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Abstract

Learning Analytics (LA) can play a key role in understanding students’ learning and academic
performance. By identifying poorly performing students early, LA can also be used to identify
students who are at risk of dropping out of programmes. This enables academic advisors to
intervene early and provide help to ensure students stay on track and succeed in their studies.

Hence, LA is becoming a common trend in education particularly in higher education. Previous
studies of LA have not dealt with specific courses in information systems and information
technology. Therefore, the aim of this study was to develop a model for the application of LA to
different courses with the discipline of Information Systems and Technology using various data
sources. This study used the design science research approach to help towards solving the problem
of understanding students’ learning and performance in Higher Education Institutions (HEIS).
Multiple data sources were used. The data that was obtained was pre-processed using MS Excel.
Thereafter, the WEKA tool was used in the analysis of the data and prediction of performance.
Decision tree, Random Forest and genetic-based algorithms were used to develop prediction
models for each of the courses in the discipline of Information Systems and Technology at the

University of KwaZulu-Natal.

The study also resulted in the development of an integrated dataset for the discipline of Information
Systems and Technology in higher education and a process model for the implementation of LA
in a specific discipline. The involvedness of the data allows future researchers to continuously
improve/evolve the area of LA. This study should, therefore, be of value to LA practitioners

wishing to implement LA to courses within other disciplines as well.
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1.1. Introduction
Higher education institutions (HEI) have the responsibility of ensuring that high quality students

or graduates are produced that are competent in their knowledge area, thereby allowing them to
perform and succeed in the working world (CHE, 2013). To accomplish this, the integration of
technology, not only in the learning of subject matter but also as a tool to making learning effective
and efficient, is needed. The technology is capable of storing and/or generating large amounts of
data related to students and the academic activities that they are involved in (Avella, Kebritchi,
Nunn & Kanai, 2016). Some of the data stored include attendance registers, learning management
system (LMS) logs, student biographical data and student academic performance data, to name a
few. These data are in a variety of formats, both digitized and non-digitized, and structured,



unstructured and semi-structured (Romero & Ventura, 2020). Furthermore, these data have been
collected and hoarded for a long period of time, and will continue to be collected, probably at a
faster pace due to the evolution of mobile networks, cloud computing and reduced cost of resources
(Romero & Ventura, 2020). Despite the advances, both Daniel (2015) and Prinsloo and Kaliisa
(2022b) note that this data is not being used optimally by decision makers within the higher

education environment.

With the evolution of technology and advanced data analysis techniques (Bollier & Firestone,
2010), many institutions around the world are now attempting to integrate these data sources and
use them intelligently in order to make decisions regarding improving teaching and learning. Thus,
the concept of Learning Analytics (LA) was introduced, described by Siemens et al. (2011, p. 4)
as “The measurement, collection, analysis and reporting of data about learners and their contexts,
for the purpose of understanding and optimizing learning and the environments in which it occurs.

Learning analytics are largely concerned with improving learner success.”

The advent of LA has resulted in researchers studying a number of areas surrounding LA. Firstly,
before LA can be implemented, the ethical and privacy implications of LA implementation need
to be debated. This is an area of importance identified by Slade and Prinsloo (2013), Olivier (2020)
and Prinsloo and Kaliisa (2022a), amongst others. Students need to be made aware that digital
data about them and their academic activities are being recorded and for what purposes, while data

anonymization ensures that student data is kept private (Prinsloo & Kaliisa, 2022a).

Besides the ethical and privacy issues, the actual acquisition, cleaning and preparation of the data
must be properly understood, with Romero and Ventura (2020) stating that this is an often
neglected area of LA research and can make up more than half the time required to solve the LA
problem. Strategies such as dealing with missing data and inconsistent data, data discretization,
outlier detection and feature selection, amongst others, must be dealt with in order for the analytics
to produce reliable information (Romero & Ventura, 2020).

The most commonly researched aspect of LA is the application of learning algorithms to datasets.

Commonly used learning algorithms include Decision Trees, Neural Networks, Naive Bayes, and



Clustering (Aggarwal, 2020). The output of the learning algorithms, either in the form of
prediction models or cluster groups, can be used to predict student performance, identify strengths
and weaknesses in student learning as well as determine or predict students that may need

assistance with improving their academic performance.

There are other aspects of LA such as data visualization, which focuses on presentation of data so
that it may be interpreted by relevant decision makers (Romero & Ventura, 2020), and prescriptive
analytics, where the objective is to strategize and be pro-active based on predictions made (Bonnin
& Boyer, 2017). However, with the lack of research related to LA on the African continent, it is
first necessary to focus on the initial aspects of LA. Thus, the main objective of this research is
the development of an artefact to guide the process of LA. This will involve the collection of data
resulting in the development of a dataset based on the discipline of Information Systems and
Technology (IS&T) at the University of KwaZulu-Natal (UKZN). Learning algorithms will then
be applied to this dataset, resulting in the creation of models that can be used to predict whether a
student will pass or fail a course, based on features such as individual demographics and
registration data, past academic performance and course interaction data. Finally, the entire LA
process will be documented and presented in the form of a process model that can be used to guide

future researchers in conducting LA for their particular discipline.

1.2. Background and Motivation
In the current environment, higher education is regarded as a critical component for increasing the

possibility of employment for individuals as well as to improve economic performance of a
country (Chiramba & Ndofirepi, 2023; Pinheiro, Wangenge-Ouma, Balbachevsky & Cai, 2015).
As a result, student performance is probably one of the most important aspects of higher education
institutions and is seen as a key objective of HEIs in South Africa (CHE, 2013). Two factors that
measure student performance is observing assessments as well as yearly graduation rates (Shahiri
& Husain, 2015). In the case of South Africa, Ngqulu (2018) mentions that HEIs in the country

are struggling with dealing with poor student success rates and throughput.

Within the South African higher educational context, there is a continuous increase in enroliment

while government cannot support this increase, resulting in inadequate funding (Badat, 2016;



Chiramba & Ndofirepi, 2023; Mlambo, Mlambo & Adetiba, 2021). The resultant lack of funding
has been the main motivator for the #FeesMustFall movement where students are pushing for
government to ensure that higher education is free, livable study accommodations are provided,
and there is improved access to the technology and infrastructure required (Raghavjee,
Subramaniam & Govender, 2021). The consequences of this push have been constant protest

actions resulting in numerous interruptions to teaching and learning.

In addition to the protests, in 2020, the world experienced the COVID-19 pandemic resulting in
all South African HEIs moving from a face-to-face teaching and learning model to an online
learning model. To assist with online learning, students were assisted by universities and
government by being supplied with data, laptops and tablets while some students were allowed to
return to campus to access technological infrastructure when restrictions were lifted (Raghavjee et
al., 2021). From a teaching perspective, the online learning model was one that most academic
and administrative staff were not familiar with (Hedding, Greve, Breetzke, Nel & Jansen van
Vuuren, 2020).

To maintain the quality of education in this new online environment, it has become necessary to
find a way to monitor and understand student progress in terms of online learning and their
academic performance. In order to accomplish this, universities are striving to make better use of
the data that is being continuously collected and stored, including past and current academic
performance data, student interactions in academic activities as well as student biographical

background. All this data is stored and available via different university systems.

Since the movement of paper-based records to digital records, the majority of universities make
use of a Student Management System (SMS) that stores all student applications (past and present)
and includes their biographical data (names, addresses and contact details, nationalities, high
school education, qualifications etc.), course registrations, degree registrations and academic

results (tests and exams).

Many universities also make use of a Learning Management System (LMS) which allows lecturers

to upload course material and activities that students may interact with on or off campus. Common



features of an LMS include calendars with important due dates and course relevant events,
personalized dashboards, file management, activity tracking and online assessments, amongst
others (Foreman, 2017). Administrative tasks that are found in an LMS include secure login
authentication, mass enrollment, continuous updating of security measures, high interoperability
with external applications and plug-ins, detailed logs about student interaction and mark

management (Foreman, 2017).

With the continued advancements and reliability of technology and the data that it generates, the
South African HEIs have been slow to take advantage of Big Data analytics when compared to
other areas of industry (Prinsloo & Kaliisa, 2022b). Furthermore, another inherent weakness is
that these data sources are separate and isolated (that is, not related or linked) from each other.
Most universities store the data for a set number of years, mainly for record and/or legal purposes.
In addition, the data is often incomplete with a number of errors and inconsistencies, and stored in
a variety of different formats. With the advances in computer processing and networks, the current
trend is to integrate these data sources and, using data analysis techniques, find interesting trends

and/or patterns and predictions within student academic activities (Daniel, 2015).

Thus, with this important aspect of student monitoring not being fully utilized, it is necessary to
better study the use of LA to predict student performance.

1.3. Research problem
The societal issues affecting South African universities currently (protest actions, reduced

government support) have affected the quality of education, yielding low pass rates and increased
drop-out rates, thus resulting in poor graduation throughput (Marongwe, Mbodila & Kariyana,
2020; Moodley & Singh, 2015). One strategy to address this problem is to continuously monitor
and regulate student academic activities and the progress that they are making in their coursework.
However, due to the ever-increasing student numbers and limited resources and assistance

provided by government, this is becoming logistically difficult for academic staff to achieve.

Additionally, students and lecturers are continuously using technology as part of the teaching and

learning process. All registration data is stored electronically and course content is distributed to



students via learning management systems. Communication is not only conducted through face-
to-face meetings but via e-mail, online discussion forums and social media applications. While
academic staff and institutions collect and store data regarding their students, the data sources are
used in isolation (that is, without consideration of other possible data sources) or just for recording

purposes.

Although the LA concept was introduced in 2010 (Prinsloo & Kaliisa, 2022b), it is still seen by
many as a fairly new area of research (Axelsen, Redmond, Heinrich & Henderson, 2020; Viberg,
Hatakka, Balter & Mavroudi, 2018). The majority of studies are focused on data acquisition and
the application of a variety of algorithms to determine accuracy. While other aspects of LA studies
such as intervention strategies and its impact on academic performance are important, this is still

an area of LA to become proficient at, that is just as important.

Thus, in summary, the research problem is stated as follows:
In order to predict and understand student academic performance in higher education institutions,
the use of technology in learning analytics has become increasingly important due to limited

resources and an ever-increasing number of students.

1.4. Research questions
An avenue that has only recently been looked at in the last five to ten years is the analysis of

various data sources to regulate and monitor student progress. To effectively use the various data
sources, the combined use of these data sources is proposed in this study by means of learning
analytics. This research, using data mining techniques, will involve analyzing and predicting
students’ academic progress based on the various data sources available, including the university
LMS interactions, SMS data with registrations, demographics and previous academic

performance.

The main research question is thus as follows:
How can the different sources of Information Systems and Technology (IS&T) student data be

used effectively in the learning analytics process?



From the main research question, the following sub questions have been established:

How can the data from the relevant data sources (SMS, Moodle logs etc.) be integrated?
How can the integrated data be organized in preparation for data analysis?
How can the data be used for identifying learning patterns (training)?

How can the trained data be used to predict student academic performance?

o~ D

How can the resultant information of student academic performance predictions be

evaluated?

1.5. Research objectives
Based on the research questions listed in Section 1.4, the main research objective is as follows:

To develop and implement a Learning Analytic model in order to effectively use IS&T student

data sources for predicting acadmic performance.

The following are the sub-objectives of this research study:

1. To integrate the relevant university data sources in preparation for classification.

2. To extract, clean and classify the integrated data.

3. To train the data in order to determine patterns and useful information for student
performance prediction.

4. To determine the effectiveness of the training techniques by evaluating their accuracy in
terms of how they predict student performance.

5. To evaluate the results generated by the artefact against other similar artefacts.

1.6. Research methodology
In order to accomplish the objectives (and thus answer the research questions) listed above, a

Design Science Research Methodology will be adopted. Design Science research is a commonly
used research methodology in Information Systems that results in the development of an artefact.
In the case of this study, a process model will be proposed, designed, demonstrated and evaluated.
This process model will guide researchers through the learning analytics process from data

acquisition to the application of prediction algorithms.



1.7. Research contribution
Tertiary institutions are continuously collecting large amounts of digital data, but are mostly not

using it effectively, if at all. Thus, this study aims to contribute to the growing literature within
the LA field. Inaddition, as the focus is on a university within South Africa, this study will address
how other universities may better take advantage of the digital data stored in order to improve
student learning outcomes, both from the perspective of meeting course objectives as well as
improving undergraduate throughput. This is an area where higher education appears to be lagging
when compared to other areas of industry (Joksimovi¢, Kovanovi¢ & Dawson, 2019; Stefan,

2017). A more detailed discussion on the contribution of the research is provided in section 8.4.

1.8. Structure of the thesis
Figure 1.1 in Section 1.1 depicts the overal structure of this thesis with the current chapter (Chapter

1) highlighted. As shown, the study is divided into three segments. Segment one (1) consists of
the first three (3) chapters, where the research setting is established by outlining the problem,
objectives as well as establish the position of the research in the current literature and finally,
describe the methodology used to conduct the research. Segment two (2) covers chapters four (4)
to six (6) which is the application of the research in order to address the research problem. The
final segment, chapter seven (7) and chapter eight (8), demonstrates and evaluates the application

conducted and summarizes the entire study.

This chapter (one) introduces the study and its justification in the current higher education context.
It covers the research in terms of its background and motivation, the research questions and
subsequent objectives, the methodology used, the research contribution and finally, the thesis

structure.

Chapter 2 is a literature review chapter that focuses on the domain of LA, its position in the overall
area of Big Data analytics, as well as the concepts, terminology and past studies related to LA.
The chapter then focuses further on the area of LA by expanding upon the different processes

involved and tools available to conduct LA research.



The research methodology of the study is covered in Chapter 3. This chapter covers the
methodology of the design science research used in this study. The chapter also covers the design
of the research artefact and how it is used to meet the objectives of the study. The chapter
concludes by covering data collection and ethical clearance and the tools that were intended to be

used for the study.

Chapter 4 covers the first two questions of this research project. From an LA project perspective,
this is the steps of the initial data acquisition and preparation phases. As will be discussed, this
often-overlooked area of LA will cover the requirements for acquisition, cleaning and integration

of the data sources in preparation for data analysis and prediction.

Chapter 5 addresses research questions 3 and 4 regarding how data is analyzed with the objective
of predicting student academic performance using established learning algorithms; these being the
Decision Tree algorithm and the Random Forest algorithm. Using feature selection, these
algorithms were applied to the different course datasets with the objective of generating models
that can accurately predict student performance. The experiments conducted for the two

algorithms are also presented in this chapter.

Chapter 6 covers the use of genetic algorithms to find or improve prediction models for any courses
identified in Chapter 5 where the models were not acceptable or if better models could be found.
In this case, experiments are presented where genetic algorithms were used, either as part of feature
selection or incorporated into the classification process. In the case of the latter, an optimized
forest algorithm was used, where genetic algorithms are used for determining the best Decision
Tree within the forest.

Chapter 7 answers research question 5 by presenting a comparison between the performances of
the prediction models obtained in Chapter 5 and Chapter 6 with the performance measures of other
LA or Educational Data Mining (EDM) studies from the literature. Various comparisons are made,
where the performances of the experiments from chapter 5 and 6 are compared to similar
experiments conducted in other studies. This includes comparison with studies involving other

1%, 2" and 3" year courses, other computer based courses amongst other comparison types.



Finally, Chapter 8 provides a discussion of how this LA study and the prediction models generated
can contribute positively towards student academic performance at the UKZN institution. Further
conclusions of the study are provided, as well as suggestions for improvement of LA

implementation and areas of study for future work related to this study.

1.9. Chapter summary
The chapter introduces the importance of LA in the current higher education climate. The

advances in networks, storage and other technologies necessitate the need for higher education
institutions to make better use of the different types of academic data that is being collected, in
order to better understand student academic performance.

Section 1.2 provides a background of the current scenario facing higher education in South Africa
and motivates on how LA can assist in dealing with the lack of resources and improving throughput
at South African universities.

The research questions and objectives are outlined (Sections 1.4 and 1.5). A brief description of
the methodology used is provided in Section 1.6. The research contribution is provided in Section
1.7. With LA being fairly new to the African continent, there is a need for research related to the
application of learning algorithms to African-based datasets, as well as making these datasets

available for future studies. Finally, the outline of the thesis is provided.
Before looking at the application of LA in a South African university context, it is important to

understand and appreciate what has already been covered in LA. Thus, the next chapter covers an

overview of LA and previous related research.
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Figure 2.1: Thesis structure
2.1. Introduction

This chapter is a literature review covering learning analytics (LA) and its related concepts. A

map depicting the content of this literature review is shown in Figure 2.2.
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Figure 2.2: Map overview of Chapter 2

Section 2.2 provides an overview of LA, including its relationship with Big Data and how it relates
to Academic Analytics (AA) and Electronic Data Mining (EDM). This section also covers how
LA has been applied in higher education institutions along with the benefits and challenges of LA.
Section 2.3 covers one of the initial aspects of an LA undertaking, that being identification of
relevant data sources while section 2.4 covers the ethical and privacy aspects of dealing with digital
data sources, specifically from a South African perspective. Section 2.5 provides a literature
overview of aspects related to preparing the acquired data for analysis and prediction. Section 2.6
describes the most common techniques and algorithms used in LA while section 2.7 provides an

overview of commonly identified tools used in LA.

This literature review chapter, along with Chapter 1 and Chapter 3 forms part of the chapters that
establish the setting of the research (See Figure 2.1). From this literature review, the knowledge
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gap can be identified and so too, the justification for the research. The literature review also
contributes towards the development of the research artefact by identifying what techniques and

tools work well when implementing LA.

2.2. Learning Analytics
In the current academic environment, there is a great reliance on the use of technology for teaching

and learning, resulting in the generation of an enormous amount of data (Avella et al., 2016). The
challenge is now to use this collection of data from a variety of sources in order to better understand
student academic performance and plan a way forward to improve the quality of teaching and/or
inform students about where they can improve their learning processes (Avella et al., 2016), thus
resulting in the concept of LA. As stated in Section 1.1, LA is commonly defined as the application
of data for measurement, collection, analysis and reporting purposes, with the objective being to

better understand and improve the quality of the learning environment (Siemens et al., 2011).

Learning Analytics is said to be a bricolage field (Dawson, Joksimovic, Poguet & Siemens, 2019),
meaning that the area of study emerged from multiple combinations of different disciplines.
According to Haggag, Latif and Helal (2018), some of these disciplines include data mining,
psychology, statistics, information science, machine learning as well as sociology. Ferguson
(2012) states that LA has a strong connection to web analytics, business intelligence, educational

data mining and decision support systems.

Boyer and Bonnin (2016) describe four avenues of LA that can be followed by HEIs, these being

descriptive analytics, diagnostic analytics, predictive analytics and prescriptive analytics.

According to Boyer and Bonnin (2016), descriptive analytics answer the question of “what
happened?”. This question is answered using general computational and statistical techniques and
visualizations that are applied to teaching and learning related data. Examples of visualization in
descriptive analytics include pie charts, bar charts or line graphs. This kind of LA is mainly used
by students and teachers to evaluate their academic performance and teaching pedagogy,

respectively (Boyer & Bonnin, 2016).
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The objective of diagnostic analytics is to answer the question “Why did it happen?”. In this case,
the data is analyzed to better understand the root cause of the teaching and learning problem, an
example being the identification of events that contribute to a student failing (Xin & Singh, 2021).
This form of LA requires the use of data discovery or pattern identification as well as statistical

correlation (Boyer & Bonnin, 2016).

In the case of predictive analytics, the question of “What will happen?” is dealt with. The objective
of this form of LA is to provide insight and anticipate what may happen given a specific situation,
based on past and present data. This form of LA may inform a student of whether or not they are
achieving their learning objective(s) based on their actions (interactions in class or online). A
teacher may use predictive analytics to determine students that are at-risk of failing, thus allowing

for interventions to prevent failure (Boyer & Bonnin, 2016).

The final avenue of prescriptive analytics answers the question “How can we make it happen?”.
In this case, data or digital content is analyzed in order to determine an efficient and effective
strategy to achieve the required goal(s) (Boyer & Bonnin, 2016). Similar to predictive analytics,
prescriptive analytics allows relevant stakeholders to discover trends of student drop-out and
allows them to be pro-active in their academic activities. Prescriptive analytics also allows course
lecturers and assistants to develop personalized learning plans for students.

The following subsections provides a description of the concept of LA, including how it relates to
Big Data (Section 2.2.1) as well as a comparison to two overlapping areas of study, namely
Academic Analytics (AA) and Educational Data Mining (EDM) (Section 2.2.2). An overview of
previous studies and how LA was applied is covered in Section 2.2.3. Finally, the benefits and
challenges of LA are covered in section 2.2.4 and 2.2.5 respectively. An overview of this section

is shown below (Figure 2.3):
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2.2.1. Learning Analytics and Big Data
Over the past few years, there has been an increased demand in all industries to better capture and

use data. This demand has been supported by an increased ability to store large amounts of data
as well as improved computational power (Hershkovitz & Alexandron, 2020). The ability to store
and 1ntelligently process large amounts of data with the use of networked, online digital systems

has been termed Big Data (Hershkovitz & Alexandron, 2020).

Most definitions of Big Data include the characteristics of the three V’s, these being Volume,
Velocity and Variety (Oussous, Benjelloun, Lahcen & Beltkih, 2018). The Volume characteristic
covers the amount of data available to an organization (Kaisler, Armour, Espinosa & Money,
2013). Velocity relates to the speed of data creation, streaming and aggregation (Kaisler et al.,
2013). Finally, data Variety refers to the richness of the data representation, i.e. the different data
item types and formats contained within the data (Kaisler et al., 2013). Additional characteristics
of Big Data that have been noted by Oussous et al. (2018) include Vision (purpose of the Big Data
application), Verification (processed data that conforms to specifications), Validation (purpose is
fulfilled), Value (organizations find the data useful for different scenarios), Complexity (data is
complex and requires organization and proper relationships) and Immutability (Stored and well

managed Big Data can be permanent).
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In terms of Big Data and higher education, Fischer et al. (2020) identified two major trends
appearing in most institutions. The first major trend is the continuous digitization and storing of
student profile information and academic records in the form of a student information system. This
data is usually heterogeneous and multimodal (Fischer et al., 2020) and thus fulfils the Volume
and Variety characteristics of Big Data. The second major trend is the continuous capturing of
student activities through LMSs (also referred to as clickstream or log data). This trend occurs on
a daily basis (Fischer et al., 2020) and thus fulfils the Velocity requirement.

According to Joksimovi¢ et al. (2019), most industries such as health, finance, insurance and
aviation have seen the importance of the analysis of large amounts of data. Higher education,
however, has been very slow in realizing its importance in implementing effective systems that
analyze learning related data for better decision making (Joksimovi¢ et al., 2019; Stefan, 2017).
Stefan (2017) states that Big Data in higher education is still in the incipient stage, meaning
universities are still researching and experimenting in this area. According to Dawkins (2018),
LA research falls under the area of Big Data, where the assumption is that larger-sized datasets
have the capability of providing better intelligence, thus allowing for the potential of better

decision making.

However, it should be noted that LA is not the only field that falls under Big Data, specifically in
the educational field. Two other commonly researched fields that overlap with LA are that of
Educational Data Mining and Academic Analytics. These three fields of research are distinguished
in Section 2.2.2.

2.2.2. Comparing Learning Analytics with Educational Data Mining and Academic
Analytics
Big Data research in higher education covers a variety of areas including student academic

performance, student teaching evaluation, university throughput, and resource usage evaluation,
amongst other areas. From the review of the literature, Big Data at HEIs are covered through three
fields of research, these being LA, Academic Analytics (AA) and Educational Data Mining
(EDM).
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The objective of LA is to provide information using analytical tools, statistical and predictive
methods and models that will allow decision makers, usually teachers and/or students, to take
action to improve teaching and learning (Avella et al., 2016). According to Adejo and Connolly
(2017b), LA is focused on improving teaching and learning and providing useful information to

learners, teachers and course administrators.

While LA is focused on the improvement of teaching and learning, AA is aimed at improving
and/or making better decisions at an educational management or operational level (Boyer &
Bonnin, 2016). Academic Analytics is defined as the application of business intelligence and
associated tools with the goal of improving decision making and academic performance for
educational institutions (Avella et al., 2016). The use of AA is mainly aimed at allowing for better
decision making for university administrators, governments and funding agencies (Adejo &
Connolly, 2017b; Viberg et al., 2018).

From a higher education perspective, the application of Big Data has been performed at different
levels within HEIs (Mendez, Ochoa, Chiluiza & De Wever, 2014). According to Siemens and
Long (2011), these five levels are course, departmental, institutional, regional and
national/international. Learning analytics is said to fall under the first two levels (course and
departmental) while the remaining three levels (institutional, regional and national/international)
are said to fall under the concept of AA (Mendez et al., 2014).

Electronic Data Mining is a concept closely related to both LA and AA (Avella et al., 2016) but is
more technically oriented (Baek & Doleck, 2023) and focuses specifically on the development of
methods or techniques that are able to find patterns, discoveries and/or make predictions within
educational data (Avella et al., 2016). Electronic data mining is defined as being concerned with
developing methods that explore educational data with the objective of better understanding

students and the environment in which they learn (Adejo & Connolly, 2017b).

There are several similarities between LA, EDM and AA, such as all focusing on a data intensive
approach to education. The differences between LA, EDM and AA, adapted from Adejo and
Connolly (2017b), are listed in Table 2.1.
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Table 2.1: Differences between LA, EDM and AA (Adejo & Connolly, 2017hb)

EDM AA LA
Target Teachers and Educational Teachers, students and
audience administrators institutions educational institutions
Implementation | Automated adaptation | Automatic iterative Support human
benefit and method of processes interventions and
interpretation interpretation of data
Application Software and student Administrative Systematic intervention
focus modelling concerns
Research focus Techniques and methodology Application of analysis,
techniques and
methodology
Data Makes use of data Makes use of Makes use of quantitative
application mining techniques statistical techniques methods, data mining
and predictive techniques, visualization
modelling tools

2.2.3. Applications of Learning Analytics
Learning analytics projects have been implemented at different institutions with various

objectives. According to Hooda and Rana (2020), this is dependent on the target stakeholders that
the implementation is aimed at as well as the framework that was being used. This section
describes some of the main applications of LA from the literature as well as recent studies of LA

applications, what was done and the outcome of the research conducted.

2.2.3.1. Feedback systems
According to both Evans (2013) and Wise (2019), feedback is a critical component of improving

student learning outcomes and should ideally allow the student to evaluate their own progress and
regulate or adjust their learning styles based on the feedback provided. Further to this, it is also
important to better understand the feedback being provided so as to improve this (feedback)
process as well (Evans, 2013). This area of application is rarely researched as there is a greater
focus of research on using LA to predict student performance and improve graduation throughput
(Gasevi¢, Jovanovi¢, Pardo & Dawson, 2017). Itis particularly important in the higher educational
context due to the increase in class sizes as well as the increase in the socio-economic diversity of

the student population (Iraj, Fudge, Faulkner, Pardo & Kovanovi¢, 2020).
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In research by Gasevic et al. (2017), the aim was to use LA to analyze student learning strategies
using log data, as well as study how these strategies influence learning outcomes. In the context
of this study, a learning strategy contains the thoughts, behaviours, beliefs, or emotions that allow
for the accumulation of new knowledge and skills (Gasevi¢ et al., 2017). A questionnaire, log data
and assessment results were used as data sources. Statistical techniques were used to detect
patterns in learning behaviour. Four specific learning sequences were found and the researchers
were able to map these sequences to different learning styles, these being deep and surface level
learning. The research concluded by stating that students that followed a deep learning style were
found to have higher exam scores overall than students with a surface learning style; and the
research had the potential to provide students with information on what type of studying they fall

under and the potential consequences of their studying style.

In a study by Saucerman, Ruis and Shaffer (2017), the focus was on automating the detection of
reflection on action, which is defined as the ability to remember past problem solutions and in turn
apply them to solve a current problem being experienced (Saucerman et al., 2017). The study
focused on high school and college students from the USA doing a Land Science internship course.
Using statistical techniques and automated algorithms, the authors were able to identify comments

made by students and relate these comments to whether students were reflecting on their actions.

A study by Kovanovi¢ et al. (2018) also used LA to better understand student reflections.
However, in this case, the aim was to improve a student’s self-regulated learning ability. Using
reflection recordings from student groups as well as individually, the data was quantitatively
analyzed with the results indicating that their system was able to classify student reflections. This
allowed for better understanding of student reflections, which opens the possibility of automated

feedback to students on improving their learning as well as academic performances in the courses.

Student feedback and the use of personalized feedback messages was the focus of a study by Iraj
et al. (2020). The intention was to understand student feedback and its effect on academic
performance, how feedback relates to student demographics and how students react to feedback.
Using statistical methods, the authors found that there was a relationship between students that

reacted to test feedback and improved student performance in subsequent tests. The results of the
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study also indicated that females and non-English speaking students were more likely to interact
with feedback compared to males and English-speaking students respectively (Iraj et al., 2020).
Similarly, LA based feedback was seen as a benefit in a study conducted by Ustun, Zhang,
Karaoglan-Yilmaz and Yilmaz (2023). The study found that in a 10-week course with 62 students,
LA based interventions that included visual and written feedback was found to improve academic

performance (Ustun et al., 2023).

2.2.3.2. Early warning systems
Early warning systems involve the identification of risk factors that are used to predict whether or

not a student will pass a course or end up failing or even dropping out of a course (Jokhan, Sharma
& Singh, 2019). Macfadyen and Dawson (2010) highlight that the foundations of early warning
systems have already been established for HEIs, i.e. the integration of ICT into teaching and
learning, improved detail and availability of LMS tracking data, the emergence of analytics in the
educational sector and increased attention of the social nature of education. Many studies relating
to early warning systems produce some form of prediction accuracy, indicating how well the
system is able to predict a student’s performance based on the factors provided. Prediction is a
form of supervised learning that occurs via a training set containing known data. The application
of learning algorithms to the training set leads to trends and patterns emerging, eventually resulting
in a model that is able to predict a target value based on a set of supplied input values or predictor
variables (Wise, 2019).

A study by Jayaprakash, Moody, Lauria, Regan and Baron (2014) was based on the development
of an LA system to detect at-risk students. Using four (4) data mining techniques, the authors
attempted to develop a model to predict student drop-out rate. A further objective was to determine
how well this prediction model can be used in other institutions. The model was developed and
applied to four related institutions and the authors determined that while drop-out prediction could
be well determined (drop-out prediction accuracy ranging between 70% to 82% for three out of

the four institutions), greater care must be taken for institutions with greater demographic diversity.

The purpose of a study by Oloruntoba and Akinode (2017) used the support vector machine
algorithm to create a model for academic performance prediction using student high school results

as well as initial 1% year results. The developed prediction model achieved a 98% accuracy and
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could be used for identifying potentially excellent students for scholarships and to assist in

enrollments and identifying students that are unlikely to graduate (Oloruntoba & Akinode, 2017).

A study was conducted at the University of Cape Town to predict academic performance of first
year Computer Science students (Nudelman, Moodley & Berman, 2019). Using Bayesian
networks and Decision Trees, the authors predicted student academic performance based on matric
results, type of high school attended and university registration details. The techniques used in the
study were able to produce 91% accuracy in detecting students that would be unsuccessful in

passing first year Computer Science courses.

Dorodchi et al. (2018) conducted a study to determine the impact of how student self-reflection
can determine whether the student is at-risk of failing or not. The study was conducted with a
group of ninety-one (91) Computer Science students. The data sources acquired include
demographics, performance scores, student self-reflections and self-assessments. Using sequence
analysis and linguistics analysis, the authors stated that results were promising (no prediction

accuracy was provided) and that further research was warranted.

Another early warning system was developed as a Moodle plugin by Jokhan et al. (2019) and
applied to an online Information Literacy course consisting of 1523 students from the University
of South Pacific, Fiji. For this study, the focus was on the student’s interaction with the Moodle
LMS for the course and how it affected their final mark. Predictor variables that were identified
and used to make predictions were activity completion rate, login frequency and coursework

interaction.

Hasan et al. (2020) used LA and data mining to predict student academic performance for 772
students registered for e-commerce technology courses. The data sources included student
academic information (such as GPA, number of attempts for the course, at-risk status and previous
coursework performance), student activity on the Moodle LMS and interactions with coursework
video files (number of times video was played, paused, liked, and rewound). Several classification
techniques (such as Random Forest, Decision Trees, Naive Bayes and Neural Networks) were

applied and the results were compared. The accuracy for each of the algorithms ranged from 82%
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to 87%, with the Decision Tree models producing the best accuracy. The study also used feature
selection algorithms to identify the most effective predictor variables. When feature selection
algorithms were applied, the Random Forest classifier model produced the best accuracy (88%).
The authors also preferred the results from their rule inducer algorithm as it provided information
that was easy for non-expert users to understand. The use of an information dashboard was

identified as important and formed part of future research.

A study by Reno et al. (2022) focused on the development of a prediction model to assist in
predicting whether or not students will pass or fail automated online assessments. The dataset is
a benchmark dataset containing course information, student information and LMS log data. The
dataset consisted of 32 593 students with 97 attributes. The Random Forest algorithm was chosen
and the resultant prediction model achieved a 95% accuracy. Future research includes consistently
capturing student data from the LMS and the development of a feedback system to assist struggling

students.

A study by Silva, Rupasingha and Kumara (2022) involved the implementation of four machine
learning algorithms to a dataset of 200 graduates from a Sri Lankan university. The data source
was in the form of a questionnaire requesting student demographics, study habits, hobbies and
academic activities. The Random Forest algorithm produced the best accuracy (97.5%) followed
by the multilayer perceptron algorithm with the Naive Bayes algorithm producing the lowest
accuracy (70%). The researchers concluded that the study would benefit the institution in
identifying weak students that require assistance to pass and intended, as future research, to

increase the number of instances and consider more attributes to include in the questionnaire.

2.2.3.3. Explanatory Learning Analytics
Another common application of LA is to better understand different factors that play a role or

affect the academic performance of a student, referred to by Wise (2019) as Explanatory LA.
These factors could relate to a student’s background, academic performance, financial status or

interaction with course content amongst others.
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A recent study by Preetha (2021) attempted to understand the impact of student health on academic
performance. A health-based questionnaire focusing on student disabilities, sport participation,
health and nutrition activities was distributed to 113 students at an Indian university. The current
mark percentage for the semester was also requested from each respondent. With each question
representing an attribute, a K-means algorithm was implemented and the students were placed into
one of two clusters based on whether or not the student will pass or fail. A genetic search algorithm
was also used to identify the best set of attributes for best predicting academic performance. The
authors concluded that the clustering algorithm performed well for prediction but more instances

were required in the future.

Asif, Merceron, Ali and Haider (2017) conducted a study to predict student academic performance
at a university in Pakistan. Using Decision Trees and clustering techniques, the objective of the
study was to determine the role of high school marks and previous academic marks in predicting
a student’s final mark of a four-year Information Technology degree. Using the Decision Tree
classifier, the authors were able to achieve accuracy prediction in the range of 55% to 83%. The
study also looked at better understanding a student’s progression through the degree and used

clustering to divide students into high performing and low performing groups of students.

A study by Daud et al. (2017) attempted to determine the effect on family expenditure and personal
characteristics (such as marital and employment statuses) on student academic performance. Five
classification techniques were applied to a dataset of 776 Pakistani students from years 2004 to
2011 and the results were studied. An accuracy of 86% was reported using the support vector
machine classifier. A further conclusion from the study was that family expenditure and the
identified personal information attributes had a great impact on student academic performance.

Mwalumbwe and Mtebe (2017) conducted a study to determine the relationship between student
academic performance and student interaction with the LMS for two courses at a Tanzanian
university. An application was developed to keep track of LMS log data in terms of number of
logins, time logged in and types of interactions (such as forum posts, downloads, exercises
performed). Using regression analysis, the authors found that forum interactions, peer interactions

and exercises were significant activities that had an impact on student academic performance
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(Mwalumbwe & Mtebe, 2017). Kog (2017) also conducted a study looking at user interactions
via LMS and its impact on academic achievement. In the case of this study, structured equation
modelling was used to determine if the relationship exists between student interaction using LMS
and academic achievement. The author specifically focused on discussion forums, online lecture
attendance and assignment submissions. The results indicated that there was a positive impact on
academic performance when students were more involved via discussion forums and lecture
attendance. Learning Management System interaction was also the focus of a study by Avci and
Erglin (2019) where multivariate analysis of variance (MANOVA) was applied to the log data of
65 undergraduate students. For this study, it was determined that student online interactions

positively influence student engagement and academic performance.

The study by Al luhaybi, Tucker and Yousefi (2018) looked at prediction of academic performance
based on admission data, module related data and 1% year final grades for a 2" year Computer
Science course at Brunel University (London). The predictive model would classify students as
either high, medium or low risk of failure. Using clustering and classification techniques, the study
identified that the model generated using the Naive Bayes classification technique provided a
better accuracy than when developing a model using the Decision Tree algorithm. Another
outcome of the study was that the student qualification upon registration and 1% year marks had a

significant impact on academic performance.

The objective of the research by Fincham et al. (2019) was to better understand the concept of
engagement in Massive Open Online Courses (MOOCSs) by developing a framework. The study
used two data sources for each of the three (3) courses being analyzed, that being log data from
the LMS as well as tone and linguistic analysis from student discussion forums and other posts.
To better understand the role that the data source attributes played in academic performance,
exploratory factor analysis was applied first, with the objective of better understanding learning in
non-formal educational settings. Secondly, structural equation modelling was used to understand
the relationship between the data source attributes and learning outcomes. The authors concluded
that their developed framework could allow researchers to view content engagement from the
perspective of the individual (the effect of their background and motivation) as well as the course

(how course design influences student engagement).
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Kumar and Singh (2017) used a collection of academic and personal data from post-graduate
students to predict their academic performance for the year. Some of these attributes include past
academic performance, parent’s qualification and current financial status of the student’s family.
To predict the performance of the student, a number of classifiers were applied to the dataset,
including Decision Trees, Naive Bayes, Random Forest and Bayes network. The authors identified
that the Random Forest classifier performed the best and stated that family and academic attributes

could be important factors in student academic performance prediction.

2.2.3.4. Learning Analytics for teaching
Learning analytics can also be used by teachers to identify strengths and weaknesses of content

available in courses (Nguyen, Gardner & Sheridan, 2017; Nguyen, Tuunanen, Gardner &
Sheridan, 2021). Once identified, teachers can strategize ways to improve understanding or

restructure the course to ensure better engagement between the students and the available content.

A recent study by Nguyen et al. (2021) addressing the improvement of teaching and learning
focused on the development of an information system that provided lecturers with information
related to students’ interactions with live lecture recordings. The objective of the study was to
design an LA system using LA design principles that were proposed by the author. These design
principles were found to be useful guidelines for the development of an LA information system
that supports teaching and learning. Three design principles were used and evaluated, that being
the principle of actionable information (reporting of information about learners and their learning),
the principle of information timeliness, and the principle of availability and interoperability
(Nguyen et al., 2021).

A study by Balbay and Kilis (2018) collected student log data as well as student questionnaires
with the aim of enhancing the quality and efficiency of a course relating to improving English
language skills. Using descriptive statistics and deductive content analysis, the authors identify
the study as an important starting point that provides useful, practical information for course

improvement.
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From an assessment perspective, Amigud, Arnedo-Moreno, Daradoumis and Guerrero-Roldan
(2017) integrated LA into the assessment process. By collecting student assignments and applying
them to machine learning techniques and language and writing analysis, the application was able
to associate each student with their writing and language styles. The authors stated that this

application had the potential to improve academic integrity, especially in an online environment.

A study by Mendez et al. (2014) focused on the use of past student grades to better understand and
assist in curriculum development. Using student past grades from approximately 2500 Computer
Science students, data analysis was conducted from past academic performance. Questionnaires
were also used to better understand course difficulty of the various Computer Science courses.
The conclusions of the study indicated that these data sources could potentially inform relevant

stakeholders regarding the quality of courses which could assist in curriculum redevelopment.

2.2.4. Benefits of Learning Analytics
Several benefits of LA have been identified in the literature. These benefits have arisen as a result

of a number of small or large LA applications in higher education. The most commonly identified
beneficiaries of LA are the learners (or students), teachers (or lecturers/educators), administrators

and the research community (Romero & Ventura, 2020).

The use of statistical and prediction techniques allow academics to define and uncover student
problems and needs with regard to the academic courses that they are undertaking. This allows
for not only detecting whether students are at risk of failing (Gasevi¢ et al., 2017; Nguyen et al.,
2021; Patwa, Seetharaman, Sreekumar & Phani, 2018; Sclater, Peasgood & Mullan, 2016) but to

also better understand how students perceive the learning process (Muljana & Placencia, 2018).

The understanding of how students learn and the ability to predict their performance allows for the
development of early intervention and improvement strategies (Chatti & Muslim, 2019; GaSevi¢
et al., 2017; Mahroeian, Daniel & Butson, 2017). This will allow for better student guidance
towards passing their courses, thus improving student retention and/or graduation throughput
(Patwa et al., 2018; Sclater et al., 2016).
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A further benefit of LA implementation linked to performance prediction is that of personalized
learning, which was identified as a key benefit of LA (Bonnin & Boyer, 2017; Chatti & Muslim,
2019; Ellaway, Pusic, Galbraith & Cameron, 2014; Muljana & Placencia, 2018; Patwa et al.,
2018). This can be accomplished through better understanding of student demographics and
academic related behaviours (Mahroeian et al., 2017). Muljana and Placencia (2018) further state
that the realization of a “one size does not fit all” approach is important, i.e. student knowledge
acquisition and assessments should be tailored individually to meet the diverse learning abilities

of each individual student.

Teachers or lecturers are also seen as potential beneficiaries of LA. This is accomplished in terms
of curriculum development and analysis of teaching performance. The predictions resulting from
LA provides the opportunity for lecturers to reconsider or revise their learning activities with the
objective of improving the quality of the course activities and resources such as notes, slides,
videos and tutorials (Bonnin & Boyer, 2017; Leitner, Khalil & Ebner, 2017; Nguyen et al., 2021).
In addition, LA could improve the use and allocation of resources based on prediction of student
enrollment and requirements, to maximize graduation throughput (Avella et al., 2016; Mahroeian
etal., 2017).

Both Avella et al. (2016) and Leitner et al. (2017) stated that LA will also benefit the research
community that engages in furthering knowledge on using Big Data in all forms of education.
Even after more than a decade of research, LA is seen as a relatively new area of research, and
further implementation and publication of LA research will allow for the identification of gaps
between academia and industry so that research problems can be further studied and addressed
(Avella et al., 2016). This benefit was also identified by Gasevi¢ et al. (2017) as well as Chatti

and Muslim (2019). Figure 2.4 summarizes the LA benefits with the intended beneficiaries:
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Figure 2.4: Benefits of LA identified for different beneficiaries

2.2.5. Challenges of Learning Analytics
Despite more than a decade of research revolving around LA, institutions are still struggling with

taking advantage of learner and organizational data to address educational challenges (Axelsen et
al., 2020).

The challenge of technical infrastructure refers to the cost and complexity of data integration as
well as hardware and software acquisition (Mahroeian et al., 2017; Ngqulu, 2018). Data collection
is usually the initial challenge, requiring the consideration of several aspects including data
availability, categories of data to consider (demographic data, learner interaction data, financial
records etc.) and data ownership (Avellaetal., 2016). As technology evolves, the ability to capture
data also evolves, such as the use of readily available datasets offered by LMSs, mobile data,
biometric data and mood data (Avella et al., 2016). From its early beginnings, the fact that data
stored by institutions are isolated (separated) within different departments is an obstacle to
effectively analyze the large amount of student data being captured daily (Ngqulu, 2018).
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Another obstacle to overcome is the evolving challenge of the ethical, legal and risk considerations
as identified by Alzahrani et al. (2023) as well as Guzman-Valenzuela, Gomez-Gonzéalez, Rojas-
Murphy Tagle and Lorca-Vyhmeister (2021). This is due to the way that data and applications are
stored on cloud services (Avella et al., 2016). Adejo and Connolly (2017b) and Guzman-
Valenzuela et al. (2021) both state that the question of data ownership for all collected data must
be determined and students should be made aware that data is being collected and used for
academic analysis (Patwa et al., 2018). Related to ethical considerations is the issue of data privacy
concerns. Administrators must ensure that guidelines are in place to monitor the access and usage
of student data (Adejo & Connolly, 2017b). Leitner, Ebner and Ebner (2019) state that while
regulations are in place regarding data and ethics, codes of practice regarding LA implementation
are lacking and must be addressed.

In terms of implementation challenges, there is a lack of standardization and frameworks for data
modelling in LA. This includes dealing with structured and unstructured data, data types and
working with missing data (Adejo & Connolly, 2017b; Daniel, 2015; Mahroeian et al., 2017).
Even after more than a decade of research, Gasevic et al. (2017) as well as Nguyen et al. (2021)
found that there is a lack of LA implementation guidelines. There is also a lack of LA adoption

policies (Leitner et al., 2019).

With regard to stakeholder challenges, the majority of teachers, students and administrators are
unfamiliar with LA and its related concepts. This makes collaboration between these stakeholders
and LA developers difficult (Guzman-Valenzuela et al., 2021; Leitner et al., 2019; West, Heath &
Huijser, 2016). Ngqulu (2018) states that it is imperative that for a LA initiative to be successful,
staff training of LA practices should be mandatory and staff recruitment must take Big Data and
analytics competency into consideration. This can be difficult due to high teaching staff workload
resulting in lack of time or motivation for further training (Kaliisa, Kluge & Mgrch, 2022). Leitner

et al. (2019) also identified lack of leadership as an obstacle for LA implementation.

Related to the challenges above, Ngqulu (2018) identified funding as a challenge for LA
implementation. This is especially the case for the acquisition of specialized technology, software,

and personnel. Inthe case of poorer and developing countries, funding may be prioritized for other
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initiatives such as infrastructure maintenance and other resources (Guzman-Valenzuela et al.,
2021).

Institutions must weigh the benefits and challenges of learning analytics before attempting to begin
an LA initiative. When the benefits are understood and the challenges addressed, data sources

must be identified within the institution to leverage the benefits of LA.

2.3. Data sources and feature (factor) identification for success in Learning Analytics
Since LA follows a data driven approach, it is important to identify educational data sources that

can be used. This is usually the first step in the LA process followed by preprocessing, feature
selection and finally, analysis and/or prediction (Gao, Xie & Tao, 2016). According to Chatti,
Dyckhoff, Schroeder and Thus (2012), LA data sources fall into two (2) categories, i.e. centralized
educational systems and distributed learning environments. Examples of centralized education
systems include LMSs such as Moodle and Blackboard. These are large, multipurpose
applications that accumulate large amounts of data, including student activities and interaction
(log) data (for example viewing and updating learning material, interacting with test questions and
viewing summaries or reports). On the other hand, distributed learning environments involve the
acquisition of data sources beyond the LMS. These data sources can be formal or informal as well
as available in a number of different formats (Chatti et al., 2012). Examples of these different

formats are summarized in Table 2.2.

Table 2.2: Format types and descriptions
Format Type Description
File format Files presented and opened using different
applications such as MS-Excel (.xls, .xlIsx),
Adobe (.pdf), notepad (.txt), MS-Word (.doc,
.docx) etc.
Structure format Data within files presented differently using
columns, rows, comma separated files (CSF).
Files may also contain text, images, embedded
multimedia files etc.
Data format Data items within files use different formatting
such as Dates (Date/Month/Year, Month, Date,
Year), telephone numbers (including country
codes, brackets, extensions)
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Once the identification of data sources is complete, the contents of the data sources must be
understood in order to effectively extract the data required. From a research perspective, the
objectives of the study will guide the researcher in determining what data is required to be extracted
from the datasets for analysis and prediction purposes. This section looks at the different types of
data sources and what features (factors) can be found within these data sources. From an LA
perspective, features are the variables or attributes in a dataset that are used to analyze the dataset
with the objective of meeting the LA goal, such as the prediction or understanding of the learning
outcome (Fong, Biuk-Aghai & Millham, 2018). The term feature is identified in many LA studies
but attributes, variables and factors have also been synonymously used. The term factor is

commonly used in research where the impact of a specific attribute is being studied.

