs of stagnation in its most 
mature markets and more growth and opportunities in 
emerging markets [2]. In particular, South Africa, as one of the 
emerging solar PV markets, is currently experiencing 
challenges in the electricity sector of providing adequate 
supply   of   electricity   to   meet   a   rapidly   increasing and 

unpredictable electricity demand, partly fueled by economic 
growth, and this has often led to frequent load shedding to 
prevent a collapse of the national grid [3]. 

This challenge of producing additional power, in line with 
environmental compliance to clean energy to reduce CO2 
emissions and minimize reliance on fossil fuels, led to the 
South African major power supplier, Eskom, to establish a 
Renewable Energy Independent Power Producers 
Procurement Programme (REIPPPP) for the installation and 
connection of renewable energy technologies onto the 
electricity grid [3-5]. However, the scope of the REIPPPP is 
limited to utility-scale renewable energy installations and does 
not include small-scale projects. As a result, Eskom and most 
municipalities have planned small-scale renewable energy 
projects, and have been inundated with applications to connect 
distributed energy generation sources (largely solar PV in the 
residential sector) to low and medium voltage distribution 
networks. 

There are known technical challenges associated with the 
connection of distributed generators onto the electricity grid, 
and need to be assessed thoroughly and independently on 
existing electricity distribution networks [6]. Electricity 
utilities, including Eskom and municipalities, have concerns 
regarding distributed generators (DG) interconnection, 
partially because of the lack of intensive published studies, 
and therefore do not feel able to guarantee reliability and 
quality to customers once they allow connection of DG 
without strict requirements. An important limiting issue is 
over and under voltage in low voltage (LV) distribution 
networks in the presence of DG [7]. 
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Local traditional distribution systems in South Africa were 
designed such that electric power flows from the transmission 
to the distribution network and to the end consumers, with 
electricity flow fixed in downward direction to the consumer. 
When there is connection of rooftop PV, and other DG, into a 
distribution network, there is a possibility of a change in 
direction of power flow and thus a change on the complexity 
of the network. The problem arises when there is more 
generation capacity on the distribution network from DG 
compared to local load consumption on the network. This 
results in net power flow back onto the distribution network, 
for which existing power networks are not designed to manage 
and may raise voltage levels beyond acceptable operational 
limits [8]. Consequently, a voltage rise phenomenon may 
occur and lead to distribution network failure. 

Several large municipalities have procedures in place to 
facilitate connection of small-scale DG (including PV 
systems) to their LV networks, mainly: City of Cape Town, 
eThekwini, City of Johannesburg and Ekurhuleni. Connection 
requirements of DG resources and tariffs offered vary widely 
among these municipalities [9]. 

Most customers require financial compensation for excess 
electricity exported to the local grid and in an effort to address 
this, eThekwini Municipality is exploring a pilot net-metering 
(NM) program to motivate consumers to invest in PV systems 
[3]. Distributed generation schemes (landfill gas, wind, solar) 
integration in distribution networks considering energy loss 
and voltage stability (including voltage rise) has attracted 
attention in local electricity suppliers and is an issue to be 
investigated [8]. The main objective of this paper is to 
investigate a voltage rise phenomenon and network losses, 
under different PV penetration levels, on an existing LV 
distribution network by performing load flow studies in 
DIgSILENT PowerFactory software. An existing eThekwini 
Electricity LV distribution network is utilized for this case 
study. 

This research study further investigates the impacts of 
increased penetration of residential rooftop PV on existing LV 
distribution network in eThekwini Municipality. The key 
focus of this study is on the impacts of voltage and network 
power losses with increasing residential solar PV penetration. 

II. DISTRIBUTION NETWORK MODEL AND CASE 

STUDY 

The LV distribution network model utilized for this case 
study consisted of a mini substation with an associated 
distribution transformer, shared feeders with ground cables 
and grid connected customer loads, as shown in Fig. 1, and 
represents an existing housing estate at eThekwini Electricity. 
The 11 kV/0.415 kV mini substation LV transformer feeds the 
whole network, and has the following parameters: 

a) Off load tap changer: 5 taps, 2.5% per a tap with   
nominal tap at third tap 

b) Apparent power: 500 kVA 

c) Voltage: 415 V 

d) Nominal Frequency: 50 Hz 

e) Phase configuration: Three phase 4 wire system 

Figure 1. Existing eThekwini Electricity LV distribution network model in 
DIgSILENT PowerFactory software [11]. 

