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Abstract

Wetlands are natural productive systeproviding numerous ecosystem goods and servi€ghbon
sequestration, groundwater recharge, trapping of pollutants and reducing sediments and habitat provision
for a wide assortment of flora and fauna are some of the benefits associated withvetidtigs Despte

all the benefits, wetlands are under threat from anthropogenic activities and other stressors. To prevent
further loss and to conserve ekigt wetland ecosystems for thervices rendered, restoration of wetlands

has become a common practice worldwldewever, restored wetlands are usually susceptible to invasive
plant species such &hragmites australiswhich have effects on both wetland structure and function.
Vegetation biomass is one of the imattributes used to quantify the extent of wetland rehabilitation
success. Aboveground biomass is preferred because it is eassetwemeasureand interpret sia basis

for comparison between rehabilitated and pristine wetlands. Estimafdmagmitesiomass is important

to understand its growth and monitor its distribution so that effective plans can be implemented to deal with
invasions. Therefore, accurate quantification of existiipragmitesaboveground biomaseequires
techniques that will prodie up to date information and improve the ability to detect changes in natural
versus rehabilitated wetlandBhe advancement of multispectral remote sensing provides rapid and cost
effective methods to estimatariability of Phragmitedbiomass productioat different scales. The present
study sought to investigate the utility of new generation multispesgtreors in assessing the variability of
Phragmitesdbiomass between natural wetland versus rehabilitated wetland. These inbkicieamercial
broadbad RapidEye anthe cheap frely accessible moderate Sentindli2ltispectral hstrumeni{MSI)

and Landsat 8 operational Land Imager (Qdd}a. To achieve this objective, the study was limited)to (i
testing the utility of high spatial resolution RapidEye data in quantifying the variabiliBh@fgmites
biomass between natural and rehabilitated wetlands and (ii) comparing the stoénglvly launched

multispectral sensor Sentinel 2 MSI and Lan@s®LI in Phragmitesbiomass assessment.

The ptentialof all corresponding sensdie biomass estimatiowere tested based on Partial Least Square
(PLS) regressioalgorithm. For the first objective, the PLS regression selected the following bamgs as t
most optimum variables that could estimate biomass in both wetlands: blue band (B1), red band (B3), and
red edge (B4)The combination of both extracted bands and vegetation indices improved predictive
accuracy of natural biomass estimatiming PLSR The study furthetested the potential of assessing
Phragmitesaboveground biomass using medium multispectral Sentinel 2 MSI and Landsat 8 OLhdata.
results were compared withe findings obtained frorRapidEyedata Findings indicated that Sentinel 2

MSI outperformed both Landsat 8 OLI and RapidEye using extracted bands and vegetation indices.

However, findings are inconclusive concerning whether Landsat 8 OLI outperformed RapidEye or not for



Phragmitesbhiomass estimation. The increased unique sgdutirads coverage of medium multispectral
Sentinel 2 MSlhasthe ability to quantify the variability oPhragmitesbiomass between natural and
rehabilitated wetlands with high accuradyis hashugepractical implications for monitoring afetland
vegetation species. The study clearly demonstrated that estimation of vegetation biomass in wetlands could

be improved with cheap and freely availatf&#asuch as Sentinel 2 MSI data.
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CHAPTER ONE

General Background

1.1 General Introduction

Wetlands are an important component of global ecosystems because of their role in maintenance of
environmental quality anare rich in biologicatliversity(Zedler, 2000Zedler &Kercher, 200h They are

known as natural assets and infrastructure aljpea@ide numerous benefits frediorwitz & Finlayson,

2017). Healthy wetlands shddi be able to provide numerosecial and economicbenefitsincluding
environmentalaluablefunctions(Lantz & Wang, 2013Murray et al., 2011l These include regulating

water flows throughout the seasquirifying water by breaking down some chemicals insableforms

(Islam et al., 2008Sieben et al., 2031They aid in replenishing ground water supplies as well as shoreline
stabilization. Wetlands aesa hatural sponge by abding water duing flooding periods and releasiitg

during dry periodgPrior & Johnes, 2002Jluocha & Okeke, 2004 Most importantly, wetlands store a

| arge portion of the worl dds car bon dKayganliepal,r et ur n
201Q Vashum & Jayakumar, 201R&Vetlands are hardiorking ecosystems that provide a critical habitat

for fauna and florgKotze et al. 2012Dini and Bahadur 20)6Wetland vegetation control pollution by
trapping and reducingediments in the watevegetation isalso a good indicator of for early sigyof any

physical and or chemical degradation in wetland environmébDennison et al., 1993 Furthermore,
wetlandg have high economic value providing many naturaldpctsand recreational opportunities.
However, all the benefits and functions they provide dependhephysical or biologicatondition of
wetlandg(Meng et al., 2016RiversMoore & Cowden, 201

Despitethe provision of these valuable services amtfions,wetlands continue to bgolluted,drained

and converted tagricultural landsand urban development dueitmrease irhuman population growth
(Carle et al., 20L4Vieli et al., 2014 Sieben et al., 20)1lt is estimated that 50% of the wetlands globally

and 65% of wetlands in South Africa are under threat and 48 % of them are being critically endangered and
lost (Kotze et al., 201.2Nel & Driver, 2013. This excessive destabilization of wetlands has triggared
urgentneed forprotecton and restoration in various places globally, inolgdSouth Africa. Researaim
wetlandrehabilitation creation and degradation have become more important to understand the structure
and function of restored wetlan{/ang et al., 2012 The success of habilitationwill depend on the
component repaire¢e.g. hydrology, soil and vegetatiorGenerally, the purpose ofhabilitationis to
restoreecosystem function anstructure at all levelby consideringhe entire ecosystertRuizZ Jaen &
Mitchell Aide, 2005 Zedler, 200D. Theoretically,arestored wetlandghould resemble the naturaktland



in terms of structure and functigRassell, 200(Purcell et al., 2002In practice, measuring the success of
rehailitation is not a straightforwargrocess This is because some ecosystem functions Inegpme
evident after a long tim@Mitsch & Wilson, 1996 RuizZ Jaen & Mitchell Aide, 2006 Vegetatiorstructure

such as plant density, species diversity, vegetation cover, and biomassfanedfor wetlandcondition
assessmentRuizZ Jaen & Mitchell Aide, 200p Vegetation structure such as aboveground biomass is
preferred because it is easy to observe, interpresandtal part of wetland sticture and functiofEckert

& Engesser, 201Xay C Stefanik & Mitsch, 203,2Vang et al., 20121t is reported in literaturéhat not

all rehabilitated wetlands perform all functions nor do thléfunction well. The geographical location and
size of a wetland may determine what functiomealy perform(Novitski et al., 1996Siobhan Fennessy et

al., 2007. Factors such as the amount of water quality and quantity entering the wetland, climatic
conditions type of vegetatiorand disturbance within and surrounding wetkmgtermine how well a
wetland will perform its functioffCui et al., 2009Novitski et al., 1995 In cases where rehabilitation has
been successful, rehabilitated wetlands have inherently been more susceptible to invasive species
(Kettenring & Adams, 201, Kettenring et al., 20)2These invasive species hguafoundeffects orthe
structure(e.g. species distributior) and function(e.g. alteration of water qualitydf the rehabilitated
wetlands (Litton et al., 2006Mac k & DO ANt oni o, 2003

Phragmites astralis (Cav.) Trin. Ex Steud known as common reeds, belong to the farhRpaceae.
Phragmites australighereafterPhragmite$ is one of the most studied and widely distributed perennial
grass in freshwater of South African wetlarfidébbing et al., 201;3Russell & Kraaij, 2008 It plays vital
ecological and social kes in most Southern African countri€hragmitescontrol soil erosion, purifying
water as well as providing habitat for wildlifailstock et al., 20010nojeghuo et al., 20)0Furthermore,

it is also of social and economicehlue as it is usetbr making mats, basketpaper, medicine, light
construction, and thatching roo3espite its environmental and so@oonomic values, literature indicates
that Phragmiteshas an inclination of dominating other wetland plants bycoatpeting them for space,
nutrients, andunlight (Kettenring & Adams, 20%1Lantz & Wang, 2013Russell & Kraaij, 2008 This

trait has led to difference# opiniors held by natural resource managers conceriiag | ant 6 s ecol og
value and its potential usefulness for environmental enhancd#isiock et al., 200L Despitethese
differencef opinion studies orPhragmiteshave been focusing afisinfestation, mitigation, fertilization
and biological propertiefettenring & Adams, 201 1Kettenring et al., 2012 Research onhe spatial
distributionof Phragmitesandquantifyingits quantity (biomasd)etween rehabilitated and pristine wetland
is rare Becauseébiomass has long beesed as an indicator of wetland heglmderson & Davis, 2013
RuizZ Jaen & Mitchell Aide, 200§p fresh aboveground biomassRifiragmitescould be a direct measure

of rehabilitated wetland functigiCatling & Mitrow, 2011 Hossain et al., 20)0Evaluation ofPhragmites



aboveground biomass in rehabilitated wetland should be compitregristine sites to estimate the level
of rehabilitationsuccesg¢Passell, 2000Purcell et al., 200Ruiz-Jaén & Ade, 2003.

In order to understand the spatial distributiorPbfagmitesand monitor the growth at different wetland
health conditios, there is a need to develop réiate techniques for monitoringhragmitesdistribution

and predicting biomasas an approach toapid assessment and managesesft the speciesThese
techniques should be able to provide required information that will aid monitoring with the aim of
implementing an effective plan to deal witivasiors. Traditional methods such as field sursvapddirect

visual observatios have beerthe primary source of invasive speciefata collection. However, Hese
methodsare timeconsuming, subjective, and always very limited in spatial extent and lack detailed
information about the distribution amgiantityof invasive speciesn a broad scalge. Adam et al., 2010
BourgeauChavez et al., 2013zesmi & Bauer, 2002 These limitations make it challenging to provide
reaktimeinformation or data to facilitatessessmesbf changes in these wetland ecosystex®s a certain

period of time(Hestir et al., 2008 In this regard, advanced multispectramotely sensed data offer
alternative methods to accomplish this taskno or affordable castn contrast to fielbased survey,
multispectraremote sensing techniquesver a much larger spatial area, in a short period while repeatedly
measuring the sae areas for a longer time sg@h Adam et al., 201@zesmi & Bauer, 20Q2Jnderwood

et al.,, 2003 These advantages have attracted a significant amount of scientific research especially for
natural vegetation biomaassessments and monitoraigdifferent scaleEnglhart et al., 2031.u, 2009.
Although biomass cannot be directly quantified from spardtispectral satellite sensors haween used

to estimate biomass through empirical relationship between reflectance and spectral indices when integrated
with field measuremeni&nglhart et al., 201 XGarcia et al., 20tMutanga & Adam, 2011

Various multispectral sensors are available for wetland biomass mapping and been widely used to monitor
wetland vegetation statyByrd et al., 2014Key et al., 200 Multispectral sensors such as Advanced

Very High Resolution Radmeter (AVHRR) Moderate Resolution Imaging Spectroradioméi4®DIS)

and Landsathematic Mapper (TM) and Enhanced Thematic Mapper (Epidvide longtermarchives

for ecological monitoringpurposegNagendra et al., 2018obinson et al., 20)&nd are freely accessible.
MODIS and AVHRR were reported to migpresent the spatial variations of invasive plant species due to
thewide swatls (Shoko & Mutanga, 203)7Similarly, the moderate spatial resolutidiedium Resolubn

Imaging Spectrometer (MERIS) and Landsat &MIETM are insufficient for monitoring and quantifying
different vegetation structures such as bionadsigh accuracypecause ofpectral mixingand saturation
problems(E. Adam et al., 203,00zesmi & Bauer, 2002 These data create ambiguous differentiation

anong vegetation speci¢lagendra et al., 201®zesmi & Bauer, 200X henkabail et al., 2032



The challenges associated with characterizatiometfand vegetatiomight be improvedvith the use of

finer spatial resolutiorsuch asRapidEye and Worldviewdata These multispectral satellite sensors
increased the potentigburces of data that could be used to charactegeetral variability ofvarious
wetland vegetation speci¢®zdemir & Kanieli, 2011 Ramoelo et al., 2015Robinson et al., 206
RapidEye imag®&vas the first commercial satellite sensor with red edge covatagfinerspatial resolution

of 5m (Houborg et al., 20)5Despitehaving attractive characteristics and producing good results in other
vegetatiorstudies, theotential of RapidEye data for estimatiRragmitesbiomassn wetlands has not

yet beenexploredbecause of the high acquisitimost In this regard, quantification dPhragmites
aboveground biomass lies in the abilityabieap ad readily available earth observatidata Recenly,
advancd new generatiomedium Landsat 8 OLI (Operational Land Imager) and SentiNell2Spectral
Instrument MSI) have attractive characteristics that are promising for improving aboveground biomass
estimation(Mutanga et al., 20380zdemir & Karnieli, 2011 Multiple studies havelemonstrated the
strength of additional bands in these sensors for biomass quantifi¢atioinstancePube and Mutanga
(2015) successfully estimated aboveground biomass of different forest species using Landsat 8 OLI and
ETM. The authareported a good performance achieved fraw generation Landsat 8 OLI data. While
Sentinel 2 MSI was found to produce high or same accuracy as Landsat 8 Glylpengpectral infrared
imager (HysplIRI) for estimating grass aboveground biomass under different fertilizer management
(Sibanda et al., 20)6To the best obur knowledge, these multispectral sensors have not been tested in
comparing theabovegroundbiomass ofPhragmitesbetween natural and rehabilitated wetlan@ike
availability of these new improvedhultispectral sensorwith lower or no cos make remote sensing
attractive for monitoring invasive speciesd estimating wetland vegetatidnomassin natural and
rehabilitated wetland€Choosing between them is a function of cost, spatial and spectral rescmiion
revisit period. Each satellite sensor offer different advantages and disadvantages depending on the objective
of the study(Byrd et al., 2014C. Yang & Everitt, 201D

1.2.Research Objectives
The main objective of this study was to explore the utilitpef generatiomultispectral satellite sensors

in quantifying the variability ofPhragmitesaboveground biomass between the natural wetland and

rehabilitated wetland in the City of Tshwane Metropolitan MunicipaBityyth Africa.
The specific objectives eve as follows:

1 To test thepotentialof fine spectral resolutioRapidEye satellite image in assessing the variability

of Phragmitesaboveground biomass between natural and rehabilitated wetlands



9 Tocompare the strengthioéwly launchednedium spctralresolution Sentinel 2 MSI and Landsat
8 OLI in assessing the variability dthragmitesabovegroundbiomassbetween natural and

rehabilitated wetlands.