For decades, researchers have been conducting studies with the objective of determining critical
success factors for student academic performance. Understanding the importance of these factors
can play a critical role from an academic standpoint as teaching staff can identify students that
may potentially struggle, and assist in improving their marks (Yusuf & Lawan, 2018). From an
administrative perspective, understanding the factors that play a role in academic success can help
in identifying potentially good students to admit into their academic institution. This is important
as, according to Chen, Hsieh and Do (2014), the levels of research and training improves when

there are a better caliber of students registered at the academic institution.

There have been numerous studies related to student academic success factors at HEIs. The
methodologies for these studies varied by studying data from various data sources, including
attendance registers, assessment marks, questionnaires, interviews and secondary data, amongst
other items. Thus, by identifying factors that determine academic success, the researcher can
identify what data is important within a data source that can be used to predict student performance.
The factors identified can fall into different categories depending on the data sources from which
they are obtained. The most commonly identified data sources are listed in Table 2.3 (adapted

from Adejo and Connolly (2017a)), along with examples of factors that relate to these categories.
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Table 2.3: Categories of data sources with examples

Data source category Examples of factors (features)
Demographic Age, gender, place of birth, location, education, employment status
Academic background GPA, high school marks, coursework assessments
Financial Sources of funding including fee status, funding, tuition update,

financial clearance status

Historical progression Student graduation data, degree types, employment status,
forwarding addresses, degree changes, de-registrations etc.

Behavioural (academic) | Interaction data that may include interaction logs (also referred to
as clickstream data), discussion forums, course metadata, study
methods, teaching and learning styles, reflection, click-through
rates

Behavioural (human) Stress, alcohol consumption, support structures, self-esteem,
motivation and resiliency

Student demographic data is always captured by HEIs when students apply for admission to any
program of HEIs. Date of birth (with age calculated where required), gender, race, nationality,
employment status, and location are the most common features but other identified features from
the literature include parents’ occupation and/or qualifications (Pal, 2012; Werner, McDowell &
Denner, 2013), disability status (Algur, Bhat & Ayachit, 2016), relationship status (Ghorbani &
Ghousi, 2020), language of education (Gulati, 2015) and whether the student has siblings or
children (Gulati, 2015).

In terms of academic background, many studies have looked at past academic performance as
indicators to predict future academic performance. In this case, past academic performance
includes high school marks (Hamoud, Humadi, Awadh & Hashim, 2017; Jayaprakash et al., 2014;
Nudelman et al., 2019; Olaniyi, Kayode, Abiola, Tosin & Babatunde, 2017; Oloruntoba &
Akinode, 2017) as well as marks obtained in previous and current courses registered for at the
institution (Al luhaybi et al., 2018; Dorodchi et al., 2018; Hasan, Palaniappan, Raziff, Mahmood
& Sarker, 2018; Mahzoon, Maher, Eltayeby, Dou & Grace, 2018; Salal, Abdullaev & Kumar,
2019).
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Financial data sources relate to the student’s current financial status, amount owing to the
institution or for specific courses, student bursary/loan information and family (mother and father)
financial status (Anuradha & Velmurugan, 2015; Ribot, Ribot, Perez & Cayabyab, 2020).

Historical progression is a data source with features relating to student graduation information,
past qualifications, employment status and updated address details. These features can also form
part of the demographic data as seen by Jayaprakash et al. (2014).

Behavioural factors may include student behaviour with regard to academic coursework. Before
the advent of online learning and LMSs, this area was mostly limited to attendance to lecture,
tutorial and/or practical sessions (Devadoss & Foltz, 1996; Fraser & Killen, 2005; Thatcher,
Fridjhon & Cockcroft, 2007; Wadesango & Machingambi, 2011), insight into teaching quality
(Wadesango & Machingambi, 2011) and study approaches (Ali, Haider, Munir, Khan & Ahmed,
2013). With the introduction of making course content and teaching content available via online
learning applications such as an LMS, behavioural factors can now include online activities.
According to Sclater et al. (2016), variables relating to how a student interacts with the content is
far more effective in determining/predicting academic performance than past historical data or
demographic data. This was particularly the case when comparing user clicks (total hits) and
assessment clicks against the individual’s characteristics and past academic performance.

Human behavioural factors have also been researched with regard to predicting student academic
performance. Examples of these factors include motivation (Dennis, Phinney & Chuateco, 2005),
stress (Pritchard & Wilson, 2003), self-esteem, fatigue (Pritchard & Wilson, 2003), peer support
(Dennis et al., 2005), health status (Preetha, 2021) resiliency (McMillan & Reed, 1994), alcohol
consumption (Pritchard & Wilson, 2003), and student self-reflection (Dorodchi et al., 2018).
Psychological factors have also been identified as playing a role in predicting academic
achievement, with studies such as Kappe and Van der Flier (2012) highlighting the critical role of

personality traits and motivation.
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Along with the identification of data sources, it is also important to understand that the ethical
implications of using these data sources, the majority of which contain personal student

information and actions performed by these students.

2.4. Ethics regarding data use in Learning Analytics
According to Leitner et al. (2019), ethics can be defined as various concerns regarding the

understanding and defending of values such as life, security, happiness, health, knowledge,
resources, freedom, etc. It is further described as the important decision of ascertaining what is
right, wrong, good and bad before action can be taken (Adejo & Connolly, 2017a). From an LA
perspective, ethics relates to how data used and generated in LA applications are interpreted by
users and how they have an impact on students and their happiness (Adejo & Connolly, 2017a).
According to Greller and Drachsler (2012), dealing with data in LA applications may result in
stakeholders feeling that their privacy is at risk, resulting in resistance in LA and its further

development.

While there have been several advances around LA development through EDM, visualization and
other practical aspects, there continues to be debate related to the ethical uses of LA (Gupta &
Saxena, 2021). The initial and current challenge relates to the lack of legal clarity with respect to
data ownership (Guzman-Valenzuela et al., 2021). In most research projects currently, data
collected in a study belongs to the owner of the data collection tool as well as the institution
conducting the research. The data collection tools are usually in the form of questionnaires and
interview schedules that include attached ethical clearance and individual consent information. In
the current environment, with the increase of new technologies such as GPS tracking and/or
biometric sensors etc., there is an increase in the digital capturing of individual actions without the

individual’s awareness or even consent (Liu & Khalil, 2023).

Thus, it is important that LA initiatives be conducted in a manner such that the use of academic
data not be abused. According to Greenleaf and Cottier (2020), at the end of 2020, a total of 142
countries had implemented data privacy laws that operate at both private and public levels. From
a South African perspective, the Protection of Personal Information Act (POPIA) was approved

on the 13th of November 2013 with the objective of protecting the personal information of both
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public and private bodies (USAf, 2020). The main objectives of POPIA are to ensure that every
South African’s constitutional right to privacy is safeguarded, to balance the rights of privacy to
that of other rights such as the access to information, to regulate how personal information is
processed while ensuring that an individual’s rights is/are protected, promoted and enforced, and
to provide an individual with rights and guidance should privacy protection be broken (USAf,
2020). According to POPIA, personal information relates to any piece of information related to
an individual that is living and can be identified. This includes (but is not limited to) information
relating to a person’s age, gender, marital status, physical or mental status, qualifications, medical

history, financial status and history, religion, culture, personal opinions etc.

To assist researchers, a set of principles were outlined when dealing with data and POPIA (USAf,
2020). The four rules state that a researcher must de-identify the data as soon as possible, only
collect data that is relevant to the study, ensure that the participants are aware of the study and how

the data will be used, and finally, the data must be kept safe.

Once the ethical and privacy issues have been addressed along with the acquisition of the data
sources, these data sources need to be prepared for LA applications. The issue of data preparation

is covered in the next section.

2.5. Preparing data for Learning Analytics
An important issue identified before performing data analysis and prediction is the stage of data

preparation or data pre-processing. The data preparation or pre-processing stages are areas of LA
that has not received a lot of analysis and research (Munk, Drlik, Benko & Reichel, 2017; Romero,
Romero & Ventura, 2014). Further to this, this stage of LA is seen as requiring a lot of effort and
can form a large portion of the LA overall process (Romero & Ventura, 2020). Data preprocessing
and preparation involves the detection, cleaning and filtering of any incomplete, missing,
inconsistent and unnecessary data items (Tsai, Lai, Chao & Vasilakos, 2015).

Some of the more common challenges that must be addressed when preparing data for analysis

and prediction are discussed in the following sections.
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2.5.1. Handling missing or inconsistent data
The majority of datasets in the real world contain incomplete or partially complete data

(Alexandropoulos, Kotsiantis & Vrahatis, 2019). There are several reasons why datasets may be
incomplete, such as data items were lost, unavailable or not recorded at the time, or just forgotten

by the data-capturer (Alexandropoulos et al., 2019).

Addressing the issue of missing data can be handled in a number of ways. Missing values can be
replaced either by the most commonly found value in the dataset or an average can be calculated
from existing values and be used. The value can also be replaced with a predicted value using a
regression model (Alexandropoulos et al., 2019). The missing values can also be ignored when
processing, i.e. only the values presented are used for analysis and/or prediction (Alasadi & Bhaya,
2017). Instances with missing data have also been known to be removed from the dataset
altogether. Minaei-Bidgoli, Kashy, Kortemeyer and Punch (2003) reduced the number of students
in their study from 261 to 227 as some students did not complete sufficient assignments to qualify
for a final mark. In the cases of Kovanovic, Gasevi¢, Dawson, Joksimovic and Baker (2016), as
well as Waddington, Nam, Lonn and Teasley (2016), students that did not complete the course,
for whatever reason, were removed from the dataset as these records did not have all assessment
marks associated with them. Gudivada, Apon and Ding (2017) expressed caution when removing
records with incomplete data as removing a large number of records will have an adverse effect
on statistical results. An alternative to row deletion would be to remove only the attribute if that

attribute has many values that are missing (Gudivada et al., 2017).

Inconsistent data refers to data item(s) that is/are different from other data items in the same
attribute within the dataset or when compared to other datasets (Romero et al., 2014). Examples
of this may include duplicate records from different periods of time. In this example, an age from
one record may be different from the age of the associated duplicate record. Another example of
inconsistency is when incorrect display formats are used, such as displaying dates as yyyy/mm/dd

and mm/dd/yyyy (Romero et al., 2014).

2.5.2. Data discretization
This process involves the categorization of data ranges to improve comprehension and

interpretation (Romero, Ventura & Garcia, 2008). Knowles (2015) refers to this process as
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recoding, where values of certain attributes are changed in order to be consistent across the
datasets. A common example in educational data analysis is to categorize assessment scores into
a specified number of categories. In the case of Naser, Zaqout, Ghosh, Atallah and Alajrami
(2015), high school scores were categorized into one of a number of domains (for example, 1:
Above 80%, 2: 75% to 79%, 3: 70% to 74%, etc.). A balance needs to be found with simplifying
the data while at the same time not generalizing the data and losing valuable information. For
example, an attribute for disability can be generalized to a yes/no value but this would result in a
loss of information, such as the type of disability. On the other hand, having different types of

disabilities included may result in excess information or data values that overlap (Knowles, 2015).

2.5.3. Noise and outlier detection
According to Romero et al. (2014), there are a select number of instances found in large datasets

that do not match the behaviour of the other instances in the dataset. These instances are referred
to as outliers. These outliers could be a natural occurrence or occur due to a mistake in data capture
(Alasadi & Bhaya, 2017; Romero et al., 2014). Many algorithms such as binning have the ability
to minimize or remove the influence of outliers (Alasadi & Bhaya, 2017). Romero et al. (2014)
state that knowledge of the domain area is important to ascertain whether the outlier is a real
possibility (e.g., an excellent student standing out from the rest of the class) or whether the outlier
is a typographical error that needs to be corrected/removed.

2.5.4. Feature selection
Feature selection is the process of selecting relevant attributes from all available attributes. This

task is necessary to remove attributes that are redundant or do not contribute to analysis or
prediction techniques (Romero et al., 2014). Feature selection is said to be an important task in
data preparation as it can improve accuracy (by reducing overfitting of a model, i.e. where the
generated model works only for the data that was used to generate that model) and computation
time (by removing unnecessary attributes) (Alexandropoulos et al., 2019; Romero et al., 2014).

2.5.5. Normalization and derivation
Normalization is a data transformation process where a data value is scaled to within a defined

range. This range is usually from -1.0 to 1.0 or from 0.0 to 1.0 depending on the context of the

problem being addressed. Normalization is said to potentially improve prediction accuracy and
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efficiency of data mining algorithms by reducing the distance between maximum and minimum

values (Romero et al., 2014).

Derivation is the process of creating new attributes from existing attributes. The attributes are
usually achieved by applying some formula to other attributes that results in the new attribute
value. This could be in the form of conversions, summations or count of values in other attributes
(Romero et al., 2014).

2.5.6. Dealing with imbalanced datasets
Data that is continuously generated in real time is often prone to suffering from data imbalance

(Madasamy & Ramaswami, 2017). This is a potential issue in the case of educational data. A
dataset can be described to be imbalanced when the quantity of one of the classes (attribute values)
is much greater than that of another class within the same attribute. The class that has a high
representation is known as the majority class while the converse is referred to as the minority class
(Madasamy & Ramaswami, 2017). From an educational perspective, an example of an imbalanced
dataset would be one that has an extremely high proportion of students that have passed a course
(majority class) compared to the proportion that failed (minority class). As stated by Kaur, Pannu
and Malhi (2019), the process of classification of imbalanced datasets is a major problem in all
domain areas (such as fraud and intrusion detection, image processing and medical science) and
will result in reduced predictive performance of the generated model. This is because the model
tends to display a stronger bias toward the class that has the majority instances (Bekkar &
Alitouche, 2013; Madasamy & Ramaswami, 2017).

Common ways to address imbalanced datasets are from a data level or an algorithmic level (Bekkar
& Alitouche, 2013). From a data level perspective, the sampling-based techniques of
oversampling and undersampling are described as an effective way of dealing with data imbalance
(Ghorbani & Ghousi, 2020). Oversampling is the process of increasing the number of instances
of the minority class with the objective of reducing the imbalance. This is accomplished by
duplicating minority class instances (Ghorbani & Ghousi, 2020). The disadvantages identified by
oversampling, besides the increase in computational time, is a resultant bias or increased weighting

towards minority class instances (Fernandez, Garcia, Herrera & Chawla, 2018). Undersampling,
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on the other hand, is the process of removing the number of instances in the majority class so that
the imbalance is reduced. The advantage of this technique is that of reduced computational cost.
However, the removal of instances to improve balance also results in reduced variance in the
dataset. Furthermore, instances that may be useful for classification could also be removed
(Fernandez et al., 2018).

An additional sampling technique used is the synthetic minority oversampling technique or
SMOTE. Unlike oversampling, SMOTE creates new instances of the minority class rather than
duplicating minority class instances (Thai-Nghe, Busche & Schmidt-Thieme, 2009). The new
instances are created based on variations of instances within the minority class (Fernandez et al.,
2018). While seen as a more effective sampling-based technique than oversampling and
undersampling (Ghorbani & Ghousi, 2020), it has been noted that SMOTE can result in the
generation of more unhelpful instances as well as results in the generation of noisy data (Jiang,
Pan, Zhang & Yang, 2021).

From an algorithmic level, ensemble classifier algorithms or weight allocation have also been used
to address the data imbalance problem (Bekkar & Alitouche, 2013). Ensemble classifiers are
described as a combination of multiple learning algorithms (Madasamy & Ramaswami, 2017).
While being a fairly new learning technique, ensemble classifiers have been seen to perform better
in prediction accuracy than individual learning classifiers (Madasamy & Ramaswami, 2017). With
regard to the weight allocation approach, a cost or weighting is allocated to individual instances or
groups of instances. With this approach, the importance of specific instances (most likely in the
minority class) are considered during the learning process. ldentification of these instances and
the exact weighting or cost requires understanding of the dataset and its context (Krawczyk, 2016).

2.5.7. Data formatting
Data formatting relates to the process of transforming data from its original form to a format that

allows for it to be processed or analyzed by another application (Gao et al., 2016; Romero et al.,
2014). Since data comes from various sources with different formats (most likely), it is necessary
to ensure that a mechanism is in place to ensure that different representations of the same data are

identified as one and the same, e.g., different date formats need to be made consistent to allow for
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correct age calculations, naming conventions of data within files, file names and file extensions
etc. (Hershkovitz & Alexandron, 2020).

In addition, formatting also deals with the conversion of the data file into a format that can be
accepted by the application used for analysis. For example, the WEKA application accepts files
in .arff format or as comma separated files (.csv). Without formatting, the application will not be
able to distinguish between data attributes, rows or values, resulting in incorrect interpretation of
the data.

Once the data has been prepared, the next stage is that of using the data for analysis and prediction,
which is discussed next.

2.6. Data analysis and prediction in Learning Analytics
Learning Analytics requires the processing of large amounts of academic data, thus relying on a

variety of techniques. Some of these techniques include classification/prediction, clustering,
relationship and text mining, outlier detection process mining, statistics and visualization (Hooda
& Rana, 2020; Kumar & Salal, 2019; Romero & Ventura, 2020). The techniques require the
application of individual or combinations of algorithms in order to effectively analyze the data
and/or make predictions. These algorithms can be classified either as supervised or unsupervised

learning algorithms.

According to Berry, Mohamed and Yap (2019), supervised learning is the ability of a technique or
algorithm to generalize knowledge from the provided data with labeled (known) instances. From
this knowledge, the technique or algorithm would be able to predict target values for new or unseen
instances. With supervised learning, the input dataset is divided into two parts: the training dataset
and the test dataset. The selected supervised learning algorithm attempts to identify patterns using
the training dataset. This is followed by applying these patterns to the test dataset with the
objective of predicting an attribute value (Alloghani, Al-Jumeily, Mustafina, Hussain & Aljaaf,
2020). Examples of techniques using supervised learning include Decision Trees, Naive Bayes
and support vector machines (Alloghani et al., 2020; Limbu & Sah, 2019). Limbu and Sah (2019)
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also identify neural networks, K-nearest neighbor algorithms and linear regression as being

supervised learning algorithms.

On the other hand, unsupervised learning is the process of receiving unlabeled cases (instances)
and the algorithm must learn or identify patterns in order to generate labels for these cases (Jain,
Murty & Flynn, 1999). The algorithm accomplishes this by determining relationships from the
available data and groups the data with similar features or characteristics (Berry et al., 2019). With
regard to unsupervised learning algorithms, Limbu and Sah (2019) identify clustering algorithms
(such as K-means and Gaussian Mixture models) as the most commonly used form of unsupervised

learning.

The following subsections 2.6.1 to 2.6.6 cover commonly used algorithms identified in the

literature that are applied to educational data for analysis or prediction purposes.

2.6.1. Clustering
According to Jain et al. (1999), clustering is an unsupervised learning algorithm that divides a set

of observations or data items into groups referred to as clusters. Similarly, Hooda and Rana (2020)
describe it as the process of identifying data items that are similar to each other, allowing for better
decision making with regard to understanding the similarities and differences between datasets.
Unlike classification, clustering is regarded as unsupervised learning in that no training set is
provided. In addition, no labels are given to the data items. Rather, the learning process of
clustering places data items into different groups (clusters) depending on the characteristics
identified within each of these groups (clusters). Each group (cluster) represents different labels
that have been generated based on what has been learnt (Jain et al., 1999). Clustering is used for
pattern-analysis, grouping, document segmentation and pattern classification amongst others (Jain
et al., 1999). From an LA perspective, Leitner et al. (2017) describes clustering as a grouping of
similar material or students based on their learning and interaction patterns. This technique can
be used to detect early drop-out of students, to better understand student interaction and

engagement in the learning process.
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A number of clustering algorithms exist, such as hierarchical clustering, K-means and fuzzy
clustering amongst others. Clustering is also a commonly identified technique in the LA domain,
the more recent studies of which are listed in Table 2.4. Hierarchical and K-means are identified
as the most commonly used clustering algorithms. With the K-means clustering algorithm, objects
are divided into an unknown number (K) of groups. An iterative process is often implemented in
order to determine the ideal k value (Asif, Merceron, et al., 2017). With hierarchical clustering,
all objects are initially their own cluster. The algorithm then identifies two objects with similar
characteristics and merges these clusters. This continues until a diagram (called a dendogram) of
a hierarchical series of nested clusters are formed. These are clusters of merged or broken up
objects (Jain et al., 1999).

Table 2.4: Studies that used clustering with study objectives

Clustering Objective Clustering algorithm References
Health effect on academic | Hierarchical Preetha (2021)
performance
MOOC session analysis K-means de Barba et al. (2020)
Categorizing students based on | Hierarchical Limbu and Sah (2019)
marks K-means Razaque et al. (2017)
Online interaction effect on | Hierarchical and non- | Avciand Ergiin (2019)
engagement, literacy and | hierarchical
performance K-means Khalil and Ebner (2017)
Categorizing students as | K-means Hooshyar, Pedaste and Yang
procrastinators or not (2019)

K-means Akram et al. (2019)
Determining attributes for | Not specified Ekubo and  Esiefarienrhe
underperforming students (2019)
Determining at-risk status Progressive Mahzoon et al. (2018)
Identify learning strategies Not specified Gasevi¢ et al. (2017)
Identification of high, medium | K-means Asif, Merceron, et al. (2017)
and low performing students
Student drop-out analysis K-means lam-On and Boongoen (2017)

2.6.2. Neural networks
A neural network is composed of an interconnected set of elements (known as neurons). The

algorithm learns by adjusting the connections (referred to as weights) between the neurons,
allowing for the neural network to perform a specific task or solve a problem (Beale, Hagan &

Demuth, 2010). Typically, an input value(s) is provided into the neural network and the weights
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are adjusted, resulting in an output value. Neural networks are useful for pattern discovery as well
for classification problems (Adejo & Connolly, 2018; Beale et al., 2010). Recent studies that used
neural networks, along with the study objectives and accuracy achieved, are listed in Table 2.5.

Table 2.5: Studies that used neural networks with objectives and accuracy achieved

Objective Reference Accuracy
Performance Bawah and Ussiph (2018) 90.4%
prediction Ha, Loan, Giap and Huong (2020) 86.1%
Olive, Huynh, Reynolds, Dougiamas and Wiese (2019) | 71.1 - 81.6%
Umar (2019) 73.6%
Adejo and Connolly (2018) 35-73.1%
Asif, Hina and Haque (2017) 70.4%
Asif, Merceron, et al. (2017) 62.5%
Taodzera, Twala and Carroll (2017) 60.2%
Predicting Hooshyar et al. (2019) 88.1 % - 99.5 %
procrastination

2.6.3. Naive Bayes
The Naive Bayes algorithm assumes that all attributes in a dataset are independent of each other

given a specific value (class). Using this assumption, the algorithm attempts to assign a value to
a target attribute of a given instance (Rish, 2001). Based on the exact nature of the probability
model, the dataset is then trained by the Naive Bayes algorithm in a supervised learning setting.
Despite the unlikely assumption of feature independence, Naive Bayes has been noted to work
effectively in solving many complex real-world problems. The benefits of using Naive Bayes is
reduced training time as well as removal of irrelevant features to improve classification
performance (Kavipriya & Karthikeyan, 2019). A list of recent studies covering the Naive Bayes
algorithm is shown in Table 2.6.

Table 2.6: List of recent studies using Naive Bayes algorithm with objective and accuracy

Objective Reference Accuracy
Performance prediction Silva et al. (2022) 88.1%

Ha et al. (2020) 86.1%

Ndou, Ajoodha and Jadhav (2020) | 83.4 — 84.4%

Asif, Merceron, et al. (2017) 83.6%

Asif, Hina and Haque (2017) 75.6%

Taodzera et al. (2017) 63.4%
Predicting procrastination | Hooshyar et al. (2019) 80.5-99.4 %
Algorithm comparison Fynn and Adamiak (2018) 59.4-90.2 %

(different faculties)

Enrollment prediction Wanjau and Muketha (2018) 72 %
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2.6.4. Support Vector Machine
Support vector machines (SVM) are learning algorithms that are commonly used for pattern

recognition, prediction tasks and data analysis. Assuming a given set of labeled instances
(examples) belonging to one of two classes, the algorithm develops a linear model that is capable
of assigning class values to unseen instances. When learning, a model (referred to as a hyperplane)
is developed that separates the instances of the two different classes. According to Adejo and
Connolly (2018), SVM can learn a greater number of patterns quickly and is more accurate in
generalization because of its errors minimization capacity. In addition, it has the ability to update

training patterns dynamically as more data instances are made available.

Some of the studies that applied SVM with the objective to predict performance accuracy are listed
in Table 2.7.

Table 2.7: Accuracy achieved for prediction studies using SVM

Reference Accuracy

Ha et al. (2020) 85.6 %

Ndou et al. (2020) 84.4 —89.2 %
Eddin, Khodeir and Elnemr (2018) | 49.2 %
Hooshyar et al. (2019) 71.9-99.6 %
Taodzera et al. (2017) 64.6 %

2.6.5. Random Forest
The Random Forest algorithm falls under the category of ensemble algorithms, which can be

defined as a combination of classifiers into a meta classifier. It is a process of utilizing multiple
algorithms with the objective of obtaining better predictions when compared to using just a single
classifier algorithm (Madasamy & Ramaswami, 2017). In the case of Random Forest, Kovanovi¢
et al. (2018) describe it as a combination of a large number of Decision Trees with the final
classification model being obtained via a voting mechanism built into the algorithm. Each
constructed Decision Tree is based on population sub-sample referred to as a bootstrap. These
bootstraps contain random instances with some of these instances being duplicated. The resultant
tree is then evaluated against a sample of instances that were not part of the bootstrap. Further to
this, each Decision Tree is created using only a subset of the features (attributes) of the dataset

(Kovanovi¢ et al., 2018). Ensemble algorithms have been noted to produce models with greater
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accuracy and higher generalization capacity (Kovanovi¢ et al., 2018). The success of the algorithm
is further justified by Batool et al. (2023) who conducted a literature survey study of 260 articles
and identified Random Forest as one of the most commonly used and successful algorithms for

performance prediction.

A number of studies covering the Random Forest algorithm are covered in the literature. These

studies are listed in Table 2.8:

Table 2.8: Objectives of studies using Random Forest algorithm with accuracy achieved

Objective Reference Accuracy
Performance prediction Silva et al. (2022) 97.5%
Akram et al. (2019) 87.2 - 95.4%
Ndou et al. (2020) 93 -95%
Sandoval, Gonzalez, Alarcon,
Pichara and Montenegro (2018) 82 - 86.1%
Adejo and Connolly (2018) 73.1-81.6%
Ha et al. (2020) 80.7%
Eddin et al. (2018) 72.8%
Asif, Merceron, et al. (2017) 71.1%
Asif, Hina and Haque (2017) 69.5%
Predicting procrastination Hooshyar et al. (2019) 86.8 — 99.5%
Understand student self- reflection | Kovanovi¢ et al. (2018) 87%

2.6.6. Decision Tree algorithms
According to Nudelman et al. (2019), Decision Tree algorithms apply the concept of information

entropy to divide the classification process into smaller sub-problems which are easier to solve.
As the name states, the algorithm represents a tree structure made up of nodes and branches. Each
node represents an attribute of the dataset and a number of branches stem from the node, where
each branch represents a value that the attribute can take (Alloghani et al., 2020). A node in a
Decision Tree is continuously divided into sub-nodes via its descendants. A node with zero (0)
descendants indicates a prediction has been made. Nudelman et al. (2019) states that an attribute’s
influence is determined by its place in the Decision Tree: the higher the node (attribute), the greater

the influence the attribute has in predicting a value.

Decision tree algorithms are one of the most commonly used algorithms for performing

educational prediction or classification (Kumar & Salal, 2019; Wise, 2019). Table 2.9 lists recent

45



studies that have implemented Decision Tree algorithms grouped by the main objective of each of
the studies. The majority of studies focused on accuracy as the primary measure for performance,
although other performance measures were also reported upon (discussed further in chapter 7).

Thus, the accuracy of each study is also included in Table 2.9.

Table 2.9: Objectives for studies using Decision Tree algorithms

Objective (number of | Reference Accuracy

studies)

Performance prediction | Bawah and Ussiph (2018) 100%

(21) Saheed, Oladele, Akanni and Ibrahim (2018) 98.3%
Akram et al. (2019) 94.5%
Nudelman et al. (2019) 92%
Ndou et al. (2020) 91.4%
Agrawal, Vishwakarma and Sharma (2017) 90%
Hasan et al. (2020) 87%
Sunday et al. (2020) 87%
Khakata, Omwenga and Msanjila (2019) 84.6%
Abaah Jnr (2019) 82%
Tegegne and Alemu (2018) 81.4%
Adejo and Connolly (2018) 78%
Silva et al. (2022); 77.5%
Asif, Hina and Haque (2017) 74.7%
Jalota and Agrawal (2019) 73.6%
Ha et al. (2020) 73.4%
Taodzera et al. (2017) 65.8%
Olaniyi et al. (2017) 65.7%
Hasan et al. (2018) 63.6%
Hamoud, Hashim and Awadh (2018) 63.4%
Kumar and Singh (2017) 61.4%

At-risk prediction (2) Ribot et al. (2020) 92.1%
Al luhaybi et al. (2018) 84%

Procrastination Hooshyar et al. (2019) 99.6%

prediction (1)

Enrollment prediction | Wanjau and Muketha (2018) 84%

(1)

Drop-out prediction (1) | Viloria et al. (2020) 79.8%

Algorithm comparisons | Fynn and Adamiak (2018) 90.5%

(3) Eddin et al. (2018) 72.5%
Asif, Merceron, et al. (2017) 69.2%
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A commonly identified advantage of using a Decision Tree algorithm is that the model created is
usually easy to understand by the analyst and end user (Yusuf & Lawan, 2018). From an
implementation standpoint, Decision Tree algorithms are flexible enough to handle different input
data types, namely text, numeric and nominal data types. Decision tree algorithms are also able to
process erroneous or missing data values by creating branches specifically for these problematic
values. Finally, Decision Tree algorithms are known to be implemented fairly quickly with

minimal time to create the model (Hamoud et al., 2018).

In order to conduct the analysis described in this section, various software or tools are available.

Some of the more common tools are described in the next section.

2.7. Common tools or applications used for Learning Analytics
This section describes common tools or applications used for LA tasks. These tools relate to

commonly identified software applications aimed at applying different algorithms and functions
to user datasets with the objective of data cleaning, preparation, analysis and prediction of

student’s learning interaction and performance.

2.7.1. WEKA
The Waikato Environment for Knowledge Analysis (WEKA) tool is an open-source application

that can be used for various data mining tasks and is an accepted tool for performing student
prediction tasks (Batool et al., 2023). To accomplish these tasks, the application is constituted of
a number of algorithms and functions that can be used for preprocessing, classification, clustering
and attribute selection, amongst others (Vambe & Sibanda, 2017). WEKA is developed using the
Java programming language and is available for use on most operating systems. WEKA accepts
data as a single flat file specified in .arff (Attribute-Relation File Format) format as well as .csv

format amongst others.
Advantages of WEKA, according to Abaah Jnr (2019) is that it is open-source and freely available,

platform independent, and can be easily used by non-data mining specialists. Salihoun (2020) also

stated the availability of online support via WEKA mailing lists, tutorials, wikis and bug reports.
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WEKA also allows for the addition of user created algorithms or downloading of algorithms and

functions created by others in the online analytics community.

2.7.2. KNIME
According to Berthold et al. (2009), the Konstanz Information Miner (KNIME) is a modular

environment that allows for visual assembly and interactive execution of a data mining task. The
tool is open-source and allows for both data mining and reporting tasks similar to that of WEKA
(Salihoun, 2020). Also, similar to WEKA, KNIME incorporates integration of user created
algorithms and tools for data mining purposes. The modular nature of KNIME allows for the
ability to incorporate a number of different data sources in different formats such as database files,

MS-Excel files, .csv files, .arff files etc.

A KNIME workflow is created using a combination of nodes, with each node performing a specific
function such as pre-processing, analysis, colour allocation, machine learning application, graph
display, etc. (Berthold et al., 2009). Connections are formed between the nodes, indicating the
transport of data between two nodes. An advantage of this approach is that the workflow node
stores the result permanently and can be stopped at any time to be resumed later. A user can then
adjust the nodes and the entire workflow need not be started from the beginning (Berthold et al.,
2009).

273. R
R is an open-source programming language as well as a data analysis environment. As with

WEKA and KNIME, being open-source allows for the development of new techniques and
functions that can be incorporated into the R environment for use by data scientists (Patil, 2016).
The common version of R consists of an Integrated Development Environment (IDE) consisting

of a console window, workspace view and data editor.

R provides a wide variety of statistical, graphical and machine learning techniques. It has several
built-in functions to allow for data extraction, data preparation, statistical analysis, predictive
modelling and data visualization. It is one of the more popular tools used in industry and has a
growing online community support that updates and adds new functionality consistently (Prajapati,

2013).
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2.7.4. Python and Jupyter notebook
Python is a programming language that allows for the manipulation of data and engineering of

various techniques and functions. Salihoun (2020) states that Python with Jupyter Notebook is an
interactive environment with features for the creation and sharing of documents as well as data
cleaning and transformation, simulation, modeling, visualization and machine learning. Besides
this, one of its main functions is to keep track of the research process (Randles, Pasquetto, Golshan
& Borgman, 2017). From an academic perspective, keeping track of the steps of the research
process allows for better reproduction or replication of any experiments undertaken in the research
(Randles et al., 2017).

Jupyter notebook allows for storage of data within online repositories that can be easily accessed
by a variety of research objects. Jupyter notebook also has the advantage of being both machine
and human-readable, allowing for interoperability with other compatible applications as well as

for academic communication (Randles et al., 2017).

2.7.5. RapidMiner
RapidMiner is another popular tool used in analytics due to its easy to learn user interface

(Prekopcsak, Makrai, Henk & Gaspar-Papanek, 2011). It is a data science software platform that
allows for data preparation, machine learning as well as predictive analytics. The tool contains a
number of built-in algorithms for handling classification, clustering, rule mining, regression and
others (Salihoun, 2020). Similar to WEKA and KNIME, it also allows for the addition of user
created extensions that can provide additional statistical, analytical and machine learning functions
(Prekopcsak et al., 2011). RapidMiner is free and open-source and a number of tutorials are
available to assist new users (Salihoun, 2020).

2.8. ldentification of potential gaps in the literature
This literature review chapter outlines the influence of LA within the higher education

environment. The general definition of LA is given, followed by how it fits into the world of Big
Data in higher education. The most common aspects of the LA process are discussed, these being
data acquisition, data preparation, algorithms applied to the data, and commonly used tools for LA

application studies. From an algorithm perspective, the most commonly used algorithms in recent
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literature were Decision Trees, clustering, Naive Bayes, Neural Networks and Random Forest

algorithms.

After reviewing the literature found, LA or EDM research is being conducted in numerous
countries, with the majority of studies emanating from the first world countries such as those in
Europe, the United States and Australasia. From a developing country perspective, there is slow
progress in the development of LA within the African continent (Prinsloo & Kaliisa, 2022b). In a
2023 literature survey study by Sghir, Adadi and Lahmer (2023), out of 74 studies identified
between 2012 and 2022, the majority of studies emanated from the United Kingdom, USA, India
and Spain with only one (1) study identified from Africa. Table 2.10 outlines studies that were
found relating to LA or EDM that involved countries in Africa from 2017 to 2022 (six years).

Table 2.10: Recent LA/EDM application studies conducted in Africa
LA/EDM applications (19) LA implementation research (2)
Olaniyi et al. (2017); Mwalumbwe and Mtebe | Prinsloo and Slade (2017); Okewu and
(2017); Taodzera et al. (2017); Vambe and | Daramola (2017);
Sibanda (2017); Oloruntoba and Akinode
(2017); Bawah and Ussiph (2018); Saheed et | LA/EDM overviews (1)
al. (2018); Tegegne and Alemu (2018); | Maphosa and Maphosa (2020)
Wanjau and Muketha (2018); Kritzinger,
Lemmens and Potgieter (2018); Popoola et al.
(2018); Gulint and Adam (2019); Khakata et
al. (2019); Nudelman et al. (2019); Adekitan
and Salau (2019); Ogunde and Ajibade (2019);
Umar (2019); Ndou et al. (2020); Sunday et al.

(2020)
Performance comparisons (1) Challenges for adoption (6)
Fynn and Adamiak (2018) Prinsloo (2018); Prinsloo, Slade and Khalil

(2018); Ngqulu (2018); Olivier (2020);
Prinsloo and Kaliisa (2022b); Prinsloo and
Kaliisa (2022a)

As can be seen in Table 2.10, only 29 articles over six (6) years were identified, indicating the lack
of research related to LA within the African continent. The lack of LA or EDM research was also
observed by both Prinsloo and Kaliisa (2022b) and Maphosa and Maphosa (2020) respectively.
Table 2.11 outlines a summary of the characteristics of the LA/EDM application studies conducted

in Africa.
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Table 2.11: LA/EDM Africa-based application studies with problem characteristics

Study Country | Data Source No. of Technique
students
in study
Mwalumbwe and | Tanzania | LMS (2 Courses) 171 Correlation
Mtebe (2017) Regression
Taodzera et al. (2017) | South Demographics 1366 SVM
Africa School marks Neural network
School details Decision tree
Regression
Naive Bayes
Olaniyi etal. (2017) | Nigeria | Past university marks | 285 BFTree
Course activities CART
Decision tree
Vambe and Sibanda | South Past university marks | 476 Decision tree
(2017) Africa
Oloruntoba and | Nigeria | School marks 89 SVM
Akinode (2017) Past university marks Neural network
Decision tree
Regression
Bawah and Ussiph | Ghana School marks 525 Neural network
(2018) School details Decision tree
Past university marks K-nearest neighbour
Saheed et al. (2018) | Nigeria | Demographics 234 Decision tree
Financial Regression trees
Lecture attendance
Tegegne and Alemu | Ethiopia | School marks 5729 Decision tree
(2018) Entry exam marks
Choice of degree
1%t year marks
Fynn and Adamiak | South Demographic 186 174 ZeroR
(2018) Africa Registration instances | OneR
School marks Naive Bayes
Past university marks Regression
Decision tree
Wanjau and Muketha | Kenya School marks 209 Decision tree
(2018) Financial Naive Bayes
Opinion Regression trees
Demographics
Kritzinger et al. | South Demographics 1084 ANOVA
(2018) Africa School marks CHAID analysis

Past university marks
Learning strategies

Continued on next page...
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Table 2.11 continued

Course activities

Study Country | Data Source No. of | Technique
students
in study
Popoola et al. (2018) | Nigeria | Past university marks | 1841 Descriptive statistics
Frequency distribution
ANOVA
Post-hoc tests
Gulint and Adam | Ethiopia | Opinion 5454 Association rules
(2019) instances
Khakata et al. (2019) | Kenya Opinion 747 Decision tree
Adekitan and Salau | Nigeria | Pastuniversity marks | 1841 - Neural network
(2019) Same as | Random Forest
Popoola et | Decision trees
al. (2018) | Naive bayes
Tree ensemble
Regression
Ogunde and Ajibade | Nigeria | Past university marks | 10601 K-nearest neighbour
(2019) instances
Nudelman et al. | South School marks 783 Random Forest
(2019) Africa Demographics Decision Tree
Registration Naive Bayes
Bayesian Network
Umar (2019) Nigeria | Demographics 61 Neural Network
School marks
Ndou et al. (2020) South School marks 2000 Decision Trees
Africa Demographics Naive Bayes
Random Forest
SMO
Regression
Logistic Model Trees
Sunday et al. (2020) | Nigeria | Past university marks | 239 Decision Tree

The dataset by Ndou et al. (2020) was a synthetically created dataset (based on SA student data)

of 50000 students with 2000 students sampled for the purposes of the study. This dataset is the

only publicly available dataset. The other datasets identified either focus on an individual course,

a small number of courses, or are a collection of students from a variety of degrees or colleges.

Many studies, for example Fynn and Adamiak (2018), consider the student instances and attributes

as a whole rather than based on the degrees that they are doing or the courses that they are

registered for. It cannot be assumed that all colleges and degrees are the same and that the same
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attributes can be applied for prediction. For example, a student’s mathematics result may be a

better predictor at a Science-based college than at an Arts college.

2.9 Chapter Summary
The chapter provided an overview of LA, first covering the concepts (Section 2.2) and then

different processes involved in LA (Sections 2.3 to 2.6). Section 2.7 covered the most commonly

identified tools used for LA based on a survey of the literature.

One of the key points noted was the lack of LA/EDM studies conducted in Africa when compared
to the rest of the world. It was evident and noted by other authors that Africa has been slow to
take advantage of the benefits of LA, however this has been due to other challenges such as lack

of technological infrastructure.

The development of datasets and making them available would further encourage application and
evidence-based research in LA. This would then allow for further research on LA implementation

studies within HEIs in Africa.

All studies identified have individually focused on specific aspects of LA such as ethical issues,
data preparation, pre-processing or learning algorithm application. No studies were identified that
systematically cover the full LA process from the data acquisition (including ethical clearance,
data collection, preparation and preprocessing) to application of learning algorithms and artificial

intelligence techniques with discussion of results.
The next chapter covers the research methodology for this research, including the adopted LA

research model that covers the entire LA process, aspects of data acquisition, and choice of
application that will be used to further the knowledge in the LA field.
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Chapter 3 — Research methodology

Chapter 1

Introduction
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Literature Review

Chapter 3
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Methodology
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Chapter 5

LA Model
Prediction
Development

Chapter 6
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Genetic Algorithms!

esearch Setting ‘

Development of /
artefact

Chapter 7

Performance Chagpler:S

Measure
Comparison with
Other Studies |

Demonstration and /

evaluation

Conclusion

Figure 3.1: Thesis structure

3.1. Introduction
According to Rajasekar and Verma (2013), research 1s defined as a process of the logical and/or

systematic discovering of novel information about a particular topic of interest. The objective of
the research covered in this dissertation was to better understand how learning analytics can be
applied to three UKZN datasets consisting of IS&T student data. Chapter 3 is the final chapter
used to establish the setting of the research (see Figure 3.1) and describes the research

methodology.
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According to Creswell (2014), a research approach (methodology) is a set of plans and procedures
for a research project. This involves the description of assumptions and detailed steps related to
collection of data, data analysis, interpretation of results and all other steps involved in the research
project. As described in the first two chapters, this study focuses on learning analytics (LA) and,
as with any other study, also requires a research approach. An overview of the chapter is illustrated

in Figure 3.2 below and described thereafter.

35
Research Model

i
Research philosophy

34 3.6
Design Science research Data collection

3.3
Information Systems
research

3.7

Tools used for analysis

Figure 3.2: Map for Chapter 3 coverage

Section 3.2 covers the common research philosophies used in research that are often used to guide
the direction of the research. Learning analytics can fall under the domain of Information Systems
(IS) research where two approaches are most commonly followed: Behavioural Science and
Design Science (Hevner, March, Park & Ram, 2004). Section 3.3 discusses these two approaches,
and why, in this case, the Design Science approach is most appropriate. The Design Science
approach 1is then covered in relation to this study (Section 3.4), 1.e. how the research objectives
align with the design science model that is being used. This is followed by the research model to
be used (Section 3.5), method of data collection (Section 3.6) as well as how analysis and

prediction methods were conducted in order to meet the objectives of the study (Section 3.7).
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3.2. Research philosophies
According to Zukauskas, Vveinhardt and Andriukaitiené (2018), the research philosophy can

guide the researcher towards choosing the most appropriate strategy, problem formulation, mode
of data collection, processing and analysis This section, therefore, covers four commonly
identified research philosophies, that being positivist, interpretivist, realistic, and pragmatic

philosophies.

The positivist research philosophy assumes that the world can be viewed objectively and the
researcher can work independently and not be biased (Zukauskas et al., 2018). The opposite of
positivism is the interpretivist/constructivist philosophy where it is understood that the world
position is subjective in nature (Zukauskas et al., 2018). A pragmatic research philosophy is one
that is dependent on the research problem where the researcher approaches the problem in the best
manner required to solve the problem (Zukauskas et al., 2018). Finally, the realistic research
philosophy is one that combines the positivist and interpretivist philosophies. Table 3.1, adapted
from Zukauskas et al. (2018), outlines the research philosophy as well as the procedure and tools

used for data collection.

Table 3.1: Philosophies, research methods and suggested instruments

Research philosophy | Research method Research instrument examples
Positivism Quantitave Experiments

Tests

Scales
Interpretivism Qualitative Interview

Observation
Document/file study
Image data analysis

Pragmatism Qualitative and/or Instruments from positivism as well
qualitative as interpretivism
Realism Qualitative, Variety of measures to reduce bias

guantitative and
mixed methods

As can be seen in Table 3.1, with a positivist viewpoint, a quantitative research approach is

generally preferred as only quantifiable data is considered as evidence (Giddings & Grant, 2006).

56



A large amount of data collected is preferable in order to improve the likelihood of statistical
significant correlation (Giddings & Grant, 2006). With regard to the interpretevist viewpoint, a
qualitative research method is preferred where the data collected is in the form of perspective. A
number of different perspectives, in combination with the researcher’s perspective, allows for a
more holistic truth of the subject of study (Giddings & Grant, 2006). The viewpoint of the realist
would result in following a combination of qualitative, quantitative and mixed methods as this
would depend on contextual and historical factors (Zukauskas et al., 2018). Finally, a pragmatic
viewpoint will follow a methodology dependent on what is required to solve the problem
(Zukauskas et al., 2018).

With the research philosophies described above, the next section discusses an area that LA falls

under, that being Information Systems research.

3.3. Information Systems research
The objective of IS within an organization is to ensure the continuous improvement of efficiency

and effectiveness of processes within that organization (Hevner et al., 2004). Thus, the objective
of any research endeavor in IS is to improve the body of knowledge that assists in the improvement
in the application of Information Technology in the relevant organization (Hevner et al., 2004).
The research paradigms of behavioural science and design science play a role in improving the IS
body of knowledge (Hevner & Chatterjee, 2010).

Behavioural Science stems from the methods used for natural science research. From an IS
perspective, this research paradigm is used when testing and/or justifying theories in order to
explain the IS related activities (analysis, design, implementation and/or use) within an
organization (Hevner & Chatterjee, 2010). The importance of this area of research is that it
provides practitioners with relevant information regarding the actions of people, technology and
organizations and how these actions should be managed to improve efficiency and effectiveness
(Hevner & Chatterjee, 2010). In fact, according to Hevner and Chatterjee (2010), this form of
research has been dominant in the IS discipline where the majority of studies try to understand the
impact of artefacts (for example design models and technology) and its effect on people and

organizations.
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Design Science research is often seen as a research area that falls within the computer science and
engineering disciplines. Some of the problem characteristics where design science research is
suitable include unstable requirements, constraints defined within an uncertain environmental
context, complex interactions amongst the problem subcomponents, difficulty in adapting to
change, and a critical dependence on human cognitive abilities to produce effective solutions
(Hevner & Chatterjee, 2010). Design science results in the development of new artefact(s) which
can be evaluated using behavioural science methodologies. Thus, behavioural science and design
science have an important relationship that is necessary for the continuing development and

enhancement of the knowledge base in IS. This relationship is illustrated in Figure 3.3.

IS Artefact for use

Design Science Behavioural Science
Research Research

(E——

IS Theories provide insight

Figure 3.3: Complementary relationship between design science and behavioural science
research areas (Hevner & Chatterjee, 2010)

In the context of this study, the Design Science research methodology with a pragmatic philosophy
was used and an artefact was developed. By addressing the research objectives of this study, the
artefact developed for this study was in the form of a process model that can be used as part of
analysis of a student profile, as well as for the prediction of student academic performance based
on the aspects of the student profile. The next sections provide more detail on the Design Science

research model as well as details on the development of this artefact.

3.4. Design Science research approach
According to Hevner and Chatterjee (2010), Design Science falls under a pragmatic research

paradigm, meaning that the main goal is to address the research objectives. A pragmatic

philosophy allows for the research objectives to be dealt with using any philosophy (such as
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positivism, post modernism or critical realism) that would best allow for the requirements of the
objectives to be met (Saunders, Lewis & Thornhill, 2019). There are two main objectives in
Design Science, these being the development of an artefact(s) as well as the evaluation and fitting
of the artefact(s) to solve the problem (Cronholm & Gobel, 2016).

To assist with carrying out of Design Science research, Hevner et al. (2004) provided a set of seven
(7) guidelines. These guidelines, when followed with an appropriate Design Science methodology,
will allow for the implementation of an effective research project. The guidelines are summarized

in the table below:

Table 3.2: Design Science guidelines by Hevner et al. (2004)
Guideline Description
1. Design as an artefact The Design Science research project must produce a
complete, usable artefact.