Customer loads connected at shared distribution feeders, 
are identical and single phase and their parameters are as 
follows: 

a) Apparent power: 5 kVA, at 0.95 power factor lagging 

b) Real power: 4.75 kW 

Each of the shared feeders consist of nine ground cable 
lines, of same length, interconnecting the customer 
distribution units (CDU’s) as shown in Fig. 1.  Individual 
CDU distances from a top reference feeder terminal (T1) are 
detailed in Table I. In total length, the feeders are 0.9 km each 
with a CDU situated at every 0.1 km of distance down the 
line. Also, the cable length connecting the 500kVA Mini 
Substation to terminal T1 is 0.1 km in length. 

TABLE I. DISTRIBUTION FEEDER LINE DISTANCES OF 
THE HOUSING ESTATE USED FOR THE SIMULATIONS 

CDU 
NUMBER 

FEEDER 1 FEEDER 2 FEEDER 3 
Distance from 

T1 (km) 
Distance from 

T1 (km) 
Distance from 

T1 (km) 
1 0.1 0.1 0.1 
2 0.2 0.2 0.2 
3 0.3 0.3 0.3 
4 0.4 0.4 0.4 
5 0.5 0.5 0.5 
6 0.6 0.6 0.6 
7 0.7 0.7 0.7 
8 0.8 0.8 0.8 
9 0.9 0.9 0.9 
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In order to determine the impact of residential solar PV on 
the LV distribution network, a case study was carried out 
utilizing the eThekwini Electricity LV distribution grid 
represented in Fig. 1. A new housing development in Durban 
was utilized for this case study. The development consisted of 
81 new medium/high income homes with requests and 
potential for PV installations based on the energy efficiency 
requirements for this ecological estate. The site was fed from a 
500 kVA miniature substation which was dedicated solely for 
the development. The electrical layout of the development can 
be seen in Fig. 1. For the purpose of this case study, the 
development was modelled to consist of three feeders with 27 
consumers per a feeder and 3 consumers per a CDU. 

The site was fed from two existing distributor substations 
(DSS), namely; 192 Underwood Road DSS and 10 Robin 
Road DSS. These DSS are fed from the Underwood Road 
Major Substation and Northdene Major Substation. Table II 
shows the estate internal reticulation which was designed to 
ensure that all phases were balanced for the purpose of this 
study. The case study compared the base case network (with 
no residential solar PV connections) to that of different levels 
of solar PV penetration on the network in order to ascertain 
the potential impacts of residential rooftop solar PV in case of 
an increase in penetration levels. 

TABLE II. DISTRIBUTION FEEDER LAYOUT OF THE 
HOUSING ESTATE USED IN SIMULATION [11] 

CDU 
NUMBER 

FEEDER 1 FEEDER 2 FEEDER 3 
Number of 
Customers 

Number of 
Customers 

Number of 
Customers 

1 3 3 3 
2 3 3 3 
3 3 3 3 
4 3 3 3 
5 3 3 3 
6 3 3 3 
7 3 3 3 
8 3 3 3 
9 3 3 3 

 

To study impacts of cable sizes on the simulation, three 
standard different cable sizes were utilized and are used for 
LV reticulation at eThekwini Electricity, and are shown in 
Table III. The first feeder of the LV housing estate, Feeder 1, 
was modelled using a 95 mm2 cable, Feeder 2 using a 150 
mm2 cable, and Feeder 3 was modelled using a 240 mm2 
cable size. Individual cable current ratings are also indicated 
in Table III. 

TABLE III. LV CABLE RATINGS UTILISED BY ETHEKWINI 
ELECTRICITY [11] 

Feeder Number Cable Size (mm2) Cable Rating (A) 

1 95 172 
2 150 249 

3 240 399 
 

A.  Case Study Assumptions 

The assumptions used for this case study are discussed 
below: 

a) All customers are single phase customers. 

b) All PV installations are single phase 4.6 kW systems 
(maximum PV installation size as per the 
requirements of NRS 097 Part 3 [13]). 

c) Existing LV loads are balanced. 

d) Due to the short cable length (< 5 meters) between the 
CD and customer meter box, which was on the 
boundary, the cable was neglected to simplify the 
simulation. 

e) Electricity consumption of street lighting was not 
considered. 

f) The National Rationalization Standards 069, is a 
widely used South African standard by utilities and 
consultants for determination of loads and DG for 
new developments. This data is used to correctly size 
the distribution network components, such as 
cables/lines, embedded generation and transformers. 
Table IV is an extract from the standard and gives the 
kilovolt-ampere zoning After Diversity Maximum 
Demand (ADMD) for urban areas at the transformer 
LV bus. Since the dwellings fell under “Domestic 
normal”, an ADMD of 4.6 kVA was selected. [12] 

TABLE IV. ADMD STANDARD FOR DIFFERENT URBAN 
CATEGORIES [11] 

 Type of Development kVA/stand 
(individual) 

