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Abstract 

 

Wetlands are natural productive systems providing numerous ecosystem goods and services. Carbon 

sequestration, groundwater recharge, trapping of pollutants and reducing sediments and habitat provision 

for a wide assortment of flora and fauna are some of the benefits associated with healthy wetlands. Despite 

all the benefits, wetlands are under threat from anthropogenic activities and other stressors. To prevent 

further loss and to conserve existing wetland ecosystems for the services rendered, restoration of wetlands 

has become a common practice worldwide. However, restored wetlands are usually susceptible to invasive 

plant species such as Phragmites australis, which have effects on both wetland structure and function. 

Vegetation biomass is one of the main attributes used to quantify the extent of wetland rehabilitation 

success. Aboveground biomass is preferred because it is easy to observe measure and interpret as a basis 

for comparison between rehabilitated and pristine wetlands. Estimation of Phragmites biomass is important 

to understand its growth and monitor its distribution so that effective plans can be implemented to deal with 

invasions. Therefore, accurate quantification of existing Phragmites aboveground biomass requires 

techniques that will provide up to date information and improve the ability to detect changes in natural 

versus rehabilitated wetlands. The advancement of multispectral remote sensing provides rapid and cost 

effective methods to estimate variability of Phragmites biomass production at different scales. The present 

study sought to investigate the utility of new generation multispectral sensors in assessing the variability of 

Phragmites biomass between natural wetland versus rehabilitated wetland. These included the commercial 

broadband RapidEye and the cheap freely accessible moderate Sentinel 2 Multispectral Instrument (MSI) 

and Landsat 8 operational Land Imager (OLI) data. To achieve this objective, the study was limited to (i) 

testing the utility of high spatial resolution RapidEye data in quantifying the variability of Phragmites 

biomass between natural and rehabilitated wetlands and (ii) comparing the strengths of newly launched 

multispectral sensor Sentinel 2 MSI and Landsat 8 OLI in Phragmites biomass assessment.  

The potential of all corresponding sensors for biomass estimation were tested based on Partial Least Square 

(PLS) regression algorithm. For the first objective, the PLS regression selected the following bands as the 

most optimum variables that could estimate biomass in both wetlands: blue band (B1), red band (B3), and 

red edge (B4). The combination of both extracted bands and vegetation indices improved predictive 

accuracy of natural biomass estimation using PLSR. The study further tested the potential of assessing 

Phragmites aboveground biomass using medium multispectral Sentinel 2 MSI and Landsat 8 OLI data. The 

results were compared with the findings obtained from RapidEye data. Findings indicated that Sentinel 2 

MSI outperformed both Landsat 8 OLI and RapidEye using extracted bands and vegetation indices. 

However, findings are inconclusive concerning whether Landsat 8 OLI outperformed RapidEye or not for 
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Phragmites biomass estimation. The increased unique spectral bands coverage of medium multispectral 

Sentinel 2 MSI has the ability to quantify the variability of Phragmites biomass between natural and 

rehabilitated wetlands with high accuracy. This has huge practical implications for monitoring of wetland 

vegetation species. The study clearly demonstrated that estimation of vegetation biomass in wetlands could 

be improved with cheap and freely available data such as Sentinel 2 MSI data.  
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CHAPTER ONE 

General Background 

 

1.1. General Introduction  

 

Wetlands are an important component of global ecosystems because of their role in maintenance of 

environmental quality and are rich in biological diversity (Zedler, 2000; Zedler & Kercher, 2005). They are 

known as natural assets and infrastructure able to provide numerous benefits freely (Horwitz & Finlayson, 

2011). Healthy wetlands should be able to provide numerous social and economic benefits including 

environmental valuable functions (Lantz & Wang, 2013; Murray et al., 2011). These include regulating 

water flows throughout the season; purifying water by breaking down some chemicals into usable forms 

(Islam et al., 2008; Sieben et al., 2011). They aid in replenishing ground water supplies as well as shoreline 

stabilization. Wetlands act as a natural sponge by absorbing water during flooding periods and releasing it 

during dry periods (Prior & Johnes, 2002; Uluocha & Okeke, 2004). Most importantly, wetlands store a 

large portion of the worldôs carbon and in return, slow down the impact of climate change (Kayranli et al., 

2010; Vashum & Jayakumar, 2012a). Wetlands are hard-working ecosystems that provide a critical habitat 

for fauna and flora (Kotze et al. 2012, Dini and Bahadur 2016). Wetland vegetation control pollution by 

trapping and reducing sediments in the water. Vegetation is also a good indicator of for early signs of any 

physical and or  chemical degradation in wetland environment (Dennison et al., 1993). Furthermore, 

wetlands have high economic value providing many natural products and recreational opportunities. 

However, all the benefits and functions they provide depends on the physical or biological condition of 

wetlands (Meng et al., 2016; Rivers-Moore & Cowden, 2012).  

Despite the provision of these valuable services and functions, wetlands continue to be polluted, drained 

and converted to agricultural lands and urban development due to increase in human population growth 

(Carle et al., 2014; Meli et al., 2014; Sieben et al., 2011). It is estimated that 50% of the wetlands globally 

and 65% of wetlands in South Africa are under threat and 48 % of them are being critically endangered and 

lost (Kotze et al., 2012; Nel & Driver, 2012). This excessive destabilization of wetlands has triggered an 

urgent need for protection and restoration in various places globally, including South Africa. Research on 

wetland rehabilitation, creation and degradation have become more important to understand the structure 

and function of restored wetlands (Wang et al., 2012). The success of rehabilitation will depend on the 

component repaired (e.g. hydrology, soil and vegetation). Generally, the purpose of rehabilitation is to 

restore ecosystem function and structure at all levels by considering the entire ecosystem (RuizȤJaen & 

Mitchell Aide, 2005; Zedler, 2000). Theoretically, a restored wetland should resemble the natural wetland 
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in terms of structure and function (Passell, 2000; Purcell et al., 2002). In practice, measuring the success of 

rehabilitation is not a straightforward process. This is because some ecosystem functions may become 

evident after a long time (Mitsch & Wilson, 1996; RuizȤJaen & Mitchell Aide, 2005). Vegetation structure 

such as plant density, species diversity, vegetation cover, and biomass are preferred for wetland condition 

assessment (RuizȤJaen & Mitchell Aide, 2005). Vegetation structure such as aboveground biomass is 

preferred because it is easy to observe, interpret and is a vital part of wetland structure and function (Eckert 

& Engesser, 2013; Kay C Stefanik & Mitsch, 2012; Wang et al., 2012). It is reported in literature that not 

all rehabilitated wetlands perform all functions nor do they all function well. The geographical location and 

size of a wetland may determine what functions it may perform (Novitski et al., 1996; Siobhan Fennessy et 

al., 2007).  Factors such as the amount of water quality and quantity entering the wetland, climatic 

conditions, type of vegetation and disturbance within and surrounding wetlands determine how well a 

wetland will perform its function (Cui et al., 2009; Novitski et al., 1996). In cases where rehabilitation has 

been successful, rehabilitated wetlands have inherently been more susceptible to invasive species 

(Kettenring & Adams, 2011; Kettenring et al., 2012). These invasive species have profound effects on the 

structure (e.g. species distribution ) and function (e.g. alteration of water quality) of the rehabilitated 

wetlands (Litton et al., 2006; Mack & DôAntonio, 2003).  

Phragmites australis (Cav.) Trin. Ex Steud known as common reeds, belong to the family of Poaceae. 

Phragmites australis (hereafter Phragmites) is one of the most studied and widely distributed perennial 

grass in freshwater of South African wetlands (Köbbing et al., 2013; Russell & Kraaij, 2008). It plays vital 

ecological and social roles in most Southern African countries. Phragmites control soil erosion, purifying 

water as well as providing habitat for wildlife (Ailstock et al., 2001; Onojeghuo et al., 2010). Furthermore, 

it is also of social and economical value as it is used for making mats, baskets, paper, medicine, light 

construction, and thatching roofs. Despite its environmental and socio-economic values, literature indicates 

that Phragmites has an inclination of dominating other wetland plants by out-competing them for space, 

nutrients, and sunlight (Kettenring & Adams, 2011; Lantz & Wang, 2013; Russell & Kraaij, 2008). This 

trait has led to differences in opinions  held by natural resource managers concerning the plantôs ecological 

value and its potential usefulness for environmental enhancement (Ailstock et al., 2001). Despite these 

differences of opinion, studies on Phragmites have been focusing on disinfestation, mitigation, fertilization 

and biological properties (Kettenring & Adams, 2011; Kettenring et al., 2012). Research on the spatial 

distribution of Phragmites and quantifying its quantity (biomass) between rehabilitated and pristine wetland 

is rare. Because biomass has long been used as an indicator of wetland health (Anderson & Davis, 2013; 

RuizȤJaen & Mitchell Aide, 2005), fresh aboveground biomass of Phragmites could be a direct measure 

of rehabilitated wetland function (Catling & Mitrow, 2011; Hossain et al., 2010). Evaluation of Phragmites 
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aboveground biomass in rehabilitated wetland should be compared with pristine sites to estimate the level 

of rehabilitation success (Passell, 2000; Purcell et al., 2002; Ruiz-Jaén & Aide, 2005).  

In order to understand the spatial distribution of Phragmites and monitor the growth at different wetland 

health conditions, there is a need to develop real-time techniques for monitoring Phragmites distribution 

and predicting biomass as an approach to rapid assessment and managements of the species. These 

techniques should be able to provide required information that will aid monitoring with the aim of 

implementing an effective plan to deal with invasions. Traditional methods such as field surveys and direct 

visual observations have been the primary source of invasive species data collection. However, these 

methods are time-consuming, subjective, and always very limited in spatial extent and lack detailed 

information about the distribution and quantity of invasive species on a broad scale (E. Adam et al., 2010; 

Bourgeau-Chavez et al., 2013; Ozesmi & Bauer, 2002). These limitations make it challenging to provide 

real-time information or data to facilitate assessments of changes in these wetland ecosystems over a certain 

period of time (Hestir et al., 2008). In this regard, advanced multispectral remotely sensed data offer 

alternative methods to accomplish this task at no or affordable cost. In contrast to field-based survey, 

multispectral remote sensing techniques cover a much larger spatial area, in a short period while repeatedly 

measuring the same areas for a longer time span (E. Adam et al., 2010; Ozesmi & Bauer, 2002; Underwood 

et al., 2003). These advantages have attracted a significant amount of scientific research especially for 

natural vegetation biomass assessments and monitoring at different scales (Englhart et al., 2011; Lu, 2006). 

Although biomass cannot be directly quantified from space, multispectral satellite sensors have been used 

to estimate biomass through empirical relationship between reflectance and spectral indices when integrated 

with field measurements (Englhart et al., 2011; García et al., 2010; Mutanga & Adam, 2011).  

Various multispectral sensors are available for wetland biomass mapping and been widely used to monitor 

wetland vegetation status (Byrd et al., 2014; Key et al., 2001). Multispectral sensors such as Advanced 

Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS) 

and Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM) provide long-term archives 

for ecological monitoring purposes (Nagendra et al., 2013; Robinson et al., 2016) and are freely accessible. 

MODIS and AVHRR were reported to mis-represent the spatial variations of invasive plant species due to 

the wide swaths (Shoko & Mutanga, 2017). Similarly, the moderate spatial resolution MEdium Resolution 

Imaging Spectrometer (MERIS) and Landsat TM and ETM are insufficient for monitoring and quantifying 

different vegetation structures such as biomass at high accuracy because of spectral mixing and saturation 

problems (E. Adam et al., 2010; Ozesmi & Bauer, 2002). These data create ambiguous differentiation 

among vegetation species (Nagendra et al., 2013; Ozesmi & Bauer, 2002; Thenkabail et al., 2012).  
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The challenges associated with characterization of wetland vegetation might be improved with the use of 

finer spatial resolution such as RapidEye and Worldview data. These multispectral satellite sensors 

increased the potential sources of data that could be used to characterize spectral variability of various 

wetland vegetation species (Ozdemir & Karnieli, 2011; Ramoelo et al., 2015b; Robinson et al., 2016). 

RapidEye image was the first commercial satellite sensor with red edge coverage at a finer spatial resolution 

of 5 m (Houborg et al., 2015). Despite having attractive characteristics and producing good results in other 

vegetation studies, the potential of RapidEye data for estimating Phragmites biomass in wetlands has not 

yet been explored because of the high acquisition cost. In this regard, quantification of Phragmites 

aboveground biomass lies in the ability of cheap and readily available earth observation data. Recently, 

advanced new generation medium Landsat 8 OLI (Operational Land Imager) and Sentinel 2 MultiSpectral 

Instrument (MSI) have attractive characteristics that are promising for improving aboveground biomass 

estimation (Mutanga et al., 2016; Ozdemir & Karnieli, 2011). Multiple studies have demonstrated the 

strength of additional bands in these sensors for biomass quantification. For instance, Dube and Mutanga 

(2015) successfully estimated aboveground biomass of different forest species using Landsat 8 OLI and 

ETM. The authors reported a good performance achieved from new generation Landsat 8 OLI data. While 

Sentinel 2 MSI was found to produce high or same accuracy as Landsat 8 OLI and Hyperspectral infrared 

imager (HyspIRI) for estimating grass aboveground biomass under different fertilizer management 

(Sibanda et al., 2016). To the best of our knowledge, these multispectral sensors have not been tested in 

comparing the aboveground biomass of Phragmites between natural and rehabilitated wetlands. The 

availability of these new improved multispectral sensors with lower or no costs make remote sensing 

attractive for monitoring invasive species and estimating wetland vegetation biomass in natural and 

rehabilitated wetlands. Choosing between them is a function of cost, spatial and spectral resolution, and 

revisit period. Each satellite sensor offer different advantages and disadvantages depending on the objective 

of the study (Byrd et al., 2014; C. Yang & Everitt, 2010).  