1.3.Research Questions

1 How well can RapidEye with red band coverage quaRtifiagmitesaboveground bioma8s
1 Canthe new mediunsentinel 2 MSI with red edgend Landsat 8 OLI with refined near infrared

coveragemprove biomass quantification accuracy tfiaer spatial resolutioiRapidEye

1.4.Thesis Structure

This thesisis compiised of four chapters. Chapter drovides the general backgrourdghlightingthe
importanceand problems associated with wetlartse different types of multispectral remote sendiig
used for wdand vegetation and their limitatieprovided in the context of published literatufdis is in
laying groundworkand exploringnew remote sensing techniques that can help estiRiatagmites

biomass with high accuracy at affordable cost.

Chapter2 and3 are writtenas a stanglone artiok in the form of publishable manuscript format that can
be read separately from the rest of the thékisvever, these chapters draanclusions that link the overall
research objectives and questions. In that regard, replications occur imrdtkiction and methods
sectionsChapter 2 investigatdbe potential of using RapidEye satellite data to estimate the variability of
Phragmitesbiomass between natural and rehabilitated wetlafdis. chapter highlightshe significant
correlation between measurbibmass with spectral bands and vegetation indices. Furthermore, PLS
regression was implemented to predict aboveground biomass bagededifferenpredictor variables.

All RapidEye predictor variables were testeddetermine which predictor has the potential to estimate

Phragmiteshiomass bettewith high accuracy

Chapter 3ifhranuscripin preparation), investigad¢he potential of using cheap available earth observation
dataand compared it with commercial sens. Specifically, we compared the strength of Sentinel 2 MSI
with its counterpart Landsat 8 OLI for quantifyiRfpragmitesbiomass between natural and rehabilitated
wetlands. The results obtained from both satellite images were compared with the fothieged from

chapter two. This chapter explore the increased spectral coverage in Sentinel 2 MSI (specifically, red edge)
and Landsat 8 OLI (near infrared) with moderate resolution with red edge contained in high spatial

resolution.



Research synthesis presentedn chapter 4. Thdindings areprovided in light of the objectiveand
guestionsof the study. Conclusion is based on the results obtained in relation to the existing published
literatureand answerthe proposedesearch question. Some recoemuations for future research on the
application of multispectral remote sensingPtifragmitesbiomass estimation are highlighted. A long list

of references is provided at the end of the thesis.



CHAPTER TWO

The utility of new generation RapidEye multispectral sensor in assessing aboveground biomass of
Phragmites australigcommon reeds) in wetlands areas.

This chapter is based on:

Mogano K, Chirima J.G, Mutanga O (submitted). Testing the potential of Rapiditytispectral sensor
in assessing abogmund biomass dPhragmites ausalis (common reeds) in wetlands aredsurnal of
Wetlands

Abstract

Wetland rehabilitation has become a common important practice to recover critically degraded ecosystem
services. Wetland biomass is one of the main attributes used to quantify the extent of wetland rehabilitation.
Most wetlands are vulnerable to invasipesies such aBhragmites australisTo evaluate the success of
wetland rehabilitation, we quantified the fresh aboveground biomdwagmitesan invasive species, in

a rehabilitated wetland. A pristine wetland was used as a control. Convectionatenesags are accurate

and reliable; however, it is difficult to harvest the required amounts of materials over large areas in a
wetland where mobility is restricted. This study explored the potential of using RapidEye data to estimate
the aboveground biomssof Phragmitesin wetland. We performed a correlation analysis between
measuredPhragmitesbiomass and the predicted biomass derived from RapidEye data on both wetlands.
The results showed that natural wetldratl high aboveground biomasgn the rehabiated wetland
However the rehabilitated wetlarghowed wider biomass distribution patteki RapidEye spectral bands

were significantly correlated withPhragmites measuredabovegroundbiomass. The coefficient of
determination(R2) and root mean square error (RMSE) did not generate stensiresults through all
models The individual models were weaker thamoleddatasetThe findings of the study are as follows:

The spectral bandsstimated biomass better with an RM&kHue of 449.6 g/m2.The vegetation indices
achieved high accuracy foehabilitatechiomass estimation with RMSE value of 387.1 g/m2. When both
bands and vegetation indices were combined, the model estiRtategimitesslightly better than spectral

band model (RMSE= 434.2 g/mp Our study suggests that estimation of aboveground biomass of
Phragmiteds possible with RapidEye imagery.

Keywords natural wetland, rehabilitated wetlarmhovegroundiomassPhragmites australisRapidEye

imagery



2.1. Introduction

Wetlands are important and productive ecosyst@hisch & Gosselink, 2000 They provide a rargof
ecosystem services, such as storm protection, biodiversity support, nutrient removal, water quality
improvement, and, carbon sequestrafioedler & Kercher, 2006 Furthermore, wetlands provide habitat

to an array of wildlife animals and plangislemas, 2013and have high economic, cultural, and recreational
values(Desta et al., 20)2Despite the goods and services they provide globally, wetlands are being lost at
an alarming rate because of anthropogenic disturbances such as agriculture, urban development, water
abstracon, and mining(Carle et al., 20L4Meli et al., 2014 Sieben et al., 20}1The loss or degradation

of wetlands could increase the net global carbon dioxide level in the atmosphere by 6%(ptapleéason

et al., 2012Vashum & Jayakumar, 201pbr herefore, damaged and degraded wetlands require effective
protection and restoration. Wetland restoration has become a common pvadtiedde to recover critical

and degraded ecosystem servigfang etl., 2012. Recently, research on wetland restoration has become

important in order to understand the structure and ecological fuimgfiofirestored wetlarsl

It is difficult to measure the function of restored wetlands directly, because changee ipreperties (e.g.

soil nutrients, soil organic) camly be observed after a long tirfidatthews eal., 2009. Furthermore, the

direct assessments of restored wetlands are rare, as are data supporting the use of indicators of the success
and functionof these ecosysterfZedler & LindigCisneros, 2002 This is because in an ideal world,
restored wetlands would be assessed with long term;$aaje data, however some indicators may not be
determined in few years after restorat{@&viner et al., 201, 2Wortley et al., 2018 Several autherhave
suggested that restoration success could be based on vegetation characteristics, species diversity and
wetland ecological process@uiz-Jaén & Aide, 20056 In practice, vegetation is often used as the indicator

of success of failure of restoration, because it is assumed that with the recovery of vegetation follow the
ecological processgickert & Engesser, 201&ay Christine Stefanik, 20)2Most importantly, these
measurements are helpful and practical for determining whether rehabilitated wetlands begin to
approximate the pristine wetlands both structurally and functionally as they ageldoweter, rstored

wetlands are particularly susceptible to rapid spread of invasive plants that can hinder restoration success
(Kettenring & Adams, 202;1Saltonstall & Stevenson, 2007

Phragmites australis5common reeds}y one of the most important and widely distributed invasive grasses
in wetland environmentéRussell & Kraaij, 2008Wang et al., 2022and considered highly productive
(Soetaert et al., 2004 hragmitess known to invade natural, rehabilitated and created wetlands , forming
monotypic stand and displacing other native speci@sngloner, 2009 Kettenring & Adams, 2011

Kettenring et al., 2012 Although some studies indicated the uncertanities regardindhbst to mesure



the success of rehabilitatidMatthews et al., 2009the standing fresh biomae$ Phragmitesinvasive
species may be a direct measure of wetland ecosytem funct{@ationg & Mitrow, 2012 Hossain et al.,
2010. The aboveground biomass is an essential index for monittdrangtabilility and productivity of
wetland ecosystenf&Klemas, 2013Mutanga & Adam, 201)1 Althoughabovegroundbiomass is important
for determining wetland health and functiothe biomass ofPhragmites received little attention
Furthermore, the response &thragmites under different wetlands management is essential for
understanding factors that promte invasion. To understand the distribution and quaRtinagrmites
requires accurate monitoring and assessment in a spatial context at finéPsngta et al., 2007Given

the fact that wetlands are complex ecosystglagier Martined.6pez et al., 2014Viwita, 2016,0btainig

relaible estimates poses a major challer{§ekino et al., 20Q03Xie et al., 2009

Conventional field measurements for quantifying the variability of aboveground biomass of invasive
species across different wetland management sites are accurate and(Eelidtéan et al., 201,@. Chen

et al., 2012 Although these methods are considered accurate, it is difficult to harvest the required amounts
of materials to accurately measure aboveground biomass over large spatial espatig|ly in wetlad
ecosystems where mobility is usually restric(8ilva et al., 2008Zomer et al., 2009 Therefore, field
methods are impractical for quantification of aboveground biomass of wetland vegetation, especially in
closly dense stands of plants and dangerous locations. It is well documented that optical remote sensing
imagery is a primary source of data that provides valuable information regarding wetland vegetation
characteristics since it offers instant and repetitif@mation from local to global scales at a low o@st

Adam et al., 2014Goetz & Dubayah, 201 5ibanda et al., 20)5Because of these advantages, remotely
sensed data have attracted a significant amount of scientific research, especially concerning estimating
natural vegetation biomass at difet scalegEnglhart et al., 201, 1Lu, 200§. Although biomass cannot

be directy quantified from space, remote sensing has been used to estimate biomass through empirical
relationship between reflectance and spectral indices when integrated with field measyEerménsiam

& Mutanga, 2012aEnglhart et al., 201, 1Garcia et al., 20fMutanga et al., 20)2As a result, different

remote sensing methods have been used to estimate the abovegjmuads of wetland vegetation
successfullyByrd et al., 2014Dronova et al., 2033Mutanga et al., 20)2However literaturesuggests

that low to moderate spatial resolution of multispectral sensors (e.g. Landsat, SPOT, ASTER and MODIS)
are valuable for mapping biomass at a global scale rather than at a locéAbdaldRahman et al., 2014

E. Adam et al., 203Dube et al., 2014 These multispectral sensors pose a challenging task of dealing
with mixed pixels due to larger sensor footp(iet Adam et al., 20L0Carreiras et al., 201Reschke &

Huttich, 2013. Moreover, the use of traditional indices showed to have limited success especially in
wetlands areas dominated Byrragmiteswith high productivity. It isdocumentedn the literature that

traditional indices saturate when the aboveground biomass reach 3QBgiafam et al 201Q. Provided
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with this limitation, biomass estimation of individual plant species with moderate broadband sensors will
beimpossiblein wetland ecosystem$herefore, optical sensors that aharacterizethy high spectral and

spatial resolutiomre requirad for biomass estimation in wetland areas

The development of new multispectral sensors with improved high spatial and spectral resolution such as
WorldView-2 and 3, and, Rapid Eye, designed with aadde band provide a better opportunity for
biomass retrieval at local to regional scg@zdemir & Karnieli, 2011Ramoelo et al., 2015&amoelo et

al., 2019. The presence dhe rededge band contained in these multispectral sensors is seen as an
advantage over coarse multispectral sen&ebusteretal.,20)2 I n remote sensing, t
transitional region between the red absorbance and near infeflezdion. This region positioned between

680 and 780nm has the ability to provide additional information about vegetation charact&iisties

& Penuelas, 1994Gitelson, 1993 This raises the question of whether commercial broadband RapidEye
image with high spatial resolution ofrb can enhance aboveground biomass rietrival of water borrne
invasive species within wetland ecosystems. A number of successful studies have been conducted using
RapidEye data in classifying land u&chuster et al., 20)2derivation of leaf area indgfAsam et al.,

2013 , estimating forest biomass and struct(Deibe et al., 20L,4Ramoelo et al., 2015&Vallner et al.,

2015, and crop biomas@mukova et al., 2015Kross et al., 2015 Although this technique has not been

fully tested on wetland vegetation, it is considered one of the promising and effective method for
guantifying the aboveground biomass of vegetefidalatesta et al., 20)3Thereforethis study explored

the utility of RapidEye image data for quantifying the variability af\aground biomass across different

wetland management sites.

