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Abstract

Limitations in solving the nonlinear Einstein field equations can be overcome if we effectively

reformulate the equations into an autonomous system of dimensionless, covariantly defined

geometrical variables. So, by definition, the system is gauge independent. To avoid solving

the equations, we apply the usual tools of dynamical system analysis to the compactified phase

space leading to the determination of all important global features of the maximal extension

of vacuum (with and without cosmological constant) and electrovacuum spacetimes. The

phase plots give a better visualization of how the solutions evolve depending on various initial

conditions. The analysis is extended to investigate vacuum spherically symmetric solutions for

modified theories of gravity like f(R) and the quintessence model. A variety of new behaviour

has been obtained which will extend the framework to study these theories. We have also

modelled, for the first time, non-perturbatively with the proper matching of junction conditions

and exterior Schwarzschild solution, the full structure of a neutron star in the Starobinsky

model. We have shown that the modified field equations are singular in the sense that they

develop a boundary layer. Hence all the boundary conditions cannot be satisfied for a generic

equation of state, only a particular class are compatible with the model. This particular

f(R) model brings two additional fine-tuning problems. First, only a small class of models

can be mathematically matched with the exterior Schwarzschild. Second, the central initial

conditions of the neutron star should be fine-tuned in order to exactly match Schwarzschild

at the surface. Since we are interested in modelling realistic astrophysical compact objects,

we will require that the exterior spacetime is static and asymptotically flat, and the exterior

static solution should describe a well defined black hole solution. Given these constraints,

the fine-tuning problems will be true for a wide range of f(R) models due to the modified

Jebsen-Birkhoff theorem. Shifting our focus from interior solutions, we have also investigated

stationary, spherically symmetric accretion of a polytropic fluid onto black hole with a string

cloud background, where we find that the mass accretion rate increases considerably when

compared to the Schwarzschild case. In the process, we also find the gas compression ratios

and temperature profiles below the accretion radius and at the event horizon.
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domains for general relativity with cosmological constant (nonstatic case). . . . 88

6.5 Critical points and their stability in both finite and infinite (Poincaré sphere)
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Chapter 1

Introduction

The last century of progress in understanding the fundamental laws of physics has been based

on developing our knowledge of the symmetries that these laws respect. Prior to the twentieth

century, the accepted laws were based on Galileo’s principle of relativity. That is, they do not

change over time, and are also invariant under translations and rigid rotations of the three

spatial directions. However, in the early 20th century, Einstein [Einstein 1905] and others

understood that this Galilean symmetry was only an approximation to a larger symmetry

group, the Lorentz group, acting not on space and time separately, but on a four-dimensional

spacetime. Crucially, the Lorentz group encodes a notion of causality, and as a result this new

theory of special relativity predicts that no information is able to travel faster than the speed

of light c ≈ 3 × 108ms−1. Galilean symmetry is recovered from special relativity for speeds

v � c, and hence gives a very good approximation for most conventional physics.

Unfortunately, Newton’s law of gravitation is inherently inconsistent with special relativity;

when a massive body moves, information about the movement is instantaneously transferred

across all of space via the change in its gravitational field. This violates causality. This ob-

servation motivated the development of general relativity (GR) by Einstein in 1916 [Einstein

1916]. It follows the famous quote by John Wheeler, “spacetime tells matter how to move; mat-

ter tells spacetime how to curve”, according to a particular set of partial differential equations:

the Einstein field equations (EFEs)

Gµν =
8πG

c4
Tµν , (1.1)

where the Einstein tensor Gµν = Rµν − 1
2Rgµν encodes some aspects of the curvature of

spacetime, and Tµν encodes information about the matter content and is called the energy

momentum tensor, with G the Newtonian gravitational constant. The quantities 8πG and c

are set to 1 in the rest of the thesis, unless otherwise stated.
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To fix notation and conventions, we first recall some basic concepts of general relativity in four

dimensions. Spacetime is a differentiable manifold (M, g), with local distances measured by

a line element

ds2 = gµνdx
µ ⊗ dxν . (1.2)

Summation over repeated indices is implied. Greek indices µ, ν, . . . run over spacetime coordi-

nates and can take values 0, 1, 2, 3 whereas Latin indices i, j, . . . correspond to spatial ones and

assume values 1, 2, 3. The 1-forms dxµ provide a local coordinate basis for the cotangent space

of M. The metric gµν has signature [−,+, . . . ,+], and hence provides an indefinite norm on

the tangent space T (M). We will raise and lower indices with the metric gµν and its inverse

gµν .

Unless stated otherwise, we will use ∇ to denote the Levi-Civita connection on (M, g), with

the property that ∇g = 0. The commutator of ∇, acting on an arbitrary vector field V , defines

the Riemann curvature tensor Rµνρσ through

[∇µ,∇ν ]Vρ = RµνρσV
σ. (1.3)

The Riemann tensor has 20 independent components in 4-D spacetime, and obeys the sym-

metries Rµνρσ = R[µν][ρσ] = Rρσµν and Rµ[νρσ] = 0, as well as the differential Bianchi identity

∇[µRνρ]στ = 0. (1.4)

It is often useful to decompose the Riemann tensor into several parts. We write

Rµνρσ = Wµνρσ + gµ[ρRσ]ν − gν[ρRσ]µ −
1

3
Rgµ[ρgσ]ν , (1.5)

where the Ricci tensor and Ricci scalar are given by

Rµν ≡ gρσRµρνσ and R ≡ gµνRµν , (1.6)

and the Weyl tensor Wµνρσ is totally traceless. The Weyl tensor encodes the information

about curvature in the absence of matter. One important property of this tensor is that

it is conformally invariant. A conformal transformation maps a spacetime (M, g), to a new

spacetime (M, g̃), where the new metric is given by g̃ = Ω2g for some smooth positive function

Ω :M→ R. If W̃ is the Weyl tensor for the new spacetime, then the statement of conformal

invariance is that W̃µ
νρσ = Wµ

νρσ (see, [Wald 1984]).
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1.1 Modifications in the theory of gravity

General relativity is still widely considered as a fundamental theory of gravitation. Being

one of the pillars of modern science, it has brought a renaissance in our understanding of the

Universe. Though the theory has passed all experimental tests (see [Will 2014] for a review),

most of them, except the binary pulsar observations [Kramer and Wex 2009], are in the weak-

field regime. This has led to questions related to its short comings which are becoming more

and more pertinent from both theoretical and observational points of view. Indeed, looking

for modification of the theory of gravity is not a new thing; GR itself is a modification of

Newton’s gravitational theory which is an extremely good representation of gravity for a host

of situations of practical and astronomical interests. Observations of the orbit of Mercury

revealed a discrepancy with the prediction of Newtonian gravity in the rate of advance of

Mercury’s perihelion which was resolved by taking into account the relativistic corrections of

Einstein’s theory of gravity. Similarly, there is growing evidence that modifications of GR at

small and large energies are somehow inevitable.

Ideas to modify GR by considering higher order invariants to the action were invoked as early

as the formulation of GR itself [Weyl 1919; Eddington 1923] which were triggered by scientific

curiosity. Later, in 1960s, these ideas gained substantial ground when it was realized that GR

is not perturbatively renormalizable in the standard quantum field theory sense and hence,

cannot be conventionally quantized. Non-renormalizability is seen as a signal that a physical

theory is only valid up to a particular energy scale, and there exists new physics that becomes

relevant at higher energies. It was soon realized that the theory becomes renormalizable if we

add higher order curvature terms to the Einstein-Hilbert action [Utiyama and DeWitt 1962;

Stelle 1977]. These lead to high-curvature or high-energy corrections which can avoid the

inconsistency of classical GR and quantum mechanics particularly near singularities, as shown

by the Hawking-Penrose singularity theorems [Hawking and Penrose 1970]. Also, if theories of

quantum gravity (such as string theory and loop quantum gravity) are considered, it can be

shown that the effective low energy gravitational action has higher order curvature invariants

[Birrell and Davies. 1982; Buchbinder et al. 1992; Vilkovisky 1992].

In recent times, rapid development in observational cosmology confirms that the universe has

undergone two phases of cosmic acceleration – the inflationary phase and the late time ac-

celeration. In order to solve the problems of flatness, horizon, monopoles etc., concerning

the early Universe in cosmology, a phase of a very rapid accelerated expansion was necessary

[Guth 1981; Linde 1982; Albrecht and Steinhardt 1982], i.e., inflation, which is believed to have

occurred prior to the radiation dominated era at ∼ 10−35 − 10−32 s after the Big Bang (for

reviews, see [Lyth and Riotto 19991; Liddle and Lyth 2000; Bassett et al. 2006]). Furthermore,

it naturally provides an initial seed for cosmic microwave background (CMB) anisotropy and
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large scale structure [Mukhanov and Chibisov 1981; Hawking 1982; Starobinsky 1982; Guth

and Pi 1982]. Hence it has become a cornerstone of the Big Bang model. The second accel-

erating phase has started after the matter domination. Data from type Ia supernovae (SN

Ia) [Riess et al. 1998; Riess et al. 1999; Perlmutter et al. 1999], large scale structure (LSS)

[Tegmark et al. 4; Tegmark et al. 2006], baryon acoustic oscillations (BAO) [Eisenstein et al.

2005; Percival et al. 2007], and CMB anisotropies [Komatsu et al. 2009; Ade et al. 2015] have

concluded that our Universe at present is expanding at an accelerated rate. The unknown

component giving rise to this late time cosmic acceleration is called dark energy [Huterer and

Turner 1999] (for reviews, see [Copeland, Sami, et al. 2006; Amendola and Tsujikawa 2010]).

These two phases of cosmic acceleration cannot be explained by just standard matter whose

equation of state w = P/ρ satisfies the condition w ≥ 0, where P and ρ are the pressure and the

energy density of matter, respectively. In fact, what is required is a fluid of negative pressure,

with w ≤ −1/3, to realize the late time acceleration of the universe. The cosmological constant

Λ is the simplest candidate of dark energy, which corresponds to w = −1. The cosmological

constant is still in remarkably good agreement with almost all cosmological data. However,

more than a decade after the observational discovery of cosmic acceleration, our knowledge

of the cosmic evolution is so incomplete that it would be totally premature to claim that we

are close to understanding the ingredients of the cosmological standard model. There are at

least three reasons to prove this point. The first is the so-called cosmological constant problem

[Weinberg 1989; Martin 2012] which deals with the small but non-zero value of Λ which is 120

orders of magnitude smaller than the energy scale of the vacuum energy of particle physics,

from which it is believed to originate from. In fact, its value is too small with respect to any

physically meaningful scale, except the current horizon scale. The second is the coincidence

problem which states that this value is not only small, but also surprisingly close to another

unrelated quantity, the present matter energy density. This coincidence is hard to accept as

the matter density is diluted rapidly with the expansion of space. Finally, though inflation

is an integral part of the standard cosmological model, yet the fact that we exist and are

able to observe and describe the universe around us demonstrates that this early accelerated

expansion was not due to a constant Λ, thus shedding doubt on the nature of the current

accelerated expansion. The very fact that we know so little about the past dynamics of the

universe forces us to enlarge the theoretical parameter space and to consider phenomenology

that a simple cosmological constant cannot accommodate.

These motivations led many scientists to challenge one of the most basic tenets of physics:

Einstein’s law of gravity. Two major approaches for modifications (for an extensive review,

see [Clifton, Ferreira, et al. 2012]) are as follows:

• modification of the energy momentum tensor in Einstein’s equations
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• modification of the theory of gravity

In chapter 2, we formally introduce the modified theories that will be considered in this thesis.

The generating Lagrangians will be explicitly given and the field equations derived from them.

The form of these field equations will immediately be seen to be more complicated than the

general relativistic case.

1.2 Strong gravity regimes in astrophysics

The main focus of this thesis is to study how these modifications to GR are applicable to

the strong gravity regime and the constraints they bring thereof. As a common practice, the

feasibility of all the modified gravity models are verified by undergoing solar system tests.

However, these fields are substantially weaker than the vicinity of astrophysical compact stars

and solar mass black holes corresponding to a surface redshift of ∼ 1 and a spacetime curvature

of ' 2× 10−13 cm−2 [Psaltis 2008]. So these compact stars and solar mass black holes give a

very good platform to study the behaviour of strong gravity. Ideally, black holes would have

been the best candidates to study the strong gravity behaviour of these modified theories. On

the other hand, compact stars – like the neutron and quark stars – have additional benefits of

studying the behaviour of matter at high density under the modification of gravity.

Black hole (BH), neutron star (NS) and white dwarf (WD) are the three end stages of a star.

They are generally termed as “dead” stars and to understand how they are formed, we should

start from their “birth”. Stars are natural nuclear fusion reactors that take raw materials

– hydrogen and helium, and produce a steady supply of heavier elements. In fact, without

stars no elements heavier than beryllium could have formed in normal nucleosynthesis [B. W.

Carroll and Ostlie 1996].

After a billion years from the birth of the Universe, the slight inhomogeneities in the mass

distribution of the early Universe (that were observed by Cosmic Background Explorer (COBE)

and Wilkinson Microwave Anisotropy Probe (WMAP), and more recently Planck) led to

pockets of high density regions. Eventually, clouds of gravitationally bound matter began to

form. For such cases, the gravitational attraction is counteracted primarily by the thermal

gas pressure, although rotation of the cloud and internal electromagnetic repulsion also play

significant roles. If rotation and electromagnetism are neglected, the cloud will collapse under

the force of gravity if their mass exceeds the Jeans mass limit, building up ever greater pressure

at the core of the cloud triggering hydrogen fusion to helium.

The evolution of the star depends on a number of factors, however mass is the dominant factor

which determines the star’s ultimate fate. Hydrogen fusion may continue in the star’s envelope
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and some of the energy generated leads to slow expansion of the envelope, thereby decreasing

its temperature and shifting it to the red part of the visible spectrum. This type of star is

referred to as a red giant. Another situation is that the star may be sufficiently massive to

fuse all the elements up to iron, which requires an endothermic reaction to fuse and so will

not occur spontaneously. The latter possibility will lead to a particular class of supernova,

or catastrophic stellar explosion, which will in turn provide the energy to fuse all the stable

elements with atomic numbers higher than iron. Hence, all the naturally occurring elements

heavier than beryllium were born from either the evolution or the death of stars.

Eventually, the nuclear fusion reaction in the interior of the star will stop and the thermal

pressure of the hot interior can no longer support the gravitational collapse and the star

collapses to a smaller and denser state. The star will populate an electron-degenerate core via

fusion in its envelope and the gravitational collapse of the core will be supported by electron

degeneracy pressure. If the final core is less than 1.44 M�, the Chandrasekhar limit, the star

will remain electron degenerate and be called a white dwarf. However, if the star’s total mass

is sufficient for the envelope to populate a more massive core, electron degeneracy will be

overcome, and the star will become a neutron star if neutron degeneracy is able to stop the in-

fall and support the mass of the core, or else the star will collapse to a singularity, where all the

mass is concentrated at a single point in space. For the latter case, any information contained

in the star other than its mass, spin, and charge is erased. This state of complete collapse is

known as a black hole, because of its amazing property that, within a certain distance from the

singularity, namely the event horizon of the black hole, even a photon lacks sufficient velocity

to escape the gravitational pull of the singularity. Because light cannot escape, no information

can be sent from inside the event horizon, at least from a classical point of view. The region

inside the event horizon is therefore causally disconnected, or in layman’s terms, completely

cut off from the rest of the Universe.

1.3 Neutron star interior

Neutron stars are truly fascinating objects. They are the densest stars known – while about

10 km in radius, a NS has a mass approximately the same as the Sun (thus its mean density

is comparable to the density of an atomic nucleus). They provide an unique site for studying

fundamental questions in physics and astrophysics, including the influence of super-strong

magnetic fields, superfluidity and superconductivity, the properties of nuclear forces at high

densities, possible phase transitions to exotic matter, and gravitational physics in the strong-

field regime.
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But the main problem is the uncertainty in modeling the dense matter inside NS. The sig-

nature of the behaviour of matter at the highest densities lies in observations that depend

on the core structure of the neutron star: properties like the star’s mass, spin, and size. By

observing dynamical neutron star behaviour we can also infer neutron star properties like tidal

deformability and the resistance to changes in spin (moment of inertia), which depend on the

internal structure of a particular neutron star. All these properties can be traced back to one

function: the equation of state (EoS) of the neutron star matter, which describes the relation-

ship between pressure and energy density in the neutron star. The mass, radius and interior

structure of a particular neutron star are determined by the precise way the pressure of cold

dense matter varies with increasing density. Thus, by observing such properties, the EoS gets

constrained.

Alternate theories of gravity can also lead to a change in the interior structure of NS due

to modification of the Tolman-Oppenheimer-Volkof (TOV) equation. In chapter 3, we study

the structure of neutron stars in the Starobinsky model in an exact and nonperturbative

approach. In this model, apart from the standard general relativistic junction conditions,

two extra conditions – namely, the continuity of the curvature scalar and its first derivative

– need to be satisfied. For the exterior Schwarzschild solution, the curvature scalar and its

derivative must be zero at the stellar surface. We show that for some EoS of matter, matching

all conditions at the surface of the star is impossible. Hence the model brings two major fine-

tuning problems: (i) only some particular classes of EoS are consistent with Schwarzschild at

the surface, and (ii) given the EoS, only a very particular set of boundary conditions at the

centre of the star will satisfy the given boundary conditions at the surface. Hence we show

that this model [and subsequently many other f(R) models (discussed in chapter 2) where

the uniqueness theorem is valid] is highly unnatural for the existence of compact astrophysical

objects. This is because the EoS of a compact star should be completely determined by the

physics of nuclear matter at high density and not the theory of gravity.

1.4 Black hole accretion

Accretion is the term used by astrophysicists to describe the inflow of matter towards a central

gravitating object or towards the centre of mass of an extended system. It is a necessary

and ubiquitous phenomenon in the universe which occurs naturally when matter becomes

gravitationally bound to a source. Accretion occurs in binary systems, at the centres of

galaxies harboring massive black holes, in the hearts of dying stars, and when large clouds

pass over compact sources and are bound via collisional angular momentum and energy loss.

For example, the accretion of gas onto compact stars of mass ∼ M�, is the likely source of

energy in the observed binary X-ray sources. Similarly, it must be noted that the gravitational
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binding energy of matter accreting onto super massive black holes, with mass ∼ 109 M�, is

one of the most promising ideas explaining the highly luminous (∼ 1047 ergs/s) active galactic

nuclei (AGNs) and quasars.

Black holes are amongst the most striking predictions of Einstein’s theory of general relativity

but, unlike other astrophysical objects, they cannot be observed directly because of their very

nature as described earlier. So the only way to discover its presence is through its gravitational

interaction with the surrounding matter. One of the most important effects of the black hole

is its tendency to accrete, and hence several aspects of the accretion onto the black hole have

been actively investigated (see [Chakrabarti 1996] for a review). What is interesting is while

the matter falls through the steep gravitational potential of a black hole, roughly 10% of the

accreted rest mass energy gets converted into radiation in different energies depending on the

mass of the central black hole. For example, the radiation from an accreting stellar mass

black hole is normally in X-rays, and is in optical for a supermassive black hole. This is also

how we can observe activity from black holes and indirectly demonstrate their existence. In

chapter 4, we examine the accretion process onto the black hole with a string cloud background

(discussed in chapter 2), where the horizon of the black hole has an enlarged radius due to

the string cloud parameter α. The problem of stationary, spherically symmetric accretion of a

polytropic fluid is analyzed to obtain an analytic solution for such a perturbation. It is shown

that the mass accretion rate, for both the relativistic and the nonrelativistic fluid by a black

hole in the string cloud model, increases with increase in α.

1.5 Global properties of spacetime

In general relativity, to understand how spacetime behaves in presence of a given form of

matter, we have to solve the Einstein field equations, which in general, are a set of 10 very

complicated coupled nonlinear second order partial differential equations that describes the

fundamental interaction of gravitation as a result of spacetime being curved by matter and

energy. Once we solve this set of field equations we get the metric of the spacetime that

describes all the general important physical features of the spacetime, for example the presence

of horizons, spacetime singularities, asymptotic behaviour etc.

However finding exact solutions of this complicated system is a field of research in its own

right and can only be obtained for spaces of high symmetry and idealized matter content.

Nevertheless, they are very important as they embody the full nonlinearity, allowing study

of strong field regimes which is very useful to constrain gravitational theories. They also

provide backgrounds on which perturbative analysis can be built, and therefore understand
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the stability of a solution like the final fate of gravitational collapse. They provide solutions

for astrophysical structures like neutron stars, and they enable checks for numerical accuracy.

To find exact solutions the basic problems are

• what is the coordinate choice that can make the calculations simpler.

• the complicated systems are difficult to integrate, this is principally true for realistic

matter content as for example neutron stars or for vacuum solutions in the context of

modified gravity theories where the equations are often fourth order.

Given the above problems, the key question that arises here is as follows:

Is it possible to identify the general physical properties and global nature of a

spacetime without actually solving the Einstein field equations?

In this thesis we tried to answer this question in a transparent manner. To bypass the problem

of coordinate choice or coordinate singularities etc. we used the local semi-tetrad splitting of

spacetime (which is commonly known as the 1+1+2 covariant formalism) to recast the field

equations into an autonomous system of covariantly defined variables. In chapter 5, we present

the 1 + 3 and 1 + 1 + 2 covariant approach and present the full system of decomposed field

equations in general relativity for locally rotationally symmetric (LRS) type II spacetime. This

approach enables us to get rid of all the coordinate singularities that may appear due to a

bad choice of coordinates while solving the field equations. This autonomous system simplifies

considerably when we incorporate the Killing symmetries of the spacetimes. Instead of trying

to find particular exact solutions of differential equations, we studied the autonomous system

which gives qualitative information on important global features of the spacetime. For that,

we used all tools available in dynamical systems as critical points and their stability, Poincare

sphere, centre manifold and so on.

It is then very easy, via this formalism, to not only obtain the nature of the central singularity

of the black hole, to find whether the solution possesses a horizon or not and the asymptotic

behaviour of the solution, but also to obtain the singularity-free nature of e.g. the Nariai

solution. It provides an efficient way to understand the global properties of any spacetime, by

bypassing the very difficult task of solving the field equations. In chapter 6, we discuss this

formalism in the realm of GR whereas in chapters 7 and 8, we study f(R) and quintessence

models, respectively, where the field equations become more complicated and exact solutions

are hard to find even for idealized cases.

In chapter 9 we summarise our results and provide concluding remarks. This is followed by

some useful derivation of relations utilised in our work in the appendices A and B.
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Chapter 2

Modified theories of gravity

In this thesis, we define ‘General Relativity’as a theory that simultaneously exhibits general

covariance, and universal couplings to all matter fields, and satisfies Einstein’s field equations.

A modification of any of these properties will be referred to as ‘modified gravity’theories. To be

more precise, any deviation from the standard model of cosmology (with matter, radiation and

the cosmological constant) falls in the realm of modified theories of gravity. In this chapter, we

will introduce three of these “extended theories” – f(R), quintessence and the cosmic string

model, which will be used in the following chapters.

2.1 f(R) gravity theories

We start with a class of models in which gravity is modified with respect to general relativity

and invoke new degrees of freedom belonging to the gravitational sector. One of the simplest

and most popular schemes of these modifications based upon phenomenological considerations

is provided by f(R) theories of gravity (for reviews, see [Sotiriou and Faraoni 2010; De Felice

and Tsujikawa 2010]). These theories essentially contain an additional scalar degree of free-

dom apart from the graviton. Indeed, f(R) theories are conformally equivalent to Einstein’s

theory plus a canonical scalar degree of freedom dubbed the scalaron [Starobinsky 1980] whose

potential is uniquely constructed from the Ricci scalar. One of the most interesting aspects

of these models of gravity (contrary to models including the Ricci or Riemann tensor in the

action) is the absence of the Ostrogradski ghost despite the fact that the equations of motion

are of fourth order.
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2.1.1 Action and modified field equations

Generalization of the Einstein-Hilbert (EH) action

SGR =
1

2

∫
d4x
√
−gR+ SM (gµν , ΨM ) , (2.1)

results in the 4-dimensional action in f(R) gravity:

Sf(R) =
1

2

∫
d4x
√
−gf(R) + SM (gµν , ΨM ) , (2.2)

where g denotes the determinant of the metric gµν and R is the Ricci scalar. SM and ΨM are

the matter action and matter fields respectively.

Following the metric formalism from the above action, the field equations are derived by

the variation of the action with respect to the metric tensor gµν , and we get (for a detailed

derivation, see appendix A)

f,RRµν −
1

2
f(R)gµν − (∇µ∇ν − gµν�)f,R = T (M)

µν , (2.3)

where f,R = df(R)
dR and T

(M)
µν = − 2√

−g
δSM
δgµν is the matter energy momentum tensor (MEMT) of

the matter fields. The trace of Eq. (2.3) is

3�f,R + f,RR− 2f(R) = T (M) , (2.4)

where T (M) = gµνT
(M)
µν is the trace of the MEMT. It determines the dynamics of the scalar

degree of freedom, ϕ = f,R.

The field Eq. (2.3) can also be rewritten in the following form

Gµν =
T

(M)
µν

f,R
+ T (R)

µν , (2.5)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor and

T (R)
µν =

1

f,R

(
1

2
gµν (f(R)−Rf,R) + (∇µ∇ν − gµν�)f,R

)
, (2.6)

is the curvature energy momentum tensor (CEMT). It corresponds to a modification of the

energy momentum tensor (matter and curvature) in Einstein equations.



Chapter 2. Modified theories of gravity 13

From the conservation law, we have ∇µGµν = 0 and ∇µT (M)
µν = 0, which leads to

∇µ
(

(1− f,R)Gµν + f,RT
(R)
µν

)
= 0 ,

or ∇µ
(
Rµν(1− f,R) +

1

2
gµν(f(R)−R) + (∇µ∇ν − gµν�)f,R

)
= 0 . (2.7)

2.1.2 Conformal frame

The action, Eq. (2.2), is defined in the Jordan frame where the scalaron is non-minimally

coupled to the metric. To derive an action linear in R in the Einstein frame where the scalar

field is minimally coupled, we make a conformal transformation of the form [Dicke 1962; Wald

1984; K.-I. Maeda 1989; Wands 1994; Magnano and Sokolowski 1994; Faraoni et al. 1999; Fujii

and K.-I. Maeda 2003]

g̃µν = Ω2 gµν , (2.8)

where Ω2 is a smooth, nonvanishing function of the spacetime called the conformal factor and

“˜” represent quantities in the Einstein frame. Now, the action (2.2) can be rewritten as

S =

∫
d4x
√
−g
(

1

2
f,RR− U

)
+ SM (gµν , ΨM ) , (2.9)

which can be compared to the action in Brans-Dicke (BD) theory [Brans and Dicke 1961]

SBD =

∫
d4x
√
−g
(

1

2
ϕR− ωBD

2ϕ
(∇ϕ)2 − U(ϕ)

)
+ SM (gµν , ΨM ) , (2.10)

where ϕ is the scalaron and ωBD is the BD parameter. Hence the metric formalism of the

f(R) theory is equivalent to BD theory when ωBD = 0.

Action (2.9), under conformal transformation, becomes (transformation of these quantities

under conformal transformation is shown in appendix B),

S =

∫
d4x
√
−g̃
(

1

2
f,R Ω−2

(
R̃+ 6�̃ ln Ω− 6(∇̃ ln Ω)2

)
− Ω−4U

)
+ SM (Ω−2 g̃µν , ΨM ) ,

(2.11)

where

U =
f,RR− f(R)

2
. (2.12)

The non-minimal coupling to the Ricci scalar can now be removed by making the choice

Ω2 = f,R. Defining a new scalar field ψ ≡
√

3/2 ln f,R, we have ln Ω = ψ/
√

6. Hence, the
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action in the Einstein frame turns out to be

SE =

∫
d4x
√
−g̃
(

1

2
R̃− 1

2
(∇̃ψ)2 − V (ψ)

)
+ SM (e

−
√

2
3
ψ
g̃µν ,ΨM ) , (2.13)

where

V (ψ) =
U

(f,R)2
=
f,RR− f(R)

2(f,R)2
. (2.14)

The equations of motion (EoM) in the Einstein’s frame are given by (for a detailed derivation,

see appendix A)

G̃µν = T̃ (M)
µν + T̃ (ψ)

µν (Modified Einstein Equation) , (2.15a)

�̃ψ = V,ψ −
1√
6
T̃ (M) (Klein−Gordon Equation) , (2.15b)

where V,ψ ≡ dV/dψ and

T̃ (ψ)
µν = ψ,µψ,ν − g̃µν

(
1

2
(∇̃ψ)2 + V (ψ)

)
, (2.16)

is the scalar field energy momentum tensor (SFEMT).

2.2 Quintessence

In order to modify the theory of gravity, various paths might be used. For clarity, Lovelock’s

theorem is particularly useful to define an extension of the theory of GR. The theorem says

that

In 4D the only action constructed solely from the metric gµν preserving the diffeomorphism

and which have field equations involving derivatives of the metric tensor only up to second

order is Einstein-Hilbert action.

Therefore following these assumptions, GR emerges as an unique theory. But any violation of

these axioms gives rise to a different class of modified theories of gravity. Even if the number

of models is infinite, we might find clarity. In fact, in this very rich zoo of models, we can find

a fundamental common idea:

• In higher dimensional theories, the models have more than 2 degrees of freedom. For

example, the Dvali-Gabadadze-Porrati (DGP) model has 5 degrees of freedom which

can be split into a massless graviton, a massless vector field and a scalar field. But the
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main interesting parts of the model are contained in the additional scalar field (along

with the massless graviton). In fact, integrating out the additional dimension [Luty

et al. 2003] gives rise to an effective theory describing the brane bending mode, known

as galileon theory [Nicolis et al. 2009]. Higher dimensional models often contain scalar

fields which can be very relevant in cosmology. In fact, more generically many theories of

high energy physics, such as string theory and supergravity, predict light gravitationally

coupled scalar fields [Binetruy 2006; Linde 2008].

• In higher derivative theories such as f(R) in the metric formalism, we have also an

additional degree of freedom, the scalaron which appears explicitly in the Einstein frame

of the theory as we have seen.

• Obviously additional extra fields might be scalar fields such as the Horndeski model

[Horndeski 1974] or beyond Horndeski [Gleyzes et al. 2015].

• In the case we break the diffeomorphism invariance such as de Rham-Gabadadze-Tolley

(dRGT) model [deRham et al. 2011] we have additional degrees of freedom. And as in

extra dimensions, the very interesting aspects of the model are encoded in the scalar

degree of freedom which become transparent in the so-called decoupling limit [deRham

2014].

Therefore we see that even if the models appear very different, they can be unified in a

single structure. They all have in common an additional degree of freedom, a scalar field,

which encodes various interesting aspects of the model. Even if the scalar tensor theories are

not the most general models, they possess various properties of the underlying theory and

they have many interesting features to study such as screening mechanisms (see e.g. [Tolley

2009]), spontaneous scalarization [Damour and Esposito-Farese 1993], superradiance [Press

and Teukolsky 1972], etc.

We see therefore how important, models with a scalar field are, because they encode most of

the phenomenology of modified gravity theories but also because they are viable models such

as in inflation and interesting alternative models such as for dark energy. In this section, we

introduce the simplest of this class of models, quintessence, but which remains the best model

to describe the early Universe, the inflation and often used as a toy model to describe and

study the interaction of matter with compact objects.

We refer to scalar field models with canonical kinetic energy and minimally coupled to gravity

as “quintessence models” (for a review, see [Martin 2008; Tsujikawa 2013]). Scalar fields with

a slowly varying potential are obvious candidates for inflation as well as for dark energy (DE)

for the following reasons:
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• simplest fields as they lack internal degrees of freedom,

• do not introduce preferred directions,

• typically weakly clustered,

• can easily drive an accelerated expansion.

