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ABSTRACT 

 

In recent years, diabetes has become more prevalent due to modern, demanding, and sedentary 

lifestyle patterns. This disease is characterised by insulin resistance and associated molecular 

complications. Metformin (MF) is a popular antidiabetic agent that has effects beyond glycaemic 

control such as regulation of metabolic molecular pathways. However, the exact mechanisms 

against hyperglycaemic induced end organ damage remain elusive. This study aimed to 

investigate the protective effects of MF in the brain and kidney in vivo, by exploring dysregulated 

pathways related to mitochondrial function, oxidative stress, ER stress, inflammation, and 

apoptosis.  

This study established a diabetic mouse (C57BL/6) model (Ethics no: AREC/057/016) through 

intraperitoneal multiple low-dose STZ (50 mg/kg BW) injections (10 days). Blood sugar levels of 

7-16mmol/L were considered diabetic, and the 15 day treatment period (MF, 20 mg/kg BW per 

day, oral gavage) was inducted thereafter. Fasting (12 hr) plasma OGTT revealed MF significantly 

lowered blood glucose levels in diabetic mice. All mice experiments were performed by Dr. N. 

Naicker. Post-sacrifice (isoflurane), the investigator (author) of the work in the presented in this 

thesis assisted in harvesting Whole brain and kidney tissue and performed all downstream protein 

and mRNA analyses. Diabetic mice exhibited heightened oxidative stress by protein 

carbonylation, and diminished antioxidant responses in both the brain and kidney compared to 

normoglycaemic mice. Metformin significantly reduced protein carbonylation, increased GSTA4 

expression in the brain; and Nrf2 and GPx mRNA levels in the kidney, alleviating oxidative stress. 

Further, MF improved mt activity, and decreased the HIF-1 expression in the kidney through 

upregulation of AMPK, and Sirt1 expression. In addition, MF induced epigenetic changes in mice 

brain through miR-148a repression and concomitant increases in PGC-1α, Sirt1, and Sirt3 protein 

and gene expressions, thus regulating mt biogenesis. Mitochondrial chaperone proteins HSP60, 

HSP70 and LonP1 in diabetic mice brain were upregulated through a MF-induced miR-132 

repression mechanism. Regulation of the UPR by PERK-eIF2α inhibition after MF-treatment 

attenuated ER stress in diabetic mice brain and kidney tissue. Moreover, renal injury associated 

with diabetes was attenuated by MF through decreased CHOP expression, downstream to ER 

stress. This finding was supplemented by inhibition of Bax, cyt-c, and ultimately the intrinsic 

apoptotic pathway.   

MiR-141 modulates expression of PP2A, a phosphoesterase that regulates phosphorylation of tau 

protein. In hyperglycaemic mice there was increased miR-141 expression with concomitant PP2A 

downregulation in the brain. Treatment with MF exerted epigenetic regulation by downregulating 

miR-141 expression, concomitantly increasing PP2A and subsequent downregulation of tau 

protein phosphorylation at Ser396. Additionally, MF inhibited proinflammatory NLRP3 
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inflammasome and related components by regulation of the PP2A/ NF-κB cascade. 

Neuroplasticity was increased by increased BDNF overexpression by MF in diabetic mice.  

Herein we show that MF exerts protective mechanistic effects in the brain and kidney over an 

acute experimental period. We highlight that anti-oxidant and Sirt1 modulation are at the forefront 

of renal cell defence to metabolic stress. Neuroinflammatory and epigenetic therapeutic targets of 

MF are revealed through miRNA regulatory mechanisms, integrating the mechanisms of diabetic 

neuronal and renal damage.  
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CHAPTER 1 

1. Introduction  

 

1.1 Background  

 

In recent years, a dramatic growth in the prevalence of diabetes has been documented in all regions 

of the world, with approximately 422 million people now living with the (Association, 2019). 

Without interventions, the number of diabetic people is expected to increase to 629 million in the 

next three decades (Atlas, 2017). This significantly impacts socio-economic conditions related to 

global healthcare as diabetic related complications negatively affect quality of life, health services 

and economic costs. The growth of diabetes incidence has led to population-based studies 

assessing diabetic complications that are concentrated in Europe, North America and other high-

income countries, whilst low- and middle-income countries are neglected (Harding et al., 2019). 

This may partially be because diabetes was considered a burden in developed countries, but a huge 

increase has now been reported in developing countries. Third world countries within Africa often 

do not have the resources for the prevention, diagnosis, treatment and management of the disease, 

thereby contributing to the increase in sufferers. Diabetes is broadly categorized into two groups: 

Type 1 diabetes mellitus (T1DM) where insulin deficiency occurs through selective pancreatic β-

cell destruction by the immune system (Simmons and Michels, 2015), and Type 2 diabetes 

mellitus (T2DM) where the body does not respond to normal insulin secretion, resulting in 

metabolic disturbances (Zaccardi et al., 2016). 

 

The prominence in diabetes incidence since the 1980s, together with declining mortality among 

people with diabetes (likely due to medical intervention and awareness), has significantly 

increased the years of life spent with diabetes. Aside from the metabolic alterations characterised 

by hyperglycemia, observations of trends in ‘emerging’ diabetes complications have singled out 

macrovascular and microvascular complications, such as retinopathy, end-stage renal disease 

(nephropathy), and neuropathy as being responsible for much of the disease burden associated 

with this condition (Harris et al., 2012, Harding et al., 2019).  

  

The liver and kidney are the only organs that contain sufficient glucose-6-phosphatase (G-6-P) 

enzymatic activity to maintain glucose levels in the blood through gluconeogenesis (de novo 

synthesis of glucose) (Meyer and Gerich, 2000). The release of glucose into circulation meets the 

demands of highly metabolic organs like the brain (Gerich et al., 2001, Gerich, 2010). Therefore, 

the liver and kidney are established gluconeogenic organs (Alsahli and Gerich, 2017), and their 

roles are dysregulated in patients with diabetes.  
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Many studies are beginning to show a link between diabetes and impaired cognitive processes, 

hastening the progression to dementia (Biessels and Despa, 2018, Campbell et al., 2013, Messier, 

2005). The biochemical and physiological conditions produced by diabetes, such as advanced 

glycation end products (AGES) and aberrant metabolic processes, are increasingly being 

considered as risk factors for neurodegenerative diseases (Beeri et al., 2005).  

 

At the cellular level both the brain and kidney have high mitochondrial content. Hyperglycaemia 

and disturbed glucose metabolism cause mitochondrial (mt) dysfunction, leading to an 

overproduction of reactive oxygen species (ROS) (Sivitz and Yorek, 2010). An imbalance 

between ROS production and the ability to detoxify the reactive intermediates induces oxidative 

stress. Excessive ROS damages macromolecules, including nucleic acids, lipids, and proteins, 

leading to a decline in physiological function. ROS attack on proteins may be reversible or 

irreversible, often leading to either a loss of function or protein aggregation (Haigis and Yankner, 

2010). Protein modifications are well established in diabetes, with patients exhibiting high levels 

of protein carbonyl derivatives in blood. Furthermore, hyperglycaemia perturbs mt bioenergetics, 

thereby diminishing mt oxidative phosphorylation (OxPhos). The dramatic increase in cytosolic 

NADH is referred to as pseudohypoxia (Williamson et al., 1993), a phenomenon recently gaining 

significant attention. As a consequence, reductive stress occurs, followed by oxidative stress and 

eventual cell death and tissue dysfunction (Song et al., 2019).  

 

Fluctuations in the ADP/ATP or the NAD/NADH ratios determine cellular energy status; energy 

sensing proteins monitor either the AMP/ATP or NAD/NADH ratios, or both (Hardie et al., 2012, 

Cantó and Auwerx, 2009). The enzymatic activity of AMP-activated protein kinase (AMPK) and 

Sirtuin 1 (Sirt1, a member of the Sirtuin family) can be classified as metabolic sensors. Sirt1, a 

NAD+-dependent histone deacetylase, responds to high glucose levels alongside AMPK and mt 

dysfunction (Cantó and Auwerx, 2009, Reznick and Shulman, 2006). These metabolic sensors act 

as gatekeepers for mt turn over and are vital links in a regulatory network for metabolic 

homeostasis.  

 

Non-canonical mechanisms that may not involve increases in AMP, ADP or NAD+ can activate 

AMPK and Sirt1 such as elevated ROS (Hardie et al., 2012, Kao et al., 2010, Rabinovitch et al., 

2017). Alterations in the oxidative environment causes oxidative and endoplasmic reticulum (ER) 

stress (Bhandary et al., 2013). These are hallmark features of DM and disturbances in the redox 

state interrupts disulphide bond formation and protein misfolding, further generating ROS (Cao 

and Kaufman, 2014). Within the ER, protein misfolding in the secretory pathway gives rise to the 

unfolded protein response (UPR) which lowers the load of misfolded proteins, and can initiate 

inflammation and apoptosis (Eizirik et al., 2013, Hasnain et al., 2012).  
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Diabetes triggers inflammatory processes that promote degenerative pathways in the brain. The 

inhibitory effect of PP2A on inflammatory mediators has been outlined (Sangodkar et al., 2016).  

The arbitrators of inflammation encompass cytokine production e.g., tumour necrosis factor-α 

(TNF-α) and interleukins (IL), resulting in activation of nuclear factor κB (NF-κB) signalling 

pathways (Kitada et al., 2019). In association with this is the mt regulation of the NLRP3 

inflammasome, through production of ROS and damage-associated molecular patterns (DAMPs) 

(Shimada et al., 2012, Jo et al., 2016).  

 

Chronic glucose overload overwhelms the cells defence mechanisms and may result in cellular 

suicide, more commonly known as apoptosis/ programmed cell death. Cells require apoptosis to 

maintain homeostasis, however dysregulation of this system develops through ROS production or 

hypoxic states (Fulda et al., 2010, Pallepati and Averill-Bates, 2012). The intrinsic pathway is 

triggered by mt and ER stress, wherein, activation of initiator caspase-9 occurs through formation 

of an apoptosome, followed by executioner caspase -3 and -7 (Orrenius et al., 2015). Aberrant 

biochemical parameters have important pathological consequences for oxidative stress-related 

diseases such as diabetes, and secondary neurological and nephropathic effects. 

 

Fine tuning of cell defence mechanisms occur at the epigenetic level where microRNAs 

(miRNAs) modulate target gene expression through direct binding to 3’untranslated region (UTR) 

(Kadamkode and Banerjee, 2014). Neuronal cells are enriched with miRNAs that promote their 

function and survival, and aberrant expression profiles of miRNAs during hyperglycaemia and 

diabetes are well documented (Lukiw et al., 2013, Sempere et al., 2004). The limited information 

available on the mechanistic regulation of neuronal gene expression by miRNAs highlights the 

need to establish pharmacological outcomes.  

  

Studies that aid in understanding the mechanisms and pathways dysregulated by hyperglycaemia 

could help identify and improve preventive and therapeutic strategies for associated damage. Anti-

hyperglycaemic agents have effects on the brain and kidneys other than those that are involved in 

glucose regulation. Medicinal preparations intended to lower blood glucose differentially affect 

inflammation, cognitive function, and other brain and kidney indices. Metformin is a guanidine 

derivative of the French Lilac Galega officinalis plant and has been used in the treatment of 

diabetes dating back to the 1950s. This naturally derived drug was developed by Jean Sterne and 

named ‘Glucophage’, directly translating to ‘glucose eater’, as it efficiently lowers blood-glucose 

(Bailey and Day, 2004). It has become the most popular first-line oral treatment for diabetes due 

to its reduced toxicity. Metformin has been proven to lower all-cause mortality in diabetic patients 

as compared to those not utilising the drug (Roussel et al., 2010), displaying its beneficial role. 

Ingested MF primarily suppresses hepatic glucose production; however, it remains intact and 

accumulates in the brain, and is eliminated through the renal system. This drug rapidly passes the 
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blood-brain barrier, and strong evidence is provided showing its direct impact on the central 

nervous system (Beckmann, 1969, Chen et al., 2009, Lv et al., 2012, Wilcock and Bailey, 1994). 

Metformin is known to improve glucose uptake, and sensitivity to insulin by inhibiting 

gluconeogenesis through AMPK activation (Zhou et al., 2001). At the cellular level, MF targets 

mitochondrial respiratory chain complex 1, and is the mechanism by which it induces AMPK 

(Stephenne et al., 2011).  Despite the definitive role of MF in decreasing glucose levels in blood, 

no unequivocal mechanisms exist, and several secondary molecular targets potentially comprise 

its beneficial effects.  

 

 

 

 

Figure 1: Metformin-a Galegine derivative (Prepared by author) 

 

1.2 Problem statement 

 

Research has provided the scientific basis for, and confirmed, the “traditional” but important role 

of MF as an anti-diabetic agent in the treatment of T2DM. Diabetic complications span across a 

multitude of platforms, including organ damage and the incidences of neuropathy and 

nephropathy.  Yet, there remains a gap in knowledge on the potential of MF to alleviate organ 

damage at the molecular level through activation of cell defence mechanisms.  

 

1.3 Hypothesis 

 

It was hypothesised that MF promotes cytoprotective defences against diabetic oxidative stress to 

alleviate associated brain and kidney tissue damage in C57BL/6 mice by improving mt function 

and fine-tuning epigenetic regulation.  
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1.4 Aim and Research questions 

This study aimed to investigate the neuronal and renal protective effects of MF on dysregulated 

pathways related to mt function, inflammation, oxidative stress, ER stress and apoptosis. The 

following research questions were posed: 

• How does MF improve mt function? 

• Will ER stress and unfolded protein response (UPR) be targeted by MF? 

• Can MF improve diabetic induced inflammatory status? 

• Does MF affect microRNA dysregulation in diabetes? 

 

1.5 Objectives 

 

The effects of MF were determined by measuring its effects on mRNA and protein expression in 

mice brain and kidney tissue homogenates. Specifically, the following objectives were 

investigated: 

• Mt stress and biogenesis markers: AMPK, Sirt1, PGC-1α 

• Assessment of protein carbonyl formation and antioxidant regulation as markers 

and mechanisms of oxidative stress alleviation  

• ER stress sensors in UPR 

• Tau hyperphosphorylation, PP2A and BDNF signalling in relation to 

neuroinflammation 

• NF-ĸB regulation of related transcripts of the NLRP3 inflammasome  

• MiRNA specific target regulation of mt biogenesis markers 

• The apoptotic pathway and its mechanism in nephropathy 

 

1.6 Experimental approach  

 

Animal models are frequently used to assess the molecular pathways involved in diabetes (Kim 

et al., 2009). In this study, diabetes was induced by intraperitoneal administration of STZ, a 

naturally occurring agent that like glucose, enters the β-cells of the pancreas via the GLUT 2 

receptor (Szkudelski, 2001). Its ability to prevent insulin production has been established through 

PARP-1 activation and subsequent depletion of the NAD+ pool (Sandler and Swenne, 1983). The 

common trend of STZ administration involves multiple low doses or a single high dose which 

partially inhibits pancreatic function, resulting in a T2DM model. Based on previous studies, a 

range of STZ treatment concentrations (50 mg/kg, 100 mg/kg, 150 mg/kg) were selected and the 

glucose outcome was assessed (Table S1). The model was designed to administer multiple low 

doses over an acute time period, as it effectively increases blood glucose levels to the T2DM  
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range (between 7-16 mmol/L; or 150-300 mg/dL) (Sumner et al., 2003), and is known to induce 

insulitis in mice (Fang et al., 2019, Like and Rossini, 1976, Wang and Gleichmann, 1998). Initial 

concern regarding the use of STZ as a diabetic model existed as organ damage may be due to its 

toxicity and not the diabetic effect. However, substantial evidence is provided by a study showing 

transplantation of pancreatic islets reversed the hyperglycaemia induced by STZ and improved 

renal function (Palm et al., 2004). Zhuo and colleagues recently demonstrated that intraperitoneal 

administration of STZ alone is an efficient non-obese rodent model in comparison to a high-fat 

sugar/STZ rodent model, as both models had similar pathological traits of T2DM through effects 

on insulin and glucose levels (Zhuo et al., 2018). They further validated the non-obese T2DM 

model by assessing protein expression of insulin signalling and related inflammatory pathway. 

These findings indicate that administration with STZ alone is enough to establish the T2DM 

model, is more economical and efficient than combination treatment. It is important to note that 

the dosage administered in different species vary as different subgroups of a strain will have 

different STZ sensitivity. Chapters 3, 4 assess the molecular effects of antidiabetic drug, MF, on 

mt and epigenetic mechanisms in brain tissue, whilst chapter 5 focuses on the renal stress induced 

by STZ, and the role played by MF in nephrotoxic relief.  
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CHAPTER 2 

2. Literature review 

 

2.1 Diabetes 

 

2.1.1 Definition and prevalence 

 

Diabetes is characterised by high blood glucose as a result of relative or absolute lack of insulin 

caused by abnormal pancreatic function. Resulting hyperglycaemia disrupts the energy production 

required for optimal tissue function. The global burden of this disease is on the rise (Fig 2.1), with 

rapid increases in diabetic prevalence being proportional to urbanization and sedentary lifestyles 

(Blas and Kurup, 2010). With this comes the burden of diabetes-associated complications that 

have financial, social and developmental implications especially in third world countries.  

 

 

 

 

Figure 2.1: Global prevalence of diabetes (Atlas, 2017) 



8 
 

 

2.1.2 Types of diabetes mellitus 

 

The proposed classifications include insulin-dependent diabetes mellitus (IDDM), commonly 

known as Type 1; and non-insulin dependent diabetes mellitus (NIDDM) referred to as Type 2. 

However, patients are categorized according to their treatment regime rather than pathogenesis 

(Goodpaster et al., 2010). 

 

2.1.2.1 Type 1 

 

Type 1 is an auto-immune disorder that ensues following destruction of insulin producing 

pancreatic β-cells and comprises of approximately 5-10% of all diabetics (DiMeglio et al., 2018). 

Although traditionally defined as juvenile onset, a considerable number of cases present in 

adulthood. This differs in the severity of autoimmune response and therapeutic efficacy (Thomas 

et al., 2018). Two subclasses exist, type A (more common) where serological autoimmune 

responses can be detected (Fig 2.2); and type B (uncommon), the idiopathic type, where humoral 

autoimmunity is undetectable (Pietropaolo et al., 2012). However, this distinction is not widely 

adopted. Treatment regimens for T1DM include regular subcutaneous injections of insulin as the 

body is unable to produce it on its own. The risk of hypoglycaemia is managed by closely 

monitoring blood glucose levels daily.  
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Figure 2.2: Interaction between the pancreatic β-cell and innate and adaptive immune 

systems (DiMeglio et al., 2018). Diabetes is initiated by the presentation of β-cell peptides by 

antigen-presenting cell (APCs). Autoantibodies against β-cell proteins produced by 

Activated T cells within the pancreatic lymph node can be measured in circulation and are 

considered a defining biomarker of type 1 diabetes 

 

2.1.2.2 Type 2 

 

The most common type of diabetes is the adult-onset / T2DM which develops through insufficient 

insulin production or insulin resistance (Paramithiotis et al., 2019). Several investigations have 

identified the risk factors associated with development of T2DM (Fig 2.3) leading to neuropathy, 

retinopathy, nephropathy and increased risk of cardiovascular disease (Cersosimo et al., 2018, 

DeFronzo, 2004, Stumvoll et al., 2005). In the initial stages, insulin resistance is compensated by 

further insulin secretion leading to hyperinsulinaemia and hyperglycaemia. This heterogenous 

disorder is common in obese patients and varies in treatment responses (Inzucchi et al., 2015, 

Pozzilli et al., 2010). Initial treatment for T2DM is lifestyle intervention, followed by various 
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pharmacological aids. These drugs include sulphonylureas, biguanides (more common), 

glucosidase inhibitors, and thiazolidinediones. 

 

 

Figure 2.3: Pathophysiology associated with Type 2 DM (Zaccardi et al., 2016) 

 

 

2.2 Glucose metabolism 

 

Metabolism is broadly defined as the sum of biochemical processes in organisms that produce or 

consume energy. Core metabolism is simplified to encompass pathways involving the use of major 

nutrients that are essential for macromolecular synthesis and energy homeostasis. Several human 

diseases involve abnormal metabolic states that perturb normal physiology, leading to cell and 

organ dysfunction (DeBerardinis and Thompson, 2012). Numerous regulatory mechanisms 

linking cell signalling with the regulation of metabolic pathways have now been identified. The 

integration of cellular responses to hormones and their effects on core metabolic pathways is a 

good example of this (DeBerardinis and Thompson, 2012). In particular, the regulation of glucose 

metabolism by insulin is at the forefront of current research.  

The rate of glucose entering circulation is balanced by the rate of glucose removal from circulation 

(glucose disposal); these processes are integral for maintaining plasma glucose concentration and 
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homeostasis. Circulating glucose is derived from three sources: intestinal absorption during the 

fed state, glycogenolysis, and gluconeogenesis (Aronoff et al., 2004). The resultant energy 

substrates reach various tissues for adenosine triphosphate (ATP) production. Glucose metabolism 

(Fig 2.4) involves the conversion of glucose to glucose 6-phosphate (G-6-P), this phosphorylated 

form feeds into various anabolic processes including glycogen synthesis, the pentose phosphate 

pathway, fatty acid synthesis, hexosamine pathway, and ribose 5-phosphate for nucleotide 

synthesis. Excess glucose is either stored as glycogen and fatty acids; or shunted to form 

glycosylation reaction precursors and other oxidative routes that are damaging to cells (Jose et al., 

2011).  

 

 

Figure 2.4: Fates of glucose. Glycolysis occurs in the cytoplasm whilst ATP is produced in 

the mitochondrion (Prepared by author) 

 

2.3 Insulin signalling 

 

The hormone insulin is secreted by the β-cells of the pancreas in response to hyperglycaemia, 

facilitating glucose uptake. Insulin binds to its receptors located on the cell membrane, increasing 

the number of glucose transporters (GLUTs) (Czech and Corvera, 1999).  Glucose homeostasis is 

orchestrated by the insulin signalling pathway (Plum et al., 2006).   Insulin binds to insulin 

receptor substrate (IRS), stimulating conformational changes by activating the phosphoinositide 

3-kinase (PI3K) intracellular signalling pathway (Lee et al., 2014).  The signalling cascade 
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stimulated by the binding of insulin to its receptor ultimately results in the recruitment of GLUT 

transport proteins at the cell surface, to facilitate glucose uptake from circulation (Chen et al., 

2018). Insulin further promotes phosphorylation of glucose by transcription of glucokinase (GK), 

which plays an integral role in ATP production by glycolysis. Recent studies highlight the 

mechanisms involved in insulin’s regulation of pathways (Fig 2.5) involved in mitochondrial (mt) 

metabolism (Cade, 2018, Yaribeygi et al., 2019). In mt rich tissue, pyruvate is transported into the 

mitochondrial matrix from the cytoplasm to produce acetyl-CoA, the substrate that feeds into the 

tricarboxylic acid cycle (TCA) cycle (Han et al., 2016). This cycle produces GTP (equivalent to 

ATP), nicotinamide adenine dinucleotide (NADH), and FADH2; all of which operate in ATP 

production from oxidative phosphorylation (OxPhos). Insulin signalling is required for mt DNA 

and protein synthesis and stimulates mt oxidative capacity and ATP production. Although all 

organs rely on ATP as a potent source of energy, each has a unique metabolic profile that 

contributes to glucose homeostasis through utilisation and endogenous production of this 

monosaccharide. Insulin resistance is closely linked to metabolic disorders where the body doesn’t 

respond to or produce insulin efficiently and glucose is prevented from entering the cell. The 

mechanisms involved in potentiating insulin resistance have been extensively researched and 

include lifestyle choices, genetics and environmental influences (Di Pino and DeFronzo, 2019, 

Gregor and Hotamisligil, 2011, Hotamisligil, 2010, Petersen and Shulman, 2018, Nakamura et al., 

2010).  Both the liver and kidney can provide glucose to the body on demand through 

glycogenolysis or gluconeogenesis (Azevedo et al., 2019) while the brain has no glucose stores, 

and relies solely on circulating plasma glucose. 

