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Abstract

Electricity price forecasting has turned into a very essential element for both public
and private decision making. Both shortage of supply of electricity and electricity
cost still remains the country’s most biggest problems and needs to be addressed de-
cisively. Apart from the demand and supply side of electricity, electricity cost is an
important part of electricity delivery. Therefore, the accurate estimation of electric-
ity cost and it’s maintenance is an important part of the country’s electricity supply
strategy.

The main aim of this study is to forecast the cost of rectifying or attending to electric-
ity faults. The study demonstrates that the AutoRegressive Integrated Moving Av-
erage (ARIMA), AutoRegressive Integrated Moving Average with exogenous vari-
ables (ARIMAX), Vector AutoRegressive (VAR) and Random Forest methods are ca-
pable of producing accurate forecasts of costs associated with attending to reported
faults.

In this study, we analyse the costs of attending to electrical faults in the Bethlehem
and Bloemfontein areas of the Free State region of South Africa, from 4 January 2012
to 3 June 2017, using univariate and multivariate ARIMA, ARIMAX, VAR and Ran-
dom Forest models. ARCH and GARCH models are also used to model the volatility
found in the daily costs data. The model developed based on these data can be used
to forecast future faults costs and can help policy makers with planning decisions.

ix



Chapter 1

Introduction

Electricity is the backbone for an economy’s prosperity and progress because it plays
an important role in socio economic development. Uses of electricity are rapidly in-
creasing day by day, leading to a tremendous advancement in human civilization.
The demand for electricity that leads to the increment of the cost of electricity is a
vital topic to study. This chapter covers the initial and introductory parts of this
study. It gives the basis for definitions used in the study. This research is inspired by
Nakiyingi (2016), who did almost similar work with South Africa’s daily electricity
demand.

This study focuses most heavily on the time series forecasting models that are capa-
ble of predicting the future of South Africa’s electricity status.

1.1 Background

For all societies, electricity has become an indispensable commodity. Commonly,
it is traded in a market in which, due to the process of deregulation and the exis-
tence of competition within markets, it’s price oscillates according to supply and
consumer demand, the prediction of price has been discovered as being important,
not only for energy companies (such as suppliers, power transmission operators
and retailers) but also for all types of market participants that include traders and
investors. Energy consumption is increasing all around the world due to growth of
the economy, population and industrialisation. South Africa has also gone through
considerable economic and social growth in past years and this growth has caused
an increase in energy costs, especially electricity cost (Sigauke and Chikobvu, 2011).

According to the World Health Organization (2011), around three billion people do

1



1.2. Problem Statement

not have access to modern fuels for cooking, heating, use of traditional stoves burn-
ing biomass (animal dung, wood and crop waste) and coal resulting in about four
million pre-mature deaths every year. The impact of electricity on human life is very
strong and therefore, various studies have been made in different directions related
to this sector.

Forecasting electricity cost, forms a very important part of the energy policy of a
country, morely for a developing country like South Africa whose electricity costs
have increased gradually over the past few years. There are some factors that im-
pact the daily energy costs, among them are interest rates, inflation, calendar effects,
economic factors, meteorological factors and grid maintenance costs. Electricity cost
is affected by different factors in different countries. For example, highly industri-
alized countries have a higher cost for electricity than low industrialized countries.
Countries with minimal seasonal weather changes, usually have an almost similar
cost of electricity across all seasons (Saab et al. 2001).

Other factors affecting electricity costs include, the supply of electricity, the faults
in different areas, social factors and human activities. Since the cost of electricity
keeps changing continuously in time, we consider it to be a time series. Therefore,
quantitative methods are preferred in making forecasts about it, specifically, time
series techniques, depending on the naturalness of the available data.

1.2 Problem Statement

South Africa is at the moment going through an electricity crisis. The shortage of
electricity supply and cost remains one of the country’s most critical challenges go-
ing forward. Costs for electricity in South Africa is forever going up. A rapid in-
crease in the population, economic expansion, industrialization and other factors
have led to an increment in the cost for electricity in South Africa. This study looks
at costs of electricity in as far as attending to electrical faults is concerned. If costs of
rectifying electrical faults can be modelled and properly estimated beforehand then
planners will have clear picture of what might happen hence strategise accordingly.

1.3 Aim and Objectives

The aim of this study is to,

• Come up with the most accurate univariate and/or multivariate time series
model(s) best suited for electricity fault response costs, modelling, forecasting

2



1.4. Forecasting procedure

and assess if such model(s) provide accurate results and forecast the electricity
maintenance cost in South Africa.

The objectives of this study are to,

• Compare various time series models that are suitable for forecasting the elec-
tricity maintenance data available in order to come up with a model with the
best forecasting capabilities.

• Model and forecast the costs of attending to electricity faults using time series
models and other methods.

Electricity cost is affected by different factors in different countries. For example,
highly industrialised countries have a higher cost for electricity than low industri-
alised countries. Other factors affecting electricity cost include, the supply of elec-
tricity, social factors and human activities. Since electricity cost keeps changing
continuously in time, we consider it to be a time series dataset. Therefore, quan-
titative methods are choosen in making forecasts about it, specifically, time series
techniques, depending on the nature of the available data.

This study will focus on modelling and forecasting the costs of attending to elec-
tricity faults using univariate, multivariate time series forecasting models and series
volatility forecasting models. Multivariate time series models will be used because
of the available data that is of multivariate nature with more that two variables. For
that reason, we shall follow studies such as Bruce et al., (2013) who found it more
appropriate to use multivariate forecasting techniques to reach the objectives of their
studies and nakiyingi (2016) found it more appropriate to use univariate forecasting
methods to reach the objectives of her studies.

Hence, since the aim is come up with the most accurate univariate and/or multivari-
ate time series model(s), we start with (univariate) time series models, then focus on
the multivariate models.

1.4 Forecasting procedure

Forecasting process is a statistical planning tool that aids the management to cope
with the uncertainty of the future, relying on data from the past and present, and
the analysis of trends. Forecasting can also be described as the procedure of making
predictions of the future based on the past and present data and most commonly by

3



1.4. Forecasting procedure

the analysis of trends (Nakiyingi, 2016). Forecasting begins with some assumptions
based on the management’s knowledge, experience and judgement. These estimates
are projected to the coming months or years using one or more statistical tools such
as the Delphi method, Box-Jenkins models, moving averages, regression analysis,
exponential smoothing and trend projection.

Ku (2002) mentioned that forecasting the market price of electricity maintenance cost
is a key factor for the decision makers in defining the short term operating schedules
and strategies in the electricity markets. For instance, a transmission company wants
to know the value of the future price of electricity maintenance cost to strategically
bid into the market. Another example, a demand response market participant wants
to know whether the price of electricity is low or high to optimize operation.

The process of forecasting is mainly used to plan, make budgets and estimate future
growth. Businesses use forecasting procedure to define how to allocate their budgets
or plan for anticipated expenses for an upcoming period of time. Investors utilise
forecasting to determine if the events that affect a company such as sales expectation,
will rapidly increase or decline the price of shares in that certain company. Forecast-
ing process provides a significant benchmark for forms, which needs a long term
perspective of operations. Stocks analysts use forecasting to abstract how trends,
such as unemployment or GDP will change in the coming period, quarter or year
(Box et al., 2015).

According to previous studies such as Hyndman and Athanasopoulos (2014), a fore-
cast variable has never reached 100% accuracy. Various studies show that group
forecasts are much better than individual forecasts, for instance, forecasting the av-
erage performance of the whole class using results from their mid term exams is
much better than forecasting one student’s performance using their previous mark.
There is a common approach used when forecasting, it depends at the problem at
hand, it can also be applied to support their strength and reduce their individual
weaknesses.

The steps to be followed when forecasting as described by Hyndman and Athana-
sopoulos (2014) include :

• Defining the problem of the study : One needs to carefully define the problem
according to who needs the forecasts, how the forecasts will be used, how the
determined model fits the data at hand. At this stage it is essential to be aware
that any decision made based on the results from the forecasts will affect the
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future of the organization.

• Time : One needs to know how much lead into the future the forecast should
cover. Short term forecasts typically cover a period of less than 1 year. Fore-
casts in the electricity sector are useful in estimating load flows in order to
make decisions that will prevent load shedding. Medium forecasts take 1 to 3
years, and are for determining and planning for future resource requirement.
Long term forecast take longer than 3 years and are for strategic planning and
development.

• Collection of data : Data collection needs a lot of time and, after collecting the
data one requires to know the nature or behaviour of that data. A time series
plot is the best way to check if there are any patterns, like trend, seasonality,
cycles and their significance. Plotting also helps pick out outliers and their
meaning. The data needs to be cleaned first before it is used for any analysis
or, in the development of forecasting models from which the best is chosen us-
ing accuracy measurements.

In this case, we do not choose the best model depending on its AIC, AICc, or BIC
because, comparing models using these information criteria requires that all models
have similar orders of differencing, which is not the case for the seasonal differenc-
ing in this study.

To estimate the model order, we look at the behaviour of the ACF and PACF.

1.5 Literature review

The study on electricity maintenance cost forecasting has been there for years and
years, and a numbers of research results have been used by electricity companies.
After realizing the continuous increase in electricity costs, developed countries have
opted for deregulation which encourages using other power sources like solar and
wind energy. Through deregulation, users get a variety of options to purchase and
use electricity, for example, the use of panels and turbines. However, the use of these
other sources makes the load forecasting problem harder because the production of
these power sources cannot be predicted easily since they mainly depend on the
weather (Hong and Dickey, 2014).

The process of forecasting electricity cost is hard for developed countries but harder
for developing countries because of various factors like lack of necessary historical
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data, inadequate expertise and institutions to carry out the process with appropriate
models. Developed countries mainly face problems like inappropriate assumptions
made by experts while constructing the models. Due to such situations, the devia-
tion between predicted and actual electricity cost seems to be a worldwide problem,
irrespective of the level of development (Yasmeen and Sharif, 2014). In this chapter,
we look at various studies that have been carried out in order to forecast electricity
cost with deviation from the actual cost being as minimum as possible.

1.5.1 Overview of electricity maintenance cost forecasting methods

According to Bhattacharyya and Timilsina (2009), electricity maintenance cost fore-
casting is now one of the most important aspects in the electricity sector, especially
for supply planning. Positive world economic trends have attracted lot of stake-
holders to invest time and money for the development of new algorithm for precise
prediction of electricity cost. This financial aspect has drawn enormous interest to
many researchers, and has yielded lot of important research and contribution in elec-
tricity maintenance cost forecasting. Precise knowledge about the future electricity
maintenance cost will help consumers to plan their consumption and suppliers to
plan their production based on user behaviour. This research explains some of the
most known algorithms, tools and research proposed to date, in the field of electric-
ity maintenance cost forecasting.

Short term electricity maintenance cost forecasting (STPF)

Short term forecasting is essential for fast decision making processes. Markets can
plan their strategies using the forecast cost to maximize the profit in deregulated
markets. Consumers can make decision of power consumption based on the current
and predicted future costs. Short term prediction involves next hour maintenance
cost predictions or day ahead maintenance cost predictions (Kodogiannis, 2002).

Medium term electricity maintenance cost forecasting (MTPF)

Medium term maintenance cost forecasting involves predictions for week’s, month’s
up to a year’s lead time. In pricing schemes, MTPF is being affected by seasonal
effects, like an increase in electricity maintenance cost in winter or decline during
holidays or summer. In the smart grid, the deployment of other sources of energy
might also influence electricity maintenance cost. Medium term maintenance cost
forecasts can be used by suppliers to maximize their production cost by planning
the resource allocation for the generation of electricity (Dudek, 2010).
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Long term electricity maintenance cost forecasting (LTPF)

The time horizon for long term maintenance cost forecasting varies from years to
decades. Long term maintenance cost trends are muchly used by policy makers
to plan pricing schemes and for the management of resources. Investors use it for
analysing recovery of investment in transmission, power plant construction and pro-
duction. Based on the type of production, maintenance cost forecasts can be used to
preserve resources. For example, a nuclear plant can plan on how and when to pur-
chase uranium and hydropower plants can consider the construction of reservoirs
while solar and wind farms can make advance analysis on the development of new
plants based on cost analysis (maintenance cost and Sharp, 1986).

1.6 Existing forecasting techniques

Due to the significance of accurate maintenance cost forecasting in electricity market,
a number of techniques have been demonstrated in the literature review. These tech-
niques range from traditional time series analysis to machine learning techniques for
forecasting future maintenance cost. ARIMA and GARCH models are examples of
traditional techniques. Artificial Neural Network (ANN), ARIMA models enhanced
with wavelet transforms, Markov models, random forests, fuzzy inferred neural net-
works, and support vector regression are some examples of machine learning meth-
ods that have been studied (Hamilton and Douglas, 1994). We will analyse few of
these methods.

1.6.1 ARIMA

In other studies, the authors used ARIMA model based on wavelet transformation
for electricity maintenance cost forecasting. Historical data was splitted using some
transformation before the applying ARIMA modelling. The forecast results were
obtained by application of inverse transformations. An AutoRegressive Integrated
Moving Average (ARIMA) model are also called Box-Jenkins models because they
were developed by Box and Jenkins (1976). They used this model to forecast one day
ahead electricity maintenance cost for the German market.

1.6.2 Artificial Neural Network(ANN)

Artificial Neural Network (ANN) is a very popular approach for short term forecast-
ing, we use ANN model for forecasting cost in the next hour using the input data
with designed features. The ANN generally gives accurate results provided that the
ANN is trained with the correct set of input features and enough input data points
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(Dudek, 2013). The authors presented the ANN model for maintenance cost predic-
tion by using history and other factors estimated in the future to fit and abstract the
maintenance cost and quantities.

The authors present a combined model that include orthogonal experimental, proba-
bility and neural networks designs for electricity maintenance cost prediction. They
implemented the PNN model combined as a classifier that is consist of advantages
of being a fast learning process as it needs a single pass network training stage for
adjusting weights. Orthogonal experimental design was used to get the optimal
smoothing parameter which helps to increase prediction accuracy (Dudek, 2010).

1.6.3 Support Vector Machine (SVM)

Authors proposed SVM model for maintenance cost forecasting by using histori-
cal maintenance cost, demand data and Projected Assessment of System Adequacy
(PASA) data as input variables. They did their experiment using Australian Na-
tional Electricity Market (NEM) using the New South Wales regional data at year
2002. The authors also proposed model for time series prediction using Fish Swarm
Algorithm (AFSA) for choosing the parameter of SVM model. This model used Op-
timized Support Vector Machine for electricity maintenance cost forecasting (Dudek,
2010).

1.6.4 ARCH AND GARCH models

ARCH and GARCH models have become important tools in the analysis of time
series data. These models are especially useful when the goal of the study is to an-
alyze and forecast volatility. The simpler ARCH models will be considered first to
provide a systematic framework for volatility modelling. It was developed in 1982
by economist Robert F. Engle (Engle,1982). The acronym ARCH stands for AutoRe-
gressive Conditional Heteroscedasticity. The AR comes from the fact that this model
is a type of autoregressive model. Heteroscedasticity means non constant variance.
However, with an ARCH model, it is not the variance itself that changes with time,
rather, the conditional variance.

Due to the limitations presented by the ARCH models, a better model was pro-
posed by Bollerslev in 1986 (Bollerslev, 1986) in order to solve the problem of requir-
ing many parameter to adequately describe any given data while using an ARCH
model. It is called the Generalised AutoRegressive Conditional Heteroskedastic-
ity (GARCH) model. Multivariate GARCH models have been used to investigate
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volatility and correlation transaction and spillover effects studies.

1.6.5 Random Forest

Random forests are a combination of tree predictors such that each tree depends on
the values of a random vector sampled independently and with the same distribu-
tion for all trees in the forest. The generalization error of a forest of tree classifiers
depends on the strength of the individual trees in the forest and the correlation be-
tween them. Using a random selection of features to split each node yields error
rates that compare favorably to boost, but are more robust with respect to noise. In-
ternal estimates monitor error, strength, and correlation and these are used to show
the response to increasing the number of features used in the splitting. Internal es-
timates are also used to measure variable importance. An example is random split
selection where at each node the split is selected at random from among the K best
splits (Freund and Schapire, 1996).

1.7 Relevant studies on electricity consumption and it’s costs

Saab et al. (2001) modelled and forecasted electricity consumption and cost in Lebanon
using univariate approaches, three univariate techniques were used to model and
forecast electricity cost namely, AutoRegressive (AR), ARIMA models and an ag-
gregation of an AR(1) with a high pass filter (AR(1)/HPF). The main purpose of
their study was to look into different univariate models and use them to forecast
one month ahead electricity consumption and cost in Lebanon. The interest was in
identifying a forecasting method that would perform best on the mixed data with
missing values that was available.