Due to its many advantages, quintessence models are the protoypical DE models [Caldwell,

Dave, et al. 1998] and the most studied ones [Amendola and Tsujikawa 2010]. If the kinetic

energy has a canonical form, the only degree of freedom is then provided by the field potential

(and of course by the initial conditions).

The quintessence model is described by the action

S =

∫
d4x
√
−g

[
1

2
R+

1

2
gµν∂µψ∂νψ − V (ψ)

]
+ SM , (2.17)

which is similar to the action (2.13). Hence f(R) theories in Einstein frame is equivalent to

quintessence model.

In a Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric background, given by the metric

ds2 = −dt2 + a(t)2

(
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

)
, (2.18)

where a(t) is the scale factor and k the spatial curvature, the energy density ρψ and the

pressure pψ of the scalar field can be obtained from (2.16)

ρψ = −T 0
0

(ψ)
=

1

2
ψ̇2 + V (ψ) , pψ =

1

3
Ti
i(ψ)

=
1

2
ψ̇2 − V (ψ) , (2.19)

which give the equation of state

wψ ≡
pψ
ρψ

=
ψ̇2 − 2V (ψ)

ψ̇2 + 2V (ψ)
. (2.20)

In the flat universe, using Eqs. (2.15), we get the following equations of motion

H2 =
1

3

[
1

2
ψ̇2 + V (ψ) + ρM

]
, (2.21)

Ḣ = −1

2

[
ψ̇2 + ρM + pM

]
, (2.22)

ψ̈ + 3Hψ̇ + V,ψ = 0 , (2.23)

where H = ȧ/a is the Hubble function.
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During radiation or matter dominated epochs, the energy density ρM of the fluid dominates

over that of quintessence, i.e. ρM � ρψ. If the potential is steep so that the condition

ψ̇2/2� V (ψ) is always satisfied, the field equation of state is given by wψ ' 1 from Eq. (2.20).

In this case the energy density of the field evolves as ρψ ∝ a−6, which decreases much faster

than the background fluid density.

The condition wψ < −1/3 is required to realize the late time cosmic acceleration, which

translates into the condition ψ̇2 < V (ψ). Hence the scalar potential needs to be shallow

enough for the field to evolve slowly along the potential. This situation is similar to that

in inflationary cosmology and it is convenient to introduce the following slow-roll parameters

[Bassett et al. 2006]

εs ≡
1

2κ2

(
V,ψ
V

)2

, ηs ≡
V,ψψ
κ2V

. (2.24)

If the conditions εs � 1 and |ηs| � 1 are satisfied, the evolution of the field is sufficiently slow

so that ψ̇2 � V (ψ) and |ψ̈| � |3Hψ̇| in Eqs. (2.21) and (2.23).

It is of interest to derive a scalar field potential that gives rise to a power-law expansion

a(t) ∝ tp (2.25)

An accelerated expansion occurs for p > 1. It is also easy to see that the potential giving the

power-law expansion corresponds to

V (ψ) = V0 exp
(
−
√

2

p
ψ
)
, (2.26)

where V0 is a constant. The field evolves as ψ ∝ ln(t). The above result shows that the

exponential potential may be used for dark energy provided that p > 1. Exponential potentials

were used in one of the earliest models which could accommodate a period of acceleration today

within it, the loitering universe [Sahni, Feldman, et al. 1992]. Therefore such models should

be also studied in the context of black holes.

Various other models have been studied in the literature. In fact, depending on the evolution

of wψ, we can broadly classify quintessence models into two classes [Caldwell and Linder 2005],

(i) thawing models and (ii) freezing models.

2.2.1 Thawing models

In this case, the field (with mass mψ) is nearly frozen by a Hubble friction (i.e. the term Hψ̇

in eq.(2.23)) during the early cosmological epoch and it begins to evolve once H drops below
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mψ. The equation of state of DE is wψ ' −1 at early times, which is followed by the growth

of wψ. The representative potentials that belong to this class are

• V (ψ) = V0 +M4−nψn (n > 0) ,

• V (ψ) = M4 cos2(ψ/f) .

The former potential is similar to the one of chaotic inflation (n = 2, 4) used in the early

universe (with V0 = 0) [Linde 1983], while the mass scale M is very different. The model with

n = 1 was proposed by [Kallosh et al. 2003] in connection with the possibility to allow for

negative values of V (ψ). The universe will collapse in the future if the system enters the region

with V (ψ) < 0. The latter potential appears as a potential for the Pseudo-Nambu-Goldstone

Boson (PNGB). This was introduced by [Frieman et al. 1995] in response to the first tentative

suggestions that the universe may be dominated by the cosmological constant. In this model

the field is nearly frozen at the potential maximum during the period in which the field mass

mψ is smaller than H, but it begins to roll down around the present (mψ ' H0).

2.2.2 Freezing models

In these models, the field was rolling along the potential in the past, but the evolution of the

field gradually slows down after the system enters the phase of cosmic acceleration because

the potential tends to be shallow at late times. The representative potentials that belong to

this class are

• V (ψ) = M4+nψ−n (n > 0) ,

• V (ψ) = M4+nψ−n exp(αψ2/m2
pl) .

The former potential does not possess a minimum and hence the field rolls down the potential

toward infinity. This appears, for example, in the fermion condensate model as a dynamical

supersymmetry breaking [Binetruy 1999]. There is also a so-called tracker solution [Steinhardt

et al. 1999] for this solution along which wψ is nearly constant during the matter era and then

starts to decrease after that. The latter potential has a minimum at which the field is eventually

trapped (corresponding to wψ = −1). This potential can be constructed in the framework of

supergravity [Brax and Martin 1999].



Chapter 2. Modified theories of gravity 19

2.3 Cosmic strings

Cosmic strings are a generic outcome of symmetry breaking phase transitions in the early

universe [Kibble 1976], and further motivation comes from a potential role in large scale

structure formation [Vilenkin 1981]. Strings may have been present in the early universe, and

they play a role in the seeding of density inhomogeneities [Mitchell and Turok 1987]. The

magnitude of such strings are determined by the dimensionless parameter

Gµ

c2
=

(
η

mPl

)2

, (2.27)

where η is the energy scale of string and mPl =
√
hc/G is the Planck mass. For the Nambu-

Goto string model, using the Planck data, it has been shown that a constraint on the string

tension of Gµ
c2

< 1.5 × 10−7 at 95 percent confidence can be improved to Gµ
c2

< 1.3 × 10−7 on

inclusion of high-l CMB data [Ade et al. 2014b].

It may be also pointed out that strings have become a very important ingredient in many

physical theories, and the idea of strings is fundamental in superstring theories [Sen 1998].

The apparent relationship between counting string states and the entropy of the black hole

horizon [Larsen 1997; Strominger and Vafa 1996] suggests an association of strings with black

holes. Furthermore the intense level of activity in string theory has led to the idea that

many of the classic vacuum scenarios, such as the static Schwarzschild point black hole, may

have atmospheres composed of a fluid or field of strings [Parthasarathy and Viswanathan

1997]. Many authors have found exact black hole solutions with string cloud backgrounds, for

instance, in general relativity [Letelier 1979; Mazharimousavi et al. 2010], in Einstein-Gauss-

Bonnet models [Herscovich and Richarte 2010], and in Lovelock gravity [Ghosh and Maharaj

2014], thereby generalizing the pioneering work of Letelier [Letelier 1979] who modified the

Schwarzschild black hole for the string cloud model. Glass and Krisch [Glass and Krisch 1998;

Glass and Krisch 1999a; Glass and Krisch 1999b] pointed out that allowing the Schwarzschild

mass parameter to be a function of radial position creates an atmosphere with a string fluid

stress-energy tensor around a static, spherically symmetric object. Here, we briefly review

the theory of a cloud of strings (see [Letelier 1979] for further details) and the corresponding

modified Schwarzschild black hole.

The Nambu-Goto action of a string evolving in spacetime is given by

IS =

∫
Σ
L dλ0dλ1, L = m(Γ)−1/2 , (2.28)

where m is a positive constant that characterizes each string, (λ0, λ1) is a parametrization of

the world sheet Σ with λ0 and λ1 being timelike and spacelike parameters [Synge 1960], and
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Γ is the determinant of the induced metric on the string world sheet Σ given by

Γρσ = gµν
∂xµ

∂λρ
∂xν

∂λσ
, (2.29)

and Γ = det Γρσ. Associated with the string worldsheet we have the bivector of the form

Σµν = ερσ
∂xµ

∂λρ
∂xν

∂λσ
, (2.30)

where ερσ denotes the two-dimensional Levi-Civita tensor given by ε01 = −ε10 = 1. Within

this setup, the Lagrangian density becomes

L = m

[
−1

2
ΣµνΣµν

]1/2

. (2.31)

Further, since Tµν = 2∂L/∂gµν , we obtain the energy momentum tensor for one string as

Tµν = mΣµρΣ ν
ρ /(−Γ)1/2 . (2.32)

Hence, the energy momentum tensor for a cloud of string is

Tµν = ρΣµσΣ ν
σ /(−Γ)1/2 , (2.33)

where ρ is the proper density of a string cloud. The quantity ρ (Γ)−1/2 is the gauge invariant

quantity called the gauge-invariant density.

The general solution of Einstein’s equations for a string cloud in 4-dimensions takes the form

[Letelier 1979]

ds2 = −
(

1− 2M

r
− α

)
dt2 +

(
1− 2M

r
− α

)−1

dr2

+ r2(dθ2 + sin2 θdψ2) . (2.34)

Here M arises as an integration constant which is identified as the black hole mass and is not

a function of α. The event horizon for the metric (2.34) has radius

rH =
2M

1− α
, α 6= 1 . (2.35)

In the limit α→ 0, we recover the Schwarzschild radius, and close to unity the event horizon

radius tends to infinity. In general the string cloud parameter α 6= 1. We note that the case of

static spherical symmetry restricts the value of the gauge-invariant density to ρ(−Γ)1/2 = α/r2

[Letelier 1979], and thereby α is a positive constant. However, for the realistic model under

consideration here the string cloud parameter is restricted to 0 < α < 1. On the other
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hand, the cloud of strings alone (M = 0) does not have a horizon; it generates only a conical

singularity at r = 0. This solution was first obtained by Letelier [Letelier 1979] and the metric

represents the black hole spacetime associated with a spherical mass M centred at the origin

of the system of coordinates, surrounded by a spherical cloud of strings. Furthermore it can be

interpreted as the metric associated with a global monopole. In the string cloud background,

the Schwarzschild radius of the black hole is displaced by the factor (1− α)−1.
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Chapter 3

Neutron stars in Starobinsky model

We mentioned in chapter 1 that uncertainty in modeling the equation of state makes the

study of the interior of neutron star complicated. In this chapter we show that verifying and

constraining the EoS of matter at high density with the aid of modified gravity theories, come

at a much later stage, if at all. The challenge we face here is to find a proper matching of

the exterior solution with the interior. A few attempts to apply modified gravity models to

neutron stars were carried out in the recent past (see e.g. [Kainulainen et al. 2007; Babichev

and Langlois 2009; Cooney et al. 2010; Babichev and Langlois 2010; Arapoglu et al. 2011;

Orellana et al. 2013; Alavirad and Weller 2013; Astashenok et al. 2013]). But as far as we

know, there is no work where the interior solution has been consistently matched with a viable

exterior spacetime. As we will see, this will drastically change the conclusions on the viability

of the model.

The chapter is organized as follows. We start by giving a brief introduction to the Starobinsky

model in Sec. 3.1. After that we very briefly review the basic equations (Tolman-Oppenheimer-

Volkoff equation) of the model in Sec. 3.2, followed by the junction conditions at the surface

of the star in Sec. 3.3. In Sec. 3.4 we explain why the Schwarzschild solution should be the

exterior solution. In Sec. 3.5 we give the laboratory, solar system and cosmological constraints

on the parameter α of the model. Sec. 3.6 is devoted to the singular problem of the system

with the existence of boundary layers at the surface. In Secs. 3.7 and 3.8, we perform a

numerical analysis to confirm the fine-tuned nature of the problem and hence the difficulty

of matching all of the boundary conditions. Then, in Sec. 3.9 we propose a semi-analytical

approach to solve the problem. The penultimate section 3.10 is devoted to other possible

solutions to avoid the fine-tuning problems and we finally end with conclusions in Sec. 3.11.

This chapter is based on published work [Ganguly et al. 2014].
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3.1 Introduction

As discussed in chapter 1, there are various models where the authors [Ginzburg et al. 1971;

Bunch and Davies 1977; Davies 1977] considered Einstein equations with quantum corrections.

Following these ideas, Starobinsky studied the cosmology of one of these models [Starobinsky

1980], which was later simplified and is popularly known today as the Starobinsky model,

where the action of GR is replaced by f(R) = R + αR2. It was the first internally consis-

tent inflationary model. In this model, the R2 term produces an accelerated stage in the

early Universe preceding the usual radiation and matter stages. Inflation ends when the term

αR2 becomes smaller than the linear term R. Since the term αR2 is negligibly small relative

to R at the present epoch, this model is not suitable to realise the present cosmic acceler-

ation. One should notice that – contrary to the Starobinsky model – generic f(R) models

are plagued by various problems; they generally reduce to GR plus cosmological constant

[Thongkool et al. 2009], have a φMDE (field-matter dominated epoch) instead of a standard

matter epoch [Amendola, Gannouji, et al. 2007], hit a curvature singularity [Frolov 2008] (see

Ref. [Kobayashi and K.-I. Maeda 2008] for the existence of a singularity in an asymptotic de

Sitter universe and Ref. [Upadhye and Hu 2009] for the opposite statement), produce high

frequency oscillations and a singularity at finite time in cosmology [Appleby and Battye 2008]

or give rise to a fine-tuning [Faraoni 2011].

The recent results from the Planck satellite [Ade et al. 2014a] are remarkably compatible with

the Starobinsky model. Hence the model remains one of the candidates for gravity at high

energies in the early epoch of the Universe and avoids the difficulties listed previously.

3.2 Action and modified TOV equations

The straightforward generalization of the Lagrangian in the Einstein-Hilbert action results in a

four-dimensional action in f(R) gravity as given in Eq. (2.2). Following the metric formalism

from the above action, the field equations are derived by the variation of the action with

respect to the metric tensor gµν , as given in Eq. (2.3) and the trace given in Eq. (2.4).

Substituting f(R) = R+ αR2, we get

Gµν(1 + 2αR) +
α

2
gµνR

2 − 2α(∇µ∇ν − gµν�)R = Tµν , (3.1)

6α�R−R = T , (3.2)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor.
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As we are interested in spherically symmetric solutions of these field equations inside a neutron

star, we choose a spherically symmetric metric of the form

ds2 = −e2Φ(r)dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2 . (3.3)

Using this metric, the (0,0) and (1,1) components, and the trace of Einstein’s equations are

2(1 + 2αR)

r2
m′ − 2α

(
1− 2m

r

)
R′′ + 2α

(
m′

r
+

3m

r2
− 2

r

)
R′ − 1

2
αR2 = 8πρ , (3.4a)

2(1 + 2αR)

r2

[(
1− 2m

r

)
rΦ′ − m

r

]
+ 2α

(
1− 2m

r

)(
Φ′ +

2

r

)
R′ +

1

2
αR2 = 8πP , (3.4b)

−R+ 6α

[(
1− 2m

r

)
R′′ +

((
1− 2m

r

)
Φ′ +

2

r
− 3m

r2
− m′

r

)
R′
]

= 8π(−ρ+ 3P ) .

(3.4c)

The conservation equation ∇µTµ1 = 0 gives

P ′ = −(ρ+ P )Φ′ . (3.5)

From the system of equations (3.4) and Eq. (3.5), we obtain

m′ =
1

12(1 + 2αR)(1 + 2αR+ αrR′)

[
r2(1 + 2αR)(48πP +R(2 + 3αR) + 32πρ)

+2α(−6m(1 + 2αR) + r3(R+ 3αR2 + 16πρ))R′ + 24α2r(r − 2m)R′2
]
,

(3.6)

P ′ = −(P + ρ)(4m+ 16πr3P + 8αmR− αr3R2 − 8αr(r − 2m)R′)

4r(r − 2m)(1 + 2αR+ αrR′)
, (3.7)

R′′ =
1

6αr(r − 2m)(1 + 2αR)

[
r2(1 + 2αR)(24πP +R− 8πρ) + α(12m(1 + 2αR)

+r(−12 +R(r2 − 24α+ 3αr2R) + 16πr2ρ))R′ + 12α2r(r − 2m)R′2
]
,

(3.8)

where a prime denotes a derivative with respect to the radial distance r. Finally, an EoS

P = P (ρ) closes the set of equations (3.6)–(3.8).
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3.3 Junction conditions

In what follows we will be matching the interior of the star to a well defined exterior geometry

in order to construct a realistic neutron star model. This requires a set of junction conditions,

analogous to the Israel junction conditions from general relativity [Israel 1966]; this problem

has been considered in f(R) theories of gravity by Deruelle, Sasaki, and Sendouda [Deruelle

et al. 2008], and later by other authors [Clifton, Dunsby, et al. 2013; Senovilla 2013]. We will

briefly recap the relevant results from their work here, as it is of central importance to our

study.

The prime requirement from Ref. [Deruelle et al. 2008] is that if we allow delta functions

on the matter part of the field equations (i.e., if we allow matter fields to be localized on the

boundary hypersurface), then delta functions should occur at most linearly in the parts of

the field equations that involve geometry only. Here we are interested in the case in which

there is no brane located at the boundary. We therefore require that there should be no delta

function in the part of the field equations containing just the geometry. Therefore, in f(R)

gravity theories, apart from the usual GR junction conditions, i.e., the agreement of the first

and second fundamental forms on both sides of the matching timelike hypersurface,

[hµν ] = 0, [Kµν ] = 0 , (3.9)

(where hµν and Kµν are the first and second fundamental forms, respectively, and [ ] denotes

the jump across the surface), two more conditions need to be satisfied. These are the continuity

of the scalar curvature and its first derivative across the boundary,

[R] = 0, [∇µR] = 0. (3.10)

These extra conditions make the problem of matching the stellar interior with a suitable

exterior spacetime extremely restrictive. In fact, most of the compact star models discussed

so far in higher order theories of gravity do not rigorously take these restrictions into account

[Kainulainen et al. 2007; Babichev and Langlois 2009; Cooney et al. 2010; Babichev and

Langlois 2010; Arapoglu et al. 2011; Orellana et al. 2013; Alavirad and Weller 2013; Astashenok

et al. 2013].

3.4 Exterior spacetime: Why Schwarzschild?

We know that in general relativity the Jebsen-Birkhoff theorem states that the Schwarzschild

solution is the unique spherically symmetric solution of the vacuum Einstein field equations.
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In that case a spherically symmetric gravitational field in empty space outside a spherical star

must be static, with the metric given by the Schwarzschild metric (for r > 2M)

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2dΩ2 . (3.11)

It represents the spacetime of the solar system (and all other spherically symmetric stellar sys-

tems) to a very good approximation, and hence forms the key geometry in much of astrophysics

and astronomy.

For higher order gravity theories, the Jebsen-Birkhoff theorem in its original form is violated.

As we can easily see, in f(R) theories the trace equation in vacuum is a massive Klein-Gordon

equation, which has different classes of nontrivial exact vacuum solutions that can be both

static and non-static (see, for example, [Clifton 2006]). Hence, in principle, there exists a larger

freedom for the exterior spacetime outside a static star. However, since we are interested in

modelling realistic astrophysical compact objects, we will require the exterior spacetime to

be static and asymptotically flat, as dictated by observational tests within the solar system.

Furthermore, whatever exterior static solution we use for a compact star, it should also describe

a well defined black hole solution, as astrophysical black holes are formed via gravitational

collapse from these compact objects. Given the above constraints, there are two possible ways

to construct a suitable exact exterior for astrophysical compact stars:

1. Matching the interior with an exact asymptotically flat static solution. Though

very few exact static vacuum solutions are known for the Starobinsky model of R +

αR2 gravity, there exists the following uniqueness theorem [Whitt 1984; Mignemi and

Wiltshire 1992]: for all functions f(R) which are of class C3 at R = 0 and f(0) = 0

while f ′(0) 6= 0, the only static spherically symmetric asymptotically flat solution with a

regular horizon in these models is the Schwarzschild solution, provided that the coefficient

of the R2 term in the Lagrangian polynomial is positive. Since we require α > 0 to avoid

ghosts in the theory and also require the solution to describe a well defined black hole with

a regular horizon, the Schwarzschild solution is the only possible exact asymptotically

flat exterior. This is a very well known result that follows the famous BH no-scalar-

hair theorems. It states that stationary BH solutions are the same as those in general

relativity, namely, the Schwarzschild solution for the non-rotating case. It was proved

by Bekenstein [Bekenstein 1995] and Sudarsky [Sudarsky 1995] for a quintessence field

with a convex potential, which corresponds to the Starobinsky model in the Einstein

frame. Also, an extension was established without assuming any symmetries apart from

stationarity in Ref. [Sotiriou and Faraoni 2012]. Obviously if we relax the condition

of asymptotic flatness and allow for an asymptotically de Sitter spacetime, we might

have other solutions, e.g., by adding a cosmological constant to the model. But the BH
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no-scalar-hair theorem was extended to this case in Ref. [Torii et al. 1999]. Therefore, a

static BH that is either asymptotically flat or de Sitter is no different than one in general

relativity. Finally, we might consider a non-static solution; so far, all the approximate

solutions derived in the literature have developed high time oscillating modes because of

the presence of the scalaron and should be discarded (see, e.g., Ref. [Starobinsky 2007]

in the cosmological case).

2. Matching the interior to an intermediate static vacuum solution that can be

matched to Schwarzschild at a larger distance. Let us consider an intermediate

non-Schwarzschild static exterior matched with the stellar boundary r = rs, which is

then matched to Schwarzschild at r = r2, where r2 > rs. On a superficial level this

construction seems to have more freedom as the intermediate static solution need not

be asymptotically flat. However, keeping in mind the physicality conditions, we would

like this intermediate region to be completely smooth (C∞). Now from the matching

conditions we can immediately see that the Ricci scalar R and its normal derivative

R′ should vanish at the outer boundary r = r2 of this intermediate solution, where we

are matching with the Schwarzschild spacetime. Using the trace equation (3.8), we get

R′′(r2) = 0 and then the smoothness implies that all the subsequent derivatives of the

Ricci scalar must vanish at this boundary. Therefore there exists an open neighbourhood

U 3 r2 where R = 0. By continuity, we can then extend this open neighbourhood to

the entire exterior asymptotically flat submanifold. Therefore the Ricci scalar vanishes

at every point on the exterior submanifold. Using the extension of the Jebsen-Birkhoff

theorem to f(R) gravity [Nzioki, Carloni, et al. 2010] which states that for all functions

f(R) which are of class C3 at R = 0 and f(0) = 0 while f ′(0) 6= 0, the Schwarzschild

solution is the only vacuum spherically symmetric solution with a vanishing Ricci scalar

– we can immediately show that this intermediate region has to be Schwarzschild. We

also note that this proof remains true even if we consider more than one intermediate

region between the stellar boundary and Schwarzschild.

It therefore seems natural to match the spherically symmetric static star with a Schwarzschild

exterior. However, the crucial difference with general relativity comes from the fact that for

this case the matching surface, the Ricci scalar, and its normal derivative must vanish. This

makes the interior solution much more restrictive than GR.

3.5 Constraints on the model

In this section, we derive the various constraints on the parameter α. Let us first consider the

experimental bound that comes from the solar system tests of the equivalence principle, lunar
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laser ranging (LLR). For any chameleon theory with a scalar field φ we can define a thin shell

parameter ε [Khoury and Weltman 2004], which for the Earth is

ε ≡
√

6
φ∞ − φ⊕
MplΦ⊕

< 2.2× 10−6 , (3.12)

where (φ∞, φ⊕) are, respectively, the minimum of the effective potential at infinity and inside

the planet, and Φ⊕ is the Newton potential for the Earth. Notice that the constraint on the

post-Newtonian parameter γ gives ε < 2.3 × 10−5. Using the value Φ⊕ ' 7 × 10−10, the

previous bound translates into φ∞/Mpl < 10−15.

We know that any f(R) theory can be written in a chameleon form after a conformal transfor-

mation: the two frames are physically equivalent. Hence the model can be cast in the form of

a scalar field in an effective potential. The existence of the chameleon mechanism depends on

the form of the effective potential, which in turn depends on the local density and pressure.

When the pressure is negligible and density is large, the scalar field may acquire a large mass

for a suitably chosen potential, leading to a local suppression of the fifth force. The scalar

field is assumed to be settled in the minimum of the effective potential. Hence it is easy to

find that the minimum of the effective potential can be written in the Jordan frame in the

following form

2f(R)−Rf ′(R) =
ρ− 3P

M2
pl

, (3.13)

which corresponds to the trace equation in the constant curvature case. It turns out that the

αR2 term does not change the minimum of the effective potential. Hence the LLR bound leads

to [Gannouji et al. 2012] ∣∣∣f ′( ρ∞
M2
pl

)
− 1
∣∣∣ < 10−15. (3.14)

For the Starobinsky model and with the density ρ∞ ' 10−24 g cm−3, Eq. (3.14) tells us that

α < 10−15M2
pl/ρm which gives α < 1045eV−2.

But the tightest local constraint comes from the Eöt-Wash experiments, which use torsion

balances. We know that a point mass has a Yukawa gravitational potential (see, e.g., Ref.

[Stelle 1978]),

V (r) =
GM

r

(
1 +

1

3
e−r/

√
6α
)
, (3.15)

which gives [Kapner et al. 2007] α < 4× 104 eV−2. Notice that according to the bound from

big bang nucleosynthesis and CMB physics, we have α� 1035 eV−2 [Zhang 2007].
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We turn now to inflation. According to the latest data set from Planck, the Starobinsky model

is a viable candidate for the early acceleration phase of the Universe. We have [Starobinsky

2007; Starobinsky 1983] α ' 10−45
(
N/50

)2
eV−2 where N is the number of e-folds. Notice

that it may not be compatible with the classicality condition of the field [Gannouji et al. 2012;

Upadhye, Hu, and Khoury 2012].

Hence we conclude this section by considering α ' 10−45 eV−2 from the cosmological con-

straints or α < 4× 104 eV−2 from the laboratory tests.

3.6 Singular problem

As was noticed in various papers, Eqs. (3.6)-(3.8) are very difficult to solve for realistic

cases where α is very small. Also, often in the literature a simple series expansion has been

used to carry out these calculations. But, as is known, the solution in powers of the natural

small parameter (α � 1) is invalid if we are considering a boundary layer problem, which is

also known as a singular perturbation (see, e.g., Ref. [Nayfeh 1973]). In fact, our equations

are among these latter problems because a small parameter α multiplies the highest-order

derivative, and we have αR′′+ · · · in Eq. (3.8). We should also mention that it is not a priori

clear that a nonlinear boundary value problem has a solution.

A singular problem is associated with the approximation of Eq. (3.8) for small values of α.

The difficulty near the boundaries arises from the fact that the limit equation with α = 0 is

algebraic, so that the boundary conditions cannot in general be satisfied. The loss of boundary

conditions in a problem usually leads to the occurrence of a boundary layer.

In the case where the equation is linear, a Wentzel-Kramers-Brillouin (WKB) approximation

can be performed that introduces transcendentally small terms in the form exp(−g(r)/αn),

which shows why a simple series expansion R =
∑

n α
nRn cannot be a correct global approach

to the real solution. In fact, we see that in a small region near g(r) ' 0, the terms of the form

exp(−g(r)/αn) cannot be neglected, i.e., that small region is called a boundary layer, where

the regular expansion fails.

In this section, we consider (m,P, ρ) to be external fields. So, in the limit α→ 0, we can write

Eq. (3.8) in the form

αR′′ − 2α2R′2 − αf(r)RR′ − αg(r)R′ − h(r)R = k(r) , (3.16)

where (f, g, h, k) are functions of r. There are in fact functions of (m,P, ρ).
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We assume that in some subset of [0, rs], where rs is the radius of the star, the solution has a

regular expansion of the form

R(r) =
∑
n

αnRn(r) . (3.17)

The substitution in the previous equation gives an algebraic equation at each order,

R0 = −k(r)

h(r)
, R1 =

R′′0 − f(r)R0R
′
0 − g(r)R′0

h(r)
, · · · (3.18)

All the coefficients Rn are determined by the previous coefficients, so we cannot impose the

boundary conditions on the regular expansion. Hence the subset where the solution has a

regular expansion should not contain the boundary points r = 0 and r = rs. This part of the

solution is known as the outer expansion.

We note that R0 corresponds to the solution in GR and by construction (of the EoS) we

know that we necessarily have in GR that R′(0) = 0, which implies that this condition will

also be satisfied for the regular expansion. Therefore the boundary layer exists only near

the surface, where the solution will have a fast variation in order to satisfy the conditions

R(rs) = R′(rs) = 0. Notice that it might be seen as a generalization of the well known

chameleon mechanism to curved spacetime.

In summary, we have inside the star a solution very close to GR where we can perform a regular

expansion of the form (3.17). Near the surface we use the subtraction trick to determine its

nature. We define C = R −
∑

n α
nRn, and near r = rs we introduce the stretching variable

ξ = (rs − r)α−µ, µ > 0, which magnifies the layer. We now assume that there exists a regular

expansion for C(ξ), which gives at the lowest order of the expansion near the surface

α1−2µd
2C0

dξ2
− h(rs)C0 = 0 , (3.19)

and hence we deduce that µ = 1/2 and C0 = Ae−
√
h(rs)ξ + Be

√
h(rs)ξ. We can proceed for

higher orders by the regular expansion C =
∑

n α
n/2Cn. This solution is the inner expansion,

which should be matched with the outer solution, and hence we fix B = 0. Imposing the

boundary condition R(rs) = 0, we have

R(r) = −k(r)

h(r)
+
k(rs)

h(rs)
e−
√
h(rs)(rs−r)/

√
α +O(

√
α) . (3.20)

We see that it is very difficult to satisfy the second condition R′(rs) = 0; in fact,

R′(rs) = −k
′(rs)

h(rs)
+
k(rs)h

′(rs)

h(rs)2
+

k(rs)√
αh(rs)

. (3.21)
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The presence of the term α−1/2 makes the condition very difficult to satisfy. Notice that if

we go to the next order of perturbation, we will have an additional term at the surface for

R′ in the form −k(rs)h
′(rs)/(4h(rs)

2), which does not cancel the term ∝ α−1/2. Therefore

we understand that in order to satisfy both conditions, R(rs) = R′(rs) = 0, we see from Eq.

(3.21) that we need to carefully choose the functions k, h, i.e., the EoS.

We also note from Eq. (3.20) that we have oscillations when h(rs) < 0, which is equivalent to

α < 0. In fact, from Eq. (3.16) at the linear order, we have

αR′′ − αg(r)R′ − h(r)R = k(r) . (3.22)

Hence {h, k} → {−h,−k} is equivalent to α→ −α. Therefore we have an oscillating mode in

the ghost case (α < 0). We have also noticed numerically that we can kill these oscillations if

we reduce the EoS to particular cases where T (rs) = T ′(rs) = 0, where T is the trace of the

energy momentum tensor.

3.7 Numerical procedure and results

In this section we will discuss our numerical approach. As a first step, it is convenient to

rescale the various quantities involved so as to work directly with dimensionless quantities.

We introduce the following rescaled variables:

r = xξ?, m = m̄M�, P = P̄P?, ρ = ρ̄ρ? ,

R = R̄R?, R′ = R̄′
R?
ξ?
, R′′ = R̄′′

R?
ξ2
?