1 Domestic Electrification 0.2 - 1 
2 Domestic low income 1- 3 
3 Domestic normal 3 – 6 
4 Domestic upmarket 6 – 8 
5 Domestic luxury single phase 8 – 12 
6 Domestic luxury three phase > 12 

 

B. Typical PV Generation Profile Vs Typical Residential 
Load Profile 

A typical residential load profile is characterized by the 
morning and evening peaks as shown in Fig. 2. Whilst a 
typical PV generation profile is characterized by the start of 
generation from sunrise to sunset with peak generation 
occurring around noon as shown in Fig. 2. In a residential 
distribution network, there is a mismatch between the PV 
generation and load demand which results in export of excess 
PV generated electricity to the electricity grid, as evidenced in 
Fig. 2. 

Figure 2. Typical residential load profile vs PV generation profile [11], [14] 
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C. Case Study 

The following were taken into consideration during the 
case study: 

a) Study of network parameters under 25%, 50%, 75% 
and 100% of maximum individual consumer load 
(4.6 kVA) [12]. 

b) Assessment at PV penetration levels of 0, 50% and 
100%. 

c) Evaluate impacts of utilization of 95 mm2, 150 mm2 

and 240 mm2 low voltage feeder cables. 

d) Study the impacts of voltage rise and power losses on 
the network under different network loading and PV 
penetration levels. 

e) Investigate load variation effects under different PV 
penetration levels 

III. SIMULATION RESULTS 

A. Rooftop PV Case Study 1: Base Case: No PV Generation 

Table V shows the beginning and end of feeder voltage 
drop on the LV network with no rooftop PV installations. 
From Table V, it can be seen that Feeder 1 and Feeder 2 
experience voltage drop problems during the peak loading 
periods where there is significant increase in the current drawn 
from the LV transformer. Hence for normal operation with no 
connected PV systems, the feeder may be designed and 
implemented using the low impedance 240 mm2 cable to 
maintain all feeder voltages within the acceptable South 
African regulatory statutory limits (±10%) [15], of nominal 
230V phase voltage. 

TABLE V. END OF FEEDER VOLTAGE DROP (NOMINAL 
TAP) [11] 

Load 
(%) 

Start 
Feeder 
Voltage 

(PU) 

95 mm2
 

(Feeder 1) 

End of Feeder 

Voltage 

(PU) 

150 mm2
 

(Feeder 2) 

End of Feeder 

Voltage 

(PU) 

240 mm2
 

(Feeder 3) 

End of Feeder 

Voltage (PU) 

25 1.019 0.984 0.995 1.009 
50 1.002 0.940 0.961 0.985 
75 0.985 0.892 0.924 0.959 

100 0.966 0.840 0.885 0.931 
 

B. Case Study 2: 50% PV Penetration  

With 50% residential rooftop solar PV penetration on the 
LV network, all PV consumer voltage levels, on the point of 
common coupling, remain within acceptable ±10% statutory 
limits [15], as shown in Table VI. In this case, when the high 
impedance feeder cables (95 mm2 and 150 mm2) are utilized, 
there is no violation of voltage regulatory limits, as shown in 
Table VI. The voltage profile improvement is due to 
additional power generated from residential PV systems. 
When the operating point of customer loads is at 100% 
ADMD, there is a significant voltage drop on the smaller size 
cable (95 mm2), due to large current drawn from the grid and 
large line resistance. In this scenario, the bigger 240 mm2 
cable has lesser voltage drops and good performance. 

TABLE VI. END OF THE FEEDER VOLTAGE WITH 50% PV 
[9] 

Load 
(%) 

Start 
Feeder 
Voltage 

95 mm2
 

(Feeder 1) 

(PU) 

150 mm2
 

(Feeder 2) 

(PU) 

240 mm2
 

(Feeder 3) 

(PU) 

25 1.026 1.044 1.037 1.028 
50 1.011 1.055 1.006 1.006 
75 0.995 0.963 0.972 0.982 

100 0.977 0.918 0.936 0.957 
 

C. Case Study 3: 100% PV Generation 

With a 100% rooftop PV penetration, the feeder voltages 
all remain within the required statutory limits of ±10% [15], 
same as in the previous case. More so, with use of smaller size 
feeder cables (95 mm2 and 150 mm2) no voltage violations are 
experienced as shown in Table VII. 