This was a vital study because electricity had become the main source of energy in
all the economic sectors of Lebanon. It was critical to forecast cost to help in the de-
velopment of that sector and the country at large. Monthly average electricity cost
data was used, covering January 1970 until May 1999. A time series plot revealed
an evident non-continuous behaviour between January 1975 to December 1989. This
was attributed to the civil war that took place during that time in Lebanon. How-
ever, since this civil war brought about random fluctuations in the power sector,
which caused an unusual pattern in the consumption, data during that period was
ignored. There was uncertainty about the war happening again, therefore, data used
run from January 1990 to May 1999. Due to the odd stochastic characteristics of the
data, an adequate model was vital to carry out the forecasting exercise (Yasmeen and
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Sharif, 2014).

A non-linear deterministic model was used to represent the trend in data after the
war, since from the ACF plot, the data was a non-stationary random process. Af-
ter the analysis, there were insignificant, almost uniform correlations in the ARIMA
model, for all the positive lags, with the 39th lag having a 0,057 standard deviation
and maximum correlation of 0.129. For the AR(1)/HPF model, there were diverse
correlations in all positive lags, with the 4th lag having 0,091 standard deviation
and 0.625 maximum correlation. Since it is necessary for residuals to be statistically
uncorrelated for a reliable ARIMA model, and there were uncorrelated residuals for
both the ARIMA and AR(1)/HPF models, the ARIMA model was ideal enough (Yas-
meen and Sharif, 2014).

Assessment of each of the models was performed using sum of absolute errors
(SAE), percentage mean absolute error (PMAE), sum of squared errors (SSE) and the
percentage mean squared error (PMSE). Model performances were compared with
the actual values and this indicated better forecasts from the AR(1)/HPF model,
compared to both the AR and ARIMA models (Yasmeen and Sharif, 2014).

An application of linear models applied in this study was carried out by Kumar and
Anand (2014). They used time series ARIMA forecasting models to forecast the elec-
tricity maintenance cost in India. ARIMA models, also commonly known as Box-
Jenkin’s models were used in the study because they work best when forecasting
single variables. The main reason for choosing ARIMA models for forecasting was
because these model have the capabilities of making predictions using time series
data with any type of pattern and the non zero autocorrelation between successive
values of the time series data are taken into account (Dudek, 2010).

Data covering a period of 62 years of electricity maintenance cost was used to predict
5 years ahead. After modelling and analysing the data, an ARIMA(2,1,0) was chosen
as the very best model explaining the patterns of the data perfectly. Attempts were
made to forecast, as accurate as possible, the future electricity maintenance cost for
a duration up to 5 years. Forecast results showed that the annual electricity mainte-
nance cost would grow in year 2013, then take a sharp decline in 2014 and in years
2015 through 2017.

The study statistically tested that the successive residuals in the fitted ARIMA time
series were not correlated, and the residuals seemed to be normally distributed with
mean zero and constant variance. In conclusion, the selected ARIMA(2,1,0) was a
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good predictive model for the electricity maintenance cost in India country. Similar
to any other predictive models in forecasting, ARIMA also has limitations on accu-
racy of predictions, it is used widely for forecasting the future successive values in
the time series (Kumar and Anand 2014).

In a case study of Dubai et al.,(2006) studied forecasting monthly peak load cost us-
ing time series models. In this study, an attempt to test and recommend reliable and
accurate models of forecasting monthly peak load was carried out. Different time
series models were developed to provide forecasts as accurate as possible. The uni-
variate time series models used in the study involves a variety of complex methods,
such as Box-Jenkins (BJ), exponential smoothing and dynamic regression.

The purpose was to yield short term monthly forecasts of one year ahead by analysing
the behaviour of monthly peak loads. The study was carried out using Dubai data
alone because other emirates refused to give timely data for reasons of secrecy and
confidentiality. Data was used in two portions, for evaluation and validation of the
performances of the models. Comparisons for how well the historical and forecast
data for the holdout duration matched and correlated were also carried out. Such
attempts reflected how the recommended models captured most of the characteris-
tics of the data. In total, there were 267 cases available between 1985 and 2007. The
data ranged from 296MW (January 1985) to 4113MW (August 2006) with a mean of
1395MW and a standard deviation of 862:3679MW. From the time series graphical
representation of the data, there existed patterns of and trend. Cost was highest in
July and August and lowest in January and February. A trend line equation was
drawn, whose slope was estimated as 9:6643. This indicated a strong upward trend.
The process used in the study followed seven steps, obtaining time series data, per-
forming initial data screening to discover trend and seasonality, performing trend
and seasonality analysis to identify data features, selecting time series models to use,
analysing and obtaining results for each model with model performance statistics,
performing out of sample diagnostics and validity tests, and lastly, recommending
the final model. Through this process, different models were recommended, winters
exponential smoothing and Box-Jenkins ARIMA model with root transform (Dubai
et al., 2006).

The recommended models passed stringent diagnostic tests, including comparing
outputs with selected holdout samples. A compregnation of the performance of
the recommended models with those of electric authorities showed that the recom-
mended model had better diagnostic results with the actual hold out sample. In
conclusion, the developed model was recommended not only to the Dubai monthly

11



1.8. Research Layout

peak load data, but to other datasets showing seasonality and trends.

Table 1.1: Summary of the related literature on forecasting and modelling the electricity
cost.

Authors Data Models

Saab et al. (2001) 01/1970-05/1999, Monthly electricity cost AR, ARIMA models.

Kumar and Anand (2014) Data for 62 years, Electricity maintenance cost ARIMA models.

Dubai et al.(2006) 01/1985-08/2007, Monthly load cost Box-Jenkins.

In conclusion, the developed models for each study were recommended not only
to the electricity based data, but also to other data sets displaying seasonality and
trends or any other kind of nature. These studies helped paint a clear picture of
what the dissertation is going to be using which kind of models. The univariate
time series models seem to be the best fit for the electricity maintenance cost study,
but more accurately when multivariate models are used.

1.8 Research Layout

This study is organised in chapters that describe how each methodology considered
is described and applied. A chapter by chapter outline of the study is given below.

Chapter 1 consists of initial and introductory parts of the whole study. It gives the
definition of terms used in the study, an introduction to the research objectives and
suggested statistical methods to be used. Chapter 1 also gives brief and simple def-
initions of univariate time series. Chapter 2 gives an explanatory description of the
data and some statistical tools required to do time series analysis. In Chapter 3
and 4, the basic components of time series are described. Statistical tools that deal
with uncertainty in the data are discussed. Non-linear models are required to define
data that has changing variation over time. Chapter 5, here the study focuses on
analysing the results using univariate ARIMA models, R software was used to plot
the time series graph representing the data and came up with relevant results ex-
plaining the electricity data to determine the forecast and choose the accurate model
to be used for our analysis. Chapter 6, focuses on volatility forecasting models for ac-
curate forecasting. Chapter 7 applies ARCH and GARCH models to ARIMA model
for forecasting electricity cost. Chapter 8 focuses on forecasting electricity using mul-
tivariate ARIMA, ARIMAX and VAR models. Chapter 9 introduces a new method
Random Forest(RF) for forecasting electricity cost and chapter 10 is the discussion
and conclusion.
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Chapter 2

Exploratory Data Analysis(EDA)

Exploratory Data Analysis is a way used for analysis of data that allows a variety of
techniques in most of the times it is graphical and tabular representation to extract
important information, test underlying assumptions and help to develop parsimo-
nious models. The EDA approach is a preliminary process about how analysis of
data should be done. It was promoted by Rosenthal (1995) to encourage statisticians
to visually examine the data sets at hand and to formulate hypotheses that could be
tested on the datasets. EDA is a very crucial first step in analysis of any kind of data
(Rosenthal, 1995). The main reasons why we use EDA are:

• To catch errors,

• To see patterns in the data,

• Checking of assumptions,

• To find violations of statistical assumptions,

• To generate hypotheses, and

• Defining relations between the explanatory variables.

2.1 Data description

In this research study, electricity cost data that has been composed over a duration
of 6 years from 2012 to 2017 from eskom was used. The data is consist of 13 variables
in total but I chose to focus only on the four relevant ones namely, transaction cost
variable, travel cost variable, travel time variable and travel distance(km) variable.
These four variables are the most relevant ones in the data since they give the better
insights for forecasting the electricity data. The data had many observations such
that it could not fit in R-studio, then I used (Structured Query Language)SQL in
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order to cut and aggregated the data into fewer observations so that it can normally
fit into R.

2.1.1 Data descriptive statistics

Statistics are suitable for defining the canonical components/attributes of the data.
Descriptive statistics gives the basic sum-up of the data. As shown in the descriptive
statistic tables below. A box plot gives a graphical summary of the distribution of a
sample, it shows the central tendency, the shape and the variation of the electricity
data. We use the box plot to investigate the stretch out of the electricity cost data
and to distinguish any possible outliers and the box plot are very acuurate when the
sample bulk is bigger than 20. With regards to each of the following plots, the up-
per part is the right spread of the data and the lower part is the left spread of the data.

1. Description of total transaction cost variable.

Figure 2.1: The box plot of transactional cost.

The box plot of transactional cost implies that the most of the data is left skewed and
there is an outlier.
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Table 2.1: The statistics of transactional cost.

Mean Standard deviation Standard error Variance Median t-value Min Max

301.416 148.093 1.973 21931.583 124.933 152.732 7.031 824.527

Over-dispersion occurs when the variance of the data exceeds the mean which can
lead to the occurrence of extreme values/outliers. On this variable there is over-
dispersion based on the given values by the Table 2.1. However, it is clearly seen that
the min and the max value is very far from the mean. Also, the standard deviation is
very high. They represent that electricity cost of the areas/cities focused on are very
different from each other. Since mean is greater than median, it shows right skewed
distribution. Therefore, a transformation might be needed to satisfy the normality of
the data. The difference between minimum and maximum values is also quite big.
2. Description of the travel cost variable.

Figure 2.2: The box plot of travel cost.

The box plot of travel cost implies that the most of the data is right skewed and there
are outliers.
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Table 2.2: The statistics of travel cost.

Mean Standard deviation Standard error Variance Median t-value Min Max

131.438 66.035 0.879 4360.622 126.937 149.352 5.210 427.011

Over-dispersion occurs when the variance of the data exceeds the mean which can
lead to the occurrence of extreme values/outliers. On this variable there occurs over-
dispersion based on the given values by the Table 2.2. However, it is clearly seen that
the min and the max value is very far from the mean. They represent that electricity
cost of the areas/cities focused on are also different from each other, even though
the standard deviation is not too big. Since mean is greater than median, it shows
right skewed distribution. Therefore, a transformation might be needed to satisfy
the normality of the data. The difference between minimum and maximum values
is also very big.
3. Description of travel time variable.

Figure 2.3: The box plot of travel time.

The box plot of travel time implies that the most of the data is right skewed and
contains outliers.
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Table 2.3: The statistics of travel time.

Mean Standard deviation Standard error Variance Median t-value Min Max

0.657 0.330 0.004 0.109 0.633 50.254 0.033 2.147

Over-dispersion occurs when the variance of the data exceeds the mean which can
lead to the occurrence of extreme values/outliers. On this variable there is no over-
dispersion based on the given values by the Table 2.3. However, it is clearly seen that
the min and the max value is very far from the mean. They represent that electricity
cost of the areas/cities focused on are also different from each other. The standard
deviation is quite good. Since mean is greater than median, it shows right skewed
distribution. Therefore, a transformation might be needed to satisfy the normality
of the data. The difference between minimum and maximum values is big.
4. Description of total travel distance(km) variable.

Figure 2.4: The box plot of total travel distance(km).

The box plot of total travel distance implies that the most of the data is right skewed
and the outliers.
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Table 2.4: The statistics of total travel distance.

Mean Standard deviation Standard error Variance Median t-value Min Max

52.571 26.414 0.351 0.452 50.774 50.244 2.083 170.810

Over-dispersion occurs when the variance of the data exceeds the mean which can
lead to the occurrence of extreme values/ outliers. On this variable there is no over-
dispersion based on the given values by the Table 2.4. However, it is also clearly
visible that the min and the max value is very far from the mean. They represent
that electricity cost of the areas/cities focused on are also different from each other.
The standard deviation is big. Since mean is greater than median, it shows right
skewed distribution. Therefore, a transformation might be needed to satisfy the nor-
mality of the data. The difference between minimum and maximum values is big.

2.2 Testing for normality

Assumption of normality means that you have to make it a point that the data at
hand fits a bell curve shape before running Shapiro-Wilk test or regression.

Here, we used travel cost, total travel distance(km), travel time and transaction cost
variables in the electricity data to check for normality by using the Q-Q plots. To
determine normality by using graphs, we can use the outcomes/results of a normal
Q-Q plot. If the data is normally distributed, that is when data points are close to
the diagonal line. If data points stray from the diagonal line in a non-linear manner,
then it means the data is not normally distributed (Ahad et al., 2011).

We can see from the normal Q-Q plots in figures below, the data looks normally
distributed for travel cost, total travel distance(km) and travel time. As for total
transaction cost, the data points move stray away from the line which results into a
non-linear manner.
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Figure 2.5: Q-Q graph for the transaction cost of electricity data.
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Figure 2.6: Q-Q graph for travel cost of electricity data.
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Figure 2.7: Q-Q graphical representation for travel time of electricity data.
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2.3. Conclusion

Figure 2.8: Q-Q graph for total distance(km) of electricity data.

2.2.1 Shapiro-Wilk Test

For testing the normality of the data, we use the Shapiro-Wilk test. After running
this test in R, the used function returns a p-value of 0.00025, which is far less than
0.1. Hence, we reject H0 and deduce that the data does not follow a normal distribu-
tion. The Q-Q plots in figures above also shows non normality of data because most
of the data points move away from the main diagonally plotted line.

2.3 Conclusion

Fitting the normal distribution approximates the standard deviation and the mean(average)
from the sample. By looking at the plots above, they are all of a poor fit since the
tallness of the bars do not pursue the exact shape of the line. The data that well fit
the normal distribution have the bars that are close enough to the line.
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Chapter 3

The basic theoretical aspects of
time series resolution

A time series is an order of observations on a particular variable. Time series mod-
elling is an exploration area that has drawn attentions of investigators community
for the past years. Usually the observations are taken at periodical intervals (days,
months, years). The purpose of time series modelling is to congregate and study the
elapsed observations of a time series to develop an accurate model which illustrate
the structure of the series (Adhikari and Agrawal, 2013).

Time series analysis is used to either model randomness in a given data series or
forecast future values basing on observed historical data (Brockwell et al., 2002). This
chapter present an overview of some of the basic tools and concepts used to model
and analyse time series data. Areas covered include, describing different features
and patterns of time series data, the data being stationary, the process of differenc-
ing, Autocovariance, Autocorrelation functions (ACF) and partial Autocorrelation
Functions (PACF) in detail.

A time series analysis consists of two steps:

• Construction of a model.

• Using the model to foretell (forecast) forthcoming values.

3.1 The general description of time series data

Univariate time series analysis involves using data about a single variable to build a
model that illustrate the action of the variable in the past and the multivariate time
series analysis involves using data about many variables to develop a model that
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define the behaviour of the variable in the past (Brockwell et al., 2002).

The element of correlation within the data has to be taken into consideration. Sup-
pose we have a series of N observations for a variable X observed over time, and
want to forecast its value at time N+h. Denote the foretell as X̂N (h), where,

• X̂ stands for the forecast of X.

• N is the base time at which forecasting is done.

• h is the time horizon which shows how far ahead the forecast covers.

Time series analysis covers two types of quantitative forecasting, namely, univariate
(analysing historical data of a single series) and multivariate (analysing historical
data of more than one variable). Before carrying out a forecasting exercise, it is very
essential to know the features of the data available to be able to choose the right
model. The easiest method to go about doing this is to have a time series plot with
observations against time. Using the time series plot, features like trend, seasonality,
outliers, transformation in structure, turning points and sudden discontinuities are
easily observed (Yamin et al., 2002).

3.2 Constituents of time series

The main use of time ordered data is to discover trends and other patterns that take
place over time. When the pattern is abstracted from the data, all that should be
remain is random, a stable process, called a stationary process.

Time series is consists of 4 constituents, namely trend constituent, seasonal con-
stituent, cyclical constituent and random or irregular constituent (Chatfield, 2002).

