
Genetic Effects and Associations between Grain Yield Potential,  
Stress Tolerance and Yield Stability in Southern African  

Maize (Zea mays L.) Base Germplasm 
 
 
 
 
 

By 
 
 
 
 
 

DERERA, John 
 

BSc Agric Hons, MPhil Agric (Zim) 
 

 
 
 
 
 
 

A thesis submitted in partial fulfilment of the requirements for the degree  
of Doctor of Philosophy (PhD) in Plant Breeding 

 
 
 
 
 
 
 

African Centre for Crop Improvement (ACCI) 
School of Biochemistry, Genetics, Microbiology and Plant Pathology 

Faculty of Science and Agriculture 
University of KwaZulu-Natal 

Republic of South Africa 
 
 
 

15 December 2005 



   

   

 

ii 

Abstract 

Maize (Zea mays L.) is the principal crop of Southern Africa but production is threatened 
by gray leaf spot (Cercospora zea-maydis L.) and phaeosphaeria leaf spot 
(Phaeosphaeria maydis L.) diseases, drought and the use of unadapted cultivars, 
among other constraints. There are few studies of gray leaf spot (GLS) and 
Phaeosphaeria leaf spot (PLS) resistance, drought tolerance, yield stability and maize 
cultivar preferences in Southern Africa. The objective of this study was to: a) determine 
farmers’ preferences for cultivars; b) investigate the gene action and heritability for 
resistance to GLS and PLS, and drought tolerance; and c) evaluate yield stability and its 
relationship with high yield potential in Southern African maize germplasm. The study 
was conducted in South Africa and Zimbabwe during 2003 to 2004. 
 
A participatory rural appraisal (PRA) established that farmers preferred old hybrids of the 
1970s because they had better tolerance to drought stress. Farmers also preferred their 
local landrace because of its flintier grain and better taste than the hybrids. The major 
prevailing constraints that influenced farmers’ preferences were lack of appropriate 
cultivars that fit into the ultra short seasons, drought and low soil fertility. Thus they 
preferred cultivars that combine high yield potential, early maturity, and drought 
tolerance in all areas. However, those in relatively wet areas preferred cultivars with 
tolerance to low soil fertility, and weevil resistance, among other traits.   
 
A genetic analysis of 72 hybrids from a North Carolina Design II mating revealed 
significant differences for GLS and PLS resistance, and drought tolerance.  General 
combining ability (GCA) effects accounted for 86% of genetic variation for GLS and 90% 
for PLS resistance indicating that additive effects were more important than non-additive 
gene action in controlling these traits. Some crosses between susceptible and resistant 
inbreds had high resistance to GLS suggesting the importance of dominance gene 
action in controlling GLS resistance. Resistance to GLS and PLS was highly heritable 
(62 to 73%) indicating that resistance could be improved by selection.  Also large GCA 
effects for yield (72%), number of ears per plant (77%), and anthesis-silking interval 
(ASI) (77%) under drought stress indicated that predominantly additive effects controlled 
hybrid performance under drought conditions. Although heritability for yield declined from 
60% under optimum to 19% under drought conditions, heritability for ASI ranged from 32 
to 49% under moisture stress. High heritability for ASI suggested that yield could be 
improved through selection for short ASI, which is positively correlated with high yield 
potential under drought stress.   
 
The stability analyses of the hybrids over 10 environments indicated that 86% had 
average stability; 8% had below average stability and were adapted to favourable 
environments; and 6% displayed above average stability and were specifically adapted 
to drought stress environments. Grain yield potential and yield stability were positively 
correlated.  
 
In sum, the study indicated that farmers’ preferences would be greatly influenced by the 
major prevailing constraints. It also identified adequate genetic variation for stress 
tolerance, yield potential and yield stability in Southern African maize base germplasm, 
without negative associations among them, suggesting that cultivars combining high 
yield potential, high stress tolerance and yield stability would be obtainable.  
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Introduction to Thesis 

1. The Importance of Maize in Southern Africa 

Maize is the principal crop of Southern Africa.  This sub-region consists of Angola, 

Botswana, Lesotho, Malawi, Mozambique, Namibia, South Africa, Swaziland, Zambia 

and Zimbabwe. Recent statistics show that 16 countries with the highest maize grain 

consumption in the world are in sub-Saharan Africa (Banziger and Diallo, 2002).  

Indeed, the per capita consumption within Southern Africa is even higher than that for 

sub-Saharan Africa as a whole.  Banziger and Diallo (2002) reported that maize 

contributed 50% of calories in Southern Africa, compared to 30% in East Africa and 

15% in West and Central Africa.   

 

Maize is planted on 62 to 98% of the land allocated to cereals in Southern Africa 

(Table 1). Consumption of maize is particularly high in Lesotho, Malawi, South Africa, 

Zambia and Zimbabwe (Table 1). Maize thus plays a crucial role in feeding Southern 

Africans and sustaining their livelihoods. Low production levels of maize have serious 

implications for millions of Southern Africans. 

2. Global Disparities and Low Production of Maize in Sub-Saharan 
Africa 

There are global anomalies in the production of maize. Globally maize commands a 

large share of farming area; it is produced on 44 million (M) ha in developed, and 96 

M ha in developing countries (Pingali and Pandey, 2001). Despite this distribution of 

area, yield in developed countries is 8 t/ha, but slightly less than 3 t/ha in developing 

countries (Pingali and Pandey, 2001).  

 

Amongst the developing countries themselves, there are further disparities. Third 

world production is dominated by four countries, namely China (26 M ha), Brazil (12 

M ha), Mexico (7.5 M ha) and India (6 M ha), which produce 53% of production in 

developing countries (Pingali and Pandey, 2001). In sub-Saharan Africa, although 

the maize production area (22 M ha) is similar to that of China, these countries 

combined produced only 27 M tons in 2004 (FAOSTAT, 2004). The average yield of 

1.2 t/ha in sub-Saharan Africa (FAOSTAT, 2004) is far below the average of 3 t/ha 

for the rest of developing countries.  
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Within the Southern African region there are further disparities in production (Table 

1). South Africa contributes the bulk of grain in the region because production is by 

large-scale commercial farmers. In the other countries, small-scale or resource-poor 

farmers largely produce the crop. Mozambique and Angola registered the highest 

growth in production, while Zambia, Zimbabwe and South Africa had negative growth 

rates. 

 

Table 0.1: Maize production data for countries in Southern Africa 
Country Consumption 

Per 

Capita (kg/yr)  

Area of 
Cereals

 
(%) 

Area 
(x 1000 ha) 

Yield 
(t/ha) 

Production 
(X 1000 t) 

Production 

Growth  
(%/yr) 

       

Angola 36 76 980 0.5 510 6.3 

Botswana --- --- 84 0.1 10 --- 

Lesotho 135 71 180 0.8 150 0.7 

Malawi 148 89 1550 1.1 1733 3.4 

Mozambique 53 62 1300 1.0 1248 14.5 

Namibia --- --- 23 1.4 33 -- 

South Africa 101 74  2.3 8517 -0.5 

Swaziland 60 98 60 1.2 70 0.8 

Zambia 140 78 750 1.5 1161 -6.1 

Zimbabwe 122 75 1400 0.7 1000 -0.7 

Source: FAOSTAT (2004);  Pingali and Pandey (2001) 

3. Maize Production Constraints in Southern Africa 

Possible factors that have been advanced to explain the disparities in average yield 

between developed and developing countries are the different environments and the 

available technologies.  Thus, most developed countries produce maize in temperate 

climates, but only China and Argentina among the developing countries grow the 

crop under temperate conditions.  In tropical sub-Saharan Africa, small-scale farmers 

dominate production of maize under highly stressful conditions of disease, low soil 

fertility and drought, and with limited access to the essential inputs (Banziger and de 

Meyer, 2002). In most cases, these farmers have either little or limited access to 

improved technologies. For example, less than 50% of these small-scale farmers 

grow the new improved cultivars (Banziger and Diallo, 2002).  

 

Maize yield potential for sub-Saharan Africa varies according to mega-environment 

but the yield gap, which is the gap between yield potential and actual yield, is 

consistently high across all three mega- environments (Fig. 1). Generally, this gap 

between yield potential and farmers’ actual yield exceeds 50%. This suggests that 

there are, in fact, various stresses, which constrain production of even improved 
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cultivars across all three mega-environments regardless of the suitability of climate 

for maize production.  (Tollenaar, in his 2002 study, defines stress as any factor 

resulting in yield reduction.)   

 

Pingali and Pandey (2001) reported dominant production constraints, identified by 

the International Maize and Wheat Improvement Centre (CIMMYT), across the three 

mega-environments of sub-Saharan Africa.  These constraints included low soil 

fertility, drought, gray leaf spot disease and limited technology options (Table 0.2).  

 

Low and declining soil fertility is the highest ranked constraint across all three mega- 

environments. Although low soil fertility is a serious threat to regional food security, it 

is a static factor, hence farmers would know the condition of their soil at the time of 

planting and could take this into account.   However, low soil fertility, especially low 

N, remains one of the major production constraints due to the limited access to 

fertiliser in developing countries. A focus on breeding for drought tolerance has been 

reported to have spillover effects to low soil N problems. Edmeades et al. (1997) 

Fig. 1: Comparison of yield potential and actual yield in sub-Saharan Africa 

(Data: Pingali and Pandey, 2001)
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reported that cultivars selected for drought tolerance also showed improved yields 

under low N conditions.  

 

The other, less predictable constraints of drought, disease and pests pose additional 

threats to regional food security. Drought and diseases such as gray leaf spot (GLS) 

and phaeosphaeria leaf spot (PLS) are weather-dependent, hence their 

unpredictability. Small-scale farmers cannot afford or have limited access to irrigation 

facilities and pesticides to manage drought and diseases, respectively.    

 

Table 0.2: Dominant production constraints in sub Saharan Africa  
Rank Highland/ Transitional Mid-Altitude/Subtropical Tropical Lowland 

    

1 Low and declining soil fertility Low and declining soil 
fertility 

Low and declining soil 
fertility 

2 Limited technology options Gray leaf spot Drought 

3 Turcicum blight Maize streak virus Striga sp. 

4 Rust Grain Weevils Maize streak virus 

5  Borers (Chilo, Sesamia 

spp.) 
Maize borers 

6  Drought  

Source: Pingali and Pandey (2001) 

 

Frequent drought that reduces production is common in Southern Africa. The 

weather pattern is variable and highly favourable seasons are often followed by 

unfavourable years which impact on economic growth and food security.   For 

example, Richardson (2003) reported that the gross domestic product (GDP) of 

Zimbabwe showed a positive correlation (r = 0.65) with the amount of rainfall. 

Banziger and Diallo (2001) reported a positive relationship between rainfall and 

average yield across the subcontinent. The distribution of rainfall varies even within 

seasons in all production areas (Olver, 1998).  Campos et al. (2004) reported that 

available soil moisture could also vary considerably even within the same field. Fig. 2 

presents the fluctuation of grain production which is attributable to rainfall variation, 

among other factors, in Malawi, Zambia and Zimbabwe from 1961 to 2003. Thus, 

severe droughts have periodically reduced grain production because more than 93% 

of the crops are not irrigated (Banziger and Diallo, 2002; Pingali and Pandey, 2001). 

Campos et al. (2004) therefore suggested that appropriate cultivars for release 

should carry base-line tolerance to drought regardless of the area of their 

deployment.   

 



 

   5 

Drought causes maximum damage and yield reduction around flowering (Cakir, 

2004). Farmers can replant if drought occurs at the seedling stage and obtain 

reduced yield if drought occurs late in the season. Drought at flowering can only be 

mitigated by irrigation, which unfortunately is beyond the reach of many smallholder 

farmers. Edmeades et al. (1995) reported that pollination of late emerging silks under 

drought leads to fertilisation, but grain development is arrested, resulting in patchy 

cobs or complete barrenness. Breeding for drought stress tolerance in maize would 

thus contribute to alleviating substantial drought induced loss; it should be targeted at 

flowering and would entail selecting cultivars with a short anthesis-to-silking interval.  

 

Among the biotic constraints, GLS, caused by the fungus Cercospora zeae-maydis, 

is a major disease worldwide. Grain yield losses of ±30%, attributable to GLS, have 

been reported in many countries (Pingali and Pandey, 2001).  Since the 1990s, GLS 

has spread and is now endemic throughout sub-Saharan Africa (Menkir and Ayodele, 

2005). Ward et al. (1997) estimated yield losses at 63% in South Africa, indicating 

that the disease can be devastating if susceptible cultivars are grown.   

 

Phaeosphaeria leaf spot, caused by the fungus Phaeosphaeria maydis, is another 

disease with the potential to threaten regional food security. Although not mentioned 

among the dominant constraints, the incidence of PLS has been on the increase 

(Vivek et al., 2001).  Carson (1999) reported a high incidence of PLS in South Africa 

and Zimbabwe among other countries. Grain yield loss due to PLS alone has not yet 

Fig. 2:    Variation of Grain Production in 3  Countries ( Data: FAOSTAT, 

2004)
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been quantified in this region but substantial losses have been reported in Brazil.  

Paccola-Meirelles (2001) reported that PLS inflicted heavy yield losses of 60% in 

susceptible cultivars in Brazil. Like GLS, phaeosphaeria causes yield losses through 

accelerated leaf senescence, a reduced plant life cycle, and decreased grain size 

and weight in susceptible cultivars. Grain yield losses would be devastating if PLS 

were to occur together with GLS before grain filling.  

 

In order to address the problem of food insecurity in the Southern African region, 

there is’ therefore, an urgent need to start breeding for maize resistant to the major 

and unpredictable stresses of drought and disease, in particular GLS and PLS.   

 

A further consideration for the maize breeder in Southern Africa is the issue of yield 

stability. The highly variable rainfall pattern and the unevenness of the production 

environment on the subcontinent give rise to complex cultivar x environment (G x E) 

interactions. Cultivar x environment interaction has been defined as the differential 

response of cultivars across environments (Crossa, 1990). Breeding progress is 

delayed by G x E, due to changes in cultivar ranking in different environments. In 

other words, there are different compositions of the selected and rejected cultivars in 

different environments (Crossa et al., 1995). Furthermore, Campos et al. (2004) 

reported that there are cultivar x timing of stress interactions in stressful 

environments.  

 

Small-scale farmers in Southern Africa do not have adequate means to modify or 

condition the production environment, therefore selection for yield stability is 

desirable. Stable cultivars have reduced interaction with environments. Tollenaar and 

Lee (2002) defined yield stability as the ability of a cultivar to maintain relative yield 

across environments. An appropriate cultivar exploits resources such as high soil 

moisture and high fertility that are available in favourable environments and 

maintains acceptable yield in low the input environments (Finlay and Wilkinson, 

1963). Selection of cultivars for high yield stability should be a high priority for the 

variable environments in Southern Africa.   

4. Farmer Preferences in Maize Breeding 

Farmer preferences have emerged as a major factor in the improvement of maize 

yield in smallholder farming. As reported by Banziger and Cooper (2001), superior 

cultivars have not always been adopted, even where available, because they do not 

meet farmers’ preferences. This phenomenon may contribute to the significantly 
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large yield gap (Fig. 1) in developing countries – smallholder farmers reject available 

improved seed.   

 

Apart from high yield and disease resistance, breeders may not know farmers’ 

complex requirements.  Small-scale farmers have some specially preferred traits, 

which may not be considered by breeding institutions.  According to Banziger et al. 

(2004), regional programmes have a tendency to focus their breeding goals on the 

requirements of the commercial farming sector. Perhaps, the small-scale farmers 

might not have interest in growing some hybrids that have not been developed to 

meet their specific requirements (Kamara, 1996, as cited by Diallo and Banziger, 

2001). Effective cultivar breeding for deployment in marginal areas should be based 

on the identified constraints and specific preferences for small-scale farmers.  

5. Summing Up of Rationale for Research Focus 

Grain production is highly variable in Southern African countries, which is a reflection 

of the annual variation of precipitation among other constraints. It is likely that 

cultivars would be subjected to GLS and PLS diseases during wet seasons, which 

provide favourable conditions for epidemic development. In other words, the 

incidence of GLS and PLS is highly weather-dependent, with the result that disease 

becomes the major constraint in a favourably wet season. The same cultivars would 

be challenged by drought in the same area if the following season were 

unfavourable.  Possibly cultivars could be challenged by both disease and drought 

stress in one season. This is because the distribution of rainfall varies even within 

seasons in all production areas. Plant available soil moisture could also vary 

considerably even within the same field. Due to these highly variable conditions in 

the production environment, breeding for cultivars with base line tolerance to drought 

and resistance to GLS and PLS is suggested. Cultivars should also be bred for high 

yield stability so that farmers would not suffer yield penalty in the event of a 

favourable season.  In addition, cultivar design should include specific preferences 

for small-scale farmers in marginal areas.  

6. Research Hypotheses  

In order to develop effective breeding strategies for inherent baseline tolerance to 

drought, GLS, and PLS, without sacrificing yield, there is a need to have adequate 

knowledge of the following factors: a) farmers’ preferences; b) the level of genetic 

variation for resistance; c) gene action controlling yield and tolerance to GLS, PLS 

and drought; d) heritability of resistance, grain yield and its associated traits; and e) 
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the relationship between yield stability, grain yield potential, and stress tolerance to 

GLS, PLS, and drought in Southern African adapted base germplasm.  

 

This study was undertaken to test the following hypotheses: 

a) Small-scale farmers in Southern Africa recognise the key production constraints 

peculiar to their areas and have specific preferences for stress tolerant maize 

cultivars, 

b) There is adequate genetic variation for grain yield and its associated traits which 

is highly heritable and is exploitable in a breeding programme to generate 

drought tolerant materials. 

c) There is sufficient genetic variation and high levels of resistance to GLS and PLS 

which are highly heritable and are exploitable in a breeding programme to 

generate disease resistant materials. 

d) There are significant positive relationships between stress tolerance, grain yield 

potential, and yield stability in Southern African adapted maize germplasm. 

7. Specific Objectives and Structure of Thesis 

The specific objectives of this study were achieved in the various chapters as follows: 

Objective Chapter 

1. Review relevant literature on grain yield, stability, GLS, PLS and drought stress 

tolerance. 

Chapter 1 

2. Investigate farmer perceptions on maize cultivars and their implications for breeding, 

using the marginal eastern-belt of Zimbabwe as a case study.   

Chapter 2 

3. Determine (i) levels of resistance, (ii) heritability,  (iii) gene action conditioning 

resistance to gray leaf spot, and (iv) the relationship between gray leaf spot resistance 

and grain yield in a selected set of Southern African maize. 

Chapter 3 

4. Determine (i) levels of resistance, (ii) heritability, (iii) gene action conditioning 

resistance to phaeosphaeria leaf spot, and (iv) the relationship between PLS resistance 

and grain yield in a selected set of Southern African maize. 

Chapter 4 

5. Establish levels of (i) drought stress tolerance, (ii) gene action and combining ability of 

inbred lines, (iii) heritability, and (iv) correlations between grain yield and secondary traits 

under drought stress. 

Chapter 5 

6. (i) Evaluate level of stability of grain yield and (ii) determine the relationship between 

yield stability and grain yield potential in a selected, but representative sample of 

Southern African base germplasm. 

Chapter 6 

7. Review and conclude the completed research. Chapter 7 

 

This thesis is presented in a composite form, with the Chapters 2 to 6 intended for 

publication.  For this reason, there may be overlapping of content and references.   
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Chapter 1: Literature Review  

1.1 Introduction 

This chapter provides a context for the research by a) reviewing theory relevant to 

maize germplasm (heterotic) groups, gene action, grain yield, stress tolerance, and 

yield stability, b) reviewing literature on grain yield, gray leaf spot and phaeosphaeria 

leaf spot diseases and the drought problem, and c) defining key technical terms of 

the study. Gray leaf spot and drought represent the major biotic and abiotic 

constraints in Southern Africa, whereas phaeosphaeria leaf spot disease has very 

little published information. Thus, this chapter creates a frame of reference for the 

study.  

1.2 Maize Heterotic Groups 

Knowledge of genetic diversity of maize germplasm is important in designing hybrids. 

Expression of heterosis depends on the differences in the gene frequency of the 

parent materials (lines or cultivars) that are used to make crosses. The best hybrid 

vigour or the highest heterotic responses are obtainable when crosses are made 

between parents originating from genetically different populations (Hallauer and 

Miranda, 1988). Hybrid oriented breeding programmes use different heterotic groups 

for specific regions, but there are some heterotic patterns that are used across 

regions depending on their adaptation – whether they have specific or wide 

adaptation (Mickelson et al., 2001).   There are at least nine main heterotic groups of 

elite inbred lines that are used by the maize breeding programmes in Eastern and 

Southern Africa (Table 1.1). The SC, N3 and K64R derived lines are key components 

of hybrids in national breeding programmes (Olver, 1998; Mickelson et al., 2001).  

The K64R lines and their derivatives have been widely used to constitute early 

maturing hybrids in Zimbabwe (Olver, 1998). The rest of the inbred lines are mainly 

used in South African hybrid-oriented programmes (Cowie, 1998). The full 

descriptions of these groups have been presented in detail (Gevers and Whythe, 

1987; Gevers and Lake, 1998; Olver, 1998). Almost all breeding programmes in East 

and Southern Africa use lines from CIMMYT. The CIMMYT classification is broader 

based than the regional categorisation (CIMMYT, 2001). In the current study, 

experimental hybrids were constituted between lines that were drawn from these 

heterotic groups (Chapters 3 to 6), because they represent regional base germplasm. 
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Table 1.1. Main heterotic groups of maize inbred lines used in Southern Africa  
Heterotic 

Group 

Population of derivation Examples of  

Public Lines 

Reference 

SC Southern Cross SC5522 Mickelson et al. (2001)   

N3 Salisbury White N3-2-3-3 Mickelson et al. (2001)  

K K64R/M162W K64R, M162W Mickelson et al. (2001)   

P Natal Potchefstroom Pearl Elite 

Selection (NPP ES) 

NAW5867 Gevers and Whythe (1987) 

Olver ( 1998) 

I NYHT/TY A26, I137TN Gevers and Whythe (1987) 

M 21A2.Jellicorse M37W Gevers and Whythe (1987) 

F F2934T/Teko Yellow F2834T Gevers and Whythe (1987)  

CIMMYT- A Tuxpeno, Kitale, BSSS, N3 

(More Dent Type) 

CML442,  

CML202 

CIMMYT, 2001 

CIMMYT- B ETO, Ecuador 573, Lancaster, 

SC (More Flint Type) 

CML444, 

CML395 

CIMMYT, 2001 

 

1.3 Gene Action and Its Implication 

In order to develop effective crop breeding strategies for inherent baseline tolerance 

to the major stresses without sacrificing yield potential, there is a need to understand 

the nature of gene action operating for grain yield and the associated traits under 

stress-prone tropical environments in Southern Africa. 

1.3.1 Defining Gene Action 

Genes, located on chromosomes, represent the basic units of inheritance, and 

control the expression of characters, individually or in combinations. Gene action is 

the way genes express themselves. Gene action is studied using the Mendelian and 

the biometrical genetic approach. In Mendelian genetics, the dominant gene action 

refers to the expression of a character that appears in the F1 generation; but 

recessive genes are not expressed in the presence of dominance in the F1, but their 

traits re-appear in the segregating F2 generation (Welsh, 1981).  

 

 In quantitative genetics, genetic components are divided into additive and 

dominance variance and epistasis (Robinson et al., 1949; Falconer, 1981). In the 

presence of additive gene action, characters of heterozygotes in the F2 generations 

are the intermediate of the two parents, because  additive variation is associated with 

the average effects of the particular alleles (Falconer, 1981). The additive portion 

reflects the degree to which progenies are likely to resemble their parents, which is 
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reflected in the narrow sense heritability. Knowledge of heritability indicates to the 

breeder the possibility to which genetic improvement is possible through selection.  

 

Non-additive gene action is observed when the additive model cannot adequately 

explain the variation (Falconer, 1981). According to Robinson et al. (1949), the size 

of dominance relative to the additive variance indicates the degree of dominance. 

Thus, levels of dominance in the progeny display a range from partial to over-

dominance in relation to the mean of their parents (Table 1.2). Sharma (1994) 

defined average performance of the parents as the mid-parental value (m).  

 

Table 1.2. Classes of dominance gene action  
Type of Dominance Description 

  
Partial dominance Heterozygote has a value that is closer to one parent  

Positive partial dominance Performance of the heterozygote lies between m and the value of the 

superior parent  

Negative partial dominance Performance of a heterozygote lies between m and the value of the 

inferior parent.  

Positive complete dominance Performance of the heterozygote equals that of the superior parent  

Negative complete dominance Performance of the heterozygote equals that of the inferior parent.  

Positive over-dominance Performance of the heterozygote exceeds that of the superior parent  

Negative over-dominance Performance of the heterozygote is less than that of the superior 

parent 

Source: Hallauer and Miranda (1988); Sharma (1994) 

 

Epistatic gene action occurs when variation cannot be explained on the basis of the 

additive-dominance model alone.  Epistasis is the interaction of alleles at different 

loci and there are three types of epistasis (Table 1.3).  

 

Table 1.3. Types of epistatic gene interaction (Falconer, 1981). 
Type of Epistasis Description 

Additive x Additive  Interaction occurs when two or more genes, each showing additive action  

individually, interact with each other causing differential genotypic values 

as influenced by the genetic content of genes situated at other loci. 

Variation is created by the interaction of two genes, each acting additively. 

Additive x Dominance Interaction occurs when two or more loci, one showing additive and the 

other dominance action, interact. 

Dominance x Dominance Interaction occurs when two or more loci, each showing dominance action 

individually, interact. 
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1.3.2 Estimating Gene Action  

Hallauer and Miranda (1988) reviewed the various mating designs and methods for 

estimating genetic variance in maize populations. These consist of analyses of bi-

parental progenies, parent-offspring regression, diallel, and North Carolina (NC) I, II 

and III mating designs.  Assumptions underlying these designs are as follows: (a) a 

random choice of parents for crossing; (b) parents randomly distributed; (c) absence 

of maternal effects; (d) diploid behaviour; (e) no multiple alleles; (f) linkage 

equilibrium of genes; and (g) no epistasis (Hallauer and Miranda, 1988; Dabholkar, 

1992). These assumptions should be validated when interpreting results from genetic 

studies.  

 

Biparental mating is the simplest design. Pairs of randomly selected plants from a 

population are crossed. The level of genetic variation is then determined by 

evaluating the crosses in replicated trials.  The limitation of this design is that it does 

not determine the type of gene action, but only the level of genetic variation is 

determined (Hallauer and Miranda, 1988).   

 

In parent-offspring regression, randomly selected plants from a population are 

crossed. Parent-offspring regression estimates heritability of traits by regressing the 

mean of the cross on the mean value of its parents (Hallauer and Miranda, 1988).  As 

a result in this deisgn both parents and the crosses are evaluated.  This design is 

mainly applied for ae quick estimate for the level of heritability of plant traits in a 

population. 

 

A diallel mating entails making all possible single crosses among a group of parents. 

There are four types of diallel mating designs, depending on whether the design 

evaluates crosses, parents and reciprocals (Stuber, 1980; Hallauer and Miranda, 

1988; Dabholkar, 1992). A complete diallel evaluates the variances due to the 

crosses, parents and reciprocal effects (Stuber, 1980). In a half diallel, only the 

crosses are evaluated. The third type of diallel evaluates the crosses and the 

reciprocal effects without the parental effects. In the fourth diallel type, the variances 

for the crosses and parents are determined without including the reciprocal effects. 

All the diallel types estimate variation due to the crosses; this is partitioned into 

sources due to general combining ability (GCA) and specific combining ability (SCA). 

So the differences between the diallels are based on whether parents or reciprocal 

effects are included in the model. The reciprocal crosses estimate the variation due 
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to maternal effects, which are expected for some traits.  Practically, the design is 

most applicable with few parents (≤10), because use of many parents results in too 

many crosses to manage (Stuber, 1980; Hallauer and Miranda, 1988).  

 

In a North Carolina I mating design (Comstock and Robinson, 1948), a group of 

female parents are crossed to a common male. This design can be used to produce 

a large number crosses that may be required for evaluation in breeding programmes.  

The NC I estimates GCA variance for the male and the female within male variances. 

The performance of female parents is compared within a particular male, and 

comparisons between the different males are also possible. It seems the limitations 

of this design of this design are that it does not estimate SCA and reciprocal effects. 

 

The North Carolina II mating design (Comstock and Robinson, 1948) is a factorial 

experiment that measures the variance of male and female main effects and the 

male x female interaction effects. According to Hallauer and Miranda (1988), the 

male and female main effects, and the male x female interaction effects in a NC II 

mating design are equivalent to the GCA and the SCA effects in a diallel. The main 

difference between a diallel and NC II is that there are two independent estimates for 

the GCA effects in the NC II, which is an advantage of the NC II over the diallel.  Two 

independent estimates of GCA allow determination of maternal effects and 

calculation of heritability based on the male variance, which is free from maternal 

effects. Another advantage is that the NC II can handle more parents and produce 

fewer crosses than the diallel.  In the NC II, dominance variance can be determined 

directly from the male variance. An additional advantage of the NC II is that crossing 

of parents in sets can increase the sample size to be tested (Hallauer and Miranda, 

1988). 

 

In NC III mating design (Comstock and Robinson, 1948), an F2 population is formed 

between two inbred parents. The F2 plants are then backcrossed to the parents. This 

design estimates dominance and additive variances and estimates dominance levels. 

It can also be used to estimate the effects of linkage on the additive and dominance 

variances. The NC III has an advantage over the NC II because it can measure 

levels of dominance. 

 

 In the current study, a NC II mating design (Comstock and Robinson, 1948; 1952) 

was used to form hybrids among 27 inbred lines that were evaluated for stress 

tolerance. The NC II was selected for the study because the objective was to 
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estimate GCA and SCA variances, which could not be generated by biparental, and 

regression methods.  North Carolina III mating design was not used because the 

design involves two inbred parents only. However, a serious choice had to be made 

between using a diallel and NC design II. 

 

A NC II mating design was chosen instead of the diallel in order to generate fewer 

crosses from more parents (> 10). This could be achieved in a NC II mating by 

dividing the parent inbred lines into sets and then forming the crosses among 

subsets, which effectively increased the sample size for the study. Use of a diallel 

design would have generated more crosses with the same number of parents, which 

are difficult to manage in trials. Compared to the diallel, the NC II mating design has 

two independent estimates for the GCA due to male and female parent sources. 

Although the diallel has the advantage of incorporating reciprocal effects in the model 

for checking maternal effects, the NC II mating can also estimate maternal effects by 

testing the differences between the male and female mean squares. As a result, 

heritability can be calculated using the male variance, which is free from the maternal 

effects. If present, these maternal effects would lead to the upward bias of the 

additive variance (Hallauer and Miranda, 1988).  

1.4 Grain Yield and Stress Tolerance 

1.4.1 Defining Yield and Stress Tolerance 

Primarily breeding aims at developing cultivars that satisfy farmers’ requirements.  

Evans and Fischer (1999) defined grain yield as the grain mass with specific 

moisture content.  “Yield potential” is obtained when a cultivar is grown under non-

limiting conditions and in an environment of its adaptation, or in the absence of 

stress. Therefore, stress tolerance is defined in relation to yield potential. Tollenaar 

(2002) defined stress tolerance as the ability of cultivars to mitigate the impact of 

stress. The difference between “yield potential” and “actual yield” reflects the level of 

stress tolerance of a cultivar. Thus, as the actual yield approaches yield potential, 

cultivars are regarded as relatively stress tolerant.  

  

1.4.2 Progress in Improving Grain Yield Potential 

Appreciable progress has been realised in improving grain yield, especially in 

temperate maize. Tollenaar and Lee (2002) have reported grain yield potential of 

14.5 to 20.9 t/ha in the USA, compared with the actual yield of ±7 t/ha.  Other studies 
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reported that the actual yield was only about a quarter of the yield potential for the 

USA (Tollenaar, 1983; Tollenaar, 2002). However, Duvick and Cassman (1999) 

reported attainable yield of 18 t/ha under irrigated conditions in Nebraska (USA). In 

tropical sub-Saharan Africa, Pingali and Pandey (2001) reported yield potential of 5 

t/ha against actual yield of 0.5 t/ha in highland/transitional zones; 7 t/ha versus 2.5 

t/ha in mid-altitude/subtropical zones; and 4.5 t/ha versus 0.7 t/ha in tropical lowland 

environments. In Eastern and Southern Africa, Banziger and Diallo (2002) reported 

actual yield of 1.3 t/ha for small-scale farmers and 4 to 14 t/ha for the researchers. It 

appears that conditions for obtaining a high yield are hard to achieve by researchers, 

let alone for the resource-constrained, small-scale farmers in marginal areas of 

Southern Africa. The wide gap between actual and yield potential indicates that there 

is still a huge opportunity for improving grain yield, especially in tropical sub-Saharan 

Africa.  

1.4.3 Stress Tolerance as a Basis for Yield Improvement 

Breeding for stress tolerance is not new. There is overwhelming evidence in support 

of the predominance of stress tolerance in explaining yield improvement in temperate 

maize. Duvick (1997) reported that improved grain yield potential of the best hybrids 

in Central Iowa was due to stress tolerance and high yield per plant.  Tollenaar and 

Wu (1999) reported that improved stress tolerance was associated with lower plant-

to-plant variability.  Tollenaar et al. (1997) reported one case where new hybrids 

were even more competitive with weeds than the old hybrids.  Superiority of hybrids 

under stress sharply contradicts the opinion that genotypic and phenotypic 

heterogeneity are positively correlated with yield stability. Tollenaar and Wu (1999) 

reported that single cross hybrids had better adaptation and stress tolerance than 

genetically variable open pollinated cultivars and double cross hybrids.  Previously, 

Troyer (1996) reported that the trend of maize evolution in the USA, beginning with 

open pollinated varieties (OPVs) in the 1930 era, and followed by double cross 

(1930-1960s) and single cross hybrids (late 1960s), was associated with improved 

yield and adaptation. Arguably, the more than 20% yield improvement could not be 

attributed to heterosis alone (Duvick, 1992, 1997; Duvick and Farnham, 1997). 

However, an equal effort has not been applied to the development and improvement 

of OPVs in the USA as breeding emphasis of researchers seems to have shifted 

towards the hybrids after the 1960s era. Perhaps if they had applied an equal effort 

to research and development of OPVs, the grain yield potential and yield stability 

could be more comparable or even higher than that of the hybrids. 
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Studies by Tollenaar and Wu (1999) have suggested that there are common 

mechanisms for conferring tolerance to different forms of stress in temperate maize 

cultivars. This has also been reported in some tropical cultivars that had tolerance to 

both drought and low soil N (Banziger et al., 2002; Lafitte and Edmeades, 1995), but 

such studies are still limited. High level of stress tolerance might have resulted in part 

from selection for improved grain yield stability in many multi-locational trials 

(Tollenaar and Lee, 2002; Tollenaar, 2002). Furthermore, cultivars have increasingly 

been tested under conditions representing commercial production (Tollenaar and 

Lee, 2002).  Another explanation for the success in yield improvement is recycling of 

the best inbreds in pedigree breeding. Duvick (1997) reported that breeders used 

inbred lines derived from the best hybrids to develop new hybrids.  It has also been 

argued that yield improvement was a result of improved efficient use of resources 

due to delayed leaf senescence or the “stay green” trait (Duvick, 1997; Tollenaar and 

Wu, 1999), which improved grain filling.  

 

1.4.4 Gene Action Conditioning Grain Yield  

Different types of gene action control grain yield and its associated traits. Betran and 

Hallauer (1996) reported that additive effects were more important than dominance 

for grain yield, lodging, and the flowering days in hybrids.  Wolf et al. (2000) reported 

larger dominance than additive effects for grain yield in an F2 of B73 x Mo17. Wolf et 

al. (2000) reported high level of dominance of 2.44 comparable to 1.28 that had been 

previously reported by Han and Hallauer (1989) for grain yield.  At times the high 

levels of dominance are a result of an upward bias by linkage disequilibrium in F2 

single crosses of inbred lines.  

 

There are different reports regarding contribution of epistasis in conditioning grain 

yield that has generally been reported to be negligible (Darrah and Hallauer, 1972; 

Eta-Ndu and Openshaw, 1999; Hinze and Lamkey, 2003; Lamkey et al., 1995; 

Melchinger et al., 1988; Wolf and Hallauer, 1997). However, Wolf and Hallauer 

(1997) reported significant epistasis effects for ear traits, days to flowering and grain 

yield. Wolf and Hallauer (1997) suggested that favourable epistasis could have 

contributed to heterosis in the highly adapted B73 x Mo17 hybrid. Favourable 

epistasis can be fixed through repeated selfing (Lamkey et al., 1995; Wolf and 

Hallauer, 1997).   
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This review shows that additive, dominance and epistasis effects explained high yield 

in the widely adapted hybrids. However, such studies have been limited to temperate 

germplasm.  A survey of literature revealed that little research has been conducted 

on gene action in African maize populations. Relevant information about inheritance 

should be generated from regional maize grown under sub-Saharan African 

environments. According to Falconer (1981) information from genetic studies is 

specific to the specific germplasm and the environments tested. Thus, information 

generated in temperate maize and temperate environments might not have direct 

application in Southern Africa. In the current study, diverse germplasm drawn from 

nine major heterotic groups, which are used by breeding programmes in Southern 

Africa were evaluated for gene action in Southern African environments. 

 

1.5 Genotype x Environment Interaction 

In addition to genotype and environments main effects, performance of cultivars is 

also determined by the genotype x environment interaction (G x E), which is the 

differential response of cultivars to environmental changes (Vargas et al., 2001).  

There are three common types of G x E interaction, namely cultivar x location 

interaction; cultivar x year interaction; and cultivar x location x year interaction effects 

(Crossa, 1990).  These G x E interactions are explained by variation in weather 

between and within seasons and soil properties, among other factors. For example, 

Troyer (1996) reported that cultivar x year interaction was larger than cultivar x 

location interaction due to differing soil moisture availability at flowering. Crossover 

interaction is the G x E interaction that changes the rank order for performance of 

cultivars. At times G x E does not change the rank order except for absolute 

differences of cultivar performance in the different environments. Crossover 

interaction causes problems in crop breeding because it impedes selection progress 

due to changing composition of cultivars selected in different environments (Crossa 

et al., 1995; Cooper and Delacy, 1994).  

 

1.6.1 Assessment of Grain Yield Stability 

Stable cultivars have little interaction with environments (Tollenaar and Lee, 2002). 

Becker and Leon (1988) defined two types of stability, namely static or dynamic. In a 

static stability, cultivar yield does not change; but with dynamic stability cultivar yield 

changes in a predictable manner, and its stability is affected by the set of cultivars 

under evaluation (Becker and Leon, 1988; Tollenaar and Lee, 2002). Thus, static 
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stability is an absolute measure, while dynamic stability is a relative measure.  In 

cultivar selection, the best cultivar should effectively exploit the high inputs under 

favourable conditions and display acceptable grain yield under relatively low input 

systems (Finlay and Wilkinson, 1963) suggesting that dynamic stability could be 

preferred.  This dynamic concept of grain yield stability is measured by the 

regression analysis as described by Finlay and Wilkinson (1963) and is sometimes 

referred as the parametric statistic. Although it is widely used it some limitations that 

have been mentioned by many researchers (Section1.6.2), hence there are some 

alternative statistical methods for measuring stability. 

 

Lin et al. (1986) reviewed the nonparametric statistics for evaluating G x E. These 

stability statistics are not influenced by the set of cultivars under evaluation. Lin et al. 

(1986) defined a stable cultivar as having a small variance and a similar deviation 

from the overall mean yield in all the environments.   Lin and Binns (1988) also 

reported the cultivar superiority index, which they defined as the mean square of the 

differences between the cultivar’s response and the maximum response in different 

environments. Thus, there are different methods for assessing stability, hence 

scientists can choose whether to use parametric or the nonparametric statistics 

(Section 1.6.2). 

 

Grain yield stability is influenced by the genetics of the cultivar.  Eberhart and Russell 

(1966) reported that the use of genetic mixtures rather than homogeneous cultivars 

reduced G x E interaction due to population buffering in a heterogeneous population.  

Recently, Lee et al. (2003) also reported that double cross hybrids had smaller G x E 

interaction, than single cross hybrids, which are more homogeneous. However, it is 

also possible that some single crosses could be more stable than the three-way and 

double cross hybrids (Eberhart and Russell, 1966).    Grain yield stability can be 

improved through recurrent selection because it is heritable and largely controlled by 

additive gene action (Lee et al., 2003).  In addition, stable cultivars can be identified 

through multilocation trials in targeted environments (Troyer, 1996).  The high grain 

yield potential and adaptation of Pioneer hybrids to the USA were obtained through 

extensive multilocation trials  (Duvick, 1997; Evans and Fischer, 1999). It was, thus, 

found prudent in the current study to evaluate regionally important germplasm under 

disease and drought stress environments.    
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1.6.2 Limitations of the Regression Approach in Stability Analysis 

Crossa (1990) reviewed the limitations of regression analysis of stability. Crossa 

(1990) reported that with few cultivars (less than 15) the mean of cultivars would not 

be independent of the marginal means of the environments.  The regression analysis 

is not effective in the absence of a linear relationship between cultivar x environment 

interaction and the environmental means. Stability of a cultivar measured by 

regression analysis of a few and or extreme environments would not provide reliable 

information, due to the high levels of bias. In the same vein, stability of a cultivar 

depends on the set of cultivars evaluated; hence application of the results from a 

regression analysis is limited to the specific set of environments and cultivars 

evaluated. Alternatives to the regression analysis are several nonparametric 

statistics. Huhn (1990) reviewed the rank analyses used in studying G x E 

interactions. These statistics have some advantages over the regression analysis 

such as reduction of bias caused by outlying cultivars and they are easy to interpret. 

In addition, the assumptions about the distribution of data, homogeneity of variances 

and linearity are not required for rank analyses (Huhn, 1990). In the current study, 

both parametric and nonparametric statistics were used to estimate stability of 80 

hybrids in 10 environments. Therefore, a hybrid was considered stable if it appeared 

stable in more than three stability statistics. Arguably, the large number of hybrids 

(80) and environments (10) could have reduced the effects of some of the limitations 

of the regression analysis.  

1.7 Gray Leaf Spot Disease 

In sub-Saharan Africa, the gray leaf spot (GLS) has become endemic throughout the 

humid areas in Western, Eastern and Southern Africa (Menkir and Ayodele, 2005; 

Caldwell, 2002).  Gray leaf spot is caused by Cercospora zeae-maydis Tehon and 

Daniels, with two isolates that have been reported in the USA (Lipps et al., 1998). 

These isolates vary in their aggressiveness but they do not have physiological 

specialisation into races (Carson, 1999).  Only one isolate is found in Africa, which is 

similar to the one that is most prevalent in the USA (Lipps et al., 1998). Each isolate 

was relatively uniform suggesting asexual reproduction (Lipps et al., 1998), which 

minimises emergence of different races of GLS.  

1.7.1 Disease Cycle, Epidemiology and Control 

Severe GLS occurs in monoculture situations when the pathogen over-winters in 

maize debris on the soil. The disease development is highly weather dependent. 
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Conidiaspores are disseminated by wind or water and require 72 hours of ≥ 95% 

relative humidity, 13 hours of leaf wetness and 20 to 28oC to germinate (Lipps et al., 

1998; Ward et al., 1993). Lesions of GLS develop on leaves and produce conidia for 

secondary spread after two to four weeks (Lipps et al., 1998). Caldwell et al. (2002) 

reported that disease severity increased with increasing levels of soil nutrients. 