, α = ᾱ
1

R?
, (3.23)
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where the barred quantities are dimensionless. Using the above rescaling (3.23), we write the

set of equations (3.6)-(3.8) in proper dimensions

m̄′ =
1

12c2GM�(1 + 2ᾱR̄)

[
ξ3
?x

2(48πGP?P̄ + c4R?R̄(2 + 3ᾱR̄) + 32πc2Gρ?ρ̄)

+
3ᾱR̄′(−4c2GM�m̄(1 + 2ᾱR̄+ 4ᾱxR̄′) + ξ?x

2(−16πGP?ξ
2
?xP̄ + ᾱc4(R?ξ

2
?xR̄

2 + 8R̄′)))

1 + 2ᾱR̄+ ᾱxR̄′

]
,

(3.24)

P̄ ′ =
1

4c2P?x(c2ξ?x− 2GM�m̄)(1 + 2ᾱR̄+ ᾱxR̄′)

[
(P?P̄ + c2ρ?ρ̄)(−4c2GM�m̄(1 + 2ᾱR̄

+4ᾱxR̄′) + ξ?x
2(−16πGP?ξ

2
?xP̄ + ᾱc4(R?ξ

2
?xR̄

2 + 8R̄′)))
]
, (3.25)

R̄′′ =
1

6ᾱc2x(c2ξ?x− 2GM�m̄)(1 + 2ᾱR̄)

[
ξ3
?x

2(1 + 2ᾱR̄)(24πGP?P̄ + c4R?R̄− 8πc2Gρ?ρ̄)

+ ᾱc2(12GM�m̄(1 + 2ᾱR̄) + c2ξ?x(−12 + R̄(−24ᾱ+R?ξ
2
?x

2R̄)) + 16πGρ?ξ
3
?x

3ρ̄)R̄′

+12ᾱ2c2x(c2ξ?x− 2GM�m̄)R̄′2
]
. (3.26)

Finally, we need to fix the boundary conditions for this system of differential equations. The

set of equations (3.24)-(3.26) includes two first order differential equations and one second

order differential equation. Thus at least four boundary conditions are required to solve the

system completely. In order to obtain physically realistic solutions, these boundary conditions

must be chosen from the set of regularity conditions and matching conditions, which are as

follows:

1. The regularity conditions at the centre of the star demand that the metric functions and

the thermodynamic quantities are at least C2 functions of the rescaled radial coordinate

x. Also, from the form of the interior metric it is clear that the rescaled “mass function”

m̄(x) should be zero at the center. Hence at the centre of the star we must have

m̄(0) = 0 , P̄ ′(0) = 0 , ρ̄′(0) = 0 , R̄′(0) = 0 . (3.27)

2. As we discussed in Sec. 3.4, the Schwarzschild solution is the natural exterior solution

for this gravity model. To match with the Schwarzschild metric, the Ricci scalar and its

normal derivative must vanish at the surface. These conditions, along with the matching

of the second fundamental form, make the fluid pressure vanish at the surface of the star.

Hence we have the following boundary conditions on the matching surface x = xs:

R̄(xs) = 0, R̄′(xs) = 0, P̄ (xs) = 0. (3.28)

Any four conditions from the above set of conditions will in principle solve the system of

differential equations. However we have to choose the boundary conditions carefully to avoid
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any “unphysical” solution where the energy condition and/or the regularity conditions are

violated at any point in the interior of the star.

3.8 Direct approach

In this section, we directly solve the set of coupled equations (3.24)-(3.26) along with the

boundary conditions (3.27) and (3.28). First, we assume the simplest case of constant density

star, ρ̄ = 1. We solve the coupled equations for various values of ᾱ (see Fig.3.1). We solve

the equations by considering random values of P̄ (0) and R̄(0). Hence the solution gives a

star from which we can read the curvature at the surface Σ {R̄|Σ, R̄′|Σ}. We consider 10−3 <

P (0) < 1/3. The lower bound corresponds to a realistic choice of the central pressure (in fact,

we cannot consider realistic neutron stars with very small central pressure), and the upper

bound corresponds to the condition ρ− 3P > 0, which is always true for both relativistic and

non-relativistic matter. We also notice enlarging the bounds will not affect the results. As we

can see from Fig. 3.1, we do not match Schwarzschild at the surface. Hence this equation of

state is excluded. It is important to notice that this behaviour is completely different from GR,

for which any equation of state is mathematically satisfactory and can only be excluded for

physical reasons. It is also important to notice the evolution of the system when ᾱ decreases;

in fact, for smaller ᾱ the model goes increasingly far from the right boundary conditions at

the surface (Schwarzschild). This can be understood from Sec. 3.6. In fact, for smaller values

of ᾱ, the system will develop a layer bound and hence the difficulty of having a Schwarzschild

solution at the surface increases. Satisfying the two conditions at the surface, namely, R̄ = 0

and R̄′ = 0, is impossible for some EoSs. We also perform the same analysis for a more

realistic equation of state (polytropic), ρ̄ = kP̄ 5/9. We find the same results: we cannot

match Schwarzschild at the surface and the star is increasingly far from Schwarzschild at the

surface when ᾱ decreases. Hence we can conclude that the additional junction conditions at

the surface of the star provide a constraint on the equation of state inside the compact object.

Therefore the equation of state should be fine-tuned.

Also, we find that for the polytropic case we can match with Schwarzschild if ᾱ < 0 (Fig.

3.2), which is obviously excluded because of the ghost condition. But we see that even if an

equation of state for ᾱ > 0 is found, we will have to extremely fine-tune the initial conditions

[P̄ (0), R̄(0)] in order to satisfy the junction conditions. In fact, only a very particular set

of initial conditions will match our exterior solution. All other initial conditions will not be

correct. Therefore we understand that the model gives rise to two fine-tuning problems: only

a class of EoSs can be considered (which might not be consistent with particle physics) and

the initial conditions should be extremely fine-tuned in order to match exactly the exterior

solution.
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Figure 3.1: Top: The contour plot of (R,R′) at the surface of the star Σ for ρ̄ = 1 and we
have considered a large range for the initial conditions: 10−3 < P (0) < 1/3 and R(0) > 0.
Bottom: The contour plot of (R,R′) at the surface for the polytropic equation ρ̄ = P̄ 5/9/0.2.
In both cases, there are no initial condition which match Schwarzschild at the surface. For
smaller values of ᾱ the model goes increasingly far from Schwarzschild in accordance with

Eq.(3.21).
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Figure 3.2: Contour plot for (R,R′) at the surface Σ of the star for the polytropic equation
of state ρ̄ = P̄ 5/9/0.2 and ᾱ < 0. For a given parameter ᾱ, there will be a unique solution

which matches Schwarzschild exactly at the surface. The model is extremely fine-tuned.

3.9 Semianalytic approach

As we have seen above, an exact match between the interior and the exterior solutions is

sometimes impossible. We have shown the existence of two problems. First, only a class of

equations of state can be mathematically matched with Schwarzschild, which can be seen as

a fine-tuning of the EoS. Second, we also have a fine-tuning of the initial conditions, because

even for a mathematically viable EoS only a particular central condition on the pressure and

the curvature will match Schwarzschild at the surface. In this section, we propose a solution

to circumvent these difficulties. To avoid these problems, we choose a generic form of the

curvature function R̄(x) that satisfies all the regularity and boundary conditions. Hence the

problem regarding the boundary conditions will be reduced. Also we do not choose a particular

equation of state in order to solve the first problem. The equation of state will be determined

by the dynamics of the fields. The only boundary condition to satisfy is the pressure at the

surface.
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The most general form of the first derivative of the curvature scalar satisfying these conditions

should be

R̄′(x) = g(x)x(x− xs) , (3.29)

where g(x) is an arbitrary and well defined function of x, and xs is the surface of the star.

Integrating R̄′, we can fix the integration constant in order to have the last condition R̄(rs) = 0.

Notice that, as in GR, we will always consider R(r) > 0.

We now choose a suitable ansatz for the function g(x). By doing so, Eq. (3.26) becomes an

algebraic constraint between the pressure and the density of the stellar fluid. We also note

that by choosing an ansatz for g(x), we can no longer specify the equation of state of the stellar

matter without over-specifying the system. Hence the equation of state will be determined by

the solution of the system. If a certain class of g(x) gives unphysical EoSs, we will discard the

class. As the simplest choice of the ansatz, let us assume the generic function g(x) to be a

constant. But the system will not satisfy an additional condition, namely, R′′(rs) ≤ 0. Indeed,

from Eq.(3.8) and the conditions at the surface, R = R′ = P = 0, we have

R′′ = − 4πrs
3α[rs − 2m(rs)]

ρ ≤ 0. (3.30)

Therefore we will assume g(x) = A(x − xs), which satisfies all conditions and solves the dy-

namical equations to get the mass and pressure profiles of a neutron star and its corresponding

EoS. Hence the curvature scalar has the form

R̄(x) =
A

12
(x− xs)3(3x+ xs) , (3.31)

which satisfies the boundary conditions. The mass and pressure profiles of the star and the

corresponding EoS for the given form of R̄ are shown in Fig. 3.3. We have taken xs = 1, i.e.,

we have fixed the radius of the star at 10 km and the central pressure is chosen in order to

have P̄ (xs) = 0 at the fixed position of the surface xs = 1.

So the mass of the star comes out to be 0.79 M� and its central pressure is 3.73×1035

dynes/cm2. Fitting the EoS, we get a profile of the form

P̄ ' 0.049 ρ̄1.49 . (3.32)

Therefore we have shown in this section that it is possible to match Schwarzschild exactly at

the surface of the star for realistic parameters (e.g., α = 10−45 eV−2) and the star obtained is

perfectly realistic.
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Figure 3.3: Mass, pressure and EoS profiles for R̄ = A
12 (x − 1)3(3x + 1), A = −60 and

α = 10−45 eV−2.

3.10 Final Remark

We should emphasize that the matching with any exterior Ricci flat solution will bring the

same difficulties because of the boundary conditions R = R′ = 0 at the surface of the star,

and this result can be simply generalized for any viable f(R). Therefore modeling a radiating

star with an intermediate Vaidya region is equally fine-tuned and unnatural.

At this point we may argue that in realistic astrophysical scenarios the domain of applicability

of the spherically symmetric and vacuum conditions are typically set at astrophysical scales.

For example, in the case of our solar system the domain is within the heliopause, which is

approximately one light year from the sun. Hence the solar system is not in the ideal sense

asymptotically flat. However, within this domain the Solar System is definitely “almost” spher-

ically symmetric and “almost” vacuum (with respect to the scales of the problem), and hence

the Schwarzschild solution is a very good approximation. Even in the case of f(R) gravity, the

conditions regarding the validity and stability of the Jebsen-Birkhoff theorem ensure that the

solution will remain “almost” Schwarzschild in the exterior domain for the Starobinsky model

provided the value of α is small [Nzioki, Goswami, et al. 2014]. Unfortunately the instability

of our solution described in Sec. 3.6 that arises due to the matching of R′ at the boundary for

very small α still remains.
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We would like to emphasize here that our study should not be seen as an exact realization of

a real situation, but rather as a limit of various physical and realistic problems. In all cases,

we have either rotation or matter in the exterior, and we should keep in mind that in the

limit where the spinning goes to zero or the limit where the density of matter goes to zero our

result should be recovered. Assuming that the physics is not discontinuous, we can think of

our problem as a good approximation of a real situation.

A possible solution will be a matching with an exterior solution of the following form:

m(r) = M − ae−br (3.33)

This solution is asymptotically Schwarzschild, and hence it can match with the standard

constraints in the Solar System provided b is large enough. For this solution, we have

R = 2ab(br − 2)
e−br

r2
(3.34)

Hence we will be able to alleviate the fine-tuning problem. In fact, any numerical solution can

be matched at the surface with Eq. (3.34) by choosing different values of a and b.

Even if this class of solutions exists for other f(R) models, it is well known that for the

Starobinsky model, the Schwarzschild is the unique asymptotically flat solution. Hence the

fine-tuning problem cannot be circumvented in this case.

Another way to address this fine-tuning problem would be to neglect the extra matching

conditions at the surface (namely the matching of the Ricci scalar and its normal derivative)

and to allow a delta function in the field equations, which will give rise to a surface stress-

energy term. This procedure was used to model static gravastars in GR [Mazur and Mottola

2004]. However this will radically change the structure of the crust of the neutron stars and

should have, in principle, observational signatures [Lattimer and Prakash 2001].

3.11 Conclusions

Moving to the interior of neutron stars, in this chapter, we have derived for the first time

the full exact solution for a neutron star in the Starobinsky model with the exterior matching

solution, namely Schwarzschild. However, in this model (as well as in other f(R) modified

gravity models in general) the field equations are highly nonlinear. Difficulties appear due

to the fourth order of the field equations, and hence the necessity of satisfying the extra

two junction conditions, namely the continuity of the Ricci scalar and its normal derivative.

This makes the problem more stringent and has not been considered before for studying
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compact stars in these models. Also, for the R + αR2 model that we have considered in

this work, Schwarzschild is the only static spherically symmetric asymptotically flat solution

with a regular horizon, which forces us to match the star with a Schwarzschild exterior. We

have shown that the equations are singular in the sense that they develop a boundary layer,

and hence all boundary conditions cannot be satisfied for a generic EoS. Only a particular

class of EoSs will be compatible with the model. While trying to solve the system in a direct

numerical approach, we faced the typical singularity problem when dealing with small values of

the coupling constant α. But for even higher values of α and when choosing a constant density

and polytropic EoS, we found that matching with the Schwarzschild exterior is not possible.

In fact, we have also shown that as we go to smaller values of α, the system moves further

away from Schwarzschild. This clearly indicates that in this model some EoSs can be ruled out

even without considering observational constraints, unlike in GR. Also, for negative α which

has an inherent ghost problem – we found the Schwarzschild exterior solution only for certain

fine-tuned initial conditions. Therefore, the model brings two additional fine-tuning problems.

First, only a class of EoS can be mathematically matched with Schwarzschild. Second, the

central initial conditions should be fine-tuned in order to exactly match Schwarzschild at the

surface. From our point of view, if we assume that the EoS is fixed and cannot fluctuate and

hence only a very particular set of boundary conditions will produce the star, an extremely

small deviation from that set of conditions will not be a solution, which implies an instability

of the solution.

So the obvious question that arises is whether any solution exists in this model that smoothly

matches with Schwarzschild. To check this, we took a semi-analytical approach to choose

a form of the Ricci scalar and its first derivative that satisfies all the boundary conditions.

We solved the resultant system to get a mass and a pressure profile that are physically vi-

able, and we also found an acceptable EoS. This proves that there exists a class of solutions

which – apart from satisfying all the boundary and junction conditions – matches smoothly

with the Schwarzschild exterior solution. Therefore we have shown that the matching with

Schwarzschild at the surface is possible but highly unnatural. And this phenomenon is true

for a wide class of f(R) theories that permit the Schwarzschild spacetime and also satisfy the

uniqueness theorem. This is unnatural because the EoS of compact star matter should be

completely determined by nuclear physics and the macroscopic description of quantum field

theory for a highly dense star, and not by the theory of gravity.
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Chapter 4

Accretion onto a black hole in a

string cloud background

In this chapter, we consider the steady state spherical accretion onto a black hole that has

a cloud of strings in the background and study the changes it brings out in comparison to a

Schwarzschild black hole. As discussed in chapter 2, it has been recognized that certain gauge

theories allow the possibility of topological defects, such as strings, and that these defects

represent objects which might have been created in the very early Universe. Cosmic strings

are strands of matter which could be created in a cosmological phase transition. It may be

noted that the study of Einstein’s equations coupled with a string cloud may be very important

as the relativistic strings at a classical level can be used to construct applicable models [Letelier

1979]. Hence the study of the gravitational effects of matter, in the form of clouds of both

cosmic and fundamental strings, has generated considerable attention [Synge 1960].

The chapter is organized as follows: After giving a brief account of the work that has been

done in regards to spherical accretion to date in Sec. 4.1, in Sec. 4.2 the analytic general

relativistic accretion onto a Schwarzschild black hole is appropriately generalized to model

spherical steady state accretion onto a black hole surrounded by a cloud of strings. We

calculate how the presence of a string cloud would affect the mass accretion rate Ṁ of a gas

onto a black hole. We also determine analytic corrections to the critical radius, the critical

fluid velocity and the sound speed, and subsequently to the mass accretion rate. Finally, we

obtain expressions for the asymptotic behaviour of the fluid density and the temperature near

the event horizon in Sec. 4.3 and conclude in Sec. 4.4. This chapter is based on the work

[Ganguly, Ghosh, et al. 2014].
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4.1 Introduction

The first study of spherical accretion onto compact objects dates back more than forty years

in the seminal paper due to Bondi [Bondi 1952]. In this classic work, the hydrodynamics

of polytropic flow is studied within the Newtonian framework, and it is found that either a

settling or transonic solution is mathematically possible for the gas accreting onto compact

objects. Note that the accretion rate is highest for the transonic solution. The relativistic

version of the same problem was solved by Michel [Michel 1972] twenty years later. Michel

[Michel 1972] investigated the steady state spherically symmetric flow of a test gas onto a

Schwarzschild black hole in the framework of general relativity. He showed that accretion onto

the black hole should be transonic. Michel’s relativistic results attracted several researchers

[Carr and Hawking 1974; Begelman 1978; Ray 1980; Thorne et al. 1981; Bettwieser and

Glatzel 1981; Chang 1985; Pandey 1987; Shapiro and Teukolsky 1983]. Spherical accretion

and winds in the context of general relativity have also been analyzed using equations of state

other than the polytrope. Other extensive studies include the calculation of the frequency and

luminosity spectra [Shapiro 1973a], the influence of an interstellar magnetic field in ionized

gases [Shapiro 1973b], and the changes in accreting processes when the black hole rotates

[Shapiro 1974]. Several radiative processes have been included by Blumenthal and Mathews

[Blumenthal and Mathews 1976], and Brinkmann [Brinkmann 1980]. In addition Malec [Malec

1999] considered general relativistic spherical accretion with and without back-reaction, and

showed that relativistic effects increase mass accretion when back-reaction is absent. Accretion

of a perfect fluid with a general equation of state onto a Schwarzschild black hole has been

investigated in [Babichev et al. 2004; Babichev et al. 2006; Babichev et al. 2005], and a similar

analysis for a charged black hole has been done in [Pacheco 2012]. Accretion processes related

to a charged black hole were analyzed in [Michel 1972] and investigated further in [Babichev,

Chernov, et al. 2011; Jamil et al. 2008; Sharif and Abbas 2011; Sharif and Abbas 2012]. Also

note that the mass accretion rate is affected by the presence of higher dimensions [John et al.

2013]. The main aim of these studies is to obtain the net energy output emitted by infalling

gas with application of black hole accretion to several classes of astrophysical sources. It is

understood that accretion onto a black hole might be an important source of radiant energy.

This may be related to the accretion rate Ṁ , and we may expect that an increase in Ṁ should

lead to an increase in the luminosity [Shapiro 1973a].

We thereby generalize the previous work of Michel [Michel 1972]. Interestingly, it turns out

that the mass accretion rate Ṁ increases with the string cloud as a background in comparison

to the standard black hole.
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4.2 General equations for spherical accretion

We now present the basic relations in spherical symmetry with accreting matter, and describe

the flow of gas into the modified Schwarzschild black hole (2.34). Also we probe how the

string cloud background affects the accretion rate Ṁ , the asymptotic compression ratio, and

the temperature profiles. We consider the steady state radial inflow of gas onto a central mass

M by following the approach of Michel [Michel 1972] and Shapiro [Shapiro and Teukolsky

1983]. The gas is approximated as a perfect fluid described by the energy momentum tensor

Tµν = (ρ+ p)uµuν + pgµν , (4.1)

where ρ and p are the fluid proper energy density and pressure respectively, and

uµ =
dxµ

ds
, (4.2)

is the fluid 4-velocity which obeys the normalization condition uµuµ = −1. We also define the

proper baryon number density n, and the baryon number flux Jµ = nuµ. All these quantities

are measured in the local inertial rest frame of the fluid. The spacetime curvature is dominated

by the compact object and we ignore the self-gravity of the fluid. The accretion process is

based on two important conservation laws. Firstly, if no particles are created or destroyed

then particle number is conserved and

∇µJµ = ∇µ(nuµ) = 0 . (4.3)

Secondly, the conservation law is that of energy momentum which is governed by

∇µTµν = 0 . (4.4)

The non-null components of the 4-velocity are u0 = dt/ds and v(r) = u1 = dr/ds. Since

uµu
µ = −1, and the velocity components vanish for µ > 1 , we have

u0 =

[
v2 + 1− 2M

r − α(
1− 2M

r − α
)2
]1/2

, (4.5)

where α is the string cloud parameter introduced in chapter 2. Equation (4.3) can be written

as

1

r2

d

dr

(
r2nv

)
= 0 . (4.6)
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Our assumptions of spherical symmetry and steady state flow make (4.4) comparatively easier

to tackle. The ν = 0 component is

1

r2

d

dr

[
r2(ρ+ p)v

(
1− 2M

r
− α+ v2

)1/2
]

= 0 . (4.7)

The ν = 1 component can be simplified to

v
dv

dr
= −dp

dr

(
1− 2M

r − α+ v2

ρ+ p

)
− M

r2
. (4.8)

The above equations are generalizations of the results obtained for the standard Schwarzschild

black hole [Michel 1972; Shapiro and Teukolsky 1983].

4.2.1 Accretion onto a black hole

The accretion of matter onto black holes remains a classic problem of contemporary astro-

physics, as it does on the related problems of active galactic nuclei and quasars, the mechanism

of jets, and the nature of certain galactic X-ray sources. Let us consider spherical steady state

accretion onto a Schwarzschild black hole of mass M in a string cloud background to obtain

the mass accretion rate from a qualitative analysis of (4.6) and (4.8). For an adiabatic fluid

there is no entropy production and the conservation of mass energy is governed by

Tds = 0 = d
(ρ
n

)
+ p d

(
1

n

)
, (4.9)

which may be put in the form

dρ

dn
=
ρ+ p

n
. (4.10)

We define the adiabatic sound speed a via [Shapiro and Teukolsky 1983]

a2 ≡ dp

dρ
=
dp

dn

n

ρ+ p
, (4.11)

and we have used equation (4.10). Using (4.11), the baryon and momentum conservation

equations can be written as

v′

v
+
n′

n
+

2

r
= 0 , (4.12)

vv′ + a2

(
1− 2M

r
− α+ v2

)
n′

n
+
M

r2
= 0 , (4.13)
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with p′ = (dp/dn)n′ where a dash (′) denotes a derivative with respect to r. With the help of

the above equations, we obtain the system

v′ =
N1

N
,

n′ = −N2

N
, (4.14)

where

N1 =
1

n

[(
1− 2M

r
− α+ v2

)
2a2

r
− M

r2

]
, (4.15a)

N2 =
1

v

(
2v2

r
− M

r2

)
, (4.15b)

N =
v2 −

(
1− 2M

r − α+ v2
)
a2

vn
. (4.15c)

In the stationary accretion of gas onto the black hole, the amount of infalling matter per unit

time Ṁ , and other parameters are determined by the gas properties and the gravitational field

at large distances. For large r, the flow is subsonic i.e. v < a and since the sound speed must

be subluminal, i.e., a < 1, we have v2 � 1. The denominator (4.15c) is therefore

N ≈ v2 − a2(1− α)

vn
, (4.16)

and so N < 0 as r →∞ if we demand v2 < a2(1−α). At the event horizon rH = 2M/(1−α),

and we have

N =
v(1− a2)

n
. (4.17)

Under the causality constraint a2 < 1, we have N > 0. Therefore N should pass through a

critical point rs where it goes to zero. As the flow is assumed to be smooth everywhere, so

N1 and N2 should also vanish at rs, i.e., to avoid discontinuities in the flow, we must have

N = N1 = N2 = 0 at the radius rs. This is nothing but the so-called sonic condition. Hence,

the flow must pass through a critical point outside the event horizon, i.e., rH < rs < ∞. At

the critical point the system (4.15) satisfies the condition

v2
s =

a2
s(1− α)

1 + 3a2
s

=
M

2rs
, (4.18)

where vs ≡ v(rs) and as ≡ a(rs). The quantities with a subscript s are defined at the critical

point or the sonic points of the flow. It can be clearly seen that the critical velocity in this

model is modified by the factor (1 − α), and the physically acceptable solution v2
s > 0 is

ensured since 0 ≤ α < 1.
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To calculate the mass accretion rate, we integrate (4.6) over a 4-dimensional volume and

multiply by mb, the mass of each baryon, to obtain

Ṁ = 4πr2mbnv , (4.19)

where Ṁ is an integration constant, independent of r, having dimensions of mass per unit

time. It is similar to the Schwarzschild case. Equations (4.6) and (4.7) can be combined to

yield (
ρ+ p

n

)2(
1− 2M

r
− α+ v2

)
=

(
ρ∞ + p∞
n∞

)2

, (4.20)

which is the modified relativistic Bernoulli equation for the steady state accretion onto black

holes surrounded by a cloud of strings. Equations (4.19) and (4.20) are the basic equations

that characterize accretion onto a black hole with parameter α where we have ignored the

back-reaction of matter. In the limit α = 0, our results reduce to those obtained in [Michel

1972; Shapiro and Teukolsky 1983] for the standard Schwarzschild black hole.

4.2.2 The polytropic solution

In order to calculate Ṁ explicitly and all the fundamental characteristics of the flow, (4.19) and

(4.20) must be supplemented with an equation of state which is a relation that characterizes

the state of matter of the gas. Following Bondi [Bondi 1952] and Michel [Michel 1972], we

introduce a polytropic equation of state

p = Knγ , (4.21)

where K and the adiabatic index γ are constants. On inserting (4.21) into the energy equation

(4.9) and integrating, we obtain

ρ =
K

γ − 1
nγ +mbn , (4.22)

where mb is an integration constant obtained by matching with the total energy density equa-

tion ρ = mbn + U , where mbn is the rest mass energy density of the baryons and U is the

internal energy density. Equations (4.21) and (4.22) give

γKnγ−1 =
a2mb

(1− a2

γ−1)
. (4.23)
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Using (4.22) and (4.23) we can easily rewrite the Bernoulli equation (4.20) as

(
1 +

a2

γ − 1− a2

)2(
1− 2M

r
− α+ v2

)
=

(
1 +

a2
∞

γ − 1− a2
∞

)2

. (4.24)

At the critical radius rs, using the relation (4.18) and inverting the above equation, we get

(
1 + 3a2

s

)(
1− a2

s

γ − 1

)2

=

(
1− a2

∞
γ − 1

)2

. (4.25)

It must be noted that, in general, the Bernoulli equation is modified due to a string cloud back-

ground. However at the critical radius, the form remains unchanged from the Schwarzschild

case [Shapiro and Teukolsky 1983].

For large but finite values of r, i.e. r ≥ rs the baryons will be non-relativistic, i.e., T �
mc2/k = 1013K for neutral hydrogen. In this regime we should have a ≤ as � 1. Expanding

(4.25) up to second order in as and a∞, we obtain

a2
s ≈

2

5− 3γ
a2
∞ , γ 6= 5

3

≈ 2

3
a∞ , γ =

5

3
. (4.26)

We thus obtain the critical radius rs in terms of the black hole mass M and the boundary

condition a∞ from (4.18) and (4.26):

rs ≈
5− 3γ

4

M

a2
∞(1− α)

, γ 6= 5

3

≈ 3

4

M

a∞(1− α)
, γ =

5

3
. (4.27)

Also, for a2/(γ − 1)� 1, we get from (4.23)

n

n∞
≈
(
a

a∞

)2/(γ−1)

. (4.28)

We are now in a position to evaluate the accretion rate Ṁ . Since Ṁ is independent of r,

(4.19) must also hold for r = rs. We use the critical point to determine the Bondi accretion

rate Ṁ = 4πr2
smbnsvs. By virtue of eqs. (4.18), (4.26), (4.27) and (4.28) the accretion rate

becomes

Ṁ =
4π

(1− α)3/2
λsM

2mbn∞a
−3
∞ , (4.29)
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where we have defined the dimensionless accretion eigenvalue

λs =

(
1

2

)(γ+1)/2(γ−1)(5− 3γ

4

)−(5−3γ)/2(γ−1)

. (4.30)

From (4.29), it is evident that the mass accretion in a string cloud background is increased by

the factor (1−α)−3/2, which may result in a more luminous source. However, the accretion rate

still scales as Ṁ ∼ M2 which is similar to that of the Newtonian model [Bondi 1952] as well

as the relativistic case [Michel 1972; Shapiro and Teukolsky 1983]. In the limiting case α = 0,

we obtain the well known relations derived in [Michel 1972; Shapiro and Teukolsky 1983] for

the Schwarzschild black hole. In Fig. 4.1, we have plotted the logarithm of the accretion rate

Ṁ against the string cloud parameter α for various polytropic indices γ. Here Ṁ is calculated

in ergs/sec. We see that Ṁ increases rapidly with increasing α (0 ≤ α < 1), and interestingly

Ṁ →∞ as α→ 1.

4.2.3 Some numerical results

The radial motion of the relativistic fluid accreting onto the black hole in a string cloud

background is governed by (4.6) and (4.24). These equations are difficult to solve analytically

and we solve them numerically as in ref. [Pacheco 2012]. We consider only the case of the

relativistic fluid with γ = 4
3 to study the radial velocity of the flow. Following [Pacheco 2012],

we introduce dimensionless variables, the radial distance in terms of the gravitational radius

(x = (r/2M)) and the particle number density with respect to its value at infinity (y = n/n∞).

Now considering a� 1, Eq. (4.24) can be rewritten, in terms of a new variable, as

(
1 +

a2
∞

γ − 1
yγ−1

)2(
1− 1− α

x
− α+ v2

)
=

(
1 +

a2
∞

γ − 1

)2

. (4.31)

On the other hand, using the same notation, the baryon conservation equation (4.6) can be

recast as

yv =
(xs
x

)2
a∞

(
2

5− 3γ

)γ+1/2(γ−1)

(1− α)1/2 , (4.32)

where the constant of integration is calculated by applying baryon conservation at the critical

point. Observe that (4.31) and (4.32) are corrected equations for the string cloud model and

when α → 0 we recover the familiar model of Michel [Michel 1972]. Clearly, the equations

(4.31) and (4.32) form a nonlinear system of algebraic equations which is solved numerically

for the fluid velocity v given in terms of the velocity of light and y. The parameters defining

the flow are the sound velocity at infinity a∞, the adiabatic coefficient γ and the string cloud

parameter α. The velocity profile of the flow as a function of the dimensionless variable x for
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Figure 4.1: Plots showing the logarithm of the accretion rate Ṁ as a function of α for
different values of γ.
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different values of the parameter α is plotted in Fig. 4.2. The solution is obtained by assuming

an asymptotic temperature at infinity of 10−9 mpc
2/kB for the relativistic case, i.e., γ = 4

3 .

The event horizons for the model are located at x = 1/(1 − α), and hence the event horizon

varies with α. Interestingly a string cloud in the background has a profound influence on the

radial velocity, and the result is strikingly different from the Schwarzschild case (α = 0). In the

familiar Schwarzschild case (α = 0, Fig. 4.2), we note that the flow speed of the accreting gas

crosses the event horizon at the speed of light. This feature is consistent with the treatment

of de Freitas [Pacheco 2012] who considered relativistic accretion onto a charged black hole.

The critical radius is far away from the event horizon (xc = 1.25×108) where the flow velocity

is much less the value at the event horizon. To conserve space we have plotted velocity profile

for γ = 4/3, as the radial velocity v for other values of γ have similar profiles. The velocity

profile are plotted for some specific values of string cloud parameter α = 0, 0.2, 0.4, 0.6, 0.75

and 0.8, respectively for which the event horizons are located at r = 1, 1.25, 1.67, 2.5, 4 and 5.

