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Abstract

We consider a model consisting of a finite number of quantum dots each of which

confines a spinless electron. We zoom in on a single quantum dot containing an

electron of interest treating it as being strongly coupled to the surrounding finite

bath of electrons. The fermionic bath is embedded in a bosonic Markovian bath.

The master equation for the fermion of interest interacting with the fermionic bath

is derived. Based on the master equation for this system, the reduced dynamics

and thermalization of the spinless electron is studied.

We start with a description of the Hamiltonian of the entire system which we

call total Hamiltonian. Because the electron of interest is strongly coupled to the

surrounding fermionic bath, we treat the Hamiltonian consisting of the electron

of interest, the fermionic bath and the interaction between them as the system

Hamiltonian. Then using techniques of linear algebra, we diagolize the system

Hamiltonian making it appear in what we are calling quasi-fermionic picture. After

this, we take the diagonalized system Hamiltonian back to the total Hamiltonian.

We then use this total Hamiltonian to switch to the interaction picture. Since

the general expression of the Markovian quantum master equation is in terms of

the interaction Hamiltonian, we now substitute our interaction Hamiltonian into

it and begin from there to derive the quantum master equation of our system.

In the next step, we solve the derived quantum master equation casting the solution

in Kraus representation. Using the explicit form of the Kraus operators and initial

conditions, the density matrix of the reduced system is obtained in the quasi-

fermionic picture. We then transform to the original fermionic picture and trace

out the fermionic bath coming out with the density matrix of the electron of

interest.

We then check the normalization of the density matrix of the electron of interest

by calculating the trace and then use it to calculate the mean number of fermions.

The mean number of fermions is then plotted against time for different coupling

strengths and varying numbers of fermions in the fermionic bath to visually check

the dynamics and thermalization of the fermion of interest.
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Chapter 1

Introduction

Recently, there has been a great deal of interest in quantum dots. A quantum

dot is a nanocrystal made of semiconductor materials [1]. These semiconductor

devices have unique properties resulting into a host of applications. Among others

three such areas of application are the following.

1. Fluorescent labelling of cellular components: this is where optical properties

of quantum dots are harnessed to label cellular components for tracking

purposes in biological research [2]. Electromagnetic radiation (bosonic bath)

is used to create excitons in the quantum dot. After some time recombination

of the electron and the hole occurs. Upon recombination light of specific

wavelength is emitted which is used to label cellular components. Labelling

with quantum dots is considered more photostable than with the traditional

organic dyes.

2. Temperature sensors: this is an application in microstructures and nanos-

tructures which also makes use of optical properties of quantum dots. It

has been studied [3, 4] that spectroscopic properties of quantum dots are

temperature dependent. Alterations in the emission spectrum are used as

indicators of changes in temperature.

3. Quantum information processing: in this area of application, a quantum dot

is a potential candidate for a qubit. Quantum computation at the level of

1



Chapter 1. Introduction

an individual two-qubit gate has been demonstrated for qubit candidates

such as cavity quantum electrodynamics [5–7] and ion-traps [8]. However,

it is still uncertain whether such atomic-physics implementations could ever

be scaled up to do truly large-scale quantum computation. This has lead

to speculation that solid-state devices such as semiconductor quantum dots

would be better candidates. Several quantum dots can be entangled offering

the potential for scaling to large-scale qubit implementation [9, 10].

In particular, the spin or electric charge of an electron confined in the quan-

tum dot serves as a qubit representation. In the case of spin, the up and

down or |0〉 and |1〉 states of electron spin serve as the quantum analogue of

the classical bit. In the case of charge, the |0〉 and |1〉 states correspond to

the presence of charge in either of two quantum dots, or two states within

a single quantum dot [11, 12]. In both cases, electromagnetic radiation can

be used to manipulate the qubit for various quantum information processing

tasks [13]. The qubit is an open quantum system and its interaction with

the bath of electromagnetic radiation as it thermalizes leads to loss of quan-

tum information, a phenomenon coined decoherence. Decoherence is a well

known obstacle to a physical realization of a quantum computer [14–21].

A common feature in all these three examples above is that of dynamics

and thermalization of the electron confined in the quantum dot with the

electromagnetic radiation as the bosonic bath. Understanding this feature

is crucial to modern research and physical implementations of these devices.

This is the feature that we intend to investigate in this thesis.

1.1 Model

Our model consists of several single fermion quantum dots coupled to a bosonic

bath. The fermions confined in the quantum dots are considered to be strongly

coupled to each other since electrons strongly interact with each other. We focus

on a single fermion so that the rest of the fermions are treated as a surrounding

mesoscopic bath. Overall, our entire system can be seen as a fermion of interest

2



Chapter 1. Introduction
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Figure 1.1: A fermion of interest (d†d) interacting with a bath of several
fermions which is also interacting with a bath of bosons. The operators d†, d

are creation and annihilation operators of the fermion of interest and c
†
i , ci are

creation and annihilation operators of the fermions.

strongly interacting with a surrounding fermionic bath which is also interacting

with a Markovian bosonic bath in which it is embedded.

As the title of this thesis depicts, we aim to investigate the dynamics and ther-

malization of this fermion of interest.

The total Hamiltonian of the entire system reads,

H = HS +HB +HSB = H0 +HSB, (1.1)

where HS, referred to from here on simply as the system Hamiltonian, is the

Hamiltonian of the fermion of interest interacting with the fermionic bath, i.e.,

HS = ωd†d+

N
∑

i=1

(

ǫc†ici + gd†ci + gci
†d
)

, (1.2)

where d†, d are creation and annihilation operators of the fermion of interest and

c†i , ci are creation and annihilation operators of the fermions in the mesoscopic bath

which are taken to be degenerate with ǫ as the energy of each of the fermions, ω is

the energy of the fermion of interest where we have set ~ = 1, and g is the coupling

strength for the interaction between the fermion of interest and the mesoscopic

bath of fermions. Note that we are treating the Hamiltonian of the fermion of

interest together with the fermionic bath and the interaction between them as the

system Hamiltonian, HS, because the interaction is taken to be strong. As an

3



Chapter 1. Introduction

approximation, this interaction is taken to be the same. Since our interest is in

the dynamics and thermalization of the electron, we regard all the electrons as

spinless in this present work, as the simplest possible case. All the operators d†, c†i

satisfy standard anticommutation relations,

{d, d†}+ = 1, [d, d] = 0 and [d†, d†] = 0, (1.3)

{ci, c†j}+ = δij , {ci, cj}+ = 0 and {c†i , c†j}+ = 0. (1.4)

The Hamiltonian of the bath HB reads,

HB =
∑

n

ωnb
†
nbn. (1.5)

The Hamiltonian of interaction of the fermonic bath with the bosonic Markovian

environment is denoted by HSB and in the rotating wave approximation, where the

intensity of the bosonic bath is low and near resonance with electronic transitions

so that strongly oscillating terms in the Hamiltonian are neglected [22], is given

by,

HSB =
N
∑

i=1

∑

n

gnbnc
†
i + g∗nb

†
nci, (1.6)

where ωn is the frequency of the nth mode of the field and b†n, bn are standard

bosonic creation and annihilation operators satisfying the commutation relations,

[bn, b
†
m] = δnm, [bn, bm] = 0 and [b†n, b

†
m] = 0. (1.7)

As a single entity, the entire system consisting of the fermion of interest, the

fermionic bath, the bosonic bath and interactions between them is a closed quan-

tum system and therefore evolves unitarily. However, the fermion of interest is an

open quantum system and its dissipative dynamics undergo non-unitary evolution

[23]. To describe this type of dynamics, we will require the general Markovian

quantum master equation which within the Born and Markov approximations

4



Chapter 1. Introduction

[24–27] is given by

d

dt
ρSI (t) = −

∫ ∞

0

dsTrB

{

[HSB
I (t), [HSB

I (t− s), ρSI (t)⊗ ρB]]

}

, (1.8)

where

HSB
I (t) = eitH0HSB(t)e

−itH0 (1.9)

is the fermion-boson coupling Hamiltonian in the interaction picture,

ρSI (t) = eitH0ρ0S(t)e
−itH0 = eitHSρ0S(t)e

−itHS (1.10)

is the reduced density matrix in the interaction picture, with ρ0S(t) as the reduced

density matrix in the Schrödinger picture obtained from the total density matrix

ρ0(t) by taking the partial trace with respect to B, also referred to as tracing out

the degrees of freedom of the bath [28, 29],

ρ0S(t) = TrB
(

ρ0(t)
)

, (1.11)

and

ρB =
e−βHB

Z
=

e−β
∑

n ωnb
†
nbn

Tr(e−β
∑

n ωnb
†
nbn)

=
∏

n

(

1− e−βωn
)

e−βωnb
†
nbn , (1.12)

is the density matrix of the bosonic bath, where β = 1/kB is the inverse tem-

perature of the bosonic bath and kB is the Boltzmann constant. The Born ap-

proximation is a weak-coupling assumption in which the state of the bath remains

unaffected by the interaction because the bath is assumed to be too large to be af-

fected by the small system. The system S is coupled to the reservoir which causes

a damping that destroys the “knowledge” of the past behavior. These considera-

tions lead to the assumption that the system loses all memory of the past making

the density matrix local in time. This is known as the Markov approximation

[24–27].

From here on, we will be working in the interaction picture. So, for notational

simplicity we shall drop the subscript I from ρSI so that in the following pages the

5



Chapter 1. Introduction

general expression of the Markovian quantum master equation will appear as

d

dt
ρS(t) = −

∫ ∞

0

dsTrB

{

[HSB
I (t), [HSB

I (t− s), ρS(t)⊗ ρB]]

}

. (1.13)

The remainder of this thesis involves simplifying, solving and analyzing eqn. (1.13)

specific to our model described above and the aim of this thesis. As a starting

point, it is convenient that the Hamiltonian HSB appearing on the right hand

side of eqn. (1.13) is expressed in the basis set of orthogonal eigenstates of HS.

So, in the next Chapter we are going to diagonalize the system Hamiltonian.

Chapter 3 involves simplifying the specific form of eqn. (1.13), the process we are

calling derivation of the quantum master equation of the reduced system. Solving

the simplied version of this Markovian quantum master equation is the subject

of Chapter 4. The results and analysis thereof are presented in Chapter 5, and

Chapter 6 concludes.