 

The tan to brown, and narrow lesions with squared-off ends are visible after 

tasselling  (Wysong, 1996; Ward et al., 1993). These lesions grow together resulting 

in larger blighted areas and the dense sporulation produces a greyish cast on leaves, 

ear husk and stalks leading to stem lodging (Ward and Birch, 1993). Early blighting of 

the leaves above the ear causes grain yield loss but late infection does not cause 

economic damage (Lipps et al., 1998). Ward et al. (1993) estimated grain yield loss 

at 50% in the humid and high potential areas.  A viable management option would be 

to delay onset of the disease for as long as possible, through conventional tillage that 

reduces the level of soil based inoculum  (Carson, 1999; Lipps et al., 1998; Ward et 

al., 1997d). Resourceful farmers can apply foliar fungicide sprays to control GLS 

(Ward et al., 1996; Ward et al., 1997a, 1997b, 1997c; Lipps et al., 1998; Ward and 

Newell, 1998; Carson, 1999), but these fungicides are usually not affordable by 

small-scale farmers in Southern Africa. Thus, planting of resistant cultivars would 

provide a more sustainable control strategy.  

 

1.7.2 Sources of Resistance to Gray Leaf Spot 

Resistant germplasm has been found in the United States and South Africa. In the 

USA, Ayers et al. (1984) and Freppon et al. (1994) reported fleck-type lesions in the 

resistant inbreds Pa875, NC264, NC288, Va59 and Oh43. Freppon et al. (1994) also 

reported some chlorotic lesions on resistant inbreds NC250 and NC288 and some 

moderately resistant hybrids. These chlorotic lesions provide a mechanism for 

reducing the number and size of lesions and reduce secondary inoculation. 

Resistance was also reported in the inbreds T222 and Mo18W (Ulrich et al., 1990), 

and some inbreds derived from Lancaster population (Graham et al., 1993).  Graham 

et al. (1993) reported that inbreds derived from Lancaster had better resistance than 

inbreds from Iowa Stiff Stalk Synthetic (BSSS) population.   In South Africa, Gevers 

et al. (1994) reported GLS resistance in the inbreds K054W and S0507 from the F 

and M heterotic groups (Section 1.2 in Table 1.1). Gevers et al. (1994) reported that 

inbred S0713W from the P heterotic group was susceptible to GLS. Thus, GLS 

resistance is also available in locally adapted maize germplasm.   
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1.7.3 Gene Action Conditioning Gray Leaf Spot Resistance  

Gene action conditioning resistance to GLS has been studied extensively in 

temperate materials. Bubeck et al. (1993) reported that more than five genes 

controlled resistance in the line NC250A indicating that resistance was quantitative.  

Larger general combining ability (GCA) than specific combining ability (SCA) effects 

for GLS resistance have been reported (Huff et al., 1988; Thompson et al., 1987; 

Ulrich et al., 1990). Predominance of the GCA variance over the SCA variance 

suggested that additive effects were more important than non-additive gene action in 

conferring resistance to GLS. However, a study by Elwinger et al. (1990) and 

Freppon et al. (1994) found that hybrids between resistant and susceptible inbreds 

were resistant suggesting that dominance gene action was also important in 

conditioning resistance to GLS. Coates and White (1998) also reported that 

dominance gene action controlled GLS resistance in the inbred B37HtN. Studies by 

Lipps et al. (1998) indicated that environmental effects were not significant for GLS 

resistance because hybrid rankings were similar across 22 environments. In 

Southern Africa, Gevers and Lake (1994) reported larger GCA than SCA effects, but 

Hohls et al. (1995) reported complete dominance and minor epistasis in inbreds from 

the P, M and F heterotic groups. Resistance to GLS could be improved through 

reciprocal recurrent selection that utilises both GCA and SCA variation. 

 

1.7.4 Selection for Resistance to Gray Leaf Spot 

Selection for resistance can be effective because additive genetic effects largely 

determine GLS resistance and resistance is highly heritable (Donahue et al., 1991). 

Coates and White (1998) reported narrow-sense heritabilty of 100% in some inbreds 

of B73 orientation.    Cromley et al. (2002) reported high level of resistance in single 

crosses between resistant and susceptible inbreds, which was similar to crosses 

between two resistant parents. Graham et al. (1993) reported that 11 cycles of 

recurrent selection for grain yield did not compromise GLS resistance in the 

population BSSS. However, Lipps et al. (1998) reported that some resistant hybrids 

had lower yield potential than their susceptible hybrids. According to Lipps et al. 

(1998), resistant hybrids only had yield advantage under high GLS severity.  

Appropriate resistance for use in regional maize would be one that does not result in 

a yield penalty when the disease is not severe.  This is very important because in 
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Southern Africa GLS severity varies between seasons depending on the highly 

variable weather pattern. 

 

1.8 Phaeosphaeria Leaf Spot Disease 

Phaeosphaeria leaf spot (PLS) is caused by the fungus Phaeosphaeria maydis 

(Henn.) Rane, Payak and Renfro, and is listed among diseases of minor importance 

in the USA (Carson, 1999). The PLS causes small and pale green or chlorotic lesions 

on leaves. These lesions start as some scattered spots on the leaves and then 

coalesce. In sub-Saharan, Africa PLS has been widely reported in Cameroon, Kenya, 

South Africa and Zimbabwe (Carson, 1999). Despite its widespread occurrence, PLS 

appears not to cause significant yield reductions except in Brazil. Carson (2005b) 

reported that PLS occurred in late grain filling resulting in 11 to 13% yield reduction 

on the most susceptible hybrids. In Brazil, Paccola-Meirelles (2001) reported yield 

reduction of 63% in susceptible cultivars. In addition, Pegoraro et al. (2001) reported 

a significant correlation (r = 0.45) between grain yield reduction and PLS severity in 

Brazil. This indicated that PLS has the potential to reduce grain yield. Although grain 

yield losses have not been quantified, recent observations have shown that the 

incidence of PLS is on the increase in east and Southern Africa. 

 

Resistance of maize cultivars to PLS has been evaluated in the USA, Brazil and 

South Africa. The inbred Mo17 and its derivatives were more resistant than B73 and 

its derivatives (Carson, 1991, 2001). Even though Carson (1999) reported that some 

widely used lines were susceptible, only a few hybrids were severely affected by 

PLS.  In South Africa, Flett (2004) reported the highest disease rating of 9.35% on 

maize hybrids and he concluded that most hybrids were resistant.    

 

Inheritance of PLS resistance has been studied in the USA and Brazil. In the USA, 

Carson (2001) concluded that additive variation and small dominant gene action, 

which involved three to four genes controlled resistance to PLS. In Brazil, Pegoraro 

et al. (2002) reported that additive gene action involving at least two major genes 

conditioned resistance. Carson (2001) also reported that heritability was high (0.70 to 

0.85). High heritability and predominance of additive variation suggested that 

resistance could be improved by selection. Despite the increasing incidence of PLS, 

there are limited studies that have been conducted on the diverse germplasm in sub-

Saharan Africa. Thus, in the current study germplasm drawn from major heterotic 

groups in Southern Africa was evaluated for resistance.  
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1.9 The Drought Problem 

An agricultural drought is defined as lack of adequate soil moisture for a given crop to 

grow and thrive during a particular time. Apart from reducing agricultural productivity 

leading to food security problems, drought has some ripple effects on the agriculture-

dependent sub-Saharan economies (Richardson, 2003). Banziger and Diallo (2002) 

reported that 93% of maize production was on dry land. Thus, there is very limited 

use of irrigation in the region where drought is rampant. In Southern Africa, the most 

devastating drought was recorded in 1991/1992 season and reduced grain 

production about 60% (Rosen and Scott, 1992).  

 

1.9.1 Managing Drought 

On the farm level, sustainable strategy for mitigating yield losses due to drought 

should be based on use of tolerant cultivars. According to Boyer (1992), breeding for 

high water use efficiency improves economic yield. Improvements for drought stress 

tolerance results in cultivars with better yield and growth under drought condtions. 

Boyer (1992) classified mechanisms of drought tolerance in cultivars as dehydration 

avoidance and dehydration tolerance under drought conditions. Structural 

mechanisms such as improved rooting depth and increased cuticle thickness delay 

dehydration, but grain yield is reduced due to increased partitioning of dry mass 

towards production of structures. According to Pingali and Pandey (2001), farmers in 

drought prone areas can by plant early such that their cultivars would flower during 

high moisture conditions and thus escape the drought. Use of conventional tillage 

increases water infiltration into the soil, encourages development of deep roots. 

Breeding for early maturing cultivars would be feasible the flowering traits such as 

anthesis to silking interval and days to flowering are highly heritable, even under 

drought stress conditions (Pingali and Pandey, 2001). The problem reported by 

Pingali and Pandey (2001) that these early maturing cultivars incurred a yield penalty 

when grown under favourable rainfall conditions. Thus, it is important to study 

physiological mechanisms that condition cultivar resistance to low moisture stress. 

 

1.9.2 Physiological Basis of Yield Reduction 

Scientists are in agreement that early reproductive development is most vulnerable to 

water deficits, because grain yield reduction is not reversible if drought stress 
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coincides with flowering (Boyer, 1992; Bolanos and Edmeades, 1993a). Thus highest 

yield reduction occurs at flowering stage because of abnormal floral, ear and kernel 

development (Westgate and Boyer, 1986; Lafitte and Edmeades, 1995; Edmeades et 

al., 1999; Zinselmeier et al., 2002). Low moisture stress at flowering reduces the rate 

of photosynthesis to almost zero under mild and severe stress (Schussler and 

Westgate, 1994; Westgate and Boyer, 1986; Zinselmeier et al., 1999; Zinselmeier et 

al., 2002).  

 

Low moisture stress during the reproductive stage reduces sink strength and kernel 

development. Setter et al. (2001) reported that moisture stress at pre-pollination 

reduced accumulation of carbohydrates in apical and basal florets.  Vasal et al. 

(1997) reported that assimilates were preferentially distributed to the tassel resulting 

in poor seed set. Setter et al. (2001) reported that water deficit increased abscisic 

acid (ABA) concentration in the reproductive tissues. According to Boyer (1992), high 

ABA level inhibited endosperm cell division and reduced seed set. Thus ABA, 

probably plays a critical role in controlling drought tolerance. Zinselmeier et al. (1999) 

reported that water deficit resulted in abortion and few kernels. Previously, 

Zinselmeier et al. (1995) had reported that moisture stress inhibited ovary growth, 

decreased levels of reducing sugars, depleted starch and inhibited the activities of 

acid invertase, which maintains the reproductive sink strength and facilitates early 

kernel development.  

1.9.3 Sources and Gene Action Conditioning Drought Tolerance 

Generally, the best sources of drought stress tolerance should have exceptionally 

high agronomic performance and large genetic variance for other important traits.    

According to Vasal et al. (1997), inbred parents should be preferred, because 

heritability increases with inbreeding levels. Vasal et al. (1997) reported that 

inbreeding of segregating populations resulted in high frequency of inbred lines with 

long anthesis to silking interval (ASI) under drought. Secondary traits such as the ASI 

are correlated with grain yield under drought stress, and are easy to measure 

(Bolanos and Edmeades, 1996; Banziger et al., 2000). In another study, Betran et al. 

(1996) reported that there was a low correlation (0.40) between the grain yield of 

inbred parents and grain yield of their testcrosses under drought conditions. Thus, 

the crosses between drought tolerant inbred lines still have to be tested for tolerance 

to drought. 
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A survey of literature showed that there is little research on gene action conditioning 

drought stress tolerance in Southern African maize germplasm.  Betran et al. (2003a) 

reported predominance of additive gene action in controlling grain yield in tropical 

germplasm under drought stress.  However, in another study, Betran et al. (2003b) 

reported significant non-additive effects for grain yield under drought conditions. 

These results were consistent with Guei and Wassom (1992) who also reported 

predominance of additive gene action in controlling flowering traits, while dominance 

was more important for grain yield and number of ears per plant under drought 

stress. Studies of quantitative trait loci also confirmed the importance of both additive 

and dominance action in conditioning yield and the associated flowering traits 

(Agrama and Moussa, 1996). This suggests that breeders should utilise selection 

strategies such as reciprocal recurrent selection and hybridisation that employ both 

additive and dominance gene action in improving maize for drought tolerance.   

1.9.4 Selection for Drought Stress Tolerance 

Progress in improving maize for drought stress tolerance, especially in Southern 

Africa has been slow. This has been partly attributed to the large G x E interaction in 

the highly variable production environments of small-scale farmers. Rainfall amount 

and timing are highly variable such that it is difficult to predict the occurrence and the 

severity of drought stress in these environments (Pingali and Pandey, 2001). In 

addition breeding is made complicated by the low heritability for grain yield under the 

drought conditions (Bolanos et al., 1993; Byrne et al., 1995).  However, research has 

indicated that grain yield can be improved under drought improved by selecting for 

the highly heritable secondary traits like the ASI and number of ears per plant. These 

traits have been confirned to be highly correlated with grainyield under drought stress 

conditions (Bolanos and Edmeades, 1993a; Chapman and Edmeades, 1999; Pingali 

and Pandey, 2001; Tollenaar et al.; 1992).  

 

Selection for yield under managed stress results in better breeding progress than 

selecting under non-stress conditions. Edmeades et al. (1999) reported yield gains of 

3.8 to 12.6% per cycle in tropical populations following simultaneous selection under 

well-watered and managed drought stress at flowering. Byrne et al. (1995) reported 

higher progress under managed drought stress (1.68%) than in multi-location trials 

(1.06%) in Tuxpeno Sequia and Tuxpeno confirming previous reports by Bolanos and 

Edmeades (1993b). However, Byrne et al. (1995) reported that selection under water 

stress only might result in cultivars with lower yield under favourable conditions.  
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Boyer (1992) suggested multilocation testing at varying water regimes to avoid 

selecting cultivars that incur a yield penalty under favourable conditions. According to 

Boyer (1992), multilocation testing can identify cultivars with the following 

combinations: a) “high yielding in both optimum and water-deficit; b) high yielding in 

optimum, but low yielding under water deficit; and c) low yielding in optimum, but high 

yielding under water deficit conditions.” As a result Boyer (1992) suggested that 

selections should be made under drought conditions followed by testing in 

multilocation trials.  Byrne et al. (1995) also suggested a similar two step approach 

with the first aimed at reducing ASI by evaluating lines at a few sites under managed 

drought stress at flowering and then select for specific adaptation and high yield 

potential in multilocation trials. An integrated approach that begins with screening 

under managed drought stress before multilocation testing is thus suggested.  

 

1.10 Summary 

Generally, this review showed that there is very little published information for 

research conducted in sub-Saharan Africa. Genetic information obtained from 

outside the sub-continent might not have direct application, because the agricultural 

systems and environments are quite different.  

 

A huge gap still exists between grain yield potential and the actual yield, indicating 

the existence of opportunities for grain yield improvement.  Improvement in yielding 

ability of temperate maize was associated with increasing stress tolerance, especially 

under high plant density. Thus, it can be suggested that breeding for baseline 

tolerance to drought and disease stress would contribute towards reducing the yield 

gap in sub-Saharan African environments. In terms of gene action, the additive 

variance, dominance and epistasis effects played significant roles in conditioning 

yield and its associated traits. This in turn suggests that simple selection alone, which 

exploits additive effects, would not be adequate to improve yield. Breeding for stress 

tolerance and wide testing with few replications could identify cultivars displaying 

high yield stability and high yield potential. Low negative correlation was reported 

between yield potential and yield stability as measured by regression, suggesting that 

high yield potential and high yield stability may not be mutually exclusive. 

 

Genetic variation for resistance to GLS was shown in both temperate and Southern 

African adapted germplasm. Resistance to GLS was highly heritable and 
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predominantly controlled by additive effects. Dominance action displayed by some 

populations indicates that both inbreds and crosses should be evaluated for 

resistance. It was shown that there was no direct relationship between GLS 

resistance and grain yield when the disease pressure was low. However, a negative 

relationship would be expected when the epidemic is moderate to severe, especially 

if it occurs before the grain filling stage.  

 

Although there was limited literature on PLS, the few publications reported high 

levels of resistance to PLS in some USA and South African materials. Resistance 

was inherited mainly in an additive manner and was highly heritable; suggesting that 

resistance in regional maize can be enhanced by selection. Significant grain yield 

reductions that were correlated with PLS severity were found in Brazil, indicating that 

the disease has the potential of posing threat to regional food security. Information on 

the epidemiology of this disease was also limited. 

 

Grain yield loss was largest when drought occurred at flowering stage due to 

abnormal floral, ear and kernel development. Grain yield has a significant correlation 

with ASI and number of ears per plant under drought stress. This suggests that yield 

can be improved by selecting for short ASI and high number of ears per plant under 

drought stress. Although few studies were reported, additive effects under drought 

stress predominantly influenced inheritance of grain yield. It is suggested that 

incorporating tolerance in parent-inbred lines would enhance performance of hybrids. 

This review also suggested that cultivars with high yield potential under both optimum 

and drought conditions would be obtainable by selecting first under drought stress 

and followed by selection in multilocation trials that represent the target 

environments. 
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Chapter 2:  Farmer Perceptions on Maize Cultivars in the Marginal Eastern-Belt 
of Zimbabwe and their Implications for Breeding 

Abstract 

Productivity of maize is low in the smallholder sector because the crop is grown 

under stress-prone environments and limited resources. The objective of this study 

was to investigate farmer perceptions on maize cultivars, constraints and 

preferences, and their implications for breeding.  Participatory rural appraisal (PRA) 

and household formal surveys were conducted in the marginal eastern-belt of 

Zimbabwe, during 2004 to 2005. Sample districts for the study were Mutasa, Mutare 

West, Chimanimani and Chipinge. The PRA tools that were employed consisted of 

problem listing, analysis and ranking by farmers and key informants. Semi-structured 

questionnaires were designed to guide the discussions and farmers were provided 

with sufficient opportunity to bring up their own issues.  Although results revealed that 

farmers predominantly grew hybrids, production and grain yield were low (240 to 500 

kg/ha) and below the national average.  Due to the different agro-ecologies, 

production constraints differed between survey districts influencing farmers’ 

preferences for cultivars. In the relatively more productive Mutasa, farmers preferred 

weevil resistant cultivars, whilst those in the severely drought-prone Chipinge and 

Mutare West preferred cultivars with drought tolerance among other traits.    Farmers 

had strong preference for the old hybrids of the 1970’s to new hybrids of the 2000’s, 

due to their perceived superior drought tolerance. This suggested that progress has 

not been made over the past 35 years in breeding cultivars with drought tolerance for 

deployment in these marginal areas.  Farmers also preferred their local landrace 

“Chitonga”, because of its superior taste and flint grain, but they recognised that it 

had a long maturity period, thus, failed to fit into the short growing seasons. 

Improvement of this local cultivar would enhance households’ food security and the 

livelihoods of resource poor farmers in Chipinge and Chimanimani, with possible spill 

over effects into the neighbouring Mozambique where this cultivar is also grown. This 

study revealed that farmers preferred cultivars that combine high yield potential, early 

maturity and drought tolerance in all areas; and tolerance to low soil fertility and 

weevil resistance in the relatively wet areas with potential for surplus production. It is 

thus implied that breeders should aim at developing cultivars combining these traits. 

Keywords: Maize, PRA, Preference, Production Constraints, Stress Tolerance 
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2.1 Introduction 

Small-scale farmers in marginal areas dominate the production of maize, a staple 

food crop in Southern Africa. Grain yield of maize is low due to the variable 

production environment, stress and limited access to essential inputs (Banziger and 

de Meyer, 2002). The maize yields are low and averaging below 1.2 t/ha (FAOSTAT, 

2003) notwithstanding the more than 60-year history in crop research and 

development in the region. It is believed that some superior cultivars have not been 

adopted because of lack of sufficient consideration of farmers’ preferences in their 

breeding process. In most cases, commercial breeders fail to consider the special 

and unique preferences of small-scale farmers in marginal areas possibly because 

they are not aware of them (Toomey, 1999; Banziger and Cooper, 2001). Thus, 

effective breeding should be firmly based on clear identification of farmers’ perceived 

constraints and their preferences for cultivars through interactive breeding and 

research. In participatory crop breeding, farmers can provide important information 

on plant types, desired traits and insight into trade-offs they are willing to make in 

designing cultivar for their area (Sperling et al., 2001). 

 

Small-scale farmers’ involvement in participatory crop breeding is not new. For 

instance, Banziger and de Meyer (2002) reported that farmers participated in the 

evaluation of pre-selected maize cultivars in CIMMYT’s (International Maize and 

Wheat Improvement Center) mother-and-baby trials in Southern Africa. Previously, 

farmers were reported to have been involved in rice varietal selection in India and 

Nepal (Joshi and Witcombe, 1996; Sthapit et al., 1996; Witcombe et al., 1996). More 

recently, Monyo et al. (2001) reported that farmers were engaged in pearl-millet 

(Pennisetum glaucum L.) cultivar selection in Namibia.  

 

What might be most appealing to the small-scale farmers in Southern Africa are 

Sedgley’s (1991) market and stress ideotype concepts and not Donald’s (1968) 

wheat- and Mock and Pearce’s (1975) maize-ideotype concepts, which describe 

optimum plant types - the preferred option for plant breeders. The optimum plant type 

of Donald (1968) and Mock and Pearce (1975) describes a plant design that 

maximises photosynthetic efficiency due to their upright leaves and a large sink 

resulting in high harvest index. However, their optimum plant requires optimum 

fertiliser, pesticides, weeding and water, which makes it an option only for the 

resourced or large-scale commercial farmers. The small-scale farmers in marginal 

areas have limited access to these resources; hence they would not exploit the 



 

   41 

benefits of the optimum plant type. These farmers would require a market and stress 

ideotype. According to Sedgley (1991), the market ideotype identifies desirable traits 

such as quality, while the stress ideotype identifies the characters required to fit the 

cultivar into its target environment, especially climate, soil, disease and pests. For 

example, de Groote et al. (2000) reported that farmers in eastern Kenya preferred 

early maturing cultivars ahead of high yield potential. Similarly, Banziger and de 

Meyer (2002) reported that farmers in Southern Africa preferred early maturing 

cultivars with hard endosperm and good husk cover. These results do not have a 

global application, but would only pertain to specific areas due to different 

environmental and socio-economic conditions. The objective of the current study was 

to investigate farmers’ perceptions for maize cultivars in the marginal eastern-belt of 

Zimbabwe and their implications for breeding. 

 

2.2 Materials and Methods 

2.2.1 Study Area 

The study was conducted in the Chimanimani, Chipinge, Mutasa and Mutare West 

(Marange) districts, of the Manicaland Province1 of Zimbabwe, during 2004 to 2005. 

Population and number of households in the sample districts are shown in Table 2.1. 

The area falls within the rain shadow of the humid and misty eastern highlands. 

Rainfall amount and pattern is modified by altitude, such that high elevation areas 

receive more rain than lowland areas. Agro-ecological regions are thus demarcated 

into five regions according to relief, rainfall adequacy and efficiency. Thus, Natural 

Region I receives the highest and most reliable rainfall, while Natural Region V has 

the least reliable and erratic rainfall amount and its distribution over the season 

(Vincent and Thomas, 1961). The area covered by the current study comprised 

Natural Regions IIb to V; stretching for ±200 km from Mutasa (North of Mutare City) 

to Chipinge District in the south and abreast covering Save and Odzi River 

catchments. Altitude falls significantly from above 800 m in Mutasa down to about 

430 m at Middle Save in Chipinge. The study area represented agro-ecological 

zones within the mid-altitude dry and lowland tropical dry macro-environments 

(Appendix 1). In this area, rainfall is very erratic and crop production is to a great 

extent dominated by small-scale or resource poor farmers.   

                                                
1
 The Manicaland Province is to the east of Harare and west of Mozambique. 
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Table 2.1: Household data for sample districts (Central Statistical Office, 2004) 
 District Males Females Total Number of Households 

Mutare Rural 106061 116322 222383 48631 

Chipinge 134904 148888 283792 61860 

Chimanimani 55494 59803 115297 26524 

Mutasa 78470 88176 166646 39629 

 

2.2.2 Sampling Procedures 

In order to capture the expected variability in agro-ecological and socio-economic 

environments, the four districts situated to the North (Mutasa), South (Chipinge and 

Chimanimani) and West (Mutare West) of the Provincial Capital of Mutare were 

selected by stratified sampling. The eastern side of the City could not be sampled 

because it is in Mozambique. The northeast and southeast parts are in the very high 

potential Natural Region I under high value large-scale commercial and plantation 

agriculture.  Since the districts cut across all the agro-ecological regions in the 

country, further stratified sampling was applied in the selection of villages within each 

district to capture those within Natural Regions IIb, III, IV and V where maize is grown 

under moderate to severe moisture stress conditions (Appendix 1).  In each of the 

villages, at least six farmers were randomly selected from lists provided by the local 

extension staff (Appendix 1). Additionally, three focus group discussions were held in 

the Save River Valley area.  

 

2.2.3 Data Collection  

Primary data were collected through both formal household survey and the informal 

Participatory Rural Appraisal (PRA) tools. Local extension staff, councillors and 

village headmen facilitated the survey by creating a good rapport with local people, 

mobilised farmers for the focus group discussions and provided lists of farmers to be 

sampled for the formal survey. The PRA involved three focal group discussions and 

interviews with key informants such as local teachers, businessmen, school 

headmasters, councillors and agricultural extension staff in the Save Valley area of 

Chipinge and Chimanimani. The technique employed consisted of problem listing, 

analyses and ranking by key informants using semi-structured questionnaires. These 

were designed to guide the discussions yet provided the group sufficient opportunity 

to bring up their own issues.  In general, discussions started by asking farmers to list 

uses of maize and identify competing cereals and leguminous crops they grew in 
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their area.  Secondly, farmers were asked to list and rank key constraints to maize 

production.  Thirdly, farmers listed cultivars they had grown, ranked them and 

identified preferred traits of stress tolerant cultivars.  Farmers were also asked to list 

and give reasons for cultivars they would like to grow again and those they would 

never grow again. In addition, seed issues were discussed at great depth. 

Throughout discussions a local extension staff member guided the process, while 

enumerators concentrated on taking notes.  Issues that were raised during focus 

group discussions were taken up for further analyses with local opinion leaders. 

 

Prior to the formal survey, a pilot study was conducted involving 53 households in 

Marange, Honde Valley and Birchenough Bridge in Mutare West, Mutasa and 

Chipinge, respectively (Appendix 1). As indicated in Appendix 1, a total of 93 

households in Mutasa, Chipinge and Mutare West participated in the formal survey 

designed to dissect issues raised during the PRA. The field research team comprised 

a principal investigator, three enumerators and a local extension staff.  The medium 

for discussion was the local dialect “Shona” (i.e. ChiManyika and ChiNdau, in the 

North and South, respectively), which is widely spoken in the area. Incidentally, all 

the members of the research team spoke Shona and thus eliminating the need for 

translation and its associated errors. To eliminate gender dominance in discussions 

expected at Nyakumanwa Village and Changazi Ward 20, in Chipinge and 

Chimanimani, respectively, separate discussions were held with men and women 

farmers. This was necessary because in the Ndau culture men are dominant over 

women such that women would not speak freely in the presence of men. 

 

Both formal and informal approaches were employed in data collection in order to 

enhance precision and high evidential value.  According to Mergeai et al. (2001), 

informal PRA approach enhances evidential value by taking care of relevant 

situational local knowledge and identifying key elements, while greater precision is 

obtainable from formal surveys. Data generated were compared and the final 

synthesis of the information is presented. 

2.2.4 Data Analyses 

Statistical analyses of both quantitative and qualitative data were performed in SPSS 

(Release 11.5) computer package (SPSS Inc., 2002). Descriptive statistics, analysis 

of variance and mean comparisons were computed for data collected in each district 

followed by mean comparisons between districts. 
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2.3 Results 

2.3.1 Features of Farm Economy 

The PRA study established that maize was a significant staple food in the area.  The 

uses of maize ranged from Sadza (the staple meal) through traditional beer brewing 

to snacks (both as fresh and dry grain). The household and farm economy data are 

presented in Appendix 2. Household sizes were similar in Chipinge and Mutasa, but 

were smaller than in Mutare West. The average land holding differed significantly 

between districts, ranging from 1.3 in Mutasa to 2.2 ha in Chipinge (Appendix 2). 

Whereas in Chipinge and Mutasa the dominant crop was maize, in Mutare West it 

was sorghum (Sorghum bicolour L.). All leguminous crops were grown as minor 

crops throughout the districts. Sorghum was perceived to be the best crop for the 

area at Nyakumanwa Village, but pearl-millet was ranked as the best crop at 

Changazi (Table 2.2).  Groups of farmers agreed that maize was not as drought 

tolerant as sorghum and pearl-millet, but key informants argued that maize has 

generally been accepted in the area. In spite of its lack of tolerance to drought stress, 

farmers showed great interest in the maize crop.  

 

Table 2.2: Rank of crops for preference by farmers in Chipinge and Chimanimani  
Crop Changazi Nyakumanwa 

   

Sorghum 2 1 

Maize 3 2 

Sunflower 4 3 

Pearl-millet 1 4 

Finger millet 5 5 

Scores: 1 = bestt and 5 = least  preferred crop for the area 

2.3.2 Maize Production 

Maize grain production differed significantly (P<0.05) between locations during 2002 

to 2004 period with Mutasa having highest yields (Table 2.3). Only farmers in Mutasa 

district had grain surplus of about 100 kg each in 2004 (Table 2.3). Productivity data 

confirmed that for the past three years drought was most severe in 2004.  

Furthermore, the majority (62%) of farmers regarded 2004 as the worst drought-year 

in three years, while 21% expressed the view that 1992 was the worst drought-year 

in the area.  
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Table 2.3: Grain production, productivity and consumption per household 
 Mutasa Chipinge Mutare 

West 
Overall F. Probability 

Grain Production (kg)   
2004 595 255 55 285 0.00 
2003 
2002 

670 380 55 345 0.00 
765 505 240 480 0.00 

Grain sold (kg)      

2004 105 0 0 30 0.00 
2003 160 15 0 55 0.00 

0.00 2002 240 30 10 85 
Grain Consumption/Month (kg) 

Average 42 26 42 36 0.08 
Grain Yield (kg/ha)      

2004 578 46 103 243  
2003 649 237 101 329  
2002 745 317 439 500  

 

2.3.3 Production Constraints 

Results showed significant differences in ranking production constraints between 

districts (Table 2.4). Overall results indicated that non-availability of seed on the 

formal market followed by drought were the most important constraints. Farmers 

reported that commercial seed was not available on the formal market during 2002 to 

2004 seasons. However, farmers in Mutare-West ranked drought first, followed by 

non-availability of seed as major constraints in the area. In Chipinge and Mutasa, 

farmers identified drought and low soil fertility as most important, respectively (Table 

2.4). Household data and the focus group discussions in Chipinge (Nyakumanwa, 

Kondo and Changazi Villages) identified drought as more important than low soil 

fertility (Table 2.5). Farmers, especially in Chipinge perceived that their soils were of 

good fertility (Appendix 3). Opinion leaders confirmed farmers’ perception that their 

soils were highly fertile to the extent that they sold the free packs of fertiliser from 

donors.  Farmers also perceived that use of inorganic fertiliser would damage their 

soils. Although farmers believed that their soil was fertile, the household survey 

revealed that they applied 32 wheel barrows (±1500 kg) of cattle manure and 125 to 

250 kg of inorganic fertiliser per hectare as basal and top dressing.   The survey data 

also showed that the rainy season started in November and ended in March during 

2002 to 2004 seasons (Appendix 3). Farmers in Mutasa rated rainfall amount as 

moderate, but in Chipinge it was reported that rainfall amount was too little for the 

maize crop. In general, drought occurred during mid to late season with different 

intensity. It was rated as moderate in Mutasa and severe in Chipinge and Mutare 

West (Appendix 3).  
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Table 2.4: Mean rank for perceived production constraints in formal survey 

Constraint  Mutasa Chipinge Mutare West Overall F. prob. 

Seed Availability 

Drought 

1.5 1.3 2.3 1.7 0.00 

3.0 2.3 2.0 2.4 0.00 

Poor Soil Fertility 2.2 3.2 2.8 2.8 0.00 

Cultivar Problems 4.5 4.4 4.5 4.5 0.97 

Disease and Insect Pests 4.1 5.1 4.3 4.5 0.02 

Characteristic with smallest mean within a column was perceived to be most important 

 

Table 2.5: Mean rank for perceived production constraints in focus group discussions 
Constraint  Nyakumanwa Kondo Changazi Key Informants 

Low rainfall 1 1 1 1 

Non-availability of seed - 2 2 2 

Salt in isolated areas - - 4 - 

High heat stress  - - 3 3 

Draught power - 3 - - 

Low soil fertility 5 4 5 5 

Land too small 4 5 - - 

Scores used were: 1 = most important and 5 = least important; - = No information available. 

 

2.3.4 Maize Cultivars Grown 

Results from the household survey indicated that farmers predominantly grew 

hybrids of the following brands: Seed Co (SC), Pannar (PAN) and Pioneer (Appendix 

4). Additional cultivars that were mentioned included R201, R200, R215 and the 

dwarf hybrids. In Chipinge and Chimanimani (Changazi Ward 20), farmers also 

mentioned a traditional land-race called “Chitonga”, but they recognised that it was 

not the ideal cultivar.  There was a common perception that “Chitonga” required 

higher rainfall, since it was late maturing than hybrids SC403 and PAN 413 that were 

grown in the area.  Another attribute that was disliked by farmers was that it was too 

tall compared to the hybrids. The preferred attributes of “Chitonga” were better taste, 

flintier grain and better resistance to grain weevils than commercial hybrids grown in 

the area. Farmers reported that “Chitonga” was also a common cultivar in 

Mozambique. Thus, farmers obtained the seed from Mozambique through Ndowoyo 

area in Chipinge and Rusitu Valley in Chimanimani.   

 

Farmers and the opinion leaders showed very high regard for old hybrids of the 

1970’s.  Although they have accepted the new early maturing hybrids, the general 

perception was that these were not as drought tolerant as the old hybrids. However, 
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opinion leaders mentioned that even the old hybrids could still be improved by 

imparting the “sorghum-type” of tolerance.  “Sorghum-type” of tolerance was defined 

as “the ability of a drought stricken cultivar to recover when the rain resumed after 

the mid-season drought.  Their explanation was that the rainy season begins very 

well in November, with good precipitation continuing into December and a drought 

spell occurs in January.  When rainfall resumes in February, sorghum has the ability 

to recover, but not maize. This implied that January is the “black” month in the area, 

and an “ideal” cultivar would combine early maturity and drought tolerance at 

flowering.  In addition, opinion leaders mentioned that the ideal cultivar should also 

have heat stress tolerance due to very high temperatures during summer.  

 

2.3.5 Ranking of Cultivar Traits and Preferences  

Except for maturity period and yield, farmers showed significant differences in 

ranking of cultivar trait preferences between districts (Table 2.6 and 2.7).  Although 

the whole sample level analysis showed high yield as the most important criterion 

used in varietal selection and drought as third, farmers in Mutare West identified 

maturity period as the most critical factor. In Mutasa, farmers ranked grain weevil and 

disease resistance as third ahead of both tolerance to drought and low soil fertility 

stress. In the absence of a truly drought tolerant cultivar, farmers preferred to plant 

sorghum than maize (Table 2.3). In general, farmers in all districts were not 

concerned much about prolificacy (number of cobs per plant), cob size, husk cover 

and pounding ability (Table 2.6). There were no significant differences (P>0.05) 

between districts for grain texture preferences (Table 2.6). Thus, consistently, 

farmers preferred semi-dent and flintier grain to the dent. At Changazi, farmers were 

of the opinion that semi-flint grain texture conferred high storability, better taste and 

high yield due to its superior test density (weight per unit volume). Generally, farmers 

preferred long thin cobs compared to long and fat.  
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Table 2.6: Mean rank values for preferred traits of stress tolerant cultivars from 
formal survey  

Characteristic
♣
 District Overall Probability 

Mutasa Chipinge Mutare 

      
General Traits      

High yield 2.7 1.8 2.8 2.4 0.07 

Maturity Period 3.2 2.5 2.6 2.8 0.35 

Drought stress tolerance 5.3 3.1 3.8 4.1 0.01 

Low soil fertility tolerance 5.0 5.6 4.0 4.9 0.00 

Grain weevil resistance 3.6 4.3 6.7 4.9 0.00 

Cob size 7.0 6.3 3.6 5.5 0.00 

Disease resistance 3.8 4.6 7.9 5.6 0.00 

Number of cobs per plant 8.4 7.1 6.0 7.1 0.00 

Cob husk cover 6.5 7.7 8.3 7.5 0.00 

Pounding ability 9.6 10.0 8.8 9.4 0.02 

Ear or Cob Aspect       

Long thin 1.6 2.2 1.5 1.7 0.00 

Medium 2.1 2.1 2.1 2.1 0.99 

Long fat 2.3 1.6 2.5 2.2 0.00 

Grain Texture       

Flint 1.8 1.6 1.8 1.7 0.49 

Intermediate 1.7 1.8 1.7 1.7 0.98 

Dent 2.5 2.6 2.5 2.5 0.71 

♣
Characteristic with smallest mean rank is the most important in each column. 

 

Table 7: Mean rank values for preferred traits of cultivars from focus group discussion   

Trait  Nyakumanwa Kondo Changazi Key 
Informants 

High yield 3 1 3 3 

Drought tolerance 1 2 1 1 

Early maturity 2 3 2 2 

Resistance to insects 4 4 - 4 

Disease resistance 5 5 - 5 

Cob size - 5 - 5 

Low soil fertility tolerance 5 5 - 5 

Scores used were: 1 = most important, 5 =least important; - = No information available 

 

2.4 Discussion 

2.4.1 Production and Constraints 

Results indicated that Mutasa was the wealthiest district with respect to the high 

number of cattle, television sets and modern houses in the area. There was at least 

one radio set per household in all districts suggesting that extension communication 
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can be effectively transmitted via the radio. It is difficult to explain the low average 

land area that is planted to pearl-millet in Mutasa. In Chipinge, the traditional 

authorities, especially in Chief Musikavanhu’s area of jurisdiction prohibited pearl-

millet cultivation. According to key informants, pearl-millet was regarded as taboo in 

the area, because the chief does not eat pearl-millet food or beer brewed from it. 

 

Farmers in Mutasa reported relatively higher grain yield than the other areas under 

study. These farmers sold at least a 100 kg each of grain indicating that the area has 

the potential to produce surplus grain despite the late season drought. Differences in 

productivity among the districts could also be explained by the different rainfall 

patterns, nature and intensity of drought in the area. Mutasa experienced moderate 

late season drought, while the other two districts reported severe drought at anthesis, 

which is a very critical stage in grain yield formation. Flowering is the most critical 

stage associated with greatest yield loss, especially when drought occurs during the 

reproductive stage (Cakir, 2004; Campos et al., 2004).  This has serious implications 

for food security in the area, given that average household grain consumption was 

estimated at 40 kg per month. An average household with eight people (Appendix 2) 

required at least 480 kg of grain per annum, which is above the average yield or total 

production in Chipinge and Mutare West in 2004. This suggests that there was 

serious grain deficit in Chipinge and Mutare West in 2004. 

 

In Mutasa, farmers mentioned low soil fertility as a major production constraint, which 

together with late season drought, could partly explain the low yields obtained in the 

area (578 to 745 kg/ha in Table 2.3) compared to the national average for Zimbabwe 

(±1000 kg/ha). This district was relatively more productive than Chipinge and Mutare 

West hence these farmers had a different perception on drought and low soil fertility. 

Although they experience late season drought, they receive relatively higher rainfall 

early in the season that might cause some leaching of soil N, whereas less leaching 

is expected in the drier districts of Chipinge and Mutare West. Perhaps the natural 

floods that have occurred over the years, such as in 2000, deposited large and fertile 

silts in the lowland areas like Save Valley in Chipinge. 

 

2.4.2 Preferred Traits and Maize Cultivars  

Farmers’ strong preference for old hybrids of the 1970’s over the current new hybrids 

suggested that little progress has been made in breeding drought tolerant cultivars 

for deployment in these marginal areas.  Breeders appear to have focussed on 
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breeding for high potential areas and disease resistance. Thus, there is need to 

refocus the breeding goals in order to find stress tolerant cultivars for production in 

marginal areas. Farmers’ high preference for their land-race “Chitonga”, suggested 

that scientists would make impact by improving or breeding from this cultivar, 

because it is already accepted in the area. Alternatively, breeders can incorporate 

the desired traits in other elite cultivars. Improvements would be aimed at reducing 

plant height and maturity period, so that it can fit into the ultra short seasons. The 

attributes to be maintained would be its flint grain texture and “good” taste.  In 

addition this cultivar has to be evaluated for agronomic performance and study the 

genetic effects controlling yield and other traits under drought, which is prevalent in 

the area. 

 

Although farmers indicated that they grew at least 10 kg of hybrid seeds (data not 

shown), it was not established whether they grew first (F1), second (F2) or later 

generations of the hybrids. The study could only speculate that few farmers were 

planting F2 hybrid grain as seed, because sixteen percent of farmers in Mutasa 

indicated that they grew farm saved seed. Unfortunately, hybrid vigour or heterosis 

that confers high yield in F1 hybrids declines sharply by over 50% in F2 and 

subsequent generations (Falconer, 1981). If farmers were growing F2 or later 

generations of hybrids, then this could partly explain the below national average yield 

in Mutasa and perhaps in the other districts too.  

 

Non-preference of drought stress tolerant cultivars in Mutasa could be explained by 

the moderate drought stress, compared to severe stress in Chipinge and Mutare 

West. Given the differences in rainfall pattern, the results suggested that an early 

maturing cultivar would most likely escape late season drought in Mutasa, but would 

be affected by drought at flowering in Chipinge and Mutare West. Possibly because 

of excess production over consumption (requiring storage over extended periods) 

coupled with high relative humidity, farmers in Mutasa preferred cultivars with grain 

weevil resistance to those with drought stress tolerance. In addition, the high relative 

humidity and rainfall in Mutasa could also explain why these farmers preferred pest 

and disease resistance ahead of abiotic stress tolerance. Tolerance to low soil fertility 

would be equally important in Mutasa, because the high rainfall would result in 

leaching of nutrients from their soils. The leaching of soil nutrients would not be a 

major problem in the severely drought-prone Chipinge and Mutare West. 

Alternatively, tolerance to low soil fertility would not be the priority because without 

water, the plants cannot take up nutrients even when they are sufficiently available in 
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the soil. Thus, farmers in Mutare West showed their strong preference for drought 

stress tolerance ahead of even high yield potential. 

 

Results indicated that farmers, especially in Mutasa and Chipinge, preferred a 

cultivar that would combine high yield potential and early maturity. The ultra short 

season (less than 90 days) in these areas indicated that early maturing cultivars with 

tolerance to drought stress at flowering would be suggested for deployment in 

Chipinge and Mutare West. Farmers’ quest for drought tolerant maize with a stress 

recovery mechanism similar to that of sorghum should be taken seriously. Apart from 

sorghum’s ability to produce extra tillers when rainfall resumes, it is suggested that 

there may be some genes that confer higher drought tolerance in sorghum than 

maize. Studies of locally adapted sorghum cultivars should be conducted to 

investigate the drought stress recovery mechanism, with a possibility of transferring 

the genes into locally adapted maize cultivars. In the absence of truly drought 

tolerant maize, farmers may be encouraged to grow more sorghum, especially in 

Chipinge as an interim measure. In Mutare West, farmers indicated that they grew 

more sorghum than maize; hence it would also be important to consider improving 

their sorghum cultivars. However, in the long term drought tolerant maize cultivars 

should be bred because farmers indicated strong desire to grow maize. 

 

Apparently, farmers showed low concern about pounding ability and good husk 

cover, which contrasted sharply with previous studies in other areas.  Banziger and 

de Meyer (2002) reported that farmers would prefer hard endosperm types for ease 

of pounding and good husk cover for protection against storage pests and ear rots. 