2. Relevence to the problem The Design Science research project must result in
the development of a solution to the relevent
problem.

3. Evaluation of the design The usability and quality of the developed artefact

must be determined through demonstration and
compared against some performance criteria

4. Contribution of the research The Design Science research conducted must have a
significant and verifiable contribution towards the
artefact, its design or developments as well as the
methodologies used.

5. Research rigor Methodologies used must be carried out in a
disciplined manner during both the development and
the evaluation of the artefact.

6. Design as a search process The development of a viable, quality artefact
requires the effective use of any or all legal resources
available.

7. Research communication The Design Science research implemented must be

effectively presented to all relevant stakeholders.
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There are a number of methodology models identified for Design Science research. This includes
the Design Science Research Model (DSRM) by Peffers, Tuunanen, Rothenberger and Chatterjee
(2007), the Design Science Research Process Model by Vaishnavi, Kuechler and Petter (2004),
the Design Science Research method for Decision Support Systems development (Arnott, 2006),
Soft Design Science Methodology (Baskerville, Pries-Heje & Venable, 2009) and the Learning
Analytics Information Systems (LAIS) Design Methodology by (Nguyen, Gardner & Sheridan,
2020). Each of these models have similar activities such as identification of the problem,

suggesting of solutions, development of an artefact and evaluation or comparison of the artefacts

For this research, the DSRM as proposed by Peffers et al. (2007) was followed when developing
the artefact. While the other models had similar stages, the model by Peffers et al. (2007) suggests
an iterative approach, thus allowing for a pragmatic philosophy being adopted. A pragmatic
philosophy was also suggested Hevner et al. (2004) in terms of guidelines 6 (see Table 3.2). The
LAIS proposed by Nguyen et al. (2020) also follows an iterative approach but is more focused on
LA implementation at an institutional level and includes architectural and service based activities
that are outside the scope of this study. Thus, the DSRM model by Peffers et al. (2007) is well
suited due to its ability to work through what can be classified as a practical, real-world problem.
The iterative nature of the model (as shown in Figure 3.4), allows for the development of effective
artefacts that can be used by teaching staff to improve teaching and learning outcomes (Chatti et
al., 2012).

The DSRM is made up of six (6) main activities. The authors of the DSRM identified these
activities based on common steps followed by leading design science researchers. The description
of these activities as well as how they relates to this research is described in subsections 3.4.1 to
3.4.6.
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Figure 3.4: DSRM Framework (Peffers et al., 2007)

3.4.1. Problem identification and motivation
This activity involves forming the definition of the problem as well as the rewards or benefits of

the solution. This is necessary as it assists in identifying what artefact(s) must be developed.
Peffers et al. (2007) suggest that the problem be broken down conceptually so that the artefact(s)
can meet the complex requirements. This stage was similarly described in other design models as
problem awareness (Vaishnavi et al., 2004), problem recognition (Arnott, 2006) or problem
situation (Baskerville et al., 2009). Problem identification arises from new developments in the
problem domain and are usually in the form of situations that need to be resolved rather than

explanations to unanswered questions (Vaishnavi et al., 2004).

From the perspective of this study, the problem statement outlined in Section 1.3 as well as the
motivation for solving the problem has been established. The problem has also been broken down
into research questions that outline the complexity of the problem. The problem statement, taken

from Section 1.3 is as follows:

In order to predict and understand student academic performance in higher education institutions,
the use of technology in learning analytics has become increasingly important due to limited

resources and an ever-increasing number of students.

61




The motivation for this study, as described in Section 1.7, is to better use the large amounts of data
continuously stored at higher education institutions with the objective of better understanding and
predicting student academic performance, thereby improving student learning outcomes.

3.4.2. Defining the objectives for a solution
From the problem statement, the objectives of the study are conceptualized (Section 1.5). The

objectives to the solution can be quantitative, such as measures that could determine when a
solution is better than the current scenario, or qualitative in nature, such as how the new solution
would solve the current problem scenario (Peffers et al., 2007). This stage was also referred to as
“Suggestion” (Arnott, 2006; Vaishnavi et al., 2004).

Peffers et al. (2007) note that the objectives for a Design Science research study focus on design
and development. In the context of this study, the research objectives also focus on design and
development, which when completed, will result in the completion of the artefact. The research
objectives for this study (from Section 1.5) are listed below:

1. To integrate the relevant university data sources in preparation for classification.
To achieve this objective, an artefact is developed that guides the collection and organization of
the data in a form such that the data can be applied to machine learning algorithms and/or artificial

intelligence techniques.

2. To extract, clean and classify the integrated data.
In order to address this objective, aspects of data preparation are addressed. This includes dealing
with the removal of redundant or duplicate data as well as converting the data into an appropriate

format in order to ensure effective processing and prediction.

3. To train the data in order to determine patterns and useful information for student
performance prediction.
This objective is addressed by utilizing feature selection in combination with machine learning

and/or artificial intelligence methods in order to develop prediction models.
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4. To determine the effectiveness of the training techniques by evaluating their accuracy in
terms of how they predict student performance.

This will be accomplished by performing a comparison between the results of the artefact with

data and results that have already been generated to determine how accurately the artefact can

make predictions.

5. To evaluate the results generated by the artefact against other similar artefacts.
This will be accomplished by comparing the performance of the model generated through the
artefact against that of other LA studies in the literature based on accuracy and other assessment

metrics.

3.4.3. Design and development
This activity involves the creation of the artefact. As described in the previous section, an artefact

can be a construct, model, method, instance or any technical resource or information that
contributes towards enhancing the function, effectiveness and/or efficiency of an organization,
team or people involved in Information Systems (Peffers et al., 2007). This activity also includes
determining the functionality of the artefact and the use of resources required to develop the
artefact. These resources include the knowledge base that can be used to develop the artefact.
Table 3.3 provides the most common artefact types that result from Design Science research
(\Vaishnavi et al., 2004).
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Table 3.3: List of potential types of artefacts (Vaishnavi et al., 2004)

Artefact type Description

1. Constructs Theoretical concepts within the domain of study

2. Models Set of relationships between constructs

3. Frameworks Output to support or guide through a process

4. Architectures High level system structures

5. Design principles Core rules or philosophies to guide through a design process

6. Methods Step-by-step guide to follow for task completion

7. Instantations Output that is the result of implementing other artefacts such as
methods, frameworks, models, design principles or constructs

8. Design theories Combination of one or more artefacts that results in prescriptive
statements for meeting an objective

From the perspective of this study, one of the artefacts developed was a process model, outlining
the steps required to analyze and predict student academic performance based on the data sources
provided. This process model combines the characteristics of artefact type 6 and artefact type 3
(see Table 3.3) in that it provides a step by step process to guide LA researchers. The process
model is presented in Section 3.5 while the aspects considered during the design and development
of this model are covered in the next three chapters. Chapter 4 covers the data collection, cleaning
and preparation stages. Chapter 5 and Chapter 6 cover the description of the machine learning and
artificial intelligence techniques used in this study to develop and test the student academic
performance prediction models. In this case, the techniques are the Decision Tree and Random
Forest algorithms (machine learning techniques) as well as the Genetic Algorithm and Optimized

Forest algorithm (artificial intelligence).

In addition, a further artefact developed from this study was in the form of a dataset. In the case
of Table 3.3, this artefact would fall under artefact type 7 where the data collected in this study
was anonymized, cleaned and formatted for use for analytics. Future LA researchers may use this
dataset as part of testing for new techniques or algorithms to improve student performance

analysis.
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3.4.4. Demonstration
This activity involves application of the artefact to solve the problem. This stage can be perceived

as part of the testing of the artefact to determine how well it solves the problem. Demonstration
can involve the use of case studies, experiments, simulations or any other activity (Peffers et al.,
2007).

The implementation or application of the artefact, together with the techniques used to anonymize
data as well as the algorithms used for prediction are covered in Chapters 4, 5 and 6. In Chapter
4, the data collection process is described as well as what techniques are used to effectively
anonymize, clean and prepare the data for prediction or classification. Chapter 5 and Chapter 6
cover the demonstration of the Decision Tree, Random Forest, Genetic and Optimized Forest
algorithms and how these algorithms performed when applied to the UKZN ISTN dataset.

3.4.5. Evaluation
This activity involves measuring how well or to what extent the artefact solves the problem. This

can be accomplished by comparing the objectives of the study against observed results from the
previous activity (Demonstration). This activity requires knowledge of evaluation techniques and
relevant metrics. Evaluation can be in the form of a document outlining how the objectives have
been met, quantitative evaluations such as statistics and graphs, or quantifiable measures such as

response times.

In the case of this study, two forms of evaluation were considered. Firstly, the prediction models
developed by the process model was tested against unseen data instances, and these evaluations
are discussed in Chapter 5 and Chapter 6. Secondly, Chapter 7 covers a comparison of the best
performance measure values obtained in this study against performance measure values reported

in other learning analytics or electronic data mining studies identified in the literature.

3.4.6. Communication
The final activity of the DSRM is to convey the details of the artefact and its importance. These

details include the results of demonstration and evaluation, and the benefits of the artefact to
researchers and other relevant stakeholders. This dissertation, in addition to two research outputs

(see page iii), formed the communication medium for the artefact, its importance and relevance to
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the use and application of LA in higher education, how the study is carried out resulting in the
artefact development, and the application of the artefact to the problem domain and its resultant

ability to predict student performance.

It should be noted that the activities of the DSRM may not necessarily be executed in the order
specified. The activities, if needed, could iterate between development, demonstration, evaluation
and communication (Peffers et al., 2007). This observation is also in line with other authors that
feel that design science follows a pragmatic approach, such as Hevner and Chatterjee (2010); and
from an LA perspective, Gibson and Lang (2018) have stated that a pragmatic approach is 1deal
for an LA study.

3.5. Research model
This section provides the details of the artefact developed that addresses the research objectives of

the study. Firstly, in section 3.5.1, an overview of previous frameworks and models related to

learning analytics is covered. Section 3.5.2 discusses the process model developed for this study.

3.5.1. An overview of learning analytics models and frameworks
Sections 3.5.1.1 to 3.5.1.5 describes different LA methodologies and frameworks that have been

identified in the literature. Section 3.5.1.6 describes the LA model that has been adopted for this
study.

3.5.1.1. Five stage LA model (Campbell, DeBlois & Oblinger, 2007)
This LA model suggests five (5) stages for developing a model for generating information for very

large data sets. This model is shown in Figure 3.5.

Capturing — Reporting — Develop — . - Refining the
Data Data the developed

Patterns prediction model

model

Figure 3.5: LA model suggested by Campbell et al. (2007)

The first stage of the model, Capturing Data, involves the selection of available data sources and
capturing of data relevant to the LA initiative being performed. In the second stage, statistical and

analytical techniques are applied to the data obtained from stage one in order to produce
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information. In the case of LA, this information relates to student academic performance with the
intention to identify student weaknesses and provide feedback to students and relevant
stakeholders (Haggag et al., 2018). For stage three, a model can be defined using a researcher’s
preferred technique. The model may incorporate a number of variables or data attributes from the
data set and each variable can be associated with weightings based on its importance to predicting
the target value. This model can then be tested to determine its accuracy of how the model predicts
the target value (Haggag et al., 2018). The intervention stage (stage four) involves the teaching
staff taking action with students that have been predicted to struggle and intervening by changing
their learning habits (Haggag et al., 2018). Finally, stage 5 (refining the model) involves assessing
all aspects of the LA initiative and seeking improvements for future iterations. This includes
looking at the data sources and how data is represented and captured, evaluating the techniques
used for information generation, and identifying improvements to the prediction model based on

importance of variables/attributes (Haggag et al., 2018).

3.5.1.2. Sequence model for learning analytics (Mahzoon et al., 2018)
In the study by Mahzoon et al. (2018), each student is represented as a sequence of nodes (see

Figure 3.6). The initial node contains the student’s demographic data which includes their age,
gender, and employment status, amongst others. The subsequent nodes respectively represent the
set of activities performed by a student during a semester. The number of subsequent nodes in this
case is the total number of semesters that a student is part of. The final node is an outcome node
that contains the final status of the student (such as graduated, inactive or withdrawing, as well as
the date of this outcome). Mahzoon et al. (2018) identified the benefits of this model as being a
greater focus on time-based events, separation of events (in this case by semester), as well as

improved story telling.
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Figure 3.6: Sequence model for student representation in LA project proposed by
(Mahzoon et al., 2018)

3.5.1.3. Learning analytics cycle
The LA cycle is an iterative, cyclical process that is made up of six (6) steps, illustrated in Figure

3.7. Explanations of the LA cycle have also varied, with some authors such as Clow (2012) only
using four (4) steps, these being the student (learner), data, metrics and intervention. The cycle in
Figure 3.7 expands upon the steps to include learning activities that students participate in,
resulting in the collection of data. This data is processed, stored and analyzed. The resultant
analysis can be visualized for easier understanding, allowing for action to be taken, further

resulting in more learning activities (Chatti & Muslim, 2019).

Data
Collection

Visualization

Figure 3.7: LA Cycle adapted from Chatti and Muslim (2019)

68



3.5.1.4. Learning analytics model by Siemens (2013)
The LA model proposed by Siemens (2013) consists of seven (7) components, these being

collection and acquisition, storage, cleaning,

mtegration, analysis, representation and

visualization, and action. The model is presented in Figure 3.8.

Intervention
Optimization
Alerts/Warnings
Guidance
System improvements

Collection +
Acqguisition

" Data sources identified |
depending on analytics
objective

Data Loop

Tools and Techniques of
analysis

\

Multiple
datasets/formats

Structured and
unstructured data

Integration

\

Figure 3.8: Learning analytics model by Siemens (2013)

Siemens (2013) describes the model as providing a system wide approach to analytics. The model

indicates processes, as with other learning analytics process models. However, where necessary,

interventions and resources are specified in order to assist with implementation (Siemens, 2013).

The first stage usually begins with data collection and acquisition, where data sources are identified

depending on the objective of the learning analytics initiative. The objectives could be related to

marketing, learning, administration or research amongst others.

During the cleaning stage,

structured and unstructured data need to be considered, while the integration stage involves the

consideration of multiple data formats. The stage of analysis involves the application of various

tools and techniques such as concept development, prediction and risk determination. The final
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stage of action involves the relevant administration or teaching staff to implement changes as per
the interpretation of the analysis and visualization stages. This may include interventions, resource
management, optimizations and system improvement, amongst others. The final component is the
inclusion of the data loop which incorporates the team of individuals that may be involved in the

learning analytics initiative (Siemens, 2013).

3.5.1.5. Learning analytics models and frameworks that focus on conceptual and physical
implementation
While this is not the focus of this study, for the sake of completeness and an appreciation of LA-

based frameworks and models, this section describes the most commonly identified models that
are aimed at conceptual and physical implementation of learning analytics at academic institutions.

The reference model proposed by Chatti et al. (2012) is aimed at providing a classification schema
of LA initiatives. The reference model is made up of four dimensions covering data source
requirements (what?), individuals and stakeholders (who?), purpose and objective of LA
implementation (why?), and finally, the techniques required to implement the LA project (how?).

A similar framework is proposed by Greller and Drachsler (2012) but also includes two additional
dimensions, these being internal and external limitations. These limitations are aspects that may
affect how the LA initiative is carried out and the scope of its functions (Greller & Drachsler,
2012). The external limitations refer to the aspects around the environment that may affect the
implementation, such as the ethical and privacy aspects of storing, using and disseminating digital
data, as well as local and international laws regarding data regulation. In terms of the internal
limitations, the authors identify human-related factors within the organization, for example the
competency of individuals and their ability to use the LA system as well as interpret the results
produced by the system. Competency can also affect acceptance of the system. A poor
understanding of LA could result in users rejecting the initiative. Greller and Drachsler (2012)
emphasize the importance of behavioural science and propose an updated Technology Acceptance

Model (TAM) that should be used to evaluate the use and acceptance of LA initiatives.

The original ROMA framework was used to assist in strategic and policy development in the field

of international development. This framework was adapted by Ferguson et al. (2014) to assist in
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the implementation of LA based initiatives. The framework consists of seven steps that include:
defining a clear set of policy objectives; identifying barriers to LA implementation; identifying
stakeholders; identifying and understanding the purpose behind the LA initiatives; developing
strategies for meeting LA requirements; considering capacity and ability of staff; and developing
and evaluating the LA initiative. Once LA has been implemented, the system must be monitored
and adjusted in order to maintain its effectiveness and to improve the system for the future
(Ferguson et al., 2014).

The Let’s Talk Framework was introduced by West et al. (2016) with the objective of providing
guidance to institutions of higher education with regard to implementation of an LA initiative. The
first aspect (domain) of the framework is to provide the institutional parameters that will dictate
what is feasible or unfeasible for implementation at the institution. Some of these parameters may
include location, size or structure of the institution as well as student and staff demographics (West
et al., 2016). The remaining five domains are transitional institutional elements (culture, size,
demographic and strategy considerations), LA infrastructure (technology and expertise),
transitional retention elements (LA effect on current institutional policies), LA for student

retention discussion, and intervention and reflection.

The objective of the Personalization and Learning Analytics (PERLA) framework is to guide the
development of an effective LA system that is capable of determining effective indicators for
personalization learning (Chatti & Muslim, 2019). The framework is made up of two layers with
the inner layer based on the LA reference model discussed above and an outer layer representing
the process of identifying indicators for personalized learning.

3.5.1.6. Learning analytics model adopted for this study
The LA model shown below is influenced by the model proposed by Siemens (2013) described in

Section 3.5.1.4. The model adopted for this study is illustrated in Figure 3.9 below:
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Figure 3.9: Proposed LA model for the study

As shown in Figure 3.9, the model proposed in this study covers five similar stages outlined in the
model proposed by Siemens (2013). As the dissertation forms an individual effort, the Data team
aspect 1s removed. The collection and acquisition stages, as well as the storage stages (discussed
in Section 3.5.1.4) mvolve the attainment and storage of IS&T student data. The data is then

cleaned and integrated in anticipation for analysis.

As stated in Section 2.9, Africa is still fairly new to the Learning Analytics and a thorough
understanding of data collection, acquisition, cleaning and analysis must be undertaken before
addressing the stages of visualization and undertaking student intervention strategies. Thus, the
areas of visualization is addressed as future work (see Section 8.7) while a discussion related to

using LA for student monitoring and intervention is discussed in Section 8.4.

3.5.2. Process model used in this study
For this study, the developed artefact is in the form of a process model outlining the steps involved

for an LA approach to analyzing and predicting student academic performance at UKZN, 1.e.
predictive analytics. The process model is presented in the form of an adapted data flow diagram.

The symbolic notation for the process model is described in Figure 3.10.
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technique flow
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Figure 3.10: Symbolic notation for process model

With the exception of the parallelogram, the data store, external entity, process and data flow are
the standard symbols used for a dataflow diagram (Satzinger, Jackson & Burd, 2015). The data
store symbol represents a data file or database that stores information regarding a data entity. The
rectangle symbol represents an external entity, which is an individual or entity outside the system
that provides data into the system. The curved rectangle represents a process within the data flow
diagram, when data input is processed resulting in an output from that process. Processes are given
a name, usually in a verb-noun form and are associated with a process number. This number is
used for reference purposes and does not necessarily indicate the order of the processes (Satzinger

et al., 2015).

Differing from the standard dataflow diagram symbols is the parallelogram where, in the context
of this process model, the symbol indicates techniques that are used as part of a process in order
to produce output from a given input. Figure 3.11 shows the process model developed in this

study.
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Figure 3.11: Process model developed in this study

The process begins with the acquisition of data. The process of acquiring the assessment data,
biographical and university data and LMS interaction data in its raw form 1s explained in section
3.6. Thereafter, the data integration process (process 1) is performed where the three datasets are

combined into a single dataset.

The integrated dataset then undergoes the process of data anonymization (process 2) and cleaning
(process 3). The cleaned and anonymized integrated dataset is then prepared for prediction
(process 4) where the researcher chooses the available courses resulting in the splitting of the

integrated dataset into respective courses identified. In addition, the pass criteria are supplied for
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the creation of labels of the classes for each of the split datasets (in this case, pass or fail). The
data anonymization, cleaning and preparation processes are discussed in Chapter 4. Process 4
results in the integrated dataset being split into individual course datasets.

Each course dataset is split into a training data-subset (all data before 2021) and a validation data-
subset (2021 data) with the training dataset being input for process 5 (Develop Prediction Model)
and the validation dataset being input for process 6 (Validate model). The training dataset
undergoes the processes of sampling (process 5.1 that is covered in Chapter 5) and feature selection
(process 5.2 that is covered in Chapters 5 and 6). Process 5.3 covers the application of
classification technique(s), discussed in Chapter 5 and Chapter 6 that are applied to the sampled
(or non-sampled) dataset resulting in the development of a prediction model. This prediction
model serves as input to process 6 which involves the application of the model to the validation
data-subset. Here, the objective is to compare the accuracy obtained during process 5 with the

accuracy of the resultant prediction model when applied to an unseen dataset.

This model is similar to those described in sections 3.5.1.1 to 3.5.1.5 in that all the models have
similar processes (such as data collection, pre-processing and analysis). The model in this study,
through the use of dataflow diagram (level-0) notation, shows how the data is transformed between
processes. Furthermore, the model in this study includes a notation to specify which techniques
are applied within each process. Level-1 dataflow diagrams were not considered due to the
potential increase in complexity of the diagram through the addition of further processes and

dataflows.

3.6. Data collection
This section outlines the steps taken to collect data required for the study. Before any study relating

to data use can be conducted at UKZN, ethical clearance must first be granted. This aspect is
covered in section 3.6.1. Section 3.6.2 describes the final datasets used for the study. Section

3.6.3 discusses the data validity and reliability.
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3.6.1. Ethical clearance
Ethical clearance (EC) was applied for with the intention of acquiring student biographical and

past academic data as well as Moodle LMS interaction data from the UKZN Institutional
Intelligence (1) division. As part of the EC process, a gatekeeper letter was obtained from the

UKZN registrar. The ethical clearance letter is included in Appendix A.

The data was approved to be released by both 11 and the registrar on condition that the data was
anonymized in accordance with the POPI act introduced in South Africa. To facilitate the
acquisition of the data as well as meeting the requirements specified by POPIA, a non-disclosure
agreement (NDA) was signed between the researcher and UKZN. This NDA stated that the data
would be anonymized and only available to authorized individuals involved in the study at UKZN.

3.6.2. Data used for the study
The data obtained for this research is secondary data in the form of a dataset of UKZN students

from the discipline of IS&T. The data for the study was initially made up of three datasets. The
first dataset contains student demographics, registration data and academic performance data. The
dataset (biographical, registration and assessment data) initially contained data related to 50
courses and approximately 14000 students registered to ISTN courses from 2014 to 2021. The
second dataset contains student marks obtained in high school. Both of these datasets were
provided in MS-Excel format by the UKZN II division.

The final dataset consists of student Moodle LMS interactions with the different IS&T courses that
they were registered for. Access to each Moodle site was obtained by permission of the respective
course co-ordinators and was manually downloaded by going to the moodle site and downloading
the data (in MS-Excel format). The Moodle interaction data was obtained from Moodle IS&T
course sites from 2017 through to 2021. Previous LMS course interaction data were no longer
available for download. The description of the datasets as well as the process of data
anonymization, integration, cleaning and preparation is described in detail in the next chapter.

3.6.3. Reliability and validity
Thanasegaran (2009) defines reliability as the degree to which measures are free from error and

produce consistent results such that the results can be repeated or duplicated. Validity is defined
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as the degree or the extent to which a method measures what it is meant to be measuring
(Thanasegaran, 2009).

From the perspective of the study, the reliability of the data was addressed through the process of
data cleaning and preparation (described in Chapter 4). Further, the predictive validity of the
model is determined by dividing the dataset for each course into two parts (George, Osinga, Lavie
& Scott, 2016). The first part is the training set and the second part is the validation dataset which
the learning algorithm has not interacted with. K-fold cross validation was used as part of the
development of the predictive model and this model was then applied to the validation dataset to
assess the capability of the model in making predictions on unseen data. Validity is confirmed if
the accuracy obtained by the model via the training dataset is equivalent when compared to the
accuracy of the model applied to the validation dataset (George et al., 2016). In addition, the
validity of the predictive models is also determined using a set of commonly identified

performance metrics. These metrics are described in section 5.3.5.

3.7. Tools used for data analysis
The raw datasets were integrated by linking each datafile based on the student number or in the

case of the Moodle LMS interaction data, the name of the students. The integration of the datasets

was performed using Microsoft Excel.

Data anonymization was performed using functions available in Microsoft Excel. From the
researcher’s perspective, this software was available and the researcher was familiar with the
functions and process required to anonymize the data using this software. Further details related
to anonymization of the data is covered in Chapter 4. Cleaning of the data was also performed

using Microsoft Excel.
Data preparation was performed using the filter function in MS-Excel to separate the dataset based

on the different ISTN courses. Labelling of data attribute values were also performed using MS-

Excel.
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The WEKA (Waikato Environment for Knowledge Analysis) data mining tool was used to perform
data analysis and prediction. As stated in Section 2.7.1, WEKA is a Big Data analytical tool that
has several pre-processing functions and machine learning algorithms to assist users in conducting
analysis and prediction. It is also one of the most commonly used applications for conducting LA

studies. The prediction models are then tested using unseen data instances using WEKA.

3.8. Chapter summary
Methodology refers to the theoretical assumptions and principles that underpin a particular

research approach. It guides a research study on how to state the research questions as well as
what processes and/or methods to use. The details of the research methodology are important as
they provide transparency to all the facets of the research being conducted. From the perspective
of this research study, this chapter covered the aspects of the methodology applied. The study
follows the Design Science research methodology that will result in the development of an artefact.
This artefact is in the form of a process model that was introduced in Section 3.5.2. The chapter
also covered the data collection approach; in this case, the collection of data relating to student
demographics, academic performance and LMS interaction. The following Chapters 4 through to
7 describe the execution of the described methodology with the next chapter covering the first
aspect of data preparation.
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Chapter 4 — Dataset preparation

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3
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Measure
Comparison with
Other Studies )

Conclusion evaluation

Figure 4.1: Thesis structure

4.1. Introduction

This 1s the first chapter of the thesis that addresses the solving of the research questions and
objectives through the development of the artefact (see Figure 4.1).

The 1nitial step(s) of all LA initiatives involves the collection and preparation of data (Chatti et al.,
2012; Munk et al., 2017; Romero et al., 2014). Depending on the quantity, quality and presentation

of the data, this can be a complex task to complete, as was determined in several studies on Big
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Data and LA (Adejo & Connolly, 2017b; Oussous et al., 2018). In this chapter, the focus is on
addressing the first two research questions/objectives of the study, these being:

RQI - How can the data from the relevant data sources (SMS, Moodle logs, registers etc.) be
integrated?

RQ2 - How can the integrated data be organized in preparation for data analysis?

From the perspective of the DSRM described in Chapter 3, this chapter focuses on the design and
development of the artefact with a focus on the acquisition of data and the preparation of this data
for analysis and/or prediction. Section 4.2 covers the process from data acquisition to the

preparation process. A breakdown of Section 4.2 is depicted in Figure 4.2 below:

421 4.2.2 423

Dataset Description Data anonymization Cleaning and Preparation

Ethics and Better predition

Understand

Privacy performance

Figure 4.2: Map for Section 4.2 coverage

4.2. From data acquisition to preparation
For this research, data was obtained related to students from the University of KwaZulu-Natal in

the form of three datasets. This first dataset consists of students that registered for any IS&T
courses from 2014 and includes aspects of their biographical and university related information,
and class mark, exam mark and final mark for the IS&T courses that they had registered for. A
second, related dataset is the high school results that were submitted as part of the student’s
application to University. The third dataset is made up of a number of datafiles, with each file
consisting of all the interactions made by students on the Moodle LMS site for the individual IS&T
course(s) that they were registered for (from 2017-2021). This includes the Moodle logs for any

IS&T course site that could be acquired as well as, where possible, activity completion reports
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listing the different activities on the Moodle site and whether or not the student completed these

activities.

4.2.1. Description of datasets
The demographics dataset and high school dataset are initially separate data files with a common

student number attribute. Where available, each IS&T Moodle course was accessed and the log
files as well as activity completion reports were obtained. This is represented in Figure 4.3. Four
datasets were provided for this study and are named in Figure 4.3 as DS1, DS2, DS3 and DS4. As
was discussed in the introductory chapter, there is a distinct separation between these files with

the only common attribute being the student number.

| UKZN ISTN I

1|

1 |

DS1:

Bl'o:iatta', DS2:
registration High school data
and course

1

DS3:

DS4:
Activity
Completion

Log Data

Figure 4.3: Initial dataset hierarchy structure

Each of the datasets are described in sections 4.2.1.1 (DS1), 4.2.1.2 (DS2) and 4.2.1.3 (DS3 and
DS4).

4.2.1.1. Biographical and registration dataset (DS1)
This first dataset consists of student biographical, registration, and course marks data (DS1). The

purpose of using this dataset is to understand if the biographical, registration and assessment
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attributes play a role in prediction of student academic performance.

In section 2.3, student

demographics were commonly identified as attributes tested in LA or EDM studies in the past.

Initially, the dataset was provided in MS-Excel format, consisting of 44106 rows with each row

representing a student instance of their biographical data, registration for a course and the marks

achieved for that course. The dataset contains instances from registrations for 50 IS&T courses.

These courses are from all levels of undergraduate (1%, 2" and 3 year of study) and honours

study. The Excel file provided was composed of the following attributes (features) listed in Table

4.1.
Table 4.1: Attribute description for dataset DS1
Attribute Description Data range
YEAR Student year of registration | 2014...2021
for course.
BC Student semester of | 1 — Semester 1

registration for course.

2 — Semester 2
0 — Both semesters

OT, OTDESC and CAMP

Campus abbreviation,
campus name and campus
code.

HA — Howard College (1)
PA — Pietermaritzburg (2)
WA — Westville (4)

COLL and COLLEGE

College code and name.

24 — College of Law and
Man Studies

DEPT and DEPTNAME

Department code and name.

2484 — School of Man
Info Tech & Gov

QUAL and QUALDESC

Qualification  that  the
student was doing when
registered for the course.

UGPG Whether the student falls | UG — Undergraduate
under undergraduate and | PG — Postgraduate
postgraduate.

SELFFUNDED Whether the course is self- | Y — Yes
funded or not. N - No

Continued on next page...
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Table 4.1 continued

Attribute

Description

Data range

STNO

Unique student number
created to distinguish one
student  from  another.
Required for associating a
student record to their
respective Moodle activity
that was separately
collected.

BIRTHDATE

Student date of birth in
YYYY/MM/DD format .

GENDER

Gender of student.

M — Male
F — Female

RACE

The ethnic group that the
student falls under.

A — African
C — Coloured
| — Indian

O - Other

W — White

ALIENYN

This attribute  indicates
whether or not the student is
from South Africa or not.

Y —-Yes
N — No
P — Permanent Residence

RELIGIONDESC

What religion the student
falls under.

COUNTRYCITZCODE
COUNTRYCITZDESC

AND

The allocated code and
country of origin.

COUNTRYPERMCODE AND | Permanent residence code
COUNTRYPERMDESC and country of student.

HOOMELANGCODE AND | Code and language spoken
HOMELANGDESC at home as specified in

initial application.

MARITALSTATUS

Whether the student is
married, single, divorced or
widowed.

S —Single

M — Married
D — Divorced
W — Widowed

Continued on next page...
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Table 4.1 continued

Attribute

Description

Data range

MATRICTYPE, MATRICDATE,
MATRICPOINTS,
MATRICRANGE

Matric type, date of matric,
points achieved, and range

QUINTILE

South African government
schools are placed into one
of five quintiles, mainly for
the purpose of financial
resource allocation

1...5 (1 being poorest
quintile and 5 being least
poor quintile)

NA — Not applicable (in
the case of private or
overseas schools)

SECONDARYSCHOOLCODE,
SECONDARYSCHOOL

Name of school that the
student attended

ADDRPCODE and AREA

Code and name of area of
residence

RESYN

Whether the student is in
University — or  private
accommodation (residence)

Y —Yes
N — No

RESBLDNAME and
RESBLDOWNER

If RESYN is Y, then this
indicates the residence code,
residence name and owner

BURSARYYN

Whether the student has a
bursary or not

Y —Yes
N — No

COUNCILLOANYN

Whether the student has
been given a loan by some
council

Y —Yes
N — No

HIGHERDEGREEREMISSIONYN

Whether the student has
been provided with
remission of fees

Y —Yes
N — No

NSFASBURSARYYN

Whether the student has
been given a bursary
through NSFAS

Y —Yes
N — No

NSFASLOANYN

Whether the student has
been given a loan through
NSFAS

Y —Yes
N — No

Continued on next page...
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Table 4.1 continued

Attribute Description Data range

SCHOLARSHIP Whether the student has|Y —Yes
been given a scholarship N —No

UNCATEGORIZEDYN Whether the student has | Y —Yes
received some other form of | N — No
funding

FUNDINGTOTALPAID Total amount of funding that
has been paid for the given
year

SUBJ and SUBJDESC The course code and name
that the student is registered
for that year

M_YMARK, M_EMARK, | Year (class) mark, exam

M_FMARK, M_ERES mark, final mark and result
of the course for that student
for that year.

SUBJREGDATE When the student registered
for the course in
YYYY/MM/DD format

SUBJCANCDATE, When the student cancelled

SUBJCANCREASON, their registration for the

SUBJCANCREASOND course and the reason for the
cancellation (if applicable
otherwise blank)

EXEMPTYN Whether the student was | Y —Yes
given an exemption from | N—No
doing the course

WEBREGYN Whether the student | Y — Yes
registered via the online | N—-No
registration system or not

SUPPREG Whether the student | 0 - No
registered for all-Yes
supplementary exam

S_YMARK, S_EMARK, | Related to Supplementary

S FMARK, S ERES, | exams. Year (class) mark,

SUBJFMARK, SUBJERES

exam mark, final mark and
result of course for that
student for that year.
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4.2.1.2. Dataset consisting of high school marks (DS2)
A separate file was provided containing the student high school data (DS2). As described in

Section 2.3, high school marks were identified by studies in the literature as factors that could
contribute to performance prediction. This MS-Excel file consisted of 112 773 rows with each
row indicating the student and a high school subject that they did as well as the marks and/or
grades achieved. For this file, the following attributes were included (Table 4.2):

Table 4.2: Attribute description for dataset DS2
Attribute Description
STNO Unique student number created to distinguish
one student from another. Required for
associating a student record to their respective
Moodle activity that was separately collected.

SUBJECT and SUBJDESC Matric subject code and name

GR11GRADE, GR11PERC, GR11SYMBOL | Level of subject (higher or standard),
percentage obtained, symbol obtained for that
grade 11 subject

TRGRADE, TRPERC, TRSYMBOL Level of subject (higher or standard),
percentage obtained, symbol obtained for
matric trial examination for that subject

MATRICGRADE, MATRICPERC, | Level of subject (higher or standard),
MATRICSYMBOL percentage obtained, symbol obtained for
matric trial examination for that subject

4.2.1.3. Moodle LMS course data and activity completion datasets (DS3 and DS4)
The datasets extracted from the Moodle LMS are the activity logs (DS3) and activity completion

reports (DS4). As noted in Section 2.3, student learning activities and participation is seen as an
important factor in student academic prediction. The attributes for the log files are listed in Table
4.3 and the activity completion attributes are listed in Table 4.4. With respect to Moodle logs, not
all log data were available for all courses for all years. The only complete log data that were
available on the UKZN servers were from 2017 to 2021. In terms of the activity completion
reports, only 2020 and 2021 reports were used where available as the activity completion report
feature was only implemented in the UKZN Moodle LMS from 2020.
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Table 4.3: Attributes and descriptions for dataset DS3

Attribute

Description

Time

Date and time of activity

User full name

Name of the individual performing the action

Affected user

Individual affected by action (if any)

Event context

Relates to an event that the student is
participating in

Component Category that the event context falls under
Event name Name of the action that has occurred
Description Description of the activity performed
Origin Where the action originated from

IP Address IP address where the action occurred
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Table 4.4: Attributes and descriptions for dataset DS4

Attribute Description

Student name (column not labelled in file) Name of individual

Username (STNO) Individual (Staff or student) ID given by
university during registration

ID number (STNO) Individual (Staff or student) ID given by
university during registration

Email address University allocated email address

Institution Campus that student resides in

Activity 1 ... N (multiple attributes) Set of activities specified in LMS course site

and whether these are completed or not

Activity completion date/time If the activity is completed, date and time of
completion

4.2.2. Data anonymization
The first step for the process of anonymization was to de-identify the data as required by POPIA

(discussed in Section 2.4). The datasets DS1 and DS2 supplied by the UKZN Institutional
Intelligence department (I1) did not contain any names to identify students but did contain the
student’s university allocated student ID. This student number is the common attribute that is used
to uniquely identify a student’s biographical data, the academic performance data (high school
marks and ISTN course marks) as well as the Moodle course activity completion reports. While
this provides some form of anonymity, an individual with access to the UKZN Student
Management System (SMS) would still be able to view a student number in the dataset and access
the SMS to get the student details. Thus, the student number needed to be replaced with an
alternative unique reference to ensure anonymity. The technique of pseudonymization via
hashing, as specified by Khalil and Ebner (2016), was used where the student number is replaced
into a special key value. Algorithm 4.1 was followed to anonymize all UKZN student numbers

(attribute named STNO) in the student biographical and course registration dataset:
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Input: Dataset DS1
Output: Anonymized Dataset DS1

1 | Copy the STNO column values to another column

2 | Remove all duplicate values, i.e. multiple instances of the same student record in a file

3 | On a new column, starting with STUD0000001, copy the values down such that the number
increments continuously to the end of the student number list, i.e. STUD0000002,
STUDO0000003, STUD0000004, etc.

4 | Replace the student number value in the STNO column with the corresponding STUD

number.

Algorithm 4.1: Anonymization algorithm for UKZN student numbers

The replacement student number (STUD number) must also replace the corresponding student
numbers in the DS2 and DS4 datasets. Once this was accomplished for all datasets, the original
student numbers were removed. This ensured that the actual student numbers were not available
for any individuals accessing this dataset. This was in line with the requirements specified by II,
the UKZN registrar and the ethical clearance application.

In the case of the Moodle course interaction data (Dataset DS3), the names of the students were
associated with the different actions performed within the logs. As part of the anonymization
process, these names were linked to their respective UKZN student ID. Once done, the student
name attribute was removed and the student number was replaced by the new associated

anonymized STUD number.

Further descriptions related to de-identification of the data are described in sections 4.2.3.2. and

4.2.3.3.

4.2.3. Cleaning and preparation of datasets
This section describes aspects required to improve the quality of the datasets in preparation for

analysis and prediction. This is an important task required to ensure a better-quality prediction

model (Jayaprakash et al., 2014).
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4.2.3.1. Handling missing data
This section describes how missing data items in respective attributes were handled. As stated in

section 2.5.1, this is an important aspect of the data preparation stage. The attributes that needed
to be addressed were only for the DS1 dataset. These attributes as well as the action taken are
described in Table 4.5.

Table 4.5: Addressing missing values in different attributes within the dataset
Attribute/Feature Action taken with justification

RELIGION It is assumed that where the input is blank, student chose not to divulge
this information. Blank values were replaced with the value “Not
Specified” as it would be inappropriate to determine or guess these values
for any individual students in the dataset.

QUINTILE The value is left blank in the event that that the specified school does not
fall under that of being an ordinary South African public school (such as
schools outside South Africa or private funded schools). In this case the
blank value is replaced by “NA” (Not applicable).

AREA Where the area of residence was not specified, a value of “Not specified”
was used.

RESBLDNAME | For students that were not in residences (i.e. staying in their own homes or
AND private accommodation), a value of “NA” (Not applicable) was given.
RESBLDOWNER

4.2.3.2. Additional attributes for analysis and prediction purposes
This section outlines additional attributes that were added to the datasets. These attributes were

included for the purposes of de-identification and/or to allow for improved analysis and prediction.

According to Ali et al. (2013), age was a statistically significant factor that affected student
academic performance. Therefore, the student age was added as an attribute for analysis and
prediction of student performance. The age of a student is determined by subtracting the student’s
date of birth from the year that the student registered for the course. Based on the calculated age,
the value is assigned based on one of two age classes (values) and is further elaborated upon in
section 4.2.3.3.

90



To determine the role of computer science or technology-based subjects’ impact on academic
performance, an attribute was created by checking whether students had chosen one or more
computer science or technology subjects in school. If a student did do this subject type, a value of

Y was allocated, or else a value of N was allocated.

The Moodle LMS used at UKZN keeps track of all user interactions in the form of logs. To better
understand if Moodle usage plays a role in student performance, the logs were summarized and
resultant attributes were included that counted the total number of interactions performed by each
student for the course for that year. This approach was also adopted by Mwalumbwe and Mtebe
(2017), who kept track of the number of student logins, items downloaded, peer and forum

interactions and exercises performed.

Each Moodle site can also be set up to keep track of specific activities that students have interacted
with and completed via Activity Completion reports (DS4). Activities on the course site are
marked using a checkbox next to the activity. Each activity can be marked as complete either
manually by the student, or automatically based on the student performing a certain task(s). In the
case of courses run during the years 2020 and 2021, attributes were created to count the number
of activities completed by students based on the activity completion report generated by Moodle
for the different IS&T courses. Three attributes were created, these being number of activities
recorded as complete, the number of activities recorded as not complete, and the percentage of

activities completed.

Courses at 2" and 3™ year level have pre-requisite requirements that must be met in order to be
able to register for that course. These pre-requisite requirements are in the form of previous year
courses that a student is required to pass. For the 2" and 3" year courses, the pre-requisite course
symbols have also been included to determine the role that these courses play in whether the

student will pass or fail that course.

4.2.3.3. Data discretization
To assist with analysis and prediction as well as to further the process of data de-identification

(Khalil & Ebner, 2016), the student age attribute has been categorized in two groups based on their
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age (15-20, 21 and Above). These two groups were chosen as the majority of students’ ages were

in the ranges of either 15 to 20 or 21 and above.

For attributes related to student marks, the mark range was narrowed down to symbols, thereby
reducing the number of possible attribute values from one hundred (100) to five (5). This is shown
in Table 4.6.

Table 4.6: Ranges for marks
Mark Range Symbol
0-49
50— 59
60 — 69
70-79
80-100

> mO|O|m

For the AREA attribute, the initial values indicated specific areas where the student was from, e.g.,
Northern KwaZulu-Natal, Gauteng Pretoria Tshwane, KwaZulu-Natal Midlands, Eastern Free
State, etc. These values were summarized into the main provincial areas e.g. KZN, FS, EC, WC,

etc., in order to reduce the number of nominal values for this attribute.

4.2.3.4. Removal of unnecessary attributes and instances
As this study involves students and their interactions, log entries and attributes related to automated

system events (for example, automated addition and removal of students from the course) and staff

interactions (for example, adding lecture slides and content creation) were removed.

Students that were withdrawn from courses as well as instances where students were given
exemptions from courses were removed from the dataset. This was done as students that withdrew
from courses did not have complete results or data and student exemptions were just duplicated
records for two different years. This strategy was also adopted in previous studies relating to
predicting student academic performance, such as Minaei-Bidgoli et al. (2003) as well as
Waddington et al. (2016).

From the perspective of the DS1 dataset, attributes where data was found to be duplicated (for
example, country of origin and country of permanent residence) as well as attributes that were

abbreviations of other attributes (e.g. campus name and campus code) were removed.
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When downloaded, the Moodle log file (DS3) contains the time and date of the activity, the name
of the individual that performed the activity (or to whom the activity is related to) and the type of
activity performed. As there is no student ID included in the downloaded file, there is no
possibility to differentiate between students with identical names. For example, if there are two
Andile Dlamini is performing an activity recorded within a log file. Thus, any activities involving

students with duplicate names were not considered.

Finally, records related to courses that were no longer offered in the discipline were not considered.
These were mainly 3™ year courses that were eventually merged together as part of new university

directives.

When working with Activity Completion reports (DS4), a limitation noted was that the activity
completion feature will only record the date and time that the requirements were completed for the
activity and not the extent to which the student immersed themselves into the activity. For
example, Moodle will record a file access activity as complete when the student clicks on the file
and it is viewed or downloaded. The LMS cannot, however, determine whether or not the student

has actually looked at the document and understood the content within.

4.2.3.5. Data integration
As the WEKA application only accepts a single file, it was necessary to merge the DS1, DS2, DS3

and DS4 datasets. The Moodle logs (DS3) were added to the demographics and performance
dataset (DS1) in the form of total clicks made by the student, as well as the number of times the
student had interacted with different activities (such as files, folders, quizzes, H5P videos etc.). In

terms of DS4, a record was made of the count and percentage of activities completed.

Further to the above, the merged data file was separated into multiple files based on courses (i.e.,
each file contained instances of registration for each of the courses offered in the IS&T discipline).
This was done as each course is run independently of the other. In addition, each course data file
was divided into three file variations based on date. The first file variation (VAR1) contained data

with no Moodle activity as Moodle activity was only available from 2019 onwards. The second
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file variation (VAR2) consisted of only instances that had Moodle data, i.e., data from 2019
onwards. The final file variation (VAR3) only contained 2020 and 2021 data as these courses
were taught during the COVID-19 lockdown and all the content was taught online.

WEKA only accepts files in .arff or .csv formats. Microsoft Excel has a facility to convert
data from the standard MS-Excel format (.x1s) to .csv format. Further, WEKA has built in
functionality to convert . csv filesto . ar £ £ files that the application (WEKA) prefers to use. As
WEKA cannot distinguish between commas used to separate attributes and commas within text
values (for example: “Durban, KZN”), this needed to be addressed. WEKA has a similar issue

with quotation marks and apostrophes.

Once the files have been converted to . arf £ format, the file is ready to be applied to the WEKA

application.

4.3. Chapter summary
This chapter addressed the first two research questions, i.e. integrating the data sources into a

dataset and then preparing the dataset for analysis and prediction purposes. The data sources were
initially identified. As per the requirements set by the UKZN registrar, POPIA and Il, the data
was then anonymized by creating a new student identifier as well as categorizing certain attributes.
The dataset was also cleaned by removing unnecessary attributes, providing values for missing
data that was not available or specified, and performing discretization to certain numeric and string
attributes.  Finally, the Moodle log data (DS3) and activity completion reports (DS4) were
summarized, in terms of number of times certain items were accessed and number of activities
completed, respectively. These summary attributes were merged with the DS1 and DS2 datasets
resulting in each row indicating the student, their demographics, the details regarding their
registration for a particular IS&T course (including their performance for that course) as well as a
summary of their Moodle interactions for that course (the Moodle interaction details and activities
completed where applicable). Now that the data was prepared for analysis and prediction, it could
be applied to the selected tools. This is discussed in the next chapter. As a summary, the

specification table of the dataset is provided in the Table 4.7.
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Table 4.7: Description of UKZN ISTN dataset

Subject Area

Information Systems and Technology

Type of data

Demographics, registration, class and examination marks, LMS interactive
data

How data was

For the years 2014 to 2021, the demographic and academic performance data

acquired was obtained from UKZN institutional intelligence (II). The Moodle LMS
data was obtained by accessing each course (where permission was given)
and downloading the log and activity completion files.

Data source | The data obtained relates to IS&T students at the University of KwaZulu-

location Natal, Pietermaritzburg and Westville campuses, KwaZulu-Natal, South

Africa.

Data Format

Cleaned, preprocessed, and divided into courses. Each course dataset is
further divided into training data and validation data.

Data Access

In order to further the development of the LA field in Africa, these datasets
will be made publicly available in a Microsoft Excel format.

Figure 4.4 illustrates the portion of the framework (described in section 3.5.2) that was discussed

in this chapter.
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Figure 4.4: Data preparation to integration
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Chapter S — LA model prediction development

Chapter 1

Introduction
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Literature Review
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Figure 5.1: Thesis structure

S.1. Introduction
This is the second chapter that form part of the artefact development process (see Figure 5.1). In

Chapter 4, the process of data preparation and cleaning was described and discussed, where the
separate datasets were amalgamated into a single dataset containing student biographical data,
registration data, academic performance for each course registered and counts of LMS interactions.
This dataset 1s now referred to as the UKZN ISTN dataset. The next step is the application of
learning algorithms to the dataset in order to predict student performance. Thus, this chapter
discusses the process of data analysis and prediction of academic performance. This is identified

in research questions 3 and 4, which are listed next:
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RQ3 - How can the data be used for identifying learning patterns (training)?