6



Chapter 2

Hamiltonian Diagonalization

The Hamiltonian of the system, HS, as it appears in eqn. (1.2) is not in diagonal

form. In order to derive the quantum master equation for the reduced system, it

is convenient to diagonalize HS [27]. In this chapter, we are going to diagonalize

HS using a technique of linear algebra [30, 31].

We start by expressing HS in matrix form by expressing it in quadratic form,

HS = ν†Aν, (2.1)

where the matrix vector ν and a symmetric coefficient matrix A are to be deter-

mined from the given HS, eqn. (1.2). Matrix A is expected to be diagonal in the

basis set of its eigenvectors, i.e. by spectral decomposition,

A =
N
∑

i=0

λi|λi〉〈λi|, ∀i, j 〈λi|λj〉 = δij. (2.2)

In principle, diagonalizing A implies calculating,

R−1AR = D, (2.3)

where D is the diagonal matrix with the eigenvalues of A on the main diagonal and

R is a matrix with an orthonormal basis of eigenvectors of A as column vectors,

7



Chapter 2. Hamiltonian Diagonalization

i.e,

R−1 = R†. (2.4)

Eqn. (2.3) and eqn. (2.4) imply that,

A = RDR−1 = RDR†. (2.5)

Substituting eqn. (2.5) into eqn. (2.1), we get

HS = ν†RDR†ν = ξ†Dξ, (2.6)

where

ξ† = ν†R, (2.7)

is the matrix of eigenvectors of HS. Thus, the diagonal matrix of eigenvalues of A

is the same as the diagonal matrix of eigenvalues of HS.

Let us find A, D, R and ν. For N = 1, eqn. (1.2) can be written as

HS = ωd†d+

1
∑

i=1

(

ǫc†ici + gd†ci + gci
†d
)

= ωd†d+ ǫc†1c1 + gd†c1 + gc1
†d

=
(

d† c†1

)

(

a11 a12

a21 a22

)(

d

c1

)

= a11d
†d+ a22c

†
1c1 + a12d

†c1 + a21c1
†d. (2.8)

Comparison of the second and last line of eqn. (2.8) reveals that

a11 = ω, a22 = ǫ, and a12 = a21 = g. (2.9)

Using eqn. (2.9) in the third line of eqn. (2.8) and comparing with eqn. (2.1), we

get

A =

(

ω g

g ǫ

)

, (2.10)

8



Chapter 2. Hamiltonian Diagonalization

and

ν =

(

d

c1

)

, (2.11)

which is a matrix of operators, d and c’s. Diagonalizing A, we obtain the matrix

of eigenvalues,

D =

(

ω + ǫ

2
+

Ω1

2

)

|0〉〈0|+
(

ω + ǫ

2
− Ω1

2

)

|1〉〈1|, (2.12)

where

Ω1 =

√

4g2 + (ω − ǫ)2, (2.13)

and the matrix of eigenvectors,

R = [|λ0〉, |λ1〉], (2.14)

where

|λ0〉 =





ω − ǫ

2g
+

√

4g2 + (ω − ǫ)2

2g



 |0〉+ |1〉, (2.15)

|λ1〉 =





ω − ǫ

2g
−

√

4g2 + (ω − ǫ)2

2g



 |0〉+ |1〉. (2.16)

In eqns. (2.12), eqn. (2.15) and eqn. (2.16) we have used the orthonormal,

〈i|j〉 = δij, computational basis set in which

|0〉 =

























1

0

0

0

0
...

























, |1〉 =

























0

1

0

0

0
...

























, |2〉 =



















0

0

1

0
...



















, and so on. (2.17)

Repeating the above procedure for N = 2, we obtain

ν = d|0〉+
2
∑

i=1

ci|i〉, (2.18)

9



Chapter 2. Hamiltonian Diagonalization

the matrix of eigenvalues becomes,

D =

(

ω + ǫ

2
+

Ω2

2

)

|0〉〈0|+
(

ω + ǫ

2
− Ω2

2

)

|1〉〈1|+ ǫ|2〉〈2|, (2.19)

where

Ω2 =

√

8g2 + (ω − ǫ)2, (2.20)

and

R = [|λ0〉, |λ1〉, |λ2〉], (2.21)

where

|λ0〉 =
ω − ǫ

2g
+

√

8g2 + (ω − ǫ)2

2g
|0〉+

2
∑

k=1

|k〉 (2.22)

|λ1〉 =
ω − ǫ

2g
−

√

8g2 + (ω − ǫ)2

2g
|0〉+

2
∑

k=1

|k〉, (2.23)

|λ2〉 = |2〉 − |1〉. (2.24)

Repeating the above procedure and extending the sum to general N , we obtain

ν = d|0〉+
N
∑

i=1

ci|i〉, (2.25)

D =

(

ω + ǫ

2
+

ΩN

2

)

|0〉〈0|+
(

ω + ǫ

2
− ΩN

2

)

|1〉〈1|+
N
∑

i=2

ǫ|i〉〈i|, (2.26)

where

ΩN =

√

4Ng2 + (ω − ǫ)2. (2.27)

The matrix of eigenvectors becomes

R = [|λ0〉, |λ1〉, |λ2〉, . . . , λN〉], (2.28)

where each of the eigenvectors appearing in R are given by

|λ0〉 =
(

ω − ǫ

2g
+

ΩN

2g

)

|0〉+
N
∑

k=1

|k〉 (2.29)

10



Chapter 2. Hamiltonian Diagonalization

|λ1〉 =
(

ω − ǫ

2g
− ΩN

2g

)

|0〉+
N
∑

k=1

|k〉, (2.30)

|λi〉 = |i〉 − |1〉, i = 2, 3, · · · , N. (2.31)

We are now going to normalize eqn. (2.29), eqn. (2.30) and eqn. (2.31). Before

we do that let us for convenience set

x = ǫ− ω, (2.32)

so that from eqn. (2.27), we have

Ω2
N = 4Ng2 + x2. (2.33)

Substituting eqn. (2.32) into eqn. (2.29), we get

|λ0〉 =
ΩN − x

2g
|0〉+

N
∑

k=1

|k〉. (2.34)

Let us now normalize eqn. (2.34); we first calculate the inner product of |λ0〉,

〈λ0|λ0〉 =
x2 − 2xΩN + Ω2

N

4g2
+N

=
2ΩN (ΩN − x)

4g2
, (2.35)

so that the normalized vector of |λ0〉 is

|λ̄0〉 =
|λ0〉

√

〈λ0|λ0〉
=

ΩN − x
√

2ΩN (ΩN − x)
|0〉+ 2g

√

2ΩN (ΩN − x)

N
∑

k=1

|k〉

=
2g

√
N

√

2ΩN (ΩN + x)
|0〉+ 1√

N

√

ΩN + x

2ΩN

N
∑

k=1

|k〉, (2.36)

where in the last line we have used

ΩN − x =
(ΩN − x) (ΩN + x)

ΩN + x
=

Ω2
N − x2

ΩN + x
=

4g2N

ΩN + x
(2.37)

11



Chapter 2. Hamiltonian Diagonalization

and
ΩN + x

√

2ΩN (ΩN + x)
=

√

ΩN + x

2ΩN

. (2.38)

Similarly, substituting eqn. (2.32) into eqn. (2.30), we get

|λ1〉 =
− (ΩN + x)

2g
|0〉+

N
∑

k=1

|k〉, (2.39)

whose inner product is given by

〈λ1|λ1〉 =
(x+ ΩN )

2

4g2
+N

=
2ΩN (ΩN + x)

4g2
, (2.40)

so that the normalized vector of eqn. (2.39) becomes,

|λ̄1〉 =
|λ1〉

√

〈λ1|λ1〉
=

− (ΩN + x)
√

2ΩN (ΩN + x)
|0〉+ 2g

√

2ΩN (ΩN + x)

N
∑

k=1

|k〉

= −
√

ΩN + x

2ΩN

|0〉+ 2g
√

2ΩN (ΩN + x)

N
∑

k=1

|k〉. (2.41)

But it can be seen that

[

2g
√
N

√

2ΩN (ΩN + x)

]2

+

[

√

ΩN + x

2ΩN

]2

= 1, (2.42)

we therefore make use of the trigonometric relation: sin2 θ+ cos2 θ = 1, by letting

sin θ =

√

ΩN + x

2ΩN

(2.43)

and

cos θ =
2g

√
N

√

2ΩN (ΩN + x)
, (2.44)
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Chapter 2. Hamiltonian Diagonalization

so that eqn. (2.36) and eqn. (2.41) finally become

|λ̄0〉 = cos θ|0〉+ sin θ√
N

N
∑

k=1

|k〉, (2.45)

and

|λ̄1〉 = − sin θ|0〉+ cos θ√
N

N
∑

k=1

|k〉, (2.46)

respectively.

Using eqn. (2.45) and eqn. (2.46) in the following calculations,

〈λ̄0|λ̄0〉 = cos2 θ +
N sin2 θ

N
= 1

〈λ̄1|λ̄1〉 = sin2 θ +
N cos2 θ

N
= 1

〈λ̄0|λ̄1〉 = − sin θ cos θ +
N sin θ cos θ

N
= 0, (2.47)

confirms that |λ̄0〉 and |λ̄1〉 are normal as well as orthogonal, i.e., orthonormal.