It is clear from Fig. 4.2, the fluid always crosses event horizon with the velocity of light for all

values of α.

We have also plotted the compression ratio y as a function of radial coordinate for a relativis-

tic accreting gas with γ = 4
3 in Fig. 4.3 for different values of string cloud parameter. More

specifically for α = 0, 0.2, 0.4, 0.6, 0.75 and 0.8. This graph shows that the compression

factor profiles are also affected by a change in the string cloud parameter α; this is in con-

trast to analogous compression factor of an accreting charged black hole [Pacheco 2012]. The

compression ratio for a black hole in string cloud background increases with increase in α. In

general, it may attain the value of the order of 1014 − 1016.

4.3 Asymptotic behaviour

In the last section, we found that the accretion rate at some sonic point r = rs far away from

event horizon, i.e., rs � 2M is not influenced by nonlinear gravity. Next we estimate the flow

characteristics for rH < r � rs and at the event horizon r = rH .

4.3.1 Sub-Bondi radius rH < r � rs

At distances below the Bondi radius the gas is supersonic so that v > a when rH < r � rs.

From (4.24) we find the upper bound on the radial dependence of the gas velocity

v2 ≈ 2M

r
, γ 6= 5

3
. (4.33)
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Figure 4.2: The radial velocity profile v for a relativistic fluid γ = 4/3 accreting onto the
black hole as a function of the dimensionless radius x = (r/2M) for different values of the

string cloud parameter α. The arrows point to the location of the horizon for each case.
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Figure 4.3: The compression factor y for a relativistic fluid γ = 4/3 accreting onto the black
hole as a function of the dimensionless radius x = (r/2M) for different values of the string

cloud parameter α.
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We can now estimate the gas compression on these scales. With the help of (4.19), (4.29) and

(4.33) we obtain

n(r)

n∞
≈ λs√

2(1− α)2

(
M

a2
∞r

)3/2

. (4.34)

For a Maxwell-Boltzmann gas, p = nkBT , we generate the adiabatic temperature profile

T (r)

T∞
=

(
n(r)

n∞

)γ−1

≈

[
λs√

2(1− α)2

(
M

a2
∞r

)3/2
]γ−1

, (4.35)

using (4.21) and (4.34).

4.3.2 Event horizon

At the event horizon we have r = rH = 2M/(1−α). As the flow is supersonic since we are well

below the Bondi radius, it is reasonable to assume that the fluid velocity is approximated by

v2 ≈ 2M
r . At rH , v2

H ≡ v2(rH) ≈ 1− α, i.e., the flow speed at the horizon is always less than

the speed of light. Therefore, using the fact M/rH = (1−α)/2, we obtain the gas compression

at the event horizon from (4.34):

nH
n∞
≈ λs

4(1− α)1/2

(
c

a∞

)3

. (4.36)

Again assuming the presence of a Maxwell-Boltzmann gas, p = nkBT , we find the adiabatic

temperature profile at the event horizon using (4.35) and the horizon assumption

TH
T∞
≈

[
λs

4(1− α)1/2

(
c

a∞

)3
]γ−1

, (4.37)

where, following [Shapiro and Teukolsky 1983], we have re-introduced the speed of light c in

the above expressions. The limit α → 0 in the above equation gives us the corresponding

result of accretion of the fluid onto the Schwarzschild black hole [Shapiro and Teukolsky 1983].

4.4 Conclusions

In this chapter, we deal with static, spherically symmetric accretion onto black holes. Histori-

cally the accretion problem with a polytropic equation of state was addressed by Bondi [Bondi

1952]. He showed that subsonic flow far from a black hole will inevitably become supersonic,

and that the requirement of a smooth traversal of the sonic surface uniquely specifies the
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accretion rate as a function of two thermodynamic variables, namely the density and temper-

ature of the gas at infinity. The relativistic version of the same problem was solved by Michel

[Michel 1972] twenty years later, after the discovery of celestial X-ray sources. He showed

that accretion onto the black hole should be transonic. Accretion onto compact objects such

as black holes and neutron stars is the most efficient method of releasing energy; up to 10

percent of the rest mass energy of the matter accreting on the black hole is liberated. Recent

developments in the theory of accretion are significant steps toward understanding various as-

tronomical sources that are believed to be powered by the accretion onto black holes. Spherical

accretion onto a black hole is generally specified by the mass accretion rate Ṁ which is a key

parameter, and there is evidence that a higher accretion rate can provide higher luminosity

values. In view of this, we analyzed the steady state and spherical accretion of a fluid onto

the Schwarzschild black hole in a string cloud background. We determined exact expressions

for the mass accretion rate at the critical radius. It turns out that this quantity is modified

so that Ṁ ≈ M2/(1− α)3/2 with rs ≈ M/(1− α). Thus the accretion rate by the black hole

in a string cloud background is higher than that for a Schwarzschild black hole. Thus the

parameter α can be introduced in the problem of accretion onto black hole to extend the work

of Michel [Michel 1972], and this quantity determines the accretion rate and other flow param-

eters. In principle, the accretion rate and other parameters still have the same characteristics

as in the Schwarzschild black hole; in this sense we may conclude that the familiar steady state

spherical accretion solution onto the Schwarzschild black hole is stable. In the limit α → 0,

our results reduce exactly to those obtained in [Michel 1972; Shapiro and Teukolsky 1983] for

the standard Schwarzschild black hole. We can attempt to work out the effect of string cloud

background on the luminosity, the frequency spectrum and the energy conversion efficiency of

the accretion flow. It is possible to deviate from spherical symmetry, e.g., include rotation,

which may lead to a higher accretion rate. These and other related issues are currently under

investigation.
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Chapter 5

Covariant formalism

In general relativity, to understand how the spacetime behaves in presence of a given form of

matter, we have to solve the Einstein field equations that describe the fundamental interaction

of gravitation as a result of spacetime being curved by matter and energy. But the spacetime

can be described in several ways:

• metric formalism: metric gµν defined in a particular coordinate basis, with connection

given by Christoffel symbols.

• tetrad formalism: metric defined by a locally defined set of four linearly independent

vector fields called a tetrad, with its connection given by the Ricci rotation coefficients.

• semi-tetrad formalism: via covariantly defined variables with respect to a partial

frame formalism such as the 1+3 or 1+1+2 decompositions.

Though the metric and the tetrad formalism is widely used, the covariant formalism has the

advantage of being gauge independent and physics can be described completely by tensor

quantities which are invariant under choice of coordinates.

The chapter is organized as follows. We begin in Sec. 5.1 with the 1 + 3 formalism followed by

the 1 + 1 + 2 approach in Sec. 5.2. After introducing LRS spacetime in Sec. 5.3, we mention

LRS-II spacetime in Sec. 5.4 in which we will be working on in the next three chapters and

also give the complete set of covariant equations in this spacetime. We conclude in Sec. 5.5.

5.1 1+3 Covariant approach

The 1+3 decomposition or threading of spacetime [Ellis and H. v. Elst 1999; Ellis 2009; Ehlers

1993; Kundt and Trümper 1962; Maartens 1997] (see [Roy 2014] for a comparison with the
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so-called 3+1 formalism), where we split the spacetime into a timelike and an orthogonal three-

dimensional spacelike hypersurface provides a covariant description of spacetime in terms of

scalars, 3-vectors and projected symmetric trace-free (PSTF) 3-tensors governed by the Ricci

and twice-contracted Bianchi identities. All informations are captured in a set of kinematic

and dynamic variables.

5.1.1 Formalism

For the 1 + 3 splitting of spacetime, we define a unit timelike vector (4-velocity) uµ

uµ =
dxµ

dτ
uµ u

µ = − 1 , (5.1)

where τ is the proper time along the observer’s worldline. This defines the projection tensors

along the timelike direction and on the 3-space as

Uµν = −uµ uν , (parallel to uµ)

hµν = gµν + uµuν . (orthogonal to uµ)

The tensors satisfy the relations

Uµα U
α
ν = −Uµν , Uµν u

ν = uµ , Uµµ = 1 , (5.2)

and hµν u
ν = 0 , hµα h

α
ν = hµν , hµµ = 3 . (5.3)

The standard 1 + 3 decomposition is performed in the following manner: any 4-vector bµ is

split into a scalar, B (parallel to uµ), and a 3-vector, Bµ (orthogonal to uµ):

bµ = −uµB +Bµ, where B ≡ bµuµ and Bµ ≡ hµνbν ; (5.4)

and any projected rank-2 tensor Aµν is split into

Aµν = A〈µν〉 +
1

3
Ahµν + εµνρA

ρ , (5.5)

where A ≡ hµνAµν is the spatial trace, A〈µν〉 is the PSTF 3-tensor defined as

A〈µν〉 =

(
hρ(µh

σ
ν) −

1

3
hµνh

ρσ

)
Aρσ , (5.6)
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Aµ is the spatial vector which is spatially dual to the anti-symmetric part
(
A[µν]

)
of the rank-2

tensor defined as

Aµ =
1

2
εµνρA

[νρ] ⇔ A[µν] = εµνρA
ρ , (5.7)

and εµνδ is the 3-volume element, defined as:

εµνρ = ηµνρσu
σ =

√
|g|δ0

[µδ
1
νδ

2
ρδ

3
σ]u

σ . (ηµνρσ is the 4-volume element)

We can also define two derivatives: the covariant time derivative along the vector uµ defined

as

Ȧµ..νρ..σ = uα∇αAµ..νρ..σ , (5.8)

and the orthogonally projected derivative defined as

DαA
µ..ν

ρ..σ = hµγh
δ
ρ...h

ν
εh
ξ
σh

β
α∇βAγ..εδ..ξ , (5.9)

with projection on all the free indices. It is worth noting that these derivatives do not generally

commute and give rise to various commutator relations, which play an integral part in partial

frame formalisms.

5.1.2 Variables

Using Eqs. (5.8) and (5.9), we can define the splitting of the covariant derivative of the scalar

field Ψ as

∇µΨ = −uµΨ̇ +DµΨ , (5.10)

and that of the 4-velocity uµ into its irreducible parts as

∇µuν = −uµu̇ν +Dµuν

= −uµu̇ν +
1

3
θ hµν + σµν + ωµν . (5.11)

The geometrical quantities in Eq. (5.11), arising from the relative motion of the comoving

observers are listed below

• Relativistic acceleration vector: u̇µ = uν∇νuµ

(represents effect of forces other than gravity on the observer)
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• Rate of (volume) expansion of the fluid: θ ≡ Dµ u
µ

• Trace-free symmetric rate of shear tensor: σµν = σ〈µν〉 ≡ D〈µuν〉

(represents rate of distortion of the congruence)

• Antisymmetric vorticity tensor: ωµν = ω[µν] ≡ D[µuν]

(represents rotation of the congruence relative to the non-rotating frame)

The Riemann curvature tensor represents the spacetime completely which is fully determined

by the Weyl tensor Wµνρσ (free gravitational field) and the Ricci tensor, which is determined

locally at each point by the energy momentum tensor (R = −T ), as given in Eq. (1.5).

So, in a fully 1 + 3 covariant approach, we can split the Weyl curvature tensor relative to uµ

into

• Electric part: Eµν = E〈µν〉 = Wµρνσu
ρuσ

• Magnetic part: Hµν = H〈µν〉 = 1
2εµρσW

ρσ
νξu

ξ

Also the energy momentum tensor Tµν can be decomposed relative to uµ as

Tµν = ρuµuν + phµν + qνuµ + qµuν + πµν . (5.12)

The matter variables defined in Eq. (5.12) are as follows:

• Relativistic energy density relative to uµ: ρ ≡ Tµνu
µuν

• Total isotropic pressure: p ≡ 1
3Tµνh

µν

• Relativistic momentum density (energy flux relative to uµ): qµ ≡ −Tνρuνhρµ

• PSTF anisotropic pressure (stress): πµν = π〈µν〉 ≡ Tρσh
ρ
〈µh

σ
ν〉

Hence, any arbitrary spacetime can be completely characterized by the irreducible set of

geometrical and matter variables

{u̇µ, θ, σµν , ωµν , Eµν , Hµν} {ρ, p, qµ, πµν ,Λ} , (5.13)

where Λ is the cosmological constant which acts as an energy density term in the field equations.

A set of tensor equations for the above mentioned variables from the Ricci identity

2∇[µ∇ν]u
ρ = Rµν

ρ
σu

σ , (5.14)
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and the twice-contracted Bianchi identity

∇µRµρ +∇νRνρ −∇ρR = 0 ⇔ ∇µGµν = 0 , (5.15)

covariantly describe the spacetime as an alternative formulation of EFEs.

5.2 1+1+2 Covariant approach

The covariant 1+3 approach works extremely well in cosmological applications when the back-

ground model is homogeneous and isotropic, that is of Friedman-Lemâıtre-Robertson-Walker

(FLRW) type. By virtue of the symmetry, the 1 + 3 decomposition gives rise to equations

involving only scalars. However, if the spacetime under consideration has less symmetry, the

1+3 approach is no longer ideally suited because its splitting in ‘time’ and ‘space’ relative to

the fundamental observer is not sensitive to another preferred direction apart from ‘time’. The

description of spacetime through covariant quantities, defined in the observer’s rest space, is

simply blind to a second distinguished direction. The formalism follows the same strategy as

the 1+3 decomposition where we further decompose the 3-hypersurface into a spacelike vector

and a 2-space. This strategy was developed in [C. A. Clarkson and Barrett 2003; C. Clarkson

2007] (see also [K. Maeda et al. 1980] for the so-called 2 + 1 + 1 formalism). Analogously, the

quantities of the rest space are further covariantly split in such a way that obtained quanti-

ties still have a clear geometrical or physical meaning. The 1+1+2 approach thus naturally

extends the 1+3 approach and keeps its many benefits.

5.2.1 Formalism

To deal with the preferred radial direction in spherical symmetric case, we split the 3-space

by introducing a unit spacelike vector nµ orthogonal to uµ:

nµu
µ = 0 , nµn

µ = 1. (5.16)

with a projection tensor on the 2-space (sheet) orthogonal to nµ and uµ

Nµ
ν ≡ hµν − nµnν = gµ

ν + uµu
ν − nµnν , (5.17)

with

Nµ
µ = 2 , and nµNµν = 0 = uµNµν . (5.18)
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Any 3-vector ψµ can now be irreducibly split into a scalar, Ψ (parallel to nµ), and a vector,

Ψµ (orthogonal to nµ) on the sheet:

ψµ = Ψnµ + Ψµ , where Ψ ≡ ψµnµ and Ψµ ≡ Nµνψν . (5.19)

Similarly, any PSTF 3-tensor, ψµν , can be split into:

ψµν = ψ〈µν〉 = Ψ

(
nµnν −

1

2
Nµν

)
+ 2Ψ(µnν) + Ψµν , (5.20)

where Ψ ≡ nµnνψµν = −Nµνψµν is the scalar, Ψµ ≡ Nµ
νnρψνρ is the 2-vector and Ψµν is the

2-tensor defined as:

Ψµν = Ψµν ≡
(
N(µ

ρNν)
σ − 1

2
NµνN

ρσ

)
ψρσ . (5.21)

The curly brackets denote the PSTF tensors on the 2-sheet.

Hence we can define two additional derivatives: along nµ in the surface orthogonal to uµ

Âµ..ν
ρ..σ ≡ nαDαAµ..ν

ρ..σ , (5.22)

and a projected derivative onto the sheet defined

δαAµ..ν
ρ..σ ≡ Nµ

β...Nν
γNδ

ρ..Nξ
σNα

kDkAβ..γ
δ..ξ , (5.23)

with projection on all free indices. As in 1 + 3 formalism, these derivatives do not commute

in general.

5.2.2 Variables

According to Eqs. (5.19) and (5.19), the 1 + 3 geometric quantities can be split as follows

u̇µ = Anµ +Aµ , (5.24)

ωµ = Ωnµ + Ωµ , (5.25)

σµν = Σ

(
nµnν −

1

2
Nµν

)
+ 2Σ(µnν) + Σµν , (5.26)

Eµν = E
(
nµnν −

1

2
Nµν

)
+ 2E(µnν) + Eµν , (5.27)

Hµν = H
(
nµnν −

1

2
Nµν

)
+ 2H(µnν) +Hµν . (5.28)
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The covariant derivative of the radial unit vector nµ in its irreducible form can be obtained in

the similar way as Eq. (5.11)

∇µnν = −Auµuν − uµαν +

(
1

3
θ + Σ

)
nµuν + (Σµ − εµρΩρ)uν

+ nµaν +
1

2
φNµν + ξεµν + ζµν , (5.29)

from which the covariant spatial derivative of nµ can be obtained as:

Dµnν = nµaν +
1

2
φNµν + ξεµν + ζµν , (5.30)

where εµν is the 2-volume element on the sheet defined as:

εµν = εµνρn
ρ . (5.31)

The new kinematic variables are as follows:

• Acceleration of the sheet: aµ ≡ nνDνnµ = n̂µ

• Expansion of the sheet: φ ≡ δµn
µ

• Twisting of the sheet (rotation of nµ): ξ ≡ 1
2ε
µνδµnν

• Shear of the sheet (distortion): ζµν ≡ δµνn

The derivative of nµ along uµ is given by

ṅµ = Auµ + αµ , (5.32)

where A ≡ nµu̇µ and αµ ≡ Nµν ṅ
ν .

Also, the full decomposition of the covariant derivative of uµ in terms of 1 + 1 + 2 variables is

given by

∇µuν = −uµ (Anν +Aν) + nµnν

(
1

3
θ + Σ

)
+ nµ (Σν + ενρΩ

ρ)

+ (Σµ − εµρΩρ)nν +Nµν

(
1

3
θ − 1

2
Σ

)
+ Ωεµν + Σµν , (5.33)

which implies the relation

ûµ =

(
1

3
θ + Σ

)
nµ + Σµ + εµνΩν . (5.34)
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Finally, the matter variables are split as follows

qµ = Qnµ +Qµ , (5.35)

πµν = Π

(
nµnν −

1

2
Nµν

)
+ 2Π(µnν) + Πµν , (5.36)

which leads to the EMT in terms of 1 + 1 + 2 variables as

Tµν = ρuµuν + phµν + 2u(µ

[
Qnν) +Qν)

]
+ Π

(
nµnν −

1

2
Nµν

)
+ 2Π(µnν) + Πµν . (5.37)

So, in the 1 + 1 + 2 formalism, any arbitrary spacetime can be completely characterized

irreducibly by the following geometrical and matter variables:

{θ, A, Ω, Σ, φ, ξ, E , H, Aµ, Ωµ, Σµ, αµ, aµ, Eµ, Hµ, Σµν , ζµν , Eµν , Hµν}

{ρ, p, Q, Λ, Π, Qµ, Πµν} . (5.38)

5.3 LRS spacetime

Locally rotationally symmetric spacetimes possess a continuous isotropy group at each point

and hence a multi-transitive isometry group [H. v. Elst and Ellis 1996]. Since LRS spacetimes

exhibit locally a preferred spatial direction, the 1+1+2 formalism is therefore ideally suited

for covariant description of these spacetimes, yielding a complete characterization in terms of

invariant scalar quantities that have physical or direct geometrical meaning [C. A. Clarkson

and Barrett 2003; Betschart and C. A. Clarkson 2004]. The preferred spatial direction in the

LRS spacetimes constitutes a local axis of symmetry and in this case nµ is a vector pointing

along the axis of symmetry and is thus called a ‘radial’ vector. Since LRS spacetimes are

defined to be isotropic, this allows for the vanishing of all 1+1+2 vectors and tensors, such

that there are no preferred directions in the sheet. Thus, all the non-zero 1+1+2 covariantly

defined scalars that fully describe LRS spacetimes are

{A, θ, φ, ξ, Σ, Ω, E , H, ρ, p, Q, Π, Λ} . (5.39)

5.4 LRS-II spacetime

A subclass of the LRS spacetimes, called LRS class II spacetimes [Ellis 1967; Stewart and Ellis

1968; H. v. Elst and Ellis 1996], contains all the LRS spacetimes that are rotation free. Also,

the spacetime is vorticity free which further constrains the magnetic Weyl curvature H = 0
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[Betschart and C. A. Clarkson 2004]. As a consequence, in LRS-II spacetimes the variables Ω,

ξ and H are identically zero and the variables

{A, θ, φ, Σ, E , ρ, p, Q, Π, Λ} , (5.40)

fully characterise the kinematics. To describe these spacetimes in terms of metric components,

it is well known that the most general interval for LRS-II is written as [Stewart and Ellis 1968]

ds2 = −A2(t, χ) dt2 +B2(t, χ) dχ2 + C2(t, χ) [ dy2 +D2(y, k) dz2 ] , (5.41)

where t and χ are parameters along the integral curves of the timelike vector field uµ = A−1δµ0

and the preferred spacelike vector field nµ = B−1δµ1 . The function D(y, k) = sin y, y, sinh y for

k = (1, 0,−1) respectively. The 2-metric dy2 + D2(y, k) dz2 describes spherical, flat, or open

homogeneous and isotropic 2-surfaces for k = (1, 0,−1). Spherically symmetric spacetimes are

the k = 1 subclass of these spacetimes. One can easily see that all the physically interesting

spherically symmetric spacetimes fall in the class LRS-II.

5.4.1 Equations

The complete set of propagation and/or evolution equations which define these spacetimes,

namely LRS class II spacetimes, are

Propagation equations:

φ̂ = −1

2
φ2 +

(
1

3
θ + Σ

)(
2

3
θ − Σ

)
− 2

3
(ρ+ Λ)− 1

2
Π− E , (5.42a)

Σ̂− 2

3
θ̂ = −3

2
φΣ−Q , (5.42b)

Ê − 1

3
ρ̂+

1

2
Π̂ = −3

2
φ

(
E +

1

2
Π

)
+

(
1

2
Σ− 1

3
θ

)
Q , (5.42c)

Evolution equations:

φ̇ = −
(

Σ− 2

3
θ

)(
A− 1

2
φ

)
+Q , (5.43a)

Σ̇− 2

3
θ̇ = −Aφ+ 2

(
1

3
θ − 1

2
Σ

)2

+
1

3
(ρ+ 3p− 2Λ)− E +

1

2
Π , (5.43b)

Ė − ρ̇

3
+

Π̇

2
=

(
3

2
Σ− θ

)
E +

Π

4

(
Σ− 2

3
θ

)
+
φQ

2
− ρ+ p

2

(
Σ− 2

3
θ

)
. (5.43c)
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Mixed (Propagation/Evolution) equations:

Â − θ̇ = − (A+ φ)A+
1

3
θ2 +

3

2
Σ2 +

1

2
(ρ+ 3p− 2Λ) , (5.44a)

ρ̇+ Q̂ = −θ (ρ+ p)− (φ+ 2A)Q− 3

2
ΣΠ , (5.44b)

Q̇+ p̂+ Π̂ = −
(

3

2
φ+A

)
Π−

(
4

3
θ + Σ

)
Q− (ρ+ p)A , (5.44c)

where Λ is the cosmological constant. We also define the Gaussian curvature on the 2-sheet

via the Ricci tensor on the sheet 2Rµν = KNµν which can be written in the form [Betschart

and C. A. Clarkson 2004]

K =
1

3
(ρ+ Λ)− E − Π

2
+
φ2

4
−
(

1

3
θ − 1

2
Σ

)2

, (5.45)

which from Eqs. (5.42a)-(5.43c) give

K̂ = −φK , (5.46)

K̇ = −
(

2

3
θ − Σ

)
K . (5.47)

From Eq. (5.47), it follows that whenever the Gaussian curvature of the sheet is non-zero and

constant in time, the shear is always proportional to the expansion:

K̇ = 0 =⇒ Σ =
2

3
θ for K 6= 0 . (5.48)

5.4.2 Misner-Sharp mass

For the metric (5.41), we can define the mass function as [Stephani et al. 2004]:

M(χ, t) =
C

2
(k −∇µC∇µC) . (5.49)

For spherically symmetric spacetimes, k = 1, and we can write C = 1√
K

. Then Eq. (5.49)

becomes

M =
1

2
√
K

(
1− 1

4K3
∇µK∇µK

)
. (5.50)

Geometrically, the above expression gives the amount of mass enclosed within the spherical

shell at a given value of affine parameter of the integral curves of nµ at a given instant of time.

This is the Misner-Sharp (MS) mass. The square of the covariant derivative of the Gaussian
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curvature can be written as

∇µK∇µK = (−uµuν + nµnν)∇µK∇νK = −K̇2 + K̂2 . (5.51)

Using the 1+1+2 decomposition of the covariant derivative for LRS-II spacetime with Eqs.

(5.45)-(5.47), the MS mass takes the form

MMS =
1

2K3/2

(
1

3
(ρ+ Λ)− E − 1

2
Π

)
. (5.52)

It can be easily seen that even in the case of vacuum spacetimes, the mass does not vanish

due to the electric part of the Weyl Curvature E , which acts as a mass source.

5.5 Conclusions

This chapter provided an extensive review of both the 1+3 and 1+1+2 covariant approaches

to general relativity. In the 1 + 3 formalism, a time like flow ua is introduced which splits

spacetime into ‘time’ and ‘space’. The 1 + 1 + 2 further decomposes the ‘3-space’ relative to

a preferred spatial vector na . Locally rotationally symmetric spacetime is then introduced

and the full system of field equations (evolution, propagation and mixed) for LRS-II spacetime

is given in the 1 + 1 + 2 formalism which are derived from the Bianchi and Ricci identities

and are gauge invariant (coordinate independent). From the structure of these equations

we can already obtain some important information about the spacetime in general since the

covariant decomposition of the spacetime introduces quantities that have a clear physical or

geometrical meaning, which gives a better understanding of the underlying physics which

sometimes remains obscure in the metric approach.
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Chapter 6

Global structure of black holes via

dynamical system

As mentioned in chapter 1, in general relativity, any spacetime can be regarded as a solution

to the Einstein field equations Gµν = Tµν , if we define the energy momentum tensor of the

matter according to the left hand side of the equation, which can be calculated from the

metric tensor of the spacetime. However, the matter tensor so defined will in general have

nonphysical properties and, in most of the cases, will have no resemblance to the standard

matter around us. Hence by the term exact solution of Einstein field equations, we shall

mean the following: A spacetime (M,g) in which the field equations are satisfied with the

energy momentum tensor Tµν of some specific form of matter which obeys the postulate of

local causality and at least one of the physically reasonable energy conditions [Hawking and

Ellis 1973]. Most of the well known exact solutions are thus for the empty space (Tµν = 0),

for an electromagnetic field, for a perfect fluid or for combination of these. Because of the

extreme complexity of the field equations, which are in general 10 coupled nonlinear second

order partial differential equations, it is impossible to find exact solutions except in spaces of

high symmetry (e.g. spherical symmetry) and for relatively simple matter content. In this

regard these exact solutions are rather idealised.

Nevertheless, the exact solutions give the idea of important qualitative features that can arise in

GR and hence also the possible properties of the realistic solutions of field equations. One of the

most intriguing and challenging tasks is to find the global properties of the field equations by

the maximal analytic extension of the local solutions. Study of global structures of the solutions

are important as we get the maximal manifold (M,g) on which the solution is valid and hence

the maximal complete atlas. This enables us to get rid of all coordinate singularities that may

appear due to bad choice of coordinates while solving the field equations. Obtaining such a
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maximal extension may be tedious and tricky as we need to cleverly redefine the spacetime

coordinates so that the region around the coordinate singularity becomes regular. By this

step, we get rid of the coordinate singularity and the metric tensor becomes nondegenerate

even in the locus of the previous coordinate singularity. We may continue it as far as we can

till this process ultimately stops because the spacetime is surrounded either by asymptotic

infinity - infinite volume where trajectories may be extended to an infinite proper length - or

by genuine (curvature) singularities that cannot be extended by any coordinate. Geodesics

physically terminate at such real singularities.

We know the dynamical systems approach has proven to be a very important mathematical

tool in studying the global properties of various cosmologies in GR [Wainwright and Ellis

1997] and also other higher order theories of gravity [Carloni et al. 2005; Amendola, Gannouji,

et al. 2007; Goheer et al. 2009; Zhou et al. 2009; Xiao and Zhu 2011; Leon and Saridakis

2013; Heisenberg et al. 2014; Chiba et al. 2014; Kofinas et al. 2014]. Similar analysis were

performed to study the properties of spherically symmetric solutions in dimensionally reduced

spacetimes and diatonic black holes in GR and other higher order theories of gravity [Mignemi

and Wiltshire 1989; Wiltshire 1991; Mignemi and Wiltshire 1992; Poletti and Wiltshire 1994;

Mignemi 2000; Melis and Mignemi 2005; Clifton and Barrow 2005]. The most important

advantage of the dynamical systems technique is that without solving the system completely

we can have qualitative informations on important global features of the phase space, in terms

of the fixed points of the system, their stabilities and different invariant submanifolds of the

complete phase space.

The aim of this work is as follows:

• Using a semi-tetrad covariant formalism, we show that we can recast the field equations

(which are the combination of Ricci and doubly contracted Bianchi identities) for vacuum

(with or without a cosmological constant) or electrovacua Locally rotationally symmetric

type II (LRS-II) spacetimes into an autonomous system of covariantly defined variables.

Hence by definition, this autonomous system is gauge independent.

• Using the usual Poincaré compactification, we compactify the phase space of this au-

tonomous system.

• Using the general symmetries of LRS-II spacetimes and the properties of the phase space

of the above defined autonomous system, we show that we can have the qualitative idea

of all the important global features of these spacetimes, without actually solving the

system.
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Thus the analysis developed in this work can be effectively used to find the important global

properties of other more realistic solutions of Einstein field equations, without solving these

equations.

In this work, we confine our attention to spherically symmetric vacuum (with or without a

cosmological constant) or electrovacuum, see chapters 7 and 8 for applications to modified

gravity theories. For technical reasons, it is convenient to consider a class of spacetimes

which is a small generalization of spherically symmetric metrics: namely Locally rotationally

symmetric class II spacetimes [Ellis 1967; Stewart and Ellis 1968; H. v. Elst and Ellis 1996]

described in chapter 5.

It has been recently shown in [Goswami and Ellis 2011], that a vacuum or electrovac LRS-II

spacetime (with or without a cosmological constant) has an extra symmetry in terms of exis-

tence of a Killing vector in the local [u, n]-plane, where uµ and nµ are timelike and spacelike

vector fields respectively, defined above. This extra Killing vector, if timelike, makes the space-

time locally static and, if spacelike, makes the spacetime locally spatially homogeneous. In the

maximally extended manifold these two sections are joined via a 3-dimensional submanifold,

commonly known as the event horizon. Using this extra symmetry of LRS-II spacetimes, we

recast the field equations into a covariantly defined autonomous system separately for both

these sections, compactify the phase spaces and show that we can recover all the important

features of the global properties of these solutions.

The chapter is organized as follows. We write down the general autonomous equations for

both static and nonstatic cases in LRS-II spacetime in Sec. 6.1. In Sec. 6.2, we study the

vacuum solutions followed by adding the cosmological constant in Sec. 6.3. Finally in Sec. 6.4,

we study the charged spacetime and conclude in Sec. 6.5. This chapter is based on published

work [Ganguly et al. 2015]

6.1 Autonomous system

In the most general case we will consider only electromagnetic field. Assuming that we do not

have magnetic monopoles or using the duality rotation [Plebanski and Krasinski 2006], we can

always suppress the magnetic field in the vacuum. Also the electric field can be decomposed

in the form Eµ = Enµ which is a solution of Ê = −φE and Ė = (Σ − 2
3θ)E. We have

Fµν = 1
2u[µEν] from which we have

Tµν =
E2

µ0

[1

2
gµν + uµuν − nµnν

]
, (6.1)
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where µ0 is the permeability in free space. This gives Q = 0, Π = −4ρ/3, P = ρ/3 and

ρ = E2/2µ0. We can always absorb the constants and work with the variable ρ which is

solution of the equations

ρ̂ = −2φρ , (6.2)

ρ̇ = 2(Σ− 2

3
θ)ρ . (6.3)

Also, notice that Eq. (5.45) is a constraint because for any surface K is fixed, e.g. in

Schwarzschild coordinates we have K = 1/r2. This equation will be used to define the di-

mensionless variables as the Friedmann equation is used in cosmology.