Optical remote sensing of wetland vegetation aboveground biomass has not been widely done due to
problems of water inundation, nutrient variability and state of maturity. These physiologicat faave

influence on the relationship between spectral reflectance and field measur@néxtam et al., 2010

Byrd et al., 2013 We explore the potential of RapidEye data for assessing the variabilRfyragmites

biomass across a natural and a rehabilitated wetland. It is necessary to understand how the biomass of same
invasive species under different wetland management retates satellite observed reflectance durng

single growing seasofhe overall goal of this studyastherefore; to quantify the variability ®hragmites
aboveground biomass in wetlands located in the City of Tshwane Metropolitan Municipality (CTMM)
using RapidEye satellite image data.order to achieve this task, we measured the fresh aboveground
biomass oPhragmitesacross the natural and rehabilitated wetlands. We evaluated the relationship between

Phragmitesmeasured biomass and RapidEye extradtgd (bands and indices) across both natural and
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rehabilitated wetlands in order to compare the performance of each spectesd dathas evaluating the

success of intgention measures in invasive species control

2.2.Methods and Material

2.2.1. StudyArea

The study was conducted in Kaalplaas Spruit (25° 36' 43.87"S and 28° 05' 39.87" E) and Rietvlei Nature
Reserve (25° 41' 22" S and 26° 37' 48" E), which are part of City of Tshwane Metropolitan Municipality,
South Africa (Figure 1). The studyeas receive average summer rainfall ranging betwee/7 80hm

per annum, with maximum temperatures of 28° C [Agricultdesearch CouneciSoil, Climate andVater
andClimate (ARC-SCW)]. The Kaalplaas Spruit is a natural wetland while the Rie/eirehabilitated
wetland.Currently these wetlands are being invaded bsagmitesand TyphaspeciesHowever, other
species such ampoealeerzig RagweedCyperus spBidens piloseConyza albidalLoostroof Percacia
Amaranthasand Common doddeare also foundn the two wetlandsThe Rietvlei wetlandvas selected
asthereference for study sitedistorically, the wetland was degraded due to large amount of water drained,

which, subsequently became dry and led to vegetation alteration.

The rehabitation process started in 2000 to rewet the peatland and allow the hytitoyetation to re
establisi(Oberholster et al., 2008The wetland was dominated Bersicarig Phragmites Phytolacca
octandrag and, Cyperus communities Sewage water, alien invasive species, residential development
burning,and roads are the major disturbance of wetland vege(@iwmdling, 2004 Although both sites

are dominated b¥hragmites the height and shape were not the same.Plragmitesfrom Kaalplaas

Spruit mostly were aboverf. On the other hand, the Rietvievasive vegetatiomwere less than &h high

andvery thin at most sites. Furthermore, ragweed species of Kaalplaas Spruit were found in most sites

wherePhragmitesvas dominant and acaable for sampling.

2.2.2. Field Data Collection

The fieldwork was carried out between 16 November and 16 December 2015 on both wetlands. Prior to
field sampling, 52 sample plots were generated randomly from Kaalplaas Spruit and 47 from Rietvlei
wetland. At eals point, a quadrat of £ 1 m was placed and the locality of that plot was recorded using
global positioning system (GRSarmin Montana 650). Whefhragmiteswere taller and impossible to

place the quadrat, a measigytape was used torgerate x 1 m quadrat. The percent cover of all measured
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plant species were estimated following the fgnade BraurBlanquet scale (Van der Welle & Vermeulen

2003). In each sampling plot, the following data was recorded in a rebeeg plant speciedensity of

dead and live stems, percent ground cover, and description of quadrant. The fresh aboveground biomass of
Phragmitesand other species identified within the boundaries of quadrat were harvested and placed in a
labelled bagThe dry leaveand pots were not considered for measuremérts. harvested fresh biomass

was taken to laboratogn thesame dayor measurement using a digital weighsaale.

2.2.3. Remotely sensed data

A RapidEye multispectral image that covered the study sieze aequired on 02 November 2015 with

zero cloud cover from GeoData Company. The RapidEye image comprised of five multispectral bands with
a spatial resolution of B. The spectral ranges of the five bands are5MInm (Bl-blue), 526590 nm
(B2-green), 63685 nm (B3red), 690730 nm (B4rededge), and 76850 nm (B5nearinfrared). The

image was already orthorectified and geometrically corrected when received. Atmospheric correction was
implemented in ENVI 5.1 software using the Fast LafeSight Atmosphec Analysis of Spectral
Hypercubes (FLAASH) algorithm.

2.2.4. Extraction of spectral data

A point map of biomass plots was generated using data collected in the fielc @&t (n= 99). This

point map was overlaid on the RapidEye image to extragtjionof-interest (ROl). The spectral bands
reflectance werextracted for each sampled plot. Thalues of each spectral band weateo used to
calculate the vegetation indiceBaple2.1). All the extraction of data was performed using ESRI ArcGIS
10.3. The spectral bands derived from RapidEye image, the computed vegetation indices, and the
measured abaground biomassvere used as an input variable Partial Least Square Regression
(PLSR model to measure the importance of each spectral data in quragtihe variability of
Phragmitesaboveground biomass. This was doneevaluatethe utility of the red-edge band derived

vegetation indices biomass estimation relative to the traditional indices.
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Table 2.1 The spectral bands of RapidEye image and derived vegetation indices.

Parameters Abbreviation  Formula Reference

Blue, Green, Red, NIR and Redge

Simple Ratio SR NIR/Red Jordan (1969)

Simple Ratio. Regdge SR.re NIR/Rededge Gitelson &Merzlyak(1994)
Normalised Difference Vegetation Index NDVI (NIR-Red)/(NIR+Red) Rouse et al., (1974)
Normalised Difference Vegetation Index. NDVl.re (NIR-Rededge)/(NIR+Red Gitelson &Merzlyak
Rededge edge) (1994)Mutanga et al., (2012)
NormalisedWater Difference Index NDWI NIR)/(Blue+NIR) Gao (1996)

2.3.Data analysis

Across the natural and rehabilitated wetirsampling plots were measured during the growing season.

The sampled plots with more than 85 percent coveradghigmiteswere considered for the analysis

(n=99). This was done to avoid the effects of different species in the spectral reflect®incagmhites

within sampled plot€One way analysis of varian(@NOVA) was used to test whether there is a significant

differen® in mearbiomasshetweenthe natural and rehabilitated wetland a t

95% confidence

0.05). Furthermore, analysis of covariance (ANCOVA) was used to evaluate the relationship between

Phragmitesaboveground biomass and RapidEye derived spectial usihg wetland type as a qualitative

variable. From those results, it was possible to observe predictor variables that eohiglally with

measured biomasBefore each measured variable was useouild regression model with bands and or

indices, the outliers were removed using the box and whisker plots before regression analysis was

performed. The remaining samples (89) were implemented in R software using the Partial Least Square

Regression (PSR) library package as explained in section BHe distribution maps wergroduced and

displayed using version 10.3 of the ArcMap software ESRI.
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Kaalplaas Spruit
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Figure 2.1. Map of the study area, including an insert of RapidEye image

2.3.1. Partial Least SquareRegression (PLSR) method

Partial Least Square Regressid?LER is an advanced multivariate statistical analysishniquefor
selecting optimal spectral featuneben estimating aboveground biomé€sirrascal et al., 200$Hansen

& Schoerring, 2003. It has become popular and gaining recognition in the field of remote sensing of
ecology(Adjorlolo et al., 2015Liu & Rayens, 200yfor develojng predictive models of biophysical and
biochemical plant parametefslansen & Schjoerring, 20p3Similar to Sparse partial least squares
regression (SPLSR), stead of extracting all spectral data (bands and vegetation indices) as predictors, it
selects one optimal spectral variable that is suitabledtimating the item of intere@yrd et al., 2014

Liu & Rayens, 200y The selected component explains the variation in both the predictors and response
variables. This capability makes PLSR model desirable, for evaluating RapidEye spectral data for biomass
estimationMore importantly, we testthe capability of using RapidEye data to quarttifyvariability of
Phragmitesaboveground biomass between ndtarad rehabilitated wetland$he aboveground biomass

of Phragmiteswas built in PLSR from each of the two predictors groups (bands and indices) b&$d on

samples following the same procedure. The detailed procedure conducted for quantifying th&yvafiabil
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Phragmitesaboveground biomass on both wetlands is illustrated as follows: 1) the biomass, was plotted
against the spectral bands using PLSR. 2) The aboveground bionRtzmgmiteswere plotted against

the vegetation indices individually. 3) Theaveground biomass was then plotted against combined data
(bands and indices). This procedure was performed in order to assess the importance of each predictor

separately in predicting the aboveground biomaghodgmites

Due to a limited availablsample sizen both study areas (n 99), the leaveoneout cross validation
(LOOCV) was performed on a single calibrated dataset to evaluate the performance of PLSHRmeodel
goodness fit of each model was evaluated basddOddCV ceefficient of determiation (R and root

mean square error (RMSIBf the regression. The measured and predicted biomass model across both
wetlands were compared. The model that resulted in the lower RMSE and higdreR3elected as an
indication of the model that performedttee thanthe other modelsThe spectral bands and indices with

the first minimum RMSE in all stages were selected as the best predictor to estimate the component of
interest (AbdeRahman et al. 2014Yhe contribution of each raw bands and vegetatioicésdto the
selected component was evaluated using loading factors derived from PLSR model. All regressi®sn model
wereperformedusingPLS packagébrary (Mevik & Wehrens, 200Vimplementedn R statisticalsoftware

version 3.3.1Coré.

2.4.RESULTS

2.4.1. MeasuredPhragmites aboveground biomass

Across both wetlands, the highest averbigenass was 4215.1 gfnwith range in plot from a low of 408
g/me to over 4768 g/th The sampled plots froime natural wetland were generally higher in biomaih

low densitycompared tdhe rehabilitated wetlandAfter the outliers were omitted, theéghest average
value for biomass was 1915¢n? for natural wetland and 1423.1 ¢/rfor rehabilitated wetlandThe
difference in average biomass between wetlands was significgnt=ad.01).The red edge indicesere
plottedto illustrate their sensitivity ifoth wetlandgFigure 22). The NDVI.re were significant at (p
0.05) and SRI.re at (p 0.006).Figure 2.3show a distinct aboveground biomass distribution patterns
available vithin the study areaThe biomass distriliions appear quite variable across both sites with

rehabilitated wetland showing wide range.
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Figure 2.2. Box plots ofPhragmitesaboveground biomass. In box (i) actual measured biomass and box

(i) NDVL.re indices and box (iii) SR.re indices respectively, where t@esrepresent natural wetland

and white box rehabilitated wetldn

16



Rietvlei Nature Reserve
25°41'22" S and 26° 37" 48" E

Kaalplaas Spruit % &
25°36'43.87"S and 28° 05' 39.87" E

- Grassland
[ Other species - T
B Phragmites
M Typha - Phragmites
W Water - Water

0 0.175 0.35 0.7 Kilometers 0 0.475 0.95 1.9 Kilometers.
L | 1 1 1 1 1 I | L ! ! 1 1 1 1 ! ]

Figure 2.3. Maps of Phragmiteshiomass distribution and other dominant species

2.4.2. Correlation between Phragmites measured biomass and RapidEye spectral data

The correlation analysis was carried out betwleragmitesneasurediomassand RapidEye spectral data
based on pooled dataséherelationshipwas evaluated by examining Pearson correlatafficient (r).
A summary of basic information obtained fromrelation coefficient is given ifable 22. The results
shows that all of RapidEye bands were found to be significantly corrdjate@.05)with Phragmites
biomassThe blue, green and red edge bands yielded high dioretanging from 0.60 to 0.65lowever,
the indices were poorly correlated wiBhragmitesbiomass.The red edge indices were significantly

correlated witlPhragmitesbiomass, although the correlation was poor.
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Table 22. Correlation coefficient (r) betwedthragmitesaboveground biomass and the RapidEye spectral

data based on pooled dataset

Variable Correlationscoefficien(r)

Blue 0.62
Green 0.65
Red 0.46
Red edge 0.6

Nearinfrared 0.59
NDVI 0.26
NDVl.re 0.37
SR 0.24
SR.re 0.36
NDWI 0.22

2.4.3. Performance of RapidEye bands in quantifying the aboveground biomass of
Phragmites

The accuracies obtained in estimating the variabilitPlmfagmitesaboveground biomass using only the
spectral bandss illustrated inTable 2.3. The PLSR model for biomasextracted only one optimal
componenfor site-specificmodel and pooled datas8pecifically, thebestmodel performance came from
pooled datasets witthe RMSE valueof 548.8g/m?. When the dataset was divided by wetland type, the
natural wetland estimatedPhragmiteshiomass bettewith the RMSE values of 966.1 g/m2 than the
rehabilitated wetland with RMSE value D013 g/m? respectivelyThe contribution of each band to the
prediction ofmeasurediomass idisplayed inFigure2.3(i). All RapidEye sensor bands were important

for assessinghe variability ofPhragmiteshiomassn both wetlandsThe strongest component loadings of
natural biomass were those in the red edge band4830m), near infrared band (#860nm) and visible

blue band 440510 nm). The rehabilitated biomass component loadings were strongest in the absorption

red band (630 685 nm), near infrared band and followed by the red edge band. The negative loadings can
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be observed from the red band of natural biomass, whicle risel lowest contribution to biomass
estimation. On the other hand, both the red band and near infrared band resulted in negative loadings, and
contributed higher in the estimation Bhragmitesbiomas. It is evident from the results that there is a
variaionin performance of RapidEye bandstween the natural and rehabilitated wetland®foagmites

biomass estimationFurthermore, all spectral bands may have comparable importan&hrfagmites

biomass estimation in both wetland

Table 2.3 Summay of PLSR for assessing the variability Piiragmitesaboveground biomass between
natural and rehabilitated wetlands.