The first contrast may be explained by the increased use of hammer mills, while the 

second by the relatively limited surplus grain demanding little or no storage at all. 

However, farmers’ preference for early maturing cultivars was consistent with 

previous studies.  Banziger and de Meyer (2002) reported that farmers would prefer 

early maturing cultivars because they can escape the late season drought. Farmers’ 

preference for long and thin cobs compared to long and fat cobs was rather difficult 

to explain. Scientists would expect farmers to have strong preference for long and fat 

cobs. However, their preference for semi-dent and flintier grain texture was 

consistent with previous studies in other areas of southern Africa (Banziger and de 

Meyer (2002), but differed from studies in Kenya (De Groote, 2000).  De Groote 

(2000) reported that farmers in eastern Kenya were not interested in flintiness and 

cob length.  This shows that farmers’ preferences are peculiar to their area and 

depend on the major prevailing constraint. 
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2.5 Conclusions and Implications for Breeding 

 
This study examined farmers’ perceptions on maize cultivars, production constraints, 

and preferences for stress tolerant cultivars, and their implications for breeding. The 

results showed that given the different agro-ecologies, maize production constraints 

differed among survey districts influencing farmers’ preferences for maize cultivars 

and traits. For instance, farmers in more productive areas with the potential of 

producing surplus grain strongly preferred weevil-resistant cultivars, whereas those in 

less productive areas preferred drought tolerant cultivars.   

 

It was shown that farmers had strong preference for hybrids of the 1970’s as they 

were perceived to be more resilient to drought than new hybrids. This suggested that 

no progress has been made over the past 35 years in breeding cultivars with drought 

tolerance for deployment in these marginal areas.  A cultivar combining high yield 

potential, early maturity and drought tolerance was generally preferred in all areas. 

An ultra early maturing cultivar with drought tolerance, especially at flowering could 

be suggested for deployment in Chipinge and Mutare West. Farmers’ quest for 

drought tolerant maize with a stress recovery mechanism similar to that of sorghum, 

suggested that genes conferring drought tolerance in local sorghum should be 

investigated. The study also showed that cultivars tolerant to low soil fertility, pests 

and diseases would be desirable for release in high rainfall areas where nutrient 

leaching and pest and disease epidemics would be a problem.  In addition, the local 

land-race “Chitonga” should be improved by selecting for short plant height and short 

maturity period, without compromising its sweetness and flint grain texture.  This 

would improve households’ food security and the livelihoods of resource poor 

farmers in Chipinge and Chimanimani area, with possible spillover effects into the 

neighbouring Mozambique. In summary, results implied the need to integrate 

conventional and participatory or interactive strategies for clear identification of 

farmers’ preferences for cultivars that are adaptable, high yielding and stress 

tolerant, among other traits, in these marginal districts. 
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Appendices 

 Appendix 1: Sample study area and number of respondents in the survey 

District 
 

Area or Village Ecological Zone Long term Annual 
Rainfall (mm) 

Number of 
Households 

 
Pilot Survey Study 

     

Mutasa Honde Valley Region II 700-1050  

16-18 wet pentads  

6 

     
Chipinge Birchenough Bridge Region IV 450-500  

<14 wet pentads 
6 

     
     
Mutare West Marange Region III 650-800  

14-16 wet pentads 
3 

 
Informal Focus Group Discussion 

     
Chipinge    29 

 Kondo Village Region IV 
Region IV 

450-500  
<14 wet pentads 

12 
 Nyakumanwa 17 
   
Chimanimani  9 

 Changazi  9 
 

Formal Household Survey 
     
Chipinge    37 

 Masocha Region III 
 

650-800  
14-16 wet pentads 

9 
 Taozeni 7 
 Kondo Region IV 450-500  

<14 wet pentads 
14 

 Musapingura 8 
     
Mutasa    25 

 Sadziwa Region IIb 
 

700-1050  
16-18 wet pentads 

9 
 Tadyanemhandu 8 
 Musakwa 8 
     
Mutare West     31 

(Marange) Mafararikwa Region III 
 

650-800  
14-16 wet pentads 

6 
 Sendamurambi 6 
 Mushipe 6 
 Mutsago 6 
 Masase 7 
     
Total Sample    146 
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Appendix 2: Farm economy and household characteristics in sample districts 

Characteristic District Overall 
Mean 

Statistic: 
(F. probability) Mutasa 

(n=25) 
Chipinge 

(n=37) 
Mutare West 

(n=31) 

Number in Household 

      

Male Adults  1.0 0.9 1.6 1.2 0.01 

Female Adults 1.2 1.4 2.0 1.6 0.01 

Male Children 2.5 2.4 3.6 2.9 0.35 

Female Children 2.6 2.8 3.3 2.9 0.65 

Total Household Size 7.3 7.5 10.5 8.5 - 

 
a) Number of farm livestock per household 

      

Cattle 7.6 4.5 4.8 5.5 0.02 

Chicken 10.9 10.5 9.0 10.1 0.47 

Goats 3.4 4.8 6.7 5.1 0.03 

Sheep 0.3 1.7 0.0 0.6 0.01 

Donkeys 0.0 0.6 0.1 0.2 0.00 

Pigs 0.0 0.0 0.0 0.0 0.31 

 

b) Farm tools or physical stock 

Tractor 0.0 0.1 0.0 0.0 0.32 

Cart 0.8 0.5 0.5 0.6 0.04 

Plough 0.9 0.8 1.1 1.0 0.08 

Harrow 0.6 0.2 0.0 0.2 0.00 

Well 0.5 0.5 0.7 0.6 0.31 

Pump 0.0 0.0 0.0 0.0 - 

 

c) Household amenities 

Modern House 1.6 1.2 1.3 1.3 0.18 

Traditional hut  1.6 2.2 2.2 2.0 0.04 

Motor Vehicle 0.1 0.1 0.0 0.1 0.56 

Television set 0.2 0.0 0.0 0.1 0.00 

Radio 1.1 1.1 1.1 1.1 0.98 

 

d) Land holding (ha) and crops grown  

Maize 1.0 1.6 0.5 1.0 0.00 

Bean 0.1 0.0 0.1 0.1 0.00 

Sorghum 0.0 0.4 0.8 0.5 0.00 

Groundnuts 0.2 0.2 0.2 0.2 0.31 

Pearl-millet 0.0 0.0 0.1 0.0 0.00 

Total Land holding 1.3 2.2 1.7 1.7 - 
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 Appendix 3: Farmers’ perception for soil fertility, rainfall and drought (mean scores)  

Characteristic 
♣
 Mutasa Chipinge Mutare 

West 
Across 

Districts 
Statistics 

F. Probability 

 

Soil Characteristics  

Texture 2.0 2.4 1.8 2.1 0.00 

Fertility 1.9 1.6 2.1 1.9 0.00 

      

Soil Fertility Management      

Manure Applied (kg/ha) 

Cattle Manure 1300 1125 1148 1196 0.84 

Chicken Manure 75 87 0.0 53 0.00 

Goat Manure 68 38 19 38 0.16 

 

Mean Rank of Productivity of Manure 

Cattle Manure 1.3 1.2 1.4 1.3 0.29 

Chicken Manure 1.5 1.9 2.1 1.9 0.04 

Goat Manure 2.7 2.7 2.3 2.5 0.17 

 

Application of Inorganic fertiliser (kg/ha)  

Basal Fertiliser 225 250 112 188 0.01 

Top Dressing 188 188 225 150 0.29 

 

Amount of Rain   

2004 2.0 1.1 2.0 1.7 0.00 

2003 2.4 1.6 2.0 2.0 0.00 

2002 2.7 1.3 2.1 2.0 0.00 

 

Nature of Drought  

 3.0 2.3 2.3 2.5 0.00 

      

Intensity of Drought  

 2.1 2.9 2.9 2.7 0.00 

      

      

Date of first Rainfall  

      

2004 2.0 2.8 1.8 2.2 0.00 

2003 2.0 1.4 2.0 1.8 0.00 

2002 2.8 1.4 2.0 2.1 0.00 

 

Date of last Rainfall  

 

2004 2.1 1.4 1.0 1.5 0.00 

2003 2.8 2.6 1.1 2.1 0.00 

2002 2.0 2.4 1.2 1.9 0.00 
♣ 

Fertility: 1 = Good, 2 = Moderate, 3= Low; Texture: 1 = Sand, 2 =Clay, 3 =Loam; Rainfall amount: 1= 

little, 2= moderate, 3= sufficient for maize crop; Nature of Drought: 1=early, 2= mid, 3=late, 4 = whole 

season drought; Intensity of Drought: 1 = little, 2 = moderate, 3 = severe; Date of first Rain: 1 = late 

Oct, 2 = Nov, 3 = Dec and    4 = Jan; Date of last Rain: 1 = Feb, 2 = March, 3 = April 4 = May. 
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Appendix 4: Maize cultivars or brands grown by farmers in the sample districts 

Cultivar Districts Overall 

Mutasa Chipinge Mutare West 

(% Farmers indicating they grew the cultivar) 

 

SC500 BRAND  0 0 87 32 

SC513 40 48 6 30 

SC401 36 0 3 12 

PAN 6479 0 22 0 7 

SC400 BRAND  4 4 13 7 

SC403 0 15 0 6 

Farm Saved Seed 16 4 0 6 

PANNAR BRAND  8 0 10 6 

PAN 413 0 15 0 5 

SC601 12 0 0 4 

SC501 8 0 0 2 

SC701 4 0 0 1 

Pioneer Brand  0 0 3 1 

Farmers recognised the brand but not specific hybrid name. 

 



Chapter 3:  Genetic Analysis of Resistance to Gray Leaf Spot Disease in Southern 
African Maize Germplasm 

Abstract 

Production of maize in Southern Africa is threatened by the yield limiting gray leaf spot 

disease (Cercospora zeae-maydis Tehon and Daniels) among other constraints, yet 

there is limited knowledge of the genetic effects conditioning resistance in Southern 

African base germplasm. This study was conducted to: (a) evaluate resistance; (b) 

determine heritability; (c) assess combining ability of inbred lines; and (d) investigate the 

mode of gene action conditioning resistance to gray leaf spot (GLS) in Southern African 

base germplasm. Twenty-seven inbred lines were mated in sets according to a North 

Carolina Design II scheme. The resultant 72 hybrids, 27 inbred lines and 24 standard 

hybrids were evaluated in replications of an 8 x 12 α-lattice design, in four environments 

in Zimbabwe and South Africa during 2004/5. Results revealed highly significant 

(P<0.01) environment, hybrid and hybrid x environment interaction effects for GLS and 

yield. Resistance was highly heritable (72%) and highly predictable. General combining 

ability (GCA) and specific combining ability (SCA) effects were highly significant 

(P<0.01), indicating that both additive and non-additive effects were important in 

conditioning resistance. General combining ability effects accounted for 86% of cross 

sum of squares for GLS, indicating that additive effects were predominant in controlling 

resistance.  Hybrids between resistant and susceptible (R x S and S x R) inbred lines 

showed high levels of resistance, suggesting that dominance also played a role in 

conferring resistance. Thus, it was suggested that single cross hybrids would display 

adequate resistance relative, when at least one inbred line is resistant to GLS. Large 

differences between male and female GCA mean squares provided the basis for the 

speculative role of maternal effects in influencing resistance. Future studies should use 

models that incorporate reciprocal effects to confirm the role of maternal effects. The 

following hybrids, which displayed high yield potential and high resistance to GLS, would 

be recommended for release: A9/A15 (relative yield to overall mean = 109%), A13/B19 

(117%), A7/A15 (113%), A15/B21 (116%), B24/B18 (117%), A9/A13 (119%) and 

B19/CML444 (111%).  The inbred lines A13, A15, B18 and B19 showed significant 

(P<0.05) negative GCA as both male and female sources and contributed high levels of 

resistance to their hybrids. These lines would be recommended for use as resistance 

sources.  

Keywords: Gene Action, Gray Leaf Spot, Heritability, Maize, Resistance,  
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3.1 Introduction 

Small-scale farmers in sub-Saharan Africa dominate production of maize, which is 

unfortunately threatened by endemic and highly yield limiting diseases such as gray leaf 

spot (Cercospora zeae-maydis Tehon and Daniels). Gray leaf spot disease (GLS) has 

during the past 17 years spread from South Africa, Zimbabwe, Uganda, and Kenya to 

West Africa in areas where maize is grown under warm and humid conditions (Menkir 

and Ayodele, 2005; Caldwell et al., 2002; Pixley, 1997). Gray leaf spot causes direct 

damage of photosynthetic tissue and indirect damage in the form of stalk and root 

lodging. This damage forms the basis for the grain yield loss in susceptible maize 

cultivars.  Scientists have reported varying levels of loss that is attributable to GLS in 

temperate and tropical maize. Munkvold et al. (2001) cited huge economic loss of $100 

million in Iowa, and yield reduction of 24 to 69% (Virginia), 11 to 44% (Iowa) and 29 to 

65% (South Africa).  Cromley et al. (2002) cited a 10 to 25% yield reduction in 

susceptible temperate hybrids, which was consistent with 28% previously reported 

during fungicide spraying trials (Stromberg and Donahue, 1986).  Ward et al (1999) 

reported 11 to 69% in South Africa, whereas Menkir and Ayodele (2005) cited that 

extreme losses reaching 100% could occur under severe epidemics.  Average loss 

seems to revolve around 20% as cited by many scientists in the USA (Huff et al., 1988; 

Elwinger et al., 1990; Thompson et al., 1987; Donahue et al., 1991). Thus, the disease 

poses a threat to food security in Southern Africa. 

 

Scientists, especially in the USA, have devoted great effort in studying genetics of GLS 

resistance. These studies could be used in making decisions when breeding for 

resistance to GLS. Many studies have concluded that additive effects have a larger role 

than non-additive effects in conditioning resistance (Menkir and Ayodele, 2005; Cromley 

et al., 2002; Ulrich et al., 1990).  A survey of literature has even identified cases in which 

resistance was explained by the GCA (additive) effects alone (Bubeck et al., 1993; Ulrich 

et al., 1990; Thompson et al., 1987). There is no single mention of situations where SCA 

(non-additive) was larger than GCA effects. Generally, it has been reported that 

resistance involved five or six genes acting in an additive fashion (Clements et al., 

2000). Contributions of dominance to conferring resistance have also been reported in 

both temperate and tropical African germplasm (Clements et al., 2000; Coates and 

White, 1998; Hohls et al., 1995). 

 

Despite the fact that the disease is now endemic, there is still limited literature about 

genetic analyses of resistance in Southern African maize base germplasm.   Early 
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studies in South Africa (Gevers et al., 1994; Hohls et al., 1995) used materials that are 

not easily adaptable to the more tropical northern part of the continent. In addition, a lot 

of new germplasm has been bred, which has to be evaluated and the information shared 

with other regional scientists. There is still a lot of reliance on the information generated 

from the USA, which has limited application to the humid tropical zones in the region. 

The objective of the current study was therefore, to: (a) evaluate resistance level; (b) 

determine heritability; (c) assess combining ability of inbred lines; and (d) investigate the 

mode of gene action conditioning resistance to GLS in a set of Southern African maize 

base germplasm. 

 

3.2 Materials and Methods 

3.2.1 Germplasm 

The inbred lines used in the study were drawn from the following heterotic groups: a) 

International Maize and Wheat Improvement Centre (CIMMYT) A and B, and b) regional: 

I, P, K, SC, N3, M and their derivatives (Table 3.1). Gevers and Whythe (1987) and 

Mickelson et al. (2001) have presented detailed descriptions of these germplasm 

groups. The inbred lines consisted of six GLS resistant lines, six drought tolerant lines 

and 15 conventional lines obtained from CIMMYT and Seed Co in Zimbabwe. 

Conventional lines had not been bred for resistance to GLS or drought stress tolerance, 

but were selected on the basis of high yield potential. However, all the inbred lines were 

adapted to tropical environments in east and Southern Africa. Inbred lines were divided 

into sets of three inbreds each, according to their resistance status. In making crosses, 

three inbred lines in one set were used as females and crossed with three inbred lines 

from another set used as males, according to a North Carolina Design II Mating Scheme 

(Robinson and Comstock, 1952; Hallauer and Miranda, 1988). Each inbred line was 

used once as a female parent in one set and once as a male parent in another set, 

except the inbreds K64R, B11 and B12, which were used as females only, and CML489, 

A26 and CIM24, which were used as male parents only (Appendix 1, in sets 8 and 4, 

respectively). The inbreds CML489, CIM24 and A26 replaced K64R, B11 and B12 as 

male parents in set 4, which had failed to provide adequate pollen due to severe attack 

by maize streak virus. Consequently, eight sets comprising nine hybrids each were 

formed among the 27 inbreds. Lines within a set had similar resistance levels; hence the 

resultant hybrids were crosses between susceptible and susceptible (S X S); resistant 

and resistant (R X R) and between resistant and susceptible (R X S and S X R) inbred 

lines. In total, 72 single cross F1 generation hybrids (8 sets x 9 hybrids each) were made 
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among the inbred lines (Appendix 1). The reference population for the study was 

effectively constituted by the 27 parent inbred lines, their 72 crosses and 24 standard 

hybrids. Among the 24 standard hybrids SC627 and SC513 were used as GLS resistant 

check hybrids, while SC403, SC633, PAN6777, ZS255, ZS257, R201 and R215 were 

widely grown hybrids throughout Southern Africa. 

 

Table 3.1:  Parent Inbred Lines used in a NC Design II Mating Scheme 
Inbred Designation Heterotic Group Principal Selection Criteria 

    

1 CML442 A Drought Tolerance 

2 CML312 A Drought Tolerance 

3 CML445 AB Drought Tolerance 

4 CML395 B Drought Tolerance 

5 CML444 B Drought Tolerance 

6 CML488 B Drought Tolerance 

7 A7 M Conventional
♣
 

8 A8 M Conventional 

9 A9 P Conventional 

10 K64R K Conventional 

11 B11 K Conventional 

12 B12 K Conventional 

13 A13 A Gray Leaf Spot Resistance 

14 A14 A Gray Leaf Spot Resistance 
15 A15 N Gray Leaf Spot Resistance 
16 B16 I Gray Leaf Spot Resistance 
17 B17 B Gray Leaf Spot Resistance 
18 B18 B Gray Leaf Spot Resistance 
19 B19 K Conventional 

20 B20 KB Conventional 

21 B21 K Conventional 

22 B22 S Conventional 

23 B23 S Conventional 

24 B24 S Conventional 

25 CML489 AB Conventional 

26 A26 I Conventional 

27 CIM24 A Drought Tolerance 
♣
Conventional inbreds were not bred for stress tolerance, but were bred for high yield potential. 

3.2.2 Experimental Design 

Inbred parents were evaluated in a 5 x 6 α-lattice design with three replications at 

Rattray Arnold Research Station (RARS; 1341 m altitude) in Zimbabwe, in 2004/5 

season. In addition to RARS, hybrids were evaluated at Cedara Agricultural Institute 

(CED; 1076 m altitude) in South Africa and at the Agricultural Research Trust farm (ART; 

1527 m altitude) in Zimbabwe. In 2004/5 seasons, 96 hybrids consisting of 72 

experimental and 24 hybrid checks were evaluated in a 12 X 8 α-lattice block design 

with two replications at Cedara, RARS and ART. At the experimental sites fertiliser 

(kg/ha) was applied as follows: 120 N: 33P: 44K at Cedara; 208N: 35P: 21K at RARS; 

and 250N: 65P: 25K at ART. Phosphorus (P) and potassium (K) were applied once as 

basal at planting, but additional nitrogen (N) was applied in two equal splits at five weeks 
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from crop emergence and anthesis. Total precipitation was 885 mm at Cedara (2004/5); 

787 mm at ART (2004/5) and 826 at RARS (2004/5). The established plant populations 

(plants/ha) were 44 000 at Cedara and 53000 at RARS and 53000 at ART. Standard 

cultural practices which included hand planting, hand weeding and application of 

herbicides were followed at all sites. Fields were left to natural disease inoculation and 

disease development was monitored every fortnight beginning from tassel emergence.  

 

Gray leaf spot disease severity was assessed at mid silking (GLS1) and at hard dough 

stages (GLS2), based on visual assessment of the whole plot by estimating: (a) 

percentage leaf area diseased or necrotic (% LAD); and (b) using a rating scale of 1 to 9. 

Using this scale, 1 = no disease symptoms on leaves, 3 = lesions are on lower leaves 

and no lesions disease on leaves above the ear, 5 = disease is on most leaves and 

some lower leaves dead, 7 = dead lowerleaves and many lesions on all leaves above 

the ear, and 9 = nearly all the leaves are dead (Munkvold et al., 2001). The % LAD and 

rating scale were used to evaluate the disease at Cedara, while only the rating scale 

was used at RARS and ART in 2004/5 season. At harvest grain yield was measured on 

a whole plot basis following standard practice used at CIMMYT (CIMMYT, 1985) and 

was adjusted to 12.5% moisture using the formula:  

Grain Yield (t/ha) = [Grain Weight (kg/plot) x 10 x (100-MC)/ (100-12.5)/(Plot 

Area)], where MC = Grain Moisture Content.  

 

The number of days to mid silking (DMS) and anthesis (DMP) were estimated as 

number of days from planting to 50% plants with silk emerged and tassels shedding 

pollen, respectively. Plant and ear height were measured as the distance from the base 

of the plant to the height of the first tassel branch and the node bearing the uppermost 

ear, respectively. Grain texture was rated using a scale of 1 to 5, which is used at 

CIMMYT, where 1 = flint and 5 = dent. In addition to grain texture analysis, ear aspect 

was assessed using a visual rating scale of 1 to 9, where 1= clean, uniform, large and 

well-filled ears, and 9 = rotten, variable, small and partially filled ears. 

 

Mid parent heterosis (MPH) for GLS was calculated for each hybrid (Falconer, 1989) 

using the formula:  

MPH (%) = (F1-MP)/MP X 100, 

Where F1 = mean of the F1 hybrid performance, MP = mean of two parents making the 

cross using the formula: (P1 + P2)/2, where P1 and P2 are the means of the inbred 

parents.  
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3.2.2 Statistical Analyses 

General analyses of variance were performed for all hybrids and inbred lines including 

controls, using IRRISTAT (2003) computer package for GLS and grain yield data for 

each individual site. Genetic analyses for GLS were performed in SAS (SAS Institute, 

1997) as a fixed effects model for experimental hybrids only, as described by Hallauer 

and Miranda (1988) for across environments (RARS, Cedara and ART in 2004/5), which 

had complete sets of hybrids made in the North Carolina II mating design, using the 

following linear model: 

 

Yijkpq = µ+Sp + gi(Sp) + gj(Sp) + hij(Sp) + Eq + rk(SE)pq + (ES)pq + (Eg)iq(Sp) +(Eg)jq(Sp) + (Eh)ijq(Sp) + 

eijkpq 

 

Where i =1, 2, 3; j = 1, 2, 3; k = 1, 2; p = 1, 2, 3, 4, 5, 6, 7, 8; q = 1, 2,3 and Yijkpq denotes the value 

of the hybrid of a mating of the i
th

 female line, the j
th

 male line, in the k
th
 block, within set p and in 

the q
th
 environment. The terms are defined as follows: 

 

µ = Grand mean, 

Sp =       the average effect of the p
th

 set, 

gi(Sp)   = the GCA effect common to all hybrids of the i
th
 female line nested within p

th
 set, 

gj(Sp)  = the GCA effect common to all hybrids of the j
th

 male line nested within p
th
 set, 

hij(Sp)  = the SCA effect specific to hybrid of the i
th

 female and j
th

 male line nested within p
th
 set, 

Eq           = average effect of q
th

 environment, 

rk(SE)pq  = the effect of the k
th

 replication nested within the p
th
 set and q

th
 environment 

(ES) pq  = the interaction between set effects and the environment 

(Eg)iq(Sp)  and  +(Eg)jq(Sp) = the interaction between environment and GCA nested within sets 

(Eh) ijq(Sp) = the interaction between environment and SCA nested within sets, and 

eijkpq = the random experimental error. 

 

According to Hallauer and Miranda (1988), the main effects due to females (sets) and 

males (sets) are equivalent to the GCA (general combining ability), while male x female 

(sets) interaction effects represent the SCA (specific combining ability) effects in a diallel 

mating. General combining ability and SCA effect estimates for inbred lines and crosses, 

respectively, were determined by line x tester analysis in Agrobase (2005) computer 

package.  Using the variance ratios, heritability estimates were calculated in REML 

(GenStat, 2003) as suggested by Hallauer and Miranda (1988) for the fully inbred 

parents (F = 1)  (where σ2
m = σ2

f =  ½σ2
A; and σ2

mf    =  σ2
D ) using the formulae:  

  

a) h2 = 2σ2
m/(σ2/r + σ2

mf + 2σ2
m) for one environment, and 

b) h2 =2σ2
m/( σ2/re + σ2

fme/e + 2σ2
me/e + σ2

mf + 2σ2
m)  for across environments,  
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Where σ2
m = male (set) variance, σ2 = random error variance; σ2

mf = male x female (set) 

variance; σ2
fme = environment x male x female (set) variance; σ2

me = environment x male 

(set) variance; r = number of replications and e = number of environments. σ2
f  = female 

(set) variance; σ2
A = additive variance and σ2

D = dominance variance. 

 

Heritability estimates were calculated using the male variance (σ2
m) to avoid the upward 

bias of heritability due to maternal effects if the female variance (σ2
f) was used. 

Predictability of hybrid performance was also measured by performing a regression of 

hybrid means on mid-parent values for GLS and grain yield, using GenStat (2003) 

computer software.  Correlation analyses were performed between GLS assessment 

methods; and between hybrid rankings in different environments.  

3.3 Results 

3.3.1 Resistance of Inbred Lines  

Inbreds exhibited significant variation for resistance and yield during 2004/5 at RARS 

(Table 3.2). Severity of GLS disease was low at RARS (Table 3.2). The most susceptible 

inbred line had a rating of 5.5 (CML312), but all inbred lines had GLS symptoms. Thus, 

GLS scores ranged from 1.1 to 5.5 (Table 3.2). For the convenience, inbred lines could 

be fitted into three resistance classes as follows: a) resistant (GLS score = 1 to 2.0); (b) 

moderately resistant/susceptible (2.1 to 3.9); and c) susceptible (4.0 to 5.5).  Resistant 

inbreds had GLS scores that were significantly below the mean. The inbreds in the 

moderately resistant or susceptible category had GLS scores that were similar to the 

mean. The susceptible class consisted of inbreds with GLS scores significantly above 

the mean.  Nine inbred lines were resistant to GLS. The inbreds A14, B16 and B17, 

which had been selected as resistant based on pedigree data were among the 

susceptible (Table 3.2). The inbreds had significant (P 0.05) differences for grain yield. 

Five of the resistant inbred lines namely, B18, B19, A15, A13 and CIM24 had above 

average yield (relative yield ≥100%), while four of the resistant inbreds had below 

average yield (Table 3.2). The correlation between GLS resistance and grain yield was 

not significant (r = 0.21). The highest yielding inbred lines (CML489 and CML444) were 

in the moderately resistant/susceptible class. 
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Table 3.2:  Performance of 27 Inbred Lines at RARS during 2004/5 season 

Inbred GLS Yield 

  Category
♣
 (Score) (t/ha) % Mean 

     

B22 R 1.1 1.2 55 

B24 R 1.1 0.9 40 

CIM24 R 1.5 2.4 111 

A13 R 1.6 2.2 100 

A15 R 1.6 2.4 109 

9301485 R 1.7 1.4 64 

B23 R 1.7 1.6 71 

B18 R 1.9 2.5 113 

B19 R 2.0 2.4 111 

     

CML489 MS 2.3 3.0 137 

A8 MS 2.5 2.8 126 

CML488 MS 2.9 2.2 102 

B21 MS 3.0 2.2 99 

CML445 MS 3.0 2.8 127 

CML442 MS 3.1 2.4 110 

A14 MS 3.3 2.3 105 

     

CML444 S 4.0 3.0 138 

K64R S 4.0 1.5 68 

CML395 S 4.2 3.4 157 

RSA414P S 4.2 1.0 46 

A9 S 4.3 2.3 105 

A7 S 4.4 2.8 127 

B16 S 4.5 1.8 82 

B17 S 4.6 2.6 119 

B20 S 4.7 2.5 112 

A26 S 4.8 1.7 79 

CML312 S 5.5 2.6 117 

      

Mean                2.93 2.21              100 

SED  0.33 0.20  

LSD (0.05)  0.95 0.58  
♣
R= resistant, S = Susceptible, and MS = moderately susceptible; SED = Standard error of a difference 
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3.3.2 Hybrids’ Resistance 

The data from three environments that had a complete set of experimental hybrids in 

2004/5 are presented (Table 3.3). There were significant differences among hybrids 

within and across environments for GLS-resistance and grain yield (Table 3.3). The GLS 

scores ranged from 1.2 to 7.0 for the hybrids A9/A15 and ZS206, respectively (Table 

3.3).  The highest disease pressure occurred at Cedara, where the scores ranged from 

1.5 for A9/A15 to 9.0 for standard hybrids ZS206, SC701 and R215. The most resistant 

hybrids had scores of 1.0 at RARS and ART, but disease severity was lowest at ART 

where it ranged from 1.0 (no symptoms) to 5.0 (Table 3.3). The 96 hybrids were fitted 

into resistance classes using the data obtained from Cedara, which showed the highest 

disease incidence (Fig. 1). The data from Cedara alone was used to classify hybrids 

because it provided the best discrimination of hybrids for GLS-resistance (Table 3.3). 

Unlike at ART and RARS, there were no hybrids that were rated as immune (GLS score 

= 1.0) at Cedara in 2004/5. The four resistance classes consisted of: a) resistant (GLS 

score = 1.6 to 2.6); b) moderate resistance (GLS score = 2.7 to 4.7); c) moderately 

susceptible (GLS score = 4.8 to 6.8); and d) susceptible (GLS score = 6.9 to 8.9).  

Hybrids in the susceptible and resistant classes had GLS scores that were significantly 

different from the mean score. Sixteen experimental hybrids were classified as resistant 

and had higher levels of resistance comparable to resistant standard checks. A similar 

set of hybrids dominated the top 10 ranking across environments. The standard hybrids 

SC513 and SC627 were resistant, while ZS255, SC633 and SC635 were moderately 

resistant to GLS (Table 3.3). The standard hybrids R201, ZS206, SC701 and R215 were 

highly susceptible with GLS scores of 8.5 to 9.0 at Cedara. The most resistant hybrids 

showed high relative yield potential at Cedara (>109%). The following hybrids displayed 

high yield potential and high resistance to GLS: A9/A15, A13/B19, A7/A15, A15/B21 and 

B24/B18 (Table 3.3).   
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 Table 3.3: GLS Resistance and Relative Yield for Selected Hybrids in 2004/5 

Hybrid
♣

 Across Sites ART CED RARS 

  GLS Yield GLS Yield GLS Yield GLS Yield 

  (Score) Rank % 
Mean 

Rank (Score) % Mean (Score) % Mean (Score) % Mean 

 
Top 15 GLS- resistant hybrids 

 

       

A9/A15 1.2 1 106 32 1.0 110 1.5 109 1.0 101 

A13/B19 1.2 2 96 63 1.0 83 1.5 117 1.0 94 

A7/A15 1.3 3 115 10 1.0 103 2.0 113 1.0 128 

A15/B21 1.3 4 111 15 1.0 119 2.0 116 1.0 99 

B24/B18 1.3 5 108 21 1.0 99 2.0 117 1.0 111 

B18/CML442 1.3 6 101 47 1.0 96 2.0 98 1.0 107 

SC513 1.3 7 93 72 1.0 96 2.0 91 1.0 92 

B23/B18 1.3 8 90 79 1.0 84 2.0 88 1.0 98 

B22/B18 1.3 9 72 95 1.0 82 2.0 74 1.0 62 

A9/A13 1.5 10 101 44 1.0 99 2.0 119 1.5 91 

04C1679 1.5 11 100 51 1.0 102 2.0 103 1.5 97 

B19/CML444 1.8 16 120 5 1.0 128 2.0 111 2.5 117 

SC627 2.2 24 106 30 1.0 110 2.0 91 3.5 115 

04C1675 1.5 12 68 96 1.0 81 2.5 54 1.0 65 

A8/A13 1.7 14 99 54 1.0 107 2.5 97 1.5 93 

  
Middle 10 or Moderately resistant  

  

        

CML395/CML489 2.7 36 112 14 1.0 115 4.5 104 2.5 114 

ZS255 2.8 44 75 93 1.5 70 4.5 85 2.5 74 

SC633 3.3 49 109 18 2.5 91 4.5 121 3.0 119 

B11/B24 3.4 52 75 94 2.2 101 4.5 64 3.5 58 

A15/B20 3.5 55 84 86 2.5 101 4.5 81 3.5 70 

A15/B19 2.3 32 96 62 1.0 100 5.0 99 1.0 91 

B19/CML488 2.7 38 107 28 1.5 103 5.0 124 1.5 98 

SC635 3.0 45 108 24 1.0 102 5.0 98 3.0 121 

B17/CML445 3.5 53 109 17 1.5 107 5.0 105 4.0 115 

CML488/CML489 3.5 54 95 67 2.5 82 5.0 107 3.0 99 

Bottom 9 GLS-susceptible         

B16/CML442 5.0 83 102 41 3.5 88 7.5 123 4.0 100 

B23/B17 5.2 86 102 42 4.0 101 7.5 106 4.0 100 

CML442/A9 5.7 90 109 19 3.5 106 7.5 106 6.0 113 

K64R/B23 5.7 92 79 89 3.5 74 8.0 74 5.5 87 

A7 5.7 91 94 71 3.5 99 8.5 83 5.0 98 

R 201 7.0 96 77 91 5.0 76 8.5 75 7.5 78 

ZS206 7.0 93 96 65 5.0 106 9.0 89 7.0 91 

SC701 7.0 94 94 70 5.0 102 9.0 78 7.0 99 

R 215 7.0 95 80 88 5.0 83 9.0 75 7.0 81 

          

 Mean  3.36 100  2.21 100 4.75 100 3.12     100 

SED     0.40  0.70  0.40  

LSD (5%)     1.10  2.00  1.20  

♣
Standard hybrids and high yield values are in bold; Relative yield = % of overall mean yield. 
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3.3.3 Relationship between GLS Rating and Grain Yield 

Results showed highly significant and positive correlation between the first and second 

GLS assessments for both GLS rating scores and %LAD (Table 3.4). There were also 

highly significant (P 0.01) positive rank correlations between sites for hybrid GLS rating 

scores and % LAD (Table 3.4). However, there was no significant correlation between 

grain yield and GLS resistance within (r = -0.12 to 0.18) and across (r = -0.13) sites for 

either hybrids or parent inbred lines.  

 

Table 3.4: Correlation between GLS assessments and between sites for hybrid 
  ranking during 2004/5 

 

Between Rating Methods LAD1 (%) LAD2 (%) GLS1 Score 

    

LAD1 (%) 1.00 0.77  

LAD2 (%) 0.77 1.00  

GLS1 Score 0.79 0.79 1.00 

GLS2 Score 0.74 0.96 0.78 

    

Between Environments CED RARS  

    

CED 1.00 0.79  

ART 0.84 0.80  

Fig. 1: Distribution of 96 Hybrids for Resistance to GLS at Cedara in 

2004/5 season (R = resistant, S = susceptible, M = moderate)
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3.3.4 Gene Action 

There were significant differences among hybrids for grain yield and GLS rating scores 

(Table 3.5). Environment and sets of hybrids and the environment x sets interaction 

were significant for grain yield and GLS rating (Table 3.5). Both male (set) and female 

(set) main effects were significant for yield and GLS rating score (P 0.01), with mean 

squares for females (sets) larger than their male (sets) counterparts for grain yield.  

Mean squares for males (sets) were larger than those for females (sets) for GLS scores. 

Interaction of female and male within sets was highly significant (P 0.01) for grain yield, 

and GLS. Female (sets) interaction with environments was not significant for GLS. 

Interaction of male x female (sets) with environments was only significant for GLS. Total 

GCA (i.e., male plus female main effects) accounted for 74% and 86% of cross sum of 

squares for grain yield and GLS, respectively.  Female lines accounted for 33% and 

males 53% of the total GCA sum of squares for GLS.  For yield, female lines contributed 

54% and male lines 20% of the total GCA sum of squares. 

 

Table 3.5. Mean square values for grain yield and GLS scores across three 
environments 

Source of Variation D.F. Yield GLS 

    

Environment 2 232.8**   248.0 ** 

Set 7   13.9**     17.7 ** 

Environment x Set 14     3.1**       2.0 ** 

Replication (Set) (Environment) 24     1.2 ns       0.6 ns 

Female (Set) 16     7.4**      13.4** 

Male (set) 16     2.6**       21.3 ** 

Female x Male (Set) 31     1.8**         2.9 ** 

Environment x Female (Set) 32     1.6 *          0.7 ns 

Environment x Male (set) 32     1.9**          2.4 ** 

Environment x Female x Male (Set) 62     1.0 ns          1.2 ** 

**, * = Significant at P< 0.01 and P< 0.05, respectively; ns = non-significant at P>0.05. 

3.3.5 Combining Ability Effects of Inbred Lines 

Among the resistant inbreds lines (Table 3.2) A13, A15, B18 and B19 exhibited 

significantly negative GCA effects as both male and female sources for resistance 

(Table 3.6). The lines B24 and B12 had significant negative GCA as male and female 

sources, respectively, of resistance. Among the susceptible set (Table 3.2), the inbred 

A9 displayed significant (P 0.05) negative GCA as a female source for both GLS scores 

and % LAD. As expected all the other susceptible lines had either significant positive 

(P 0.05) or zero GCA for GLS. Nonetheless, only B23 did not show significant (P 0.05) 
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GCA among the resistant lines, while B22 only displayed significant GCA effects as male 

source for % LAD. Inbreds A9 and A13 combined both positive GCA for yield and 

negative GCA for GLS as female sources only. A highly susceptible inbred, A26 had 

highly positive (P 0.01) GCA for both grain yield and GLS resistance. On the contrary, 

some lines (B12, A15, B19 and CIM24) that lacked significant positive GCA for yield, 

displayed significant negative GCA for GLS resistance. However, in general there was 

no significant correlation between inbred GCA effects and their performance per se. 

Only six hybrids combined significant negative SCA for GLS with positive SCA for grain 

yield, namely A2/A7, A2/A8, K64R/A8, A1/A9, A15/B21 and A3/A7 (Appendix 1).  

 

Table 3.6: GCA effect estimates of parent inbred lines for GLS and grain yield 
Inbred Gray Leaf Spot Grain Yield 

Score 
(1 to 9) 

%Leaf Area Infected t/ha 

Female Male Female Male Female Male 

       

CML442    2.9** 0.3 31.6 ** 2.4 -0.4 0.5 

CML312   1.3** 1.1* 10.7 * 6.6     -1.5 ** -0.3 

CML445 0.8 -0.4 9.9 * -3.4 -0.1 -0.4 

CML395   0.8* 0.4 7.0 4.9 0.0 0.7 

CML444 0.2 -0.2 2.8 0.7 0.2 0.2 

CML488 0.4 0.3 0.1 -0.9 -0.1      1.4 ** 

A7 -0.7 2.6** -8.1 27.4** 0.4   -0.7 * 

A8 -0.6 1.3** -3.4 10.7* -0.4 -0.6 

A9    -1.4** 1.1* -12.1 * 14.1 * 0.9 * -0.6 

K64R   0.7 1.3* 11.1 * 5.4   -1.3 **    -0.8 * 

B11   0.0 --- -4.2 ---   -1.3 ** --- 

B12 -0.8 --- -15.3 ** ---        -0.0 --- 

A13 -2.1 ** -2.2** -15.6** -20.1 ** 0.7 * 0.5 

A14 0.6 2.1** 6.6 23.2 **       -0.1 0.2 

A15 -0.9* -2. 6** -8.4 -26.8 **       -0.2 0.1 

B16 1.6** 0.1 12.4 * -4.7 0.7 * -0.4 

B17 1.1** 1.3** 13.2 * 16.5 **        0.2 -0.3 

B18 -1.7** -2.7** -20.1 ** -26.7 ** -1.0 ** -0.5 

B19 -1.4** -1.4** -13.4 * -13.9 * 0.7 * 0.3 

B20 0.4 -0.4 6.6 -1.7 0.8 * -0.0 

B21 1.4** -0.6 11.6 * -1.7 0.8 * 0.1 

B22 0.1 -0.8 -0.1 -19.0 ** -0.9 * 0.4 

B23 0.3 0.8 0.6 6.6 -0.4   -0.8 * 

B24 -1.7** -0.8 -15.4 * -9.7 0.1     -1.5 ** 

CML489 - -0.4 --- -1.7 ---   0.3 

A26 - 1.8** --- 13.2 * ---        1.3 ** 

CIM24 - -1.7** --- -12.6 * --- -0.0 

       

SED 0.57 0.60 6.74 7.16 0.49        0.52 

LSD (5%) 1.13 1.21 13.45 14.30 0.98      1.03 

**, * = GCA effect significantly different from zero at 1% and 5%, respectively;  

--- = No data because line was not used as either male or female. 
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3.3.6 Heritability Estimates 

The heritability estimates for GLS ranged between 49 and 79%, depending on the time 

and rating method (Table 3.7). Estimates of heritability were significantly higher for the 

second than the first assessment. Grain texture scores, days to 50% flowering and plant 

height displayed relatively high heritability estimates (70 to 86%).  The regression of 

hybrid mean on mid parent value were significant (P≤0.05) with coefficients of 1.48 (R2 = 

90.3%) for GLS scores and 0.45 (R2 = 95%) for grain yield. 

 

Table 3.7: Heritability Estimates for GLS assessment and Selected Agronomic Traits 
Character 

  

Environment Across
♣
 

CED2005 RA2005 ART2005 Average
♣
 

 
Adjusted 

GLS Rating       

GLS 1 (Score) 56.3 ---- -- 56.3 --- 

GLS 2 (Score) 76.2 87.1 74.7 79.3 72 

%LAD1 57.5 -- -- 49.9 --- 

%LAD2 68.6 -- -- 65.9 --- 

        

Agronomic Traits       

Grain Yield (t/ha) 44.3 43.4 45.7 46.8 58.0 

Ear Aspect (Score) 41.1 -- -- 41.1 --- 

Plant Aspect (Score) ---  49.1 -- 49.1 ---- 

Ears /Plant (No.) 35.2 30.8 -- 45.0 40.6 

Grain Moisture (%) 81.9 36.4 65.1 60.8 63.9 

Grain Texture (Score) 82.4 ----- ----- 76.9 86.7 

Days to Mid Pollination ---  50.9 75.5 63.2 70.8 

Days to Mid Silking  --- 55.1 62.4 58.7 70.0 

Plant Height (cm)  -- 72.6 --- 72.6  
♣ 

Average = arithmetic mean for h
2
 across the four environments, which is not adjusted; 

♣
Across 

refers to h
2
 adjusted for environment and replication effects 

 

3.3.7 Effects of Parents’ Resistance on Hybrids and Heterosis  

The top 12 resistant hybrids had one or both parents resistant to GLS (Appendix 3). In 

most instances, the susceptible or the bottom 12 hybrids had both parents as 

susceptible to GLS. Only two hybrids among the most susceptible (i.e., bottom 12) were 

crosses between resistant and susceptible (i.e., R x S and S x R) inbred lines. These 

two hybrids had one common resistant parent (B23), as male in one cross (K64R x B23), 

and as female (B23 X B17) in the other cross (Appendix 3). The hybrids made between 

resistant inbred lines (i.e., R x R) exhibited high levels of resistance, which was similar to 

resistant checks (Table 3.8). Crosses between susceptible (i.e., S x S) inbreds exhibited 

the lowest levels of resistance (Table 3.8).  