3.2.1 Trend constituent

Chatfield (2002) defined that the trend pattern may be linear or non-linear, linear
trend pattern is the most common trend pattern. This is when the series has a steady
up or down motion. This is brought about by long term factors that affect the vari-
able being observed.

In economic variables we might have the steady economic growth giving a steady
upward trend to economic indicators. This movement can either be linear or non-
linear. If there is no increase or decrease pattern then the series is said to be stationary
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3.2. Constituents of time series

in the mean. Global warming will produce an upward trend in monthly tempera-
tures over the years.

3.2.2 Seasonal constituent

Time series data may include a seasonal component. Regular, relatively short-term
repetitive up and down fluctuation of the variable Y.

This type of component generally repeats itself at fixed intervals within a period
of time, for example, daily, weekly, monthly or quarterly. Similar patterns of be-
haviour are observed during these intervals, there is repeatition. Seasonality occurs
when a series is influenced by seasonal element and is usually predictable. It usually
happens during a fixed and known time interval (Chatfield, 2002). Here we would
somehow expect the ice cream sales to be high in the summer and very low in win-
ter. The variation in ice cream sales is seasonal fluctuation.

3.2.3 Cyclical constituent

The cyclical constituent modifies the trend constituent. A gradual, up and down po-
tentially irregular swings of the variable Y. Business and economic data go through
the cycles of expansion and contraction which span over more than one year (Bhar
and Sharma, 2005; Jebb et al., 2015).

There has been periods where economies have been observed to be growing fol-
lowed by years of economic declines. Drought have been observed to occur after a
certain period of few years. If the period between the occurrence of these events is
constant then the series has cycles or a cyclic component. This pattern takes place
when the data series exhibits ups and downs that are not of fixed periods. The pe-
riod of these fluctuation takes about at least two years. The main difference between
cycles and seasons is that, if the changes are not of fixed duration then it means they
are cyclic. Otherwise, if the duration is constant then the pattern is said to be sea-
sonal (Hyndsight Website, 2015).

3.2.4 Irregular or Random constituent

An increase or decrease of the variable Y for a particular time period. This describes
the fluctuation in the series that is due to irregular or non-recurring factors like
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strikes or earthquakes.

These factors present a randomness in time series that can not be forecasted. It is the
variation left in a data series after removing all systematic effects, like, trend, sea-
sonality and cycles. In other words, they can not be forecasted. During a forecasting
exercise, the objective is to model all the constituents until the only unexplained one
is an irregular fluctuation (Hyndman and Athanasopoulos, 2014).

3.2.5 Stationarity

A time series is stationary if there is no change in the mean and variance. The at-
tributes of the data are more uniform throughout all sections of one series. In simple
terms, a stationary time series will have no predictable shape in the long run. There-
fore, a series with trend and seasonality components is not stationary because these
components influence the value of the series at different intervals of observation
(Hyndman and Athanasopoulos, 2014).

A time series is strictly stationary if the joint distribution of Xt1, Xt2, · · · , Xtn is the
similar as that of Xt1−k, Xt2−k, · · · , Xtn−k for all time periods t and all time lags
k (Shumway and Stofer, 2010, Washington et al., 2010). Shifting the time com-
mencement by an amount k has no influence on the joint distributions, which must
therefore depend only on the intervals between t1, t2, · · · , tn. This means that for
a strictly stationary procedure, the mean, E(Xt) = E(Xt−k) = µ and variance,
var(Xt) = var(Xt−k) = σ2 = γ(0) are constant throughout time (McCleary et al.,
1980).

The definition of a weakly stationary process is that,

• The mean value is constant.

• The covariance function is time-invariant.

• The variance is constant,

Where the strictly stationary process is a process whose probability distribution does
not change over time.

Likewise, the covariance between any 2 observations rely only on the time lag be-
tween them, (t, t − k) rely on amount k only. A series is second order stationary if
both the 1st and 2nd order instants do not depend on time and both the covariance
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and correlation are functions of the time lag only. Second order stationarity is also
called weak stationarity (McCleary et al., 1980).

Majority of time series analysis methods can be applied to stationary time series.
Therefore, it is very essential to know whether the data at hand is stationary or non-
stationary before doing any further analysis (McCleary et al., 1980). If not stationary,
it’s very much important to use appropriate transformations to achieve stationarity.
Testing for stationarity helps to find out if there is any correlation that needs to be
dealt with and determining which model best suits the data. Different methods can
be used to test for stationarity, for example, software like the Augmented Dickey-
Fuller (ADF) test or unit root test, Kwiatkowski-Phillips-Schmidt-Shin (KPSS), plot-
ting an ACF, and a time series plot.

A non-stationary series can be transfigured to become stationary through different
ways, for example, de-trending (using regression to fit the trend), taking logs (stabi-
lize the variance), differencing (to stabilize the mean by eliminating trend and sea-
sonality) and using moments (Franses, 1998; Heij et al., 2004).

To perform forecasting process, most methods demand the stationarity conditions
to be satisfied:

• 1st order stationary : A time series is a 1st order stationary if expected value of
Xt remains similar for all t. For example, in economic time series, a process is
1st order stationary when we abstract any kinds of trend by some mechanisms
such as differencing (Montgomery et al., 1990).

• 2nd order stationary : A time series is a 2nd order stationary if it is 1st order
stationary and covariance between Xt and Xs is function of length (t-s). In
economic time series, a procedure is 2nd order stationary when we stabilize its
variance by some translations, such as taking the square root (Montgomery et
al., 1990).

Stationarizing a time series through differencing is a very significant part of the pro-
cess of fitting an ARIMA model.

One other reason for stationarizing a time series is to be able to find meaningful
statistics such as means, variances, and correlations with other variables. Such statis-
tics are beneficial as descriptors of future behaviour only if the series is stationary.
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For instance, if the series is congruously increasing over time, the sample mean and
variance will advance with the size of the sample, and they will always underes-
timate the mean and variance in forthcoming time. If the mean and variance of a
series are not well illustrated, then neither are its correlations with other variables.
For this reason, you should be cautious about trying to extrapolate regression mod-
els fitted to non-stationary data.

In simple terms, a stationary time series will have no predictable shape/pattern in
the long run. Therefore, a series with trend and seasonality elements is not stationary
because these elements affect the value of the series at different periods of observa-
tion. Shifting the time origin by an amount k has no influence on the joint distri-
butions, which must therefore depend only on the intervals between t1, t2, · · · , tN .
This means that for a weakly stationary process, the mean,

E(Xt) = E(Xt−k)

= µ
(3.1)

and variance,

var(Xt) = var(Xt−k)

= σ2

= γ(0)

(3.2)

are constant throughout time. Likewise, the covariance between any 2 observations
depends only on the time lag between them, (t, t-k) depends on amount k only. A se-
ries is 2nd order stationary if both the 1st and 2nd order moments do not depend on
time and both the covariance and correlation are functions of the time lag only. Test-
ing for stationary helps to find out if there is any correlation that needs to be dealt
with and determining which model best suits the data (Montgomery et al., 1990).

Different methods can be used to test for stationarity, for example, tests like the Aug-
mented Dickey-Fuller (ADF) test, Kwiatkowski Phillips Schmidt Shin (KPSS), plot-
ting an ACF, and a time series plot as well. Stationarity is primarily violated when
the mean of a series changes. Differencing the series accedes a stationary stochastic
process. Time series with a stochastic incline/trend have forecast intervals that grow
over time and their shock effects are permanent. Unit root tests work well when as-
sessing the presence of a stochastic trend in any observed series. A non stationary
series can be transformed to become stationary through different ways, for example,
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de-trending (using regression to the trend), taking logs (stabilize the variance of the
series), differencing (to stabilize the mean of the series by eliminating trend and sea-
sonality) and using moments (Clements et al., 2001).

3.2.6 Differencing

Differencing is a distinctive type of filtering used to remove trend from time series
data until stationarity is achieved. Suppose we have a stochastic procedure Xt. The
1st difference of Xt is designated as, equation∇Xt = Xt −Xt−1.

This means the second difference∇2Xt is defined as,

∇2Xt = ∇(∇Xt)

= ∇(Xt −Xt−1)

= (Xt −Xt−1)− (Xt−1 −Xt−2)

= Xt − 2Xt−1 +Xt−2

(3.3)

In general, the dth difference process∇dXt is defined as,

∇dXt = ∇d−1(∇(Xt))

= ∇d−1Xt −∇d−1Xd
t−1

(3.4)

A proper type of filtering used for removing trend is differencing a granted time se-
ries until it is stationary. The type of filtering is mainly used in Box-Jenkins process.
The 1st difference of a time series is the series of transformations from one duration
to another. If Yt denotes the value of the time series Y at duration t, then the 1st dif-
ference of Y at period t equals to Yt−Yt−1. If the 1st difference of Y is stationary and
also entirely random (not auto-correlated), then Y is described by a random walk
model (Shumway and Stoffer, 2010).

The random walk theory propose that stock price changes have the same distribu-
tion and are autonomous of each other, so the past trend of a stock price can not be
used to forecast its future movement. This is the idea that stocks take a random and
unpredictable path if the first difference of Y is stationary but not totally random.
Differencing is a type of transformation that accomplishes several things, making a
time series stationary. Stabilizing the mean of the time series. Stationarity is a very
useful statistical property, it is important to understand why. It means that the ef-
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fect of time is removed, and now you can reason about the statistical distribution
as you would with a standard probability distribution function. Differencing makes
the times series stationary which is required if we want to forecast for time periods
outside the range of data set (Chatfield, 2002).

3.2.7 The Autocovariance and Autocorrelation functions

To define a proper model for a given time series data, it is needful to carry out the
ACF and PACF analysis. These statistical measures contemplate how the observa-
tions in a time series are connected to each other. For modelling and forecasting
aim, it is frequently advantageous to plot the ACF and PACF against consecutive
time lags. These plots assist in defining the order of AR and MA terms. Beneath
we bestow their mathematical definitions: For a time series Xt(t) = 0, 1, 2 · · · , the
Autocovariance at lag k is specified as:

γ(k) = Cov(Xt, Xt+k)

= E[(Xt−µ)(Xt+k − µ)]
(3.5)

Covariance is an expectation of the product of two random variables minus the prod-
uct of their mean. Autocovariance is the covariance between a stochastic process at
different times. Autocorrelation is preferred to autocovariance when interpreting re-
sults because auto-covariance lies on the units of measurement of the variable under
study (Schefer and Young, 2009). Autocorrelation is usually measured on a scale of
-1 to +1.

In time series we are more concerned in how the current and past values can be
used to estimate future values. To be able to do this we need to understand the
relationship between the present value and the values in the past. The sample au-
tocorrelation coefficients are the correlations of sample data at different lags apart.
The ACF and PACF can be used to define whether the data is stationary or not, and
to discover the best model to fit to the data. When testing for stationarity , the ACF
plays a vital role. If a series is stationary, the ACF drops to zero relatively quicker
than that of a non-stationary series, which shows a slower decay and longer tails
(Vivanco, 2008). For model identification, the PACF is used to discover an autore-
gressive(AR) process, and the ACF is used to identify MA process.

If plotting a given data set shows a sharp cut of in the PACF and a slower decay
in the ACF, then we can deduce that the series is more of an AR process(vice versa).
The lag at which the PACF cuts off denotes the order of the AR process. On the other
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hand, if the ACF of a differenced series shows a serrated cut off and the autocorre-
lation value at the first lag is non negative, then we can conclude that the series has
a moving average (MA) element in it. The lag at which the ACF cuts off indicates
the number of MA provisions to be considered when building the model (Wang and
Jain, 2003; Wei, 1994).

For example, for AR(1) process, the ACF rejects in geometric progression from its
highest value at lag 1, while the PACF cuts off after lag 1. The contradictory pattern
applies to an MA(1) process, where the ACF elude off after lag 1 and the PACF drop
in geometric progression from its highest value at lag (Reza, 1961),

ρ(k) = Corr(Xt, Xt−k)

=
ρ(k)

ρ(0)

(3.6)

For a stationary process,
V ar(Xt) = V ar(Xt−k). (3.7)

ρ(k) = ρ(−k), ρ(0) = 1.

Another measure, known as the partial autocorrelation function (PACF) is used to
measure the correlation between an observation k period ago and the present obser-
vation, after controlling for observations at intermediate lags (i.e. at lags k less than
1). At lag 1, PACF(1) is similar as ACF(1).

Normally, the stochastic procedure governing a time series is not clear enough and
so it is not possible to define the actual or theoretical ACF and PACF values. These
values are to be figured from the training data, i.e. the known time series at hand.
The forecasted ACF and PACF values from the training data are respectively termed
as sample ACF and PACF. A PACF is another indicator of correlation. It measures
the relationship between observations Xt and Xt−k after removing the influences of
the other time lags. This means the first value of the PACF is identical to the first
value of the ACF because there is no lag whose effect should be removed. The ACF
and PACF can be used to define whether the data is stationary or not, and to distin-
guish the best model to the data. When testing for stationarity, the ACF plays a vital
role (Monsen and Van Horn, 2007). If a series is stationary, the ACF drops to zero
relatively quicker than that of a non-stationary series, which shows a slower decay
and longer tails.
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For model identification, the PACF is used to identify an AutoRegressive (AR) pro-
cess. If plotting a given data set shows a sharp cut off in the PACF and a slower
decay in the ACF, then we can conclude that the series is more of an AR process.
The lag at which the PACF slice off indicates the order of the AR process. On the
other hand, if the ACF of a differenced series shows a sharp cut off and the autocor-
relation value at the first lag is non negative, then we can conclude that the series has
a moving average (MA) element in it. The lag at which the ACF cut off indicates the
number of MA terms to be considered when building the model (Farooque, 2002).

For example, for an AR(1) process, the ACF drops in geometric progression from its
highest value at lag 1, while the PACF cuts off abruptly after lag 1 (Chramcov, 2011).
The coefficient of correlation between two values in a time series is designated as the
auto-correlation function (ACF), for example, the ACF for a time series Yt is given
by, Corr(Yt, Yt−k).

A lag 1 autocorrelation (i.e., k = 1) is the correlation between values that are one time
duration apart. More broadly, a lag k autocorrelation is the correlation between val-
ues that are k time periods apart. The ACF is used to measure the linear relationship
between an observation at time t and the observations at prior times.

In a plot of ACF versus the lag, if there is a large ACF values and a non-random
pattern, then likely the values are correlated. In a plot of PACF versus the lag, the
pattern will commonly appear random, but large PACF values at a given lag indi-
cate this value as a potential choice for the order of an autoregressive model. It is
considerable that the choice of the order makes sense (McDonald, 2009). For exam-
ple, assume you have blood pressure readings for every day over the past 2 years.
You may detect that an AR(1) or AR(2) model is appropriate for modelling blood
pressure.

However, the PACF may show a large partial autocorrelation value at a lag of 17,
but such a large order for an autoregressive model likely does not make sense. As
illustrated by Box and Jenkins, the sample ACF plot is profitable in determining the
type of model to a time series of length N. Since ACF is symmetrical about lag zero,
it is only demanded to plot the sample ACF for positive lags, from lag one onwards
to a maximum lag of about N/4. The sample PACF plot aids in distinguishing the
maximum order of an AR process. The procedure for calculating ACF and PACF for
ARMA models (Reinert, 2002).
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Table 3.1: Chramcov (2011) related the PACF and ACF functions to the MA and AR models.

AR(p) MA(q)

ACF Tails off Cuts off after lag q

PACF Cuts off after lag p Tails off

3.3 Analysis of the available cost electricity data

The time series plot in Figure 3.1 shows the daily electricity cost for South Africa
from 04 January 2012 to 03 January 2017. The data is collected from a confidential
source who prefers the data to remain private. This data originally contains no miss-
ing values which makes it not hard to fit ARIMA models directly without correcting
the missing values first.

Figure 3.1: The original time series plot of four variables data set before cleaning and taking
the seasonal difference.

Considering the time series plot in Figure 3.1, here we used R software to plot the
time series original graph for South Africa’s daily electricity cost data using transac-
tion cost, travel cost, travel time and travel distance variables. We managed to verify
and identify a seasonal pattern in the data at hand, concluding from the time series
plot. The data shows an unstable variance, simply meaning that the data is not sta-
tionary and can not carry on with forecasting process. Hence it is very essential and
vital to come up with some statistical methods and adjust it accordingly to achieve
stationarity.
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Chapter 4

Introduction to forecasting with
ARIMA models

The ARIMA process analyses and forecasts uniformly spaced univariate time series
data, transfer function data, and intervention data by using the AutoRegressive In-
tegrated Moving Average (ARIMA) or AutoRegressive Moving Average (ARMA)
model. An ARIMA model forecasts a value in a response time series as a linear com-
bination of its own past values, past errors, current and past values of other time
series.