Intracellular glucose may be reduced to sorbitol, transported back to extracellular fluid, or 

metabolised into G-6-P. Insulin signalling exerts effects beyond glucose metabolism such as repair 

and growth functions. Insulin receptor activation comprises a range of regulatory effects depicted 

in Fig 2.5, these include increasing glucose uptake through Akt signalling, control of gene 

expression by mitogen activated protein kinase (MAPK) signalling, mt regulation, protein 

synthesis, transcription of antioxidant genes, as well as autophagic and apoptotic inhibition (Carro 

and Torres-Aleman, 2004, Heras-Sandoval et al., 2014, Najem et al., 2014, Song et al., 2018). 
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Figure 2.5: Insulin signalling and related pathways (Hölscher, 2014) 

 

2.4 Diabetes associated complications 

 

2.4.1 Organ damage  

 

The adverse effects of hyperglycaemia affect the heart, eye, kidney, and brain (Barrière et al., 

2018). Metabolic disturbances disrupt homeostasis by shunting excess glucose to alternative 

disposal pathways (Brownlee, 2001). These include the activation of the polyol pathway, 

formation of Advanced Glycation End products (AGEs) and products of the hexosamine pathway 

(Kajikawa et al., 2015, Vasconcelos-Dos-Santos et al., 2017). Among the various organs affected 

by high glucose, little attention has been given to the mechanisms of neuronal and renal damage. 
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For the purposes of this review diabetes-induced neuropathy and nephropathy will be discussed 

in depth. 

 

2.4.1.1 Diabetic neuropathy 

 

Damage to brain vasculature, functional impairment, and cerebral neuropathy are effects of 

diabetes and aberrant glucose metabolism (Mijnhout et al., 2006). “Passive” neurological 

responses to DM do not directly involve neuronal activity (Fig 2.6). This raises the question if 

neurons are just end-targets or if they are actively involved in the disease progression.  

The brain requires a constant supply of glucose to meet its metabolic demands and sustain proper 

neuronal activity through the production of adenosine triphosphate (ATP) through oxidative 

metabolism (Harris et al., 2012). Glucose and insulin signalling pathways in the brain involve 

complex, interacting networks and counter-effects to regulate fasted and fed cycles (Nelson et al., 

2009). Several isoforms of the glucose transporters facilitate glucose uptake in the brain (E 

González-Reyes et al., 2016). These transporters are responsible for the exchange of glucose to 

and from arterial blood and the brain. The majority of neuronal glucose is transported via GLUTs 

-3 and -4, whilst GLUT 1 facilitates transport in endothelial cells of the blood-brain barrier (BBB) 

and astrocytes (Ashrafi et al., 2017, Pearson-Leary and McNay, 2016, Simpson et al., 2007). 

Excessive glucose correlates with the passive metabolic effects in diabetes pathology. In the brain, 

this impacts maintenance and cellular repair mechanisms risking the development of 

neurodegenerative disorders. Similarly, active pathways involving neuronal gene alteration can 

further drive the pathogenic response to end-organ damage. High glucose promotes cognitive 

decline and increases the risk of dementia (Biessels and Kappelle, 2005). Evidence for a second 

mechanism of pathogenesis that involves active changes in gene expression in neurons of the CNS 

has been brought to light. These altered gene expression profiles result in molecular phenotypic 

and functional changes that can become detrimental over time. This is supported by a study 

showing impaired neuronal glucose metabolism in association with degenerative states through 

brain imaging (Cohen and Klunk, 2014).  

There are several prevailing models underlying the aetiology of diabetic neuropathy, but its 

development is multifactorial. These include the polyol pathway, glycosylation end-product 

formation, and the oxidative stress (OS) theory. The polyol pathway involves the accumulation of 

sorbitol which leads to a decrease in the sodium-potassium adenosine triphosphatase activity and 

subsequent accumulation of axonal sodium accumulation. This leads to structural damage and 

impaired axonal transport. Hyperglycaemia or related OS induces oxidative glycation of free 

amino groups forming glycosylated end-products. Glycosylation of endothelial cell basement 

membrane leads to functional impairment, limiting vasodilation and increases the inflammatory 
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response. (Boulton et al., 2005, Shakher and Stevens, 2011). Considering that mt ATP provides 

the energy for neuronal function, DM induced impairments will lead to eventual 

neurodegeneration. The brain is highly susceptible to OS in hyperglycaemia due to its aerobic 

nature and relatively low antioxidant defence (El-kossi et al., 2011). This redox imbalance causes 

damage to brain microvasculature leading to BBB disruption, pericyte loss, and nervous system 

structure impairments. Glycaemic control early in diabetes can delay the onset of neuropathies 

and have prolonged effects (Shakher and Stevens, 2011), however the molecular events beyond 

glycaemic control are yet to be elucidated. 

  

 

Figure 2.6: Neurological responses to hyperglycaemia can be active or passive (Prepared by 

author) 

 

2.4.1.2 Diabetic nephropathy 

 

Diabetic kidney disease or nephropathy develops when renal function deteriorates due to 

overwhelming glycaemic states. The increasing prevalence of diabetes combined with longer life 

spans is linked to glycaemic and blood pressure control (Braunwald, 2019). An increase in glucose 

serum concentration elevates serum osmolality. Hyperosmolality triggers both behavioural 

(polydipsia) and physiological (natriuresis, water retention) responses to maintain solute balance 
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and minimise fluid shifts between intracellular and extracellular environments (Klein and 

Waxman, 2003). 

The functional role of the kidney is to produce urine, which serves as a means for excreting waste 

products and maintaining the osmolarity of body fluids. Most of the material filtered out of the 

blood is reabsorbed, including plasma glucose and water, to prevent wasteful loss. The kidneys 

require large amounts of energy to accomplish the reabsorption. Research indicates that the 

sympathetic nervous system may be responsible for this as it increases gluconeogenic precursors 

such as amino acids and lactate (Mitrakou, 2011). The hydrophilic nature of glucose promotes 

diffusion into the lipid bilayer, where entry is facilitated either by GLUTs (Mather and Pollock, 

2011), or the sodium-glucose co-transporter (SGLT) family (Wright et al., 2007). Essentially, 

SGLTs support glucose reabsorption whilst GLUTs aid the release into circulation as shown in 

Fig 2.7 (Brown, 2000, Wright, 2001). Besides the conservation of glucose, the kidney possesses 

large concentrations of the G-6-P enzyme making it one of only two organs (the other being the 

liver) that contribute to gluconeogenesis. Interestingly, the kidney shows enhanced 

gluconeogenesis during the fed state, allowing the liver glycogen to be replenished through renal 

glucose release (Rowe et al., 2013). Metabolic alterations in renal glucose metabolism are 

associated with adverse effects and will be discussed later in this chapter. 

 

 

Figure 2.7: Glucose reabsorption in the kidney (Alsahli and Gerich, 2017) 
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In vivo studies and clinical trials have outlined the haemodynamic and metabolic changes in 

diabetes that promote ultrastructural alterations of the glomerular filtration barrier, including the 

glomerular basement membrane (GBM) thickening, mesangial extracellular matrix accumulation, 

and glomerulosclerosis (Gnudi et al., 2016). These alterations eventually cause microalbuminuria, 

indicating inefficient glomerular filtration rate (GFR) and nephropathic damage (Guimarães et al., 

2007). Over the last two decades the incidence of chronic kidney disease has increased and factors 

like high blood pressure, autoimmune disease, cardiovascular disease, diabetes, and urinary tract 

infections contribute to its progression (Sulaiman, 2019).  

In vivo studies demonstrate the renal changes associated with DM including glomerular 

hypertrophy, renal enlargement, and hyperfiltration (Grønbæk et al., 1998, Noda et al., 2001). 

Like the brain, the kidney requires high levels of ATP to maintain its function and is rich in mt 

content, making them susceptible to redox imbalances associated with hyperglycaemic conditions. 

High glucose-induced OS leads to inflammation and is associated with kidney injury (Dronavalli 

et al., 2008, Kanwar et al., 2011), whilst intensive glucose control improves renal function in 

diabetic patients (MacIsaac et al., 2017). However, the renoprotective effects of glucose lowering 

agents on the pathological mechanisms of nephropathy are not well established.  

 

2.5 Metformin 

 

A common treatment for T2DM includes oral anti-diabetic agents such as Biguanides (sensitizers) 

and Thiazolidinediones (TZDs). These drugs control glucose levels by reversing the effects of 

insulin resistance. Specifically, biguanides act on endogenous hepatic glucose production, whilst 

TZDs stimulate glucose disposal (Hotta, 2001). Initial treatment regimens involved three types of 

biguanides i.e.: metformin (MF), phenformin, and buformin. Although the effective dose of 

phenformin was considerably lower than MF, both buformin and phenformin have been associated 

with lactic acidosis and use has been terminated in most countries (Minamishima et al., 2019). 

Thus, MF is the only biguanide used in clinical practice, and is the present-day mainstay of T2DM 

management (Kamalta et al., 2018).  

The origin of MF is a perennial herb, Galega officinalis (common name: French Lilac), known 

for centuries to reduce the symptoms of diabetes. Its active compound is a guanidine derivative, 

Galegine. Aside from glycaemic control, the full mechanistic potential of MF is unknown as its 

effects are independent to functional pancreatic β-cells. Given the relative safety and efficacy of 

the drug, the potential for repurposing is being explored (Gantois et al., 2019, Xourgia et al., 

2019). 
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2.5.1 Pharmacokinetics of MF 

 

Metformin is a positively charged molecule due to its guanidine-like structure (Fig 1). The 

generally administered form of MF, MF-hydrochloride, appears as a type of free base in biological 

fluids (Scheen, 1996). Following ingestion, MF is slowly absorbed by the small intestine with a 

bioavailability of 50-60% (Pentikäinen et al., 1979, Tucker et al., 1981). Although its hydrophilic 

nature prevents diffusion through cellular membranes, several organic cation transporters (OCTs) 

promote its uptake (Graham et al., 2011, Todd and Florez, 2014). It is important to note that MF 

is not completely absorbed by the intestine, is not metabolised by the liver, and is eliminated 

through the urinary system, thus it has direct effects on the kidney (Fig 2.8).  

 

 

Figure 2.8: Pharmacokinetics of metformin transport (Gong et al., 2012) 
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2.5.2 Canonical mechanisms of action 

 

Postprandially, MF exerts its glucose-lowering effects through a multitude of pathways linked to 

gluconeogenic inhibition and insulin signalling in the liver. Direct glycolytic stimulation 

decreased glucose absorption from the gut and plasma glucagon levels, as well as increased 

glucose-lactate conversion are involved in MF’s proposed mechanism of action (Kartono et al., 

2019). Metformin plays an integral role in maintaining cellular energy metabolism through 

regulation of adenosine monophosphate-activated protein kinase (AMPK) (Foretz et al., 2014). 

This enzyme is initiated upon decreased ATP/AMP ratios (Hardie, 2014). Further, MF inhibits mt 

complex 1 within the respiratory chain, decreasing intracellular ATP and activating hepatic 

AMPK in a liver kinase B1 (LKB-1)-dependent manner (Schäfer, 1983, Shaw et al., 2005). 

Metformin-induced AMPK activation facilitates recruitment of GLUT 4 in skeletal muscle, liver, 

and small intestine, promoting glucose uptake (Hundal et al., 2000, McCreight et al., 2016, Viollet 

et al., 2011). Physiologically relevant doses of MF trigger glycogen synthesis mediated by insulin 

action (Al-Khalili et al., 2005). Studies in STZ-induced hyperglycaemic rats reveal MFs 

modulation of gluconeogenic genes through decreased pyruvate carboxylase 

phosphoenolpyruvate carboxykinase (PC-PEPCK) and G-6-P promoters (Kim et al., 2008, Large 

and Beylot, 1999). The regulatory role of MF on gluconeogenic genes and amino acid-degrading 

enzymes have been demonstrated in an AMPK-dependent manner by PPAR-γ coactivator 1α 

(PGC-1α) activation (Takashima et al., 2010), and overall improvement of mt function (Iwabu et 

al., 2010). The involvement of PGC-1α in mt biogenesis has been shown by both gain and loss-of 

function studies (Lin et al., 2002). Furthermore, PGC-1α has important transcriptional co-

activation roles, however direct activation may not be amenable. Hence, the complexity of glucose 

homeostasis is mediated by intricate signalling pathways (Fig 2.9), and activation of its upstream 

regulators like AMPK serves as a feasible target for pharmacological intervention. Cumulative 

discoveries involving MFs regulation of these pathways has uncovered its multiple targets in DM 

management.  
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Figure 2.9: Metformin’s mechanism of action (Prepared by author) 

 

2.6 Molecular mechanisms underlying diabetic pathophysiology  

 

Diabetic research has advanced tremendously with new knowledge at the cellular and molecular 

level, and how a diabetic ambiance promotes complications. Complex molecular mechanisms in 

diabetes attributes to the numerous metabolic derangements presented by the disease. 

Hyperglycaemia is known to impair cellular function by creating an imbalance in pro- and 

antioxidants (Selvaraju et al., 2012). The consequent generation of reactive oxygen species (ROS) 

and associated OS represents one of the hallmarks of DM and has received the most attention. The 

interaction between ROS and macromolecules within the cell explains the deterioration of lipids, 

proteins, and DNA (Schrauwen and Hesselink, 2004). This damage is responsible for the macro- 

and microvascular pathology of diabetes, as well as the biochemical pathways related to redox 

imbalances is discussed further below. 
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2.6.1 Oxidative stress (OS) 

 

2.6.1.1 Mitochondrial dysfunction 

 

Hyperglycaemia triggers OS primarily through the production of mt ROS (Masi et al., 2018), 

indicating that diabetics have increased redox imbalances than those of healthy individuals. 

Increased glucose substrates entering the TCA cycle under hyperglycaemic conditions 

consequently increases production of reducing equivalents feeding into the electron transport 

chain (ETC). As electrons are transported through the chain, a crucial threshold voltage in 

complex III of the ETC develops and electrons begin to accumulate (Fig 2.10). The energy derived 

from this voltage gradient generates ATP through its synthase activity (Wallace, 1992). As a 

result, free radicals containing one or more unpaired electrons including the hydroxyl radical 

(OH•), and superoxide anion radicals (O2•−) are formed; which have deleterious effects on tissues 

by lipid peroxidation (Ichikawa et al., 1999). Nicotinamide adenine dinucleotide phosphate 

(NADPH) oxidase and mt uncoupling tend to aggravate the oxidative status (Eisner et al., 2018). 

Antioxidants combat OS and radicals. Enzymes that facilitate antioxidant production include 

catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-

transferase (GST) (Green et al., 2004). Diabetic conditions overwhelm the cellular scavenging of 

ROS contributing to the dysfunctional status. 

 

 

Figure 2.10: Redox cycling within the mitochondrion (Li et al., 2013) 
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2.6.1.2 Other sources of ROS 

 

Additional sources of hyperglycaemic OS are nonenzymatic glycation (Mullarkey et al., 1990), 

glucose auto-oxidation (Wolff and Dean, 1987), interaction between glycated products and 

associated receptors (Nishikawa et al., 2000), and the polyol pathway (Chung et al., 2003). 

Enzymatic action in the polyol pathway induces sorbitol reduction and fructose production by 

aldose reductase (AR), and sorbitol dehydrogenase that require NADPH and nicotinamide adenine 

dinucleotide (NAD+) respectively (Fig 2.11). This promotes OS as NADH is the substrate for 

NADH oxidase to generate ROS within the cell (Morre et al., 2000), and leads to further depletion 

of antioxidants like glutathione (GSH). Targeting the polyol pathway prevents the development 

of diabetic complications including neuropathy, cataracts, and nephropathy (Oates and Mylari, 

1999). 

 

 

Figure 2.11: Diabetes increases flux through the polyol pathway (Brownlee, 2001) 
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2.6.2 Advanced glycation end products 

 

Advanced glycation is significantly increased under chronic hyperglycaemic conditions. This 

process involves the binding of a reduced glucose molecule to free amino groups, affecting 

protein, lipids, and DNA (Brownlee et al., 1988), and serves as an indicator of many abnormal 

conditions such as OS (Fu et al., 1996). The addition of carbonyl groups to proteins is a non-

enzymatic post-translational modification (PTM) that occurs through direct (oxidative) or indirect 

(non-oxidative) mechanisms. Certain ROS (lipid hydroperoxides and hydrogen peroxide) trigger 

oxidation of specific amino acids through a direct iron-catalysed mechanism (Cattaruzza and 

Hecker, 2008). The process is considered self-enhancing as selective carbonylation at protein 

targets (arginine, lysine, proline or threonine) tend to encourage neighbouring carbonylatable sites 

(Maisonneuve et al., 2009). The first line defence against ROS involves SODs and GPx, which 

catalyse the reaction of superoxide anion to hydrogen peroxide, followed by the conversion to 

H2O and O2 (Curtis et al., 2010). The interaction of hydroxyl radicals with the abovementioned 

amino acids is catalysed by free iron (II) (Fig 2.12). Alternatively, indirect formation of carbonyl 

groups derived from radical-mediated oxidation of lipids (malondialdehyde (MDA), 4-hydroxy 

trans-2,3-nonenal (4-HNE), acrolein) and autoxidation of carbohydrates [glyoxal, methylglyoxal 

(MG)] may occur through indirect adduction (Adams et al., 2001). Detoxification of reactive lipid 

aldehydes through phase I (aldo-keto reductases, aldehyde dehydrogenases, and alkenal/one 

oxidoreductase) or phase II (enzymatic glutathionylation) metabolism is carried out by oxidation 

and reduction reactions (Frohnert and Bernlohr, 2013). Further, the Maillard reaction of glucose 

(Oya et al., 1999) triggers a MG intermediate that produces advanced glycation end-products 

(AGEs) and disrupts enzyme secondary protein structures. The associated loss of function engages 

proteolytic degradation (Díaz-Villanueva et al., 2015). The sources for AGE formation include 

autoxidation and Schiff base formation (Fig 2.12). The accumulation of AGEs occurs in diseases 

like uraemia, diabetes, neuropathies, nephropathies and other inflammatory conditions (Ahmad et 

al., 2016, Ahmed, 2005, Jono et al., 2002, Yamamoto et al., 2005). Pharmacological intervention 

highlights the role of AGE-induced apoptosis in diabetic nephropathy (Ishibashi et al., 2012). 

Furthermore, a key role is played by AGEs in the pathogenesis of sensory neuron damage (Jack 

and Wright, 2012). A study demonstrated decreased viability in rat Schwann cells by AGE 

precursors, and resultant diabetic neuropathy (Sato et al., 2013). It is evident that glycosylation 

and eventual AGE formation is an important marker for OS and associated diabetic degeneration, 

making it a prime therapeutic target. 
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Figure 2.12: Biochemistry of protein carbonylation (Hecker and Wagner, 2018) 

 

An instrumental role is played by these PTMs implicating them in metabolically altered diseased 

states including insulin resistance neurodegeneration, nephropathies, and aging (Albrecht et al., 

2017, Curtis et al., 2012, dos Santos Mello et al., 2015, Sharma et al., 2016). In contrast to normal 

blood glucose, OS and associated protein carbonylation in hyperglycaemia causes proteasomal 

degradation, aggregation, and accumulation of carbonylated proteins (Fig 2.13).  
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Figure 2.13: Balance of the redox status is crucial in cellular homeostasis (Hecker and 

Wagner, 2018). 

 

2.6.3 Sirtuins (Sirts) 

The mammalian family of sirtuins originate from Saccharomyces cerevisiae gene silent 

information regulator 2 (Sir2) (North and Verdin, 2004). These cellular energy sensors depend on 

NAD+ for their enzymatic activity, directly linking them to metabolism. They have deacetylase 

activity which aids removal of acetyl groups from target proteins with acetylated lysine residues, 

including transcription factors and histones. Of the seven Sirts, Sirt-1 and -3 are the most 

extensively studied. Sirt1 is found in the nucleus and plays a key role in energy homeostasis (Li, 

2013), whilst Sirt3 functions in mt energy regulation (Ahn et al., 2008), and both influence 

metabolically active tissues. Regulation of these Sirts extends further than cellular stressors and 

the NAD+/NADH ratio, and can be controlled by endogenous proteins, and microRNAs (Choi and 

Kemper, 2013). Deacetylation of AMPK, transcription factors like PGC-1α and NF-ĸB by Sirts 

plays an important role in diabetic regulation (Akude et al., 2011, Cantó and Auwerx, 2009, Chong 

et al., 2012, Chowdhury et al., 2011, Hardie, 2008, Rodgers et al., 2005) Ubiquitous expression 

of Sirt1 and -3 have been found in mice brain, and is decreased in neurodegeneration (Jin et al., 

2009, Zakhary et al., 2010). Additionally, chronic metabolic stress, oxidative stress, and hypoxic 

states decrease the expression of Sirt1 and -3 and have been demonstrated in diabetic kidney 
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disease (Kume et al., 2010, Wakino et al., 2015) as well as diabetic neuropathy (Fernyhough, 

2015). A recent in silico study providing evidence of MF’s direct effect on Sirt1 through molecular 

docking and experimental validation (Cuyàs et al., 2018), highlights its subsequent protective 

function. Therefore, agents like MF that regulate Sirts may have favourable impacts on slowing 

the progression of diabetes-induced organ damage. 

 

2.6.4 Hypoxia and pseudohypoxia  

 

In 1993, Williamson and colleagues devised the concept of pseudohypoxia and its relation to 

diabetes (Williamson et al., 1993). This phenomenon occurs when the cell is unable to use oxygen 

due to redox imbalances with decreased NAD+, and NADH accumulation (Luo et al., 2015, Luo 

et al., 2016, Yan, 2018). This results in damage to cellular components like lipids, proteins, and 

DNA (Yan, 2014), culminating in cellular death and tissue dysfunction (Fig 2.14) (Bandeira et al., 

2013, Shah et al., 2007).  