 



 

   73 

The hybrids also showed a large variation for mid-parent heterosis ranging from – 49 to 

194.7% for GLS. Although heterosis mean value was positive, eight of the top 12 

resistant hybrids, which were formed between resistant and susceptible (R x S and S x 

R) inbreds had negative heterosis for GLS scores (Appendix 3).  Three of five hybrids 

formed between resistant (R x R) inbreds had positive heterosis and only one hybrid 

between resistant and susceptible (S x R) displayed positive heterosis for GLS. The 

most resistant hybrids (top 12) exhibited positive heterosis for grain yield (Appendix 3).  

Although all hybrids between the different hybrid combinations showed positive 

heterosis, crosses involving resistant and susceptible inbreds (i.e., R x S and S x R) had 

the least positive values for GLS (Table 3.8). There were no significant differences for 

mean yield among the different hybrid categories, but crosses between resistant (R x R) 

inbreds exhibited highest positive heterosis for grain yield (Table 3.8).  

 

Table 3.8: Resistance and heterosis of hybrids between lines with different resistance 
level   

Category 
♣
  GLS Grain Yield 

Hybrid 
(Score) 

MP 
(Score) 

Heterosis 
(%) 

Hybrid 
(t/ha) 

MP 
(t/ha) 

Heterosis 
(%) 

Inbred Combination       

R X R  2.9 1.7 75.4 5.9 1.9 228.7 

R X S  4.0 2.9 40.3 5.9 2.2 178.0 

S X R  3.4 2.8 22.5 5.8 2.1 193.9 

S X S  6.0 3.7 67.5 6.2 2.5 147.5 

       

Mean of Standards       

Resistant Checks  2.5   5.7   

Susceptible Checks  8.3   5.0   

        

Mean  4.79   5.91   

SED  0.70   0.58   

LSD (5%)  1.97   1.63   
♣R = Resistant, S = susceptible; MP = mid-parent heterosis. 

 

3.4 Discussion 

3.4.1 Resistance of Inbred Lines and Hybrids 

The study indicated existence of high variability for resistance and yield in this 

germplasm comprising “key” inbreds, their crosses and 24 elite standard hybrids. 

Breeders can effectively employ the genes from this germplasm or recycle the 

germplasm to enhance resistance and yield in regionally adapted cultivars. Effectively, it 

is apparent that breeders do not have to look beyond the region in search of resistant 

germplasm that lack adaptation to the subcontinent. As early as 1997, Pixley (1997) had 

observed that ample resistance to GLS could be found from CIMMYT and regional 

programmes. Gevers et al. (1998) reported resistant materials in nurseries at Cedara 
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during the 1991/2 season.  The best breeding approach would involve recycling the 

adapted regional germplasm, which contain confirmed resistance in both inbred and 

hybrid form. In addition, most old standard hybrids (SC701, ZS206, R201 and R215) that 

were bred before the era of GLS (i.e., pre-1988) were classified as susceptible. The 

newer standard hybrids (SC633, SC635, SC513 and SC627) fitted into either the 

moderate or resistant category. It is thus suggested that breeders have made some 

significant progress in breeding for resistance since 1988 when the disease was first 

recorded in the province of Natal. The challenge that remains therefore would be to 

enhance yield in the very resistant hybrids, which in most instances had lower relative 

yield despite the impressive resistance.  The following hybrids, which displayed high 

yield potential and high resistance to GLS would be recommended for release: A9/A15 

(relative yield = 109% of overall mean yield), A13/B19 (117%), A7/A15 (113%), A15/B21 

(116%), B24/B18 (117%), A9/A13 (119%) and B19/CML444 (111%).  These single 

crosses would also be recommended as sources for new lines in pedigree breeding. In 

the same vein, the inbred lines B18, B19, A15, A13 and CIM24 which displayed high 

level of resistance and high yield potential (relative yield ≥100%), and contributed high 

resistance in their hybrids would be recommended as donors of resistance in breeding 

programmes. 

3.4.2 Environmental Effects  

The study revealed significantly large environment, environment x male GCA and 

environment x SCA interaction for yield and GLS resistance. These were most unlikely 

to cause difficulty in breeding, since there were no changes in hybrid ranking for 

resistance, which was supported by the highly positive and significant rank correlations 

between environments. Environmental differences were explained by differences in 

levels of disease pressure among the four environments. Hybrids showed differences in 

magnitude of GLS scores across these environments. The gap between the resistant 

and the susceptible hybrids was least at ART and significantly wider at Cedara in 

2004/5. Unlike at ART and RARS, there were no hybrids that were rated as immune 

(GLS score = 1.0) at Cedara in 2004/5. Generally, the lack of differences in hybrid ranks 

between the environments indicated the absence of crossover interaction. Crossover 

interaction results in change of hybrid ranking hence different sets of selected and 

rejected hybrids would be obtained in each environment, which complicates selection 

and impedes breeding progress. Results from this study are in agreement with Lipps et 

al. (1998) who reported that hybrid ranks were similar at 11 locations in the USA over 

two years despite differences in GLS severity. Consistent ranking of hybrids suggested 

that hybrids could be evaluated at one reliable site to reduce costs, especially for 
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national programmes with limited resources.  Cedara, which provided the highest 

discrimination for hybrids and was more reliable with adequate disease pressure in both 

2003/4 and 2004/5 seasons, was confirmed as a “hot spot” for disease screening.  

Locations like RARS and ART were not reliable for screening germplasm for resistance, 

given that there was even nil GLS pressure during 2003/4. This would impede breeding 

progress, as breeders would not effect selection for resistance in some seasons. 

Needless to say that effective breeding for resistance would require reliable disease 

pressure, which is high enough to discriminate between cultivars every season. It can be 

argued that a regional disease nursery can be established at Cedara for the benefit of 

national programmes with limited resources to conduct multilocation tests even in 

unreliable sites. 

 

3.4.3 Gene Action 

Significant mean squares for both GCA and SCA effects indicated that both additive and 

non-additive gene action, respectively, played a role in conditioning resistance and grain 

yield in this germplasm. Significantly higher total GCA (86%) than SCA (14%) sums of 

squares, for the crosses indicated that additive effects had a greater role than the non-

additive in conferring resistance. Although the sum of squares for SCA effects were 

much higher for grain yield (26%) than for GLS scores, GCA accounted for 74% of the 

variation among hybrids for grain yield.  This predominance of additive effects in 

determining grain yield and resistance suggested that there would be no complications 

in breeding for resistance and yield, because both GLS-resistance and yield can be 

improved through selection.  Resistance, thus, could be transferred from the identified 

sources via backcross or recurrent selection procedures that exploit the additive 

variation. Notably, GCA mean squares due to male sources were at least 1.5 times 

higher than their female counterparts for resistance, whereas female GCA mean 

squares were 2.8 times larger than male GCA for grain yield. Since the model used in 

this study did not include testing for reciprocal effects, it can only be speculated that 

cytoplasmic genes or maternal effects also played some role in controlling inheritance, 

especially for grain yield. This suggested that a critical choice should be made about 

which line would be used as male or female in crosses aimed at enhancing hybrid yield 

and resistance. If present maternal or cytoplasmic effects could have inflated the GCA 

mean squares at the expense of SCA. This has serious implications for the interpretation 

of these results and perhaps for several other studies that overwhelmingly concluded 

that additive gene action was predominant over the non-additive effects for GLS-

resistance. For example, Menkir and Ayodele (2005) reported that GCA accounted for 
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>70%, while Elwinger et al (1990) found that GCA was 1.5 to 11.5 times larger than 

SCA, yet these and most other studies did not investigate the role of reciprocal effects in 

conditioning resistance.  

 

Inbreds A13, A15, B18 and B19 consistently showed very high negative GCA effects 

and significantly conferred their resistance in crosses. These inbreds may be used as 

resistance donors to enhance resistance in elite, but GLS-susceptible hybrids and 

synthetic populations. These inbreds had negative GCA both as male and female 

suggesting that breeders can use them either as male or female depending on other 

factors. These lines had zero or non-significant GCA for grain yield suggesting that when 

making single crosses breeders should cross these lines with high yielding lines. 

Apparently, the inbred line A9, which was susceptible, showed negative GCA as female 

for GLS and positive as male for grain yield. It is an adapted line that may be conferring 

“tolerance” type resistance and high yield in crosses. Above all crosses A1 x A9, 

B18/CML442,  A15 x B21 and A7/A15, which combined above average yield, positive 

SCA effects for yield and negative for GLS should be seriously considered as resistance 

sources in pedigree breeding.  

 

Negative mid-parent heterosis for GLS-resistance exceeding 10% in crosses involving 

resistant and susceptible (R X S and S X R), suggested that one resistant parent 

provided high resistance in single cross hybrids. Thus these hybrids had lower GLS 

resistance scores, which were lower than the mid-parent; hence these hybrids had 

higher resistance than the mid-parent. The inbreds A13, A15, B18 and B19 were 

involved in crosses that displayed negative heterosis for GLS-resistance. These lines 

could be directly employed as donors of resistance, especially in hybrid oriented 

programmes. Since non-additive effects were also significant, both dominance and 

additive gene action could be used to explain the negative heterosis for GLS resistance 

in crosses between resistant and susceptible inbred lines. These results corroborate 

those of Cromley et al. (2002) who found that single cross hybrids would have adequate 

level of resistance if at least one parent has resistance. In the current study, resistant 

lines (A13, A15, B18 and B19) were also associated with crosses that exhibited positive 

heterosis for grain yield, thus effectively suggesting that they are viable candidates for 

use in hybrids.  Furthermore, their crosses had high relative yield ( 110%) and were 

better than most standard hybrid checks under the heaviest GLS epidemic at Cedara in 

2004/5.  Thus, these lines and their hybrids would be recommended for use in breeding 

programmes as sources of resistance. An analysis of groups of crosses or inbred 

combinations indicated that R X S (Resistant x Susceptible) had more negative heterosis 
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than R X R crosses despite displaying similar levels of resistance. Clearly the resistant 

(R) lines were capable of transmitting their resistance to the single cross hybrid in 

combination with a susceptible line, suggesting that in addition to additive, dominance 

action played a role in conditioning resistance. Results implied that these lines could be 

used as donors to develop highly resistant hybrids. Breeders would select the other line 

for use in the cross solely on the basis of other important traits. Similarly, it may be 

suggested that highly performing synthetic populations would be developed by crossing 

sets of resistant lines to other sets that are selected for yield or other important traits.  

3.4.4 Heritability Estimates 

Large coefficient values for the mid-parent offspring regression for both GLS and grain 

yield, indicated that performance of inbreds in hybrids was highly predictable. This was 

supported by high heritability values for GLS and other important agronomic traits such 

as ear aspect, grain texture and days to 50% flowering. In the current study, high 

heritability estimates for GLS were also a reflection of high levels of GCA mean squares. 

These results are consistent with previous studies, which reported high predictability 

including high regression values for germplasm that is adapted to mid altitude 

environments in tropical Africa (Menkir and Ayodele, 2005).  Vivek et al. (2001) also 

reported high heritability of 61% for GLS in regional germplasm from east and Southern 

Africa.  Prediction of high single cross performance using mid-parent offspring 

regression (R2 Value between 0.55 and 0.90) has also been reported in temperate maize 

(Elwinger et al., 1990). High heritability estimates of 73 to 78% have also been reported 

in temperate germplasm (Clements et al., 2000; Cromley et al., 2002). 

3.5 Conclusion 

This study was conducted to: (a) evaluate resistance, (b) determine heritability, (c) 

assess combining ability of inbred lines, and (d) investigate the mode of gene action 

conditioning resistance to GLS and grain yield in Southern African base germplasm. 

Results revealed a large proportion (17%) of experimental and new standard hybrids 

with high levels of resistance to GLS.  In addition, the study identified hybrids that 

combined high resistance to GLS and high yield potential. The following hybrids, which 

displayed high yield potential and high resistance to GLS would be recommended for 

release: A9/A15 (relative yield = 109% of overall mean yield), A13/B19 (117%), A7/A15 

(113%), A15/B21 (116%), B24/B18 (117%), A9/A13 (119%) and B19/CML444 (111%). 

Apart from being released, these single crosses could be used as breeding sources for 

resistant inbred lines in pedigree breeding.  The inbred lines A13, A15, B18 and B19, 

which contributed exceptional levels of resistance to their hybrids, would be 
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recommended for use as breeding sources. Resistance was highly heritable (72%) and 

predictable (regression R2 = 0.90).  Both additive and non-additive gene action were 

important in conditioning resistance and grain yield. General combining ability (GCA) 

effects accounted for 74% and 86% of cross sum of squares grain yield and GLS, 

respectively, indicating that additive effects predominantly controlled resistance.  Hybrids 

between resistant and susceptible inbred lines showed high levels of resistance, 

suggesting that single cross hybrids would display adequate resistance when at least 

one inbred line carries high resistance.  A different criterion would be used to select the 

other line. Large differences between male and female GCA mean squares provided 

speculation for the role of maternal effects in influencing resistance. Future studies 

should employ models that incorporate reciprocal effects, to investigate this “speculative” 

role of maternal effects. It can also be concluded that high resistance to GLS was not 

associated with low grain yield potential in this set of germplasm. 
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Appendices 

Appendix 1. Sets of crosses formed in a North Carolina II Mating design (Principal 
Selection criteria: D = drought tolerance, C = conventional, G = GLS resistance); 
Conventional means lines were selected on the basis of high yield potential only. 
 
Set 1: Grey Leaf Spot X Drought Tolerant Crosses 

♀/♂ CML442 (D) CML312 (D) CML445 (D) 

B16 (G)    

B17 (G)    

B18 (G)    

 
Set 2: Conventional X Drought Tolerant Crosses 

♀/♂ CML395 (D) CML444 (D) CML488 (D) 

B19 (C)    

B20 (C)    

B21 (C)    

 
Set 3: Drought Tolerant X Conventional Crosses 

♀/♂ A7 (C) A8 (C) A9 (C) 

CML442 (D)    

CML312 (D)    

CML445 (D)    

 
Set 4: Drought Tolerant X Conventional Crosses 

♀/♂ CML489 (C) A26 (C) CIM24 (D) 

CML395 (D)    

CML444 (D)    

CML488 (D)    

 
Set 5: Conventional X Grey Leaf Spot Resistant Crosses 

♀/♂ A13 (G) A14 (G) A15 (G) 

A7 (C)    

A8 (C)    

A9 (C)    

 
Set 6: Conventional X Grey Leaf Spot Tolerant Crosses 

♀/♂ B16 (G) B17 (G) B18 (G) 

B22 (C)    

B23 (C)    

B24 (C)    

 
Set 7: Grey Leaf Spot X Conventional Crosses 

♀/♂ B19(C) B20(C) B21(C) 

A13 (G)    

A14 (G)    

A15 (G)    

 
Set 8: Conventional X Conventional Crosses 

♀/♂ B22(C) B23(C) B24(C) 

K64R (C)    

B11 (C)    

B12 (C)    
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Appendix 2: Hybrids with significant SCA effects for GLS scores and Grain Yield  

Female Male Gray Leaf Spot Grain Yield 

  Score (1 to 9) (t/ha) 

  SCA Mean Score SCA Mean Yield 

      

  3    9  -2.6 4.0 0.4 5.8 

  2    7  -2.1 6.5 0.7* 4.5 

  1    8  -1.9 7.0 0.6 5.6 

  1    7  -1.8 8.5 0.1 4.9 

  2    8  -1.8 5.5 1.1** 4.9 

 10   24  -1.6 3.0 2.0** 5.2 

 20    6  -1.4 4.0 -0.1 8.2 

 18    1  -1.3 2.0 0.2 5.8 

  3    8  -1.3 5.5 0.4 5.7 

  1    9  -1.3 7.5 1.3** 6.3 

 15   21  -1.3 2.0 1.0* 6.9 

 12   23  -1.2 3.5 0.3 5.4 

 19    5  -1.1 2.0 -0.3 6.6 

  3    7  -1.1 7.0 1.3** 6.4 

  2    9  -1.1 6.0 0.3 4.2 

  5   25  -1.0 3.5 0.0 6.6 

 16    2  -0.9 6.5 -0.1 6.4 

 16    3  -0.9 5.0 0.2 6.6 

  4   26  -0.8 6.5 0.2 7.6 

 19    4  -0.8 3.0 -1.2** 6.3 

  4   25  -0.7 4.5 -0.2 6.2 

  5   27  -0.7 2.5 -0.6 5.6 

  8   14  0.7 7.0 -0.3 5.6 

  9   15  0.7 1.5 0.7* 6.4 

 13   20  0.7 3.0 0.3 7.0 

 12   22  0.8 4.0 0.0 6.5 

 16    1  0.9 7.5 0.0 7.3 

 20    4  0.9 6.5 -0.8* 6.8 

  9   13  0.9 2.0 -0.4 7.1 

  7   14  0.9 7.0 -0.8* 5.9 

  9   14  1.1 6.5 0.2 7.4 

 22   16  1.1 6.0 1.6* 6.2 

 15   20  1.1 4.5 -1.0* 4.8 

  7   13  1.2 3.0 -0.2 6.8 

 23   17  1.2 7.5 1.0* 6.3 

 19    6  1.4 5.0 -0.8* 7.3 

  8   15  1.4 3.0 -0.3 5.4 

 13   21  1.4 3.5 -0.5 6.3 

 24   18  1.7 2.0 1.3** 6.9 

 10   23  1.8 8.0 0.5 4.4 

 14   21  2.2 7.0 -0.8* 5.2 

 15   19  2.6 5.0 -0.3 5.9 

      

SED 0.51 0.98 0.43 0.84 

LSD 0.05 1.01 1.95 0.86 1.67 

All values for GLS are significant; but for grain yield **, * = SCA effects significant at 1% and 5%, 

respectively. 
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Appendix 3: Resistance and Heterosis of Selected hybrids for GLS and Grain Yield 

Entry 
  

Female 
Inbred 

 

Male 
Inbred 

  

Inbred 
Combination 
  

GLS Score (1 to 9) Grain Yield 

Hybrid MP Heterosis Hybrid MP Heterosis 

       

 Top 12: Resistant Hybrids:    (%) (t/ha) (t/ha) (%) 

35 13 19 RXR 1.5 1.9 -19.8 6.9 2.3 197.5 

28 9 15 SXR 1.5 2.9 -49.1 6.4 2.4 172.1 

54 19 5 RXS 2.0 3.0 -34.3 6.6 2.7 140.6 

50 18 1 RXS 2.0 2.5 -20.2 5.8 2.4 134.9 

43 15 21 RXR 2.0 2.3 -14.1 6.9 2.3 202.1 

64 22 18 RXR 2.0 1.5 34.4 4.4 1.8 138.1 

67 23 18 RXR 2.0 1.8 10.2 5.2 2.0 157.4 

70 24 18 RXR 2.0 1.5 34.4 6.9 1.7 312.5 

22 7 15 SXR 2.0 3.0 -33.3 6.7 2.6 157.9 

26 9 13 SXR 2.0 2.9 -31.9 7.1 2.3 212.8 

23 8 13 SXR 2.5 2.0 22.8 5.7 2.5 129.7 

15 5 27 SXR 2.5 2.7 -7.9 5.6 2.7 104.3 

Bottom 12: Susceptible Hybrids:       

4 2 7 SXS 6.5 4.9 32.3 4.4 2.7 62.0 

11 4 26 SXS 6.5 4.5 44.4 7.6 2.6 191.3 

14 5 26 SXS 6.5 4.4 48.5 8.4 2.4 251.3 

45 16 2 SXS 6.5 5.0 30.2 6.4 2.2 190.9 

24 8 14 SXS 7.0 2.9 141.3 5.6 2.5 119.0 

40 14 21 SXS 7.0 3.2 119.8 5.2 2.2 130.1 

7 3 7 SXS 7.0 3.7 88.7 6.4 2.8 128.4 

2 1 8 SXS 7.0 2.8 152.1 5.6 2.6 114.0 

21 7 14 SXS 7.0 3.9 81.4 5.9 2.6 131.2 

48 17 2 SXS 7.0 5.0 38.7 5.7 2.6 118.1 

66 23 17 RXS 7.5 3.2 135.9 6.3 2.1 201.6 

44 16 1 SXS 7.5 3.8 96.6 7.3 2.1 243.8 

3 1 9 SXS 7.5 3.7 103.9 6.3 2.4 164.2 

29 10 23 SXR 8.0 2.8 181.1 4.4 1.5 184.9 

1 1 7 SXS 8.5 3.7 127.6 4.9 2.6 87.7 

Standard Check Hybrids:    2.5      

SC627  R 1.8   5.4   

ZS257  R 2.4   5.0   

SC513  R 2.4   5.4   

SC709  R 2.5   5.2   

Susceptible Checks  8.3      

SR52  S 6.9   6.5   

R201  S 8.4   4.4   

R215  S 8.7   4.4   

SC701  S 8.8   4.6   

ZS206  S 8.9   5.3   

Overall Mean   4.79   5.91   

SED   0.70   0.58   

LSD (%)   1.97   1.63   

R = resistant, S = susceptible to GLS; MP = mid-parent value. 
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Chapter 4: Phaeosphaeria Leaf Spot Resistance in Southern African Maize base 
Germplasm 

Abstract 

Phaeosphaeria leaf spot (PLS) is a relatively recent disease of maize in Southern Africa, 

but with potential to become a major disease thereby posing a threat to food security. 

Very little is known about the level of resistance and the mode of inheritance in regional 

materials. This study was therefore conducted to determine: (a) levels of resistance; (b) 

heritability; and (c) gene action conditioning resistance in Southern African maize. 

Twenty-seven inbred lines were mated in eight sets according to a North Carolina 

Design II scheme resulting in 72 hybrids. Inbred lines, experimental hybrids and 24 

standard hybrids were evaluated in two replications and three environments at Cedara in 

South Africa and Rattray Arnold Research Station in Zimbabwe, during 2003/4 and 

2004/5 seasons. Disease scores could be divided into seven classes. Resistance was 

not only expressed by reduced severity but also by reduced lesion number and size. 

Thirty-four percent (34%) of the hybrids and 37% of the inbred lines were resistant. 

Resistance was highly heritable in the narrow sense (62% to 73%). Late disease 

observations appeared to give higher heritability scores than earlier disease 

observations just after flowering and assessments of leaf area diseased appeared to 

give higher heritability scores than disease scores. General combining ability (GCA) 

effects (90%) were highly significant (P<0.01), while specific combining ability (SCA) 

effects (10%) were not significant, indicating that mainly additive gene action played a 

role in conditioning resistance.  It is thus suggested, that in breeding resistant hybrids, 

both parents should carry high levels of resistance. However, female GCA effects 

contributed 58% and male GCA effects accounted for 32%, suggesting that future 

models should include reciprocal effects to investigate the possible role of maternal 

effects in influencing resistance. The following experimental hybrids, which combined 

high levels of resistance with high relative yield (121 to 141% of overall mean yield) are 

recommended for further testing and subsequent release: CML444/A26 (141.9%), 

B20/CML488 (138%), B19/CML488 (124%) and B21/CML395 (121%). Inbred lines B23, 

B17, B12 and CML444, which showed significant contribution to resistance, would be 

recommended for use as breeding sources. The study showed that hybrids which 

combine high levels of resistance to PLS and high yield potential could be developed. 

Keywords: GCA, Heritability, Maize, Phaeosphaeria maydis, Resistance, SCA 
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4.1 Introduction 

Phaeosphaeria leaf spot (PLS) caused by the fungus Phaeosphaeria maydis (Henn) 

Rane, Payka and Renfro appeared recently in sub-Saharan countries, namely South 

Africa, Zimbabwe, Kenya and Cameroon (Carson, 1999). The disease has been 

reported to be prevalent in high rainfall, moderate temperature and high altitude areas in 

Brazil, Asia and Africa (Carson et al., 1991; Carson, 2001; Silva, 2004). Although Flett 

(2004) reported that PLS occurred after grain filling and that grain yield had no 

significant correlation with the disease in South Africa, Pegoraro et al. (2001) reported a 

significant correlation (r = 0.45) between grain yield and PLS severity in Brazil. Paccola-

Meirelles (2001) reported a yield reduction of 63% in susceptible cultivars in Brazil. 

According to Paccola-Meirelles (2001), PLS causes yield losses through accelerated leaf 

senescence, reduced plant cycle and decreased grain size and weight. Although not 

reported in high epidemic proportions, incidence of PLS has been increasingly observed 

in the Southern African region for the past five years (Vivek et al., 2001; Carson, 2005), 

hence the disease has the potential to pose a serious threat to regional food security.  

 

Carson (2001, 1999) studied resistance to PLS in two major heterotic groups used in the 

USA hybrid programmes and reported that inbreds of the B73-type were more 

susceptible than those related to Mo17.  Studies of the mode of inheritance have 

reported predominance of additive effects and a smaller role of dominance action in 

conferring resistance in American and Brazilian materials (Silva and Moro, 2004; 

Carson, 2001; Carson et al., 2000). Silva and Moro (2004) reported that SCA effects and 

their interaction with environments were not significant.  Four to six quantitative trait loci 

(QTLs) have been reported to be involved in controlling resistance in Mo17 (Carson et 

al., 2005; Carson, 2000; Carson et al., 1996). Carson et al. (2005) also reported that 

additive x additive interaction was also significant in QTL studies.  Carson (2001) 

reported involvement of incomplete dominance, controlled by three to four genes in 

Mo17, whereas Pegoraro et al. (2002) reported two major independent genes that acted 

in an additive manner in conferring resistance in Brazilian maize. 

 

Carson (2001) reported that heritability of resistance was high (70 to 85%) and there 

were low levels of cultivar x environment interaction effects. Most studies have been 

conducted using USA and Brazilian material. In Southern Africa, the area grown to USA 

and Brazilian germplasm is not of any significance. Furthermore, the management and 

environmental conditions in the Americas are likely to be different from those in Southern 

Africa.  Published literature about resistance and the mode of inheritance in regional 
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materials is scarce.  Resistance of local germplasm to PLS should, therefore, be 

evaluated to obtain knowledge and make appropriate strategies to accumulate or 

enhance resistance before the damage caused by PLS reaches economic levels. This 

study was conducted to determine: (a) levels of resistance; (b) heritability; and (c) gene 

action conditioning resistance in a selected set of Southern African maize. 

 

4.2 Materials and Methods 

4.2.1 Germplasm  

Inbred lines used in the study comprised a sample from the following heterotic groups 

and their derivatives: a) CIMMYT (International Maize and Wheat Improvement Centre): 

A and B; and b) Southern African: P, K64R, SC, N3, M and I group (Table 4.1). Gevers 

and Whythe (1987) and Mickelson et al. (2001) presented detailed descriptions of these 

groups. The 27 inbred lines used consisted of six GLS-resistant and six drought-tolerant 

ones from CIMMYT, and 15 conventional lines obtained from Seed Co in Zimbabwe. 

These inbred lines are adapted to tropical east and Southern Africa. Inbred lines were 

divided into eight sets of three each; hence three inbred lines in one set were used as 

females and crossed with three inbred lines from another set used as males (Appendix 

1), according to a North Carolina Design II Mating Scheme (Comstock and Robinson, 

1948; 1952; Hallauer and Miranda, 1988). Each inbred line was used once as a female 

parent in one set and once as a male parent in another set, except the inbreds K64R, 

B11 and B12, which were used as females only, and CML489, A26 and CIM24, which 

were used as male parents only (Appendix 1, in sets 8 and 4, respectively). The inbreds 

CML489, CIM24 and A26 replaced K64R, B11 and B12 as male in set 4, which had 

failed to provide adequate pollen due to severe attack by maize streak virus. 

Consequently, eight sets of hybrids comprising nine hybrids each were formed among 

the 27 inbreds. The 27 inbred lines, their 72 crosses and 24 standard hybrids that were 

used as controls effectively constituted the reference population for this study.  Among 

the 24 standard hybrids SC627 and SC513 were used as GLS resistant check hybrids, 

while SC403, SC633, PAN6777, ZS255, ZS257, R201 and R215 were widely grown 

hybrids throughout Southern Africa. The PLS resistance of the standard hybrids was not 

known at the beginning of the study. 
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Table 4.1:  Parent Inbred Lines used in a Design II Mating Scheme 
Inbred Designation Heterotic Group Principal Selection Criteria 

    
1 CML442 A Drought Tolerance 

2 CML312 A Drought Tolerance 

3 CML445 AB Drought Tolerance 

4 CML395 B Drought Tolerance 

5 CML444 B Drought Tolerance 

6 CML488 B Drought Tolerance 

7 A7 M Conventional 

8 A8 M Conventional 

9 A9 P Conventional 

10 K64R K Conventional 

11 B11 K Conventional 

12 B12 K Conventional 

13 A13 A GLS Resistance 

14 A14 A GLS Resistance 

15 A15 N GLS Resistance 

16 B16 I GLS Resistance 

17 B17 B GLS Resistance 

18 B18 B GLS Resistance 

19 B19 K Conventional 

20 B20 KB Conventional 

21 B21 K Conventional 

22 B22 S Conventional 

23 B23 S Conventional 

24 B24 S Conventional 

25 CML489 AB Conventional 

26 A26 I Conventional 

27 CIM24 A Drought Tolerance 

 

4.2.2 Experimental Design 

Hybrids were evaluated at Cedara (CED; 1076 m altitude) in South Africa and Rattray 

Arnold Research Station (RARS; 1350 m altitude) in Zimbabwe. Due to inadequate seed 

for some crosses, only 64 hybrids comprising 57 experimental and seven standard 

hybrids were evaluated in 2003/4 and the experiments were laid out as 8 X 8 simple 

lattice design. Ninety-six hybrids comprising 72 experimental and 24 hybrid checks were 

screened in 2004/5 and the experiments were laid as 12 X 8 alpha lattice block designs 

with two replications. Inbred parent lines were evaluated in 6 X 5 α-lattice designs at 

RARS in 2004/5. Established plant populations (plants/ha) were 44000 at Cedara and 

53000 at RARS, while fertiliser (kg/ha) was applied as follows: 120 N: 33 P: 44 K at 

Cedara and 208 N: 35 P: 21 K at RARS. Total precipitation was as follows: 853 mm at 

Cedara (2003/4); 826 mm at RARS (2004/5) and 885 mm at Cedara (2004/5). Standard 

cultural practices, including hand planting, hand weeding and application of herbicides 

was followed, and fields were left to natural disease inoculation. Disease development 

was monitored every fortnight beginning from tassel emergence. Phaeosphaeria leaf 

spot severity was assessed at 50% silk emergence (PLS1) and at hard dough stages 

(PLS2) based on the visual assessment of the whole plot by estimating (i) percentage 
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leaf area diseased or necrotic (% LAD) and (ii) a rating scale of 1 to 9. Using this scale, 

1 = no disease, 3 = lesions on lower leaves, 5 = disease on most leaves and lower 

leaves dead, 7 = lower leaves dead and many lesions on all leaves above the ear and 9 

= almost  all leaf tissue is dead or necrotic (Munkvold et al., 2001). At harvest grain yield 

was measured on a whole plot basis following standard practice used at CIMMYT 

(CIMMYT, 1985) and was adjusted to 12.5% moisture using the formula:  

 

Grain Yield (t/ha) = [Grain Weight (kg/plot) x 10 x (100-MC)/ (100-12.5)/(Plot 

Area)], where MC = Grain Moisture Content.  

 

Mid parent heterosis (MPH) for PLS was calculated for each hybrid (Falconer, 1989) 

using the formula:  

MPH (%) = (F1-MP)/MP x 100, 

Where F1 = mean of the F1 hybrid performance, MP = mean of two parents making the 

cross using the formula: (P1 + P2)/2, where P1 and P2 are the means of the inbred 

parents.  

 

4.2.3 Statistical Analyses 

General analyses of variance were performed for all hybrids and inbred lines, including 

control hybrids using IRRISTAT (2003) computer package for PLS and grain yield data 

for each site. Genetic analyses for PLS were performed in SAS (SAS Institute, 1997) as 

a fixed effects model for experimental hybrids, as described by Hallauer and Miranda 

(1988) for across environments using the following linear model: 

 

Yijkpq = µ+Sp + gi(Sp) + gj(Sp) + hij(Sp) + Eq + rk(SE)pq + (ES)pq + (Eg)iq(Sp) +(Eg)jq(Sp) + (Eh)ijq(Sp) + 

eijkpq 

 

Where i =1, 2, 3; j = 1, 2, 3; k = 1, 2; p = 1, 2, 3, 4, 5, 6, 7, 8; q = 1, 2 and Yijkpq denotes the value of 

the hybrid of a mating of the i
th
 female line, the j

th
 male line, in the k

th
 block, within set p and in the 

q
th

 environment. The terms are defined as follows: 

 

µ = Grand mean 

Sp =       the average effect of the p
th

 set 

gi(Sp)   = the GCA effect common to all hybrid of the i
th

 female line nested within p
th
 set, 

gj(Sp)  = the GCA effect common to all hybrid of the j
th
 male line nested within p

th
 set, 

hij(Sp)  = the SCA effect specific to hybrid of the i
th

 female and j
th

 male line nested within p
th
 set, 

Eq           = average effect of q
th

 environment 

rk(SE)pq  = the effect of the k
th

 replication nested within the p
th
 set and q

th
 environment 
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(ES)pq = the interaction between set effects and the environment 

(Eg)iq(Sp)  and  +(Eg)jq(Sp) = the interaction between environment and GCA nested within sets 

(Eh)ijq(Sp) = the interaction between environment and SCA nested within sets 

eijkpq = the random experimental error. 

 

According to Hallauer and Miranda (1988), the main effects due to females (sets) and 

males (sets) are equivalent to the GCA (general combining ability), while male x female 

(sets) interaction effects represent the SCA (specific combining ability) effects in a diallel 

mating. General combining ability and SCA effect estimates for inbred lines and crosses, 

respectively, were determined by line x tester analysis in Agrobase (2005) computer 

package.  Using the variance ratios in REML (GenStat, 2003), heritability estimates were 

calculated as suggested by Hallauer and Miranda (1988) for the fully inbred parents (F = 

1)  (where σ2
m = σ2

f =  ½σ2
A; and σ2

mf    =  σ2
D ) using the formulae:  

  

a) h2 = 2σ2
m/(σ2/r + σ2

mf + 2σ2
m) for one environment, and 

b) h2 =2σ2
m/( σ2/re + σ2

fme/e + 2σ2
me/e + σ2

mf + 2σ2
m)  for across environments,  

 

Where σ2
m = male (set) variance, σ2 = random error variance; σ2

mf = male x female (set) 

variance; σ2
fme = environment x male x female (set) variance; σ2

me = environment x male 

(set) variance; r = number of replications and e = number of environments. σ2
f  = fema 

(set) variance; σ2
A = additive variance and σ2

D = dominance variance. Heritability 

estimates were calculated using the male variance (σ2
m) to avoid the upward bias of 

heritability due to maternal effects if the female variance (σ2
f) was used. 

 

4.3 Results 

4.3.1 Resistance of Inbred Lines 

The PLS disease intensified after the grain filling stage at RARS. Consequently, very few 

inbred lines had PLS rating greater than 3, but the most susceptible inbred CML445 had 

a rating of 6.1 while four of the most resistant showed no symptoms. There were no 

inbred lines with a severity rating of 7.0 to 9.0, but there were significant (P<0.05) 

differences among inbred lines for reaction to PLS (Table 4.2). For convenience of the 

study inbreds were divided into five classes of resistance as follows: (a) immune (PLS 

score = 1.0); (b) resistant (1.1 to 1.2); (c) moderate resistance (1.3 to 1.5); (d) 

moderately susceptible (1.6 to 2.6); and (e) susceptible (2.7 to 6.1). Inbreds in the 

resistant category had scores that were significantly less than the mean; those in the 

moderate classes had PLS rating similar to the mean, while the susceptible had ratings 
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significantly larger than the mean. Resistance was not only expressed by reduced 

severity but also by reduced lesion number and/or reduced lesion size. Four out of 27 or 

15% of the inbred lines were immune to PLS disease:  B17, B12, CML444 and A9. The 

five most susceptible inbreds were: B18, B21, K0315Y and CML445 (Table 4.2).  

 

Table 4.2: PLS resistance score for parent inbred lines used in a design II mating 
scheme 

Entry Inbred Category Disease Score (1 to 9)
♣
 

    

17 B17 Immune   1.0 * 

12 B12 Immune 1.0 

5 CML444 Immune 1.0 

9 A9 Immune 1.0 

22 B22 R     1.1 ** 

15 A15 R 1.1 

6 CML488 R 1.1 

10 K64R R 1.1 

4 CML395 R 1.1 

7 A7 R 1.1 

16 B16 MR     1.3 ** 

26 CIM24 MR 1.4 

23 B23 MR 1.4 

2 CML312 MR 1.4 

25 CML489 MS       1.7 *** 

1 CML442 MS 1.7 

27 A26 MS 1.7 

24 B24 MS 1.8 

20 B20 MS 1.8 

19 B19 MS 2.0 

13 A13 MS 2.2 

14 A14 MS 2.2 

11 B11 MS 2.9 

18 B18 S 3.1 

21 B21 S 3.2 

8 A8 S 3.5 

3 CML445 S 6.1 

      

 Mean  1.9 

 SED  0.3 

 LSD 0.05  0.7 
♣ 

R= resistant, MR = Moderately Resistant and S = Susceptible; * Immune, **Traces of necrotic spots are 

clearly noticeable; ***Coalescing necrotic spots. 

 

4.3.2 Hybrid Resistance  

Severity of PLS was significantly higher in 2004/5 than 2003/4 at Cedara and Rattray 

Arnold Research Stations. There was a significant (P<0.01), positive correlation between 
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rating scores and % LAD (r = 0.93) and the rank correlation between the environments 

was also significant and positive (r = 0.77).  Disease scores for hybrids in each 

environment are presented in Appendix 1. At Cedara, PLS scores ranged from 0.9 to 4.6 

(CML445/A8) in 2003/4 and from 1.1 (K64R/B23) to 7.1 for the susceptible control 

SC513 in 2004/5.  At Rattray Arnold, there were moderate levels of PLS ranging from nil 

to traces between 1.0 and 4.5 (CML445/A8) in 2004 for most experimental hybrids.  The 

susceptible control, SC403 had high infections of 7.0 in 2004/5. Hybrids were 

categorised into “resistance” classes using data obtained at Cedara during 2004/5, 

because disease pressure was most severe in that environment (Fig. 1).  Disease 

scores could be classified in seven statistical classes. Resistance was not only 

expressed by reduced severity but also by reduced lesion number and/or reduced lesion 

size. Thirty-four percent (34%) of the hybrids were resistant to PLS (Fig. 1).  Table 3 

shows the resistance scores and grain yield of the hybrids at Cedara during 2004/5. The 

most resistant hybrids were crosses between resistant inbred lines, while in general the 

most susceptible were crosses between susceptible inbred lines. The following 

experimental hybrids combined high level of resistance with high relative grain yield (i.e. 

121 to 141.9% of overall mean yield): CML444/A26 (141.9%), B20/CML488 (138%), 

B19/CML488 (124%) and B21/CML395 (121%) (Table 4.3).  Among the susceptible 

hybrids (bottom 15), there were also hybrids with high relative grain yield: A9/A13 

(119%), A7/A13 (115%) and B24/B18 (117%). Although two standard hybrids (R201 and 

R215) were ranked among the most resistant they had relatively low relative yield (75%). 

Three standard hybrids SC403, ZS255 and SC513 were among the most susceptible 

with relatively low yield (≤ 91%). The most resistant hybrids (top three) had one common 

resistant parent (B23), while the most susceptible contained three common susceptible 

parents (B24, A8 and CML445).   