RQ4 - How can the trained data be used to predict student academic performance?

From the perspective of the DSRM described in Chapter 3, this chapter focuses on the design and
development of the artefact with a focus on applying learning algorithms to the now prepared
dataset with the objective of predicting student performance. The structure of this chapter is as
follows and is depicted in Figure 5.2. The entire dataset cannot be used as input into WEKA as
each course is different in terms of the outcomes, mode of teaching, type of content and forms of
assessment. Thus, as stated when describing the process model in Section 3.5, the integrated
dataset is divided into ten (10) course datasets. Section 5.2 describes each of the course datasets
and aspects to consider before analysis and prediction. Section 5.3 describes how the data is
trained and aspects to consider during training. Section 5.4 covers the results of the experiments
conducted for each course dataset and the results of the experiments. Finally, Section 5.5

concludes the chapter with a summary of the findings overall.

52
Dataset Description

Describe

Feature Selection

Algorithms used
Experimental 53

setting Prediction Process Tools for application

Acceptance criteria

Experiment 54

execution Experiments

Figure 5.2: Map for Chapter S coverage
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5.2. Course dataset description
This section describes each of the course datasets that were used as input into the WEKA

application. Section 5.2.1 covers the division of each course dataset into variations based on the
data available while Section 5.2.2 covers separating the dataset into training data and validation
data. Validation is necessary in order to test the performance of the prediction models generated
in each of the experiments. Section 5.2.3 covers the section on dealing with data imbalance for
each of the course datasets. Finally, a description of each of the courses as well as their level of

imbalance are described in section 5.2.4.

5.2.1. Testing variations of the course datasets
During training, three variations of the course dataset were considered. The first variation, referred

to as Variation 1 (VARL1), tested just the demographic and assessment data. Variation 2 (VAR2)
IS a dataset variation with demographic, assessment data and Moodle interaction data. The above
two variations are considered to better understand the impact of including LMS interaction data
when attempting to predict academic performance.

The third and final variation, Variation 3 (VAR3), contains only 2020 demographic, assessment
data and 2020 Moodle interaction data. VAR3 relates to data collected during the COVID-19
pandemic and a move from face-to-face learning to online learning. It was observed during the
administration of these courses that working with LMS data during COVID-enforced online

learning greatly differed when working with LMS data during the pre-COVID era.

5.2.2. Establishment of the training and validation sets
In order for a learning algorithm to be effective, it must be provided with a sufficient set of

examples or cases. The set of examples is referred to as the training set (Smith & Frank, 2016).
The learning algorithm then learns from the training set, resulting in the development of a model.
In order to test this model, a separate set of examples or cases must be used where predictions are
made and compared to what results are known. This set of examples is referred to as the test or
validation set (Smith & Frank, 2016).

Smith and Frank (2016) identify four (4) techniques to establish the training and validation

datasets. The first technique is to use the entire dataset for training as well as validation. While
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this strategy makes most use of the available data and may lead to a more representative evaluation,
it is not preferable as the model developed would be specific for that set of data and may not fit
any other dataset (Smith & Frank, 2016). Another technique, commonly known as the holdout
method, is to keep the training set and test set separate while the most common technique is to use
a single dataset and split the dataset into training and test subsets (Ghorbani & Ghousi, 2020).
When splitting the data into training and test data, the researcher must specify the percentage split,
for example, 70% of the data is used for training and the remaining 30% to be used for testing
(Smith & Frank, 2016). The final technique is commonly referred to as k-fold validation. Here,
the data is divided into a set of k subsets of equal size. A single fold occurs when a single subset
is used as test data while the other subsets are used to train the data. This occurs k times with each
subset being given a chance to be the test data while the other subsets are used to as the training
dataset.  This is widely regarded as the most reliable method of establishing training and test
datasets (Gudivada et al., 2017) as each data instance is allowed to be in the test dataset at least
once. The disadvantage of this method is the increase in computation time when compared to the
holdout method.

For this study, a combination of the holdout method and k-fold validation was used. The most
recent data acquired for this study is that for the year 2021. This portion of the dataset was held
back and used as the validation dataset in order to understand how well the models obtained during
training performed against unseen data. A similar approach was followed by Gray, McGuinness,
Owende and Hofmann (2016) where the most recent set of data was used for testing while data
from the subsequent years was used for training. For the remaining data used for training, WEKA
applied 10-fold validation and a resultant model was developed and assessed. The model was then
tested against the unseen validation dataset.

5.2.3. Dealing with imbalanced dataset
As discussed in Section 2.5.6, imbalanced datasets are a major challenge with regard to any

analytics initiative. In the case of the UKZN ISTN dataset, there is a significantly larger portion
of students that have passed than that of students that have failed. Imbalance can be measured by

using equation 5.1 (Madasamy & Ramaswami, 2017):
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Nmajor

Imbalance = (5.1)

minor

where, Ny, 0, represents the number of major class instances and Ny, represents the number
of minor class instances. According to Ortigosa-Hernandez, Inza and Lozano (2017), the
imbalance measurement formula (equation 5.1) is suitable for datasets with only two classes (in

this case, pass and fail). A greater imbalance value indicates a more complex dataset.

The issue of data imbalance can be addressed from a data perspective as well as an algorithmic
perspective. From a data perspective, four sampling techniques were used and assessed, that being
no sampling, undersampling, oversampling and the synthetic minority oversampling technique
(SMOTE). Section 2.5.6 described the characteristics of the latter three sampling techniques. The
preprocessing filter function in WEKA allows for these three sampling techniques to be applied to
the training dataset. Addressing the data imbalance problem from an algorithmic perspective is

discussed in Chapter 6.

5.2.4. Course descriptions, characteristics and imbalance levels
This section describes the characteristics for each of the courses of the UKZN ISTN dataset. Table

5.1 provides the course code and semester when it is offered, the title of the course and a general
background to the course. Understanding of these course details provides context for the course,
enabling better understanding of the course dataset.
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Table 5.1: Details of each course in the UKZN ISTN dataset

Course code
and semester

Title

Course description

ISTN100
(Both
semesters)

End User Computing

Teaches concepts relating to hardware, software,
networks and the use of MS Office. Usually taken
by students searching for an elective course or is a
requirement for certain degrees.

ISTN101
(Semester 1)

Information Systems
and Technology for
Business

Introduces information systems concepts to the
students and covers the use of MS Office. Students
registered for a non-BSc degree in IS&T must pass
this course to qualify for 2% year ISTN courses.

ISTN103
(Semester 2)

Development  and
Application

Fundamentals

Further covers information systems related concepts
with a greater focus on problem solving in
imformation systems. Some of the topics covered are
Information Systems Management, Systems
Analysis and Design, logical problem solving and
programming, as well as covering advanced
concepts in MS-Excel. The course is a pre-requisite
for 2nd year ISTN courses (with an exception for
students doing B.Sc. IT degrees, where it i1s an
elective course).

ISTN2IP
(Semester 1)

Introductory
Programming for
Information Systems

Aimed at non-Computer Science students with the
objective of improving student programming and is
thus a requirement for students majoring in ISTN.
Covers introductory programming concepts to
students and builds on programming concepts
covered in ISTN103.

ISTN211
(Semester 1)

Systems  Analysis

and Design

Second year course for all students majoring in
IS&T. As the name suggests, the course covers the
important aspects of initial analysis and design of an
Information System and builds upon concepts
covered in ISTN103.

ISTN212
(Semester 2)

Databases and

Programming

This course builds on what was covered in ISTN2IP
and prepares the student for programming at 3™ year
level. The course also introduces concepts related to
database design and application, including the
drawing of ERDs and creation of databases and
manipulation of data using SQL Server.

ISTN3SA
(Semester 1)

Advanced Systems
Analysis and Design

Third year course that expands on content covered in
ISTN211 and focuses on Object Oriented analysis
and design.

Continued on next page...
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Table 5.1 continued

Course code | Title Course description
and semester
ISTN3AS Applied Systems | A practical based 3™ year course that covers project
(Semester 1) | Implementation 1 management, advanced programming and provides
students with experience on front-end systems
development. Involves the development of a
windows-based application project.

ISTN3SI Applied Systems | This course is a continuation of the ISTN3AS course.
(Semester 2) | Implementation 2 Students expand on the project in ISTN3AS by
developing a website and incorporating reporting
mto their systems.

ISTN3ND Networking and | Provides students with knowledge of the technical
(Semester 2) [ Databases background of information systems in a web

and enterprise environment. To enable students to
design and manage databases in a business context.

The characteristics and imbalance level of each course dataset including when considering the

variations is described in Table 5.2.
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Table 5.2: Characteristics of course datasets

Course Number | Years Number | Number | Imbalance
of of passes | of fails
instances
ISTN100 | All instances | 3540 2014-2021 3044 496 6.13
Variation 1 3416 2014-2020 2940 476 6.18
Validation 124 2021 104 20 5.20
ISTN101 | All instances | 9479 2014-2021 3082 1399 5.78
Variation 1 8729 2014-2020 7397 1332 5.55
Variation 2 2026 2019-2020 1791 235 7.62
Variation 3 971 2020 922 49 18.82
Validation 738 2021 672 66 10.18
ISTN103 | All instances | 9046 2014-2021 7619 1427 5.34
Variation 1 8224 2014-2020 6866 1358 5.06
Variation 2 2204 2019-2020 1769 435 4.07
Variation 3 1088 2020 960 128 7.50
Validation 813 2021 745 68 10.96
ISTN2IP | All instances | 631 2016-2021 2 [ 114 4.54
Variation 1 486 2016-2020 385 101 3.81
Variation 2 358 2018-2020 293 65 451
Variation 3 143 2020 132 11 12.00
Validation 143 2021 130 13 10.00
ISTN211 | All instances [ 1905 2014-2021 1812 93 19.48
Variation 1 1576 2014-2020 1501 75 20.01
Variation 2 768 2018-2020 729 39 18.69
Variation 3 238 2020 229 9 25.44
Validation 327 2021 309 18 17.17
ISTN212 | All instances | 1875 2014-2021 1558 317 491
Variation 1 1576 2014-2020 1272 304 4.18
Variation 2 750 2018-2020 652 98 6.65
Variation 3 246 2020 236 10 23.60
Validation 297 2021 284 13 21.85
ISTN3SA | All instances | 1114 2016-2021 1031 83 12.42
Variation 1 884 2016-2020 805 79 10.19
Variation 2 527 2018-2020 470 57 8.25
Variation 3 191 2020 189 2 94.50
Validation 230 2021 226 4 56.50
ISTN3AS | All instances | 1077 2016-2021 1054 23 45 .83
Variation 1 850 2016-2020 834 16 52.13
Variation 2 494 2018-2020 481 13 37.00
Variation 3 183 2020 179 4 4475
Validation 227 2021 220 7 3143

Continued on next page...
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Table 5.2 continued
Course Number | Years Number | Number | Imbalance
of of passes | of fails
instances
ISTN3SI | All instances | 1079 2016-2021 1031 48 21.48
Variation 1 854 2016-2020 813 41 19.83
Variation 2 508 2018-2020 474 34 13.94
Variation 3 184 2020 174 10 17.40
Validation 225 2021 218 7 31.14
ISTN3ND | All instances | 1196 2016-2021 1013 183 5.54
Variation 1 963 2016-2020 785 178 441
Variation 2 586 2018-2020 470 116 4.05
Variation 3 210 2020 205 5 41.00
Validation 233 2021 228 5 45.60

The Moodle interaction data was not available for the ISTN100 course, thus there is only one
variation, VAR, and the validation dataset that is included for prediction. For the ISTN101 and
ISTN103 courses, Moodle LMS data was only available from 2019 to 2021.

For the 2% year courses, two extra attributes were included, that being the student’s ISTN101 and
ISTN103 performance in the form of a symbol (A, B, C, D, E or NA). These were included as
passing these courses (or equivalent courses in the case of students with NA) are prerequisites in
order to register for 2* year courses. The ISTN2IP course was only introduced in 2016. For all

2°d year courses, Moodle interaction data was only available from 2018 to 2021.

For the 31 year courses, three extra attributes were included, that being the student’s ISTN2IP,
ISTN211 and ISTN212 performance in the form of a symbol (A, B, C, D, E or NA). These were
included as passing these courses (or equivalent courses in the case of students with NA) are
prerequisites in order to register for 3™ year courses. The selected ISTN 3™ year courses were

only introduced in 2016 and the only Moodle interaction data available was from 2018 to 2021.

5.3. Processing of datasets for prediction

This section discusses how the datasets are processed resulting in a prediction model. The
literature has shown that identification of important attributes reduces computation time as well as
mmproves accuracy through reduced overfitting (see Section 2.5.4). The process of feature

selection 1s discussed 1n Section 5.3.1.
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In terms of training of the data, two machine learning algorithms were chosen based on their
success in other studies. The Decision Tree (DT) algorithm was used for this study as it was found
to be one of the most commonly used and successful algorithms from the literature, specifically
for performance prediction (see Table 2.9). In addition, the advantages of this algorithm include
fast computation time and a generated model that is easy to understand and follow. The second
algorithm used was an ensemble algorithm that has been used previously for addressing the dataset
imbalance problem. In the case of this study, the Random Forest (RF) ensemble algorithm was
tested as it had also been used successfully in the literature (see Table 2.8). Each of these

algorithms are discussed in sections 5.3.2 and 5.3.3 respectively.

5.3.1. Feature selection
According to Zaffar, Hashmani and Savita (2017), feature selection algorithms analyze data with

the objective of removing irrelevant data attributes to improve the performance of classifier
algorithms. In addition, feature selection reduces the complexity of learned results (Zaffar et al.,
2017).

The WEKA WrapperSubsetEval function was used for feature selection using best first-
forward and best first-backward search methods respectively. This function ran multiple iterations
of the specified algorithm to determine the combination of attributes that produce the best
accuracy. Once the attributes were identified, the learning algorithm was executed using only the
specified attributes. Salal et al. (2019) also followed this approach of performing feature selection
followed by the application of a learning algorithm using the identified attributes.

5.3.2. Decision Tree algorithm
A Decision Tree is a model that can be followed sequentially, usually in a top to bottom approach.

Itis created by combining a number of logic tests where each test compares a numeric value against
a group of ranges or a nominal value against a group of possible values (Kotsiantis, 2013). An

example of a Decision Tree model with the relevant terminology is shown in Figure 5.3.
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Figure 5.3: Decision tree example and concepts

The decision nodes of the Decision Tree signify the different attributes. The branches stemming
from the nodes are the possible values that these attributes can have in the observed samples, and

the leaf (terminal) nodes tell us the classification of the target variable.

Algorithms have been developed that allow for the creation of Decision Tree models. For this
study, the J48 Decision Tree algorithm implemented in WEKA was used. This algorithm, which
1s an extension of the C4.5 Decision Tree algorithm is a statistical classifier that uses the concept
of information entropy. Information entropy, in this context, refers to the level of uncertainty in

the dataset (Kotsiantis, 2013).

Assume a training dataset DS = <DSi, DSa, ...> of existing classified data. Each sample DS;
consists of a p-dimensional vector (A1, A, ..., Ap) where the Aj represents the attribute values of
the related sample, as well as the class in which the sample falls. In order to gain the highest
classification accuracy, the best attribute to split on is the attribute that provides the best

information.
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The Decision Tree algorithm follows a greedy approach and the construction of the Decision Tree
1s in a top-down, recursive manner (Anuradha & Velmurugan, 2015). For each recursive iteration,
the algorithm chooses the attribute of the dataset that most effectively splits its set of samples into
subsets of one class value or the other. The criteria for splitting are calculated from the information
gain (difference in entropy). The attribute with the highest normalized information gain is chosen
as the decision node. The algorithm then recurses on the partitioned subtree utilizing a divide-
and-conquer approach and creates a Decision Tree based on the greedy algorithm (Rokach &

Maimon, 2005). The pseudocode for the Decision Tree algorithm is shown in Algorithm 5.1:

Input: Integrated dataset

Output: Decision tree model

1 | Function CreateDecisionTree(instances, attributes)

2 | {

3 If all instances are in one class C

4 return leaf node with label C

5 else

6 if the set of attributes is empty

7 return the most common class value as leaf node

8 else

9 Select an attribute A and create a node R for it

10 For each possible value Viof A:

11 Let Instances; be the subset of instances that have value v; for A

12 Add an outgoing branch B to Node R labeled with the value vi

13 If Instances; 1s empty

14 Attach leaf node to branch B labeled with most common class value in

Instances

15 Else

16 Call CreateDecisionTree(instances,attributes—{ A} and attach resulting
tree as subtree under branch B

17 Return subtree rooted at R

18 | }

Algorithm 5.1: Pseudo code for Decision Tree algorithm

5.3.3. Random Forest algorithm
Adeccording to Pal (2005), an ensemble classifier combines decisions made by multiple individual

classifiers using a weighted voting mechanism to classify unseen instances of a classification
problem. The Random Forest classifier is an ensemble algorithm that combines multiple decision

trees using the concept of bagging. The objective of bagging i1s to improve accuracy via the
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creation of a composite classifier made from a number of unstable classifiers (Amrieh, Hamtini &
Aljarah, 2016). From the outputs of the classifiers, a single prediction is generated. Figure 5.4,
adapted from Amrieh et al. (2016), shows the bagging process used in the Random Forest learning
algorithm, and Algorithm 5.2 explains the Random Forest algorithm. In Figure 5.4, the ISTN101
dataset 1s used as an example. Here, multiple sub-datasets are created using randomly selected
mnstances from the ISTN101 dataset resulting in the Sub datasets 1 to n. In addition, each sub-
dataset uses a randomly chosen set of attributes. The classifier algorithm (in this case, the DT
algorithm) is then applied to the sub-datasets. Once all the classifiers have been completed and
predictions have been determined, the results from each of the classifiers are tallied with a majority
voting scheme implemented, i.e., the class value that was most predicted by the classifier is chosen

as the prediction value of the overall random tree algorithm (Amrieh et al., 2016).

Dataset ISTN101

A4 v v A
Sub Dataset-1 Sub Dataset-2 Sub Dataset-3  cseeeeas Sub Dataset-n
Y Y v Y
Classifier on Classifier on Classifieron | . .. .... Classifier on
Sub Dataset-1 Sub Dataset-2 Sub Dataset-3 Sub Dataset-n

Combined
Classifiers

Figure 5.4: Bagging process followed in Random Forest ensemble algorithms
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Input: Training dataset DS, unseen dataset

Output: Set of predictions for given instances within unseen dataset

1 | Function RandomForest

2 | {

3 Create n subsets DS1...DSn consisting of sample instances from dataset DS
4 For each subset

5 Choose a random set of attributes that will be used for decision tree creation
6 For each subset

7 Create a decision tree using the set of attributes identified for that subset
8 For each constructed decision tree

9 Make predictions based on unseen dataset

10 Prediction = class value that appears the greatest number of times

11]}

Algorithm 5.2: Random forest algorithm

5.3.4. Tools and techniques
This section describes the different functions and parameters used when applying the learning

algorithms to the UKZN ISTN dataset. The tool used to run the experiments of applying the
learning algorithms to the UKZN ISTN dataset 1s WEKA.

WEKA has a number of filter functions that can used as part of the pre-processing or data
preparation stage. The Resample function was used to apply oversampling to the dataset while
the SpreadSubsample function was used to apply undersampling to the dataset. Finally, the
SMOTE function was the only function not built-in to the standard install of WEKA. The only
SMOTE function found in WEKA’s package manager repository was downloaded and installed.
This SMOTE function is based on that described by Chawla, Bowyer, Hall and Kegelmeyer (2002).

Table 5.3 outlines the important parameters considered when applying the filter functions:

109



Table 5.3: WEKA Filter functions and parameters used for sampling techniques
Resample - used for oversampling
biasToUniformClass A value of 0 leaves the class distribution as
is. For this study, the value 1 was used when
oversampling was applied and the class
distributions were the same.

sampleSizePercent The subsample size as a percentage of the
original set. This value is set to Y*2 where
Y is the percentage proportion of instances
that belong to the majority class.

SpreadSubSample - used for undersampling

DistributionSpread Indicates the maximum class distribution
spread. This value was set to 1 to ensure a
uniform distribution with the minority class,
thus resulting in undersampling being
applied.

SMOTE

Percentage The percentage value to increase the
minority class by. For this study, the value
varied for each dataset variation and the aim
was to get as close as possible to uniform
distribution.

Feature selection was accomplished using the WrapperSubsetEval function. This function
evaluates sets of attributes with the objective of finding the best accuracy.
WrapperSubserEval is based on the approach used by Kohavi and John (1997) and
determines the most useful attributes based on the classifier provided. The function searches
through a feature (attribute) search space by iteratively applying a classifier using a subset of
features. The number of attributes used for each classifier is determined by a best-first search
engine. This search can operate in a forward or backward manner. A forward search begins with
an empty set of attributes and every iteration result in the addition of attribute(s) to find the ideal
set of attributes that produces the best accuracy. With a backward search, all the attributes of the
problem are included and each iteration results in the removal of attributes(s) with the objective of
producing the best accuracy (Kohavi & John, 1997). The important parameters for this function
are listed in the Table 5.4:
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Table 5.4: WEKA WrapperSubsetEval parameters
Parameters Description
Classifier This parameter specifies the learning
algorithm that will be used when determining
the best attribute set.

Folds Number  of folds required when
implementing  k-fold validation when
running each classifier. For all experiments,
the number of folds is set to 10.

Search Method Direction Forward search or Backward search

As described earlier in the section 5.3 introduction, the J48 decision tree (DT) algorithm and the

Random Forest (RF) algorithm were used for this study.

5.3.5. Assessment metrics
In order to understand how well the algorithm performs against the UKZN ISTN dataset,

assessment metrics were used to determine the ability of the generated models to make predictions.

The most commonly used assessment metrics are discussed in the following subsections.

5.3.5.1. Accuracy
The most common method of determining how well a model performs is the accuracy, which is

defined as the count of the number of objects that have been correctly predicted by the model (Asif,
Merceron, et al., 2017). This is the most commonly identified method of measuring the

performance of the algorithm. The equation to calculate accuracy is:

TP+TN
TP+ FP+FN+TN

Accuracy = (5.2)

In equation 5.2, TP (True Positive) and TN (True Negative) are counts of the number of correct
classifications for each of the respective classes while FP (False Positive) and FN (False Negative)
are the counts of incorrect classifications for each of the respective classes (Anuradha &
Velmurugan, 2016). While popular due to its simplicity, accuracy cannot be the only measure for
model performance as it does not consider correct predictions that occur by chance (Ben-David,
2008).
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5.3.5.2. Kappa statistic
Another performance measure that was identified in the literature was the Kappa statistical value.

Kappa was used as a performance measure by Anuradha and Velmurugan (2016), Asif, Merceron,
et al. (2017), as well as Adekitan and Salau (2019). The Kappa value indicates the probability of
whether or not the prediction occurs by chance, i.e., the chances of the algorithm guessing the class
value. A recent study by Delgado and Tibau (2019), however, found that the Kappa statistic
exhibits abnormal behaviour, especially when imbalanced datasets are taken into consideration
and thus should not be considered as a measure for model performance, especially when other

more reliable measures are available.

5.3.5.3. Receiver operator characteristics (ROC)
The ROC curve is also commonly used to measure the predictive performance of a classifying

algorithm (Jayaprakash et al., 2014). Davis and Goadrich (2006) stated that it is commonly used
to assess performance in binary decision problems. This performance measure was used by
Jayaprakash et al. (2014), Hashim, Talab, Satty and Talab (2015), Kumar and Singh (2017), as
well as Umar (2019). The ROC curve is a graph that displays and compares the number of
correctly classified instances against the number of incorrectly classified instances, respectively,
determined by the learning algorithm (Davis & Goadrich, 2006). Related to the ROC curve is the
area under the ROC curve, a value in the range of 0 to 1, where the closer the value is to 1, the
better the performance of the algorithm, i.e., a generated model that can make an accurate
prediction (Mandrekar, 2010).

5.3.5.4. Precision, recall and F-measure
Another common measure for performance assessment is that of precision, recall and F-measure.

This was included in algorithm performance analysis in studies by Algur et al. (2016), Hamoud et
al. (2018), Jalota and Agrawal (2019), Ribot et al. (2020), as well as Silva et al. (2022), amongst
others. In this context, precision is defined as the proportion of instances that have been correctly
classified as positive while recall is defined as the proportion of only positive instances that are
correctly classified (Abdullah, Malibari & Alkhozae, 2014). While both precision and recall have
been identified as performance measures for learning algorithms, Ma and He (2013) state that the
goal of maximizing recall and precision can often be conflicting objectives (for example, an

increase in true positives — increased recall - may also result in an increase in false positives —
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reduced precision). As a result, the F-measure was introduced as a metric that combines precision
and recall into a single score (Sandoval et al., 2018). With the UKZN ISTN dataset being an
imbalanced dataset, it should be noted that both Ma and He (2013) as well as Davis and Goadrich
(2006) identified precision and recall as being more reliable in measuring the performance of an
algorithm than the ROC curve. The equations for precision, recall and F-measure are shown as

equations 5.3, 5.4 and 5.5 respectively:

Precision = P 5.3
recision = T FP (5.3)
Recall = P 5.4
At =TP L FEN (5.4)

2 X Precision X Recall

F — Measure (F1) =

Precision + Recall (5.5)

Precision and recall have also been plotted on a graph similar to ROC, resulting in the Precision
Recall Curve (PRC). PRC values (also identified as AUC-PRC values) can also be used to evaluate
the performance of an algorithm and are commonly used as a measure for imbalanced datasets
(Saito & Rehmsmeier, 2015). Similar to the ROC value, a PRC value is in the range 0 to 1, with
0.5 indicating that the algorithm is guessing. No studies have identified an acceptable range of
values for PRC as this is context-dependent, depending on whether the objective is consistency

(recall) or accuracy (precision).

5.3.5.5. Assessment metrics used for this study
Based on the discussions in sections 5.3.5.1 to 5.3.5.4, the performance measures and acceptance

criteria used for this study are summarized in Table 5.5.
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Table 5.5: Assessment metrics to be used for this study with acceptance criteria

Assessment metric

Acceptance Criteria

Justification

Accuracy

In range 80% to 98%

Majority of studies produced
accuracy in this range.
Minimum of 80% accuracy
was hypothesized by
Ifenthaler and
Widanapathirana (2014).
Accuracy greater than 98%
should be questioned as this
may indicate that the model
overfits the data.

Accuracy difference between

Difference should be less

A difference of less than 10%

Bharati, Rahman and Podder
(2018)

traming and  validation | than 10% indicates accuracy from

datasets traiming and  accuracy
through  validation  are
similar.
A difference greater than
10% indicates that the model
does not fit unseen data
instances.

ROC Greater than 0.7 as per | Not seen as reliable when

considering imbalanced
datasets (Ma & He, 2013)
thus will be considered when
sampling is applied.

Precision, Recall, PRC value
and F-Measure

F-measure: >=0.8
Precision: >=0.7
Recall: >=0.7
PRC: >=0.7

Han, Kamber and Pei1 (2012)
suggested that precision and
recall values of 0.7 or more
are considered good models
and the F-measure should be
0.8 or more. A similar
suggestion was made by
Schiitze, Manning and
Raghavan (2008).

With regard to PRC, no
recommended value was
reported in the literature, thus
for this study, an acceptable
PRC value would also be in a
range of 0.7 to 1.

5.4. Results of experiments conducted

This section provides the results from applying the machine learning algorithms described in

Algorithm 5.1 and Algorithm 5.2 to the UKZN ISTN dataset. As described in Chapter 4, the
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dataset was divided based on the IS&T courses that are required for the main ISTN major. Each
of the subsections 5.4.1 to 5.4.10 covers experiments conducted on each course dataset. Figure

5.5 shows the format used for labeling each of the experiments.

Figure 5.5: Experiment notation

In Figure 5.5, CDE represents the last three characters of the course dataset. For example,
Experiment-101 indicates that the experiments are being conducted on the ISTN101 course
dataset. [TYPE] indicates the type of sampling that will be applied in the experiment, either no
sampling ([None]), undersampling ([US]), oversampling ([OS]) or [SMOTE]. Finally, the
experiment notation ends by indicating the dataset variation being used (VAR1, VAR2 or VAR3).

An example of how the assessment metrics are presented in a tabular format is shown in Figure
5.6. The analysis generated when applying the DT algorithm is shown in the top half of the table,
while the results of the RF algorithm are shown in blue section of the table (bottom half). The
column labelled “10-Fold” relates to the analysis from training using 10-fold validation. The
resultant model generated is then applied to the validation dataset and the analysis for this is shown
in the column labelled “Validation”. A “?” value indicates that a value for this assessment metric

could not be calculated.
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Decision Tree (J48)

Attribute
Count

Accuracy %

ROC

PRC Area

Precision

Recall

F-Measure

10-Fold |Validation

10-Fold

Validation|

10-Fold |Validation

10-Fold

Validation

10-Fold

Validation

10-Fold |[Validation

Forward
Search

Backward
Search

Figure 5.6: Table format for presenting performance analysis

5.4.1. Experiments for the ISTN100 dataset
For the ISTN100 course, the Moodle interaction (log) data was not available for any years and

thus was not included. As a result, only VARL is considered for the experiments for the ISTN100

dataset.

5.4.1.1. Experiment-100-Sampling [None]
For both the DT AND RF algorithms, WrapperSubsetEval was applied for feature selection

in WEKA using both the forward and backward searches respectively. A summary of the

performances is shown in Table 5.6.

Table 5.6: Summary analysis for RF generated model — Experiment-100-Sampling [None]-

VAR1
Decision Tree (J48)
Atct::stte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation] 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation
forverd | None | 86 | 83.8 | 049 | 05 | 076 | 072 | 074 | ?» | o086 | 083 | 079 | 2
sacwad| None | 86 | 83.8 | 0.49 | 05 | 076 | 0.72 | 074 | » | o086 | 083 | 079 | 2

For the DT algorithm, feature selection yielded no specific attributes for either search, and the best

accuracy obtained was 86%. The resultant DT model was composed of a single leaf (terminal)

116



node, i.e., “P” (pass). This is due to the imbalance of the ISTN100 course data where the majority
class is “P”. The precision and F-measure values that could not be calculated also suggest that the

generated prediction model would not be useful.

Applying the RF algorithm yields a similar analysis in terms of the assessment metrics. While
feature selection did identify a set of attributes, an accuracy of 86.4% and 85.8% is similar to that
of the model produced by the DT algorithm. For the forward search, precision and F-measure

values could not be calculated, while for the backward search, an acceptable model was found.

5.4.1.2. Experiment-100-Sampling [US]
In this experiment, undersampling using the spreadSubSamp1e filter was applied to the dataset

with the objective of mitigating the imbalance issue. Instances were removed from the majority
class resulting in an equal number of instances that have passed (“P”) and failed (“F”) the course.
Once again, feature selection via WrapperSubsetEval was applied, followed by application
of the respective learning algorithms. The analysis of each algorithm is shown in Table 5.7. For
these experiments, the DistributionSpread parameter is set to 1, thus applying

undersampling to the dataset.

Table 5.7: Summary analysis for RF generated model — Experiment-100-Sampling [US]-
VAR1

Decision Tree (J48)

Attribute

F— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

None 49.8 | 83.8 0.5 0.5 0.5 0.72 | 0.49 ? 0.49 ( 0.83 | 0.49 ?

Forward
Search

Backward
Search

None 49.8 | 83.8 0.5 0.5 0.5 0.72 | 0.49 ? 0.49 ( 0.83 | 0.49 ?

Both algorithms exhibit models with poor accuracy, with 49.8% and 66% for DT algorithm and
RF algorithm, respectively. Similar to Experiment-100-Sampling [None], the DT algorithm

generated model was composed of a single terminal leaf that represents the “P” class. In addition,
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the ROC values indicate poor predictive capability from the generated models. While the model
generated by the RF algorithm is slightly better according to ROC value, the accuracy obtained
indicates that undersampling did not improve the performance of the algorithms.

5.4.1.3. Experiment-100-Sampling [OS]
For this experiment, oversampling was applied using the Resample filter method. Feature

selection was then applied to determine the optimal attributes to use when applying the learning
algorithms.  For oversampling to be applied to this dataset, the biasToUniformClass
parameter was set to 1 and the sampleSizePercent parameter was set to 172 as the proportion
of passes was calculated to 86% (see ISTN100 data in Table 5.2 and sampleSizePercent
formula in Table 5.3). Once the two algorithms were applied to the oversampled dataset using the

specified attributes, the following analysis was generated (Table 5.8):

Table 5.8: Summary analysis for RF generated model — Experiment-100-Sampling [OS]-
VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation|

14 916 | 80.6 | 0.96 | 0.62 | 094 ( 0.78 | 0.92 | 0.79 | 0.91 0.8 0.91 0.8

Forward
Search

Backward
Search

14 91.7 | 80.6 | 0.96 | 0.62 | 094 ( 0.78 | 0.92 | 0.79 | 0.91 0.8 0.91 0.8

The accuracy achieved by the algorithms is better when oversampling was applied to the dataset
during the training phase. There was, however, a reduction in accuracy when the generated DT
and RF models were applied to the unseen validation dataset. This can also be verified when
seeing the difference between the ROC, PRC, Precision, recall and F-Measure values (10-fold vs

validation), thus confirming that the generated models do not fit when applied to unseen data.
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5.4.1.4. Experiment-100-Sampling [SMOTE]
For this experiment, the SMOTE filter was applied to the data, followed by application of feature

selection and the learning algorithms based on the attributes identified. Table 5.9 summarizes the
analysis of the models generated by the DT and RF algorithms when applied to the SMOTE
sampled dataset. For these experiments, the Percentage value parameter (see Table 5.3 for

SMOTE) was set to 515.

Table 5.9: Summary analysis for RF generated model — Experiment-100-Sampling
[SMOTE]-VAR1

Decision Tree (J48)

Attribute

F— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

11 89.3 | 84.6 0.9 0.6 086 ( 0.78 | 0.89 | 0.82 | 0.89 ( 0.84 | 0.89 | 0.82

Forward
Search

Backward
Search

16 89.1 | 83.8 0.9 0.6 087 ( 079 | 0.89 | 0.81 | 0.89 ( 0.83 | 0.89 | 0.82

In this experiment, the accuracy obtained after training the algorithms are similar, ranging from
87.4% to 89.8%. It would appear, however, that the model generated using the DT algorithm was
a better fit for the validation data than the RF generated model. The precision, recall and F-
measure are all in the acceptable range while the ROC value generated during validation is slightly

less than the acceptable value of 0.7 specified in Table 5.5.

5.4.1.5. Analysis of experiments conducted
When no sampling was used, the only viable prediction model was generated when the RF

algorithm was used. When undersampling was used, poor prediction models were generated with
prediction accuracy of less than 70%. This was due to the removal of a large number of instances
that could have been useful in predicting student performance.

On the other hand, the use of oversampling resulted in acceptable accuracies greater than 90%, but

similar accuracy could not be replicated for the validation dataset, where the accuracy obtained

119



was about 80% (DT algorithm model) and 62% (RF algorithm model) respectively. As described
in section 2.5.6, increasing the number of instances from the minority class (failure instances)
removed the imbalance problem but caused a resultant bias towards the number of failures, and

the model could not adequately predict unseen instances (as seen with the validation accuracy).

Finally, as seen in section 5.4.1.4, the use of SMOTE resulted in the best performance of the
algorithms where three of the four experiments conducted yielded viable prediction models. The
DT algorithm using forward search feature selection had the closest difference in accuracy, as well
as acceptable precision, recall and F-measure values. The SMOTE method of creating synthesized
instances of the minority class resulted in a balanced dataset with less bias than when using

oversampling.

5.4.2. Experiments for the ISTN101 dataset
Unlike the experiments run on the ISTN100 dataset, the Moodle activity log data was made

available for this course and thus the three variations (VAR1, VAR2, VAR3) discussed in section

5.2.1 are considered in the experiments.

5.4.2.1. Experiment-101-Sampling [None]
When no sampling was used, the model generated by the DT algorithm was a tree with a single

terminal leaf (“P”), resulting in the accuracy produced being the same as the percentage of students
that passed the course. This, along with undefined precision and F-measure values indicate an
unacceptable model.

The performance measures for the model generated by the RF algorithm are shown in Table 5.10.
Feature selection using forward search for RF algorithm identified three attributes. The RF model
generated from the 24 attributes (backward search) had a better ROC value, indicating a better
model than the RF algorithm generated using only three attributes. The F-measure and PRC areas
were also better with the RF generated model. However, the validation accuracy of 98.1% falls

outside the acceptable range for this study.
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Table 5.10: Summary analysis for RF generated model — Experiment-101-Sampling [None]-
VAR1

An improvement in performances of both the algorithms was observed when they were applied to
the VAR2 dataset (see the performance measures in Table 5.11). The resultant analysis showed
an improvement in accuracy, PRC value and F-Measure when compared to the performance
measures of the algorithms applied to the VAR1 dataset (Table 5.10).

Table 5.11: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [None]-VAR2

Decision Tree (J48)

Attribute

- Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation|
6 88.8 92.1 0.62 0.58 0,83 0.86 0,86 0.92 0,88 0.92 0,85 0.89

Forward
Search

Backward
Search

14 89 92 0.63 [ 0.58 [ 0.84 | 0.86 | 0.87 | 092 | 0.89 | 092 | 0.85 | 0.88

The VARS dataset contains data collected during the first year of the COVID-19 pandemic where
teaching and learning had moved to an online learning platform using the Moodle LMS. The
analysis of models generated when the learning algorithms were applied to the VARS3 dataset is
shown in Table 5.12.
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Table 5.12: Summary Analysis for RF and DT generated models — Experiment101-
Sampling [None]-VAR3

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

Forward
Search

None 94.9 91 0.49 0.5 0.9 0.83 ? ? 095 | 0.91 ? ?

Backward
Search

None 94.9 91 0.49 0.5 0.9 0.83 ? ? 095 | 0.91 ? ?

Once again, the DT model generated was just a single terminal leaf (“P””). The improved accuracy
obtained was due to the higher pass rate (during COVID-19) when compared to the other two
variations. This is due to the movement to the online mode of assessments where students could
use their downloaded lecture content and communicate with other students during assessments.
The high pass rates resulted in a greater dataset imbalance with respect to the number of passes
and failures. The PRC values of the RF generated model (backward search) are better than that of
the DT generated model, indicating a more reliable model when using the RF algorithm. As seen
in the literature, the Random Forest algorithm is also known to provide better models when applied

to imbalanced datasets than when using decision tree algorithms (Bekkar & Alitouche, 2013).

5.4.2.2. Experiment-101-Sampling [US]
For the next three experiments, the process of undersampling was applied to the three dataset

variations. Feature selection was then applied and using the specified attributes, the two learning

algorithms (DT and RF) were applied to the undersampled data.

For VAR1, the model performance measures were poor with an accuracy of below 70% when
using the test data (see Table 5.13).
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Table 5.13: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [US]-VAR1

Variation 1

Decision Tree (J48)
Atct;'s::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
2:‘:’;"’ 8 664 | 723 | 07 | 072 | 068 | 089 | 0.66 | 0.87 | 0.66 | 0.72 | 0.66 | 0.77
5::':;’]3“’ 18 66 | 689 | 068 | 0.77 | 065 | 09 | 066 | 09 | 066 | 0.68 | 0.66 | 0.75

When the learning algorithms were applied to VAR2, an improvement in accuracy, while still
below 80%, was achieved (see Table 5.14). Applying the resultant model to the validation data
achieved an accuracy score of about 93%. However, the difference between accuracy for the

validation and 10-fold (training) of between 17% to 20% indicates that the model would be
unpredictable when applied to unseen data instances.

Table 5.14: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [US]-VAR2

Variation 2

Decision Tree (J48)
Atégs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
:;‘:’;’d 7 | 7425|932 | 071 | 075 | 067 | 09 | 075 | 092 | 0.74 | 093 | 0.73 | 0.92
22:'::}’]“" 19 |7659| 93 | 078 | 073 | 0.74 | 091 | 0.76 | 092 | 0.76 | 0.93 | 0.76 | 0.92

For VARS3, the difference between validation and testing (10-fold) was about 10% to 12% (see

Table 5.15). The model produced using RF (backward best-first search) was the only model with
close accuracy between training and validation datasets.
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Table 5.15: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [US]-VAR3

Variation 3

Decision Tree (J48)
Atctgs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:grd 3 74,48 | 86,85 | 0,65 0,77 0,6 0,89 | 0,74 | 0,91 0,74 | 0,86 | 0,74 | 0,88
g::f:frd 5 | 8, | 70 |08 |065| 08 |[087| 08 |087| 08 | 07 | 08 | 0,76

All the experiments discussed in this section did not produce prediction models with acceptable
accuracy for both training and validation.

5.4.2.3. Experiment-101-Sampling [OS]
This section covers the analysis generated when the two learning algorithms were applied to the

three dataset variations with oversampling applied to address the class imbalance issue. VAR1

analysis is shown in Table 5.16. For VAR1, the sampleSizePercent parameter value is 170

in order to increase the number of instances from the minority class.

Table 5.16: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [OS]-VAR1

Decision Tree (J48)
Atctgs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
Ezmrd 18 89.2 | 84 | 094 | 096 | 0,92 | 096 | 0,89 | 0,94 | 0,89 | 0,84 | 0,89 | 0,87
Sj::}’frd 22 89.4 | 84.4 | 094 | 096 | 0,92 | 096 | 0,9 | 0,94 | 0,89 | 0,84 | 0,89 | 0,87

With oversampling, a vast improvement in accuracy was noted when compared to the

undersampled variations and was similar to that of when no sampling was used.
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however, the ROC, PRC and F-Measure values indicate that the models generated are better than

the respective values generated using no sampling and undersampling, respectively.

In the second oversampling experiment, the learning algorithms were applied to the oversampled
VAR?2 dataset. As with the experiments using VAR, for VAR2, models have been generated that
produced acceptable accuracy with both the training and validation datasets. The results are shown

in Table 5.17. For VAR2 experiments, the sampleSizePercent parameter value is 196.

Table 5.17: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [OS]-VAR2

Decision Tree (J48)

Attribute

f— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

7 929 | 822 | 097 | 0.63 | 09 | 086 ( 093 | 0,85 | 0,93 | 0,82 [ 0,93 | 0,83

Forward
Search

Backward
Search

23 958 | 845 | 097 | 0.64 | 09 | 0,86 ( 096 | 0,87 | 0,95 | 0,84 [ 0,95 | 0,85

Overall, the RF generated model produces accuracy of over 98% with models that fit well with the
validation dataset. This is confirmed by the high ROC, PRC and F-measure values. In the case of
the models generated by the RF algorithms, as the accuracy falls outside the acceptance criteria,

the models were not accepted.
The third experiment focused on the application of DT and RF algorithms to the oversampled

VAR3 data (with feature selection). The analysis of the model performance measures is shown in
Table 5.18. The sampleSizePercent value for the VAR3 experiments is 194.
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Table 5.18: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [OS]-VAR3

Decision Tree (J48)
Atézs:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’;’d 6 98.6 | 914 | 099 | 065 | 0,98 | 0,87 | 0,98 | 09 | 0,98 | 0,91 | 0,98 | 0,9
k
SB:;;’]”" 27 98.2 | 89.8 | 098 | 0.49 | 0,98 | 0,83 | 0,98 | 0,82 | 0,98 | 0,89 | 0,98 | 0,86

As with the previous two experiments on oversampling, high accuracy is achieved for the COVID-
19 dataset of 2020 (VARS3) and the resultant models were also able to perform predictions with a
high degree of accuracy for the validation dataset as well. This is confirmed with high ROC, PRC

and F-Measure values. The accuracy produced, however, falls outside the acceptable range and

thus the models were not acceptable.

5.4.2.4. Experiment-101-Sampling [SMOTE]
The final three experiments applied for this course dataset covered the application of SMOTE to

the three variations. Once applied, feature selection determined the best attributes to use and the
learning algorithms were applied to only these attributes of the dataset. The prediction model

analysis generated when applying the algorithms to VARL is shown in Table 5.19. In order to

implement SMOTE, the Percentage parameter (see Table 5.3) is set to 475.
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Table 5.19: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [SMOTE]-VAR1

Decision Tree (J48)
Atézs:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;:;”:’;’d 25 846 | 8 | 088 | 079 | 088 | 092 | 084 | 087 | 0,84 | 0,83 | 0,84 | 0,85
ki
SB:;;’]”" 11 86.8 | 885 | 0.88 | 091 | 0,85 | 0,95 | 0,86 | 0,91 | 0,8 | 0,88 | 0,8 | 0,89

The accuracy, while acceptable, is not as high as when oversampling was applied to this variation.
The other measures (ROC, PRC, Precision, Recall and F-Measure) used for assessing the quality

of the model indicate that the resultant model from both the DT algorithm and the RF algorithm

are useful for making good predictions.

From the observation of the results obtained from the VAR2 and VAR3 (Table 5.20) experiments,
it once again appears that the inclusion of the Moodle interaction data enhanced the ability of the
algorithm to generate models that can predict student performance with an acceptable accuracy.
For VAR2 and VAR3 experiments, the Percentage parameter was set to 650 and 1750

respectively.
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Table 5.20: Summary analysis for RF and DT generated models — Experiment-101-
Sampling [SMOTE]-VAR2 and Experiment-101-Sampling [SMOTE]-VAR3

Variation 2

Variation 3

Decision Tree (J48)
Atct:::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation
;:a””m::]’d 9 916 | 857 | 091 | 067 | 0,89 | 0,87 | 0,91 | 0,86 | 0,91 | 0,85 | 0,91 | 0,86
kward
2:;;’1” 27 89.5 | 76.8 | 091 | 0.65 | 0,88 | 0,87 | 0,89 | 0,86 | 0,89 | 0,76 | 0,89 | 0,8

Decision Tree (J48)
Atgz:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
g:;wmah'd 5 96.8 | 795 | 096 | 0.61 | 0,95 | 0,86 | 0,96 | 0,84 | 0,96 | 0,79 | 0,96 | 0,81
S::f;"f’d 13 96.4 | 89,56 | 0,97 | 0,63 | 096 | 0,63 | 0,96 | 0,86 | 0,96 | 0,86 | 0,96 | 0,87

5.4.2.5. Analysis of experiments conducted

From the experiments conducted in sections 5.4.2.1 to 5.4.2.4, three models were identified as the

best performing models from no sampling, oversampling and SMOTE datasets, respectively.

When undersampling was used, no viable models were generated by either of the algorithms. This

was mostly likely due to reducing the number of instances to match the minor class (Fail) resulting

in the loss of useful instances that would have contributed to better prediction. This is a common

issue with undersampling and thus was noted as a potential disadvantage by Fernandez et al.
(2018).

All three of the models were generated using the Random Forest algorithm and are listed in Table
5.21. The first model (named VAR3-None), was generated using the VAR3 dataset with no
sampling. The VAR1-OS model was generated using the oversampled VARL1 dataset. Finally,
the VAR2-SMOTE model was developed using the VAR2 dataset with SMOTE applied.
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Table 5.21: Best three models generated from Experiment-101

Variation and

3 Accuracy ROC PRC Area Precision Recall F-Measure
Sampling

10-Fold | Validation] 10-Fold |Validation] 10-Fold | Validation | 10-Fold |Validation] 10-Fold |Validation| 10-Fold | Validation

A comparison of accuracy between the three models is illustrated in Figure 5.7. The difference
between the training accuracy (10-fold) and the validation accuracy for the VAR3-None prediction
model i1s 3. This is higher than the other two models, most likely because the dataset used was the
most imbalanced dataset (VAR3 had an imbalance value of 18.82 as shown in Table 5.2). This,
coupled with no sampling applied, indicates that while the RF algorithm did produce an acceptable
model, the use of sampling techniques can assist in reducing bias and produce better models. The
difference in accuracies between the VAR1-OS model and the VAR2-SMOTE model were 1.9

and 1.3 respectively.

Accuracy comparison for best three models
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Figure 5.7: Accuracy comparison of best three models

The remaining assessment measures are compared and shown in Figure 5.8. The ROC values, as
expected, are lower for the VAR3-None algorithm due to imbalance of the dataset. The PRC,

precision, recall and F-measure values all fall within the acceptable range for all three models.
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Figure 5.8: Performance measure comparison of best three models

5.4.3. Experiments for the ISTN103 dataset
This section covers the experiments conducted for the DT and RF algorithms applied to the

ISTN103 course data.