Natural Wetland Rehabilitated Wetland
Variables Components R2 RMSE R2 RMSE
Bands 1 0.41 966.1 0.27 1013
Indices 4 0.16 944.8 0.37 1013
Bands & Indices 7 0.56 778.9 0.2 1054
Pooled data Components R2 RMSE
Bands 1 0.66 548
Indices 3 0.75 413
Bands & Indices 2 0.71 440.8

2.4.4. Performance of RapidEye derived indices in quantifying the aboveground bioro&ss
Phragmites

The number of components, R? aRMSE obtainedusing derived vegetation indices in estimating
Phragmitesaboveground biomass is shownTiable 2.3. The contribution of each index towards the
prediction of all measured aboveground bioma#ksigrated inFigure2.3(ii). The natural biomass retained
component two while rehabilitated wetland retained component four with the RMSE of 1035 g/m? and
944.8 g/mz respectively Phragmiteswas estimated better with pooled dataset. The model retained
component three and resultedtire lowesRMSE value of413 g/m?. Although site-specificmodel were

weaker,the rehabilitated model showed a slight improvement in biomass estimatien could be
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attributedto short Phragmitesheight and indices not reaching saturation lelfel component two, the

contribution of each index for biomass estimates were strongest, in decreasing order, from SRI, NDVI,

DVlI.re, SRI.re and NDWI with least loadings. The loading values for compongniviere weaker, with

the NDWI being more sensitive to biomass quantification followed by SRI.re. The NDWI and NDVI

showed positive loadings and NDVI.re, SRI, and SRl.re resulted in negative loading values. The high

loadingvalue of NDWI suggestthat it has the potential foestimatingPhragmitesaboveground biomass

in rehabilitated wetland.
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Figure 2.4 Loading values for the PLSR components plotted against the RapidEye spectral bands and

indices on both natural and rehabilitated wetlands. Dark gepyesers natural wetland and white

represergrehabilitatedvetland. In box (i) bands and (ii) vegetation.
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2.4.5. Combination of both reflectance bands and derived indices from RapidEye in
estimating the aboveground biomass

Table 2.3illustratesthe performance of using combined data in estimaBhgagmitesaboveground
biomassln general, combination of spectral datas more successful for natural biomass in comparison
to single regression analysis. However, separate regression model fditatbdbiomass were successful
compared to model from combined dalde bands and indices that could estimate the biomass of
Phragmitesin both wetlands were those in the visible region of the spectrum (blue band), chlorophyll
absorption (red band) ardgh reflectance (reddge band). Specificallfthe natural biomass retained
component sevewith RMSE of778.9g/m2 and rbabilitated wetland retainesbmponenbnewith RMSE

1054 g/m2 respectivelyWhen both sites were pooled together, the model retamegonent tw with the
lowest RMSE value of 440@ 2. The relationship between measured and predicted aboveground biomass
is shown in Figur@.4. Noticeably the individuabprediction modedwere weaker than pooled datasédthe
pooled spectral bands and combined datasets prodanesivhasimilar results. The indices outperformed
both spectral bands and combined datsis proves that indeed the red edge bhad the potential to
estimatePhragmiteshiomasswith high accuacyand overcome saturatiggmoblemthatis a challenge in
mostconventional multispectral sensokdeasured and predicted aboveground biorfigasesare based

on the pooled datasets due to greater success in pre@htiagmitesiomassilt is evident fom the results

that there is a variation in performance of RapidEye spectral data beRhesmgmitesbiomass inboth
wetlands.
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2.5.Discussion

2.5.1. Variability in Phragmites biomass distribution

By estimating the quantity of biomass and producing distribution maps, we can start examining the
underlying factors that contribute to variable distribution patéinvasive specie€Saatchi et al., 2007
Phragmitesbiomass estimation appears to be high undeamralktvetland. While the biomass distribution

of rehabilitated wetland exhibited greater variapilitan that of natural wetland. We can assume that field
measurement underestimated the rgpavth in rehabilitated wetlan@ur results are consistence ihe
findings of (Matthews et al., 2009Vang et al., 201;2Zedler & Lindig-Cisneros, 2002 The authors
reported high biomass estimation in natural wetland than in created or restored wéllsite@lavens et

al., 1997 reported wide biomass distribution in created wetland than natural wedlantr et al. (2003)
conducted vegetation survey a year after rehabilitatieasures were implementeddetermine the nature

of the pioneer communities. Their study reported that the pioneer vegetation was dominabedidly
weedy speciesThey further indicated that grazing by animals and trampling by buffalo in the reserve is
some of the disturbance that could have caused the degeneration of some plantTdpegeantity of
biomass variation across wetlarasild ke becausef different activities such as grazing, harvesting, and
burning(Zedler & Lindig-Cisneros, 200Rand these activities are likely to be similar in wetland sites. Our
findings answer the study conducteddsnter et al. (2003nd prove the theory dlatthews et al. (2009)

The grazing of herbivores disturbed colonization of native plant species and acceleedgdpeciesn
rehabilitated wetland~urthermore, burning dthragmitesocaur annually in the middle of dry season as a
control measure in rehabilitated wetlarigti@n, personal communicatiprLiterature also indicated that
onceoff cutting results in increased density of shorter and thiRheagmitesRussell and Kraaij (2008)
Supporting the findings afedler and LindigCisneros (2002and Saatchi et al. (2001he aboveground
biomass ofPhragmitesalone cannot explain variability across different wetlands. This wide variation of
biomass between wetlands suggests the need for a better understanding of botimentatoand
anthropogenic activities influencing the distribution Bhragmites.Understanding of hese factors
controlling Phrgmitesbiomass distribution will allow fothe production ofprecise biomass maps at
different scale¢Svob et al., 2014

2.5.2. Assessing the variability of Phragmites aboveground biomasiag RapidEye imagery

The studyadopted the PLSR model in order to evaluate different procgdugch could best estimate

Phragmitesaboveground biomass with high accuracpatural and rehabilitatesletlands The bands and
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indices derived from Rapitle imagery were tested to quantify the variabilityPdfragmitesbiomass
across the pristine anehabilitated wetlands. Firghe potential of using spectral bands reflectance for
guantification ofPhragmitesaboveground biomassas assesseid both welands.Biomass prediction
based on sitgpecific model estimated natural wetland better than rehabilitated wetlangodlbd dataset
estimated biomass better than sipecific modelsThe effectiveness afpectral bandfor assessing the
variability of Phragmitesbiomass relied on theisible blue bandAll RapidEyebands showedigh
contribution towardguantification ofPhragmiteshiomasgFigure2.3 (i)] and were significantly correlated
with observediiomass However, in the analysis, the red, 4edhe, and near infrared bands contributed
highly towards the quantification &fhragmitesbiomass in both wetland$hese bands are located in the
wavelengthknown for estimatingaboveground biomass and assessintawe ecological functionThis
finding is consistentvith the study byl. Chen et al. (2009Yho reported the potential of blue band toward
estimatingaboveground biomas¥ grassland having high canopy cavehe most important findings in
this study is that information for quantifying the variabilityfiragmitediomass is probably concentrated
in all thedifferent spectral bands of RapidEye satellite image.

Secondly, we assessed the potential of usiegetation indices derived from RapidEye sensor for
Phragmiteshiomass quantification inaturalwetlandandrehabilitated wetlandl he findings of the study
further demonstrated that vegetation indices derived from RapidEye havetréimgth to estimate
Phragmitesbiomass with high accuracy. For the estimation of all combined sites, the vegetation indices
model outperformed the spectral bands. Similar with bands resulispsitéic models were weaker using
vegetation indices. However, rehabilitated wedlgperformed better than natural wetlamtiee could be

two possible reason for plausible performance of vegetation indices. The first explanation could be because
of red edge indices that were selected as the best variables to eBtimaagmiteshiomassAs indicated

from substantial literature, aboveground biomass proved to be challenging with vegetation indices
especially during the wet season whmragmitesbiomass is above (400gfwithin sampled plotgJ.

Chen et al., 2009Mutanga et al.2012 Mutanga et al., 2004 The inclusion of red edge in vegetation
indices was fand to enhance biomass estimation and overcome the saturation problems especially in high
dense vegetation (Mutanga et al. 2012; Adam et al. 28t03s et al. (20153lsoindicated thated edge
indicesyielded high prediction accuraégr LAl and biomass of corn and soybean crops using RapidEye
satellite imageSecondly, vegetation indices gueoducts of more than one bam¢hich are more sensitive

to green invasive species as compardti wisingle band that maybe hindered by background effects and
yield poor prediction accuracy d?hragmitesbiomass(J. M. Chen, 1996Sibanda et al., 20)5For
instance, the two indices are a combination of red band aredmgr bandHealthy vegetation absab

radiationb y | echloraplsylbin the red band while reflectingighly in the rededge wavelength.

24



Therefore, RapidEyrsed edgéndices has the potential to quantify the aboveground biom#&safmites
duringthewet season when the area of interest is above 80 percent caudréte biomass is above}
g/me.

Finally, the potential of combining both bands and indices for assessing the variabBhyagfmites
aboveground biomasgas also exploredrhe purpose of combining datasets is to increase the validity and
robustness of the relationship between meashimdass and predicted bioma$hkeoretically, the use of

high multispectral sensor with the additional -esthe band should improve the quantification of
Phragmitesdbiomass. For instance, it is expected that when the bands increase, the biomass esilmation
increase in accurady Rocchini et al., 2007 The findings of this study indicated that combined spectral

data ouperformed spectral bands and resulted in slightly less than vegetation indices model based on pooled
dataset. The sitepecific modeimproved the aboveground biomass of natural wetland and resulted in lower
accuracy for rehabilitated wetlan@ihe presentstudy has demonstrated that assessing the variability of
Phragmitesbhiomass between natural and rehabilitated wetlands is possible with Rapidtay@&his
variability performance of bands and indices in both wetlands can therefore serve as a surrogate for water
borne invasive plant species productivity and condition in other wetlands.

It is difficult to directly compare our study with other studiesRdmagmitesbiomass due to difference in
satellite data anthe methods used. Furthermore, most studie®bragmitesusing remote sensing pay
attention on its distribution or spectral discrimination. For exanlipée, and Graneli (198%¢ported that
handheld digital instrument was useful for estimating biomad83tohgmitesin two Swedish reed stand.
Ailiana et al. (2008used Landsat TM and ETM to retrieve biomasBlufagmitesn China.These authors

did not implement any regression model to estimate the bioasaggunction of the spectral information
captured by the sensors. Instead of regression model, the bionRismgmitesvas estimated using the
vegetation indices and classification of satellite image. Statistics could not be provided from their.research
The currentstudy achieved the highest R? value of 0.75, which is higher than the findinigso et al.
(2017)who retrievedPhragmiteshiomass using Hyperspectral andht detectionand anging (LIDAR)

data. The author achieved the highest R? value of 0.48 with Hyperspectral and 0.58 with Lidar from only
one wdland with short Phragmites Wallner et al., (2014gstimated forest structural information with
RapidEyedataand achieved the R2 value of 0.&Rube et al., (2014) alssed RapidEye tpredicted intra
andinter species biomass of forest and achieveddRie of 0.58 for combined speci€apidEye image
waspraisedor its potential to estimate biomass with high accuracy in areas of closed and dense vegetation
These findings suggest tRapidEye sensor performs considerably different depending ondljeaphic

location and object of interes€onsidering that data were collected in two different wetland areas with
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diverse vegetation species under natural condition, the resdftam the capability of RapidEye spectral
bandsfor estimatingPhragmiteshiomassThis new generation multispectral sensor can still compete with
other higher spectral resolution data with regard to the information they prégiae et al., 201;3Vallner

et al., 2015Zandler et al., 2015

2.6.Conclusion

The current study conducted field measurement to reveal the variabityagmitesbiomasdistribution

and explore the potential of using RapidEye to estimate biomaB&rafmitesbetween natural and
rehabilitated wetlar&l The new multispectral RapidEye sensor data has the potential to quantify the
variability of Phragmitediomass. Although our study focused on comparing single sgmaeone season
across different wetland settings, the study suggest that it is possddeess variability dfiomass of
invasivePhragmiteswith RapidEye satellite imagery in two diffetewetland sites, an important insight

for management of wetland ecosystem. However, there is still more to be taken into consideration to
improve upon. Most importantly, similar studies should be carried out in other different wettahoger

large areato provide an understanding of the utility of RapidEye for quantifying biomaBkrafymites.
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CHAPTER THREE

Comparison of medium spatial resolution Sentinel 2 MSI and Landsat OLI in assessing the

variability of Phragmites australigcommon reeds) biomass in wetlands areas.

This chapter is based on:

Mogano K, Chirima J.G. Mutanga O (in preparatioBpmparisorof newly launched medium muisicale
satellite sensorSentinel 2 MSI and Landsat 8 Old assessing the variability &hragmites australis

(common reeds) biomass in wetlands ar@asrnal ofWetland Ecology and Management

Abstract

The purpose of wetland restoration is to enhance biodiversity and recover natural ecosystem services.
Unfortunately, restored wetlands anmgsseptible to invasive plant species suclPheagmites australis
Aboveground biomass is a common metric used to evaluate the function of restored wetlands. Accurate
estimate oPhragmitesaboveground biomass is required to assess the condition of deseitand.The

biomass of restored wetlanias compared with thaif natural wetland to understand the ecological
function of these ecosystems. Given that wetlands are not easily accessibie, survey is time
consuming, laborious and feasible to snaatas Multispectral remote sensing data offer cost effective
approach for estimating wetland vegetation characteristics at varyirgti@sescale in a shomeriod

Hence, the present study compared the potential of newly launched Sentinel 2 Multispectral Instrument
(MSI) and Landsat 8 Operational Land Imager (OLI) in quantifying the variabiliBhoigmiteshiomass
between the natural and rehabilitated wetlandsviduate the potentiaf Sentinel 2 MSI and Landsat 8

OLlI, the extracted spectral bands, derived vegetation indices and combined datasets (spectral bands and
vegetation indices), were used as predictor variableBHoagmitesbiomass. The results werempared

with those derived from commercial RapidEye satellite data. The results showed that extracted spectral
bands derived from Sentinel 2 MSI quantifiedragmitesbiomass with higheaccurag thanvegetation

indices and combined dataséds both wetlands. The results obtained from Landsat 8 OLI and RapidEye
datawere not consistence in all models producing weaker and higher accuracy. The results were inclusive
concerning whether Landsat 8 OLI outperformed RapidEye or nd@Hoagmitesbiomass estimains.