 

Figure 2.14: Schematic diagram of hyperglycaemic stress (Prepared by author) 

 

Hyperglycaemic activation of the polyol pathway drives NADH overproduction. Associated DNA 

damage activates poly (ADP ribose) polymerases (PARPs) and depletes the NAD+ pool as it is 

required for its activity (Pacher et al., 2002). Consequently, NAD+ availability for Sirt1, a known 
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AMPK activator, is depleted (Nishikawa et al., 2015). Furthermore, the hypoxia inducible factor-

1 (HIF-1) complex is activated by hyperglycaemia, hypoxia, nitric oxide as well as ROS. Under 

normoxic conditions HIF-1 is regulated by prolyl 4-hydroxylases hydroxylate proteosomal E3 

ubiquitin ligase degradation (Chen and Sang, 2016). Under hypoxia or pseudohypoxia, 

downregulated Sirts cause a HIF-1-mediated switch from OxPhos to glycolysis by inhibiting 

pyruvate dehydrogenase and subsequent prevention of acetyl coA entry to the TCA cycle (Fig 

2.15) (Chen and Sang, 2010).  

 

Figure 2.15: Sirtuin/HIF-1 axis and their effect on glycolysis-OxPhos switch (Takiyama and 

Haneda, 2014) 

 

2.6.5 Endoplasmic reticulum (ER) stress 

 

Cellular versatility comes from finely tuned performance by organelles like the endoplasmic 

reticulum (ER) (Chang et al., 2006). It functions in biosynthesis, post-translational modifications 

including glycosylation, and protein folding (Hampton, 2002). Secretory and trans-membrane 

proteins are tailored by the ER before translocation to the appropriate organelle. Homeostasis is 

maintained by sequential actions of the unfolded protein response (UPR) following ER stress 

(Gardner and Walter, 2011). These include three ER-proximal sensors that are in the 

transmembrane: 1) protein kinase RNA (PKR)-like ER kinase (PERK), 2) inositol-requiring 

protein 1 (IRE1), and 3) activating transcription factor 6 (ATF6); which are present in all cell 
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types (Fig 2.16). The predominant pathway involved in this stress response is activation of PERK 

which leads to eukaryotic initiation factor 2 (eIF2α) phosphorylation and activation (Cullinan and 

Diehl, 2004). The pathogenesis of hyperglycaemia is exacerbated by ER stress-induced ROS 

production, which is primed by the activation of CHOP and p38 MAPK (Zhong et al., 2015). 

Further, calcium cycling in ER stress conditions encourages ROS generation in mitochondria as 

seen in Fig 2.17, and this leads to intrinsic apoptosis (Li et al., 2009). Reduced insulin signalling 

mediated by PI3K/Akt and phospho- glycogen synthase kinase 3β (GSK3β) induces ER-stress 

apoptosis through CHOP (Srinivasan et al., 2005). Diabetic mouse models exhibiting CHOP 

deletions reduce OS, promote cell survival, and improve β-cell function (Song et al., 2008). 

Furthermore, mice with PERK deficiencies represent dysfunction pancreas function (Harding et 

al., 2001), indicating the involvement of ER stress in diabetes. Investigating the potential of 

pharmacological agents in ER stress will provide new mechanistic insights and developing novel 

targets disorders related to ER-stress.  

 

 

Figure 2.16: The adaptive UPR response to ER stress (Back and Kaufman, 2012) 
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Figure 2.17: Mechanism of diabetic ER stress-mediated cell death (Back and Kaufman, 

2012) 

 

2.6.6 Inflammatory response 

 

Immune and metabolic pathways are interdependent and are cardinal symptoms of diabetic 

patients. It is known that OS promotes the activation of inflammatory signalling pathways such as 

p38 mitogen-activated protein kinase (MAPK) and disrupts homeostasis (Rains and Jain, 2011). 

Additional to the pathways altered by mt redox imbalances is activation of the inflammatory 

transcription factor nuclear factor kappa B (NF-ĸB) (Yamagishi et al., 2012). This response unites 

the inflammatory and metabolic responses and is triggered by proinflammatory cytokines such as 

interleukin-6 (IL-6) and TNFα (Nisr et al., 2019). To exert their DNA-binding function, members 

of the NF-ĸB family require dimerisation. The RelA/p65 subunit is one of the multiple forms of 

NF-ĸB and is regulated by the IĸB -kinase (IKK) complex (Ghosh and Karin, 2002). This complex 

leads to IĸB-α phosphorylation and degradation through ubiquitin/proteasome system. 

Phosphorylation of the inhibitory components is essential for NF-ĸB activation. It is well 

established that chronic low-grade inflammation plays a role in metabolic disorders like diabetes 

(Baker et al., 2011).  

In T1DM the autoimmune attack mediated by cytokines leads to NF-ĸB activation and promotes 

cellular dysfunction and death (Cardozo et al., 2001). Inhibition of the inflammatory response has 
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been shown to protect against apoptosis in the pancreas during multiple low dose STZ-induced 

diabetes (Eldor et al., 2006). The role of NF-ĸB involvement in T2DM was first established when 

the anti-inflammatory salicylate drug (aspirin) ameliorated hyperglycaemia through NF-ĸB 

inhibition and preventing IĸB-α degradation (Kopp and Ghosh, 1994, Senftleben et al., 2001, Yin 

et al., 1998, Yuan et al., 2001). Increased translocation of NF-ĸB and induction of pro-

inflammatory cytokines is associated with diabetic nephropathy (Cohen et al., 2002, Sakai et al., 

2005), and neuropathies (Ametoy et al., 2003, Haak et al., 1999, Sandireddy et al., 2016). 

However, its specific contribution to diabetic pathogenesis requires further examination. 

Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns 

(PAMPs) are triggered by endogenous stress (Robbins et al., 2014), and are recognised by pattern-

recognition receptors (PRRs). The sensory units of the inflammasome recruit the caspase-

recruitment domain (CARD) that dimerises in the inflammasome complex to promote pro-caspase 

1 cleavage into caspase-1 (Mariathasan et al., 2004, Strowig et al., 2012). This stimulates pro-

inflammatory IL-1β and IL-18 cytokine activation by caspase-1 cleavage as seen in Fig 2.18. In 

T2DM, activation of the NLRP3 inflammasome pathway by NF-κB orchestrates the inflammatory 

reaction (Arkan et al., 2005, Vandanmagsar et al., 2011). Dysfunctional mt processes and ROS 

are closely linked to NLRP3 inflammasome activation further implicating it in disease 

progression. Studies supporting inhibition of the NF-κB pathway by pharmacological inhibition 

leads to reduced formation of microvascular disease (Benzler et al., 2015, Chiazza et al., 2015). 

Knockdown of NLRP3 through IL-β and IL-18-dependent mechanisms have been demonstrated 

in myeloid cells of T2DM patients (Lee et al., 2013). It is evident that activation of NLRP3 

inflammasome in diabetes leads to a pro-inflammatory ambiance. However, specific immune-

metabolic mechanisms need to be identified in order to understand and prevent diabetic associated 

organ damage. 
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Figure 2.18: inflammasome activation in Diabetes Mellitus (Shao et al., 2015) 

 

2.6.7 Neuroplasticity  

 

Neuroplasticity refers to the ability of the brain to acclimatise to environmental stressors by 

neuronal remodelling. A key player in neuroplasticity is the neurotrophin brain-derived 

neurotrophic factor (BDNF) and its receptor TrkB (Bramham and Messaoudi, 2005, Wang et al., 

2019b). In the brain, BDNF is maintained at basal levels, however elevated plasma glucose 

decreases BDNF levels (Krabbe et al., 2007). Administration of exogenous BDNF in diabetic 

mice promotes glucose homeostasis (Ono et al., 1997, Nakagawa et al., 2000). A recent study 

demonstrates circulating BDNF deficiencies upon glycaemic elevation in the brain in infant cord 

blood (Guzzardi et al., 2018). The kinase, GSK 3β is a critical feature of neuronal development 

and survival (Frame and Cohen, 2001a), and its inhibition has been found to regulate BDNF-

dependent TrkB endocytosis (Liu et al., 2015). Mechanistic insights on BDNF regulation in the 

brain are limited and require further attention. 

Neuronal function is further maintained by microtubules which are stabilised by tau protein 

(Vossel et al., 2010). This protein is regulated by the equilibrium of tau kinase and phosphatase 

activities. Diabetic disruptions of these regulatory factors will initiate abnormal tau 
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phosphorylation, and formation of tau aggregates. A common neurodegenerative disorder 

associated with DM is Alzheimer’s Disease (AD), where hyperphosphorylation of tau, 

aggregation of Amyloid-β protein or neurofibrillary tangles occur (Reilly et al., 2017). Recent 

evidence draws the link between tau hyperphosphorylation and protein phosphatase 2A (PP2A) 

inhibition in Streptozotocin (STZ)-diabetic models and neuropathological hallmarks of 

Alzheimer’s disease (AD) (Gratuze et al., 2017, Qu et al., 2011). Approximately 42 tau 

phosphorylation sites are maintained by GSK 3β, of which 29 have been shown in AD (Sergeant 

et al., 2008, Hanger et al., 2009). There are five phosphoserine/phosphothreonine protein 

phosphatases (PP), of which PP2A is highly expressed in the brain (Gong et al., 2005). Tau 

stability can be regained by protein phosphatase 2A (PP2A) function, however this 

phosphoesterase is depleted in diabetes (Zhang et al., 2016b). Tau hyperphosphorylation has also 

been proven in STZ-induced diabetic mice (Clodfelder-Miller et al., 2006). Furthermore, 

microglial and astrocyte activation are drivers of the pro-inflammatory response in the brain. 

Oxidative stress and related inflammatory pathways cause microglial production of cytokines and 

further phosphorylation of tau (Li et al., 2003). Structural collapse of microtubules following tau 

malfunction causes buckling of the neuron and neurofibrillary tangles, also known as the “Swiss 

cheese” effect. Taken together hyperphosphorylated tau and microglial activation is essential to 

the development of the diabetic associated neurodegeneration (Fig 2.19).  

 

 

Figure 2.19: Mechanism of tau phosphorylation and inflammation linked to high glucose 

levels occurring in the hippocampus (Elahi et al., 2016) 
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2.6.8 Metabolic dysfunction and cell death 

 

A multitude of signals experienced in metabolic stress leads to activation of tumour suppressor 

protein, p53. To name a few, nutrient, oxygen or growth factor deprivation, and OS are transmitted 

by metabolic sensors such as AMPK and eIF2α (Humpton and Vousden, 2016). Whilst normal 

conditions hold p53 levels in check, extreme activation in hyperglycaemic conditions is 

deleterious to the cell. E3 ubiquitin ligase, murine double minute 2 (Mdm2) upholds p53 protein 

levels by constant degradation via ubiquitination (Hock and Vousden, 2014). However, depleted 

Mdm2 following diabetic stressors like hypoxia and mt ROS, induces p53. Damage signals 

promote relocation of p53 to the mitochondria and influences binding to pro-apoptotic mediator, 

Bax (Castrogiovanni et al., 2018). This leads to the intrinsic pathway through mt cytochrome-c 

release. Subsequent apoptosome formation leads to caspase-9, and caspase-3 activation, leading 

to cell death (Fig 2.20). Furthermore, p53 targets p21 causing cellular senescence (Rufini et al., 

2013). 

  

 

Figure 2.20: Intrinsic apoptotic pathway (Raina and Ibba, 2014) 
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2.7 Cell defence mechanisms 

 

2.7.1 Antioxidant defences 

 

Mitochondria promote multiple functions, including ROS and ATP production; Ca2+ regulation, 

and subsequent cellular homeostasis. As previously discussed, OS and mt dysfunction lead to 

metabolic and neurodegenerative diseases, making them important targets for treatment. The 

upregulation of cellular antioxidant defences by pharmacological intervention counteracts OS 

induced by diabetes. Regulation of AMPK positively affects peroxisome proliferator-activated 

receptor gamma coactivator-1α (PGC-1α) and mt biogenesis (Jäger et al., 2007). Additionally, 

Sirt -1 and -3 are promoted by AMPK, and regulate PGC-1α (Rodgers et al., 2005). These Sirts 

have a highly conserved catalytic core associated with a NAD+-binding domain and deacetylase 

activity (Michan and Sinclair, 2007). Sirtuins are abundant in the brain, liver, kidney, skeletal 

muscle, pancreas, and adipose tissues, where they deacetylate histone and nonhistone targets in 

conditions of OS. Sirtuin 1 has added roles on inflammation by modulating RelA/p65 NF-κB 

signalling through deacetylation (Salminen et al., 2008). Another major Sirt1-mediated 

antioxidant response involves transcription factor Nrf2 which is maintained in the cytoplasm 

through Kelch-like ECH-associated protein 1 (Keap1) ubiquitinated degradation (Kensler et al., 

2007). Redox imbalances disrupt the Keap1 system. This allows the release of Nrf2 and 

translocation to the nucleus where it binds to the antioxidant response element (ARE) and 

transcription of antioxidant genes (glutathione S-transferase, NADPH quinone oxidoreductase, 

heme oxygenase-1, and γ-glutamylcysteine synthetase) are stimulated (Chan et al., 2001).  

 

2.7.2 Mitochondrial maintenance and chaperone proteins 

 

Mitochondrial homeostasis is further maintained by a nuclear encoded protease, LonP1, and is 

abundant in all organisms. With its serine peptidase ATP-dependent nature it degrades 

oxidatively-modified and misfolded proteins in the mitochondrion (Pinti et al., 2016). Additional 

positive effects on mt functionality include cell support during hypoxia and ER stress coupled 

with normalising mtDNA metabolism through mt transcription factor A (TFAM). Further mt 

surveillance is provided by chaperones: heat shock protein (HSP) 60 and mt-HSP70. LonP1 

maintains the complex formed by Hsp60 and mtHsp70 (Wadhwa et al., 2005), which has essential 
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functions for mt biogenesis like import and folding of client proteins. Activation of LonP1 

improves cellular functionality and survival by inhibiting protein carbonylation, whilst LonP1 

silencing leads to dysfunctional mitochondria (Ngo and Davies, 2009a). Additionally, Hsp70 

mediates the antioxidant defence thereby inhibiting oxidative injury (Polla et al., 1996). 

Paradoxically lower HSP levels accentuate the damage incurred by hyperglycaemia, thus 

permitting organ injury as depicted in Fig 2.21. However, the role of Hsp70 in alleviating diabetes-

associated neurodegenerative damage is highlighted (Calabrese et al., 2003, Kavanagh et al., 2011, 

Mancuso et al., 2007).  

 

 

Figure 2.21: HSPs stabilise misfolded and denatured proteins (Prepared by author) 

 

2.7.3 Epigenetics –role of microRNAs 

 

The human transcriptome is governed by small non-coding RNAs that regulate protein coding 

genes. One of these categories include microRNAs (miRNAs) that function by mRNA inhibition 

of the 3′-untranslated region (3′-UTR) via the seed sequence region at the 5′ end of the miRNA 

(Chen et al., 2012) depicted by Fig 2.22. More than 1000 miRNAs are encoded by the human 

genome and have been indexed and annotated (Bartel, 2004, Berezikov et al., 2005). MicroRNAs 

may either control multiple genes, or a single gene can be regulated by more than one miRNA 

(Care et al., 2007, Pandey et al., 2009). They act upstream and downstream to various transcription 
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factors that mediate stress signals, cancer, cardiovascular diseases and diabetes (Kumar et al., 

2011, Mishra et al., 2009, Zampetaki et al., 2010).  

The process of miRNA biogenesis occurs in the nucleus, where genomic transcription of primary 

miRNA (pri-miRNA) sequences is followed by capping, splicing, and polyadenylation (Cai et al., 

2004). Transcription of most miRNAs is carried out by RNA polymerase II, whilst others are 

transcribed by RNA polymerase III (Dieci et al., 2007). A complex known as microprocessor, 

consists of the nuclear RNase III enzyme (Drosha), which is essential for pri-miRNA processing 

into hairpin-shaped (~70-nucleotide (nt)-long) premature-miRNA (pre-miRNA) which are 

translocated to the cytoplasm (Muhonen and Holthofer, 2009). Here, the RNase III enzyme Dicer 

and its cofactor: transactivation-responsive RNA-binding protein (TRBP), cleave pre-miRNAs to 

release a short, ~22-base-pair (bp) RNA duplex. The miRNA-induced silencing complex 

(miRISC) is responsible for selection of miRNA strands and acts as the effector of the miRNA 

pathway, where messenger RNA (mRNA) translational inhibition or degradation occurs (Fig 

2.22). 

Dysregulation of miRNAs in diabetes hamper physiological and pathological processes, makes 

these small RNA molecules attractive targets for therapeutic intervention (Cuperus et al., 2011). 

Profound roles of miRNA dysregulation are highlighted in glucose metabolism (Dey et al., 2011). 

Identifying miRNA binding site targets through computational prediction facilitates 

understanding of their reciprocal nature (Pasquinelli, 2012). Hence, the epigenetic mechanism of 

miRNA gene regulation may lead to a variety of phenotypes including intricate diseases like 

diabetes and associated neurological disorders (Mattick and Makunin, 2006).  
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Figure 2.22: Mechanism of miRNA biogenesis and gene regulation (Kumar et al., 2012) 

 

Among the various miRNAs dysregulated in the diabetes spectrum, this study focused on miR-

132, -148a and -141. The role of miR-132 on metabolic and inflammatory targets has been 

demonstrated through nutritional availability in vitro (Strum et al., 2009), and its upregulation is 

further highlighted in prediabetic and diabetic mice (Nesca et al., 2013). MiR-148a expression 

significantly changes under hyperglycaemic conditions and has been associated with measures of 

pancreatic islet β cell function and glycaemic control (Lopez et al., 2017). Diabetic kidney fibrosis 

is alleviated through regulation of miR-141 and is associated with the PTEN/Akt/mTOR pathway 

(Li et al., 2017), however its modulation in diabetic neuropathy is unknown. 

 

2.7.4 Streptozotocin model of T2DM 

 

Diabetes represents an array of complexities involving different bodily systems. Animal models 

provide a platform for optimization, validation, and discovery of new therapeutics for human use. 

The various T2DM animal models range from nonhuman primates to nonmammalian models, 

each providing their own limitations and advantages (Fig 2.23). More commonly used, is the 

chemically induced diabetes mellitus (DM) rodent model for experimental studies, due to its 

simplicity and relative cost-effectiveness. This study used streptozotocin (STZ) as it is known to 

induce diabetes through partial pancreatic β-cell damage (Fig 2.24). Streptozotocin is an antibiotic 

obtained from Streptomyces achromogenes with structural glucosamine properties similar to that 

of nitrosourea (Srinivasan and Ramarao, 2007). β-cell toxicity upon STZ administration is 

attributed to its nitrosourea property, while its deoxyglucose nature promotes cellular entry across 

all membranes. Streptozotocin diabetogenicity is associated with free radical generation creating 

an imbalance in endogenous scavenging abilities. Additionally, it mimics DNA damage that is 

common to diabetics (Szkudelski, 2012). Severe decreases in β-cell mass, hyperinsulinaemia, and 

glucose intolerance develops with multiple low dose intraperitoneal injections of STZ (Fig 2.25), 

resembling the slow onset of T2DM that occurs in humans but within a shorter time period 

(Skovso, 2014).  
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Figure 2.23: The pros and cons of different models used in diabetes research (Fang et al., 

2019) 

 

 

Figure 2.24: Mechanism of streptozotocin action (Dewangan et al., 2017) 
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Figure 2.25: Variant A and B depict method of sampling for metabolic experiments. Image 

C illustrates the intraperitoneal injection of STZ. Image D portrays oral gavage used in 

treatment of diabetic mice (Nagy and Einwallner, 2018) 

 

Evidence for the protective effects of MF exist; however, the data is limited for the metabolic 

effects of MF and diabetic organ damage in vivo. We aimed to outline the complex molecular 

mechanisms involved in hyperglycaemic neurodegeneration and renal damage by integration of 

oxidative and ER stress, cytoprotective markers, inflammation, cell death mechanisms and their 

epigenetic regulation by MF.
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CHAPTER 3 

 

The protective effect of Metformin on mitochondrial dysfunction and endoplasmic 

reticulum stress in diabetic mice brain 

 

The pleiotropic effects of MF extend further than glycaemic control. A vast number of studies 

focus on glucose metabolism and related insulin signalling pathways in organs like the liver and 

pancreas. However, the mechanism of MF in the brain under hyperglycaemia is a neglected area. 

To fill the gaps, we assessed the interrelated mechanisms across metabolic pathways of MF’s 

potential protective effects in diabetic mice brain. This paper integrates MFs effect on oxidative 

stress and mt biogenesis markers through epigenetic regulation in brain tissue from STZ-injected 

mice. 

 

This manuscript has been accepted in European Journal of Pharmacology (Manuscript reference: 

EJP-52205) and is presented in this thesis as per journal formatting requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

 

 

 

 

The protective effect of Metformin on mitochondrial dysfunction and endoplasmic reticulum 

stress in diabetic mice brain 

 

Taskeen Fathima Docrat, Savania Nagiah, Nikita Naicker, Sooraj Baijnath, Sanil Singh, Anil A. 

Chuturgoon 

Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, 

College of Health Science, University of KwaZulu-Natal, South Africa 

*Address correspondence to: Prof Anil Chuturgoon, Discipline of Medical Biochemistry, Faculty 

of Health Sciences, George Campbell Building, Howard College, University of KwaZulu-Natal, 

Durban, 4041, South Africa. Telephone: (031) 260 4404. Email: chutur@ukzn.ac.za 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

 

 

Abstract 

Background and objectives: Diabetes is characterised by decreased insulin production (Type 1) 

and insulin resistance (Type 2) and is associated with mitochondrial (mt) dysfunction and 

oxidative stress. Insulin targets the brain, thus understanding diabetic complications such as 

neurological disorders is of prime interest. MicroRNAs control complex gene regulatory networks 

and have nascent roles in mt maintenance through transcriptional repression within the brain. 

Therefore, we investigated the potential protective effects of metformin (MF) on miR-132 and 

miR-148a, and their targets in STZ-induced diabetic mice brain.   

Materials and Methods: Streptozotocin (STZ)-induced diabetic mice were treated with MF (20 

mg/kg BW), and whole brain tissue was harvested for further analysis. Protein carbonylation was 

measured as a marker of neuronal oxidative stress. Protein expression of mt chaperones, 

maintenance proteins, and regulators of the unfolded protein response (UPR) were measured by 

western blot. Transcript levels of antioxidant enzyme GSTA4; mt biogenesis markers, ER stress 

regulators, and miR-132 and miR-148a were analysed using qPCR.  

Results: The results showed that MF efficiently reduced protein carbonylation and oxidation 

through up-regulation of mt chaperone proteins (HSP60, HSP70 and LonP1). MF elicits the UPR 

to attenuate ER stress through a miR-132 repression mechanism. Additionally, MF was found to 

elevate deacetylases- Sirt1, Sirt3; and mt biogenesis marker PGC-1α through miR-148a 

repression. 