Let us now orthonormalize the remaining eigenvectors in R, eqn. (2.31),

|λi〉 = |i〉 − |1〉, i = 2, 3, · · · , N. (2.48)

We are going to use the Gram-Schmidt orthonormalization technique [30, 32]. We

start by normalizing eqn. (2.48),

|λ̄i〉 =
|λi〉

√

〈λi|λi〉

=
|i〉√
2
− |1〉√

2
, i = 2, 3, · · · , N. (2.49)

As a first step of the Gram-Schmidt orthonormalization technique, let us set

|λ̄′2〉 = |λ̄2〉 (2.50)

13



Chapter 2. Hamiltonian Diagonalization

and

|λ̄′3〉 = c2|λ̄′2〉+ c3|λ̄3〉. (2.51)

We want to find c2 and c3 subject to orthonormalization conditions,

〈λ̄′2|λ̄′3〉 = 0, 〈λ̄′3|λ̄′3〉 = 1. (2.52)

Solving eqn. (2.52) simultaneously, we get

c2 = − 1√
3

and c3 =
2√
3
. (2.53)

Substituting eqn. (2.53) into eqn. (2.51), we obtain

|λ̄′3〉 =
1

√

3 (2)
(−|1〉 − |2〉+ 2|3〉) . (2.54)

We repeat the above procedure for |λ̄4〉, |λ̄5〉 and |λ̄6〉 so that overall we get

|λ̄′2〉 =
1

√

2 (1)
(−|1〉+ 1|2〉) ,

|λ̄′3〉 =
1

√

3 (2)
(−|1〉 − |2〉+ 2|3〉) ,

|λ̄′4〉 =
1

√

4 (3)
(−|1〉 − |2〉 − |3〉+ 3|4〉) ,

|λ̄′5〉 =
1

√

5 (4)
(−|1〉 − |2〉 − |3〉 − |4〉+ 4|5〉) ,

|λ̄′6〉 =
1

√

6 (5)
(−|1〉 − |2〉 − |3〉 − |4〉 − |5〉+ 5|6〉) . (2.55)

This is clearly a pattern which allows us to generalize,

|λ̄′i〉 = − 1
√

i (i− 1)

i−1
∑

k=1

|k〉+
√

i− 1

i
|i〉, i = 2, 3, · · · , N. (2.56)

Summarizing the above results for orthonormalization of the eigenvectors in R,

R = [|λ0〉|λ1〉|λ2〉 · · · |λN〉] , (2.57)
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Chapter 2. Hamiltonian Diagonalization

we have

|λ0〉 = cos θ|0〉+ sin θ√
N

N
∑

k=1

|k〉

|λ1〉 = − sin θ|0〉+ cos θ√
N

N
∑

k=1

|k〉

|λi〉 = − 1
√

i (i− 1)

i−1
∑

k=1

|k〉+
√

i− 1

i
|i〉, i = 2, 3, · · · , N, (2.58)

where we have removed the bar and prime on λ’s because all the eigenvectors in

R appearing hereafter are taken to be orthonormal.

Using eqn. (2.2) and eqn. (2.25) into eqn. (2.1), we get

HS = ν†Aν

=

(

d†〈0|+
N
∑

i=1

c†i〈i|
)(

N
∑

i=0

λi|λi〉〈λi|
)(

d|0〉+
N
∑

k=1

ck|k〉
)

=

N
∑

i=0

λiξ
†
i ξi, (2.59)

where in moving from the second line to the third line, we have set

ξi = d〈λi|0〉+
N
∑

k=1

ck〈λi|k〉. (2.60)

Upon substitution of eqn. (2.58) into eqn. (2.60), we obtain the eigenvectors

ξ0 = cos θd+
sin θ√
N

N
∑

i=1

ci, λ0 =
ω + ǫ

2
+

ΩN

2
,

ξ1 = − sin θd+
cos θ√
N

N
∑

i=1

ci, λ1 =
ω + ǫ

2
− ΩN

2
,

ξi = − 1
√

i(i− 1)

i−1
∑

k=1

ck +

√

i− 1

i
ci, λi = ǫ, i = 2, 3 · · ·N, (2.61)
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Chapter 2. Hamiltonian Diagonalization

written with the corresponding eigenvalues as earlier obtained in eqn. (2.26). The

coefficients ΩN , cos θ and sin θ read,

ΩN =
√

4g2N + (ǫ− ω)2,

cos θ =
2g

√
N

√

2ΩN (ΩN + (ǫ− ω))
,

sin θ =

√

ΩN + (ǫ− ω)

2ΩN

. (2.62)

We note that the fact that the linear combinations of ci appear in eqn. (2.61) is a

consequence of choosing all the c-levels degenerate in eqn. (1.2).

Having casted HS in the form of eqn. (2.59), we can conclude the chapter by

stating that we have successfully diagonalized the Hamiltonian of the system.
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Chapter 3

Quantum Master Equation

In this chapter, we are going to derive the Markovian quantum master equation.

But before we do that it is imperative that we bring the results of Chapter 2

into perspective. In Chapter 2, we diagonalized the Hamiltonian of the system

HS, eqn. (2.59). In this form, we introduced new operators, ξi, whose properties

we do not know yet. Therefore, the entire first section of this chapter is devoted

towards investigating properties of these new operators. We are also going to cast

the interaction Hamiltonian, HSB, in terms of ξi’s. In Section 3.2, we will convert

the total Hamiltonian to the interaction picture followed by the derivation of the

Markovian quantum master equation in section 3.3.

3.1 Quasi-Fermionic Picture

The fact that the original system Hamiltonian, HS, eqn. (1.2), consists entirely of

fermions, gives us a sound starting point for checking properties of the new oper-

ators, ξi, into which HS has been expressed. Fermions are subject to the standard

anticommutation relations. So, we are going to subject ξi to the anticommutator

and observe what happens.
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Chapter 3. Quantum Master Equation

For i = 0, the anticommutator, {ξ0, ξ†0}+ gives

{ξ0, ξ†0}+ = {cos θd+ sin θ√
N

N
∑

i=1

ci, cos θd
† +

sin θ√
N

N
∑

i=1

c†i}+

= cos2 θ +
N sin2 θ

N
= 1. (3.1)

Similarly, for i = 1,

{ξ1, ξ†1}+ = {− sin θd+
cos θ√
N

N
∑

i=1

ci,− sin θd† +
cos θ√
N

N
∑

i=1

c†i}+

= sin2 θ +
N cos2 θ

N
= 1. (3.2)

Combining ξ0 and ξ†1 in the anticommutator, we obtain

{ξ0, ξ†1}+ = {cos θd+ sin θ√
N

N
∑

i=1

ci,− sin θd† +
cos θ√
N

N
∑

i=1

c†i}+

= − sin θ cos θ + sin θ cos θ

= 0. (3.3)

In a similar manner, we obtain the following results,

{ξ0, ξ†i }+ = 0, {ξ1, ξ†i }+ = 0, {ξi, ξ†i }+ = 1 and {ξk, ξ†i }+ = 0,

(3.4)

where i 6= k. Eqn. (3.1) through to eqn. (3.4) indicates that ξ†i and ξi are creation

and annihilation operators satisfying anticommutation relations,

{ξi, ξ†j}+ = δij , {ξi, ξj}+ = 0 and {ξ†i , ξ†j}+ = 0, (3.5)

which look exactly like the standard anticommutation relations that fermions obey.

Therefore, the new operators are fermion-like, allowing us to call them quasi-

fermions. So, the diagonalization process of Chapter 2, transformed the system
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Chapter 3. Quantum Master Equation

Hamiltonian, HS, from the original fermionic picture to the new quasi-fermionic

picture.

Let us now transform the interaction Hamiltonian, HSB =
∑N

i=1

∑

n gnc
†
ibn +

g∗ncib
†
n, into this new quasi-fermionic picture.

Multiplying eqn. (2.60) by
∑N

i=0 |λi〉 to the right, we get

N
∑

i=0

ξi|λi〉 = d

N
∑

i=0

|λi〉〈λi|0〉+
N
∑

k=1

ck

N
∑

i=0

|λi〉〈λi|k〉

= d|0〉+
N
∑

k=1

ck|k〉. (3.6)

When we multiply eqn. (3.6) by 〈0| to the left, we obtain

d〈0|0〉+
N
∑

k=1

ck〈0|k〉 =
N
∑

i=0

ξi〈0|λi〉 = d. (3.7)

Upon substitution of eqn. (2.58) into eqn. (3.7), we obtain the expression for d in

terms of ξ0 and ξ1,

d =

N
∑

i=0

ξi〈0|λi〉 = cos θξ0 − sin θξ1. (3.8)

Multiplying the left handside of eqn. (3.6) by 〈i|, for i = 1, 2, · · · , N , and simpli-

fying, we get
N
∑

i=1

ci =
N
∑

i=1

N
∑

k=0

〈i|λk〉ξk =
N
∑

k=0

αkξk, (3.9)

where

αk =
N
∑

i=1

〈i|λk〉. (3.10)

If we set k = 0 in eqn. (3.10) and use |λ0〉 from eqn. (2.58), we obtain

α0 =
N
∑

i=1

〈i|λ0〉 =
N
∑

i=1

〈i|
(

cos θ|0〉+ sin θ√
N

N
∑

k=1

|k〉
)

=
√
N sin θ. (3.11)
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Similarly,

α1 =

N
∑

i=1

〈i|λ1〉 =
N
∑

i=1

〈i|
(

− sin θ|0〉+ cos θ√
N

N
∑

k=1

|k〉
)

=
√
N cos θ, (3.12)

and for k = 2, 3 · · ·N , we have

αk =
N
∑

i=1

〈i|λk〉 =
N
∑

i=1

〈i|
(

− 1
√

k (k − 1)

k−1
∑

j=1

|j〉+
√

k − 1

k
|k〉
)

= 0. (3.13)

Using eqn. (3.11), eqn. (3.12) and eqn. (3.13) in eqn. (3.9), we obtain

N
∑

i=1

ci =
N
∑

k=0

αkξk = α0ξ0 + α1ξ1 +
N
∑

k=2

αkξk

=
√
N (sin θξ0 + cos θξ1) . (3.14)

To obtain the interaction Hamiltonian, eqn. (1.6), in terms of the new operators,

ξi’s, we substitute eqn. (3.14) into eqn. (1.6). This substitution gives

HSB =

N
∑

i=1

∑

n

gnc
†
ibn + g∗ncib

†
n

=
√
N
∑

n

(

gn

(

sin θξ†0 + cos θξ†1

)

bn + g∗n (sin θξ0 + cos θξ1) b
†
n

)

. (3.15)

The total Hamiltonian, eqn. (1.1), therefore becomes

H = HS +HB +HSB

=

N
∑

i=0

λiξ
†
i ξi +

∑

n

ωnb
†
nbn

+
√
N
∑

n

(

gn

(

sin θξ†0 + cos θξ†1

)

bn + g∗n (sin θξ0 + cos θξ1) b
†
n

)

. (3.16)
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The fact that the bosonic bath couples to only two of the quasi-fermion states is

a big simplification, resulting from the fact that the c-operators in eqn. (1.2) are

all degenerate.

Thus, we have expressed the total Hamiltonian in terms of the new operators, ξi,

a transformation into the new quasi-fermionic picture.

3.2 Transition to the Interaction Picture

The starting point for the derivation of the master equation is the general ex-

pression for the Markovian quantum master equation (1.13). The Hamiltonian

appearing in this expression is in the interaction picture. So, we are now going to

switch to the interaction picture within the quasi-fermionic picture.