6.1.1 Static case

In this part, we will consider spacetime with an additional timelike killing vector. Therefore

all the time derivatives are zero, hence it can easily be seen from the previous equations

that θ = Σ = Q = 0. As a consequence the variables {A, φ, E , ρ,Λ} fully characterize the

kinematics. We define the dimensionless geometrical variables in the following way

x1 = − E
K
, x2 =

φ

2
√
K
, x3 =

A√
K
, x4 =

Λ

3K
, x5 =

ρ

K
. (6.4)

Using Eqs. (6.2) and (6.3), we have from Eqs. (5.42a)-(5.47):

x′1 = x2(2x5 − x1) , (6.5a)

x′2 =
x1

2
− x4 , (6.5b)

x′3 = x5 − 3x4 − x3(x2 + x3) , (6.5c)

x′4 = 2x2x4 , (6.5d)

x′5 = −2x2x5 , (6.5e)

0 = x1 − 2x4 − 2x2x3 , (6.5f)

1 = x1 + x2
2 + x4 + x5 , (6.5g)

where we have defined the dimensionless spatial derivative x′ = x̂/
√
K.

6.1.2 Nonstatic case

In the previous subsection, we discussed the static case. Here we will assume the presence of

spacelike killing vector. Hence all space-derivatives will be zero. Therefore, for the nonstatic
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Universe, φ = A = Q = 0 and the variables {θ,Σ, E , ρ,Λ} completely characterize the system.

Along with the definitions in (6.4), we further define two new variables

x6 =
θ

3
√
K
, x7 = − Σ

2
√
K

. (6.6)

Here the propagation of the variables will be zero and only the evolution terms remain. Similar

to the static case, using Eqs. (6.2) and (6.3), the system of equations from (5.42a)-(5.47), turns

out to be

x̊1 = (2x5 − x1)(x6 + x7) , (6.7a)

x̊4 = 2x4(x6 + x7) , (6.7b)

x̊5 = −2x5(x6 + x7) , (6.7c)

x̊6 = x7(x6 − 2x7) + x4 −
x5

3
, (6.7d)

x̊7 = x7(2x7 − x6) +
x5

3
− x1

2
, (6.7e)

1 = x1 + x4 + x5 − (x6 + x7)2 , (6.7f)

0 = x1 − 2x4 + 2(x6 − 2x7)(x6 + x7) . (6.7g)

where we define the dimensionless temporal derivative x̊ = ẋ/
√
K.

6.2 Vacuum spacetime

In this section we will assume vacuum, i.e. ρ = p = Π = Λ = 0.

6.2.1 Static

Only the variables x1, x2 and x3 are nonzero. We use the last constraint (6.5g) to reduce the

system to

x′2 = x2x3 , (6.8)

x′3 = −x3(x2 + x3) , (6.9)

1 = 2x2x3 + x2
2 . (6.10)

The analysis of the system is carried out in the standard way. Notice that the full knowledge

of the dynamical system should comprise its behaviour at infinity. Hence we transform the

phase space into the so-called Poincaré sphere, a sphere with unit radius, tangent to the plane

(x2, x3) at the origin. Every point of the plane (x2, x3) is mapped into 2 points on the surface
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Dynamical system Critical points Stability Nature

x′2 = x2x3 PM : (x2, x3) = (1, 0) Attractor Minkowski
x′3 = −x3(x2 + x3) P̄M : (x2, x3) = (−1, 0) Repeller Minkowski
2x2x3 + x2

2 = 1
X ′2 = X2X3(X2X3 + 2X2

3 + Z2) PH : (X2, X3) = (0, 1) Repeller Horizon
X ′3 = −X2

2X3(X2 + 2X3)−X3(X2 +X3)Z2 P̄H : (X2, X3) = (0,−1) Attractor Horizon
X2

2 +X2
3 + Z2 = 1 PS : (X2, X3) = ( 2√

5
,− 1√

5
) Repeller Singularity

X2
2 + 2X2X3 = Z2 P̄S : (X2, X3) = (− 2√

5
, 1√

5
) Attractor Singularity

Table 6.1: Critical points and their stability in both finite and infinite (Poincaré sphere) domains
corresponding to static black hole and white hole.

of the sphere which are situated on the line passing through the point (x2, x3) and the centre

of the sphere. Therefore, infinitely distant points of the plane are mapped into the equator of

the sphere. Finally, we will represent the orthogonal projection of any one of the hemispheres

(to do away with duplicate points) of the sphere onto the tangent plane. This is the projective

plane. In the compactified phase portrait, we will use capital letters (X2, X3). Under Poincaré

transformation, the equations become

X ′2 = X2X3(X2X3 + 2X2
3 + Z2) , (6.11)

X ′3 = −X2
2X3(X2 + 2X3)−X3(X2 +X3)Z2 , (6.12)

Z ′ = ZX3(−1 +X2X3 + 2X2
3 + Z2) , (6.13)

Z2 = 2X2X3 +X2
2 , (6.14)

1 = X2
2 +X2

3 + Z2 , (6.15)

where we have defined xi = Xi/Z with the constraint X2
2 + X2

3 + Z2 = 1 and rescaled the

derivative ZX ′ → X ′. The analysis of the dynamical system for vacuum is summarized in

Table 6.1 and the phase portrait is shown in Fig.6.1. Notice that for each point we have given

the stability. A hyperbolic equilibrium can be an attractor, repeller or saddle point. But

there are many more types for non-hyperbolic equilibria. Most of these equilibria do not have

names. A complete classification doesn’t exist. Therefore for non-hyperbolic critical points

we will specify only if it is stable or unstable. Finally, we need to find the nature of each

critical point. There are various ways to do it. It can be derived by solving the linearized

equations around the critical points. First, we need to define a coordinate system. We will

use the spherical coordinates with a metric in the following form

ds2 = −Adt2 +
dr2

B
+ r2dΩ2 , (6.16)
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Figure 6.1: The phase portrait for static vacuum in both finite and infinite (Poincaré sphere)
domains is displayed. The points (PM , PH , PS) corresponds to the black hole solution while

(P̄M , P̄H , P̄S) corresponds to the white hole.
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where dΩ2 = dθ2 + sin2 θdϕ2. In order to understand the nature of the critical point, we need

to determine the different variables in terms of the metric. From the definition (6.16), we

define the four-velocity ut = 1/
√
A and the radial vector nr =

√
B. Hence we get

A ≡ −uµuν∇µnν =

√
B

2A

dA

dr
, (6.17)

φ = N µ
ν ∇µnν =

2

r

√
B . (6.18)

Also we can rewrite the derivatives in the following form

x′ =
x̂√
K

= rx̂ = r
rφ

2

dx

dr
= x2

dx

d ln r
, (6.19)

where K = 1/r2 and we have used x̂ = nµDµx =
√
B dx

dr = rφ2
dx
dr . The last equality comes

from (6.18). Hence we have

B = x2
2 ,

d lnA

d ln r
= 2

x3

x2
, (6.20)

from which we can easily recover the metric at each critical point. Notice that each critical

point is at a fixed value of radial distance r, hence it is necessary to perform a linearisation

around the point in order to do an integration and recover the gravitational potential A. For

example, the solution of the dynamical system reduces around the critical point (1, 0) to

x2 ' 1 +
ε

r
, (6.21)

x3 ' −
ε

r
, with ε� 1 . (6.22)

From (6.20) we get

A = B = 1± 2ε

r
. (6.23)

The point PM corresponds to the limit where ε→ 0, therefore PM is the Minkowski spacetime.

Notice from (6.18) that x2 =
√
B, hence we have x2 > 0. But if we take the inner normal to

the surface nr = −
√
B we will have x2 = −

√
B < 0. Hence the phase space x2 < 0 will be

opposite to the subspace x2 > 0, the nature of the points will be reversed, e.g. an attractor will

be repeller (because of sign change in derivative (6.19)). Also we see from (6.17) and (6.18)

that reversing the direction of uµ has no effect, because of the static nature of the spacetime.

We also notice that in the Kruskal-Szekeres coordinates, we have U2−V 2 = Cst when r = Cst.

Therefore the normal vector to this hypersurface is nµ = (U,−V, 0, 0) or nµ = (−U, V, 0, 0).

In these coordinates, inner/outer direction of the spacelike normal vector n corresponds to

the transformation (U → −U, V → −V ) which is equivalent to the transformation from the
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exterior region to parallel exterior region. Therefore the phase space corresponding to x2 < 0

is the parallel exterior region. The analysis covers the static part of the black hole and the

white hole.

We can do the same for the points at infinity, e.g. the point PS . In this case, we have

(X2, X3, Z) = ( 2√
5
,− 1√

5
, 0). The solution of the dynamical system around this point (the

dynamical system is given in the Table 6.1) is

X2 =
2√
5
, (6.24)

X3 = − 1√
5
, (6.25)

Z = ε
√
r, with ε� 1 . (6.26)

which gives

x2 ≡
X2

Z
' 2

ε
√

5r
, (6.27)

x3 ≡
X3

Z
' − 1

ε
√

5r
, (6.28)

after redefinition of time (constant is absorbed for A), we have

A = B =
4

5ε2r
. (6.29)

Therefore in the limit ε→ 0, we conclude that PS corresponds to the singularity at r = 0.

Finally PH is a little more subtle. In fact we can’t linearize the equations around this point.

We notice that in a stationary spacetime, the apparent horizon coincides with the event horizon

and the apparent horizon is a marginally trapped surface on which the outgoing null geodesics

have zero expansion [Hawking and Ellis 1973]. We define 2 spacelike vectors (aµ, bµ) on the 2-

surface, which define an orthonormal basis with nµ the normal spacelike vector to the 2-surface

and uµ the timelike vector. Hence we can write the metric as

gµν = −uµuν + nµnν + aµaν + bµbν . (6.30)

Also the expansion of the outgoing null geodesics is [Hawking and Ellis 1973; Sasaki et al.

1980]

Θ =
1

2
∇µkν(aµaν + bµbν) =

1

2
∇µkνNµν , (6.31)
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where kµ = uµ + nµ is the outgoing null vector. Hence (6.31) can be written as

Θ =
1

2

(
NµνKµν + δµn

µ
)
, (6.32)

where Kµν = h α
µ h

β
ν ∇αuβ is the extrinsic curvature. Using the decomposition of the extrinsic

curvature and the definition of sheet expansion, we have

Θ =
1

2

(2

3
θ − Σ + φ

)
=
√
K
(
x2 + x6 + x7

)
. (6.33)

Therefore we conclude that x2 + x6 + x7 = 0 [Hamid et al. 2014] for the apparent horizon

(Θ = 0) and hence x2 = 0 for static case, which implies PH is a horizon.

Hence we see from Fig. 6.1 that if the system starts from the horizon (PH) it goes asymp-

totically to the Minkowski spacetime (PM ) which corresponds to the standard Schwarzschild

black hole solution with a positive mass and, if the system starts from the singularity (PS),

it also propagates till Minkowski spacetime but without crossing the horizon. That solution

corresponds to a naked singularity where the mass is negative. The transformation to the

extended spacetime (U → −U, V → −V ) is equivalent to (x2 → −x2, x3 → −x3) which gives

the other part of the phase space where φ < 0 which means anti-gravity or defocusing of

geodesics.

6.2.2 Nonstatic

For this case, only the variables x1, x6 and x7 are nonzero. We also use the constraint (6.7g)

to reduce the system to

x̊6 = x7(x6 − 2x7) , (6.34)

x̊7 = x6(x6 − 2x7) , (6.35)

1 = 3
(
x2

7 − x2
6

)
. (6.36)

There are no finite fixed points. Under the Poincaré transformation, the equations become

X̊6 = −X7(X6 − 2X7)(X2
6 −X2

7 − Z2) , (6.37)

X̊7 = X6(X6 − 2X7)(X2
6 −X2

7 + Z2) , (6.38)

Z̊ = −2X6X7Z(X6 − 2X7) , (6.39)

Z2 = 3
(
X2

7 −X2
6

)
, (6.40)

1 = X2
6 +X2

7 + Z2 , (6.41)
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Dynamical system Critical points Stability Nature

x̊6 = x7(x6 − 2x7)
x̊7 = x6(x6 − 2x7) No fixed points

1 = 3
(
x2

7 − x2
6

)
X̊6 = −X7(X6 − 2X7)(X2

6 −X2
7 − Z2) PH : (X6, X7) = ( 1√

2
,− 1√

2
) Repeller Horizon

X̊7 = X6(X6 − 2X7)(X2
6 −X2

7 + Z2) P̄H : (X6, X7) = (− 1√
2
, 1√

2
) Attractor Horizon

Z2 = 3
(
X2

7 −X2
6

)
PS : (X6, X7) = (− 1√

2
,− 1√

2
) Attractor Singularity

1 = X2
6 +X2

7 + Z2 P̄S : (X6, X7) = ( 1√
2
, 1√

2
) Repeller Singularity

Table 6.2: Critical points, stability and their nature in both finite and infinite (Poincaré sphere)
domains for nonstatic vacuum.

where we have rescaled the derivative ZX̊ → X̊.

We perform the same analysis as before except that the metric takes the following form

ds2 = − dt2

B(t)
+A(t)dr2 + t2dΩ2 . (6.42)

We define the normal vectors as uµ = (±
√
B, 0, 0, 0) and nµ = (0,±1/

√
A, 0, 0). It is easy to

see that for any field X, we have Ẋ = uµ∇µX = ±
√
BdX/dt. We can also get θ = ∇µuµ =

(d lnA
dt /2 + 2/t)u0 and θ/3 − Σ/2 = Nµν∇µuν/2 = u0/t which gives u0 = x6 + x7. Hence

uµ = (x6 +x7, 0, 0, 0). The position of the horizon corresponds to x6 +x7 = 0. Also the line of

constant time are in the Kruskal coordinates defined by V 2−U2 = Cst so in these coordinates

we have uµ = (V,−U, 0, 0) or uµ = (−V,U, 0, 0). The transformation from nonstatic black

hole to nonstatic white hole is (U → −U , V → −V ) or equivalently by reversing the sign of

x6 + x7. As previously the metric can be written in terms of the normalized variables

B = (x6 + x7)2 ,
d lnA

d ln t
= 2

x6 − 2x7

x6 + x7
, (6.43)

and the derivative x̊ = (x6 + x7) dx
d ln t .

Hence it is easy to analyze the system and find the nature of each critical points. The final

result is summarized in the Table 6.2 and the phase portrait is shown on Fig. 6.2. We see that

on the black hole side (ie., x6 + x7 < 0), there is a flow of the trajectory from the horizon to

the singularity and vice-versa for the white hole (ie., x6 + x7 > 0). This exactly corresponds

to what we already know.
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Figure 6.2: The phase portrait for nonstatic vacuum within Poincaré sphere for black hole
and white hole.

6.3 Vacuum spacetime with cosmological constant

We follow the same analysis done previously in the presence of a cosmological constant. In

this case, ρ = p = Π = 0, so we include x4 other than the variables defined in the previous

section.

6.3.1 Static

Using the constraints (7.8g) and (7.8h)) the system reduces to

x′2 = x2x3 , (6.44)

x′3 = −x3(x3 − x2) + x2
2 − 1 . (6.45)

We see that x2 = 0 is an invariant submanifold of the dynamical system contrary to x3 =

0, meaning the system cannot go through the subspace x2 = 0 and can only approach it

asymptotically, which corresponds to the horizon as seen previously. Like before, we have

the Minkowski critical point (x2, x3) = (±1, 0). Using the transformation xi = Xi/Z with
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X2
2 +X2

3 + Z2 = 1, the Poincaré sphere, we have

X ′2 = −X2X3(X2
2 +X2X3 − 2X2

3 − 2Z2) , (6.46)

X ′3 = X2
2 (X2 −X3)(X2 + 2X3) + (X2 −X3)X3Z

2 − Z4 , (6.47)

1 = X2
2 +X2

3 + Z2 , (6.48)

where we performed a rescaling of the derivative ZX ′ → X ′.

As usual the nature can be derived by making a linearisation around the critical point. Let

us consider the point ( 1√
2
, 1√

2
). The linearisation gives

X2 '
1√
2

+
ε1
r3
, (6.49)

X3 '
1√
2
− ε1
r3
, (6.50)

Z ' ε2
r
, (6.51)

which gives

x2 '
r√
2ε2

+
ε1
r2
, (6.52)

x3 '
r√
2ε2
− ε1
r2
, (6.53)

which at the leading order gives

B ' r2

2ε22
' −Λ

3
r2 , Λ < 0 , (6.54)

A ' αr2 , (6.55)

where α is a constant of integration and we used the constraint (7.8g) and (7.8h) to get

x4 = Λr2/3 ' −r2/2ε22. Hence we conclude the point is the anti-de Sitter Universe.

Finally, (PH1, P̄H1, PH2, P̄H2) are the horizons. First, we notice that because we want a static

universe, the sign of the metric can’t flip, hence A > 0 and B > 0. Also from (6.20) we have

sign(dA/dr) = sign(x2x3). Finally, following standard convention, we have dA/dr > 0 for

event horizon and the cosmological horizon is the null surface for which dA/dr < 0 (or also a

Cauchy horizon). We conclude that PH1 and P̄H2 are event horizons while de Sitter horizons

for P̄H1 and PH2. The results are summarized in Table 6.3. To avoid the singularity, we see

from Fig. 6.3 that the sign of the cosmological constant is not important but we avoid it by

imposing E < 0. Fig. 6.3 represents the complete static manifold. We can, for example, start

an evolution from the event horizon of the BH (PH1). Depending on the initial conditions, we
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Dynamical system Critical points Stability Nature

x′2 = x2x3 PM : (x2, x3) = (1, 0) Saddle point Minkowski
x′3 = −x3(x3 − x2) + x2

2 − 1 P̄M : (x2, x3) = (−1, 0) Saddle point Minkowski

(PH1, P̄H1) : (X2, X3) = (0, 1) Repeller Horizon
X ′2 = −X2X3(X2

2 +X2X3 − 2X2
3 − 2Z2) (PH2, P̄H2) : (X2, X3) = (0,−1) Attractor Horizon

X ′3 = X2
2 (X2 −X3)(X2 + 2X3) PS : (X2, X3) = ( 2√

5
,− 1√

5
) Repeller Singularity

+(X2 −X3)X3Z
2 − Z4

Z ′ = ZX3(−2X2
2 −X2X3 +X2

3 + Z2) P̄S : (X2, X3) = (− 2√
5
, 1√

5
) Attractor Singularity

X2
2 +X2

3 + Z2 = 1 PAdS : (X2, X3) = ( 1√
2
, 1√

2
) Attractor Anti-de Sitter

P̄AdS : (X2, X3) = (− 1√
2
,− 1√

2
) Repeller Anti-de Sitter

Table 6.3: Critical points and their stability in both finite and infinite (Poincaré sphere) domains
for general relativity with cosmological constant (static case).

X2

X
3

PAdS

P AdS

P S
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PH2P H2

P H1 PH1

PMP M

Figure 6.3: The phase portrait for general relativity with cosmological constant within
Poincaré sphere. The green region corresponds to positive cosmological constant while the

dashed red part corresponds to positive electric part of the Weyl tensor E > 0.
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can choose a path towards the anti-de Sitter space or propagate to the de Sitter horizon in

PH2. Localized at the cosmological horizon we can imagine a coordinate transformation which

is going to smoothen that coordinate singularity, but we don’t get rid of the central singularity.

That transformation is going to reverse x2 and x3 hence we will be at the point P̄H1 which

corresponds to the cosmological horizon where now φ < 0, hence we are on the other side of the

extension of the spacetime. The system will propagate till the point P̄H2, which corresponds

to the event horizon. Now, close to that horizon, we can use another transformation which is

going to transform the system into PH1 which is again the event horizon, we can proceed to

the same thing again and again which shows the infinite structure of the complete manifold.

Notice also that we have a straight trajectory from PH1 to PH2, this corresponds to both

horizons indistinguishably, it’s the degenerate solution. In fact we have in that case φ = 0 and

from the equations we have K = Λ and

B

2A

d2A

dr2
+

1

4A

dB

dr

dA

dr
− B

4A2

(dA
dr

)2
+ Λ = 0 . (6.56)

Notice that this equation is equivalent to Rµν = Λgµν with a metric given by ds2 = −Adt2 +

dr2/B + dΩ2/Λ. In case where A = B, we have A = α + βr − Λr2 corresponding to Nar-

iai spacetime. It is interesting to notice from Fig.6.3 how easily we deduce the absence of

singularity for Nariai spacetime and anti-de Sitter asymptotic region.

6.3.2 Nonstatic

In this part, we investigate the nonstatic case with a cosmological constant. Using the con-

straints (6.7f) and (6.7g) the system reduces to

x̊6 = x6x7 − 3x7
2 + x6

2 +
1

3
, (6.57)

x̊7 = x7
2 − 2x6x7 −

1

3
. (6.58)

We see that x6 + x7 is an invariant submanifold and hence can’t be crossed. Horizons are

always invariant submanifolds in our formalism. We have 2 fixed points at finite distance

corresponding to horizons. Under Poincaré transformation, the equations become

X̊6 = 3X2
7 (X2

6 −X2
7 ) + (3X2

6 + 4X6X7 − 8X2
7 )
Z2

3
+
Z4

3
,

X̊7 = −3X6X7(X2
6 −X2

7 )− (X2
6 + 7X6X7 − 3X2

7 )
Z2

3
− Z4

3
,

1 = X2
6 +X2

7 + Z2 , (6.59)

where we rescaled the derivative (ZX̊ → X̊). The analysis follows the same previous strategy
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Dynamical system Critical points Stability Nature

x̊6 = x6x7 − 3x7
2 + x6

2 + 1
3 (PH3, P̄H3) : (x6, x7) = (1

3 ,−
1
3) Saddle point Horizon

x̊7 = x7
2 − 2x6x7 − 1

3 (PH2, P̄H2) : (x6, x7) = (−1
3 ,

1
3) Saddle point Horizon

PdS : (X6, X7) = (−1, 0) Repeller de Sitter

X̊6=3X2
7 (X2

6−X2
7 )+(3X2

6+4X6X7−8X2
7 )Z

2

3
+Z4

3
P̄dS : (X6, X7) = (1, 0) Attractor de Sitter

X̊7=−3X6X7(X2
6−X2

7 )−(X2
6+7X6X7−3X2

7 )Z
2

3
−Z

4

3
PS : (X6, X7) = (− 1√

2
,− 1√

2
) Attractor Singularity

Z̊=−(X3
6+X2

6X7−5X6X2
7+X3

7 )Z+(−X6+X7)Z
3

3
P̄S : (X6, X7) = ( 1√

2
, 1√

2
) Repeller Singularity

1=X2
6+X2

7+Z2 (PH1, P̄H1) : (X6, X7) = (− 1√
2
, 1√

2
) Attractor Horizon

(PH4, P̄H4) : (X6, X7) = ( 1√
2
,− 1√

2
) Repeller Horizon

Table 6.4: Critical points and their stability in both finite and infinite (Poincaré sphere) domains for
general relativity with cosmological constant (nonstatic case).

X6

X
7

PS

P S

PdS

P dS

PH1

P H1

PH2

P H2

PH3

P H3

PH4

P H4

Figure 6.4: The phase portrait for nonstatic with Λ in infinite (Poincaré sphere) domain.
The green part corresponds to Λ > 0 and the red dashed region corresponds to E > 0.
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and is summarized in Table 6.4 and phase space is displayed in Fig. 6.4. We notice from

Fig. 6.4 that condition E > 0 is sufficient to avoid singularity. We can start the evolution

from either the horizon or the de Sitter space in the black hole and depending on the initial

conditions, the path evolve either towards the singularity (from both horizon and de Sitter) or

towards the horizon (from the de Sitter space). Finally the degenerate case where x6 +x7 = 0

reduces to

K = Λ , (6.60)

θ̇ + θ2 − Λ = 0 , (6.61)

which gives in terms of metric

B

2A

d2A

dt2
− B

4A2

(dA
dt

)2
+

1

4A

dA

dt

dB

dt
− Λ = 0 (6.62)

In the case where B = Λ we have A = α cosh(t + β)2 corresponding to Nariai solution in

global coordinates. We see from the Fig. 6.4 the solution is singularity-free and does not have

asymptotic de Sitter region as expected [Bousso 2002].

6.4 Charged spacetime

In this section, we will consider the presence of a charge hence the additional variable x5.

6.4.1 Static

Using the constraints (7.8g) and (7.8h) the equations reduce to 3-dimensional autonomous

system

x′2 = x2x3 , (6.63)

x′3 = 1− 3x2x3 − x2
2 − x2

3 − 6x4 , (6.64)

x′4 = 2x2x4 , (6.65)

with the constraint (positivity of density ρ = E2/2µ0)

x5 = 1− x2
2 − 3x4 − 2x2x3 ≥ 0 . (6.66)

We see that x4 = 0 and x2 = 0 are invariant submanifolds. The latter defines the horizon

while x4 ∝ Λ does not change sign. The critical points and their nature are summarized in

Table 6.5. We have 2 types of singularities which are calculated by a linearisation around the
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X3

X
4

PH4

PAdS

PS1

PS2

PH3 PH2

Figure 6.5: The phase portrait at infinity for general relativity with charge and cosmological
constant. Only the black hole region is shown X2 > 0. The white hole phase space can be
easily deduced. The blue region represents violation of energy condition x5 < 0 which is

equivalent to q2 < 0 where q is black hole charge.

critical point. The weakest singularity (B ∼ 1/r) is always a saddle point if x5 6= 0 while

the strongest singularity (B ∼ 1/r2) is a repeller for black hole (x2 > 0) and an attractor

for the white hole. Notice also that (X2, X3, X4) = (0, 0,−1) is not a horizon and, in fact,

X2 = 0 doesn’t imply x2 zero. This critical point corresponds to the end point of the saddle

line in Table 6.5. It is stable for the black hole (X2 > 0) while unstable for the white hole.

In Fig.6.5, we have the behaviour of the dynamical system at infinity and Fig.6.6 shows the

full phase space for a spacetime without cosmological constant, this is the Reissner-Nordström

solution.

Finally the critical solution x2 = 0 gives x′3 +x2
3 + 1 = 0 which corresponds to Nariai solution.

More generically if we impose φ = 0 to the equations (5.42a)-(5.47) in the static case, and

assuming Π = 0, we have Q = 0, p = −ρ,K = Λ and

Â+A2 + Λ = 0 . (6.67)
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X
3

PS1

P S1

PH2P H2

PH1P H1

PH1

P H1

PH3P H3

PM
P M

PS2

P S2

Figure 6.6: The phase portrait for general relativity with charge without cosmological con-
stant in infinite (Poincaré sphere) domain. The blue region represents x5 < 0 and should not

be included. The dashed red part represents positive electric part of Weyl tensor E > 0.

It can be integrated easily by defining an affine parameter ξ by
√
Bdξ = dr which gives

A = −
√

Λ tan(
√

Λξ + α) = 2−1 d lnA
dξ and hence we have the line element

ds2 = − cos2(ξ)dt2 +
dξ2 + dΩ2

Λ
, (6.68)

Therefore we can define the static Nariai solution as spacetime without sheet expansion φ = 0.

6.4.2 Nonstatic

Using the constraints (6.7f) and (6.7g) the nonstatic system reduces to

x̊4 = 2x4(x6 + x7) , (6.69)

x̊6 = x6x7 − x2
6 − x2

7 + 2x4 −
1

3
, (6.70)

x̊7 = 2x6(x6 − x7)− x2
7 − 2x4 +

1

3
, (6.71)
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HX7-X6L� 2

X
4

PdS

PH2

PS1
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PH4 PH3

Figure 6.7: The phase portrait at infinity for general relativity with charge and cosmological
constant in nonstatic case. Only one side of the extended manifold is shown. The white region

is ρ > 0.

with the constraint on the positivity of density

x5 = 1− 3x4 + 3x2
6 − 3x2

7 ≥ 0 . (6.72)

As expected x4 = 0 is invariant submanifold but also x6 + x7 = 0 which defines the horizon.

The full analysis of the dynamical system is summarized in Table 6.6. We have 2 types of

singularities but as in static case B ∼ 1/t is a saddle point. The point (1, 0, 0) corresponds to

de Sitter (Λ > 0), it is stable for the white hole while unstable for black hole X6 + X7 < 0.

The behaviour of the full system at infinity is shown in Fig.6.7 while Fig.6.8 shows the full

phase space for Λ = 0. We see that we can’t reach the singularity PS2 where the metric goes

like 1/t2 as soon as we assume ρ = E2/2µ0 > 0. In fact to reach the singularity we need to

cross another horizon (Cauchy horizon) therefore the spacetime becomes static around this

singularity.

Finally, very generically assuming x6 +x7 = 0 gives from equations (5.42a)-(5.47) (and assum-

ing Π = 0)

K = Λ , (6.73)

θ̇ + θ2 − Λ = 0 . (6.74)
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Figure 6.8: The phase portrait for general relativity with charge without cosmological con-
stant in infinite (Poincaré sphere) domain. The dashed red region is E > 0 while blue represents

forbidden region x5 < 0.

As previously, by introducing an affine parameter, it is easy to integrate the equation, we find

ds2 = −dt
2

Λ
+ cosh2(t)dr2 +

dΩ2

Λ
. (6.75)

Hence imposing the condition Σ = 2θ/3 (x6 + x7 = 0) for a nonstatic spherically symmetric

spacetime gives the Nariai solution.

6.5 Conclusions

In this chapter, we effectively reformulated the system of Einstein field equations, for LRS-

II spacetimes, into an autonomous system of dimensionless, covariantly defined geometrical

variables. By compactifying the phase space of this system and using the usual tools of

dynamical system analysis, we qualitatively found all the important global features of the

maximal extension of these spacetimes. Through the construction of this autonomous system

of covariant variables, we eliminated the problems of coordinate singularities. It is quite

interesting that horizons manifest themselves as invariant submanifolds of the phase space of

the autonomous system. It is also very easy, via this formalism, to see the singularity-free

nature of the Nariai solution. This analysis provides an efficient way to understand the global
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properties of any spacetime, by bypassing the very difficult task of solving the field equations

and maximally extending the solution.
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Chapter 7

Black holes structure via dynamical

system in f(R) theories

The models of f(R) gravity were introduced in the early days of GR to explore the possible

alternatives to the Einstein-Hilbert action. It also appeared as a model for inflation and it

is still consistent with all observations but, with the 1998 discovery of the acceleration of the

Universe, f(R) gravity became extremely popular. In fact, using type Ia supernovae [Riess

et al. 1998], dark energy was introduced in the standard cosmological model to account for

68% of the energy content of the universe [Ade et al. n.d.]. It is difficult to conceive of a

cosmological constant Λ whose energy density is fine-tuned by ∼ 55 orders of magnitude to

account for the present acceleration [Martin 2012]. Various attempts to explain the cosmic

acceleration in the context of GR and without dark energy, for example, using the backreaction

of inhomogeneities on the cosmic dynamics [Buchert 2000] or by postulating that we live near

the centre of a giant void in a dust-dominated universe [Alnes et al. 2006], have so far been

unconvincing. Therefore an alternative is to abandon GR and modify the Einstein-Hilbert

action by replacing the Ricci scalar R with a nonlinear function f(R). On cosmological scales

this modification of gravity deviates from GR in that it can cause cosmic acceleration without

an unphysical, negative pressure fluid.