Overall, Sentinel 2 MSI exhibited Landsat 8 OLI and RapidEye in quantiBlimggmitesbiomass in both
wetlands. These findings showed tRitragmiteshiomass could be improved with the use of cheap earth

observation Sentinel 2 MSI with improved spatbands

Keywords natural wetland; rehabilitated wetlarRhragmitesbiomassmedium spatial resolution
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3.1. Introduction

The products function and ecosystem services provided by wetlands are quantifiable and numerous. At
local scale, wetlands provide food, recreation and habitat to numfrans, flora species, and other
functions(Kotze et al., 2012Zedler & Kercher, 2005 At broader scale, wetland vegetation serve as an
excellent filter of exessive nutrientscluding those from agriculturalinoff (Engelhardt & Ritchie, 2002
Thompson et al., 200°Aand industrial wasté&lemas, 2013 Unfortunately,anthropogenic activities and

climate change worldwide thaiteen wetland ecosysterSieben et al., 201¥erhoeven, 2014

Restoration of wetland ecosystehas the potential to reverse degraded wetlands, increase biodiversity and
recover important ecosystem servi¢Bsillock et al., 2011 Mitsch & Gosselink, 2007Wortley et al.,

2013. Studies have reported thdite main goal ofestoration or creation of wetlanidsto enhanceahe re
establishment of both biodiversity and ecological services lost due to over exploitation and degradation
(Bullock et al., 2011Sink et al., 201 However, determining appropriate variables egkd evaluate the
success of restoration is a probléKentula, D00 Lockwood & Pimm, 1999 Preferably, wetland
restorationshould beassessed using treame variables before, during and after restora#dntimes
consistent data f@uchvariablesarerare ordo not exis{Carpenter et al., 200&ckert & Engesser, 2013

Kay C Stefanik & Mitsch, 2012 In general, restoration indicators differ by wetland ecosystem types and
across the scale, making compari between restorethd natural wetlands difficult/egetation structure

such as aboveground biomass isommon metrics used to evaluatetlandrestoratiorecosystemgAhn

& Dee, 2011J Martinezlépez et al., 201, 1Spieles, 2006 The aboveground ground biomass serve as an
important indicator of wetland ecological ditions and managemeNliller & Fuijii, 2010). Furthermore,
aboweground biomass provides a good measupanit typesdominating on restored or natural wetlands
Biomassreflects the amount of water, nutrients and sunlight an individual plant is capable to absorb and
turn into plant maséRussell & Kraaij, 2008Wang et al., 2012

The main problentinderingthe success of resttion iscolonizationby invasive specie@Havens et al.,
1997. Restored wetlands are vulnerable to invaiom bothnative and alieinvasive plant species due
to the disturbances and increased resource availability than natural wéGamdatt & Wolters, 2008
Kettenring & Adams, 200)1Aquatic invasse species such &ragmites australi@Phragmites) are widely
distributed in most wetlads of Southern AfricéRussell & Kraaij, 2008 This invasive species has the
ability to displace other wetland vegetation and decrease biodivéAsiGhen et al., 200K ettenring &
Adams, 20110zbay et al., 2012Its rapid growth and high reproductive rate hasatéd researchers and
resource manageiround the globe with respeatits environmental valuge.g.controlling soil erosion,

wastewater treatmentA. Chen et al., 2008Van Meerbeek et al., 20L5Knowledge on the type of
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vegetation and its growth is critical for understandamgl assessinthe status ofwetland restoratian
Instead of considering invasive species bgrden, theboveground biomass produdadPhragmitescan

be considere@ measure of ecosystem servig¥mn Meerbeek et al., 20L5Aboveground biomass of
Phragmitesnot only reveal wetland ecological health citiodis (Zhou et al.,, 2014but also provide
evidence that managers asclentiss canuse to evaluate the success or failure of restoration in wetland
ecosystem$X. Yang & Guo, 2013 This information could mvide some clarity concerning whether the
restored wetland has met certain goals such as nutrient supply, habitat type and bio(fArersitet al.,
1999 Zedler, 2000 Furthermore, comparissbetween restored wetland and pristine wetleem provide

insight changesto the conditions of thecosystem invaded WBBhragmitesnvasive species.

Wetland are often located in remote and sensitive areas and are difficult to survey due to delicate habitat
conditions and thicklensevegetation(Buchanan et al., 2009avier Martinez.6pez et al., 201AMwita,

2016. Onsiteassessment in these ecosysteme laborious, time consuming and inefficiespecially for

large wetlandslue to restricted mobilityrurthermae, the number of points measured in the field does not
capture the information at the scale required for monitofihgAdam et al., 20%0Ashraf et al., 2010
Therefore, accurate estimationRiiragmitesbiomassn these ecosystemsiisstrictedby thespatial and
temporalfrequency of data collection. Furthermore, the distributiboollecteddata might not adequately
capture factors causing rapid invasi@owell et al., 2010 In that regard, remote sensing offer
straightforward choice for estimating aboveground biomass of wetland invasive species under different
wetland management systems in a shspace timgRobinson et al., 2036Somali et al., 2012 and
monitoring rehabilitated wetlanglcosysten{fMaguigan et al., 2016 Remote sensing techniques such as
hyperspectral, Light detection radar (LIDARapidEyeand Worldview are widely used to estimate the
aboveground biomass of wetland vegetati@r.instancel_.uo et al. (20155uccessfully estimated wetland
vegetation height and leaf are index using airborne laser scanning (ALSYld&édaga et al. (2012lso
estimated wetland vegetation biomass successfully usiodgdwew-2 data. The author concluded that
worldview- 2 can optimally estimate wetland vegetation biomass which was challenging with
conventionally satellite sensois. Adam et al. (2014uccessfullyestimated papyrus biomasswetlands

using hyperspectral datAlthough thedata produced rigble biomassstimates due to high spateahd
spectralresolution,this datsset are unlikey to suppomegular monitoring due to higacqusitioncost
Furthermore, in nature conservation financial resources are often severely (ivéieiles & Pressey,
2000, therefore cost effectiveness has to be taken into account probably more than in basiiNaidmce

& Ricketts, 2008. Therefore, the use of high spatial and spectral resolution cannot be afforded especially
in resource scarce countries like Soutfrida. In spite of these fimial constaints, the quantity of

Phragmitesbiomass using remote sensing between natural and rehabilitated wétdendot received
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much attentionThus there is a need to test the potential of using freely and readily available remotely

sensed data that could effectively quantify the variabilitfplalagmitesaboveground biomass accurately

The recent improvement of space bomaltispectral remaly sensed data is a promising source of
information forunderstandingvetland vegetatiofOumar & Mutanga, 2033 With the availability of
Landsat 8 Operational Land Imager (Oldipd Sentinel 2 MSI data and their enhanced strategically
positioned spectral banqRoy et al.,2014), it becomespossible to monitor vegetation acatdy at a
varying spatial and temporataks for specific wetland ecosystentsor instance, é&tinel 2 MSiwith
three bands in the red edge and two bands in the shortwave infrared (SWIR)@ixegeochave the ability

to estimate vegetation biomas and biochemical propgRiasioelo et al., 20155ibanda et al., 205
Additionaly, the re edge spectral bandsntained in Sentinel 2 M@lrereported to be highly sensitive to
vegetation species characteristiiBapinel et al., 20)4and improve the accuracy ¢éstimate the biomass

of individual plant speciegShoko & Mutanga, 2007 The three red edge bands offer an opportunity to
estimate vegetatn productivity across different wetland management aRamoelo et al. (2015@nd
Sibanda et al. (2015uccessfuly highlighted the potential of Sentitekd edge for grass nutrients and
biomassstudies The Landsat 8 OLI was successfuly applied to estimate aboveground biomass of forest
(Dube & Mutanga, 2015 soybeans and corn crofisross et al., 2015 floristic variation in grassland
(Feilhauer et al., 2033nd quantifyingshrub biomass in arid environnistiZandler et al., 2005 These
studies revealed the potential of refined near infrared and SWIR coverage in Landsat 8 OLI for improving
the assessment wégetation parameters &ncost effetive manner ategional scaleThere is no specific
recommendation on the suitability epecific sensors for invasive plant species especially in wetland
environmen{Feilhauer et al., 201Zandler et al., 20)5However, literature indicate that sensors with red
edge spectral regiosuch as Sentinel 2 MShay be more effective than conventional sensoich as
Landsat 8 OL[Eisfelder et al., 20%4.i et al., 2012. So far, the spectral settings of these new generation
medium sensors in quantifyinghragmitesbiomass has not yet been tested under differernt wetland

management systems.

It is thereforeour aim to comparghe potentialof existing spectratonfigurationfrom two different
remotely sensed data fassessingariability of Phragmitesbiomass in different wetlands areas. The
primary objective was to compare theitibf using multiscale nediumresolution Sentinel #1SI versus
Landsat 8 OLHdata in estimatinghe variability ofPhragmitesbiomass between natural and rehabilitated
wetlands. We furthertestedthe full potential of bottSentinel 2 MSlandLandsat 8 OLIfor Phragmites
biomassestimationby comparing their performance with higher resolution multispectral RapidEye data.

RapidEye image provides five spectral bands with red edge coverage and high spatial resolution of 5 m x
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5 m. The multiscale comparison was done to test the §eitgiof spectral bands contained within an

individual sensor type fd?Phragmitesbiomassestimation
3.2. Materialsand Methods

3.21. Study area

The Rietvlei Nature Resery@5° 41' 22" S and 26° 37' 48" B)located in theastof the City of Tshwane
Metropolitan Municipality South Africawhile Kaalplaas Spruit (25° 36' 43.87"S and 28° 05' 39.87" E) is
locatedin the northern part of theetropolitanmunicipality. TheRietvlei Naturereserve was established
becausef Rietvlei Water Schemproviding drinking water to the local communities. Tivetland was
extensively drained due peatmining activities. This degradation has led to rehabilitation process, which
began in 2000 with the aim of preventing further loss (Oberholster et al., 2008y ¥eal., 2003). Hence,
Rietvlei wetland was chosen as a reference site in order to assess the success of rehabilitation measures
using vegetation parameters. The Kaalplaas Spruit was chosen as a cortyaiaitpare the difference

in vegetation paraeters with the reference sitBoth Rietvlei and Kaalplaas Spruit asebaninland
wetlands and threatened by variety anthropogenic actisitigls as construction and water pollution. These
wetlands are currently invaded by variety of invasive spsci#saslyphaandPhragmitesncluding many
others Although both Rietvlei and Kaalplaas Spruit are dominatdehrggmitesthe structural parameters
were not the sam@&hragmitesn the Rietvleiwetlandwere mostly less than 2 m in height and very thin.
Onthe other hand, Kaalplaas Spthitd very thickPhragmitesof more than 2 m tall in most sampled plots.
Furthemore, ragweed plant specigas dominant imost sampled measured plespecially for Kaalplaas
Spruit wetland Figure 3.1 shows a map of thudy area in the context of South Afriestracted from

Landsat 8 OLkatellite image
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Figure 3.1 Location of the study area, including an insert of Landsat 8 OLI image.
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3.2.2. In situ field measuremeist

Within natural and rehabilitated wetland®ragmitessampling measurements were conducted during a
single growing season between November and December 2015. Botoggtlands 99 vegetation plots,

each with an area of 1 x 1 meve measured. The locajitof the field plot was recorded using global
positioning system (GRGarmin Montana 650Measuring tape was used to generate 1 m x 1 m where
Phragmites were taller and impossible to throw the quadrat. The plot location was used to extract the
spectral réectance from remote sensing images. At each samplingtiohumber of stems ampeércent

cover of all measured plant speciess recorded0-100%).The green leaves and stenRifragmitesand

other species identified within the boundaries of quadeseé harvested and placed in a labelled bag. The
harvested materials were taken to laboratory on the same day for measurement using a digital weighing
scale. Theobservedneasurement was used to build the relationship betweent@siass and spectral

reflectance of corresponding satellite imagery for further analysis.