   1.2. Research Objectives  

 

The main objective of this study was to explore the utility of new generation multispectral satellite sensors 

in quantifying the variability of Phragmites aboveground biomass between the natural wetland and 

rehabilitated wetland in the City of Tshwane Metropolitan Municipality, South Africa.  

The specific objectives were as follows: 

¶ To test the potential of fine spectral resolution RapidEye satellite image in assessing the variability 

of Phragmites aboveground biomass between natural and rehabilitated wetlands. 
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¶ To compare the strength of newly launched medium spectral resolution Sentinel 2 MSI and Landsat 

8 OLI in assessing the variability of Phragmites aboveground biomass between natural and 

rehabilitated wetlands.  

1.3. Research Questions 

 

¶ How well can RapidEye with red band coverage quantify Phragmites aboveground biomass? 

¶ Can the new medium Sentinel 2 MSI with red edge and Landsat 8 OLI with refined near infrared 

coverage improve biomass quantification accuracy than finer spatial resolution RapidEye?  

 1.4. Thesis Structure 

 

This thesis is comprised of four chapters. Chapter 1 provides the general background, highlighting the 

importance and problems associated with wetlands. The different types of multispectral remote sensing data 

used for wetland vegetation and their limitations provided in the context of published literature. This is in 

laying groundwork and exploring new remote sensing techniques that can help estimate Phragmites 

biomass with high accuracy at affordable cost.  

Chapter 2 and 3 are written as a stand-alone article in the form of publishable manuscript format that can 

be read separately from the rest of the thesis. However, these chapters draw conclusions that link the overall 

research objectives and questions. In that regard, replications occur in the introduction and methods 

sections. Chapter 2 investigates the potential of using RapidEye satellite data to estimate the variability of 

Phragmites biomass between natural and rehabilitated wetlands. This chapter highlights the significant 

correlation between measured biomass with spectral bands and vegetation indices. Furthermore, PLS 

regression was implemented to predict aboveground biomass based on three different predictor variables. 

All RapidEye predictor variables were tested to determine which predictor has the potential to estimate 

Phragmites biomass better with high accuracy.  

Chapter 3 (manuscript in preparation), investigates the potential of using cheap available earth observation 

data and compared it with commercial sensors. Specifically, we compared the strength of Sentinel 2 MSI 

with its counterpart Landsat 8 OLI for quantifying Phragmites biomass between natural and rehabilitated 

wetlands. The results obtained from both satellite images were compared with the findings achieved from 

chapter two. This chapter explore the increased spectral coverage in Sentinel 2 MSI (specifically, red edge) 

and Landsat 8 OLI (near infrared) with moderate resolution with red edge contained in high spatial 

resolution.   
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Research synthesis is presented in chapter 4. The findings are provided in light of the objectives and 

questions of the study. Conclusion is based on the results obtained in relation to the existing published 

literature and answers the proposed research question. Some recommendations for future research on the 

application of multispectral remote sensing of Phragmites biomass estimation are highlighted. A long list 

of references is provided at the end of the thesis.  
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CHAPTER TWO  

 

The utility of new generation RapidEye multispectral sensor in assessing aboveground biomass of 

Phragmites australis (common reeds) in wetlands areas. 

 
This chapter is based on:  

Mogano K, Chirima J.G, Mutanga O (submitted). Testing the potential of RapidEye multispectral sensor 

in assessing aboveground biomass of Phragmites australis (common reeds) in wetlands areas. Journal of 

Wetlands 

Abstract  

 

Wetland rehabilitation has become a common important practice to recover critically degraded ecosystem 

services. Wetland biomass is one of the main attributes used to quantify the extent of wetland rehabilitation. 

Most wetlands are vulnerable to invasive species such as Phragmites australis. To evaluate the success of 

wetland rehabilitation, we quantified the fresh aboveground biomass of Phragmites, an invasive species, in 

a rehabilitated wetland. A pristine wetland was used as a control. Convectional measurements are accurate 

and reliable; however, it is difficult to harvest the required amounts of materials over large areas in a 

wetland where mobility is restricted. This study explored the potential of using RapidEye data to estimate 

the aboveground biomass of Phragmites in wetlands. We performed a correlation analysis between 

measured Phragmites biomass and the predicted biomass derived from RapidEye data on both wetlands. 

The results showed that natural wetland had high aboveground biomass than the rehabilitated wetland. 

However, the rehabilitated wetland showed wider biomass distribution pattern. All RapidEye spectral bands 

were significantly correlated with Phragmites measured aboveground biomass.  The coefficient of 

determination (R²) and root mean square error (RMSE) did not generate consistent results through all 

models. The individual models were weaker than pooled dataset. The findings of the study are as follows: 

The spectral bands estimated biomass better with an RMSE value of 449.6 g/m². The vegetation indices 

achieved high accuracy for rehabilitated biomass estimation with RMSE value of 387.1 g/m². When both 

bands and vegetation indices were combined, the model estimated Phragmites slightly better than spectral 

band model (RMSE = 434.2 g/m²). Our study suggests that estimation of aboveground biomass of 

Phragmites is possible with RapidEye imagery.  

Keywords: natural wetland, rehabilitated wetland, aboveground biomass, Phragmites australis, RapidEye 

imagery 
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2.1. Introduction 

 

Wetlands are important and productive ecosystems (Mitsch & Gosselink, 2000). They provide a range of 

ecosystem services, such as storm protection, biodiversity support, nutrient removal, water quality 

improvement, and, carbon sequestration (Zedler & Kercher, 2005). Furthermore, wetlands provide habitat 

to an array of wildlife animals and plants (Klemas, 2013) and have high economic, cultural, and recreational 

values (Desta et al., 2012). Despite the goods and services they provide globally, wetlands are being lost at 

an alarming rate because of anthropogenic disturbances such as agriculture, urban development, water 

abstraction, and mining  (Carle et al., 2014; Meli et al., 2014; Sieben et al., 2011). The loss or degradation 

of wetlands could increase the net global  carbon dioxide level in the atmosphere by 6% per year (Hopkinson 

et al., 2012; Vashum & Jayakumar, 2012b). Therefore, damaged and degraded wetlands require effective 

protection and restoration. Wetland restoration has become a common practice worldwide to recover critical 

and degraded ecosystem services (Wang et al., 2012). Recently, research on wetland restoration has become 

important in order to understand the structure and ecological functioning of restored wetlands. 

It is difficult to measure the function of restored wetlands directly, because changes in some properties (e.g. 

soil nutrients, soil organic) can only be observed after a long time (Matthews et al., 2009). Furthermore, the 

direct assessments of restored wetlands are rare, as are data supporting the use of indicators of the success 

and function of these ecosystem (Zedler & Lindig-Cisneros, 2002). This is because in an ideal world, 

restored wetlands would be assessed with long term, large-scale data, however some indicators may not be 

determined in few years after restoration (Eviner et al., 2012; Wortley et al., 2013). Several authors have 

suggested that restoration success could be based on vegetation characteristics, species diversity and 

wetland ecological processes (Ruiz-Jaén & Aide, 2005). In practice, vegetation is often used as the indicator 

of success of failure of restoration, because it is assumed that with the recovery of vegetation follow the 

ecological processes (Eckert & Engesser, 2013; Kay Christine Stefanik, 2012). Most importantly, these 

measurements are helpful and practical for determining whether rehabilitated wetlands begin to 

approximate the pristine wetlands both structurally and functionally as they age or not. However,  restored 

wetlands are particularly susceptible to rapid spread of invasive plants that can hinder restoration success 

(Kettenring & Adams, 2011; Saltonstall & Stevenson, 2007).  

Phragmites australis (common reeds) is one of the most important and widely distributed invasive grasses 

in wetland environments (Russell & Kraaij, 2008; Wang et al., 2012) and considered highly productive 

(Soetaert et al., 2004). Phragmites is known to invade natural, rehabilitated and created wetlands , forming 

monotypic stands and displacing other native species (Engloner, 2009; Kettenring & Adams, 2011; 

Kettenring et al., 2012). Although some studies indicated the uncertanities regarding how best to measure 
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the success of rehabilitation (Matthews et al., 2009), the standing fresh biomass of Phragmites invasive 

species may be a direct measure of wetland ecosytem functioning (Catling & Mitrow, 2011; Hossain et al., 

2010). The aboveground biomass is an essential index for monitoring the stabilility and productivity of 

wetland ecosystems (Klemas, 2013; Mutanga & Adam, 2011). Although aboveground biomass is important 

for determining wetland health and function, the biomass of Phragmites received little attention. 

Furthermore, the response of Phragmites under different wetlands management is essential for 

understanding factors that promte invasion. To understand the distribution and quantity of Phragmites 

requires accurate monitoring and assessment in a spatial context at finer scale (Pengra et al., 2007). Given 

the fact that wetlands are complex ecosystems (Javier Martínez-López et al., 2014; Mwita, 2016),obtainig 

relaible estimates poses a major challenges (Schino et al., 2003; Xie et al., 2009).   

Conventional field measurements for quantifying the variability of aboveground biomass of invasive 

species across different wetland management sites are accurate and reliable (E. Adam et al., 2010; Q. Chen 

et al., 2012). Although these methods are considered accurate, it is difficult to harvest the required amounts 

of materials to accurately measure aboveground biomass over large spatial extents, especially in wetland 

ecosystems where mobility is usually restricted (Silva et al., 2008; Zomer et al., 2009). Therefore, field 

methods are impractical for quantification of aboveground biomass of wetland vegetation, especially in 

closely dense stands of plants and dangerous locations. It is well documented that optical remote sensing 

imagery is a primary source of data that provides valuable information regarding wetland vegetation 

characteristics since it offers instant and repetitive information from local to global scales at a low cost (E. 

Adam et al., 2014; Goetz & Dubayah, 2011; Sibanda et al., 2015). Because of these advantages, remotely 

sensed data have attracted a significant amount of scientific research, especially concerning estimating 

natural vegetation biomass at different scales (Englhart et al., 2011; Lu, 2006). Although biomass cannot 

be directly quantified from space, remote sensing has been used to estimate biomass through empirical 

relationship between reflectance and spectral indices when integrated with field measurements (E. M. Adam 

& Mutanga, 2012a; Englhart et al., 2011; García et al., 2010; Mutanga et al., 2012). As a result, different 

remote sensing methods have been used to estimate the aboveground biomass of wetland vegetation 

successfully (Byrd et al., 2014; Dronova et al., 2015; Mutanga et al., 2012). However, literature suggests 

that low to moderate spatial resolution of multispectral sensors (e.g. Landsat, SPOT, ASTER and MODIS) 

are valuable for mapping biomass at a global scale rather than at a local scale (Abdel-Rahman et al., 2014; 

E. Adam et al., 2014; Dube et al., 2014). These multispectral sensors pose a challenging task of dealing 

with mixed pixels due to larger sensor footprint (E. Adam et al., 2010; Carreiras et al., 2012; Reschke & 

Hüttich, 2014). Moreover, the use of traditional indices showed to have limited success especially in 

wetlands areas dominated by Phragmites with high productivity. It is documented in the literature that 

traditional indices saturate when the aboveground biomass reach 300g/m² (E. Adam et al., 2010). Provided 
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with this limitation, biomass estimation of individual plant species with moderate broadband sensors will 

be impossible in wetland ecosystems. Therefore, optical sensors that are characterized by high spectral and 

spatial resolution are required for biomass estimation in wetland areas.  

 

The development of new multispectral sensors with improved high spatial and spectral resolution such as 

WorldView-2 and 3, and, Rapid Eye, designed with a red-edge band provide a better opportunity for 

biomass retrieval at local to regional scales (Ozdemir & Karnieli, 2011; Ramoelo et al., 2015a; Ramoelo et 

al., 2012). The presence of the red-edge band contained in these multispectral sensors is seen as an 

advantage over coarse multispectral sensors (Schuster et al., 2012). In remote sensing, the ñred edgeò is the 

transitional region between the red absorbance and near infrared reflection. This region positioned between 

680 and 780nm  has the ability to provide additional information about vegetation characteristics (Filella 

& Penuelas, 1994; Gitelson, 1993). This raises the question of whether commercial broadband RapidEye 

image with high spatial resolution of 5 m can enhance aboveground biomass rietrival of  water borrne 

invasive species within wetland ecosystems. A number of successful studies have been conducted using 

RapidEye data in classifying land use (Schuster et al., 2012), derivation of leaf area index (Asam et al., 

2013) , estimating forest biomass and structure (Dube et al., 2014; Ramoelo et al., 2015a; Wallner et al., 

2015), and crop biomass (Imukova et al., 2015; Kross et al., 2015). Although this technique has not been 

fully tested on wetland vegetation, it is considered one of the promising and effective method for 

quantifying the aboveground biomass of vegetation (Malatesta et al., 2013). Therefore, this study explored 

the utility of RapidEye image data for quantifying the variability of aboveground biomass across different 

wetland management sites.  

 

Optical remote sensing of wetland vegetation aboveground biomass has not been widely done due to 

problems of water inundation, nutrient variability and state of maturity. These physiological factors have 

influence on the relationship between spectral reflectance and field measurements (E. Adam et al., 2010; 

Byrd et al., 2014). We explore the potential of RapidEye data for assessing the variability of Phragmites 

biomass across a natural and a rehabilitated wetland. It is necessary to understand how the biomass of same 

invasive species under different wetland management relates to the satellite observed reflectance during a 

single growing season. The overall goal of this study was therefore; to quantify the variability of Phragmites 

aboveground biomass in wetlands located in the City of Tshwane Metropolitan Municipality (CTMM) 

using RapidEye satellite image data. In order to achieve this task, we measured the fresh aboveground 

biomass of Phragmites across the natural and rehabilitated wetlands. We evaluated the relationship between 

Phragmites measured biomass and RapidEye extracted data (bands and indices) across both natural and 
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rehabilitated wetlands in order to compare the performance of each spectral data as well as evaluating the 

success of intervention measures in invasive species control.  