The f(R) theory is equivalent to the standard degree of freedom, the massless graviton, plus

a scalar field, the scalaron, which is not a ghost if f,R > 0 [Nunez and Solganik 2004]. Also

it can been shown that the scalaron has a rest mass in the WKB regime M2 = f,R/3f,RR

(M � R) which implies the condition that f,RR > 0. This condition can be derived in various

contexts as, for example, an instability in the matter sector [Dolgov and Kawasaki 2003],

stability of stars [Seifert 2007], cosmological perturbations [Sawicki and Hu 2007], well defined
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post-Newtonian limit [Olmo 2005], stability of the de-Sitter [Faraoni 2005] and Anti-de Sitter

(AdS) space [Myung 2011] or the stability of the Schwarzschild solution [Myung et al. 2011].

Also, in order to have a viable matter phase during the cosmological expansion we need to

impose the condition Rf,RR/f,R > 0 which during matter phase R > 0 imposes f,RR/f,R > 0

[Amendola, Gannouji, et al. 2007; Amendola, Polarski, et al. 2007]. It is also required for the

stability of the cosmological perturbations [S. M. Carroll et al. 2006; Song et al. 2007; Bean

et al. 2007; Faulkner et al. 2007]

Therefore we see that all the conditions for a physically viable model converge towards the

conditions of positivity of the first and the second derivative of the lagrangian and hence we

will restrict to models satisfying f,R > 0 and f,RR > 0 for R > R0. In cosmology, R0 represents

the curvature of the universe in the future which means R0 ' 4Λ ' 10−47GeV4. Also notice

that if for some R > R0 we have f,R = 0, the universe becomes strongly anisotropic and

inhomogeneous [Nariai 1973; Gurovich and Starobinsky 1979]. Therefore we will impose a

stronger condition:

∀R, f,R > 0 and f,RR > 0 . (7.1)

For example, the model f(R) = R − α/Rn (α > 0, n > 0) does not satisfy the condition

f,RR > 0 and hence will not be considered in this analysis.

Having these conditions in mind, we will study very generically these models in the context

of static spherically spacetimes without assuming a particular Lagrangian. For that, we will

extend the formalism developed in chapter 6 for f(R) theories.

The chapter is organized as follows. The autonomous system for the static case in f(R)

theories is given Sec. 7.1 and we study the vacuum solutions in both finite and infinite regime.

Sec. 7.2 makes an analysis of the critical points or lines from a physical point of view. In Sec.

7.3, we study a special f(R) model, αRn+1, where the dimension of the autonomous system

reduces by 1. We intend to study other f(R) models in greater detail. The conclusions are

given in Sec. 7.4. This chapter is based on a work in progress [Ganguly et al. n.d.].

7.1 f(R) gravity

As we have seen in chapter 2, field equations in f(R) theories can be effectively written as Eq.

(2.5). In case of vacuum, T
(M)
µν = 0 and the effective energy momentum is given by T

(R)
µν . Using

Eq. (5.37), quantities like ρ, P, Π and Q are defined in f(R) gravity as [Nzioki, Goswami,
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et al. 2014]:

ρ =
1

f,R

[
1

2
(Rf,R − f) + f,RRX̂ + f,RRXφ+ f,RRRX

2

]
, (7.2)

p =
1

f,R

[
1

2
(f −Rf,R)−Af,RRX −

2

3

(
f,RRX̂ + f,RRXφ+ f,RRRX

2
)]

, (7.3)

Π =
1

3f,R

[
2f,RRRX

2 + 2f,RRX̂ − f,RRXφ
]
, (7.4)

Q = 0 , (7.5)

where X = R̂ and f,R = df/dR. The trace of the modified Einstein’s equation leads to an

additional equation

Rf,R − 2f = −3
[
f,RR

(
X̂ + (φ+A)X

)
+ f,RRRX

2
]
. (7.6)

In chapter 6, we studied both the static and the nonstatic Universe for the different spacetimes

but in this chapter and the following one, we will only concentrate on the static Universe. This

is because the nonstatic case is not very interesting from an observational point of view since

we are mainly concerned about the exterior solutions. We know that for a static Universe,

θ = Σ = Q = 0, hence we can define the variables as:

x1 = − E
K
, x2 =

φ

2
√
K
, x3 =

A√
K
, x4 =

R

6K
, x5 = − f

6Kf,R
, x6 =

Xf,RR√
Kf,R

. (7.7)

The evolution of the variables will be zero. Using Eqs. (7.2)-(7.6), we get from the system of

equations (5.42a)-(5.47) the following set for the autonomous system:

x′1 =
1

2

(
−x1 (2x2 + x6) + x2

6 (x2 − x3)
)
, (7.8a)

x′2 =
1

2
(x1 + x2x6 + x3x6) + x5 , (7.8b)

x′3 = −x3 (x2 + x3 + x6)− 2x4 − x5 , (7.8c)

x′4 = x4

(
2x2 +

x6

m

)
, (7.8d)

x′5 = x5 (2x2 − x6)− x4x6

m
, (7.8e)

x′6 = −2x4 − 4x5 − x6 (x2 + x3 + x6) , (7.8f)

1 = x1 + x2
2 + x2x6 + x4 + x5 , (7.8g)

0 = x1 − x2 (2x3 + x6)− x3x6 − 2x4 − 2x5 , (7.8h)

where m = Rf,RR/f,R. We define also u = −Rf,R/f ≡ x4/x5, reversing that equation we will

have m ≡ m(x4/x5).
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Using the constraints Eqs. (7.8g) and (7.8h), we can reduce two degrees of freedom of the

system (7.8), say

x1 =
1

3
(2− (x2 − x3)(2x2 + x6)) , (7.9a)

x5 =
1

3

(
1− x2

2 − 3x4 − x3x6 − 2x2(x3 + x6)
)
. (7.9b)

Then the system (7.8) reduces to

x′2 =
2− 2x2

2 − 3x4 + x3x6 − x2(x3 + x6)

3
, (7.10a)

x′3 =
−1 + x2

2 − x2x3 − 3x2
3 − 3x4 + 2x2x6 − 2x3x6

3
, (7.10b)

x′4 = x4

(
2x2 +

x6

m

)
, (7.10c)

x′6 =
−4 + 4x2(x2 + 2x3) + 6x4 + (5x2 + x3)x6 − 3x2

6

3
, (7.10d)

for m 6= 0.

Next, we will find out the critical points of the above system and study its stability and nature.

For understanding the nature, we will study the behaviour of the dynamical system around

the critical point as described in chapter 6. We define a metric with spherical coordinates:

ds2 = −A(r)dt2 +
dr2

B(r)
+ r2dΩ2 . (7.11)

Now, following chapter 6, we calculate the relations which essentially boils down to:

x2 =
√
B , (7.12)

2
x3

x2
=

d(lnA)

d(ln r)
, (7.13)

6

r2
x4 = R , (7.14)

x6

x2
=

d(ln f,R)

d(ln r)
, (7.15)

where K = 1/r2.

The derivatives can be written as

x′ =
x̂√
K

= rx̂ = rnµDµx = r
rφ

2

dx

dr
= x2

dx

d ln r
. (7.16)
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Using Eq. (5.52), we can define the Misner-Sharp mass with the help of Eqs. (7.2), (7.4) and

(7.9) as

MMS =
1

2
√
K

(x1 + x2x6 + x4 + x5)

=
1− x2

2

2
√
K

, (7.17)

along with the derivative

M̂MS = x2

[x2
2 − 1

6
+
x2x6 + x2x3 − x3x6

3
+ x4

]
. (7.18)

The critical points of the above system of equations are:

P1 : (x2, x3, x4, x6) = (1, 0, 0, 0)

P̄1 : (x2, x3, x4, x6) = (−1, 0, 0, 0)

P2 : (x2, x3, x4, x6) =
(

2√
7
, 1√

7
, 0, 4√

7

)
P̄2 : (x2, x3, x4, x6) =

(
− 2√

7
,− 1√

7
, 0,− 4√

7

)
P3 : (x2, x3, x4, x6) =

(
1−m√

(1−2m−2m2)(1−2m+4m2)
, m(1+2m)√

(1−2m−2m2)(1−2m+4m2)
,

− m(1+m)
1−2m−2m2 ,

2m(m−1)√
(1−2m−2m2)(1−2m+4m2)

)
P̄3 : (x2, x3, x4, x6) =

(
− 1−m√

(1−2m−2m2)(1−2m+4m2)
,− m(1+2m)√

(1−2m−2m2)(1−2m+4m2)
,

− m(1+m)
1−2m−2m2 ,− 2m(m−1)√

(1−2m−2m2)(1−2m+4m2)

)
In what follows we shall consider the properties of each fixed point. It must be stressed that

the barred points will not be analyzed in great detail as they have the same nature but their

stabilities are complimentary to the corresponding unbarred points.

• P1: Minkowski point

The linearized system around this point has the eigenvalues (2, 2,−1,−1), hence it is a

saddle point and the eigenvectors are(
−1

8
,
1

4
, 0, 1

)
,

(
−1

4
,−1

2
, 1, 0

)
, (−1, 0, 0, 1) , (−1, 1, 0, 0) .

This point is found in chapter 6 where it is shown to be Minkowski spacetime. In fact

we can also show that MMS = M̂MS = 0.

Notice that if we reduce the system to the 2-D subsystem where the eigenvalues are

(−1,−1) then the point will be an attractor. We notice that this subsystem is defined
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by

x4 = 0 , (7.19)

x2
2 + 2x2x3 + x6(2x2 + x3)− 1 = 0 . (7.20)

It is easy to show that it is an invariant submanifold, therefore any trajectory on this

surface remains on the surface. Hence the only possibility to have a spacetime for f(R)

theories which is asymptotically flat is to consider initial conditions on this surface.

Along with these constraints the system reduces to

x′2 = x2x3 + x2x6 + x3x6 , (7.21)

x′3 = −x3(x2 + x3 + x6) , (7.22)

x′6 = −x6(x2 + x3 + x6) . (7.23)

We have two different cases, from x4 = 0 we have R = 0 and R′ = 0 and hence (i)

x6 = 0 if f ′(0)/f ′′(0) 6= 0 and (ii) x6 can be nonzero if f ′(0)/f ′′(0) = 0. But as we

said previously we will not consider the case f ′(R) = 0, which is trivial. Therefore we

will focus only on the case x6 = 0. Also, notice that we have x5 = 0 which implies

f(0)/f ′(0) = 0. Under all these conditions, the system reduces to

x′2 = x2x3 , (7.24)

x′3 = −x3(x2 + x3) , (7.25)

with the constraint x2
2 + 2x2x3 − 1 = 0. Remember that x′2 = x2(dx2/d ln r) =

1/2(dx2
2/d ln r) = 1/2(dB/d ln r). Substituting this relation in Eq. (7.24) and using

the constraint to remove x3, we get dB/d ln r = 1 − B which gives x2
2 = B = 1 −m/r

where m is a constant of integration. Using this result in Eq. (7.13), we can easily get

A = α(1−m/r) where α is a constant of integration which can be absorbed by the re-

definition of time. Therefore we can conclude that for any f(R) gravity theory for which

f ′(0)/f ′′(0) 6= 0, the unique asymptotically flat solution is Schwarzschild. Hence if we

consider a general polynomial f(R) =
∑

n anR
n, the necessary condition gives a1 = 0

which implies that any theory in the form f(R) = R + h(R) where h is a polynomial,

does not have an asymptotically flat spacetime except Schwarzschild.

Notice that we could derive the condition differently, in fact once we understand from

the dynamical system that an asymptotically flat spacetime exists only for R = 0 we
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have from the equations of motion

f ′(0)Rµν −
1

2
f(0)gµν − f ′′(0)∇µR∇νR− f ′(0)∇µνR+ f ′′(0)(∇R)2gµν + f ′(0)�Rgµν = 0 .

(7.26)

Because we assume f ′(0) 6= 0, this equation becomes

Rµν −
1

2

f(0)

f ′(0)
gµν −

f ′′(0)

f ′(0)
∇µR∇νR−∇µνR+

f ′′(0)

f ′(0)
(∇R)2gµν + �Rgµν = 0 . (7.27)

And hence if f ′(0)/f ′′(0) 6= 0, we have for R = 0

Rµν −
1

2

f(0)

f ′(0)
gµν = 0 , (7.28)

which by contraction gives

R = 2
f(0)

f ′(0)
= 0 , (7.29)

and thereforeRµν = 0. Therefore we recover that under the same conditions f ′(0)/f ′′(0) 6=
0 and f(0)/f ′(0) = 0, the unique asymptotically flat solution is Schwarzschild (Rµν =

R = 0).

We have learned something very important here, the phase space is 4D but on the surface

x4 = 0 it reduces to 2D because of an additional induced constraint which is x6 = 0.

• P̄1: Anti-Minkowski point

The linearized system around this point has the eigenvalues (−2,−2, 1, 1), hence it is a

saddle point.

• P2: Isothermal point

The eigenvalues of the linearized system are
(
−
√

7, 4(1+m(0))√
7m(0)

, −
√

7+i
2 ,−

√
7+i
2

)
. It is an

attractor when −1 < m(0) < 0 and saddle point elsewhere except m(0) = −1. At

m(0) = −1, it is a non-hyperbolic point and the system is stable.

For this spacetime, rA′/A = 1, B = 4/7, R = 0 and rR′f ′′(0)/f ′(0) = 2, which gives

ds2 = −rdt2 +(7/4)dr2 +r2dΩ2. This spacetime corresponds to a special case of isother-

mal metric (α = 1/3 in the article [Saslaw et al. 1996]) where the solution corresponds

to a perfect fluid with ρ = 3/7r2, Pr = Pt = 1/7r2, ie. the EoS is P = (1/3)ρ.

For this spacetime we have a positive and increasing mass MMS = 3/14
√
K > 0 and

M̂MS = 3/7
√

7 > 0.
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• P̄2: Anti-Isothermal point

The eigenvalues of the linearized system are
(√

7,−4(1+m(0))√
7m(0)

,
√

7−i
2 ,

√
7+i
2

)
. It is a repeller

when −1 < m(0) < 0 and saddle point otherwise.

• P3: Clifton-Barrow point

This point exists only if −1+
√

3
2 < m <

√
3−1
2 . We notice that P3 satisfy x4 = −x5(1 +

m) ie. m = −u − 1. We must solve this equation to get the explicit coordinates of P3.

For example if we consider the model f(R) = R+a
√
R we have m = −a/(2a+4

√
R) and

u = −(a+ 2
√
R)/(2a+ 2

√
R) which gives for this model m(u) = (1 + u)/2u. Therefore

the equation m(u) = −u − 1 gives u = −1 and u = −1/2 which implies m = 0 and

m = −1/2. We define the system (7.10) for m 6= 0, therefore for this model, we have 1

critical point

P3a =

(√
2

2
, 0,

1

6
,

√
2

2

)
. (7.30)

More generically, we have u′ = u(1 +m+ u)x6m , hence the critical line m = −u− 1 is an

invariant submanifold if x6/m doesn’t diverge.

The eigenvalues of the linearized system are(
−
√

1−2m+4m2

1−2m−2m2 ,
−
√

1−2m+4m2+
√
−7+14m+20m2

2
√

1−2m−2m2
,

−
√

1−2m+4m2−
√
−7+14m+20m2

2
√

1−2m−2m2
, 2(1−m2)(1+m′)√

(1−2m−2m2)(1−2m+4m2)

)
,

where m′ = dm/du. It is an attractor for {m′ < −1;−1 ≤ m < (
√

3 − 1)/2} and

{m′ > −1;−(
√

3+1)/2 < m ≤ −1} saddle point for {m′ < −1;−(
√

3+1)/2 ≤ m < −1}
and {m′ > −1;−1 < m ≤ (

√
3 − 1)/2}. The critical point is non-hyperbolic when

m′ = −1 and m = −1, but we can show that it is stable.

The solution of the dynamical system at the critical point comes out to be

A = r
2m(1+2m)

1−m , B =
(1−m)2

(1− 2m− 2m2)(1− 2m+ 4m2)
,

R = − 6m(1 +m)

r2(1− 2m− 2m2)
, f,R = Nr−2m ,

where N is an arbitrary constant. This point is the asymptotic behaviour of the solution

found by Clifton and Barrow [Clifton and Barrow 2005].

Notice that in the case m = −1, P3 = P2, hence we understand that P2 is also the

asymptotic behaviour of a Clifton-Barrow solution but this critical point exists for any

f(R) theory .
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For this spacetime, the Misner-Sharp mass and its derivative is

MMS = − m(2− 5m+ 4m2 + 8m3)

2(1− 2m− 2m2)(1− 2m+ 4m2)
√
K
, (7.31)

M̂MS =
m(m− 1)(2− 5m+ 4m2 + 8m3)

2
[
(1− 2m− 2m2)(1− 2m+ 4m2)

]3/2
. (7.32)

The mass of the spacetime is positive for

−1.2 ' −1

6

(
1 +

17

(314− 18
√

183)1/3
+

(157− 9
√

183)1/3

22/3

)
< m < 0 , (7.33)

and negative elsewhere. Notice also that the curvature scalar is positive for −1 < m < 0

and negative elsewhere.

• P̄3: Anti-Clifton-Barrow point

This point exists only if −1+
√

3
2 < m <

√
3−1
2 . We notice that P3 satisfies x4 = −x5(1 +

m) ie. m = −u− 1. We must solve this equation to get the explicit coordinates of P3.

The eigenvalues of the linearized system are(√
1−2m+4m2

1−2m−2m2 ,
√

1−2m+4m2+
√
−7+14m+20m2

2
√

1−2m−2m2
,

√
1−2m+4m2−

√
−7+14m+20m2

2
√

1−2m−2m2
, − 2(1−m2)(1+m′)√

(1−2m−2m2)(1−2m+4m2)

)
.

To complete the analysis we need to study the structure of the phase space at infinity, for

this we use the Poincaré transformation xi = Xi/Z, with the constraint X2
2+X2

3+X2
4+X2

6+Z2=1,
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therefore the system (7.12)-(7.15) becomes

X̄2 ≡ ZX ′2 = −X2X6X
2
4

m
+

1

3

[
X3X6 −X3

2 (X3 + 4X6) + (−3X4 + 2Z)Z −X2
2 (X2

3 + 8X2
4

+ 11X3X6 + 7X2
6 − 3X4Z + 4Z2) + 2X2X

3
3 +X2X

2
3X6 −X2X3(X2

4 + 2X2
6 − 3X4Z)

+X2X6(−X2
4 + 2X2

6 − 6X4Z + 3Z2)
]
, (7.34)

X̄3 ≡ ZX ′3 = −X3X6X
2
4

m
+

1

3

[
X4

2 +X3
2X3 +X3(−3X3X

2
4 − 2X2

4X6 − 4X3X
2
6 +X3

6 )

+ 3X4(−1 +X2
3 − 2X3X6)Z − (1 + 2X3(X3 −X6))Z2 +X2

2 (−2X2
3 +X2

4 − 5X3X6 +X2
6 + Z2)

−X2X3(7X2
4 + 11X3X6 + 6X2

6 − 3X4Z + 3Z2) + 2X2X6

]
, (7.35)

X̄4 ≡ ZX ′4 =
X4X6(1−X2

4 )

m
+
X4

3

[
8X3

2 + 7X2X
2
3 + 3X3

3 − 3X2
2X6 − 11X2X3X6 + 2X2

3X6 +X2X
2
6

−X3X
2
6 + 3X3

6 + 3X4(X2 +X3 − 2X6)Z + (4X2 +X3 + 4X6)Z2
]
, (7.36)

X̄6 ≡ ZX ′6 = −X
2
4X

2
6

m
+

1

3

[
2(1−X2

6 )
(

2X2(X2 + 2X3) + Z(3X4 − 2Z)
)
−X2

6 ((3Z2

+ (X2 +X3)(2X2 +X3)) + 3X2
4 ) +X6(7X3

2 +X2
2X3 +X2(3Z2 + 6X2

3 + 3ZX4 −X2
4 )

+X3(4X2
3 + (Z +X4)(2Z +X4)))

]
. (7.37)

Notice that we have redefined the derivative. The critical points or lines at infinity (Z = 0)

are

P4 : (X2, X3, X4, X6) = (0, 1, 0, 0)

P5 : (X2, X3, X4, X6) = (0,−1, 0, 0)

P6 : (X2, X3, X4, X6) = (0, 0, 1, 0)

P7 : (X2, X3, X4, X6) = (0, 0,−1, 0)

P8 : (X2, X3, X4, X6) = (0, 0, 0, 1)

P9 : (X2, X3, X4, X6) = (0, 0, 0,−1)

P10 : (X2, X3, X4, X6) =
(

1
3
√

2
, 1

3
√

2
, 0, 2

√
2

3

)
P̄10 : (X2, X3, X4, X6) =

(
− 1

3
√

2
,− 1

3
√

2
, 0,−2

√
2

3

)
L1 :

(
X2, X3 =

−2X2+
√

1+X2
2+
√

1−7X2
2+4X2

√
1+X2

2

2 , X4 = 0, X6 =
−2X2+

√
1+X2

2−
√

1−7X2
2+4X2

√
1+X2

2

2

)
L2 :

(
X2, X3 =

−2X2+
√

1+X2
2−
√

1−7X2
2+4X2

√
1+X2

2

2 , X4 = 0, X6 =
−2X2+

√
1+X2

2+
√

1−7X2
2+4X2

√
1+X2

2

2

)
L3 :

(
X2, X3 =

−2X2−
√

1+X2
2+
√

1−7X2
2−4X2

√
1+X2

2

2 , X4 = 0, X6 =
−2X2−

√
1+X2

2−
√

1−7X2
2−4X2

√
1+X2

2

2

)
L4 :

(
X2, X3 =

−2X2−
√

1+X2
2−
√

1−7X2
2−4X2

√
1+X2

2

2 , X4 = 0, X6 =
−2X2−

√
1+X2

2+
√

1−7X2
2−4X2

√
1+X2

2

2

)
L5 :

(
X2, X3 =

2−3m0+
√

4−8m0−11m2
0

2m0
X2, X4 =

√
1− a+X2

2 , X6 = −2+3m0+
√

4−8m0−11m2
0

2(1+m0) X2

)
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L6 :
(
X2, X3 =

2−3m0+
√

4−8m0−11m2
0

2m0
X2, X4 = −

√
1− a+X2

2 , X6 = −2+3m0+
√

4−8m0−11m2
0

2(1+m0) X2

)
L7 :

(
X2, X3 =

2−3m0−
√

4−8m0−11m2
0

2m0
X2, X4 =

√
1− a−X2

2 , X6 = −2+3m0−
√

4−8m0−11m2
0

2(1+m0) X2

)
L8 :

(
X2, X3 =

2−3m0−
√

4−8m0−11m2
0

2m0
X2, X4 = −

√
1− a−X2

2 , X6 = −2+3m0−
√

4−8m0−11m2
0

2(1+m0) X2

)
where

a± =
4− 2m0 − 11m2

0 − 6m3
0 ± (2 +m0 − 2m2

0)
√

4− 8m0 − 11m2
0

2m2
0(1 +m0)2

, m0 ≡ m(0) . (7.38)

Notice that we have additional points at infinity for special cases when m = −4/3 or m = −1.

We will not study them but for sake of completeness we give them here. For m = −1, we have

the surface X2
4 + X2

6 = 1 along with X2 = X3 = 0 and a second surface X3 = −3X2, X6 =

−5X2 and 35X2
2 + X2

4 = 1. While for m = −4/3 we have X3 = X2, X6 = 4X2 with

18X2
2 +X2

4 = 1.

• P4: Horizon point

The eigenvalues are (2, 2, 1, 0), with eigenvectors(
1

4
, 0, 0, 1

)
, (−1, 1, 0, 0) , (0, 0, 1, 0) ,

(
−1

2
, 0, 0, 1

)
.

This point corresponds to a horizon and is unstable. This is a point that we had in

general relativity. Remember that d ln A/d ln r = 2x3/x2 = 2X3/X2 and this point has

X3 = 1 > 0, hence d lnA/d ln r > 0 which corresponds to an event horizon. Also notice

that one of the eigenvalues is zero because this point is part of the line L1.

• P5: Horizon point

The eigenvalues are (−2,−2,−1, 0), with eigenvectors(
1

4
, 0, 0, 1

)
, (−1, 1, 0, 0) , (0, 0, 1, 0) ,

(
−1

2
, 0, 0, 1

)
.

The same analysis can be performed for this point, for which we have d lnA/d ln r < 0

hence the point is a horizon corresponding to a cosmological or Cauchy horizon depending

if the point predates a singularity or an event horizon. The point is stable and one of

the eigenvalues is zero because this point is part of the line L4.

• P6: Horizon point

This point was also found in GR, it corresponds to horizon and this is an attractor.

• P7: AdS point

This point was studied in GR. This is AdS and it’s stable.
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• P8:

This point is typical of f(R) theories where x6 6= 0 while we have x6 = 0 in general

relativity. The eigenvalues are
(

0, 2, 1, 1+m(0)
m(0)

)
, with eigenvectors

(
−1

2
, 1, 0, 0

)
, (−1, 0, 0, 1), , (1, 1, 0, 0) , (0, 0, 1, 0) .

Hence the point is an repeller iff m(0) < −1 or m(0) > 0. Notice that one of the

eigenvalues is zero because this point is part of the line L2.

• P9:

This point is also typical of f(R) theories since x6 6= 0. The eigenvalues are
(

0,−2,−1,−1+m(0)
m(0)

)
,

with eigenvectors (
−1

2
, 1, 0, 0

)
, (−1, 0, 0, 1), , (1, 1, 0, 0) , (0, 0, 1, 0) .

Hence the point is an attractor iff m(0) < −1 or m(0) > 0. Notice that one of the

eigenvalues is zero because this point is part of the line L3.

• P10:

The eigenvalues are (
− 5

3
√

2
, − 5

3
√

2
,

√
2

3
,

4 + 3m(0)

3
√

2m

)
,

with following eigenvectors

(−4, 0, 0, 1) , (−1, 1, 0, 0) ,

(
−3

4
,
1

4
, 0, 1

)
, (0, 0, 1, 0) .

which implies that the point is saddle.

For this spacetime, X2 6= 0 which implies x2 = ∞ and hence MMS < 0. In fact the

Misner-Sharp mass will be negative for all points and lines at infinity if X2 6= 0. The

linearization around this point shows that the metric behaves like

A ∝ r2 , B ∝ r−2 . (7.39)

• P̄10:

The eigenvalues are (
5

3
√

2
,

5

3
√

2
, −
√

2

3
, −4 + 3m(0)

3
√

2m

)
,
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Figure 7.1: Stability plot of critical line L1 (blue is the repelling region).

with following eigenvectors

(−4, 0, 0, 1) , (−1, 1, 0, 0) ,

(
−3

4
,
1

4
, 0, 1

)
, (0, 0, 1, 0) ,

which implies that the point is saddle.

• L1: Critical line

This line is defined for −
√

15−8
√

3
33 < X2 <

√
15+8

√
3

33 . The line is a repeller when

1 +
−2X2 +

√
1 +X2

2 −
√

1− 7X2
2 + 4X2

√
1 +X2

2

2(X2 +
√

1 +X2
2 )m(0)

> 0 ,

and saddle elsewhere (Fig. 7.1). The stability of a critical point can change along the

critical line depending on m(0). Thus this system might be considered as the case of

bifurcation. The linearization around this line shows that the metric behaves like

A ∝ r−2+

√
1+X2

2
X2

+

√
1−7X2

2+4X2

√
1+X2

2
X2 , B ∝ r2−2

√
1+X2

2
X2 . (7.40)

We notice that this line is symmetric to L4 under the transformation X2 → −X2.

Therefore it is sufficient to study X2 > 0. This is a singularity which is a repeller
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Figure 7.2: Stability plot of critical line L2 (blue is the repelling region).

for some models depending on m(0). Therefore we have a continuum of singularity

behaviours B ∝ rα where α < 6− 4
√

3 while A ∝ rβ with β > −2(2−
√

3).

• L2: Critical line

This line is defined for −
√

15−8
√

3
33 < X2 <

√
15+8

√
3

33 . The line is a repeller when

1 +
−2X2 +

√
1 +X2

2 +
√

1− 7X2
2 + 4X2

√
1 +X2

2

2(X2 +
√

1 +X2
2 )m(0)

> 0 ,

and saddle elsewhere (Fig. 7.2). The linearization around this line shows that the metric

behaves like

A ∝ r−2+

√
1+X2

2
X2

−

√
1−7X2

2+4X2

√
1+X2

2
X2 , B ∝ r2−2

√
1+X2

2
X2 (7.41)

We notice that this line is symmetric to L3 under the transformation X2 → −X2.

Therefore it is sufficient to study X2 > 0. This is a singularity which is a repeller

for some models depending on m(0). Therefore we have a continuum of singularity

behaviours B ∝ rα where α < 6− 4
√

3 while A ∝ rβ with β < −2(2−
√

3).
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Figure 7.3: Stability plot of critical line L3 (blue is the attracting region).

Notice that there are 2 particular values of X2 for which A = B, this is for X2 = 1/
√

3

or X3 = 2/
√

5 for which the metric is respectively A = B = 1/r2 or A = B = 1/r.

• L3: Critical line

This line is defined for −
√

15+8
√

3
33 < X2 <

√
15−8

√
3

33 . The line is an attractor when

1 +
−2X2 −

√
1 +X2

2 −
√

1− 7X2
2 − 4X2

√
1 +X2

2

2(X2 −
√

1 +X2
2 )m(0)

> 0 ,

and saddle elsewhere (Fig. 7.3). The linearization around this line shows that the metric

behaves like

A ∝ r−2−
√

1+X2
2

X2
+

√
1−7X2

2−4X2

√
1+X2

2
X2 , B ∝ r2+2

√
1+X2

2
X2 . (7.42)

As we said it is sufficient to study X2 > 0. This is an attractor for some models

depending on m(0). Therefore we have a continuum of behaviours at infinity B ∝ rα

where α > 6 + 4
√

3 while A ∝ rβ with −2(2 +
√

3) < β < −4.
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Figure 7.4: Stability plot of critical line L4 (blue is the attracting region).

• L4: Critical line

This line is defined for −
√

15+8
√

3
33 < X2 <

√
15−8

√
3

33 . The line is an attractor when

1 +
−2X2 −

√
1 +X2

2 +
√

1− 7X2
2 − 4X2

√
1 +X2

2

2(X2 −
√

1 +X2
2 )m(0)

> 0 ,

and saddle elsewhere (Fig. 7.4). The linearization around this line shows that the metric

behaves like

A ∝ r−2−
√

1+X2
2

X2
−

√
1−7X2

2−4X2

√
1+X2

2
X2 , B ∝ r2+2

√
1+X2

2
X2 . (7.43)

As we said it is sufficient to study X2 > 0. This is an attractor for some models

depending on m(0). Therefore we have a continuum of behaviorus at infinity B ∝ rα

where α > 6 + 4
√

3 while A ∝ rβ with β < −2(2 +
√

3).

• L5,6,7,8: Critical lines

These lines are defined for − 2
11(
√

15 + 2) < m(0) < 2
11(
√

15 − 2) and 0 < X2 <√
4
33 + 14

33
√

15
for L5,6 and 0 < X2 <

√
15+8

√
3

33 for L7,8. As previously we consider

only X2 > 0.
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These lines are difficult to study, so they should be considered for specific models. We

will see that for most of the models, these lines do not exist.

Notice that contrary to cosmology it is not possible to study the models in the u −m plane

because of a large degeneracy of the solutions. In fact, we can have various spacetimes with

the same curvature scalar R and hence with the same (u,m). Also some of the critical points

like, for example, the Minkowski (P1) are not localized in the u−m plane.