5.4.3.1. Experiment-103-Sampling [None]
For the VARI1 dataset, the model generated from the DT algorithm contained only a single leaf

(“P”). Thus, the accuracy for both the training and validation datasets are determined by the pass
rate of the ISTN103 dataset. The ROC value of 0.5 also indicates that for any instance, a guess of
“P” will more often than not produce a correct prediction. The RF model generated was better
than that of the DT (based on the ROC and PRC scores), but the accuracy of both models generated

from the forward and backward search algorithms are similar.

Table 5.22 shows the analysis of the learning algorithms’ respective model performance when
applied to the VAR2 dataset. The PRC values indicate that the models are better when compared
to the VARI analysis. In this case, the addition of Moodle interaction data has played a role in the
generation of better prediction models. However, with the exception of the backward-search DT
generated model, the model accuracy difference is greater than 10, meaning that the models cannot

be accepted based on the acceptance criteria.
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Table 5.22: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [None]-VAR2

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation|

9 851 | 956 | 0,77 | 0,84 | 083 ( 094 | 0,84 | 0,95 | 0,85 | 0,95 | 0,83 | 0,95

Forward
Search

Backward
Search

24 84,4 | 94,3 0,7 0,72 1079 | 091 | 08 | 093 | 0,84 | 094 | 0,82 | 0,93

With the results from VAR3 (Table 5.23), the observation was made that the performance
measures between the training data and validation data were closer to each other than when
compared to that of the measures seen for VAR1 and VAR2. The PRC and F-measure values also

indicate that the models were good at making predictions despite the imbalance of the dataset.

Table 5.23: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [None]-VAR3

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |[Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|

6 93,1 | %45 | 073 | 082 | 088 ( 093 | 093 | 09 | 093 ( 095 | 0,92 | 0,94

Forward
Search

Backward
Search

14 93,1 | 955 | 0,72 | 0,74 | 0,88 ( 0,91 | 0,93 | 095 | 0,93 [ 0,95 | 0,92 | 0,94

5.4.3.2. Experiment-103-Sampling [US]
The learning algorithms were applied to the undersampled variations. For VARL, the generated

models from both algorithms yielded poor accuracy (ranging from 63% to 67%). Accuracy was
found to have improved when the algorithms were applied to the VAR2 dataset. However, when
applied to the validation dataset, a difference of about 20% between training and validation

accuracies indicate that the model would be unreliable when applied to unseen instances. For

131



VAR3, while there was better alignment in accuracy between the training and validation dataset,
the accuracies indicated were between 76.5% and 83%. As a result, no acceptable models were
generated when undersampling was applied to the dataset variations.

5.4.3.3. Experiment-103-Sampling [OS]
When oversampling is applied to VARL (with a sampleSizePercent value of 166), the

resultant models generated by the learning algorithms for training were in the range of 86.4% to
93.5%. However, when applied to the unseen data, accuracies were in the range 63.3% to 69.7%
(see Table 5.24). This indicates overfitting of the models to the training data and predictions

cannot be made for unseen data instances.

Table 5.24: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [OS]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|

17 88,4 | 69,2 | 093 | 061 | 0,92 ( 0,86 ( 0,88 | 0,87 | 0,88 | 0,69 [ 0,88 | 0,75

Forward
Search

Backward
Search

24 86,4 | 633 | 093 | 062 | 0,92 ( 0,86 ( 0,87 | 0,88 | 0,86 | 0,63 [ 0,86 | 0,71

An improvement in performance was shown when Moodle interaction data was included, as shown
by the performance of the algorithms when applied to the VAR2 dataset using a
sampleSizePercent of 160 (Table 5.25). This once again, re-emphasizes the role of student
interactions when predicting student performance. The accuracy difference for the models
generated by the DT algorithm were greater than 10, meaning that these models are unacceptable.
The RF algorithm generated models were better with close accuracy between training and
validation data. The acceptable performance measures (ROC, PRC, precision, recall and F-

measure) also confirm the reliability of the models generated by the RF algorithm.
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Table 5.25: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [OS]-VAR2

Decision Tree (J48)
Atctcr::g:e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’;rd 4 953 | 80,8 | 0,98 | 0,69 | 0,98 | 0,88 | 0,95 | 0,87 | 0,95 | 0,8 | 0,95 | 0,83
k
SB:;;"”" 30 97,3 | 851 | 0,97 | 0,78 | 0,96 | 0,91 | 0,97 | 0,91 | 0,97 | 0,85 | 0,97 | 0,87

The performance measures for the models generated when the algorithms were applied to the
oversampled VAR3 dataset (using sampleSizePercent of 176) are shown in Table 5.26. The
training accuracy for the RF generated models is greater than 98%, indicating that the models are
not acceptable based on the acceptance criteria of the study. The backward search DT algorithm

did produce an acceptable model in terms of all the performance measurements.

Table 5.26: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [OS]-VAR3

Decision Tree (J48)
ib ..
Atctgu:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;z;‘gd 4 91,5 | 79,7 | 0,92 | 059 | 0,89 | 0,86 | 0,91 | 0,86 | 0,91 | 0,79 | 0,91 | 0,82
E::mard 30 89,4 | 883 | 091 | 0,85 | 0,89 | 0,93 | 0,89 | 0,92 | 0,89 | 0,88 | 0,89 | 0,89

5.4.3.4. Experiment-103-Sampling [SMOTE]
The results of the three experiments are shown in the tables starting with Table 5.27 covering

VARL1. Here, the Percentage parameter value is set to 400.
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Table 5.27: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [SMOTE]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation|

5 84,5 79 087 | 056 | 0,83 | 0,86 ( 0,84 | 0,85 | 0,84 | 0,79 | 0,84 | 0,82

Forward
Search

Backward
Search

14 83,9 [ 76,9 | 0,88 0,6 08 | 0,86 | 0,84 | 0,86 | 0,83 ( 0,77 | 0,83 0,8

The RF generated model performed better than the DT generated model in terms of all the
performance measures when applied to the VAR dataset. Improved models were generated once
again when the Moodle interaction data was included as shown in Table 5.28 (VAR2 —
Percentage parameter value is 300) and Table 5.29 (VAR3 — Percentage parameter value
is 650).

Table 5.28: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [SMOTE]-VAR2

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

5 856 | 8,1 )| 08 | 069 | 082 ( 0,88 ( 0,85 | 0,88 | 0,85 | 0,85 [ 0,85 | 0,86

Forward
Search

Backward
Search

20 858 | %04 | 087 | 0,83 | 0,84 ( 093 | 0,85 | 0,92 | 0,85 0,9 0,85 | 0,91

In the case of VARZ2, all four experiments yielded acceptable prediction models with the DT
generated models having better accuracy difference. In terms of the other assessment measures,
the models generated using the RF algorithms were deemed to be more reliable models.
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Table 5.29: Summary analysis for RF and DT generated models — Experiment-103-
Sampling [SMOTE]-VAR3

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation|

5 92,3 | 833 | 0,93 | 0,59 0,9 086 | 092 | 086 | 092 ( 0,83 | 0,92 | 0,84

Forward
Search

Backward
Search

21 89,2 | 91,5 | 0,91 | 0,84 0,9 093 )08 | 093 | 089 ( 0,91 | 0,89 | 0,92

The accuracies produced by the models generated using oversampled VAR3 were better than those
when oversampled VAR2 was used. The RF backward search generated model performed best in
terms of all the assessment measures.

5.4.3.5. Analysis of experiments conducted
As with the ISTN101 dataset, the use of undersampling did not produce any valid models from the

experiments conducted and described in Section 5.4.3.2. The best model identified when the other
sampling techniques were used are listed in Table 5.30. All three models were generated using
the RF algorithm, although the DT algorithm also managed to produce acceptable models.

Table 5.30: Best three models generated from Experiment-103

Variation and
Sampling

Accuracy ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

In terms of accuracy, all the models produce more than 90% accuracy when training and similar
accuracy was obtained when the models were applied to the validation dataset. The VAR2-OS
model appears to be the best model in terms of accuracy and closeness (see Figure 5.9).
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Figure 5.9: Accuracy comparison for best three models

From the perspective of the other assessment measures, the values for each of the models are
greater than 0.75, which meets the acceptance criteria for being a viable prediction model in this

study.

5.4.4. Experiments for the ISTN2IP dataset
For these datasets, two additional attributes were added to the dataset, these being the student’s

ISTN101 and ISTN103 symbol. A value of “NA” is given in the event that the student has no
mark for these courses. This would occur in the event that the student had done an equivalent

course, was given an exemption, or did not do the course for some other reason.

5.4.4.1. Experiment-2IP-Sampling [None]
The DT algorithm was not able to generate a viable model for this dataset. Only a one leaf tree

(“P”) was generated, indicating that the model adopted a guessing approach. For the RF algorithm,
the accuracy obtained was similar to that of the model generated using the DT algorithm. The

PRC and F-measure values were much improved for the RF model (Table 5.31).
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Table 5.31: Summary analysis for RF and DT generated models — Experiment-21P-

Sampling [None]-VAR1

By including Moodle interaction data (VAR2), there appeared to be an improvement in the models

developed by the two algorithms. This is evident by viewing not only the accuracy, but the PRC

and F-Measure values (see Table 5.32). For both forward search algorithms, the viability of the

models cannot be accepted as the precision and F-measure values could not be calculated.

Table 5.32: Summary analysis for RF and DT generated models — Experiment-21P-
Sampling [None]-VAR2

Decision Tree (J48)
Attrib L
tctzu:tte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold [Validation|

F d
ot 3 84 | 909 | 064 | 05 | 077 | 083 |08 | ? | o081 | 09 | 08| ?
Backward
o 2 84,9 | 92,3 | 0,65 | 0,61 | 0,79 | 0,87 | 0,83 | 0,92 | 0,84 | 0,92 | 0,81 | 0,89

When analyzing the algorithms applied to the COVID-19 dataset (VAR3), the RF generated

models performed better than the DT generated models in terms of closeness between the accuracy

of the training dataset (10-fold) and the validation dataset. The PRC, precision, recall and F-

measure values from both algorithms fall within the acceptance criteria.
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Table 5.33: Summary analysis for RF and DT generated models — Experiment-21P-
Sampling [None]-VAR3

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation

38 94,4 | 85,3 0,7 0,59 0,9 0,8 | 0,94 | 096 | 094 | 0,85 ( 0,94 | 0,86

Forward
Search

Backward
Search

3 958 | 797 | 0,79 | 059 ( 092 [ 0,8 | 0,95 | 0,88 | 095 ( 0,79 | 0,95 | 0,83

5.4.4.2. Experiment-2IP-Sampling [US]
For VAR1 and VARZ2, the DT and RF algorithms developed models with an unacceptable accuracy

(less than 80% accuracy observed during training of the algorithms). The model produced using
the VARSI dataset did produce acceptable accuracy (90.9%) when applied to the validation data,
however, the difference between the training and validation accuracy is more than 20%, indicating
that the model cannot be guaranteed to perform well against unseen data. For VAR3, the models
developed are suitable, specifically for the training data (overfitting), with almost thirty percent

difference in accuracy between application of the training data and the validation data.

5.4.4.3. Experiment-21P-Sampling [OS]
Table 5.34 shows the analysis of the models generated using the learning algorithms when applied

to the oversampled VAR1 dataset. For this experiment, the sampleSizePercent parameter

value is 158.
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Table 5.34: Summary analysis for RF and DT generated models — Experiment-21P-
Sampling [OS]-VAR1

Decision Tree (J48)
Atctcr:::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
z::”r;rd 6 879 | 72 | 094 | 052 | 093 | 0,84 | 0,88 | 0,84 | 0,88 | 0,72 | 0,88 | 0,77
k
g::r:r’frd 19 89,5 | 748 | 094 | o6 | 093 | 0,85 | 0,89 | 0,88 | 0,89 | 0,74 | 0,89 | 0,79

The accuracy obtained when training the dataset exceeds 87% for the DT algorithm and exceeds

95% for the RF algorithm. However, the accuracy obtained when the respective models are

applied to the validation dataset was at least 15% less than that of the training accuracy. By

observing the recall value, it appeared that the algorithm could not produce consistent accuracy

when applied to unseen data.

In Table 5.35, when including the Moodle interaction data (VAR2), an improvement was noted in

terms of accuracy difference when compared to the analysis for Experiment-2I1P-Sampling [OS]-

VARL1. In the case of the VAR2 dataset (using sampleSizePercent value of 164), the RF

algorithm generated acceptable prediction models while the DT algorithm was not able to.

Table 5.35: Summary analysis for RF and DT generated models — Experiment-2IP-
Sampling [OS]-VAR2

Decision Tree (J48)
Atctg::tte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
Zzgwrcahrd 5 88,3 | 748 | 0,89 | 0,68 | 0,85 | 0,88 | 0,88 | 0,87 | 0,88 | 0,74 | 0,88 | 0,79
EZ:rk:r’frd 13 828 | 79 | o84 | 068 | 08 | 0,88 | 0,83 | 0,85 | 0,82 | 0,79 | 0,82 | 0,81
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For the COVID-19 dataset (VAR3), it appears that the generated model overfits on the training
dataset, resulting in poorer accuracy when the model is applied to the validation dataset. For this
course, the pass rate was much higher for the years 2020 and 2021 than when the course was run
before COVID-19. A greater number of instances with improved diversity with respect to attribute
values may assist in improving the performances of the algorithms should this course continue

with an online model in the future.

5.4.4.4. Experiment-2IP-Sampling [SMOTE]
When SMOTE is applied to the VAR1 dataset (using a Percentage parameter value of 275),

the resultant training accuracy is not as good as when oversampling was used. The accuracy
between training and validation is, however, much closer than when compared to the oversampled

variations. Valid models are found for the backward search DT and RF models respectively.

Table 5.36: Summary analysis for RF and DT generated models — Experiment-21P-
Sampling [SMOTE]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
7 86,3 76,9 0,85 0,57 0,81 0,86 0,86 0,84 0,86 0,76 0,86 0,8

Forward
Search

Backward
Search

16 826 | 81,8 | 08 | 0,77 | 0,82 ( 0,89 | 0,82 | 0,89 | 0,82 ( 0,81 | 0,82 | 0,84

For VAR?2, accuracy for training was in an acceptable range of 85.9% to 90.3% for each of the
learning algorithms (DT and RF). However only the model generated using the RF algorithm
(backward search) produced similar accuracies for both training (90.3%) and validation datasets
(87.4%). The ROC (0.96 and 0.82), PRC (0.96 and 0.91), F-measure (0.9 and 0.87), precision (0.9
and 0.87) and recall values (0.9 and 0.87) were also close, indicating that the model could be used

to predict performance for unseen instances.
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The performance of the algorithms when applied to VAR3 were similar to that of oversampling,
where training of the algorithm resulted in very high accuracies that were not replicated when the

models were applied to the validation dataset.

5.4.4.5. Analysis of experiments conducted
The best models identified from each of sections 5.4.4.1 to 5.4.4.4 are listed in Table 5.37. As

with previous datasets, the use of undersampling did not result in the production of any acceptable

models. All models listed in Table 5.37 were developed using the RF algorithm and are named
VAR3-None, VAR2-OS and VAR3-SMOTE respectively.

Table 5.37: Best three models generated from Experiment-2IP

Variation and

x Accuracy ROC PRC Area Precision Recall F-Measure
Sampling
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation] 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation)|
VAR3-None
VAR2-0S
VAR2-SMOTE

The accuracy comparison for the three models i1s shown in Figure 5.10. The VAR2-OS model
produced the highest accuracy for both training (10-fold) and validation but the VAR2-SMOTE

model produced the smallest accuracy difference.
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Figure 5.10: Accuracy comparison for best three models
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A comparison of the remaining assessment measures is illustrated using the bar graph in Figure
5.11. As expected, the ROC values for VAR3-None were lower due to ROC being affected by
imbalanced datasets. These are much improved when sampling is applied in the case of VAR2-

OS and VAR2-SMOTE. The other performance measures are all above 0.8, indicating the

c © c
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.

reliability of these models.
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Figure 5.11: Performance measure comparison of three best models

5.4.5. Experiments for the ISTN211 dataset
This section covers experiments for the ISTN211 dataset, which has the highest imbalance score

as per Table 5.2.

5.4.5.1. Experiment-211-Sampling [None]
With no sampling applied, the DT algorithm was not able to produce any viable models for all

three dataset variations. The RF algorithm was able to produce acceptable prediction models as

seen in Table 5.38.
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Table 5.38: Summary analysis for RF generated models — Experiment-211-Sampling
[None]-VAR1 and Experiment-211-Sampling [None]-VAR2 and Experiment-211-Sampling
None]-VAR3

Variation 2 Variation 1

Variation 3

As seen in Table 5.38, the accuracies between training and validation are similar, as are the
precision, recall, PRC and F-Measure values. The only exception is the forward search RF
algorithm (applied to VAR1) where the precision and F-measure could not be calculated. As stated

earlier, the ROC values cannot be relied upon in the case of these imbalanced variations.

5.4.5.2. Experiment-211-Sampling [US]
Both learning algorithms (DT and RF) performed poorly in generating valid models when

undersampling was applied to any of the three variations. For VARS, training accuracy achieved
was 88.8% and 94.4% for the models generated using the DT and RF algorithms respectively.
However, when either of these models were applied to the validation datasets, accuracy of less
than 43% was obtained.

5.4.5.3. Experiment-211-Sampling [OS]
When oversampling is applied to the datasets, only the forward search DT algorithm when applied

to VARL1 resulted in the generation of an acceptable model. In the case of the reverse search DT
algorithm, the accuracy difference was greater than 10% (97.6% - 83.7%) and thus the model does

not fit the acceptance criteria.
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For VAR2 and VARS, the training accuracies are above the acceptable range of 98% for the
models generated by both the learning algorithms.

5.4.5.4. Experiment-211-Sampling [SMOTE]
The performance measures of the algorithms when SMOTE is applied to each of the dataset

variations are similar to that of when oversampling was used. The accuracy obtained during
training ranged above 96% for all variations. Table 5.39 shows the algorithms applied to VAR1
with SMOTE applied. For the experiments listed, the Percentage parameter value was set to
1900 to ensure the creation of sufficient instances for the minority class to match the number of

instances from the majority class.

Table 5.39: Summary analysis for RF and DT generated models — Experiment-211-
Sampling [SMOTE]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation

7 96,9 | 92,6 | 0,97 0,5 0,9 | 0,89 | 0,96 0,9 09 | 092 | 0,9 | 091

Forward
Search

Backward
Search

22 95,6 | 93,2 | 097 | 063 [ 09 | 091 | 095 | 091 | 095 ( 0,93 | 0,95 | 0,92

The accuracy values for VAR1 were within the acceptable range for both training and validation.
Further, the PRC, precision, recall and F-measure values also fall within the acceptable range
targeted for this study. The only exception is the ROC value for validation, where it appears that,

for the validation dataset, the model predictions are similar to that of guesswork.

Table 5.40 shows the analysis of the prediction models for VAR2. For all four experiments, a
Percentage parameter value of 1750 was used and a training accuracy was in the range 96% to
97.2%. The forward search RF algorithm generated a model that did not fit for the validation data

while the other algorithms yielded similar accuracy to training.
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Table 5.40: Summary analysis for RF and DT generated models — Experiment-211-
Sampling [SMOTE]-VAR2

Decision Tree (J48)
Attrib ..
::t:u:tte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
zzg”m"hrd 5 97 93 | 0,97 | 0,46 | 0,96 | 0,89 | 0,97 | 0,89 | 0,97 | 0,93 | 0,97 | 0,91
ke
2:;:;”" 12 97 90 | 0,97 | 069 | 097 | 091 | 0,97 | 0,89 | 0,97 | 09 | 0,97 | 0,89

As with the analysis for VARL, the PRC, precision, recall and F-measure values all fall within an

acceptable range for both training and validation data. In terms or ROC validation, the model

generated using the backward search DT algorithm was closest to falling in an acceptable range

(0.69). For VARG, the analysis is listed in Table 5.41. The Percentage parameter was set to a

value of 2500 for these experiments.

Table 5.41: Summary analysis for RF and DT generated models — Experiment-211-
Sampling [SMOTE]-VAR3

Decision Tree (J48)
Atcts:gtte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
_:Z:”rcar:d 2 97,6 | 91,7 | 0,98 | 0,38 | 0,97 | 0,88 | 0,97 | 0,89 | 0,97 | 0,91 | 0,97 | 0,9
S::rk:r’frd 4 97,8 | 90,2 | 0,97 | 0,45 | 0,96 | 0,88 | 097 | 09 | 097 | 09 | 097 | 09

For VARS, the accuracy achieved for the training dataset is greater than 98% and thus these models

are not considered valid for this study. The assessment measures for the models generated using
the DT algorithm indicate that the models are reliable. However, as with the VAR1 and VAR2

variants, the ROC values for the model when applied to the validation dataset are less than 0.5,

possibly indicating an unreliable model when applied to unseen data.
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5.4.5.5. Analysis of experiments conducted
In this section, three (3) models, one from each of Sections 5.4.5.1 to 5.4.5.4 (excluding Section

5.4.5.2) are compared and discussed in terms of how well they have met the assessment criteria

requirements for this study. For undersampling (Section 5.4.5.2), no models were generated that

met the acceptance criteria. The assessment measures for the three models are shown in Table
5.42. The model named VAR3-None was generated using the RF algorithm while the VARI-OS
and the VAR2-SMOTE were generated using the DT algorithm.

Table 5.42: Best three models generated from Experiment-211

Variation and
Sampling

Accuracy

ROC

PRC Area

Precision

Recall

F-Measure

VAR3-None
VAR1-0S
VAR2-SMOTE

10-Fold ] Validation

10-Fold |Validation

10-Fold | Validation

10-Fold |Validation

10-Fold | Validation

10-Fold | Validation

The accuracy for each of the models are all of an acceptable value, with training accuracy in the

range 96.6% to 97.4% while validation accuracy ranges from 87.4% to 95.4%. Figure 5.12 shows

that the VAR3-None model has the closest accuracy difference.
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Figure 5.12: Accuracy comparison for best three models

The remaining assessment measures (with the exception of ROC) all indicate that the models

generated are reliable (Figure 5.13). The ROC values are particularly low for the validation data.

This 1s to be expected as the ROC assessment metric behaves abnormally with imbalanced data.
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Figure 5.13: Performance measures of best three models

5.4.6. Experiments for the ISTN212 dataset
In this section, experiments are conducted for the ISTN212 dataset.

5.4.6.1. Experiment-212-Sampling [None]
When applying the learning algorithms to the VARI dataset with no sampling, acceptable

performances were obtained for the DT algorithm (using backward search) and RF algorithm
(using forward search). For these algorithms, the accuracies obtained are greater than 80% and
the accuracy from applying the model to unseen data is 90.2% (DT) and 88.5% (RF), a difference
of less than 10%. The PRC, precision, recall and F-measure for these models are also within the

acceptable range, although there is an increase in difference between training and validation values

when compared to previous experiments.
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Table 5.43: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [None]-VAR1

Decision Tree (J48)

Attribute

F— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

None 80.7 | 95,6 | 0,49 0,5 0,68 [ 0,91 ? ? 0,8 0,95 ? ?

Forward
Search

Backward
Search

22 819 | 90,2 | 069 | 0,68 | 0,77 ( 0,93 | 0,79 | 0,93 | 0,82 0,9 0,8 0,91

For the VAR2 dataset, performance measures obtained for the learning algorithms are better than
that obtained using VARL1 dataset (Table 5.44).

Table 5.44: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [None]-VAR2

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

2 89,4 | %,6 | 064 | O61 ( 08 | 093 | 0,89 | 0,9 | 0,89 [ 0,96 | 0,86 | 0,95

Forward
Search

Backward
Search

7 89 9%., | 063 | 061 | 082 | 093 ( 0,88 | 0,96 | 0,89 | 0,96 | 0,86 [ 0,95

As can be seen in Table 5.44, accuracy achieved using either of the algorithms was above 89%.
Furthermore, when the generated models were applied to the validation dataset, accuracy of 95%
to 96% was achieved. The other performance measures also indicated that the models generated
were of a good quality in making predictions for any other unseen instances. The same can be said
for VARS (see Table 5.45) where good accuracies were obtained by both algorithms for training

as well as for unseen instances (validation dataset).
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Table 5.45: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [None]-VAR3

Decision Tree (J48)
Atct:::tte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation
zzzvcahrd 3 97,9 94,2 0,68 0,73 0,95 0,94 0,98 0,95 0,98 0,94 0,97 0,94
S::rkc“r”]ard 16 | 971 | 892 | 069 | 073 | 095 | 093 | 096 | 0,93 | 0,97 | 0,89 | 0,96 | 0,91

5.4.6.2. Experiment-212-Sampling [US]
For the VAR1 and the VARS3 datasets, no models were generated that fit the acceptance criteria

for the study. The analysis for VAR2 is shown in Table 5.46. Three out of the four experiments
resulted in acceptable models with the accuracy of the RF generated models being better than that
of the DT generated models. The remaining performance measures for the RF generated model

were also in the acceptable range.

Table 5.46: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [US]-VAR2

Decision Tree (J48)
Atct:;:gtte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
zzgwr;’d 3 80,1 | 872 | 0,79 | 0,71 | 0,77 | 0,93 | 0,82 | 094 | 08 | 087 | 0,79 | 0,9
::rk:r’frd 14 79,5 | 91,2 | 0,79 | 0,85 | 0,75 | 0,95 | 0,79 | 0,93 | 0,79 | 0,91 | 0,79 | 0,92

5.4.6.3. Experiment-212-Sampling [OS]

For this section, oversampling was applied to the dataset variations, followed by the application

of the learning algorithms. The performance measures for the resultant models when using the
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VARL1 dataset are shown in Table 5.47. For these experiments, the sampleSizePercent

parameter value was set to 161.

Table 5.47: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [OS]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

17 876 | 76,7 | 091 | 067 ( O8 | 093 | 0,88 | 0,93 | 0,87 | 0,76 | 0,87 | 0,83

Forward
Search

Backward
Search

17 87,6 72 0,92 | 0,54 0,9 091 | 087 | 093 | 0,87 | 0,72 | 0,87 0,8

As seen above, the accuracy for the oversampled VARL training dataset is 87.6% and 94.5% for
the DT algorithms and RF algorithms respectively. However, it appears that the model overfits
the training data as seen by the accuracy when the models are applied to the validation dataset.
The models generated when the algorithms are applied to oversampled VAR2 are far closer in
terms of accuracy, as shown in the performance measures in Table 5.48. For these experiments,

the sampleSizePercent parameter value was 173.

In the case of the RF algorithm, the training accuracy falls outside the acceptable range for this
study (greater than 98% accuracy). For the DT algorithm (backward search), the generated model
accuracies are acceptable in terms of being in an acceptable range as well as the accuracy

difference being less than 10%.
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Table 5.48:

Summary analysis for RF and DT generated models — Experiment-212-
Sampling [OS]-VAR2

Decision Tree (J48)
Atcts::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
E::”rc‘:d 7 949 | 848 | 097 | 0554 | 097 | 092 | 0,95 | 0,92 | 0,94 | 0,84 | 0,94 | 0,88
k
g::r:frd 17 96,2 | 90,9 | 0,97 | 0,66 | 0,97 | 0,93 | 0,96 | 0,93 | 0,96 | 09 | 0,96 | 0,92

For VAR3, the algorithms exhibited near perfect accuracy (above 98%) and thus above the

acceptable range for this study. The generated models, when applied to the validation dataset, also

resulted in high accuracy (in the range of 91% to 95%). It should be noted, however, that the pass

rate for VAR3 was very high and thus further instances should be obtained for both training and

testing datasets to better evaluate how the learning algorithms predict performance for this course.

5.4.6.4. Experiment-212-Sampling [SMOTE]
When SMOTE is applied to the VAR dataset (using a Percentage parameter value of 315),

the learning algorithms produced accuracy in the range of 84% to 87%. The resultant prediction

models were applied to the validation dataset and with the exception of the DT backward search

model, the accuracy obtained was very close to the training dataset. The ROC, PRC and F-

Measure values were also high, indicating that good models have been generated.
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Table 5.49: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [SMOTE]-VAR1

Decision Tree (J48)
Atctg::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;z;‘:’;"’ 9 84,1 | 90,5 | 087 | 08 | 0,84 | 094 | 0,84 | 093 | 0,84 | 09 | 0,84 | 0,92
k
SB::FC“}’]”" 20 86,1 | 639 | 088 | 052 | 0,85 | 091 | 0,86 | 0,91 | 0,86 | 0,64 | 0,8 | 0,74

The performance of the algorithms when applied to VAR2 (Percentage parameter value was
550) appeared to be better than when compared to VARL as seen in Table 5.50. The accuracy
achieved from training ranges from 89.4% to 94.1%, and when the models are applied to the

unseen dataset, equivalent accuracy is achieved. The only exception is the forward search RF

algorithm where overfitting was observed.

Table 5.50: Summary analysis for RF and DT generated models — Experiment-212-
Sampling [SMOTE]-VAR2

Decision Tree (J48)
ib ..
Atctgu:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
g‘e’;”:'c‘:d 7 89,4 | 89,5 | 0,92 | 064 | 0,91 | 093 | 0,89 | 0,93 | 0,89 | 0,89 | 0,89 | 0,91
SB::rk:}'frd 14 93,1 | 939 | 093 | 079 | 09 | 094 | 0,93 | 0,92 | 0,93 | 0,93 | 0,93 | 0,93

The application of the algorithms to VAR3 yielded almost perfect accuracy (above 98%). Similar

to the conclusion found with oversampling, further instances should be collected to gain a better

understanding of how the algorithms perform with the attributes of the dataset.
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5.4.6.5. Analysis of experiments conducted
Unlike previous courses, four models were identified (one from each of the sections 5.4.6.1 to

5.4.6.4) as the best models and are listed in Table 5.51.

Table 5.51: Best four models generated from Experiment-212

Variation and

. Accuracy ROC PRC Area Precision Recall F-Measure
Sampling

10-Fold | Validation | 10-Fold | Validation| 10-Fold | Validation | 10-Fold |Validation] 10-Fold | Validation| 10-Fold | Validation

VAR3-None
VAR2-US
VAR2-0S
VAR2-SMOTE

All accuracies (training and validation) fall within the acceptable range for this study. A
comparison of the accuracies is shown in Figure 5.14. The VAR3-None model appears to be the
best model in terms having the highest accuracy for both training and validation. The VAR2-
SMOTE model has the smallest accuracy difference of 1.1 between training and validation. The
VAR3-None model has an accuracy difference of 1.2.

100

95

9

8

| I
75

VAR3-None VAR2-US VAR2-0S VAR2-SMOTE

o

w

o

M Accuracy 10-Fold M Accuracy Validation

Figure 5.14: Accuracy comparison of four best models

A comparison of the remaining performance measures is shown in Figure 5.15. As with the other
course experiments, the PRC, precision, recall and F-measure values are all within the acceptable

range. For the ROC, only the V4AR2-OS model has a ROC value less than the acceptable value of
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0.7. It should be noted, however, that with the validation dataset being imbalanced (21.85
according to Table 5.2), it is expected that the ROC value would be adversely affected.
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Figure 5.15: Performance measures of best four models

5.4.7. Experiments for the ISTN3SA dataset
This section covers the experiments for the learning algorithms applied to the ISTN3SA dataset.

5.4.7.1. Experiment-3SA-Sampling [None]
The DT algorithm could not produce viable models when applied to any of the variations, 1.e.,

single leaf (“P”) models were generated. For VARI, the RF algorithm was able to produce
acceptable models (Table 5.52).

Table 5.52: Summary analysis for RF generated models — Experiment-3SA-Sampling
onel-VARI

The RF algorithm could not produce viable models for VAR2 and VAR3. In the case of VAR2,
out of the 57 failed class instances, the RF algorithm was only able to correctly predict 7 instances,
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thus resulting in the poor performance of the model when applied to the validation dataset. In the
case of VAR3, poor performance is due to the pass rate of 99% and only 2 failures in the course,
respectively. With only two instances resulting in a fail class value, more instances are required
to better study the inclusion of Moodle data, demographics and registration data for predictive

purposes (for this course).

5.4.7.2. Experiment-3SA-Sampling [US]
When undersampling is applied to VAR1 and VARZ2, poor training accuracy of less than 80% is

obtained for both algorithms. During the year 2020 (online teaching due to COVID-19), only two
(2) students had failed. Undersampling removes instances from the major class to match the
number of instances of the minor class. As WEKA requires a minimum of 10 instances per class

in order to train the algorithms, no analysis was performed for VAR3.

5.4.7.3. Experiment-3SA-Sampling [OS]
Table 5.53 shows the performance measures for the models generated by the DT algorithm and

RF algorithm (the sampleSizePercent parameter value was set to 182) when each were
applied to the oversampled VARL1 dataset. The training accuracy achieved was above 92% and
both algorithms produced models that manage to achieve similar accuracy for the validation
dataset. While the performance of the models can be verified by the PRC and F-measure values,

only the forward search RF algorithm (forward search) produced acceptable ROC values.

Table 5.53: Summary analysis for RF and DT generated models — Experiment-3SA-
Sampling [OS]-VAR1

Decision Tree (J48)

Attribute

—— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation] 10-Fold |Validation
7 92 91,7 0,97 0,49 0,97 0,96 0,92 0,97 0,92 0,91 0,92 0,94

Forward
Search

Backward
Search

18 94,8 73 09 | 0,54 | 096 | 09 | 095 ( 096 | 0,94 | 0,73 | 0,94 ( 0,82

155



For the performance measures of the models for Experiment-3SA-Sampling [OS]-VAR2, the RF
algorithm produced about 98% training accuracy while the DT algorithm produced models with
about 95.8% and 96.8% training accuracy (sampleSizePercent value is 178). The models,
when applied to the validation dataset, also produced acceptable accuracy of 86% and 93%

respectively (see Table 5.54).

Table 5.54: Summary analysis for RF and DT generated models — Experiment-3SA-
Sampling [OS]-VAR2

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation] 10-Fold |Validation
6 95,8 93 0,97 0,82 0,96 0,98 0,96 0,97 0,95 0,93 0,95 0,94

Forward
Search

Backward
Search

12 96,8 86 097 | 0,57 | 097 | 09 | 097 ( 096 | 0,96 | 0,86 | 0,96 ( 0,91

Both algorithms’ resultant models produced 100% prediction when training on oversampled
VARS3. As stated earlier, with only 2 fail class instances, there is insufficient variety with number
of failures. Acquiring more of this course data in the future will allow for more failing instances
required in order for training to be more effective and understanding how well the algorithms

perform on this 3" year course dataset.

5.4.7.4. Experiment-3SA-Sampling [SMOTE]
For the VARL1 dataset with SMOTE applied (a Percentage parameter value of 900 was used),

the algorithms were able to produce models with training accuracy of 92% to 94% (Table 5.55).
With regard to the validation data, the accuracy of the models generated using the DT algorithms
as well as the backward search RF were within 10% of the training accuracies. The ROC, PRC
and F-measures also indicate that the models are reliable for making predictions for unseen

instances.
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Table 5.55: Summary analysis for RF and DT generated models — Experiment-3SA-
Sampling [SMOTE]-VAR1

Decision Tree (J48)
Atég::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;z;‘:’;'d 8 92 | 873 | 093 | 052 | 091 | 096 | 092 | 0,96 | 0,92 | 0,87 | 0,92 | 0,91
k
SB:;;’]”" 12 92,7 | 939 | 097 | 07 | 096 | 097 | 0,92 | 0,97 | 0,92 | 0,93 | 0,92 | 0,95

For VAR2, the performance of the algorithms appears better than that of VARL.

For all

experiments in this case (Percentage parameter value was set to 725), training accuracy of

above 91% was achieved (see Table 5.56). When the models are applied to the validation datasets,

equivalent accuracy is produced.

Table 5.56: Summary analysis for RF and DT generated models — Experiment-3SA-
Sampling [SMOTE]-VAR?2

Decision Tree (J48)
Atcts:stte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation
z:;‘”r;rd 7 91,8 | 9 | 09 | 058 | 087 | 097 | 0,91 | 0,97 | 0,91 | 0,96 | 0,91 | 0,96
ki
2:;:}"1”" 17 91,7 | 952 | 093 | 07 | 09 | 097 | 0,91 | 0,97 | 0,91 | 0,95 | 0,91 | 0,96

In the case of VARS3, accuracy neared 100%. As observed in Sections 5.4.7.1 (no sampling) and

5.4.7.3 (oversampling), an insufficient number of failures in this dataset contributes to the 100%

accuracy. Acquiring more failing instances in future iterations of this course is required in order

for training to be more effective.
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5.4.7.5. Analysis of experiments conducted
From the experiments described in Sections 5.4.7.1 to 5.4.7.4, one model was respectively chosen

from experiments relating to no sampling, oversampling and SMOTE. Due to poor performance
of the models, no models were chosen from the undersampling experiments (Section 5.4.7.2). The

models’ assessment measures are shown in Table 5.57.

Table 5.57: Best three models from Experiment-35A4

Variation and

B Accuracy ROC PRC Area Precision Recall F-Measure
Sampling

10-Fold ] Validation | 10-Fold |Validation| 10-Fold | Validation | 10-Fold | Validation| 10-Fold |Validation] 10-Fold | Validation

VAR1-None
VAR2-0S
VAR2-SMOTE

All training accuracy values obtained are greater than 90% with the V4R 1-None model having the
best accuracy when applied to the validation dataset. The VAR2-OS and VAR2-SMOTE models

have the smallest accuracy difference between training and validation accuracy.

99
98
97
96

95
94
9
9
9
9
8
88

VAR1-None VAR2-0S VAR2-SMOTE

O O = N W

M Accuracy 10-Fold B Accuracy Validation

Figure 5.16: Accuracy comparison for best three models

The remaining assessment measures are illustrated in Figure 5.17. All the measures are within the

acceptance criteria range for this study.
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Figure 5.17: Assessment measure comparison of three best models

5.4.8. Experiments for the ISTN3AS dataset
This section covers experiments relating to the ISTN3AS dataset.

5.4.8.1. Experiment-3AS-Sampling [None]
The performance of the algorithms was poor when no sampling is applied. This is due to the

imbalance of the dataset. In this case, an imbalance value of 45.83 for all instances (see Table 5.2)
is the highest imbalance value for all courses covered in this study. With fewer failing instances,
the algorithms overfit and show bias towards the major class, thus resulting in the poor

performance of the generated models.

5.4.8.2. Experiment-3AS-Sampling [US]
For VARI1 and VAR2, training accuracy for each of the algorithms ranged from 65% to 90%.

However, none of the models, when applied to the validation data, achieved an acceptable accuracy
(55% to 78% range). For VAR3, the number of total instances after undersampling was

msufficient for WEKA to conduct training and develop a prediction model.

5.4.8.3. Experiment-3AS-Sampling [OS] and Experiment-3AS-Sampling [SMOTE]
When oversampling was applied, only one acceptable model was generated, that being the model

when the DT algorithm was applied to VARI1. In this case, training accuracy was found to be
96.8% with validation accuracy being 87.6% (sampleSizePercent value was 196). The PRC,
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precision, recall and F-measure values were all above 0.87, indicating reliable models. However,
the ROC validation value of 0.48 may indicate an element of guessing when the model is applied
to unseen data and was thus deemed as unacceptable. However, the validation dataset is very
imbalanced (31.43) with only seven (7) instances labelled as “Fail”. For the VAR2 and VAR3

dataset variations, training accuracy achieved was at least 99.2% for both algorithms.

In the case of SMOTE sampling, for all variations, both the learning algorithms were not able to
produce acceptable models that satisfy the acceptance criteria for this study. All training
accuracies achieved were in the range 98.7% to 100%. This indicates overfitting of the model to

the training data.

5.4.8.4. Analysis of experiments conducted
For this course, no acceptable prediction models could be generated by either algorithm for any of

the variations. The reason for this would be the high number of pass instances when compared to
the number of fail instances. In the six years of data captured for this course, 23 students had failed

while 1054 students passed.

The nature of the course must also be taken into consideration. As described in Table 5.1, the
majority of the course and a large portion of the assessment focuses on a project and the
development of a front-end (Windows-based) application. This differs from other IS&T courses
where the assessments are predominantly individual-based. For this course, the presentations
revolving around the group project is the predominant form of assessment with no examination.
Further to this, all students in their group obtain the same mark (unless disputes are made), thus
resulting in a large number of students passing this course as long as the group that they are in are
organized and meets the minimum requirements of their project submissions. In addition, the

activities for this course are group based and not recorded by the Moodle LMS.

5.4.9. Experiments for the ISTN3SI dataset
This section focuses on the ISTN3SI course dataset. As discussed in Table 5.1, this course is a

continuation of the ISTN3AS course discussed in section 5.4.8.
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5.4.9.1. Experiment-3SI-Sampling [None]
The DT algorithm could not produce a viable model when applied to the VAR1 dataset. For the

RF algorithm, the performance measures when applied to the VAR1 dataset are shown in Table
5.58. The accuracy achieved through training is similar to that of when the models are applied to

the validation datasets and is above 95%, indicating reliable predictions.

Table 5.58: Summary analysis for RF generated model — Experiment-3S1-Sampling [None]-
VAR1

For the VAR?2 dataset, the performance of the models generated by the learning algorithms are
shown in Table 5.59. The accuracies for both training and validation are within the acceptable
range for this study. The accuracy difference is also less than 10%, which is an acceptable range
for this study. As no sampling is used in this case and the dataset is imbalanced, the ROC value
is not considered when determining the suitability of the prediction model. The PRC, precision,

recall and F-measure values are also greater than 0.8 and within the acceptable range for this study.

Table 5.59: Summary analysis for RF and DT generated models — Experiment-3SI-
Sampling [None]-VAR2

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation] 10-Fold |Validation
3 95,8 97,7 0,7 0,64 0,92 0,96 0,95 0,97 0,95 0,97 0,95 0,97

Forward
Search

Backward
Search

6 94,8 | 96,4 0,7 0,72 ( 091 | 095 | 094 | 095 ( 0,94 | 0,96 | 0,93 | 0,96

The DT algorithm was not able to produce an acceptable model for the VAR3 dataset (the model

generated was a single leaf “P”). For the RF algorithm, models were generated for both
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experiments with accuracy of 95.1% and 96.1% respectively. The PRC and F-measure values
were also good and accuracy of 94.6% and 98.2% (outside acceptable range) were respectively
observed when the models were applied to the validation datasets (Table 5.60).

Table 5.60: Summary analysis for RF generated models — Experiment-3SI1-Sampling
None]-VAR3

5.4.9.2. Experiment-3SI-Sampling [US]
As with most experiments on undersampling, the removal of the majority of instances from the

pass class resulted in unacceptable accuracy (less than or equal to 80% training accuracy). Only a
single experiment using the RF algorithm applied to the VAR3 dataset provided a 90% training
accuracy and 82% validation dataset accuracy.

5.4.9.3. Experiment-3SI-Sampling [OS]
When oversampling is applied to the three variations, the algorithms accuracy exceeds 97% for all

experiments. The models also exhibit high accuracy when applied to the validation dataset (in the
range 86% to 98%). Only one model was deemed acceptable based on the acceptance criteria for
this study, that being the DT algorithm model when applied to VAR1.

As with the ISTN3AS course, the high pass rate of the course results in potential overfitting of the
model to the training data, resulting in the almost 100% accuracies. Future data acquisition for
this course will allow for generation of better models with regard to this course.

5.4.9.4. Experiment-3SI-Sampling [SMOTE]
The performances for the learning algorithms when applied to VAR1 with SMOTE is shown in

Table 5.61. For these experiments, the Percentage parameter value was set to 1900. The
accuracy achieved through training ranges from 95.2% to 96.4% and similar accuracy is obtained

when the resultant models are applied to the validation datasets.
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Table 5.61: Summary analysis for RF and DT generated models — Experiment-3SI-
Sampling [SMOTE]-VAR1

Decision Tree (J48)

Attribute

F— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

13 96,3 | 946 | 097 | 059 | 095 ( 094 | 0,96 | 0,94 | 09 | 094 | 0,96 | 0,94

Forward
Search

Backward
Search

13 96,4 | 955 | 097 | 0,58 | 095 ( 094 | 096 | 0,94 | 0,96 | 0,95 [ 0,9 | 0,95

With the VAR2 dataset (Percentage parameter value equaled 1250), 94.1% to 97.1% accuracy
is achieved for all experiments when training. For both forward searches, only two attributes are
identified for features selection and the resultant models do not fit the validation dataset. The
backward searches for both algorithms produced prediction models that result in similar accuracy
to the training data (see Table 5.62).

Table 5.62: Summary analysis for RF and DT generated models — Experiment-3SI-
Sampling [SMOTE]-VAR2

Decision Tree (J48)

Attribute

—- Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

2 94,7 | 746 | 0,93 | 0,56 0,9 094 | 094 | 094 | 094 | 0,74 | 0,94 | 0,82

Forward
Search

Backward
Search

14 955 | 9,1 | 09 | 055 093 [ 094 | 0,95 | 0,94 | 095 [ 0,95 [ 0,95 | 0,94

Similar to VAR1 and VARZ, high training accuracy as well as validation accuracy was achieved
for all experiments for the VARS3 dataset (a Percentage value of 1700 was used). As seen in
Table 5.63, only the RF generated models have ROC values that are above 0.7. The PRC and F-
Measure values were also high, indicating acceptable models have been generated.
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Table 5.63: Summary analysis for RF and DT generated models — Experiment-3SI-
Sampling [SMOTE]-VAR3

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

5 95,7 | %,8 | 09 | 061 ( 095 ( 095 | 0,95 | 0,95 | 0,95 [ 0,9 | 0,95 | 0,96

Forward
Search

Backward
Search

17 954 | 9,1 | 09 | 045 | 093 | 094 | 095 | 0,93 | 095 [ 0,95 [ 0,95 | 0,94

5.4.9.5. Analysis of experiments conducted
Unlike the ISTN3AS course dataset, the application of this course dataset did result in prediction

models that met the acceptance criteria for this study. When comparing the imbalance level of this
course to that of the ISTN3AS course, it was noted that the ISTN3SI course was less imbalanced
with more fail instances in the dataset. The assessment form for this ISTN3SI course is similar to
that of the ISTN3AS course in that the predominant mode of assessment is the group project
presentations. The increased number of failures can be attributed to web-based programming and
development that students have not previously experienced in other IS&T courses. The web-based
programming and development is prone to a greater number of potential errors and mistakes when

compared to windows-based development done in ISTN3AS.

Thus, four models were identified from the experiments described in Sections 5.4.9.1 to 5.4.9.4.
The performance measures for these models are listed in Table 5.64. Three of the models (VAR2-
None, VAR3-US and VAR2-SMOTE) were generated using the RF algorithm and one model
(VAR1-OS) was generated using the DT algorithm.

Table 5.64: Best four models for Experiment-3SI

Accuracy ROC PRC Area Precision Recall F-Measure

Variation and
Sampling

10-Fold | Validation | 10-Fold |Validation| 10-Fold [ Validation | 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation
VAR2-None
VAR3-US

vaR1os | 974 | 884 [ 098 | 041 | 098 [ 093 | 097 | 094 | 097 [ 088 | 097 | 091 |

VAR2-SMOTE
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The VAR2-None and the VAR2-SMOTE algorithms produced the best accuracies for both training

and validation. The accuracy difference for these two models were also the smallest as shown in

VAR2-None VAR3-US VAR1-0S VAR2-SMOTE

Figure 5.18.

100
95

9

o

8

[¥,]

8

o

7

(8]

70

M Accuracy 10-Fold M Accuracy Validation

Figure 5.18: Accuracy comparison for four best models

As with the other models generated from previous courses, the PRC, precision, recall and F-
measure values all indicate that the models are reliable in predicting unseen instances. The
validation ROC values for the VAR1-OS (0.41) and VAR3-US (0.68) models were the only values
less than the acceptable range for this study.
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Figure 5.19: Assessment measure comparison for four best models
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5.4.10. Experiments for the ISTN3ND dataset
This section covers the experiments related to the ISTN3ND dataset.

5.4.10.1. Experiment-3ND-Sampling [None]
The DT algorithm, when applied to VARL1 did not produce a viable model. The RF algorithm

(forward search), however, did produce a viable model as shown in Table 5.65. The model
generated by the backward search RF algorithm has an accuracy difference of 13.6%, which is

outside the range for an acceptable model for this study.

Table 5.65: Summary analysis for RF generated model — Experiment-3ND-Sampling
None]-VAR1

For VARZ2, neither of the algorithms were able to generate acceptable models. In the case of the
forward search RF algorithm, the accuracy difference was greater than 10% while the DT

algorithms and backward search RF algorithm resulted in validation accuracy of greater than 98%.