 

2.2. Methods and Material 

 

2.2.1. Study Area 

 

The study was conducted in Kaalplaas Spruit (25º 36' 43.87"S and 28º 05' 39.87" E) and Rietvlei Nature 

Reserve (25º 41' 22" S and 26º 37' 48" E), which are part of City of Tshwane Metropolitan Municipality, 

South Africa (Figure 1). The study areas receive average summer rainfall ranging between 600-750 mm 

per annum, with maximum temperatures of 28º C [Agricultural Research Council- Soil, Climate and Water 

and Climate (ARC-SCW)]. The Kaalplaas Spruit is a natural wetland while the Rietvlei is a rehabilitated 

wetland. Currently these wetlands are being invaded by Phragmites and Typha species. However, other 

species such as Impoea, Leerzia, Ragweed, Cyperus spp, Bidens pilose, Conyza albida, Loostroof, Percacia, 

Amaranthas and Common dodder are also found on the two wetlands. The Rietvlei wetland was selected 

as the reference for study sites. Historically, the wetland was degraded due to large amount of water drained, 

which, subsequently became dry and led to vegetation alteration.  

The rehabilitation process started in 2000 to rewet the peatland and allow the hydrophytic vegetation to re-

establish.(Oberholster et al., 2008). The wetland was dominated by Persicaria, Phragmites, Phytolacca 

octandra, and, Cyperus communities . Sewage water, alien invasive species, residential development, 

burning, and roads are the major disturbance of wetland vegetation (Grundling, 2004). Although both sites 

are dominated by Phragmites, the height and shape were not the same. The Phragmites from Kaalplaas 

Spruit mostly were above 2 m. On the other hand, the Rietvlei invasive vegetation were less than 2 m high 

and very thin at most sites. Furthermore, ragweed species of Kaalplaas Spruit were found in most sites 

where Phragmites was dominant and accessible for sampling. 

  2.2.2. Field Data Collection 

 

The fieldwork was carried out between 16 November and 16 December 2015 on both wetlands. Prior to 

field sampling, 52 sample plots were generated randomly from Kaalplaas Spruit and 47 from Rietvlei 

wetland.  At each point, a quadrat of 1 x 1 m was placed and the locality of that plot was recorded using 

global positioning system (GPS-Garmin Montana 650). Where Phragmites were taller and impossible to 

place the quadrat, a measuring tape was used to generate 1 x 1 m quadrat. The percent cover of all measured 
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plant species were estimated following the nine-grade Braun-Blanquet scale (Van der Welle & Vermeulen 

2003). In each sampling plot, the following data was recorded in a rellevee sheet: plant species, density of 

dead and live stems, percent ground cover, and description of quadrant. The fresh aboveground biomass of 

Phragmites and other species identified within the boundaries of quadrat were harvested and placed in a 

labelled bag. The dry leaves and roots were not considered for measurements. The harvested fresh biomass 

was taken to laboratory on the same day for measurement using a digital weighing scale.  

 2.2.3. Remotely sensed data 

 

A RapidEye multispectral image that covered the study sites were acquired on 02 November 2015 with 

zero cloud cover from GeoData Company. The RapidEye image comprised of five multispectral bands with 

a spatial resolution of 5 m. The spectral ranges of the five bands are 440-510 nm (B1-blue), 520-590 nm 

(B2-green), 630-685 nm (B3-red), 690-730 nm (B4-red-edge), and 760-850 nm (B5-near-infrared). The 

image was already orthorectified and geometrically corrected when received. Atmospheric correction was 

implemented in ENVI 5.1 software using the Fast Line-of Sight Atmospheric Analysis of Spectral 

Hypercubes (FLAASH) algorithm.  

  2.2.4. Extraction of spectral data 

 

A point map of biomass plots was generated using data collected in the field using a GPS (n = 99). This 

point map was overlaid on the RapidEye image to extract a region-of-interest (ROI). The spectral bands 

reflectance were extracted for each sampled plot. The values of each spectral band were also used to 

calculate the vegetation indices (Table 2.1). All the extraction of data was performed using ESRI ArcGIS 

10.3. The spectral bands derived from RapidEye image, the computed vegetation indices, and the 

measured aboveground biomass were used as an input variable in Partial Least Square Regression 

(PLSR) model to measure the importance of each spectral data in quantifying the variability of 

Phragmites aboveground biomass. This was done to evaluate the utility of the red-edge band derived 

vegetation indices biomass estimation relative to the traditional indices.  
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Table 2.1. The spectral bands of RapidEye image and derived vegetation indices. 

Parameters Abbreviation Formula Reference 

Blue, Green, Red, NIR and Red-edge    

Simple Ratio SR NIR/Red Jordan (1969) 

Simple Ratio. Red-edge SR.re NIR/Red-edge Gitelson &Merzlyak (1994) 

Normalised Difference Vegetation Index NDVI  (NIR-Red)/(NIR+Red) Rouse et al., (1974) 

Normalised Difference Vegetation Index. 

Red-edge 

NDVI.re (NIR-Red-edge)/(NIR+Red-

edge) 

Gitelson &Merzlyak 

(1994);Mutanga et al., (2012) 

Normalised Water Difference Index NDWI NIR)/(Blue+NIR) Gao (1996) 

 

2.3. Data analysis 

 

Across the natural and rehabilitated wetlands, sampling plots were measured during the growing season. 

The sampled plots with more than 85 percent coverage of Phragmites were considered for the analysis 

(n=99). This was done to avoid the effects of different species in the spectral reflectance of Phragmites 

within sampled plots. One way analysis of variance (ANOVA)  was used to test whether there is a significant 

difference in mean biomass between the natural and rehabilitated wetlands at 95% confidence level (Ŭ = 

0.05). Furthermore, analysis of covariance (ANCOVA) was used to evaluate the relationship between 

Phragmites aboveground biomass and RapidEye derived spectral data, using wetland type as a qualitative 

variable. From those results, it was possible to observe predictor variables that correlate highly with 

measured biomass. Before each measured variable was used to build regression model with bands and or 

indices, the outliers were removed using the box and whisker plots before regression analysis was 

performed. The remaining samples (89) were implemented in R software using the Partial Least Square 

Regression (PLSR) library package as explained in section 3.1. The distribution maps were produced and 

displayed using version 10.3 of the ArcMap software ESRI.  
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Figure 2.1.  Map of the study area, including an insert of RapidEye image 

 

2.3.1. Partial Least Square Regression (PLSR) method 

 

Partial Least Square Regression (PLSR) is an advanced multivariate statistical analysis technique for 

selecting optimal spectral features when estimating aboveground biomass (Carrascal et al., 2009; Hansen 

& Schjoerring, 2003). It has become popular and gaining recognition in the field of remote sensing of 

ecology (Adjorlolo et al., 2015; Liu & Rayens, 2007) for  developing predictive models of biophysical and 

biochemical plant parameters (Hansen & Schjoerring, 2003). Similar to Sparse partial least squares 

regression (SPLSR), instead of extracting all spectral data (bands and vegetation indices) as predictors, it 

selects one optimal spectral variable that is suitable for estimating the item of interest (Byrd et al., 2014; 

Liu & Rayens, 2007). The selected component explains the variation in both the predictors and response 

variables. This capability makes PLSR model desirable, for evaluating RapidEye spectral data for biomass 

estimation. More importantly, we tested the capability of using RapidEye data to quantify the variability of 

Phragmites aboveground biomass between natural and rehabilitated wetlands. The aboveground biomass 

of Phragmites was built in PLSR from each of the two predictors groups (bands and indices) based on 89 

samples following the same procedure. The detailed procedure conducted for quantifying the variability of 
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Phragmites aboveground biomass on both wetlands is illustrated as follows: 1) the biomass, was plotted 

against the spectral bands using PLSR. 2) The aboveground biomass of Phragmites were plotted against 

the vegetation indices individually. 3) The aboveground biomass was then plotted against combined data 

(bands and indices). This procedure was performed in order to assess the importance of each predictor 

separately in predicting the aboveground biomass of Phragmites. 

 

Due to a limited available sample size in both study areas (n = 99), the leave-one-out cross validation 

(LOOCV) was performed on a single calibrated dataset to evaluate the performance of PLSR model. The 

goodness fit of each model was evaluated based on LOOCV coefficient of determination (R²) and root 

mean square error (RMSE) of the regression. The measured and predicted biomass model across both 

wetlands were compared. The model that resulted in the lower RMSE and high R² were selected as an 

indication of the model that performed better than the other models. The spectral bands and indices with 

the first minimum RMSE in all stages were selected as the best predictor to estimate the component of 

interest (Abdel-Rahman et al. 2014). The contribution of each raw bands and vegetation indices to the 

selected component was evaluated using loading factors derived from PLSR model. All regression models 

were performed using PLS package library (Mevik & Wehrens, 2007) implemented in R statistical software 

version 3.3.1(Core).  

 

 2.4. RESULTS 

 

2.4.1. Measured Phragmites aboveground biomass  

 

Across both wetlands, the highest average biomass was 4215.1 g/m², with range in plot from a low of 408 

g/m² to over 4768 g/m². The sampled plots from the natural wetland were generally higher in biomass with 

low density compared to the rehabilitated wetland. After the outliers were omitted, the highest average 

value for biomass was 1915.9 g/m² for natural wetland and 1423.1 g/m² for rehabilitated wetland. The 

difference in average biomass between wetlands was significant at (p = 0.01). The red edge indices were 

plotted to illustrate their sensitivity in both wetlands (Figure 2.2). The NDVI.re were significant at (p = 

0.05) and SRI.re at (p = 0.006). Figure 2.3 show a distinct aboveground biomass distribution patterns 

available within the study area. The biomass distributions appear quite variable across both sites with 

rehabilitated wetland showing wide range.  
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Figure 2.2.  Box plots of Phragmites aboveground biomass. In box (i) actual measured biomass and box 

(ii) NDVI.re indices and box (iii) SR.re indices respectively, where grey boxes represent natural wetland 

and white box rehabilitated wetland.  

 

(i) 

(ii)  (iii)  
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Figure 2.3. Maps of Phragmites biomass distribution and other dominant species 

 

2.4.2. Correlation between Phragmites measured biomass and RapidEye spectral data 

 

The correlation analysis was carried out between Phragmites measured biomass and RapidEye spectral data 

based on pooled dataset. The relationship was evaluated by examining Pearson correlation coefficient (r). 

A summary of basic information obtained from correlation coefficient is given in Table 2.2. The results 

shows that all of RapidEye bands were found to be significantly correlated (p <0.05) with Phragmites 

biomass. The blue, green and red edge bands yielded high correlation ranging from 0.60 to 0.65. However, 

the indices were poorly correlated with Phragmites biomass. The red edge indices were significantly 

correlated with Phragmites biomass, although the correlation was poor. 
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Table 2.2.  Correlation coefficient (r) between Phragmites aboveground biomass and the RapidEye spectral 

data based on pooled dataset. 

Variable Correlations coefficient(r) 

Blue 0.62 

Green 0.65 

Red 0.46 

Red edge 0.6 

Near-infrared 0.59 

NDVI 0.26 

NDVI.re 0.37 

SR 0.24 

SR.re 0.36 

NDWI 0.22 

 

 

2.4.3. Performance of RapidEye bands in quantifying the aboveground biomass of 

Phragmites 

 

The accuracies obtained in estimating the variability of Phragmites aboveground biomass using only the 

spectral bands is illustrated in Table 2.3. The PLSR model for biomass extracted only one optimal 

component for site-specific model and pooled dataset. Specifically, the best model performance came from 

pooled datasets with the RMSE value of 548.8 g/m². When the dataset was divided by wetland type, the 

natural wetland estimated Phragmites biomass better with the RMSE values of 966.1 g/m² than the 

rehabilitated wetland with RMSE value of 1013 g/m², respectively. The contribution of each band to the 

prediction of measured biomass is displayed in Figure 2.3(i). All RapidEye sensor bands were important 

for assessing the variability of Phragmites biomass in both wetlands. The strongest component loadings of 

natural biomass were those in the red edge band (690-730nm), near infrared band (760-850 nm) and visible 

blue band (440-510 nm). The rehabilitated biomass component loadings were strongest in the absorption 

red band (630 ï 685 nm), near infrared band and followed by the red edge band. The negative loadings can 
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be observed from the red band of natural biomass, which made the lowest contribution to biomass 

estimation. On the other hand, both the red band and near infrared band resulted in negative loadings, and 

contributed higher in the estimation of Phragmites biomass. It is evident from the results that there is a 

variation in performance of RapidEye bands between the natural and rehabilitated wetlands for Phragmites 

biomass estimation. Furthermore, all spectral bands may have comparable importance for Phragmites 

biomass estimation in both wetlands.   

 

Table 2.3.  Summary of PLSR for assessing the variability of Phragmites aboveground biomass between 

natural and rehabilitated wetlands. 