7.2 Analysis

In this section, we will not consider the lines L5, L6, L7, L8 because they will not exist for

most of the models. Therefore we have 2 repellers: L1 and L2, notice that P4 is part of L1

while P8 is part of L2. Also we have various attractors: P7 (AdS point), P6 (horizon), P3

(Clifton-Barrow point). All the 3 attractors are localized at x4 6= 0. We also have attractors

on the surface x4 = 0 like P2, L3, L4; P9 is part of L3 and P5 is part of L4.

Hence we see that most of the critical points are localized on the hypersurface x4 = 0 except

the Clifton-Barrow point P3 which is model dependent and the points P6 which is a horizon

and P7, the AdS point.

We also notice that x4 = 0 can be an invariant submanifold, depending on the functional form

of m. For example if m = ua where u = x4/x5, the equation for x4 (Eq. 7.14) reduces to

x′4 = x1−a
4 (2x2x

a
4 + x6x

a
5) . (7.44)

Therefore in this case x4 = 0 is an invariant submanifold only if a < 1. This will be the case

for most of the interesting models.

If we assume that the invariant submanifold exists, then we have 2 possibilities. The first case

corresponds to initial conditions x4 = 0 (i.e., R = 0) and hence we stay on the hypersurface.

Going back to the equations of motion, it implies the condition

f ′(0)Rµν −
1

2
f(0)gµν = 0 , (7.45)

which is consistent with R = 0 iff f(0) = f ′(0) = 0. But as we said in the introduction, we

will not be considering this case and it is also a trivial case to study without the dynamical

approach. Therefore we will only study the flow of the dynamical system which are not on

the invariant submanifold but which obviously can converge to it asymptotically.
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As we have seen, if the model is not pathological which means f ′(0)/f ′′(0) 6= 0, then we

have for R = 0 necessarily R̂ = 0 which implies that on the invariant submanifold x4 = 0

we need to also impose x6 = 0 which reduces the lines found into points. The phase space

in this invariant submanifold is therefore trivial and defined by (x2, x3) but also because in

most of the models f(0)/f ′(0) = 0 we have an additional constraint x5 = 0 which reduces the

invariant submanifold to 1D and corresponds to Schwarzschild spacetime with only 3 critical

points: Minkowski, the singularity and the horizon.

Moreover, following the same argument, we can say that points P8, P9, P10 and P̄10 are not

physical for the f(R) models that we are interested in.

7.3 Specific Models

In this section, we will study some specific f(R) models.

7.3.1 f(R) = αRn+1

This model has been studied extensively in [Clifton and Barrow 2005]. For this model, m =

n and u = x4/x5 = −(n+ 1) and this is the only f(R) model where we can further reduce the

degrees of freedom of the system by one.

So apart from the two usual constraints, there is a third constraint of the form

x4 = −(n+ 1)x5 =
n+ 1

3n
(1− x2

2 − 2x2x6 − 2x2x3 − x3x6) . (7.46)

Therefore only the critical points which are localized on this surface should be considered. We

see that P2 should be excluded while P1 and P3 remain. Notice that for most of the interesting

models like f(R) = R2, P3 doesn’t exist. Hence for these models, only Minkowski exists at

finite distance in the phase space. At infinity the constraint becomes X2
4 = 1− (X2 +X3)2 −

(X2 + X6)2 − X3X6. P10 is then absent. There are two additional critical points that arise

due to the reduction of the system. They are

• P11: (X2, X3, X6) =
(

1+2n√
6+12n2

, 1+2n√
6+12n2

, 2(n−1)√
6+12n2

)
. The point exists for n 6= −1/2.

Eigenvalues of the linearized system are(
2− 4δ(1 + δ)

δ
√

6 + 12δ2
,
1− 2δ(1 + 4δ)

δ
√

6 + 12δ2
,
1− 2δ(1 + 4δ)

δ
√

6 + 12δ2

)
.
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It is an attractor when
(
−1

2 < n < 0
)

or
(
n >

√
3−1
2

)
, repeller when

(
n < −

√
3+1
2

)
or(

0 < n < 1
4

)
and saddle otherwise. The linearization around this point shows that the

metric behaves like

A ∝ r2 , B ∝ r
2(2n2+2n−1)
n(2n+1) . (7.47)

• P̄11: (X2, X3, X6) =
(
− 1+2n√

6+12n2
,− 1+2n√

6+12n2
,− 2(n−1)√

6+12n2

)
. The point exists for n 6= −1/2.

Eigenvalues of the linearized system are(
−2− 4δ(1 + δ)

δ
√

6 + 12δ2
,−1− 2δ(1 + 4δ)

δ
√

6 + 12δ2
,−1− 2δ(1 + 4δ)

δ
√

6 + 12δ2

)
,

and is an attractor when
(
n < −

√
3+1
2

)
or
(
0 < n < 1

4

)
, repeller when

(
−1

2 < n < 0
)

or(
n >

√
3−1
2

)
and sadlle otherwise.

7.4 Conclusions

In this chapter, we effectively reformulated the system of modified Einstein field equations for

f(R) theories in LRS-II spacetimes into an autonomous system of covariantly defined variables.

The phase space has been compactified to study the nontrivial behaviours at infinity. We

have concentrated on physically viable f(R) models where f,R > 0 and f,RR > 0 and notice

that the system of equations are of higher dimensions and more complex than the GR case,

developed in chapter 6. Using the tools of dynamical system analysis, we found the important

global features of these spacetimes. We have easily shown that for any theory of the form

f(R) = R + h(R), the unique asymptotically flat solution is Schwarzschild. Also, we could

recover the Clifton-Barrow solution. The work is still in progress. We are trying to find a way

to study the flow of the trajectories in the 4D space and get a complete physical picture.
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Chapter 8

Global structure of black holes

sourced by quintessence field

As we have seen, scalar degree of freedom encodes most of the interesting aspects of modified

gravity. From mass of the graviton to brane-bending mode of the brane models, it is the

simplest and the most interesting extension of the standard theory of gravity. Therefore the

study of these models is highly legitimate. Also, because these models originate often in high

energy theories such as supergravity or as moduli fields in string theory, it is natural to study

these models in the context of the most energetic objects in gravity, namely black holes.

In this chapter, the main goal is to show the feasibility of our approach in the study of these

models. Therefore we will consider the simplest theory, quintessence. It should be noticed that

once the framework has been established, the analysis will become trivial for any scalar-tensor

theory and therefore can be trivially generalized. Also this chapter will be a first step to future

work, on time dependent spherically symmetric problems, the so called G2 cosmology which

have two commuting Killing vector fields (i.e., models which admit a 2-parameter Abelian

isometry group acting transitively on spacelike 2-surfaces). Therefore G2 models are relevant

in the context of early cosmology because of the inhomogeneities included in the analysis.

In this work, we will search for viable potentials in the context of quintessence models which

give a proper black hole solution, with a horizon and nice asymptotic behaviour as Minkowski

or de Sitter.

The chapter is organized as follows. The autonomous system for the static case in quintessence

model is given Sec. 8.1. In Sec. 8.2, we study the system for massless scalar field and for

massive field in Sec. 8.3. Finally we conclude in Sec. 8.4. This chapter is also based on a

work in progress [Cruz et al. n.d.].
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8.1 Quintessence model

As we discussed in chapter 2, quintessence model is equivalent to f(R) theories in Einstein

frame with energy momentum tensor

T (ψ)
µν := ∇µψ∇νψ −

1

2
gµν

[
(∇ψ)2 + 2V (ψ)

]
, (8.1)

where V (ψ) is the scalar field potential.

Since we are interested in the static LRS class II spacetimes, all the time derivatives are zero,

thus ψ̇ = 0 and we already know θ = Σ = Q = 0.

The 1+1+2 decomposition of (8.1) leads to

ρ =
1

2
ψ̂2 + V (ψ) , (8.2a)

p = −1

6
ψ̂2 − V (ψ) , (8.2b)

Π =
2

3
ψ̂2 . (8.2c)

For the sake of simplicity we introduce the new variable Ψ = ψ̂, and using Eqs. (8.2), we can

rewrite the system of equations (5.42a)-(5.47) as

ψ̂ = Ψ , (8.3a)

φ̂ = −1

2
φ2 − 2

3

(
Ψ2 + V (ψ)

)
− E , (8.3b)

Ê =
1

3
Ψ2

(
A− 1

2
φ

)
− 3

2
φE , (8.3c)

Â = − (A+ φ)A− V (ψ) , (8.3d)

Ψ̂ = − (A+ φ) Ψ + V,ψ , (8.3e)

K̂ = −φK , (8.3f)

subject to the constraints

E = −Aφ− 2V (ψ)

3
+

Ψ2

3
, (8.4)

K = Aφ+ V (ψ)− Ψ2

2
+
φ2

4
. (8.5)

Taking the spatial derivative of Eqs. (8.4) and (8.5) and substituting (8.3a)-(8.5), we obtain

two identities. This means that the restrictions are preserved by the propagation equations.
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8.2 Massless scalar field

We start with the simple problem of massless scalar field. For this case V (ψ) = dV/dψ = 0,

and the restrictions (8.4) and (8.5) reduces to

E = −Aφ+
Ψ2

3
, (8.6a)

K = Aφ− Ψ2

2
+
φ2

4
(8.6b)

Eq. (8.6b) allows to define a set of normalized variables, defined as

x1 = − E
K
, x2 =

φ

2
√
K
, x3 =

A√
K
, y1 =

Ψ√
2K

. (8.7)

Using the definitions, the constraints can be written as

x2
2 + 2x2x3 − y2

1 = 1 , (8.8a)

x1 − 2x2x3 +
2

3
y2

1 = 0 , (8.8b)

and the set of autonomous system is as follows:

x′1 =
2

3
y2

1(x2 − x3)− x1x2 , (8.9a)

x′2 =
1

6

(
3x1 − 4y2

1

)
, (8.9b)

x′3 = −x3(x2 + x3) , (8.9c)

y′1 = y1(−x2 − x3) , (8.9d)

where, as in chapters 6 and 7, we define the new radial derivative f ′ = f̂/
√
K. Taking

derivatives of (8.8), and substituting (8.9) and (8.8), we find that the constraints are preserved.

Thus, we can eliminate two degrees of freedom from the system, say

y2
1 = x2

2 + 2x2x3 − 1 , (8.10a)

x1 = −2

3

(
x2

2 − x2x3 − 1
)
. (8.10b)

Using the new constraints (8.10) and substituting in (8.9), we get the reduced dynamical

system

x′2 = 1− x2(x2 + x3) , (8.11a)

x′3 = −x3(x2 + x3) . (8.11b)
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Point X2 X3 Stability Nature

PH 0 1 Repeller Horizon
P̄H 0 −1 Attractor Horizon
PS

2√
5

− 1√
5

Repeller Singularity

P̄S − 2√
5

1√
5

Attractor Singularity

Table 8.1: Critical points at infinity for the Poincaré (global) system (8.13).

defined in the phase space

{
(x2, x3) : x2

2 + 2x2x3 ≥ 1
}
. (8.12)

This condition arises from the fact that y2
1 needs to be non-negative. The system (8.11) admits

two fixed points at the finite region

PM: (x2 = 1, x3 = 0): Minkowski point. This critical point is similar to the one that exists

in our analysis for GR (chapter 6). The eigenvalues of the linearized system around this

point are (−2,−1), hence the point is an attractor.

P̄M: (x2 = −1, x3 = 0): Anti-Minkowski point. The eigenvalues of the linearized system

around this point are (2, 1), hence the point is a repeller.

As the system is defined on an unbounded phase space, there might exist nontrivial be-

haviour at the region where the variables diverge. For this reason, as described in the last two

chapters, it is worthy to introduce Poincaré transformation xi = Xi/Z, with the constraint

X2
2 +X2

3 + Z2 = 1. The infinity boundary x2
2 + x2

3 → +∞ corresponds to the unitary circle

X2
2 +X2

3 = 1 or Z → 0. The propagation equations in the transformed coordinates are:

X̄2 ≡ ZX ′2 = (1−X2 (2X2 +X3))
(
1−X2

2 −X2
3

)
, (8.13a)

X̄3 ≡ ZX ′3 = −X3 (2X2 +X3)
(
1−X2

2 −X2
3

)
, (8.13b)

defined on the phase space

{
(X2, X3) : 2X2

2 + 2X2X3 +X2
3 ≥ 1, X2

2 +X2
3 ≤ 1

}
. (8.14)

The entire infinite space (circumference of the circle in Fig. 8.1) turns out to be critical for

the Poincaré (global) system (8.13). In table 8.1, we present the interesting critical points at

infinity. The corresponding global phase space for the system (8.13) is given in Fig. 8.1. The

shadowed region enclosed by the lines connecting the critical points and the unitary circle,

i.e., 2X2
2 + 2X2X3 + X2

3 > 1, X2
2 + X2

3 < 1 is forbidden since it leads to the violation of the
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X2

X
3

PS

PS

PH

PH

PMPM

FORBIDDEN

   REGION

Figure 8.1: Global phase space for the system (8.13). The global sink (respectively source)
is PM (respectively P̄M ), which belongs to the finite region. PH and PS are repellers, whereas
P̄H and P̄S are attractors. The shadowed region is forbidden since it leads to the violation of

the reality condition y21 ≥ 0.

energy condition y2
1 ≥ 0. The trajectories from PH to PM or PS to PM and the complementary

trajectories on the other side of X2 = 0 bears a stark resemblance to the vacuum spacetime

in GR (chapter 6) since it corresponds to the trivial solution when the scalar field is constant.

Hence, it is the Schwarzschild solution. All other trajectories which start from infinity to

PM (for X2 > 0) or go towards infinity from P̄M (for X2 < 0) correspond to non-trivial

configuration of the scalar field. As none of these trajectories start from X2 = 0, so the non-

trivial scalar fields do not have a horizon but a naked singularity. For the sake of completeness,

we mention the critical lines

• L1:
(
−1 ≤ X2 ≤ − 2√

5
or 0 < X2 ≤ 1, X3 =

√
1−X2

2

)
: The eigenvalues of the linearized

system are
(

0, 2
(
X2 +

√
1−X2

2

))
, its an attractor in the region −1 ≤ X2 ≤ − 2√

5
, and

repeller in the region 0 < X2 ≤ 1. So, the stability of a critical point changes with X2

along the critical line. The linearization around the line shows that the metric behaves
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like

A ∝ r2

√
1−X2

2
X2 , B ∝ r

−2

(
1+

√
1−X2

2
X2

)
. (8.15)

The critical line is a continuum of singularity.

• L2:
(
−1 < X2 < 0 or 2√

5
≤ X2 < 1, X3 = −

√
1−X2

2

)
: The eigenvalues of the linearized

system are
(

0, 2
(
X2 −

√
1−X2

2

))
, its an attractor in the region −1 < X2 < 0, and

repeller in the region 2√
5
≤ X2 < 1. We see that the stability of a critical point changes

with X2 along the critical line. The linearization around the line shows that the metric

behaves like

A ∝ r−2

√
1−X2

2
X2 , B ∝ r

−2

(
1−
√

1−X2
2

X2

)
. (8.16)

The critical line is a continuum of singularity.

The stability can also be verified from the phase space diagram, Fig. 8.1. So, any trajectory

which starts from a singularity and not from the horizon describes a naked singularity. The

only solution describing a black hole is the Schwarzschild solution. This corresponds to the

Fisher solution.

As we have noticed, there is a forbidden region. The Fisher metric can be written as

ds2 = −FSdt2 +
dr2

FS
+ r2F 1−SdΩ2 (8.17)

ψ =

√
1− S2

2
logF, F = 1− rS

r
. (8.18)

In terms, of this solution, the forbidden region corresponds to S > 1. Therefore it corresponds

to the reality condition of the scalar field as we have said previously. This is consistent.

Also we see that x3 = 0 is an invariant submanifold. Therefore it is interesting to study this

case in particular. The equations reduce to

x′2 = 1− x2
2 . (8.19)

This equation is easily solved and it gives the metric

ds2 = −dt2 +
dr2

1 + α/r2
+ r2dΩ2 . (8.20)
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Since y2
1 = α/r2 > 0, we have α > 0 and therefore this solution describes a naked singularity.

This solution can be easily written in the form of the Fisher solution with S = 0.

8.3 Massive scalar field

For massive scalar field, potential V (ψ) is nonzero and hence Eq. (8.5) allows us to define the

following set of normalized variables

x1 = − E
K
, x2 =

φ

2
√
K
, x3 =

A√
K
,

y1 =
Ψ√
2K

, y2 =
V (ψ)

3K
. (8.21a)

The restrictions now become

x2
2 + 2x2x3 − y2

1 + 3y2 = 1 , (8.22a)

3x1 − 6x2x3 + 2y2
1 − 6y2 = 0 . (8.22b)

Now, let’s define the auxiliary variables

λ = −
V,ψ
V (ψ)

, Γ =
V,ψψV (ψ)

(V,ψ)2 , (8.23)

where V,ψ = dV/dψ and V,ψψ = d2V/dψ2 and the main hypothesis is that Γ can be written

explicitly as a function of λ, i.e., Γ ≡ Γ(λ). The propagation equations for the variables (8.21)

and λ are given by

x′1 =
2

3
y2

1(x2 − x3)− x1x2 , (8.24a)

x′2 =
1

6

(
3x1 − 4y2

1 − 6y2

)
, (8.24b)

x′3 = −x3(x2 + x3)− 3y2 , (8.24c)

y′1 = y1(−x2 − x3)− 3λy2√
2
, (8.24d)

y′2 = y2

(
2x2 −

√
2λy1

)
, (8.24e)

λ′ = −
√

2(Γ− 1)λ2y1 . (8.24f)
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The restrictions (8.22a) and (8.22b) are conserved, thus we can use them to eliminate two

variables, say x1 and y2,

x1 =
2

3

(
1− x2

2 + x2x3

)
, (8.25a)

y2 =
1

2

(
1− x2(x2 + 2x3) + y2

1

)
. (8.25b)

Then we get the reduced dynamical system

x′2 = x2x3 − y2
1 , (8.26a)

x′3 = x2
2 + x2x3 − x2

3 − y2
1 − 1 , (8.26b)

y′1 =
λ
(
x2

2 + 2x2x3 − y2
1 − 1

)
√

2
− y1(x2 + x3) , (8.26c)

λ′ = −
√

2(Γ− 1)λ2y1 . (8.26d)

For nonnegative potentials, ie. y2 ≥ 0, the above system define a flow on the unbounded phase

space

{
(x2, x3, y1, λ) : x2(x2 + 2x3)− y2

1 ≤ 1, λ ∈ R
}
. (8.27)

Now let’s examine some simpler examples before studying the general case.

8.3.1 Exponential potential: V = V0e
−λψ

For this case λ is a constant and the tracker parameter Γ = 1. Thus the last equation is

trivially satisfied and we can study the reduced 3D system for (x2, x3, y1).

The fixed points at the finite region of the phase space (8.27) are

PM: (x2 = 1, x3 = 0, y1 = 0): Minkowski point. The linearized system around this point has

eigenvalues (2,−1,−1), hence it is a saddle point. The eigenvectors are(
1√
2λ
,

√
2

λ
, 1

)
, (0, 0, 1), (−1, 1, 0) .

Now, we want to reduce the system into an attractor subspace where the eigenvalues are

(-1,-1) as we did for the Minkowski point in chapter 7. The subspace will be defined by

x2
2 + 2x2x3 − y2

1 − 1 = 0 . (8.28)
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The equation defines an invariant submanifold, so any trajectory on this surface remains

on the surface. From Eq. 8.25b, we note that for this configuration, y2 = 0. Thus it im-

plies that quintessence model with exponential potential does not have an asymptotically

flat spacetime.

P̄M: (x2 = −1, x3 = 0, y1 = 0): Anti-Minkowski point. The linearized system around this

point has eigenvalues (−2, 1, 1), hence it is a saddle point.

For analyzing the stability at the infinite region we introduce the Poincaré transformation

(xi = Xi/Z, y1 = Y1/Z), with the constraint X2
2 +X2

3 + Y 2
1 + Z2 = 1. The infinity boundary

x2
2 + x2

3 + y2
1 → +∞ corresponds to the unitary circle X2

2 +X2
3 + Y 2

1 = 1. The system (8.26)

for the exponential potential (λ = const., Γ = 1) becomes

X̄2 ≡ ZX ′2 = − λ√
2
X2Y1

(
2X2

2 + 2X2X3 +X2
3 − 1

)
+ Y 2

1 (X2(2X2 +X3)− 1)

−X2X3 (X2(3X2 +X3)− 2) , (8.29a)

X̄3 ≡ ZX ′3 = − λ√
2
X3Y1

(
2X2

2 + 2X2X3 +X2
3 − 1

)
− 3X2

2X
2
3 + 2X2

2 −X2X
3
3

+X3Y
2
1 (2X2 +X3) +X2X3 +X2

3 − 1 , (8.29b)

Ȳ1 ≡ ZY ′1 =
λ√
2

(
1− Y 2

1

) (
2X2

2 + 2X2X3 +X2
3 − 1

)
−X2Y1

(
3X2X3 +X2

3 + 1
)

+ Y 3
1 (2X2 +X3) . (8.29c)

defined on the phase space

{
(X2, X3, Y1) : 2X2

2 + 2X2X3 +X2
3 ≤ 1, X2

2 +X2
3 + Y 2

1 ≤ 1
}
. (8.30)

The critical points and lines at infinity are listed below

• P1:
(
λ ∈ R, X2 = X3 =

√
2

4+λ2
, Y1 = λ√

4+λ2

)
: The eigenvalues are(

λ2−6√
2(4+λ2)

, λ2−6√
2(4+λ2)

,
√

2(λ2−2)√
4+λ2

)
. Its attractor in the region −

√
2 ≤ λ ≤

√
2, repeller in

the region λ >
√

6 or λ < −
√

6 and saddle point otherwise. The linearization shows that

the metric behaves like

A ∝ r2 , B ∝ r−λ4−2λ2+8 . (8.31)

• P̄1:
(
λ ∈ R, X2 = X3 = −

√
2

4+λ2
, Y1 = − λ√

4+λ2

)
: The eigenvalues are(

− λ2−6√
2(4+λ2)

,− λ2−6√
2(4+λ2)

,−
√

2(λ2−2)√
4+λ2

)
. Its attractor in the region λ ≥

√
6 or λ ≤ −

√
6,

repeller in the region −
√

2 < λ <
√

2 and saddle point otherwise.
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Figure 8.2: Stability plot of critical line L1 (or L4 for X2 → −X2). Blue is the repelling
(attracting) region.

• L1:

(
λ ∈ R, 0 ≤ X2 ≤ 2√

5
, X3 = −X2 +

√
1−X2

2 , Y1 =

√
X2

(
−X2 + 2

√
1−X2

2

))
:

The line is a repeller when

λ

√
−X2

(
X2 − 2

√
1−X2

2

)
+

√
X2

(
(2− λ2)X2 + 2λ

(
λ
√

1−X2
2 −

√
2X2(−X2 + 2

√
1−X2

2 )

))
√

2
(
X2 + 2

√
1−X2

2

) < 1 ,

and saddle elsewhere (Fig. 8.2). The linearization shows that the metric behaves like

A ∝ r
2

(
−1+

√
1−X2

2
X2

)
, B ∝ r−2

√
1−X2

2
X2 . (8.32)

• L2:

(
λ ∈ R, 0 ≤ X2 ≤ 2√

5
, X3 = −X2 +

√
1−X2

2 , Y1 = −
√
X2

(
−X2 + 2

√
1−X2

2

))
:

The line is a repeller when

−λ
√
−X2

(
X2 − 2

√
1−X2

2

)
+

√
X2

(
(2− λ2)X2 + 2λ

(
λ
√

1−X2
2 +

√
2X2(−X2 + 2

√
1−X2

2 )

))
√

2
(
X2 + 2

√
1−X2

2

) < 1 ,
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Figure 8.3: Stability plot of critical line L2 (or L3 for X2 → −X2). Blue is the repelling
(attracting) region.

and saddle elsewhere (Fig. 8.3).

• L3:

(
λ ∈ R, − 2√

5
≤ X2 ≤ 0, X3 = −X2 −

√
1−X2

2 , Y1 =

√
−X2

(
X2 + 2

√
1−X2

2

))
:

The line is an attractor when

λ

√
−X2

(
X2 + 2

√
1−X2

2

)
−

√
X2

(
(2− λ2)X2 − 2λ

(
λ
√

1−X2
2 +

√
−2X2(X2 + 2

√
1−X2

2 )

))
√

2
(
X2 − 2

√
1−X2

2

) < 1 ,

and saddle elsewhere. We notice that this line is symmetric to L2 under the transfor-

mation X2 → −X2, therefore the stability plot for L3 (Fig. 8.3) will be similar to L2

with the nature of the stability reversed.

• L4:

(
λ ∈ R, − 2√

5
≤ X2 ≤ 0, X3 = −X2 −

√
1−X2

2 , Y1 = −
√
−X2

(
X2 + 2

√
1−X2

2

))
:

The line is an attractor when

−
λ

√
−X2

(
X2 + 2

√
1−X2

2

)
+

√
X2

(
(2− λ2)X2 − 2λ

(
λ
√

1−X2
2 −

√
−2X2(X2 + 2

√
1−X2

2 )

))
√

2
(
X2 − 2

√
1−X2

2

) < 1 ,
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and saddle elsewhere. We notice that this line is symmetric to L1 under the transfor-

mation X2 → −X2, therefore the stability plot for L4 (Fig. 8.2) will be similar to L1

with the nature of the stability reversed.

8.3.2 Powerlaw potential: V = V0ψ
N .

For this case, Γ = 1− 1
N . The critical points at the finite region of the phase space (8.27) for

the powerlaw potential are (for N 6= 0):

PM: (x2 = 1, x3 = 0, y1 = 0, λ ∈ R): Minkowski. The eigenvalues are (0,−1,−1, 2), hence it

is a saddle point.

P̄M: (x2 = −1, x3 = 0, y1 = 0, λ ∈ R). The eigenvalues are (0,−2, 1, 1), hence it is a saddle

point.

For analyzing the stability at the infinite region we introduce the Poincaré transformation

(xi = Xi/Z, y1 = Y1/Z, λ = Λ/Z). The infinity boundary x2
2+x2

3+y2
1+λ2 → +∞ corresponds

to the unitary circle X2
2 +X2

3 + Y 2
1 + Λ2 = 1. The equations reads:

X̄2 ≡ Z2X ′2 = Z
(
X2

(
X3

(
−Λ2 − 3X2

2 + Y 2
1 + 2

)
−X2X

2
3 + 2X2Y

2
1

)
− Y 2

1

)
−

ΛX2Y1
(
Λ2(N + 2) +N

(
2X2

2 + 2X2X3 +X2
3 − 1

))
√

2N
, (8.33a)

X̄3 ≡ Z2X ′3 = Z
(
Λ2 +X2

2

(
2− 3X2

3

)
+X2

(
−X3

3 + 2X3Y
2
1 +X3

)
+X2

3

(
−Λ2 + Y 2

1 + 1
)
− 1
)

−
ΛX3Y1

(
Λ2(N + 2) +N

(
2X2

2 + 2X2X3 +X2
3 − 1

))
√

2N
, (8.33b)

Ȳ1 ≡ Z2Y ′1 = Y1Z
(
−3X2

2X3 −X2

(
X2

3 − 2Y 2
1 + 1

)
+X3(Y1 − Λ)(Λ + Y1)

)
−

Λ
(
N
(
Y 2
1 − 1

) (
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+ 2Λ2Y 2

1

)
√

2N
, (8.33c)

Λ̄ ≡ Z2Λ′ = −
Λ2Y1

(
2
(
Λ2 − 1

)
+N

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

))
√

2N

− ΛZ
(
X3

(
Λ2 + 3X2

2 − Y 2
1 − 1

)
+X2X

2
3 − 2X2Y

2
1

)
, (8.33d)

defined on

{
(X2, X3, Y1,Λ) : Λ2 + 2X2

2 + 2X2X3 +X2
3 ≤ 1, X2

2 +X2
3 + Y 2

1 + Λ2 ≤ 1
}
. (8.34)
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The points at infinity satisfy Z → 0, thus the leading terms in the system (8.33) which

determine the critical points and the dynamics at infinity are

X̄2 → −
ΛX2Y1

(
Λ2(N + 2) +N

(
2X2

2 + 2X2X3 +X2
3 − 1

))
√

2N
, (8.35a)

X̄3 → −
ΛX3Y1

(
Λ2(N + 2) +N

(
2X2

2 + 2X2X3 +X2
3 − 1

))
√

2N
, (8.35b)

Ȳ1 → −
Λ
(
N
(
Y 2
1 − 1

) (
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+ 2Λ2Y 2

1

)
√

2N
, (8.35c)

Λ̄→ −
Λ2Y1

(
2
(
Λ2 − 1

)
+N

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

))
√

2N
. (8.35d)

The critical lines are listed below

• L1:
(
X2 = 0, X3, Y1 = 0, Λ =

√
1−X2

3

)
:

• L2:
(
X2 = 0, X3, Y1 = 0, Λ = −

√
1−X2

3

)
:

• L3:
(
X2 6= 0, X3 = −X2/2, Y1 = 0, Λ =

√
1− 5

4X
2
2

)
:

• L4:
(
X2 6= 0, X3 = −X2/2, Y1 = 0, Λ = −

√
1− 5

4X
2
2

)
:

• L5:
(
X2, X3, Y1 =

√
1−X2

2 −X2
3 , Λ = 0

)
:

• L6:
(
X2, X3, Y1 = −

√
1−X2

2 −X2
3 , Λ = 0

)
:

• L7:
(
N = −2, X2 = 0, X3 = 0, Y1, Λ =

√
1− Y 2

1

)
: The eigenvalues of the linearized

system are

(
0,

Y1
√

1−Y 2
1√

2
,
Y1
√

1−Y 2
1√

2
, Y1

√
2− 2Y 2

1

)
. The line is an attractor when −1 <

Y1 < 0, repeller when 0 < Y1 < 1 and saddle point when Y1 = 0, ±1.

• L8:
(
N = −2, X2 = 0, X3 = 0, Y1, Λ = −

√
1− Y 2

1

)
: The eigenvalues of the linearized

system are

(
0, −Y1

√
2− 2Y 2

1 , −
Y1
√

1−Y 2
1√

2
, −Y1

√
1−Y 2

1√
2

)
. The line is an attractor when

0 < Y1 < 1, repeller when −1 < Y1 < 0 and saddle point when Y1 = 0, ±1.

8.3.3 General Case

We consider, (Γ− 1)λ2 = f(λ), where f is an explicit (arbitrary) function of λ. [Urena-Lopez

2012; Escobar et al. 2012a; Escobar et al. 2012b; Fadragas et al. 2014; Escobar et al. 2014]
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Potential References f(λ) µ ≡ limZ→0 Z
2f(1/Z)

V (ψ) = V0e
−kψ + V1

1 −λ(λ− k) −1

V (ψ) = V0

[
eαψ + eβψ

]
2 −(λ+ α)(λ+ β) −1

V (ψ) = V0 [cosh (ξψ)− 1] 3 −1
2(λ2 − ξ2) −1

2

V (ψ) = V0 sinh−α(βψ) 4 λ2

α − αβ
2 1

α

1 [Yearsley and Barrow 1996; Pavluchenko 2003; Cardenas et al. 2003]
2 [Barreiro et al. 2000; Gonzalez, Cardenas, et al. 2007; Gonzalez, Leon, et al. 2006]
3 [Ratra and Peebles 1988; Wetterich 1988; Matos, Luevano, et al. 2009; Copeland,

Mizuno, et al. 2009; Leyva et al. 2009; Pavluchenko 2003; Campo et al. 2013;
Sahni and Wang 2000; Sahni and Starobinsky 2000; Lidsey et al. 2002; Matos and
Urena-Lopez 2000]

4 [Ratra and Peebles 1988; Wetterich 1988; Copeland, Mizuno, et al. 2009; Leyva et
al. 2009; Pavluchenko 2003; Sahni and Starobinsky 2000; Urena-Lopez and Matos
2000]

Table 8.2: The function f(λ) for the most common quintessence potentials [Escobar
et al. 2014].