Expressing the interaction term in eqn. (3.16) as

HSB = HSB1 +HSB2, (3.17)

where

HSB1 =
∑

n

√
Ng∗n (sin θξ0 + cos θξ1) b

†
n, (3.18)

and its complex conjugate

HSB2 =
∑

n

√
Ngn

(

sin θξ†0 + cos θξ†1

)

bn, (3.19)

and converting it to the interaction picture, we have

HSB
I (t) = eit(HS+HB)HSBe

−it(HS+HB) = HSB1
I +HSB2

I . (3.20)
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where we have used eqn. (3.17), eqn. (3.18) and eqn. (3.19) so that

HSB1
I = eit(HS+HB)HSB1e

−it(HS+HB)

=
∑

n

√
Ng∗n

(

sin θeit(HS+HB)ξ0b
†
ne

−it(HS+HB) + cos θeit(HS+HB)ξ1b
†
n

)

=
∑

n

√
Ng∗n sin θe

itHSξ0e
−itHSe−itHBb†ne

−itHB

+
∑

n

√
Ng∗n cos θe

itHSξ1e
−itHSe−itHBb†ne

−itHB , (3.21)

and its complex conjugate

HSB2
I = eit(HS+HB)HSB2e

−it(HS+HB)

=
∑

n

√
Ngn sin θe

itHSξ†0e
−itHSe−itHBbne

−itHB

+
∑

n

√
Ngn cos θe

itHSξ†1e
−itHSe−itHBbne

−itHB . (3.22)

Note that in eqn. (3.21) and eqn. (3.22) we have used the fact that HS and HB

commute, [HS, HB] = 0. Using the Baker–Campbell–Hausdorf formula [33],

eαABe−αA = B + α[A,B] +
α2

2!
[A, [A,B]] +

α3

3!
[A, [A, [A,B]]] + · · · , (3.23)

we have

eitHSξ0e
−itHS = ξ0 + it[HS, ξ0] +

(it)2

2!
[HS, [HS, ξ0]] + · · · (3.24)

We first solve for the commutator appearing in eqn. (3.24), which gives us

[HS, ξ0] =
N
∑

i=0

λi[ξ
†
i ξi, ξ0] = −

N
∑

i=0

λi{ξ†i , ξ0}+ξi = −
N
∑

i=0

λiξiδi0 = −λ0ξ0. (3.25)
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Substituting eqn. (3.25) into eqn. (3.24), we obtain

eitHSξ0e
−itHS = ξ0 + (−itλ0) ξ0 +

(it)2 (−λ0)2
2!

ξ0 +
(it)3 (−λ0)3

3!
ξ0 + · · ·

= ξ0

{

1 + (−itλ0) +
(−itλ0)2

2!
+ · · ·

}

= ξ0e
−itλ0 . (3.26)

Again using eqn. (3.23), we have

eitHBb†ne
−itHB = b†n + it[HB, b

†
n] +

(it)2

2!
[HB, [HB, b

†
n]] + · · · (3.27)

Solving the commutator appearing in eqn. (3.27), we get

[HB, b
†
n] = [

∑

m

ωmb
†
mbm, b

†
n] =

∑

m

ωm(b
†
mb

†
nbm − b†nb

†
mbm + b†mδmn) = ωnb

†
n, (3.28)

where we have made use of eqn. (1.5). Substituting eqn. (3.28) into eqn. (3.27),

we have

eitHBb†ne
−itHB = b†n

{

1 + (itωn) +
(itωn)

2

2!
+

(itωn)
3

3!
+ · · ·

}

= b†ne
itωn . (3.29)

Similarly,

eitHSξ1e
−itHS = ξ1 + it[HS, ξ1] +

(it)2

2!
[HS, [HS, ξ]] + · · · (3.30)

The commutator appearing in eqn. (3.30) can be shown to simplify as follows,

[HS, ξ1] =

N
∑

i=0

λi[ξ
†
i ξi, ξ1] = −

N
∑

i=0

λi{ξ†i , ξ1}+ξi = −
N
∑

i=0

λiξiδi1 = −λ1ξ1. (3.31)

Substituting eqn. (3.31) into eqn. (3.30), we obtain

eitHSξ1e
−itHS = ξ1

{

1 + (−itλ1) +
(−itλ1)2

2!
+

(−itλ1)3
3!

+ · · ·
}

= ξ1e
−itλ1 . (3.32)
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When we use eqn. (3.32) and eqn. (3.29) in eqn. (3.21), HSB1
I becomes

HSB1
I =

∑

n

√
Ng∗n sin θe

itHSξ0e
−itHSe−itHBb†ne

−itHB

+
∑

n

√
Ng∗n cos θe

itHSξ1e
−itHSe−itHBb†ne

−itHB .

=
∑

n

√
Ng∗n sin θe

it(ωn−λ0)ξ0b
†
n

+
∑

n

√
Ng∗n cos θe

it(ωn−λ1)b†n. (3.33)

Let us set the two terms appearing in eqn. (3.33) as

B†
0t =

∑

n

√
Ng∗n sin θe

it(ωn−λ0)b†n,

B†
1t =

∑

n

√
Ng∗n cos θe

it(ωn−λ1)b†n, (3.34)

so that

HSB1
I = ξ0B

†
0t + ξ1B

†
1t, (3.35)

and its complex conjugate given by

HSB2
I = ξ†0B0t + ξ†1B1t. (3.36)

Therefore, if we substitute eqn. (3.35) and eqn. (3.36) into eqn. (3.20), the total

Hamiltonian in the interaction picture becomes

HSB
I = HSB1

I +HSB2
I

= ξ0B
†
0t + ξ1B

†
1t + ξ†0B0t + ξ†1B1t. (3.37)

This brings us to the conclusion of this section. We have transformed the total

Hamiltonian from the original fermionic picture to the new quasi-fermionic picture.

We further switched the total Hamiltonian to the interaction picture. Looking back
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at eqn. (1.13), the general expression of the Markovian quantum master equation,

we now have everything we need from our model to start the derivation of the

Markovian quantum master equation for our reduced system.

3.3 Derivation of Quantum Master Equation

We are now set to derive the Markovian quantum master equation from the general

expression, eqn. (1.13),

ρ̇S(t) = −
∫ ∞

0

dsTrB[H
SB
I (t), [HSB

I (t− s), ρS(t)⊗ ρB(0)]]. (3.38)

Note that eqn. (3.38) has a commutator in another commutator in the integrand

on the right handside. This entails that it will diverge when expanded. So, we will

handle it in steps. We will first work with the integrand until it is in a convenient

form to allow us to carry out the integration.
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Substituting eqn. (3.37) into the commutator in the integrand of eqn. (3.38) and

taking the trace over the bath’s degrees of freedom, we obtain

TrB

{

[HSB
I (t), [HSB

I (t− s), ρS(t)⊗ ρB]]

}

= ξ0ξ0ρSTrB(B
†
0tB

†
0t−sρB)− ξ0ρSξ0TrB(B

†
0tB

†
0t−sρB)

− ξ0ρSξ0TrB(B
†
0t−sB

†
0tρB) + ρSξ0ξ0TrB(B

†
0t−sB

†
0tρB)

+ ξ1ξ0ρSTrB(B
†
1tB

†
0t−sρB)− ξ0ρSξ1TrB(B

†
1tB

†
0t−sρB)

− ξ1ρSξ0TrB(B
†
0t−sB

†
1tρB) + ρSξ0ξ1TrB(B

†
0t−sB

†
1tρB)

+ ξ†0ξ0ρSTrB(B0tB
†
0t−sρB)− ξ0ρSξ

†
0TrB(B0tB

†
0t−sρB)

− ξ†0ρSξ0TrB(B
†
0t−sB0tρB) + ρSξ0ξ

†
0TrB(B

†
0t−sB0tρB)

+ ξ†1ξ0ρSTrB(B1tB
†
0t−sρB)− ξ0ρSξ

†
1TrB(B1tB

†
0t−sρB)

− ξ†1ρSξ0TrB(B
†
0t−sB1tρB) + ρSξ0ξ

†
1TrB(B

†
0t−sB1tρB)

+ ξ0ξ1ρSTrB(B
†
0tB

†
1t−sρB)− ξ1ρSξ0TrB(B

†
0tB

†
1t−sρB)

− ξ0ρSξ1TrB(B
†
1t−sB

†
0tρB) + ρSξ1ξ0TrB(B

†
1t−sB

†
0tρB)

+ ξ1ξ1ρSTrB(B
†
1tB

†
1t−sρB)− ξ1ρSξ1TrB(B

†
1tB

†
1t−sρB)

− ξ1ρSξ1TrB(B
†
1t−sB

†
1tρB) + ρSξ1ξ1TrB(B

†
1t−sB

†
1tρB)

+ ξ†0ξ1ρSTrB(B0tB
†
1t−sρB)− ξ1ρSξ

†
0TrB(B0tB

†
1t−sρB)

− ξ†0ρSξ1TrB(B
†
1t−sB0tρB) + ρSξ1ξ

†
0TrB(B

†
1t−sB0tρB)

+ ξ†1ξ1ρSTrB(B1tB
†
1t−sρB)− ξ1ρSξ

†
1TrB(B1tB

†
1t−sρB)

− ξ†1ρSξ1TrB(B
†
1t−sB1tρB) + ρSξ1ξ

†
1TrB(B

†
1t−sB1tρB)

+ ξ0ξ
†
0ρSTrB(B

†
0tB0t−sρB)− ξ†0ρSξ0TrB(B

†
0tB0t−sρB)

− ξ0ρSξ
†
0TrB(B0t−sB

†
0tρB) + ρSξ

†
0ξ0TrB(B0t−sB

†
0tρB)

+ ξ1ξ
†
0ρSTrB(B

†
1tB0t−sρB)− ξ†0ρSξ1TrB(B

†
1tB0t−sρB)

− ξ1ρSξ
†
0TrB(B0t−sB

†
1tρB) + ρSξ

†
0ξ1TrB(B0t−sB

†
1tρB)

+ ξ†0ξ
†
0ρSTrB(B0tB0t−sρB)− ξ†0ρSξ

†
0TrB(B0tB0t−sρB)

− ξ†0ρSξ
†
0TrB(B0t−sB0tρB) + ρSξ

†
0ξ

†
0TrB(B0t−sB0tρB)

+ ξ†1ξ
†
0ρSTrB(B1tB0t−sρB)− ξ†0ρSξ

†
1TrB(B1tB0t−sρB)

− ξ†1ρSξ
†
0TrB(B0t−sB1tρB) + ρSξ

†
0ξ

†
1TrB(B0t−sB1tρB)
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+ ξ0ξ
†
1ρSTrB(B

†
0tB1t−sρB)− ξ†1ρSξ0TrB(B

†
0tB1t−sρB)

− ξ0ρSξ
†
1TrB(B1t−sB

†
0tρB) + ρSξ

†
1ξ0TrB(B1t−sB

†
0tρB)

+ ξ1ξ
†
1ρSTrB(B

†
1tB1t−sρB)− ξ†1ρSξ1TrB(B

†
1tB1t−sρB)

− ξ1ρSξ
†
1TrB(B1t−sB

†
1tρB) + ρSξ

†
1ξ1TrB(B1t−sB

†
1tρB)

+ ξ†0ξ
†
1ρSTrB(B0tB1t−sρB)− ξ†1ρSξ

†
0TrB(B0tB1t−sρB)

− ξ†0ρSξ
†
1TrB(B1t−sB0tρB) + ρSξ

†
1ξ

†
0TrB(B1t−sB0tρB)

+ ξ†1ξ
†
1ρSTrB(B1tB1t−sρB)− ξ†1ρSξ

†
1TrB(B1tB1t−sρB)

− ξ†1ρSξ
†
1TrB(B1t−sB1tρB) + ρSξ

†
1ξ

†
1TrB(B1t−sB1tρB), (3.39)

where on the right handside we have deliberately suppressed the time dependence

of ρS for notational simplicity.