 

Generally, hybrids’ resistance declined with declining resistance level of the parent-

inbred lines (Table 4.4). Hybrids formed between resistant inbreds (R x R), and between 

resistant and moderately resistant (R x MR) had high level of resistance, while those 

formed between susceptible lines were most susceptible. The most resistant hybrids (in 

the R x MR category) were more resistant than the mean of control hybrids and 

susceptible control hybrids. Although there was no significant relationship between grain 

yield and PLS resistance, there were hybrids that combined high levels of resistance 

with high grain yield. In particular crosses between resistant R and moderately 

susceptible MS inbreds and vice versa appeared to be high yielding. 
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Fig. 1: Frequency distribution of 96 hybrids for resistance to PLS at    

Cedara in 2004/5.
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Table 4.3: Mean PLS Rating and Grain Yield of selected hybrids at Cedara 2004/5 
Entry Name  Category PLS Yield 

Score %LAD t/ha % Mean 

 
Top  21 Resistant hybrids 

    

69 B12/B23 R X R 1.0 0.3 5.4 91.2 

47 B23/B16 R X MR 1.0 0.2 5.4 91.3 

67 K64R/B23 R X R 1.1 0.3 4.4 74.3 

49 B22/B17 R X R 1.2 0.3 4.5 76.4 

66 B12/B22 R X R 1.3 0.2 6.4 109.3 

29 CML444/CML489 R X R 1.3 0.3 6.6 111.6 

36 CML488/CIM24 R X MR 1.4 0.1 6.1 104.2 

46 B22/B16 R X MR 1.4 0.3 6.2 104.5 

12 B21/CML395 S X R 1.4 0.8 7.1 121.1 

65 04C2181 S X R 1.4 0.4 5.3 89.1 

79 R 201 Control 1.5 0.3 4.4 75.3 

18 B21/CML488 S X R 1.6 0.4 6.9 116.4 

32 CML444/A26 R X MS 1.6 0.0 8.4 141.9 

4 B16/CML312 MR X MR 1.7 1.0 6.4 107.9 

13 B19/CML444 MS X R 1.8 2.5 6.6 111.6 

11 B20/CML395 MS X R 1.9 1.0 6.8 114.6 

80 R 215 Control 1.9 0.1 4.4 75.1 

17 B20/CML488 MS X R 1.9 1.3 8.2 138.3 

10 B19/CML395 MS X R 1.9 1.0 6.3 106.2 

16 B19/CML488 MS X R 2.0 2.6 7.3 124.4 

2 B17/CML442 R X MS 2.0 1.5 6.7 113.7 

 
Bottom  17 susceptible hybrids 

    

71 B11/B24 S X MS 4.1 21.6 3.8 64.1 

22 CML442/A8 MS X S 4.2 16.3 5.5 93.5 

44 A8/A15 S X R 4.4 27.5 5.4 91.8 

39 A9/A13 R X S 4.4 29.6 7.0 119.0 

51 B24/B17 MS X R 4.5 10.5 6.2 105.8 

70 K64R/B24 R X S 4.5 20.0 5.2 88.2 

6 B18/CML312 S X MR 4.6 25.5 5.1 86.4 

21 CML445/A7 S X R 4.7 25.7 6.4 107.9 

37 A7/A13 R X S 4.8 25.7 6.8 115.5 

38 A8/A13 S X S 4.9 35.9 5.7 96.8 

74 SC403 Control 5.1 19.9 5.0 85.1 

3 B18/CML442 S X MS 5.1 25.2 5.8 98.1 

24 CML445/A8 S X S 5.1 27.7 5.7 96.1 

48 B24/B16 S X MR 5.6 39.7 5.2 88.2 

78 ZS255 Control 5.9 49.9 5.0 85.4 

54 B24/B18 MS X S 6.3 49.9 6.9 117.5 

73 SC513 Control 7.1 44.9 5.4 91.1 

Means   2.9 10.8 5.9 100.2 

SED   0.6 5.8 0.6  

LSD  0.05  1.7 16.3 1.6  

 Control hybrids are in bold; and high yield values are in bold 
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Table 4.4: Resistance and Grain Yield of different Groups of hybrids  

Group Category PLS Yield Relative Yield 

    %LAD   Score  (t/ha)  (% Overall Mean) 

1 R X MR 0.7 1.6 5.9 99.5 

2 R X R 2.5 1.7 5.7 97.0 

3 R X MS 3.1 2.1 6.4 108.3 

4 MS X R 3.3 2.3 6.4 108.9 

5 MR X R 7.1 3.3 4.3 72.1 

6 S X R 7.6 2.6 6.1 103.8 

7 S X MS 14.5 3.7 5.7 96.2 

8 R X S 15.1 3.5 6.0 100.9 

9 Control 18.2 3.5 5.2 88.5 

10 S X S 24.0 4.0 5.4 91.7 

11 MS X S 25.3 4.5 5.9 99.4 

12 S X MR 32.6 5.1 5.2 87.3 

      

Mean  10.8 2.9 5.9 100 

SED  5.8 0.6 0.6  

LSD 0.05 16.3 1.7 1.6  

R = resistant, S = susceptible, MS = moderately susceptible, MR = moderately resistant 

4.3.3 Gene Action and Combining Ability Effects for Inbred Lines 

Environments, sets and the environment x sets interaction mean squares were highly 

significant (P<0.01) for PLS scores across environments (Table 4.5). Male GCA and 

female GCA effects were highly significant for PLS scores. In terms of interaction with 

the environment, only the environment x female GCA interaction effect was significant 

(P<0.01). In total, GCA effects accounted for 90% of the sum of squares due to crosses 

with female GCA explaining 58% and males 32%. Although not significant, SCA effects 

accounted for 10% of the sum of squares for the crosses. The inbreds CML444, 

CML488, B11, B12 and B22 had negative GCA effects as both male and female parents 

(Table 4.6). The inbred lines CML445, CML395, B16, B17 and B23 had negative GCA 

as female, while K64R, A15, CML489, CIM24 and B20 displayed negative GCA as male 

sources.  
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Table 4.5. Mean Square Values of Hybrids for Phaeosphaeria Leaf Spot across two 
Environments (RARS and CED) in 2004/5 

Source of Variation D.F. PLS 

Environment 1 110.967** 

Set 7 5.748** 

Environment x Set 7 4.976** 

Replication (Set) (Environment) 16 2.516 

Female (Set) 16 5.514** 

Male (set) 16 3.014** 

Female x Male (Set) 31 0.493 

Environment x Female (Set) 16 1.793** 

Environment x Male (set) 16 0.575 

Environment x Female x Male (Set) 31 0.886 

**, * Significant at 1% and 5%, respectively. 

 

Table 4.6. GCA Effect Estimates of Parent Inbred Lines for PLS at three environments 
Entry Inbred CED2004 CED2005 RA2005 

%LAD Score %LAD Score 

Female Male Female Male Female Male Female Male 

          

  1  CML442 1.3 19.6 ** 0.5 0.3 0.2 0.9 -0.5 -0.7 * 

  2  CML312 6.3 * 13.8 ** 0.3 0.0 -0.1 0.7 0.5 -0.2 

  3  CML445 -7.0 * 23.0 ** 1.3 ** 0.0 10.6 ** 1.6 2.9 ** 1.2** 

  4  CML395 -9.5 ** -5.4 -0.8 * -1.0 -8.9 ** -8.3 ** 1.7 * -0.7 * 

  5  CML444 -8.3 * -7.9 * -1.3 ** -0.8 * -11.6 ** -7.6 * 1.9 ** -0.8 * 

  6  CML488 -9.5 ** -8.7 * -0.8 * -1.0 * -4.8 -7.6 * 0.6 -0.8 * 

  7  A7 20.7 ** 4.6 0.8 * 0.5 3.2 0.2 -0.5 0.5 

  8  A8 24.6 ** 14.6 ** 1.3 ** 1.2 ** 13.7 ** 9.9 ** 0.0 1.4 * 

  9  A9 14.6 ** 4.3 0.7 0.5 5.6 * 0.6 -0.7 * 1.0 * 

 10  K64R -5.4 -7.0 * 0.1 -1.2 ** 1.3 -8.2 ** 0.8 * 3.7 ** 

 11  B11 -7.9 * -7.0 * 0.6 --- 2.5 --- 2.1 ** -- 

 12  B12 -8.7 ** -9.0 * -1.6 ** --- -10.1 ** --- 0.1 -- 

 13  A13 10.5 ** 0.8 -0.2 1.8** 0.6 21.2 ** -0.7 * -0.5 

 14  A14 -1.5 -4.5 0.1 0.3 0.6 -5.1 0.0 -0.2 

 15  A15 14.6 ** -9.3 ** -0.6 0.7 -5.3 * 6.4 -0.7 * -0.4 

 16  B16 -8.3 * -4.5 -0.6 0.0 -5.6 * 4.6 -0.3 -0.3 

 17  B17 -8.3 * -3.7 -0.5 -0.2 -5.8 * -4.4 -0.2 -0.3 

 18  B18 -4.5 8.8 ** 1.5** 1.3** 14.6 ** 14.7 ** 0.9 * 0.7 * 

 19  B19 --- --- -0.6 0.2 -6.6 * 0.6 -0.8 * -0.6 * 

 20  B20 -3.7 -9.5 ** -1.0 * -0.8 * -8.4 ** -4.4 -0.8 * -0.8 * 

 21  B21 -4.0 -8.7 ** -1.2 ** 0.0 -8.4 ** -0.3 -0.7 * 0.1 

 22  B22 -6.2 * -8.7 ** -0.6 -1.2 ** -2.9 -8.8 ** -0.8 * -0.8 * 

 23  B23 -9.2 ** -5.4 -1.0 * -1.3 ** -6.9 * -8.6 ** -0.8 * 0.0 

 24  B24 -- --- 2.8 ** 1.9 ** 24.7 ** 12.5 ** 1.7 * 3.3 ** 

 25  CML489 --- --- --- -0.8 * -- -7.4 * --- -0.7 * 

 26  A26 --- --- --- -0.5 -- -2.6 --- -0.4 

 27  CIM24 -- -- --- -0.8 * -- -7.8 * -- -0.8 * 

         

SED  4.11 4.12 0.501 0.532 3.728 3.962 0.430 0.457 

**, * = GCA effect significantly different from zero at 1% and 5%, respectively; --- = no data because the line 

was not used either as male or female; CED2004 and CED2005 = Cedara in 2003/4 and 2004/5, 

respectively. RA2005 = RARS in 2004/5. 
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4.3.4 Heritability of Resistance 

Heritability of resistance was higher for the second (at hard dough stage) than the first 

rating (at 50% silk emergence) for both PLS scores and % LAD (Table 4.7). Average 

heritability was 52% and 67% for the first (PLS1) and second (PLS2) rating scores, 

respectively.  Late disease ratings appeared to give higher heritability scores than earlier 

disease ratings just after flowering. However, larger heritability estimates were obtained 

for LAD of 62% for first and 73% for second rating. Overall heritability estimate was 68%. 

The parent on offspring regression was significant (P<0.01) with a coefficient value of 

0.62 for PLS scores.  

 

Table 4.7. Heritability Estimates (%) for hybrids’ reaction to PLS at three environments 
and four methods of assessment 

 Rating Ced2005 Ced2004 RA2005 Average 

PLS1 Score 51.69 -- -- 51.69 

PLS2 Score 61.96 -- 73.50 67.73 

%LAD1 -- 62.01 --- 62.01 

%LAD2 71.76 73.93 -- 72.85 

Ced2005, Ced2004 = Cedara in 2004/5 and 2003/4, respectively; RA2005 = Rattray Arnold in 2004/5; 

Average = arithmetic mean of PLS values across the three environments. 

 

4.3.5 Heterosis of Hybrids for Resistance 

Heterosis for PLS scores ranged from -53.4 for the hybrid 21 x 4 to 259.7% for hybrid 24 

X 6 (Table 4.8). Although average heterosis was 53.89%, 13 hybrids displayed 

significant negative heterosis for PLS. All hybrids with negative heterosis for PLS scores 

were in the resistance category, with resistance in the male, the female or both parents. 
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Table 4.8. Mid Parent (MP) heterosis of selected hybrids for PLS scores at Ced2005 
Female Male Category Hybrid MP Heterosis (%) 

Top 13 Hybrids:     

 21    4  S X R 1.0 2.1 -53.4 

 18    3  S X S 3.0 4.6 -34.8 

 16    3  MR x S 2.5 3.7 -31.7 

 21    6  S X R 1.5 2.1 -30.1 

  3    9  S X R 2.5 3.5 -29.4 

 17    3  R X S 2.5 3.5 -27.6 

 23   16  R  X MR 1.0 1.3 -24.6 

 10   23  R X R 1.0 1.3 -20.0 

 12   23  R X R 1.0 1.2 -14.8 

 23   18  R x S 2.0 2.3 -11.7 

 15   21  R X S 2.0 2.2 -7.4 

 11   23  S X R 2.0 2.1 -6.5 

 21    5  S X R 2.0 2.1 -4.8 

Bottom 8 hybrids:   

 24   18   S XS 6.5 2.5 163.4 

  7   13  R x MS 4.5 1.6 177.9 

  9   15  R X R 3.0 1.1 180.6 

  9   13  R x MS 4.5 1.6 181.6 

  2    9  MR x R 3.5 1.2 184.1 

 10   24  R X MS 4.5 1.5 209.7 

 24   17  MS X R 4.5 1.3 240.3 

 24   16  MS XMR 5.5 1.5 259.7 

Ced2005 = Cedara in 2004/5 season; MP = mid parent  

 

4.4 Discussion 

Disease development was highly determined by environment (Table 4.5), thus disease 

occurrence and levels may differ drastically between years. However, in suitable 

environments, such as Cedara, onset of the PLS may be relatively early and 

development relatively strong, causing severe necrosis of large parts of the plant, 

reducing photosynthetic area and grain filling. On heavily infected plants, the ears often 

had few or no lesions, thus minimising the damage to the ear. The disease tended to 

have a rather uniform distribution within the trial at Cedara. At hot spot locations, such as 

Cedara, South Africa, screening for disease resistance can be effective, at least during 

years with favourable weather for disease development. 

 

As from the literature, the disease was first observed at silking and quickly intensified. 

This late arrival in the crop cycle increased the chances that the disease intensity 

remains low. At Cedara, in South Africa, the first lesions were observed on the top 

leaves (above the ear) in some entries but in most entries on the lower leaves. This 

suggests that the fungus is mainly spreading from the soil to the lower leaves of the 

host, but that there is also an airborne spread. Disease scores could be classified into 
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seven classes.  High levels of resistance were encountered in K, SC, N3 and CIMMYT B 

heterotic groups, indicating that hybrids between lines drawn from these groups would 

show high levels of resistance. Resistance was not only expressed by reduced severity 

but also by reduced number and size of lesions. 

 

Although PLS may still be regarded as a minor disease it might follow a similar trend to 

GLS in the USA, which appeared in 1925, but only became an economic disease in the 

1970’s (Huff et al., 1988). However, the significant variation among hybrids and inbreds 

for resistance to PLS provides breeders with an opportunity for selection. Low PLS rating 

scores for 34% of the hybrids and 37% of inbreds that were classified resistant, indicated 

that there were high levels of resistance to PLS in this set of germplasm, for breeding in 

Southern Africa. Consequently, scientists do not have to look beyond the region in 

search of resistance, which is obtainable in these local and adapted inbred lines with 

base line resistance to other regional diseases. The inbreds B23, 9314085P, B17 and 

CML444, which contributed significant levels of resistance in the most resistant hybrids, 

would be recommended for use as breeding sources in regional programmes that aim at 

enhancing resistance.  In addition, the single cross hybrids with high levels of resistance 

would be recommended for developing new PLS-resistant lines through pedigree 

breeding. However, the following experimental hybrids, which combined high levels of 

resistance with high relative yield ranging from 121 to 141% of the overall mean yield 

would be recommended for further testing and subsequent release for cultivation in 

disease prone areas: CML444/A26 (141.9%), B20/CML488 (138%), B19/CML488 

(124%) and B21/CML395 (121%).  High level of resistance observed in this study was in 

agreement with that observed in a previous study conducted by Flett (2004) who 

reported a low range of PLS scores and concluded that commercial hybrids had high 

levels of resistance in South Africa. 

 

General combining ability accounted for 90%, while SCA explained only 10% of sum of 

squares for the crosses (hybrids), indicating that additive effects played a greater role 

than their non-additive counterparts in conditioning resistance to PLS. These results 

were consistent with previous studies in Brazil and the USA where GCA has been 

reported to be predominant over SCA effects in conferring resistance (Pegoraro et al., 

2002; Carson, 2001).  Although Vivek et al. (2001) reported that both GCA and SCA for 

PLS were highly significant in regional maize, GCA accounted for 65% of the genetic 

variation. In the current study, female GCA accounted for 58% and male GCA effects 

32%, implying a possible role of maternal effects in controlling resistance in hybrids. 

Hallauer and Miranda (1988) reported that if present maternal effects would inflate the 
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GCA or the additive variance. Future studies of PLS inheritance should employ models 

that include reciprocal effects in order to investigate the “speculative” role played by 

maternal effects in influencing resistance in this set of maize germplasm. 

 

Highly significant (P<0.01) environmental effects could be explained by differences in 

the level of disease pressure at Cedara (mean rating 2.9) and RARS (mean = 2.1) in 

2004/5. Deep conventional tillage is a traditional practice at RARS, which reduces the 

level of disease inoculum in and on the ground as infected debris is ploughed deep 

under every season. At Cedara, trials were grown in the same field that had been 

continuously planted to maize following reduced tillage practice. Furthermore, Cedara 

has a favourable environment for PLS development, which is characterised by humid, 

morning dew and is situated within the mist-belt of KwaZulu-Natal Midlands.  A 

significant (P<0.01) interaction of female GCA with environment suggested that selection 

progress would be impeded because different sets of hybrids would be selected in each 

environment. Alternatively different set of female parents have to be used depending on 

the target environment. Vivek et al. (2001) also reported highly significant (P<0.01) GCA 

x environment effects in regional maize.  

 

High levels of heritability estimates (52 to 73%) were a reflection of high GCA variance 

relative to the residual. High levels of heritability estimates (55 to 85%) have been 

reported in previous studies (Carson et al., 2005; Carson, 2001; Vivek et al., 2001). The 

high levels of heritability estimates suggested that simple selection procedures based on 

GCA would be employed to enhance resistance in regional cultivars.  The significant 

(P<0.01) parent on offspring regression (0.62) also indicated that resistance of hybrids 

would be predictable from the levels of resistance levels in their parents.  The study also 

showed that most resistant hybrids were formed between resistant lines (R x R or R x 

MR), indicating that resistant single cross hybrids would be obtained when both parents 

have high levels of resistance. This confirmed the predominance of additive effects, 

because resistance was diluted in hybrids when a resistant parent was crossed to a 

susceptible parent. The observation that there were hybrids that combined high levels of 

resistance and high yield indicated that breeding for resistance would not necessarily 

compromise grain yield in this set of germplasm. 

 

4.5 Conclusion 

This study was conducted to determine (a) levels of resistance, (b) heritability and (c) 

gene action conditioning resistance in a selected set of Southern African maize. Disease 
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scores could be classified in seven statistical classes. Resistance was not only 

expressed by reduced severity but also by reduced lesion number and or reduced lesion 

size. The results revealed high levels of resistance for the hybrids (34%) and inbred lines 

(37%).  Resistance was highly heritable (62 to 73%). Additive gene action played a 

predominant role, while non-additive effects were not significant in conditioning 

resistance.  Future studies should employ models which include reciprocal effects to 

investigate the “speculative” role of maternal effects in influencing resistance in this set 

of Southern African maize. Several experimental hybrids combined high levels of 

resistance with high relative grain yield (121 to 141% of overall trial mean): CML444/A26 

(141.9%), B20/CML488 (138%), B19/CML488 (124%) and B21/CML395 (121%). These 

would be recommended for further testing and subsequent release. In addition, the 

inbred lines B23, B17, B12 and CML444, which showed significant contribution of PLS-

resistance to the hybrids would be recommended for use as breeding sources.  
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Appendices 

Appendix 1. Sets of crosses formed in a North Carolina II Mating design (Principal 
Selection criteria: D = drought tolerance, C = conventional, G = GLS resistance); 
Conventional means lines were selected on the basis of high yield potential only. 
 
Set 1: Grey Leaf Spot X Drought Tolerant Crosses 

♀/♂ CML442 (D) CML312 (D) CML445 (D) 

B16 (G)    

B17 (G)    

B18 (G)    

 
Set 2: Conventional X Drought Tolerant Crosses 

♀/♂ CML395 (D) CML444 (D) CML488 (D) 

B19 (C)    

B20 (C)    

B21 (C)    

 
Set 3: Drought Tolerant X Conventional Crosses 

♀/♂ A7 (C) A8 (C) A9 (C) 

CML442 (D)    

CML312 (D)    

CML445 (D)    

 
Set 4: Drought Tolerant X Conventional Crosses 

♀/♂ CML489 (C) A26 (C) CIM24 (D) 

CML395 (D)    

CML444 (D)    

CML488 (D)    

 
Set 5: Conventional X Grey Leaf Spot Resistant Crosses 

♀/♂ A13 (G) A14 (G) A15 (G) 

A7 (C)    

A8 (C)    

A9 (C)    

 
Set 6: Conventional X Grey Leaf Spot Tolerant Crosses 

♀/♂ B16 (G) B17 (G) B18 (G) 

B22 (C)    

B23 (C)    

B24 (C)    

 
Set 7: Grey Leaf Spot X Conventional Crosses 

♀/♂ B19(C) B20(C) B21(C) 

A13 (G)    

A14 (G)    

A15 (G)    

 
Set 8: Conventional X Conventional Crosses 

♀/♂ B22(C) B23(C) B24(C) 

K64R (C)    

B11 (C)    

B12 (C)    
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Appendix 2: PLS Resistance and yield of 80 hybrids in 2004/5 season 

ENTRY NAME PLS Score Yield 

    Cedara RARS (t/ha) % Mean 

32 CML444/A26 1.6 1.1 8.4 141.9 

17 B20/CML488 1.9 1.0 8.2 138.3 

31 CML395/A26 2.4 1.0 7.5 127.7 

42 A9/A14 2.4 1.1 7.4 124.9 

16 B19/CML488 2.0 1.1 7.3 124.4 

1 B16/CML442 2.3 1.0 7.3 123.2 

12 B21/CML395 1.4 1.6 7.1 121.1 

75 SC633 2.9 2.3 7.1 120.7 

39 A9/A13 4.4 1.5 7.0 119.0 

54 B24/B18 6.3 5.5 6.9 117.5 

58 A13/B20 2.3 1.1 6.9 117.5 

55 A13/B19 2.4 1.1 6.9 117.1 

63 A15/B21 2.3 1.5 6.9 116.5 

18 B21/CML488 1.6 1.1 6.9 116.4 

37 A7/A13 4.8 1.1 6.8 115.5 

11 B20/CML395 1.9 1.0 6.8 114.6 

2 B17/CML442 2.0 1.0 6.7 113.7 

43 A7/A15 2.8 0.9 6.7 113.5 

13 B19/CML444 1.8 1.0 6.6 111.6 

29 CML444/CML489 1.3 1.6 6.6 111.6 

7 B16/CML445 2.4 2.5 6.6 111.2 

15 B21/CML444 2.3 1.0 6.5 110.9 

66 B12/B22 1.3 1.1 6.4 109.3 

45 A9/A15 3.3 1.1 6.4 108.8 

4 B16/CML312 1.7 0.9 6.4 107.9 

21 CML445/A7 4.7 4.4 6.4 107.9 

56 A14/B19 3.6 1.6 6.4 107.6 

30 CML488/CML489 2.0 1.0 6.3 106.9 

50 B23/B17 2.2 0.9 6.3 106.3 

10 B19/CML395 1.9 1.0 6.3 106.2 

61 A13/B21 3.0 1.5 6.3 106.0 

34 CML395/CIM24 2.1 0.8 6.2 105.8 

51 B24/B17 4.5 2.6 6.2 105.8 

25 CML442/A9 3.5 2.0 6.2 105.7 

59 A14/B20 1.7 1.0 6.2 105.4 

8 B17/CML445 2.5 3.0 6.2 105.3 

46 B22/B16 1.4 1.1 6.2 104.5 

28 CML395/CML489 2.2 0.9 6.2 104.5 

36 CML488/CIM24 1.4 1.1 6.1 104.2 

33 CML488/A26 2.3 2.0 6.1 103.1 

40 A7/A14 3.2 2.0 5.9 100.3 

57 A15/B19 2.3 1.1 5.8 98.9 

3 B18/CML442 5.1 1.5 5.8 98.1 

27 CML445/A9 2.9 3.5 5.8 97.6 

*Standard hybrids are in bold. 
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Appendix 2. PLS resistance and yield of hybrids at Cedara and RARS in 2004/5 

(Continued) 

Entry Name PLS Sore Yield 

  Cedara RARS t/ha %Mean 

38 A8/A13 4.9 1.4 5.7 96.8 

5 B17/CML312 2.0 1.0 5.7 96.2 

24 CML445/A8 5.1 5.9 5.7 96.1 

68 B11/B23 2.0 1.0 5.7 95.9 

35 CML444/CIM24 2.0 0.9 5.6 95.1 

41 A8/A14 3.0 2.0 5.5 94.0 

14 B20/CML444 1.4 1.0 5.5 93.6 

22 CML442/A8 4.2 0.9 5.5 93.5 

44 A8/A15 4.4 2.0 5.4 91.8 

47 B23/B16 0.8 1.1 5.4 91.3 

69 B12/B23 0.8 3.4 5.4 91.2 

73 SC513 7.1 4.6 5.4 91.1 

76 SC627 3.2 1.4 5.4 90.9 

65 04C2181 1.4 2.5 5.3 89.1 

48 B24/B16 5.6 2.4 5.2 88.2 

70 K64R/B24 4.5 4.0 5.2 88.2 

72 04C2182 1.4 5.5 5.2 88.2 

53 B23/B18 2.2 1.1 5.2 87.7 

62 A14/B21 2.9 3.1 5.2 87.3 

6 B18/CML312 4.6 3.0 5.1 86.4 

78 ZS255 5.9 6.6 5.0 85.4 

74 SC403 5.1 7.0 5.0 85.1 

77 ZS257 2.5 4.0 5.0 84.6 

19 A7 2.1 1.0 4.9 83.1 

23 CML312/A8 2.3 2.5 4.9 83.1 

64 04C2179 1.7 1.4 4.8 81.5 

60 A15/B20 1.7 1.0 4.8 80.7 

49 B22/B17 1.2 1.0 4.5 76.4 

79 R201 1.5 3.1 4.4 75.3 

80 R215 1.9 2.0 4.4 75.1 

67 K64R/B23 1.1 1.1 4.4 74.3 

20 CML312/A7 2.8 1.6 4.4 74.0 

52 B22/B18 3.7 1.1 4.4 74.0 

26 CML312/A9 3.7 3.0 4.1 70.3 

9 B18/CML445 3.0 3.4 4.0 67.9 

71 B11/B24 4.1 6.5 3.8 64.1 

      

MEAN   2.9 2.1 5.9 100 

SED   0.6 0.6 0.6  

LSD 0.05   1.7 1.7 1.6  

Standard hybrids are in bold. 
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Chapter 5: Grain Yield Evaluation of Southern African Maize Base Germplasm 
under Drought Stress 

Abstract 

Frequent drought causes devastating yield losses in maize with serious implications for 

food security in Southern Africa, yet only a few studies have evaluated yield under 

drought stress in regional germplasm. The objective of this study was therefore, to 

evaluate: a) grain yield b) levels of stress tolerance; c) gene action; d) heritability; e) 

combining ability; and f) correlations between yield and secondary traits under drought 

stress. Twenty-seven lines were mated in eight sets using North Carolina Design II 

scheme, resulting in 72 hybrids.  Experimental hybrids and eight standard hybrids were 

evaluated in an 8 x 10 α-lattice design with two replications across six environments, 

under random drought and managed drought stress at flowering during 2004 to 2005. 

Results showed highly significant variation among hybrids for drought stress tolerance, 

yield potential and secondary traits associated with yield. There were high levels of 

general combining ability (GCA) for yield (72%), number of ears per plant (77%), 

anthesis-silking interval (77%), flowering dates (85 to 93%) and other traits (65 to 93%). 

Thus, predominantly additive gene action conditioned hybrid performance under drought 

stress, suggesting that in forming hybrids both parents should carry high levels of 

drought tolerance. Estimates of heritability for yield decreased from 60% under well-

watered conditions to 19% under drought stress at flowering.  Heritability estimates of 

anthesis-silking interval (ASI) and number of ears per plant (EPP) showed a reverse 

trend.  The ASI and EPP were significantly correlated with yield and both had moderate 

heritability (42%) under drought stress. Fifteen experimental hybrids and one standard 

were drought tolerant.  The following hybrids, which combined high yield potential 

(≥120% of overall mean yield) and high drought tolerance, would be considered for 

release: 04C2179 (121.6%), CML444/CIM24 (119.6%), A14/B19 (127.5%), CML445/A7 

(120.1%) and B17/CML445 (124.8%). Lines CML442, CML488, CML312, A14, A8 and 

B21 had high positive GCA effects for yield under drought stress. These lines would be 

recommended for use as breeding sources. It can be concluded that hybrids combining 

high yield potential and high drought tolerance would be obtainable.  

Keywords: Drought Stress Tolerance, GCA, Grain Yield, Heritability, Maize, SCA 



5.1 Introduction 

Maize is essential in Southern Africa for food security and regional economic stability, 

because the crop sustains both household livelihoods and the national economies. 

However, adequate grain production is hampered by frequent drought among other 

constraints (Zaidi et al., 2004). In addition to threatening food security, drought has 

serious ripple effects on the whole economy, because these economies are 

dependent on agriculture. For example, Richardson’s (2005) study showed that 

rainfall amount had a positive correlation (r =0.65) with gross domestic product in 

Zimbabwe over 53 years. Above world average grain yield losses due to frequent 

drought occur in the sub-continent. Rosen and Scott (1992) reported reduction of 

grain production amounting to 60% in Southern Africa as compared to a global 

average of 17% (Edmeades et al., 1992).   

 

Drought is generally difficult to control as compared to other constraints such as low 

soil fertility, especially due to its unpredictability over time and space. Campos et al. 

(2004) reported that soil moisture levels vary between years and within fields even on 

the same farm.  A practical option, especially for resource-constrained small-scale 

farmers, who have no or limited access to irrigation facilities, is to breed cultivars that 

can withstand drought stress without incurring a yield penalty when they are grown 

under non-stressful conditions. Breeding should be targeted at releasing cultivars 

with drought stress tolerance at flowering, because tassel emergence and ear 

formation have been reported to be critical stages that are associated with highest 

grain yield loss (Cakir, 2004). Progress in breeding such cultivars has been slow due 

to reduced heritability of grain yield under abiotic stress, caused by high cultivar x 

environment (G x E) interactions. According to Banziger et al. (2004), high G x E was 

a result of variation in timing and severity of water deficit, genetic variation at 

flowering, and nutrient deficiencies interacting with water deficit.   High error 

variances have also been caused by variable plant stand and variability in soil water 

holding capacity (Banziger et al., 2004). Studies have found that higher genetic gains 

can be realised when selection is conducted based on stress at flowering rather than 

at grain filling (Bruce et al., 2002). In addition it was long ago reported that grain yield 

was highly correlated with anthesis to silking interval (ASI) and number of ears per 

plant in tropical populations, especially when drought stress occurs at flowering 

(Chapman and Edmeades, 1999; Edmeades et al., 1993).  Banziger et al. (2000) 

have suggested the use of indirect selection for grain yield by targeting ASI and 
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number of ears per plant (EPP). These traits are easy to measure and are less 

affected by G x E under drought stress. 

 

Knowledge of gene action conditioning grain yield under low moisture stress in base 

germplasm would assist scientists in devising appropriate breeding strategies. Betran 

et al. (2003) reported additive effects were predominant in controlling grain yield in 

tropical maize under drought stress.  Studies of quantitative trait loci have found that 

additive gene action controlled flowering traits, whereas dominance effects explained 

grain yield, ASI and EPP (Agrama and Moussa, 1996; Guei and Wassom, 1992). A 

literature survey showed few published research of genetic effects conditioning grain 

yield under drought stress in Southern African maize.  Use of local materials would 

increase breeding progress, because these already have adaptation to other 

important yield limiting factors such as maize streak virus disease. Moreover, genetic 

information specifically applies to the specific germplasm and environments in which 

materials were tested (Falconer, 1981). Thus information generated from other 

regions or germplasm may not have a direct application to Southern African.  The 

objective of this study was to investigate genetic effects that influence grain yield of 

Southern African maize base germplasm under abiotic stress. Specifically the study 

tested the following: (a) levels of drought stress tolerance; (b) gene action 

conditioning grain yield and associated traits; (c) heritability of grain yield and 

associated traits; (d) correlation between grain yield and secondary traits; (e) 

relationship between testing environments; and (f) combining ability effects estimates 

of inbred lines for grain yield under low drought stress conditions.  

 

5.2 Materials and Methods 

5.2.1 Germplasm 

The lines used in this study consisted of a sample drawn from the following heterotic 

groups and their derivatives (Table 5.1): a) International Maize and Wheat 

Improvement Centre (CIMMYT): A and B; and b) regional: P, K64R, SC, N3, I, M. 

Detailed descriptions of these germplasm groups have been presented (Mickelson et 

al., 2001; Gevers and Whythe, 1987). They represented three classes: drought 

tolerant, conventional and GLS resistant (Table 5.1). Twelve inbred lines comprising 

six drought-tolerant and six gray leaf spot resistant inbreds were obtained from 

CIMMYT-Zimbabwe, and 15 conventionally bred lines were obtained from Seed Co. 

These inbred lines were specifically adapted to tropical environments in east and 
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Southern Africa. Inbred lines were divided into eight sub-groups of three each, 

according to their background. Three inbred lines in one set were used as females 

and crossed with three inbred lines from a second set used as males, according to a 

North Carolina Design II Mating Scheme (Robinson and Comstock, 1948, 1952; 

Hallauer and Miranda, 1988). Each inbred line was used once as a female parent in 

one set and once as a male parent in another set, except the inbreds K64R, B11 and 

B12, which were used as females only, and CML489, A26 and CIM24, which were 

used as male parents only (Appendix 1, in sets 8 and 4, respectively). The inbreds 

CML489, CIM24 and A26 replaced K64R, B11 and B12 as male in set 4, which had 

failed to provide adequate pollen due to severe attack by maize streak virus. 

Consequently, eight sets of hybrids comprising nine hybrids each were formed 

among the 27 inbreds. The 27 inbred lines, their 72 crosses and eight standard 

hybrids effectively constituted the reference population for the study. The eight 

standard hybrids used in the study were drought tolerant hybrids (R201, R215, 

ZS255 and SC403) and four other hybrids (SC633, SC513, SC627 and ZS257) that 

were widely grown in the area. 

 

Table 5.1:  Parent inbred lines used in a North Carolina Design II mating  
Designation Heterotic Group Principal Selection 

Criteria 
Principal Selection 

Class 

CML442 A Drought Tolerance 1 

CML312 A Drought Tolerance 1 

CML445 AB Drought Tolerance 1 

CML395 B Drought Tolerance 1 

CML444 B Drought Tolerance 1 

CML488 B Drought Tolerance 1 

A7 M Conventional 2 

A8 M Conventional 2 

A9 P Conventional 2 

K64R K Conventional 2 

B11 K Conventional 2 

B12 K Conventional 2 

A13 A GLS Resistance 3 

A14 A GLS Resistance 3 

A15 N GLS Resistance 3 

B16 I GLS Resistance 3 

B17 B GLS Resistance 3 

B18 B GLS Resistance 3 

B19 K Conventional 2 

B20 KB Conventional 2 

B21 K Conventional 2 

B22 S Conventional 2 

B23 S Conventional 2 

B24 S Conventional 2 

CML489 AB Conventional 2 

A26 I Conventional 2 

CIM24 A Drought Tolerance 1 
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5.2.2 Experimental Design 

Grain yield of 72 experimental hybrids, 8 standard hybrid checks and 30 parent 

inbred lines was evaluated under managed drought stress at flowering and random 

moisture stress, in Zimbabwe during the winter of 2004 and summer of 2004/5, 

respectively (Table 5.2).  Hybrid trials were conducted in an 8 x 10 α-lattice designs 

with two replications, whereas inbred line trials were laid out as 5 x 6 α-lattice 

designs with three replications. Inbreds were evaluated under moisture stress at 

Save Valley (SV) and under well-watered conditions at Kadoma Research Centre 

(KRC), during the winter of 2004 and summer of 2004/5, respectively. In addition, to 

location-year combination, environments were created by varying watering regimes 

and plant population density (Table 5.2) as suggested by Eberhart and Russell 

(1966). Fertiliser was applied at the rate of 166 N, 28 P and 17 K (kg/ha) at KRC; and 

at Save Valley the fertiliser rate was 104 N, 18 P and 11 K (kg/ha). Standard cultural 

practices, which included hand weeding, were followed at both stations. 

  

5.2.3 Managed Drought Stress Experiments 

Moisture stress experiments were established at Save Valley (SV), during the rain-

free winter of 2004 (Table 5.2). These trials were established and managed 

according to procedures developed by CIMMYT (Banziger et al., 2000).  This 

managed drought experiment was a simulated drought condition that was created at 

the most drought susceptible flowering stage. The study was conducted in winter to 

avoid disruption of the experiment by natural rainwater during summer. The fields 

used for the experiments were level beds with uniform sandy loam soils. Further 

control for soil variation was achieved by laying the experiment as an α-lattice block 

design such that the block was divided into 10 sub-blocks with eight plots each. At 

planting, eight hybrids were planted in each sub-block (incomplete blocks) after a 

randomisation of the hybrids in Genstat.  A control experiment was established at the 

same site but in a separate block 120 m away and was managed in the same way as 

the stressed block except that it was irrigated throughout the season. The control 

experiment (SV2004HP) had the same plant population density as the stressed 

experiment (Table 5.2).  An additional well-watered experiment (SV2004LP) was 

established at a lower planting density (26 000) in order to investigate whether 

density effects provide additional stress during drought screening (Table 5.2). 
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Adequate irrigation (±100% of field capacity) was applied in all experiments from 

planting and throughout the vegetative phase, using sprinkler irrigation system. 

Based on the previous data of the standard hybrids (R201, R215, SC403 and ZS255) 

at this site, the average pollination date for the trial was predicted. In addition, the 

crop was monitored on a daily basis.  Irrigation was then discontinued in the stress 

block, when 5% of the standard hybrids had emerged tassels, which coincided with 

60 days from planting. Irrigation continued in the control blocks. The irrigation was 

applied such that all the sub-blocks were maintained at field capacity. Soil moisture 

level was determined daily, using a calibrated neutron probe (Model: Didcot 

Instruments). At 50% pollen shedding, the soil moisture had declined to 50% of field 

capacity at the 90 cm depth. By the end of the grain filling period, the soil moisture 

was at 26% of the field capacity in the effective rooting zone (0 to 45 cm depth), and 

35% at 90 cm depth. 

5.2.4 Random Drought Experiments 

Two experiments were established at SV and one at KRC, which represented 

random drought prone sites in tropical lowland dry and mid altitude dry environments, 

respectively (Table 5.2), during the summer of 2004/5. Random drought occurred at 

both locations during pollination and grain filling stages and no diseases were 

observed.  

 

Table 5.2. Features of environments used in the drought screening of hybrids in 2004 
to 2005 

Environment 
Code 

Location Season Type of 
Environment 

Plant 
Density 

Mean yield Altitude 
(m) 

KRC2005H Kadoma 2004/5 Random drought 
stress 

44 000 2.699 1149 

SV2004MS Save Valley 2004 Managed drought 
stress at flowering 

53 000 2.826 
 

556 

SV2005H Save Valley 2004/5 Random drought 
stress 

53 000 2.760 556 

SV2005LP Save Valley 2004/5 Random drought 
stress 

22 000 2.582 556 

SV2004H Save Valley 2004 Well watered at 
high plant density 

53 000 6.523 556 

SV2004LP Save Valley 2004 Well watered at low 
plant density 

26 000 5.277 556 

 

5.2.5 Data Collection 

Field data were collected on a whole plot basis following standard procedures used 

by CIMMYT (Banziger et al., 2000; CIMMYT, 1985).  Grain yield and secondary traits 

such as anthesis-to-silking interval (ASI) and number of ears per plant which have 
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been used in determining maize tolerance to moisture stress (Betran et al., 2003; 

Banziger et al., 2000) were measured in all trials. Number of days to anthesis (DMP) 

and silking (DMS) were measured as number of days from planting to when 50% of 

the plants were shedding pollen and had silks of at least 5 cm emerged, respectively.  

Anthesis to silking interval (ASI) was then calculated using the formula:  

                             ASI (days) = DMS – DMP   

Plant and ear height (cm) were measured as the distance from the base of the plant 

to the height of the first tassel branch and the node bearing the upper ear, 

respectively.  Plant aspect was rated on a scale of 1 to 5, where 1 = excellent overall 

phenotypic appeal and 5 = poor overall phenotypic appeal.  Leaf rolling was rated 

using a score of 1 = unrolled, turgid, and 5 = leaf rolled like onion leaf; while leaf 

senescence was rated on a 1 to 10 scale, where 1 = 10% dead leaf area and 10 is 

100% dead leaf area. Ear aspect was scored on a 1 to 5 scale, where 1 = clean, 

uniform, large and well-filled ears, and 5 = rotten, variable, small, and partially filled 

ears.  At harvest all ears from each plot were counted and the number ears per plant 

(EPP) were calculated using the formula:  EPP = EC/PC, Where EC and PC = 

number of ears and number of plants per plot, respectively. 

 

All ears were bulked, shelled and grain weight measured.  Grain yield (t/ha) was 

computed from shelled grain weight per plot adjusted to 12.5% moisture content, 

using the formula: 

Grain Yield (t/ha) = [Grain Weight (kg/plot) x 10 x (100-MC)/ (100-12.5)/(Plot 

Area)], where MC = Grain Moisture Content.  

 

Drought stress tolerance for individual hybrids was determined by calculating a 

relative drought tolerance (RDT) value based on theoretical aspects of selection 

under stress and non-stress conditions (Tollenaar and Lee, 2002; Rosielle and 

Hamblin, 1981) using the formula: 

RDT (%) = 100 x (YMS/YC), 

Where YC = hybrid yield under well watered or control conditions, and YMS = hybrid 

yield under carefully managed moisture stress conditions at flowering. High relative 

drought tolerance value would indicate that the hybrid is tolerant to moisture stress, 

relative to its yield potential as measured under well-watered conditions. According to 

Rosielle and Hamblin (1981), selection for tolerance to stress is equivalent to 

selection for low yield depression under stress. 
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Mid parent heterosis (MPH) for grain yield was calculated for each hybrid under 

moisture stress conditions (Falconer, 1989) using the formula:  

MPH (%) = (F1-MP)/MP x 100, 

Where F1 = mean of the F1 hybrid performance, MP = mean of two parents making 

the cross using the formula: (P1 + P2)/2, where P1 and P2 are the means of the inbred 

parents.  

 

5.2.6 Statistical Analyses 

General analyses of variance for lattice block designs (Cochran and Cox, 1960) for 

the inbred and hybrid data including standard checks within individual environments 

were performed using IRRISTAT Computer software (International Rice Research 

Institute, 2003). Additive Main Effects and Multiplicative Interaction (AMMI) Analysis 

(Crossa et al., 1990) was conducted using GenStat (2003) computer software to 

predict the grain yield means for the hybrids across the four drought stress 

environments. According to Crossa et al. (1991), the AMMI model removes residual 

or noise variation from cultivar x environment interaction (i.e., G x E) by using 

information from other environments to refine the estimates within a given 

environment, whereas the lattice block designs would only make intra-location 

adjustments.  

 

Genetic analyses for grain yield and its associated data were performed in SAS (SAS 

Institute, 1997) as a fixed effects model for experimental hybrids (excluding standard 

hybrids), as described by Hallauer and Miranda (1988) for across environments using 

the following linear model: 

Yijkpq = µ+Sp + gi(Sp) + gj(Sp) + hij(Sp) + Eq + rk(SE)pq + (ES)pq + (Eg)iq(Sp) +(Eg)jq(Sp) + 

(Eh)ijq(Sp) + eijkpq 

Where i =1, 2, 3; j = 1, 2, 3; k = 1, 2; p = 1, 2, 3, 4, 5, 6, 7, 8; q = 1, 2, 3, 4, 5, 6 and Yijkpq 

denotes the value of the hybrid of a mating of the i
th

 female line, the j
th

 male line, in the k
th
 

block, within set p and in the q
th
 environment. The terms are defined as follows: 

µ = Grand mean 

Sp =       the average effect of the p
th

 set 

gi(Sp)   = the GCA effect common to all hybrid of the i
th

 female line nested within p
th
 set, 

gj(Sp)  = the GCA effect common to all hybrid of the j
th
 male line nested within p

th
 set, 

hij(Sp)  = the SCA effect specific to hybrid of the i
th

 female and j
th

 male line nested within p
th
 set, 

Eq           = average effect of q
th

 environment 

rk(SE)pq  = the effect of the k
th

 replication nested within the p
th
 set and q

th
 environment 

(ES)pq = the interaction between set effects and the environment 

(Eg)iq(Sp)  and  +(Eg)jq(Sp) = the interaction between environment and GCA nested within sets 
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(Eh)ijq(Sp) = the interaction between environment and SCA nested within sets 

eijkpq = the random experimental error 

 

According to Hallauer and Miranda (1988), the main effects due to females (sets) and 

males (sets) are equivalent to the GCA (general combining ability), while male x 

female (sets) interaction effects represent the SCA (specific combining ability) effects 

in a diallel mating. General combining ability and SCA effect estimates for inbred 

lines and crosses, respectively, were determined by line x tester analysis in 

Agrobase (2005) computer package.  Using the variance ratios in REML (GenStat, 

2003), heritability estimates were calculated as suggested by Hallauer and Miranda 

(1988) for the fully inbred parents (F = 1)  (where σ2
m = σ2

f =  ½σ2
A; and σ2

mf    =  σ2
D ) 

using the formulae:  

  

a) h2 = 2σ2
m/(σ2/r + σ2

mf + 2σ2
m) for one environment, and 

b) h2 =2σ2
m/( σ2/re + σ2

fme/e + 2σ2
me/e + σ2

mf + 2σ2
m)  for across environments,  

 

Where σ2
m = male (set) variance, σ2 = random error variance; σ2

mf = male x female 

(set) variance; σ2
fme = environment x male x female (set) variance; σ2

me = 

environment x male (set) variance; r = number of replications and e = number of 

environments. σ2
f  = female (set) variance; σ2

A = additive variance and σ2
D = 

dominance variance. 

 

Heritability estimates were calculated using the male variance (σ2
m) to avoid the 

upward bias of heritability due to maternal effects if the female variance (σ2
f) was 

used. In addition, phenotypic correlations were performed between grain yield and 

other agronomic traits and among test environments using GenStat (2003) computer 

software. 

 

5.3 Results 

5.3.1 Performance of Inbred Lines  

Inbreds differed significantly for grain yield, EPP, ASI, DMP, leaf rolling (LR) and leaf 

senescence (LS) (Table 5.3). Grain yield ranged from 2.1 (B24) to 5.3 t/ha (A8) under 

well watered and from 0.2 (CML312) to 3.6 t/ha (CIM35) under moisture stress. 