Conclusions: This is the first study to demonstrate the epigenetic regulation of mt maintenance 

by MF in diabetic C57BL/6 mouse whole brain tissue. We thus conclude that MF, beyond its anti-

hyperglycaemic role, can improve epigenomic neurodegenerative alterations in diabetes.  

KEYWORDS: Diabetes, Neurodegeneration, Reactive oxygen species (ROS), Mitochondrial 

dysfunction, Unfolded protein response (UPR), Metformin 
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1. Introduction 

 

Metformin (MF) is used for the treatment of type 2 diabetes mellitus (T2DM) and unlike other 

guanidine derivates has thrived therapeutically due to its superior safety profile. Its use has 

extended further to treat disorders including diabetic nephropathy, polycystic ovary disease, 

various cancers, gestational diabetes, as well as cardiovascular disease (Viollet et al., 2012). The 

pleiotropic effects of MF are attributed to transient mt respiratory chain inhibition of Complex I, 

and activation of AMP-activated protein kinase (AMPK) (Viollet et al., 2012). 

Insulin action promotes optimal brain metabolism and is apposite to mt function. The brain is high 

in lipid content making it susceptible to oxidative damage. Several researchers have investigated 

the association of impaired antioxidant responses as well as loss of mt maintenance in the diabetic 

brain, contributing to the accumulation of damaged proteins and neuronal toxicity (Abdul et al., 

2006, McCall, 1992, Roriz-Filho et al., 2009).  

Mitochondria are energy generators that facilitate brain metabolism. In a diabetic state, redox 

imbalances exacerbate reactive oxygen species (ROS) production (Wu et al., 2016). Several stress 

response mechanisms including transcriptional activation of co-transcription factor, peroxisome-

proliferator-activated receptor gamma coactivator-1α (PGC-1α) and related antioxidant enzymes 

are at the crossroads of diabetes and loss of mitochondrial dysfunction. PGC-1α together with 

sirtuin 1 (Sirt1), and sirtuin 3 (Sirt3) form an energy sensing network to maintain glucose 

homeostasis and mitochondrial density (Rodgers et al., 2005, Przemyslaw et al., 2009). Molecular 

chaperones such as Lon Protease (LonP1) through interaction with the heat shock proteins (HSPs): 

HSP60-mtHSP70 complex (Bota and Davies, 2016), is involved in cellular protein quality control. 

Their neuroprotective role has recently been outlined (Kim et al., 2017, Leak, 2014, Ngo et al., 

2013).  

STZ is a common inducer of experimental diabetes in mice through GLUT-2 transportation and 

is toxic to the beta cells of the pancreas (Kamat, 2015). STZ-induced diabetes leads to endoplasmic 

reticulum (ER) stress (Lind et al., 2013), triggering the UPR sensor. This response stimulates PKR 

(double-stranded RNA-dependent protein kinase)-like ER kinase (PERK) activation of eukaryotic 

initiation factor-1α (eIF2α), shutting down global protein synthesis. Numerous studies provide a 

link between chronic ER stress and neurodegeneration (De Felice and Ferreira, 2017, Wang and 

Kaufman, 2016, Zou et al., 2017). 
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MicroRNAs (miRNAs) belong to a class of single-stranded non-coding RNA that modulates gene 

expression through post-transcriptional binding of mature miRNAs to the 3′-UTR of target 

mRNAs. Initially, miR-132 was known to regulate neuronal function and survival (Miyazaki et 

al., 2014), however its upregulation has been shown in various diabetic animal models (Nesca et 

al., 2013, Tattikota et al., 2014). Additionally, MiR-148a was shown to be upregulated in serum 

of T1DM patients (Assmann et al., 2017) and possesses the potential to be a circulatory biomarker. 

However, the nascent roles of these miRNAs in STZ-induced neurodegeneration is unknown. 

Here, we investigated how STZ-induced diabetic model, and MF administration affect oxidative 

status, mt maintenance, and the UPR through expression of miR-132 and -148a in the mouse brain. 

2. Methods and Materials 

 

2.1 Materials 

Streptozotocin (STZ) (S0130) and Metformin hydrochloride (PHR1084) were purchased from 

Sigma Aldrich (St Louis, MO, USA). All other consumables were purchased from Merck 

(Darmstadt, Germany), unless otherwise stated. 

2.2 Animals and induction of diabetes  

Animal Experiments were approved by the Animal Research Ethics Committee of the University 

of KwaZulu-Natal, Durban, South Africa (Reference AREC/057/016). Mice used in these 

experiments were acquired from the Biomedical Resource Unit from the University of KwaZulu-

Natal (Westville Campus), Durban, South Africa. Male mice of the C57BL/6 strain at 6-weeks-

old [(n=15, mean body weight (BW) 20 ± 2.99g)]. Mouse feed included a standard laboratory diet, 

normal drinking water ad libitum throughout the experimental period. 

A preliminary investigation including a range of STZ concentrations (50 mg/kg, 100 mg/kg and 

150 mg/kg BW) was performed to establish the optimal dosage. For this study, following an 

overnight fast (12 hr), STZ was administered three times intraperitoneally [(50 mg/kg BW, 

dissolved in 0.1M citrate buffer (pH 4.4)] on day 0, 3, and 10 to induce T2DM. The control group 

received citrate buffer solution without STZ (vehicle control). Blood glucose levels were 

monitored using a glucometer (Accu-Chek®). Mice with blood sugar levels of 7-16mmol/L were 

considered T2 diabetic, and the treatment period was inducted thereafter. 

2.3 Treatment preparations 

The dose of metformin administered to mice in this study was calculated according to clinically 

relevant human dose based on body surface area. MF was made up in 0.1M phosphate-buffered 

saline (PBS) and filter sterilized (0.45-μm filter), to make a final concentration of 20 mg/kg BW 

based on previous animal studies (Cho et al., 2015, Zou et al., 2004b). Mice were randomly 

divided into 3 groups of 5 mice per group (n=5):  Group 1 are control (C) normal mice. Group 2 

are Streptozotocin (STZ) induced T2 diabetic mice (HG control) and were fed PBS (vehicle 
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control) during the treatment period. However, the mice in group 3 were diabetic and treated with 

MF (20 mg/kg BW) via oral gavage once daily for the 15-day treatment period. Mice were housed 

in polycarbonated cages (40-60% humidity, 23 ± 1oC) with a 12 hr light dark cycle. On the last 

day mice were sacrificed, and whole brain tissue was used for ex vivo studies. 

2.4 Oral glucose tolerance test (OGTT) 

The OGGT was performed on the last day (day 25) of the experimental period. Following an 

overnight fast (12 hr), mice in control and STZ groups were orally dosed with a D-glucose solution 

(2.0g/kg BW). Thereafter, blood glucose concentrations, and changes in body weight of each 

group were subsequently measured. 

2.5 Tissue collection 

At the end of the treatment period, the mice were sacrificed using isoflurane. Fasting plasma 

samples were measured from mice tail-veins. The blood glucose levels were measured at an 

accredited pathology laboratory (AMPATH, Amanzimtoti, Durban, South Africa). Whole brain 

tissue was harvested, rinsed twice in saline, dissected and then stored in Cytobuster (Novagen, 

Darmstadt, Germany) or Qiazol (Qiagen; Hildenburg, Germany) at -80oC for downstream protein 

and mRNA analysis respectively.   

2.6 Protein Carbonyl Assay 

The protein carbonyl levels were determined by reaction of the carbonyl groups with 2,4-

dinitrophenylhydrazine (DNPH) according to a protocol described by Levine et al (Levine et al., 

1994). All samples consisted of a blank prepared by treatment with 2.5M HCl. Each mouse sample 

was plated in triplicate (100µl/well) and the carbonyl content was calculated from the maximum 

absorbance (370nm) (Augustyniak et al., 2015). 

2.7 Mitochondrial maintenance and chaperone protein expression 

Western blotting was performed using an in house protocol (Raghubeer et al., 2015). Crude protein 

samples obtained post homogenisation were quantified by the Bicinchoninic acid (BCA) assay 

and standardized to 1 mg/ml. Protein expression was determined by incubating membranes with 

the following primary antibodies (1:1000, 5% BSA): Heat Shock Protein 60 (HSP60) (BD 

611563), HSP70 (BD610618), LonP1 (ab76487), PGC-1α (3G6), SIRT1 (#2314L), SIRT3 

(ab86671), TFAM (D5C8), p-PERK (THr980) (16F8), p-eIF2α (D9G8), and eIF2α (D7D3). This 

was followed with incubation of horseradish peroxidase (HRP) conjugated secondary antibody 

[Anti rabbit IgG #7074, Anti-mouse IgG #7076, 1:10,000 in 5% BSA] (RT, 1h). Protein bands 

were obtained through chemiluminescent detection [Clarity western ECL substrate (Bio-Rad)] 

and images were captured on the Chemidoc™ imaging system (Bio-Rad). Protein expression was 

determined using the Image Lab Software version 5.0 (Bio-Rad). Densitometric protein 

measurements were normalised against house-keeping protein, HRP-conjugated anti-β-actin 
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(CS1615, Sigma) for 1h at RT. Results are reflected as a ratio of relative fold change (RFC) of 

proteins of interest over β-actin. 

2.8 Messenger RNA quantification

Following homogenisation of brain tissue in Qiazol reagent (232 Qiagen, Germany), total RNA 

was quantified (Nano-Drop 2000) and standardised (900 ng/μl). Subsequent complementary DNA 

(cDNA) synthesis was performed using the iScript™ cDNA synthesis kit (Bio-Rad, SA, cat. no. 

1708891). Gene expression was determined using the iScript SYBR Green PCR kit (Bio-Rad), 

according to the manufacturer’s instructions. 

Table 1: Primer sequences used to determine gene expression profiles  

Gene Primer sequence:  

(5’-3’) 

Annealing 

temperature  

(
ο 
C) 

GSTA4 F: TACCTCGCTGCCAAGTACAAC  

R: GAGCCACGGCAATCATCATCA 

59 

SIRT1 F: CAGCCGTCTCTGTGTCACAAA 

R: GCACCGAGGAACTACCTGAT 

61 

SIRT3 F: TACAGGCCCAATGTCACTCA 

R: ACAGACCGTGCATGTAGCTG 

58.5 

PGC-1α F: GCAACATGCTCAAGCCAAAC 

R: TGCAGTTCCAGAGAGTTCCA 

56.2 

PERK F: GCACTTTAGATGGACGAATCGC 

R: TGCTGAGGCTAGATGAAACCA 

59 

eIF2α F: AAACTGGAGCATGTTTGAAATCG 

R: GGGCACCTTTACTTCCTGGG 

59 

GAPDH F: ATGTGTCCGTCGTGGATCTGAC 

R: AGACAACCTGGTCCTCAGTGTAG 

Variable 
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2.9 MicroRNA quantification and target prediction  

The cDNA for miR-132 (MS00024143), -148a (MS00011193) was prepared by using a 10μl 

reaction mix of the miScript II RT kit [cat. No. 218161 (5 × miScript HiSpec Buffer, miScript 

Reverse Transcriptase Mix 10 × miScript Nucleics Mix; Qiagen)] as per manufacturer's 

instructions. Data normalisation was performed against human RNA U6 small nuclear 2 (RNU6-

2) and was analysed using the method described by (Livak and Schmittgen, 2001). The targets of 

miR -132, and miR-148a were determined by pathway analysis using Target Scan V7.2. This 

database was utilised as no experimental data for these miRNAs in mouse brain exists. The results 

were filtered for targets with highly predicted confidence for an interaction with miR-132 and 

miR-148a. Among the multiple targets for both miRNAs, we determined the 3’ UTR of HSP70-

12B was complimentary to the seed sequence of miR-132; and the 3’ UTR of PGC-1α to miR-

148a.  

2.10 Statistical Analysis 

The GraphPad prism V5.0 software (GraphPad Software Inc., La Jolla, USA) was utilised for 

statistical analysis. Results were statistically compared using a one-way analysis of variance 

(ANOVA) followed by a Bonferroni test for multiple group comparison (data is presented as mean 

± SD). Statistical significance was considered at p ≤ 0.05 (n = 5). 

 

3. Results 

 

3.1 MF modulates glucose tolerance  

There was no significant difference in body weights between MF-treated and STZ groups, 

however body weights were significantly increased after injection of STZ (*** p < 0.0001). 

Animal blood glucose levels were significantly elevated in the STZ-treated group, and MF 

treatment significantly lowered blood glucose in diabetic mice compared with the STZ group 

(Fig 1: *** p<0.0001, ###p<0.0001).  
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Figure 1: Glucose tolerance following experimental period (n=5). STZ-treatment significantly 

elevated blood glucose levels. MF did not influence body weight (A: *** p < 0.0001 vs control) and 

was able to counteract the hyperglycaemic effect by efficiently lowering mice blood glucose levels 

(B: ***p < 0.0001 vs control, ###p < 0.001 vs STZ). 

 

3.2 MF improves protein oxidation and antioxidant enzyme GSTA4 expression 

To estimate MFs ability to combat oxidative stress, protein carbonylation and antioxidant 

expression was measured. MF significantly reduced protein carbonylation in STZ brain tissue (Fig 

2A: ***, ###: p<0.0001). GSTA4 expression was decreased in diabetic mice, whilst MF enhanced 

its expression (Fig 2B ***, ###: p<0.0001).  Additionally, we assessed LonP1 expression, to 

determine if MF induced maintenance and stress response protein to clear protein aggregates and 

degrade oxidised proteins. STZ treated mice revealed a significant reduction in LonP1 protein 

expression in comparison to the control, whereas MF was able to enhance LonP1 expression in 

diabetic mice brain (Fig 2C ***, ###: p<0.0001). 
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Figure 2: MF reduced protein carbonylation in diabetic mice brain (n=5), (A: ***p < 0.0001 vs 

control, ### p < 0.0001 vs STZ), upregulated GSTA4 gene expression in the diabetic group (B: ***p 

< 0.0001 vs control, ### p < 0.0001 vs STZ), and modulates LonP1 expression (C: ***p < 0.0001 vs 

control, ### p < 0.0001 vs STZ) in diabetic mice. 

3.3 MiR-132 regulation and induction of Heat shock proteins (HSPs): HSP60 and 

HSP70  

The 3′-UTR complementary prediction with Target Scan 7.2 revealed that miR-132 is 

complementary to HSP70-12B. STZ significantly increased expression of miR-132 in brain tissue, 

whilst its expression was significantly decreased following MF treatment (Fig 3A: ***, ### 

p<0.0001). Western blotting revealed that MF effectively increased protein expression of both 

HSP60 (Fig 3CA: ***, ###: p<0.0001, *: p<0.05) and HSP70 (Fig 3B: **p<0.005, ###p=0.0001) in 

the MF treated group compared to the control. 

 

Figure 3: MiR-132 repression by MF in STZ brain tissue. Seed sequence between miR-132 and 

predicted target sequence of HSP70-12B. STZ reduces activity in diabetic groups and MF 

improves the HSP response in diabetic mice brain tissue (A: ***p < 0.0001 vs control, ### p < 0.0001 

vs STZ, B: ** p < 0.005 vs control, ###: p = 0.0001 vs STZ; C: *p < 0.05, ***p < 0.0001 vs control, 

### p < 0.0001 vs STZ), (n=5). 

 

3.4 MF improves protein translation through inhibition of stress sensor PERK and 

eIF2α phosphorylation  

To determine whether MF represses ER stress in mice brain tissue, we assessed the 

phosphorylated form of PERK. Diabetic mice brain exhibited increased protein levels of PERK 

phosphorylation (active), as well as elevated gene expression. Whereas MF significantly reduced 

both protein expression (Fig 4A: ***, ### p<0.0001) and transcript levels (Fig 4B: *p<0.05, 

**p<0.005, ###p<0.0001) as compared to the control and diabetic groups respectively. The 

activity of UPR signalling protein, eif2α, is increased upon phosphorylation (p-eif2α). MF 
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decreased p-eif2α expression (Fig 4C: **: p<0.005, ***, ### p=0.0001) in diabetic brain tissue as 

compared to control and STZ animals. Moreover, expression of eif2α was reduced following MF 

treatment in the diabetic group (Fig 4D: **p<0.005, ***, ###: p<0.0001). 

 

 

 

Figure 4: STZ promotes ER stress through PERK phosphorylation, and MF concomitantly 

reduces p-PERK protein (A) and gene (B) expression in the STZ group (A:  ***p < 0.0001 vs 

control, ### p < 0.0001 vs STZ; B: *p< 0.05, **p < 0.005 vs control, ###p < 0.0001 vs STZ). MF 

decreased both p-eIF2α (C), and gene expression of eIF2α (D), with a subsequent increase in total 

eIF2α protein expression (E) as compared to the control and STZ mice (C: ***p < 0.0001, *p < 0.05 

vs control, ### p = 0.0001 vs STZ; D: **p < 0.005, ***p < 0.0001 vs control, ##p < 0.0001 vs STZ; E: 

*p < 0.05 vs control, ###p < 0.0001 vs STZ;), (n=5). 

 

3.5 Mt regulators: Sirt1, Sirt3 and TFAM are modulated by MF 

The lysine deacetylases Sirt1 and Sirt3 protect mt function and prevent neuronal degeneration and 

dysfunction. Sirt1 activity (Fig 5A: ***, ### p<0.0001) and mRNA expression (Fig 5B: **p<0.005, 

***p<0.0001, ###p<0.0001) was increased by MF in STZ treated brain tissue. Sirt3 protein and its 

gene expression (Fig -5C, -5D: ***, ###p<0.0001) showed a similar trend post MF treatment. 
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Downstream mitochondriogenesis protein TFAM (Fig 5E: ***, ###p<0.0001) was induced 

following MF treatment in diabetic brain tissue. 

 

Figure 5: MF regulates mt biogenic markers. Sirt1 (A: ***p < 0.0001 vs control, ### p < 0.005 vs 

STZ), Sirt1 (B: **p < 0.005, ***p < 0.0001 vs control, ### p < 0.005 vs STZ). Sirt3 (C: ***p < 0.0001 

vs control, ### p < 0.005 vs STZ), Sirt3 (D: ***p < 0.0001 vs control, ### p < 0.005 vs STZ). TFAM 

(E: ***p < 0.0001 vs control, ### p < 0.005 vs STZ), (n=5). 

 

3.6 MF modulates PGC-1α through miR-148a repression  

Based on the 3′-UTR complementary prediction with Target Scan 7.2, PGC-1α (Fig 6A) was 

chosen as it is an important regulator of multiple metabolic processes in diabetes. STZ treatment 

increased miR-148a expression, with associated decreases in PGC-1α gene and protein 

expression. MF decreased miR-148a expression post-STZ treatment of mice (Fig 6A: ** p<0.005 

***, ### p<0.0001). This was accompanied by elevated PGC-1α gene expression (Fig 6B: **p<0.005, 

##p=0.0019), and protein (Fig 6C: ***, ###p<0.0001) as compared to control mice brain tissue.  
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Figure 6: MiR-148a repression by MF in STZ brain tissue. Seed sequence between miR-148a and 

predicted target sequence of PGC-1α, (**, *** p < 0.005 vs control, ### p < 0.0001 vs STZ). MF 

upregulates PGC-1α gene (B: **p < 0.005 vs control, ## p = 0.0019 vs STZ) expression, and 

associated protein activity (C: ***p < 0.0001 vs control, ### p < 0.0001 vs STZ) in STZ treated mice 

brain tissue (n=5).  

 

4. Discussion  

MF counteracts oxidative stress induced by diabetes through direct action on the mt and alters 

cellular bioenergetics (Andrzejewski et al., 2014, Lee et al., 2012). Insulin resistance and elevated 

ROS levels in the brain impairs synaptic and metabolic functions (De Felice and Ferreira, 2014). 

Hypothalamic insulin action is a master regulator of the mt stress response, by controlling mt 

proteostasis and regulating function and metabolism (Wardelmann et al., 2019). 

In this study a STZ-induced diabetic mouse model (10 days) was used to establish an insulin 

deficient system through partial knock out of pancreatic β-cell function (Busineni and Goud, 

2015). The minimal increase in body weight in STZ and MF groups (Fig 1A) may be due to their 

development and degree of hyperphagia. Fasting blood glucose levels increased in the STZ group, 

confirming that the mice developed diabetes, this was efficiently reduced by MF (Fig 1B). 

Horakova et.al., have recently shown that glucose uptake in the brain is significantly increased 

through oral MF treatment, validating our finding (Horakova et al., 2019). However, MF-treated 

mice exhibited blood glucose significantly higher than the control group (Fig 1B), this may be due 

to the low dose of MF treatment used in our study, as higher MF doses reduce blood glucose more 

efficiently (Horakova et al., 2019). Here, we evaluated the effect of MF on protein oxidation and 

related mt protective circuitry in the brain of diabetic mice.  

Oxidative stress is a tissue damaging feature of diabetic complications including 

neurodegeneration. In neurons, the oxidation of mt proteins, lipids and DNA exacerbates the 
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progression of neuropathologies (Islam, 2017). Mice exhibited protein carbonylation following 

STZ-induced diabetes, whilst MF efficiently protected proteins from carbonylation (Fig 2A). 

Reactive dicarbonyls are directly neutralised by MF through binding of its guanidine group to the 

α-dicarbonyl group produced in high oxidative states (Dziubak et al., 2018). Depletion of the 

antioxidant molecule glutathione (GSH) persists in oxidative states. A study by Curtis et al. 

demonstrated that a loss of GSTA4 is correlated with mt dysfunction and increased protein 

carbonylation (Curtis et al., 2010). We showed diminished transcript levels of the antioxidant 

enzyme, GSTA4, following STZ administration, and a concomitant increase in the MF group (Fig 

2B). This suggests that MF has a protective effect by counteracting ROS production and 

stabilising the antioxidant status in mice brain. LonP1 is an ATP dependent protease that prevents 

the accumulation of protein aggregates in the mitochondria by degrading them into short peptides, 

thereby, optimizing bioenergetics and preserving cellular viability (Bota and Davies, 2016, Bota 

et al., 2005, Fukuda et al., 2007). We showed decreased LonP1 protein expression in STZ treated 

animals as compared to MF treated mice where it significantly upregulated LonP1 expression. 

LonP1 upregulation enables mt protein quality maintenance in diabetic brain tissue (Fig 2C). MF’s 

regulation against protein oxidation and removal of damaged proteins in diabetic mice brain 

corresponds with the observed reduced protein carbonyl content (Fig 2B). Silencing studies of 

LonP1 have confirmed its role in protein stress responses by protecting against oxidative protein 

damage and diminished mitochondrial function (Ngo and Davies, 2009b). 

Previous studies revealed that LonP1 is required for the proper assembly of the ETC subunits 

(Mottis et al., 2014). Furthermore, proteomic studies showed that LonP1 partners with HSP60 and 

HSP70 to assist in protein re-folding during stress conditions (Gregersen et al., 2001). Research 

demonstrates the neuroprotective roles of HSP60 and HSP70, with loss of HSPs being implicated 

in protein oxidation and neurodegeneration (Bruening et al., 1999, Kleinridders et al., 2013, 

Winklhofer et al., 2003, Zhang et al., 2017d). In keeping with this, the pharmacological induction 

of HSPs in transgenic mice have been shown to lower disease progression (Kieran et al., 2004). 