4.1 ARIMA models

The word ARIMA stands for AutoRegressive(AR) Integrated(I) Moving Average(MA).
In this study, we shall tackle each element of this model individually as we build up
to its general purpose. ARIMA models are mainly used for forecasting data that is
originally non-stationary but it can be made stationary by differencing (Karamouz
et al., 2012; Nason, 2006).

4.2 The AR model

This kind of a model is in the similar form as the well known simple linear regression
model in which rt is the dependent variable and rt−1 is the explanatory variable. In
time series literature, the model is assigned to as an AutoRegressive(AR) model of
order 1 or an AR(1) model. This uncompounded model is also broadely used in
stochastic volatility modelling when rt is reinstated by its log volatility ( Nogales et
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al., 2003).

The AR(1) model has diverse properties similar to those of the isolated linear regres-
sion model. However, there are some important dissimilarities between the models.
Here it suffices to note that an AR(1) model denotes that, conditional on the past re-
turn rt−1, we have ductile model. A series Xt is an AutoRegressive process of order
p, denoted by AR(p), if it can be expressed in the form,

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−k + et (4.1)

In back shift operator notation, the model can be written as,

Xt(1− φ1B − φ2B2 − · · · − φpBp) = et (4.2)

Where,

• B is back shift operator.

• φ1, · · · , φp are parameters of the model at hand.

• et is normally distributed with mean 0 and a constant variance σ2e . This term
is said to be independent of all previous process values Xt−1, Xt−2, · · ·

An AutoRegressive model equation is similar to a multiple regression model with
the value of X at time t linearly depending on a union of its weighted p past val-
ues. The term AutoRegressive means that its a regression of the variable of interest
against its past values plus an error term et at time t. AR models are normally qual-
ified to stationary data (Hyndman and Athanasopoulos, 2014).

That is why it is always needful to check for stationarity of the data way before fitting
such models. In this model, it is assumed that the mean is E(Xt) = 0. However, a
non zero mean could be added to the model by reinstating Xt with Xt−µ , for all t
(MAHIEUA et al., 2007). This would not impact the attributes of the model. After
applying the back shift notation operator, Equation 4.2 can be used to yield the AR(p)
characteristic equation as,

φ(x) = 1− φ1x− φ2x2 − · · · − φpxp

= 0
(4.3)

It is important to note that an AR(p) process is stationary if the p roots of φ(x) each
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surpass 1 in absolute value (Cryer and Kellet, 2006). The autocovariance and auto-
correlation functions of an AR process can be derived using the Yule-Walker equa-
tions (Eshel, 2010). If we assume a stationary AR(p) process with zero means, multi-
plying both sides by Xt−k yields,

XtXt−k = φ1Xt−1Xt−k + φ2Xt−2Xt−k + · · ·+ φpXt−pXt−k + etXt−k (4.4)

Since we assumed zero means, it means the autocovariance of the process at lag k is
given by,

ρ(k) = V ar(XtXt−k)

= E(XtXt−k)− E(Xt)E(Xt−k)

= E(XtXt−k)

(4.5)

Taking expectations of Equation 4.4 gives,

E(XtXt−k) = E(φ1Xt−1Xt−k + φ2Xt−2Xt−k + · · ·+ φpXt−pXt−k + etXt−k) (4.6)

γ(k) = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p (4.7)

Dividing through by the process variance γ(0), we get,

ρ(k) = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p (4.8)

Equation 4.8 gives a set of Yule-Walker equations, for k > 0. For the very known val-
ues of φ1, φ2, · · · , φp, we can calculate the first lag p autocorrelations ρ1, ρ2, · · · , ρp
(Plasmans, 2006). Values of ρk, for k > p, can be prevailed by using the recursive
relation (Von Storch and Zwiers, 2001).

4.3 The MA model

In time series analysis, the Moving Average (MA) model is a familiar approach for
modelling univariate time series. The moving average model indicate that the out-
put variable depends on the current and numerous past values of a stochastic (im-
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perfectly predictable) term, together with the AutoRegressive (AR) model, the mov-
ing average model is a distinctive case and key element of the general ARMA and
ARIMA models of time series, which have a more intricated stochastic organization
(GHASEMI and SHAYEGHI, 2013).

Opposed to the AR model, the restricted MA model is always stationary. A series
with white noise process of mean 0 and variance σ2e is a moving average process of
order q, noted as MA(q), if it can be expressed as a weighted linear sum of the past
forecast errors.

Xt = et + θ1et−1 + θ2et−2 + · · ·+ θqet−q (4.9)

In back shift operator notation, the model can be written as,

Xt = et(1 + θ1B + θ2B
2 + · · ·+ θqB

q) (4.10)

Where,

• B is said to be the back shift operator notation.

• θ0, θ1, · · · , θq are the coefficients of the lagged error terms. θ0 is usually equated
to 1 (Broersen, 2006; Hipel and McLeod, 1994).

• et is normally distributed white noise with mean 0 and variance.

We can write the MA(1) (moving average of order one) and MA(q) (moving average
of order q) as:

Xt = eXt−1 + et (4.11)

Equation 4.11 is named as Moving Average (MA) model. Some authors note the
parameters of an MA process as negatives, in order to have attributes operators of
the same signs for AR and MA processes. However, this has no expressive change to
the interpretation of the model (Chatfield, 2002). The autocovariance functions of an
MA(q) model is expressed as γ(k) = Cov(Xt, Xt−k), where it becomes the variance
of the process if k = 0. Therefore, from the definition of the model,

γ(0) = σ2e(1 + θ21 + θ22 + · · ·+ θ2q) (4.12)

Generally, an MA(q) process is invertible if all roots of the MA(q) characteristic poly-
nomial, θx = 1+ θ1X + θ2X

2+ · · ·+ θqX
q, exceed 1 in absolute values, or lie outside

of the unit circle.
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4.4 The ARMA model

Aggregating both the AR(p) and MA(q) models yields rise to an AutoRegressive
Moving Average model (ARMA(p,q)) which is expressed as,

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + et + θ1et−1 + θ2et−2 + · · ·+ θqet−q (4.13)

Re-arranging the model gives,

Xt − φ1Xt−1 − φ2Xt−2 − · · · − φpXt−p = et + θ1et−1 + θ2et−2 + · · ·+ θqet−q (4.14)

Using the back shift operator,

Xt(1− φ1B − φ2B2 − · · · − φpBp) = et(1 + θ1B + θ2B
2 + · · ·+ θqB

q) (4.15)

This can be simplified to,
φ(B)Xt = θ(B)et (4.16)

where,
φ(B) = (1− φ1B − φ2B2 − · · · − φpBp); (4.17)

and,
θ(B) = (1 + θ1B + θ2B

2 + · · ·+ θqB
q) (4.18)

ARMA model supplies one of the canonical instruments in time series modelling. A
significant parametric family of stationary time series, the AutoRegressive moving
average or ARMA. For a big class of autocovariance functions, it is likely to get an
ARMA process Xt. Especially, for any positive integer K, there is an ARMA process
Xt such that γx(h) = γ(h) for h = 0, 1, · · · ,K. The family of ARMA processes plays a
big role in the modelling of time series data. The linear structure of ARMA processes
also direct to a substantial simple ARMA(p,q) process if,

• there is stationarity.

• It (the deviations Xt−E(Xt)) satisfies the linear difference equation in regres-
sion form.

Both the AR(p) and MA(q) are special cases for the ARMA model. An ARMA(p,0)
process is similar to an AR(p) process and an ARMA(0,q) process is similar to an
MA(q) process. If the data at hand is stationary, it is better modelled using an
ARMA(p,q) model rather than AR(p) or MA(q) models individually (Chin and Fan,
2005).
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This is mainly because an ARMA(p,q) in such a case uses rare parameter than the
individual models and bestow a better representation of the data. This is called the
Principle of Parsimony (Singh, 2002; Woodward et al.,2011). For ARMA(p,q) process
to be stationary, an absolute value of the roots of all the AR(p) characteristic polyno-
mials should be greater than 1.

For invertibility, the absolute values of the roots of all the MA(q) characteristic poly-
nomials should be greater than 1. For example, given a model in Equation 4.19,

Xt + 0.2Xt−1 − 0.48Xt−2 = Zt (4.19)

Since we can express the procedure as an AR process, it is invertible. For stationarity,
the polynomial,

1 + 0.2B − 0.48B2 = 0 (4.20)

must have the roots out of the unit circle. By using the quadratic equation we obtain
B=1.667 and B=-0.125, the two solutions are both out of the unit circle hence the
process is stationary.

4.5 The ARIMA model

The ARIMA process analyses and foretells adequately spaced univariate time se-
ries data, transfer function data, and intervention data by using the AutoRegressive
Integrated Moving Average (ARIMA) or AutoRegressive Moving Average (ARMA)
model (Chatfield, 1991).

One can neither apply the AR, MA, nor ARMA models straightly. The most suitable
method of getting stationarity when dealing with ARIMA models is through differ-
encing (Espinola, 2005).

Generally, the data for time series can be differenced many times(d) times, d =

1, 2, 3, · · · until it becomes stationary. The first difference Xt − Xt−1 can also be ex-
pressed using a back shift notation as (1−B)Xt. If the primary data series is differ-
enced d times before fitting ARMA(p,q) model, then the model for original undiffer-
enced series is an AutoRegressive Integrated Moving Average model (ARIMA(p,d,q)),
where d potray the number of times the data has been differenced (Janacek and
Swift, 1995). Taking first differences normally removes a linear deterministic trend
(Hendry, 1995).

There are three stages of ARIMA modelling. The analysis executed by PROC ARIMA
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4.5. The ARIMA model

is divided into three stages, coinciding with the stages described by Box and Jenkins
(1976).

• Identification stage: Identify statement is used to specify the response series
and discover candidate ARIMA models for it. The identify statement reads
time series that are used in the later statements, perhaps differencing them,
and calculate autocorrelations, inverse autocorrelations, partial autocorrela-
tions, and cross correlations (TIAO, 2015).

Stationarity tests can be done to define if differencing is essential. The analysis
of the identify statement output insinuate one or more ARIMA models that
could be fit.

• Estimation and Diagnostic Checking stage: Estimate statement is used to spec-
ify the ARIMA model to fit to the variable indicated in the previous identify
statement and to estimate the parameters of that model (WANG and CHE,
2010). The estimate statement also can exhibit diagnostic statistics to assist
you judge the adequacy of the model.

Significance tests for parameter estimate show whether some terms in the model
might be unnecessary. Goodness-of-fit statistics helps in assimilating this model
to other models. The Outlier statement supplies another profitable tool to
check whether the currently estimated model accounts for all the variation in
the series. If the diagnostic tests show any problematic areas with the model,
try another model and then repeat the estimation and diagnostic checking
stage (Systematics, 1994).

• Forecasting stage: Forecast statement is used to forecast future values of the
time series and to propagate confidence intervals for these forecasts from the
ARIMA model given by the preceding estimate statement. In Box-Jenkins
approach to ARIMA modelling, the sample autocorrelation function, inverse
autocorrelation function, and partial autocorrelation function are assimilated
with the theoretical correlation functions anticipated from different kinds of
ARMA models (Khandakar and Hyndman, 2008).

The matching of theoretical autocorrelation functions of different ARMA mod-
els to the sample autocorrelation functions calculated from the response series
is the main center of the identification stage of Box-Jenkins modelling. Most
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4.6. The SARIMA model

textbooks on time series analysis, such as Chatfield (2000), do discuss the the-
oretical autocorrelation functions for different types of ARMA models.

Differencing deals with the observed values at different times, not the error terms.
Therefore, in an ARMA model, adding a differencing term changes only the AR side,
not the MA side. Differencing d times changes and results to,

Xt(1− φ1B − φ2B2 − · · · − φpBp)(1−B)d = et(1 + θ1B + θ2B
2 + · · ·+ θqB

q) (4.21)

and can be simplified to,

φ(B)(1−B)dXt = θ(B)et (4.22)

Equation 4.22 is called an ARIMA model with the term φB corresponding to the
AR characteristic polynomial of order p, (1 − B)d for the integrated part of order
d, and θB for the MA characteristic polynomial of order q. All models discussed in
section above are a special type of ARIMA models. For example, the white noise
ARIMA(0,0,0), the random walk ARIMA(0,1,0), an autoregression ARIMA(p,0,0),
moving average ARIMA(0,0,q) and an autoregressive moving average ARIMA(p,0,q).

4.6 The SARIMA model

ARIMA models can also be used to model seasonal data. Box and Jenkins have
generalized this model to deal with seasonality. ARIMA models that incorporate
seasonal patterns occurring over time are called Seasonal Autoregressive Integrated
Moving Average models (SARIMA). In this model seasonal differencing of appropri-
ate order is used to remove non stationarity from the series. A first order seasonal
difference is the difference between an observation and the corresponding observa-
tion from the previous year and is calculated as Zt = Yt − Yt−s (Ghysels et al., 2006).

Basically, for monthly time series s=12 and for quarterly time series s=4. Seasonality
in a time series is a regular pattern of changes that repeats over S time periods, where
S defines the number of time periods until the pattern repeats again. ARIMA models
can also be used to model seasonal data. ARIMA models that incorporate seasonal
patterns occurring over time are called Seasonal Autoregressive Integrated Moving
Average models (SARIMA). With seasonal data, dependence with the past occurs
most prominently at multiples of an underlying seasonal lag, denoted by s (Ghysels
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etal., 2006). SARIMA models include an additional seasonal term as indicated,

ARIMA(p, d, q)(P,D,Q)s (4.23)

where s denotes the number of periods per season. The upper case notation in equa-
tion above is for the seasonal part and the lower case notation for the non seasonal
parts of the model. The seasonal part of the model consists of terms that are very
similar to the non seasonal components of the model, but they involve back shifts
of the seasonal period. For example, if a seasonal component is added to equation
above, the resultant model will be:

φB(B
s)(1−B)d(1−Bs)DXt = θB(B

s)et (4.24)

According to Chatfield (2002), the most common SARIMA model for monthly data
is the SARIMA(0, 1, 1)(0, 1, 1)12 it is defined as,

(1−B)(1−B12)Xt = (1 + θB)(1 + θ12B )et (4.25)

4.7 Model specification

Statistical model structure has three main stages, namely:

• Model identification - The goal is to detect seasonality, if it exists, and to iden-
tify the order for the seasonal autoregressive and seasonal moving average
terms. For example, for monthly data we would include either a seasonal AR
12 term or a seasonal MA 12 term.

• Model fitting - choosing the statistical model that predict values as close as
possible to the ones observed in the whole eskom data. While doing a statisti-
cal analysis, it is very important to make sure about the goodness of fit of the
model used.

• Model verification - is the task of confirming that the outputs of a statistical
model are acceptable with respect to the real data generating process

Bad selection of orders p, d, and q results to bad models, which lead to bad forecasts
of future values (Okyere and Nanga, 2014). It is therefore essential to make sure that
the choices made are accordant with the structure of the observed data.

For any series of the data, a clear indicant of non-stationarity is that the ACF demon-
strate a slow deterioration across lags. This usually occurs because in a non-stationary
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4.7. Model specification

process, the series hangs together and exhibit trends. If the data is non-stationary
seasonally, then the ACF displays clusters of either positive and/or negative auto-
correlation (Ord and Fildes, 2012). However, there are other common methods of
determining non-stationarity, for example, the ADF and/or KPSS test and using a
time series plot (Ord and Fildes, 2012).

When there is a definite linear trend in the data and ACF for the series decline very
gradually, it is usually advisable to take first differences (Ord and Fildes, 2012). If the
ACF of first differenced data represents that of a stationary ARMA process (declines
quickly), then the value d in ARIMA(p,d,q) is taken to be 1. The ACF and PACF of
first differenced data can then be used to discover plausible p and q values. Other-
wise, second differences are taken and d = 2 is used instead (WANG JUN et al., 2010).
Then the plotted ACF and PACF at that point is used to discover plausible values of
p and q. The order of differencing can take on any value until stationarity is attained.

Once the model order has been identified, then all parameters in the model can be
approximated (SHEIKH-EL-ESLAMI, 2015). This can be done using different soft-
ware like R-Studio which estimates the ARIMA model by using MLE (Hevia, 2008).
This method finds the values of parameters which maximize the probability of get-
ting the data that has been observed.
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Chapter 5

Applying univariate ARIMA
models to electricity cost data

Here in this chapter, we fit an ARIMA model to the available time series data.