We now use eqn. (1.12) and eqn. (3.34) to solve the trace terms appearing on the

right handside of eqn. (3.39). Tracing over the bosonic bath’s degrees of freedom,

we obtain vanishing terms:

TrB(B
†
0tB

†
0t−sρB) = TrB(B

†
1tB

†
0t−sρB) = TrB(B

†
0t−sB

†
1tρB) = TrB(B

†
1t−sB

†
0tρB)

= TrB(B
†
1t−sB

†
1tρB) = TrB(B

†
1tB

†
1t−sρB) = TrB(B0t−sB0tρB)

= TrB(B0t−sB1tρB) = TrB(B1tB0t−sρB) = TrB(B1tB1t−sρB)

= TrB(B
†
0t−sB

†
0tρB) = TrB(B0tB0t−sρB) = TrB(B1t−sB1tρB)

= 0, (3.40)

and non-vanishing terms:

TrB(B0tB
†
0t−sρB) = N sin2 θ

∑

m

|gm|2e−is(ωm−λ0)(n+ 1) = α1(s), (3.41)

TrB(B
†
0t−sB0tρB) = N sin2

∑

m

|gm|2e−is(ωm−λ0)n = β1(s), (3.42)
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TrB(B0tB
†
1t−sρB) = N sin θ cos θ

∑

m

|gm|2eit(λ0−λ1)e−is(ωm−λ1)(n + 1) = α2(t, s),

(3.43)

TrB(B
†
1t−sB0tρB) = N sin θ cos θ

∑

m

|gm|2eit(λ0−λ1)e−is(ωm−λ1)n = β2(t, s), (3.44)

TrB(B1tB
†
1t−sρB) = N cos2 θ

∑

m

|gm|2e−is(ωm−λ1)(n + 1) = α3(s), (3.45)

TrB(B
†
1t−sB1tρB) = N cos2

∑

m

|gm|2e−is(ωm−λ1)n = β3(s), (3.46)

TrB(B
†
1tB0t−sρB) = N sin θ cos θ

∑

m

|gm|2eit(λ0−λ1)eis(ωm−λ0)n = β4(t, s), (3.47)

and

TrB(B0t−sB
†
1tρB) = N sin θ cos θ

∑

m

|gm|2eit(λ0−λ1)eis(ωm−λ0)(n+ 1) = α4(t, s),

(3.48)

where we have employed the Bose-Einstein statistics [28] which gives the average

occupation number as

n =
1

(eβωn − 1)
. (3.49)

In the limit of a large number of bosons, we transform the summation appearing

in eqns. (3.41) through to (3.48) to the continuum [27],

∑

m

|gm|2 −→
∫

dωmJ(ωm), (3.50)

where J(ωm) is the spectral density. We also note that

TrB(B0t−sB
†
0tρB) = α∗

1(s), (3.51)

TrB(B
†
0tB0t−sρB) = β∗

1(s) (3.52)

TrB(B1t−sB
†
0tρB) = α∗

2(t, s), (3.53)
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TrB(B
†
0tB1t−sρB) = β∗

2(t, s), (3.54)

TrB(B1t−sB
†
1tρB) = α∗

3(s), (3.55)

TrB(B
†
1tB1t−sρB) = β∗

3(s), (3.56)

TrB(B
†
0t−sB1tρB) = β∗

4(t, s), (3.57)

and

TrB(B1tB
†
0t−sρB) = α∗

4(t, s). (3.58)

Substituting eqns. (3.40) through to (3.48) and eqns. (3.51) through to (3.58)

into eqn. (3.39), we get

TrB

{

[HSB
I (t), [HSB

I (t− s), ρS(t)⊗ ρB]]

}

=

+ ξ†0ξ0ρSα1 − ξ0ρSξ
†
0 (α1 + α∗

1)− ξ†0ρSξ0 (β1 + β∗
1)

− ξ1ρSξ
†
1 (α3 + α∗

3)− ξ†1ρSξ1 (β3 + β∗
3) + ρSξ0ξ

†
0β1

+ ξ†1ξ0ρSα
∗
4 − ξ0ρSξ

†
1α

∗
4 − ξ†1ρSξ0β

∗
4 + ρSξ0ξ

†
1β

∗
4

+ ξ†0ξ1ρSα2 − ξ1ρSξ
†
0α2 − ξ†0ρSξ1β2 + ρSξ1ξ

†
0β2

+ ξ†1ξ1ρSα3 + ρSξ1ξ
†
1β3 + ξ0ξ

†
0ρSβ

∗
1 + ρSξ

†
0ξ0α

∗
1

+ ξ1ξ
†
0ρSβ4 − ξ†0ρSξ1β4 − ξ1ρSξ

†
0α4 + ρSξ

†
0ξ1α4

+ ξ0ξ
†
1ρSβ

∗
2 − ξ†1ρSξ0β

∗
2 − ξ0ρSξ

†
1α

∗
2 + ρSξ

†
1ξ0α

∗
2

+ ξ1ξ
†
1ρSβ

∗
3 + ρSξ

†
1ξ1α

∗
3. (3.59)
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To further simplify eqn. (3.59), we will need the following relations,

α1 + α∗
1 = 2Reα1,

α∗
1 = Reα1 − iImα1,

α1 = Reα1 + iImα1,

Imα1 =
α1 − α∗

1

2i
, (3.60)

α2 + α∗
2 = 2Reα2,

α∗
2 = Reα2 − iImα2,

α2 = Reα2 + iImα2,

Imα2 =
α2 − α∗

2

2i
, (3.61)

β1 + β∗
1 = 2Reβ1,

β∗
1 = Reβ1 − iImβ1,

β1 = Reβ1 + iImβ1,

Imβ1 =
β1 − β∗

1

2i
, (3.62)

β2 + β∗
2 = 2Reβ2,

β∗
2 = Reβ2 − iImβ2,

β2 = Reβ2 + iImβ2,

Imβ2 =
β2 − β∗

2

2i
, (3.63)
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where we have invoked the notation of complex numbers with Reα1, Reα2, Reβ1

and Reβ2 corresponding to the real parts of α1, α2, β1 and β2, and Imα1, Imα2,

Imβ1 and Imβ2 corresponding to the imaginary parts of α1, α2, β1 and β2, respec-

tively. Similar expressions can be obtained for α3, α4, β3 and β4 and when used

together in eqn. (3.59), we obtain

TrB

{

[HSB
I (t), [HSB

I (t− s), ρS(t)⊗ ρB]]

}

=

− 2Reα1

(

ξ0ρSξ
†
0 −

1

2
{ξ†0ξ0, ρS}+

)

− 2Reβ1

(

ξ†0ρSξ0 −
1

2
{ξ0ξ†0, ρS}+

)

− 2Reα3

(

ξ1ρSξ
†
1 −

1

2
{ξ†1ξ1, ρS}+

)

− 2Reβ3

(

ξ†1ρSξ1 −
1

2
{ξ1ξ†1, ρS}+

)

+ i[
(

Imα1ξ
†
0ξ0 − Imβ1ξ0ξ

†
0 + Imα3ξ

†
1ξ1 − Imβ3ξ1ξ

†
1

)

, ρS]

+ Reα2

(

ξ†1ξ0ρS + ρSξ
†
1ξ0 − ξ1ρSξ

†
0 − ξ0ρSξ

†
1

)

+ Reβ2

(

ξ0ξ
†
1ρS + ρSξ1ξ

†
0 − ξ†0ρSξ1 − ξ†1ρSξ0

)

+ Reα4

(

ξ†1ξ0ρS + ρSξ
†
0ξ1 − ξ1ρSξ

†
0 − ξ0ρSξ

†
1

)

+ Reβ4

(

ξ1ξ
†
0ρS + ρSξ0ξ

†
1 − ξ†0ρSξ1 − ξ†1ρSξ0

)

+ iImα2

(

ξ†1ξ0ρS − ρSξ
†
1ξ0 + ξ0ρSξ

†
1 − ξ1ρSξ

†
0

)

+ iImβ2

(

ξ†1ρSξ0 − ξ0ξ
†
1ρS + ρSξ1ξ

†
0 − ξ†0ρSξ1

)

+ iImα4

(

ρSξ
†
0ξ1 − ξ1ρSξ

†
0 + ξ0ρSξ

†
1 − ξ†1ξ0ρS

)

+ iImβ4

(

ξ1ξ
†
0ρS − ξ†0ρSξ1 + ξ†1ρSξ0 − ρSξ0ξ

†
1

)

. (3.64)
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Substituting eqn. (3.64) into the general expression for Markovian quantum master

equation (1.13), we have

ρ̇S = −
∫ ∞

0

dsTrB[H
SB
I (t), [HSB

I (t− s), ρS(t)⊗ ρB(0)]]

= 2

∫ ∞

0

dsReα1

(

ξ0ρSξ
†
0 −

1

2
{ξ†0ξ0, ρS}+

)

+ 2

∫ ∞

0

dsReβ1

(

ξ†0ρSξ0 −
1

2
{ξ0ξ†0, ρS}+

)

+ 2

∫ ∞

0

dsReα3

(

ξ1ρSξ
†
1 −

1

2
{ξ†1ξ1, ρS}+

)