3.2.3. Image acquisitionand preprocessing

Threedifferent multispectral data were acquired to quantify the variabilityPlafagmitesabove ground

biomass between natural and rehabildatetlandsThe Landsat 8 OLI and Sentinel 2 MSI cover the study

areas with one tile. RapidEye uses one tile for each study site. The images were acquired in the same period
that corresponds with field measurement ddtédNovember to 1®ecember 2015. @h Landsat 8 OLI

and Setinel 2 MSI were obtained frdeom US Geological Survey websitattp://landsat.usgs.ggviThe

Landsat 8 OLI was downloaded as Level 1T and Sentinel 2 MSI as LeyebiiGcts. The Level 1T and

Level 1C means that the supplier applied radiometric and geometric corrdd8@S(2013; Sentinel MPS

2016. However, the Level 1C provides top of the atmosphere that is not included in LandsafT®i©LlI.
Landsat 8 OLI captusimages on the earth at-déy temporal resolution. Compared to Landsat 7 ETM
Landsat OLI provides additional two new bands and advanced signal to noise radiometric performance
which gives an advantage for natural resource appliG(EirAskary et al., 2014Pahlevan & Schott,

2013. Sentnel 2 with a spatial resolution ranging from 10 m to 60 m has revisit time of 5 days interval
(Cole et al. 2014. Sentinel 2 MSI provides 13 spectral bands ranging from visible through red edge to the
short wave infrared at different spatial resolution. Sentinel 2v&lidesthree unique red edge bands (5,

6, and 7) which are designed for vegetationisgudr he visible bands (2, 3, 4 and 8) of SentindlS2 are

closely matched with bands 2, 3, 4, and 5 of Landsat 8 OLI. These similarities present the opportunity to
use lmth images as complementary ingtent with promising characteristics for remote sensing of

vegetation. The Level 3A orthorectifi@bpidEye provides five spectral bands including a single red edge
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coverage with a daily temporal resolutidine 3A products eredelivered withradiometric and gometric

correction on the data.

Detailed information on spectral bands of both Landsat 8 OLI, Sei2timetl RapidEye is presentiable

1. Atmosphericcorrection was implemented in ENVI 5.1 software using Fast-afrgight Atmospheric
analysis of Speral Hyperculus (FLAASH) module after both scenes were converted to surface reflectance
for Landsat 8 OLI and RapidEy€&or Sentinel 2 MSI, QGIS software 2.18 was used for atmospheric
correction and layer stackinflext, the bands that were reported nafulsfor vegetatiorn(Féret et al.,

2015 Immitzer et al., 2016were removed during layer stackirfgpr instance, when atking Landsat 8

OLI, band 1 (ltra blug, band10 (panchromatic bandndthermal infraredvere removd. From Sentinel

2 MSI, band 1(erosol detectionhand9 (water vapour), and 10 (SWAgrrus) were also removed. For
RapidEye, all bands wemonsidered for analysis. All the remaining bands were statdgetherand

imported into ESRI ArcGIS 10.3 for further analysis.

Table 3.1.Spectral and spatial resolution of Sentinel 2 MSI and Landsat 8 OLI.

Sentinel 2 MSI Landsat 8OLI

Bands
Bands Name (nm) Resolution Name Range Resolution
B1 Coastal aerosol 443 60 Coastal Blue 0.430.45 30
B2 Blue 490 10 Blue 0.450.51 30
B3 Green 560 10 Green 0.53-0.59 30
B4 Red 665 10 Red 0.630.67 30
B5 Red edge 705 20 NIR 0.850.88 30
B6 Red edge 740 20 SWIR1 1.571.65 30
B7 Red edge 783 20 SWIR2 2.11-2.29 30
B8 NIR 842 10 Pachromatic 0.500.68 15
B8a Red edge 865 20
B9 Water vapour 945 60 Cirrus 1.361.38 100
B10 SWIR-Cirrus 1375 60 TIRS1 10.611.19 100
B11 SWIR 1375 20 TIRS2 11.512.51
B12 SWIR 2190 20

3.2.4. Variables for assessing Phragmites aboveground biomeasgbility

To compare the potential of Landsat OLI and Sentinel MSI in assessing variabifttyagimitesbiomass
against RapidEyeata,we usedspectral reflectancbands and vegetation indicégable 3.2shows the
specific spectral bands and vegetation indices selected for bi@si@ssition.The spectralreflectance

valuesfrom Landsat8 OLI, Sentinel 2MSI and RapidEye were extractedriesponding to each field
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biomassplot based on the exact plot location using ESRI ArcGIS 10.3. The value of each spectral
reflectance band was used to calculate the vegetation indices. Among dozens of available vegetation
indices,the study selected veggion indices thaare commonly used in remote sensing for ecological
applications(Yan et al., 2015Zengeya et al., 20)13and were previoust used studying?hragmites
(Ailstock et al.,, 2001 Luo et al., 201Y). All selected indices were computeding any two possible
combination bands from all corresponding satellite images. In total, 13 spectral data derived from Landsat
8 OLI, 26 Sentinel 2 MSI, and 10 from RapidEye were used as predictor variables for assessing the
variability of Phragmitesaboveground biomass in between the natural and rehabilitated wetland wetlands.
For each satellite image, we evaluated the relationshipelket actual measured biomass vépectral
reflectancebandvalues and computed vegetation indices. These data wazethalsing Partial Least
Square regression (PLSR) described in section 2.5 in détgds, all observed data weused as a single

calibrated dataset in the model.

3.2.5 RegressiorAlgorithm

The variability ofPhragmitesbetween natural and rehabilitated wetlands was evaluated dadedSR
analysis betweeiields measured biomass and remotely sensed derived variables. The PLSR is an advanced
multispectral analysis technique for selecting optimal spectral features wiraeatieg) the biochemical

and biophysical parameters in wetland a{€ssrascal et al., 2008lansen & Schjoerring, 20DFLSR is

a technique that reduces the number of multicollinear spectral variables to few independent variables tha
increases correlation among predictors and single response vdfsterger et al., 2003Hansen &
Schjoerring, 2008 This technique isgaining recognition in the field of remote sensagl vegetation
applications ér predicting biophysical and biochemical parametadjorlolo et al., 2015Liu & Rayens,

2007). Instead of selecting all image predictor variables (bands and vegetation indices), PisBRqtre

the most relevant variable from all available full set of spectra data thatabklsuiir estimating the item

of interest(Byrd et al., 2014Liu & Rayens, 200y The advantage of PLSR algorithm is that it can deal
with small humber of samples. This advantage provides an opportunity to compare few multispectral
satellite data using small samplis assess their potential for estimating the aboveground biomass of
Phragmitesbetween natural and rehabilitated wetlands. At each selection process (spectral bands and
vegetation indices), the leaeme out cross validation (LOOCV) was performed by remgi single field
measured plot points until each point was withheld once. For LOOCV, one sample is withheld and the
remaining samples are used to train the model. For example, if the model is train@8 saithpleseach

sample will be estimated by themaining98 samples to determine the performance of the model for
biomass estimatio(Ramoelo & Cho, 2014 The coefficient of determination (R?) angot mean square

error (RMSE)were used to evahle the strength and significanoé the relationship between actual
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measuredPhragmitesbiomass and the data derived from correspandatellite imagesThe contribution

of each raw bands and vegetation indices to the selected component was evaluated using loading factors
derived from PLSR model. All regression models wierplementedn R statisticakenvironmentversion
3.31(Core usingPLS library package(Mevik & Wehrens, 200 The process followed for computing
Phragmitediomass in bdt wetlands with varying multispectral satellite images is discusssttion 2.6.

3.2.6. Experiments

Partial Least Square Regressi®L.$R was used to compare the strength of Sentinel 2an8Landsat

8 OLI relative toRapidEye inestimatingthe variability of Phragmitesaboveground biomass between

natual and rehabilitated wetlands. Fowt ®f data analysis (analysidM) based on different data type
combinatiors were(Table 3.2) implemented in PLSR algorithm. For each satellite imagentineber of
predictors varied, depending on the sensords spec

analysis was conductédllowing as follows:

i.  The first set of analysis was conducted based on image spectral bands only (Landsat 8 OLI: 6
variables; Sentinel 2 MSI: 10 variables; RapidEye: 5 variables). All these variables were plotted
against field measured biomaseparatelyto identify the most relevant band that could estimate
Phragmitediomass in both wetlands. The predictor varidhde resulted in the first minimum root
mean square error (RMSE) in abirrespondingmageswasselected as the best biomass predictor
in both wetlands.

ii.  The second set of analysis was based on computed vegetation indices only, where Landsat 8 OLI
usedQ7 variables Sentinel 2 MSI (1Zariables) and RapidEye (10 variables). All predictors were
also plotted against field measured biomass using PLSR algorithm individually, to select the
vegetation index that could best quantfliragmitesbiomass in both wktnds. The index that
resulted in the lowest RMSE was selected as the relevant predict®hifagmitesbiomass
guantification based on the same procedure explained in the first set of analysis.

iii.  The third set of analysis was conducted based on the catidaimof both spectral reflectance bands
and computed indices used in analysis | and Il. The combined datasets was plottediglgainst
measuredbiomass to select the most relevant variable between bands and indices that could
guantify Phragmitesbiomassn both wetlands following the same procedure conducted in the first

set of analysis.
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Table 32. Predictor variables used in assesdffgagmitesbiomass between natural and rehabilitated

wetlands.
Variables Sensor Type Details Analysis Stage
Spectral bands Landsat 8 OLI blue, greented, near I
infrared, SWIR | & II
Sentinel 2 MSI blue, green, red, red edge
(5,6,7,8,8a) and SWIRI &I
RapidEye 5 bands (blue, green, red, rei
edge & neainfrared)
Vegetation Indices Landsat 80LI NDVI, SR,NDWI Il
Sentinel 2 MSI NDVI, SR,NDWI
RapidEye NDVI, SRNDWI
Spectral bands and Indices Landsat 8 OLI (6 bands) + (7 Indices) Il
Sentinel 2 MSI (10 bands + (13 indices)
RapidEye (5 bands + (5 indices)

*NDVI: Normalized Difference Vegetation Index, SBmple Ration, NDWI: Normalized Difference Water Index. The selected
vegetation indices were previously usgitragmitesstudies(Ailstock et al., 200.lLantz & Wang, 2013Luo et al., 201y

3.3.Results

3.3.1. Measured Phragmites aboveground biomass descriptive statistics (g/m?)

Ninety-nine sampling plots were measured across thealand rehabilitated wetlandsigh aboveground
biomass was observéwm natural wetlands with an average of 4215 g/mz2. After the outliers were omitted,
the average biomass was 1915 g/m? for natural wetland and 1423.1 g/m? for rehabilitated Wwetarizk
observed from Figure 3.2 (i), that the biomass box plots vatywden the two wetlands. The spectral
reflectance of red edge from Sentinel 2 MSI and RapidEye between the two wetlands are presented in
Figure 3.2 (i) and (ii).
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3.3.2. Comparison of spectral reflectance bands from Sentinel 2 MSI and Landsat 8 OLI
bandsrelative to RapidEye bands in estimating Phragmites aboveground biomass

The results on all analysis-l) for Phragmitesbiomass quantification in terms of the coefficient of
determination (R2), root mean square error (RMSE) and the number of optimal components considered in
each model are shownTrable 3.33.5. Based on spectral reflectance bands, the results indicatesitéh

specific models were weaker for Landsat 8 OLI and RapidEye in comparison to Sentinel 2 MBdblata (

3.3. For example, when using Sentinel 2 MSI the natural wetland produced an R2 value of 0.68 with the
lowest RMSE of 886.6 g/m2. On the othemh, the spectral reflectance of Landsat 8 OLI and RapidEye
produced lower results (R2=0.34, RMSE = 983.3 g/m?; R2=0.41, RMSE = 966.1 g/m?) for natural wetland
respectively. The Landsat 8 OLI and Sentinel 2 MSI showed good predictive power in egtimatin
rehabilitated biomass. The model increased accuracy for all corresponding satellite images with pooled
dataset. Sentinel 2 MSI estimatedragmiteshiomass better than RapidEye bands producing R? 0.79 and
RMSE of 323.6 g/m 2. Comparatively, the Lands&il8 produced somewhat similar results as Sentinel 2

MSI (R2=0.71; RMSE =469 g/m2). It can be observed that RapidEye spectral bands was the least performer
for predictingPhragmitesbiomass.
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Figure 3.2. Box plots ofPhragmitesaboveground biomass. In box (i) is the actual measured aboveground

biomass, box (ii) re@dge reflectance from RapidEye and box (iii) Serh®ISI red edge reflectance. In
box (iii), (a) is Band 5, (b) Band 6, and (c) Bana3pectively
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Table 33. Phragmitesbiomass estimation from Landsat 8 OLI, Sentinel 2 MSI and RapidEye using
spectral reflectance bands

Natural Wetland Rehabilitated Wetland

Componerd R? RMSE Component R? RMSE
Sentinel2 MSI 5 0.68 888.6 2 0.65 891.2
RapidEye 1 041  966.1 1 0.27 1013
Landsat 8 OLI 2 0.34 966.1 2 0.54 814.4
Pooled dataset Componerd R2 RMSE
Sentinel2 MSI 5 0.79 323.6
Landsat3 OLI 2 0.71 469
RapidEye 1 0.66 48.8

*Number of components selected using spectral reflectance bands from corresponding sensor types

3.3.3. Comparisonof Sentinel 2 MSland Landsat 8 OLIderived egetation indices in
estimating Phragmitediomass relative to RapidEyderived vegetation indices