 

 

2.4.4. Performance of RapidEye derived indices in quantifying the aboveground biomass of 

Phragmites 

 

The number of components, R² and RMSE obtained using derived vegetation indices in estimating 

Phragmites aboveground biomass is shown in Table 2.3. The contribution of each index towards the 

prediction of all measured aboveground biomass is illustrated in Figure 2.3(ii). The natural biomass retained 

component two while rehabilitated wetland retained component four with the RMSE of 1035 g/m² and 

944.8 g/m², respectively. Phragmites was estimated better with pooled dataset. The model retained 

component three and resulted in the lowest RMSE value of 413 g/m². Although site-specific model were 

weaker, the rehabilitated model showed a slight improvement in biomass estimation. This could be 

 
Natural Wetland 

 
Rehabilitated Wetland 

Variables Components R² RMSE R² RMSE 

Bands 1 0.41 966.1 0.27 1013 

Indices 4 0.16 944.8 0.37 1013 

Bands & Indices 7 0.56 778.9 0.2 1054 

 Pooled data Components R² RMSE 
 

Bands 
 

     1 0.66 548 
 

Indices 
 

     3 0.75 413 
 

Bands & Indices      2 0.71 440.8 
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attributed to short Phragmites height and indices not reaching saturation level. For component two, the 

contribution of each index for biomass estimates were strongest, in decreasing order, from SRI, NDVI, 

DVI.re, SRI.re and NDWI with least loadings. The loading values for component four were weaker, with 

the NDWI being more sensitive to biomass quantification followed by SRI.re. The NDWI and NDVI 

showed positive loadings and NDVI.re, SRI, and SRI.re resulted in negative loading values.  The high 

loading value of NDWI suggests that it has the potential for estimating Phragmites aboveground biomass 

in rehabilitated wetland.  

 

  

Figure 2.4.  Loading values for the PLSR components plotted against the RapidEye spectral bands and 

indices on both natural and rehabilitated wetlands. Dark grey represents natural wetland and white 

represents rehabilitated wetland. In box (i) bands and (ii) vegetation. 
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2.4.5. Combination of both reflectance bands and derived indices from RapidEye in 

estimating the aboveground biomass 

 

Table 2.3 illustrates the performance of using combined data in estimating Phragmites aboveground 

biomass. In general, combination of spectral data was more successful for natural biomass in comparison 

to single regression analysis. However, separate regression model for rehabilitated biomass were successful 

compared to model from combined data. The bands and indices that could estimate the biomass of 

Phragmites in both wetlands were those in the visible region of the spectrum (blue band), chlorophyll 

absorption (red band) and high reflectance (red-edge band). Specifically, the natural biomass retained 

component seven with RMSE of 778.9 g/m² and rehabilitated wetland retained component one with RMSE 

1054 g/m² respectively. When both sites were pooled together, the model retained component two with the 

lowest RMSE value of 440.8 g/m². The relationship between measured and predicted aboveground biomass 

is shown in Figure 2.4. Noticeably, the individual prediction models were weaker than pooled datasets. The 

pooled spectral bands and combined datasets produced somewhat similar results. The indices outperformed 

both spectral bands and combined data. This proves that indeed the red edge band has the potential to 

estimate Phragmites biomass with high accuracy and overcome saturation problem that is a challenge in 

most conventional multispectral sensors. Measured and predicted aboveground biomass figures are based 

on the pooled datasets due to greater success in predicting Phragmites biomass. It is evident from the results 

that there is a variation in performance of RapidEye spectral data between Phragmites biomass in both 

wetlands.    
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Figure 2.5. The relationship between measured and predicted aboveground biomass of Phragmites based 

on (i) RapidEye spectral bands and (ii) vegetation Indices (iii) both bands and indices. Where blue colour 

represents natural wetland and green is rehabilitated wetland. The models were fitted with all observed 

measurements.  
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2.5. Discussion 

 

2.5.1. Variability in Phragmites biomass distribution 

 

By estimating the quantity of biomass and producing distribution maps, we can start examining the 

underlying factors that contribute to variable distribution pattern of invasive species (Saatchi et al., 2007).  

Phragmites biomass estimation appears to be high under natural wetland. While the biomass distribution 

of rehabilitated wetland exhibited greater variability than that of natural wetland. We can assume that field 

measurement underestimated the rapid growth in rehabilitated wetland. Our results are consistence with the 

findings of (Matthews et al., 2009; Wang et al., 2012; Zedler & Lindig-Cisneros, 2002). The authors 

reported high biomass estimation in natural wetland than in created or restored wetlands. While (Havens et 

al., 1997) reported wide biomass distribution in created wetland than natural wetland. Venter et al. (2003) 

conducted vegetation survey a year after rehabilitation measures were implemented to determine the nature 

of the pioneer communities. Their study reported that the pioneer vegetation was dominated by annual 

weedy species. They further indicated that grazing by animals and trampling by buffalo in the reserve is 

some of the disturbance that could have caused the degeneration of some plant species. The quantity of 

biomass variation across wetlands could be because of different activities such as grazing, harvesting, and 

burning (Zedler & Lindig-Cisneros, 2002) and these activities are likely to be similar in wetland sites. Our 

findings answer the study conducted by Venter et al. (2003) and prove the theory of Matthews et al. (2009). 

The grazing of herbivores disturbed colonization of native plant species and accelerated weedy species in 

rehabilitated wetland. Furthermore, burning of Phragmites occur annually in the middle of dry season as a 

control measure in rehabilitated wetland (Brian, personal communication). Literature also indicated that 

once-off cutting results in increased density of shorter and thinner Phragmites Russell and Kraaij (2008). 

Supporting the findings of Zedler and Lindig-Cisneros (2002) and Saatchi et al. (2007) the aboveground 

biomass of Phragmites alone cannot explain variability across different wetlands. This wide variation of 

biomass between wetlands suggests the need for a better understanding of both environmental and 

anthropogenic activities influencing the distribution of Phragmites. Understanding of these factors 

controlling Phrgmites biomass distribution will allow for the production of precise biomass maps at 

different scales (Svob et al., 2014).  

 

2.5.2. Assessing the variability of Phragmites aboveground biomass using RapidEye imagery 

 

The study adopted the PLSR model in order to evaluate different procedures, which could best estimate 

Phragmites aboveground biomass with high accuracy in natural and rehabilitated wetlands. The bands and 
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indices derived from RapidEye imagery were tested to quantify the variability of Phragmites biomass 

across the pristine and rehabilitated wetlands. First, the potential of using spectral bands reflectance for 

quantification of Phragmites aboveground biomass was assessed in both wetlands. Biomass prediction 

based on site-specific model estimated natural wetland better than rehabilitated wetland. The pooled dataset 

estimated biomass better than site-specific models. The effectiveness of spectral bands for assessing the 

variability of Phragmites biomass relied on the visible blue band. All RapidEye bands showed high 

contribution towards quantification of Phragmites biomass [Figure 2.3 (i)] and were significantly correlated 

with observed biomass. However, in the analysis, the red, red-edge, and near infrared bands contributed 

highly towards the quantification of Phragmites biomass in both wetlands. These bands are located in the 

wavelength known for estimating aboveground biomass and assessing wetland ecological function. This 

finding is consistent with the study by J. Chen et al. (2009) who reported the potential of blue band toward 

estimating aboveground biomass of grassland having high canopy cover. The most important findings in 

this study is that information for quantifying the variability of  Phragmites biomass is probably concentrated 

in all the different spectral bands of RapidEye satellite image.  

 

Secondly, we assessed the potential of using vegetation indices derived from RapidEye sensor for 

Phragmites biomass quantification in natural wetland and rehabilitated wetland. The findings of the study 

further demonstrated that vegetation indices derived from RapidEye have the strength to estimate 

Phragmites biomass with high accuracy. For the estimation of all combined sites, the vegetation indices 

model outperformed the spectral bands. Similar with bands results, site-specific models were weaker using 

vegetation indices. However, rehabilitated wetland performed better than natural wetland. There could be 

two possible reason for plausible performance of vegetation indices. The first explanation could be because 

of red edge indices that were selected as the best variables to estimate Phragmites biomass. As indicated 

from substantial literature, aboveground biomass proved to be challenging with vegetation indices 

especially during the wet season when Phragmites biomass is above (400g/m²) within sampled plots (J. 

Chen et al., 2009; Mutanga et al., 2012; Mutanga et al., 2004). The inclusion of red edge in vegetation 

indices was found to enhance biomass estimation and overcome the saturation problems especially in high 

dense vegetation (Mutanga et al. 2012; Adam et al. 2010). Kross et al. (2015) also indicated that red edge 

indices yielded high prediction accuracy for  LAI and biomass of corn and soybean crops using RapidEye 

satellite image. Secondly, vegetation indices are products of more than one band, which are more sensitive 

to green invasive species as compared with a single band that maybe hindered by background effects and 

yield poor prediction accuracy of Phragmites biomass (J. M. Chen, 1996; Sibanda et al., 2015). For 

instance, the two indices are a combination of red band and red-edge band. Healthy vegetation absorbs 

radiation by leavesô chlorophyll in the red band while reflecting highly in the red-edge wavelength. 
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Therefore, RapidEye red edge indices has the potential to quantify the aboveground biomass of Phragmites 

during the wet season when the area of interest is above 80 percent covered and the biomass is above 400 

g/m².  

 

Finally, the potential of combining both bands and indices for assessing the variability of Phragmites 

aboveground biomass was also explored. The purpose of combining datasets is to increase the validity and 

robustness of the relationship between measured biomass and predicted biomass. Theoretically, the use of 

high multispectral sensor with the additional red-edge band should improve the quantification of 

Phragmites biomass. For instance, it is expected that when the bands increase, the biomass estimation will 

increase in accuracy (D Rocchini et al., 2007). The findings of this study indicated that combined spectral 

data outperformed spectral bands and resulted in slightly less than vegetation indices model based on pooled 

dataset. The site-specific model improved the aboveground biomass of natural wetland and resulted in lower 

accuracy for rehabilitated wetland. The present study has demonstrated that assessing the variability of 

Phragmites biomass between natural and rehabilitated wetlands is possible with RapidEye data. This 

variability performance of bands and indices in both wetlands can therefore serve as a surrogate for water 

borne invasive plant species productivity and condition in other wetlands.  

 

It is difficult to directly compare our study with other studies on Phragmites biomass due to difference in 

satellite data and the methods used. Furthermore, most studies on Phragmites using remote sensing pay 

attention on its distribution or spectral discrimination. For example, Ihse and Graneli (1985) reported that 

hand-held digital instrument was useful for estimating biomass of Phragmites in two Swedish reed stand. 

Ailiana et al. (2008) used Landsat TM and ETM to retrieve biomass of Phragmites in China. These authors 

did not implement any regression model to estimate the biomass as a function of the spectral information 

captured by the sensors. Instead of regression model, the biomass of Phragmites was estimated using the 

vegetation indices and classification of satellite image. Statistics could not be provided from their research. 

The current study achieved the highest R² value of 0.75, which is higher than the findings  of Luo et al. 

(2017) who retrieved Phragmites biomass using Hyperspectral and Light detection and ranging (LIDAR) 

data. The author achieved the highest R² value of 0.48 with Hyperspectral and 0.58 with Lidar from only 

one wetland with short Phragmites. Wallner et al., (2014) estimated forest structural information with 

RapidEye data and achieved the R² value of 0.63. Dube et al., (2014) also used RapidEye to predicted intra-

and-inter species biomass of forest and achieved R² value of 0.58 for combined species. RapidEye image 

was praised for its potential to estimate biomass with high accuracy in areas of closed and dense vegetation. 

These findings suggest that RapidEye sensor performs considerably different depending on the geographic 

location and object of interest. Considering that data were collected in two different wetland areas with 
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diverse vegetation species under natural condition, the results reaffirm the capability of RapidEye spectral 

bands for estimating Phragmites biomass. This new generation multispectral sensor can still compete with 

other higher spectral resolution data with regard to the information they provide (Asam et al., 2013; Wallner 

et al., 2015; Zandler et al., 2015).  

 

 2.6. Conclusion  

 

The current study conducted field measurement to reveal the variability of Phragmites biomass distribution 

and explore the potential of using RapidEye to estimate biomass of Phragmites between natural and 

rehabilitated wetlands. The new multispectral RapidEye sensor data has the potential to quantify the 

variability of Phragmites biomass. Although our study focused on comparing single species over one season 

across different wetland settings, the study suggest that it is possible to assess variability of biomass of 

invasive Phragmites with RapidEye satellite imagery in two different wetland sites, an important insight 

for management of wetland ecosystem. However, there is still more to be taken into consideration to 

improve upon. Most importantly, similar studies should be carried out in other different wetlands and over 

large areas to provide an understanding of the utility of RapidEye for quantifying biomass of Phragmites.  
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CHAPTER THREE  

Comparison of medium spatial resolution Sentinel 2 MSI and Landsat OLI in assessing the 

variability of Phragmites australis (common reeds) biomass in wetlands areas.  

 This chapter is based on: 

Mogano K, Chirima J.G. Mutanga O (in preparation). Comparison of newly launched medium multi-scale 

satellite sensors Sentinel 2 MSI and Landsat 8 OLI in assessing the variability of Phragmites australis 

(common reeds) biomass in wetlands areas. Journal of Wetland Ecology and Management 

Abstract  

 

The purpose of wetland restoration is to enhance biodiversity and recover natural ecosystem services. 

Unfortunately, restored wetlands are susceptible to invasive plant species such as Phragmites australis. 

Aboveground biomass is a common metric used to evaluate the function of restored wetlands. Accurate 

estimate of Phragmites aboveground biomass is required to assess the condition of restored wetland. The 

biomass of restored wetland was compared with that of natural wetland to understand the ecological 

function of these ecosystems. Given that wetlands are not easily accessible, on-site survey is time 

consuming, laborious and feasible to small areas. Multispectral remote sensing data offer cost effective 

approach for estimating wetland vegetation characteristics at varying resolution scale in a short period. 

Hence, the present study compared the potential of newly launched Sentinel 2 Multispectral Instrument 

(MSI) and Landsat 8 Operational Land Imager (OLI) in quantifying the variability of Phragmites biomass 

between the natural and rehabilitated wetlands. To evaluate the potential of Sentinel 2 MSI and Landsat 8 

OLI, the extracted spectral bands, derived vegetation indices and combined datasets (spectral bands and 

vegetation indices), were used as predictor variables for Phragmites biomass.  The results were compared 

with those derived from commercial RapidEye satellite data. The results showed that extracted spectral 

bands derived from Sentinel 2 MSI quantified Phragmites biomass with higher accuracy than vegetation 

indices and combined datasets for both wetlands. The results obtained from Landsat 8 OLI and RapidEye 

data were not consistence in all models producing weaker and higher accuracy. The results were inclusive 

concerning whether Landsat 8 OLI outperformed RapidEye or not for Phragmites biomass estimations. 