We want to fit an ARIMA model to South Africa’s daily electricity data. We were
able to identify a seasonal pattern, with no trend, from the time series graphical
representation in Figure 3.1. The data shows an unstable variance over time. It is
necessary to adjust it accordingly to gain stationarity. We plot the ACF and PACF to
check for stationarity because visual inspection of the time series plot is some times
misleading. From Figure 5.1 and Figure 5.2, the data is not stationary. The ACF de-
cays off at a very slow rate.

Figure 5.1: The ACF of a non stationary data set.
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Figure 5.2: The PACF of a non stationary data set.

5.1 Testing for stationarity

5.1.1 Test for stationarity in the data using KPSS test

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test figures out if time series is sta-
tionary or non-stationary around the mean or linear trend. A stationary time series
is the one where statistical attributes like mean and variance are constant over time
(Shin and Schmidt, 1992).

• Null hypothesis: The data is stationary.

• Alternative hypothesis: The data is not stationary.

The KPSS test is based on linear regression, with regression equation:

Xt = rt + βt + εt (5.1)

We use a significance level value of 5% to make decisions. That means a p-value that
is less than 0.05 defines that an advance differencing is needed. A disadvantage of
KPSS test is that it has got a high rate of type I error(where it tends to reject the null
hypothesis more frequently). If there are attempts made to manage these errors(by
having high p-values), then that impact negatively the power of the test. To deal
with potential for high type I error you can aggregate KPSS with ADF test. If the
results from both tests propose that the time series is stationary, then it is stationary
(Kwiatkowski et al., 1992).
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5.1.2 Test for stationarity in the data using ADF

The original Dickey Fuller test, developed by Dickey and Fuller (1979), is used to
test whether a unit root is present in an autoregressive model. The condition for
stationarity states that for an AR model to be stationary, φ < 1. The case where
φ = 1 corresponds to the random walk which is not stationary. In this test, the null
hypothesis of the variable containing a unit root is tested against the alternative that
the variable was generated by a stationary process. The general idea is to set up an
AR model for the observations Xt and test if α = 1.

Consider the AR(1) model,
Xt = αXt−1 + et. (5.2)

Augmented Dickey Fuller (ADF) test, tests big and more complicated sets of time
series models by getting rid of all the autocorrelation in the time series. The unit
root or ADF null hypothesis against the stationary alternative corresponds to:

• Null hypothesis: H0 : φ ≥ 1

• Alternative hypothesis: H1 : φ < 1

Again here we use a significance level of 5% to make a decision. That means a p-
value that is less than 0.05 defines that differencing is needed. The disadvantage
of using the ADF test is that the normal test significance level value (usually 5%) is
not reliable/trustworthy when the error terms εt are autocorrelated. The bigger the
autocorrelation of εt, the more distorted the significance of the test becomes. The
main usual assumption in lot of time series data is that the data is always stationary
(Jürgen et al., 2011).

In order to gain stationarity, different transformations can be used. A log transfor-
mation is commonly used in electricity studies to correct for an increasing variance,
the log transformation alone is not effective enough to attain stationarity. Due to the
seasonality component exhibited, a seasonal difference is a better way of making the
data stationary. The tbats function in R shows us the presence of annual seasonality
in the data, as shown in Figure 5.3.
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5.1. Testing for stationarity

Figure 5.3: Annual seasonality in South Africa data.

After identifying that the data at hand is not stationary, a seasonal difference is ap-
plied to the data in R software and produced the results as shown in Figure 5.4.

Figure 5.4: Time series graphical representation of the electricity data set after cleaning and
the seasonal differencing.

At the beginning, Figure 5.4 shows stationarity in the data set used. After that we
run a KPSS test, which returns a p-value of 0.3. Since the returned p-value is greater
than significance level value of 0.05, the conclusion is that we fail to reject the null
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5.2. Model order selection

hypothesis and deduce that the data is now stationary, which allows us to proceed
with the forecasting process.

Even though the new plotted time series dataset shows a bit of pattern of seasonality
around the end, it is not clear whether the variance of the data is stationary or non
stationary through time. At this point, there is no certainty to perform transforma-
tions. However, a strong analysis of this data will be studied in the next chapters to
prove the stationarity of the data and how to attain it in case the data is not actually
stationary.

5.2 Model order selection

Since the data is seasonally differenced and is now stationary, we plot the graphs of
ACF and PACF with seasonal differenced data in order to select the the correct p and
q values to use when constructing the model. However, since the data shows evi-
dence of seasonality, we can use the auto.arima function in R-studio, together with
different values of D (the seasonal difference), to develop different possible models
from which the best is chosen using accuracy measurements.

Figure 5.5: ACF and PACF showing stationarity of the electricity data set.

Here, we do not choose the best model depending on its AIC, AICc, or BIC be-
cause doing so requires that all models have same orders(d) of differencing, which is
not the case for the seasonal difference used (Hyndman and Athanasopoulos, 2014).
Here, we compare 2 models with D = 1,2 because, it is not common to difference
data more than twice before stationarity is achieved. The models are shown in Table
5.1:
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5.2. Model order selection

Table 5.1: Models from the auto.arima function using the electricity data.

ARIMA(1,0,1)(0,1,0)[365] ARIMA(1,0,1)(0,2,0)[365]

RMSE 635400.5 8845422

MAPE 6.78943 6.94378

Then by using the two main accuracy measures (mainly RMSE and MAPE) as shown
in Table 5.1, the very best model for the available data is said to be ARIMA(1,0,1)(0,1,0).
We chose it because it has the most lowest RMSE and MAPE. Then the coefficients
of the model are shown in Table 5.2:

Table 5.2: The Coefficients of the ARIMA(1,0,1)(0,1,0)[365] model.

ar1 ma1

Parameters 0.7301 0.6639

Standard error 0.0173 0.3278

P-values 0.01 0.01

Hence, since the p-values are less than the significance level(0.05), the conclusion is
that the parameter estimates are statistically significant.

5.2.1 Forecasting data with seasonal ARIMA(1,0,1)(0,1,0)[365] model

After figuring out the most accurate model to use for forecasting, we then use the
it to make the process. Using the forecast package in R, we develop both point and
interval forecasts for 95% confidence intervals.
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5.2. Model order selection

Table 5.3: Observation forecasting.

Obs Forecast (Lower Confidence Interval) - (Higher Confidence Interval)

1440 96.2948 (-367.6249) - (560.2145)

1441 96.3488 (-357.8031) - (550.5007)

1442 96.4027 (-347.7666) - (540.5720)

1443 96.4567 (-337.5005) - (530.4139)

1444 96.5107 (-326.9882) - (520.0095)

1445 96.5646 (-316.2110) - (509.3402)

1446 96.6186 (-305.1476) - (498.3849)

1447 96.6726 (-293.7740) - (487.1192)

1448 96.7266 (-282.0623) - (475.5154)

1449 96.7805 (-269.9802) - (463.5413)

1450 96.8345 (-257.4900) - (451.1590)

1451 96.8885 (-244.5472) - (438.3241)

1452 96.9424 (-231.0983) - (424.9832)

1453 96.9964 (-217.0787) - (411.0715)

1454 97.0504 (-202.4085) - (396.5093)

1455 97.1044 (-186.9873) - (381.1960)

1456 97.1583 (-170.6859) - (365.0025)

1457 97.2123 (-153.3330) - (347.7576)

1458 97.2663 (-134.6936) - (329.2261)

1459 97.3202 (-114.4292) - (309.0696)

1460 97.3742 (-92.0202) - (286.7686)

1461 97.4282 (-66.5922) - (261.4486)

1462 97.4821 (-36.4399) - (231.4042)

1463 97.5361 (2.8389) - (192.2333)

By looking at the forecast Table 5.3 for randomly chosen observations, we expect an
increase in electricity cost in South Africa for the next few coming years, even Figure
5.6 implies the increase in electricity cost, hence great measures should be taken.
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Figure 5.6: Point forecasts shown by the extending blue line.

5.3 Diagnosis of seasonal ARIMA(1,0,1)(0,1,0)[365]

It is advisable to investigate whether the forecast errors for an ARIMA model are
homoskedastic, normally distributed, and if there are any correlations between the
successive errors. This can be done by plotting down the ACF of the residuals, and
doing a portmanteau test for the residuals using the Ljung-Box test. If residuals do
not look like white noise, it means that the model can be modified to improve the
forecasts. Once the residuals look exactly like the white noise, the model can then be
considered effective and used for forecasting.

5.3.1 Autocorrelation

Ljung Box test developed by Ljung and Box (1978) can be used to check for any evi-
dence of autocorrelation. The test is usually applied to the residuals of a time series
after fitting ARIMA model, not the original data, and it tests all autocorrelations of
the residuals (Arranz, 2005). In this test, the null hypothesis (H0) of zero autocorre-
lation is tested against an alternative (H1) of autocorrelation.
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A conclusion can also be drawn using the p-value, and this is the considered op-
tion in this research. We can use the Ljung Box Statistic test in R to test the same
hypotheses as theoretically suggested. The null hypothesis of randomness or no
autocorrelation is tested against the alternative hypothesis of non randomness or
autocorrelation. We test lags from 6 to 24 in intervals of 6. According to the test, all
lag returns a p-value that is less than 0.05 as shown in Table 5.4. Meaningly we reject
the null hypothesis and deduce that, the residuals are not random, meaning there is
autocorrelation in the residuals of the chosen ARIMA model.

Table 5.4: Ljung Box results for ARIMA(1,0,1)(0,1,0)[365] model residuals.

Lags Test Statistics(Chi-Square) P-Values Autocorrelation

Lag 6 306.06 0.0086 0.015

Lag 12 553.16 0.0031 0.306

Lag 18 693.34 0.0049 -0.021

Lag 24 1371.31 0.0020 -0.378

Graphically, Figure 5.11 displays the ACF of the residuals, with significant spikes in
most lags. Hence autocorrelated residuals of an ARIMA(1,0,1)(0,1,0)[365] model.

Figure 5.7: The ACF residuals.

Graphically, for each of the four variables we display the figures showing the ACF
of the residuals, with significant spikes in most lags. Hence autocorrelated residuals
of the ARIMA(1,0,1)(0,1,0)[365] model.
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Figure 5.8: ACF residuals for transactional cost.

Figure 5.9: ACF residuals for travel cost.
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Figure 5.10: ACF residuals for travel time.

Figure 5.11: ACF residuals for total travel distance(km).
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5.3.2 Normality data test

By using the Jarque-Bera (JB) test in R, a p-value of 0.0013 is calculated, which is less
than 0.05 significance level. Hence we reject HO , and conclude that the residuals
have a non normal distribution.

The histograms and Q-Q plots for four variables in figures below shows the residu-
als from out-of-sample forecasts. The histograms also shows that the residuals have
flatter tails and a higher kurtosis than a normal data set. Therefore, we confirm that
residuals are not normally distributed. They neither have a constant variance nor 0
mean.

The normal Q-Q plot in figures also confirms the non normality of residuals.

Figure 5.12: Histogram and Q-Q graphical representation of residuals for transactional cost
variable.
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Figure 5.13: Histogram and Q-Q graphical representation of residuals for travel cost vari-
able.

Figure 5.14: Histogram and Q-Q graphical representation of residuals for travel time vari-
able.
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Figure 5.15: Histogram and Q-Q graphical representation of residuals for total travel dis-
tance(km) variable.

5.3.3 Conclusion

ARIMA models are capable of making predictions using time series data with any
form of a pattern and with autocorrelations, that is why we are going to use them.
We have statistically tested and validated that residuals in the fitted ARIMA model
are correlated, and are not normally distributed. Therefore, ARIMA(1,0,1)(0,1,0)[365]
was chosen and can be improved to produce better forecasts. Similar to other fore-
casting models, ARIMA models are limited somehow on accuracy of predictions.
Taking into consideration the change in variance of the data at hand, the forecasts
provided by an ARIMA model can be improved in various ways. This is called
volatility testing and various models have been made over the past years to take
volatility into consideration while forecasting.

The univariate ARIMA model is good but not adequate as this is a multivariate
electricity data. Hence, multivariate approach will be used for further analysis.
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Chapter 6

Modelling variations in cost of
attending to electrical faults using
volatility forecasting models

Here we study some of the statistical methods for analysing and modelling volatil-
ity in any given data set, with specific emphasis on electricity cost data. The mod-
els to be studied are called conditional heteroscedastic models. Since our emphasis
is on multivariate models, we shall study the Multivariate AutoRegressive Condi-
tional Heteroscedastic (ARCH) model developed by Engle (1982) and the General-
ized ARCH (GARCH) model developed by Bollerslev (1986) but first starting with
the univariate part for our analysis.

6.1 The importance of the chapter

The purpose of this part of the study is to study some of the volatility forecasting
models that are used in the analysis of multivariate time series data but we start
with univariate and to use these processes to model volatility in the residuals of
electricity cost data for South Africa. This helps improve the level of accuracy of the
forecasts.

The specific objectives are to:

• Discover the best fitting model for the electricity cost data available.

• Assess contribution of these models to understanding of volatility in electricity
cost.
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• Examine and compare the ARCH model and its extensions with ARIMA mod-
els, both theoretically and practically.

To achieve these objectives, this chapter will be organized as follows, meaning and
more understanding of volatility, development, then extend to multivariate ARCH
and GARCH models, model specification, application to electricity cost data and
lastly the conclusion.

6.2 The definition of volatility

Volatility is basically a statistical measure of the dispersion of returns for a given
security. Volatility can be measured by using the standard deviation or variance
between returns from that same security. Ordinarily, the higher the volatility, the
riskier the security. Volatility is actually the amount of uncertainty or risk about the
size of changes in the value of a security. It is also defined as level of uncertainty
about changes in the value of a given variable (Islam et al., 2013).

A higher volatility means that a security’s value can possibly be spread out over a
larger range of values. A lower volatility defines that a security’s value does not
oscillate dramatically, but changes in value at a steady pace over a duration of time.
Modelling volatility in electricity cost is very vital because many factors affecting the
cost of electricity change in very short time intervals (Patton and Engle, 2001).

Volatility modelling improves the accuracy of forecasts by giving better variance es-
timates which can be used to compute more reliable prediction intervals (Tsay,2005).
It also improves the efficiency in parameter estimation, especially when we deal
with time series data. With electricity cost, the higher the volatility, the more com-
plicated it gets to forecast the cost accurately because the values are widely spread
out. Therefore, complex forecasting techniques are employed in such cases in order
to accommodate all the values (Dralle, 2011).

6.3 The ARCH model

In 1982, Robert Engle created the AutoRegressive Conditional Heteroskedasticity
(ARCH) models to model the time changing volatility often observed in economical
time series data. These models are useful when the aim of the study is to analyse
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and forecast volatility.

This part of the study gives the motivation behind the simplest GARCH model and
demonstrate its helpfulness in examining portfolio risk. ARCH models assume that
the variance of the current error term to be a function of the actual sizes of the pre-
vious time periods error terms, often the variance is related to the squares of the
previous innovations (Diebold and Nerlove, 1989). This was the first and simplest
model to provide a framework for volatility modelling. The acronym ARCH stands
for AutoRegressive Conditional Heteroscedasticity. The AR part comes from the fact
that this model is a type of autoregressive model.

Heteroscedasticity means non constant variance. However, with an ARCH model,
it’s not the variance that changes with time, rather, the conditional variance (Hassan
and Malik, 2007). It represents the uncertainty about the next periods observation
given all the information currently available. ARCH models are usually employed
to data that assumes an unstable variance in the error term at any given point in the
series ( Engle, 1992). ARCH models assume that the variance of the current error
term is a function of the previous time periods error terms (Perrelli, 2001). Eberly
College Website recommend the possibility of using an ARCH model for any series
that has changing variance, for example, residuals after fitting the ARIMA model to
the data.

Yt follows an ARCH process if,
Yt = σtεt (6.1)

where σt is the the local conditional standard deviation of the process and is not di-
rectly observable (Tsay, 2005). It can be calculated from the conditional variance σ2t
which is connected to squares of the previous error terms, depending on the order
of the process.

6.3.1 The ARCH(1)

An ARCH(1) is the simplest version of ARCH models. The number 1 in the brack-
ets shows that it is of order 1. In ARCH(1) model, the conditional variance σ2t is
calculated as,

σ2t = α0 + α1y
2
t−1 (6.2)

where α0 and α1 are parameters, carefully chosen in order to avoid a negative condi-
tional variance. That is, for positive variance, the conditions that α0 > 0 and α1 > 0
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are assumed, and α1 < 1 is assumed for stationarity (Chatfield, 2002). It is clear from
Equation 6.2 that variance at time t is connected to the value of the series at time t-1.
Therefore, a big past residual implies a big conditional variance which in turn gives
a large current residual Yt, in absolute terms.