The HSP response is elicited in the brain to combat its vulnerability to oxidative stress (Abdul et 

al., 2006).  These molecular chaperones detect misfolded proteins and refold them into their native 

or non-toxic shapes. Here we showed that MF significantly increased HSP60 and HSP70 

expression in diabetic brain tissue (Fig 3B and 3C), potentially through LonP1 stabilisation of 

HSP60-mtHSP70 chaperone complex formed during stressful states (Kao et al., 2016). Increased 

LonP1 expression (Fig 2C) parallels with the upregulated HSP response (Fig 3B and 3C), further 

confirming MFs ability to decrease the levels of oxidatively modified protein in the diabetic brain. 

By activating chaperone effects and catalytically removing oxidised proteins, MF prevents the 

accumulation of aggregated proteins in the cell promoting efficient mt function and establishes 

homeostasis.  



77 
 

Further, the heat-shock response, Sirt1, Sirt3, and the unfolded protein response (UPR) act to 

counteract mt oxidative stress and prevent accumulation of misfolded proteins (Min et al., 2013). 

A primary adaptive mechanism of ER stress during diabetes involves eIF2α phosphorylation via 

PERK activation, thus attenuating misfolded protein translation (Piperi et al., 2012). A study by 

Quentin et. al., demonstrated the protective role of MF through late activation of PERK, keeping 

the stress response below a threshold level that would induce apoptosis (Quentin et al., 2012). Our 

results agree with this study as MF lowered phosphorylation and activation of PERK protein (Fig 

4A) as well as mRNA expression (Fig 4B) in STZ mice. This PERK-specific induction of UPR 

signalling by MF is consistent with the idea that PERK is not directly activated by MF and may 

result through MFs effect on the energy status of the cell. Subsequent depletion of 

phosphorylated/active eif2α (p- eif2α) (Fig 4C), and lowered transcript levels of eif2α (Fig 4D) 

was exhibited by MF in diabetic mice brain. This observation parallels the abovementioned PERK 

result, further indicating MF’s ability to counteract STZ-induced ER stress in mice brain. These 

results are consistent with a study by Simon-Szabό et. al., where MF abolished ER stress in a 

diabetic rat model (Simon-Szabó et al., 2014). Additionally, Diaz-Morales et al., demonstrated 

the protective role of MF against ER stress through UPR signalling in DM (Diaz-Morales et al., 

2017, Diaz-Morales et al., 2018). The reduced protein oxidation (Fig 2A) is consistent with these 

results as the protein folding process is disrupted by STZ-induced ROS that yields misfolded 

proteins in the UPR (Lee et al., 2009, Piperi et al., 2012). Furthermore, MF-induced LonP1 (Fig 

2C) allows the mt to counteract oxidative stress experienced in diabetic brain tissue. Our data also 

agrees with a study by Wardelmann et. al., that demonstrated the role of brain insulin in adaptive 

mt stress responses that control neuronal health and metabolic regulation (Wardelmann et al., 

2019). Our data indicates a plausible mechanism of MFs ability to promote mt and ER function, 

preventing STZ-induced diabetic stress in mice brain. 

Defective mt biogenesis is a common feature of diabetic neuropathies. The co-transcription factor, 

PGC-1α is regarded as the master regulator of mt biogenesis and plays a pivotal role in attenuating 

mt and oxidative stress. A synergistic energy sensing role exists between Sirt1 and PGC-1α, thus 

modulating metabolic control through regulation of mt biogenesis (Rodgers et al., 2005). Research 

suggests MF-induced AMPK activation enhances blood-brain barrier functions (Takata et al., 

2013). Additionally, MF promotes mt biogenesis through elevated PGC-1α levels (Onyango et 

al., 2010, Suwa et al., 2006). MF inhibits complex 1 in the mt ETC, increasing the AMP/ATP 

ratio (Hardie et al., 2006). Increased PGC-1α protein, and mRNA levels (Fig 8) restores energy 

levels mediated by AMPK in diabetic mice brain.   

Sirt1 exerts partial neuroprotection by preventing mitochondrial impairment through PGC-1α 

activation (Min et al., 2013), whereas Sirt3 resides in the mitochondrial matrix and regulates the 

acetylation of several key metabolic enzymes in the mitochondria. In our study, MF increased 

both Sirt1 protein and gene expression in diabetic mice brain as compared to the control mice 
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brain (Fig 5A and B).  A plausible explanation may be through MFs regulation of AMPK and 

restoration of NAD+ levels (Bonkowski and Sinclair, 2016). To corroborate this observation with 

decreased protein carbonyl levels (Fig 2A), it was reported that reduced Sirt1 activity was due to 

concomitant carbonyl modifications on its cysteine residues (Caito et al., 2010). Considering that 

Sirt1 induces PGC-1α, a known transcription factor that regulates Sirt3 activity, we measured its 

expression and transcript levels. MF significantly increased Sirt3 protein and transcript levels (Fig 

5C and D) in diabetic mice. A study by Aatsiniki et. al., demonstrated that AMPK and Sirt1 

siRNAs attenuated the increase in PGC‐1α induced by metformin, providing evidence for their 

direct roles as metabolic sensors (Aatsinki et al., 2014). PGC-1α, Sirt1, and Sirt3 act 

synergistically to regulate mt biogenesis and increase mt content through increased TFAM 

expression (Jornayvaz and Shulman, 2010). The increased protein level of TFAM (Fig 5E) in 

diabetic mice correlates with the restoration/increase in both Sirt1 and Sirt3 levels by MF (Fig 

5A-D). Collectively, we provide novel action of MF in the diabetic brain by alleviating neuronal 

stress through Sirt1 activation of PGC-1α and corresponding increases in Sirt3 and TFAM 

expression, hence, mediating mt biogenesis.    

MicroRNAs, non-coding single stranded RNA, pair with bases of complementary target mRNA, 

resulting in their degradation or translational inhibition (He and Hannon, 2004). Alterations in the 

miRNA regulatory pathways may predispose to neurodegenerative pathogenesis (Basavaraju and 

de Lencastre, 2016). Mir-132 is enriched in neuronal cells and its dysregulation leads to brain 

related disorders (Wanet et al., 2012). Furthermore, limited information exists on neuronal miR-

148a dysregulation in diabetes, yet, its regulation in neurodegenerative diseases has been reported 

(Cogswell et al., 2008). We assessed both miR-132, and -148a and their modulation of mt function 

and protein translation. The seed sequence of miR-132 is complementary to gene product HSP70-

12B (Fig 3A). STZ increased miR-132 expression, as shown in situations under diabetic stress 

(Kim et al., 2014), correlating to the reduced protein expression of HSP70 in mice brain (Fig 3A 

and B). A concomitant decrease in miR-132 expression and increased HSP70 protein levels was 

exerted by MF in diabetic mice brain (Fig 3A and B). MiR-132 overexpression negatively 

regulates Sirt1 and its downstream targets (Miyazaki et al., 2014). In agreement with this, the 

increased Sirt1 levels (Fig 5A and B) corroborate the effect of MF on miR-132 in STZ-treated 

mice.    

The PGC-1α gene (PPARGC1A) is located on chromosome 4p15.1-2 (Esterbauer et al., 1999), a 

region that is associated with basal insulin levels (Pratley et al., 1998). A compelling relationship 

exists between diabetes-related phenotypes and single nucleotide polymorphisms on PPARGC1A 

(Andrulionyte et al., 2004, Bhat et al., 2007, Ek et al., 2001). The seed sequence of miR-148a was 

found to be complementary to the PGC-1α transcript as shown by a study indicating decreased 

PGC-1α levels by miR-148a (Chen et al., 2017). Tryggestad et. al. specify lower AMPK activity 

with miR-148a mimics (Tryggestad et al., 2016). The suppression of miR-148a may occur through 
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enhanced activity of AMPK by MF in diabetic mice brain (Fig 6A).  Additionally, the increased 

PGC-1α mRNA and protein levels (Fig 6) in MF-treated mice brain, correlates with enhanced mt 

biogenesis factors, Sirt1, Sirt3 and TFAM (Fig 5), suggesting that MF prevents silencing of PGC-

1α by miR-148a. This is the first study to demonstrate the epigenetic regulation of HSP70 and 

PGC-1α by MF through miR-132 and -148a suppression respectively. In summary, we indicate 

the stress induced by STZ in mice brain contributes to elevated levels of miR-132 and -148a 

resulting in mt dysregulation. The molecular mechanism of MF in alleviating this stress involves 

suppression of these miRs and modulation of metabolic networks within the mt, promoting 

neuroprotection. 

5. Conclusion 

In conclusion, our results strongly suggest that MF exhibits neuronal protection against oxidative 

damage and mt dysfunction caused by STZ in mouse whole brain homogenates. MFs regulation 

of miRs-132 and -148a and their integration with mt stress responses attributes to the novelty of 

this study. The multi-targeted actions of MF illustrate that the neuroprotective effects in diabetic 

whole mouse brains found were due to synergistic activity.  The primary mechanism of MF is 

established and may now prove efficient in counteracting diabetes associated neurodegeneration. 

Our study proved MF’s efficacy over an acute treatment period, however, future translational 

research should consider chronic MF treatment periods in the diabetic brain. Additionally, 

downstream ER pathway analysis should be considered for future work. This will extend 

pharmacologic knowledge on MF and its neuroprotective role in diabetics.  
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CHAPTER 4 

 

Metformin mediates neuroprotection by regulating miR-141 and dampening the NF-ĸB-

mediated inflammasome pathway in a diabetic mouse model 

 

In chapter 3, the antioxidant effects of MF and its neuroprotective role on mitochondrial 

dysfunction and ER stress were established in diabetic mice. This chapter further explores MFs 

role as an anti-inflammatory agent with focus on NF- κB and inflammasome signalling. MiR-141 

targets are regulated by MF and controls neuroplasticity pathways.  

This manuscript has been submitted to Biomedicine and Pharmacotherapy (Manuscript reference: 
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Abstract  

Acute inflammation is a feature of diabetes that affects several organs including the brain. This 

leads to compromised function and eventual neurodegeneration. Tau protein is 

hyperphosphorylated under diabetic conditions exacerbating degenerative processes. The 

antidiabetic drug metformin (MF) plays a role in neuroprotection by various pathways including 

activation of protein phosphatase 2A (PP2A). The microRNA (miR)-200 family, specifically miR-

141, is differentially expressed in diseased states including cognitive decline, thereby triggering 

changes in downstream genes. We hypothesised that miR-141 regulates PP2A and associated NF-

ĸB-mediated inflammasome expression in diabetic mice brain. Diabetes was induced by 

intraperitoneal injection of Streptozotocin (STZ), thereafter mice were treated with MF (20 mg/kg 

BW). Whole brain tissue was harvested for further analysis. Protein and gene expressions were 

established through western blotting and qPCR respectively. Diabetic mice brain tissue revealed 

increased miR-141 and decreased PP2A expressions. Following MF treatment, miR-141, PP2A, 

and p-tau at Ser396 protein expressions were regulated in the brain of diabetic mice. Additionally, 

down-regulation of NF-κB and increased IκB-α protein expression by MF treatment. Further 

experimentation revealed that MF induces BDNF overexpression, suggesting that the NF-κB 

signalling pathway may contribute to alleviating neuroinflammation. Metformin also repressed 

IL-1β and IL-18 expression, proposing its inhibitory action on the inflammasome system, as well 

as regulated expression of related cytokines and the upstream controller NLRP3. Collectively, we 

demonstrate that MF promotes neuroplasticity in diabetic mice by constraining inflammatory 

responses through its inhibitory effects on various signalling pathways. This suggests that MF 

may be effective in the treatment of inflammation-mediated pathologies in diabetic mice. 
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1. Introduction 

Insulin signalling in the brain stimulates various molecular processes (Kleinridders et al., 2014). 

The disruption of which, under hyperglycaemic conditions, promotes early manifestations of 

Alzheimer’s disease (AD) including neurofibrillary tangles (NFT) and hyperphosphorylation of 

tau protein (Liu et al., 2016, Whittington et al., 2013, Ye et al., 2017, Zhang et al., 2016a). Tau 

protein is found within the cytoplasmic and axonal region of neurons where it stabilises 

microtubules and confers proper brain function (Morris et al., 2011). Its regulation is dependent 

on phosphorylation and dephosphorylation. The phosphorylation of tau occurs at 85 potential 

serine (Ser), threonine (Thr), and tyrosine (Tyr) phosphorylation sites, of which Ser396 

phosphorylation is primarily responsible for the functional loss of tau (Noble et al., 2013). The 

balance between tau kinases and phosphatase activity regulates its phosphorylation. When this 

equilibrium is disturbed, hyperphosphorylation and aggregation of tau occurs. Thus, 

understanding the modes of tau phosphorylation is important in determining protection strategies 

to cope with the associated neurodegeneration. The Ser/Thr kinase, glycogen synthase kinase-3β 

(GSK3β), has essential roles in protein synthesis, cell differentiation, proliferation, and death 

(Frame and Cohen, 2001b); and has additional functions in tau phosphorylation, which is 

correlated with destabilised microtubules, tauopathies, and neuronal degeneration (Noble et al., 

2005). Protein phosphatase 2A (PP2A) is a phosphoesterase that is intracerebrally located and 

functions in tau dephosphorylation. Its function is further outlined through PP2A-mediated 

regulation of GSK3β activity by dephosphorylation (Mitra et al., 2012), hence PP2A and GSK3β 

are the most important enzyme regulators of tau phosphorylation in the brain. Studies demonstrate 

that reduced PP2A activity leads to tau hyperphosphorylation in Alzheimer’s disease (AD) mouse 

models (Xiong et al., 2013, Zhao et al., 2013, Zhou et al., 2008), and STZ mouse models (Planel 

et al., 2007). Additionally, tau-induced neurotoxicity is also associated with its ability to decrease 

trophic support for affected neurons.  

Brain-derived neurotrophic factor (BDNF) has a high affinity to the receptor, Tyrosine kinase 

receptor B (TrkB), which is important for neuronal growth, development and survival through its 
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ability to defend against free radicals and prevent inflammation in the brain (Huang and Reichardt, 

2001, Sampaio et al., 2017). Tau has been shown to downregulate BDNF expression in animal 

and cellular models of AD (Rosa et al., 2016). Studies have also linked GSK3β inhibition to the 

protective effects of BDNF/TrkB in neuronal mouse models (Liu et al., 2015). This sheds light on 

the important co-regulation of tau phosphorylation kinase, GSK3β, and PP2A function in proper 

brain function. Considering the signalling pathways affected by hyperglycaemia in the brain, anti-

diabetic drugs such as Metformin (MF) may positively regulate brain metabolism. Numerous 

studies depict the neuroprotective effects of MF additional to its glucose lowering activity. The 

beneficial outcomes of MF in the brain are demonstrated through increased PP2A activation 

(Demir et al., 2014, Kickstein et al., 2010), which reduced the tau phosphorylation both in vitro 

and in vivo (Kickstein et al., 2010). Additionally, MF improved cell proliferation in the 

hippocampus by inducing BDNF levels (Yoo et al., 2011), with similar effects in a metabolic 

syndrome patient study (Hristova, 2011). 

Neurodegenerative disorders result from increased inflammatory responses and cytokine release 

in diabetes mellitus (DM) including NF-κB signalling and its activation of the NLRP3 

inflammasome (Yang et al., 2014). The inflammasome facilitates caspase-1 activation and 

maturation of interleukin 1 β (IL-1β) cytokine (Grebe et al., 2018, de Zoete et al., 2014). The 

concept that the NLRP3 inflammasome is activated by pathways that culminate in metabolic stress 

is further supported by the crucial role of NLRP3 production in patients with type 2 DM (Masters 

et al., 2010, Lee et al., 2013). In vivo research shows that MF crosses the blood-brain barrier and 

accumulates in the brain (Łabuzek et al., 2010), where it exerts neuroprotective effects through 

regulating oxidative stress, inflammatory responses, and neuronal apoptosis (Ge et al., 2017, Liu 

et al., 2014, Zhang et al., 2017a). For instance, MF was found to inhibit proinflammatory IL-1β 

and NF-κB expression (Isoda et al., 2006), and provide neuroprotection through suppression of 

inflammation and apoptosis (Wang et al., 2016). The anti-inflammatory effects of MF have also 

been documented in diabetics (Lee et al., 2013). Sirtuin 1 (Sirt1) is known to maintain 

mitochondrial homeostasis and promote its function through its NAD+-dependent protein 

deacetylase activity (Araki et al., 2004, Braidy et al., 2012). The physical interaction of Sirt1 and 

NF-κB inhibits its transcriptional activity through deacetylation of the RelA/p65 subunit at lysine 

310 (Yeung et al., 2004). In silico analysis reveal the putative interactions between MF and Sirt1 

through molecular docking (Cuyàs et al., 2018) thus, making it an important target for disease 

mechanisms. In addition, targeting the expression of NLRP3 inflammasome along with enhancing 

neuroprotective mechanisms may provide a tailored solution to attenuate diabetes induced 

neurodegeneration.  

Epigenetics is a rapidly growing field in medical research. Metformin may influence the activity 

of numerous epigenetic modifying enzymes, mostly by modulating the activation of AMP‐

activated protein kinase (AMPK). Increased Sirt1 activity in vitro has been shown to prevent Aβ 
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peptides formation by increasing α-secretase activity (Qin et al., 2006) indicating its protective 

role in the brain. Additionally, the regulatory role of MF to increase Sirt1 in an AMPK manner 

has been demonstrated (Caton et al., 2011). The expression levels of numerous microRNAs are 

also reportedly influenced by MF treatment. Although they do not interact directly with DNA, 

microRNAs (miR) have epigenetic‐like effects as they alter protein expression through the 

suppression of mRNA translation. Altered expression of numerous miRNAs has been shown to 

be extensively involved in the pathogenesis of various diseases including diabetes and its 

associated pathologies (Wang et al., 2014). There are five members that comprise the miR-200 

family, of which are grouped into two independent transcriptional clusters: miR-200c and -141, 

located on 12p13, and miR-200a, -200b, and -429, located on chromosome 1p36 (Bracken et al., 

2015). MiR-200c/141 is the predominant member of the miR-200 family, with numerous studies 

indicating their aberrant expressions in various cancers (Antolín et al., 2015, Dimri et al., 2016). 

Additionally, MF has been shown to inhibit tumourigenesis by increasing MiR-200c/141 

expression (Zhang et al., 2017b). A clinical study has indicated that miR‐141 is significantly 

upregulated in diabetic nephropathy (Li et al., 2019), and has been identified to play inflammatory 

roles in rodent brain tissue (Verma et al., 2018). Increased miR-141 levels have been correlated 

to decreased Sirt1 levels in a patient study, indicating its role in the development of insulin 

resistance (Nourbakhsh et al., 2018). These reports suggest that miR‐141 may be involved in the 

development and progression of neurological diseases related to diabetes. Ours is the first study 

to demonstrate the effects of MF on miR-141 expression in diabetic brain tissue in vivo, attributing 

to its novelty. 

Administration of streptozotocin (STZ), a glucosamine-nitrosourea compound has been shown to 

mimic diabetic conditions including oxidative stress, biochemical alterations, and 

neuroinflammation in rodent brain. This method of experimental hyperglycaemia provides a 

means to assess the eventual neurodegenerative states (Kamat, 2015). A study by Gao et. al. 

showed manifestation of sporadic AD through STZ-induced tau phosphorylation in mice brain 

(Gao et al., 2014). In this study, we explored the neuroprotective mechanism of MF   through 

miR‐141 modulation and its downstream implications on tau phosphorylation status and 

inflammation in an STZ mouse model.  

 

1.2 Methods and materials 

 

1.2.1 Animal care and treatment 

C57BL/6 male mice and their littermates (6 weeks of age, (n=15, mean body weight (BW) 20 ± 

2.99g) were acclimated to the animal research facilities (Biomedical Resource Unit from the 

University of KwaZulu-Natal (Westville Campus), Durban, South Africa) for 5 days. The 
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following investigations were conducted in accordance to Animal Research Ethics Committee of 

the University of KwaZulu-Natal, Durban, South Africa (Reference AREC/057/016) guidelines. 

were used to house the mice. C57BL/6 rodents (5 per cage) were housed in polycarbonated cages 

(40-60% humidity, 23 ± 1oC) with a 12 hr light dark cycle, a normal laboratory diet, and drinking 

water ad libitum.  

All consumables were purchased from Merck (Darmstadt, Germany), unless otherwise stated. To 

determine optimal dosage, C57BL/6 mice were given STZ (Sigma Aldrich (S0130), St Louis, 

MO, USA) through a preliminary investigation including a range of concentrations (50 mg/kg, 

100 mg/kg and 150 mg/kg BW) as per our previous protocol. DM was induced following an 

overnight fast (12 hr). Briefly, the compound was dissolved in a citrate buffer (pH 4.4) and injected 

intraperitoneally (50 mg/kg/d) within 15 min of dissolution. The control group received the 

vehicle: citrate buffer solution without STZ correspondingly.  

Metformin hydrochloride (PHR1084) was made up to a final concentration of 20 mg/kg BW (Cho 

et al., 2015, Zou et al., 2004a) in 0.1M phosphate-buffered saline (PBS).  Post diabetic stimulation, 

animals with random blood glucose values of 7-16mmol/L were defined as STZ-induced diabetic 

mice. The mice were then divided into three groups: 1. Control/ normal mice (C); 2. Streptozotocin 

(STZ) induced diabetic mice (HG control) which were fed PBS (vehicle control) during the 

treatment period; and 3. STZ diabetic mice treated with MF (20 mg/kg BW) via oral gavage once 

daily for the 15-day treatment period. Following treatment, mice were euthanised (isoflurane) and 

whole brain tissue was harvested. Samples were stored in Cytobuster (Novagen, Darmstadt, 

Germany) or Qiazol (Qiagen; Hildenburg, Germany) at -80oC for further analysis.  (Qiagen; 

Hildenburg, Germany) at -80oC for downstream analysis.   

1.2.2 Western blot analysis 

Brain tissue samples were homogenized with ice-cold cell lysis buffer. The tissue homogenate 

was centrifuged (to remove debris) at 4°C for 5 min at 12,000 rpm, and the supernatant was 

transferred to a fresh tube. Protein concentration was determined using BCA protein assay kit 

(Thermo-Fisher Scientific). Equivalent amount of protein sample was loaded, and the western 

blotting procedure was carried out using an in-house protocol (Abdul et al., 2019). Protein 

expression was established by incubating membranes with primary antibodies (Table 1) at a 

1:1000, 5% BSA dilution. Thereafter membranes were incubated with horseradish peroxidase 

(HRP) conjugated secondary antibody [Anti rabbit IgG #7074, Anti-mouse IgG #7076, 1:10,000 

in 5% BSA] for 1hr (RT). Densitometric protein measurements were normalised against house-

keeping protein, HRP-conjugated anti-β-actin (CS1615, Sigma) for 1h at RT. Finally, the 

membrane was incubated with enhanced chemiluminescence reagents [Clarity western ECL 

substrate (Bio-Rad)] and exposed in a luminescence image analyser (Chemidoc™ imaging 
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system, Image Lab Software version 5.0, Bio-Rad) to detect the immunoreactive complex. Density 

of each blot was assessed and expressed as a relative fold change (RFC) ratio over β-actin. 