Inbred lines K64R and B17, which belonged to the conventional and GLS resistance 

classes, respectively, out-yielded all entries in the drought tolerant class. The highest 

yielding entry in the drought class was CML445 with a yield under 2.2 t/ha. Anthesis 
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to silking interval ranged between -4.3 (CML444) and +2.7 (B19) under well watered, 

and from –2.0 to 10.5 days under moisture stress, while EPP ranged between 0.8 

(B24) and 1.6 (CML489) under well watered, and from 0.1 (CML489) to 1.5 (A8) 

under moisture stress. Inbred lines K64R and B12 had the shortest ASI under 

moisture stress, while anthesis ranged from 61 (B21) to 73.7 days (CML444) under 

well watered, and from 89.5 to 103 days under moisture stress. The LR and LS 

scores ranged from 1.0 to 3.5, and from 1.0 (CML489) to 8.5 (A7). 

 

Table 5.3.  Performance of Inbred Lines under well-watered (KRC) and moisture 
stress conditions (SV) 

Inbred 
  

Grain Yield 
(t/ha) 

Anthesis 
(days) 

ASI EPP 
LS LR 

KRC SV KRC SV KRC SV KRC SV SV SV 

  (WW) (MS) (WW) (MS) (WW) (MS) (WW) (MS) (MS) (MS) 

K64R 3.3 3.3 66.4 93.0 -1.3 -2.0 1.0 0.9 3.0 3.0 

B17 4.3 2.8 65.6 101.0 -2.7 0.5 1.2 0.7 3.5 2.5 

B16 3.9 2.5 67.6 97.5 0.3 1.5 1.1 0.8 3.5 2.5 

B20 4.2 2.4 68.0 92.0 0.3 3.0 1.1 0.8 2.0 2.0 

A7 5.2 2.2 68.9 95.0 0.3 1.0 1.1 0.9 8.5 3.0 

B19 4.0 2.2 66.2 94.5 2.7 1.5 1.1 0.7 3.0 3.0 

CML445 3.2 2.2 67.0 96.5 -0.7 0.5 1.0 0.9 1.5 3.0 

A15 2.4 2.1 67.5 101.0 1.0 1.0 1.0 0.7 3.0 2.5 

CML488 4.1 1.8 66.2 93.0 -1.3 3.0 1.2 0.9 5.0 3.5 

A26 3.3 1.6 66.4 -- 0.3 -- 1.0 -- -- -- 

RSA414P 3.2 1.6 66.2 -- 2.0 -- 1.0 -- -- -- 

B23 3.2 1.6 70.4 -- -1.0 -- 1.1 -- -- -- 

B22 2.8 1.6 68.1 -- -1.0 -- 0.9 -- -- -- 

A8 5.3 1.4 72.2 101.5 -1.7 4.0 1.4 1.5 5.5 3.5 

CML444 3.5 1.4 73.7 100.0 -4.3 1.5 1.0 0.8 5.0 2.5 

B12 3.3 1.4 66.1 97.2 -1.0 -0.3 1.1 1.0 1.1 2.9 

B18 2.5 1.4 72.5 99.0 1.0 3.0 0.9 0.8 3.5 3.5 

A14 2.3 1.3 69.2 89.5 1.0 2.5 0.9 0.7 3.0 2.5 

B21 3.0 1.0 61.3 91.0 -- 4.5 0.9 0.5 2.0 2.5 

A9 3.6 0.8 65.7 92.2 1.0 1.7 0.9 0.7 2.1 2.9 

CML442 2.7 0.8 69.7 99.0 0.0 4.0 0.9 0.6 5.5 3.5 

A13 3.1 0.7 68.2 98.0 0.0 5.0 1.0 0.5 4.0 2.5 

B24 2.1 0.7 70.1 103.0 0.7 5.0 0.8 0.5 3.5 3.5 

CML489 4.4 0.6 69.7  -1.3 2.1 1.6 0.1 1.0 1.0 

CIM24 3.3 0.6 72.4 97.0 -2.3 2.0 1.0 0.5 5.5 3.5 

CML395 3.7 0.4 70.3 99.0 -0.7 10.5 0.9 0.4 5.5 2.5 

CML312 3.2 0.2 69.0 94.0 0.7 --- 1.0 0.2 4.5 3.0 

            

MEAN 3.40 1.65 68.10 96.06 -0.20 2.56 1.00 0.73 3.73 2.91 

SED (5%) 0.30 0.56 0.40 2.92 0.50 2.08 0.10 0.11 0.69 0.75 

KRC = Kadoma Research Centre; SV = Save Valley; WW, MS = Well watered and moisture stress 
conditions, respectively; --- = Data not recorded; LS = Leaf senescence score; LR = Leaf roll score. 

 

5.3.2 Performance of Hybrids 

The AMMI analysis of variance showed highly significant (P<0.01) variation among 

hybrids and their interaction with environments for grain yield (Table 4). However, 

only the first principal component (IPCA1) of the interaction was significant (P<0.01). 
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The IPCA1 scores were positively correlated (r = 0.573) with grain yield under 

managed drought stress at flowering. The IPCA1 scores were negatively correlated 

with grain yield under well-watered (r = -0.653) and random drought stress (-0.543). 

Hybrids differed significantly for drought stress tolerance as RDT ranged between 

13% for A13/B20 and 83% for B23/B16 (Appendix 2). The IPCA1 scores were 

positively correlated (r = 0.941) with RDT. Fig. 1 shows the frequency (%) distribution 

of 80 hybrids for RDT, while Appendix 2 presents the top most and least tolerant 

hybrids. Hybrids could be assigned to five distinct classes according to their RDT 

values: a) Tolerant (RDT ≥ 61%); b) Moderate Tolerance (RDT = 51 to 60%); c) 

Moderate Susceptibility (RDT = 41 to 50%); d) Susceptible (RDT = 31 to 40%); and 

e) Very Susceptible (RDT ≤ 30%).  Fifteen experimental hybrids fitted into the 

tolerant classes (RDT = 56 to 83%) and their RDT values were significantly greater 

than the mean (44.4%) (Appendix 2). The following hybrids combined high yield 

potential (≥120% of the overall trial mean yield) and high drought tolerance indices, 

and would be considered for release: 04C2179 (121.6%), CML444/CIM24 (119.6%), 

A14/B19 (127.5%), CML445/A7 (120.1%) and B17/CML445 (124.8%) (Appendix 2). 

One standard hybrid, ZS255 was classified as moderately resistant (RDT = 56%), but 

the rest of the standard hybrids were relatively susceptible. Among standard hybrids 

ZS255 was highest yielding (120%). The most drought susceptible experimental 

hybrid (B24/B17) was among the lowest yielding hybrids.  In addition, hybrids 

displayed significant levels of heterosis for yield ranging from -80.48 to 515% 

(CML488/CML489) (Appendix 2). The most drought tolerant hybrids B23/B16 and 

A13/B21 had negative heterosis for grain yield. 

 

 Table 5.4. AMMI analysis of variance for hybrids across four drought stress 
environments 

Source DF SS MS F F. Probability 

Total 639 677.4 1.06   

Treatments 319 372 1.166 1.54 0.000 

                                   
Cultivars    79 133.6 1.691 2.23 0.000 

      
Environments 3 5.1 1.686 0.1 0.958 

Block 4 65.5 16.387 21.59 0.000 

      
Interactions 

       
237 233.4 0.985 1.3 0.016 

          IPCA1 81 127 1.568 2.07 0.000 

          IPCA2 79 76.9 0.973 1.28 0.071 

          IPCA3 77 29.5 0.383 0.5 1.000 

         
Residuals 0 0    

Error 316 239.9 0.759   



 

   117 

IPCA = interaction principal axes; Treatments = Environments + Cultivars + Interactions. 

 

 5.3.3 Correlations between Grain Yield and Agronomic Traits 

Grain yield had significant and negative correlation with ear aspect scores and ASI, 

and significant positive correlation with EPP for both hybrids and inbreds across 

moisture stress levels (Table 5). Correlations between hybrid grain yield and DMP 

and DMS were not significant under managed moisture stress or well-watered 

conditions, but they were not significant (r = -0.341) across environments. Correlation 

of grain yield with DMS was significant (P≤0.05) under moisture stress for the 

inbreds. 

 

Table 5.5: Phenotypic Correlations between Grain yield and Agronomic traits  
Trait Hybrids Inbreds 

Moisture 
Stress 

Well 
Watered 

Across 
Environments 

Moisture 
Stress 

Well 
Watered 

      

Anthesis-Silking Interval -0.24 -0.24 -0.34 * -0.45* -0.22 

Number of Ears/Plant  0.66 **  0.34 *  0.80 ** 0.56 * 0.54 * 

Anthesis (days)  0.06  0.06 -0.14 -0.02 -0.08 

Silking (days) -0.09 -0.09 -0.29 -0.36 * -0.22 

Ear Aspect (Score) -0.74 ** -0.49 * -0.86 ** -0.55 * ---- 

Leaf Roll (Score) -0.25 --- --- -0.14 --- 

Leaf Senescence (Score) --- -- --- -0.31  

Plant Height (cm) --- -- 0.06 -- 0.06 

Grain Moisture (%) 0.15 0.07 0.11 -- 0.09 

--- = Data not recorded; **, * = significant at P≤ 0.01 and P≤0.05, respectively. 

Fig. 1: Frequency distribution of 80 Hybrids for Drought Tolerance             
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5.3.4 Relationships among Environments 

There was no significant correlation between hybrid ranks for managed moisture 

stress and well-watered environments (Table 5.6). Significant correlations were 

observed between random drought experiments and the well-watered low population 

environments. 

 

Table 5.6: Correlation of hybrid ranks between the testing environments 

Environment♣ Well 
Watered 

Managed 
Stress 

KRC2005 
(RMS) 

SV2005H 
(RMS) 

SV2005L 
(RMS) 

Well-Watered (WW) 1.00     

Managed Stress  0.08 1.00    

KRC2005 (RMS) 0.23 0.09 1.00   

SV2005H (RMS) 0.36 0.15 0.17 1.00  

SV2005L (RMS) 0.32 0.25 0.31 0.26 1.00 

SV2004 L (WWL) 0.32 0.47   0.79 * 0.43   0.59 * 
♣
RMS = Random Moisture Stress; WWL = well-watered but with low population; KRC = 

Kadoma Research Centre in 2004/5; SV2005 = Save Valley in 2004/5; SV2004 = Save Valley 
in winter 2004; H = high population density and L = Low population density; * = Significant at 
P<0.05. 

 

5.3.5 Heritability Estimates 

Heritability estimates for grain yield ranged between 18% and 60 % under moisture 

stress and well-watered conditions, respectively (Table 5.7).  Anthesis (87%) and 

silking dates (71%) had the highest heritability estimates across environments. 

Heritability varied from 18 to 63% for ASI, and from 7% to 45% for the number of 

ears per plant.  

 

Table 5.7. Heritability (%) Estimates for Grain Yield and Agronomic traits across 6 
environments 

Trait 
      

Environments
♣
 Overall 

KRC2005 SV2005H SV2004M SV2005L SV2004L SV2004H 

(RMS) (RMS) (MMS) (RMS) (WW) (WW) 

      

Grain Yield (t/ha) 33.7 24.2 18.8 31.3 60.6 21.2 53.7 

ASI (days) 38.7 49.7 42.3 32.7 18.9 30.4 63.0 

Ears/Plant (No.) 33.5 9.9 42.2 15.0 45.1 7.1 26.9 

Anthesis (days) 75.9 63.0 48.8 68.1 71.3 58.6 87.1 

Silking (days) --- 43.3 44.8 56.3 65.1 --- 71.4 

Plant Height (cm) 48.4 57.0 - 65.4 - - 53.4 

Ear Height (cm) 59.3 32.9 - 55.0 - - 47.1 

Ear Aspect (Score) 33.1 - 16.3 - 49.9 30.7 25.7 

Grain Moisture (%) --- 34. 9 18.8 31.07 39.3 --- 25.1 
♣
RMS, MMS and WW, refer to random moisture stress, managed moisture stress and well-watered 

conditions, respectively; KRC = Kadoma Research Centre in 2004/5; SV2005 = Save Valley in 2004/5; 
SV2004 = Save Valley in winter 2004; H = high population density and L = Low population density; -- = 
Data not collected.



5.3.6 Gene Action 

Environments and hybrid sets were highly significant (P<0.01) for grain yield and all 

other traits (Table 5.8). Interaction effects between environments and sets were also 

highly significant (P<0.01) for grain yield, ASI, number of ears per plant, grain 

moisture, but were not significant for ear aspect scores. General combining ability 

effects for male and female lines and SCA effects were also highly significant 

(P<0.01) for grain yield and most other traits. General combining ability effects were 

predominant over the SCA for grain yield (72%) and all agronomic traits (68 to 93%) 

(Table 5.9). Although SCA effects were almost negligible (6.94%) for DMP, 27% for 

grain yield, and 31% for grain moisture (Table 5.9). 

 

Table 5.8: Mean squares for grain yield and agronomic traits across six environments. 

Source 
  

d. f Yield 
(t/ha) 

ASI 
(days) 

EPP DMS 
(days) 

DMP 
(days) 

Ear 
Aspect 

Ear 
Height 
(cm) 

Grain 
Moisture 

(%) 

Plant 
Height 
(cm) 

Environment (Env.) 5 556.4 
** 

65.03 
** 

154.37 
** 

21763.40 
** 

29834.46 
** 

24.53 
** 

81.62 
** 

377.76 
** 

173.34 
** 

Set 7 7.7 
** 

9.87 
** 

4.37 
** 

17.70 
** 

44.07 
** 

11.24 
** 

15.27 
** 

9.32 
** 

13.73 

Env x Set 35 2.21 
** 

2.94 
** 

2.45 
** 

2.13 * 1.94 
** 

1.29 1.25 2.14 
** 

1.77 
* 

Rep/Set/Env. 48 3.21 
** 

0.91 2.03 
** 

1.75 
** 

2.18 
** 

0.94 0.86 
 

0.81 1.07 

Male/Set 16 4.15 
** 

7.18 
** 

2.62 
** 

23.54 
** 

32.40 
** 

3.13 
** 

6.72 
** 

2.90 
** 

8.93 
** 

Female/Set 16 3.59 
** 

3.93 
** 

5.11 
** 

17.55 
** 

25.81 
** 

5.71 
** 

13.43 
** 

2.56 
** 

14.42 
** 

Male x Female/Set 31 1.59 * 1.80 
** 

1.18 3.63 
** 

2.32 
** 

1.09 1.68 
** 

1.33 2.71 
** 

Env x Male/Set 85 1.42 
** 

1.55 
** 

1.84 
** 

2.45 
** 

1.84 
** 

1.27 1.44 
* 

1.78 
** 

1.60 
** 

Env x Female/Set 80 1.67 
** 

1.89 
** 

2.55 
** 

3.58 
** 

2.61 
** 

1.42 1.15 1.29 
** 

1.18 

Env x Female x 
Male/Set 

155 1.30 
** 

1.14 1.18 1.23 
** 

1.00 1.02 0.93 1.15 0.95 

**,* = Mean Square Value Significant at 0.01 and 0.05, respectively; ASI = Anthesis to Silking interval 

(days); DMS = days to 50% silk emergence; DMP = Days to 50% pollen shed; Env. = Environment; EPP 

= Number of ears per plant 

 

Table 5.9: Proportion (%) of the total genetic sum of squares for yield and agronomic 
traits 

Trait GCA SCA 

 Male Female Total GCA  

Grain Yield 39.8 32.4 72.2 27.8 

Anthesis (Days) 53.2 39.9 93.1 6.9 

Silking (Days) 50.4 35.3 85.7 14.2 

Anthesis to Silking Interval (Days) 50.7 26.1 76.8 23.2 

Number of Ears per Plant 27.3 50.2 77.5 22.5 

Plant Height (cm) 33.3 50.5 83.8 18.4 

Ear Height (cm) 30.0 56.4 86.4 13.6 

Ear Aspect (Score) 33.3 44.8 78.1 21.9 

Grain Moisture (%) 37.5 31.2 68.7 31.3 

Total GCA = sum of Male and female GCA sum of squares 
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Tables 5.10 and 5.11 present GCA effect estimates of the lines as female and male 

sources, respectively, for yield. Inbreds CML442 (Class 1 = Drought tolerant), 

CML445 (Class 1), CML488 (Class 1), A7 (Class 2 = Conventional), A8 (Class 2) and 

B21 (Class 2) had significant positive GCA as both male and female sources for yield 

across environments. Inbreds CML312 (Class 1), CML444 (Class 1), B16 (Class 3 = 

GLS tolerant), B17 (Class 3) and B19 (Class 2) had significant positive GCA effects 

as female sources. Lines A9 (Class 2), A14, A26 (Class 2) and CIM24 (Class 1) had 

positive GCA effect as male sources.  Fifteen hybrids had significant (P<0.05) 

positive SCA effects for grain yield across environments (Appendix 3). 

 

Table 5.10: Female inbred GCA effects estimate for grain yield across six environments 

Inbred KRC2005 SV2005H SV2004MS SV2005LP SV2004L SV2004H Across 

       

CML442 -0.01 -0.01 0.16 0.01 0.62 ** 0.02 0.12 * 

CML312 1.00 * 0.07 0.11 -0.20 0.97 ** 1.70 * 0.61 ** 

CML445 0.92 * 0.49 0.54 0.39 * -0.13 0.53 0.46 ** 

CML395 -0.16 -0.41 0.24 0.04 -0.54 * -0.17 -0.17 * 

CML444 -0.26 -0.15 0.36 0.21 0.19 1.05 * 0.23 ** 

CML488 0.90 * 0.23 0.02 0.08 0.24 -0.02 0.24 ** 

A7 0.14 0.89 * -0.19 0.26 0.04 -0.07 0.18 * 

A8 0.29 -0.16 0.07 0.36 * 0.41 * -0.68 0.05 

A9 -0.56 0.00 0.33 0.11 0.02 -0.75 -0.14 * 

K64R -0.96 * 0.17 0.38 -0.24 -0.34 -1.00 * -0.33 ** 

B11 -0.71 0.07 -0.56 -0.11 0.41 * -0.73 -0.27 ** 

931485 0.54 -0.75 * 0.21 -0.01 -0.31 0.32 0.00 

A13 -0.63 -0.23 -1.14 * -0.72 * -0.33 -1.30 * -0.72 ** 

A14 0.27 0.19 0.71 0.011 -0.94 * 0.08 0.04 

A15 -0.58 -0.65 * 0.09 -0.11 0.01 -0.87 -0.35 ** 

B16 0.22 0.12 0.89 * 0.18 0.37 * 0.79 0.43 ** 

B17 0.94 * 0.25 0.58 -0.01 -0.39 * 0.37 0.29 ** 

B18 -1.13 * 0.12 -0.34 -0.46 * -0.41 * -038 -0.43 ** 

B19 1.10 * 0.44 -0.11 0.01 0.16 0.40 0.33 ** 

B20 0.42 -0.13 -0.79 * -0.02 -0.28 0.37 -0.07 

B21 0.82 * -0.16 -0.86 * 0.16 0.59 * -0.52 0.01 

B22 -0.83 * -0.31 -0.26 0.09 -0.46 * 0.42 -0.22 ** 

B23 -0.16 -0.25 0.36 0.06 -0.01 -0.12 -0.02 

B24 -1.46 ** 0.20 -0.82 * -0.12 0.13 0.62 -0.24 ** 

        

SED (5%) 0.582 0.421 0.606 0.238 0.273 0.710 0.077 

**, * = GCA Significantly different from zero at P≤ 0.01 and P≤ 0.05, respectively; KRC = Kadoma 
Research Centre in 2004/5; SV2005 = Save Valley in 2004/5; SV2004 = Save Valley in winter 
2004; H = high population density and L = Low population density; MS = managed moisture 
stress 
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Table 5.11: Male inbred GCA Effect Estimates for Grain Yield  across six 
environments 

Inbred KRC2005H SV2005H SV2004MS SV2005L SV2004L SV2004H Across 

CML442 0.62 ** -0.36 -0.16 -0.16 0.37 0.68 0.17 * 

CML312 -0.06 0.35 0.24 -0.04 0.17 -0.27 0.07 

CML445 -0.53 ** 0.50 1.03 * -0.09 -0.98 ** 0.35 0.05 

CML395 0.52 ** 0.22 -0.42 -0.01 0.04 -0.07 0.05 

CML444 1.04 ** -0.41 -0.82 0.28 0.61 ** -0.22 0.08 

CML488 0.79 ** 0.34 -0.51 -0.12 -0.18 0.53 0.14 * 

A7 -0.15 0.09 0.59 0.23 0.49 * 1.47 * 0.45 ** 

A8 0.32 0.74 * 0.13 0.06 0.87 ** 0.62 0.46 ** 

A9 1.65 ** -0.28 0.09 -0.09 0.11 0.17 0.28 ** 

A13 -0.86 ** 0.09 -0.42 -0.06 -0.33 -0.88 -0.41 ** 

A14 0.85 ** 0.44 0.46 0.39 0.12 0.25 0.42 ** 

A15 -0.13 0.20 0.18 0.39 0.67 ** -0.87 0.08 

B16 -1.25 ** -0.35 0.18 0.14 -0.06 -0.02 -0.22 ** 

B17 -0.86 ** -0.05 -1.00 * -0.06 0.09 0.05 -0.30 ** 

B18 -0.35 0.04 0.090 -0.06 -0.38 0.88 0.04 

B19 -0.53 ** 0.27 0.240 -0.09 -0.64 ** -0.48 -0.21 ** 

B20 -0.45 * -0.53 -1.0 * -0.41 -1.06 ** -1.00 -0.74 ** 

B21 0.04 -0.43 0.41 -0.32 0.44 * -0.67 -0.09 

B22 0.12 0.10 0.53 0.13 -0.24 -0.70 -0.01 

B23 -0.61 ** -0.48 -0.72 -0.27 -0.21 -0.54 -0.47 ** 

B24 -0.65 ** -0.13 0.23 -0.21 0.21 -0.18 -0.12 

CML489 -0.35 -0.81* -0.39 -0.66 -0.45 * -0.65 -0.55 ** 

A26 0.50 * 0.40 0.24 0.44 -0.21 0.40 0.30 ** 

CIM24 0.32 0.07 0.78 0.54 0.54 * 1.12 * 0.56 ** 

        

SED (5%) 0.619 0.448 0.644 0.253 0.290 0.755 0.065 

**, * = GCA Significantly different from zero at P≤ 0.01 and P≤ 0.05, respectively; KRC = Kadoma 
Research Centre in 2004/5; SV2005 = Save Valley in 2004/5; SV2004 = Save Valley in winter 2004; H = 
high population density and L = Low population density; MS = managed moisture stress 

 

Table 5.12 presents inbred GCA effects for the number of ears per plant. Inbreds 

CML442, CML488, A8 and B21 had positive GCA effects as both male and female 

sources across environments.  Inbreds CML312 and A14 had positive GCA as 

female and male across environments, respectively.  Inbreds CML445, B12 and B19 

had positive GCA under random stress, whereas B18 and B23 had positive GCA 

under managed stress. 

 

Tables 5.13 and 5.14 present inbred GCA effects for ASI. Inbred lines CML445, 

CML444 and A8 had negative GCA as both male and female sources for ASI across 

environments. The inbreds K64R, CML488 and B19 had negative GCA as female, 

whereas B22, A26 and CIM24 had negative GCA as male across environments.  

Lines B17 and B24 had negative GCA under random stress, while B11 had negative 

GCA as female under well-watered, but low population environment. Inbred A14 had 

negative GCA under managed moisture stress, but B20 and CML489 had negative 

GCA under well-watered low population conditions. 

 

Appendices 3 and 4 present GCA estimates of inbred lines for the number of days to 

reach 50 % anthesis as female and male, respectively. Inbreds CML445, B16 and 
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B22 had negative GCA effects for anthesis both as male and female sources across 

environments. The lines A9, B12, A14, A15 and B17 W had negative GCA as female, 

while CML488, A9, B21 and B19 had negative GCA as male across environments. 

Line K64R and B24 had negative GCA as female and male, respectively, under 

random stress, whereas A26 and CML312 had negative GCA under well-watered, 

but low population environment. 

 

Table 5.12: Inbred GCA Effects Estimate for Number of Ears per Plant across three 
environments with significant GCA data 

Inbred KRC2005H SV2004MS SV2004L ACROSS 

Female Male Female Male Female Male Female Male 

        

CML442 0.00 0.07 0.03 0.03 0.27 ** 0.02 0.10 ** 0.04 * 

CML312 0.17 * -0.11 -0.09 0.06 0.20 ** -0.06 0.07 ** -0.03 

CML445 0.15 * 0.00 -0.07 0.03 -0.03 -0.18 * 0.02 -0.05 ** 

CML395 -0.01 0.09 0.01 -0.02 -0.13 * -0.18 * -0.02 -0.04 * 

CML444 -0.06 0.12 0.04 -0.01 -0.03 -0.07 -0.02 0.02 

CML488 0.15 * 0.20 * 0.16 * -0.07 0.32 ** 0.14 * 0.18 ** 0.09 ** 

A7 0.00 0.07 0.04 0.03 -0.03 0.14 * 0.00 0.08 ** 

A8 0.02 0.05 -0.11 -0.16 * 0.20 0.30 ** 0.04 * 0.07 ** 

A9 -0.10 0.20 0.06 -0.01 -0.03 0.00 -0.02 0.07 ** 

K64R -0.16 * --- 0.06 --- -0.10 --- -0.06 ** -- 

RA5414P -0.11 --- -0.11 --- -0.10 --- -0.10 ** -- 

B12 0.15 * --- 0.09 --- 0.09 --- 0.09 ** -- 

A13 -0.15 -0.13 -0.11 -0.17 * -0.13 * -0.01 -0.12 ** -0.11 ** 

A14 0.07 0.12 0.16 * 0.18 * -0.13 * 0.07 0.03 0.12 ** 

A15 -0.05 -0.06 -0.07 -0.01 -0.01 0.09 -0.05 ** 0.01 

B16 0.07 -0.16 * 0.08 0.02 0.05 0.09 0.04 * -0.02 

B17 0.15 -0.16 * -0.04 -0.22 ** -0.13 * -0.01 -0.03 -0.13 ** 

B18 -0.26 ** -0.16 * 0.08 0.16 * -0.13 * -0.15 -0.10 ** -0.05 ** 

B19 0.20 * -0.13 0.08 0.08 -0.18 * -0.11 0.02 -0.06 ** 

B20 0.10 -0.15 * -0.16 * -0.22 ** -0.08 -0.23 ** -0.04 * -0.20** 

B21 0.10 0.05 -0.02 0.13 0.15 * 0.07 0.07 ** 0.08 ** 

B22 -0.06 0.09 0.01 0.06 -0.10 -0.08 -0.03 0.02 

B23 -0.06 -0.10 0.18 * -0.04 0.07 0.04 0.03 -0.03 

B24 -0.36 ** -0.11 -0.27 ** 0.03 -0.05 -0.06 -0.13 ** -0.05 ** 

CML489 --- 0.02 --- 0.06 ---- 0.02 --- 0.03 

A26 --- 0.09 --- 0.04 --- 0.02 --- 0.05 ** 

CIM24 --- -0.03 --- 0.11 ---- 0.10 --- 0.06 ** 

         

SED (5%) 0.103 0.110 0.094 0.100 0.095 0.101 0.075 0.077 

**, * = GCA Significantly different from zero at P≤ 0.01 and P≤ 0.05, respectively; KRC = Kadoma 
Research Centre in 2004/5; SV2004 = Save Valley in winter 2004; H = high population density and L = 
Low population density; MS = managed moisture stress 
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Table  5.13: Inbred Female GCA Effects Estimate for Anthesis and Silking Interval 
across environments. 

Inbred KRC2005H SV2005HP SV2004MS SV2005LP SV2004LP SV2004H Overall 

CML442 0.74 -0.10 0.01 -0.27 -0.83 -1.14 -0.27 * 

CML312 -0.59 0.90 -0.55 0.23 -0.33 -0.81 -0.19 

CML445 -0.59 -0.270 -2.22 ** 0.56 -0.83 -0.47 -0.64 ** 

CML395 0.91 -0.44 0.62 -0.60 0.00 0.36 0.14 

CML444 -2.09 ** -1.60 ** -1.89 ** -0.94 * 1.50 ** -1.81 -1.14 ** 

CML488 -1.26 * -0.94 * -0.38 -0.77 -1.17 0.03 -0.75 ** 

A7 1.58 ** 0.56 0.28 -0.27 0.17 0.36 0.45 * 

K0315Y -0.76 -0.27 -0.72 -0.60 0.00 -0.31 -0.44 * 

A9 0.74 1.40 ** -1.05 * 2.23 ** 1.17 1.36 0.97 ** 

K64R -0.59 -0.44 -1.22 * -0.10 -2.17 ** -1.64 -1.03 ** 

RA5414P 2.41 ** 0.06 0.78 -0.60 -1.67 * -1.14 -0.03 

931485 -0.76 0.56 0.78 0.40 -1.17 -0.47 -0.11 

A13 -0.09 0.06 0.78 0.56 0.00 1.86 0.53 ** 

A14 1.24 * -0.10 -0.55 -0.44 0.17 2.36 0.45 ** 

A15 0.58 1.56 ** 1.45 ** -0.10 0.00 0.86 0.72 ** 

B16 -0.26 -0.10 0.78 0.23 1.17 0.19 0.34 * 

B17 -1.26 * 0.73 0.78 -0.60 -0.17 -0.64 -0.19 

B18 0.91 0.23 0.28 -0.27 0.33 -0.31 0.20 

B19 -0.76 -0.60 -1.05 -0.27 0.67 -0.31 -0.39 ** 

B20 -0.42 -0.60 0.78 -0.44 1.33 * 0.19 0.14 

B21 -0.76 -0.10 -0.22 0.56 1.00 0.86 0.22* 

B22 0.08 -0.10 1.12 ** 0.73 0.17 0.86 0.47 ** 

B23 0.08 1.23 * 0.45 0.73 -0.33 0.19 0.39 ** 

B24 0.91 -1.60 ** 0.78 0.06 0.67 -0.47 0.06 

        

SED (5%) 0.772 0.655 0.771 0.571 0.875 0.894 0.109 

**, * = GCA Significantly different from zero at P≤ 0.01 and P≤ 0.05, respectively; KRC = Kadoma Research Centre in 
2004/5; SV2005 = Save Valley in 2004/5; SV2004 = Save Valley in winter 2004; H = high population density and L = 
Low population density; MS = managed moisture stress 

 

Table 5.14: Inbred Male GCA Effects for Anthesis and Silking Interval  
Inbred KRC2005H SV2005H SV2004MS SV2005L SV2004L SV2004H ACROSS 

CML442 -0.42 1.06 * 1.28 * -0.10 1.00 -0.47 0.39 * 

CML312 0.24 0.73 0.28 0.06 0.00 0.36 0.28 * 

CML445 -0.42 -0.94 0.28 -0.60 0.33 -0.64 -0.33 * 

CML395 0.41 0.23 1.45 0.06 2.17  ** 0.86 0.86 ** 

CML444 -1.09 * -1.77 ** -1.72 ** -0.44 0.17 -0.97 -0.97 ** 

CML488 -1.26 * 0.23 -0.22 0.23 0.67 0.86 0.09 

A7 1.41 * -0.44 -0.38 0.56 -1.00 0.19 0.06 

K0315Y -1.43 * -0.77 -1.55 * -0.10 -1.67 * -2.14 ** -1.28 ** 

A9 -0.42 1.73 ** -0.72 0.06 0.67 -0.47 0.14 

A13 -0.09 1.90 ** 0.12 0.90 * 0.00 0.53 0.56 ** 

A14 0.24 -0.10 -1.22 * 0.40 -0.17 -0.31 -0.19 

A15 1.41 * -0.10 -0.38 0.06 1.50 * 1.19 0.61 ** 

B16 0.24 -0.10 -0.22 0.56 0.50 -0.31 0.11  

B17 -0.42 0.06 1.45 * 0.73 0.167 0.86 0.47 ** 

B18 1.24 * -0.44 1.12 0.23 -0.17 0.03 0.34 * 

B19 0.41 -0.10 0.45 -0.10 -0.17 1.03 0.25 

B20 -0.26 -0.44 0.45 -1.27 ** 0.00 0.86 -0.11 

B21 1.58 * 2.06 ** 0.78 1.40 ** 0.67 3.19 ** 1.61 ** 

B22 -0.59 1.23 * -0.72 0.06 -2.33 ** -1.97 * -0.72 ** 

B23 0.74 -0.21 0.45 -0.27 -1.33 * -0.47 -0.18 

B24 0.91 -0.77 0.62 -0.10 -1.33 * -0.81 -0.25 

CML489 -0.76 0.44 0.45 -1.27 ** 0.83 0.53 0.04 

A26 -0.92 -0.27 -0.55 -0.27 -0.67 -0.64 -0.55 ** 

CIM24 -0.76 -2.27 ** -1.55 * -0.77 0.167 -1.31 -1.08 ** 

        

SED (5%) 0.821 0.697 0.820 0.607 0.930 0.950 0.131 

**, * = GCA Significantly different from zero at P≤ 0.01 and P≤ 0.05, respectively; KRC = Kadoma Research Centre in 
2004/5; SV2005 = Save Valley in 2004/5; SV2004 = Save Valley in winter 2004; H = high population density and L = 
Low population density; MS = managed moisture stress 
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5.4 Discussion 

5.4.1 Performance of Hybrids and Inbred Lines 

The study revealed significant variability among hybrids and inbred lines for yield and 

drought stress tolerance and it suggests that hybrids which combine high yield and 

drought stress tolerance can be identified. Five hybrids among the most resistant had 

120% relative yield to the overall mean, which was equivalent to the best commercial 

standard hybrid (ZS255), which is drought tolerant. While the study confirmed 

drought tolerance of CIMMYT lines such as CML445, CML395 and CML444 as they 

were part of the most resistant hybrids. Some conventional inbred lines (B19 and 

B20) and GLS resistant lines (B17, B16 and A14) were drought tolerant.  These 

conventional inbred lines had high yield both under stress and well-watered 

conditions, and were also parents of the highest yielding and drought tolerant 

hybrids. These inbred lines and the specific hybrids with 120% relative yield across 

drought stress environment can be suggested for use in breeding programmes that 

emphasise drought stress tolerance. The study also showed that there is still a need 

to improve levels of drought tolerance in local commercial hybrids as all but one 

hybrid (ZS255) was classified susceptible. Yield across drought stress environments 

was significantly correlated with RDT, suggesting that breeding for stress tolerance 

would not necessarily have negative effects on yield. A positive correlation between 

IPCA1 and RDT suggested that specific adaptation of the hybrids increased with 

increasing drought stress tolerance. Conversely, the negative correlation between 

IPCA1 and yield under well watered conditions, and some random drought stress 

environments suggested that some hybrids displayed “static” yield stability in these 

environments. Static stability would not be desired as it implies that farmers would 

get a yield penalty if high rainfall occurs, but dynamic stability would be obtainable if 

breeders were to select for prolificacy (EPP) as reported by Zaidi (2002). In this study 

inbreds displayed variation for EPP for both combining ability and performance per 

se, indicating availability of local germplasm to select for high number of ears per 

plant under stress. High levels of heterosis for yield under drought stress that were 

observed in this study confirmed previous findings (Betran et al., 2003), and 

suggested that these cultivars could also be useful in hybrid-oriented programmes 

that utilise heterosis. 
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5.4.2 Gene Action for Grain Yield and its Associated Traits 

The study showed highly significant GCA and SCA effects for grain yield, EPP, ASI, 

flowering dates and other agronomic traits, indicating importance of both additive and 

non-additive gene action in conditioning these traits. Lager GCA than SCA sum of 

squares for yield (72%), EPP (77%), ASI (77%), flowering dates (85 to 93%) and 

other traits (65 to 93%), indicated the predominance of additive over non-additive 

effects in controlling hybrid performance under moisture stress.  These ratios of 

additive to non-additive effects for grain yield and secondary traits are similar to 

those (61 to 84%) reported by Betran et al. (2003). Grain yield, EPP, ASI and other 

agronomic traits can be improved by appropriate selection procedures. Significant 

non-additive portion (±20%) cannot be ignored hence specific hybridisation can also 

be used especially to enhance grain yield.   In a hybrid-oriented programme, additive 

gene action may be employed to develop stress tolerant inbred lines, by selection 

and then utilise the non-additive and heterosis by forming hybrids among the 

identified the inbred lines. Highly significant GCA effects for flowering dates (anthesis 

and silking) suggests that these traits can be effectively improved through selection, 

especially in breeding earlier maturing cultivars that can escape drought stress at 

flowering or late stress that occurs during grain filling.  However, observations of 

highly significant environmental effects and their interactions with GCA and SCA for 

grain yield, EPP and ASI indicated that in addition to evaluating cultivars under 

managed drought stress there is also a need to conduct multi-location random stress 

trials to estimate the G x E component. Crossa et al. (1995) reported that crossover 

interaction resulting in change in cultivar ranking would present problems in varietal 

selection, as the set of selected hybrids changes in each environment.  These results 

also confirmed previous studies that reported significant interaction of GCA and SCA 

with environments for yield and its secondary traits (Betran et al., 2003). 

5.4.3 Combining Ability Estimates 

The study confirmed drought tolerance of CIMMYT inbred lines CML442, CML445, 

CML488 and identified some conventional inbred lines A7, B21 and A8 with positive 

GCA for grain yield both as male and female sources under drought conditions. 

These lines can be utilised as source material in breeding for stress tolerance that 

does not compromise yield.  Among these inbred lines CML442, CML488, A8 and 

B21 also showed positive GCA for number of ears per plant indicating that these 

lines can be used as donors in breeding for prolificacy in moisture stress 

environments.  Varga et al. (2004) reported that selection for prolificacy resulted in 
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hybrids with greater efficiency than their non-prolific counterparts in using resources 

under low moisture stress.  Lines that have negative GCA for ASI: CML445, 

CML444, A8, K64R, CML488 and B19 can be utilised to breed for yield, because ASI 

was found to be directly correlated with yield under stress.  Inbred lines that had 

highly negative GCA for DMP: CML445, B22, A9, A14, A15, B17 and B12 can be 

utilised as sources for earliness where it may be desired to breed for drought escape, 

especially in situations of late season drought. Predominance of additive gene action 

suggested that in breeding drought tolerant hybrids both parents should have high 

levels of grain yield.  

5.4.4 Heritability Estimates 

Heritability for grain yield decreased with increasing moisture stress and population 

density across moisture regimes. Heritability was lowest under managed drought 

stress at flowering (18%) and highest (60%) under well-watered conditions at low 

population. Under random stress heritability was 24% at 53 000 plants/ha compared 

to 31% at 22 000 plants/ha. Similarly heritability had a three-fold increase from 21% 

at 53 000 plants/ha to 60% at 26 000 plants/ha under well-watered conditions. This 

suggested that in addition to low moisture stress, competition effects at 53000 

plants/ha would mask genetic differences among cultivars resulting in reduced 

selection progress. The best population for selection would be one which is used by 

farmers in the area. Across environments heritability was 54%, which was 

comparable to 59% that was reported in tropical populations (Bolanos and 

Edmeades, 1996). Grain yield heritability observed in this study could be considered 

high when compared to an average of 18.7% reported by Hallauer and Miranda 

(1988). Selection would be suggested to improve yield since phenotypic differences 

would be very high because the ratio of genetic to phenotypic variance would 

approach unity, especially at low population density under random moisture stress 

environments.   A similar trend was observed with EPP where heritability was low 

under high population but increased significantly at low population. Heritability of 42% 

for EPP under managed stress at flowering was comparable to 45 to 64% reported 

by Bolanos and Edmeades (1996). Similarly, heritability for ASI was larger (33- 50%) 

under low moisture stress than under well-watered conditions (19 to 30%) confirming 

previous studies (Bolanos and Edmeades, 1996).  These results indicated that there 

were small differences between cultivars for ASI under well-watered conditions, but 

the differences became larger when cultivars were subjected to low moistures stress 

thereby increasing discrimination between cultivars under drought conditions. It is 

thus suggested that effective selection of cultivars for ASI should be conducted under 
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low moisture stress conditions. Heritability of DMS (71%) and DMP (87%), plant and 

ear heights (33 to 65%) across environments were also within the range of previous 

findings (Bolanos and Edmeades, 1996; Hallauer and Miranda, 1988). The moderate 

to high heritability values for these traits suggested that these traits could be 

effectively improved through selection. 

5.4.5 Correlations between Grain Yield and Secondary Traits 

 
 Significant negative correlation between yield and ASI for hybrids (r = -0.34) and 

inbreds (-0.45) were consistent with previous studies that reported -0.33 to -0.45 

under moisture stress (Zaidi et al., 2004; Betran et al., 2003; Edmeades and 

Bolanos, 1996).   Strong positive correlation between grain yield and EPP (r = 0.55 to 

80) especially under low moisture stress confirmed results reported by previous 

studies (Betran et al., 2003; Bolanos and Edmeades, 1996; Byrne et al., 1995). In 

contrast with previous findings, there was no significant correlation between grain 

yield and DMP for hybrids and inbreds under both well-watered or low moisture 

stress conditions. Betran et al. (2003) reported significant correlations between grain 

yield and DMP (r = -0.16 to -0.45) for hybrids and inbred lines across environments, 

which would be expected when earlier materials escape drought stress at flowering.  

The current study observed small, but negative correlation between silking and yield 

for hybrids (-0.22) and inbreds (-0.36) across environments, suggesting that yield 

under stress can be improved by selecting for early silk emergence.  Zaidi et al. 

(2004) found negative correlations between yield and flowering dates ranging from 

 -0.22 to -0.56, under drought stress, but reported non-significant correlations under 

optimal conditions. The negative correlations of 0.31 between leaf senescence and 

grain yield for the inbreds under stress was comparable with previous studies. 

Banziger et al. (2000) reported low to medium correlation of yield with leaf rolling and 

leaf senescence under drought.  Ability of tolerant cultivars to capture more solar 

energy for a longer period during photosynthesis would boost grain filling resulting in 

higher yield. Correlations between ear aspect scores and yield would be expected, 

because grain yield is dependent on cob size and grain filling, which are part of the 

elements of ear aspect scores (CIMMYT, 1985).  Previous studies have not 

considered this trait, but Zaidi et al. (2004) evaluated 100-kernel weight and found a 

positive relationship with yield. The lack of significant correlation of grain moisture 

with yield was consistent with previous studies (Betran et al., 2003).  



 

   128 

5.4.6 Relationship between Environments 

Correlation between well-watered and managed drought stress environment at 

flowering was not significant, indicating that these environments would rank hybrids 

differently for grain yield. Similarly, there was a weak but positive correlation between 

well-watered and random drought stress environments, suggesting that selection 

under optimum conditions may not identify cultivars that are suitable for drought 

prone areas. Although correlations between random and managed drought stress at 

flowering were positive (0.23 to 0.36), these were not significant, suggesting that 

there is need to integrate managed drought stress at flowering with multi-location 

trials in evaluating cultivars. There were also weak but positive correlations (0.17 to 

0.31) among random stress environments, which could be explained by differences 

in altitude between KRC (1150 mask) and SV (556 m.a.s.l.) and population density 

effects for two the trials that were established at different populations at Save Valley 

(SV2005L and SV2005H). Lack of strong positive correlations between managed 

drought stress at flowering and random drought stress could also be explained by 

seasonal differences. Managed stress experiments were planted in winter when night 

temperatures were relatively low, while random stress experiments were conducted 

during summer and were subjected to high temperatures, suggesting that drought 

and heat stress effects could be confounded during summer trials. There was a 

strong positive correlation between random sites and well-watered control planted at 

26 000 plants/ha. Probably, higher populations (44 000 to 53 000 plants/ha) in 

random stress (KRC2005; SV2005) could have accounted for the yield differences.  