Overall, Sentinel 2 MSI exhibited Landsat 8 OLI and RapidEye in quantifying Phragmites biomass in both 

wetlands. These findings showed that Phragmites biomass could be improved with the use of cheap earth 

observation Sentinel 2 MSI with improved spectral bands.  

Keywords: natural wetland; rehabilitated wetland; Phragmites biomass; medium spatial resolution 
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3.1. Introduction 

 

The products, function and ecosystem services provided by wetlands are quantifiable and numerous. At 

local scale, wetlands provide food, recreation and habitat to numerous fauna, flora species, and other 

functions (Kotze et al., 2012; Zedler & Kercher, 2005). At broader scale, wetland vegetation serve as an 

excellent filter of excessive nutrients including those from agricultural runoff (Engelhardt & Ritchie, 2002; 

Thompson et al., 2007) and industrial waste (Klemas, 2013). Unfortunately, anthropogenic activities and 

climate change worldwide threaten wetland ecosystems (Sieben et al., 2011; Verhoeven, 2014).  

Restoration of wetland ecosystems has the potential to reverse degraded wetlands, increase biodiversity and 

recover important ecosystem services (Bullock et al., 2011; Mitsch & Gosselink, 2007; Wortley et al., 

2013). Studies have reported that the main goal of restoration or creation of wetlands is to enhance the re-

establishment of both biodiversity and ecological services lost due to over exploitation and degradation 

(Bullock et al., 2011; Sink et al., 2012). However, determining appropriate variables needed to evaluate the 

success of restoration is a problem (Kentula, 2000; Lockwood & Pimm, 1999). Preferably, wetland 

restoration should be assessed using the same variables before, during and after restoration. At times 

consistent data for such variables are rare or do not exist (Carpenter et al., 2006; Eckert & Engesser, 2013; 

Kay C Stefanik & Mitsch, 2012). In general, restoration indicators differ by wetland ecosystem types and 

across the scale, making comparison between restored and natural wetlands difficult. Vegetation structure 

such as aboveground biomass is a common metrics used to evaluate wetland restoration ecosystems (Ahn 

& Dee, 2011; J Martínez-López et al., 2011; Spieles, 2005). The aboveground ground biomass serve as an 

important indicator of wetland ecological conditions and management (Miller & Fujii, 2010). Furthermore, 

aboveground biomass provides a good measure of plant types dominating on restored or natural wetlands. 

Biomass reflects the amount of water, nutrients and sunlight an individual plant is capable to absorb and 

turn into plant mass (Russell & Kraaij, 2008; Wang et al., 2012).  

The main problem hindering the success of restoration is colonization by invasive species (Havens et al., 

1997). Restored wetlands are vulnerable to invasion from both native and alien invasive plant species due 

to the disturbances and increased resource availability than natural wetlands (Garbutt & Wolters, 2008; 

Kettenring & Adams, 2011). Aquatic invasive species such as Phragmites australis (Phragmites) are widely 

distributed in most wetlands of Southern Africa (Russell & Kraaij, 2008). This invasive species has the 

ability to displace other wetland vegetation and decrease biodiversity (A. Chen et al., 2008; Kettenring & 

Adams, 2011; Ozbay et al., 2012). Its rapid growth and high reproductive rate has attracted researchers and 

resource managers around the globe with respect to its environmental value (e.g. controlling soil erosion, 

wastewater treatment) (A. Chen et al., 2008; Van Meerbeek et al., 2015). Knowledge on the type of 
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vegetation and its growth is critical for understanding and assessing the status of wetland restoration. 

Instead of considering invasive species as s burden, the aboveground biomass produced by Phragmites can 

be considered a measure of ecosystem services (Van Meerbeek et al., 2015). Aboveground biomass of 

Phragmites not only reveal wetland ecological health conditions (Zhou et al., 2014) but also provide 

evidence that managers and scientists can use to evaluate the success or failure of restoration in wetland 

ecosystems (X. Yang & Guo, 2014). This information could provide some clarity concerning whether the 

restored wetland has met certain goals such as nutrient supply, habitat type and biodiversity (Phinn et al., 

1999; Zedler, 2000). Furthermore, comparisons between restored wetland and pristine wetland can provide 

insight changes into the conditions of the ecosystem invaded by Phragmites invasive species.  

Wetland are often located in remote and sensitive areas and are difficult to survey due to delicate habitat 

conditions and thick dense vegetation (Buchanan et al., 2009; Javier Martínez-López et al., 2014; Mwita, 

2016). On-site assessment in these ecosystems are laborious, time consuming and inefficient especially for 

large wetlands due to restricted mobility. Furthermore, the number of points measured in the field does not 

capture the information at the scale required for monitoring (E. Adam et al., 2010; Ashraf et al., 2010). 

Therefore, accurate estimation of Phragmites biomass in these ecosystems is restricted by the spatial and 

temporal frequency of data collection. Furthermore, the distribution of collected data might not adequately 

capture factors causing rapid invasion (Powell et al., 2010). In that regard, remote sensing offer a 

straightforward choice for estimating aboveground biomass of wetland invasive species under different 

wetland management systems in a short space time (Robinson et al., 2016; Somodi et al., 2012) and 

monitoring rehabilitated wetland ecosystem (Maguigan et al., 2016). Remote sensing techniques such as 

hyperspectral, Light detection radar (LIDAR), RapidEye and Worldview are widely used to estimate the 

aboveground biomass of wetland vegetation. For instance, Luo et al. (2015) successfully estimated wetland 

vegetation height and leaf are index using airborne laser scanning (ALS) data. Mutanga et al. (2012) also 

estimated wetland vegetation biomass successfully using Worldview-2 data. The author concluded that 

worldview- 2 can optimally estimate wetland vegetation biomass which was challenging with 

conventionally satellite sensors. E. Adam et al. (2014) successfully estimated papyrus biomass in wetlands 

using hyperspectral data. Although the data produced reliable biomass estimates due to high spatial and 

spectral resolution, this dataset are unlikey to support regular monitoring due to high acqusition cost. 

Furthermore, in nature conservation financial resources are often severely limited (Margules & Pressey, 

2000), therefore cost effectiveness has to be taken into account probably more than in basic science (Naidoo 

& Ricketts, 2006). Therefore, the use of high spatial and spectral resolution cannot be afforded especially 

in resource scarce countries like South Africa. In spite of these financial constraints,  the quantity of  

Phragmites biomass using remote sensing between natural and rehabilitated wetlands has not received 
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much attention. Thus there is a need to test the potential of  using  freely and readily available remotely 

sensed data that could effectively quantify the variability of Phragmites aboveground biomass accurately.  

The recent improvement of space borne multispectral remotely sensed data is a promising source of 

information for understanding wetland vegetation (Oumar & Mutanga, 2013). With the availability of  

Landsat 8 Operational Land Imager (OLI) and Sentinel 2 MSI data and their enhanced strategically 

positioned spectral bands (Roy et al., 2014), it becomes possible to monitor vegetation accurately at a 

varying spatial and temporal scales for specific wetland ecosystems. For  instance, Sentinel 2 MSI with 

three bands in the red edge and two bands in the shortwave infrared (SWIR) are perceived to have the ability 

to estimate vegetation biomas and biochemical properties (Ramoelo et al., 2015b; Sibanda et al., 2015). 

Additionaly, the red edge spectral bands contained in Sentinel 2 MSI are reported to be highly sensitive to 

vegetation species characteristics (Rapinel et al., 2014) and improve the accuracy to estimate the biomass 

of individual plant species (Shoko & Mutanga, 2017). The three red edge bands offer an opportunity to 

estimate vegetation productivity across different wetland management areas. Ramoelo et al. (2015b) and 

Sibanda et al. (2015) successfuly highlighted the potential of Sentinel-2 red edge for grass nutrients and 

biomass studies. The Landsat 8 OLI was successfuly applied to estimate aboveground biomass of forest 

(Dube & Mutanga, 2015), soybeans and corn crops (Kross et al., 2015), floristic variation in grassland 

(Feilhauer et al., 2013) and quantifying shrub biomass in arid environments (Zandler et al., 2015). These 

studies revealed the potential of refined near infrared and SWIR coverage in Landsat 8 OLI for improving 

the assessment of vegetation parameters in a cost effective manner at regional scale. There is no specific 

recommendation on the suitability of specific sensors for invasive plant species especially in wetland 

environment (Feilhauer et al., 2013; Zandler et al., 2015). However, literature indicate that sensors with red 

edge spectral region such as Sentinel 2 MSI may be more effective than conventional sensors such as 

Landsat 8 OLI (Eisfelder et al., 2012; Li et al., 2012). So far, the spectral settings of these new generation 

medium sensors in quantifying Phragmites biomass has not yet been tested under differernt wetland 

management systems.  

It is therefore our aim to compare the potential of existing spectral configuration from two different 

remotely sensed data for assessing variability of Phragmites biomass in different wetlands areas. The 

primary objective was to compare the utility of using multi-scale medium resolution Sentinel 2 MSI versus 

Landsat 8 OLI data in estimating the variability of Phragmites biomass between natural and rehabilitated 

wetlands. We further tested the full potential of both Sentinel 2 MSI and Landsat 8 OLI for Phragmites 

biomass estimation by comparing their performance with higher resolution multispectral RapidEye data. 

RapidEye image provides five spectral bands with red edge coverage and high spatial resolution of 5 m x 
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5 m. The multi-scale comparison was done to test the sensitivity of spectral bands contained within an 

individual sensor type for Phragmites biomass estimation.  

3.2. Materials and Methods 

3.2.1. Study area 

 

The Rietvlei Nature Reserve (25º 41' 22" S and 26º 37' 48" E) is located in the east of the City of Tshwane 

Metropolitan Municipality, South Africa while Kaalplaas Spruit (25º 36' 43.87"S and 28º 05' 39.87" E) is 

located in the northern part of the metropolitan municipality. The Rietvlei Nature reserve was established 

because of Rietvlei Water Scheme providing drinking water to the local communities. The wetland was 

extensively drained due to peat mining activities. This degradation has led to rehabilitation process, which 

began in 2000 with the aim of preventing further loss (Oberholster et al., 2008; Venter et al., 2003). Hence, 

Rietvlei wetland was chosen as a reference site in order to assess the success of rehabilitation measures 

using vegetation parameters. The Kaalplaas Spruit was chosen as a control site to compare the difference 

in vegetation parameters with the reference site. Both Rietvlei and Kaalplaas Spruit are urban inland 

wetlands and threatened by variety anthropogenic activities such as construction and water pollution. These 

wetlands are currently invaded by variety of invasive species such as Typha and Phragmites including many 

others. Although both Rietvlei and Kaalplaas Spruit are dominated by Phragmites, the structural parameters 

were not the same. Phragmites in the Rietvlei wetland were mostly less than 2 m in height and very thin. 

On the other hand, Kaalplaas Spruit had very thick Phragmites of more than 2 m tall in most sampled plots. 

Furthermore, ragweed plant species was dominant in most sampled measured plots especially for Kaalplaas 

Spruit wetland. Figure 3.1 shows a map of the study area in the context of South Africa extracted from 

Landsat 8 OLI satellite image.  
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Figure 3.1. Location of the study area, including an insert of Landsat 8 OLI image. 
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3.2.2. In  situ field measurements  

 

Within natural and rehabilitated wetlands, Phragmites sampling measurements were conducted during a 

single growing season between November and December 2015. Across both wetlands, 99 vegetation plots, 

each with an area of 1 x 1 m were measured. The locality of the field plot was recorded using global 

positioning system (GPS-Garmin Montana 650). Measuring tape was used to generate 1 m x 1 m where 

Phragmites were taller and impossible to throw the quadrat. The plot location was used to extract the 

spectral reflectance from remote sensing images. At each sampling plot, the number of stems and percent 

cover of all measured plant species was recorded (0-100%). The green leaves and stem of Phragmites and 

other species identified within the boundaries of quadrat were harvested and placed in a labelled bag. The 

harvested materials were taken to laboratory on the same day for measurement using a digital weighing 

scale. The observed measurement was used to build the relationship between fresh biomass and spectral 

reflectance of corresponding satellite imagery for further analysis.  

3.2.3. Image acquisition and pre-processing 

 

Three different multispectral data were acquired to quantify the variability of Phragmites above ground 

biomass between natural and rehabilitated wetlands. The Landsat 8 OLI and Sentinel 2 MSI cover the study 

areas with one tile. RapidEye uses one tile for each study site. The images were acquired in the same period 

that corresponds with field measurement dates, 16 November to 16 December 2015.  Both Landsat 8 OLI 

and Sentinel 2 MSI were obtained free from US Geological Survey website (http://landsat.usgs.gov/). The 

Landsat 8 OLI was downloaded as Level 1T and Sentinel 2 MSI as Level 1C products. The Level 1T and 

Level 1C means that the supplier applied radiometric and geometric correction. (USGS 2013; Sentinel MPS 

2016). However, the Level 1C provides top of the atmosphere that is not included in Landsat 8 OLI. The 

Landsat 8 OLI captures images on the earth at 16-day temporal resolution. Compared to Landsat 7 ETM +, 

Landsat OLI provides additional two new bands and advanced signal to noise radiometric performance, 

which gives an advantage for natural resource applications (El-Askary et al., 2014; Pahlevan & Schott, 

2013). Sentinel- 2 with a spatial resolution ranging from 10 m to 60 m has revisit time of 5 days interval 

(Cole et al., 2014). Sentinel 2 MSI provides 13 spectral bands ranging from visible through red edge to the 

short wave infrared at different spatial resolution. Sentinel 2 MSI provides three unique red edge bands (5, 

6, and 7) which are designed for vegetation studies. The visible bands (2, 3, 4 and 8) of Sentinel 2 MSI are 

closely matched with bands 2, 3, 4, and 5 of Landsat 8 OLI. These similarities present the opportunity to 

use both images as complementary instrument with promising characteristics for remote sensing of 

vegetation. The Level 3A orthorectified RapidEye provides five spectral bands including a single red edge 

http://landsat.usgs.gov/
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coverage with a daily temporal resolution. The 3A products were delivered with radiometric and geometric 

correction on the data.  