Table 1: List of antibodies used 

Primary antibody Cat. No. 

BDNF AB1534 

p-tau 5396 (PHF13) 

NF-κB (p65) D14E12 

IκB-α L35A5 

  

1.2.3 RNA analysis

To evaluate the abundance of mRNA of interest in cell lysate, total RNA was extracted from 

homogenised brain tissue using Qiazol reagent (232 Qiagen, Germany) as per manufacturer’s 

instructions and standardised (900 ng/μl). Total RNA was reverse transcribed using the iScript™ 

cDNA synthesis kit (Bio-Rad, SA, cat. no. 1708891) following manufacturer’s instructions. 

cDNA was quantified using iScript SYBR Green PCR kit (Bio-Rad) as per instructions. The 

following primers were used for qPCR amplification: 

 

Table 2: Primer sequences used to determine gene expression profiles  

Gene Primer sequence: 

(5’-3’) 

Annealing temperature 

(
ο 
C) 

PP2A F: GTTCAAGAGGTTCGATGTCCAG 

R: AGCTACAAGCAGTGTAACTGTTT 

58 

tau F: TGGGGAACATTCCGTATGAGG 

R: CAGAAGCCATAACCCTTGGG 

61.9 

TrkB F: CGGCACATAATTTCACACG 

R: TTACCCGTCAGGATCAGGTC 

58 

BDNF F: AAACATCCGAGGACAAGGTG 

R: AGAAGAGGAGGCTCCAAAGG 

58 

NF-κB 

 

NLRP3 

 

IL-1β 

F: GAAATTCCTGATCCAGACAAAAA  

R: ATCACTTCAATGGCCTCTGTGTAG 

F: TGCTCTTCACTGCTATCAAGCCCT 

R: ACAAGCCTTTGCTCCAGACCCTAT 

F: ATGGCAACTGTTCCTGAACTCAACT 

57.5 

 

61.9 

 

58.7 
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TNF-α 

 

Caspase-1 

R: CAGGACAGGTATAGATTCTTTCCTTT 

F: CCAACATGCTGATTGATGACACC 

R: GAGAATGCCAATTTTGATTGCCA 

F: AATACAACCACTGGTACACGTC 

R: AGCTCCAACCCTCGGAGAAA 

 

64.4 

 

58 

GAPDH F: AATGGATTTGGACGCATTGGT 

R: TTTGCACTGGTACGTGTTGAT 

variable 

 

1.2.4 MicroRNA quantification and target prediction  

Total RNA was reverse transcribed into cDNA using the miR-141 miScript primer assay kit 

(MS00001610, Qiagen). A 10μl reaction mix (5 × miScript HiSpec Buffer, miScript Reverse 

Transcriptase Mix 10 × miScript Nucleics Mix; Qiagen)] was prepared as per manufacturer's 

instructions. Human RNA U6 small nuclear 2 (RNU6-2) was used as the internal control. 

Amplification specificity was assessed by melting curve analysis and the relative miRNA levels 

in each sample were calculated using the 2−ΔΔCT method. The target of miR-141 was determined 

by pathway analysis using Target Scan V7.2. This database was utilised as no experimental data 

for this miR in mouse brain exists. The results were filtered for targets with highly predicted 

confidence for an interaction with miR-141. Among the multiple targets of miR-141, we 

determined that the 3’ untranslated region (UTR) of Sirt1 and PP2A were complimentary to its 

seed sequence. 

 

1.2.5 Statistical Analysis 

Statistical analysis was performed using GraphPad Prism software (Inc., La Jolla, USA). Five 

independent replicates were included in each data set. All data were presented as mean ± SD for 

comparison with control group when applicable. Statistical significance was determined with one-

way analysis of variance (ANOVA) and the Bonferroni multiple comparison test. A difference 

was considered statistically significant when p ≤ 0.05. 

 

1.3 Results 

 

1.3.1 MF influences miR-141 and its targets, Sirt1 and PP2A 

To study the effects of MF on miR-141 in diabetic brain tissue, we assessed mRNA expressions. 

We determined the 3′-UTR of Sirt1 and PP2A were complementary to miR-141 with Target Scan 

v7.2 (Fig 1A). Diabetic mice revealed increased miR-141 (Fig 1A) expression, with associated 

decreases in PP2A (Fig 1B) expression in comparison to normal mice. However, miR-141 
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expression was significantly reduced by MF treatment in comparison to hyperglycaemic mice. 

This was accompanied by elevated PP2A gene expression as compared to control mice brain 

tissue. This suggests that miR-141 decreases PP2A expression in diabetic mice brain tissue, which 

is reversed by treatment with MF.  

 

Figure 1: MF increases PP2A gene expression in a miR-141 regulatory manner. MF-treated mice 

exhibited reduced miR-141 expression (A: *** p < 0.0001 vs control, ### p < 0.0001 vs STZ) 

with concomitant increases in PP2A transcript levels (B: * p < 0.05, *** p < 0.0001 vs control; 

### p < 0.0001 vs STZ) in diabetic mice (n=5). 

 

1.3.2 MF Induces Dephosphorylation of tau in Vivo 

Metformin has been demonstrated to be active in the brain after oral administration (Koenig et al., 

2017). To determine if MF could mediate the dephosphorylation of tau, we assessed both protein 

and gene expressions in diabetic mice brain. Interestingly, tau protein was significantly 

dephosphorylated in the MF-treated mice brain tissue (Fig 2A). In agreement with this, expression 

of tau was also reduced in brain tissue of hyperglycaemic mice confirming the inhibitory effect of 

MF (Fig 2B).  



96 
 

 

Figure 2: MF dephosphorylates tau in diabetic mice brain. Mice treated with STZ experienced 

tau hyperphosphorylation depicted by increased protein (A: ** p < 0.005 vs control, ### p < 

0.0001 vs STZ) as well as gene (B: *** p < 0.0001 vs control, ### p < 0.0001 vs STZ) expression. 

MF effectively reduced both p-tau protein and its transcript levels following treatment in mice 

tissue (n=5).  

 

1.3.3 BDNF and its receptor TrkB are modulated by MF  

In order to explore effect of MF on level of the neurotrophic factors, we investigated BDNF 

expression. STZ-treatment decreased both protein and gene expressions in rodent brain tissue (Fig 

3A and B), along with potent inhibition of TrkB receptor level (Fig 3C). Conversely, MF treatment 

increased BDNF protein, gene, and associated TrkB expressions in extracted diabetic mice brain 

tissue. This result indicates that the neuroprotection of MF was at least in part mediated by 

BDNF/TrkB upregulation. 
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Figure 3: Effects of MF on BDNF and TrkB expressions. Protein expression (A: *** p< 0.0001 

vs control, ### p< 0.0001 vs STZ) and transcript level (B: *** p< 0.0001 vs control, ### p< 0.0001 

vs STZ) of BDNF was increased in diabetic mice treated with MF. The depleted levels of TrkB 

expression following diabetic induction was reversed in MF-treated mice (C: ** p < 0.005, *** 

p< 0.0001 vs control; ### p< 0.0001 vs STZ) (n=5). 

 

1.3.4 NF-κB signalling and inflammasome-related transcript regulation 

Previous research has demonstrated that PP2A reduces NF-κB activation in macrophages (Qadri 

et al., 2018), and Sirt1 inhibits its activity through direct inhibition of the p65 subunit (Yeung et 

al., 2004). We therefore investigated whether MF exerts it anti-inflammatory effects through NF-

κB related inflammasome gene expressions in diabetic mice brain tissue as it is linked to NLRP3 

activation (Luo et al., 2014). Our data showed that NF-κB protein and gene expression was 

increased in diabetic mice, whilst inhibitor of kappa B-α (IκB- α) kinase gene expression was 

depleted (Fig 4A-C). The downregulation of NF-κB protein (Fig 1A) and gene (Fig 1C) expression 

accompanied by upregulated IκB-α protein expression was mediated by MF treatment (Fig. 4A-

C).  

 

Figure 4: MF inhibited NF-κB signalling in an IκB- α -dependent manner. Diabetic mice 

exhibited decreased NF-κB protein (A: ** p< 0.005 vs control, ### p < 0.0001 vs STZ) and mRNA 

(C: *** p< 0.0001 vs control, ### p < 0.0001 vs STZ) expressions. Concomitant analysis of IκB- 

α (B: * p< 0.05 vs control, ### p < 0.0001 vs STZ) showed upregulated protein expression in 

diabetic mice brain treated with MF (n=5).  
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The function of PP2A as a potent inhibitor of NLRP3 inflammasome through NF-κB regulation 

has been elucidated (Haneklaus et al., 2017). Hence, we determined the expressions of related 

inflammasome components. MF significantly downregulated gene expressions of NLRP3 (Fig 

5A), Caspase-1 (Fig 5B), IL-1β (Fig 5C), IL-18 (Fig 5D), and TNF-α (Fig 5E) in comparison to 

hyperglycaemic mice. Taken together, MF exerts potent anti-inflammatory action in diabetic mice 

brain tissue through inhibition of the inflammasome-related genes. 

 

 

Figure 5: MF regulates NLRP3 inflammatory response in diabetic mice brain. The mRNA levels 

of NLRP3 (A: ** p < 0.005, *** p< 0.0001 vs control; ### p < 0.0001 vs STZ) and associated 

caspase-1 (B: *** p< 0.0001 vs control, ### p < 0.0001 vs STZ) were significantly decreased. 

Furthermore, cytokine gene expressions were downregulated in MF-treated mice (C-E: *** p< 

0.0001 vs control, ### p < 0.0001 vs STZ) (n=5). 

 

1.4 Discussion  

To understand the mechanisms involved in diabetes-associated neurodegeneration, we established 

an animal model to mimic the disease. Experimentally, administration of STZ is a validated model 

for inducing a hyperglycaemic state with subsequent inflammation and degeneration in mice brain 

(Gao et al., 2014, Kamat, 2015). In line with earlier MF studies (Nikolakopoulou et al., 2018, 

Tahara et al., 2008), we show favourable outcomes on glucose tolerance following MF 

administration in STZ injected mice (Supp Fig 1). Therefore, we examined the potential of MF to 
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repress the expression of neurodegenerative markers and attenuate neuroinflammation in mice by 

modulating miR-141 expression.  

MiRNAs regulate target genes directly through interactions with the conserved and target 

recognition elements, which leads to decreased transcript levels. The miR-200 family has been 

shown to regulate cellular proliferation and apoptosis, with majority of the findings involving 

cancer research (Takahashi et al., 2014, Wang et al., 2018). Direct regulation of miR-200 

expression is facilitated by MF in stress-induced senescence (Cufí et al., 2012). Subdivision of the 

miR-200 family includes two clusters, miR-200a/b/429 and miR-200c/141 (Humphries and Yang, 

2015), of which our study focused on the latter. Elevated expression of miR-141 is correlated to 

insulin resistance in transgenic mouse models suggests a prominent role for inducing a diabetic 

phenotype (Belgardt et al., 2015) as well as neuroinflammation (Verma et al., 2018). Further, 

significantly increased levels of miR-141 was observed in patients with diabetic nephropathy (Li 

et al., 2019), a clear indication that this miR is involved in diabetic pathologies. Researchers have 

shown that MF has regulatory roles at the epigenetic level, particularly through miR modulation 

(Zhou et al., 2015). The seed sequence of miR-141 was found to be complementary to 3'UTR gene 

product of Sirt1 and PP2A (Fig 1A). Our experiments on miR-141 showed a persistent increase 

in its expression along with concomitant decreased PP2A in mice administered with STZ alone 

(Fig 1A) confirming the prediction target. Protein phosphorylation is an ATP-dependent process 

involving the covalent addition of phosphate groups to specific residues, allowing for protein 

modifications. Tau hyperphosphorylation specifically at Ser396, promotes intraneuronal 

neurofibrillary tangles, a hallmark of neurodegenerative disease (Grundke-Iqbal et al., 1986), and 

further depletes ATP levels in diabetes. PP2A is an enzyme that promotes catalytic removal of 

phosphate groups from protein serine and threonine residues (Clark and Ohlmeyer, 2019). The 

phosphorylation of tau is maintained by equilibrium between kinases and phosphatases. The 

kinase GSK-3β functions to promote tau phosphorylation (Zhao et al., 2013) whilst PP2A inhibits 

this process through GSK-3β and subsequent tau dephosphorylation (Mitra et al., 2012). Insulin 

modulates tau phosphorylation by mediating GSK-3β activity (El Khoury et al., 2014), this 

explains the co-morbidity between DM and neuronal cognitive decline.  The administration of 

STZ over an acute 10-day period (Planel et al., 2007) is reported to inhibit PP2A by insulin 

dysfunction, thus enhancing hyperphosphorylated tau levels (Clodfelder-Miller et al., 2006, Qu et 

al., 2011). In harmony with this, we demonstrated increased tau expression and subsequent 

phosphorylation at the protein level (Fig 2) following STZ injection, which is concomitant to 

PP2A inhibition (Fig 1B). Diabetic mice treated with MF displayed enhanced PP2A expression 

(Fig 1B) potentially through its ability to activate AMPK and restore ATP levels, hence 

dephosphorylating tau (Fig 2) in the brain.  Metformin plays an essential role in alleviating 

diabetes associated oxidative stress through GSK-3β inhibition (Markowicz-Piasecka et al., 2017). 

Additionally, the formation of an active PP2A complex which then targets GSK-3β has been 
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demonstrated by MF treatment (Elgendy et al., 2019). Thus, forming a consensus to the 

mechanism of MF and reduced tau phosphorylation at Ser396 through kinase and phosphatase 

regulation in neuronal tissue of diabetic mice. In addition, the mechanism of Ca2+ ions inducing 

tau hyperphosphorylation has been reviewed (Wang, 2019). Metformin protects neuronal cells by 

modulating intracellular Ca2+ levels (Jang and Park, 2018), substantiating our decreased p-tau 

finding in diabetic mice brain tissue. Overall, we found that the neuroprotective effects of MF can 

be attributed to its influence on miR-141 regulation of PP2A, and subsequent dephosphorylation 

of tau which is a unique finding in terms of neuroprotection for this glucose-lowering agent.  

The neurotrophin BDNF is negatively expressed in a diabetic state, rendering neurons of the brain 

vulnerable to diabetic insult. The ability of BDNF to regenerate neuronal circuits through 

regulating glucose metabolism is described (Fargali et al., 2012). In our study, STZ-treated mice 

displayed reduced BDNF protein and associated TrkB receptor gene expressions in brain tissue 

(Fig 3A-C), keeping with the findings of a clinical study that determined the number of cells 

expressing BDNF and TrkB mRNA was reduced in brain samples of diabetic patients (Bochukova 

et al., 2018, Zhen et al., 2013). Reduced BDNF expression is associated with tau 

hyperphosphorylation in neurodegenerative disorders. Following treatment with MF, diabetic 

mice revealed increased TrkB receptor, along with elevated protein and gene expression of BDNF 

(Fig 3A-C), potentially through an AMPK-mediated mechanism (Cho et al., 2015, Huang et al., 

2015). Pre-treatment with MF has been shown to increase BDNF levels in hippocampal neurons 

(Ghadernezhad et al., 2016), supporting our finding. A study showed that exogenously introduced 

BDNF does not affect tau hyperphosphorylation (Jiao et al., 2016). Contrarily, in vivo treatment 

with BDNF provides a balance between tau phosphorylation through the co-regulation of GSK-

3β and PP2A (Götz et al., 2010), correlating with our findings. These results suggest that MF 

promotes neuronal connectivity and neuroplasticity, which contributes to synaptic efficacy 

through BDNF upregulation and tau dephosphorylation.  

Diabetic conditions are associated with increased microglial numbers and inflammation in the 

brain (Wanrooy et al., 2018, Wong et al., 2018). MF has proved efficient in alleviating chronic 

inflammation by direct action preclinically and clinically (Saisho, 2015). The most prevalent form 

of pro-inflammatory mediator, NF-κB, exists as a heterodimer composed of p50 and the active 

RelA/p65 polypeptides. Han et. al. observed BDNF and its receptor, TrkB, to prevent microglial 

activation and inhibit TNF-α and IL-6 inflammatory factors in STZ-treated mice thus mitigating 

the synaptic impairments experienced in hyperglycaemia through RelA/p65 NF-κB signalling 

(Han et al., 2019). Similarly, we show that MF prevents overexpression of the active subunit p65 

NF-κB protein and gene expression (Fig 4), as well as TNF-α expression (Fig 5E) in STZ-treated 

mice and control mice; collaborating with the increased BDNF levels (Fig 3). The deacetylase 

activity of Sirt1 inhibits NF-κB activity at the RelA/p65 location (Yeung et al., 2004). We 

previously showed that MF upregulates Sirt1 expression in diabetic mice brain tissue (Supp Fig 
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2). In this study, we show that miR-141 also targets Sirt1 (Fig 1A), suggesting that MF regulates 

exerts its anti-inflammatory effect on NF-κB through an epigenetic mechanism. The IκB family 

sequesters the p65 NF-κB subunit in the cytoplasm and inhibits it in a normal setting (Vadapalli 

et al., 2018). Diabetes associated inflammation prevents this inhibition by activating the IκB 

kinase (IKK) which phosphorylates and blocks IκB protein activity (Ghosh and Karin, 2002). We 

show that MF treatment significantly increased IκB-α (Fig 4B) expression in diabetic mice brain 

tissue. Mechanistically, PP2A prevents sustained activation of the IKK complex, and readily 

dephosphorylates IκB-α, thereby mediating control of NF-κB transcription (Tsuchiya et al., 2017). 

We demonstrate that MF can regulate acute inflammation in diabetic brain homogenates through 

miR-141 inhibition, PP2A-mediated dephosphorylation and subsequent NF-κB regulation.  

Furthermore, diabetes induced ROS formation promotes inflammatory processes through NF-κB 

activation of the NLRP3 inflammasome (An et al., 2019).  This mediates pro-inflammatory 

cytokines IL-1β and IL-18 which are implicated in metabolic disorders (Fullerton et al., 2013, 

Masters et al., 2010, Nakamura et al., 2005). Thus, we assessed mRNA expression of 

inflammasome related genes in vivo to fully clarify the anti-inflammatory effects of MF at the 

transcriptional level in diabetic mice brain tissue. Our data suggested that MF alleviates the pro-

inflammatory response to STZ injection by inhibiting NLRP3 inflammasome expression (Fig 5A). 

The NLRP3 inflammasome activates caspase-1 which induces a proinflammatory state by 

cleaving of pro- IL-1β and IL-18 into mature IL-1β and IL-18 (Hong et al., 2019). Downregulation 

of caspase-1, IL-1β, IL-18, and TNF-α (Fig 5B-E) mRNA expression by MF treatment in diabetic 

mice brain tissue was mediated by its effect on the PP2A/NF-κB cascade. This finding is 

corroborated by a study showing the inhibitory effects of MF on NLRP3 inflammasome through 

AMPK regulation in a diabetic mouse cardiomyopathy model (Yang et al., 2019).  

In conclusion, this study strongly demonstrates MF’s neuroprotective effects by mediating PP2A 

dephosphorylation of tau protein through miR-141 inhibition over an acute time period. 

Additionally, the anti-inflammatory effects of MF are demonstrated by subsequent BDNF 

activation through its receptor TrkB, and inhibition of NF-κB mediated NLRP3 inflammasome-

related transcripts. These findings provide novel insight on the potential of MF to alleviate 

neuroinflammation and associated neurodegeneration in vivo in a diabetic ambiance. Further 

research is warranted over longer time periods in vivo to clarify the mechanism of the anti-

inflammatory effect of MF in diabetic-related neurodegeneration. 
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CHAPTER 5 

 

Metformin regulates renal stress by Sirtuin 1 signalling axes and prevents intrinsic cell death 

in diabetic mice  

 

In addition to the brain, another major organ that is affected by high blood glucose is the kidney. 

These two organs are involved in energy metabolism and are linked through the vascular system. 

Diabetic injury to the brain negatively affects kidney function by inducing inflammatory 

processes. The renal system has gluconeogenetic roles making it prone to hyperglycaemic injury. 

In this chapter, we outline the protective role of MF in diabetic mice through Sirt1 regulation of 

mt metabolism linked to ER stress and nephropathy.   

This manuscript was submitted to Journal of Cellular Physiology (Manuscript reference: JCP-19-

5700) and is presented in this thesis as per journal formatting requirements. 
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Abstract 

Diabetic nephropathy is considered as the leading cause of end-stage renal disease. 

Hyperglycaemia contributes to oxidative stress and pseudohypoxia which play prominent roles in 

the progression of this condition. The NAD+ dependent deacetylase, Sirtuin 1 (Sirt1) has been 

established as an energy sensor and key regulator of cell defence mechanisms that may prevent 

renal cell damage and apoptosis. Therefore, we investigated the potential protective effects of 

metformin (MF) through modulation of Sirt1 mediated pathways and apoptosis in Streptozotocin 

(STZ)-induced diabetic mice kidney. Diabetic mice were treated with MF (20 mg/kg BW), and 

whole kidney tissue was harvested for further analysis. Protein carbonylation was assessed as a 

marker of oxidative stress in whole kidney lysates. Western blot and qPCR experiments were 

conducted to determine the effect of MF on Sirt1 and modulation of its downstream targets. We 

examined the ability of MF to disrupt the intrinsic apoptotic pathway as an end stage contributor 

to DN. Metformin inhibited oxidative damage to proteins by up-regulation of an anti-oxidant 

response. We further established that MF positively regulates the SIRT1/AMPK/PGC1a 

activation loop suggesting enhanced mitochondrial activity and improved metabolic homeostasis. 

Additionally, MF dampened ER stress, demonstrated by decreased CHOP protein expression 

along with concomitant decrease to eIF2α and PERK. Metformin was also shown to suppress 

intrinsic apoptosis by inhibiting the expression of Bax and cyt-c. Herein we show that the 

protective effect of MF is closely tied to the enhanced expression of Sirt1 in the diabetic kidney. 

Mechanistically, Sirt1 is at the forefront of modulating cell defence to metabolic stress and 

associated pathologic outcomes, particularly in DN and represents a therapeutic target for MF.  

Keywords:  

Metformin, Diabetes, Kidney injury, Sirt1, ER stress, Apoptosis 
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1. Introduction 

Diabetes mellitus (DM) is characterised by hyperglycaemia which results in glycation of 

macromolecules and associated organ damage (Fowler, 2008). The kidney requires high levels of 

ATP to function and is rich in mitochondria. Endogenous glucose promotes ATP production 

through mitochondrial (mt) oxidative phosphorylation. In a diabetic ambiance, kidney cells are 

incapable of adequate regulation of intracellular glucose and are subjected to extreme oxidative 

distress mediated by reactive oxygen species (ROS) (Sifuentes-Franco et al., 2018). Diabetic 

nephropathy (DN) and associated metabolic dysregulation often triggers oxidative, mt, and 

endoplasmic reticulum (ER) stress-related responses (Sifuentes-Franco et al., 2018). This 

contributes to changes in intracellular signalling cascades promoting apoptotic cell death and 

organ damage (Khanra et al., 2015). 