+ 2

∫ ∞

0

dsReβ3

(

ξ†1ρSξ1 −
1

2
{ξ1ξ†1, ρS}+

)

− i[

∫ ∞

0

ds
(

Imα1ξ
†
0ξ0 − Imβ1ξ0ξ

†
0 + Imα3ξ

†
1ξ1 − Imβ3ξ1ξ

†
1

)

, ρS]

−
∫ ∞

0

dsReα2

(

ξ†1ξ0ρS + ρSξ
†
1ξ0 − ξ1ρSξ

†
0 − ξ0ρSξ

†
1

)

−
∫ ∞

0

dsReβ2

(

ξ0ξ
†
1ρS + ρSξ1ξ

†
0 − ξ†0ρSξ1 − ξ†1ρSξ0

)

−
∫ ∞

0

dsReα4

(

ξ†1ξ0ρS + ρSξ
†
0ξ1 − ξ1ρSξ

†
0 − ξ0ρSξ

†
1

)

−
∫ ∞

0

dsReβ4

(

ξ1ξ
†
0ρS + ρSξ0ξ

†
1 − ξ†0ρSξ1 − ξ†1ρSξ0

)

− i

∫ ∞

0

dsImα2

(

ξ†1ξ0ρS − ρSξ
†
1ξ0 + ξ0ρSξ

†
1 − ξ1ρSξ

†
0

)

− i

∫ ∞

0

dsImβ2

(

ξ†1ρSξ0 − ξ0ξ
†
1ρS + ρSξ1ξ

†
0 − ξ†0ρSξ1

)

− i

∫ ∞

0

dsImα4

(

ρSξ
†
0ξ1 − ξ1ρSξ

†
0 + ξ0ρSξ

†
1 − ξ†1ξ0ρS

)

− i

∫ ∞

0

dsImβ4

(

ξ1ξ
†
0ρS − ξ†0ρSξ1 + ξ†1ρSξ0 − ρSξ0ξ

†
1

)

, (3.65)

where we have again deliberately suppressed the time dependence of ρS for nota-

tional simplicity.
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Let us now set

A = 2

∫ ∞

0

dsReα1(s), B = 2

∫ ∞

0

dsReβ1(s), C = 2

∫ ∞

0

dsReα3(s)

D = 2

∫ ∞

0

dsReβ3(s), E =

∫ ∞

0

dsReα2(t, s), F =

∫ ∞

0

dsReβ2(t, s),

G =

∫ ∞

0

dsReα4(t, s), H =

∫ ∞

0

dsReβ4(t, s), I =

∫ ∞

0

dsImα2(t, s),

HLS =

∫ ∞

0

ds
(

Imα1ξ
†
0ξ0 − Imβ1ξ0ξ

†
0 + Imα3ξ

†
1ξ1 − Imβ3ξ1ξ

†
1

)

J =

∫ ∞

0

dsImβ2(t, s), K =

∫ ∞

0

dsImα4(t, s), L =

∫ ∞

0

dsImβ4(t, s),

(3.66)

so that eqn. (3.65) becomes

ρ̇S = A

(

ξ0ρSξ
†
0 −

1

2
{ξ†0ξ0, ρS}+

)

+B

(

ξ†0ρSξ0 −
1

2
{ξ0ξ†0, ρS}+

)

+ C

(

ξ1ρSξ
†
1 −

1

2
{ξ†1ξ1, ρS}+

)

+D

(

ξ†1ρSξ1 −
1

2
{ξ1ξ†1, ρS}+

)

− i[HLS, ρS]

− E
(

ξ†1ξ0ρS + ρSξ
†
1ξ0 − ξ1ρSξ

†
0 − ξ0ρSξ

†
1

)

− F
(

ξ0ξ
†
1ρS + ρSξ1ξ

†
0 − ξ†0ρSξ1 − ξ†1ρSξ0

)

− G
(

ξ†1ξ0ρS + ρSξ
†
0ξ1 − ξ1ρSξ

†
0 − ξ0ρSξ

†
1

)

− H
(

ξ1ξ
†
0ρS + ρSξ0ξ

†
1 − ξ†0ρSξ1 − ξ†1ρSξ0

)

− iI
(

ξ†1ξ0ρS − ρSξ
†
1ξ0 + ξ0ρSξ

†
1 − ξ1ρSξ

†
0

)

− iJ
(

ξ†1ρSξ0 − ξ0ξ
†
1ρS + ρSξ1ξ

†
0 − ξ†0ρSξ1

)

− iK
(

ρSξ
†
0ξ1 − ξ1ρSξ

†
0 + ξ0ρSξ

†
1 − ξ†1ξ0ρS

)

− iL
(

ξ1ξ
†
0ρS − ξ†0ρSξ1 + ξ†1ρSξ0 − ρSξ0ξ

†
1

)

. (3.67)

We note that in the fifth term of eqn. (3.65) and eqn. (3.67), we have identified
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the first term in the commutator with the Lamb-Shift Hamiltonian, HLS, by com-

parison with standard quantum master equations in the theory of open quantum

systems [27].

Solving for A,

A = 2

∫ ∞

0

dsReα1(s)

=

∫ ∞

0

ds(α1(s) + α1(s)
∗)

=

∫ ∞

0

ds

∫

dωmJ(ωm)N sin2 θe−is(ωm−λ0)(n(ωm) + 1)

+

∫ ∞

0

ds

∫

dωmJ(ωm)N sin2 θeis(ωm−λ0)(n(ωm) + 1)

= 2πN sin2 θJ(λ0)(n(λ0) + 1), (3.68)

where we have used the following property of the Dirac delta function [28],

∫ +∞

−∞

dseis(ωm−λ0) = 2πδ(ωm − λ0). (3.69)

We will make use of the cotangent hyperbolic function,

coth
(x

2

)

=
e

x
2 + e−

x
2

e
x
2 − e−

x
2

= 2

(

1

ex − 1

)

+ 1 = 2n(x) + 1. (3.70)

From eqn. (3.70), we obtain two equations,

n(λ0) =
1

2

[

coth

(

λ0
2

)

− 1

]

n(λ0) + 1 =
1

2

[

coth

(

λ0
2

)

+ 1

]

. (3.71)

Substituting eqn. (3.71) into eqn. (3.68), we obtain

A = 2πN sin2 θJ(λ0)(n(λ0) + 1) = πN sin2 θJ(λ0)

[

coth

(

λ0
2

)

+ 1

]

. (3.72)
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Repeating the same procedure for B,C and D, we get

B = 2πN sin2 θJ(λ0)n(λ0) = πN sin2 θJ(λ0)

[

coth

(

λ0
2

)

− 1

]

,

C = 2πN cos2 θJ(λ1)(n(λ1) + 1) = πN cos2 θJ(λ1)

[

coth

(

λ1
2

)

+ 1

]

,

D = 2πN cos2 θJ(λ1)n(λ1) = πN cos2 θJ(λ1)

[

coth

(

λ1
2

)

− 1

]

. (3.73)

To get E, we carry out the following integration,

E =

∫ ∞

0

dsReα2(t, s)

=
1

2

∫ ∞

0

ds(α2(t, s) + α2(t, s)
∗) (3.74)

=
1

2

∫ ∞

0

ds

∫

dωmJ(ωm)N sin θ cos θeit(λ0−λ1)e−is(ωm−λ1)(n(ωm) + 1)

+
1

2

∫ ∞

0

ds

∫

dωmJ(ωm)N sin θ cos θe−it(λ0−λ1)eis(ωm−λ1)(n(ωm) + 1)

=
πN sin θ cos θJ(λ1)

2
(n(λ1) + 1)

(

eit(λ0−λ1) + e−it(λ0−λ1)
)

+
iPN sin θ cos θ

2

∫

dωm

J(ωm)(n(ωm) + 1)

ωm − λ1

(

e−it(λ0−λ1) − eit(λ0−λ1)
)

,

where we have used the following property of the Dirac delta function [28, 31],

∫ ∞

0

dke±ikx = πδ(x)± iP
1

x
, (3.75)

with P being the principal value.

For |λ0−λ1| ≫ 1 which holds for N ≫ 1, E vanishes and similarly F,G,H, I, J,K

and L. The Lamb-Shift Hamiltonian, HLS, will only shift the energy levels of the

quasi-fermions by a value much smaller than any value in the system Hamiltonian,

HS, and does not affect dissipative dynamics [27]. Since we are only interested in

the dissipative dynamics, we will ignore the term with the Lamb-Shift Hamiltonian,
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so that eqn. (3.67) now reads

ρ̇S = A

(

ξ0ρSξ
†
0 −

1

2
{ξ†0ξ0, ρS}+

)

+B

(

ξ†0ρSξ0 −
1

2
{ξ0ξ†0, ρS}+

)

+ C

(

ξ1ρSξ
†
1 −

1

2
{ξ†1ξ1, ρS}+

)

+D

(

ξ†1ρSξ1 −
1

2
{ξ1ξ†1, ρS}+

)

. (3.76)

Substituting expressions for A,B,C, and D, eqn. (3.72) and eqns. (3.73) into eqn.

(3.76), we obtain the following quantum master equation,

ρ̇S =

1
∑

i=0

γ+i

(

ξiρSξ
†
i −

1

2
{ξ†i ξi, ρS}+

)

+ γ−i

(

ξ†i ρSξi −
1

2
{ξiξ†i , ρS}+

)

, (3.77)

where the damping rates γ±i are given by,

γ±0 = πN sin2 θJ(λ0)

(

coth
βλ0
2

± 1

)

, (3.78)

γ±1 = πN cos2 θJ(λ1)

(

coth
βλ1
2

± 1

)

, (3.79)

where J(λi) is the spectral density and β is the inverse temperature of the bosonic

Markovian bath.

We conclude this chapter by noting that eqn. (3.77) is the quantum master equa-

tion for our reduced system with the assumption that the number of fermions in

the fermionic bath is much larger than one. We note that this master equation is in

the quasi-fermionic picture with the summation running over two quasi-fermions

corresponding to ξ0 and ξ1. The objective of this chapter of deriving the quan-

tum master equation for our reduced system has been accomplished. In the next

chapter, we move on to solve this equation.
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Chapter 4

Solution of the Quantum Master

Equation

In the previous chapter, we obtained the Markovian quantum master equation for

the reduced system, eqn. (3.77), in quasi-fermionic picture with the summation

running over two quasi-fermions corresponding to ξ0 and ξ1. In this chapter, we

present the solution of this quantum master equation. From the outset, it is

emphasized that the approach we are going to take to obtain the solution is based

on a feature that is particular to our quantum master equation. This feature is

that we can rearrange the quantum master equation into two terms that commute

with each other. These two terms correspond to the two quasi-fermions, ξ0 and

ξ1.