For VARS, only 5 failing instances for the validation dataset resulted in near 100% accuracy
achieved by both algorithms’ models for training and validation datasets. Future dataset instances

with a greater number of fail class instances would assist in better analysis of this dataset variation.

5.4.10.2. Experiment-3ND-Sampling [US]
For the VAR dataset with undersampling applied, the training accuracy for both algorithms was

poor, ranging from 68% to 71% with poor accuracy for the validation dataset (40% to 64% range).
For the algorithms applied to the VAR2 dataset, the validation dataset did not fit the models

generated during training of either of the algorithms. This is shown by the more than 10%

differences between training accuracy and validation accuracy (Table 5.67).
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Table 5.66: Summary analysis for RF and DT generated models — Experiment-3ND-
Sampling [US]-VAR2

Decision Tree (J48)
ib ..
Atctzu:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
E‘e’a“:’c‘:d 9 857 | 982 | 085 | 0,99 | 0,8 | 0,99 | 0,85 | 0,99 | 0,85 | 0,98 | 0,85 | 0,98
k
s::rxard 8 844 | 982 | 0,84 | 0,99 | 0,8 | 0,99 | 0,84 | 0,99 | 0,84 | 0,98 | 0,84 | 0,98

For VARS3, the difference in accuracies between training and validation is closer (see Table 5.67).

However, when undersampling was applied, there were only 10 total instances to train on and thus

future data acquisition will help better understand the effect of application of these learning

algorithms in producing accurate predictions. Despite the small number of instances for training,

the DT algorithms and the backward search RF algorithm were able to generate prediction models

whose performance measures are acceptable for this study.

Table 5.67: Summary analysis for RF and DT generated models — Experiment-3ND-
Sampling [US]-VAR3

5.4.10.3. Experiment-3ND-Sampling [OS]
For the VARL1 dataset, the RF algorithm produces high training accuracy (93.6%) but the model

Decision Tree (J48)
b —
Atctzu:tte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;:;wr;rd 1 90 | 89,2 | o8 | 084 | 08 | 097 | 091 | 097 | 09 | 089 | 0,8 | 0,92
s:::‘::\ard 1 90 | 961 | 09 | 098 | 0,86 | 0,98 | 0,91 | 0,98 | 0,91 | 0,96 | 0,9 | 0,97

overfits the training data and similar accuracy cannot be obtained when the model is applied to the
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validation data (sampleSizePercent was set to 163). The accuracies are closer when looking

at the analysis of the DT algorithm (see Table 5.68)

Table 5.68: Summary analysis for RF and DT generated models — Experiment-3ND-
Sampling [OS]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;:::’;rd 8 88,9 | 802 | 0,94 | 0,44 | 0,92 | 0,95 | 0,89 | 0,95 | 0,89 | 08 | 0,8 | 0,87
k
g::r:frd 8 88,9 | 802 | 0,94 | 0,44 | 092 | 0,95 | 0,89 | 0,95 | 0,89 | 08 | 0,8 | 0,87

The performance of both algorithms was much better when applied to VAR2 than when applied
to VARL (for VAR2, a sampleSizePercent of 160 was used). Both accuracies obtained
when training were in the range of 95.9% to 97.2%, with similar accuracy when the models are
applied to the validation dataset (see Table 5.69). The good performance is confirmed by the ROC,
PRC, precision, recall and F-Measure values.

Table 5.69: Summary analysis for RF and DT generated models — Experiment-3ND-
Sampling [OS]-VAR2

Decision Tree (J48)

Attribute

F— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

12 96 939 | 0% | 0,88 | 09 | 098 ( 0,96 | 0,97 | 0,96 | 0,94 [ 0,9 | 0,95

Forward
Search

Backward
Search

17 959 | %44 | 097 | 0,78 | 09 | 097 | 0,96 | 0,97 | 0,95 | 0,94 [ 0,95 | 0,95

The performances of the algorithms when applied to the VARS dataset resulted in models with at

least 99.7% accuracy for the experiments. When the models were applied to the validation dataset,
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accuracy of at least 97.4% was achieved. As with previous experiments, more instances are

required to better understand the performance of the algorithms when applied to this dataset.

5.4.10.4. Experiment-3ND-Sampling [SMOTE]
The learning algorithms, when applied to VAR using SMOTE (with a Percentage value of

350), produced models with acceptable accuracy in the range 84% to 86.7%. The models, when
applied to the validation dataset, achieved similar accuracy (with the exception of the forward
search RF algorithm). The performance of algorithms when oversampling (described in the
previous section) is used perform better than when the algorithms are applied using SMOTE for
VARL1.

Table 5.70: Summary analysis for RF and DT generated models — Experiment-3ND-
Sampling [SMOTE]-VAR1

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

5 86,7 | 875 | 08 | 046 | 081 ( 095 ( 0,86 | 0,96 | 0,86 | 0,87 | 0,86 | 0,91

Forward
Search

Backward
Search

15 84,2 | 836 | 086 | 0,79 | 0,82 ( 0,97 | 0,84 | 0,97 | 0,84 | 0,83 | 0,84 | 0,89

For the VAR2 experiments (Percentage parameter value was set to 300), better performance
was achieved for both algorithms with accuracy in the range of 85% to 90%. When applied to the
validation dataset, near 100% accuracy was achieved for three of the four experiment variations
(see Table 5.71). The difference in accuracies between training and validation were much closer

when using the RF algorithm than when using the DT algorithm.
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Table 5.71: Summary analysis for RF and DT generated models — Experiment-3ND-
Sampling [SMOTE]-VAR2

Decision Tree (J48)
Atctcr::g:e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’j"d 14 88,2 | 987 | 09 | 08 | 087 | 098 | 0,88 | 0,98 | 0,88 | 0,98 | 0,88 | 0,98
k
SB:;;"”" 11 88,2 | 99,1 | 0,89 | 0,89 | 0,86 | 0,99 | 0,88 | 0,99 | 0,88 | 0,99 | 0,88 | 0,99

The performances of the models when the algorithms are applied to VARS3 produce near 100%
accuracy for both training and validation datasets. As with previous experiments using VARS,

more instances are required to better assess how these algorithms perform with this dataset.

5.4.10.5. Analysis of experiments conducted
Four models were identified from each of the experiments described from section 5.4.10.1 to

5.4.10.4. The assessment measures for each of these models are listed in Table 5.72.

Table 5.72: Performance measures for best four models for Experiment-3ND

Variation and

Sampling ROC

Accuracy PRC Area Precision Recall F-Measure

10-Fold | Validation | 10-Fold |Validation| 10-Fold | Validation | 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation

VAR1-None
VAR3-US
VAR2-0S
VAR1-SMOTE

83,6

0,86 0,79 0,82 0,97 0,84 0,84 0,83 0,84 0,89

Three of the models selected were generated using the RF algorithm, that being the VAR1-None,
VAR3-US and VAR2-OS models while the VAR1-SMOTE model was generated using the DT
algorithm. All models’ accuracy falls within the acceptable range for this study and the accuracy
differences fall to within 10%. Figure 5.20 (Accuracy comparison) shows that the VAR2-OS has
the best training and validation accuracy while the VAR1-SMOTE had the closest accuracy
difference.
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Figure 5.20: Accuracy comparison of four models

A comparison of the other performance measures for each of the models is illustrated in Figure
5.21. The best model when no sampling was used (V4RI1-None) had a ROC value outside the
range for the acceptance criteria for this study (less than 0.7). This was expected as the dataset is

imbalanced. The remaining performance measures were greater than 0.8 and thus acceptable for
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Figure 5.21: Assessment measure comparison for four models
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5.5. Chapter summary
This chapter described experiments covering the application of two learning algorithms to the

course datasets in the UKZN ISTN dataset. A summary of the best algorithms (and corresponding
accuracies) are listed in Table 5.73. These results are based on a combination of closeness between
validation and training accuracy as well as overall accuracy for the training and validation datasets
(with the exception of ISTN100).

Table 5.73: Best performing algorithms for each course based on accuracy

Dataset VAR | Sampling Algorithm | Training Validation | Accuracy
accuracy | accuracy | difference
% %
ISTN100 1 | SMOTE DT 89.3 84.6 4.7
ISTN101 1 [0S RF 945 92.6 1.9
ISTN103 2 | 0OS RF 96.5 95.8 0.7
ISTN2IP 2 | SMOTE RF 90.3 87.4 2.9
ISTN211 3 None RF 97.4 954 2
ISTN212 3 None RF 97.1 95.9 1.2
ISTN3SA 2 | SMOTE RF 94.2 96.9 2.7
ISTN3AS No viable model found
ISTN3SI 2 | SMOTE RF 97.1 96 1.1
ISTNSBND | 2 |OS RF 96.4 97.8 1.4

Of the two learning algorithms used, the RF algorithm was noted to have performed better than
the DT algorithm. From the models identified in Table 5.73, 8 of the 10 models were generated
using the RF algorithm. This confirms the ability of the RF algorithm to better handle imbalanced
data (Bekkar & Alitouche, 2013) in the case of the 2" year courses (ISTN2IP, ISTN211 and
ISTN212) where all three models listed were generated without sampling. Furthermore, the
bagging procedure and random feature selection of the RF algorithm assisted in the development
of viable, more generalizable models (Kovanovic et al., 2018), unlike the DT algorithm which was

prone to overfitting and development of unusable single node decision trees.

The ISTN100 course, while having acceptable accuracy and accuracy difference, did not meet the
acceptance criteria for the ROC value when the model was applied to the validation dataset (0.6).
The values for the other performance measures were acceptable for this study. Thus, a model with

an improved ROC value would be preferred.
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In the case of the ISTN2IP dataset, the accuracies for both training and validation are within the
acceptable range for this study. However, it would be preferable if the validation accuracy was
greater than 90% and thus an alternate approach was used (explained in Chapter 6) to find a better

model.

No viable model was found for the ISTN3AS course. The difficulty in obtaining a model could
be attributed to a very high imbalance characteristic. Furthermore, the course follows a different
assessment format (the major project) that formed a large part of the student final mark. Students
within each project group attained the same mark in most cases, possibly allowing for an increased
number of student passes. As explained in section 5.4.9.5, while the ISTN3SI course follows a
similar assessment format to that of ISTN3AS, the increase in the number of failures was due to

increased difficulty in the course.

In terms of answering the research questions RQ3 and RQ4, standard learning algorithms were
applied to the datasets. These algorithms were able to establish patterns to predict student
academic performance. The performances of these algorithms were verified by applying the
patterns to unseen data. The prediction accuracies as well as other performance measures achieved
were within the ranges of the acceptance criteria specified in section 5.3.5. The standard learning
algorithms performed well when applied to all but one dataset (ISTN3AS).

In the event that standard learning algorithms do not provide sufficient or acceptable solutions, the
inclusion of artificial intelligence techniques are known to assist in this regard. Thus, in the next
chapter, the area of Artificial Intelligence was investigated in an attempt to find better prediction
models for the cases of ISTN100, ISTN2IP and ISTN3AS.
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Chapter 6 — Prediction using genetic algorithms
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6.1. Introduction
In section 5.2.3, it was stated that data imbalance can be addressed from a data perspective, usually

through the use of sampling methods such as undersampling, oversampling and SMOTE. An
alternate way of dealing with data imbalance is through an algorithmic approach. The area of
Artificial Intelligence (AI) is important in any big data domain, including LA. The use of Al
allows for difficult pattern recognition, learning and other tasks in the analytics process (O'Leary,
2013). Thus, the use of Al-based algorithms is beneficial to address data imbalance problems.

Genetic Algorithms (GAs), also sometimes referred to as evolutionary algorithms, are one such

Figure 6.1: Thesis structure
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Al technique, and according to Minaei-Bidgoli and Punch (2003), GAs have the potential to
improve accuracy by 10% to 12% when compared to non-GA classifiers.

For this study, two (2) GA-based approaches were identified, these being the use of the GA as part
of the classifier as well as the use of the GA as an optimization tool with regard to feature selection
for other classifiers. For the former approach, Romero, Gonzélez, Ventura, Del Jesus and Herrera
(2009) used an evolutionary algorithm to build rules for the discovery of relationships between
student Moodle usage and academic performance. The latter, where GAs are used as a part of
feature selection, was an approach followed by Lakshmi, Martin and Venkatesan (2013) and
Preetha (2021), amongst others, to identify the most suitable set of features to use for different
learning algorithms.

In Chapter 5, the experiments conducted yielded acceptable prediction models for all but three of
the courses in the UKZN ISTN dataset. Where acceptable prediction models were found, the
performance measures were all within the acceptance criteria and the accuracies were above 90%.
As a pragmatic research paradigm is being followed, there is no need to use Al techniques to find
prediction models for courses where acceptable models with at least 90% accuracy have already

been found.

Thus, in this chapter, both GA-based approaches described above are applied to try to find better
models for three courses in the UKZN ISTN dataset. Experiments are conducted in order to find
better prediction models for the ISTN100 and ISTN2IP datasets, as well as finding an appropriate
model for the ISTN3AS dataset. For the case of the ISTN100 and ISTN2IP datasets, the objective
is to try to obtain an accuracy of above 90% (and less than 98% as per the acceptance criteria)
while also having acceptable values for other performance measures. For the ISTN3AS dataset,
no model could be found that meets the acceptance criteria in Chapter 5 so the GA is incorporated

to attempt to find an acceptable model.

From the perspective of the DSRM described in Chapter 3, this chapter continues the focus on the
design and development of the artefact. Chapter 5 focused on applying learning algorithms to the

now prepared dataset with the objective of predicting student performance. Chapter 6 continues
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the development of the artefact (see Figure 6.1) with the focus on predicting student performance
and the use of an Al technique has been included with the objective to improve performance.

Section 6.2 describes the courses that were chosen and the justification for using these courses.
Section 6.3 describes the GA technique, the parameters used and how the GA is applied in this
study. Section 6.4 describes the results of the experiments performed and how they compare to
the best performance measures obtained for each course dataset. Section 6.4 provides a conclusion

on the chapter. An outline of the chapter is provided in Figure 6.2.

6.2
Dataset Description

Describe

GA for feature selection

Experimental } 6.3
setting Genetic Algorithms

Optimised Forest

Acceptance Criteria

6.4
Experiments

Experiment

execution

Figure 6.2: Map for Chapter 6 coverage

6.2. Course datasets to be applied to genetic algorithms
Chapter 5 describes experiments covering the application of the Random Forest (RF) and Decision

Tree (DT) algorithms to the selected IS&T courses for this study. In the concluding Section 5.5,
three courses were identified that either still required a prediction model (ISTN3AS) or courses

where the prediction model could be further improved (ISTN100 and ISTN2IP).
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The ISTN100 course was the only course with only one variation due to the Moodle data not being
available for collection. Section 5.4.1 outlined the experiments conducted using the DT and RF
algorithms for the ISTN100 course. The best model from these experiments was the DT algorithm.
The performance measures for this algorithm were shown in Table 5.9, and for convenience, are
shown in Table 6.1. As can be seen in Table 6.1, the model met all the acceptance criteria with
the exception of the Receiver Operator Characteristic (ROC) value. The accuracy for training and
validation were 89.3% and 84.6% respectively. As seven (7) of the ten (10) courses in this study
achieved accuracy (training and validation) of above 90%, the objective was to then find an

improved model through the use of artificial intelligence techniques.

Table 6.1: Prediction performance for DT algorithm extracted from Table 5.9 for
ISTN100 course

Decision Tree (J48)

Attribute

— Accuracy % ROC PRC Area Precision Recall F-Measure

10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation

11 89.3 | 84.6 0.9 0.6 086 | 0.78 | 0.89 | 0.82 [ 0.89 | 0.84 | 0.89 | 0.82

Forward
Search

Similarly, the assessment measures for the ISTN2IP course also met the acceptance criteria for
this study (Table 6.2 shows the RF generated model performance extracted from Table 5.33). The
best model using the RF algorithm obtained a training accuracy of 92.9% and a validation accuracy
of 88.1%. As this model was generated on a dataset with no sampling, the ROC value of 0.66 was
not considered as violating the acceptance criteria. The objective was to find a model where the

validation accuracy is also above 90% (and less than 98%).

Table 6.2: Prediction performance for RF algorithm extracted from Table 5.33 for
ISTN2IP course

In the case of the ISTN3AS course, no suitable model was found using the DT or RF algorithms.
Thus, the objective was to use artificial intelligence techniques to attempt to find a prediction

model for this course dataset that meets the acceptance criteria for this study.
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6.3. An overview of genetic algorithms
Genetic algorithms are a rapidly developing area within Al and is based on theories of biological

evolution such as natural selection and genetic inheritance (Obitko, 1998). Genetic algorithms are
commonly used to solve combinatorial optimization problems. For this study, two GA alternatives
were used. When being used for feature selection, the GA used was similar to the initial GA
proposed by Golberg (1989) and is described in Section 6.3.1. Similarly, when using the GA as
part of classification, the GA proposed by Golberg (1989) was also used with the exception that

an elitist approach was followed (discussed in Section 6.3.2).

6.3.1. Genetic algorithm used for feature selection
A GA begins with the creation of a population of individuals, referred to as the initial population.

Each individual is a string containing a randomly chosen set of selected features from the
integrated dataset. Each individual in the population is then evaluated based on a fitness function.
In this case, the fitness function is the accuracy obtained when the selected algorithm has been
applied to the dataset using only that individual’s set of features. A selection process is then
undertaken where individuals of this initial population are selected to become parents. Copies of
the parents are made, followed by the application of genetic operators (in this case, crossover and
mutation) to the copies. These copies are then referred to as the offspring and are added as
individuals to a new population. This process of evaluation, selection and creation of a new
generation of offspring continues until some termination criteria has been met. Termination
criteria depends on the type of problem being addressed and may include reaching a generational
limit or an ideal solution has been obtained (Golberg, 1989). In the case of this study, the GA
terminates when the maximum specified number of generations is reached (see Section 6.3.3) and
the set of features to be used is that of the individual with the best fitness function (accuracy). The
GA used in this study is described in Algorithm 6.1.
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Input: List of features
Output: Individual with set of features that produced the best accuracy

O 00 O s W -
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Function GeneticAlgorithm

{
Gen=0
Create initial population consisting of different combinations of features from dataset
Evaluate initial population by applying chosen machine learning technique
Repeat

{
I=1
Repeat
{
Select two (2) individuals, A and B, from population
If crossover occurs with probability Pc
Offspring C and D = Application of crossover operator to A and B
Else
Offspring C and D = Copy of A and B
If mutation occurs with probability Pm
Apply mutation to offspring C and D
End If
Evaluate C and D
Add C and D to new population
J=J+2
¥
Until J > Population Size
Old population replaced by new population
3

Until Termination criteria have been met

!

As stated in Algorithm 6.1, two (2) individuals from the population are randomly selected to be
parents. Offspring are created by either duplicating the parents or by the application of genetic
operators, which can occur based on a given probability. The processes of crossover and mutation,

which will be executed based on probabilities Pc and Pm respectively, are explained in the examples

Algorithm 6.1: Genetic Algorithm to determine set of features with best accuracy

shown in Figure 6.3 and Figure 6.4.
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Parent A 5,7,8,12,17, 23, 25, 26, 28
Parent B 1,4,7,12,13,16,22, 24,27, 30
Resultant Offspring C | 5,7, 8, 12, 13, 16, 22, 24, 27, 30
Resultant Offspring D | 1, 4,7, 12,17, 23, 25, 26, 28

Figure 6.3: Crossover example and resultant offspring

In Figure 6.3, assume that each number represents a selected feature. For example, 5 represents
the ISTN212 mark, 8 is the student QUAL, 12 is the Age Category and so on. In the example
shown in Figure 6.1, the crossover operator is applied where parts of each of the parents are taken
and combined to form a resultant offspring. Here, the features 5, 7, 8 and 12 from Parent A are
combined with the group of features 13, 16, 22, 24, 27 and 30 from Parent B, resulting in Offspring

C. The other set of features from the parents are combined resulting in Offspring D.

For mutation, selected points (feature) in the individual are changed. In the case of Figure 6.4,

feature 15 is replaced by feature 19.

Parent C 2,4,7,8,12,15, 18, 20
Resultant Offspring | 2, 4, 7, 8, 12, 18, 19, 20
Figure 6.4. Mutation Example

The newly created offspring are then added to the population of a new generation and evaluated.
In the case of this study, the resultant offspring is a combination of features from both the parents
(crossover) as well as after mutation has been applied. Once individuals of a new generation have
all been created and evaluated, new generations of individuals are created continuously until the
maximum number of generations have been met. The individual in the final generation with the
set of attributes that produces the best predictive model (based on accuracy) is chosen and that

model is applied to the validation dataset.

6.3.2. Optimized forest (OF) algorithm
The OF algorithm is an adapted Random Forest algorithm developed by Adnan and Islam (2016).

In this case, rather than using an exhaustive search for the optimal decision tree, a genetic algorithm
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is used to select the best performing decision trees with the objective of improving the final
outcome or accuracy produced by a Random Forest algorithm. In terms of this algorithm, the GA
described is also similar to that described in Algorithm 6.1. The only exception is that the genetic
operators are applied with the concept of elitism, where the offspring is only accepted if it is
evaluated as being better than the parent. If it is not, then the offspring is rejected and the parent

becomes the offspring (Adnan & Islam, 2016).

6.3.3. Performance measures and parameters
The same performance measures from Section 5.3.5 were used, that being the accuracy, ROC,

PRC (Precision Recall Curve), precision, recall and F-Measure values. The main acceptance
criteria for the models were also the same as that described in Table 5.5., i.e., accuracy in the range
between 80% and 98% and acceptable values for the PRC, ROC and F-measure values where

required.

In WEKA, and as with Section 5.3.4, WrapperSubsetEval was used as the attribute evaluator
with the classifier property being either the RF algorithm or the J48 DT algorithm. The number
of folds was set to 10. Unlike the experiments conducted in the previous chapter, the search
method that was used was the genetic search (described in Algorithm 6.1) rather than forward or

backward searches.

With regard to the OF algorithm, the algorithm was tested using all attributes (no feature selection)
as well as attributes obtained using genetic search RF, forward search RF and backward search RF

respectively. The default parameter values were used.

In terms of GA parameters, the probability of the crossover operator occurring was set to 60%,
mutation probability was 3.3%, the maximum number of generations was 20, and the population

size was 20. These were the default parameters set by WEKA.

6.4. Results of genetic based experiments conducted
This section describes the results achieved when the learning algorithms were applied to the

ISTN100, ISTN2IP and ISTN3AS course datasets. Here, GAs were used for feature selection.
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The section also covers the performance when the OF algorithm was applied to the datasets. The

experiments include whether the variations have had any sampling techniques applied or not.

6.4.1. Experiments for the ISTN100 dataset
This section covers the genetic algorithm-based experiments for the ISTN100 course dataset.

6.4.1.1. Experiment-100-FS [Genetic]
Table 6.3 presents the performance measures obtained for the ISTN100 prediction models

generated when using genetic search for feature selection. The row labelled 1 (line 1), highlighted

in green, indicates the performance measures for the best model for this course listed in Table 6.1.

Table 6.3: Summary analysis for RF and DT algorithms — Experiment-100-FS [Genetic]

Feature
Sampling| Selection |Algorithm| Pa(r:zr:::er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold | Validation | 10-Fold|Validation | 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation
1 |SMOTE |Forward Search DT 11 89,3 84,6 0,9 0,6 0,86 0,78 0,89 0,82 0,89 0,84 0,89 0,82
2 [None Genetic RF 8 86,4 83 0,61 0,64 0,8 0,79 0,83 0,7 0,86 0,83 0,81 0,76
3 Genetic DT 9 86,2 83,8 0,5 0,5 0,76 0,72 0,85 ? 0,86 0,83 0,8 ?
4 |US Genetic RF 13 64,3 55,6 0,67 0,67 0,66 0,82 0,64 0,79 0,64 0,55 0,64 0,61
5 Genetic DT 13 65,4 65,3 0,66 0,78 0,63 0,83 0,65 0,84 0,65 0,65 0,65 0,69
6 |0S Genetic RF 25 95,5 74,1 0,99 0,69 0,99 0,82 0,95 0,78 0,95 0,74 0,95 0,75
7 Genetic DT 16 91,6 80,6 0,96 0,61 0,94 0,78 0,92 0,79 0,91 0,8 0,91 0,8
8 |SMOTE Genetic RF 26 89,6 79 0,95 0,65 0,94 0,82 0,89 0,77 0,89 0,79 0,89 0,78
9 Genetic DT 15 89,2 82,2 0,89 0,59 0,86 0,77 0,89 0,78 0,89 0,82 0,89 0,79

In terms of the None-Genetic-DT (line 3) and None-Genetic-RF (line 2) algorithms, the models
generated do produce acceptable accuracy but it was not as good as the best model achieved in
Chapter 5. As with Experiment-100-Sampling [US] covered in Section 5.4.1.2, the use of
undersampling results in models with unacceptable accuracy. For oversampling (OS), the training
accuracy of the generated models was greater than 90% but the difference between the resultant
validation accuracy is greater than 10% and thus the models are not acceptable. When SMOTE is
applied, the training accuracy is similar to the best model from Chapter 5 (line 1) but the validation

accuracy is lower.

6.4.1.2. Experiment-100-Algorithm [OF]
The OF algorithm is applied to the ISTN100 dataset using different sampling techniques and

different attributes determined using different feature selection techniques. The performance

measures obtained for each experiment are listed in Table 6.4.
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Table 6.4: Summary analysis for OF algorithm — Experiment-100-Algorithm [OF]

Sampling e 2t Algorithm RICuEC Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type Count
10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation| 10-Fold Validation|10-Fold |Validation

1 |SMOTE |Forward Search DT 11 89,3 84,6 0,9 0,6 0,86 0,78 0,89 0,82 0,89 0,84 0,89 0,82
2 |None  |All attributes OF 30 85,8 83,8 0,66 0,71 0,82 0,83 0,82 0,79 0,85 0,83 0,85 0,79
3 RF Forward Search OF 6 86,3 83,8 0,51 0,5 0,76 0,72 0,84 ? 0,86 0,83 0,8 ?
4 RF Backward Search OF 28 88,5 83,8 0,87 0,74 0,91 0,83 0,87 0,83 0,88 0,77 0,86 0,77
5 Genetic OF 9 86,4 83,8 0,52 0,52 0,77 0,73 0,85 ? 0,86 0,83 0,81 ?
6 [US All attributes OF 30 62,5 45,9 0,68 0,67 0,67 0,82 0,62 0,81 0,62 0,46 0,62 0,51
7 RF Forward Search OF 16 62,8 50 0,67 0,71 0,67 0,83 0,62 0,8 0,62 0,5 0,62 0,55
8 RF Backward Search OF 19 66,1 54,8 0,69 0,61 0,66 0,79 0,66 0,76 0,66 0,54 0,66 0,6
9 Genetic OF 14 64,3 47,5 0,7 0,66 0,68 0,81 0,64 0,78 0,64 0,47 0,64 0,53
10 |OS All attributes OF 30 89,6 68,5 0,98 0,68 0,98 0,81 0,9 0,8 0,89 0,68 0,89 0,72
11 RF Forward Search OF 16 89,8 67,7 0,98 0,69 0,97 0,82 0,9 0,79 0,89 0,67 0,89 0,71
12 RF Backward Search OF 28 91,7 61,2 0,98 0,62 0,97 0,79 0,92 0,76 0,91 0,61 0,91 0,62
13 Genetic OF 26 89,7 64,5 0,98 0,69 0,98 0,82 0,9 0,78 0,89 0,64 0,89 0,69
14 |SMOTE  |All attributes OF 30 88,5 75,8 0,95 0,65 0,94 0,81 0,88 0,74 0,88 0,75 0,88 0,75
15 RF Forward Search OF 8 87,1 77,4 0,94 0,59 0,94 0,8 0,87 0,76 0,87 0,77 0,87 0,76
16 RF Backward Search OF 29 88,9 75,8 0,95 0,62 0,94 0,81 0,89 0,74 0,89 0,75 0,89 0,75
17 Genetic OF 26 90,2 77,4 0,94 0,59 0,92 0,76 0,9 0,77 0,9 0,77 0,9 0,77

The OF algorithm, when applied to the dataset, did not find any better models than that generated
using the forward search DT algorithm (line 1 in Table 6.4). When no sampling is used, the models
generated have assessment measure values similar to, but slightly lower than that of the best model
generated by the forward search DT algorithm. The models, when undersampling was used, were
not acceptable. In the case of oversampling and SMOTE, the models generated were noted to

overfit onto the training data and similar accuracy for the validation dataset was not achieved.

Thus, the use of genetic algorithms, either for feature selection or as part of the OF algorithm,
could not find a better model than the one generated by the forward search DT algorithm. The use
of LMS interaction data was shown to improve accuracy for the other datasets, thus future research

should look into the acquisition of LMS interaction data for the ISTN100 course.

6.4.2. Experiments for the ISTN2IP dataset
This section covers the genetic algorithm-based experiments for the ISTN2IP course dataset.

6.4.2.1. Experiment-2IP-FS [Genetic]
For VARL, using a GA for feature selection did not yield any better models as shown in Table 6.5.

The undersampling results have been removed as these results did not meet the acceptance criteria.
The OS-Genetic-RF algorithm (line 5) produced the highest training accuracy (96%) but the model
did not yield an equivalent accuracy when applied to the validation dataset (81.8%) where a
difference of 14.2% was observed. The SMOTE-Genetic-DT (line 6) model produced similar
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accuracy for both training and validation datasets, but the accuracy is lower when compared to the

forward search RF algorithm obtained in Chapter 5 (line 1).

Table 6.5: Summary analysis for RF and DT algorithms — Experiment-21P-FS [Genetic] —
VAR1

Feature
P t
Sampling Selection Algorithm arameter Accuracy % ROC PRC Area Precision Recall F-Measure

C t
Search Type oun

10-Fold | Validation [ 10-Fold | Validation | 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation| 10-Fold | Validation

1

2 [None  [Genetic DT 2 79,2 90,9 0,49 0,5 0,66 0,83 ? ? 0,79 0,9 ? ?
3 Genetic RF 7 80,2 90,9 0,66 0,72 0,76 0,38 0,78 ? 0,8 0,9 0,73 ?
4 |os Genetic DT 15 87,8 71,3 0,94 0,56 0,93 0,85 0,38 0,85 0,87 0,71 0,87 0,76
5 Genetic RF 19 96 81,8 0,99 0,66 0,98 0,89 0,96 0,87 0,96 0,81 0,96 0,84
6 [SMOTE |Genetic DT 16 84,9 88,1 0,36 0,74 0,82 0,39 0,34 0,38 0,34 0,38 0,34 0,88
7 Genetic RF 15 85,7 79 0,91 0,59 0,9 0,85 0,85 0,84 0,85 0,79 0,85 0,81

With the VAR2 dataset, the SMOTE-Genetic-RF model (line 7 on Table 6.6) had the closest
accuracy difference of 2.1% between training and validation datasets. However, the accuracy
produced for both training and validation is less than that of the accuracies obtained for the forward
search RF algorithm obtained in Chapter 5 (see line 1 on Table 6.6).

Table 6.6: Summary analysis for RF and DT algorithms — Experiment-21P-FS [Genetic] —
VAR2
RZRUE Parameter

Sampling Selection Algorithm Gt Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type

10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation| 10-Fold |Validation| 10-Fold |Validation

1

2 |None  |Genetic DT 11 85,7 90,9 0,66 0,81 0,78 0,9 0,84 ? 0,85 0,9 0,33 ?
3 Genetic RF 18 85,7 90,9 0,82 0,38 0,38 0,94 0,84 0,87 0,85 0,9 0,83 0,87
4 |os Genetic DT 19 94,1 74,8 0,95 0,78 0,94 0,89 0,94 0,91 0,94 0,74 0,94 0,8
5 Genetic RF 16 97,4 70,6 0,98 0,68 0,98 0,38 0,97 0,85 0,97 0,7 0,97 0,76
6 |SMOTE  |Genetic DT 8 89,3 79,7 0,89 0,61 0,86 0,36 0,89 0,84 0,89 0,79 0,39 0,82
7 Genetic RF 21 89,5 87,4 0,96 0,85 0,96 0,92 0,89 0,38 0,89 0,87 0,39 0,87

The performance measures when the genetic search was used for VARS is shown in Table 6.7.
The use of the genetic search as part of feature selection did not result in models that were better
than the model produced by the forward search RF algorithm from Chapter 5 (line 1). The
accuracy differences for the experiments with no sampling and oversampling were not acceptable
(greater than 10%). When SMOTE sampling was used, the accuracy difference is acceptable but

the accuracies are not as good as the forward search RF algorithm model’s accuracy.
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Table 6.7: Summary analysis for RF and DT algorithms — Experiment-21P-FS [Genetic] —
VAR3
RIS Parameter

Sampling Selection Algorithm — Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type

10-Fold |Validation| 10-Fold | Validation [ 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation| 10-Fold | Validation

1
2 [None  [Genetic DT 2 79,2 90,9 0,49 0,5 0,66 0,83 ? ? 0,79 0,9 ? ?

3 Genetic RF 7 80,2 90,9 0,66 0,72 0,76 0,38 0,78 ? 0,8 0,9 0,73 ?

4 |os Genetic DT 15 87,8 71,3 0,94 0,56 0,93 0,85 0,38 0,85 0,87 0,71 0,87 0,76
5 Genetic RF 19 9% 81,8 0,99 0,66 0,98 0,89 0,96 0,87 0,96 0,81 0,96 0,84
6 |SMOTE [Genetic DT 16 84,9 88,1 0,86 0,74 0,82 0,89 0,84 0,38 0,84 0,38 0,34 0,38
7 Genetic RF 15 85,7 79 0,91 0,59 0,9 0,85 0,85 0,34 0,85 0,79 0,85 0,81

6.4.2.2. Experiment-2IP-Algorithm [OF]
When the OF algorithm was applied to the VAR1 dataset, acceptable models were identified.

However, the difference between training accuracy and validation accuracy were either greater
than 10% or the accuracy achieved was not as good as the forward search RF algorithm’s
performance found in Chapter 5 (see line 1 on Table 6.8). This was especially noted for the
oversampled dataset where the accuracies for training were all in the range of 93.6% to 96.7%.

The resultant models could not produce similar accuracy for the validation dataset.

Table 6.8: Summary analysis for OF algorithm — Experiment-21P-Algorithm [OF] - VAR1

Feature
Sampling Selection Algorithm Paéa;r:::er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation

1
2 |None All OF 29 78,1 83,1 0,6 0,66 0,73 0,87 0,72 0,85 0,78 0,88 0,72 0,86
3 RF Fwd Search OF 4 80 91,6 0,52 0,47 0,68 0,83 0,78 0,92 0,8 0,91 0,72 0,88
4 RF Bkwd Search OF 24 79,6 86,7 0,58 0,58 0,72 0,85 0,75 0,85 0,79 0,86 0,74 0,85
5 Genetic OF 7 80,2 90,9 0,53 0,46 0,68 0,82 0,78 ? 0,8 0,9 0,73 ?
6 [0S All OF 29 93,6 78,3 0,99 0,76 0,99 0,9 0,94 0,88 0,93 0,78 0,93 0,82
7 RF Fwd Search OF 21 94,1 76,2 0,99 0,73 0,99 0,9 0,94 0,89 0,94 0,76 0,94 0,8
8 RF Bkwd Search OF 24 96,7 80,4 0,99 0,72 0,99 0,9 0,96 0,88 0,96 0,8 0,96 0,83
9 Genetic OF 19 95,5 80,4 0,98 0,68 0,98 0,89 0,95 0,86 0,95 0,8 0,95 0,83
10|SMOTE  |All OF 29 84,1 81,1 0,92 0,67 0,91 0,88 0,84 0,86 0,84 0,81 0,84 0,84
11 RF Fwd Search OF 3 85,8 70 0,89 0,67 0,87 0,88 0,85 0,87 0,85 0,7 0,85 0,76
12 RF Bkwd Search OF 24 84,5 83,9 0,92 0,72 0,92 0,89 0,84 0,87 0,84 0,83 0,84 0,84
13 Genetic OF 17 83,7 89,5 0,9 0,81 0,89 0,92 0,83 0,9 0,83 0,89 0,83 0,9

When the OF algorithm was applied to the VAR2 dataset, four generated models were identified
as shown in Table 6.9. The OS-All-OF model (line 6) had the same accuracy difference but both
accuracy values were greater than that of the forward search RF algorithm. The OS-Rf Bkwd
Search-OF model (line 8) also had both testing and validation accuracy above 90% with an
accuracy difference of 5.8%. The SMOTE-AII-OF model (line 10) produced an accuracy
difference of 0.2% between training and validation datasets. However, the training accuracy was

4.3% lower than that of the forward search RF algorithm.

185



Table 6.9: Summary analysis for OF algorithm — Experiment-21P-Al

orithm [OF] — VAR2

Feature
Sampling Selection Algorithm Pa(r;rS::er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold |Validation|10-Fold | Validation | 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation

1
2 |None All OF 34 82,4 90,2 0,75 0,79 0,84 0,9 0,78 0,82 0,82 0,9 0,75 0,86
3 RF Fwd Search OF 2 82,6 90,9 0,52 0,5 0,71 0,83 0,81 ? 0,82 0,9 0,75 ?
4 RF Bkwd Search OF 29 85,4 90,9 0,8 0,87 0,86 0,93 0,84 0,87 0,85 0,9 0,82 0,87
5 Genetic OF 18 86 90,9 0,81 0,87 0,87 0,93 0,85 0,87 0,86 0,9 0,83 0,87
6 [0S All OF 34 95,7 90,9 0,99 0,9 0,99 0,93 0,95 0,9 0,95 0,9 0,95 0,9
7 RF Fwd Search OF 13 97,6 89,5 0,99 0,75 0,98 0,89 0,97 0,89 0,97 0,89 0,97 0,89
8 RF Bkwd Search OF 25 96,7 90,9 0,99 0,9 0,99 0,93 0,96 0,9 0,96 0,9 0,96 0,9
9 Genetic OF 16 97,4 67,8 0,98 0,66 0,98 0,88 0,97 0,85 0,97 0,67 0,97 0,74
10 (SMOTE |All OF 34 88,6 88,8 0,96 0,84 0,96 0,92 0,88 0,91 0,88 0,88 0,88 0,89
11 RF Fwd Search OF 3 88,8 49,6 0,91 0,53 0,89 0,85 0,89 0,86 0,88 0,49 0,88 0,59
12 RF Bkwd Search OF 26 89 86,7 0,96 0,84 0,96 0,92 0,89 0,88 0,89 0,86 0,89 0,87
13 Genetic OF 21 88,1 86 0,96 0,86 0,96 0,93 0,88 0,88 0,88 0,86 0,88 0,87

When the OF algorithm was applied to VARS3, two models were generated with the performances

close to that of the forward search RF algorithm. These were the None-RF Fwd Search-OF model

(line 3) as well as the None-RF Bkwd Search-OF model (line 4). In these cases, the accuracy

differences were 4.2% and 5.6% respectively (see Table 6.10).

Table 6.10: Summary analysis for OF algorithm — Experiment-21P-Al

orithm [OF] - VAR3

Feature
Sampling Selection Algorithm Pa(r:e:)r:stter Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold |Validation| 10-Fold | Validation | 10-Fold | Validation [ 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation

1

2 [None  |All OF 39 92,3 88,8 0,7 0,77 0,9 0,9 ? 0,82 0,92 0,88 ? 0,85
3 RF Fwd Search OF 5 92,3 88,1 0,66 0,79 0,9 0,9 0,91 0,82 0,92 0,88 0,91 0,85
4 RF Bkwd Search OF 15 94,4 88,8 0,79 0,67 0,93 0,87 0,94 0,84 0,94 0,88 0,92 0,86
5 Genetic OF 11 93,7 86,7 0,83 0,68 0,94 0,87 0,92 0,85 0,93 0,86 0,92 0,85
6 [0S All OF 39 98,8 85,3 1 0,63 1 0,86 0,98 0,85 0,98 0,85 0,98 0,85
7 RF Fwd Search OF 5 99,2 82,5 1 0,57 1 0,85 0,99 0,83 0,99 0,82 0,99 0,82
8 RF Bkwd Search OF 21 99,6 81,1 1 0,61 1 0,86 0,99 0,83 0,99 0,81 0,99 0,82
9 Genetic OF 11 100 83,2 1 0,82 1 0,91 1 0,89 1 0,83 1 0,85
10{SMOTE (Al OF 39 96,9 84,6 0,99 0,58 0,99 0,85 0,97 0,84 0,97 0,84 0,97 0,84
11 RF Fwd Search OF 9 96,5 81,8 0,98 0,63 0,98 0,87 0,96 0,84 0,96 0,81 0,96 0,82
12 RF Bkwd Search OF 36 98,4 86 0,99 0,63 0,99 0,86 0,98 0,83 0,98 0,86 0,98 0,84
13 Genetic OF 21 96,9 83,2 0,99 0,58 0,99 0,85 0,97 0,82 0,97 0,83 0,97 0,82

Thus, the use of genetic algorithms as part of the OF algorithm did result in predictive models that

were better than or competitive with the best model obtained in Chapter 5 for this course (line 1
on Table 6.9). In this case, the models were the OS-All-OF model (line 6 on Table 6.9) and the
OS-RF Bkwd Search-OF model for the VAR2 dataset (line 8 on Table 6.9). Both accuracies

(training and validation) obtained were above 90% with the other performance measures also

falling within an acceptable range. An accuracy comparison between these two models and the

best model obtained in Chapter 5 is illustrated in the Figure 6.5 bar-chart.
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Figure 6.5: Accuracy comparison for two OF generated models with best model from
Chapter 5 (VAR3-None-RF)

The ability of the GA component within the OF algorithm allowed for more variation to be
considered when developing the model. This 1s due to the crossover and mutation operators that
combined components of different trees, resulting in a greater variety of models developed within
the population. Further to this, the concept of elitism allowed for the best trees to be kept in the
population. The result is the development of two models with accuracy greater than 90% for both
training and validation. The OS-A/I-OF model (using VAR2) generated the same accuracy
difference as the model generated using the RF algorithm in Chapter 5 (4.8). The OF generated
models are also better when the remaining performance measures are compared as shown in Figure
6.6.
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Figure 6.6: Comparison of performance measure of two OF generated models against best
model from Chapter 5 (VAR3-None-RF)

The models generated by the OF algorithm are better than that of the best ISTN2IP model
generated in Chapter 5 experiments. The ROC values are much better with values of 0.99
(training) and 0.9 (validation) compared to that of the Chapter 5 model (0.66 and 0.78). The PRC,

precision, recall and F-measure values are also greater for the OF generated models.

6.4.3. Experiments for the ISTN3AS dataset
This section covers the genetic algorithm-based experiments for the ISTN3AS course dataset. For

these experiments, the undersampling results have not been included as the performance measures

did not meet the acceptance criteria for all experiments.

6.4.3.1. Experiment-3AS-FS [Genefic]
Table 6.11 shows the performance measures for the algorithms applied using GA-based feature

selection (Genetic search). The accuracy achieved for each of the experiments listed in Table 6.11

1s greater than 98.1% and thus outside the acceptable range for this study.
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Table 6.11: Summary analysis for RF and DT algorithms — Experiment-3AS-FS [Genetic] —

VAR1
Feature
Sampling| Selection [Algorithm Pa;r:s:er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold | Validation|10-Fold | Validation| 10-Fold | Validation [ 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation
1[None Genetic DT 2 98,1 96,9 0,42 0,5 0,94 0,94 ? ? 0,96 0,96 ? ?
2 Genetic RF 5 98,4 94,7 0,73 0,43 0,97 0,94 0,98 0,93 0,98 0,94 0,98 0,94
3|0S Genetic DT 18 99,1 92,5 0,99 0,54 0,99 0,94 0,99 0,94 0,99 0,92 0,99 0,93
4 Genetic RF 21 99,8 95,5 1 0,69 1 0,95 0,99 0,93 0,99 0,95 0,99 0,94
5|SMOTE [Genetic DT 3 99,3 94,7 0,99 0,41 0,99 0,93 0,99 0,93 0,99 0,94 0,99 0,94
6 Genetic RF 20 99,2 95,5 0,99 0,68 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94

Similarly, for VAR2, the training accuracy for each of the models was greater than 98.1% and

hence outside the range for this study (Table 6.12).

Table 6.12: Summary analysis for RF and DT algorithms — Experiment-3AS-FS [Genetic] —

VAR2
Feature
Sampling| Selection [Algorithm Paéaor::tter Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold |Validation [10-Fold | Validation|10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation [ 10-Fold | Validation
1 [None Genetic DT 2 98,1 97,3 0,58 0,74 0,96 0,96 0,98 0,97 0,98 0,97 0,97 0,96
2 Genetic RF 8 98,1 97,3 0,76 0,48 0,97 0,94 0,98 0,97 0,98 0,97 0,97 0,96
3]0s Genetic DT 10 99,5 76,6 0,99 0,7 0,99 0,95 0,99 0,96 0,99 0,76 0,99 0,84
4 Genetic RF 12 100 96,9 1 0,78 1 0,96 1 0,95 1 0,96 1 0,96
5|SMOTE [Genetic DT 17 98,3 95,1 0,97 0,46 0,96 0,93 0,98 0,94 0,98 0,95 0,98 0,95
6 Genetic RF 16 99 96,4 0,99 0,84 0,99 0,97 0,99 0,96 0,99 0,96 0,99 0,96

For VARS, only one model (None-Genetic-DT) had training and validation accuracy within the

acceptable range for this study (see Table 6.13). The PRC and Recall values were also acceptable

but the precision and F-measure values could not be calculated. The reason for this is that the

resultant decision tree consisted of a single leaf “P”” and thus the model was not acceptable.

Table 6.13: Summary analysis for RF and DT algorithms — Experiment-3AS-FS [Genetic] —

VAR3
Feature
Sampling| Selection |Algorithm Pa(r;r:s:er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold |Validation| 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation [ 10-Fold | Validation
1{None Genetic DT 2 97,8 96,9 0,19 0,5 0,94 0,94 ? ? 0,97 0,96 ? ?
2 Genetic RF 8 99,4 96 0,99 0,55 0,99 0,94 0,99 0,93 0,99 0,96 0,99 0,95
3|0S Genetic DT 7 100 89,8 1 0,46 1 0,93 1 0,93 1 0,89 1 0,91
4 Genetic RF 6 100 81,4 1 0,78 1 0,96 1 0,95 1 0,81 1 0,87
5|SMOTE |Genetic DT 14 99,1 95,5 0,99 0,47 0,98 0,93 0,99 0,93 0,99 0,95 0,99 0,94
6 Genetic RF 19 100 95,1 1 0,76 1 0,96 1 0,93 1 0,95 1 0,94

6.3.3.2. Experiment-3AS-Algorithm [OF]
For the OF algorithm, the experimental results were similar to that of the experiments described

in Section 5.4.8. When the OF algorithm is applied to VARL1, the training accuracies were all
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found to be greater than 98.1% and thus outside the acceptable range for this study. This was also

the case for oversampling and SMOTE and when no sampling was applied.

For the experiments using VAR2 (see Table 6.14), the None-All-OF model (line 1) achieved the
closest to an acceptable model. In this case, the training accuracy achieved is 97.5%, with the
validation accuracy being 96.9%. The ROC values are above 0.7, with the PRC and Recall values
also indicating a good model. In the case of the precision and F-Measure, the values are good for
training but not determined for the validation dataset. This indicates that the prediction model was
not able to predict any instances as a fail (correctly or incorrectly). Thus, based on the precision
and F-Measure formulae (see formulae 5.3 and 5.5 in Chapter 5), these values cannot be
determined as the denominator values are zero (formula 5.3) or undefined (formula 5.5). It should
be noted that this course is dominated by assessments in the form of project work and thus further
investigation is required in terms of better understanding the data requirements for conducting

predictive analysis for this course.

Table 6.14: Summary analysis for OF algorithm — Experiment-3AS-Algorithm [OF] -
VAR2

Feature

Sampling

Selection
Search Type

Algorithm

Parameter
Count

Accuracy %

ROC

PRC Area

Precision

Recall

F-Measure

10-Fold

Validation

10-Fold

Validation

10-Fold

Validation

10-Fold

Validation

10-Fold

Validation

10-Fold

Validation

B w N R

None

All

RF Fwd Search
RF Bkwd Search
Genetic

OF
OF
OF
OF

35

31

97,5
98,1
98,1
98,1

96,9
96,9
97,3

96,9

0,76
0,8
0,72
0,72

0,71
0,69
0,64
0,48

0,97
0,97
0,96
0,96

0,95
0,95
0,95
0,94

0,97
0,97
0,98
0,98

?
0,95
0,97

?