That is why it is common to expect large residuals to be followed by other large resid-
uals and the same applies to smaller residuals (Talke, 2003). Due to the dependence
of the conditional variance on past series values, the process Yt is not independent.
Substituting the Equation 6.2 gives an ARCH(1) model, which is represented as,

Yt = εt

√
α0 + α1y2t−1 (6.3)

where Yt−1 defines the observed value of the derived series at time t-1.

6.4 Testing for ARCH effect

The history of ARCH models is indeed a very short one. For it was introduced by
Robert Engle years ago. Ever since the development of Autoregressive Conditional
Heteroscedasticity (ARCH) model Engle (1982), testing for the presence of ARCH
has become a routine diagnostic.

To test for ARCH effects in ARIMA residuals, one can use the McLeod-Li test. This
test was developed by McLeod and Li (1983) who proposed a formal test for ARCH
effect based on the Ljung-Box test. The test looks at the autocorrelation function of
the squares of the residuals and tests whether the first chosen, say L, autocorrelations
for the squared residuals are collectively small in magnitude. The Ljung-Box Q-
statistic of McLeod-Li test is given by:

Q = T (T + 2)

L∑
k=1

(T − k)−1r2k, (6.4)

where in this case rk is the sample autocorrelation of squared residual series at lag
k. The statistic Q is used to test the null hypothesis of no ARCH effect in the data
against the alternative hypothesis of the presence of ARCH effect.

The test statistic is asymptotically χ2(L) distributed with L degrees of freedom (Janacek
et al, 2000; Wei, 2007). However, we are not sure if the residuals are identically in-
dependently distributed through time. We use visual inspection of the time series
plot of residuals and find tendency of large (small) absolute values of the residual
process being followed by other large (small) absolute values, which is a common
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behaviour of ARCH processes. This is evidence of the absence of ARCH effects.

In their work, Wang et al. (2005) suggested the use of the ACF of squared residuals
in identifying dependency in the series. Therefore, the next step is to plot the ACF of
squared residuals. If there are no significant spikes all through the lags that are con-
sidered, we conclude that there is no evidence of dependency in the residuals. This
means that the variance of residual series is not conditional on its history. Therefore,
the residual series does not exhibit an ARCH effect.

6.4.1 Forecasting electricity cost with ARCH(1) model

The ARCH(1) model can be extended to include many parameters. This means the
conditional variance will depend on observations from q previous times, hence the
term ARCH(q). In this case,

σ2t = V ar(Yt, Yt−1, · · · , Yt−p)

= α0 + α1Y
2
t−1 + · · ·+ αqY

2
t−1

(6.5)

where the restrictions α0 > 0 and αi >= 0, i = 1, 2, · · · , q for positive variance still
hold like in ARCH(1). The properties of an ARCH(q) process are similar to those
of an ARCH(1) process. The mean is still 0 and the variance takes into considera-
tion the other parameters introduced in the model. ARCH models are suitably used
when the change in variance takes short intervals. They can also be used for grad-
ual changes over time, but, gradual increasing variance connected to a moderately
increasing mean can be handled best when using transformation methods (Eberly
College Website, 2015). Some disadvantages of using ARCH Models include (Tsay,
2005):

• The model assumes the same effect on volatility from both positive and nega-
tive errors, since it uses squares of previous errors. However, this is not correct,
for instance, from financial point of view, reality shows that the price of a fi-
nancial asset accord differently to positive and negative shocks.

• ARCH models do not provide fresh ideas for understanding the source of vari-
ations of any given time series. They only help us understand the behaviour
of the conditional variance (Kearney and And Patton, 2000).
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• ARCH models are credible to over predict the volatility since they respond
slowly to large isolated errors to the new developed series.

When we forecast with volatility models, we mostly consider the variance of the
data. Assume a series YT = y1, · · · , yT , the forecast yT (l) is the minimum square
error predictor and it minimises the expression E(yT+l − f(y))2 among all functions
of observations [y, f(y)] (Talke, 2003). When dealing with time series data, yT (l) is
calculated depending on observed data as,

yT (l) = E(yT+l|YT )

= E(σT+lεT+l|YT )

= σT+lE(εT+l|YT )

= 0

(6.6)

where,

yt = σtεt (6.7)

Shephard (1996) suggested the use of squares of the series to make more meaningful
forecasts for an ARCH model. They calculated yT (l) using,

y2T (l) = E(y2T+l|YT )

= E(σ2T+lε
2
T+l|YT )

= σ2T+l

= α̂0 + α̂1E(y2T )

(6.8)

where,

E[ε2T+l] (6.9)

At time T, yT is already observed, therefore its expectation takes the real observed
value. The parameter α̂0 and α̂1 are the conditional maximum likelihood estimates.
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y2T (1) = α̂0 + α̂1y
2
T

= σ2T (l)

= E(σ2T+l|yT )

(6.10)

Say l = 2, then the forecast is given as,

y2T (l) = E(y2T+2|YT )

= E(α̂0 + α̂1y
2
T+1|YT )

= α̂0 + α̂1E(y2T+1|YT )

= α̂0 + α̂1(α̂0 + α̂1y
2
T )

= α̂0 + α̂1σ
2
T (1)

(6.11)

6.5 The GARCH model

Due to the restrictions presented by the ARCH models, a better model was proposed
by Bollerslev in 1986 (Bollerslev, 1986) to solve the problem of requiring many pa-
rameter to adequately describe any given data while using an ARCH model. It is
said to be called the Generalised Auto Regressive Conditional Heteroskedasticity
(GARCH) model. GARCH models allows the conditional variance σ2t to depend on
both previous conditional variances σ2t−1 and previous squared values of the series
Y 2
t−1 (Dralle, 2011).

Using GARCH models to control the problem of heteroskedasticity helps to obtain
valid standard errors, which can be used to evaluate the chosen model and also con-
struct forecasts with correct prediction intervals (Bollerslev, 1996). GARCH models
fit any data as well as any high order ARCH model, but are more advantageous be-
cause they hold the condition of parsimony. The idea behind a GARCH model is
same to that behind ARMA model (Gaston, 2016). A high order AR or MA model
may frequently be approximated by a mixed ARMA model, with fewer parameters
(Chatfield, 2000). Just like an ARCH process, a GARCH process is where εt is still
assumed to be a pattern of iid random variables with mean 0 and variance 1 (Boller-
slev, 1996). σ2t is a function of previous conditional variances and previous observed
values of the series. However, it specifically depends on the order of the model.
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6.5.1 GARCH(1,1)

A GARCH(1,1) procedure is simply a prolongation of an ARCH(1) process. In this
specification, the current conditional variance σ2t is expected to be an average of a
past derived series and a past conditional variance, plus a constant,

σ2t t = α0 + α1Y
2
t−1 + β1σ

2
t−1 (6.12)

The assumptions for stationarity and positive variance still hold like for an ARCH
process, with the inclusion of the coefficient of the past conditional variance, β1 (Gao,
2007). This can be explained by expansion of the model in Equation 6.12,

σ2t = α0 + α1y
2
t−1 + β1(α0 + α1y

2
t−2 + β1σ

2
t−2)

= α0 + β1α0 + α1y
2
t−1 + β1α1y

2
t−2 + β21σ

2
t−2.

(6.13)

The expansion for the conditional variance can go on until infinity. That is a not so
desirable situation, especially when applying the models to practical data.

6.5.2 GARCH(p,q)

A GARCH model of order (p,q) assumes the conditional variance rely on the squares
of the last p-values of the series and on the last q-values of the conditional vari-
ance. The properties and applications of this model are not different from those of a
GARCH(1,1) model, however, it is very rare to require the use of a GARCH model of
order higher than (1,1) (Engle and Sheppard, 2001). If such a model is fitted to data
and the stationarity condition is not satisfied, squared observations can be made sta-
tionary after taking the first differences.

This results into the Integrated GARCH (IGARCH) model. Other prolongations of
the GARCH model involve Quadratic GARCH (QGARCH), which allows for nega-
tive shocks to have more influence on the conditional variance than positive shocks,
and exponential GARCH (EGARCH) which allows an asymmetric response by mod-
elling log σ2t , rather than σ2t (Bauwens et al., 2006).

6.5.3 Model specification

Time series graphical representation of the data set is the very best identification
tool that may be used. It is commomly easy to spot periods of increased variation
throughout the series. It is also helpful to study the ACF and PACF of both Yt and
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Y 2
t . For example, if Yt appears to be white noise and the PACF of the Y 2

t suggests
AR(1), then ARCH(1) model for the variance is proposed (Shephard, 1996). In prac-
tice, it is advisable to exemplify with various ARCH and GARCH structures after
realising the importance in the time series plot of the series (Eberly College Website,
2015).

Discovering a correct ARCH or GARCH model is not as easy as dealing with linear
models, which partially describes why many analysts assume GARCH(1,1) to be the
standard model (Chatfield, 2002). A series with GARCH(1,1) variances may look
like uncorrelated white noise if 2nd order attributes alone are examined, and so non-
linearity has to be evaluated by pondering the properties of higher order moments
(as for other non-linear models). If Yt is GARCH(1,1), then it can be shown that
Y 2
t has the same autocorrelation structure as an ARMA(1,1) process. In their study,

Garcia et al. (2005) propose a general scheme for obtaining a desired and appropriate
GARCH model as follows :

• Models are formulated assuming some certain hypotheses. In this step, a gen-
eral GARCH formulation is appointed to model the available data. This se-
lection is carried out by inspection of the main characteristics of the series.
For example, in most of the competitive electricity markets, the data usually
exhibits high frequency, non constant mean and variance, and multiple sea-
sonality. These factors are among the main ones applied when selecting the
GARCH model.

• A model is discovered for the observed data. A trial model must be distin-
guished for the available data, as seen in the first step. In the very first trial,
the observation of the ACF and PACF graphs of the data can help to make this
selection. In successive trials, the same observation of the residuals obtained
can polish the structure of the functions in the model.

• The model parameters are calculated. After the functions of the model have
been specified, the parameters of these functions must be figured. Good es-
timators of the parameters may be found by maximizing the likelihood with
respect to the parameters. Any Statistical software system can be used to esti-
mate the parameters of the model in the previous step.

• The model can now be used to forecast future values of the data.
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6.5.4 Remarks

In this chapter we studied statistical methods for forecasting, analysing and model-
ing volatility in a given data set, specifically on electricity cost data. These models
are called conditional heteroscedastic models. Looking at the theory for forecasting
electricity cost with ARCH and GARCH models. The next chapter is all about appli-
cation of ARCH and GARCH effect models to Arima residuals.
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Chapter 7

Applying ARCH and GARCH
models to ARIMA residual for
forecasting electricity cost

Here, we use the residuals from an ARIMA(1,0,1)(0,1,0)[365] model for South Africa
respectively. We test for the ARCH influence in the data set. We need to test whether
these residuals display a change in variance before applying volatility models.

7.1 ARCH effect in ARIMA(1,0,1)(0,1,0)[365] model’s residu-
als

To test for ARCH effects in ARIMA residuals, one can use the McLeod-Li test. This
test was developed by McLeod and Li (1983) who suggested a formal test for ARCH
effect based on the Ljung-Box test. The test checks at the autocorrelation function
of the squares of the residuals and tests whether the first chosen, say L, autocorrela-
tions for the squared residuals are small in magnitude.
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7.1. ARCH effect in ARIMA(1,0,1)(0,1,0)[365] model’s residuals

Figure 7.1: Time series graphical representation of residuals.

By visual examination of the time series graph of residuals in the Figure 7.1, there
exists a tendency of large and small absolute values of the residual process being
followed by other large and small absolute values. This is evidence of an ARCH pro-
cesses. To certainly confirm presence of ARCH effects, we plot the ACF of squared
residuals. There are many significant spikes, indicating the existence of dependency
in the residuals. This means the variance of residuals is conditional on it’s own his-
tory.
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7.1. ARCH effect in ARIMA(1,0,1)(0,1,0)[365] model’s residuals

Figure 7.2: ACF of squared residuals.

Using the formal ARCH test in R, a p-value of 0.00014 is returned which is less than
0.05. Therefore, we reject H0 and deduce that there is an ARCH effect in the squared
residuals of the ARIMA(1,0,1)(0,1,0)[365] model. Thus, the heteroskedasticity of er-
rors needs to be further analysed using a volatility model such as GARCH where
the variances are modelled as an AR(p) model. Since we observe both positive and
negative changes in the daily electricity load, this is one other factor for considering
a non-linear model to analyse the errors.

7.1.1 Model order selection

We plot the PACF of squared residuals in order to select the correct q-values to use
when constructing the appropriate model. This is shown in Figure 7.3.
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7.1. ARCH effect in ARIMA(1,0,1)(0,1,0)[365] model’s residuals

Figure 7.3: PACF of squared residuals.

From the PACF in Figure 7.3, we read off q = 1,2 because there are two signifi-
cant spikes. Using the the rugarch function in R, we try different plausible models
and compare their information criteria to choose the best. We also fit a standard
GARCH(1,1) to the data, whose errors are assumed to follow a normal distribution.

Table 7.1 shows the Akaike(A), Bayes(B), Shibata(S), and Hannan-Quinn(H-Q) re-
sults for all the possible models,

Table 7.1: The criteria for different models.

Model A B C D

ARCH(1) -0.7524 -0.6639 -0.6351 -0.7532

ARCH(2) -0.6354 -0.4542 -0.5436 -0.6554

GARCH(1,1) -0.6789 -0.4378 -0.6849 -0.5465

RGARCH(1,1) -0.2574 -0.3447 -0.3574 -0.8136

STANDARD GARCH(1,1) -2.5547 -2.4977 -1.4359 -1.3465

By looking at the Table 7.1, we can deduce that the best model from the analysis
is the Standard GARCH(1,1) assimilated to all the other suggested models. It has
the lowest values for all information criteria. Then we look at the coefficients of the
model as in the Table 7.2:
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7.1. ARCH effect in ARIMA(1,0,1)(0,1,0)[365] model’s residuals

Table 7.2: The coefficients for the Standard GARCH(1,1) model.

µ w α1 β1

Parameter -0.07264 0.0662 0.7676 0.2572

Standard Error -0.03914 0.0045 0.0253 0.0964

P-values 0.001 0.001 0.001 0.001

In conclusion, the chosen best model is,

σ2t = 0.0662 + 0.7676ε2t−1 + 0.2572σ2t−1. (7.1)

Therefore, since the p-values are less than the significance level, the conclusion is
that the parameter estimates are statistically significant.

7.1.2 Forecasting volatility with Standard GARCH(1,1) model

The identified model can then be used to make volatility forecasts. The chosen Stan-
dard GARCH(1,1) model forecasts the volatility in residuals for the cost and fault of
electricity.

7.1.3 Dependency of Standard GARCH(1,1) residuals

Another set of information returned from fitting the standard GARCH(1,1) model to
the residuals is the test for dependency on the model’s standardised squared resid-
uals. Different lags are tested and none of them returns a p-value below 0.05. There-
fore we fail to reject the null and deduce that there is no dependency in the squared
residuals. Table 7.3 shows a sample of the tested lags.

Table 7.3: Dependency test for different lags.

Lag Statistic P-Value

6 0.00724 0.8845

12 3.40914 0.6987

18 6.23433 0.7456

7.1.4 Remarks

A Standard GARCH(1,1) model has been applied to residuals from a seasonal ARIMA
model. Residuals of the Standard GARCH(1,1) model show a big improvement
as compared to residuals from the linear seasonal ARIMA(1,0,1)(0,1,0)[365] model.
This means, a combination of these two models gives better forecasts as compared
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to a simple ARIMA model.

More sophisticated models have not been considered in this study for various rea-
sons. For example;

• The purpose of this part of the research was to find a model that fits the data
and can be used by policy and decision makers in the electricity sector to
make the most accurate forecasts possible. If the purpose was to study various
volatility models then more complicated models would have been considered.

• Extended versions of the GARCH model (IGARCH, EGARCH, TGACRH, to
mention a few), work best when dealing with financial data.
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Chapter 8

Time series analysis using
multivariate models in forecasting
electricity cost.

In this chapter, we tackle each element of this model individually as we build up
to its general purpose. ARIMA models are mainly used for forecasting data that is
originally non-stationary but can be made stationary by the process of differencing
(Karamouz et al., 2012; Nason, 2006).

8.1 The multivariate AR model

Given a univariate time series, its orderly measurements hold information about the
process that generated it. An attempt at illustrating this underlying order can be
attained by modelling the current value of the variable as a weighted linear sum
of it’s previous values. This is an AutoRegressive(AR) process and is a simple, yet
powerful, approach to time series characterisation (Chatfield, 1996).