4.1 Solution

The quantum master equation, eqn. (3.77), can be written as

ρ̇S =
1
∑

i=0

γ+i

(

ξiρSξ
†
i −

1

2
{ξ†i ξi, ρS}+

)

+ γ−i

(

ξ†i ρSξi −
1

2
{ξiξ†i , ρS}+

)

=
1
∑

i=0

αi(ρS), (4.1)
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Chapter 4. Solution of the Quantum Master Equation

where

αi(ρS) = γ+i

(

ξiρSξ
†
i −

1

2
{ξ†i ξi, ρS}+

)

+ γ−i

(

ξ†i ρSξi −
1

2
{ξiξ†i , ρS}+

)

(4.2)

is a superoperator αi acting on ρS. Substituting explicit expressions for α0 and α1

into the commutator gives

[α0, α1]ρS = 0, (4.3)

which means that α0 and α1 commute. α0 and α1 are independent, indeed they

act on different Hilbert spaces and as a result we can deduce from eqn. (4.1) the

single quasi-fermion master equation

ρ̇Si(t) = αiρSi(t), (4.4)

where i is either 0 or 1 corresponding to quasi-fermion ξ0 or ξ1, respectively.

4.2 Solution in Kraus Representation

In this section, we are going to present the solution of eqn. (4.1) in the Kraus

representation [11, 34] which allows us to express the single quasi-fermion solution

as

ρSi(t) =

M
∑

k=0

Eki(t)ρSi(0)E
†
ki(t), (4.5)

where Eki(t) are the corresponding Kraus operators subject to the normalization

condition
M
∑

k=0

E†
ki(t)Eki(t) = I, (4.6)

and the total solution as

ρS(t) =

M
∑

j,k=0

Ej0(t)Ek1(t)ρS(0)E
†
k1(t)E

†
j0(t) (4.7)
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subject to the normalization condition,

M
∑

j,k=0

E†
k1(t)E

†
j0(t)Ej0(t)Ek1(t) = I, (4.8)

which should hold if the first normalization condition, eqn. (4.6), holds, i.e.

M
∑

j,k=0

E†
k1(t)E

†
j0(t)Ej0(t)Ek1(t) =

M
∑

k=0

E†
k1(t)

(

M
∑

j=0

E†
j0(t)Ej0(t)

)

Ek1(t)

=

M
∑

k=0

E†
k1(t) (I)Ek1(t)

=
M
∑

k=0

E†
k1(t)Ek1(t)

= I. (4.9)

The implication of this is that we are going to obtain an explicit expression for the

total solution, eqn. (4.7), by obtaining explicit expressions for the Kraus operators

corresponding to a single quasi-fermion solution, eqn. (4.5).

Now recall that we have been working in the interaction picture. We will need the

solution to be in the Schrödinger picture. Switching from the interaction picture

to the Schrödinger picture using eqn. (1.10), the single quasi-fermion solution,

eqn. (4.5), becomes,

ρ0Si(t) = e−iHStρSi(t)e
iHSt

=

M
∑

k=0

E0
ki(t)ρ

0
Si(0)E

0†
ki (t), (4.10)

and the total solution, eqn. (4.7), becomes,

ρ0S(t) = e−iHStρS(t)e
iHSt

=
M
∑

j,k=0

E0
j0(t)E

0
k1(t)ρ

0
S(0)E

0†
k1(t)E

0†
j0(t), (4.11)
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where the superscript 0 corresponds to the Schrödinger picture.

4.3 Kraus operators

This section is aimed at obtaining the explicit expressions for the Kraus operators

in the Schrödinger picture. We do have the freedom of choice for the Kraus

operators. However, the normalization condition,

M
∑

k=0

E0†
ki (t)E

0
ki(t) = I, (4.12)

has to be satisfied. Because the dynamics of a fermion can be mapped to a two-

level system, we will use as parameterization of our Kraus operators the Kraus

representation of amplitude channel for the two-level system [11], i.e.

E0
0i(t) = ω

(

αξ†i ξi + βξiξ
†
i

)

,

E0
1i(t) = ωδξ†i ,

E0
2i(t) = Ω

(

βξ†i ξi + αξiξ
†
i

)

,

E0
3i(t) = Ωδξi, (4.13)

where α, β, δ, ω and Ω are to be determined. Checking our choice of the Kraus

operators for the normalization condition,

3
∑

k=0

E0†
ki (t)E

0
ki(t) = E0†

0i (t)E
0
0i(t) + E0†

1i (t)E
0
1i(t) + E0†

2i (t)E
0
2i(t) + E0†

3i (t)E
0
3i(t)

= ω2
(

αξ†i ξi + βξiξ
†
i

)2

+ ω2δ2ξiξ
†
i + Ω2

(

βξ†i ξi + αξiξ
†
i

)2

+Ω2δ2ξ†i ξi

= 1, (4.14)
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we observe that it is satisfied. So, the four chosen Kraus operators fix M in eqn.

(4.10) which can now be written as

ρ0Si(t) =
3
∑

k=0

E0
ki(t)ρ

0
Si(0)E

0†
ki (t). (4.15)

All we need to do now is to determine the coefficients α, β, δ, ω and Ω. To do that

we are going to use the quantum master equation for a single quasi-fermion in its

original form, eqn. (3.77),

ρ̇Si = γ+i

(

ξiρSξ
†
i −

1

2
{ξ†i ξi, ρS}+

)

+ γ−i

(

ξ†i ρSξi −
1

2
{ξiξ†i , ρS}+

)

. (4.16)

We expect the solution of this master equation to be of the form [27],

ρSi(t) =
1
∑

j,k=0

cjk(t)(ξ
†
i )

j |0〉〈0|ξki

= c00(t)|0〉〈0|+ c01(t)|0〉〈1|+ c10(t)|1〉〈0|+ c11(t)|1〉〈1|, (4.17)

where the coefficients cjk(t) are to be determined. Substituting eqn. (4.17) on

both sides of eqn. (4.16) and equating coefficients, we get

ċ00(t) = γ+i c11(t)− γ−i c00(t),

ċ01(t) = −γ
β
i

2
c01(t),

ċ10(t) = −γ
β
i

2
c10(t),

ċ11(t) = −γ+i c11(t) + γ−i c00(t), (4.18)
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which upon solving yields,

c00(t) =
γ+i + γ−i e

−tγ
β
i

γβi
c00(0) +

γ+i
γβi

(

1− e−tγ
β
i

)

c11(0),

c01(t) = c01(0)e
−t

γ
β
i
2 ,

c10(t) = c10(0)e
−t

γ
β
i
2 ,

c11(t) =
γ−i
γβi

(

1− e−tγ
β
i

)

c00(0) +
γ−i + γ+i e

−tγ
β
i

γβi
c11(0), (4.19)

where γβi = γ+i + γ−i . Switching from the interaction picture to the Schrödinger

picture using eqn. (2.59), eqn. (4.17) and eqn. (4.19) we have

ρ0Si(t) = e−iHStρSi(t)e
iHSt

= c000(t)|0〉〈0|+ c001(t)|0〉〈1|+ c010(t)|1〉〈0|+ c011(t)|1〉〈1|, (4.20)

where the coefficients are

c000(t) =
γ+i + γ−i e

−tγ
β
i

γβi
c00(0) +

γ+i
γβi

(

1− e−tγ
β
i

)

c11(0),

c001(t) = c01(0)e
−t

γ
β
i
2
+iλit,

c010(t) = c10(0)e
−t

γ
β
i
2
−iλit,

c011(t) =
γ−i
γβi

(

1− e−tγ
β
i

)

c00(0) +
γ−i + γ+i e

−tγ
β
i

γβi
c11(0). (4.21)

Let us now use the Kraus operators, eqn. (4.13), in the single fermion solution,

eqn. (4.15). Substituting eqn. (4.20) on both sides of eqn. (4.15) and equating
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the coefficients, we obtain

c000(t) =
(

ω2β2 + Ω2α2
)

c000(0) + Ω2δ2c011(0),

c001(t) =
(

ω2 + Ω2
)

αβc001(0),

c010(t) =
(

ω2 + Ω2
)

αβc010(0),

c011(t) = ω2δ2c000(0) +
(

ω2α2 + Ω2β2
)

c011(0). (4.22)

A comparison of eqn. (4.22) with eqn. (4.21) reveals that

Ω2 =
γ+

i

γ
β
i

, ω2 =
γ−
i

γ
β
i

,

α2 = 1, α = 1,

β = e−
t
2
γ
β
i −iλit, δ =

√

1− e−tγ
β
i .

(4.23)

When we substitute eqn. (4.23) into eqn. (4.13), we obtain

E0
0i(t) = cosαi

(

ξ†i ξi + fi(t)ξiξ
†
i

)

,

E0
1i(t) = cosαigi(t)ξ

†
i ,

E0
2i(t) = sinαi

(

ξiξ
†
i + f ∗

i (t)ξ
†
i ξi

)

,

E0
3i(t) = sinαigi(t)ξi, (4.24)

as the Kraus operators, where

cosαi =

√

γ−i
γβi

=

√

1

1 + eβλi
=

√
pi, (4.25)

sinαi =

√

γ+i

γβi
=

√

1− 1

1 + eβλi
=
√

1− pi, (4.26)

fi(t) = exp

(

−γ
β
i

2
t− iλit

)

and gi(t) =
√

1− |fi(t)|2. (4.27)
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In the remainder of this thesis, we will be working in the Schrödinger picture.

Therefore, for notational simplicity, we are going to suppress the superscript 0

corresponding to the Schrödinger picture so that the total solution of the quantum

master equation, eqn. (4.11), will appear as

ρS(t) =
3
∑

j,k=0

Ej0(t)Ek1(t)ρS(0)E
†
k1(t)E

†
j0(t), (4.28)

where the Kraus operators are given as

E0i(t) = cosαi

(

ξ†i ξi + fi(t)ξiξ
†
i

)

,

E1i(t) = cosαigi(t)ξ
†
i ,

E2i(t) = sinαi

(

ξiξ
†
i + f ∗

i (t)ξ
†
i ξi

)

,

E3i(t) = sinαigi(t)ξi. (4.29)

To conclude this chapter, we state that we have solved the quantum master equa-

tion for the reduced sytem which we derived in Chapter 3. We switched from the

interaction picture to the Schrödinger picture expressing the solution in the Kraus

representation. We showed that the Kraus operators obey the normalization con-

dition. This implies that the trace [11] of the solution is 1; which must be the case

for any correct probability preserving density matrix [11, 27]. Setting t = 0 in the

solution reduces it to ρS(0) as expected. We can therefore be confident that eqn.