0,97
0,98
0,98
0,98

0,96
0,96
0,97
0,96

0,97
0,98
0,97
0,97

?
0,96
0,96

?

For VAR3, two models were noted to have acceptable accuracy, these being the None-All-OF
model (line 1 on Table 6.15) and the None-RF Bkwd Search-OF model (line 3 on Table 6.15).

However, similar to VAR2, the precision and F-measure values could not be calculated either for

both training and validation (None-All-OF) or just for training (None-RF Bkwd Search-OF).

Table 6.15: Summary analysis for OF algorithm — Experiment-3AS-Algorithm [OF] -
VAR3

Sampling

Feature
Selection
Search Type

Algorithm

Parameter
Count

Accuracy %

ROC

PRC Area

Precision

Recall

F-Measure

10-Fold

Validation

10-Fold

Val

idation

10-Fold

Validation

10-Fold

Validation

10-Fold

Validation

10-Fold

Validation

A wWN R

None

All

RF Fwd Search
RF Bkwd Search
Genetic

OF
OF
OF
OF

w
0o

0 o »

97,8
99,4
97,8
99,4

96,9

93,3

90,7
%

0,92
0,36
0,79
0,99

0,85
0,74
0,41
0,54

0,97
0,98
0,97
0,99

0,96
0,96
0,93
0,94

?
0,99
?
0,99

?
0,94
0,93
0,93

0,97
0,99
0,97
0,99

0,96
0,93
0,9
0,96

?
0,99
?
0,99

?
0,94
0,92
0,95

1
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6.5. Chapter summary
In the event that routine learning algorithms are not able to produce acceptable models, researchers

and analysts often turn to the area of artificial intelligence as a means of improving current
processes or finding better alternative processes. In Chapter 5, the DT and RF learning algorithms
were able to develop acceptable prediction models for all but one of the courses in the UKZN
ISTN dataset, i.e., the ISTN3AS dataset. It was also noted that better models may be possible for
the ISTN100 and ISTN2IP datasets. In this chapter, the use of genetic algorithms was proposed
as a means to find a prediction model for the ISTN3AS course and to find better models for the
ISTN100 and ISTN2IP models.

Two approaches were used, these being the use of genetic algorithms as a part of feature selection
and genetic algorithms as part of the classification process through the use of an optimized forest
(OF) algorithm. For the ISTN100 course, neither approach was able to find a better model than
that generated by the DT algorithm described in Chapter 5. As concluded in Chapter 5, the
inclusion of LMS data may have assisted in the development of a prediction model as was shown

with other courses.

With regard to ISTN2IP, an improved model was found using the OF algorithm whereby both the

training and validation accuracy increased, with the accuracy difference remaining the same.

Finally, for the ISTN3AS course, the OF algorithm was able to create models with high accuracy
for both training and validation datasets. However, the precision and F-measure values could not
be calculated (“?” values as seen in Table 6.14 and Table 6.15) and thus the validity of the models
was questioned. It was concluded that the nature of assessment in the course (presentations for
group projects) led to extremely high pass rates where for the majority of cases, alternative
attributes outside the LMS need to be considered and included when performing predictions for
this course. These alternate attributes should revolve around the groupwork involved in the major
project assessment such as the number of meetings between group members, interactions between
members, individual activities or responsibilities within the group, group dynamics and

presentation skills amongst others.
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Table 6.16 provides an updated version of Table 5.73, listing the best models identified for each
of the courses in the UKZN ISTN dataset. Only the ISTN2IP model was generated using the OF
algorithm. The model achieved accuracy of greater than 90% for both training and validation

while the other performance measures were also within an acceptable range.

Table 6.16: Best models from Chapter 5 and Chapter 6 experiments

Dataset VAR | Sampling Algorithm | Training | Validation | Accuracy
Accuracy | Accuracy | Difference
% %
ISTN100 1 | SMOTE DT 89.3 84.6 4.7
ISTN101 1 0S RF 94.5 92.6 1.9
ISTN103 2 | 0S RF 96.5 95.8 0.7
ISTN2IP 2 | 0S OF 95.7 90.9 4.8
ISTN211 3 None RF 97.4 95.4 2
ISTN212 3 | None RF 97.1 95.9 1.2
ISTN3SA 2 | SMOTE RF 94.2 96.9 2.7
ISTN3AS No viable model found
ISTN3SI 2 SMOTE RF 97.1 96 1.1
ISTN3ND 2 0S RF 96.4 97.8 14

Thus, in Chapter 5 and Chapter 6, learning algorithms and artificial intelligence techniques were
applied to the UKZN ISTN dataset for the purpose of training and identifying learning patterns (as
per research questions RQ3 and RQ4). These patterns were then applied to unseen course datasets
and were able to predict student performance at an acceptable rate. In Chapter 7, the question of
evaluating the predictive performance of the artefact will be answered by comparing the

performance of the generated models against that of other LA/EDM studies in the literature.
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Chapter 7 — Performance measure comparison with other studies
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Figure 7.1: Thesis structure

7.1. Introduction
This chapter covers the demonstration and evaluation of the artefact (see Figure 7.1) and falls

under the evaluation stage of the DSRM. The objective of this chapter is to address research
question 5 (RQS5) stated in section 1.4, which is stated below:

RQS5 - How can the resultant information of student academic performance predictions be

evaluated?

In this chapter, the performances of the prediction models generated from this study are compared

to those of other studies identified in the literature. This 1s not an exact comparison due to a
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number of variations in not only the algorithms and the parameters used but also the characteristics
of the datasets and the categories of data used in these datasets. However, a comparison of this
nature is useful in understanding where the study stands in terms of acceptable performance
measures as well as how the dataset compares to others identified in the literature. Table 7.1

provides the comparison strategy that is followed in the chapter.

Table 7.1: Comparison strategy

Section | Description

7.2 This section provides an overview of the studies that are compared. This
includes the algorithms used as well as the number of students or instances within
the datasets for these studies.

7.3 This section provides a comparison of the performance measures between the
prediction models generated for the UKZN ISTN 1% year courses against other
studies in the literature that focused on 1% year courses.

7.4 A comparison is made of the performance measures between the prediction
models generated for the UKZN ISTN 2" year courses against other studies in
the literature covering 2" year courses.

7.5 This section covers comparisons between the prediction models generated for
the UKZN ISTN 3" year courses against other studies in the literature covering
3" year courses.

7.6 In this section, the performance of the prediction models generated for the UKZN
ISTN courses are compared against that of other studies that focused on
technology related courses. In this context, technology related courses relate to
the teaching of a variety of subjects related to technology such as programming,
networking, computer engineering, IT literacy and e-commerce.

7.7 The performances of the prediction models generated from this study are
compared to other studies that also applied decision tree, Random Forest and
other algorithms.

7.8 This section focuses on a comparison of the accuracies generated using this study
(both training and test/validation) against those of studies that also reported
training and test/validation accuracies.

7.2. Studies for comparison
Forty-three (43) studies were identified as classification studies ranging from years 2013 to 2022.

These studies focused on LA or EDM applications that were applied to a variety of student groups
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and covered a number of courses, colleges and university instances. The studies are listed in Table
7.2 and are in terms of the algorithms that were used. The number next to the algorithm indicates

the number of studies that used this algorithm.

Table 7.2: List of classification studies based on algorithms used
AdaBoost (AB) — 2
Eddin et al. (2018); Hooshyar et al. (2019)
Classification and Regression Trees (CART) -1
Olaniyi et al. (2017)

Decision tree (DT) — 29

Ndou et al. (2020); Hasan et al. (2020); Nudelman et al. (2019); Tegegne and Alemu (2018);
Bawah and Ussiph (2018); Taodzera et al. (2017); Yehuala (2015); Sunday et al. (2020); Akram
et al. (2019); Al luhaybi et al. (2018); Olaniyi et al. (2017); Viloria et al. (2020); Ha et al. (2020);
Hasan et al. (2018); Ribot et al. (2020); Sunday et al. (2020); Buenaiio-Fernandez, Lujan-Mora
and Gil (2019); Hooshyar et al. (2019); Hamoud et al. (2018); Fynn and Adamiak (2018); Silva
et al. (2022); Khakata et al. (2019); Adekitan and Salau (2019); Saheed et al. (2018); Eddin et
al. (2018); Adejo and Connolly (2018); Wanjau and Muketha (2018); Taodzera et al. (2017);
Vambe and Sibanda (2017)

Neural Network (NN) — 9
Hasan et al. (2020); Bawah and Ussiph (2018); Umar (2019); Olive et al. (2019); Jalota and
Agrawal (2019); Adekitan and Salau (2019); Hooshyar et al. (2019); Adejo and Connolly
(2018); Jia and Mareboyana (2013)
Partial Decision Tree algorithms (PART) —2
Akram et al. (2019); Ha et al. (2020)
Regression (Reg) — 10
Ndou et al. (2020); Hasan et al. (2020); Jokhan et al. (2019); Hooshyar et al. (2019); Maraza-
Quispe, Valderrama-Chauca, Cari-Mogrovejo, Apaza-Huanca and Sanchez-Ilabaca (2022);
Adekitan and Salau (2019); Sandoval et al. (2018); Haggag et al. (2018); Eddin et al. (2018);
Jayaprakash et al. (2014)
Random Forest (RF)/Random Tree (RT) — 15
Ndou et al. (2020); Hasan et al. (2020); Nudelman et al. (2019); Hooshyar et al. (2019); Akram
et al. (2019); Ha et al. (2020); Hasan et al. (2018); Hamoud et al. (2018); Reno et al. (2022);
Silva et al. (2022); Jalota and Agrawal (2019); Adekitan and Salau (2019); Wanjau and Muketha
(2018); Eddin et al. (2018); Sandoval et al. (2018)
Sequential Minimal Optimization (SMO) -3
Ndou et al. (2020); Ha et al. (2020); Hasan et al. (2018)
Best-First Trees (BFT) — 1

Olaniyi et al. (2017)

Decision Stump (DS) — 2
Akram et al. (2019); Hasan et al. (2018)
Feature Vector Analysis (FVA) -1

Dorodchi et al. (2018)

Continued on next page...

195



Table 7.2 continued
Instance based k Algorithm (IBk) — 1

Fynn and Adamiak (2018)

Logistical Model Trees (LMT) -1

Ndou et al. (2020)

Mulitlayer Perceptron (MLP) — 2
Bawah and Ussiph (2018); Ha et al. (2020)
Naive Bayes (NB) — 13
Ndou et al. (2020); Hasan et al. (2020); Nudelman et al. (2019); Hooshyar et al. (2019); Akram
et al. (2019); Al luhaybi et al. (2018); Viloria et al. (2020); Ha et al. (2020); Hasan et al. (2018);
Fynn and Adamiak (2018); Jalota and Agrawal (2019); Adekitan and Salau (2019); Wanjau and
Muketha (2018)

PRISM classifiers (PRISM) — 1

Akram et al. (2019)

Reduced Error Pruning Trees (RepT) —2
Hasan et al. (2018); Hamoud et al. (2018)
Rule Induction (RI) — 1

Hasan et al. (2020)

Stochastic Gradient Descent (SGD) - 1

Eddin et al. (2018)

Simple Logistics (SL) —1

Fynn and Adamiak (2018)

Tree Ensemble (TE) — 1

Adekitan and Salau (2019)

Support Vector Machine (SVM) - 7
Hasan et al. (2020); Jalota and Agrawal (2019); Hooshyar et al. (2019); Mahzoon et al. (2018);
Eddin et al. (2018); Adejo and Connolly (2018); Oloruntoba and Akinode (2017)

Figure 7.2. reflects the number of times different algorithms from Table 7.2 were used in the

various identified studies.

196



35

30 29
w 25
2
S 20
% 20
P
o 15
é 15 13
és 9 10

10 7

5 I : I

. &

DT NN NB Reg RF/RT SMO SVM Others

Algorithm/Technique

Figure 7.2: Bar chart showing distribution of studies using different algorithms/techniques

The bar representing “others” is a sum of the algorithms or techniques that appeared either once
or twice (refer to Table 7.2). The histogram shows that the Decision Tree (DT) and Random Forest
(RF/RT) algorithms were the most used algorithms from the listed studies. With design science
following a pragmatic approach, the current study also used the DT and RF algorithms as these
were not only the most commonly used algorithm but also was said to have performed well in
many of the studies from the literature (see Table 2.8 and Table 2.9). Section 7.7 compares the
performance measure values obtained in this study against those of other studies in terms of

algorithms used.

Table 7.3 presents the above studies in terms of the number of students or instances in the dataset.
The table excludes the studies by Fynn and Adamiak (2018) as well as Ogunde and Ajibade (2019)
where the number of instances (student registrations) were reported rather than the number of

students.
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Table 7.3: Summary of studies and student numbers

Studies No of students

Oloruntoba and Akinode (2017); Dorodchi et Less than 100
al. (2018); Hasan et al. (2018); Umar (2019);

Jia and Mareboyana (2013); Mwalumbwe 100 — 999

and Mtebe (2017); Olaniyi et al. (2017);
Vambe and Sibanda (2017); Bawah and
Ussiph (2018); Saheed et al. (2018); Wanjau
and Muketha (2018); Al luhaybi et al
(2018); Hamoud et al. (2018); Adejo and
Connolly (2018); Khakata et al. (2019);
Nudelman et al. (2019); Akram et al. (2019);
Buenaio-Fernandez et al. (2019); Hooshyar
et al. (2019); Jalota and Agrawal (2019);
Hasan et al. (2020); Ha et al. (2020); Ribot et
al. (2020); Sunday et al. (2020); Silva et al.
(2022)

Taodzera et al. (2017); Kritzinger et al. 1 000 —4 999
(2018); Popoola et al. (2018); Eddin et al.
(2018); Adekitan and Salau (2019); Jokhan
et al. (2019); Ndou et al. (2020); Maraza-
Quispe et al. (2022)

Tegegne and Alemu (2018); Gulint and 5000 -9 999
Adam (2019)
Jayaprakash et al. (2014); Yehuala (2015); 10 000 or more

Sandoval et al. (2018); Olive et al. (2019);
Viloria et al. (2020); Reno et al. (2022)

The above table is reflected as a histogram in Figure 7.3. The histogram shows that the majority
of studies identified in the literature are studies whose datasets have between 100 to 999 students

(inclusive).

198



25
21
20

[y
wv

Number of studies
[
o
0

5 4

L 2
: o

Less than 100 100-999 1000—-4999 5000-9999 10000 or more

Number of students

Figure 7.3: Histogram showing distribution of studies based on student numbers

For this study, the total number of students is 30 942 students over 10 courses, thus placing it in
the 10 000 or more range. The breakdown of each of these courses is described in section 5.2.4.
It should be noted that the other studies in the range of 10 000 or more classified students as a
single group whereas this study classified students based on courses that students were registered

for.

Thus, as this study focused on students within different courses, the comparisons made in Sections
7.3 to 7.5 also respectively compares 1%, 22 and 3™ year courses covered in this study to that of

studies 1dentified in the literature.

In the following subsections, the tables listing the performance measure values are colour coded

in terms of whether or not they meet the acceptance criteria for this study (Table 7.4).

Table 7.4: Colour coding for comparison performances
Falls within the acceptable range for this study
Does not fall within the acceptable range for this study
Not considered due to dataset imbalance (i.e., no sampling was used)
Value was not reported in the study
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7.3. Comparison of performances related to first year courses

As there were some studies in the literature that focused on 1% year students and/or 1* year courses,
it is logical to compare the performances of these studies to that of the performances of the models
generated from the 1% year datasets in this study. Table 7.5 outlines the performance of the studies
covering 1* year students/courses with that of the 1** year courses of this study (ISTN100, ISTN101
and ISTN103). For each of the performance measures for this study, the values for the training
data are presented followed by the validation values within square brackets. Cells that are filled
in black indicate that the performance measure value was not reported in the study. None of the

studies listed in Table 7.5 reported on the PRC assessment metric and thus this has not been

included 1n the table.

Table 7.5: Performance measures for studies on 1% year courses

Study

Algorithm | Accuracy | Precision

ISTN100

ISTN101

ISTN103

Ndou et al.
(2020)

Hasan et
al. (2020)

Jokhan et
al. (2019)

Nudelman
et al.
(2019)

Dorodchi
et al.
(2018)

Continued on next page...

F-
Measure

200



Table 7.5 continued

Study Algorithm | Accuracy | Precision | Recall F- ROC
% Measure

Tegegne DT

and Alemu

(2018)

Bawah DT

and NN

Ussiph MLP

(2018)

Taodzera | DT

et al.

(2017)

Yehuala DT

(2015)

The accuracy for the 1% year IS&T courses ranged from 89% to 96.5% for training and 84.6% to
95.8% for validation. When compared to the other studies dealing with 1% year courses or students,
the accuracies are acceptable when compared to that of the models generated in other studies. With
the RF algorithm, the studies by Ndou et al. (2020), Nudelman et al. (2019) and Hasan et al. (2020)
are 94.4%, 92.4% and 83.5%, respectively. In the case of Nudelman et al. (2019), while the
accuracy, precision and F-measures are acceptable for this study, the recall value i1s 0.66, which
would not be considered a good model by Han et al. (2012), who were aiming for recall values of

0.7 or more.

The six (6) DT algorithms have accuracies in the range 81.4%, in the case of Taodzera et al. (2017)
and Tegegne and Alemu (2018), to 100%, in the case of Bawah and Ussiph (2018). Two other
notable accuracies were 96.3% achieved with the Neural Network by Bawah and Ussiph (2018),
as well as the LMT model by Ndou et al. (2020), where the accuracy was 91.9%. In the case of
Bawah and Ussiph (2018), while the DT algorithm did produce a model with 100% accuracy, the
split between training and test accuracy was not reported, and thus, how well this model applies to
unseen data was not reported. Furthermore, the dataset used only consisted of 525 students and 7

attributes, making it not as complex as the dataset used in this study.

The precision, recall, F-measure and ROC values are also acceptable for this study when compared

to the other studies.
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7.4. Comparison of performance related to second year courses
The performances of the studies that covered 2™ year courses or students are compared to the

performances of the 2% year courses in this study. The performance measures are summarized in
Table 7.6. As with Table 7.5, as no studies from the literature reported PRC values, this value was

not included in the table.

Table 7.6: Performance measures for studies on 2™ year courses

Study Algorithm | Accuracy | Precision | Recall F- ROC
Measure
ISTN2IP OF
ISTN211 RF
ISTN212 RF
Ndou et al |RF
(2020) LMT
DT
Reg
SMO
NB
Sunday et al. [ DT
(2020)
Akram et al. | ZeroR
(2019) OneR
DS
DT
NBT
PART
RF
PRISM
Al luhaybi et
al. (2018) NB
DT
NB
DT
NB
DT
Course 4
NB
DT
Olaniyi et al. | BFT
(2017) DT
CART
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In terms of accuracy, the models generated for the study’s 2°¢ year courses (ISTN2IP, ISTN211
and ISTN212) had the highest accuracy when compared to other studies focusing on 2°¢ year
courses or students. This was also noted for the precision, recall and F-measure values where these
performance measures were reported. For the ROC values, the ISTN211 and ISTN212 (where no
sampling was used in the above cases), the values are less than that of the study by Ndou et al.
(2020), where the dataset is balanced. However, as observed by Ma and He (2013), the ROC
values can be adversely affected in the case of imbalanced datasets, which is the case for the
ISTN211 and ISTN212 datasets. The PRC values, in this instance, do indicate that the model is
good and the similar accuracy when applied to the validation dataset further indicate that the model

is reliable.

7.5. Comparison of performance related to third year courses
In this section, the performances of the algorithms when applied to the 3™ year courses in the study

are compared to similar 3™ year course or student studies identified in the literature. These
performance measures are shown in Table 7.7. The F-measure and PRC performance measures
were not included here as no studies listed in the table reported on these performance measures.
The ISTN3AS performance measures are from the closest model that could meet the acceptance

criteria.

Table 7.7: Performance measures for studies on 3™ year courses or students

Study Algorithm | Accuracy Precision Recall ROC
ISTN3SA RF
ISTN3AS OF
ISTN3SI RF
ISTN3ND RF
Viloria et al. [ DT
(2020) NB

OneR
Ndou et al |RF
(2020) LMT

DT

Reg

SMO

NB

Continued on next page...
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Table 7.7 continued
Study Algorithm | Accuracy Precision Recall ROC

Haet al. (2020) | NB
MLP
SMO
DT
RT

PART
OneR

Hasan et al. [DT
(2018) RepT

SMO

The models generated in this study result in high accuracy values for the current study and these
values are higher than accuracies identified in most of the other studies. In the case of Hasan et
al. (2018), where 100% accuracy was achieved for Random Forest and Support Vector Machine,
the dataset consisted of only 22 students and 11 attributes, compared to the ISTN 3™ year dataset,

which consisted of over 1000 students and over 30 attributes.

Therefore, the artefact developed in this study fares very well when compared to other 3% year
related studies that were identified in the literature. The only exception is the ISTN3AS course
where the model generated does not have acceptable precision values (the ? indicates that no value

could be calculated for the validation dataset).

7.6. Comparison of studies dealing with technology-related courses
In this section, a comparison is made between the performance measures for the courses in this

study and the performance measures of datasets related to technology-based learning. This
includes courses covering computer programming, e-commerce, networking and engineering
amongst others. The performance measures from this study and those of other identified studies

are listed in Table 7.8.
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Table 7.8: Comparison of studies relating to programming-based education

Algorithm | Accuracy | Precision | Recall
%

Study
ISTN100 DT
ISTN101 RF
ISTN103 RF
ISTN2IP OF
ISTN211 RF
ISTN212 RF
ISTN3SA RF
ISTN3AS OF
ISTN3SI RF
ISTN3ND RF
Ribot et al. | DT
(2020) —
BSe. IT
Hasan et al. | DT
(2020) - Reg
e-Commerce | NN
SVM
NB
RF
RI
NN
Sunday et al. [ DT
(2020) —
Intro to
Programming
Umar (2019) [ NN
—  Computer
Networking
Buenaiio- DT
Fernandez et
al. (2019) -
Computer
Engineering
Jokhan et al. | Reg
(2019) —
IT Literacy
Nudelman et | RF
al. (2019) —| DT
Computer NB
Science

Continued on next page...

F- ROC PRC
Measure

0.71[0.57
0.58[0.82

205



Table 7.8 continued

Study Algorithm | Accuracy | Precision | Recall F-
% Measure
Akram et al. | ZeroR
(2019) - | OneR
Programming | DS
DT
NBT
PART
RF
PRISM
Hamoud et al. | DT
(2018) - CS + | RT
LT RepT
Fynn and | ZeroR
Adamiak OneR
(2018) — | NB
Science 1Bk
engineering SL
and DT
technology
Dorodchi et | FVA
al. (2018) -
Programming
Bawah and | DT
Ussiph (2018) | NN
—  Computer | MLP
Science
Hasan et al. | DT
(2018) — RepT
e-Commerce | RF
DS
NB
SMO
Olaniy1 et al. | BFT
(2017) — | DT
Internet CART
Technology
and
Programming

ROC

PRC

As with the course comparisons, the performances of the models generated from this study are

very good when compared to the studies covering technology courses or technology studying

students. In the case of the computer engineering study by Buenaio-Fernandez et al. (2019), while
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the accuracy predicted is 95.7% with very good precision, recall, F-measure, ROC and PRC values,
it should be noted that the dataset used in this study was made up of 164 students and 9 attributes
and thus not as complex as the dataset used in this study. For the study by Nudelman et al. (2019),
the dataset has 783 students and 17 attributes, while the study by Akram et al. (2019) used 109
students and 30 attributes. Finally, in the case of Hasan et al. (2018), the dataset consisted of only
22 students and 11 attributes.

Thus, from an educational dataset perspective, the UKZN ISTN dataset consists of a very large
number of students or instances as well as between 30 and 40 attributes. This, in addition to the
high-performance measure values, indicates that the artefact developed in this study has performed

well when compared to other studies that also focused on educational datasets.

7.7. Comparison with other LA studies based on technique used
For this study, the Decision Tree and Random Forest algorithms were applied to the UKZN ISTN

dataset. This section focuses on how the performance measures of the decision tree algorithm and
the Random Forest algorithm compare against other studies in the literature that also applied either
the decision tree or Random Forest algorithms. The optimized forest algorithm was covered in

Chapter 6 but no studies in LA or EDM could be found that used this algorithm.

7.7.1. Decision tree algorithm
Table 7.9 shows a list of the best decision tree models produced per course from this study followed

by studies identified that used decision tree algorithms.

Table 7.9: Comparison of studies that used decision tree algorithms
Study Accuracy | Precision | Recall F- ROC PRC
% Measure

ISTN100
ISTN101
ISTN103
ISTN2IP
ISTN211
ISTN212
ISTN3SA
ISTN3AS No viable model found using DT algorithm
Continued on next page...
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Table 7.9 continued

Study Accuracy | Precision Recall F-
% Measure

ISTN3SI

ISTN3ND

Silva et al
(2022)

Ndou et al
(2020)

Hasan et al
(2020)

Sunday et al
(2020)

Viloria et al
(2020)

Ribot et al
(2020)

Ha et al. (2020)

Nudelman et al.

(2019)

Khakata et al.
(2019)

Adekitan  and
Salau (2019)
Buenaiio-
Fernandez et al.
(2019)

Akram et al.
(2019)

Tegegne and
Alemu (2018)
Bawah and
Ussiph (2018)
Saheed et al
(2018)

Eddin et al
(2018)

Adejo and
Connolly (2018)

Continued on next page...

ROC

PRC
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Table 7.9 continued
Study Accuracy | Precision | Recall F- ROC PRC
% Measure

Hasan et al
(2018)

Al luhaybi et al.
(2018)

Wanjau and
Muketha (2018)
Fynn and
Adamiak (2018)
Taodzera et al.
(2017)

Olaniy1 et al
(2017)

Yehuala (2015)

By viewing Table 7.9, it is evident that the performance measures of the courses in this study are
higher than the majority of other studies that have used decision tree algorithms. For the study by
Ribot et al. (2020), the Entrepreneurship dataset consists of 339 students and 11 attributes. The
study by Saheed et al. (2018), where the decision tree algorithm produced 98% accuracy, had a
dataset with 234 students and 13 attributes. The final study listed in Table 7.8, that being Yehuala
(2015), obtained a model with 92.3% accuracy and high precision and ROC values. The dataset
used by Yehuala (2015) consisted of a large number of students (11873 students) with 42
attributes. The performance measures from the current study are similar to that of Yehuala (2015)

in terms of accuracy and ROC.

Thus, a conclusion can be made that for this study, the developed artefact that made use of the
decision tree algorithm performed well when compared to other studies that also used the same or
alternatives of this algorithm. This can be seen when comparing the performance measures against
those from the decision tree studies in the literature. With the exception of ISTN3AS, all other
performance measures for prediction models were higher than or equivalent to the performance

measures reported in the literature.
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7.7.2. Random forest algorithm
Table 7.10 lists the performance measures for the best Random Forest models for each of the

courses in the UKZN ISTN dataset. Thereafter, the performance measures for studies from the

literature that used Random Forest algorithms are listed.

Table 7.10: Comparison of studies that used Random Forest algorithms
Study Accuracy Precision | Recall F-Measure | ROC
%

ISTN100
ISTN101
ISTN103
ISTN2IP
ISTN211
ISTN212
ISTN3SA
ISTN3AS
ISTN3SI

ISTN3ND

Reno et al. (2022)
Silva et al. (2022)
Jalota and Agrawal
(2019)

Adekitan and Salau
(2019)

Wanjau and Muketha
(2018)

Eddin et al. (2018)
Sandoval et al
(2018)

The recent studies by Reno et al. (2022) and Silva et al. (2022) were the closest in terms of
matching the performances of the Random Forest experiments conducted in this study. The study
by Silva et al. (2022), similar to many other studies identified in earlier sections, had less than 500
students (in this case 200).

The dataset used by Reno et al. (2022) contained 32593 instances with a variety of students and
was one of the larger datasets identified. Unlike the current study where instances were divided
based on the courses in the degree, this study applied the Random Forest algorithm to the entire

dataset as is. While the precision and recall values are similar for both the current study and that
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by Reno et al. (2022), it was not reported as to how Reno’s model would perform when applied to

unseen data.

It can be concluded that the Random Forest algorithm used in this study performed well when
applied to the UKZN ISTN dataset. The performance measures obtained also indicate that the
model will perform competently for future data collection within the IS&T discipline at UKZN.

7.7.3. Comparison with other techniques
The remaining studies listed in Table 7.11 lists the performance measures of studies not covered

in sections 7.2 to 7.7.2. These are studies where the datasets focused on a variety of students and
used techniques other than decision trees or Random Forest algorithms.

Table 7.11: LA or EDM Studies that have used other techniques

Study Algorithm | Accuracy % Precision | Recall | F- ROC
Measure
Silva et al. (2022) | NB
NN
Maraza-Quispe et | Reg
al. (2022)
Olive et al. (2019) | NN
Jalota and | NB
Agrawal (2019) NN
SVM
Adekitan and | NN
Salau (2019) NB
TE
Reg
Wanjau and | NB
Muketha (2018)
Sandoval et al. | Reg
(2018)
Mahzoon et al. | SVM
(2018)
Haggag et al |Reg
(2018)
Eddinetal. (2018) | SVM
SGD
Reg
AB
Adejo and | NN
Connolly (2018) | SVM
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As with the previous sections, it is evident that the performance measures obtained for this study
are competitive with the studies by Mahzoon et al. (2018) and Maraza-Quispe et al. (2022). In the
case of these studies as well as other studies discussed in previous sections where accuracy is
greater than 90%, there is no indication of how the generated models would fare against unseen
data instances. The next section discusses studies that have included performance measures for

both training and test/validation datasets.

7.8. Performance comparison with studies that show training and testing accuracy
The majority of studies identified in the literature did not separately report the performance

measures obtained for training and test datasets. Rather, a single value for accuracy, precision,
recall or other performance measures were reported. There are studies that have reported different
training performance measures and test or validation dataset measures when models are applied to
the test or validation datasets. These studies, in comparison with the performance measures of this
study, are discussed in this section and listed in Table 7.12. It should be noted that the model
described for ISTN3AS was the closest model in terms of meeting the acceptance criteria for this
study. For the ISTN3AS model, the precision and F-measure values could not be calculated and

thus the model was not accepted.
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Table 7.12: Studies that included both training and test/validation accuracy

Algorithm | Training | Test Accuracy
Accuracy | Accuracy | difference

ISTN100

ISTN101

ISTN103

ISTN2IP

ISTN211

ISTN212

ISTN3SA

ISTN3AS

ISTN3SI

ISTN3ND

sl E e EEs

Vambe and
Sibanda
(2017)

DT

Oloruntoba
and Akinode
(2017)

SVM

Jayaprakash
et al. (2014)

Reg

(Applied
to various

Jia and
Mareboyana
(2013)

The performance measures for both training and validation datasets for this study compare well
against those of other studies. In the case of Oloruntoba and Akinode (2017), the difference in
accuracy between training and testing is 3%, with accuracy values of 94% (training) and 97%
(testing). It should be noted that the dataset used was small, consisting of 89 students and 11
attributes. The study by Jia and Mareboyana (2013) used a larger dataset of 771 instances and 12
attributes. When the Neural Network was applied to this dataset, a 94.4% (training) and 93%

(testing) accuracy was achieved (Jia & Mareboyana, 2013).

For the study by Jayaprakash et al. (2014), a total of 9938 instances were used for training while
5212 instances were used for testing. The dataset had fourteen (14) attributes. The study differed
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from the current study in that the resultant regression model generated after training was applied
to various colleges. The accuracy varied depending on the college, with the best college
(Redwoods) best fitting the training model with 85.6% accuracy (Jayaprakash et al., 2014).

Based on the limited studies available, the artefact fares well in terms of the generated prediction
models fitting to unseen data instances. All differences between training and validation accuracy
are less than 10% and the accuracy achieved range from 84% to 97.8%.

7.9. Chapter summary
This chapter focused on addressing the fifth research question where a comparison is made

between the performance of this artefact against the performances of other LA or EDM studies
identified in the literature. An exact comparison cannot be made due to differing dataset
characteristics and different techniques used. However, a comparison of the performance
measures of this study against those of other studies is useful in understanding how the artefact

model performs and whether these performance measures are acceptable or not.

The characteristics of the UKZN ISTN dataset was first compared in terms of the student and
attribute count. The UKZN ISTN dataset was found to have one of the greatest number of students
in terms of count, falling in the category of 10 000 or more students. With a maximum of 40
possible attributes, the UKZN ISTN dataset was also seen as complex dataset when compared to

other datasets.

The respective 1%, 2" and 3" year courses in the UKZN ISTN dataset were compared to respective
1%tyear, 2" year and 3" year courses identified in the literature. From this year by year perspective,

the performance measures were acceptable when compared to that of the literature.

The courses in the UKZN ISTN dataset were also compared to other courses that taught
technology-based topics such as engineering, e-commerce, end user computing and programming.
The performance measures, in most cases, were higher than the performance measures for other

prediction models applied to datasets in this category (technology courses). The same was found
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when the performance measures of models generated from the DT and RF algorithms were

compared to the performance measures of other studies that used DT and RF algorithms.

Finally, a comparison was made against studies that reported both training and testing accuracies.
The majority of best models for each of the courses in the UKZN ISTN dataset had accuracies of
more than 90% for both training and validation accuracy, with an accuracy difference being less
than 10%. The training accuracies, validation accuracies and accuracy differences were found to

be better than most of the studies that reported training and test accuracies.

Thus, the prediction models generated by the artefact for this study performed well and were of a
good standard when compared to other studies. The intention of this study is to report these
performance measures and make the anonymized UKZN ISTN dataset available for other LA
practitioners. These practitioners can then apply their own algorithms or research artefacts and

compare their results against that of this study.
In the next and final chapter, a discussion is provided in terms of the objectives of the study, how

the LA process can be improved within the discipline of IS&T at UKZN, and how this study can

evolve in terms of future research.
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Chapter 8 — Conclusion
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Figure 8.1: Thesis structure

8.1. Introduction
This final chapter (see Figure 8.1) provides a summary of the study, the major contributions to the

body of knowledge, as well as recommendations, limitations and future work based on what has

arisen from the study. The chapter forms part of the final communication stage of the DSRM.

From the researcher’s perspective, an opportunity was presented to make better use of data
collected within the discipline of IS&T at UKZN for the benefit of teaching and learning. Having
been involved in teaching within the discipline for many years, the researcher often captured

student data for no purpose other than administration, and this was the case throughout the
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discipline. Learning Management Systems were used mainly for efficient lecture content

dissemination with a few activities aimed toward summative assessment and student submissions.

Upon reviewing the literature, it was evident that this problem was not only at UKZN but also an
emerging area of research known as Learning Analytics (LA). A small number of universities in
developed countries had already implemented LA initiatives and most studies implemented small
LA/EDM projects within disciplines or colleges. As an emerging area of research, it was noted
that LA also has very few publicly accessible datasets to allow researchers to assist with the
development and evolution of learning algorithms and artificial intelligence. Thus, the objective
of this study was for the development of an artefact to outline the process of LA from a South
African university context as well as the development of a dataset to allow for further research in
the area of LA and/or EDM. Figure 8.2 illustrates the contents of this chapter along with each

sections’s relation to other chapters.

8.3 8.4
Discussion of the Effectiveness of 8.5
research questions and predictions for teaching Recommendations
objectives and learning

8.2
Major findings from
Literature Review

8.6
Study contributions

8.8
Directions for future
work

8.7
Limitations

Figure 8.2: Map of Chapter 8 content

Section 8.2 provides a summary of the major findings from the literature review chapter. Section
8.3 provides a discussion relating to the five (5) research questions and objectives and how they
were addressed in the research. Section 8.4 discusses the potential impact of performance

prediction and how it may influence monitoring of student academic performance. Section 8.5
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provides some recommendations to HEIs in order to further research on LA in the higher education
domain. Section 8.6 covers the contributions of the study to the body of knowledge within LA
and Section 8.7 describes the limitations of the study. Section 8.8 proposes future work that can

arise from this study. Section 8.9 concludes the chapter and the research study.

8.2. Major findings of the literature review chapter
The literature review chapter provided an overview of LA, with the key findings being that Africa

has been slow to undertake LA projects. As technology and infrastructure becomes available, it is
imperative that African higher education institutions begins to better take advantage of the large
amount of data being stored on a daily basis.

From a LA process perspective, the majority of studies focused on either data analysis (including
prediction) or data preparation stages such as ethical and privacy issues, or data preparation
techniques. No studies looked at the full coverage of LA from data acquisition to data analysis.

From the above findings, it was determined that the LA study must focus on data from an African
university, (in this case, UKZN), and that the study cover the entire LA process from data

acquisition to performance prediction.

8.3. Discussion of the research questions and objectives
By following a design science research methodology (described in Section 3.4), an artefact was

developed in order to meet the objectives of the research discussed in Section 1.5. Sections 8.2.1
to 8.2.5 respectively discuss each research question and how it was addressed in the study, as well

as the extent to which the objective was met.

8.3.1. How can the data from the relevant data sources (SMS, Moodle logs, registers etc.) be
integrated?
This research question addressed the concept of data collection and integration of data sources. In

order to meet the objectives to answer this question, ethical clearance was required, with the
researcher having to gain a gatekeeper’s letter from the registrar as well as sign a non-disclosure

agreement. This process took longer than anticipated as all individuals were required to ensure
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that the research complied with all aspects of POPIA, which had recently been introduced. The

discussion on this can be found in Section 3.6.1.

Student demographics and performance data were acquired via a single MS-Excel file. Data from
the Moodle LMS was acquired by downloading the relevant data files in .csv format. Section 4.2.1

describes the datasets and the attributes for each of these datasets.

The data was mapped to the files based on the student number. Activities of each student were
recorded based on counting the number of times students performed different activities on the
LMS (described in Section 4.2.3.2). Once integrated, student numbers were removed and replaced
by a unique identifier to ensure anonymization (described in Section 4.2.2).

8.3.2. How can the integrated data be organized in preparation for data analysis?
The literature covered a number of techniques that can be used to integrate data and prepare it for

data analysis (Section 2.5). Influenced by these techniques, the instances from the integrated
dataset were grouped based on the courses that they originated from. Duplicate instances such as
exemptions, instances with incomplete attribute values, and instances of student de-registrations
were some of the instances that were removed (Section 4.2.3.4). Duplicate instances increase bias
towards those instances during the learning process while instances with incomplete or missing

data can adversely affect prediction capability.
To further assist with anonymization, some attributes were categorized (Section 4.2.3.3).
Categorisation also improves comprehension and interpretation, as was stated by Khalil and Ebner

(2016).

Thus, the first two research objectives have been addressed. Figure 8.3 is extracted from Figure
3.11 and represents the processes discussed in Chapter 4.
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Figure 8.3: Data integration and preparation

8.3.3. How can the data be used for training towards identifying learning patterns?
Machine learning algorithms have previously been applied to datasets in order to identify learning

patterns that can be used for prediction purposes. In Section 2.6, several learning algorithms that
were commonly identified as being used for prediction were identified from the literature. An
analysis of the literature showed that the decision tree and Random Forest algorithms were the
most commonly used algorithms. By observing the accuracies in the studies described in Sections
2.6.1 to 2.6.6, these two algorithms also produced models with the best prediction accuracy in
many of the studies. Thus, by following a pragmatic approach, the Decision Tree (Section 5.3.2)
and Random Forest (Section 5.3.3) algorithms were applied to the UKZN ISTN dataset. Along
with the process of feature selection (Section 5.3.1) and sampling techniques (Section 5.2.3), these
algorithms were trained on variations of the courses within the UKZN ISTN dataset.

The experiments conducted when applying the machine learning algorithms to each of the course
datasets are described in Chapter 5. From the ten (10) ISTN course datasets, a suitable prediction
model could not be found for one course dataset (ISTN3AS — Section 5.4.8) and it was determined
that better prediction models could be found for two courses (ISTN100 — Section 5.4.1 - and
ISTN2IP — Section 5.4.4).
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The literature had shown that artificial intelligence (Al) algorithms were becoming more popular
to assist in establishing prediction models for complex learning situations. Chapter 6 covered the
application of Al algorithms to the ISTN100, ISTN2IP and ISTN3AS models in order to find better
prediction models than those found in the respective Chapter 5 experiments. Genetic algorithms
(GAs) were previously used in LA/EDM studies with success by Minaei-Bidgoli and Punch
(2003), Romero et al. (2009), Lakshmi et al. (2013), and Preetha (2021). Two approaches were
followed, these being using GAs for feature selection (Section 6.3.1) and using a GA as part of the
training process (Section 6.3.2). The genetic algorithm was able to find a better prediction model
for the ISTN2IP course (Section 6.4.2). It was determined that the inclusion of Moodle data for
the ISTN100 course (Section 6.4.1) would play a role in the development of a prediction model
for the course. For the ISTN3AS course (Section 6.4.3), an alternate strategy for data collection

would be required in the form of student activities and participation (not recorded by Moodle).

8.3.4. How can the trained data be used to predict student academic performance?
The prediction models acquired through training of the algorithms are applied to the validation

datasets (unseen data instances). Based on the performance measures, models were found whose
performance, when applied to the validation dataset, was similar to that of the performance
obtained during training. The other performance measures such as precision, recall, F-measure,
ROC and PRC also indicated that the models were of an acceptable quality. The performances of
the prediction models against validation data was covered in Section 5.4 for each of the courses as
well as in Section 6.4 for the ISTN100, ISTN2IP and ISTN3AS courses.

The aspects for meeting the requirements of the research questions stated in 8.3.3 and 8.3.4 are

represented in the artefact. Figure 8.4 is an extraction of Figure 3.11 and represents the processes

for training and validation of prediction models for the UKZN ISTN dataset.
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Figure 8.4: Data training and accuracy prediction

8.3.5. How can the resultant information of student academic performance predictions be
evaluated?
As the UKZN ISTN dataset is a newly developed dataset in the LA field, there were no previous

performances to compare the predictions to. Rather, the performances of the artefact, when applied
to the UKZN ISTN datasets, were compared to that of similar EDM/LA studies. The objective of
this comparison was not to determine which models were better between the literature studies and
that produced in this study, but rather to understand how the models’ performance measures

compare to that of other studies. This question and objective were discussed in Chapter 7.

The best models for each course were identified (Table 6.16) and compared to performance
measures identified in the literature from a variety of perspectives, i.e., students from 1, 22 and
3" year levels of study (Sections 7.3, 7.4 and 7.5); learning algorithms used (Section 7.7); studies
that separated training and test performance measures (Section 7.8); and studies that involved

technology courses or degrees (Section 7.6).

From Sections 7.2 to 7.8, it was shown that the prediction models generated using the artefact for
this course had acceptable accuracies when compared to accuracies seen in other LA/EDM studies.
In terms of the other performance measures, the models from this study were also acceptable,
although 1t was noted that not all studies included these performance measures when reporting on

their results.
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8.4. Discussion: How effective are the predictions in influencing or enabling
monitoring of student academic behaviour?
Based on the five research objectives, the study has shown that using the artefact would result in

the development of models that can predict whether a student is going to pass or fail a course from
the IS&T discipline with a minimum of 89% accuracy, with the ISTN3AS course being the only
exception. Thus, the predictions have great potential in enabling monitoring of student academic
behaviour and addressing student issues before potential failure occurs. This was also seen in the

ability of the prediction models to predict unseen data instances (via the validation dataset).

The resultant artefact created from the study falls under the LA application of early warning
systems (discussed in Section 2.2.3.2). With a prediction accuracy that is comparable to that of
other studies, the discipline of IS&T can use the prediction models to identify students that could

potentially struggle at 1%, 2" and 3" year levels.

The inclusion of feature selection can also play a role in influencing monitoring of student
academic behaviour. By identifying the most influential set of attributes (Romero et al., 2014),
staff are able to identify groups of students that could potentially struggle based on attributes. For
example, both the QUINTILE and CompTechSchoolYN were identified as predictive attributes
for programming related courses (ISTN2IP, ISTN3AS, ISTN3SI). By analysing these attributes
in more detail, students from lower quintile schools (where computer programming is not
available) may require more assistance with programming. Furthermore, the use of feature
selection reduces the complexity of prediction models (Kavipriya & Karthikeyan, 2019), and in
the case of decision trees or optimized forest algorithms, allows for staff to better understand and

evaluate these models.

Table 8.1 outlines the list of features identified in the best prediction models for each of the courses
(Table 6.16). Column 2 to column 11 indicate the courses of the UKZN ISTN dataset. Rows A,
B and C indicate the sampling, variation and algorithm, respectively, used to produce the best

prediction model.

Rows 1 to 48 indicate each of the features identified in the UKZN ISTN dataset. A star (*) within

the cell indicates that the feature was required to predict student performance in the prediction
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model for that course. The blacked-out cells indicate features that were not considered, either due
to the type of variation used, or the courses were not seen as prerequisites. The blue coloured
features indicate course features that were seen as prerequisites. The features in the green section
were obtained from student demographic and registration data, while the orange section indicates
features obtained from the Moodle LMS. The last column is a count of the number of times each
feature was included for the prediction models for each of the ten (10) undergraduate courses. The
last row of the table indicates the number of features used to develop the prediction model for each

course.
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Table 8.1: ldentified attributes per course

Course --> ISTN 100 101 | 103 2IP 211 212 3SA 3AS 3SI 3ND
Sampling SMOTE| OS 0S 0S | None | None [SMOTE| None |SMOTE| OS | Attribute
Variation 1 1 2 2 3 3 2 2 2 2 Count
Algorithm DT RF RF OF RF RF RF OF

O 0N O UV WN RO T >

No of total clicks

36 |File

37 |Folder

38 |Forum

39 |Quiz

40 |System

41 |URL

42 | Assignhment

43 | Kaltura Video Resource
44 |Zoom meeting

45 |H5P

46 |Completed Activities
47 | Activities Not Completed
48 |% Completed
Attributes per course

*
P O R, P OO WRERNNOOUu O v
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Table 8.2 lists the number of times each of the attributes appeared in the best prediction models
identified at the end of Chapter 6 (Table 6.16). The LMS attributes introduced during the
COVID19 pandemic (Variation 3) appeared the least in the identified prediction models (along
with other attributes such as COUNCILLOAN, ISTN101, SELFFUNDED and URL). It should
be noted that the Kultura video resource and Zoom meetings were not automatically recorded in
all cases as this option was not available on Moodle. At the end of the table, it was noted that
demographic and registration data such as OT, Age Category, COUNTRYCITZDESC,
QUINTILE and others appear the most times in the best prediction models. Thus, these factors
should be studied in greater detail as they are able to play a significant role in identifying struggling

students.

Table 8.2: Number of occurrences of parameters in best prediction models from Table 6.16

Attributes Number of occurrences
SELFFUNDED, Kultura Video Resource, 0
zoom meeting, Activities not completed
ISTN101, COUNCILLOAN, URL, H5P, 1
Completed Activities, % Completed
ISTN102/3, ISTN211, BC, Quiz 2
ISTN212, QUALCAT, Assighment 3
ISTN2IP, RELIGIONDESC, 4
MATRICRANGE,

SECONDARYSCHOOL, AREA,
NSFASLOANYN
QUAL, SUBCAT, ALIENYN, 5

HOMELANGDESC, MARITALSTATUS,
CompTechSchool?, No of Total Clicks,
Folder

RACE, MATRICTYPEDESC, 6
RESBLDOWNER, NSFASBURSARYYN,
SCHOLARSHIPYN, File, Forum

OT, Age Category, COUNTRYCITZDESC, 7
QUINTILE, RESYN, BURSARYYN,

System

FUNDINGTOTALPAID, WEBREGYN 8
GENDER 9

Thus, a conclusion can be made that due to the high prediction accuracy of the models and the

identification of attributes that play a role in prediction, the artefact has the potential to assist in
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tracking or monitoring student academic performance. However, a number of challenges are still

present that must be addressed, and these are discussed in the next section on recommendations.

8.5. Recommendations
As stated, Africa is fairly new to the area of LA and while the study has produced a useful artefact

to develop prediction models, the following recommendations have been identified in order to

further the knowledge and application base for LA. These recommendations are described below.