Detailed information on spectral bands of both Landsat 8 OLI, Sentinel-2 and RapidEye is present in Table 

1. Atmospheric correction was implemented in ENVI 5.1 software using Fast Line-of Sight Atmospheric 

analysis of Spectral Hyperculus (FLAASH) module after both scenes were converted to surface reflectance 

for Landsat 8 OLI and RapidEye. For Sentinel 2 MSI, QGIS software 2.18 was used for atmospheric 

correction and layer stacking. Next, the bands that were reported not useful for vegetation (Féret et al., 

2015; Immitzer et al., 2016) were removed during layer stacking. For instance, when stacking Landsat 8 

OLI, band 1 (ultra blue), band 10 (panchromatic band), and thermal infrared were removed. From Sentinel 

2 MSI, band 1(aerosol detection), band 9 (water vapour), and 10 (SWIR-cirrus) were also removed. For 

RapidEye, all bands were considered for analysis. All the remaining bands were stacked together and 

imported into ESRI ArcGIS 10.3 for further analysis.   

 

Table 3.1. Spectral and spatial resolution of Sentinel 2 MSI and Landsat 8 OLI. 

  
Sentinel 2 MSI                  Landsat 8 OLI   

Bands Name 

Bands 

(nm) Resolution Name Range Resolution 

B1 Coastal aerosol 443 60  Coastal Blue 0.43-0.45 30 

B2 Blue 490 10  Blue 0.45-0.51 30 

B3 Green 560 10  Green 0.53-0.59 30 

B4 Red 665 10  Red 0.63-0.67 30 

B5 Red edge 705 20  NIR 0.85-0.88 30 

B6 Red edge 740 20  SWIR1 1.57-1.65 30 

B7 Red edge 783 20  SWIR2 2.11-2.29 30 

B8 NIR 842 10  Pachromatic 0.50-0.68 15 

B8a Red edge 865 20     
B9 Water vapour 945 60  Cirrus 1.36-1.38 100 

B10 SWIR-Cirrus 1375 60  TIRS1 10.6-11.19 100 

B11 SWIR 1375 20  TIRS2 11.5-12.51 

B12 SWIR 2190 20     

 

 

3.2.4. Variables for assessing Phragmites aboveground biomass variability 

 

To compare the potential of Landsat OLI and Sentinel MSI in assessing variability of Phragmites biomass 

against RapidEye data, we used spectral reflectance bands and vegetation indices. Table 3.2 shows the 

specific spectral bands and vegetation indices selected for biomass estimation. The spectral reflectance 

values from Landsat 8 OLI, Sentinel 2 MSI and RapidEye were extracted corresponding to each field 
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biomass plot based on the exact plot location using ESRI ArcGIS 10.3. The value of each spectral 

reflectance band was used to calculate the vegetation indices. Among dozens of available vegetation 

indices, the study selected vegetation indices that are commonly used in remote sensing for ecological 

applications (Yan et al., 2015; Zengeya et al., 2013) and were previously used studying Phragmites 

(Ailstock et al., 2001; Luo et al., 2017). All selected indices were computed using any two possible 

combination bands from all corresponding satellite images. In total, 13 spectral data derived from Landsat 

8 OLI, 26 Sentinel 2 MSI, and 10 from RapidEye were used as predictor variables for assessing the 

variability of Phragmites aboveground biomass in between the natural and rehabilitated wetland wetlands. 

For each satellite image, we evaluated the relationship between actual measured biomass with spectral 

reflectance band values and computed vegetation indices. These data was analyzed using Partial Least 

Square regression (PLSR) described in section 2.5 in details. Again, all observed data were used as a single 

calibrated dataset in the model.  

3.2.5. Regression Algorithm 

 

The variability of Phragmites between natural and rehabilitated wetlands was evaluated based on PLSR 

analysis between fields measured biomass and remotely sensed derived variables. The PLSR is an advanced 

multispectral analysis technique for selecting optimal spectral features when estimating the biochemical 

and biophysical parameters in wetland areas (Carrascal et al., 2009; Hansen & Schjoerring, 2003). PLSR is 

a technique that reduces the number of multicollinear spectral variables to few independent variables that 

increases correlation among predictors and single response variable (Atzberger et al., 2003; Hansen & 

Schjoerring, 2003). This technique is gaining recognition in the field of remote sensing and vegetation 

applications for predicting biophysical and biochemical parameters (Adjorlolo et al., 2015; Liu & Rayens, 

2007). Instead of selecting all image predictor variables (bands and vegetation indices), PLSR pre-select 

the most relevant  variable from all available full set of spectra data that is suitable for estimating the item 

of interest (Byrd et al., 2014; Liu & Rayens, 2007). The advantage of PLSR algorithm is that it can deal 

with small number of samples. This advantage provides an opportunity to compare few multispectral 

satellite data using small samples to assess their potential for estimating the aboveground biomass of 

Phragmites between natural and rehabilitated wetlands. At each selection process (spectral bands and 

vegetation indices), the leave-one out cross validation (LOOCV) was performed by removing a single field 

measured plot points until each point was withheld once. For LOOCV, one sample is withheld and the 

remaining samples are used to train the model. For example, if the model is trained with 99 samples, each 

sample will be estimated by the remaining 98 samples to determine the performance of the model for 

biomass estimation (Ramoelo & Cho, 2014). The coefficient of determination (R²) and root mean square 

error (RMSE) were used to evaluate the strength and significance of the relationship between actual 
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measured Phragmites biomass and the data derived from corresponding satellite images. The contribution 

of each raw bands and vegetation indices to the selected component was evaluated using loading factors 

derived from PLSR model. All regression models were implemented in R statistical environment version 

3.31 (Core) using PLS library package (Mevik & Wehrens, 2007). The process followed for computing 

Phragmites biomass in both wetlands with varying multispectral satellite images is discussed in section 2.6. 

3.2.6. Experiments  

 

Partial Least Square Regression (PLSR) was used to compare the strength of Sentinel 2 MSI and Landsat 

8 OLI relative to RapidEye in estimating the variability of Phragmites aboveground biomass between 

natural and rehabilitated wetlands. Four set of data analysis (analysis I-IV) based on different data type 

combinations were (Table 3.2) implemented in PLSR algorithm. For each satellite image, the number of 

predictors varied, depending on the sensorôs spectral bands coverage and derived vegetation indices. The 

analysis was conducted following as follows: 

i. The first set of analysis was conducted based on image spectral bands only (Landsat 8 OLI: 6 

variables; Sentinel 2 MSI: 10 variables; RapidEye: 5 variables). All these variables were plotted 

against field measured biomass separately, to identify the most relevant band that could estimate 

Phragmites biomass in both wetlands. The predictor variable that resulted in the first minimum root 

mean square error (RMSE) in all corresponding images was selected as the best biomass predictor 

in both wetlands. 

ii. The second set of analysis was based on computed vegetation indices only, where Landsat 8 OLI 

used 07 variables, Sentinel 2 MSI (12 variables) and RapidEye (10 variables). All predictors were 

also plotted against field measured biomass using PLSR algorithm individually, to select the 

vegetation index that could best quantify Phragmites biomass in both wetlands. The index that 

resulted in the lowest RMSE was selected as the relevant predictor for Phragmites biomass 

quantification based on the same procedure explained in the first set of analysis.   

iii.  The third set of analysis was conducted based on the combination of both spectral reflectance bands 

and computed indices used in analysis I and II. The combined datasets was plotted against field-

measured biomass to select the most relevant variable between bands and indices that could 

quantify Phragmites biomass in both wetlands following the same procedure conducted in the first 

set of analysis.  
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Table 3.2. Predictor variables used in assessing Phragmites biomass between natural and rehabilitated 

wetlands. 

Variables Sensor Type Details Analysis Stage 
Spectral bands  Landsat 8 OLI blue, green, red, near-

infrared, SWIR I & II 

           I 

 Sentinel 2 MSI blue, green, red, red edge 

(5,6,7,8,8a) and  SWIRI & II 

 

 RapidEye 5 bands (blue, green, red, red 

edge & near-infrared) 

 

Vegetation Indices Landsat 8 OLI NDVI, SR, NDWI            II  

 Sentinel 2 MSI NDVI, SR, NDWI  

 RapidEye  NDVI, SR,NDWI  

    

Spectral bands and Indices Landsat 8 OLI (6 bands) + (7 Indices)           III  

 Sentinel 2 MSI (10 bands + (13 indices)  

 RapidEye (5 bands + (5 indices)  

    

*NDVI: Normalized Difference Vegetation Index, SR: Simple Ration, NDWI: Normalized Difference Water Index. The selected 

vegetation indices were previously used Phragmites studies (Ailstock et al., 2001; Lantz & Wang, 2013; Luo et al., 2017)  

 

3.3. Results 

 

3.3.1. Measured Phragmites aboveground biomass descriptive statistics (g/m²) 

 

Ninety-nine sampling plots were measured across the natural and rehabilitated wetlands. High aboveground 

biomass was observed from natural wetlands with an average of 4215 g/m². After the outliers were omitted, 

the average biomass was 1915 g/m² for natural wetland and 1423.1 g/m² for rehabilitated wetland. It can be 

observed from Figure 3.2 (i), that the biomass box plots vary between the two wetlands. The spectral 

reflectance of red edge from Sentinel 2 MSI and RapidEye between the two wetlands are presented in 

Figure 3.2 (i) and (ii).  
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3.3.2. Comparison of spectral reflectance bands from Sentinel 2 MSI and Landsat 8 OLI 

bands relative to RapidEye bands in estimating Phragmites aboveground biomass  

 
The results on all analysis (I-III) for Phragmites biomass quantification in terms of the coefficient of 

determination (R²), root mean square error (RMSE) and the number of optimal components considered in 

each model are shown in Table 3.3-3.5. Based on spectral reflectance bands, the results indicated that site-

specific models were weaker for Landsat 8 OLI and RapidEye in comparison to Sentinel 2 MSI data (Table 

3.3).  For example, when using Sentinel 2 MSI the natural wetland produced an R² value of 0.68 with the 

lowest RMSE of 886.6 g/m². On the other hand, the spectral reflectance of Landsat 8 OLI and RapidEye 

produced lower results (R² = 0.34, RMSE = 983.3 g/m²; R² = 0.41, RMSE = 966.1 g/m²) for natural wetland 

respectively. The Landsat 8 OLI and Sentinel 2 MSI showed good predictive power in estimating 

rehabilitated biomass. The model increased accuracy for all corresponding satellite images with pooled 

dataset. Sentinel 2 MSI estimated Phragmites biomass better than RapidEye bands producing R² 0.79 and 

RMSE of 323.6 g/m ². Comparatively, the Landsat 8 OLI produced somewhat similar results as Sentinel 2 

MSI (R² = 0.71; RMSE = 469 g/m²). It can be observed that RapidEye spectral bands was the least performer 

for predicting Phragmites biomass.  
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Figure 3.2.  Box plots of Phragmites aboveground biomass. In box (i) is the actual measured aboveground 

biomass, box (ii) red-edge reflectance from RapidEye and box (iii) Sentinel-2 MSI red edge reflectance. In 

box (iii), (a) is Band 5, (b) Band 6, and (c) Band 7 respectively.  

 

(i) 

a 

b 

c 

(ii)  (iii)  
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Table 3.3.  Phragmites biomass estimation from Landsat 8 OLI, Sentinel 2 MSI and RapidEye using 

spectral reflectance bands. 

 
Natural Wetland 

 
Rehabilitated Wetland 

 
Components R² RMSE Component R² RMSE 

Sentinel 2 MSI       5 0.68 888.6         2 0.65 891.2 

RapidEye       1 0.41 966.1         1 0.27 1013 

Landsat 8 OLI       2 0.34 966.1         2 0.54 814.4 

Pooled dataset Components R² RMSE 
   

Sentinel 2 MSI       5 0.79    323.6 
   

Landsat 8 OLI       2 0.71     469 
   

RapidEye       1 0.66     48.8 
   

*Number of components selected using spectral reflectance bands from corresponding sensor types 

 

3.3.3. Comparison of Sentinel 2 MSI and Landsat 8 OLI derived vegetation indices in 

estimating Phragmites biomass relative to RapidEye derived vegetation indices 

 

The results in Table 3.4 illustrate the accuracy achieved from analysis II in quantifying Phragmites biomass 

using Landsat 8 OLI, Sentinel 2 MSI and RapidEye derived vegetation indices. It can be noted that the best 

biomass estimates obtained for analysis II were those from Sentinel 2 MSI relative to Landsat 8 OLI. 

However, Sentinel 2 MSI derived vegetation indices did not quantify Phragmites biomass with high 

accuracy compared with extracted spectral bands. The highest R² achieved came from natural biomass (R² 

= 0.55; RMSE = 863.5 g/m²). The Landsat 8 and RapidEye produced weaker results for both natural and 

rehabilitated biomass. However, both datasets showed improvements for estimating rehabilitated wetland 

(see Table 3.4.). Although there was little improvement from both datasets, the Landsat 8 OLI performed 

better that RapidEye in both wetlands while the Sentinel 2 MSI performed better than Landsat 8 OLI in 

estimating rehabilitated biomass using vegetation indices. When both sites were pooled together, the 

vegetation indices derived from RapidEye estimated Phragmites biomass better (R²=0.75; RMSE=413 

g/m²). Sentinel 2 MSI and Landsat 8 OLI did not improve biomass prediction in comparison to spectral 

bands. However, Sentinel 2 MSI predicted Phragmites biomass better with an R² of 0.66 and RMSE of 605 

g/m² compared to Landsat 8 OLI with an R² of 0.49 and RMSE of 635.5 g/m² respectively. The results 

indicate that the vegetation indices computed from finer spectral satellite images with red edge coverage 

has the potential to achieve high biomass estimation accuracy. Notably, the accuracy achieved from Landsat 

8 OLI and Sentinel 2 MSI decreased when the number of predictor variables increased.  
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Table 3.4. Phragmites biomass estimation from Landsat 8 OLI, Sentinel 2 MSI and RapidEye derived 

vegetation indices. 