The order of this model is the number of preceding observations that are used,
and the weights characterise the time series. Multivariate autoregressive models
lengthen this approach to multiple time series so that the vector of current values
of all variables is modelled as a linear sum of previous activities. A MAR(m) model
foretell the next value in a d dimensional time series, Yn as a linear combination of
the m previous vector values.
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Yn =

m∑
i=1

yn−iA(i) + en (8.1)

where yn = [yn(1), yn(2), · · · , yn(d)] is the nth sample of a d dimensional time series,
and en = [en(1), en(2), · · · , en(d)] is additive Gaussian noise with zero mean and
covariance. We assume that the data mean has been removed from the time series.
The model can be in a standard form of a multivariate linear regression model as
follows,

yn = xnw + en (8.2)

where xn = [yn−1, yn−1, · · · , yn−m] are the m previous multivariate time series sam-
ples and W is a (m-d)-by-d matrix of MAR coefficients. If the nth rows of Y , X and E
are yn, xn and en respectively and there are n = 1, · · · , N samples then we can write,

Y = XW + E (8.3)

where Y is an (N - m)-by-d matrix, X is an (N - m)-by-(md) matrix and E is an (N -
m)-by-d matrix. The number of rows N-m arises as samples at time points before m
do not have sufficient preceding samples to allow forecasting.

8.2 The multivariate MA model

A Vector Moving Average(VMA) model of order q, or VMA(q), is written as,

rt = θ0 − α1at−1 − · · · − αqat−q (8.4)

or
rt = θ0 + α(B)at (8.5)

where θ0 is a k dimensional vector, αi are k(k) matrices, and α(B) = I −α1B − · · · −
αqB

q is the MA matrix polynomial in the back shift operator B (Nyblom and Harvey,
2000).
The mean of VMA(q) is

µ = E(rt) = θ0 (8.6)
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8.3 The multivariate ARMA model

A VARMA(p, q) model is written as follows,

φ(B)rt = φ0 + α(B)at (8.7)

where φ(B) and α(B) are two matrix polynomials. For v > 0, the (i, j) the compo-
nents of the coefficient matrices φv and αv measure the linear dependence of r1t on
rj,t−v and aj,t−v. The very important and adequate condition of weak stationarity
for rt is similar as that for the VAR(p) model with matrix polynomial φ(B) (Enders,
2004).

8.4 Multivariate modelling for electricity cost using ARIMAX
model

ARIMAX is an abbreviation for AutoRegressive Integrated Moving Average with
exogenous variables. It is a logical prolongation of ARIMA modelling that incorpo-
rates independent variables which sum up explanatory value. When AR and MA
terms in a pure ARIMA model are not adequate to supply an acceptably some mea-
sure of a model’s overall explanatory power, it is very good to look for other driving
phenomena whose inflames over time is not sufficiently implanted in the historical
values of the dependent time series (Karlaftis and Vlahogianni, 2011).

Structuring an ARIMAX model calls for the combination of the predictive value of
both the trailing time series values themselves (yt) and the trailing model errors (εt)
with the predictive value of exogenous variables. For example, if a set of exogenous
variables serving as independent variables in a multiple regression were all highly
significant, did not show significant cross correlation and yielded a high R2 with
the time series of residuals approximating white noise, then there would be no need
for ARIMAX modelling (Karlaftis and Vlahogianni, 2011). However, if that same
multivariate regression equation produced residuals that yielded significant serial
correlation, then pure ARIMA modelling of the residuals would be required to re-
move the serial correlation so that t-statistics could be properly calculated and the
significance of the independent variables could be judged properly.

Simply put, an ARIMAX model can be seen as a multiple regression model with
one or more AutoRegressive (AR) terms, one or more Moving Average (MA) terms.
AutoRegressive terms for a dependent variable are lagged values of that dependent
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variable that have a statistically significant relationship with its most recent values.
Moving average terms are nothing more than residuals resulting from previously
made estimates (Karlaftis and Vlahogianni, 2011).

For instance, an unknown time series dependent variable yt might be well estimated
by a weighted combination of the following 4 right hand side (RHS) variables.

• xt = is the value of independent variable x at time t.

• yt−1 = the immediately preceding value of the contigent variable yt at time t-1.

• yt−2 = the immediately preceding value of the contigent variable yt at time t-2.

• εt−4 = is the estimation error exhibited by the model at time t-4.

This single independent variable, multiple regression like model for estimation of
the dependent variable yt relies on the predictive value of the independent variable
x, the dependent variable (lagged by 1), the dependent variable again (lagged by 2)
and a previously exhibited error term (lagged by 4) (Beal and Dennis, 2007). That is,

ŷt = β̂1xt + φ̂1yt−1 + φ̂2yt−2 + θ̂1εt−4 (8.8)

where β̂1, φ̂1, φ̂2 and θ̂1 are estimated coefficients.

There are statistical assumptions that must be tested for ensuring that the produced
ARIMAX model is valid at each level of its evolution. The first two of these assump-
tions pertain to the residuals produced by the model, and the other four left relate to
the exogenous variables that comprise the model.

• Assumption one: ARIMAX model building may not be initiated until the time
series is stationary. The degree of stationarity of the residuals may be statis-
tically assessed by using the Augmented Dickey-Fuller(ADF) test. With pure
ARIMA model building, the p-values for the augmented Dickey-Fuller test for
a single mean must be acceptably small for ensuring stationarity (Brocklebank
et al., 2003).

• Assumption two: The residual series must not show significant serial correla-
tion. The Ljung-Box test may be used to statistically assess the degree to which
the residuals are correlated. If significant serial correlation is there among the
residuals, it may be reduced by adding an appropriate combination of signif-
icant AR and/or MA terms distinguished from the PACF and ACF (Brockle-
bank et al., 2003).
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• Assumption three: The coefficient estimated for an exogenous variable must be
significantly different from 0, as judged by it’s t-statistic. The calculation of the
significance levels of t-statistics (p-values) for regression coefficients assumes
that regression residuals are white noise. If Assumption two is disobeyed,
and the residuals are not white noise, then their serial correlation must be ab-
stracted with ARIMA modelling. This bids for pure ARIMA modelling process
(Brocklebank et al., 2003).

• Assumption four: An exogenous variable mustn’t exhibit evidence of receiv-
ing feedback from the dependent variable. That is, an attractive exogenous
variable petitioner should show a significant relationship with the dependent
variable without the dependent variable showing a causal relationship with
it. The directions of significant causality between an exogenous variable and
the dependent variable can be tested using the Granger Causality test. If the
reverse causality is discovered, the exogenous variable must be removed from
the independent variable candidates. This test must be executed on the depen-
dent and independent variable in their current form (transformed or untrans-
formed) (Brocklebank et al., 2003).

• Assumption five: An indication of the coefficient for each significant exoge-
nous variable must be reasonable. The expected (reasonable) indicator can
be defined prior to model construction by examining the signs of exogenous
variable correlation coefficients that show a significant correlation with the de-
pendent variable. If the dependent variable required a transformation to attain
stationarity, that similar transformation would also be applied to the indepen-
dent variable candidates, and the bivariate correlation analysis would then
focus on the transformed variables (Brocklebank et al., 2003).

• Assumption six: The surviving exogenous variables composing the final model
must not show a significant degree of multicollinearity. To meet this condition,
each of the surviving exogenous variables must be individually tested for sig-
nificant multicollinearity by using the variance inflation factor (VIF = 1/[1-R2])
for ensuring they are all linearly independent. A VIF of 10 or less is consid-
ered to show an acceptable level of correlation among the exogenous variables
(Brocklebank et al., 2003).
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8.5 Forecasting electricity cost for all four variables using mul-
tivariate ARIMAX model

These 4 very small p-values from the Ljung-Box test support the rejection of the null
hypothesis that there is absolutely no autocorrelation in the residuals. This provides
an indication that AR or MA terms must be added into the model to get rid of the
serial correlation.

Table 8.1: SAS software output autocorrelation check of residuals.

Lag chi square p values Autocorrelation

6 67.15 0.0001 -0.457

12 78.25 0.0001 -0.567

18 77.97 0.0001 0.032

24 80.56 0.0001 0.084

Same as in the case of structuring a pure ARIMA model, the process of adding AR
and/or MA terms into the model is driven by the significance of the ACF and PACF
spikes in the residual time series. Testing of both ACF and PACF displays that the
most significant spike is in the ACF at lag 4, showing that θ4 term should be involved
in the model. The PACF and ACF of the time series of revised residuals shows that
there are equally significant spikes at lag 1 in both the ACF and the PACF. As shown
in rows 2 and 3, there is an introduction of MA1 term into the model and AR1 term.
The correlation between the θ1 and θ4 terms is 0.323, and the correlation between φ1
and θ4 is 0.162. This defines that the impact that including an θ1 term has on the t-
statistic of the θ4 term, decreasing it from 10.34 to 3.24. In opposition, an introduction
of φ1 term instead of θ1 term only reduce the θ4 t-statistic from 10.34 to 9.36.

Table 8.2: SAS output ARIMAX model building results.

Model coefficient t-statistic p values

MA4 θ̂4 = 0.7456 θ̂4 = 10.34 0.0001

AR1, MA4 φ̂1 = −0.4673, θ̂4 = 0.7566 φ̂1 = −3.56, θ̂4 = 9.36 0.0001

MA1, MA4 θ̂1 = 0.4234, θ̂2 = 0.7345 θ̂1 = 1.28, θ̂2 = 3.24 0.0001

With pure ARIMA model, it is important to ensure that the residuals of the ARI-
MAX model satisfy the two conditions of normality and homoscedasticity. The Kol-
mogorov Smirnov test on the residuals from the ARIMAX model produce a statistic
of 0.071 with a p-value of 0.180, which doesn’t support the rejection of the null hy-
pothesis of normally distributed residuals.
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8.5. Forecasting electricity cost for all four variables using multivariate ARIMAX model

Figure 8.1: Normal probability plot of residuals.

The Schwarz Bayesian criterion(-110.996) of the ARIMAX model is attractive than
the value of the pure ARIMA model (-94.537). It is advantageous to test the goodness-
of-fit measures such as the RMSE and MAPE for the new developed ARIMAX model
and to compare them to those of the pure ARIMA model to assess the improved pre-
cision of the ARIMAX model.

The White’s test, with a p-value of 0.3021, shows that the null hypothesis of ho-
moscedasticity can not be rejected.

When comparing the values for MAPE, mean and standard deviation in Table 8.3,
the ARIMAX model is preferable to the ARIMA model in every manner, with it
general lower MAPE, means and standard deviations. Therefore, ARIMAX could be
the better model for forecasting electricity.

Table 8.3: Performance comparison of ARIMA and ARIMAX models.

Model Mean Std. Dev. MAPE

ARIMA 3.94 2.70 3.25

ARIMAX 3.12 2.31 2.79
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8.6. Vector AutoRegressive model for tackling electricity cost crisis

The p-values for the coefficients of AR1, MA4 and the independent variable were all
valued 0.0001, and the p-value for AR2 term is 0.0064. After the significant (p-values
less than 0.05) AR1, AR2 and MA4 terms are entered, it is very important to ensure
that the exogenous variable(X) in the model stay significant.

Table 8.4: ARIMAX model.

Parameter estimate t value P-value

φ2 = AR1, 2 -0.34577 -3.25 0.01

φ1 = AR1, 1 -0.73422 -4.79 0.01

φ0 -0.000356 -6.44 0.01

θ1 =MA1, 1 0.84563 7.36 0.01

The composition of ARIMAX model was built using the SAS routines. After differ-
encing to remove seasonality, the AR1, MA4 model exhibited a mean error value of
0.00272 and a standard error value of 0.0260. . The best fitting ARIMAX model, that
is,

ŷt = φ0 − φ1yt−1 − φ2yt−2 + θ1εt−1, (8.9)

which results to,

ŷt = −0.000356− 0.73422yt−1 − 0.34577yt−2 + 0.84563εt−1 (8.10)

8.6 Vector AutoRegressive model for tackling electricity cost
crisis

Vector AutoRegression (VAR) model is a prolongation of univariate autoregression
model to multivariate time series data. VAR model is said to be a multi equation
system whereby all the variables are handled as endogenous (dependent) variables.
In it’s reduced form, the right hand side of each equation involves lagged values of
all dependent variables in the system, there is no contemporaneous variables (Kar-
laftis and Vlahogianni, 2011).

In multiple time series context, vector autoregressive (VAR) models are perhaps the
common and broadely used models able to account for linear relationships among
different time series. Unlike univariate, VAR is a multivariate modelling technique
that considers multiple equation system or a multiple time series generalisation of
AR models (Karlaftis and Vlahogianni, 2011).
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8.6. Vector AutoRegressive model for tackling electricity cost crisis

In VAR models, each variable is a linear function of past lags of itself and of other
variables taking into account the interdependence among variables included in the
model. The vector autoregressive model of the order p, defined as VAR(p), is as
follows:

xi = φ1xi−1 + · · ·+ φpxi−p + εi (8.11)

where xi is a multivariate random variable, φj (j = 1, · · · , p) are coefficient matri-
ces. As in case of AR, parameters can be estimated by OLS or ML methods. In case
of stationary series, VAR is fitted directly to the data otherwise differentiation are
made before fitting a VAR model. In general, two choices to be made in prior using
a VAR model to forecast. The first one corresponds to the number of variables, say j,
whereas the second is the number of lags, say p, to be involved in the system. Thus,
the number of coefficients to be estimated in a VAR model is equal to j + j2p. Gen-
erally, cross validation techniques and different information criteria are commonly
used for the selection of number of lags (Yang, 2013). Apart from the fact that VAR
models gives a systematic way to capture rich dynamics of the given multiple time
series, they become difficult to estimate when the number of variables get higher.

8.6.1 Cost forecasting using VAR model

The forecasting ability of each model was evaluated by different prediction accu-
racy statistics. The result concerning the day ahead maintenance cost forecasting
are listed in Table 8.5 and the reported results indicate that multivariate models pro-
duce lower prediction error compared to univariate models in general. However,
the differences are small compared to error sizes.

Table 8.5: Electricity cost prediction accuracy statistics.

Model MAPE MAE Median

AR 5.02 12.58 4.02

NPAR 5.57 14.87 3.96

FAR 4.32 11.83 3.42

VAR 5.63 12.42 3.53

These other models are AutoRegressive (AR), Nonparametric AutoRegressive (NPAR),
Functional AutoRegressive (FAR), Vector AutoRegressive (VAR).
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8.7. Conclusion

Table 8.6: Electricity cost day specific mean absolute percentage errors(DS-MAPE).

Models Monday Tuesday Wednesday Thursday Friday Saturday Sunday

AR 7.83 6.21 5.43 5.34 4.78 6.35 6.92

NPAR 8.63 5.83 4.95 6.01 5.42 7.64 7.64

FAR 6.86 5.35 3.85 4.66 4.32 5.32 4.87

VAR 6.71 5.75 4.40 4.87 4.62 5.49 5.87

From Table 8.6 we can see that the day specific mean absolute percentage errors(DS-
MAPE) values are relatively higher on Monday, Saturday and Sunday and smaller
on other weekdays. The effect of parametric and non-parametric approach is also ev-
ident in this table as parametric approach produces lower errors compared to other
non-parametric approach.

8.7 Conclusion

Modelling and forecasting electricity cost gained an increasing attention in com-
petitive electricity markets. This chapter considered these issues by using differ-
ent multivariate approaches. For the residual component, different univariate and
multivariate models have been considered with advancing level of being complex.
Linear parametric and non-linear non-parametric models, have been estimated and
compared in a one day ahead out of sample forecast. By looking at the results, the
analyses propose that the multivariate approach leads to better results than the uni-
variate one and that, within multivariate framework, functional models are the most
accurate ones, with VAR being a very competitive model.
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Chapter 9

A Random Forest for forecasting
the electricity cost

The topic of real-time electricity cost forecasting has been discussed thoroughly in
the past few years. Too much attempt has been put into this from electricity sellers
and buyers for the aim of obtaining the very best bidding strategy. The previously
proposed tools have several bottlenecks.

Simple cost prediction is not that much of help compared with the cost probability
distribution, that can help the sellers or buyers estimate the risk of their bidding
decisions (Breiman, 2001). In cost probability distribution, the probability for a spe-
cific electricity cost can be known. The previously used forecasting models are not
updatable. The market and climate are changing because of this technology taking
over, which simply implies that we need a model that can adjust to the latest market
and climatic condition automatically.