The results iMable3 4 illustrate the accuracy achieved from analysis Il in quantifhgagmitesbiomass
using Landsat 8 OLI, Sentinel 2 MSI and RapidEye derived vegetation inidicas benoted thathiebest
biomass estimates obtained for analysis Il were those from Sentinel 2eMfVe to Landsat 8 OLI
However, Sentinel 2 MSI derived vegetation indices did not quarfifyagmitesbiomass with high
accuracycompared wth extracted specl bandsThe highesR2zachieved came from natural biomass (R2
= 0.55; RMSE = 863.5 g/m?). The Landsat 8 and RapidEye produced weaker redutth faturaland
rehabilitatedbiomass However, both datasets showed improvements for estimating reltedilvatland
(see Table 3.3. Although there was little improvement from both datasets, the Landsat 8 OLI performed
betterthat RapidEye in both wetlandshile the Sentinel 2 MSI performdzktter than Landsat 8 OLI in
estimating rehabilitated biomass usimggetation indices. When both sites were pooled together
vegetation indices derived from RapidEye estimd@adagmitesbiomass better (RD.75; RMSE=413
g/m?). Sentinel 2 MSI and Landsat 8 OLI did not improve biomass predictioomparison to spectral
bandsHowever, Sentinel 2 MSI predict&hragmitesbiomass betterith an R2 of 0.66 and RMSE of 605
g/m2 compared to Landsat 8 OLI with an R2 of 0.49 and RMSE of 635.5 g/m? respedihelsesults
indicatethatthe vegetationndices computed frorfiner spectrakatellite inages with red edge coverage
hasthe potential to achieve high biomass estimation accuRatgbly, the accuracy achievémbm Landsat

8 OLI and Sentinel 2 MSI decreased when the number of predictor eariabteased.
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Table 34. Phragmitesbiomass estimation from Landsat 8 OLI, Sentinel 2 MSI and RapidEye derived
vegetation indices

Natural Wetland Rehabilitated Wetland

Component R? RMSE Component R? RMSE
Sentinel 2 MSI 2 0.55 863.5 3 0.52 803.5
Landsat 8 OLI 2 0.19 998.2 4 0.43 859.9
RapidEye 4 0.16 944.8 2 0.37 1013
Pooled dataset Component R2 RMSE
RapidEye 3 0.75 413
Sentinel 2 MSI 3 0.66 605
Landsat 8 OLI 3 0.49 635.5

*Number of components selected using spectral reflectance bands from corresponding sensor types

3.3.4. Comparison of Phragmites biomass estimation from Sentinel 2 MSI and Landsat 8
OLlI spectral bands and derived vegetatiodices relative to RapidEye combined
spectral data

The results in Table 3.5 show thember of predictor variables selected,&Rd RMSE obtained dm
combined spectral bands aretiged vegetation indices in estimatiRgragmitesbiomass using Landsat 8
OLI, Senthel 2 MSI and RapidEye datgirstly, it can be noted thato multispectral datasets produced
consistence resulfer site-specific modelsthrough all sets of analysmpared to pooled datagsee
Table 3.3-3.5). Furthermore, combination of bands and indices produced weaker results for rehabilitated
wetlands. It can be observed that RapidEye performed slightly higher (R? = 0.56; RM8ERg/m?) than
Sentinel 2 MSI data (R2 = 0.53; RMSE = 990.0 g/im¥stimatng natural biomasslhe same consistency
can be observed when both sites were pooled together, combination of spedmdicasdderivedrom
RapidEye yielded better results?(R0.71; RMSE = 440.8g/Anthan Sentinel 2 MSI (R2 = 0.62; RMSE =
683.1 g/m?) Landsat 8 OLI produced poor restitis site-specific model and pooled datasshdelsusing
combination of both bands and indic&&e findings showed that medium spectra resolution Sentinel 2
MSI with red edge could compete with high spectral resolURapidEye data.lt is worth noting that
although Sentinel 2 MSI performed better than Landsat 8 OLIRhdecreasedvith the number of
predictor variables increases. The same performance can be observed with Landsatt@ @ésults
indicate that thebands contained in Sentinel 2 M&hd Landsat 8 OLhave morepredictive power

individually compared to when combined (e.g. vegetation indidagure 3.3show the scatter plots

41



between measured and predicRittagmitesbiomass obtained using pooled datasetserall, the results

indicates thatPhragmites biomass estimation based on sifecific modelswvere weakeithan pooled

datasetsThe effort to estimatBhragmitediomass at site level indicate that it is posdibleredict biomass

using Sentinel 2 MStompared than RapidEye and Landsat 8 OLI datasets.

Table 35. Phragmitesbiomass estimates using combined spectral reflectance bands and derived vegetation

indices from Landsat 8 OLI, Sentinel 2 MSI and RapidEye

Natural Wetland

Rehabilitated wetland

Component R? RMSE Component R2 RMSE

RapidEye 7 0.56 778.9 1 0.22 1054
Sentinel 2 MSI 3 0.53 871.2 3 0.41 88.7
Landsat 8 OLI 11 0.33 900.5 2 0.31 853
Pooleddataset Components  R2 RMSE

RapidEye 2 0.71 440.8

Sentinel 2 MSI 4 0.62 683.1

Landsat 8 OLI 2 0.5 734.3

*Number of components selected using spectral reflectance bands from corresponding sensor types
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respectively. The model was fitted with all observed measurements.
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3.3.6. Loadingvalues of eah band and index towards the contribution of Phragmites
biomass from all satellite images

The contribution of each basdandvegetation indicesowards the selected number of component in
assessinghragmiteshiomass is shown iRigure3.5. The findngs shows that when using spectral bands
Sentinel 2 MSI used five predictor variables out of ten for estim@&hrggmitesbiomass.The highest
loadings were found in the visible blue, green band and near infrared region of the sgeatruamdsat

8 OLLI, bands with the highest loadings in componentibnaescending order were thdeehe blue, green

and near infrared region. Onbne componentvas selected for biomass estimation between the wetlands
when using RapidEye spectral reflectance baalisapidEye bands showed high positive diiags with
bluebands having the strongest followed by green aneé:dg@ bands. It can lmbservedthatthe spectral
banddrom all corresponding sensors reflsohilar patternAll satellite images retained three components
when using vegetation indice$he red edge indices from RapidEye and Sentinel 2 MSI showed high
loadings value While NDWI and SR were the heaviest loadings from Landsat 8 OLI data. The performance
of each bands and indices demonstrate the sensitivity of red edge coverage in satelliteFeesmhsof

the datasets, the blue band and near infrared have high positiveytoedines.
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Figure 34. Loading values of each band and vegetation indices toward the contribufRimagfmites
biomass estimation derived from Sentinel 2 MSI, Landsat 8 OLI and RapidEye datasets.
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3.4. Discussion

The primary objective of this study was to explore the feasibility of medium multispectral Sentinel 2 MSI
with red edge bands in quantifying the variabilityPbfragmitescompared to the use of Landsat 8 OLI with
refined near infrared in the City of TshweamMetropolitan Municipality. Comparison of muficale
approach is important for biomagasanptification where high spectrasolutionsatellite sensors can be used

to validate the accuracy obtained from moderate resolution s€Rsor®elo and Cho (2014)he results
obtained from both Sentin2IMSI and Landsat ®LI werecomparedo high spatial commercial RapidEye
sensor to further understand the productivitPbfagmitesgrowing between the natural and rehabilitated
wetlands. The abovementioned satellite sensors were investigated sincerbesensor that is suitable to
overcome all challenges associated with wetland vegetation. To achieve our objective, we examined
different spectral features using Partial Least Square Regression (PLSR), to find the best estimation method
that couldquariify Phragmitesaboveground biomass between both wetlands.

The present study has shown that Sentinel 2d4&lyieldedthe bestccuracy in predictinthevariability

of Phragmitesbiomass between natural and rehabilitated wedlammimpared to Landsat ®LI and
RapidEye dataFor instance, when the spectral reflectance bands were tested for quaRrtifiaggites
biomass, Sentinel 2 MSI performed stronfy both natural and rehabilitated wetlands outpanfag

Landsat 8 OLI and RapidEyspectral bandsSimilar results were alsobservedwhen the dataset was
pooled togethe(Table 33). Of notable interest is that in the case of Sentinel 2 MSI, the green band (B3)
and red edgéB6) band were selectexr$ the best variables for quantifying green aboveground bidorass

both wetlandsThese bands were more influential towards Sentinel 2 MSI achieving better accuracy than
its counterpart Landsat 8 OLI does. It is well documented that red edge bandnifiettt®on point in
vegetation spectra between low reflectance in the visible region and low absorbance in the near infrared
(Curran et al., 199@Frampton et al., 2033The eflectance in this inflection point as well as green band
region is well related to chlorophyll contgtumar et al., 200Rand consequently to fresh aboveground
biomassAlthough the accuracy achieved from Landsat 8 OLI and RapidEyaanclusive, both satellite
images relied on blue bands for estimati@poveground biomass both wetlands. Other studies
demonstrated the potential of blue bands in estimating grass aboveground biomass in high canopy cover
using hyperspectral dafd. Chen et al., 2009These sensor variation performances can be explained by
the difference in the bandwid(Bibanda et al., 20)5Compared with other previous studies on vegetation,

the study underscores the potential of Rapid&ye Landsat 8 OLin estimating biomassThe current
studydemonstrates that red edge coverage in Sentinel 2 MSI provide an advantggefeverdLandsat

8 OLI for biomass estimation, a component that was previously limited to broadband sensors.
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Similar resultswere obsened when vegetation indicesere tested for quantifying the variability of
Phragmitesaboveground biomass between natural and rehabilitated wetlands. The indices did not
significantly improve the biomass accuracy in both wetlands compared to other weti@tation studies
usingmultispectral dataor example(J. Chen et al., 200dicated that the best model for grass biomass
estimation was achieved using original bands than vegetation inflice and Mutanga (201, 7dicated

that indices did not significantly improve classification accuracy for detecting and discriminating seasonal
grass species using different multispectral sengditsough SentineR MSI outperformed both Lands8

OLI and RapidEye, vegetation indices produced lowdR3e 0.55 (the highest achieved in both wetlands)
compared to spectral reflectance bafiRts= 0.68)model Surprisingly, theregetation indicederived from
Landsat 8 OLIslightly exhibited RapidBbyindicesin both wetlands foquantifying the variability of
Phragmitesaboveground biomassrhe highest accuracy achieved was at least 0.43 derived from
rehabilitated biomassn this regard, variability oPhragmiteshiomass between natural and rehadii¢id
wetlands could be quantified using freely available medium multispectral sensor. Interestingly, the results
indicate that indices computed from red edgticeswere the most influential towards the quantification

of aboveground biomass in both wetls. Specifically, when using Sentinel 2 MSI the NDVI.re was the
most influential toward biomass estimation. For Landsath SR and NI¥| computed using SWIRtdere

the most useful indices towaRhragmitesbiomass quantificatioat the sitdevel. In previously published
literature, it was reported that inclusion of red edge bands in vegetation indices improve fresh aboveground
biomass reduce background effecamd saturation challengéslutanga & Adam, 201 1Ramoelo et al.,

20159 especially in wetland ecosystem where spectral reflectance of plants are simiigrgtawing
seasonRamoelo and Cho (2014Eported the potential &WIR for estimating grassboveground biomass
during dry season. WhilEeilhauer et al. (2013hdicated its utility for assessing floristic variability in
different seasonsRapidEyewith red edge coverage did not show amprovemeniover Sentinel 2 MSI

and Landsat 8 OLtatafor sitespecific modelsHowever,when the data was pooled togetlieoth
wetlands)vegetation indices derived from RapidEye exhibited Sentinel 2 MSI vegetation iimdieess

of the prediction accuracy achievddhe findings of this study are comparable to the finding&aofler et

al. (2015)andFeilhauer et al. (2013¥ho reported that sensongth both visible near infrared and SWIR
were consistently showing high@gsacy compared to RapidEye, IKKOS and Quickbird that are limited

to visible near infrared only.

When the spectral refleance bands angegetatiorindices pooled together, Sentinel 2 M®id RapidEye
produced betteaccuracyand comparable resulfsr quantifying Phragmitesaboveground biomassf

natural wetlandHowever high accuracy was obtained frdRapidEyewith an R2 value of 0.56ompared
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to Sentinel 2 MSI with 0.53This proves that Sentinel 2 M&an compete with finer spectrasolution in
terms of accuracy produced.he Landsat 8 OLI was the least predictor of natihtagmitesbiomass.
Similar patten can be observed whbnthsites were pooled togeth&@ihe variability ofprediction accuracy
between Sentin€2 MSI and RapidEye is slightly different. Although RapidEye provides finer spectral
resolution that is compatible for local scalasregionalevel may require more scene coverage toatd

be hinderedby high cost acquisitionIn thatregard,Sentinel 2 MSI could be used as @ternative to
RapidEyeand Landsat 8 OLfor Phragmitesbiomass estimation and frequent monitoratglocal and
regional scale

The main challenge with our stusyascomparingthe results with other published studies who explored

the potential of newlyproducedmedium multispectral Sentinel MSI against Landsat 8 OLI data. The
challenges are baseaih thetype of vegetation and area under investigation, the difference with how
sampling measurement was conducted, the regression method applied and the procedure followed when
selecting variables that could best estimate aboveground biomass maKkesuit. dibr exampleSibanda

et al. (2016)compared the spectral bands of Sentinel 2 MSI with that of Hyperspectral infrared imager
(HysplIRI) for estimating grass aboveground biomass under different management. The Sentinel 2 MSI
outperformedysplRI when estimating burning, mowing and fertilized grass biomass. The wdsleby

et al. (2016)compared Landsat 8 OLI with Ldsat TM and Lidar for shrub aboveground biomass. The
author indicated that Lidar outperformed Landsat OLI while Landsat 8 OLI and Landsat TM produced
similarly good resultsKorhonen et al. (2017)nvestigated the use of Sentinel 2 MSI and Landsat 8 OLI in
estimating boreal forest canopy cover and leaf area index. Tihding indicate that Sentinel 2 MSI
outperformed Landsat 8 OLI when using all spectral bands covetagever, when using the bands that

are available in both Sentinel 2 MSI and Landsat, the results did not differ from one another. The similarity
of the pesent study with the abovementioned findings is the success of Sentinel 2 MSI applied in different
site conditions against other sensors. The findings implies that indeed Sentinel 2 MSI is a promising tool
for biomass estimation in a cost effective marthar to its red edge coverage. Several studies have reported
the potential of Sentinel 2 MSI red edge for vegetation monit@Arig et al., 2012Ramoelo et al., 2015b
Sibanda et al., 20)6The results obtained froreite-specific models usingandsat 8 OLI and RapidEye

data are difficult to make general conclusion. Hypothetically, the results suggest twcs feagbeir
perfomance. One is that if Landsat 8 OLI had-esltje coverage region will outperfofRapidEyedata

On the other hand, if RapidEye had SWIR wavelength coverage may have outperformed L&idsat 8
data and produce high or same accuracy as Sentinel 2 MSIHiateever, considering the sgtral

resolution of both satellite images and the scale of study the areas, it can be assumed that variability of
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Phragmiteshiomasshetween natural and rehabilitated wetlands can be achieved with high accuracy using

commerciaRapidEye datésee Figure.5).