TABLE VII. END OF THE FEEDER VOLTAGE WITH 100% PV 
[11] 

Load  
(%) 

Start 
Feeder 
Voltage 

(PU) 

  95 mm2
 

    (Feeder 1) 

     (PU) 

150 mm2
 

      (Feeder 2)  

(PU) 

240 mm2
 

        (Feeder 3) 

             (PU) 

25 1.032 1.091 1.070 1.045 
50 1.018 1.055 1.040 1.023 
75 1.003 1.017 1.009 1.001 
100 0.986 0.975 0.976 0.977 

 

D. Feeder Losses: Base Case: No PV Generation 

Table VIII shows the kW power losses experienced on the 
LV feeder for different percentage loading with no rooftop PV 
connection into the distribution network. From Table VIII, it is 
clear that the network losses increase in proportion with the 
load demand. The 95 mm2 cable yields 373% more loss, 
(compared to the losses experienced on the 240 mm2 cable) 
whilst the losses on the 150 mm2 cable yields a 185% loss 
(compared to the losses experienced on the 240 mm2 cable) 
under 100% of ADMD load demand scenario. 

TABLE VIII. FEEDER LOSSES (KW) WITH NO ROOFTOP PV 
CONNECTION [11] 

Load 
(%) 

95 mm2
 

(Feeder 1) (kW) 
150 mm2

 
(Feeder 2) (kW) 

240 mm2
 

(Feeder 3) (kW) 

25 0.34 0.21 0.08 
50 1.06 0.66 0.24 
75 2.3 1.42 0.5 

100 4.21 2.54 0.89 
 

E. Feeder Losses: 50% PV Penetration 

Table IX shows that there is an increase in network losses 
for a case of 50% PV generation and 25% of the ADMD load 
demand on the network. This is a result of excess power 
generation on the network. However, there is a drastic 
reduction in losses on the network when the percentage load to 
ADMD is at least 50%, and a drastic reduction in network 
losses on all three feeders can be seen. This is due to the local 
load purely supplied and matched by local PV generation and 
no power drawn from the utility grid. The reduction in losses 

2017 IEEE PES-IAS PowerAfrica

234



for 100% ADMD load with 50% PV generation and with the 
use of a 95 mm2 LV cable is 2.85%, whilst 3.15% for the 150 
mm2 LV cable and 3.37% with the use of a 240 mm2 LV cable, 
in comparison with base case network losses shown in Table 
IX. NRS 097 guidelines states that with a limit of 25% of 
the circuit breaker rating (80A single phase), a PV 
penetration level of 30–50% can be supported by LV network 
with no technical problems [13]. 

TABLE IX. FEEDER LOADING WITH 50% ROOFTOP SOLAR 
PV [11] 

Load 
(%) 

95 mm2
 

(Feeder 1) 
150 mm2

 
(Feeder 2) 

240 mm2
 

(Feeder 3) 

25 1.37 0.86 0.31 
50 0.54 0.34 0.13 

75 0.15 0.09 0.04 

100 0.12 0.08 0.03 
 

F. Feeder Losses: 100% PV Generation 

Table X shows that there is an increase in the losses on 
the network in the case of 25% of ADMD loading with 100% 
PV generation on the distribution network. This can be 
attributed to the fact that there is significant excess generation 
on the network in comparison with load demand on the local 
network. The losses reduce when compared to the base case, 
in Table VIII with no PV generation, once the percentage 
load is greater than 50% of ADMD. The reduction in losses 
for the case of 100% of ADMD load with 100% PV 
generation on the network with the use of a 95 mm2 LV cable 
is 12.12%, whilst for 150 mm2 LV cable is 12.99%, and 
13.48% for 240 mm2 LV cable in comparison to base case 
network losses. 

TABLE X. FEEDER LOADING WITH 100% ROOFTOP PV 
PENETRATION [11] 

Load 
(%) 

95 mm2
 

(Feeder 1) 

150 mm2
 

(Feeder 2) 

240 mm2
 

(Feeder 3) 

25 1.11 0.74 0.28 
50 0.62 0.41 0.16 
75 0.4 0.26 0.1 

100 0.51 0.33 0.12 
 

IV. CONCLUSION 

The mismatch between the PV generation profile and 
residential load profile (Fig. 2) affects the amount of excess 
energy exported to the distribution network. However, it is 
possible by performing load shifting to utilize electricity 
household equipment during rooftop solar PV power 
generating period. Consequently, this means operation of 
items such as pool pumps, dish washers, washing machines, 
etc. during the day to allow efficient utilization of the 
generated electricity from solar PV systems. South African 
utilities applying the NRS 097 standard [12], will ensure that 
power quality problems such as voltage rise can be avoided. 
However, for a higher penetration level of solar PV, more 

detail and accurate software simulation studies need to be 
carried out as was done in this study. This case study also 
showed that cable size affects the network and by increasing 
the LV cable size it is possible to avoid voltage rise problems. 
Increased PV penetration also reduces the LV distribution 
network losses by feeding loads from the local PV systems as 
opposed to drawing power from the grid, thereby contributing 
to the reduction of network power losses. 
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