A Random Forest adaptive forecasting model is proposed in this chapter. By us-
ing its bootstrap distribution, it can produce an accurate prediction (Breiman, 2001).
Furthermore, the random forest model adjust to the latest forecasting condition, for
example, the latest climatic, seasonal and market conditions, by updating random
forest parameters with the new observations. This kind of adaptability of random
model avoids the model failure in a climatic or economic condition different form
the training set.

Random Forests (RFs) are an ensemble learning process for both classification and
regression problematic areas. In simple terms, random forest is a collection of deci-
sion trees that grow in randomly selected subspaces of the feature space. Random
Forest is robust and easier to train compared to others (Olshen et al., 1984). The
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9.1. The attributes of trees

power of random forest is to aggregate a set of binary decision trees (Breiman’s
CART – Classification And Regression Trees), each is constructed using bootstrap
sample from the learning sample and a subset of features (input variables or predic-
tors) that are randomly chosen at each node. In contrast to the CART model con-
struction strategy, one tree in random forest is built on a subset of learning points
and on subsets of features considered at each node to split on (Olshen et al., 1984).
More over, trees in the forest are grown to maximum size and the pruning step is not
done.

After a number of trees in ensemble are fitted using bootstrap samples, the final de-
cision is attained by combining over the ensemble, for example, by averaging the
output for regression or by means of voting for classification. This method of bag-
ging improves stability and accuracy of the model, lessens the variance and helps
to avoid over-fitting (Friedman et al., 2009). The bias of bagged trees is similar as
that of the individual trees, but the variance is reduced by lessening the correlation
between the trees.

9.1 The attributes of trees

• They handle large datasets.

• They can maintain mixed predictors quantitative and qualitative.

• They can easily disown redundant variables.

• Can handle missing data very well.

• Small trees are the easiest to understand and interpret (Friedman et al., 2009).

9.2 Bagging or Bootstrap Aggregating process

9.2.1 Why bagging?

• It reduce over fitting.

• It reduce bias.

• It break the bias variance trade-off.

Through this process, it is possible to form an ensemble/forest of trees where multi-
ple training sets are generated with substitution, meaning data instances. Bootstrap
is a statistical re-sample method (Breiman, 1996).
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9.3. Random Forest algorithm

9.2.2 Bootstrapping algorithm

• Used in statistic when you want to estimate a statistic of a random sample
(mean, variance, mode, etc...).

• Using bootstrap we diverge from traditional parametric statistic, we don’t as-
sume a distribution of the random sample.

• What we do is sample our only data set (random sample) with replacement.
We take up to the number of observations in our original data.

• We again do step 3 for a large number of times, B times. Once done we have B
number of bootstrap random samples (Aggarwal, 2009).

• We then take the statistic of each bootstrap random sample and average it.

The main disadvantages of bootstrapping could be the Bagging algorithm using
CART. CART uses Gini-Index, a greedy algorithm to find the best split, so we end up
with trees that are structurally similar to each other (Angeralides and Cronie, 2006).
The trees are highly correlated among the predictions, but random forest address
this.

9.2.3 Problem Random Forest is trying to solve

With bagging process, we have an ensemble of structurally similar trees. This causes
highly correlated trees and somehow the results could not be what we want, but
with random forest, we can create trees that have no correlation or weak correlation
(Bunn, 2004).

9.3 Random Forest algorithm

• Take a random sample of size N with substitution from the data. This is just
bootstrapping on our data as mentioned how it is done above (Ziegler et al.,
2017).

• Take a random sample without substitution of predictors. Predictor sampling
/ bootstrapping, this is bootstrapping our predictors and it’s without replace-
ment and this is random forest solution to highly correlated trees that arises
from bagging algorithm (Ziegler et al., 2017)..

• Construction of the first CART partition of the data. We partition our first
bootstrap and use Gini-index on our bootstrapped predictors sample in step 2
to decided the split (Ziegler et al., 2017)..
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9.3. Random Forest algorithm

• Again repeat step 2 for each split until the tree is as huge as wanted. Don’t
prune (Ziegler et al., 2017)..

• Repeat steps 1 to 4 a large number of times (e.g. 500). Steps 1 to 4 is to build
one tree. We repeat step 1-4 a large number of times in order to build a forest.
There’s no magic number for large number, you can build 101, 201, 501, 1001,
etc.. (Ziegler et al., 2017)..

9.3.1 An Out-Of-Bag(OOB) error estimation

There is a straight forward way to calculate the test error of a bagged model, with-
out any need to execute the validation test set approach. The key to bagging is
that the trees are repeatedly fit to bootstrapped subsets of the observations. One
can show that on average, each bagged tree use around two-third of observations
(Breiman, 1999). The remaining one-third of the observations that is not used to fit
a given bagged tree are called out-of-bag(OOB) observations. We can also foretell
the response for the ith observation using each of the trees in which that observation
was OOB. This will result approximately to [B/3] predictions for the ith observation
(Breiman, 1998).

To get a single prediction for the ith observation, we can average the predicted re-
sponses. This yields a single OOB prediction for the ith observation. An OOB pre-
diction can possibly be found in this approach for each of the n observations, from
which the overall OOB MSE or a classification error can be computed (Breiman,
1998). Bagging results in improved accuracy over prediction using just a single tree.
Thus the resulting model can be somehow hard to interpret. One advantage of de-
cision trees is the ease of interpretation. When we bag a very big number of trees,
we can no longer represent the resulting statistical learning process using a single
tree and it is somehow not clear which variables are the most significant than others.
Bagging does improve the prediction accuracy at the cost of interpretability (Weron,
2006).

There are only 2 main reasons for using bagging process. The first one is that the use
of bagging process enhances accuracy when random features are used. The second is
that bagging process can be used to give the ongoing estimates of the generalization
error of the aggregated ensemble of trees, as well as the estimates for the strength
and correlation (Dietterich, 1998).
Breiman displayed that random forests do not over-fit as more trees are added, but
exhibit a limiting value of the generalization error. The Random Forest general-
ization error is estimated by an out-of-bag (OOB) error, for example, the error for
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9.3. Random Forest algorithm

training points which are not in the bootstrap training sets (Tibshirani, 1999). The
big advantage of random forest is that they can be fit in one sequence, with cross-
validation being the performer.

The algorithm for Random Forest:
1. k = 1 to K:
1.1. The first step is to draw a bootstrap sample L of size N from the training data.
1.2. Grow a random forest tree Tk to the bootstrapped dataset, by repeating the fol-
lowing steps for each node of the tree, until the minimum node size m is achieved.
1.2.1. Select F variables randomly from n variables.
1.2.2. Pick the very best variable among the F.
1.2.3. Split the node into 2 nodes.
2. Then output the ensemble of trees Tk, k = 1, 2, · · · ,K

For making a prediction at point x:

f(x) = 1/k
K∑
K=1

Tk(x) (9.1)

9.3.2 Random Forest assumptions

1. At each stage of constructing individual tree, we find the best split of data.
2. While building a tree, we do not use the whole dataset, but we bootstrap sample.
3. We combine the individual tree outputs by averaging.

The predecessor of Random Forest, Classification and Regression Tree (CART), was
proposed by Breman in 1984. Breiman present another important method for ran-
dom forest, called Bagging, in 1996. Random Forest is an ensemble learning tech-
nique for classification process. It is based on 2 methods, the CART and Bagging.
The CART is a tree built classification model that maps observations about an item
to deduce about the item’s class (Breman, 1984).

Figure 9.1 also gives a hint to the CART growing process, splitting each node into 2
sub nodes by finding the best split variable along with the best split value till achiev-
ing minimum node size. CART’s benefit is that it can be fitted into data perfectly.
When conducting prediction, CART’s accuracy is not that good. CART got low bias
but suffers from the high variance. In order to solve this issue, random forest ex-
tends CART by presenting Bagging technique. This implies that random forest fits
a large number of CARTs into bootstrap sets resampled from the origin data set and
random forest forecasts through the mode of the predictions generated by the fitted
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CARTs. The Bagging process will lessen the variance of CART while keeping the
bias low (Girish et al., 2013).

Adding to the low bias and low variance, random forest has other features, summa-
rized below:

• Random Forest needes only three parameters. Following recommended values
are very easy to tune.

• Random Forest can produce an out-of-bag error, a good estimate of the gener-
alization error, in its growing process, while other models only need multiple
training procedures like cross-validation to generate such estimates.

• Random Forest can produce variable significant indices in its growing process
and they turn out to be good estimates of variable relevancies.

• Random Forest is robust against irrelevant components and outliers in training
data.

• Structured as tree, random forest is easy to spread itself to fit more data by
growing more branches. This leads to the random forest online learning al-
gorithm and has made random forest a very good adaptive machine learning
model (Ghosh and Kanjilal, 2014).

Random Forest parameters are, B(the number of trees), m(the number of candidate
variables in each split), nmin(the minimum node size), α(the confidence level).

Table 9.1: Predictors for random forest (Breiman, 1998).

Predictor Description

P(c-3) The real-time cost 3 hours ago.

P(c-24) The real-time cost 1 day ago.

P(c-168) The real-time cost 1 week ago.

P(c-720) The real-time cost 1 month ago.

L(c) The current load.

W(c) The current temperature.

D(c) The day indicator.

The accuracy is presented in Table 9.2. By looking at the results in Table 9.2, it is
displayed that random forest model outperforms both ANN and ARIMA models by
having the smallest MAPE value.
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Table 9.2: Predictors for Random Forest.

Model random forest ANN ARIMA

MAPE 11.32% 12.94% 13.58%

Here, we assimilate the random forest model with STLF(Short Term Load Fore-
casting) models such as ARIMA, exponential smoothing and artificial neural net-
work(ANN). The time series is preprocessed for the ANN model in a similar ap-
proach as for random forest. To get the best ARIMA and ES models automated
procedures implemented in the forecast package for the R system were used.

MAPE (Mean Absolute Percentage Error) is used here to examine the performance
of the forecasting models. The results of forecasts (MAPE for the test samples MAPE
test and the interquartile range (IQR) of MAPE test ) in Table 9.3 are shown. In this
table, the results from using the NAIVE technique are also displayed. The forecast
principle in this case states that the forecasted daily cycle is similar as seven days
ago. Note that the lowest errors were gotten by ANN and RF. Mean errors for ran-
dom forest and ANN are statistically indistinguishable (Wilcoxon signed-rank test
was used) by using SAS software.

Table 9.3: Results of Forecasting.

Model MAPEtest IQR MEAN(MAPEtest,IQR)

RF 1.45 1.40 (1.15, 1.17)

CART 1.72 1.54 (1.41, 1.40)

Fuzzy CART 1.65 1.49 (1.38, 1.35)

ARIMA 2.68 2.39 (1.80, 1.66)

ES 2.38 1.78 (1.79, 1.57)

ANN 1.37 1.34 (1.13, 1.18)

NAIVE 5.34 4.65 (3.77, 3.87)

The error (PE) histograms in Figure 9.3 are also displayed. The most favourable error
distributions are observed for random forest and ANN models. The distributions for
ARIMA and ES are flattened and asymmetrical.
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9.4. Conclusions

Figure 9.1: Histograms of errors.

9.4 Conclusions

The suggested approach allows us to forecast time series with multiple seasonal
variations. It is due to the data pre-processing and defining the sequences of the
seasonal cycles on which the model produce an effect. This elucidate the forecasting
issue and leads to the better accuracy. The random forest forecasting model is at-
tributed by being simple. The number of parameters to be estimated is small, which
means a simple procedure of model optimization. In application, the random for-
est model produced an accurate forecasts as ANN and out performed the crisp and
fuzzy CART, ARIMA and ES models. The random forest model is more simpler to
train and tune than the above mentioned other models, random forest does not over
fit and it reduces variance due to averaging the outputs of many simple regression
trees over ensemble.
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Chapter 10

Discussion and Conclusion

In this dissertation, we have researched models for forecasting electricity cost in
South Africa. For this project, daily data from 4 January 2012 to 3 June 2017 was col-
lected from ESKOM. We faced a problem of constrained details about the data. The
purpose of the study was to search for the very best model together with the volatil-
ity forecasting model to deal with the data at hand and how better volatility models
forecast electricity cost. However, it is hard to find a single model that outperforms
all others in every situation. This research project addressed the issue of modelling
and forecasting electricity cost following different approaches.

10.1 Comparison of models for forecasting electricity cost

Table 10.1: Comparison of models for forecasting.

Model VAR ARIMA ARIMAX Random Forest

MAPE 9.64% 9.72% 10.29% 15.74%

Based on Table 10.1 of MAPE values for different models, we can conclude that
ARIMA, ARIMAX and VAR are the best models for the electricity data at hand for
forcasting electricity cost, given that the models has the small and close values. The
analyses propose that multivariate approach leads to good results than the univari-
ate approach and that, within the multivariate time series models are, in general, the
most accurate ones. This is confirmed by the results in Table 10.1.

For this South African dataset, a seasonal ARIMA(1,0,1)(0,1,0)[365] model was found
to be the most suitable model. However, it returned autocorrelated non normal
residuals which also tested positive for ARCH effects. Therefore, we were able to im-
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prove the forecasts by modelling volatility. Different ARCH models were tried based
on the PACF of residuals and the standard GARCH(1,1) model, with assumed nor-
mal residuals was chosen because of its lowest information criteria values. The Stan-
dard GARCH(1,1) parameter coefficients were estimated in order to fit the model to
the residuals and use it to forecast the conditional variances.

The non-linear issues of variances were handled appropriately through the fitted
standard GARCH models. Therefore, we conclude that it is normally the best way
to test the volatility with variances and standard deviations after fitting linear mod-
els in order to improve the accuracy of the forecasts. These models gives flexibility
to co-exist with other models.

The aggregation of the two Seasonal ARIMA and GARCH gives more accurate fore-
casts than just a model on it’s own. R-programming is the best tool for modelling
and forecasting electricity cost. This research is close to being similar to one car-
ried out by Yasmeen and Sharif (2014) and Nkiyingi Winnie (2016), where monthly
electricity consumption (EC) for Pakistan was studied and a model developed to
forecast four years ahead.

Another study was carried out by Sigauke and Chikobvu (2011), who studied the
prediction of daily peak electricity demand using three volatility forecasting models,
a Seasonal AutoRegressive Integrated Moving Average (SARIMA) model, a SARIMA
with Generalized AutoRegressive Conditional Heteroskedastic errors (SARIMA-GARCH)
model and a Regression-SARIMA-GARCH (Reg-SARIMA-GARCH) model. Em-
phasis was given to both linear and non-linear models, ARIMA, Seasonal ARIMA
(SARIMA), ARCH and GARCH models. Unlike results in our study, the ARIMA(3,1,2)
model was the most appropriate model to forecast monthly electricity cost in Pak-
istan.

Similar to our results, the non-linear volatility model out performed linear models
when dealing with daily cost data. This indicates that when policy makers want
to make forecasts for medium term periods, the best models to consider are lin-
ear models. This is because monthly, quarterly, annual or any other longer period
historical data does not experience high volatility. The residuals of such series are
homoskedastic. Therefore, it would be both time and resource wastage to apply
volatility models to such data.

This study also proposes a multivariate ARIMAX, VAR and random forest based
adaptive model for electricity cost forecasting. For Random Forest, the main con-
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tribution lies in these two aspects as follows, firstly, the model gives a confidence
interval with the prediction. Secondly, the model can adjust to the latest forecasting
areas by updating itself with new observations. Random forests is a powerful and
conducive technique in prediction. Because of the law of big numbers they do not
over fit.

On the other side, weekly, daily, hourly or any other shorter period historical data re-
quires application of volatility models. This is because during short durations there
is a lot of variation in data points. In order to save time, non-linear models should
be taken into consideration initially when dealing with such data.

The technique used in constructing VAR and VARMA models is quite hard to apply,
but on small time horizons, the forecasts based on these models are better than others
for variables not affected by structural shocks. This conclusion has also been reached
by other researchers, (Athanasopoulos and Hyndman, 2014). In future, it would be
interesting to estimate the VAR and VARMA models using the state space form for
which the technique based on Kalman filter are used for optimization. Other areas
for further study would include,

• Fitting models which would accommodate non normality in case the available
time series data isn’t normal. For example, the Gamma function and student
t-distribution.

• Introducing hybrid models in the forecasting process. This can be done through
various ways for example, using Artificial Neural Networks (ANNs) or com-
bining different models to develop one model that suits the data perfectly.

• Introduction of more complex time series models such as VARMA, VARMAX,
EGARCH, ICA-GARCH and Support Vector Machine (SVM).
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