The critical points at the finite region of the phase space (8.27) for the arbitrary potential

((Γ− 1)λ2 = f(λ)) are

PM: (x2 = 1, x3 = 0, y1 = 0, λ ∈ R): Minkowski. The eigenvalues are (2,−1,−1, 0), hence it

is a saddle point.

P̄M: (x2 = −1, x3 = 0, y1 = 0, λ ∈ R): Anti-Minkowski. The eigenvalues are (−2, 1, 1, 0),

hence it is a saddle point.

For analyzing the stability at the infinite region we introduce the Poincaré transformation

(xi = Xi/Z, y1 = Y1/Z, λ = Λ/Z). The infinity boundary x2
2+x2

3+y2
1+λ2 → +∞ corresponds

to the unitary circle X2
2 +X2

3 + Y 2
1 + Λ2 = 1. The equations reads:
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X̄2 ≡ Z2X ′2 = Z
(
X2

(
X3

(
−Λ2 − 3X2

2 + Y 2
1 + 2

)
−X2X

2
3 + 2X2Y

2
1

)
− Y 2

1

)
− 1√

2
ΛX2Y1

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+
√

2ΛX2Y1Z
2f

(
Λ

Z

)
, (8.36a)

X̄3 ≡ Z2X ′3 = Z
(
Λ2 +X2

2

(
2− 3X2

3

)
+X2

(
−X3

3 + 2X3Y
2
1 +X3

)
+X2

3

(
−Λ2 + Y 2

1 + 1
)
− 1
)

− 1√
2

ΛX3Y1
(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+
√

2ΛX3Y1Z
2f

(
Λ

Z

)
, (8.36b)

Ȳ1 ≡ Z2Y ′1 = Y1Z
(
−3X2

2X3 −X2

(
X2

3 − 2Y 2
1 + 1

)
+X3(Y1 − Λ)(Λ + Y1)

)
− 1√

2
Λ
(
Y 2
1 − 1

) (
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+
√

2ΛY 2
1 Z

2f

(
Λ

Z

)
, (8.36c)

Λ̄ ≡ Z2Λ′ = −ΛZ
(
X3

(
Λ2 + 3X2

2 − Y 2
1 − 1

)
+X2X

2
3 − 2X2Y

2
1

)
− 1√

2
Λ2Y1

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
−
√

2
(
Λ2 − 1

)
Y1Z

2f

(
Λ

Z

)
, (8.36d)

defined on

{
(X2, X3, Y1,Λ) : Λ2 + 2X2

2 + 2X2X3 +X2
3 ≤ 1, X2

2 +X2
3 + Y 2

1 + Λ2 ≤ 1
}
. (8.37)

Let’s assume that limZ→0 Z
2f
(

1
Z

)
= µ where µ is a (finite) constant. The critical points and

the dynamics at infinity is given by the leading terms:

X̄2 → −
1√
2

ΛX2Y1

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+
√

2µΛ3X2Y1 , (8.38a)

X̄3 → −
1√
2

ΛX3Y1

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
+
√

2µΛ3X3Y1 , (8.38b)

Ȳ1 → −
1√
2

Λ
(
Y 2

1 − 1
) (

Λ2 + 2X2
2 + 2X2X3 +X2

3 − 1
)

+
√

2µΛ3Y 2
1 , (8.38c)

Λ̄→ − 1√
2

Λ2Y1

(
Λ2 + 2X2

2 + 2X2X3 +X2
3 − 1

)
−
√

2µ
(
Λ2 − 1

)
Λ2Y1 . (8.38d)

Observe that the powerlaw-potential discussed in Sec. 8.3.2 corresponds to µ = − 1
N . Other

examples are given in table 8.2.

The critical points and lines are listed below

• P1: (µ = −1/2, X2 = 0, X3 = 0, Y1 = 1, Λ = 0): The point is a repeller.

• P2: (µ = −1/2, X2 = 0, X3 = 0, Y1 = −1, Λ = 0): The point is an attractor.

• L1:
(
X2 = 0, X3, Y1 = 0, Λ =

√
1−X2

3

)
:

• L2:
(
X2 = 0, X3, Y1 = 0, Λ = −

√
1−X2

3

)
:
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• L3:
(
X2 6= 0, X3 = −X2/2, Y1 = 0, Λ =

√
1− 5

4X
2
2

)
:

• L4:
(
X2 6= 0, X3 = −X2/2, Y1 = 0, Λ = −

√
1− 5

4X
2
2

)
:

• L5:
(
X2, X3, Y1 =

√
1−X2

2 −X2
3 , Λ = 0

)
:

• L6:
(
X2, X3, Y1 = −

√
1−X2

2 −X2
3 , Λ = 0

)
:

8.4 Conclusions

In this chapter, we effectively reformulated the system of modified Einstein field equations for

quintessence model in LRS-II spacetimes into an autonomous system of covariantly defined

variables. The phase space has been compactified to study the nontrivial behaviours at infinity.

Using the tools of dynamical system analysis, we have completely studied the massless scalar

field case to get the important global features. We are working on the case of massive scalar

field.
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Chapter 9

Conclusions

Modified gravity necessarily involves additional fields, extra dimensions, or broken symmetries,

since we know that GR is the unique interacting theory of a single rank-2 tensor that can be

constructed from the metric variation of an action in four dimensions. In this thesis we have

discussed how modifications in the theory of gravity brings about changes in the strong field

regime, such as neutron stars and black holes. Gravity prevails over all other interactions

in these celestial bodies and they are ideal natural laboratories to constrain strong gravity.

In this final chapter, we will briefly look at the prospect of future input in this field from

observational point of view which will help in constraining the extra degrees of freedom into

smaller and smaller parameter space.

Rotating neutron stars or pulsars have proved to be remarkably successful laboratories for

testing the predictions of GR [Wex 2014]. By accurately modelling the arrival time of pulses

and comparing the model to high precision timing measurements, information can be gleaned

about the neutron star, the nature of its companion (if it is in a binary), the interstellar

medium and the gravitational potential of the solar system.

Binary pulsar systems have been used to test the predictions of GR to ∼ 0.05% [Kramer 2013].

The analysis proceeds by systematically fitting evolving Keplerian ellipses to the timing data

and recording the orbital parameters and their derivatives as the so-called post-Keplerian

(PK) timing parameters [Damour and Taylor 1992]. The measured PK parameters are then

compared to the values predicted by GR and other theories of gravity. It should be noted

that orbital measurement via pulsar timing have the advantage of providing ‘clean’ direct

probes of the spacetime geometry, insensitive to electromagnetic effects of accretion and the

magnetosphere. The 1974 discovery of the first binary pulsar PSR B1913+16 by Hulse and

Taylor [Hulse and Taylor 1975] provided the first indirect evidence of gravitational waves. The
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change in the orbital period was shown to be consistent with that predicted by the effects of

gravitational radiation reaction.

The most relativistic binary system known to date is the double pulsar system PSR J0737–

3039A/B [Burgay et al. 2003; Lyne et al. 2004]. 5 PK parameters have been measured for this

binary system, some of them with exquisite precision. In comparison, only 3 PK parameters

have been fixed by B1913+16 and J1141–6545 and 4 by B1534+12. For this system the change

in the orbital period Ṗb due to gravity wave (GW) damping has been tested to agree with the

quadrupole formula of GR to better than 0.1% [Kramer 2013].

In the framework of an alternative gravitation theory that violates the strong equivalence

principle (SEP), a binary system may emit dipole gravitational radiation. Such effects arise

when the two bodies are very different in terms of their self-gravity, i.e. their compactness. The

high asymmetry in the compactness/binding energy of the bodies in the pulsar-WD systems

make it particularly sensitive to gravitational dipolar radiation and tests for SEP violation.

PSR J1738+0333 and J1713+0747 provides the best constraint for dipolar radiation and hence

can test scalar-tensor gravity while violation of SEP is best tested by J0348+0432.

In future, precision measurements made with pulsar timing using radio telescopes such as

Meer Karoo Array Telescope (MeerKAT)/Square Kilometre Array (SKA) and Five hundred

meter Aperture Spherical Telescope (FAST), will permit us to test the strong field predictions

of GR with unprecedented accuracy within the next 20 years. On the one hand, the greatly

improved timing precision will allow for better and new tests with existing systems. On the

other hand, new instruments and survey techniques promise the discovery of new “gravity

labs,” like a pulsar-BH system. This will allow us to experimentally explore the possibility of

modifications to GR and the validity of alternate theories of gravity.

Another interesting area is the GW observation by the interferometric detectors, such as the

current ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO), VIRGO,

GEO and TAMA, operating from the tens of Hz through the several kHz range, and the

future space-based LISA, which measure the influx of gravitational radiation from the whole

sky. Gravitational waves hold the key to testing GR to new exciting levels in the previously

unexplored strong field regime. Depending on the type of wave that is detected, e.g., compact

binary inspirals, mergers, ringdowns, continuous sources, supernovae, etc, different tests will

be possible and we can determine whether a certain modified theory is consistent with the

data or not. GR makes very specific and testable predictions on the GW phasing of compact

binaries as they inspiral, and on the oscillation frequencies of the compact objects that they

produce as a result of the merger. If observed, any deviations from these predictions may

identify problems in Einstein’s theory, and may even point us to specific ways in which it

could be modified.
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Einstein developed the general theory of relativity a century ago, and, although it remains

a cornerstone of modern physics, we could argue that among all the fundamental forces of

nature it is gravity that remains the least well understood. This is almost certainly due to

the weakness of the gravitational interaction, which makes it incredibly difficult to test in the

laboratory experimentally. Inevitably, experiments on the scale of planets, stars, galaxies, and

beyond cannot be performed with the same level of precision and control as those conducted

for the other forces on Earth. With the advancement of technology and with bigger and better

telescopes coming up, we are starting to catch and we believe that the twenty first century

will belong to gravity.





Appendix A. Modified Einstein equations 137

Appendix A

Modified Einstein equations in f (R)

theories

Before going into the derivation, we list the following results [S. M. Carroll 2004; Poisson 2004]

δ
√
−g = −1

2

√
−g gµνδgµν (A.1)

δgµν = −gµαgνβ δgαβ (A.2)

δR = δgµνRµν + gµνδRµν (A.3)

δRµν = ∇λ
(
δΓλνµ

)
−∇ν

(
δΓλλµ

)
(A.4)

A.1 Jordan frame

Variation of the action (2.2) with respect to the metric leads to

δSf(R) =
1

2

∫
d4x

[
δ
√
−gf(R) +

√
−gδf(R)

]
+ δSM

=
1

2

∫
d4x

[(
−1

2

√
−g gµνδgµν

)
f(R) +

√
−gf,RδR

]
+ δSM (using A.1)

=
1

2

∫
d4x
√
−g
[
−f(R)

2
gµνδg

µν + f,R (δgµνRµν + gµνδRµν)

]
+ δSM (using A.3)

=
1

2

∫
d4x
√
−g
[(
−f(R)

2
gµν + f,RRµν

)
δgµν

+f,R g
µν
(
∇λ
(
δΓλνµ

)
−∇ν

(
δΓλλµ

))]
+ δSM (using A.4)

=
1

2

∫
d4x
√
−g
[(
−f(R)

2
gµν + f,RRµν

)
δgµν

+f,R

(
∇λ
(
gµν δΓλνµ

)
−∇ν

(
gµν δΓλλµ

))]
+ δSM , (A.5)
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where we have used metric compatibility ∇λ gµν = 0. Now

V α = gβγ δΓαβγ , (A.6)

is a tensor since δΓαβγ is a tensor. Hence

δSf(R) =
1

2

∫
d4x
√
−g
[(
−f(R)

2
gµν + f,RRµν

)
δgµν + f,R

((
gµν δΓλνµ

)
,λ

+ ΓλλσV
σ

−
(
gµν δΓλλµ

)
,ν
− ΓννσV

σ

)]
+ δSM

=
1

2

∫
d4x
√
−g
[(
−f(R)

2
gµν + f,RRµν

)
δgµν + f,R

((
gµν δΓλνµ

)
,λ

−
(
gµν δΓλλµ

)
,ν

)]
+ δSM . (A.7)

So, the variation of the action can be represented as

δSf(R) =
1

2
[δS1 + δS2] + δSM , (A.8)

where

δS1 =

∫
d4x
√
−g
[(
−f(R)

2
gµν + f,RRµν

)
δgµν

]
δS2 =

∫
d4x
√
−g
[
f,R

((
gµν δΓλνµ

)
,λ
−
(
gµν δΓλλµ

)
,ν

)]
. (A.9)

Now, we will calculate δS2 separately and plug it back into Eq. (A.7). The other factors are

in the desired form.

δS2 = −
∫
d4x
√
−g
[
∇λ(f,R)

(
gµν δΓλνµ

)
−∇ν(f,R)

(
gµν δΓλλµ

)]
(Integrating by parts and ∂µ ≡ ∇µ for scalars)

= −
∫
d4x
√
−g δΓλνµ [∇λ(f,R) gµν −∇γ(f,R g

µγ δνλ] . (A.10)
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The variation of the Christoffel symbol can be obtained, with the help of the relation (A.2),

as follows

δΓλνµ = δ
(
gλσ Γσνµ

)
= δgλσ Γσνµ +

1

2
gλσ (δgσν,µ + δgσµ,ν − δgνµ,σ)

= −gλαgσβ δgαβ Γγνµ gσγ +
1

2
gλσ (δgσν,µ + δgσµ,ν − δgνµ,σ)

= −gλα δgαβ Γγνµ δ
β
γ +

1

2
gλσ (δgσν,µ + δgσµ,ν − δgνµ,σ)

= −gλα δgαβ Γβνµ +
1

2
gλσ (δgσν,µ + δgσµ,ν − δgνµ,σ)

=
1

2
gλσ

(
δgσν,µ − Γβµν δgσβ − Γβµσ δgβν + δgσµ,ν − Γβνµ δgσβ − Γβνσ δgβµ

−δgνµ,σ + Γβσν δgβµ + Γβσµ δgνβ

)
(relabelling dummy indices should be noted)

=
1

2
gλσ (∇µ δgσν +∇ν δgσµ −∇σ δgνµ) . (A.11)

Substituting the relation (A.11) in Eq. (A.10), we get

δS2 = −1

2

∫
d4x
√
−g gλσ (∇µ δgσν +∇ν δgσµ −∇σ δgνµ) [∇λ(f,R) gµν −∇γ(f,R) gµγ δνλ] .

(A.12)

The six terms in the above equation can be evaluated in a similar fashion. Here, we will

explicitly show two of them:

I1 = −1

2

∫
d4x
√
−g gλσ∇µ δgσν∇λ(f,R) gµν

=
1

2

∫
d4x
√
−g gλσgµν δgσν∇µ∇λ (f,R) (Integrating by parts)

= −1

2

∫
d4x
√
−g δgλµ∇µ∇λ (f,R) (A.13)

and

I2 =
1

2

∫
d4x
√
−g gλσ∇σ δgνµ∇λ(f,R) gµν

= −1

2

∫
d4x
√
−g gλσgµν δgνµ∇σ∇λ (f,R) (Integrating by parts)

=
1

2

∫
d4x
√
−g gµν δgµν� (f,R) , (A.14)
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where, apart from symmetry of the metric, we have used the relations (A.2) and gµν δgµν =

−gµν δgµν . So Eq. (A.12) becomes

δS2 = −1

2

∫
d4x
√
−g
[
δgλµ∇µ∇λ (f,R) + δgλν∇ν∇λ (f,R)− gµν δgµν� (f,R)

−gνσ δgνσ� (f,R)− δgνγ∇ν∇γ (f,R) + δgσγ∇σ∇γ (f,R)]

= −
∫
d4x
√
−g δgµν [∇µ∇ν(f,R)− gµν�(f,R)] . (A.15)

Substituting Eq. (A.15) in Eq. (A.8), we get

δSf(R) =
1

2

∫
d4x
√
−g
[
−f(R)

2
gµν + f,RRµν − (∇µ∇ν − gµν�) (f,R) +

2√
−g

δSM
δgµν

]
δgµν .

(A.16)

Setting δSf(R) = 0 or setting the co-efficients of δgµν equal to 0, we get the modified Einstein

equation (2.3)

f,RRµν −
f(R)

2
gµν − (∇µ∇ν − gµν�) (f,R) = T (M)

µν (A.17)

where T
(M)
µν = − 2√

−g
δSM
δgµν is the matter energy-momentum tensor. A different way of deriving

the equations can be found in [Guarnizo et al. 2010].
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A.2 Einstein frame

To get the Einstein equation, we vary the action (2.13) with respect to the metric

δSE =

∫
d4x

[
δ
√
−g̃
(

1

2
R̃− 1

2
(∇̃φ)2 − V (φ)

)
+

1

2

√
−g̃
(
δg̃µνR̃µν + g̃µνδR̃µν − δg̃µνφ,µφ,ν

)]
+ δSM (using A.3)

=

∫
d4x

[(
−1

2

√
−g̃ g̃µνδg̃µν

)(
1

2
R̃− 1

2
(∇̃φ)2 − V (φ)

)
+

1

2

√
−g̃
(
δg̃µνR̃µν + g̃µν

(
∇̃λ
(
δΓ̃λνµ

)
− ∇̃ν

(
δΓ̃λλµ

))
− δg̃µνφ,µφ,ν

)]
+ δSM

(using A.1,A.4)

=
1

2

∫
d4x

√
−g̃
[
−g̃µνδg̃µν

(
1

2
R̃− 1

2
(∇̃φ)2 − V (φ)

)
+
(
δg̃µνR̃µν + ∇̃σ

(
g̃µσ

(
δΓ̃λλµ

)
− g̃µν

(
δΓ̃σµν

))
− δg̃µνφ,µφ,ν

)]
+ δSM

(using metric compatibility)

=
1

2

∫
d4x

√
−g̃
[
−g̃µν

(
1

2
R̃− 1

2
(∇̃φ)2 − V (φ)

)
+
(
R̃µν − φ,µφ,ν

)
+

2√
−g̃

δSM
δg̃µν

]
δg̃µν ,

(A.18)

where the integral with respect to the natural volume element of the covariant divergence of a

vector is equal to a boundary contribution at infinity (by Stokes theorem) which we have set

to zero by making the variation vanish at infinity. This term contributes nothing to the total

variation. Setting the co-efficients of δg̃µν to zero, we get

R̃µν −
1

2
g̃µνR̃ = − 2√

−g̃
δSM
δg̃µν

+ φ,µφ,ν − g̃µν
(

1

2
(∇̃φ)2 + V (φ)

)
G̃µν = T̃ (M)

µν + T̃ (φ)
µν . (A.19)

Variation of the action (2.13) with respect to the scalar field φ leads to

δSE =

∫
d4x
√
−g̃
(
−1

2
δ(∇̃φ)2 − V,φδφ

)
+
δSM
δφ

δφ

=

∫
d4x
√
−g̃
(
−(∇̃µφ∇̃µδφ)− V,φδφ

)
+
δSM
δgµν

∂gµν

∂φ
δφ

=

∫
d4x
√
−g̃

(
(∇̃µ∇̃µφ)δφ− V,φδφ+

√
2

3

1√
−g̃

δSM
δg̃µν

g̃µνδφ

)
(integrating by parts the first term and using gµν = e

√
2
3
φ
g̃µν)

=

∫
d4x
√
−g̃

(
�̃φ− V,φ −

√
2

3

T̃
(M)
µν

2
g̃µν

)
δφ . (A.20)
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To get the Klein-Gordon equation, we equate the coefficients of δφ to zero

�̃φ = V,φ +
1√
6
T̃ (M) . (A.21)
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Appendix B

Conformal transformation

Using the conformal transformation (2.8) and the relation for inverse of a metric, gµν = 1/gµν ,

we get

g̃µν = Ω−2 gµν . (B.1)

The determinant of the metric and the d’Alembertian operator transform as

• g̃ = det [g̃µν ] = Ω8 det [gµν ] = Ω8 g

or,
√
−g̃ = Ω4 √−g (B.2)

• �̃φ =
1√
−g̃

(√
−g̃g̃µνφ,ν

)
,µ

= Ω−2 1√
−g
(√
−ggµνφ,ν

)
,µ

+ 2Ω−3Ω,µg
µνφ,ν

= Ω−2

(
�φ+ 2gµν

Ω,µ

Ω
φ,ν

)
. (B.3)

Christoffel connection coefficients transform as

Γ̃λµν =
1

2
g̃λα (g̃αν,µ + g̃µα,ν − g̃µν,α)

=
1

2
Ω−2 gλα

(
(Ω2gαν),µ + (Ω2gµα),ν − (Ω2gµν),α

)
=

1

2
gλα (gαν,µ + gµα,ν − gµν,α) + Ω−1

(
δλνΩ,µ + δλµΩ,ν − gµνΩ,λ

)
= Γλµν + Ω−1

(
δλνΩ,µ + δλµΩ,ν − gµνΩ,λ

)
. (B.4)
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Hence Γ̃λµλ = Γλµλ + 4Ω,µ/Ω. The Ricci tensor in the Einstein frame is defined similar to its

Jordan frame counterpart

R̃µν = R̃λµλν = Γ̃λµν,λ − Γ̃λµλ,ν + Γ̃λµνΓ̃ρρλ − Γ̃λνρΓ̃
ρ
µλ . (B.5)

Now

• Γ̃λµν,λ = Γλµν,λ + Ω−1
(
δλνΩ,µλ + δλµΩ,νλ − gµνΩ,λ

,λ − gµν,λΩ,λ
)

− Ω−2Ω,λ

(
δλνΩ,µ + δλµΩ,ν − gµνΩ,λ

)
= Γλµν,λ + Ω−1

(
2Ω,µν − gµνΩ,λ

,λ − gµν,λΩ,λ
)
− Ω−2

(
2Ω,µΩ,ν − gµνΩ,λΩ,λ

)
(B.6)

• Γ̃λµλ,ν = Γλµλ,ν + 4

(
Ω,µ

Ω

)
,ν

= Γλµλ,ν + 4Ω−1
(
Ω,µν − Ω−1Ω,µΩ.ν

)
(B.7)

• Γ̃λµνΓ̃ρρλ = ΓλµνΓρρλ + 4Ω−1ΓλµνΩ,λ + Ω−1Γρρλ

(
δλµΩ,ν + δλνΩ,µ − gµνΩ,λ

)
+ 4 Ω−2Ω,λ

(
δλµΩ,ν + δλνΩ,µ − gµνΩ,λ

)
= ΓλµνΓρρλ + Ω−1

(
4ΓλµνΩ,λ + ΓλµλΩ,ν + ΓλνλΩ,µ − gµνΓλλρΩ

,ρ
)

+ 4Ω−2
(

2Ω,µΩ,ν − gµνΩ,λΩ,λ
)

(B.8)

• Γ̃λνρΓ̃
ρ
µλ = ΓλνρΓ

ρ
µλ + Ω−1

(
2ΓλµνΩ,λ + ΓλνλΩ,µ + ΓλµλΩ,ν − gµλΓλνρΩ

,ρ − gνλΓλµρΩ
,ρ
)

+ Ω−2
(

6Ω,µΩ,ν − 2gµνΩ,λΩ,λ
)
. (B.9)

Combining equations (B.6-B.9), we get

R̃µν =
(

Γλµν,λ − Γλµλ,ν + ΓλµνΓρρλ − ΓλνρΓ
ρ
µλ

)
− Ω−1

(
gµνΩ,λ

,λ + gµνΓλλρΩ
,ρ + 2Ω,µν − 2ΓλµνΩ,λ

)
+ Ω−2

(
4Ω,µΩ,ν − gµνΩ,λΩ,λ

)
= Rµν − Ω−1 (gµν�Ω + 2∇µ∇νΩ) + Ω−2

(
4Ω,µΩ,ν − gµνΩ,λΩ,λ

)
, (B.10)
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where we have used the relation gµλΓλνρΩ
,ρ + gνλΓλµρΩ

,ρ = gµν,λΩ,λ. Hence, the Ricci scalar

transforms as

R̃ = g̃µνR̃µν = Ω−2R− Ω−3 (4�Ω + 2�Ω) + Ω−4
(

4Ω,µΩ,µ − 4Ω,λΩ,λ
)

= Ω−2

(
R− 6

�Ω

Ω

)
. (B.11)

In a similar fashion, we can derive the inverse transformations. The relations are listed below

Γλµν = Γ̃λµν − Ω−1
(
δ̃λνΩ,µ + δ̃λµΩ,ν − g̃µνΩ,λ

)
(B.12)

Γλµλ = Γ̃λµλ − 4Ω,µ/Ω (B.13)

Rµν = R̃µν + Ω−1
(
g̃µν�̃Ω + 2∇̃µ∇̃νΩ

)
− 3Ω−2g̃µνΩ,λΩ,λ (B.14)

R = Ω2

(
R̃+ 6

�̃Ω

Ω
− 12g̃µν

Ω,µΩ,ν

Ω2

)
. (B.15)

For a review on conformal tranformation, see [Dabrowski et al. 2009].
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Appendix C

Dynamical systems

A first order nonlinear differential equation can be written as

d

dt
X = F (X, t) . (C.1)

When the function F does not depend on the independent variable, ie., when the time de-

pendence is not explicitly present, then it is called an autonomous equation. Eq. (C.1) then

reduces to

d

dt
X = F (X) . (C.2)

In this thesis, we are interested only in autonomous systems of the form

d

dt
X1 = F1(X1, . . . , Xn)

... (C.3)

d

dt
Xn = Fn(X1, . . . , Xn) .

The main idea is not to study a particular trajectory in the phase space {X1, . . . , Xn}, but to

look for the global picture. We will see that the initial conditions are somewhat less significant

than the typical cases of differential equations. The system converges or diverges depending

on the topology of the phase space. So this excludes conservative systems which follow the

constraint equation

∇iFi =
n∑
i=1

∂XiFi(X1, . . . , Xn) = 0 . (C.4)

Hence, we shall work with non-conservative autonomous systems.
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As a first step, we look for the stationary points dXi/dt = 0 by solving the following system

F1

(
X

(0)
1 , . . . , X(0)

n

)
= 0

... (C.5)

Fn

(
X

(0)
1 , . . . , X(0)

n

)
= 0 .

Studying the trajectories in the neighbourhood of these points will allow us to get the evolution

of the system. It is sufficient to linearize the equations around the points of equilibrium of the

vector field. Thus, we can make a Taylor expansion

Fi(X1, . . . , Xn) = Fi

(
X

(0)
1 , . . . , X(0)

n

)
+

n∑
j=1

∂Fi
Xj

(
X

(0)
1 , . . . , X(0)

n

)
·
(
Xj −X(0)

j

)
=

n∑
j=1

∂Fi
Xj

(
X

(0)
1 , . . . , X(0)

n

)
·X(1)

j

=
n∑
j=1

Mij ·X(1)
j , (C.6)

and then the system (C.3) can be rewritten as

d

dt
X = M ·X (C.7)

with

X =


X

(1)
1

X
(1)
2

...
X

(1)
n

 and M =

 ∂1F1

(
X

(0)
1 ,...,X

(0)
n

)
... ∂nF1

(
X

(0)
1 ,...,X

(0)
n

)
...

. . .
...

∂1Fn
(
X

(0)
1 ,...,X

(0)
n

)
... ∂nFn

(
X

(0)
1 ,...,X

(0)
n

)
 . (C.8)

In order to simplify the calculations, we will discuss the case where n = 2. The results can

easily be generalized.

For n = 2, Eqs. (C.7) can be written as

d

dt
X

(1)
1 = M11X

(1)
1 +M12X

(1)
2

d

dt
X

(1)
2 = M21X

(1)
1 +M22X

(1)
2 . (C.9)

Looking for solutions of the form X = X̃eωt, we get

ωX̃1 = M11X̃1 +M12X̃2

ωX̃2 = M21X̃1 +M22X̃2 , (C.10)
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which leads to

(M11 − ω)X̃1 +M12X̃2 = 0

M21X̃1 + (M22 − ω)X̃2 = 0 . (C.11)

We have nontrivial solutions if and only if ω is an eigenvalue of the linear operator M . Thus

these eigenvalues will be either real and distinct or real and repeated or complex conjugate.

C.1 Real and distinct roots

We concentrate on the phase space {X̂1, X̂2}, where the eigenvalues are ω1, ω2

d

dt
X̂1 = ω1X̂1

d

dt
X̂2 = ω2X̂2 , (C.12)

whose solutions are X̂i(t) = X̂i(0)eωit.

Thus we can find the expression of the trajectories eliminating the time in the phase space,

and is given by
(
X̂1/X̂1(0)

)1/ω1

=
(
X̂2/X̂2(0)

)1/ω2

, which gives

X̂2 ∝ X̂ω2/ω1

1 . (C.13)

• When ω1 and ω2 have the same sign, the fixed point is a node. If they are both negative,

it is a stable node otherwise its unstable. The trajectory is a parabola opening in the

direction of the eigenvalue with the maximum absolute value.

• When ω1 and ω2 have opposite signs, the fixed point is a saddle. The trajectory is a

hyperbola approaching the fixed point in the direction of the eigenvector associated with

negative eigenvalue and diverging along the other direction.

C.2 Real and repeated roots

This is the case where we have a single repeated root ω.

If we have the trivial case M11 = M22 and M12 = M21 = 0, then the linear operator M is

proportional to identity. All directions on the plane are eigen directions. The fixed point is

then stable or unstable depending on the sign of ω. This fixed point is called a star.
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In the nontrivial case, we have an eigenvector X̄1 =
(
M12,

1
2(M22 −M11)

)
associated to the

eigenvalue ω. We can then complete the basis by another non-collinear vector X̄2. As we are

no longer under the conditions M11 = M22 and M12 = M21 = 0, we can choose X̄2 = (0, 1).

It suffices to consider the action of M on the basis as:

M · X̄2 = X̄1 + ωX̄2 . (C.14)

Thus the system is in the Jordan normal form.

d

dt
X̄1 = ωX̄1 + X̄2 ,

d

dt
X̄2 = ωX̄2 , (C.15)

whose solutions are

X̃1(t) = X̃1(0)eωt + X̃2(0)teωt ,

X̃2(t) = X̃2(0)eωt , (C.16)

or in parametric form, it can be written as

X̃1 ∝ X̃2

(
ln(X̃2) + C

)
, (C.17)

where C is an arbitrary constant. This fixed point is said to be improper node.

C.3 Complex roots

Let the complex conjugate eigenvalues be ω1 = a + ib and ω2 = a − ib. In this case, the

operator can be diagonalized in the complex space as

d

dt
X̃1 = (a+ ib)X̃1 ,

d

dt
X̃2 = (a− ib)X̃2 , (C.18)

which can be rewritten in the real space in the following way

d

dt
X̃1 = aX̃1 + bX̃2 ,

d

dt
X̃2 = −bX̃1 + aX̃2 . (C.19)
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The solution is of the form

X̃1(t) = eat
(
X̃1(0) cos(bt) + X̃2(0) sin(bt)

)
,

X̃2(t) = eat
(
−X̃1(0) sin(bt) + X̃2(0) cos(bt)

)
. (C.20)

We have a stable or unstable spiral critical point depending on whether the sign of a (real

part of the eigenvalue) is negative or positive respectively. In the particular case when a = 0,

ie. the eigenvalue is completely imaginary, the critical point is a center.
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