8.5.1. Effective data acquisition and management
A key challenge covered in Section 2.2.5 (Challenges of learning analytics) was that of data

collection. Firstly, in terms of data acquisition, future researchers must be made aware that not
only is the mandatory ethical clearance required, but also the gatekeeper letter that must be specific
to the requirements of the study. In other words, a general statement outlining that data can be
acquired from university servers is not sufficient, because of the identifying characteristics of the
data that needs to be used in a study of this nature for effective training. This may require
researchers to conduct meetings with university data custodians in regard to what exactly is
required for the research. This is necessary in order for the data guardians to understand what data
the researcher requires for the LA study (Hernandez-de-Menéndez, Morales-Menendez, Escobar
& Ramirez Mendoza, 2022).

Secondly, the addition of POPIA means that students’ privacy is of the utmost importance and the
data must be anonymized. In the case of this study, two separate sources of data were considered,
these being the student biographical and registration data from UKZN Institutional Intelligence
(11) as well as Moodle LMS interaction data. In order to effectively apply LA while ensuring that
POPIA rules are maintained, both data sources must be anonymized in unison. This mean linking
both sources of data, which inevitably increases the complexity of data entities and their
relationships. Future researchers should be made aware of the requirements of POPIA from the
outset of the research project and training or assistance must be provided where necessary. Efforts

have been made in this regard by USAf (2020) but greater awareness is still required.
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Once the areas of ethical clearance and POPIA were addressed, the data was provided by Il to the
researcher. However, as stated earlier (Section 4.2), the data sources were not associated or related
to each other from a database perspective. Institutional Intelligence and ICS were not in the
position to download and organize the Moodle LMS data and thus the researcher was required to
request access from the relevant lecturers and manually download the Moodle logs and reports for
each of the courses covered in this study. Thus, a recommendation would be for the availability
of sufficient staff to assist researchers in data related research. The staff must be trained in areas
of big data analytics in order to understand the requirements of the researcher and to assist with
data management and knowledge discovery (Avella et al., 2016). This is a critical requirement if
HEIs wish to take full advantage of the benefits of LA.

8.5.2. Better use of learning management systems
While collecting data from the Moodle LMS, it was observed that the course sites were mainly

used as a content repository. Other features available on Moodle, such as activity completion and
tracking, quizzes, assignment submission areas and other activities, were rarely utilized, resulting
in reduced ability to better track student activities. The continued use of the LMS in this manner
will reduce the effectiveness of any LA application. A recommendation is to train staff to better
understand and apply the features of Moodle to better fit the needs and learning objectives of the
course. Alternatively, the hiring of an LMS administrator is necessary for a course or for the
discipline to advise and assist in management of LMS course sites. The administrator should be
aware of the features of Moodle, and working with lecturing staff, should develop course sites to
maximise the potential of Moodle and its ability to collect data related to students’ Moodle
interaction. The LMS administrator should also have data analytics experience in order to extract
data requested for future LA research. This challenge of staff training and specialisation in data

analytics was echoed by Prinsloo and Kaliisa (2022D).
In addition, from a data perspective, there should be a movement to align assessment data with

student activities to better understand the impact of how student interaction with course content

affects their academic performance with respect to particular topics covered in the course.
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8.5.3. Improved communication of analytical findings between student and lecturer
Students and lecturers are key stakeholders in higher educational institutions and thus for LA to

be effectively used for monitoring student academic performance, students and lecturers must be
consulted on the manner in which data is presented to them. This could be in terms of frequency,
type of data, as well as presentation of data. Better understanding and appreciation of the LA
process by stakeholders will no doubt improve the probability of LA acceptance within UKZN.
This was also noted by Guzman-Valenzuela et al. (2021) but is seen as a challenge still to be
addressed in the African context (Prinsloo & Kaliisa, 2022b).

8.6. Contributions of the study
There are several contributions that this study makes. However, the three main contributions are

the development of a dataset that has a specific context (1% to 3™ year courses in the IS&T

discipline), the LA process model, and the contribution to basic and applied research.

8.6.1. Development of a dataset
The literature review study by Romero and Ventura (2020) identified a total of 13 publicly

available datasets. From the datasets listed, only eight (8) were still available for access. Of the
eight datasets, four (4) were school-based and two (2) were MOOC-based. The research conducted
in this study resulted in the development of an integrated dataset for a discipline from an HEI. The
dataset is of a challenging complexity and can allow future researchers to continuously evolve the
area of LA. The UKZN ISTN dataset consists of over 37000 instances with 65 attributes over ten
(10) undergraduate courses. The dataset is divided into groups based on the courses, these being
three (3) first year courses, three (3) second year courses and four (4) third year courses. When
comparing this to 43 other datasets in the literature (Section 7.2), it was found that this dataset had

one of the greatest number of students, attributes and registration instances.

The majority of the courses are imbalanced in terms of the number of passes and the number of
failures, thus making the dataset more challenging in terms of finding a reliable prediction model
(Ghorbani & Ghousi, 2020; Kaur et al.,, 2019). Unlike other datasets in the literature, the
complexity of each of the courses based on imbalance level were also reported (Table 5.2) using

the imbalance formula (see formula 5.1. in Section 5.2.3).
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8.6.2. Learning Analytics process artefact
The study resulted in the development of an artefact in the form of an LA process model. The full

process model was presented in Section 3.5.2, and for convenience, in Figure 8.5.

Removal of duplicates
UKZN Raw Data 3 Removal of incomplete instances
Clean data Aftribute removal

etc

l Assessment

Biographical and
University

1
Integrate data

Integrated
Dataset

l LMS Interaction 3

Prepare data

41 42
Splitting dataset Identify labels

2
Anonymize data

Pass
criteria

Course rules

| |

| ISTN101 | ISTN103 ISTN211 ISTNX

For Each ‘:> Training
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5
Develop Prediction Model

Prediction
model

6
Validate Model

52
Apply feature
selection

53
Apply classification
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51
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No sampling
Undersampling Best First Search J48 Decision Tree
Oversampling Genetic Search Random Forest
SMOTE Optimized Forest

Figure 8.5: LA Process model developed from this study

The model is in the form of an adapted data flow diagram and covered each stage from data
acquisition to learning algorithm application and finally, model validation. The identified data
sources are integrated in process one, resulting in an integrated dataset. Process two involves the
removal of data items to ensure anonymization of student information while Process three deals
with cleaning of the integrated dataset. Process four is the data preparation phase where the data
1s split based on the current courses that form part of the degree structure (Process 4.1). This is
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followed by label identification where the student final performance is converted to pass or fail
class values (Process 4.2). For each of the individual courses, the data is divided into training and
validation datasets (data obtained during 2021). The training data enters process five where
sampling is applied (Process 5.1) to the dataset, feature selection is applied to determine the most
effective attributes for prediction (Process 5.2), and a learning algorithm is applied to the training
data (Process 5.3). The resultant prediction model generated from Process five is then applied to
the validation dataset in Process six to validate the model.

The process model can be used as a guide for LA practitioners. Starting from data acquisition, a
researcher can follow the steps of the model and understand how data moves from one process to
another. Within each process, the researcher can then determine the ideal steps to clean, transform,
train or validate the data, resulting in a prediction model. At each process, the researcher can

choose techniques to apply based on what is available for them to implement.

8.6.3. Addition of learning analytics research within South Africa and the African
continent
According to a literature survey study conducted by Guzman-Valenzuela et al. (2021), the SCIELO

and WoScc research databases only identified 10 publications with 1% authors from African
countries between 2013 and 2019. Waheed, Hassan, Aljohani and Wasif (2018) identified 19
publications from South Africa and 32 from Africa. Hooda and Rana (2020) identified active LA
initiatives across the USA, Netherlands, UK and Australia with smaller case studies being
conducted in South American, Asian and smaller European countries but did not indicate any
Africa-based LA projects. Dhankhar and Solanki (2020) also did not identify any studies from the
African continent. The most recent study related to Africa was an overview by Prinsloo and
Kaliisa (2022b) who stated that African studies within the SOLAR community totalled to 15
studies. They further state that LA research in Africa is still in its infancy. Thus, this research,
with the addition of the UKZN ISTN dataset and the LA process model artefact, improves the
body of knowledge of LA for those interested in the subject for the continent of Africa.

In addition, the study serves as a valuable source of information that brings to light the changing
nature of the data within the African continent. Also, it combines both basic and applied research.

As applied research, it solves a problem of identifying students at risk early, with the potential to
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assist and monitor performance. As basic research, the study reveals how datasets can be
developed contextually, as well as the value of design science methodology in IS research,
specifically in the learning analytics context. This suggest that the process model is generally

applicable in this field.

8.7. Limitations
As with any research project, the limitations faced by the researcher must be acknowledged, and

this is covered in this section. Three main limitations for this study are identified, these being the
scope of the study, the limitations observed when working with Moodle data, and the ISTN100 as
well as the ISTN3AS course. These three limitations are elaborated upon in the following

subsections.

8.7.1. Scope of the study
In terms of the scope of the study, the initial objective was to obtain all student data from UKZN.

However, the difficulty faced by Il in providing this meant that the scope was narrowed to just the
discipline of IS&T. Further to this, each course within UKZN follows different approaches in
terms of teaching and learning; for example, some courses may be application-based while others
are more theoretical. Furthermore, the teaching pedagogy and assessment methods will differ from
one course to the next. Thus, the artefact generated cannot be generalised to all courses within
UKZN and will require application to datasets in other disciplines in order to ascertain its

effectiveness.

8.7.2. Working with Moodle data
From the perspective of the Moodle LMS, a number of limitations were acknowledged due to the

inherent functionality of Moodle and the options available to UKZN. Firstly, Moodle allows for
the tracking of whether students have opened files (such as lecture slides) or not. However, the
LMS cannot determine the extent to which students have studied with that file and thus the
assumption was made that students that completed this activity have, at the very least, read the
content in the file. Secondly, it was noted that log data reflected the name of the student and which
LMS action he or she has performed. Thus, students with the same name and surname could not
be distinguished between each other, and thus the rows for both these students were removed (see

Section 4.2.3.4). Thirdly, some courses did not make use of the activity tracing feature on Moodle
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as they were not aware of its usefulness and how to incorporate it into their course. In these cases,

it was uncertain if these activities were truly accomplished or not.

8.7.3. Availability of data sources for ISTN100 and ISTN3AS courses
The final limitation relates to the ISTN100 course and the ISTN3AS course. For ISTN100,

Moodle data was not made available to the researcher and thus was not included in the analysis
(see Section 5.2.4). In the case of ISTN3AS, students conduct interviews with possible clients,
and are part of a team that undertakes tasks involved in project management, analysis, design and
programming. While there are files that teach various programming concepts, the tasks focused
around the development of the project are not recorded. Thus, this is seen as a limitation that
should be addressed in the future.

8.8. Directions for future work
With the conclusion of the study, future research must be considered for the inevitable evolution

of LA. This section looks at areas of future research with regard to this study.

Firstly, this research focused more on the development of a model and the use of machine learning
techniques to predict student academic performance. However, the models, statistics and
generated data or information may not be understood by users without required data analytics
knowledge. Focus for future research must now move to the development of data visualisation to
better inform students and/or staff about the analysis and prediction. The use of dashboards and
summarized information will better inform individuals on progress so that intervention methods

can be implemented, if required, to improve student progress (Sievert, 2020).

Secondly, for this study the data was stored within a relational database framework. In the research
by Knight, Wise and Chen (2017) as well as Mahzoon et al. (2018), the use of a temporal model
has the potential for improving personalised learning and to better understand a student’s learning
process over time. In the case of Mahzoon et al. (2018), the use of a temporal model was shown
to improve accuracy by nine percent. In order to accomplish this, data must be available in the
form of activities as well as time stamps of these activities. The Moodle LMS does offer activity
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tracking but this must also be linked to activities outside the LMS environment, such as lecture

attendance and test dates.

Thirdly, all the learning algorithms have a number of parameters that can be adjusted. For training,
the number of folds was set to the default value of 10, but other values should be investigated for
each course in the future. The decision trees allow for maximising the depth the tree can have as
well as whether the tree should be pruned or not, amongst others. In the case of the Random Forest
algorithm, parameters include the number of decision trees in the forest and the number of features
(attributes) considered by each tree, amongst others. Parameter tuning is also important for
artificial intelligence techniques such as genetic algorithms where parameter values such as
population size, number of generations and genetic operator proportions need to be adjusted for
improved algorithm performance. Future research requires that parameter tuning be implemented

in order to improve the effectiveness of the learning algorithms and feature selection techniques.

Fourthly, as stated in Section 8.5, the ISTN3AS course, which focuses on project work in the field,
needs to be studied further in terms of data requirements for predictive analysis. This includes
resolving the issue of capturing of data for conducting interviews with possible clients, analysis
and design tasks, as well as activities related to programming of the final solution for the project.
These activities are not logged via the LMS and thus future research needs to delve further into
capturing these activities for predictive purposes. Capturing this form of data would require
questionnaires, observations and feedback techniques and the analytics would be qualitative in
nature. Challenges associated with this include time taken to collect, capture and analyse the data

sources.

8.9. Chapter summary
The objective of this study was to emphasise the potential of learning analytics, an area that is

fairly new to the African continent. The research questions and objectives have been recalled and
discussed in terms of what was covered in each of the chapters (Section 8.2). From the discussion
in Section 8.2.6, the study has shown the potential of learning analytics and its capability in terms
of predicting student performance. With high prediction accuracy and an indication of the models

being reliable for both training and validation data, a conclusion can be made that the artefact has

234



the potential to predict student academic performance and potentially intercept students that could

potentially fail courses in the discipline of IS&T.

Further to this, it was found that there is potential for improved prediction models when using
artificial intelligence techniques. In this case, the use of genetic algorithms allowed for the
generation of improved prediction models. From a perspective of LA, this provides an alternative
avenue for practitioners to pursue in the event that the standard machine learning algorithms are

not successful or if practitioners are searching for better solutions.

As discussed in Section 8.4.1, the dataset contributes to the LA community by allowing researchers
to apply their LA or EDM technique against data from a real world higher educational institution.
The dataset offers complexity in the form of a large number of student and registration instances
as well being an imbalanced dataset. The dataset has already been anonymized, thereby allowing

researchers to focus on the aspect of analytics.

Finally, the process model artefact (Figure 8.3) provides LA practitioners with a guide on
conducting LA initiatives starting from data acquisition to data cleaning, preparation, training and
finally, validation. The model allows for customisation by allowing the research to choose
techniques for cleaning and preparation, machine learning techniques to apply, and division of
data into training and validation.

The chapter concludes by outlining issues that need to be addressed in the form of
recommendations (Section 8.3). This includes streamlining the data collection process through
improved understanding of POPIA, ethical and privacy aspects, better training of staff to assist in
data collection and use of the preferred LMS. Some of these recommendations are suggested as
these were limitations experienced by the research when conducting this research (Section 8.5).
Section 8.4 covers the key contributions of this research to the body of knowledge, these being the
development of the process model and dataset as well as knowledge contribution to LA for the
continent of Africa. Finally, the chapter covers future directions (Section 8.6) for this research in
terms of visualisation, choice of data model to use, parameter tuning and finding of prediction
models for the ISTN100 and ISTN3AS courses.
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Appendix A — Experimental results not listed in Chapter 5

Experiment-101-Sampling [None]-VAR1 — Decision tree (J48)

Decision Tree (J48)
Atgg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
F d
o ® | None | 852 | 91.2 | 049 | 05 | 074 | 0.83 ? ? 0.85 | 0.91 ? ?
Backward
coet| None | 852 | 91.2 | 049 | 05 | 074 | 0.83 ? ? | 085 | 091 ? ?
Experiment-103-Sampling [None]-VAR1
Decision Tree (J48)
Atct;'s::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |[Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|
Ezg\::;rd None | 83.4 | 91,6 | 0,49 | 05 | 0,72 | 0,84 ? ? 0,83 | 0,91 ? ?
sacward| None | 83.4 | 916 | 0,49 | 05 | 072 | 084 | 2 > | o083 | o091 2 ?
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Experiment-103-Sampling [US]-All Variations

Variation 1

Variation 2

Variation 3

Decision Tree (J48)
Attrib ..
tct;u::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
d
;Z::j" 9 66,9 | 40,8 | 0,66 | 06 | 0,63 | 0,87 | 0,67 | 09 | 066 | 04 | 066 | 05
kward
::rc“}’fr 14 | 66,8 | 46,9 | 067 | 0,67 | 0,63 | 0,88 | 0,66 | 0,89 | 0,66 | 0,47 | 0,66 | 0,56

Decision Tree (J48)
ib -
Até;u::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
d
:::’;r 5 73,7 | 955 | 0,72 | 0,78 | 0,67 | 0,92 | 0,74 | 0,95 | 0,73 | 0,95 | 0,73 | 0,95
kward
S::r:fr 15 | 732 | 95 | 073 | 0,78 | 0,69 | 0,92 | 0,73 | 0,94 | 0,73 | 0,95 | 0,73 | 0,94

Experiment-21P-Sampling [None]-VAR1 — Decision tree (J48)

Decision Tree (J48)
Atctgs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
gz;‘:’;rd 4 78,1 | 782 | 0,75 | 0,82 | 0,73 | 0,93 | 0,78 | 0,91 | 0,78 | 0,78 | 0,78 | 0,82
_f::'::;ard 6 76,5 | 83,7 | 0,76 | 0,84 | 0,72 | 0,93 | 0,77 | 0,92 | 0,76 | 0,83 | 0,76 | 0,86

Decision Tree (J48)
Attribut ..
Cgu:te Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation

F d
| None | 79,2 | 90,9 | 049 | 05 | 0,66 | 0,83 ? ? 0,79 | 0,9 ? ?
Backward
o] None | 79,2 | 90,9 | 049 | 05 | 0,66 | 0,83 ? ? 0,79 | 0,9 ? ?
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Experiment-21P-Sampling [US]-All

Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
F d
o 5 | 707 | 783 | 069 | 08 | 066 | 09 |[071]| 09 | 07 | 0,78 0,7 | 082
T |eewerd 12 | 702 | 783 | 069 | 087 | 069 | 0,92 | 071 | 091 | 07 | 078 | 0,69 | 082
&
=
Decision Tree (J48)
Attribute ® ..
e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
:;‘:’;’d 3 | 71,8909 | 065 | 05 | 061 | 083 | 072 2 071 | 09 | o071 | 2
T |oeed 12 | 664 | 923 | 065 | 057 | 063 | 0,86 | 068 | 091 | 066 | 0,92 | 0,65 | 09
&
=
Decision Tree (J48)
A’(CTE::E Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
E‘e’;‘:’;rd 2 | 90,9 | 601|086 |05 |08 |08 | 09 |08 | 09 | 06 | 09 | 068
T |oeeerd 2 | 909 | 594 | 085 | 06 |08 |08 | 09 | 086 | 09 | 059 | 09 | 068
k]
2
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Experiment-21P-Sampling [OS]-VAR3

Decision Tree (J48)
bt ..
Atégu:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’;rd 1 97,3 | 86,7 | 099 | 04 | 099 | 0,81 | 0,97 | 0,82 | 0,97 | 0,86 | 0,97 | 0,84
g::rk;’frd 6 99,2 | 90,2 | 0,99 | 0,49 | 0,98 | 0,83 | 0,99 | 0,82 | 0,99 | 0,9 | 0,99 | 0,86

Experiment-21P-Sampling [SMOTE]-VAR2

Decision Tree (J48)
Atctgs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation
E‘e’;vr“;rd 4 89,1 | 685 | 0,89 | 0,61 | 0,86 | 0,86 | 0,89 | 0,84 | 0,89 | 0,68 | 0,89 | 0,74
_f::mard 17 859 | 79 | 088 | 0,74 | 0,85 | 0,89 | 0,86 | 0,89 | 0,85 | 0,79 | 0,85 | 0,82

Experiment-21P-Sampling [SMOTE]-VAR3

Decision Tree (J48)
Atéss::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |[Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|
d
22;”:’;{ 4 95,4 | 825 | 094 | 05 | 091 | 083 | 095 | 0,83 | 095 | 0,82 | 0,95 | 0,82
kward
S::rfr 12 943 | 72 | 097 | 059 | 0,95 | 0,85 | 0,94 | 0,87 | 0,94 | 0,72 | 0,94 | 0,77
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Experiment-211-Sampling [None]-All — Decision tree (J48)

Decision Tree (J48)

Attribute

= Count Accuracy % ROC PRC Area Precision Recall F-Measure
.§ 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
2|5 d
S | | None | 952 | 94,4 | 048 | 05 | 09 | 0,89 ? ? 0,95 | 0,94 ? ?
earch
Backward
cacad None | 952 | 944 | 048 | 05 | 09 | 089 | ? ? | 095|094 | °? b
Decision Tree (J48)
Attrib -
~ tctcr:u:tte Accuracy % ROC PRC Area Precision Recall F-Measure
.é 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
£ |F d
5 Sorwar Netie 95 94,4 0,47 0,5 0,9 0,89 ? ? 0,95 0,94 ? ?
earch
Backward| |\ 95 94,4 | 0,47 0,5 0,9 0,89 ? ? 0,95 | 0,94 ? ?
Search
Decision Tree (J48)
Attribute .
™ Count Accuracy % ROC PRC Area Precision Recall F-Measure
é 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
= |F d
& Sorwar None 95,3 94,4 0,47 0,5 0,92 0,89 0,92 ? 0,95 0,94 0,93 ?
earch
Backward
soarch | None | 953 | 94,4 | 047 | 05 | 092 | 089 | 092 | ? | 095|094 | 093 | °?
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Experiment-211-Sampling [US]-All

Variation 1

Decision Tree (J48)

Atct::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
d
omerd ]l 3 | 693 | 602 | 065 | 063 [ 072 | 091 [ 072 | 092 | 069 | 06 | 068 | 07
:::g’frd 14 | 686 | 562 | 0,64 | 065 | 0,65 | 092 | 0,72 | 0,93 | 0,68 | 0,56 | 0,67 | 0,67

Decision Tree (J48)
Atégs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
:;‘:’j"d 1 73,6 | 782 | 063 | 0,75 | 0,62 | 0,92 | 0,73 | 0,93 | 0,73 | 0,78 | 0,73 | 0,83
T |oewerd 3 | 763 | 782 | 069 | 071 | 066 | 0,92 | 076 | 093 | 0,76 | 0,78 | 0,76 | 0,83
5
Decision Tree (J48)
Atct;'s::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
E‘e’;‘:’;rd 1 88,8 | 428 | 0,83 | 064 | 0,85 | 0,91 | 09 | 0,93 | 0,88 | 0,42 | 0,88 | 0,54
T |ocewerdt 1 | ess | 428 | 083 | 064 | 085 | 091 | 09 | 093 | 088 | 0,42 | 0,88 | 054
s
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Experiment-211-Sampling [OS]-VAR1

Decision Tree (J48)
Atég:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:':hrd 8 96,6 | 87,4 | 0,99 | 0,36 | 0,99 | 0,88 | 0,96 | 0,88 | 0,96 | 0,87 | 0,96 | 0,88
g::rk;’frd 21 97,6 | 83,7 | 098 | 057 | 097 | 09 | 097 | 09 | 097 | 0,83 | 0,97 | 0,86

Experiment-211-Sampling [OS]-VAR2

Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation
EZ;‘:’;” 6 98,7 | 883 | 0,99 | 0,47 | 0,99 | 0,89 | 0,98 | 0,89 | 0,98 | 0,88 | 0,98 | 0,88
_f::mard 14 98 | 883 | 0,99 | 0,54 | 0,98 | 09 | 098 | 09 | 098 | 0,88 | 0,98 | 0,89

Experiment-211-Sampling [OS]-VAR3

Decision Tree (J48)
Até:ﬁ::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|
EZ;”:’CT‘ 6 100 | 822 | 1 | o056 | 1 0,9 1 0,9 1 [o82]| 1 | o086
SB:::‘C“}’]”" 6 99,5 | 935 | 0,99 | 0,49 | 0,99 | 0,89 | 0,99 | 0,89 | 0,99 | 0,93 | 0,99 | 0,91
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Experiment-212-Sampling [US]-VAR1

Decision Tree (J48)
Atég:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:':hrd 8 76,3 | 673 | 0,73 | 0,66 | 069 | 0,93 | 0,76 | 0,93 | 0,76 | 0,67 | 0,76 | 0,77
g::rk;’frd 11 75,4 | 71 | 074 | 0,67 | 069 | 0,93 | 0,75 | 0,93 | 0,75 | 0,71 | 0,75 | 0,79

Experiment-212-Sampling [US]-VAR3

Decision Tree (J48)
Atctss::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|
d
EZQZ“CT 4 95 | 77,7 | 0,95 | 0,75 | 0,93 | 094 | 0,95 | 0,94 | 0,95 | 0,77 | 0,95 | 0,84
kward
S::rc“"f’ 1 75 | 764 | 0,73 | 039 [ 0,75 | 09 | 0,83 | 0,91 | 0,75 | 0,76 | 0,73 | 0,83

Experiment-212-Sampling [OS]-VAR3

Decision Tree (J48)
ib ..
Atégu;:e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
EZ;‘:’;” 2 99,3 [ 91,58 | 1 0,66 1 093 | 0,99 | 093 | 0,99 | 0,91 | 0,99 | 0,92
g::f;’frd 8 99,3 | 91,9 | 0,99 | 0,74 | 0,99 | 0,94 | 0,99 | 0,94 | 0,99 | 0,91 | 0,99 | 0,93
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Experiment-212-Sampling [SMOTE]-VAR3

Decision Tree (J48)
Atég:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’Cahrd 2 98,3 | 949 | 0,98 | 0,73 | 0,98 | 0,94 | 0,98 | 0,95 | 0,98 | 0,94 | 0,98 | 0,95
g::rk;’frd 5 97,4 | 922 | 097 | 06 | 0,96 | 092 | 0,97 | 0,91 | 0,97 | 0,92 | 0,97 | 0,91

Experiment-3SA-Sampling [None]-VAR1 — Decision tree (J48)

Decision Tree (J48)
Atég:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
d
Ezgﬁf None | 91,06 | 98,2 | 0,49 | 05 | 0,83 | 096 | 2 ? 091 | 0,98 | 2 ?
sacward| None | 91,06 | 982 | 049 | 05 | 083 | 0,96 | 2 > | 091|098 | 2 ?
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Experiment-3SA-Sampling [US]-All

Variation 2

Variation 3

Variation 1

Decision Tree (J48)
Atéss:tte Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation|
zzgﬁrd 4 73,4 | 63,4 | 073 | 056 | 0,72 | 0,96 | 0,75 | 0,97 | 0,73 | 0,63 | 0,72 | 0,76
Back:
s::rc“f"‘ 9 784 | 721 | 0,81 | 064 | 0,79 | 0,97 | 0,78 | 0,97 | 0,78 | 0,72 | 0,78 | 0,82

Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
Prwerd 14 | 734 | 634 | 073 | 056 | 0,72 | 096 | 075 | 097 | 0,73 | 063 | 072 | 0,76
S:;kc“frd 9 78,4 | 72,1 | 0,81 | 0,64 | 0,79 | 0,97 | 0,78 | 0,97 | 0,78 | 0,72 | 0,78 | 0,82

Decision Tree (J48)
Atggs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation|
gz;“:;"‘ 4 73,4 | 63,4 | 0,73 | 056 | 0,72 | 0,96 | 0,75 | 0,97 | 0,73 | 0,63 | 0,72 | 0,76
:::fc“t’f'd 9 784 | 72,1 | 0,81 | 064 | 0,79 | 0,97 | 0,78 | 0,97 | 0,78 | 0,72 | 0,78 | 0,82
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Experiment-3SA-Sampling [OS]-VAR3

Decision Tree (J48)
Até::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation
;Z;‘:':hrd 1 100 | 97,3 1 0,49 1 0,96 1 0,96 1 0,97 1 0,97
cacvard| 100 | 982 | 1 | o5 1 | o9 | 1 ? 1 | o9 | 1 ?

Experiment-3SA-Sampling [SMOTE]-VAR3

Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation
EZ;‘:’;“ 1 99,4 | 97,3 | 0,99 | 0,74 | 0,99 | 0,97 | 0,99 | 0,97 | 0,99 | 0,97 | 0,99 | 0,97
_f::mard 1 99,4 | 98,2 | 0,99 | 05 | 0,98 | 0,96 | 0,99 ? 0,99 | 0,98 | 0,99 ?

Experiment-3AS-Sampling [None]-VAR1

Decision Tree (J48)
A .b ..
tégu::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|

F d
oo | None | 98,1 | 969 | 0,42 | 05 | 096 | 094 | 2 ? | 098|096 | ? ?
Backward
el None | 98,1 | 96,9 | 042 | 05 | 096 | 094 | ? ? | 098|096 | 2 ?
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Experiment-3AS-Sampling [None]-VAR2

Decision Tree (J48)
Atég:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’:hrd 1 98,1 | 97,3 | 0,58 | 0,74 | 0,96 | 0,96 | 0,98 | 0,97 | 0,98 | 0,97 | 0,97 | 0,96
g::rk;’frd 1 98,1 | 97,3 | 0,58 | 0,74 | 0,96 | 0,96 | 0,98 | 0,97 | 0,98 | 0,97 | 0,97 | 0,96

Experiment-3AS-Sampling [None]-VAR3

Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|
forward | None | 97,2 | 969 | 029 | 05 | 095 | 094 | 095 | 2 | 097 | 096 | 096 | 2
g::mard None | 97,2 | 96,9 | 0,29 [ 05 | 0,95 | 0,94 | 0,95 ? 0,97 | 0,96 | 0,96 ?
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Experiment-3AS-Sampling [US]-VAR1 and VAR2 (VAR3 — Too few instances)

Variation 1

Variation 2

Decision Tree (J48)
Atctgs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
F
SZ;‘:’;"’ 1 | 83| 726|073 | 073|072 09 | 08| 09 | 084 | 0,72 | 0,84 | 0,81
:::f;’frd 1 | 83| 726 | 073|073 | 072|095 | 08| 09 | 084|072 084 | 0,81

Decision Tree (J48)
Atctgl?::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’:hrd 1 76,9 | 72,6 | 0,72 | 0,73 | 0,71 | 0,95 | 0,76 | 0,96 | 0,76 | 0,72 | 0,76 | 0,81
gacdward) 5 73 | 788 | 0,73 | 0,82 | 0,71 | 096 | 0,74 | 0,96 | 0,73 | 0,78 | 0,72 | 0,85
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Experiment-3AS-Sampling [OS]-All

Variation 1

Variation 2

Variation 3

Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
d
zz;‘:g' 5 96,8 | 87,6 | 099 | 0,48 | 0,99 | 0,93 | 0,97 | 0,93 | 0,96 | 0,87 | 0,96 | 0,9
:::g’frd 13 | 992 | 91,1 | 0,99 | 0,53 | 0,99 | 0,94 | 0,99 | 0,94 | 0,99 | 0,91 | 0,99 | 0,92

Decision Tree (J48)
Atégs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
:;‘:’j"d 2 99,6 | 96,9 | 0,99 | 0,56 | 0,99 | 0,94 | 0,99 | 0,95 | 0,99 | 0,96 | 0,99 | 0,96
2:‘:'::}’]“" 8 99,5 | 89,4 | 0,99 | 0,52 | 0,99 | 0,94 | 0,99 | 0,94 | 0,99 | 0,89 | 0,99 | 0,91

Decision Tree (J48)
Atct;ls::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
gorward 3 100 92 1 0,54 1 0,94 1 0,94 1 0,92 1 0,93
earch
SB“"W“" 7 100 | 947 | 1 [o55| 1 (094 | 1 |09 | 1 |09 | 1 |09
earch
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Experiment-3AS-Sampling [SMOTE]-AII

Variation 1

Variation 2

Variation 3

Decision Tree (J48)
Atctgz::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
d
;Z;‘:g’ 1 99,3 | 94,7 | 0,99 | 0,41 | 0,99 | 0,93 | 0,99 | 0,93 | 0,99 | 0,94 | 0,99 | 0,94
::fc“}’frd 23 | 99,2 | 94,2 | 0,99 | 0,68 | 0,99 | 0,95 | 0,99 | 0,93 | 0,99 | 0,94 | 0,99 | 0,94

Decision Tree (J48)
Atégs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
:;‘:’;’d 1 | 987 | 942 | 0,98 | 0,44 | 0,98 | 0,93 | 0,98 | 0,93 | 0,98 | 0,94 | 0,98 | 0,94
pckward) 3 | 985 | 955 | 098 | 05 | 097 | 0,94 | 0,98 | 0,94 | 098 | 095 | 098 | 0,95

Decision Tree (J48)
Atggs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
E‘e’;‘:’;rd 1 99,1 | 955 | 0,99 | 0,45 | 0,99 | 0,93 | 0,99 | 0,93 | 0,99 | 0,95 | 0,99 | 0,94
s::'::f’d 4 99,1 | 94,7 | 0,99 | 0,48 | 0,99 | 0,94 | 0,99 | 0,93 | 0,99 | 0,94 | 0,99 | 0,94

Experiment-3S1-Sampling [None]-VARL — Decision tree (J48)

Decision Tree (J48)
Atct:;:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
g:‘:’cahrd None | 95,1 | 968 | 0,48 | 05 | 09 | 094 ? ? 0,95 | 0,96 ? ?
cacdward| None | 95,1 | 96,8 | 0,48 | 05 | 09 | 094 | 2 2> | 095|096 | 2 ?
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Experiment-3S1-Sampling [None]-VAR3 — Decision tree (J48)

Decision Tree ()48)
Attribut .
Cgu::te Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
F d
™| None | 93,4 | 96,8 | 047 | 05 | 0,89 | 0,94 | 0,89 ? 0,93 | 0,96 | 0,91 ?
Backward
e | None | 93,4 | 96,8 | 047 | 05 | 0,89 | 0,94 | 0,89 ? 0,93 | 0,96 | 0,91 ?
Experiment-3S1-Sampling [US]-All
Decision Tree (J48)
Atct'::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
E:;:’;rd 3 743 | 786 | 0,71 | 0,45 | 0,68 | 0,93 | 0,75 | 0,94 | 0,74 | 0,78 | 0,74 | 0,85
g |edwedl 1 | 731 | 72 | o062 | 054 | 06 | 093|075 | 095 | 072 | 072 | 072 | 081
g earch
s
Decision Tree (J48)
Atctg:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:’;’d 1 76,4 | 72 | 067 | 054 | 0,64 | 0,93 | 0,78 | 0,95 | 0,76 | 0,72 | 0,76 | 0,81
T |Zewdl 1 | 764 | 72 | 067 | 054 | 064 | 093 | 078 | 095 [ 0,76 | 0,72 | 0,76 | 081
s
Decision Tree (J48)
Atctgs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation
d
gz;‘:g' 1 80 72 | 068 | 0,57 | 068 | 0,94 | 0,81 | 0,94 | 0,8 | 0,72 | 0,79 | 0,81
T |t g 80 | 72 | o068 | 057 | 068 | 094 | 081|094 | 08 | 072|079 | 081
g earch
s
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Experiment-3S1-Sampling [OS]-All

Variation 1

Variation 2

Variation 3

Decision Tree (J48)
Atctgz::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
F d
o 7 97,4 | 884 | 098 | 0,41 | 0,98 | 0,93 | 0,97 | 0,94 | 0,97 | 0,88 | 0,97 | 0,91
::fc“}’frd 21 | 97,1 | 862 | 098 | 0,51 | 097 | 0,94 | 0,97 | 0,94 | 0,97 | 0,86 | 0,97 | 0,89

Decision Tree (J48)
Atégs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
:;‘:’;’d 4 98,7 | 91,5 | 0,93 | 0,59 | 0,99 | 0,94 | 0,98 | 0,95 | 0,98 | 0,91 | 0,98 | 0,93
gjjffrd 10 99 | 96,8 | 099 | 0,85 | 0,98 | 0,97 | 0,99 | 0,97 | 0,99 | 0,96 | 0,99 | 0,97

Decision Tree (J48)
Atct:s’::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
E‘e’;‘:’;rd 3 | 994 | 92 |09 | 074|099 | 095 | 09 | 09 | 0,99 | 0,92 | 0,99 | 0,93
s::'::f’d 6 100 | 96,4 1 | 077 1 | 096 1 0,96 1 | 096 1 0,96

Experiment-3ND-Sampling [None]-VAR1 — Decision tree (J48)

Decision Tree (J48)
Atct:::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
z:;‘:’;rd None | 81,5 | 97,8 | 0,49 | 05 | 0,69 | 0,95 ? ? 0,81 | 0,97 ? ?
sacward| None | 815 | 97,8 | 0,49 | 05 | 069 | 0,95 | 2 2 |o81| o097 | > ?
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Experiment-3ND-Sampling [US]-VAR1

Decision Tree (J48)
Atég:::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation
;Z;‘:':hrd 2 71 | 40,7 | 0,71 | 0,69 | 0,68 | 0,96 | 0,72 | 0,96 | 0,71 | 04 | 0,7 | 055
g::rk;’frd 16 68,8 | 48 | 071 | 0554 | 067 | 0,95 | 0,69 | 0,96 | 0,68 | 0,48 | 0,68 | 0,63

Experiment-3ND-Sampling [OS]-VAR3

Decision Tree (J48)
Atct:::::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation|
E‘e’;”:’;rd 1 100 | 974 | 1 |oe9| 1 09| 1 |o097| 1 |o097| 1 | 097
Sackward) 4 | 200 | 987 | 1 | 07 | 1 |o97| 1 |09 | 1 |09 | 1 | o9

Experiment-3ND-Sampling [SMOTE]-VAR3

Decision Tree (J48)
Atégs::e Accuracy % ROC PRC Area Precision Recall F-Measure
10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold |Validation| 10-Fold [Validation| 10-Fold |Validation
EZ;”:’CT‘ 3 98,7 | 98,2 | 0,98 | 0,69 | 0,97 | 097 | 0,98 | 0,98 | 0,98 | 0,98 | 0,98 | 0,98
SB:::‘C“}’]”" 3 99 | 952 | 0,98 | 0,87 | 0,98 | 0,97 | 0,99 | 0,97 | 0,99 | 0,95 | 0,99 | 0,96
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Experiment-21P-FS [Genetic] — VAR1

Appendix B — Experimental results not listed in Chapter 6

Feature
Sampling Selection Algorithm Pa(r:e;r:::er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold[Validation| 10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation
us Genetic DT 10 74,75 68,5 0,73 0,62 0,69 0,86 0,74 0,86 0,74 0,68 0,74 0,75
Genetic RF 17 7524 | 73,42 0,77 0,77 0,76 0,89 0,75 0,89 0,75 0,73 0,75 0,78
Experiment-21P-Algorithm [OF] — VAR1
Feature Parameter
Sampling Selection Algorithm G Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold [Validation|10-Fold| Validation | 10-Fold | Validation| 10-Fold | Validation [ 10-Fold | Validation| 10-Fold | Validation
us All OF 29 63,86 69,2 0,66 0,77 0,64 0,9 0,64 0,9 0,63 0,69 0,63 0,75
RF Fwd Search OF 8 72,27 | 75,52 0,71 0,66 0,67 0,87 0,72 0,85 0,72 0,75 0,72 0,79
RF Bkwd Search OF 21 74,25 81,1 0,8 0,81 0,79 0,9 0,74 0,91 0,74 0,81 0,74 0,84
Genetic OF 17 74,75 76,2 0,76 0,77 0,75 0,89 0,74 0,89 0,74 0,76 0,74 0,8
Experiment-21P-FS [Genetic] — VAR2
Feature Parameter
Sampling|  Selection Algorithm P— Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold|Validation|10-Fold|Validation [10-Fold|Validation | 10-Fold| Validation| 10-Fold )alidatior| 10-Fold | Validation
us Genetic DT 8 71,87 88,8 0,74 0,84 0,7 0,93 0,72 0,91 0,71 0,88 0,71 0,89
Genetic RF 15 72,65 80,4 0,76 0,7 0,74 0,88 0,72 0,89 0,72 0,8 0,72 0,83
Experiment-21P-Algorithm [OF] — VAR2
Feature Parameter
Sampling Selection Algorithm e— Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation [ 10-Fold | Validation
us All OF 34 70,3 76,2 0,74 0,81 0,73 0,91 0,7 0,89 0,7 0,76 0,7 0,8
RF Fwd Search OF 8 78,1 83,2 0,81 0,72 0,79 0,89 0,78 0,89 0,78 0,83 0,78 0,85
RF Bkwd Search OF 14 77,3 78,3 0,81 0,76 0,8 0,9 0,77 0,88 0,77 0,78 0,77 0,82
Genetic OF 15 71,8 81,8 0,76 0,71 0,74 0,88 0,72 0,89 0,71 0,81 0,71 0,84
Experiment-21P-FS [Genetic] — VAR3
ST Parameter
Sampling Selection Algorithm Count Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-FoldValidation| 10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation
us Genetic DT 7 90,9 59,4 0,85 0,6 0,83 0,85 0,9 0,86 0,9 0,59 0,9 0,68
Genetic RF 15 81,8 44,7 0,81 0,63 0,8 0,85 0,82 0,88 0,81 0,44 0,81 0,54
Experiment-21P-Algorithm [OF] — VAR3
RSB Parameter
Sampling Selection Algorithm - Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold|Validation|10-Fold| Validation| 10-Fold | Validation [ 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation
us All OF 39 72,7 50,3 0,75 0,64 0,74 0,87 0,73 0,86 0,72 0,5 0,72 0,6
RF Fwd Search OF 4 90,9 58,7 0,89 0,6 0,87 0,85 0,9 0,86 0,9 0,58 0,9 0,67
RF Bkwd Search OF 31 68,1 46,1 0,75 0,65 0,77 0,87 0,68 0,88 0,68 0,46 0,68 0,55
Genetic OF 15 81,8 48,2 0,82 0,62 0,81 0,85 0,82 0,89 0,81 0,48 0,81 0,57
Experiment-3AS-FS [Genetic] — VARL
Feature
. . . Parameter -
Sampling| Selection |Algorithm e Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold|Validation [10-Fold|Validation|10-Fold|Validation| 10-Fold | Validation | 10-Fold [ Validation [ 10-Fold | Validation
us Genetic DT 7 84,3 72,6 0,73 0,73 0,72 0,95 0,84 0,96 0,84 0,72 0,84 0,81
Genetic RF 32 87,5 65,1 0,9 0,7 0,89 0,95 0,88 0,96 0,87 0,76 0,87 0,76
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Experiment-3AS-Algorithm [OF] - VAR1

Feature
Sampling| Selection |Algorithm Pa(r;r:::er Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold| Validation| 10-Fold| Validation| 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation | 10-Fold | Validation
None All OF 29 98,1 96,4 0,71 0,49 0,97 0,94 0,97 0,93 0,98 0,96 0,97 0,95
RF Fwd Search OF 4 98,5 94,7 0,68 0,48 0,97 0,93 0,98 0,93 0,98 0,94 0,98 0,94
RF Bkwd Search OF 14 98,4 96 0,77 0,48 0,97 0,93 0,98 0,93 0,98 0,96 0,98 0,95
Genetic OF 5 98,4 94,7 0,67 0,47 0,97 0,93 0,98 0,93 0,98 0,94 0,98 0,94
0s Al OF 29 99,6 94,7 1 0,71 1 0,95 0,99 0,93 0,99 0,94 0,99 0,94
RF Fwd Search OF 8 99,7 94,2 0,99 0,63 0,99 0,95 0,99 0,93 0,99 0,94 0,99 0,94
RF Bkwd Search OF 25 99,8 96 1 0,62 1 0,95 0,99 0,93 0,99 0,96 0,99 0,95
Genetic OF 21 99,8 95,5 1 0,67 1 0,95 0,99 0,93 0,99 0,95 0,99 0,94
SMOTE  All OF 29 99 95,1 0,99 0,69 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94
RF Fwd Search OF 3 99,3 94,7 0,99 0,47 0,99 0,94 0,99 0,93 0,99 0,94 0,99 0,94
RF Bkwd Search OF 24 99,2 93,8 0,99 0,71 0,99 0,95 0,99 0,93 0,99 0,93 0,99 0,93
Genetic OF 20 99,2 95,5 0,99 0,7 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94
us All OF 29 75 65,1 0,78 0,71 0,77 0,95 0,75 0,95 0,75 0,65 0,75 0,76
RF Fwd Search OF 4 84,3 78,4 0,77 0,71 0,73 0,95 0,84 0,94 0,84 0,78 0,84 0,85
RF Bkwd Search OF 23 84,3 69,6 0,88 0,71 0,88 0,96 0,84 0,95 0,84 0,69 0,84 0,79
Genetic OF 14 87,5 67,4 0,88 0,71 0,85 0,95 0,88 0,96 0,87 0,67 0,87 0,77
Experiment-3AS-FS [Genetic] — VAR2
Feature Parameter
Sampling| Selection |Algorithm e Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold|Validation [10-Fold | Validation|10-Fold| Validation| 10-Fold | Validation [ 10-Fold | Validation | 10-Fold | Validation
us Genetic DT 3 76,9 78,8 0,66 0,82 0,67 0,96 0,84 0,96 0,76 0,78 0,75 0,85
Genetic RF 9 84,6 50,2 0,86 0,87 0,86 0,97 0,85 0,97 0,84 0,5 0,84 0,63
Experiment-3AS-Algorithm [OF] - VAR2
Feature Parameter
Sampling Selection Algorithm e— Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold|Validation| 10-Fold | Validation|10-Fold| Validation [ 10-Fold | Validation| 10-Fold | Validation | 10-Fold | Validation
0s All OF 35 99,8 96,4 1 0,87 1 0,97 0,99 0,95 0,99 0,96 0,99 0,95
RF Fwd Search OF 4 100 97,3 1 0,57 1 0,94 1 0,97 1 0,97 1 0,96
RF Bkwd Search OF 8 100 96,4 1 0,8 1 0,96 1 0,93 1 0,96 1 0,95
Genetic OF 12 100 96,9 1 0,8 1 0,96 1 0,95 1 0,96 1 0,96
SMOTE  |All OF 35 98,7 95,5 0,99 0,75 0,99 0,96 0,98 0,93 0,98 0,95 0,98 0,94
RF Fwd Search OF 3 98,7 94,2 0,99 0,51 0,98 0,94 0,98 0,93 0,98 0,94 0,98 0,94
RF Bkwd Search OF 24 99,1 95,5 0,99 0,68 0,99 0,95 0,99 0,93 0,99 0,95 0,99 0,94
Genetic OF 16 98,8 96,4 0,99 0,84 0,99 0,97 0,98 0,96 0,98 0,96 0,98 0,96
us All OF 35 69,2 55,5 0,7 0,93 0,71 0,97 0,69 0,97 0,69 0,55 0,69 0,68
RF Fwd Search OF 4 84,6 67,4 0,84 0,66 0,82 0,94 0,88 0,95 0,84 0,67 0,84 0,77
RF Bkwd Search OF 32 69,2 55,9 0,79 0,89 0,82 0,97 0,69 0,97 0,69 0,55 0,69 0,68
Genetic OF 9 80,7 50,6 0,83 0,88 0,84 0,97 0,82 0,97 0,8 0,5 0,8 0,64
Experiment-3AS-FS [Genetic] — VAR3 — Not enough samples for US
Experiment-3AS-Algorithm [OF] — VAR3 — Not enough samples for US
Feature
. . 5 Parameter .
Sampling Selection Algorithm — Accuracy % ROC PRC Area Precision Recall F-Measure
Search Type
10-Fold [ Validation| 10-Fold | Validation| 10-Fold [ Validation| 10-Fold | Validation| 10-Fold | Validation| 10-Fold | Validation
0s All OF 38 100 94,7 1 0,79 1 0,96 1 0,93 1 0,94 1 0,94
RF Fwd Search OF 4 100 92 1 0,58 1 0,94 1 0,94 1 0,92 1 0,93
RF Bkwd Search OF 6 100 93,8 1 0,66 1 0,95 1 0,93 1 0,93 1 0,93
Genetic OF 6 100 81,4 1 0,77 1 0,96 1 0,95 1 0,81 1 0,87
SMOTE  All OF 38 98,8 96 1 0,79 1 0,96 0,98 0,93 0,98 0,96 0,98 0,95
RF Fwd Search OF 19 100 95,1 0,99 0,49 0,99 0,94 0,99 0,93 0,99 0,95 0,99 0,94
RF Bkwd Search OF 24 100 96,4 1 0,68 1 0,95 1 0,93 1 0,96 1 0,95
Genetic OF 19 100 95,1 1 0,8 1 0,96 1 0,93 1 0,95 1 0,94
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