Results from the current study were in agreement with studies by Bruce et al. (2002) 

who reported cultivar x drought interaction resulting in different ranking of hybrids 

between different water regimes caused by variation in maize susceptibility to 

drought around flowering. The main impediment of response to selection would be 

presented by crossover interactions, which leads to re-ranking of cultivars, because it 

changes composition of the selected and rejected sets across different environments 

(Crossa et al., 1995; Cooper and Delacy, 1990). Future studies should also 

investigate optimum populations for selecting cultivars in these stress environments. 

For example, Zaidi (2002) reported that in dry areas of South Africa, farmers’ plant at 

10 000 plants/ha but cultivars for that environment are selected for prolificacy so that 

in case of high rainfall the yield potential can be fully exploited.  
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5.5 Conclusions 

The objective of this study was to evaluate: a) grain yield potential; b) levels of 

drought stress tolerance; c) gene action; d) heritability; e) combining ability; and f) 

correlations between grain yield and secondary traits under drought stress and well-

watered growing conditions. Fifteen experimental hybrids and one standard hybrid 

(ZS255) displayed high levels of drought tolerance.  The following hybrids combined 

high yield potential (≥120% of overall yield mean) and high tolerance to drought and 

would be considered for release: 04C2179 (121.6%), CML444/CIM24 (119.6%), 

A14/B19 (127.5%), CML445/A7 (120.1%) and B17/CML445 (124.8%). Heritability for 

grain yield decreased with increasing drought stress, from 60% under well-watered 

conditions to 19% under drought stress at flowering.  Heritability for ASI and EPP 

increased with increasing moisture stress. The study showed highly significant 

correlation between yield and number of ears per plant and ASI, suggesting that 

indirect selection for yield can be employed under drought stress. Predominance of 

additive effects for yield and its associated traits suggested that in forming hybrids 

both parents should carry high levels of drought tolerance.  The following inbred lines 

that displayed highly positive GCA effects for grain yield under drought stress would 

be recommended for use as sources for breeding: CML442, CML488, CML312, A14, 

A8 and B21. The study identified hybrids that combined high yield potential and high 

tolerance to drought stress relative to the commercial standard hybrid (ZS255), 

suggesting that drought tolerance was not negatively associated with yield potential 

in this set of germplasm. It could be concluded that hybrids, which combine high yield 

potential and high tolerance to drought stress could be developed from these inbred 

lines. 
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Appendices 

Appendix 1. Sets of crosses formed in a North Carolina II Mating design (Principal 
Selection criteria: D = drought tolerance, C = conventional, G = GLS resistance); 
Conventional means lines were selected on the basis of high yield potential only. 
 
Set 1: Grey Leaf Spot X Drought Tolerant Crosses 

♀/♂ CML442 (D) CML312 (D) CML445 (D) 

B16 (G)    

B17 (G)    

B18 (G)    

 
Set 2: Conventional X Drought Tolerant Crosses 

♀/♂ CML395 (D) CML444 (D) CML488 (D) 

B19 (C)    

B20 (C)    

B21 (C)    

 
Set 3: Drought Tolerant X Conventional Crosses 

♀/♂ A7 (C) A8 (C) A9 (C) 

CML442 (D)    

CML312 (D)    

CML445 (D)    

 
Set 4: Drought Tolerant X Conventional Crosses 

♀/♂ CML489 (C) A26 (C) CIM24 (D) 

CML395 (D)    

CML444 (D)    

CML488 (D)    

 
Set 5: Conventional X Grey Leaf Spot Resistant Crosses 

♀/♂ A13 (G) A14 (G) A15 (G) 

A7 (C)    

A8 (C)    

A9 (C)    

 
Set 6: Conventional X Grey Leaf Spot Tolerant Crosses 

♀/♂ B16 (G) B17 (G) B18 (G) 

B22 (C)    

B23 (C)    

B24 (C)    

 
Set 7: Grey Leaf Spot X Conventional Crosses 

♀/♂ B19(C) B20(C) B21(C) 

A13 (G)    

A14 (G)    

A15 (G)    

 
Set 8: Conventional X Conventional Crosses 

♀/♂ B22(C) B23(C) B24(C) 

K64R (C)    

B11 (C)    

B12 (C)    

 



 

   134 

Appendix 2. Drought tolerance, heterosis and yield of hybrids across 4 environments 

Hybrid Drought Tolerance Grain Yield 

  RDT 
Value 

Rank Heterosis 
(%) 

% Mean Rank t/ha 

       

B23/B16 83.17 1 -14.8 101.2 39 2.7 

A13/B21 70.53 2 -22.0 81.8 69 2.2 

A8/A13 70.07 4 100.4 89.2 64 2.4 

CML444/CIM24 62.28 5 33.0 119.6 12 3.2 

A9/A15 60.18 6 162.0 98.3 43 2.7 

B11/B24 60.08 7 71.6 76.8 72 2.1 

CML395/A26 59.92 8 158.6 97.3 44 2.6 

K64R/B24 59.13 9 127.4 88.0 65 2.4 

A14/B19 59.02 10 254.7 127.5 4 3.5 

CML445/A7 58.69 11 75.8 120.1 10 3.3 

A15/B21 57.91 12 146.5 96.2 47 2.6 

A15/B19 57.16 13 13.6 101.6 38 2.8 

A7/A15 56.48 14 46.6 106.1 33 2.9 

B17/CML445 55.76 15 29.0 124.8 5 3.4 

       

CML445/A9 31.53 68 52.4 111.5 26 3.0 

CML444/A26 31.06 69 102.0 116.1 14 3.1 

CML444/CML489 30.26 70 46.3 66.8 76 1.8 

B19/CML488 29.64 71 126.1 124.4 7 3.4 

A7/A13 28.94 72 33.5 93.5 51 2.5 

B21/CML488 27.70 73 14.2 91.8 55 2.5 

B17/CML442 26.85 74 124.3 98.4 42 2.7 

B20/CML395 26.69 75 -20.9 93.0 52 2.5 

CML312/A7 26.54 76 167.7 100.7 40 2.7 

B20/CML444 24.69 77 20.4 94.6 48 2.6 

B22/B18 21.80 78 273.6 82.3 68 2.2 

B24/B17 18.56 79 63.4 62.4 80 1.7 

A13/B20 13.02 80 76.7 75.3 73 2.0 

       

ZS255 55.75 16  120.0 11 3.3 

SC633 49.29 29  115.8 16 3.1 

R 201 47.89 32  113.9 17 3.1 

ZS257 46.90 34  96.3 46 2.6 

SC403 46.33 36  103.2 36 2.8 

R 215 41.03 45  89.4 62 2.4 

SC513 36.96 56  109.2 28 3.0 

SC627 31.55 67  92.9 53 2.5 

        

Mean 44.38  104.42 100.0 40.50 2.71 

Minimum 13.02  -80.48 62.40 1.00 1.69 

Maximum 83.17  515.77 131.11 80.00 3.55 

 Hybrids are ranked by drought tolerance value; highlighted are high yielding hybrids  
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Appendix 3: Hybrids with significant positive SCA for Yield across Environments 

FEM MALE SV2004H SV2004MS KRC2005 SV2005LP SV2005H SV2004L Overall 

         

A13 B20 0.9 * -0.2 2.0 ** 0.3 0.5 0.6 ** 0.7 ** 

A15 B21 1.0 * 0.2 0.4 0.3 0.3 0.7 ** 0.5 ** 

A14 B22 0.4 0.6 0.8 * 0.1 0.4 0.4 * 0.5 ** 

B12 B24 1.2 * 0.0 1.0 * 0.5 * 0.8 * -0.7 ** 0.5 ** 

K64R B22 0.8 0.7 1.1 * 0.0 0.4 -0.3 0.5 ** 

B11 B22 0.9 * -0.5 0.6 0.5 * 0.6 * 0.5 * 0.4 * 

B12 B23 0.5 0.3 0.7 0.0 0.2 0.9 ** 0.4 * 

B23 B17 0.6 -0.3 0.7 0.1 0.7 * 0.6 ** 0.4 * 

A15 B19 0.3 0.0 0.9 * 0.4 * 0.4 0.5 * 0.4 * 

B24 B18 -0.8 1.7 ** 0.4 -0.2 1.1 ** 0.2 0.4 * 

A14 B21 1.3 * -0.7 0.8 * 0.4 * 0.0 0.3 0.4 * 

B19 CML488 1.2 * 0.6 -0.6 0.2 0.6 * 0.0 0.3 * 

B22 B16 0.1 0.2 0.9 * -0.2 0.8 * 0.0 0.3 * 

B18 CML442 0.3 0.2 0.1 0.6 * 0.0 0.3 0.3 * 

A7 A13 1.8 ** -0.5 0.3 -0.3 0.1 0.1 0.2 * 

         

 SED (5%)  0.66 0.57 0.54 0.22 0.39 0.25 0.30 

**, * SCA significantly different from zero at P≤0.01 and 0.05 

 

Appendix 4: Inbred Female GCA Effect Estimate for Number of Days to Anthesis  

Inbred KRC2005H SV2005H SV2004MS SV2005LP SV2004LP SV2004H Overall 

        

CML442 1.09 * 1.26 * 0.62 0.73 2.58 ** 2.72 ** 1.50 ** 

CML312 1.09 * 1.09 * 1.95 ** 2.23 ** 1.58 ** 0.06 1.33 ** 

CML445 -1.24 ** -1.74 ** -0.89 -1.60 ** -0.58 -0.44 -1.08 ** 

CML395 1.09 * 0.42 2.12 ** 1.06 * 1.08 * 2.72 ** 1.42 ** 

CML444 3.26 ** 2.26 ** 3.12 ** 2.23 ** 2.58 ** 3.22 ** 2.78 ** 

CML488 -0.74 0.42 0.95 0.40 -0.25 0.06 0.14 

A7 1.42 ** 0.76 0.62 1.40 ** 1.08 * -0.78 0.75 * 

A8 0.92 * 0.93 2.28 ** 1.40 ** 3.25 ** 3.56 ** 2.06 ** 

A9 -0.74 -1.58 ** -1.72 * -2.10 ** -3.58 ** -2.28 ** -2.00 ** 

K64R -1.08 * 0.42 -1.05 0.06 -0.25 -1.11 -0.50 

B11 1.59 ** 0.26 -0.88 0.73 -0.08 -0.78 0.14 

B12 -2.08 ** -0.41 -0.38 -1.61 ** 0.25 0.89 -0.56 * 

A13 -0.58 -0.91 * -1.72 * -0.27 1.75 ** -1.28 -0.50 

A14 -1.24 ** -1.08 * -3.38 ** -1.27 ** -3.25 ** -5.94 -2.69 ** 

A15 -1.91 ** -1.41 ** -0.55 -1.27 ** -1.42 * -0.78 -1.22 ** 

B16 -0.74 0.09 -1.38 * -0.77 -1.42 * -1.11 -0.89 ** 

B17 -2.91 ** -1.58 ** 0.12 -1.94 ** -1.08 * -0.94 -1.39 ** 

B18 1.26 ** 0.92 * 0.12 1.73 ** -0.08 0.56 0.75 * 

B19 1.59 ** -0.24 1.45 * 0.23 0.58 0.89 0.75 * 

B20 -0.08 0.59 -0.38 0.40 -0.08 0.39 0.14 

B21 -0.58 -0.58 1.62 * -1.44 ** -0.25 0.06 -0.19 

B22 -0.28 -0.24 -1.72 * -1.27 * -0.58 -0.44 -0.75 * 

B23 0.26 -0.58 -1.22 -0.27 0.25 -0.44 -0.33 

B24 0.59 0.93 * 0.28 1.23 * 1.42 * 1.22 0.94 ** 

        

SED (5%) 0.556 0.593 0.983 0.666 0.795 1.044  

**, * = GCA Significantly different from zero at 0.01 and 0.05, respectively. 
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Appendix 5: Inbred Male GCA Effect Estimate for Number of Days to Anthesis  

Inbred KRC2005H SV2005H SV2004MS SV2005LP SV2004LP SV2004HP Overall 

        

CML442 -0.24 -0.08 0.45 -0.27 0.08 -0.11 -0.03 

CML312 -0.74 0.428 0.12 0.56 -1.42 * -0.61 -0.28 

CML445 -1.41 ** -0.91 * -1.72 * -1.27 * -1.25 * 0.78 -0.96 ** 

CML395 1.26 ** 0.09 2.45 ** -0.27 1.58 * 1.06 1.03 ** 

CML444 1.59 ** 1.09 * 1.45 * 1.40 * 0.75 2.39 ** 1.44 ** 

CML488 -1.91 ** -1.41 ** -1.22 -1.94 ** -2.08 ** -2.11 * -1.78 ** 

A7 1.09 * 1.42 ** 0.78 0.06 1.08 0.22 0.78 * 

K0315Y 1.09 * 0.92 2.78 ** 2.06 ** 4.58  ** 3.89 ** 2.56 ** 

A9 -1.24 ** -1.74 ** -1.88 * -0.77 -2.08 ** -1.78 * -1.58 ** 

A13 0.09 0.09 0.12 0.40 0.75 0.72 0.36 

A14 0.92  * 0.09 -1.05 0.23 -1.08 -1.44 -0.39 

A15 0.59 -0.08 2.12 * 0.06 1.08 1.22 0.83 ** 

B16 -0.74 -0.58 -1.38 -1.27 * -1.92  ** -1.11 -1.17 ** 

B17 -0.41 -0.74 -0.88 -0.94 1.92 ** -0.28 0.22 

B18 1.76 ** 1.42 ** -0.38 1.90 ** 1.08 1.72 * 1.25 ** 

B19 -0.08 -1.58 ** -1.88 * -0.77 -2.25 ** -3.28 ** -1.64 ** 

B20 -0.41 0.42 -1.22 0.73 -1.25 * -1.44 -0.53 

B21 -3.24 ** -2.24 ** -2.55 ** -2.77 ** -2.92 ** -3.28 ** -2.83 ** 

B22 -0.91 * -1.08 * -1.72 * -1.10 * -1.42 * -0.44 -1.11 ** 

B23 0.59 1.09 * -0.55 0.73 0.58 -0.61 0.31 

B24 -1.24 * 0.26 -0.05 -0.44 0.75 0.06 -0.11 

CML489 1.76 ** 1.59 ** 2.95 ** 2.23 ** 2.58 ** 2.89 ** 2.33 ** 

A26 0.26 -0.41 0.95 -0.27 -1.42 * 1.06 0.03 

CIM24 1.59 ** 1.92 ** 2.28 ** 1.73 ** 2.25 ** 2.06 * 1.97 ** 

        

SED 
(5%) 

0.592 0.630 1.046 0.708 0.845 1.110  

**, * = GCA Significantly different from zero at 0.01 and 0.05, respectively. 
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Chapter 6: Analyses of Grain Yield Stability of Southern African Maize Base 
Germplasm across Drought and Disease Stress Environments 

Abstract 

Despite the occurrence of large cultivar x environment interaction that impedes 

breeding progress under highly variable production environments, there is still limited 

published information on yield stability of Southern African maize. The objective of 

this study was to:  (a) evaluate the level of yield stability; and (b) determine the 

relationship between yield stability and yield potential in Southern African maize base 

germplasm. Twenty-seven inbred lines consisting of six gray leaf spot resistant, six 

drought-tolerant and 15 conventional lines were mated in eight sets, according to a 

North Carolina Design II. The resulting 72 experimental hybrids and eight standard 

hybrids were evaluated for yield stability across 10 drought and disease stress 

environments, using parametric and nonparametric models. Results showed 

significant variation among hybrids for yield potential and yield stability. Eighty-five 

percent of the hybrids showed average stability. Eight percent exhibited below 

average stability and were adapted to favourable environments. Thus, the hybrids 

CML395/A26, B17/CML312, B24/B16, B21/CML444 and CML312/A7 would be 

recommended for release in high yielding environments. Six percent displayed above 

average stability and were specifically adapted to drought stress environments, 

hence the hybrids B20/CML488, B11/B24, A13/B21, B22/B18, CML312/A9 and 

ZS255, would be recommended for deployment in low yielding environments. 

Parametric models showed a highly significant and positive relationship between 

yield stability and yield potential, while nonparametric models showed a non-

significant relationship between yield potential and yield stability. In addition, the 

study identified some hybrids which combined high yield potential and high yield 

stability (B16/CML312, B19/CML395 and B18/CML442). The hybrid B16/CML312, 

which displayed exceptionally high yield potential (115%) and high yield stability, 

would be recommended for release in all environments. It can be concluded that high 

yield potential and high yield stability were not mutually exclusive in this set of 

germplasm.  

Keywords: Yield Stability Analysis, Maize, Cultivar x environment interaction 
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6.1 Introduction 

Cultivar x environment interaction (G X E) has been defined as the differential 

response of cultivars to environmental changes and results in serious consequences 

for breeding progress worldwide (Vargas et al., 2001; Min and Saleh, 2003; Tariq et 

al., 2003; Crossa, 1990). Breeding progress is delayed by G X E interactions, 

especially when it is associated with changes in cultivar’s ranking as manifested by 

different composition of the selected and the rejected sets across different 

environments (Crossa et al., 1995; Hohls et al., 1995; Cooper and Delacy, 1990), 

which complicates selection.  In tropical Southern Africa, environmental conditions 

fluctuate considerably across years and locations as a result of frequent droughts, 

declining soil fertility and pressure from disease and insect pests, and are further 

amplified by socio-economic constraints faced by small-scale farmers (Banziger et 

al., 2004; Richardson, 2003; Rosen and Scott, 1992). Banziger et al. (2004) reported 

that large G X E interactions commonly occurred under drought due to variation in 

timing and severity of drought stress and their interaction with nutrient deficiencies. 

Small-scale farmers usually lack the means to modify or condition the production 

environment due to limited access to technology and inputs, especially fertiliser, 

irrigation facilities and pesticides.   

 

In the event of a large G X E interaction, a viable approach would be to deploy stable 

cultivars that have little interaction with environments (Piepho, 1994). According to 

Tollenaar and Lee (2002), yield stability measures the ability of a cultivar to maintain 

relative performance across wide environments. An appropriate stable cultivar would 

be one that is capable of using resources that are available in high yielding 

environments, while maintaining above average performance in all other 

environments (Finlay and Wilkinson, 1963). In spite of large G X E problems, 

cultivars are only tested in a few sites, but are destined for deployment to the whole 

region due to limited financial resources, especially in national programmes. As a 

result there is limited information that is published on the levels of grain yield stability 

in Southern African maize germplasm. It is important, therefore, to evaluate 

representative germplasm under representative environments to obtain vital 

information on their adaptability and stability. This information would be used in 

making breeding decisions about whether to breed for specific or wide adaptation. 

The objectives of the current study were to: (a) evaluate the level of grain yield 

stability; and (b) determine the relationship between yield stability and grain yield 
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potential in a selected, but representative sample of Southern African maize base 

germplasm across drought and disease stress environments.   

 

6.2 Materials and Methods 

6.2.1 Germplasm 

Inbred lines used in the study comprised a sample representing the following 

heterotic groups and their derivatives: i) CIMMYT (International Maize and Wheat 

Improvement Centre) A and B, and ii) regional: P, K64R, SC, N3, M and I. Features 

of these germplasm groups have been presented in detail (Mickelson et al., 2001; 

Gevers and Whythe, 1987). Twelve inbred lines comprising six drought-tolerant and 

six gray leaf spot (GLS) resistant were obtained from CIMMYT-Zimbabwe, and 15 

conventionally bred lines were obtained from Seed Co (Table 6.1). These inbreds 

were specifically adapted to tropical environments in east and Southern Africa. 

Parent inbred lines were crossed in field nurseries at Muzarabani (±500 m altitude) 

and Rattray Arnold Research Station (1350 m altitude) in Zimbabwe during winter of 

2003 and summer of 2003/4. Inbred lines were crossed in eight sets according to a 

North Carolina Design II mating scheme (Robinson and Comstock, 1948, 1952). 

Each inbred line was used once as a female parent in one set and once as a male 

parent in another set, except the inbreds K64R, B11 and B12, which were used as 

females only, and CML489, A26 and CIM24, which were used as male parents only 

(Appendix 1, in sets 8 and 4, respectively). The inbreds CML489, CIM24 and A26 

replaced K64R, B11 and B12 as male in set 4, which had failed to provide adequate 

pollen due to severe attack by maize streak virus. Consequently, eight sets of hybrids 

comprising nine hybrids each were formed among the 27 inbreds. Commercial 

hybrids (R201, R215, SC627, ZS257, ZS255, SC403 and SC513, SC633) that are 

widely grown in Zimbabwe and southern African countries were used as standard 

check hybrids in the study. The 27 inbred lines, their 72 crosses and 8 standard 

hybrids effectively constituted the reference population for the study. 

 

6.2.2 Experimental Design 

Experiments involving 72 experimental hybrids and eight standard hybrids were 

established in Zimbabwe (Save Valley, ART, Rattray Arnold, Stapleford and 

Kadoma) and South Africa (Cedara) during the winter of 2004 and summer of 2004/5 

(Table 6.2). The experiments were laid out as an 8 x 10 α-lattice designs.  Extra 
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environments were created at Save Valley by employing different planting densities 

and watering regimes as suggested by Eberhart and Russell (1966).  In terms of the 

African mega environments, locations represented lowland tropical dry (0 to 1000 

masl), mid altitude dry (1000 to 1600 masl), and mid altitude warm and humid 

environments (1000 to 1600 masl) (Table 6.2).  Cultivars were subjected to different 

levels of disease and drought stress in each environment (Table 6.2).  

 

Table 6.1:  Parent Inbred Lines used in a Design II Mating Scheme 
Designation Heterotic Group 

♣
Principal Selection Criteria 

CML442 A Drought Tolerance 

CML312 A Drought Tolerance 

CML445 AB Drought Tolerance 

CML395 B Drought Tolerance 

CML444 B Drought Tolerance 

CML488 B Drought Tolerance 

A7 M Conventional 

A8 M Conventional 

A9 P Conventional 

K64R K Conventional 

B11 K Conventional 

B12 K Conventional 

A13 A Gray Leaf Spot Resistance 

A14 A Gray Leaf Spot Resistance 
A15 N Gray Leaf Spot Resistance 
B16 I Gray Leaf Spot Resistance 
B17 B Gray Leaf Spot Resistance 
B18 B Gray Leaf Spot Resistance 
B19 K Conventional 

B20 KB Conventional 

B21 K Conventional 

B22 S Conventional 

B23 S Conventional 

B24 S Conventional 

CML489 AB Conventional 

A26 I Conventional 

CIM24 A Drought Tolerance 
♣
Conventional lines were not primarily bred for resistance to stress, but high yield potential. 

 

Table 6.2: Data for the 10 Environments in Zimbabwe and South Africa (Cedara) 

Environment Location 
♣
Season Latitude Longitude Alt.  

masl 
Plants 
 /ha 

 Major  
Stress 

ART2005 ART 2004/5 17
0
 41’ S 31

0
 04’ E 1527 53000 Disease 

ST2005 Stapleford  2004/5 17
0
 43’ S 30

0
 54’ E 1492 53000 Disease 

RA2005 Rattray Arnold  2004/5 17
0
 40’ S 31

0
 13’ E 1341 53000 Disease 

KRC2005 Kadoma  2004/5 18
0
 19’ S 29

0
 51’ E 1149 44000 Drought 

CED2005 Cedara 2004/5 29
0
 31’S 30

0
 17’E 1076 44000 Disease 

SV2004HP Save Valley  2004 20
0 

22’ S 32
0 

17’ E 556 53000 None 

SV2004LP Save Valley  2004 20
0 

22’ S 32
0 

17’ E 556 26000 None 

SV2004MS Save Valley  2004 20
0 

22’ S 32
0 

17’ E 556 53000 Drought  

SV2005HP Save Valley  2004/5 20
0 

22’ S 32
0 

17’ E 556 53000 Drought 

SV2005LP Save Valley  2004/5 20
0 

22’ S 32
0 

17’ E 556 22000 Drought 
♣
Season: 2004/5 = summer; 2004 = Dry winter (off-season); masl = metres above sea level; ART = 

Agricultural Research Trust Farm near Harare, Zimbabwe 
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6.2.3 Management of Experiments 

All trials were established with irrigation to ensure adequate plant stand was 

obtained, but most were later left to rainwater only (Table 6.3). Winter experiments at 

Save Valley were irrigated throughout the growing cycle, but the managed drought 

experiment (SV2004MS) received adequate irrigation during the vegetative phase 

and was subjected to moisture stress at three weeks before anthesis and during the 

grain filling stage to simulate drought at flowering. Standard cultural practices were 

followed and experiments were maintained clean of weeds by hand weeding and 

herbicides. Different amounts of fertiliser were applied in each environment (Table 

6.3).  

 

Field data were collected on a whole plot basis following standard procedures used 

by CIMMYT (CIMMYT, 1985).  At harvest all ears were shelled and grain yield (t/ha) 

was adjusted to 12.5% (Zimbabwe’s marketing standards) moisture using the 

formula:  

Grain Yield (t/ha) = [Grain Weight (kg/plot) x 10 x (100-MC)/ (100-12.5)/ (Plot 

Area)], where MC = Grain Moisture Content.  

 

Table 6.3: Total amount of rainfall and fertiliser applied in each environment 
♣
Environment  Rainfall (mm) Fertiliser (kg/ha) 

  N P K 

RA2005 826 208 35 21 

CED 2005 885 120 33 44 

KRC 2005 565 138 64 20 

ST2005 814 208 35 21 

ART2005 787 250 65 25 

SV 2005 H 450 104 18 11 

SV 2005 LP 450 104 18 11 

SV 2004 HP Off-season 52 18 11 

SV 2004 LP Off-season 52 18 11 

SV2004 MS Off-season 52 18 11 
♣
SV2004 H and SV2004LP = well-watered ± field capacity; SV2004MS drought stressed at flowering 

 

6.2.4 Statistical Analyses 

Grain yield stability analyses were performed in Agrobase (Agronomix, 2005) 

computer package using parametric and non-parametric techniques. Advantages and 

limitations of each of these approaches have been presented in detail (Crossa, 1990; 

Lin et al., 1986). Although different parameters were used to estimate stability, the 
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parameters were compared in their ranking of hybrids using correlation analyses. 

Hybrids that were ranked stable by at least three models were considered stable.  

 

The following methods were used to estimate yield stability of hybrids: 

 

1) AMMI  (Additive Main Effects and Multiplicative Interaction) analyses  (Crossa 

et al., 1990; 1991) were performed to predict the hybrid yield means that are 

adjusted for G x E using the model: Yij = µ + gi + ej + λ1 i1γj1 + λ2 i2γj2 + ij   

Where Yij = yield mean of ith hybrid in jth environment (i =1, 2, 3 …80; j = 1, 2…. 10); µ 

= grand mean; gi = main effects of hybrids; ej = main effects of environments; λ1 and 

λ2 = Eigenvalues for PCA1 and PCA2; i1γj1 = Eigen vectors for PCA1; i2γj2 = 

Eigenvectors for PCA2; ij = random error; PCA1 and PCA2 = principal axes for non-

additive variation. 

 

According to Crossa et al. (1990; 1991), the hybrids with PCA scores closer to zero 

could be stable and those with large PCA scores (significantly greater than zero) 

could be specifically adapted to the environments that have similar large PCA scores 

with the same sign. 

 

2) Eberhart and Russell (1966) regression analyses were used to determine 

adaptability and stability of hybrids using the model: 

Yij = u +βiIj + δij + ij 

 

Where Yij = Yield of ith hybrid in the jth environment (i = 1, 2… 80; j = 1, 2 …. 10) 

µ = Grand yield mean of the ith hybrid over all the 10 environments, βi = regression 

coefficient of the ith hybrid. Ij = the environmental index = the mean yield of all hybrids 

at the jth environment minus the overall trial mean yield; δij = deviation of the ith hybrid 

from the linear regression at the jth environment; ij = experimental error. 

 

According to Eberhart and Russell (1966), “hybrids with β = 1.0 have average 

stability and general adaptation, hybrids with β >1.0 have below average stability and 

specific adaptation to favourable environments, while those with β < 1.0 have above 

average stability and are specifically adapted to the low yielding environments. 

Hybrids with significant deviation from linear regression linearity are not stable.” 
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3) Hybrid superiority of yield across the 10 environments was determined by 

calculating the cultivar superiority index (Lin and Binns, 1988) using the 

model: Pi = (Xij – Mj)
2/2n where Pi = superiority index of ith hybrid in the jth 

environment (i = 1, 2, 3, ….80; j = 1, 2 …10); M = maximum yield for all 

hybrids in the jth environment; n = number of environments (n = 1 …. 10). The 

best hybrid would be one with the lowest Pi value.  

 

4) The S1 and S2 rank analyses (Huehn, 1990; Nassar and Huhn, 1987; Scapmi 

et al., 2000) were performed using the following models:  

 

S1
i = j<i|rij –rij’|/[n(n-1)/2]; S2

i = j=i(rij –rij’)
2/n-1, 

 

In this model, S1
i = the average rank differences for the ith hybrid the across testing 

environments, rij = the rank of the ith hybrid in the jth and j’ environments, n = number 

of environments in which hybrids were tested (n = 1 …. 10), S2
i = variance for the 

ranks of the ith hybrid across the testing environments. In these statistics, hybrids with 

small S1 and S2 values are regarded as stable (Scapim et al., 2000).   

 

6.3 Results 

6.3.1 AMMI Analyses for Hybrid Yield 

The AMMI ANOVA analysis revealed significant (P<0.01) differences among hybrids, 

environments and hybrid x environment interaction effects for grain yield (Table 6.4). 

The first interaction principal component (IPCA1) and the second (IPCA2) accounted 

for 72 and 28%, respectively, of the IPCA mean squares. AMMI predicted yield 

means ranged from 3.9 to 6.8 t/ha across environments (Table 6.5). Rank of hybrids 

for yield varied in different environments, but the best hybrids dominated the first 

position in the high yielding environments (Table 6.5 and 6.6).   



 

   144 

Table 6.4: ANOVA for the AMMI Analysis of Grain Yield across 10 Environments 

Source d.f. SS MS F-Value Pr>F 

Total 1599 11358.6    

Environments 9   8972.9 996.9 106.8 0.00 

Reps (Environments) 10       93.2      9.3   

Cultivar 79    484.5      6.1      3.8 0.00 

Cultivar x environment 711  1128.9     1.5      1.8 0.00 

 1PCA 1 87      390.7     4.4       5.2 0.00 

1PCA 2 85      150.3     1.7       2.0 0.00 

1PCA Residual 539        587.6     1.0   

Residual 790       678.8     0.8   

 

Hybrid IPCA1 scores ranged from -1.20 (B11/B24) to 0.99 (CML444/A26) and 11 

hybrids had large positive IPCA1 scores (0.5 to 1.0). Twelve hybrids had large 

positive (IPCA>0.4) and negative IPCA scores (-0.5 to -1.2) (Table 6.5). The 

remaining 56 hybrids had small IPCA scores, which were not significantly different 

from zero. Standard hybrids SC627, ZS255, R201 and R215 had large IPCA scores, 

but only SC627 had a positive IPCA score. Estimates for environmental IPCA scores 

(Table 6.6) showed that ST2005 (Stapleford) had the largest positive IPCA, while 

SV2004MS (Save Valley drought stress at flowering) had the largest negative IPCA 

score.  All drought stress environments and the well watered at high (SV2004HP) 

and low population (SV2004LP) at Save Valley had negative IPCA scores (Table 

6.6).    

 

Hybrids CML444/A26 and CML445/A8 were high yielding in favourable and 

unfavourable environments, respectively, based on AMMI ranking (Table 6.6). Hybrid 

A14/B19 was among the best only in SV2004MS and the best selections across 

environments were CML444/A26, B17/CML312, CML445/A7 and B16/CML312 

(Table 6.6). There was a positive relationship between IPCA1 scores and yield (Fig 

2.). The plot of IPCA1 against IPCA2 scores shows that drought stress and one 

irrigated but low population environment at Save Valley were grouped together, while 

the rest were distinct from each other (Fig 3). 
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Fig. 1: Plot of Yield against days to 50% Anthesis (DMP) of 80 hybrids across 10 Environments 

 

Fig. 2: Plot of IPCA1 against Yield of 80 hybrids across 10 Environments 
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Table 6.5: AMMI IPCA1 scores and Yield (t/ha) of selected top and bottom yielding 
hybrids across 10 Environments 

 
NAME IPCA1 MEAN 

♣
Environment  

1 2 3 4 5 6 7 8 9 10 

 
Top Yielding hybrids (above mean of 5.3) 
 

 CML444/A26  1.0 6.8 10.4 7.8 3.6 11.4 12.5 7.1 6.1 2.9 3.3 3.3 

 B17/CML312  0.7 6.4 9.7 6.6 3.3 10.5 11.6 7.5 5.7 2.7 3.0 3.0 

 CML445/A7  0.5 6.2 9.1 7.0 3.2 9.9 10.6 6.8 5.8 3.0 3.1 3.0 

 B19/CML444  0.6 6.1 9.2 6.9 3.1 10.0 10.8 6.7 5.6 2.8 3.0 2.9 

 B16/CML312  0.3 6.1 8.9 6.7 3.3 9.5 10.2 7.1 5.9 3.2 3.3 3.2 

 CML444/CIM24  0.2 6.1 8.8 6.1 3.4 9.2 10.1 7.8 5.9 3.3 3.3 3.2 

 CML312/A7  0.1 6.1 8.9 4.1 3.7 9.0 10.6 10.1 5.6 2.9 3.0 2.9 

 B21/CML395  0.4 6.0 8.8 7.2 3.0 9.6 10.1 6.1 5.7 3.0 3.1 3.0 

 CML312/A8  0.3 6.0 8.9 5.6 3.3 9.4 10.5 8.2 5.6 2.9 3.0 2.9 

 B21/CML444  0.8 5.9 9.2 7.0 2.7 10.2 11.1 6.1 5.3 2.3 2.6 2.5 

 CML442/A9  0.5 5.9 9.0 6.3 3.1 9.6 10.6 7.2 5.5 2.7 2.9 2.8 

 SC633    0.4 5.9 8.7 7.1 3.0 9.4 10.0 6.2 5.6 3.0 3.0 2.9 

 CML444/CML489  0.9 5.7 9.1 5.9 2.6 10.1 11.3 6.8 4.9 1.8 2.2 2.1 

 B20/CML395  0.6 5.7 8.9 6.0 2.8 9.6 10.6 7.0 5.2 2.3 2.5 2.5 

 SC627    0.7 5.6 8.8 5.7 2.6 9.6 10.7 7.0 5.0 2.0 2.3 2.2 

 CML395/A26  0.5 5.6 8.5 7.3 2.6 9.4 9.8 5.3 5.3 2.6 2.7 2.6 

 ZS255    -0.5 5.3 7.4 4.9 3.1 7.4 8.0 7.9 5.5 3.3 3.1 2.8 

 
Least yielding hybrids (below mean of 5.3 t/ha) 

      

 A8/A13  0.3 5.2 7.9 6.4 2.3 8.6 9.1 5.5 5.0 2.4 2.4 2.3 

 SC513    -0.4 5.2 7.2 5.5 2.8 7.4 7.9 6.8 5.3 3.1 2.9 2.7 

 B24/B17  0.4 5.1 8.1 5.7 2.2 8.8 9.6 6.0 4.7 1.9 2.1 2.0 

 B24/B16  0.1 5.1 7.6 5.1 2.4 8.0 8.8 6.8 4.9 2.4 2.3 2.2 

 CML312/A9  -0.6 5.1 7.0 5.2 2.9 7.0 7.4 7.1 5.4 3.3 3.0 2.8 

 A14/B19  -0.7 5.1 6.8 6.0 2.9 6.8 6.8 6.3 5.6 3.7 3.3 3.0 

 B11/B23  0.3 5.0 7.8 5.7 2.2 8.4 9.1 6.0 4.8 2.2 2.2 2.1 

 B12/B23  -0.3 5.0 7.2 5.2 2.6 7.4 7.9 6.7 5.1 2.9 2.7 2.4 

 A9/A13  0.3 4.9 7.6 6.8 2.0 8.4 8.7 4.5 4.8 2.2 2.3 2.1 

 A13/B20  0.2 4.9 7.5 6.1 2.0 8.2 8.7 5.1 4.7 2.1 2.1 2.0 

 CML488/CML489  0.1 4.9 7.4 6.4 2.0 8.1 8.4 4.8 4.8 2.3 2.3 2.1 

 SC403    -0.3 4.9 7.0 5.4 2.4 7.3 7.7 6.2 5.0 2.8 2.6 2.3 

 ZS257    -0.3 4.9 7.1 5.1 2.5 7.3 7.8 6.6 5.0 2.7 2.6 2.3 

 R201      -0.5 4.9 6.9 4.7 2.6 6.9 7.5 7.1 5.1 3.0 2.7 2.5 

 K64R/B24  -0.5 4.7 6.5 5.4 2.3 6.7 6.9 5.9 5.0 3.0 2.7 2.4 

 B22/B16  -0.7 4.7 6.4 5.1 2.4 6.4 6.6 6.3 5.1 3.1 2.7 2.4 

 A14/B20  -0.5 4.6 6.5 5.6 2.2 6.7 6.8 5.5 4.9 2.9 2.6 2.3 

 B22/B17  -0.6 4.5 6.3 4.9 2.2 6.3 6.6 6.2 4.8 2.8 2.5 2.2 

R215      -0.6 4.4 6.3 4.7 2.1 6.4 6.7 6.2 4.7 2.7 2.4 2.1 

 B22/B18  -0.9 4.3 5.9 3.6 2.3 5.6 6.2 7.3 4.7 2.8 2.4 2.1 

 B11/B24  -1.2 3.9 5.0 4.5 1.9 4.8 4.6 5.6 4.7 3.1 2.5 2.1 

♣
 1 = ART2005; 2 = CED2005; 3 =KRC2005; 4=RA2005; 5 =ST2005; 6= SV2004H; 7 = SV2004HP;  

8 = SV2004MS; 9 = SV2005H; 10=SV2005LP; Standard hybrids & significant IPCA scores are in bold. 
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Table 6.6: AMMI selections for the best four yielding hybrids across 10 environments 

Environment Mean IPCA1 Top 4 Hybrids 

    1 2 3 4 

ST2005 8.8 2.19 CML444/A26 B17/CML312 CML444/CML489 B21/CML444 

RA2005 8.3 1.71 CML444/A26 B17/CML312 B21/CML444 CML444/CML489 

ART2005 7.8 1.07 CML444/A26 B17/CML312 B21/CML444 B19/CML444 

CED2005 5.9 0.30      CML444/A26 CML395/A26 A7/A15 B21/CML395 

KRC2005 2.7 -0.62 CML312/A7 CML444/A26 B19/CML488 CML445/A8 

SV2004LP 5.3 -0.68 CML444/A26 B19/CML488 CML445/A8 B16/CML312 

SV2005LP 2.6 -0.79 B19/CML488 CML444/A26 CML445/A8 CML488/CIM24 

SV2004H 6.5 -0.81 CML312/A7 CML312/A8 CML445/A8 ZS255 

SV2005H 2.8 -0.96 B19/CML488 CML445/A8 A7/A14 CML488/CIM24 

SV2004MS 2.8 -1.41 A7/A14 A14/B19 B19/CML488 CML445/A8 

       

Overall 5.3  CML444/A26 B17/CML312 CML445/A7 B16/CML312 
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Fig. 3: Plot of IPCA1 scores against IPCA2 scores for 10 environments 

6.3.2 Regression Analyses of Hybrid Yield  

There were significant differences among hybrids for grain yield due to variation of 

hybrids, environments and hybrid x environment interaction (Table 6.7). The 

regression value (β) ranged from 0.48 to 1.45, but only 12 (14%) hybrids had 

significant deviation from regression linearity of response (Table 6.8). Among them 

five had β>1.0, six had β <1.0 but one hybrid had β = 1.0. One standard hybrid 

ZS255 (β = 0.8) showed significant deviation from regression linearity. Two hybrids 

(CML312/A7 and B21/CML444) with β >1.0 had high relative yield (>110%). The 
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remaining 68  (86%) hybrids had non-significant deviations from regression linearity 

of response. Regression coefficients had a positive relationship with grain yield of 

hybrids (Fig 4). 

 

Table 6.7: ANOVA for the Eberhart–Russell Regression Analysis of Hybrid Grain 
Yield 

Source df SS MS F-Value Pr>F 

Total 1599 5293.247    

Hybrids 79 242.273 3.067 4.84 0.0000 

Env. In hybrids x Env 720 5050.974 7.015   

      Env. In linear 1 4486.483    

     Hybrids x Env. (Linear) 79 158.560 2.007 3.16 0.0000 

     Pooled deviation 640 405.931 0.634   

Residual 800 386.058 0.483   

Grand Mean = 5.347         R
2
 = 0.92 β-value = ± 0.1063            CV = 18.37% 
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Fig. 4:  Plot of Regression Value against Yield of 80 hybrids across 10 environments 
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Table 6.8: Grain yield regression and deviation from linearity of response for selected 
highest yield and lowest yield (<100%) hybrids 

 Name               Yield  β-value Deviation
♣
 

 t/ha % Mean   

 CML444/A26            6.9 128.5 1.4 0.19 

 B21/CML444            5.9 110.7 1.3 0.77 

 SC627              5.6 104.9 1.3 0.17 

 CML312/A7            6.1 114.1 1.3 1.67 

 B17/CML312            6.4 119.5 1.3 0.60 

 B20/CML395            5.7 107.5 1.3 0.34 

 B24/B17            5.1 95.7 1.3 0.12 

 CML395/CML489            5.4 101.3 1.2 -0.10 

 B19/CML444            6.1 114.4 1.2 0.17 

 CML444/CML489            5.7 106.6 1.2 -0.27 

 CML395/A26            5.6 105.4 1.2 0.52 

 CML442/A9            6.0 111.6 1.2 0.11 

 CML445/A7            6.2 115.4 1.2 0.05 

 CML312/A8            6.0 113.1 1.2 0.39 

 B24/B16            5.1 94.9 1.1 0.75 

 B21/CML395            6.0 111.6 1.1 -0.08 

 B18/CML442            5.4 102.1 1.1 -0.36 

 B16/CML312            6.1 115.2 1.1 -0.38 

 SC633              5.9 110.5 1.1 0.17 

 CML395/CIM24            5.7 106.9 1.1 -0.05 

 B23/B17            5.5 102.6 1.1 -0.24 

 04C2182            5.7 106.6 1.1 0.06 

 B19/CML395            5.5 103.4 1.1 -0.25 

 A13/B20            4.9 91.2 1.0 0.90 

 B17/CML445            5.9 110.5 1.0 0.17 

 A8/A15            5.6 105.4 1.0 0.28 

 A13/B19            4.7 87.8 1.0 0.22 

 B21/CML488            5.3 98.9 1.0 -0.06 

 CML488/CML489            4.9 91.4 1.0 0.16 

 A13/B21            4.8 90.1 0.9 0.88 

 ZS257              4.9 91.9 0.9 -0.32 

 K64R/B23            4.2 79.4 0.9 -0.17 

 A15/B19            5.1 94.7 0.9 -0.32 

 B20/CML488            5.1 96.2 0.9 0.50 

 SC513              5.2 96.6 0.8 -0.27 

 SC403              4.9 91.6 0.8 -0.28 

 ZS255              5.3 100.2 0.8 1.80 

 CML488/A26            5.6 105.4 0.8 -0.18 

 K64R/B24            4.7 87.6 0.8 0.04 

 A14/B20            4.6 86.1 0.8 -0.10 

 CML312/A9            5.1 96.1 0.7 1.50 

 R201                4.9 91.9 0.7 0.08 

 R215                4.4 83.1 0.7 -0.33 

 B22/B17            4.5 84.1 0.7 -0.21 

 B22/B18            4.3 80.9 0.7 1.01 

 B11/B24            3.9 72.4 0.5 0.74 
♣
Values in bold show significant variation from linearity; β-value = ± 0.1063; standard hybrids are in 

bold.             