3.5.Conclusion

This study concludethat Sentinel MSI data:

9 Provides increased performance in quantifyiRgragmites biomass in wetland ecosystem
compared to its counterpart Landsat 8 OLI and RapidEye data.

9 Offer more spectral bands in the visible near infrared which provide an advantage over Landsat 8
OLI and RapidEyadata Among all the red edge bands, B6 showed to be more influential in
assessinghragmiteshiomass in both wetlands.

In terms of werall perbrmance, the study demonstrated that Sentinel 2 MSI offer a cheap and useful data
source that is required for accurate biomass estimation, which was proved a challenge using broadband
multispectral sensors, especially in resowseae environment$his geat performance of Sentinel 2 MSI

is due to its red edge and SWIR spectral coverage with enhanced spatial resolution characteristics compared
to its counterpart Landsat 8 Othta.RapidEye with finer red edge band poorly estimabdagmites

biomass atite-specific level compared to pooled dataJet.the best of myknowledge, this is the first

study to examine compare the potential of Sentinel 2 MSI and Landsat 8 OLI in assessing the variability of

water borne invasivEhragmitesiomass estimation.
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CHAPTER FOUR

Researchsynthesis

4.1. Introduction

Estimation of invasive wetland vegetation biomass at species level using multispectral remote sensing is
challenging. This is because different plant invasive species have similar spectral reflectance during
growing season among different types of wetlé@desmi & Bauer, 2002 Furthermore, conventional
multispectral sensors saturate when estimating-tiegtsity biomas¢E. M. Adam & Mutanga, 2012b
Mutanga et al., 2092 Therefore, accurate and estimation of exisfgagmitesaboveground biomass
require tools that will provide reséime information and improve ¢ability to detect changes in both natural

and rehabilitated wetlands at fine spatial scale in order to aid in decision making. High spatial resolution
that have appropriate spectral characteristics can overcome problems associate with saturatiamnend spec
confusion(E. M. Adam & Mutanga, 2012bAshraf et al., 2010 The most promising one seems to be
RapidEye data, which potentially provides a tool for beeragmitesbiomass estimation due to its red

edge channel andixel size of 5 m that is not present in conventional multispectral satellite sensors
(Ramoelo et al., 2018hang et al., 20)5However, the high cost associateith acquiring RapidEye data

may hinder its utilization in resource scare countries. High spatial resolution sensors have the potential for
providing largescale biomass estimation independently and moderate resolution imagery could serve as a
complementey for the development of vegetation monitor{yagozi et al., 201;6Ramoelo & Cho, 2014

In that regard, newly launched Sentinel 2 MSI and Landsat 8 OLI maybe reliable earth observation data for
guantifying the aboveground biomass Bhragmitesin wetland ecosystem. Nevertheless, previous
literature reported that a novel feature in the $eh®2 MSI is red edge spectral bands coverage that are
comparable to RapidEye commercial send®amoed et al., 2015c Because of these unique well
designed bands, it is expected that Sentinel 2 MSI would improve biomass accuracy to the level of
commercial RapidEye dat&rampton et al., 2013ouborg et al., 2005 For instanceRamoelo and Cho
(2014)compared the potential of using RapidEye against Landsat 8 OLI data in estimating dry biomass of
rangeland quantity. The author reported a marginal difference ag@rhieved. This marginal difference

in sensor performance could have been as results of refined near infrared in Landsat 8 Ol-kdgd red
band coverage in RapidEye. On the other h&edhauer et al. (2013kported that Sentinel 2 MSI and
Landsat 8 OLI outperformed RapidEye for assessing the variability of floristic. The author indicated that
the low accuracy from &pidEye is due to its limitation to visibdad near infrared coverage omythough

the results from other studies brought promising results, there is a need to fill an existing gap in

understanding the performance of these satellite sensors in egjifRhtegmitesbiomass in wetland
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ecosystem. Hence, chapter two of the study investiglageatility of highspatial resolution RapidEye with

red edge coverage in quantifying the variabilityPbiragmitesbiomass between natural and rehabilitated
wetlands.Then, we further tested medium satellite sensors Sentinel 2 MSI and Landsat 8 OLI to evaluate
their strength against RapidEye in chapter three. This was done to compare which satellite image can
estimatePhragmitesiomass better irrespective of spectrad apatial coverage. These two objectives were

to answer the following questions (i) how well higlespralresolution RapidEye can quant®hragmites
aboveground biomass? (ii) can newly launched Sentinel 2 MSI and Landsat with improved spectral

coveragebiomass estimation better than finer spatial resolution RapidEye data?.

4.2.Assessinghe variability of Phragmitesaboveground biomass using RapidEye data

The inclusion of red edge bands in broadband multispectral sensors is recagriztmbl for improving
aboveground biomass estimation. In this study, the utility ofedepgt band of RapidEye sensor was
investigated for estimating aboveground bioma$hnagmitesdetween natural and rehabilitated wetlands.
Specifically, the study emined different variable predictors (bands, vegetation indices and combined
dataset) that could quantifighragmitesbiomass with high accuracy. The findings have shown that
assessment éthragmitesbiomass using RapidEye predictor varialdesitespecifc did not consistently
generate high accuracy in both wetlands. For rehabilitated wetland, the indices resulted in moderate
improvement accuracy for biomass estimation. The best performance achieved resulted from natural
biomass using combined datasetse Tesults are consistence with the findingst and Duveiller (2014)

who reported that identification of crops using RapidEye is dependent on thealamdsd pi@l siz i s i
not size fits all & and t hatKrdfchetketab (2014chievedlightlyn ci e s
less accuracy when detecting mortality structural and functional changes in gupiipen woodland using
RapidEye during wet conditions. The results reportedMajiner et al. (2014yvere slightly higher in
comparison to the study findings for estimgtiiorest structural parameters. The findings in this chapter
proved that assessing the biomass of invasive water plant species under different conditions with
commercial RapidEye data does not guarantee high accuracy. However, acceptable resultsiexedbe ach
The findings obtained are suitable for natural biomass proved to be specific to a given wetland management
and for each plant species they differ across different wetland managkitezature reported that smaller

pixel size does not always increase the accuravggétation assessmezgpecially when the distribution

of individual species is constitutes a mixture of other pl@éagendra, 200 Duccio Rocchini et al., 2030

With these unclear results obtained from broadband RapidEye sensors with red edge band, it is important
to evaliate the potential of downscaling sensors to cheap techniques. The findings of this chapter suggest
that we further investigate other earth observation techniques in order to test which sensor may be

responsible for success or failure in estima®hgagmtesbiomass across both wetlands.
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4.3.Comparison of multi-scale medium sensori assessing the variability oPhragmites
abovegroundbiomass

Literature reported that no multispectral sensor is suitable to address all the challenges associated with
aboveground biomass of wetland vegetation estimgieithauer et al., 201 ®agendra et al., 20L3The

lack of SWIR wavelength in broadband sensors proved to be limiting factor in most ¢kediieauer et

al., 2013Korhonen et al., 201 Zander et al., 201k The availability of new generation multispectral data

such a Sentinel 2 MSI and Landsat 8 OLI with improved spectral coveraye @ist, proved to be
promising in other vegetation studi@éorhonen et al., 201 Mallinis et al., 2017 Sibanda et al., 20}5

After finding that RapidEye dat@hapter 2) did not produce high accuracy as expeattsde level we

found the need to evaluate freely accessible medium spatial resolution data in quantifying the variability of
Phragmitediomass between natural wetland versus rehabilitated wetlaadjuestion is whether medium
multispectral data can enhance Bl@agmitesbiomass accuracy compared to bitweaad RapidEye data.
Despiteencouragindindings from other studies, to the best of our knowledge no study has compared the
utility of Sentinel 2MSI and Landsat 8 OLI in quantifying the aboveground bioma®&hdgmitesacross

different wetland management beyond small scale. In that regard, the utility of these sensors were tested
based on three predictor variables (i) extracted spectral badderfved vegetation indices and (iii)
combined datasets. The findings were compared with the results obtained from chapter 2 to answer the
study question. Based on the results, Sentinel 2 MSI estirRatadimitesbiomass better than Landsat 8

OLI and RajdEye data using all three different predictor variables. The Landsat 8 OLI provided better
accuracy for rehabilitated wetlands in comparison to RapidEye data. On the other hand, RapidEye data
achieved better accuracy for natural biomass estimation. Bottisat 8 OLI and RapidEye complement

each other for assessiRragmitesbiomass. Furthermore, the work Bgilhauer et al. (2013gported the

good performance of multispectral sensors covering the SWIR for achieving consistently high accuracy
thanbroadband multispectral senstosassessing the floristic variation in nutrient poor grassland. Sentinel

2 MSI outperformed Landsat ®LI estimating leaf area index in boreal for@sborhonen et al., 2037

(Zandler et al. (201%Yyeported that both Lands&tOLI and RapidEye data did not perform considerably
better than the other for quantifying shrub biomass. This suggest that im@thxegimitesbiomass is
possible with Sentinel 2 MSI sensor. Therefore, medium multispectral sensor Sentinel 2 MSI has the
potential to estimate aboveground biomass with high accuracy under different wetland management system.
The high accuracy achieved with Sentinel 2 MSI may be related to the red edge (B6) which occurred in

most selected predictor variables.
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4 .4.Conclusion

The mainaim of thisresearch was ttestthe utility of new generation multispectral remote sensing
techniques in assessing the variabilityRtfragmitesaboveground biomass between the natural wetland
versus rehabilitated wetland. The findings of tieisearch demonstrated that the use of new multispectral
satellite sensors still pose challeaghowever they can estimate biomass with acceptable accuracy
depending on the area of intereahd species typeBased on the findings carried out in this stuidy

following conclusion can be drawn:

1 When using RapidEye data, the best accuracy was obtained from natural biomass estimation with
the combination of spectral bands and vegetation indices. The indices improved rehabilitated
biomass estimation, howeveroguced weaker results. RapidEye data was not consistence in all
models performed across the natural and rehabilitated wetldod®ver, models based on pooled
dataset achieved high results for all predictor variables.

1 Sentinel 2 MSI provided good estution of Phragmitesaboveground biomass in both wetlands.

The spectral bands performed better than vegetation indices and or combined datasets. However,
the accuracy decreased with the number of predictor variables increzigiiigr results were abs
observed from pooled datasethis means that the spectral bands alone have more strength in
biomass estimatioMhe results indide that Sentinel 2 MSI can achieve high biomass estimation
accuracy to the level of commercial RapidEye data.

1 The Landsat ®LI did not produce consistence accuracy for all models across both wetlands. The
best accuracy obtained from rehabilitated biomass using extracted spectral bands. Combined
datasets produced similar results for both ratand rehabilitated wetlands. Pedl dataset
increasedPhragmitesbiomass with spectral bands only.

1 Combination ofboth extracted bands and derived vegetation indices increased natural biomass
estimation. In contrast, no sensor types showady improvements estimating rehabilitated
biomass.The findings demonstrates the challenges of comparing same species growing under
different wetland ecosystem management.

1 Sentinel 2 MSI outperformed both Landsat 8 OLI and RapidEye data in both weRamidEye
with red edge band did not show amprovementgainst Landsat 8 Oldata. The results obtained
from RapidEye and Landsat are inconclusive.

1 Theusesof cheap multispectral satellite sensors hidneepotential to increase biomass estimation

of Phragmitesn wetlands ecosystenespecially Sentinel 2 MSI
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Overall, this research demonstrated themisors withvisible near infrared an8WIR coverage

playeda vital role inestimatingPhragmitesbiomass estimation.

4.5.Recommendations

1

The present study used multispectral sensor to assess the varialhitypgmitesbiomass, it will
however be good to test the potentidlother multispectral sensors such as Worldview and
Sumbandilasat data.

Due touncertaintiesegarding thepassivemultispectral data used in this stufiyture studies can

be explord with the use of active spaceborne sensors such as Light Detection and Ranging
(LIDAR) and Synthetic Aperture Radar (SAR) data.

More research is required to compare different typesmbte sensing data and determine how
spatial and spectral resolution affect biomass estimation of wetland invasive species
Furthermore, future studies should investigate biochemical, height and phenoPlgsagiites

under different management system. that regard, knowledge on difference between both
wetlands will help ecologist and wetland mangers to understand when is best to put control
measures in place.

Moreover, future studies should consider collecting data over several years under difféagt we
management.

For monitoring pirposeswetland maagers and ecologist should rely on Sentinel 2 MSI based

the accuracy achieved and ifiieely accessible at no cost.
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