 
Natural Wetland 

 
Rehabilitated Wetland  

 
Component R² RMSE Component R² RMSE 

Sentinel 2 MSI         2 0.55 863.5         3 0.52 803.5 

Landsat 8 OLI         2 0.19 998.2         4 0.43 859.9 

RapidEye         4 0.16 944.8         2 0.37 1013 
       

Pooled dataset Component R² RMSE 
   

RapidEye         3 0.75 413 
   

Sentinel 2 MSI         3 0.66 605 
   

Landsat 8 OLI         3 0.49 635.5 
   

*Number of components selected using spectral reflectance bands from corresponding sensor types  

 

3.3.4. Comparison of Phragmites biomass estimation from Sentinel 2 MSI and Landsat 8 

OLI spectral bands and derived vegetation indices relative to RapidEye combined 

spectral data 

 

The results in Table 3.5 show the number of predictor variables selected, R² and RMSE obtained from 

combined spectral bands and derived vegetation indices in estimating Phragmites biomass using Landsat 8 

OLI, Sentinel 2 MSI and RapidEye data. Firstly, it can be noted that no multispectral datasets produced 

consistence results for site-specific models through all sets of analysis compared to pooled dataset (see 

Table 3.3-3.5). Furthermore, combination of bands and indices produced weaker results for rehabilitated 

wetlands. It can be observed that RapidEye performed slightly higher (R² = 0.56; RMSE = 778.9 g/m²) than 

Sentinel 2 MSI data (R² = 0.53; RMSE = 990.0 g/m²) in estimating natural biomass. The same consistency 

can be observed when both sites were pooled together, combination of spectral and indices derived from 

RapidEye yielded better results (R² = 0.71; RMSE = 440.8g/m²) than Sentinel 2 MSI (R² = 0.62; RMSE = 

683.1 g/m²). Landsat 8 OLI produced poor results for site-specific model and pooled dataset models using 

combination of both bands and indices. The findings showed that medium spectra resolution Sentinel 2 

MSI with red edge could compete with high spectral resolution RapidEye data.  It is worth noting that 

although Sentinel 2 MSI performed better than Landsat 8 OLI, the R² decreased with the number of 

predictor variables increases. The same performance can be observed with Landsat 8 OLI. The results 

indicate that the bands contained in Sentinel 2 MSI and Landsat 8 OLI have more predictive power 

individually compared to when combined (e.g. vegetation indices). Figure 3.3 show the scatter plots 
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between measured and predicted Phragmites biomass obtained using pooled datasets. Overall, the results 

indicates that Phragmites biomass estimation based on site-specific models were weaker than pooled 

datasets. The effort to estimate Phragmites biomass at site level indicate that it is possible to predict biomass 

using Sentinel 2 MSI compared than RapidEye and Landsat 8 OLI datasets.  

 

Table 3.5. Phragmites biomass estimates using combined spectral reflectance bands and derived vegetation 

indices from Landsat 8 OLI, Sentinel 2 MSI and RapidEye 

 
Natural Wetland 

 
Rehabilitated wetland 

 
Component R² RMSE Component R² RMSE 

RapidEye         7 0.56 778.9         1 0.22 1054 

Sentinel 2 MSI         3 0.53 871.2         3 0.41 88.7 

Landsat 8 OLI         11 0.33 900.5         2 0.31 853 

       

Pooled dataset Components R² RMSE 
   

RapidEye         2 0.71 440.8 
   

Sentinel 2 MSI         4 0.62 683.1 
   

Landsat 8 OLI         2 0.5 734.3 
   

*Number of components selected using spectral reflectance bands from corresponding sensor types 
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Figure 3.3. One to one relationship between measured and predicted Phragmites biomass using a 

combination of the spectral bands and vegetation indices derived from (i) RapidEye, (ii) Sentinel 2 MSI, 

and (iii) Landsat 8 OLI. The blue dots represent natural and green represent rehabilitated wetlands 

respectively. The model was fitted with all observed measurements. 
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3.3.6. Loading values of each band and index towards the contribution of Phragmites 

biomass from all satellite images 

 
The contribution of each bands and vegetation indices towards the selected number of component in 

assessing Phragmites biomass is shown in Figure 3.5. The findings shows that when using spectral bands 

Sentinel 2 MSI used five predictor variables out of ten for estimating Phragmites biomass. The highest 

loadings were found in the visible blue, green band and near infrared region of the spectrum. For Landsat 

8 OLI, bands with the highest loadings in component two in descending order were those in the blue, green 

and near infrared region. Only one component was selected for biomass estimation between the wetlands 

when using RapidEye spectral reflectance bands. All RapidEye bands showed high positive loadings with 

blue bands having the strongest followed by green and red-edge bands. It can be observed that the spectral 

bands from all corresponding sensors reflect similar pattern. All satellite images retained three components 

when using vegetation indices. The red edge indices from RapidEye and Sentinel 2 MSI showed high 

loadings value. While NDWI and SR were the heaviest loadings from Landsat 8 OLI data. The performance 

of each bands and indices demonstrate the sensitivity of red edge coverage in satellite sensors. For both of 

the datasets, the blue band and near infrared have high positive loadings values.  
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Figure 3.4. Loading values of each band and vegetation indices toward the contribution of Phragmites 

biomass estimation derived from Sentinel 2 MSI, Landsat 8 OLI and RapidEye datasets. 
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3.4. Discussion 

 

The primary objective of this study was to explore the feasibility of medium multispectral Sentinel 2 MSI 

with red edge bands in quantifying the variability of Phragmites compared to the use of Landsat 8 OLI with 

refined near infrared in the City of Tshwane Metropolitan Municipality. Comparison of multi-scale 

approach is important for biomass quantification where high spectral resolution satellite sensors can be used 

to validate the accuracy obtained from moderate resolution sensors (Ramoelo and Cho (2014). The results 

obtained from both Sentinel 2 MSI and Landsat 8 OLI were compared to high spatial commercial RapidEye 

sensor to further understand the productivity of Phragmites growing between the natural and rehabilitated 

wetlands. The abovementioned satellite sensors were investigated since there is no sensor that is suitable to 

overcome all challenges associated with wetland vegetation. To achieve our objective, we examined 

different spectral features using Partial Least Square Regression (PLSR), to find the best estimation method 

that could quantify  Phragmites aboveground biomass between both wetlands.  

 

The present study has shown that Sentinel 2 MSI data yielded the best accuracy in predicting the variability 

of Phragmites biomass between natural and rehabilitated wetlands compared to Landsat 8 OLI and 

RapidEye data. For instance, when the spectral reflectance bands were tested for quantifying Phragmites 

biomass, Sentinel 2 MSI performed strongly for both natural and rehabilitated wetlands outperforming 

Landsat 8 OLI and RapidEye spectral bands. Similar results were also observed when the dataset was 

pooled together (Table 3.3). Of notable interest is that in the case of Sentinel 2 MSI, the green band (B3) 

and red edge (B6) band were selected as the best variables for quantifying green aboveground biomass for 

both wetlands. These bands were more influential towards Sentinel 2 MSI achieving better accuracy than 

its counterpart Landsat 8 OLI does. It is well documented that red edge band is the inflection point in 

vegetation spectra between low reflectance in the visible region and low absorbance in the near infrared 

(Curran et al., 1990; Frampton et al., 2013). The reflectance in this inflection point as well as green band 

region is well related to chlorophyll content (Kumar et al., 2002) and consequently to fresh aboveground 

biomass. Although the accuracy achieved from Landsat 8 OLI and RapidEye are inconclusive, both satellite 

images relied on blue bands for estimation aboveground biomass in both wetlands. Other studies 

demonstrated the potential of blue bands in estimating grass aboveground biomass in high canopy cover 

using hyperspectral data (J. Chen et al., 2009). These sensor variation performances can be explained by 

the difference in the bandwidth (Sibanda et al., 2015). Compared with other previous studies on vegetation, 

the study underscores the potential of RapidEye and Landsat 8 OLI in estimating biomass. The current 

study demonstrates that red edge coverage in Sentinel 2 MSI provide an advantage over preferred Landsat 

8 OLI for biomass estimation, a component that was previously limited to broadband sensors.  
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Similar results were observed when vegetation indices were tested for quantifying the variability of 

Phragmites aboveground biomass between natural and rehabilitated wetlands. The indices did not 

significantly improve the biomass accuracy in both wetlands compared to other wetland vegetation studies 

using multispectral data. For example, (J. Chen et al., 2009) indicated that the best model for grass biomass 

estimation was achieved using original bands than vegetation indices. Shoko and Mutanga (2017), indicated 

that indices did not significantly improve classification accuracy for detecting and discriminating seasonal 

grass species using different multispectral sensors. Although Sentinel 2 MSI outperformed both Landsat 8 

OLI and RapidEye, vegetation indices produced low R² value 0.55 (the highest achieved in both wetlands) 

compared to spectral reflectance bands (R² = 0.68) model. Surprisingly, the vegetation indices derived from 

Landsat 8 OLI slightly exhibited RapidEye indices in both wetlands for quantifying the variability of 

Phragmites aboveground biomass. The highest accuracy achieved was at least 0.43 derived from 

rehabilitated biomass. In this regard, variability of Phragmites biomass between natural and rehabilitated 

wetlands could be quantified using freely available medium multispectral sensor. Interestingly, the results 

indicate that indices computed from red edge indices were the most influential towards the quantification 

of aboveground biomass in both wetlands. Specifically, when using Sentinel 2 MSI the NDVI.re was the 

most influential toward biomass estimation. For Landsat, both SR and NDVI computed using SWIR1were 

the most useful indices toward Phragmites biomass quantification at the site-level. In previously published 

literature, it was reported that inclusion of red edge bands in vegetation indices improve fresh aboveground 

biomass, reduce background effects and saturation challenges (Mutanga & Adam, 2011; Ramoelo et al., 

2015c) especially in wetland ecosystem where spectral reflectance of plants are similar during growing 

season. Ramoelo and Cho (2014), reported the potential of SWIR for estimating grass aboveground biomass 

during dry season. While Feilhauer et al. (2013) indicated its utility for assessing floristic variability in 

different seasons. RapidEye, with red edge coverage did not show any improvement over Sentinel 2 MSI 

and Landsat 8 OLI data for site-specific models. However, when the data was pooled together (both 

wetlands) vegetation indices derived from RapidEye exhibited Sentinel 2 MSI vegetation indices in terms 

of the prediction accuracy achieved. The findings of this study are comparable to the findings of Zandler et 

al. (2015) and Feilhauer et al. (2013) who reported that sensors with both visible near infrared and SWIR 

were consistently showing high accuracy compared to RapidEye, IKONOS and Quickbird that are limited 

to visible near infrared only. 

 

When the spectral reflectance bands and vegetation indices pooled together, Sentinel 2 MSI and RapidEye 

produced better accuracy and comparable results for quantifying Phragmites aboveground biomass of 

natural wetland. However, high accuracy was obtained from RapidEye with an R² value of 0.56 compared 
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to Sentinel 2 MSI with 0.53. This proves that Sentinel 2 MSI can compete with finer spectral resolution in 

terms of accuracy produced. The Landsat 8 OLI was the least predictor of natural Phragmites biomass. 

Similar pattern can be observed when both sites were pooled together. The variability of prediction accuracy 

between Sentinel 2 MSI and RapidEye is slightly different. Although RapidEye provides finer spectral 

resolution that is compatible for local scales, at regional level may require more scene coverage that could 

be hindered by high cost acquisition. In that regard, Sentinel 2 MSI could be used as an alternative to 

RapidEye and Landsat 8 OLI for Phragmites biomass estimation and frequent monitoring at local and 

regional scale.  

   

The main challenge with our study was comparing the results with other published studies who explored 

the potential of newly produced medium multispectral Sentinel 2 MSI against Landsat 8 OLI data. The 

challenges are based on the type of vegetation and area under investigation, the difference with how 

sampling measurement was conducted, the regression method applied and the procedure followed when 

selecting variables that could best estimate aboveground biomass makes it difficult. For example, Sibanda 

et al. (2016) compared the spectral bands of Sentinel 2 MSI with that of Hyperspectral infrared imager 

(HyspIRI) for estimating grass aboveground biomass under different management. The Sentinel 2 MSI 

outperformed HyspIRI when estimating burning, mowing and fertilized grass biomass. The work by Glenn 

et al. (2016) compared Landsat 8 OLI with Landsat TM and Lidar for shrub aboveground biomass. The 

author indicated that Lidar outperformed Landsat OLI while Landsat 8 OLI and Landsat TM produced 

similarly good results. Korhonen et al. (2017), investigated the use of Sentinel 2 MSI and Landsat 8 OLI in 

estimating boreal forest canopy cover and leaf area index. Their finding indicate that Sentinel 2 MSI 

outperformed Landsat 8 OLI when using all spectral bands coverage. However, when using the bands that 

are available in both Sentinel 2 MSI and Landsat, the results did not differ from one another. The similarity 

of the present study with the abovementioned findings is the success of Sentinel 2 MSI applied in different 

site conditions against other sensors. The findings implies that indeed Sentinel 2 MSI is a promising tool 

for biomass estimation in a cost effective manner due to its red edge coverage.  Several studies have reported 

the potential of Sentinel 2 MSI red edge for vegetation monitoring (Aria et al., 2012; Ramoelo et al., 2015b; 

Sibanda et al., 2016). The results obtained from site-specific models using Landsat 8 OLI and RapidEye 

data are difficult to make general conclusion. Hypothetically, the results suggest two reasons for their 

performance. One is that if Landsat 8 OLI had red-edge coverage region will outperform RapidEye data. 