The mitochondrion is integral to mediating signal transduction cascades and altered gene 

expression profiles associated with chronic over-production of ROS as a secondary signalling 

messenger (Hensley et al., 2000). With overwhelming increases in the production of ROS, 

antioxidant defence systems are easily exhausted, promoting mt dysfunction and exacerbating 

ROS production (Niedowicz and Daleke, 2005). The increased cytosolic ratio of free NAD+ to 

NADH in cells, caused by hyperglycaemia has been termed pseudohypoxia and maybe seen as a 

critical driver of DM pathology (Williamson et al., 1993).  The presence of a hypoxia inducible 

component in the transcriptome in response to hyperglycaemia has been observed and an overlap 

with ROS and aberrant metabolism proven.  

Pseudohypoxia and ROS regulate the expression and activity of Sirt1 (Gomes et al., 2013, Zheng 

et al., 2012). This deacetylase enzyme is regarded as a metabolic sensor (dependence on NAD+) 

tasked with maintaining genome stability and anti-oxidant responses. Previous studies have 

reported that Sirt1 mediates a wide range of cellular responses through its deacetylation activity 

targeting numerous transcription factors such as p53, nuclear factor‐κB (NF‐κB), HIF-1α and 

peroxisome proliferator‐activated receptor gamma coactivator‐1α (PGC)‐1α (Ryu et al., 2019). 

Sirtuin 1 bridges the transcriptome to cell defence responses and is recognised as a survival factor. 

Sirt1 activation has been shown to inhibit hyperglycaemia-induced apoptosis by reducing 

oxidative stress and mt dysfunction (Wang et al., 2017) Thus, a pseudohypoxic state that disrupts 
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Sirt1 function and expression contributes to the decline in mt function and cell damage. Further 

mechanistic studies revealed elevated apoptosis and caspase activation following hypoxic injury 

accompanied by mt mediated intrinsic apoptosis through Bax accumulation and cytochrome-c 

(cyt-c) release (Allison, 2014). The molecular mechanisms involved in cell defence have gained 

interest due to the societal impact of diabetes.  

Metformin acts to suppress hyperglycaemia and hepatic gluconeogenesis by activation of AMPK 

signalling. Additionally, this biguanide inhibits complex 1 of the mitochondria with consequent 

compromised ATP and AMP homeostasis as well as inhibition of mt glycerophosphate 

dehydrogenase, thereby attenuating transfer of reducing equivalents from the cytoplasm to 

mitochondria. As a result, raised lactate/pyruvate ratio and redox-dependent inhibition of 

gluconeogenesis occurs from reduced but not oxidized substrates. Taken together these 

mechanisms suggest a profound effect on the redox potential of the cell (NAD:NADH ratio) which 

can directly affect Sirt1 expression and modulate associated cell survival mechanisms. Given that 

both MF and Sirt1 play important roles in the cellular response to hyperglycaemic stress and redox 

potential, we propose that MF can prevent renal damage in a diabetic state by alleviating mt stress 

and the intrinsic apoptotic pathway. 

2. Methods and Materials 

 

3.1 Materials 

Treatments including MF hydrochloride (PHR1084) and STZ (S0130) were purchased from 

Sigma Aldrich (St Louis, MO, USA). All other consumables were purchased from Merck 

(Darmstadt, Germany), unless otherwise stated. 

3.2 Animals and induction of diabetes  

This study used male mice of the C57BL/6 strain at 6-weeks-old [(n=15, mean body weight (BW) 

20 ± 2.99g)] from the Biomedical Resource Unit from the University of KwaZulu-Natal 

(Westville Campus), Durban, South Africa. Mouse feed included a standard laboratory diet, 

normal drinking water ad libitum throughout the experimental period. All experimental 

procedures were performed in accordance to the Animal Research Ethics Committee of the 

University of KwaZulu-Natal, Durban, South Africa (Reference AREC/057/016).  

The optimal dosage for STZ treatment was conducted through a preliminary investigation 

including a range of concentrations (50 mg/kg, 100 mg/kg and 150 mg/kg BW). DM was induced 

following an overnight fast (12 hr) by a single intraperitoneal administration of 50 mg/kg of STZ 

which was dissolved in sodium citrate buffer at pH 4.4. Control animals were injected with the 

vehicle (sodium citrate buffer, pH 4.2-4.5). Blood glucose levels were monitored using a 
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glucometer (Accu-Chek®), where levels of 7-16mmol/L were considered T2 diabetic. The 

treatment period was then inducted. 

3.3 Treatments 

MF was prepared in 0.1M phosphate-buffered saline (PBS) and filter sterilized (0.45-μm filter), 

to a final concentration of 20 mg/kg BW based on previous animal studies (Cho et al., 2015, Zou 

et al., 2004b). Random division of mice was performed into 3 groups of 5 mice per group (n=5). 

Group 1: control (C) normal mice, Group 2: Streptozotocin-induced T2 diabetic mice (HG control) 

and were fed PBS (vehicle control) during the treatment period. Group 3: STZ diabetic mice 

treated with MF (20 mg/kg BW) via oral gavage once daily for the 15-day treatment period. 

Polycarbonated cages (40-60% humidity, 23 ± 1oC) with a 12 hr light dark cycle were used to 

house the mice. 

Post treatment, mice were euthanised (isoflurane) and whole kidney tissue was harvested. Samples 

were stored in Cytobuster (Novagen, Darmstadt, Germany) or Qiazol (Qiagen; Hildenburg, 

Germany) at -80oC for downstream analysis.   

 

3.4 Protein Carbonyl content 

Carbonylation of protein causing oxidative damage was measured in whole kidney tissue of 

diabetic mice through the reaction of the carbonyl groups with 2,4-dinitrophenylhydrazine 

(DNPH) as per protocol described by Levine et. al., (1994) (Levine et al., 1994). A blank was 

prepared by treatment with 2.5M HCl for all treatments. Mice samples were plated in triplicate 

(100µl/well) and the maximum absorbance (370nm) was used to determine the carbonyl content 

(Augustyniak et al., 2015). 

3.5 Western blot analysis 

Kidney protein was extracted in cell lysis buffer. The extract was centrifuged (12,000 rpm, 5min, 

4°C) to remove debris. Total protein concentration was determined using the bicinchoninic acid 

(BCA) protein assay. Western blotting was performed using an in house protocol (Nagiah et al., 

2016). To determine protein expression, membranes were incubated with primary antibodies 

(Table 1) at a 1:1000, 5% BSA dilution. Thereafter membranes were incubated with horseradish 

peroxidase (HRP) conjugated secondary antibody [Anti rabbit IgG #7074, Anti-mouse IgG #7076, 

1:10,000 in 5% BSA] for 1hr (RT). Densitometric protein measurements were normalised against 

house-keeping protein, HRP-conjugated anti-β-actin (CS1615, Sigma) for 1h at RT. 

Chemiluminescence [Clarity western ECL substrate (Bio-Rad)] was used to detect protein bands 

followed by image detection (Chemidoc™ imaging system, Bio-Rad). The expression of protein 



116 
 

was established using Image Lab Software version 5.0 (Bio-Rad). Proteins of interest are 

expressed as a relative fold change (RFC) ratio over β-actin. 

Table 1: List of antibodies used. 

Primary antibody Cat. No. 

p-AMPK T172 

AMPK 2532 

Sirt1 ab32441 

PARP1 9542P 

CHOP L63F7 

p38 ab4822 

NF-κB D14E12 

Mdm2 m4328 

p53 SC6243 

p21 p1484 

Bax BD610982 

Caspase-9 9502P 

Caspase-3 9662P 

  

3.6 RNA analysis

Total RNA was isolated from homogenised kidney tissue using Qiazol reagent (232 Qiagen, 

Germany) as per manufacturer’s instructions and standardised (1000 ng/μl). Total RNA (1µl) was 

reverse transcribed in a 15µl reaction using the Maxima H Minus First Strand cDNA Synthesis 

Kit (Thermo Fisher Scientific). Real-time quantitative PCR analyses were performed using iScript 

SYBR Green PCR kit (Bio-Rad) as per instructions. The following primers were used for qPCR 

amplification. 

Table 2: Primer sequences used to determine gene expression profiles  

Gene Primer sequence:  

(5’-3’) 

Annealing 

temperature  

(
ο 
C) 

Nrf2 F: CTTTAGTCAGCGACAGAAGGAC 58 



117 
 

R: AGGCATCTTGTTTGGGAATGTG 

GPx F: GGGACTACACCGAGATGAACGA 

R: ACCATTCACTTGGCACTTCTCA 

57 

PGC-1α F: GCAACATGCTCAAGCCAAAC 

R: TGCAGTTCCAGAGAGAGTTCCA 

58 

Sirt1 F: CAGCCGTCTCTGTGTCACAAA 

R: GCACCGAGGAACTACCTGAT 

57 

HIF-1 F: GTCCCAGCTACGAAGTTACAGC 

R: CAGTGCAGGATACACAAGGTTT 

67 

PERK 

 

eIF2α 

 

Chop 

 

NF-κB 

 

TNF- α 

 

P53 

 

Cyt-c 

F: TGCTGAGGCTAGATGAAACCA 

R: GCACTTTAGATGGACGAATGC 

F: ATCTTGTCCTCAACCTCAGACT 

R: TTCTTTAGCCTGGCTTTCTTTCA 

F: AAGCCTGGTATGAGGATCTGC 

R: TTCCTGGGGATGAGATATAGGTG 

F: GAAATTCCTGATCCAGACAAAAA 

R: ATCACTTCAATGGCCTCTGTGTAG 

F: CCAACATGCTGATTGATGACACC 

R: GAGAATGCCAATTTTGATTGCCA 

F: GGGCCCGTGTTGGTTCATCC 

R: CCGCGAGACTCCTGGCACAA 

F: CCCATCTTTGAGCATCTTGGT 

R: GCCCAGCCTGAGTAGTGAAG 

59 

 

58 

 

59 

 

54 

 

58 

 

60 

 

57 

GAPDH F: AATGGATTTGGACGCATTGGT 

R: TTTGCACTGGTACGTGTTGAT 

variable 

 

3.7  Statistical Analysis 

Data are expressed as means ± SDs. Statistical significance was determined with one-way analysis 

of variance (ANOVA) and the Bonferroni multiple comparison test. All data were analysed with 

GraphPad software (Inc., La Jolla, USA), and p ≤ 0.05 was considered as significant (n = 5). 

 

4. Results 

 

4.1 Effects of MF on STZ-induced oxidative stress related parameters  
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In the present study, the kidney of diabetic mice showed a significant increase in protein carbonyl 

content with paralleled decreases in antioxidant Nrf2 and glutathione peroxidase 1 (GPx) 

expression (Fig. 1A) as compared to the control group. However, treatment with MF for 15 days 

significantly decreased protein carbonyl levels in the kidney of diabetic mice, with significant 

upregulation of antioxidant genes after treatment with MF (Fig. 1B and C). Reversal of these 

oxidative distress related parameters suggests that MF is a good antioxidant agent that protects 

mice kidney from diabetes-induced oxidative damage. 

 

Figure 1: MF mitigates oxidative stress in the kidney of diabetic mice. MF reduced protein 

carbonylation (n=5), (A: *p < 0.05, ***p < 0.0001 vs control, ### p < 0.0001 vs STZ), with 

concomitant increases in antioxidant Nrf2 (B: **p < 0.005 vs control, ### p < 0.0001 vs STZ), 

and GPx (C: **p < 0.001 vs control, ### p < 0.0001 vs STZ) gene expression in diabetic mice. 

 

4.2 MF increases PGC-1α gene expression, in parallel with AMPK phosphorylation 

We examined changes in AMPK phosphorylation and PGC1α expression in diabetic conditions. 

AMPK is an important regulator of cellular metabolism, and direct activation of PGC1α by AMPK 

increases its transcriptional activity (Cantó and Auwerx, 2009). Fig. 2 shows that increased AMPK 

activity (Fig. 2A) restores PGC-1α (Fig. 2C) expression (Fig 2) indicating restored mt 

functionality in mice kidney tissue exposed to MF treatment.  
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Figure 2: MF activates AMPK signalling (A: * p < 0.05 ***, p < 0.0001 vs control; ### p < 

0.0001 vs STZ) and induces the expression of PGC‐1α mRNA in mouse renal tissue. MF 

upregulated PGC-1α (A: *p < 0.05 vs control, ### p < 0.0001 vs STZ) (n=5). 

 

4.3 MF restores Sirt1 expression and improves diabetic hypoxic state 

Sirt1 expression is decreased in diabetic conditions of chronic metabolic stress, oxidative stress, 

or hypoxia (Yacoub et al., 2014). MF treatment positively regulates Sirt1 protein and gene 

expression (Fig. 3A and B), with associated decline in HIF-1α expression (Fig. 3D). PARP-1 

protein expression increased markedly in the kidneys from diabetic mice compared to normal, 

however reduced levels of protein were noted in MF treatment (Fig. 3C).  

 

 

Figure 3: Increased Sirt1 protein (A: **p < 0.005 vs control, ### p < 0.0001 vs STZ), and gene 

(B: ***p < 0.0001, ***p < 0.0001 vs control, ### p < 0.0001 vs STZ) expression promotes 

decreased PARP-1 (C: ***p < 0.0001, *p < 0.05 vs control, ### p < 0.0001 vs STZ), and HIF-1α 

gene expression (D: **p < 0.005 vs control, ## p < 0.005 vs STZ) in diabetic mice kidney. 

 

4.4 MF improves ER stress through inhibition of CHOP activation 

Aberrant metabolic conditions such as hyperglycaemic induction of ROS can differentially affect 

ER trafficking (Ron and Walter, 2007). In this study, the increased expression of PERK and eIF-

2α by STZ was significantly decreased following MF treatment (Fig. 4A and B). CHOP, a classic 
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marker of ER stress, displayed reduced expression profiles in the presence of MF (Fig. C and D). 

Collectively, we show that MF efficiently prevents ER stress signals in diabetic kidney tissue. 

 

 

Figure 4: STZ upregulates gene expression of ER stress signals. MF significantly reduces gene 

expression of PERK (A: *p < 0.05, **p < 0.005 vs control, ## p < 0.005 vs STZ), and eIF2α (B: 

**p < 0.005 vs control, ## p < 0.005 vs STZ). Protein expression of both CHOP protein (C: *p < 

0.05 vs control, ## p < 0.005 vs STZ), and gene (D: **p < 0.005, ***p < 0.0001 vs control, ## p 

< 0.005 vs STZ) expressions are reduced in MF-treated mice (n=5) 

 

4.5 MF prevents cell death by inhibition of apoptotic signals  

Diabetic conditions also stimulate the generation of intracellular ROS through mt pathways and 

NADPH oxidase, leading to activation of the pro-apoptotic p38 mitogen-activated protein kinase 

(p38 MAPK) and caspases (Susztak et al., 2006). On the other hand, MF treatment, post to diabetic 

induction, significantly reversed the activation of p38 (Fig. 5A). Next, we examined whether of 

NF-κB has a role in STZ-induced diabetic nephropathy and whether MF can inhibit this 

occurrence. We showed that, in STZ-induced diabetic kidney tissue, protein and gene expression 

of NF-κB increased (Fig. 5B and C). MF treatment however, effectively decreased NF-κB 

expression. The level of TNF-α was significantly augmented in STZ-induced diabetic mice whilst 

MF effectively inhibited the expression (Fig. 5D).  
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Figure 5: STZ significantly increased stress signals in mice kidney tissue. MF treatment lowered 

p38 protein expression (A: ***p < 0.0001, ** p < 0.005 vs control, ### p < 0.0001 vs STZ), NF-

κB transcription factor protein (B: ***p < 0.0001, ### p < 0.0001 vs STZ) and gene expression 

(C: ** p < 0.005 vs control, ### p < 0.0001 vs STZ). Additionally, gene expression of TNF-α 

cytokine (D: ***p < 0.0001, vs control, ### p < 0.0001 vs STZ) is reduced following MF treatment 

(n=5).  

Next, we explored the possible mechanisms involved in Mdm2-associated diabetes dysfunction. 

p53 is a classic downstream target of Mdm2 and STZ administration inhibits Mdm2-mediated p53 

degradation, which has been reported to play a beneficial role in variety of kidney diseases (Allam 

et al., 2011, Mulay et al., 2013, Mulay et al., 2016). Thus, we treated the STZ-induced diabetic 

mice with MF to determine the p53-dependent role of Mdm2. By western blotting and qPCR, we 

found that protein and gene expressions of p53 was markedly decreased in the kidney of mice 

following MF treatment (Fig. 6B and C), indicating the efficient upregulation of Mdm2-p53 

signalling (Fig. 6A). Collectively, these findings suggest a Mdm2-dependent effect on p53 

expression in kidney tissue under diabetic status in vivo. 
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Figure 6: Diabetic stress promotes dysfunctional Mdm2-p53 axis. MF positively regulates Mdm2 

protein expression (A: ***p < 0.0001 vs control, ### p < 0.0001 vs STZ), and lowers p53 (B: 

***p < 0.0001, ** p < 0.005 vs control, ### p < 0.0001 vs STZ) protein, and gene (C: *p < 0.05, 

*** p < 0.0001  vs control, ### p < 0.0001 vs STZ) expression following treatment (n=5).  

Furthermore, western blot showed that the expression of p21, Bax, caspase-9 and -3 proteins were 

both significantly enhanced in the STZ-treated mice compared with that of the control, while 

treatment with MF markedly decreased the expression (Fig. 7 and 8). In addition, the apoptogenic 

protein cyt-c was upregulated in mice kidneys exposed to STZ (Fig. 8A). However, treatment with 

MF effectively inhibited these parameters suggesting its potential anti-apoptotic effect in diabetes-

mediated mt dependent apoptotic pathways in kidney tissue. 

 

 

Figure 7: Damage response protein p21 (A: *p < 0.05 vs control, ### p < 0.0001 vs STZ), and 

pro apoptotic Bax (B: ***p < 0.0001 vs control, ### p < 0.0001 vs STZ) are diminished by MF 

in mice kidney tissue (n=5). 
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Figure 8: Metformin mediates intrinsic mt caspase inhibition by decreasing cyt-c (A: * p < 0.05, 

***p < 0.0001, vs control, ### p < 0.0001 vs STZ) gene expression, intrinsic caspase-9 (B: **p < 

0.005, * p < 0.05  vs control, ### p < 0.0001 vs STZ), and caspase-3 (C: * p < 0.05  vs control, 

### p < 0.0001 vs STZ) protein expression in treated mice kidney. 

 

5. Discussion 

The kidneys maintain glucose homeostasis through glucose release into circulation via 

gluconeogenesis, uptake of glucose from circulation to maintain their energy requirements, and 

glucose reabsorption at the proximal tubule (Triplitt, 2012). Renal glucose release contributes to 

the pathophysiology of diabetes (Marsenic, 2009). The production of ROS in diabetic milieu is 

said to be among the important factors that alter cellular metabolism and function in DN 

(Sifuentes-Franco et al., 2018). STZ induced hyperglycaemia promotes free radical formation 

which overwhelms antioxidant defences (Sadi et al., 2019), leading to imbalances between pro 

and antioxidants and modifies protein activity making them susceptible to degradation. Amino 

acids are modified in the presence of excessive ROS by formation of cysteine disulphide bonds or 

addition of carbonyl groups (aldehydes and ketones) (Therond, 2006). In this study, we found that 

multiple injections of diabetogenic STZ in C57BL/6 mice produced significant increases in blood 

glucose with little change in body weight (Fig S1). We selected an acute STZ exposure time based 

on a recent study depicting severe insulitis and diabetic manifestations over a short period (Han 

et al., 2017). Following oral administration, MF is not metabolised, with 90% is absorbed and 

excreted through the renal route (Gong et al., 2012). Metformin exerts its glucose-lowering effect 

by inhibition of gluconeogenesis in the liver and kidney (Foretz et al., 2014). It also displays 

renoprotective roles by enhancing glucose uptake and preventing podocyte loss, this has been 

shown in a recent study (Polianskyte-Prause et al., 2018). Similarly, we demonstrate MFs efficacy 

to decrease blood glucose levels in STZ-treated mice potentially through gluconeogenesis 

inhibition (Fig S1). Protein carbonyl levels were increased after STZ administration (Fig. 1A), 

indicating oxidative protein damage and rendering the model efficient. Studies have reported the 
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antioxidant benefits of MF in diabetic patients. Metformin lowered protein carbonylation under 

hyperglycaemic conditions (Fig. 1A) potentially through its radical scavenging ability. It has been 

shown that hydroxyl free radicals but not O2
.- react with MF, suggesting that this drug is not a very 

good scavenger of ROS at the molecular level (Khouri et al., 2004). Consequently, we further 

investigated the capacity of MF to up-regulate intracellular defence systems for targeted ROS 

alleviation. Nrf2 is an important mediator of anti-oxidant signalling by promoting cytoprotective 

genes, and significantly improved metabolic indices associated with DM (Zheng et al., 2011). 

Metformin significantly upregulated Nrf2 expression in STZ mice (Fig 1B). Evidence that MF 

maintains and improves the anti-oxidant capacity of the cell was further supported by enhanced 

transcription of GPx (Fig. 1C), a crucial enzyme known to protect tissue from oxidative damage 

by detoxifying hydrogen peroxide and GSH recycling. The mechanism of improving the GSH 

redox state has been shown to prevent the induction of complications by oxidative stress in 

diabetic models and patients (Diaz-Flores et al., 2012, Sadi and Güray, 2009, Hamanishi et al., 

2004). Taken together these data lend support to an altered gene expression profile associated with 

MF and subsequently reduce macromolecular modifications and oxidative damage in DN.  

Additional to MFs anti-oxidant effects, it is established as a direct modulator of metabolic 

homeostasis through activation of AMPK (Rada et al., 2019) and Sirt1 (Cuyàs et al., 2018). The 

requirement for NAD+ as a co-factor for Sirt1 activity makes this deacetylase an energy sensor 

that couples its function and expression to the NAD+/NADH ratio of the cell (Gambini et al., 

2011). Extensive research elucidates the primary effect of MF is inhibition of mt respiratory chain 

complex I, AMPK activation, and subsequent manipulation of cellular NAD+ levels. 