(4.28) is the correct solution.
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Results and Discussion

In the previous chapter, we solved the derived quantum master equation for the

reduced system consisting of the fermion of interest, the fermionic bath and the

interaction between them. However, the subject of this thesis is the fermion of

interest. Therefore, the first section of this chapter is devoted to a calculation of

the density matrix of the fermion of interest from the solution, eqn. (4.28), which

we obtained in the previous chapter. We will then use this calculated density

matrix of the fermion of interest to calculate the mean number of fermions. This

will be followed by a plot of the mean number of fermions against time to observe

the dynamics of the fermion of interest. We will finally investigate thermalization

in Section 5.2.

5.1 Dynamics of the Fermion of Interest

In this section we endeavor to obtain the reduced density matrix of the fermion of

interest in the original fermionic picture. We consider that initially we only have

a single fermion of interest and no fermions in the mesoscopic bath i.e.,

ρS(0) = |ψd〉〈ψd| ⊗ |ψc〉〈ψc| = d†|0〉〈0|d,
(5.1)
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where we have used the state vector |ψd〉 = d†|0〉 for the electron of interest and

|ψc〉 = |0〉 for the mesoscopic bath.

Substituting eqn. (5.1) into eqn. (4.28), we have

ρS(t) =
3
∑

j,k=0

Ej0(t)Ek1(t)d
†|0〉〈0|dE†

k1(t)E
†
j0(t). (5.2)

Next, we transform from the quasi-fermionic picture to the original fermionic pic-

ture by substituting into the Kraus operators, eqn. (4.29), the transformation

equations

ξ0 = cos θd+
sin θ√
N

N
∑

i=1

ci,

ξ1 = − sin θd+
cos θ√
N

N
∑

i=1

ci, (5.3)

which we obtained earlier on in Chapter 2, eqn. (2.61). We then trace out the

degrees of freedom of the mesoscopic bath, c’s, from the reduced density matrix,

eqn. (5.2). Thus,

ρe(t) = Trc[ρS(t)]

=

1
∑

i1,i2,··· ,iN=0

〈0|(cN)iN · · · (c2)i2(c1)i1ρS(t)(c†1)i1(c†2)i2 · · · (c†N)iN |0〉

= κ(t)d†|0〉〈0|d+ (1− κ(t))|0〉〈0|, (5.4)

where

κ(t) = p0 cos
2 θ + p1 sin

2 θ + w(t)

+|f0(t)|2 cos2 θ
(

cos2 θ (1− p0p1)− p0
)

+|f1(t)|2 sin2 θ
(

sin2 θ (1− p0p1)− p1
)

, (5.5)

and

w(t) = 2Re(f0(t)f
∗
1 (t)) sin

2 θ cos2 θ. (5.6)
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Figure 5.1: Time dependence of the mean number of the fermion of interest,
κ(t), as a function of time, t, for different values of the coupling strength, g, to
the mesoscopic bath. The rest of the parameters are chosen to be the same for

all three curves: ǫ = 1, ω = 1.3, N = 30, J(λ0)=J(λ1)=0.01 and β = 0.1.

Calculating the trace of ρe(t), we obtain

Tr[ρe(t)] = κ(t)〈0|dd†|0〉+ (1− κ(t))〈0|0〉 = 1, (5.7)

which confirms that ρe(t) preserves probability as expected for a correct density

matrix [27].

To investigate the dynamics of the fermion of interest, let us calculate the mean

number of the fermion of interest. Using eqn. (5.4), the mean number of the

fermion of interest is obtained to be

〈d†d〉 = Tr[d†dρe(t)]

= κ(t)Tr[d†d
(

d†|0〉〈0|d
)

] + (1− κ(t))Tr[d†d (|0〉〈0|)]
= κ(t). (5.8)

Fig. 5.1 and Fig. 5.2 show our investigation of the behaviour of the mean number

of the fermion of interest, κ(t), with time, t, for different values of the number

of fermions, N , in the mesoscopic bath and for different values of the coupling

strength, g, to the mesoscopic bath.
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Figure 5.2: Time dependence of the mean number of the fermion of interest,
κ(t), as a function of time, t, for different values of the number of fermions, N ,
in the mesoscopic bath. The rest of the parameters are chosen to be the same

for all three curves: ǫ = 1, ω = 1.3, g = 3, J(λ0)=J(λ1)=0.01 and β = 1.

In Fig. 5.1 and Fig. 5.2 the dynamics of the mean number of the fermion of

interest decay exponentially with time and approaches equilibrium as time goes

to infinity. This indicates that thermalization is achieved as time goes to infinity

in agreement with literature [35]. In Fig. 5.1 we analyze different regimes of the

interaction between the fermion of interest and meso-reservoir of fermions. It is

clear that in the weak coupling case (Fig. 5.1: red curve) Markovian dissipation

[27] is observed. However, increasing the interaction strength (g), the process

of thermalization shows strong oscillations, a sign of strong interactions which is

typical of non-Markovian behaviour [25] (Fig. 5.1: black and blue curves). We note

that the original master equation, eqn. (1.13), for the total system was derived

by assuming Markovian dynamics, but we see emergence of this non-Markovian

behaviour for the reduced system consisting of the fermion of interest and the

mesocopic bath. In Fig. 5.2 we analyze the influence of the number of fermions in

the mesoscopic bath on the dynamics of the fermion. It is clear from Fig. 5.2 that

increasing the number of fermions strongly influences the frequency of oscillations:

as the number of fermions in the fermionic bath increases, interactions increase

which in turn increases the frequency of oscillations.
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5.2 Thermalization of the Fermion of Interest

Both Fig. 5.1 and Fig. 5.2 show signs of thermalization as time approaches infinity.

In this section, we are going to show that thermalization is indeed achieved as time

approaches infinity.

Using the well known thermal equilibrium state [11, 27],

ρTS =
e−βHS

Z
, (5.9)

where Z = Tr[e−βHS ] is the normalizing partition function, the mean number of

the fermion of interest in thermal equilibrium is

κTS = 〈d†d〉 = Tr[d†dρTS] =
Tr[d†de−βHS ]

Tr[e−βHS ]
. (5.10)

Substituting the system Hamiltonian, eqn. (2.59), into eqn. (5.10), we obtain

κTS =
Tr[d†de−β(λ0ξ

†
0
ξ0+λ1ξ

†
1
ξ1)]Tr[e−β

∑N
i=2

λiξ
†
i ξi]

Tr[e−β(λ0ξ
†
0
ξ0+λ1ξ

†
1
ξ1)]Tr[e−β

∑N
i=2

λiξ
†
i ξi ]

=
Tr[d†de−β(λ0ξ

†
0
ξ0+λ1ξ

†
1
ξ1)]

Tr[e−β(λ0ξ
†
0
ξ0+λ1ξ

†
1
ξ1)]

, (5.11)

so that upon using

d = cos θξ0 − sin θξ1

from eqn. (3.8) and simplifying, we get

κTS =
e−βλ0 cos2 θ + e−β(λ0+λ1) + e−βλ1 sin2 θ

(1 + e−βλ0)(1 + e−βλ1)
. (5.12)

Multiplying both the numerator and denominator of eqn. (5.12) by eβ(λ0+λ1), we

get

κTS =
eβλ1 cos2 θ + 1 + eβλ0 sin2 θ

(1 + eβλ0)(1 + eβλ1)
. (5.13)

When we replace 1 on the numerator in eqn. (5.13) by cos2 θ+sin2 θ and simplify,

we obtain

κTS = p0 cos
2 θ + p1 sin

2 θ, (5.14)
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where p0 and p1 are given by eqn. (4.25). Eqn. (5.14) is the expected mean

number of the fermion of interest in thermal equilibrium.

Let us now see if thermalization is achieved as time approaches infinity from the

reduced dynamics which we have derived in this present work. We set t = ∞ in

eqn. (5.8) and eqn. (5.5). This gives us,

κ(∞) = p0 cos
2 θ + p1 sin

2 θ, (5.15)

which is exactly the same as the actual thermal equilibrium mean number, eqn.

(5.14). This indicates that thermalization is indeed achieved as time approaches

infinity. The equality of the derived thermal equilibrium mean number and the

actual thermal equilibrium mean number also gives us confidence in the detailed

derivations conducted in this thesis.
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Conclusion

In conclusion, we derived and solved analytically the quantum master equation for

the spinless electron interacting with a mesosopic bath of spinless electrons with

restrictions on the system-bath interaction. We considered the fermion of interest

to be strongly coupled to the surrounding mesosopic bath of electrons which is

weakly coupled to the Markovian bosonic bath. The coupling strength between

the electron of interest and the rest of the electrons in the fermionic bath was

taken to be the same. By tracing out the degrees of freedom of the mesosopic

bath of fermions from the solution of the quantum master equation, we calculated

the density matrix of the fermion of interest. This density matrix of the fermion

of interest was then used to calculate the mean number of the fermion of interest

which we used in our analysis of the dynamics and thermalization of the fermion

of interest.

We plotted graphs of the mean number of the fermion of interest against time for

different values of the number of fermions in the mesoscopic bath and for different

values of the coupling strength to the mesoscopic bath.

In the weak coupling case Markovian dissipation was observed and in the strong

coupling regime non-Markovian behaviour was observed [25, 27]. Increasing the

number of fermions strongly influenced the frequency of oscillations: as the number

of fermions in the fermionic bath increased, interactions increased which in turn

increased the frequency of oscillations.
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We observed that as time approached infinity the fermion of interest was ther-

malized by the Markovian bosonic bath through its weak interaction with the

fermionic bath as expected from literature [11, 27, 35]. To verify thermalization,

we conducted two calculations. Firstly, we calculated the mean number of the

fermion of interest in thermal equilibrium state from the derived density matrix of

the fermion of interest. Secondly, we calculated the mean number of the fermion

of interest in thermal equilibrium state from the well known [11, 27] expression

for the density matrix of the thermal equilibrium state. A comparison of these

two results revealed an exact match confirming that thermalization was indeed

achieved as time approached infinity.

In the future, we plan to take into account spin-spin interactions and consider

more general initial conditions and more general fermion-fermion interactions.
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