On the other hand, if RapidEye had SWIR wavelength coverage may have outperformed Landsat 8 OLI 

data and produce high or same accuracy as Sentinel 2 MSI data. However, considering the spectral 

resolution of both satellite images and the scale of study the areas, it can be assumed that variability of 
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Phragmites biomass between natural and rehabilitated wetlands can be achieved with high accuracy using 

commercial RapidEye data (see Figure 3.5).   

3.5. Conclusion 

 

This study concludes that Sentinel MSI data:  

¶ Provides increased performance in quantifying Phragmites biomass in wetland ecosystem 

compared to its counterpart Landsat 8 OLI and RapidEye data. 

¶ Offer more spectral bands in the visible near infrared which provide an advantage over Landsat 8 

OLI and RapidEye data. Among all the red edge bands, B6 showed to be more influential in 

assessing Phragmites biomass in both wetlands. 

In terms of overall performance, the study demonstrated that Sentinel 2 MSI offer a cheap and useful data 

source that is required for accurate biomass estimation, which was proved a challenge using broadband 

multispectral sensors, especially in resource scare environments. This great performance of Sentinel 2 MSI 

is due to its red edge and SWIR spectral coverage with enhanced spatial resolution characteristics compared 

to its counterpart Landsat 8 OLI data. RapidEye with finer red edge band poorly estimated Phragmites 

biomass at site-specific level compared to pooled dataset. To the best of my knowledge, this is the first 

study to examine compare the potential of Sentinel 2 MSI and Landsat 8 OLI in assessing the variability of 

water borne invasive Phragmites biomass estimation.  
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CHAPTER FOUR 

Research synthesis 

 

4.1. Introduction 

 

Estimation of invasive wetland vegetation biomass at species level using multispectral remote sensing is 

challenging. This is because different plant invasive species have similar spectral reflectance during 

growing season among different types of wetland (Ozesmi & Bauer, 2002). Furthermore, conventional 

multispectral sensors saturate when estimating high-density biomass (E. M. Adam & Mutanga, 2012b; 

Mutanga et al., 2012). Therefore, accurate and estimation of existing Phragmites aboveground biomass 

require tools that will provide real-time information and improve the ability to detect changes in both natural 

and rehabilitated wetlands at fine spatial scale in order to aid in decision making. High spatial resolution 

that have appropriate spectral characteristics can overcome problems associate with saturation and spectral 

confusion (E. M. Adam & Mutanga, 2012b; Ashraf et al., 2010). The most promising one seems to be 

RapidEye data, which potentially provides a tool for better Phragmites biomass estimation due to its red 

edge channel and pixel size of 5 m that is not present in conventional multispectral satellite sensors 

(Ramoelo et al., 2012; Shang et al., 2015). However, the high cost associated with acquiring RapidEye data 

may hinder its utilization in resource scare countries. High spatial resolution sensors have the potential for 

providing large-scale biomass estimation independently and moderate resolution imagery could serve as a 

complementary for the development of vegetation monitoring (Dragozi et al., 2016; Ramoelo & Cho, 2014). 

In that regard, newly launched Sentinel 2 MSI and Landsat 8 OLI maybe reliable earth observation data for 

quantifying the aboveground biomass of Phragmites in wetland ecosystem. Nevertheless, previous 

literature reported that a novel feature in the Sentinel 2 MSI is red edge spectral bands coverage that are 

comparable to RapidEye commercial sensor (Ramoelo et al., 2015c). Because of these unique well-

designed bands, it is expected that Sentinel 2 MSI would improve biomass accuracy to the level of 

commercial RapidEye data (Frampton et al., 2013; Houborg et al., 2015). For instance, Ramoelo and Cho 

(2014) compared the potential of using RapidEye against Landsat 8 OLI data in estimating dry biomass of 

rangeland quantity. The author reported a marginal difference accuracy achieved. This marginal difference 

in sensor performance could have been as results of refined near infrared in Landsat 8 OLI and red-edge 

band coverage in RapidEye. On the other hand, Feilhauer et al. (2013) reported that Sentinel 2 MSI and 

Landsat 8 OLI outperformed RapidEye for assessing the variability of floristic. The author indicated that 

the low accuracy from RapidEye is due to its limitation to visible and near infrared coverage only. Although 

the results from other studies brought promising results, there is a need to fill an existing gap in 

understanding the performance of these satellite sensors in estimating Phragmites biomass in wetland 



51 

 

ecosystem. Hence, chapter two of the study investigated the utility of high spatial resolution RapidEye with 

red edge coverage in quantifying the variability of Phragmites biomass between natural and rehabilitated 

wetlands. Then, we further tested medium satellite sensors Sentinel 2 MSI and Landsat 8 OLI to evaluate 

their strength against RapidEye in chapter three. This was done to compare which satellite image can 

estimate Phragmites biomass better irrespective of spectral and spatial coverage. These two objectives were 

to answer the following questions (i) how well high spectral resolution RapidEye can quantify Phragmites 

aboveground biomass? (ii) can newly launched Sentinel 2 MSI and Landsat with improved spectral 

coverage biomass estimation better than finer spatial resolution RapidEye data?.  

4.2. Assessing the variability of Phragmites aboveground biomass using RapidEye data 

 

The inclusion of red edge bands in broadband multispectral sensors is recognized as a tool for improving 

aboveground biomass estimation. In this study, the utility of red-edge band of RapidEye sensor was 

investigated for estimating aboveground biomass of Phragmites between natural and rehabilitated wetlands. 

Specifically, the study examined different variable predictors (bands, vegetation indices and combined 

dataset) that could quantify Phragmites biomass with high accuracy. The findings have shown that 

assessment of Phragmites biomass using RapidEye predictor variables at site-specific did not consistently 

generate high accuracy in both wetlands. For rehabilitated wetland, the indices resulted in moderate 

improvement accuracy for biomass estimation. The best performance achieved resulted from natural 

biomass using combined datasets. The results are consistence with the findings of Löw and Duveiller (2014) 

who reported that identification of crops using RapidEye is dependent on the landscape and pixel size is ñ 

not size fits allô and that led to inconstancies of  accuracy achieved. Krofcheck et al. (2014) achieved slightly 

less accuracy when detecting mortality structural and functional changes in a pinon-juniper woodland using 

RapidEye during wet conditions. The results reported by Wallner et al. (2014) were slightly higher in 

comparison to the study findings for estimating forest structural parameters. The findings in this chapter 

proved that assessing the biomass of invasive water plant species under different conditions with 

commercial RapidEye data does not guarantee high accuracy. However, acceptable results can be achieved. 

The findings obtained are suitable for natural biomass proved to be specific to a given wetland management 

and for each plant species they differ across different wetland management. Literature reported that smaller 

pixel size does not always increase the accuracy of vegetation assessment especially when the distribution 

of individual species is constitutes a mixture of other plants (Nagendra, 2001; Duccio Rocchini et al., 2010). 

With these unclear results obtained from broadband RapidEye sensors with red edge band, it is important 

to evaluate the potential of downscaling sensors to cheap techniques. The findings of this chapter suggest 

that we further investigate other earth observation techniques in order to test which sensor may be 

responsible for success or failure in estimating Phragmites biomass across both wetlands.   
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4.3. Comparison of multi -scale medium sensors in assessing the variability of Phragmites 

aboveground biomass 

 

Literature reported that no multispectral sensor is suitable to address all the challenges associated with 

aboveground biomass of wetland vegetation estimation (Feilhauer et al., 2013; Nagendra et al., 2013). The 

lack of SWIR wavelength in broadband sensors proved to be limiting factor in most studies (Feilhauer et 

al., 2013; Korhonen et al., 2017; Zandler et al., 2015). The availability of new generation multispectral data 

such a Sentinel 2 MSI and Landsat 8 OLI with improved spectral coverage at no cost, proved to be 

promising in other vegetation studies (Korhonen et al., 2017; Mallinis et al., 2017; Sibanda et al., 2015). 

After finding that RapidEye data (chapter 2) did not produce high accuracy as expected at site level, we 

found the need to evaluate freely accessible medium spatial resolution data in quantifying the variability of 

Phragmites biomass between natural wetland versus rehabilitated wetland. The question is whether medium 

multispectral data can enhance the Phragmites biomass accuracy compared to broadband RapidEye data. 

Despite encouraging findings from other studies, to the best of our knowledge no study has compared the 

utility of Sentinel 2 MSI and Landsat 8 OLI in quantifying the aboveground biomass of Phragmites across 

different wetlands management beyond small scale. In that regard, the utility of these sensors were tested 

based on three predictor variables (i) extracted spectral bands, (ii) derived vegetation indices and (iii) 

combined datasets. The findings were compared with the results obtained from chapter 2 to answer the 

study question. Based on the results, Sentinel 2 MSI estimated Phragmites biomass better than Landsat 8 

OLI and RapidEye data using all three different predictor variables. The Landsat 8 OLI provided better 

accuracy for rehabilitated wetlands in comparison to RapidEye data. On the other hand, RapidEye data 

achieved better accuracy for natural biomass estimation. Both Landsat 8 OLI and RapidEye complement 

each other for assessing Phragmites biomass. Furthermore, the work by Feilhauer et al. (2013) reported the 

good performance of multispectral sensors covering the SWIR for achieving consistently high accuracy 

than broadband multispectral sensors for assessing the floristic variation in nutrient poor grassland. Sentinel 

2 MSI outperformed Landsat 8 OLI estimating leaf area index in boreal forest (Korhonen et al., 2017). 

(Zandler et al. (2015)) reported that both Landsat 8 OLI and RapidEye data did not perform considerably 

better than the other for quantifying shrub biomass. This suggest that improved Phragmites biomass is 

possible with Sentinel 2 MSI sensor. Therefore, medium multispectral sensor Sentinel 2 MSI has the 

potential to estimate aboveground biomass with high accuracy under different wetland management system. 

The high accuracy achieved with Sentinel 2 MSI may be related to the red edge (B6) which occurred in 

most selected predictor variables.  
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4.4. Conclusion  

 

The main aim of this research was to test the utility of new generation multispectral remote sensing 

techniques in assessing the variability of Phragmites aboveground biomass between the natural wetland 

versus rehabilitated wetland. The findings of this research demonstrated that the use of new multispectral 

satellite sensors still pose challenges, however they can estimate biomass with acceptable accuracy 

depending on the area of interest and species type. Based on the findings carried out in this study the 

following conclusion can be drawn: 

 

¶ When using RapidEye data, the best accuracy was obtained from natural biomass estimation with 

the combination of spectral bands and vegetation indices. The indices improved rehabilitated 

biomass estimation, however produced weaker results. RapidEye data was not consistence in all 

models performed across the natural and rehabilitated wetlands. However, models based on pooled 

dataset achieved high results for all predictor variables.   

¶ Sentinel 2 MSI provided good estimation of Phragmites aboveground biomass in both wetlands. 

The spectral bands performed better than vegetation indices and or combined datasets. However, 

the accuracy decreased with the number of predictor variables increasing. Similar results were also 

observed from pooled dataset. This means that the spectral bands alone have more strength in 

biomass estimation. The results indicate that Sentinel 2 MSI can achieve high biomass estimation 

accuracy to the level of commercial RapidEye data.    

¶ The Landsat 8 OLI did not produce consistence accuracy for all models across both wetlands. The 

best accuracy obtained from rehabilitated biomass using extracted spectral bands. Combined 

datasets produced similar results for both natural and rehabilitated wetlands. Pooled dataset 

increased Phragmites biomass with spectral bands only.  

¶ Combination of both extracted bands and derived vegetation indices increased natural biomass 

estimation. In contrast, no sensor types showed any improvements estimating rehabilitated 

biomass. The findings demonstrates the challenges of comparing same species growing under 

different wetland ecosystem management.  

¶ Sentinel 2 MSI outperformed both Landsat 8 OLI and RapidEye data in both wetlands. RapidEye 

with red edge band did not show any improvement against Landsat 8 OLI data. The results obtained 

from RapidEye and Landsat are inconclusive.     

¶ The uses of cheap multispectral satellite sensors have the potential to increase biomass estimation 

of Phragmites in wetlands ecosystems especially Sentinel 2 MSI. 
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¶ Overall, this research demonstrated that sensors with visible near infrared and SWIR coverage 

played a vital role in estimating Phragmites biomass estimation.  

 

 4.5. Recommendations 

 

¶ The present study used multispectral sensor to assess the variability of Phragmites biomass, it will 

however be good to test the potential of other multispectral sensors such as Worldview and 

Sumbandilasat data.  

¶ Due to uncertainties regarding the passive multispectral data used in this study, future studies can 

be explored with the use of active spaceborne sensors such as Light Detection and Ranging 

(LIDAR) and Synthetic Aperture Radar (SAR) data.  

¶ More research is required to compare different types of remote sensing data and determine how 

spatial and spectral resolution affect biomass estimation of wetland invasive species.  

¶ Furthermore, future studies should investigate biochemical, height and phenology of Phragmites 

under different management system. In that regard, knowledge on difference between both 

wetlands will help ecologist and wetland mangers to understand when is best to put control 

measures in place.  

¶ Moreover, future studies should consider collecting data over several years under different wetland 

management. 

¶  For monitoring purposes, wetland managers and ecologist should rely on Sentinel 2 MSI based on 

the accuracy achieved and it is freely accessible at no cost.  
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