 



6.3.3 Cultivar Superiority Index 

Hybrid superiority index ranged between 1.121 (CML444/A26) and 10.235 (B11/B24) 

(Table 6.9).  All the top 20 hybrids and the SC633 had high relative yield (>106%), 

but the cultivar superiority index had a negative correlation with yield (Table 6.11). 

 

 Table 6.9:  Cultivar Superiority Index of top and bottom yielding hybrids across 
environments 

 
♣ 

Name              Yield Cultivar Superiority Index 

 t/ha % Mean  

 CML444/A26            6.85 128.52 1.12 

 B17/CML312            6.37 119.51 1.73 

 B16/CML312            6.14 115.20 1.73 

  
CML444/CIM24           6.12 114.82 1.88 

 CML445/A7            6.15 115.38 1.88 

 CML312/A7            6.08 114.07 1.93 

 B19/CML444            6.10 114.45 2.02 

 B19/CML488            6.02 112.95 2.05 

 CML442/A9            5.95 111.63 2.12 

 B17/CML445            5.89 110.51 2.20 

 CML445/A8            5.92 111.07 2.24 

 CML312/A8            6.03 113.13 2.25 

 B21/CML395            5.95 111.63 2.26 

 B16/CML442            5.86 109.94 2.37 

 SC633              5.89 110.51 2.51 

 SC627              5.59 104.88 2.97 

 SC513              5.15 96.62 4.21 

 B12/B22            5.00 93.81 4.52 

 B20/CML488            5.13 96.25 4.53 

 CML442/A8            5.06 94.93 4.56 

 ZS255              5.34 100.19 4.59 

 A15/B19            5.05 94.75 4.60 

 ZS257              4.90 91.93 4.74 

 SC403              4.88 91.56 5.14 

 CML488/CML489         
   4.87 91.37 5.16 

 R201                4.90 91.93 5.20 

 B18/CML445            4.66 87.43 5.66 

 A13/B21            4.80 90.06 5.71 

 B18/CML312            4.60 86.30 5.80 

 K64R/B24            4.67 87.62 5.91 

 B22/B16            4.65 87.24 6.12 

 B22/B17            4.48 84.05 6.53 

 R215                4.43 83.11 6.60 

 A15/B20            4.28 80.30 6.90 

 K64R/B23            4.23 79.36 7.27 

 B22/B18            4.31 80.86 7.50 

 B11/B24            3.86 72.42 10.24 

 
♣ 

 Standard hybrids are in bold 
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6.3.4 Rank Analyses 

The S1 and S2 values for the hybrids varied significantly from 9.56 (K64R/B23) to 

36.22 (ZS255), but only 11 hybrids had significant S1 values and the remaining 69 

hybrids had non-significant S1 values (Table 6.10). Among hybrids with significant S1 

and S2 values were standard hybrids: ZS257, R215 and SC513. The second most 

stable hybrid (B16/CML312) had high relative yield (115%), while two other stable 

hybrids B19/CML395 and B18/CML442 had average relative yield of 103% and 

102%, respectively (Table 6.10). Compared to S1 analysis, S2 analysis ranked only 

six hybrids including one standard hybrid (ZS257) as having significant S2 values 

(Table 6.10).  

 

Table 6.10: Hybrids with low and significant 2 values for S1 and S2 rank analyses 

 Name               Yield Rank Analyses Values
♣
 

 (t/ha) (% Mean) S
2
 S

1
 

 K64R/B23            4.23 79.36 58.00 9.56 

 B16/CML312            6.14 115.20 84.49 11.53 

 B19/CML395            5.51 103.38 87.56 11.73 

 A15/B20            4.28 80.30 127.01 12.11 

 B18/CML442            5.44 102.06 134.40 14.49 

 ZS257              4.90 91.93 137.64 14.53 

 R215                4.43 83.11 201.60 16.76 

 B18/CML312            4.60 86.30 177.05 16.82 

 CML442/A8            5.06 94.93 271.16 17.56 

 A15/B19            5.05 94.75 199.56 17.56 

 SC513              5.15 96.62 206.29 17.58 

 
♣ 

Significant values and Standard hybrids are in bold  

 

6.3.5 Correlations between Stability Estimates and Grain Yield 

There were significant correlations between IPCA scores, regression (b value) and 

cultivar superiority index, but these were not correlated with non-parametric statistics 

(Table 6.11).  Regression coefficients had a negative relationship with cultivar 

superiority index (Fig 5). The IPCA scores had a positive relationship with regression 

values (Fig 6).  There were significant correlations between S1, S2 and regression 

deviation values in ranking hybrids for yield stability across environments (Table 

6.11). Nonparametric stability estimates S1, S2 and deviation from regression linearity 

did not show a significant correlation with grain yield (Table 6.11). 
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Table 6.11: Correlations between stability statistics in ranking hybrids and hybrid 
yield  

Statistic S
1
 S

2
 IPCA1 IPCA2 β- Value Deviation Yield 

C S I
♣
 -0.05 0.02 -0.70 ** 0.29 -0.73 ** 0.102 -0.967 ** 

S
1
  0.97 ** 0.06 -0.11 0.05 0.64 ** 0.11 

S
2
   0.04 -0.13 0.03 0.69 ** 0.06 

IPCA1    -0.00 0.96 ** -0.04 0.67 ** 

IPCA2     -0.15 -0.20 -0.28 

β- Value      0.04 0.70 ** 

Deviation       0.02 
♣
CSI = cultivar superiority index, **, * = Significant at 1 and 5%, respectively.  
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Fig. 5: Plot of Cultivar Superiority index against Regression Value for yield of 80 hybrids 
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Fig.  6: Plot of IPCA scores against Regression Value for Yield of 80 Hybrids 
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6.4 Discussion 

6.4.1 Relationship between Stability Measurements 

Correlations among adaptability or stability statistics provide convincing evidence 

about stability of the hybrids in these environments. Correlation between regression 

coefficient and cultivar superiority index of hybrids was significantly negative, 

indicating that highly responsive hybrids had low superiority indices for grain yield. 

Correlation between regression (β-value) and IPCA scores was highly significant and 

positive, indicating that the highly responsive hybrids had positive IPCA scores and 

would be adapted to high yielding environments. Thus, regression coefficients, IPCA 

scores and cultivar superiority indices had similar ranking of hybrids for stability. It is 

suggested that scientists could use any of these approaches to identify hybrids that 

display dynamic stability or adaptability across environments.  In addition, these 

methods were highly correlated with grain yield; hence they can be employed as 

effective tools in identifying hybrids, which combine high yield potential and high yield 

stability across stress environments. On the contrary, there was no significant 

correlation between parametric methods and nonparametric methods, indicating that 

in general these methods would not have similar ranking of hybrids.  Also the non-

parametric estimates had significant and positive correlation between them, 

indicating that these stability measures were similar in ranking hybrids for stability, 

which was consistent with previous findings in Brazilian maize (Scapim et al., 2000). 

Again scientists would use any of these models to evaluate hybrids for stability. In the 

current study, hybrids were considered stable if they appeared stable in more than 

three stability analyses.  

 

6.4.2 Grain Yield Stability 

Significant variation of hybrids for grain yield, which was explained by genetic 

variation among hybrids, environmental main effects and the hybrid x environment 

interactions in this study is supported by abundant literature involving both tropical 

African and temperate maize germplasm (Banziger et al., 2004; Lee et al., 2003; Min 

and Saleh, 2003; Tariq et al., 2003; Worku et al., 2001).  In the current study, there 

were experimental hybrids that had high relative yield ranging from 110 to 128.5% 

(Table 6.9). These hybrids showed a 10% yield advantage over the best standard 

hybrid (SC633), and had the lowest cultivar superiority values; hence they were the 
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best performing hybrids. These hybrids would be recommended for further testing 

and subsequent release or for use as breeding sources.  The highest yielding hybrid 

CML444/A26 showed average stability and was well adapted to all environments. In 

fact the hybrid CML444/A26 was among the best four hybrids in 7 of the 10 

environments (Table 6.6). The hybrid also displayed the lowest cultivar superiority 

index, indicating that it was the most superior hybrid across environments. Despite 

having a β-value of 1.4, the hybrid did not show any significant deviation from linear 

regression, indicating that it was stable and responsive to environmental change. 

Theoretically, this hybrid could be recommended for deployment in all environments. 

However, this hybrid was not identified as stable by the nonparametric methods and 

had a large IPCA score; hence it was not considered among the most stable hybrids. 

In addition, the hybrid CML444/A26 had above mean number of days to anthesis, 

suggesting that it would be late maturing. As a result it might not be practical to 

deploy the hybrid in tropical lowland dry environments where the growing season is 

ultra short, but it is a very promising candidate for release in the high potential long 

season environments. The data did not show a significant correlation between yield 

and number of days to 50% anthesis (Fig. 1), suggesting that in general anthesis 

period could not explain differences in yields among hybrids.  High yield potential for 

some hybrids could be due to heterosis effects, which was expected, because the 

hybrids were formed between lines that were heterotic or from divergent 

backgrounds.  

 

Highly significant environmental effects could be explained by different drought and 

disease stress conditions and altitude.  Clearly, hybrid yield was lowest in drought 

stress environments at very low altitude within the tropical lowlands at Save Valley, 

while it was highest at high input and high altitude environments such as Stapleford 

and ART. Cedara had significantly lower yields due to high disease pressure than 

ART and Stapleford. There were high levels of gray leaf spot (GLS) and 

phaeosphaeria leaf spot (PLS) diseases at Cedara. High levels of hybrid x GLS and 

hybrid x PLS disease interactions were expected at Cedara, whereas they were 

absent at Stapleford where there was neither GLS nor PLS. This is supported by the 

long distance between Cedara, Stapleford and ART on the plot of IPCA1 against 

IPCA2 scores for the environments (Fig. 3). In contrast, there was a shorter distance 

between drought stress environments, suggesting that these environments had 

similar interaction with hybrids. Differences between hybrids could be explained by 

hybrid x drought interactions at lowland tropical dry environments at Save Valley 

(SV2005L and SV2005HP). Kadoma, which is at mid altitude, was some distance 
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apart from the other random drought environments, suggesting different interaction 

with hybrids, which could be explained by the higher altitude. The high altitude 

environments generally experience lower temperatures and the growing cycle for 

maize was longer than in the lowland environments. Long growing period has been 

reported to be associated with high yielding potential (Pingali and Pandey, 2001; 

Beck et al., 1990). Thus, in addition to hybrid x stress interaction effects, hybrid x 

altitude interaction effects could also be inferred from this study. 

 

The plot of IPCA1 and IPCA2 scores (Fig. 3) also indicated that artificially managed 

drought stress at flowering formed a distinct environment (SV2004MS). Although a 

short distance away from others, this environment was not grouped together with the 

random drought stress environments, suggesting that it had a different interaction 

with hybrids. Differences between hybrids in this environment could be partly caused 

by interaction of hybrids with drought at flowering and grain filling stages.  Bruce et 

al. (2002) reported cultivar x drought interaction resulting in different ranking of 

hybrids between different water regimes caused by variation in maize susceptibility to 

drought around flowering.   

 

The plot of IPCA1 and IPCA2 scores (Fig. 3) showed that the optimum moisture 

environment (SV2004HP) had distinctive interaction with hybrids, which was different 

from the other environments. It has a long distance from the entire drought and 

disease stress environments (ART, Cedara and Rattray Arnold) and the highest yield 

potential (Stapleford). Clearly, it is indicated that selection under well-watered or 

optimum moisture conditions at 53 000 plants/ha might not identify hybrids that are 

adapted to drought or moisture stress. In addition, this was a winter environment and 

was at lower altitude than other high yield potential environments. Low night 

temperatures, which lengthen the growing cycle, were observed by large number of 

days to anthesis suggesting that low night temperatures could have confounded 

drought. 

 

The clustering of environments could be explained by the differences in altitude, 

hybrid interaction with drought stress, hybrid interaction with altitude and hybrid 

interaction with plant population density. All environments at Save Valley had 

negative IPCA scores, which can be attributed to their low altitude. The well-watered 

environments were placed in separate quadrants, which could be explained by the 

different population densities of 53000 (SV2004H) and 26000 (SV2004L). Thus, 

these environments had different ranking of hybrids due to the hybrid x population 
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density interaction effects.  Although it is difficult to explain why the well-watered low 

population (26000) environment (SV2004H) was closer to the random drought and 

low population (22000) environment (SV2005), it can be speculated that these had 

similar hybrid x population density interaction effects. Perhaps, these environments 

had similar ranking of hybrids suggesting non-crossover G x E interaction.  

 

In this study, hybrids were identified with different levels of stability and with average 

and specific adaptation to high yielding and drought stress environments.  Twelve 

hybrids that showed significant deviation from linearity of response could be regarded 

as unstable across these environments.  According to Eberhart and Russell (1966) 

hybrids with significant deviations from regression linearity of response are not stable 

and their performance would not be predictable.  Five of these 12 hybrids 

(CML395/A26, B17/CML312, B24/B16, B21/CML444 and CML312/A7) had high 

regression coefficients (β>1.0); hence they displayed below average stability and 

could be classified as specifically adapted to high yielding environments (Fig. 4). 

These hybrids would be recommended for deployment in high yielding environments. 

Six hybrids (B20/CML488, B11/B24, A13/B21, B22/B18, CML312/A9 and ZS255) 

had β-value < 1.0, indicating above average stability and specific adaptation to 

drought stress environments (Fig. 4). Apparently, one hybrid (A13/B20) had a β-value 

of 1.0, indicating average stability, but was not stable. Thus, despite having a β-value 

of 1.0, the hybrid A13/B20 had a significant (P<0.01) deviation from the linear 

regression, indicating that its performance would not be predictable across 

environments. The study showed 68 of the 80 hybrids that had no significant 

deviation from the regression linearity of response, indicating that 85% of these 

hybrids had average stability in these environments.  This could be explained by the 

fact that experimental hybrids were crosses among drought tolerant and gray leaf 

spot disease (GLS) resistant inbred lines. Some of the parent-inbred lines were 

principally selected for drought and GLS resistance, and drought and GLS were 

experienced in four and three of the ten environments, respectively. Moreover, 

conventional lines that were used to form hybrids were elite and had been 

extensively tested through multilocation trials, suggesting that they had been 

indirectly selected for yield stability and tolerance to drought and disease in random 

environments.  

 

The following hybrids were identified as stable by nonparametric estimates based on 

S1 and S2 hybrid rank values (from most stable to the least stable): K64R/B23, 

B16/CML312, B19/CML395, A15/B20, B18/CML442, ZS257, R215, B18/CML312, 
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CML442/A8, A15/B19 and SC513. These hybrids also displayed non-significant 

deviation from regression linearity of response and had low IPCA scores (i.e., close 

to zero); hence they were considered stable by at least three models. All the hybrids 

except three (B16/CML312, B19/CML395 and B18/CML442) with significant stability 

as determined by rank analyses were relatively low yielding (<100%), suggesting that 

they were poorly adapted to all environments.  In addition, some standard three-way 

cross hybrids (R215, SC513 and ZS257) were ranked among the most stable, 

suggesting that stability could have been conferred by heterogeneity. Eberhart and 

Russell (1966) reported that use of genetic mixtures rather than homogeneous 

cultivars reduced G X E interaction. This suggested that more heterozygous and 

heterogeneous cultivars were less affected by environmental differences due to 

population buffering. More recently, Lee et al. (2003) reported that more 

homogeneous inbreds and F1 hybrids had larger G X E than heterogeneous double-

cross and three-way cross hybrids.  In this study, there were many single crosses, 

which were more stable than the standard (commercial) three-way cross hybrids. 

Eberhart and Russell (1966) reported that it was also possible that some single 

crosses had as much or even more stability than most stable three-way and double-

cross hybrids.  

 

Despite having relatively low yield (<100%), four of the most stable hybrids contained 

the conventional inbred K64R or its derivatives, which are extensively used in 

Southern Africa (Gevers and Whythe, 1987). These conventional lines could have 

accumulated stability through extensive testing in environments that included random 

drought and disease stress. Lee et al. (2003) reported that stability was heritable, 

predictable and mostly controlled by additive gene action implying that high yield 

stability could be accumulated by recurrent selection for mean performance across 

multiple environments. On the contrary the highest yielding, but unstable (β>1.0) 

hybrids and specifically adapted to high yielding environments had the following 

inbred parents: CML444, CML312 and CML395, which were principally bred for 

drought tolerance.  These inbred lines are late in flowering and maturing, which 

explains their high yield potential (Pingali and Pandey, 2001; Beck et al., 1990). It is 

suggested that drought tolerance in these materials might not be usable in drought-

prone lowland dry environments, where the growing season is ultra short. There is 

need to develop some earlier versions of these lines that have adaptation to drought 

stress environments within the lowlands. This study suggests that new germplasm 

combining drought tolerance and earliness can be obtained from crosses between 

the late maturing CIMMYT inbred lines and K64R derivatives. These can be used as 
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source populations for pedigree breeding. Some of these CIMMYT lines displayed 

high grain yield potential in combination with K64R derivatives; hence these crosses 

can form the basis for pedigree selection.   

 

6.4.3 Correlations between Grain Yield Potential and Yield Stability 

A highly significant (P<0.01) and positive correlation (r = 0.7) between yield potential 

and regression coefficients (Fig. 4) indicated that there was a positive relationship 

between yield potential and stability in this set of germplasm. Results confirmed a 

previous study by Worku et al. (2001) who reported positive correlation (r = 0.537) 

between yield potential and regression coefficients in East African maize cultivars. 

Nonetheless, these results were different from the significant and negative 

relationship between yield potential and regression coefficients, which was reported 

in temperate maize (Tollenaar and Lee, 2002; Jansen and Cavalieri, 1983). The 

differences of results may be explained by the different sets of germplasm and the 

different test environments. Results from different regression analyses may not be 

comparable because the environmental index against which hybrid yields are 

regressed is dependent on the particular set of hybrids (Lin and Binns, 1986; Crossa, 

1990). Non-parametric analyses in this study showed no significant relationship 

between yield potential and yield stability. However, both parametric and 

nonparametric methods identified hybrids which combined high yield potential and 

high yield stability indicating that high yield potential and high yield stability were not 

mutually exclusive. In other words there was no negative association between high 

yield potential and high yield stability, which has important implications for breeding. 

Further evidence is provided by the hybrids B16/CML312, B19/CML395 and 

B18/CML442, which combined high yield potential (>100%) and high yield stability, 

which would be recommended for release across stress prone environments. These 

hybrids can also be used as sources in breeding new lines for yield stability. The 

hybrid B16/CML312, showed exceptional stability in combination with high yield 

potential. Apart from recommendation for release, this hybrid can be used as an elite 

breeding source for new stable lines. Although not tested in this study, previous 

studies by Lee et al. (2003) reported that stability was heritable and largely controlled 

by additive gene action. Thus, selection procedures can be used to develop inbred 

lines with high yield stability.  
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6.5 Conclusion 

The objective of this study was to: (a) evaluate the level of yield stability; and (b) 

determine the relationship between yield stability and grain yield potential in a 

representative sample of Southern African maize base germplasm. Results showed 

that 85% of the 80 hybrids had average stability across the 10 environments. Eight 

percent displayed below average stability and were specifically adapted to high 

yielding environments. The hybrids CML395/A26, B17/CML312, B24/B16, 

B21/CML444 and CML312/A7 with high yield potential would be recommended for 

release in high yielding environments.  Six percent exhibited above average stability 

and were specifically adapted to drought stress environments. The hybrids 

B20/CML488, B11/B24, A13/B21, B22/B18, CML312/A9 and ZS255, would be 

recommended for deployment only in low yielding environments to which they were 

specifically adapted. Parametric models showed a highly significant and positive 

relationship between yield stability and yield potential, while nonparametric models 

showed no significant relationship between yield potential and yield stability. In 

addition, the study identified some hybrids that displayed both high yield potential 

and high yield stability (B16/CML312, B19/CML395 and B18/CML442). The hybrid 

B16/CML312, which displayed high yield potential and high yield stability would be 

recommended for release in all environments. It can be concluded that high yield 

potential and high yield stability were not mutually exclusive in this set of germplasm, 

indicating that hybrids, which combine high, yield potential and high yield stability 

would be obtainable.  
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Chapter 7: General Overview 

7.1 Introduction 

The purpose of this chapter is to close the thesis by reviewing and concluding the 

completed research, and drawing out some of its implications for breeding.  The 

following research hypotheses were tested across environments in Zimbabwe and 

South Africa: 

a) Small-scale farmers in Southern Africa recognise the “key” production 

constraints peculiar to their area and have specific preferences for stress 

tolerant maize cultivars, 

b) There is adequate genetic variation for grain yield and its associated traits, 

which is highly heritable and can be exploited in a breeding programme to 

generate drought tolerant materials,  

c) There is sufficient genetic variation and high levels of resistance to GLS and 

PLS, which is highly heritable and can be exploited in a breeding programme 

to generate disease resistant materials, and 

d) There is a significant positive relationship between stress tolerance; grain 

yield potential and yield stability in Southern African adapted maize base 

germplasm. 

7.2 Findings of the Study and Their Implications 

Very little research has been published about grain yield potential, resistance to GLS 

and PLS, and yield stability in Southern Africa maize germplasm. The study, 

therefore, reviewed work done mainly with temperate maize in temperate 

environments, but comparison with the Southern African situation was made 

wherever possible. A huge yield gap between yield potential and farmers’ yields was 

shown in both temperate and Southern African environments. Stress factors were 

used to explain the yield gap. Significantly high yield potential in temperate maize 

was accumulated through breeding for stress tolerance, especially at high plant 

density. Yield stability was achieved through testing in many environments with low 

precision, but the testing environments were mostly representative of the farmer’s 

situation. The lesson to be learnt for Southern Africa would be to breed for major 

biotic and abiotic stress resistance in order to increase productivity. The experimental 

cultivars should then be tested under the conditions that best represent the 

production environments of small-scale farmers in marginal areas. These farmers 

produce maize under complex low input systems, because they have limited or no 
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access to inputs that can be used to modify their production environment. Cultivars 

that are adapted to high yielding environments on research stations would fail to 

adapt to the production environment in marginal areas, which is quite different from 

the research stations. In the current study, it was shown that there was no significant 

correlation between hybrid ranking in the optimum and moisture stress conditions. 

Thus, drought tolerant cultivars may not be found by selecting under optimum 

conditions. The optimum conditions do not exist in marginal areas; hence selection 

for cultivars to be deployed in marginal areas should be conducted under stressful 

conditions that best represent the farmers’ production environments. 

 

A household survey and participatory rural appraisal (PRA) in the marginal eastern 

belt of Zimbabwe indicated that farmers recognised the production constraints 

peculiar to their areas. Production constraints differed significantly between districts 

due to the different ecologies, which influenced preferences for stress tolerant 

cultivars. Farmers in areas with potential for producing surplus grain perceived weevil 

damage to stored grain to be an important constraint. This means that in areas with 

potential for producing surplus grain, the breeding emphasis should include weevil 

control. Future research should study the feasibility of screening and breeding for 

grain weevil resistance, if cultivars were to be deployed in areas where small-scale 

farmers are expected to produce surplus grain that would be stored on farm. These 

farmers might not have proper storage facilities for their grain. 

 

The PRA study showed that farmers in the relatively more productive district 

(Mutasa) perceived low soil fertility as a major production constraint ahead of 

drought. Thus, farmers in this area would prefer cultivars with tolerance to low soil 

fertility or with high nitrogen use efficiency. Problems of leaching would be expected 

to be high in these areas.  Thus, in addition to drought or in the absence of drought, 

low N is one of the major limiting factors. Pingali and Pandey (2001) reported that 

progress has been made in developing maize cultivars that can efficiently utilise 

available soil nutrients, especially nitrogen and convert it to grain. The germplasm 

with low N use efficiency should be obtained and crossed with adapted maize for 

deployment in wet marginal areas.  Although, materials in the current study were not 

evaluated for low N tolerance, Edmeades et al. (1997) reported that many cultivars 

selected for drought tolerance also had high yield under low N conditions. Breeding 

for drought tolerance might allow spillover benefits to low N environments. Banziger 

et al. (2002) reported that decreased ear abortion and increased assimilate supply 

during grain filling of maize selected for tolerance to mid season drought also 
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provided tolerance to N stress and therefore, may contribute to increased yield and 

yield stability.  There is a complex interaction between available N and drought, such 

that under drought hybrids are also exposed to low N, because moisture is required 

for the uptake of nutrients. Nitrogen is taken up dissolved in water and during drought 

less N is available to the plant leading to apparent N deficiency. Thus cultivars that 

perform well under low moisture stress are mostly to be equally efficient at utilising 

the little N available. As a result cultivars that are tolerant to drought may also have 

some degree of tolerance to low N stress. The hybrids that were found to be drought 

tolerant in the current study would be recommended for screening under low N to 

confirm if they have some tolerance to low N stress. 

 

Farmers’ preference for ultra early cultivars (< 90 days to harvest in these areas) 

would not be met by using the set of germplasm in this study. The frequency 

distribution of germplasm evaluated in the current study was skewed towards late 

maturing period. Although some hybrids showed exceptional drought tolerance 

combined with high yield, they were late in flowering, suggesting that they would not 

fit into the short seasons in drought prone areas. Thus, drought tolerance in late 

inbreds such as CML444, CML395 and CML488 would not be usable in lowland 

tropical dry areas, which have short growing seasons of about 90 days.  It is thus 

suggested that these materials should be crossed to early lines to generate breeding 

populations for selection under drought stress at flowering in lowland tropical 

environments. Another suggestion by Pingali and Pandey (2001) is to cross late-

maturing tropical lines with ultra-early maturing temperate lines. The current study 

indicates that selection for earliness would be effective. This is because heritability 

was high for both days to 50% anthesis and silking. In addition, both grain yield and 

flowering traits were highly influenced by additive gene action.  Foreign, but ultra-

early materials can be crossed with the highly adapted “K64R” group and CIMMYT 

sources and then select for high yield, earliness and drought tolerance at flowering. 

 

Small-scale farmers in the marginal eastern-belt preferred hybrids of the 1970’s to 

the new hybrids, made available after 2000. This preference was supported by the 

observation that the old hybrid “R201”, which was highly preferred by farmers, 

showed a yield advantage of 10% (relative yield = 113%, Chapter 5, Table 5) over 

the widely grown new hybrids across drought stress environments. This might 

suggest that little progress has been made in breeding for drought tolerance or 

acceptable cultivars during the past 35 years. Since the 1970’s breeders in 

Zimbabwe have concentrated on breeding for high yield potential areas. Breeding 
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goals would have been focused on the requirements of large-scale commercial 

farmers in high potential environments. The strong correlation between high yield and 

a long growing cycle might have also resulted in the bias towards the late maturing 

hybrids in breeding programmes. Beck et al. (1990) reported that early materials tend 

to have lower yield potential than the late materials. The yield “penalty”, which is 

realised with early cultivars, when rainfall levels rise above average, might 

discourage breeders from selecting for earliness (Banziger et al., 2000).  Published 

research indicated that cultivars combining high yield potential and earliness could be 

obtained by selecting for late leaf senescence. Thus, the high yield potential in 

temperate maize is partly explained by selecting for late leaf senescence or the “stay 

green trait” (Duvick, 1997; Tollenaar and Wu, 1999). Breeding for delayed leaf 

senescence in ultra early hybrids would enhance grain yield through increased leaf 

area duration, especially during favourable seasons. In addition, breeding for 

prolificacy would enhance yield, which enables the flexible cultivars to produce an 

extra ear during favourable seasons. Results from the current study showed that both 

low leaf senescence score and high number of ears per plant were significantly 

correlated with high grain yield under drought stress. 

 

In designing cultivars for deployment in marginal areas, as shown by the case of the 

marginal eastern-belt of Zimbabwe, farmers’ perceptions and preferences should be 

part of the essential elements. According to farmers in the Save Valley area, the best 

drought tolerance should involve a recovery mechanism to reduce losses that are 

common during the mid-season drought. Farmers mentioned that such a mechanism 

was available in sorghum cultivars grown in the area. It is thus suggested that 

appropriate technology such as molecular technologies that were long ago 

suggested for use in studying the sorghum resistance should be employed in 

studying drought tolerance of sorghum land-races in this area. There is a possibility 

of identifying genes that can be transferred from sorghum into the drought tolerant 

maize hybrids identified in the study. Such a programme would constitute appropriate 

biotechnology for small-scale farmers in the dry marginal areas.  In the mean time, 

ways to allocate a certain percentage of the production area to sorghum and pearl-

millet in addition to maize for food security need to be recommended where possible 

through research projects and/or extension. Nevertheless, the switch from maize to 

sorghum promotion would not be a viable alternative as these farmers showed that 

they had great interest in maize despite its lack of relative drought tolerance.   
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The design elements for the farmers’ stress tolerant “ideotype” cultivar should include 

breeding for semi-dent to flint grain texture, which was highly preferred.  The other 

traits preferred by farmers in marginal areas could be bred by crossing the promising 

drought tolerant materials with local landraces to obtain certain subjective 

requirements (which would be difficult to measure) such as what farmers referred to 

as “good taste”.  The study showed that farmers recognised shortcomings of their 

cultivars but would hold on to them because of some of these subjective 

requirements, which breeders may not be able to identify on their own. In contrast 

breeders have a strong focus on broad adaptation and set their goals towards 

meeting requirements of large-scale commercial farmers, which may be misdirected 

in a region where small-scale farmers operating with limited resources dominate the 

production of maize. A shift in focus towards breeding goals that include the farmers’ 

requirements for stress tolerant cultivars in marginal areas is therefore suggested.  

 

Another finding from the study was that breeding for high resistance to GLS from this 

regional set of germplasm was highly feasible. Many hybrids and inbreds displayed 

high levels of resistance to GLS, presenting an opportunity to select for resistance. 

The inbred lines A13, A15, B18 and B19 would be recommended for use as breeding 

sources for GLS. High levels of resistance in standard hybrids released during the 

1990’s and the 2000’s in this study also showed that breeders have made more 

progress in breeding for GLS than drought stress tolerance. These hybrids showed 

remarkably high resistance to GLS compared to the old hybrids that were released 

before the GLS epidemic (before 1988). Gray leaf spot disease is more prevalent in 

high yield potential areas, which attracts the attention of private breeding companies. 

Secondly, high progress in breeding for GLS can be explained by the large additive 

gene effects and high heritability estimates. On the contrary it is more difficult to 

breed for drought tolerance. Thus, new hybrids did not show any yield advantage 

under drought. Breeders might be discouraged from breeding for drought tolerance 

due to low heritability of yield under drought stress. Clearly, this study showed that 

heritability for yield under drought was low and the absence of significant hybrid rank 

correlations between optimum and stress environments indicated that breeders 

would not make progress in identifying drought tolerance when they select under 

optimum conditions.  The high yielding potential or humid environments, which attract 

breeders, would be ideal for identifying disease resistant cultivars, but not drought 

tolerant cultivars. The study also indicated that breeding for GLS-resistance would 

not be very complicated because single cross hybrids would be resistant when at 

least one of the parent inbred lines is resistant to GLS.  This suggested that 
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screening inbreds for resistance per se would identify resistance sources that can be 

used in combination with complementary lines that are selected based on a different 

criteria. Breeders could choose the second line for use in a single cross hybrid based 

on resistance to some other important stress or high grain yield potential. 

 

Although PLS may still be regarded as a minor disease, a review of the literature 

suggested that the PLS epidemic might follow a similar trend to GLS in the USA, 

which appeared in 1925 but only became an economic disease in the 1970’s (Huff et 

al., 1988).  The devastating effects of the PLS disease that have already been 

reported in Brazil support the view that it has the potential of becoming a major 

disease and threatening regional food security. Observation of an interaction 

between GLS and PLS on some cultivars indicated that a combination of these 

diseases poses a challenge to food security. Additionally, there is limited knowledge 

of the epidemiology of the disease suggesting that resources should be directed 

towards studying its epidemiology, which would provide additional knowledge in 

breeding for resistance to PLS in regional maize. There is also limited information or 

statistics on the incidence and losses that can be incurred when susceptible cultivars 

are grown in Southern Africa. Therefore, it is recommended that formal research 

should be conducted to determine the incidence of PLS and the grain yield losses 

associated with the disease across the subcontinent. 

 

The inbred lines used in the study were not selected for PLS, but substantial 

resistance was observed in parent inbred lines and experimental hybrids. This 

indicated that breeders do not have to look beyond the region in search of resistance 

in order to develop resistant cultivars. Resistance that is obtained in this regional set 

of germplasm would be most useful, because these lines are already adapted. For 

example, germplasm obtained from outside the region might not have resistance to 

maize streak virus, which is peculiar to Africa. This study identified lines that 

contributed exceptionally high resistance to PLS (B23, B17, B12 and CML444) and 

would be recommended for use as breeding sources. Since resistance was highly 

heritable and controlled by genes acting in an additive manner, adequate resistance 

to PLS can be accumulated though simple selection.  

 

The breeding approach for PLS resistance would be different from that of GLS. Thus, 

unlike GLS resistance, the study showed that high resistance to PLS would be 

obtained in hybrids when both parents carry the resistance. Resistance to PLS was 

inherited predominantly in an additive manner. The non-additive portion of the model 
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was not significant in the current study. Also Pegoraro et al. (2001) reported that 

resistance to PLS involved two major genes that behaved mainly in an additive 

fashion. Carson (2005) reported that three to four genes were involved and 

resistance was predominantly conditioned by additive gene action. This finding has 

some implications for hybrid oriented breeding programmes. The implication is that 

resistance to PLS should be found in inbred lines from at least two heterotic groups, 

because hybrids would be formed between complementary inbred lines (i.e. lines 

from different genetic backgrounds). The general observation in Zimbabwe is that 

lines from the “P” heterotic group were generally susceptible to PLS, while those from 

the “K” had some resistance. Therefore it may be difficult to develop PLS resistant 

hybrids between inbred lines from the “P” and “K” heterotic groups. Hybrids that are 

based on these heterotic groups are common in South Africa and Zimbabwe (Olver, 

1998; Cowie, 1998; Gevers and Whythe, 1987). The study suggested that PLS 

resistance has to be improved in the “P” heterotic groups given its regional 

significance. A similar situation has been reported by Carson (2001) in the USA 

where inbreds derived from B73 were generally susceptible, while those from the 

complementary Mo17 derivatives were resistant to PLS.  According to Olver (1998) 

the “P”, “K” and B73-type germplasm have been widely used to constitute early 

hybrids for deployment in marginal areas. The stress tolerant hybrids of the 1970’s, 

namely R200, R201 and R215, were based on inbred lines from the “K” and “P” 

heterotic groups. Generally, it is recommended that regional lines from the major 

heterotic groups should be screened for resistance to PLS. 

 

Simultaneous selection for PLS and GLS is suggested, because these diseases 

usually occur together.  New pedigrees can be created by crossing GLS and PLS 

resistant-lines that were identified in the study. Pedigree procedures can be used in 

breeding for resistance.  In addition, the study showed clearly that resistance of 

hybrids to PLS and GLS would be predictable as revealed by the high regression 

values for hybrid means on the mid parent values.  

 

Results also showed large differences between male and female mean squares for 

GLS and PLS, leading to speculation on the possible role of maternal effects in 

influencing resistance, which would affect breeding progress. The non-genetic 

maternal effects, which are not heritable, would impede selection progress. Previous 

studies did not investigate the role of maternal effects in conditioning resistance. 

Most of these previous studies reported the predominance of additive over the non-

additive effects. If present, maternal effects would cause an upward bias for additive 
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effects, which has serious implications for the conclusions drawn in the previous 

studies. The upward bias of additive variance by maternal effects also has serious 

consequences for estimating heritability, which is a ratio of additive variance to total 

phenotypic variance. In this study, heritability estimates were not biased by maternal 

effects because the male variance component was used to estimate heritability. 

However, caution had to be exercised in interpreting results, because the models 

used in this study did not make a direct test for the presence of reciprocal effects. 

Thus, in the current study, maternal effects could only be estimated by comparing the 

male and female GCA components from the analysis of the design II mating. It is, 

therefore, recommended that future studies should employ models that incorporate 

reciprocal effects in order to confirm this “speculative” role of maternal effects in 

influencing resistance to PLS and GLS. If the role of maternal effects is proven, then 

breeders should make the resistant inbred line the female parent in designing single 

cross hybrids.  

 

Another important finding was the positive and significant hybrid rank correlations 

between environments for both GLS and PLS, which suggested that non-crossover 

hybrid x environment interaction was involved as opposed to crossover interactions. 

Non-crossover G X E effects would indicate that hybrid ranks for resistance would 

not change in different environments reflecting only differences in the magnitude of 

resistance to levels of the disease pressure in each environment. In this situation, 

high costs that are incurred in multilocation testing can be avoided, by screening 

germplasm at one site. Disease “hot spot” sites such as Cedara can be utilised in 

screening for disease resistance. Compared to RARS and ART in Zimbabwe, Cedara 

in South Africa, showed significantly higher discrimination of hybrids for resistance. 

There was no hybrid, which was rated “immune” to GLS at Cedara, in spite of the fact 

that some hybrids had been rated as “immune” at RARS and ART. Hot spot 

screening eliminates false escapes that would reduce efficiency or impede selection 

progress. Any hybrid that is rated resistant at Cedara would be most likely to be 

resistant at any other site in the region. As a result, inbred lines and hybrids which 

showed high resistance to PLS and GLS in this study can be recommended for use 

as resistance sources anywhere in the region, where the diseases present problems. 

 

There was a significantly high positive relationship between grain yield and yield 

stability, indicating that breeding for high yield stability would not necessarily result in 

low grain yield potential. Drought stress tolerance index for the hybrids showed a 

positive relationship with stability across drought stress environments, indicating that 
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breeding for drought stress tolerance in this set of germplasm would enhance 

stability of yield. Although the study showed no significant relationship between grain 

yield and resistance to GLS or PLS, it has to be acknowledged that the effects of 

GLS and PLS on yield could not be separated as the diseases occurred together. 

There was an interaction between GLS and PLS on some cultivars; hence there were 

some confounding effects. In any case, the relationship between grain yield potential 

and GLS or PLS severity would depend on the time the diseases occur. The 

diseases have to occur before or during the early grain filling stage to have a 

significant impact on grain yield. Literature review showed that a negative 

relationship would be obtained if the GLS occurs early and the incidence is moderate 

to severe. In the study, the diseases occurred at 50% silking but their incidence 

intensified during the late grain-filling period, which may explain the lack of a 

significant relationship between yield and disease severity. However, the study 

identified hybrids that showed high relative yield advantage under disease and 

drought stress, indicating that hybrids that combine high yield potential and high 

resistance to disease or drought stress would be obtainable. In addition, some 

hybrids combined stress tolerance with high yield potential and high yield stability, 

supporting the view that stress tolerance, high yield potential and yield stability are 

not necessarily mutually exclusive. 

 

The study identified experimental hybrids with potential for release. The hybrids 

A13/B20, A13/B19 and A15/B21, which combined high grain yield (relative yield = 

117%) with resistance to both GLS and PLS would be recommended for release in 

areas with a growing period of up to 150 days, where both GLS and PLS are a 

problem. The hybrids A9/A13 and B24/B18, which combined high relative yield 

(117%) with high resistance to GLS, would be recommended for use in areas where 

GLS is the major biotic stress.  In areas, where PLS is more important than GLS, the 

following hybrids, which combine high relative yield (≥121%) and resistance to PLS 

would be recommended for release: CML444/A26 (relative yield = 141.9%), 

B20/CML488 (138%), B19/CML488 (124%) and B21/CML395 (121%). In drought-

prone areas, the following hybrids, which combined high drought stress tolerance 

and high yield potential, would be recommended: 04C2179 (relative yield = 121.6%), 

CML444/CIM24 (119.6%), A14/B19 (127.5%), CML445/A7 (120.1%) and 

B17/CML445 (124.8%). These hybrids would best fit in the mid altitude dry areas, 

such as Kadoma area in Zimbabwe. The hybrids still need to be improved by 

reducing their maturity period so that they would adaptable to the ultra-short seasons 

in tropical lowland dry areas such as Save Valley.  



 

   172 

 

In the current study, the hybrid B16/CML312 showed exceptional high stability across 

drought and high yielding environments. This hybrid displayed a combination of high 

yield potential (relative yield = 115%) and high stability. The hybrid would be 

recommended for deployment across disease and drought stress environments with 

a growing period of up to 150 days.  Due to its high stability it has the least chance of 

disappointing the farmers because farmers would not get a yield “penalty” during the 

favourable seasons.  Apart from releasing it to farmers in marginal areas, the hybrid 

would be suggested for use as a source of stability in pedigree breeding.  Although 

not tested in the study, literature review showed that stability was highly heritable and 

was conditioned predominantly by additive gene action; hence it can be improved by 

selection. Thus, pedigree selection can be used to develop lines with high yield 

potential and yield stability from this hybrid.  As a single cross hybrid, there is also an 

opportunity to use the hybrid as female in combination with a complementary early 

inbred line to produce an ultra-early three-way cross hybrid. Alternatively, the hybrid 

can be crossed to a complementary ultra early single cross and produce a stable, but 

early maturing double cross hybrid for deployment in marginal areas. 

7.3  Conclusion and the Way Forward 

Using the case of the marginal eastern-belt of Zimbabwe, the study showed that 

during the past 35 years maize breeding has not made impact in delivering the 

farmers’ preferred drought stress tolerant cultivars in Zimbabwe. Farmers still 

preferred the old hybrids of the 1970’s, which showed a 10% yield advantage over 

the new hybrids (of the 1990’s and 2000’s) that were recommended for their area. 

Farmers showed their preference for semi-dent and flint grain texture, and cultivars 

displaying drought stress recovery mechanism comparable to sorghum. Future 

studies should look at the drought stress mechanism that is expressed by local 

sorghum races, and investigate the possibility of transferring resistant genes to maize 

using appropriate technology such as molecular techniques.  

 

The findings from the study suggested that the participatory rural appraisal (PRA) 

studies, which determine the requirements of the smallholder farmers, who dominate 

production of the maize crop, should be part of the essential elements of plant 

breeding programmes in Southern Africa.  

 

A large number of hybrids and inbreds displayed high levels of resistance to GLS and 

PLS, presenting a huge opportunity to select for resistance. Inheritance of GLS 
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resistance was to a greater extent conditioned by additive effects and was highly 

heritable. Single cross hybrids showed high levels of resistance when at least one 

parent was resistant, suggesting that the second parent in a cross could be identified 

by some other criteria.  

 

Although PLS is still regarded as a minor disease, the indicated that it has the 

potential to become a major disease, with serious implications for food security. 

Additionally, there is limited knowledge of the epidemiology of the disease indicating 

that resources should be directed towards studying the epidemiology and breeding 

for resistance to PLS in regional maize. Resistance of PLS was highly heritable and 

was inherited in a strictly additive manner. Results showed that single cross hybrids 

resistant to PLS would be obtained when both parents carry the resistance. Future 

studies should incorporate reciprocal effects to investigate speculation for the 

possible role of maternal effects in influencing resistance for GLS and PLS.  

 

The study identified hybrids with high yield advantage over standard hybrids under 

disease and drought stress conditions. These hybrids would be recommended for 

release and for use as sources of drought and disease resistance in breeding 

programmes. In sum, the study indicated that farmers’ preferences for maize 

cultivars and traits would be greatly influenced by the major prevailing constraints in 

their area. It also identified adequate genetic variation for GLS and PLS resistance, 

drought stress tolerance, high yield potential and high yield stability in Southern 

African maize base germplam, without negative associations among them, 

suggesting that cultivars combining high yield potential, high stress tolerance and 

yield stability would be obtainable.  
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