Repository logo
 

Comparison of an anaerobic baffled reactor and a completely mixed reactor : start-up and organic loading tests.

Loading...
Thumbnail Image

Date

2000

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The aim of the investigation was to compare the performance of an anaerobic baffled reactor (ABR) with a completely mixed anaerobic reactor (CMAR). The ABR was operated with a hydraulic retention time (HRT) of 20 h while the CMAR was operated at 20 d. A control experiment was conducted with a CMAR operated at a constant hydraulic retention time and substrate feed concentration. During the first phase, the start-up performance of the ABR and CMAR were compared. In the second phase of the study the steady state COD removals were compared. The laboratory completely mixed anaerobic reactor was a 20L glass vessel with a stirrer coming in through the neck. A second type of reactor, anaerobic baffled reactor (ABR) was also operated. The ABR was a rectangular perspex box with internal vertical baffles alternately hanging and standing. The baffles divide the reactor into eight compartments with a total working volume of 7.5 L. Each baffle is angled at about 45Q to distribute the flow towards the centre of the upcomer. The reactors were seeded with raw sewage and allowed to stand for 3 days after which a continous feed of sucrose and basal salts was commenced. The initial HRT for the ABR and the CMAR were 60 h and 30 days respectively. When the reactors reached steady state (pH, gas production, gas composition and alkalinity), the HRT was reduced in a stepwise fashion (ABR 60 h to 35 h to 20 h and CMAR 35 d to 30 d to 20 d). At the final HRT the COD removals were similar (67 %). The ABR took 120 d to attain final steady state while the CMAR took 200 d. The organic loading tests were undertaken with a stepwise increase (doubling) in the influent substrate concentration. The feeding commenced at an organic loading rate (OLR) of 4.8 kg/m(3).d for the ABR. The flow rate (HRT) into both reactors and other parameters were kept constant (HRT of 20 h and 20 d for ABR and CMAR respectively). The substrate concentration was increased from 4 gCOD/L (4.8 kg/m(3).d) to 64 gCOD/L (76.8 kg/m(3).d) for the ABR. For the CMAR it was increased from 4 gCOD/L (0.25 kg/m(3).d) to 32 gCOD/L (2 kg/m(3).d). The method used was to increase the organic loading rate until the reactors failed. Since the two reactors had different operating HRTs, the tests began when both had the same COD removal rate of about 60 % COD reduction. The same parameters as in the start-up period were monitored for both reactors. The CMAR had a COD removal efficiency ca. 70 %, which did not fluctuate when OLR was increased. The ABR reached a maximum COD removal of 80 %. An increase in the OLR led to an initial decrease in the COD removal until the biomass recovered and the high COD (80 %) removal rates resumed. The ABR reached a maximum OLR of 76.8 kg/m(3).d whilst the CMAR reached a maximum OLR of 2.0 kg/m(3).d. The investigations showed that the ABR could be operated at higher organic loads than the CMAR and give the same organic removal rate. This verified the importance of increasing the SRT/HRT ratio in anaerobic reactors. The CMAR, however, proved to be stable to changes in the influent feed strength, as there was no immediate noticeable changes in the gas production.

Description

Thesis (M.Sc.Eng.)-University of Natal, Durban, 2000.

Keywords

Water--Zimbabwe--South Africa., Anaerobic bacteria., Water--Purification--Biological treatment., Theses--Chemical engineering.

Citation

DOI