Consequently, Sirt1 is expressed (Cantó et al., 2009, Song et al., 2015). The current study 

demonstrates that the activation of AMPK (Fig. 2A) and enhanced expression of Sirt1 (Fig. 3A 

and B) by MF by promoting mt function through NAD+ restoration and enhanced PGC-1α 

expression (Fig. 2C). PGC-1α is a nuclear-encoded transcriptional coactivator, that plays an 

important role in mt biogenesis and the anti-oxidant defence response. Sirt1 deacetylates PGC-1α 

to enhance its activity to promote and maintain mt function (Cantó and Auwerx, 2009). Under 

diabetic conditions, the downregulation of AMPK/Sirt-1/PGC-1α axis induces hypertrophy, OS, 

and mt dysfunction which contributes to the development of DN (Cantó and Auwerx, 2009). It is 

therefore plausible that the cytoprotective effects of MF in DN is at least partially due to an 

increase in Sirt1 expression and activity. 

Pseudohypoxia is a cellular state that creates transcriptional, translational and post-translational 

regulatory networks which are sensitive to environmental cues such as metabolic and genotoxic 

stress in DM patients (Gomes et al., 2013, Berthiaume et al., 2018). Given that hyperfiltration 

and/or metabolic changes in diabetic kidneys cause excessive oxygen consumption (Wang et al., 

2019a), pseudohypoxia can be considered as hyperglycaemia-induced metabolic hypoxia. Sirt1 

and PARP-1 affect two key post-translational modifications: acetylation and ADP-ribosylation 
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(PAR), respectively. Under stress conditions PARP-1 is acetylated enhancing its enzymatic 

activity. Sirt1 can regulate PARP-1 activity through deacetylation at both the transcriptional and 

posttranslational level (Rajamohan et al., 2009). Thus, by repression of the PARP-1 gene promoter 

leads to reduced synthesis of the PARP-1 protein (Rajamohan et al., 2009).  Overactivation of 

PARP-1 during diabetes increases PAR synthesis and induces mt membrane leakiness, allowing 

mt apoptosis-inducing factor (AIF) to translocate to cytosolic and nuclear compartments 

(Puthanveetil et al., 2012). Additionally, Sirt1 activation blocks the release of AIF from 

mitochondria suggesting that it may counterbalance PARP-1 activity, and control cellular fate 

(Kolthur-Seetharam et al., 2006). In 2016, MF was shown to reduce PARP-1 activity and 

expression via the AMPK/PARP-1 cascade in a diabetic model (Shang et al., 2016). Three years 

later we show that MF suppresses PARP-1 expression in the kidneys of STZ treated mice (Fig 

3C), further supporting the protective role of MF by mitigating PARP-1 through elevation in Sirt1 

expression (Fig 3A and B) and establishing its role in cell survival. 

Under normal glucose conditions, HIF-1α is expressed at basal levels and is degraded by the 

proteasome. However, under hyperglycaemic induced hypoxic conditions, hydroxylation is 

inhibited and HIF-1α accumulates in the nucleus, promoting a pro-oxidant ambiance by 

upregulating NADPH oxidase expression, and exacerbating OS (Nanduri et al., 2015). The 

increased protein oxidation (Fig. 1A) wires the upregulated HIF-1α expression exhibited in kidney 

of STZ injected mice (Fig 3D).  Downregulated Sirt1 leads to greater acetylation and activation 

of HIF-1α (Ryu et al., 2019, Lim et al., 2010). Compelling evidence of known Sirt1 activator, 

resveratrol, promotes deacetylation and subsequent inactivation of HIF-1α to prevent HG-induced 

kidney damage (Shao et al., 2016). Similarly, our study suggests that MF promotes kidney health 

by preventing the expression of HIF1 (Fig 3D) and promoting degradation in a Sirt1-dependent 

manner. Thus, MFs ability to enhance energy metabolism alleviates both protein oxidation and 

diabetic renal hypoxia. 

Inflammatory responses in DN further impairs kidney function. The increased expression and 

activity of NF-κB is observed in experimental models and patients of DN (Mezzano et al., 2004, 

Starkey et al., 2006). The NF-κB inhibitor BAY 11-7082 reduced renal injury, inflammation, and 

oxidative stress in experimental models of DN (Kolati et al., 2015). Similar anti-inflammatory 

effects have been depicted in hypertensive rats (Malínská et al., 2016), and rat glomerular 

mesangial cells (Gu et al., 2014), where MF induced AMPK blocks NF-κB and related cytokine 

activation. Our study fits in with these findings as we show that MF decreased the expression of 

the transcriptionally active p65 NF-κB subunit at gene (Fig 5 C) and protein (Fig 5 B) levels and 

is congruent with decreased pro-inflammatory cytokine TNF-α transcription (Fig 5D) in 

hyperglycaemic mice. Analogous activation of Sirt1 by resveratrol in diabetic cardiomyocytes led 

to inactivation of NF-κB p65 as a result of deacetylation at lysine 310. Sirt1 activation leads to 

decreased binding of NF-κB-p65 to DNA (Bagul et al., 2015), suggesting that MF can normalize 
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several regulatory mechanisms through Sirt1 activity to prevent aberrant inflammatory processes 

of DN.  

Diabetic nephropathy primes cellular responses to restore intracellular homeostasis by enhancing 

the unfolded protein response - an ER stress defence mechanism (Inagi, 2010). This enables cells 

to inhibit protein aggregation and translation and induce the proteasome machinery system for 

degradation of mis- and un-folded proteins. Interestingly, MF reduces ER stress via activation of 

AMPK-PI3k signalling (Jung et al., 2012) and reduced ER stress related markers in diabetic 

patients (Diaz-Morales et al., 2018). In the present study is we showed MF diminished ER stress 

in kidneys of STZ treated mice as evidenced with decreased levels of PERK (Fig 4A), eIF2α (Fig 

4B), and CHOP (Fig 4C), demonstrating MFs ability to restore redox balance. Kidney homeostatic 

function can be achieved through inhibition of the UPR (Thériault et al., 2011), which is in 

accordance with our finding. Concurrent evidence in vitro and in vivo highlights the role of Sirt1 

in alleviating ER stress (Guo et al., 2015, Li et al., 2011).  

Uncontrolled ER stress in the diabetic kidney may result in cell death through other adaptive 

mechanisms including the p38 MAPK network (Adhikary et al., 2004) which is well documented 

as an upstream mediator of apoptotic cell death and oxidative stress (Igarashi et al., 1999). 

Interestingly, the expression of p38 is increased in the diabetic mouse kidney but was significantly 

decreased by MF treatment (Fig 5A). Inactivated p38 under diabetic condition suggests decrease 

in the progression of DN. We therefore investigated the effects of MF on renal apoptotic cell 

death. Hyperglycaemia sensitizes renal cells to hypoxic injury, accompanied by a heightened mt 

accumulation of Bax and release of cytochrome c and initiates p53- and mitochondria mediated 

apoptosis (Peng et al., 2015). In response to injury, diabetic kidney tissues of STZ treated mice 

showed marked p53 induction (Fig 6B and C). Mdm2 is a known suppressor of p53-dependent 

cell cycle arrest (p21) (Lei et al., 2017). The upregulation of Mdm2 protein expression (Fig. 6A) 

following MF-treatment in diabetic mice kidney correlates to reduced p53 protein and gene 

expression (Fig. 6B and C), as well as p21 protein levels (Fig. 7A), suggesting degradation through 

ubiquitination. Auxiliary apoptogenic machinery involve Bax and cyt-c release into the cytosol 

with subsequent apoptosome formation and activation of effector caspase-3. In turn, active 

caspase-3 degrades cell stabilizing proteins and other DNA repair enzymes, resulting in apoptotic 

cell death (Fuchs and Steller, 2015). For over a decade translocation of Bax protein into the mt 

membrane has been shown to increase in caspase-3 activity following high glucose treatment 

(Nakagami et al., 2001). STZ injection ensued upregulation of Bax (Fig. 7B) and cyt-c (Fig. 8A) 

in mice kidney tissue, with successive intrinsic cell death by increased caspase-9 and -3 protein 

expression (Fig. 8B and C). These results are indicative of mt induced dysfunction, OS, and kidney 

cell death. The cell death mechanisms mediated by Bax targeting mitochondria could be inhibited 

by MF-treatment, in agreement with previous studies (Zhang et al., 2017c).  Intriguingly, the 

induction of CHOP (Fig. 4C and D), induces apoptosis (Oyadomari and Mori, 2004) by increased 
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cyt-c, and caspase-9 and -3/7 expression (Fig 8). Metformin’s able to reverse ER stress in a CHOP-

dependent manner by impeding cytoplasmic calcium release (Timmins et al., 2009), this is 

documented by Liu et. al., (2008) in STZ-treated rat kidney (Liu et al., 2008). 

Collectively, our results demonstrate a plausible mechanism of MFs nephroprotective effects in 

diabetic mice connecting Sirt1, mt, and ER signalling and hypoxia in the regulation of apoptosis. 

We suggest that mt damage and associated integrated stress responses in diabetic mice can be 

pharmacologically repaired by MF to improve kidney function. 
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CHAPTER 6 

6.1 Synthesis and conclusion 

 

Metformin is the most commonly prescribed oral anti-diabetic treatment with minimal adverse 

effects. Current research demonstrates its beneficial role in other pathologies including anti-

aging (Kumar and Baquer, 2018), anti-cancer (Vancura et al., 2018), as well as brain cell 

regeneration (Neumann et al., 2019). Metformin’s suppression of hepatic gluconeogenesis in 

hyperglycaemia has been extensively studied, however, the mechanisms involved in diabetic 

brain and kidney organ damage remain elusive. 

The brain relies on glucose for optimal function, whilst the kidney plays a role in glucose 

homeostasis through filtration and excretion, indicating a complementary link between these 

two organs. Therefore, these organs are prone to the harmful effects of uncontrolled 

hyperglycaemia. Diabetes leads to neurodegenerative states including dementia and AD 

which has high mortality and morbidity rates. Consistent evidence has been provided by 

research displaying that patients with DM have twice the risk of developing dementia (Ott et 

al., 1999), highlighting its detrimental effect on the brain. Additionally, diabetes-induced renal 

dysfunction is a common cause of chronic kidney disease (Dabla, 2010). Whilst most research 

provides vascular insight on the association; no studies display the nonvascular mechanisms. 

The present study demonstrates that oral administration of MF (20 mg/kg BW) over an acute 

time period (15 days) was able to reduce blood glucose levels in STZ (50 mg/kg BW) induced 

diabetic mice. The oxidatively challenged status caused by protein carbonylation was 

effectively decreased by MF in whole brain and kidney tissue. This finding was coupled with 

concomitant increases in GSTA4 expression in the brain; as well as Nrf2 and GPx mRNA 

levels in the kidney. Thus, MF can overcome the redox imbalance associated with 

hyperglycaemia by inducing antioxidant effects.  

The ancestral role of AMPK being the “fuel gauge of the cell” and its targets that uphold mt 

health are well established (Herzig and Shaw, 2018). However, during diabetic conditions 

dysregulated ATP metabolism downregulates AMPK, which leads to severe hypoxic states 

portrayed by upregulated HIF-1 activation in mice kidney tissue. Treatment with the 

antidiabetic drug MF upregulated AMPK phosphorylation, and Sirt1 expressions with 

concomitant decreased PARP-1 protein expression, indicating its ability to restore depleted 

NAD+ levels. Further, MF treatment led to a Sirt1-dependent decrease in HIF-1 expression 

and overall improvement of hyperglycaemic-induced renal hypoxia.  

Similar effects of MF on expression of Sirt1 and Sirt3 were noted in diabetic mice brain tissue. 

These two proteins have synergistic effects on PGC-1α, which positively regulates mt 

biogenesis by regulating TFAM and promoting mt replication. Metformin alleviated the 
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neuronal stress caused by hyperglycaemia through upregulated expressions of Sirt1, Sirt3, 

PGC-1α and TFAM. Additional to Sirts control over PGC-1α, is the post-transcriptional 

ability of miR-148a to bind to and inhibit its expression. Metformin induced an epigenetic 

change in neuronal tissue by altering the expression of miR-148a which modulates PGC-1α 

expression and enhances overall metabolic homeostasis. Furthermore, miR-132 was found to 

target a key chaperone protein HSP70. Mitochondrial surveillance is carried out by stress 

response chaperones like LonP1, HSP60 and HSP70 and are important for mt health (Yi et 

al., 2018). Inhibition of these chaperones in STZ-treated mice brain tissue exacerbated the 

level of oxidative stress and ablated their protective role in mt function. Metformin repressed 

miR-132 expression, and concomitantly upregulated HSP70 protein, associated HSP60, and 

protease LonP1; thus, maintaining proper mt metabolism and function in diabetic mice brain 

tissue.  

The ability of cells to defend against hyperglycaemic insult and resultant misfolded and 

aggregated proteins involves the ER stress response system (Ramírez and Claret, 2015). This 

metabolic response is highlighted in both the brain (De Felice and Ferreira, 2017), and kidney 

(Cunard and Sharma, 2011). The UPR features as the primary signalling pathway in 

association with ER stress. The present study demonstrated upregulated UPR markers such as 

PERK and p-eIF2α after STZ-injection, indicating general inhibition of protein translation 

and synthesis in both mice brain and kidney tissue. Metformin was able to overcome the stress 

by reducing expression of these markers and restoring homeostasis. Furthermore, MF 

decreased the levels of CHOP protein and mRNA expressions in the hyperglycaemic kidney, 

thus counteracting ER-dependent degradative processes that are triggered by this protein.   

The positive feedback loop between ER stress and mt oxidative stress reinforces the diseased 

state in diabetics. Their dual effects tend to overwhelm the cell’s defence and mt apoptotic 

pathways are triggered. The elevated levels of the apoptotic marker p38 MAPK in diabetic 

mice kidney indicated that cell death signals were triggered. P53 activation is strongly related 

to kidney dysfunction (Zhou et al., 2010), and its inhibition has protective effects (Bhatt et al., 

2010). The activation of inhibitor of p53-mediated apoptosis, Mdm2, and subsequent negative 

regulation of p53 and damage response protein, p21 levels by MF displays its protective 

effects against diabetic induced nephropathy. Additionally, high glucose prompts Bax-

induced apoptosis highlighting one of the first findings in kidney cell apoptosis (Moley et al., 

1998, Ortiz et al., 1997). Streptozotocin initiated apoptosis via the intrinsic pathway as 

demonstrated by increased Bax, cyt-c, caspase-9 and caspase-3 protein expressions in mice 

kidney tissue. Following MF treatment, the opposing effects provide evidence for its anti-

apoptotic role in the diabetic kidney.  

The suggested “alarm response” of the UPR and its ability to trigger apoptosis is accompanied 

by the activation of proinflammatory pathways in a diabetic ambiance (Cameron, 2013). The 
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upregulated Rel/A p65 NF-ĸB subunit exhibits further impairment in diabetic mice brain and 

kidney tissue. Potent anti-inflammatory effects were exerted by MF through decreased p65 

NF-ĸB gene and protein expressions in both brain and kidney of diabetic mice. Additionally, 

MF treatment was associated with increased IκB-α levels in the diabetic brain indicating NF-

ĸB sequestration in the cytoplasm preventing its translocation to the nucleus. From the two 

clusters of the miR-200c family, the miR-141 subunit has been associated with 

neuroinflammation (Verma et al., 2018). The inhibition of miR-141 by MF in diabetic mice 

brain tissue induced its target Sirt1, thus providing a mechanism for Rel/A p65 NF-ĸB 

inhibition through deacetylation. The NLRP3 inflammasome activation is primed by NF-ĸB 

signals (Bauernfeind et al., 2009), leading to the induction of NLRP3 related signals. 

Hyperglycaemic mice revealed increased mRNA expressions of NLRP3, caspase-1, IL-1β, 

IL-18, and TNF-α in the brain. These pro-inflammatory genes were decreased after acute MF 

treatment highlighting its suppressive role in neuronal inflammation in vivo. The catalytic 

activity of PP2A regulates IκB-α and tau protein by removal of phosphate groups. Thus, the 

PP2A/ NF-ĸB cascade mediates the regulation of the inflammasome at the transcriptional 

level. Diabetic mice treated with MF further revealed significantly downregulated miR-141 

expressions and concomitantly increased PP2A mRNA. The associated decrease in tau 

hyperphosphorylation at Ser396 suggests MFs neuroprotective role by preventing protein 

aggregation and accumulation. Neuronal survival and function is further supported by BDNF 

(Rosa et al., 2016). Hyperphosphorylated tau protein was associated with reduced BDNF 

protein levels in diabetic mice, however, significant increases in both BDNF and its receptor 

TrkB demonstrated MFs function in neuroplasticity.  

Both brain and kidney are the most metabolically active organs, however overcompensating 

their energy requirements in hyperglycaemic conditions leads to eventual organ-damage. This 

study fills the gap of mechanistic insight into MFs protection against mt oxidation, ER stress, 

inflammation, and apoptosis in renal and neuronal diabetic mice tissue. We provide novel 

epigenetic regulatory mechanisms in relation to these pathways, further highlighting its 

therapeutic effect.  

In summary, MF’s multi-directional properties, pharmacokinetic profile, and safety yields it 

a promising candidate in the prevention of diabetic- induced neuropathy and nephropathy. 

However, due to time constrains this study was conducted with a small number of mice. The 

effects of MF should be investigated over a chronic time period, where assays are conducted 

every 4 weeks to determine its efficacy. In addition, investigating other miRNA regulatory 

roles will uncover differential gene regulation during T2DM-organ damage. 

Future work may include assessment of cytokines involved in low-grade systemic 

inflammation such as C-reactive protein (CRP), TNF-α, and IL-6. The effect of MF on 

inflammatory processes induced by STZ on co-secreting hormone, amylin, is unexplored in 
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the brain and should be addressed in future studies. Furthermore, the immunomodulatory 

effect of neuropeptides (e.g., Neuropeptide Y) and how these contribute to MF’s 

neuroprotective actions requires attention. 
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ADDENDUM A 

 

Ethics letter (year mice tissue was harvested) 



140 
 

 

ADDENDUM B 

 

Table S1: Blood glucose measurements (mmol/L) at day 3, 10, and 13 for the duration of the Pilot 

study (n=3) 
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Mice DAY 3 Weight 

(g)  

Day 0 

Blood glucose 

(mmol/L) 

Blood glucose 

(mg/dL) 

 

STZ 50mg/kg 

BW 

22 6.8 122.4 

22 5.6 100.8 

22 5.9 106.2 

 

STZ 100mg/kg 

BW 

22 7.4 133.2 

21 5.7 102.6 

25 6.6 117.9 

 

STZ 150mg/kg 

BW 

23 - - 

24 - - 

25 15.7 282.6 

Mice DAY 10 Weight 

(g) 

Blood glucose 

(mmol/L) 

Blood glucose 

(dL) 

 

STZ 50mg/kg 

BW 

22 9.3 164.7 

23 6.4 115.2 

22 7.1 127.8 

 

STZ 100mg/kg 

BW 

22 8 144 

21 5.2 93.6 

26 5.9 106.2 

 

STZ 150mg/kg 

BW 

- - - 

- - - 

19  563.4 

Mice DAY 13 Weight 

(g) 

Blood glucose 

(mmol/L) 

Blood glucose 

(dL) 

 

STZ 50mg/kg 

BW 

21 11 198 

22 11.5 207 

21 12 216 

 

STZ 100mg/kg 

BW 

22 12.1 217.8 

21 11.9 214.2 

25 10 180 

 - - - 
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The administration of 50mg/kg BW yielded similar blood glucose levels as the 100mg/kg BW 

group over the 2week experimental period. Hence, we selected the lower dose of STZ (50mg/kg 

BW) for this study. The dash (-) represents mice that did not tolerate the high doses of STZ 

(150mg/kg BW) and died by day 3 of administration. 

 

Table S2: Blood glucose measurements (mmol/L) at day 0, 3, and 10 for the duration of the 

diabetic induction period. 

 

All mice were labelled by an ear piecing, to ensure the same mice were treated within the same 

group.  

 

 

 

 

STZ 150mg/kg 

BW 

- - - 

19 32 576 

 Day 0  

(glucose in mmol/L) 

Day 3 

(glucose in mmol/L) 

Day 10 

(glucose in mmol/L) 

Mice    

STZ 1 5.6 7.8 13.5 

2 4.3 6.5 14.4 

3 4.2 6.5 13.9 

4 4.1 6.3 14.0 

5 5.5 7.7 13.9 

STZ+MF 6 4.3 7.9 14.3 

7 5.0 8.9 15.1 

8 4.7 7.9 14.6 

9 5.3 8.0 15.5 

10 4.9 8.5 15.2 
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Table S3: Blood glucose measurements (mmol/L) at day 0, 5, 10, and 15 for the duration of the 

MF-treatment period. 

 

All mice were labelled by an ear piecing, to ensure the same mice were treated within the same 

group.  

 

 

 

 

 

 

 

 

 Day 0 

(glucose in 

mmol/L) 

Day 5 

(glucose in 

mmol/L) 

Day 10 

(glucose in 

mmol/L) 

Day 15 

(glucose in 

mmol/L) 

Mice     

Control 1 5.1 5.0 5.1 5.0 

2 4.8 4.2 4.2 4.8 

3 5.0 4.9 4.9 4.7 

4 4.8 4.9 4.9 5.0 

5 4.3 4.2 4.7 4.8 

STZ 6 13.5 13.8 14.2 14.3 

7 14.4 14.5 14.6 14.9 

8 13.9 13.3 13.8 13.2 

9 14.5 14.2 14.5 14.2 

10 13.9 13.9 13.8 14.9 

Diabetic + MF 11 14.3 12.1 11.4 9.0 

12 15.1 11.0 10.6 8.9 

13 14.6 12.5 9.0 10.0 

14 15.5 12.5 12.0 10.3 

15 15.2 12.9 11.5 10.4 
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Table S4: OGTT test readings on the last day of experimental treatment period (Day 25).  

 

All mice were labelled by an ear piecing, to ensure the same mice were treated within the same 

group.  

  

 

 

 

 

 

 

 

 

 

 

 Day 0 (g) Day 5 (g) Day 10 (g) Day 15 (g) 

Mice     

Control 1 18 19 20 21 

2 26 20 19 20 

3 21 21 20 21 

4 21 22 20 21 

5 21 21 20 21 

STZ 6 20 21 22 22 

7 22 22 22 23 

8 22 22 23 23 

9 22 23 24 24 

10 22 23 23 24 

Diabetic + MF 11 20 21 22 22 

12 21 22 23 23 

13 22 22 23 23 

14 21 22 22 23 

15 20 21 22 23 
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Table S5: Mice body weight measurements (g) at days 0, 5, 10, and 15 for the duration of the 

MF-treatment period. 

 

 

 

 

 

 

 

 

All mice were labelled by an ear piecing, to ensure the same mice were treated within the same 

group.  

 

ADDENDUM C 

 

Agarose gel electrophoresis of DNA fragments in Control, STZ, and MF-treated mice  

 

Figure 1: DNA electrophoresis from control, STZ, and MF-treated DNA isolates. No significant 

differences were established within acute treatment period (15 day) 

 Control STZ Diabetic + MF 

0 min 4.80 11.00 10.00 

30 min 4.90 11.20 9.80 

60 min 5.00 11.50 9.60 

90 min 4.90 11.60 9.70 

120 min 4.95 11.40 9.65 


